FIT DISRUPTED: EVENTS AT WORK AND THEIR EFFECTS ON PERSON-ENVIRONMENT FIT

Charlotte L. Hoopes

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Kenan-Flagler Business School (Organizational Behavior).

Chapel Hill
2018

Approved By:
Jeffrey R. Edwards
Michael S. Christian
Shimul S. Melwani
Amy L. Kristof-Brown
Abbie J. Shipp
ABSTRACT

Charlotte L. Hoopes: Fit Disrupted: Events at Work and Their Effects on Person-Environment Fit
(Under the direction of Jeffrey R. Edwards)

In recent years, greater attention has been devoted to examining person-environment (P-E) fit from a dynamic perspective, in order to better understand how fit fluctuates and shifts amidst the inevitable changes that occur for both individuals and organizations over time. Building on recent work in this area and in response to ongoing calls to examine fit in temporal contexts, I integrate P-E fit with event system theory to explore the impact of events on P-E fit. In doing so, I suggest that the degree to which fit is a salient aspect of employment is variable, and that events are one way through which the salience of fit may be triggered during the ongoing-tenure phase of employment. In elaborating on the salience of fit I propose the concept of a zone of indifference, which helps to shed light on whether and to what extent P-E fit is impacted by events. I focus on one specific type of events—micro events—and I empirically examine these through a qualitative survey and a two-part lab study. I conduct the analyses for my lab study using spline regression.
ACKNOWLEDGEMENTS

I am deeply grateful to the many people who have impacted my life during my PhD studies and my time in Chapel Hill. Although words are wholly inadequate to express my thanks, I would like to briefly recognize some of these individuals.

First and foremost, my children: Charles, Chelsea, Chandler—and Christine, too. While balancing motherhood and a PhD has been no easy task, you have been the ultimate source of motivation and meaning behind my work. I am forever grateful for the opportunity to be your mom.

My advisor, Dr. Jeff Edwards. You helped me to keep my eye on the finish line even during times when finishing seemed impossible. Beyond the incredible academic training and career guidance I received as your student, I am indebted to you for your genuine care and concern for me as a person. I could not have hoped for a better PhD advisor.

My parents, John and Nancy Hoopes. I am humbled to have such wonderful parents who have supported and encouraged me throughout my life. Your continued support and encouragement during my doctoral studies—whether from afar or during times you have traveled to us to help—have been critical to me finishing. I could not have done this without you.

My outstanding dissertation committee: Dr. Jeff Edwards, Dr. Mike Christian, Dr. Shimul Melwani, Dr. Amy Kristof-Brown, and Dr. Abbie Shipp. I appreciate your valuable feedback and insights as I have worked to complete this dissertation. I look up to and greatly respect each of you as scholars in this field and feel fortunate to have had this opportunity to work with and learn from you.
The amazing Organizational Behavior faculty at UNC. Thank you for your mentorship and for investing in me as a doctoral student; I have learned so much from so many of you. And to my fellow doctoral students—especially Jonathan, Tali, Erin, and Tian—I feel lucky that I was able to share parts of this journey with you.

My early academic mentors at BYU: Dr. Kristen DeTienne, Dr. Kristie Seawright, and Dr. John Bingham. Thank you for helping me to find and prepare for this career path. I think of you often with gratitude.

Finally, the many dear friends I have made during this chapter of life, especially Lorien, Melissa, Melissa, Pam, Holly, and Jared. Your friendship and support made a world of difference to me as I navigated some of life’s most difficult challenges during these years I have been working toward my PhD. Thank you for being there for me and for continuing to cheer me on to the finish line.
TABLE OF CONTENTS

LIST OF TABLES ... x

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: LITERATURE REVIEW ... 5
 Person-Environment Fit Theory ... 5
 Objective and subjective fit. ... 5
 Supplementary and complementary fit .. 6
 Additional fit distinctions. ... 7

The Salience of Fit ... 7
 Job search ... 8
 Job choice. ... 9
 Onboarding. ... 9
 Ongoing tenure. ... 10
 Organizational exit ... 11

The Zone of Indifference ... 12

Event System Theory .. 14
 Events. ... 15
 Micro events .. 16

CHAPTER 3: MODEL AND HYPOTHESES .. 18
 Disruptiveness of Events .. 18
Indirect effect on subjective fit. ... 19
Direct effect on subjective fit... 20
Types of disruption..21
Cognitive response ..21
Affective response ..25
Behavioral response..29
Degree of Disruptiveness..31
Importance ...31
Duration ..32
Frequency ...33

CHAPTER 4: PILOT STUDY ..35
Sample ...35
Procedure ..35
Results ..36

CHAPTER 5: STUDY 1 ..39
Sample ...39
Procedure ..40
Results ..41

CHAPTER 6: STUDY 2 METHODOLOGICAL APPROACH.............................44
Spline Regression..44

CHAPTER 7: STUDY 2A...50
Study 2a: Sample ..50
Study 2a: Procedure ..50
Study 2b: Final Questionnaire ... 152
Study 2b: Transcription Tasks ... 161
REFERENCES .. 167
LIST OF TABLES

Table 1. Sample D-A Fit Disruptions ..82
Table 2. Study 2a Means and Standard Deviations for Duration and
Frequency Manipulation Checks ..83
Table 3. Study 2a Means, Standard Deviations, Correlations and Reliabilities84
Table 4. Study 2a Results for Constrained Piecewise Regression Equations85
Table 5. Study 2a Results for Spline Regression Equations ...86
Table 6. Study 2a Spline Regression Surfaces ...87
Table 7. Study 2a Slope of Y = -X..88
Table 8. Study 2a Results for Spline Regression Equations, Duration Moderation89
Table 9. Study 2a Results for Spline Regression Equations, Frequency Moderation90
Table 10. Study 2b Means and Standard Deviations for Completeness Manipulation Check ..91
Table 11. Study 2b Means, Standard Deviations, Correlations and Reliabilities92
Table 12. Study 2b Results for Constrained Piecewise Regression Equations93
Table 13. Study 2b Results for Spline Regression Equations ...94
Table 14. Study 2b Spline Regression Surfaces ..95
Table 15. Study 2b Slope of Y = -X ..96
Table 16. Study 2b Results for Spline Regression Equations, Importance Moderation97
LIST OF FIGURES

Figure 1: Theoretical Model ..98
Figure 2: Employment Cycle ..99
Figure 3: Zone of Indifference ...100
Figure 4: Hypothesized Surface 1: Perceived Pace Required ...101
Figure 5: Hypothesized Surface 2: Perceived Time Available ...102
Figure 6: Hypothesized Surface 3: Dissatisfaction ...103
Figure 7: Hypothesized Surface 4: Experienced Stress ...104
Figure 8: Hypothesized Surface 5: Experienced Time Pressure ...105
Figure 9: Hypothesized Surface 6: Effort ...106
Figure 10: Estimated Surface 1, Study 2a: Perceived Pace Required ...107
Figure 11: Estimated Surface 2, Study 2a: Perceived Time Available ...108
Figure 12: Estimated Surface 3, Study 2a: Dissatisfaction ...109
Figure 13: Estimated Surface 4, Study 2a: Experienced Stress ..110
Figure 14: Estimated Surface 5, Study 2a: Experienced Time Pressure ..111
Figure 15: Estimated Surface 6, Study 2a: Effort ..112
Figure 16: Moderating Effects of Duration on Experienced Time Pressure113
Figure 17: Moderating Effects of Frequency on Perceived Time Available114
Figure 18: Moderating Effects of Frequency on Experienced Time Pressure116
Figure 19: Estimated Surface 1, Study 2b: Perceived Pace Required ...118
Figure 20: Estimated Surface 2, Study 2b: Perceived Time Available ...119
Figure 21: Estimated Surface 3, Study 2b: Dissatisfaction ...120
Figure 22: Estimated Surface 4, Study 2b: Experienced Stress ...121
Figure 23: Estimated Surface 5, Study 2b: Experienced Time Pressure ... 122

Figure 24: Estimated Surface 6, Study 2b: Effort .. 123
CHAPTER 1: INTRODUCTION

Person-environment (P-E) fit has been linked to myriad important individual and organizational outcomes, such as well-being, satisfaction, and performance (Edwards & Shipp, 2007; Kristof-Brown, Zimmerman, & Johnson, 2005). Indeed, scholars have long considered P-E fit, which refers to the congruence or match between a person and an environment, a central concept in organizational behavior (Edwards, 2008). Despite its theoretical significance, however, much of the empirical work on P-E fit has been done from a perspective that is static rather than dynamic, thereby leaving many questions unanswered about the potential for P-E fit to shift and change over time (Jansen & Shipp, 2013).

Accordingly, greater attention has recently been devoted to better understanding the dynamic nature of fit, particularly whether and how fit fluctuates and shifts amidst the inevitable changes that occur for both individuals and organizations over time (Gabriel, Diefendorff, Chandler, Moran, & Greguras, 2014; Shipp & Jansen, 2011; Swider, Zimmerman, & Barrick, 2015). Yet much work remains to be done in this area. In my dissertation, I build on this early work on dynamic fit by addressing a critical, yet until now, largely unaddressed foundational question about fit: notwithstanding its apparent dynamic nature, to what extent is fit actually salient to individuals in the context of day-to-day organizational life?

As a starting point, I suggest that fit is a salient concern for individuals, but to varying degrees depending on personal, environmental, and temporal factors. Furthermore, while individuals’ perceptions about their fit with various aspects of employment (e.g., their job responsibilities, coworkers, or organizations) may ebb and flow, these perceptions often fall
within what can be described as zones of indifference. At certain times, however, fit perceptions move outside of these zones of indifference due to changes that occur to both individuals and organizations. It is during these times—when fit perceptions fall outside of zones of indifference—that individuals are more likely to be cognizant of fit and attribute more importance to it. When this occurs, fit perceptions are more likely to influence, in a causal sense, important outcomes such as well-being, satisfaction, and performance.

At the heart of understanding what causes fit perceptions to move outside of zones of indifference—or, in other words, what triggers fit salience—is the element of change. Change to individuals and organizations can take a variety of forms, including gradual, cyclical, and event-based (Ancona, Okhuysen, & Perlow, 2001; Van De Ven & Poole, 1995; Weick & Quinn, 1999). Gradual change is typically directional and occurs incrementally, often slowly enough that it is difficult to perceive while it is occurring. Cyclical change can involve ebbs and flows or peaks and valleys, but such change is generally structured or systematic, occurring in more or less predictable patterns. In contrast to gradual or cyclical change, event-based change is discontinuous and irregular, representing a departure from previous states, trajectories, or patterns. While all forms of change have the potential to impact fit perceptions, the more sudden and typically unexpected jolts that are characteristic of event-based change are particularly likely to move fit perceptions outside of zones of indifference, compared to either gradual or cyclical change. It is this third type of change, event-based change, which I examine in my dissertation.

As I will later elaborate, the term event can refer to a wide range of occurrences, from minor to major in magnitude. Major events are those that are high-profile, high-impact, and high-cost. Minor events, on the other hand, tend to be comparatively lower-profile, lower-impact, and lower-cost. Nevertheless, the impact of minor events is not negligible; indeed, minor events such
as interruptions are a growing concern for individuals and organizations due to such factors as technology (Addas & Pinsonneault, 2015; Grandhi & Jones, 2015; Rennecker & Godwin, 2005; Speier, Valacich, & Vessey, 1999) and the blurring of boundaries between the work and non-work domains (Ashforth, Kreiner, & Fugate, 2000; Kossek, Ruderman, Braddy, & Hannum, 2012).

In my dissertation, I integrate P-E fit with events—focusing specifically on minor, or micro, events—in order to examine fit in a context that is highly relevant to individuals and organizations, given the ever-increasing frequency with which micro events occur in organizational life. As noted above, little empirical work related to P-E fit has examined fit from a dynamic perspective (e.g., testing within-person change), and has instead focused almost exclusively on testing static between-person variation, despite the fact that extant P-E fit theories do, in some cases, explicitly address dynamic aspects of fit (e.g., Edwards, 1992). Therefore, my dissertation makes an important contribution to the P-E fit literature in that I consider fit in the context of change that occurs as individuals experience and respond to micro-events at work. Furthermore, the two lab studies that compose the empirical portion of my dissertation are, to my knowledge, among the first studies in both the P-E fit realm and broader organizational literature to utilize the recently-introduced spline regression methodological approach (Edwards & Parry, 2017).

In the chapters that follow, I first provide general overviews of P-E fit theory, the concept of salience as it applies to fit, the zone of indifference, and event system theory (Morgeson, Mitchell, & Liu, 2015). I then propose the core theory underpinning my formal hypotheses. Next, I present two exploratory qualitative studies. I then provide an overview of the methodological approach (i.e., spline regression) for testing my lab study, following which I
present the two parts of the lab study, describing relevant details about the studies and presenting the results for each. I conclude with a general discussion, which includes theoretical and methodological implications, practical implications, limitations, and directions for future research.
CHAPTER 2: LITERATURE REVIEW

Person-Environment Fit Theory

P-E fit is a central concept in organizational behavior (Edwards, 2008; Edwards, Caplan, & Harrison, 1998; Kristof-Brown, Zimmerman, et al., 2005; Kristof, 1996). By jointly considering the person and environment—the latter of which can refer to a person’s job, colleagues, supervisor, organization, vocation, etc.—P-E fit theory goes beyond simply linking predictors to outcomes and instead considers how the combination or interaction of the person and the environment are related to or influence outcomes. At the heart of P-E fit theory is the premise that correspondence, or fit, between a person and his or her environment leads to favorable outcomes such as employee well-being, job satisfaction, and enhanced job performance (Edwards, 1991; Edwards & Shipp, 2007; Kristof-Brown, Barrick, & Stevens, 2005). Conversely, when a person and his or her environment are in a state of misfit, negative outcomes such as stress, job dissatisfaction, and reduced job performance are more likely to occur.

Objective and subjective fit. A key distinction in P-E fit theory is between objective and subjective fit (Edwards et al., 1998; French, Rodgers, & Cobb, 1974; Harrison, 1978). Whereas objective fit refers to attributes of the person and environment as they actually exist, subjective fit refers to attributes of the person and environment as perceived by the person. While related, the objective and subjective forms of fit are not identical due to such factors as information availability, perceptual filters, and individual differences. Accordingly, and as shown in Figure 1, the objective person and environment are filtered through their subjective counterparts, and it is
ultimately the subjective person and environment which combine to form the P-E fit perceptions that affect outcomes (Edwards, Cable, Williamson, Lambert, & Shipp, 2006; Harrison, 1978).¹

Supplementary and complementary fit. Another important distinction in P-E fit theory is between supplementary and complementary fit (Cable & Edwards, 2004; Edwards et al., 2006, 1998; Kristof, 1996; Muchinsky & Monahan, 1987). The former, supplementary fit, refers to similarity or likeness, such as when an individual possesses a skill set similar to her colleagues. The latter, complementary fit, refers to situations in which the environment provides for the needs of a person, or vice versa.

Complementary fit encompasses both needs-supplies and demands-abilities fit. Needs-supplies (N-S) fit relates the needs of a person (e.g., income) with what the environment supplies to fulfill those needs (e.g., salary), whereas demands-abilities (D-A) fit relates the demands of an environment (e.g., job requirements) to the abilities a person draws upon to meet those demands (e.g., skills and aptitude). Although the abilities component of D-A fit is typically conceptualized as the knowledge, skills, and abilities (KSAs) that are highly relevant to recruitment and selection decisions—in other words, abilities that are more stable and enduring—a broader perspective on abilities encompasses any resource that an individual draws upon to fulfill the responsibilities associated with his or her job (e.g., time, money, or assistance from others), which may be more variable and transient than KSAs.

In my dissertation, I focus specifically on whether and how micro events impact individuals in terms of their abilities to fulfill their day-to-day responsibilities at work. Therefore, I focus hereafter on D-A fit, with any references to fit referring to D-A fit in particular, unless otherwise noted. Much of the theory I propose applies to both D-A and N-S fit,

¹ Although there exist different viewpoints on the meaning of the term perceived fit (Kristof-Brown & Billsberry, 2013), in my dissertation, any references to either perceived fit or fit perceptions refer specifically to subjective fit.
but in order to maintain a reasonable scope for my dissertation, I do not specifically explore or provide examples of aspects of my theory and hypotheses that are unique to N-S fit. Furthermore, given that I focus specifically on micro events, I take a more task-level perspective of fit than is typically taken in the fit literature.

Additional fit distinctions. In addition to types of fit, additional distinctions within the P-E fit framework can be made according to content dimensions, which range from general to specific (Edwards & Shipp, 2007). The global level of fit refers to fit in the most general sense of the concept and is often referred to as overall fit. The domain level of fit is more specific than the global level in that it considers specific categories of fit, such as job characteristics. The facet level of fit is the most narrowly-focused level of fit, in which specific components of categories are considered, such as specific tasks or responsibilities. In the sections that follow, I focus primarily on fit as it applies to specific dimensions and/or facets, rather than to global fit, unless otherwise noted.

The Salience of Fit

Salience refers to prominence, importance, or noteworthiness. The more salient something is, the more likely it is to be noticed or have an impact (Jansen & Kristof-Brown, 2006). Although P-E fit research has generally unfolded under the tacit assumption that fit is salient most if not all of the time, I suggest that in actuality, the salience of fit is much more nuanced: there are times when fit—in the global, or overall, sense of the concept—matters more, and times when it matters less. Furthermore, given that fit is a multi-dimensional concept, as described above, there are periods when or circumstances under which certain dimensions and/or facets of fit are more relevant than other dimensions and facets (Jansen & Kristof-Brown, 2006; Vogel & Feldman, 2009; Yu, 2009).
Viewing fit within the context of the typical cycle of employment helps to illustrate that fit changes and is differentially salient over time. As shown in Figure 2, the employment cycle (from the perspective of the individual) comprises the phases of job search, job choice, onboarding, ongoing tenure, and turnover. Generally speaking, this employment cycle encompasses an individual’s tenure in a specific job, meaning that an individual can experience numerous employment cycles over the course of a career. While some types or aspects of fit can be relatively stable across multiple employment cycles—for instance, person-vocation fit typically transcends an individual’s tenure in a specific job—changing jobs (or more specifically, preparing to do so) triggers a process through which fit forms and develops initially, and then transforms over time.

Below, I provide a high-level summary of fit in the context of each of the five key employment stages. In this overview, I focus specifically on the formation and development of subjective fit, or fit perceptions. As explained earlier, subjective fit flows from objective fit, but is not identical due to such factors as information availability, perceptual filters, and individual differences.

Job search. The job search phase of employment (Cable & Judge, 1996; Saks & Ashforth, 1997, 2002) begins when an individual prepares either to enter the job market from a non-employed status or to search for a new job due to expected or actual turnover, whether voluntary or involuntary. A number of fit perceptions begin to form during the job search phase as individuals gather information about potential job opportunities and then use this information to assess, for example, whether they possess the particular skills necessary to perform a given job. Subjective fit in this phase is shaped, in part, by comparisons that individuals make among various opportunities, and is further refined as individuals filter out and prioritize potential
opportunities. Myriad factors play into these comparisons and prioritizations, including personal goals, existing knowledge, and new information gathered during the search process. In summary, various dimensions of fit form and develop during this phase of employment, making fit dynamic and highly relevant throughout the job search process.

Job choice. Individuals transition to the job choice phase of employment (Adkins, Russell, & Werbel, 1994; Cable & Judge, 1996; Chapman, Uggerslev, Carroll, Piasentin, & Jones, 2005; Rynes, Bretz, & Gerhart, 1991) when they move from general job search activities into job application and selection processes. Specifically, during the job choice phase, individuals apply to a set of jobs from among those identified during the job search process, then are screened (e.g., interviewed) for a subset of jobs for which they applied, then are selected into (e.g., given an offer for) a subset of jobs for which they were screened, and ultimately choose a job from among those they were selected into. Subjective fit continues to develop and be refined during this phase, which occurs as individuals gather (e.g., through interviews and visits to potential job sites) more detailed and concrete information about specific jobs than was likely available to them during the job search phase. Fit across various dimensions therefore continues to be an active and highly salient concern for individuals throughout the job choice phase.

Onboarding. Individuals move into the onboarding, or socialization, phase of employment (Cable & Parsons, 2001; Cooper-Thomas, van Vianen, & Anderson, 2004; Kim, Cable, & Kim, 2005) when they commence employment in a position decided upon during the job choice phase. Onboarding typically involves general orientation, job-specific training, and socialization in terms of norms unique to the specific organization and work group an individual is joining. Fit perceptions across various dimensions are generally still in flux during this phase of employment, such as in the case of an individual who discovers that his new job duties aren’t
quite what he expected prior to commencing employment. As in the job search and job choice phases, fit across various dimensions continues to be active and salient during onboarding, although to a diminishing extent as this phase progresses.

Ongoing tenure. Individuals transition into the ongoing-tenure phase of employment as their newcomer status fades and they become entrenched in their jobs. In other words, after the process of searching for, choosing, and being onboarded into a new position, an individual eventually shifts from learning what her job duties are and how to go about performing them, to actually executing them according to norms and routines.

As a part of the general settling process that is characteristic of the transition from onboarding to ongoing-tenure, many fit perceptions that were highly salient during the preceding phases of employment also settle into states of relative equilibrium. *Relative equilibrium* as applied to a given fit configuration refers to a state in which the relationship or correspondence between the person and the environment (1) has been established, (2) is reasonably stable, and (3) is adequate or acceptable for at least the present time. Individuals may experience varying degrees of equilibrium both overall and for different dimensions and facets of fit, depending on a variety of personal and individual factors, thus the importance of the term *relative* to describe not just an approximation of equilibrium, but also to describe the individual nature of equilibrium.

At such a point that relative equilibrium is reached between the person and environment components of a given fit configuration, the salience of that fit configuration generally fades, with fit becoming salient again only when “something significant [changes] either in the person or the work environment” (Jansen & Shipp, 2013), thereby disrupting equilibrium. To the extent that equilibrium is restored following an equilibrium-disrupting change (Edwards, 1992), the
salience of fit again fades. Conversely, when subjective fit remains in disequilibrium, the salience of fit remains heightened.

Equilibrium-disrupting change that is perceived to have a positive valence can result in positive outcomes such as a sense of satisfaction, feelings of well-being, and so forth. Conversely, equilibrium-disrupting change that is perceived to have a negative valence can result in negative outcomes such as a sense of dissatisfaction, feelings of stress, and so on. To the extent that negative outcomes are sufficiently strong and/or enduring, they can generate or contribute to turnover intentions, which can, in turn, move individuals toward the organizational exit phase of employment.

Organizational exit. Organizational exit begins when an individual transitions, or prepares to transition, from one employment arrangement to another. This phase may be abrupt, in the case of an individual who is suddenly and unexpectedly terminated from a job, or it may be more drawn out, in the case of an individual who begins to casually consider alternative employment opportunities while continuing in his current job. In cases such as the latter, organizational exit occurs concurrently with the job search phase of a new employment cycle.

Fit is generally highly salient during organizational exit, particularly when organizational exit is voluntary. From a fit perspective, voluntary turnover occurs when an individual determines that one or more types, dimensions, or facets of fit in their current employment arrangement is inferior to their expected or hoped for fit related to the same types, dimensions, or facets of fit in an alternate employment arrangement. For example, an individual in a monotonous job might decide to seek a more challenging position elsewhere; in this situation, the individual’s abilities exceed the demands of their current job in terms of the knowledge, skills, and abilities required, to a degree that finding a new job becomes preferable to remaining
in the current job. Alternatively, an individual in a job that regularly requires working overtime might decide to seek a job with fixed hours; in this situation, demands exceed abilities in terms of the amount of time required by the individual’s current job, to a degree that finding a new job is preferable to remaining in the current job.

The Zone of Indifference

To summarize the preceding discussion, fit is differentially salient depending on temporal factors, and the employment cycle provides an especially important context for understanding a great deal of the differential salience that individuals experience over time with respect to fit. However, the ultimate goal of the employment cycle is to reach the ongoing-tenure phase of employment; with the exception of terminal turnover outcomes such as retirement, even organizational exit is ultimately directed at achieving ongoing tenure in a new employment cycle. Despite the central role of the ongoing-tenure phase in the employment cycle, however, comparatively less is understood about the dynamics and salience of fit within this phase, not just leading up to and out of it.

As described above, many fit perceptions settle into states of relative equilibrium during the ongoing-tenure phase. *Relative equilibrium* refers to a state in which the relationship or correspondence between the person and the environment for a given fit configuration (1) has been established, (2) is reasonably stable, and (3) is adequate or acceptable for at least the present time. Critical to the stabilization of a given fit configuration is a zone of indifference (Barnard, 1938; Woodruff, Cadotte, & Jenkins, 1983) which I suggest forms around objective fit. This zone of indifference not only allows for subjective fit to reach relative equilibrium in cases where objective fit is incongruent (i.e., where P and E are not a perfect match), but it also buffers subjective fit from certain objective changes to the person, the environment, or both. Once a zone
of indifference has formed around a particular fit configuration (P relative to E for a specific type and domain or facet of fit), fit becomes less salient until such a time as the fit configuration moves outside of the zone of indifference that has formed around it.

The term *zone of indifference* dates to the late 1930s, when it was used in the management literature in connection with the theory of authority (Barnard, 1938). In this early conceptualization, the zone of indifference was described as the threshold within which individuals accept orders from superiors without consciously questioning the authority of these orders. With respect to its size, it was noted that “the zone of indifference will be wider or narrower depending upon the degree to which the inducements exceed the burdens and sacrifices which determine the individual's adhesion to the organization. It follows that the range of orders that will be accepted will be very limited among those who are barely induced to contribute to the system” (Barnard, 1938, p. 169).

More recently, the term zone of indifference, also called the *zone of tolerance*, has been used in the marketing literature in relation to consumer satisfaction, to describe the gap between adequate and desired levels of service (Parasuraman, Berry, & Zeithaml, 1991; Woodruff et al., 1983). According to this conceptualization, “perceived performance with some interval around a performance norm is likely to be considered equivalent to the norm” (Woodruff et al., 1983, p. 300), and movement outside of the zone occurs either as the result of positive disconfirmation (delight, or a better than expected outcome) or negative disconfirmation (dissatisfaction, or a worse than expected outcome) (Johnston, 1995).

In the psychology literature, the terms *difference threshold*, *discrimination threshold*, and *just noticeable difference* all refer to a “detectable change in a stimulus or difference between two stimuli” (Colman, 2015). While these concepts do not explicitly refer to a zone, the concept
of a threshold being passed implies the existence of an area of indifference or indiscrimination within which discrepancies or changes go unnoticed. Within the P-E fit literature, it has been noted that complete or perfect congruence may, in some cases, lead to indifference (Kulka, 1979), and also that some degree of misfit may be perceived as benign, particularly if it was preceded by more extreme misfit (Edwards et al., 1998).

Event System Theory

As explained above, a given fit configuration, once settled into a state of relative equilibrium, becomes salient again only as the result of a change in either the person or the environment of sufficient magnitude to be, at a minimum, perceived and appraised as relevant to the focal individual. While such change can occur over time or according to patterns or cycles—such as the employment cycle described earlier—within the context of day-to-day work, it is most likely to occur as a result of the more sudden and typically unexpected jolts that are characteristic of event-based change. I turn now to a brief overview of events, using event system theory (EST) (Morgeson et al., 2015) as the basis for my conceptualization of events.

EST has recently been proposed as an integrative theoretical perspective from which to examine the “central role events play in understanding organizational phenomena” (Morgeson et al., 2015, p. 515). To date, the broader realm of organizational research has largely emphasized feature-oriented theories, which “focus on the relatively salient, enduring, and stable representative features of individuals, teams, and organizations” (Morgeson et al., 2015, p. 516). Specifically, feature-oriented theories are primarily concerned with the relationships, or covariance, among organizational features. Such theories are therefore unable to address causality and consequently provide little insight into how the features in question respond to change, such as the sudden change often brought about by events.
Although indisputably important to understanding organizational phenomena, feature-oriented theories generally fail to address the temporal factors and contexts that are critical to a more holistic and accurate view of organizational phenomena. Even P-E fit theory—which has provided an important extension to many basic feature-oriented theories in that it considers the person and the environment as distinct components that jointly influence outcomes—has been empirically examined almost entirely from a static perspective that does not allow for drawing conclusions or testing existing theory about how the person and environment components might change, and how these changes might in turn affect outcomes.

Events. According to EST, *events* represent “discrete, discontinuous happenings, which diverge from the stable or routine features of the organizational environment” (Morgeson et al., 2015, p. 519). Such happenings “can result from the actions of a single entity on another entity or can occur when the actions of multiple different entities converge” (Morgeson et al., 2015, p. 220). Furthermore, events are objective phenomena in that they are external to the perceiver; in other words, an event does not have to have perceived effects on the entity/ies involved in order to have occurred. Instead, whether or not an event has perceived effects represents the subjective component of an event, which I refer to hereafter as the *disruptiveness* of an event (Cades, Davis, Trafton, & Monk, 2007; Katidioti, Borst, Van Vugt, & Taatgen, 2016; Trafton & Monk, 2007).

While I focus my dissertation primarily on events that are likely to be perceived and experienced as negative or detrimental, events can also take the form of positive or beneficial experiences. Although these merit future attention, my focus on potentially negative or detrimental events is in part due to the findings of my pilot and qualitative studies, in which participants more frequently cited these types of events. I also focus primarily on these types of events in order to maintain a reasonable scope for my dissertation.
Considered broadly, events can range from major to comparatively minor, or micro. Examples of events that might be classified as “major” include the following: a serious safety incident at a manufacturing plant leads to the implementation of new safety protocols; a dramatic organizational restructuring results in significant changes to employees’ job descriptions; a tech company is acquired and many of its employees are subsequently laid off. Viewed from a P-E fit perspective, each of these events involves a change to the environment (E) that, if relevant to a given person (P), can ultimately result in changes to either P or E in response to the event. For instance, the first example—the safety incident—might require an individual to substantially change the way he goes about completing his core work responsibilities (change in P). The second event—the restructuring—could necessitate that an individual receive additional training to be able to perform her new job responsibilities (change in P). The third event—the layoffs—likely will require than an individual find new employment altogether (change in E).

In contrast to the major events described above, examples of events that might be considered “minor,” or “micro,” include the following: an individual’s colleague is out of the office for several days due to a health issue, requiring that he cover his colleague’s work responsibilities; an organization experiences network outages over a period of a few days, leading to lost productivity on the part of its employees; an employee finds out—unexpectedly—that she has been assigned to train and mentor a new employee, which will require many hours of her time during the new employee’s first week. Similar to the major events described above, these events involve changes in E that ultimately affect the P, albeit to a lesser degree in terms of such factors as duration and permanence.

Micro events. To date, research on micro events has occurred in diverse literatures, such as under the term *daily hassles* in the stress literature (Lazarus, 1984b; Stone, Kessler, &
Haythomthwatte, 1991) and interruptions in the human-computer interface (HCI) literature (Trafton & Monk, 2007; Zijlstra, Roe, Leonora, & Krediet, 1999). Daily hassles have been defined as incidents which “involve demands that tax or exceed the person’s resources” (Lazarus, 1984b, p. 376), with the primary focus of research on understanding their impact on adaptational outcomes such as anxiety and depression. Interruptions, which typically reference relatively brief breaks in continuity or deviations from the norm—such as incidents that take the form of intrusions or distractions (Jett & George, 2003)—have been studied mainly with the objective of determining their effects on productivity and task performance (Baethge & Rigotti, 2013; Kapista & Blinnikova, 2003; Prentice, 1944; Trafton & Monk, 2007).

While the study of micro events such as daily hassles and interruptions has provided important insights in terms of the detrimental outcomes that can arise from such events (e.g., stress and decreased task performance, respectively) there remains much to be understood about the mechanisms by which these outcomes arise. Taking an EST perspective on events and doing so within the context of P-E fit will ultimately extend both the events and fit literatures by providing important insights into how and why events at work are disruptive to the individuals experiencing them.
CHAPTER 3: MODEL AND HYPOTHESES

With the preceding overviews of P-E fit, the zone of indifference, and EST as foundation, I turn now to presenting the core theory and hypotheses of my dissertation. I begin by describing the theoretical model that forms the basis of my dissertation. I then describe the mechanisms by which an event is experienced as disruptive, followed by a discussion of factors that affect the degree to which an event is experienced as disruptive.

The model shown in Figure 1 is comprised of two main components: (1) the basic mechanisms of P-E fit, shown inside the dashed box, and (2) an event, shown outside the dashed box. The core portion of the model—the basic mechanisms of P-E fit—illustrates that the objective person and environment influence the subjective person and environment, as described earlier. In turn, the subjective person and environment combine to form subjective P-E fit, which ultimately influences various outcomes, including cognitive, affective, and behavioral outcomes.

The second key model component, the event, is an exogenous force that has the potential to directly or indirectly impact some or all of the core P-E fit components, as will be explained below.

Disruptiveness of Events

Integrating the concepts of the salience of fit, the zone of indifference, and events, I propose that once a zone of indifference has formed around a given fit configuration (i.e., the person relative to the environment for a given dimension of fit), the salience of that fit configuration fades until an event causes it to move outside of the zone of indifference. Furthermore, I propose that whether or not an event disrupts the equilibrium or steady state that
exists when a given P-E fit configuration falls within a zone of indifference depends on two distinct processes. First, an event can shift the fit configuration itself from within to outside of a zone of indifference. Second, an event can cause the zone of indifference that surrounds the line of perfect fit to contract or expand. As a result of either the fit configuration moving or the zone of indifference contracting—or a combination of the two processes—a given fit configuration can move outside of the zone of indifference, thereby re-activating the salience of fit.

From a P-E fit perspective, events are disruptive when they result in change to the subjective person, environment, or both. This impact can occur directly, in the case of subjective change that occurs as a result of an event that does not objectively affect an individual, or it can occur indirectly, when objective change influences subjective change. As touched on earlier, there are several reasons for which objective and subjective fit are distinct concepts, such as that individuals possess incomplete information, have imperfect information processing capabilities, and so forth. Therefore, something—in this case, an event—may exist or occur objectively, but not be perceived or experienced subjectively. Table 1 presents a sample of potentially fit-disrupting events, distinguishing between whether their origin is objective or subjective. The distinction between objective and subjective fit as it relates to events and the zone of indifference is further described below.

Indirect effect on subjective fit. The impact of an event on subjective fit is indirect when an event impacts one or both components of objective fit (arrows 1a and 1b in Figure 1) which in turn impact(s) one or both components of subjective fit (arrows 3a and 3b in Figure 1). To illustrate, an event that causes an individual to miss work would alter the objective person (in the form of reduced abilities, given that the individual has reduced time available to complete work tasks), which would translate to subjective fit to the extent that the time lost is perceived by
the focal individual as necessary for completing his or her typical work tasks. Such an event may lead an individual to pay more attention to the pace at which they are working in order to evaluate whether their pace is adequate or should be altered; it may also cause an individual to experience the affective feeling of being rushed or pressed for time.

Direct effect on subjective fit. In contrast to an event impacting subjective fit indirectly through objective fit, a direct effect on subjective fit occurs when an event alters the subjective person or environment in the absence of objective change to either the person or environment (arrows 2a and 2b in Figure 1). Such an event is one in which an individual learns or experiences something that changes their perception of the person, environment, or both, with this occurring in the absence of actual change to the person, environment, or both. For instance, consider an individual who overhears a conversation that alerts her to the fact that her workload far exceeds that of a colleague in the same type of position who has similar qualifications and training. As a result of this information-revealing event, this individual experiences a sudden change in how she thinks about her job responsibilities; specifically, she begins to feel that her job demands are unreasonable given her abilities (i.e., skills and resources), ultimately leading her to feel more dissatisfied with her job than she previously did.

Alternatively, an event may have a direct effect on the subjective person, environment, or both in instances in which an event’s objective impact is removed from, but not unknown to, an individual. To illustrate, consider a department in an organization in which a decision has been made to allow its employees to work remotely half of the time. An individual in another department, which does not allow remote work, learns of this new policy. This particular individual happens to have a lengthy commute, which has prompted him on previous occasions to request permission to work remotely part of the time, given that he could reasonably perform
many of his job duties remotely. As a result this event—that another department has announced they will begin allowing remote work—the focal individual experiences an abrupt shift in how he views his job. Whereas he previously would have appreciated the opportunity to work remotely, not being able to do so did not affect his perceptions about his job to a measurable degree. Upon learning about the other department’s new policy, however, this individual suddenly views the requirement that he commute into work even when he could complete some work remotely as an unreasonable demand.

Types of disruption. To summarize the preceding discussion on the disruptiveness of events, events that do not shift a given fit configuration outside of a zone of indifference do not noticeably disrupt, or impact, subjective fit associated with that fit configuration. Conversely, events are disruptive when they cause a given fit configuration to move outside of the zone of indifference—either as a result of the fit configuration moving, the zone contracting, or a combination of the two—thereby re-activating the salience of fit. Disruption to subjective fit can occur indirectly, through objective fit, or directly, for events which do not have an objective impact on an individual but nevertheless result in noticeable, or salient, shifts in fit.

To further build on these premises, I suggest that an individual’s response to a fit-disrupting event can take a variety of forms, depending in part on the degree to which an event disrupts fit. Specifically, these forms include cognitive, affective, and behavioral responses, or some combination or sequence of these (Bartikowski, 2002). I describe each of these in turn below and present formal hypotheses associated with each type of response.

Cognitive response. A cognitive response to a fit-disrupting event is one in which an individual, as the result of a process known as cognitive appraisal, becomes cognitively aware of incongruence between demands and abilities that has arisen as the result of an event. Cognitive
appraisal refers to the process in which an individual “evaluates whether a particular encounter with the environment is relevant to his or her well-being, and if so, in what ways” (Folkman, Lazarus, Dunkel-Schetter, DeLongis, & Gruen, 1986, p. 992). In Figure 1, cognitive appraisal is represented by arrows 2a and 2b, 3a and 3b, and 4a and 4b; these arrows reflect the cognitive process in which an individual determines an event is relevant and impactful to his or her subjective fit, either directly or indirectly (arrows 2a, 2b, 3a, and 3b), as well as the comparison of subjective P and E to form subjective P-E fit (arrows 4a and 4b).

In the course of day-to-day work, individuals might encounter incidents that necessitate temporary shifts away from the primary responsibilities associated with their jobs (Baethge & Rigotti, 2013; Jett & George, 2003; Lin, Kain, & Fritz, 2013). Examples of these, as described earlier, include covering for a colleague who is out sick, dealing with a technology issue, or training a new employee. To the extent than an individual has abilities (e.g., time or other resources) in excess of their typical demands to direct toward managing or dealing with an event—or to the extent that an individual can readily increase his or her abilities in response to an event-related increase in demands—the cognitive appraisal process related to a given event will likely not yield perceptions of change related to any of the components of task-level D-A fit.

Beyond actual and potential abilities than an individual can call upon to manage or deal with events that arise, however, I also suggest individuals are able to withstand a certain degree of D-A misfit before registering that an imbalance exists.

The extent to which an individual is able to withstand a certain degree of misfit before cognitively registering that an imbalance exists corresponds to the width of the zone of indifference that exists around a given fit configuration. The width of a given zone of indifference is determined by myriad factors, including personality, values, career stage, past
experiences, etc. From a two-dimensional perspective, the zone of indifference can be conceptualized as a buffer zone around a line of perfect fit, as shown in Figure 3. From a three-dimensional perspective, the zone of indifference can be conceptualized as a segment of a surface which has a slope of zero, with additional segments extending out from this flat segment in one or both directions that have either a positive or negative slope relative to the vertical axis (Z), as shown in Figures 4 through 9.

An important category of cognitive responses associated with D-A fit relates to workload, which encompasses awareness of the pacing of one’s work (e.g., whether the pace is too slow or too fast), as well awareness of the amount of time available to complete one’s work (e.g., whether the time available is too much or too little). I explain each of these in turn below.

Figure 4 depicts a three-dimensional surface that represents the hypothesized relationship between perceived pace required (running along the vertical axis, Z) and demands (X) and abilities (Y). The midpoint of the Z-axis, zero, reflects a reasonable or acceptable pace, whereas values above the midpoint reflect a pace that is perceived as too fast and values below the midpoint reflect a pace that is perceived as too slow. Starting with the left segment of the surface in Figure 4, I suggest that when demands fall short of abilities, the pace of work required to complete a given task is perceived as too slow, increasingly so as demands fall further short of abilities. Accordingly, the left segment of the surface is positively sloped relative to the Z-axis, although only up to a threshold where demands fall just short of abilities, rather than up to the Y = X line where which demands equal abilities.

This threshold (which is the Y = 1 + X line in Figure 4) marks the left boundary of a zone of indifference, within which the pace of work required to complete a given task is perceived as neither too fast nor too slow. As shown in Figure 4, the zone of indifference runs along the fit
line (i.e., the \(Y = X \) line, along which demands equal abilities) and extends out from the line in both directions. Thus the threshold where demands just exceed abilities (which is the \(Y = -1 + X \) line in Figure 4) marks the right boundary of the zone of indifference. At this threshold, the pace of work required to complete a given task begins to be perceived as too fast, increasingly so as demands further exceed abilities. In Figure 4, this is reflected by the right segment of the surface, which is negatively sloped relative to the Z-axis. Summarizing the above:

Hypothesis 1: The pace of work required to complete a task is perceived as:

_a) increasingly too slow as demands fall short of abilities, beyond some threshold;

b) essentially flat as demands move toward abilities, remaining flat until after
 demands begin to move away from abilities; and

c) increasingly too fast as demands exceed abilities, beyond some threshold.

Turning now to the perceived amount of time available to complete a given task, the surface in Figure 5 represents the hypothesized relationship between perceived amount of time available (running along the vertical axis, \(Z \)) and demands (\(X \)) and abilities (\(Y \)). The midpoint of the \(Z \)-axis, zero, reflects a reasonable or acceptable amount of time, whereas values above the midpoint reflect too much time available (i.e., more time than is needed to complete a given task) and values below the midpoint reflect too little time available (i.e., less time than is needed to complete a given task). Starting with the left segment of the surface in Figure 5, I suggest that when demands fall short of abilities, the time available to complete a given task is perceived as too much, increasingly so as demands fall further short of abilities. Accordingly, the left segment of the surface is negatively sloped relative to the \(Z \)-axis, although only up to a threshold where demands fall just short of abilities, rather than up to the \(Y = X \) line along which demands equal abilities.
This threshold (which is the $Y = 1 + X$ line in the hypothesized surface in Figure 5) marks the left boundary of a zone of indifference, within which the amount of time available to complete a given task is perceived as neither too much nor too little. As shown in Figure 5, the zone of indifference runs along the fit line ($Y = X$) and extends out from the line in both directions. Thus the threshold where demands just exceed abilities (which is the $Y = -1 + X$ line in Figure 5) marks the right boundary of the zone of indifference. At this threshold, the amount of time available to complete a given task begins to be perceived as too little, increasingly so as demands further exceed abilities. In Figure 5, this is reflected by the right segment of the surface, which is negatively sloped relative to the Z-axis. Summarizing the above:

Hypothesis 2: The amount of time available to complete a task is perceived as:

a) increasingly too much as demands fall short of abilities, beyond some threshold;

b) essentially flat as demands become close to abilities, remaining flat until after demands begin to move away from abilities; and

c) increasingly too little as demands exceed abilities, beyond some threshold.

Affective response. An affective response to a fit-disrupting event is one in which an individual experiences a psychological reaction—that is, a feeling or emotion (Brief & Weiss, 2002)—to incongruence between demands and abilities that has arisen as the result of an event. Although there has been longstanding debate regarding the relationship between cognition and affect and the order in which these occur (Lai, Hagoort, & Casasanto, 2012), I take the position that cognition precedes affect, on the basis that an individual cannot respond to something he or she is not cognizant of (Lazarus, 1984a; Storbeck, Robinson, & McCourt, 2006). However, an affective response can occur nearly simultaneously with a cognitive response, and the two
responses can unfold iteratively, thereby reciprocally influencing one another (Storbeck & Clore, 2007).

Among the variety of specific affective responses, three that individuals are particularly likely to encounter with respect to events at work are satisfaction, stress, and time pressure. I consider each of these in turn. First, satisfaction as an affective response refers to “a pleasurable or positive emotional state resulting from the appraisal of one’s job or job experiences” (Locke, 1976). When measured relative to a specific task (i.e., measured immediately following and referencing the feelings associated with the task just completed), this state is affective rather than attitudinal in nature.

The surface in Figure 6 represents the hypothesized relationship between dissatisfaction (running along the vertical axis, Z) and demands (X) and abilities (Y), with the Z axis representing increased dissatisfaction as values of Z increase. I suggest that individuals are likely to be dissatisfied when demands fall short of abilities (i.e., underload) as well as when demands exceed abilities (i.e., overload), with dissatisfaction minimized when demands are close or equal to abilities. This is reflected in Figure 6 as follows. Starting with the left segment, the surface is negatively-sloped relative to the Z axis when demands fall short of abilities, indicating that dissatisfaction increases as demands fall further short of abilities, and decreases as demands approach abilities. Dissatisfaction occurs only up to a threshold where demands fall just short of abilities, however, which is the $Y = 1 + X$ line in Figure 6.

This threshold marks the left boundary of a zone of indifference, within which dissatisfaction is minimized. As shown in Figure 6, the zone of indifference runs along the fit line, extending out from the line in both directions. The threshold where demands just exceed abilities (which is the $Y = -1 + X$ line in Figure 6) marks the right boundary of the zone of
indifference. At this threshold, dissatisfaction begins to increase as demands further exceed abilities, reflected in Figure 6 by the right segment of the surface which is positively sloped relative to the Z-axis. Summarizing the above:

Hypothesis 3: Dissatisfaction:

- is negatively sloped as demands increase toward abilities, up to a threshold;
- becomes essentially flat as demands become close to abilities, remaining flat until after demands exceed abilities; and
- is positively sloped as demands further exceed abilities, up to a threshold.

Second, stress as an affective response, which I refer to as experienced stress, references a negative emotional state that can result from stimuli perceived to be negative or threatening, or, specific to D-A fit, from demands that exceed an individual’s abilities to cope (Cohen, Tyrrell, & Smith, 1993; Cary L. Cooper & Dewe, 2004; Edwards & Cooper, 1990; Lazarus & Folkman, 1984). Building on this, I suggest that rather than stress increasing when demands fall short of abilities or when demands equal abilities, individuals experience increased levels of stress only after demands exceed abilities. This is in part because individuals can draw upon coping or other resources to at least temporarily offset or buffer against increases in demands, as described earlier.

The surface in Figure 7 represents the hypothesized relationship between experienced stress (running along the vertical axis, Z) and demands (X) and abilities (Y). Starting with the left segment, I suggest that stress remains constant (i.e., has a slope of zero) up to a threshold where demands just exceed abilities (which is reflected by the $Y = -1 + X$ line in Figure 7). At this threshold, experienced stress begins to increase as demands further exceed abilities; this is
reflected in the right segment of the surface, which is positively sloped relative to the Z-axis. Therefore:

Hypothesis 4: Stress:

a) is flat as demands approach abilities and when demands equal abilities, and

b) is positively sloped at some threshold where demands exceed abilities.

Third, experienced time pressure as an affective response refers to the feeling of being hurried, rushed, or pressed for time (Baethge & Rigotti, 2013). In contrast to the cognitive experience that occurs when an individual perceives that he or she has insufficient time available to complete a given task, as described in Hypothesis 2, experienced time pressure refers to the psychological experience that arises from having insufficient time. As explained above, cognitive and affective responses can occur simultaneously or nearly simultaneously, such that experienced time pressure can occur at the same time or immediately after an individual perceives that he or she has too little time available to complete a given task. Nevertheless, experienced time pressure is separate and distinct from perceptions associated with the amount of time available.

Similar to experienced stress, I suggest that individuals experience increased levels of time pressure only after demands exceed abilities, as they can temporarily withstand or draw upon resources to offset imbalances between demands and abilities. The surface in Figure 8 represents the hypothesized relationship between experienced time pressure (running along the vertical axis, Z) and demands (X) and abilities (Y). Starting with the left segment, I suggest that experienced time pressure remains constant (i.e., has a slope of zero) up to a threshold where demands just exceed abilities (which is reflected by the Y = -1 + X line in Figure 8). At this threshold, experienced time pressure begins to increase as demands further exceed abilities; this
is reflected in the right segment of the surface, which is positively sloped relative to the Z-axis. Therefore:

Hypothesis 5: Experienced time pressure:

a) *is flat as demands approach abilities and when demands equal abilities, and*

b) *is positively sloped at a threshold where demands exceed abilities.*

Behavioral response. A behavioral response to a fit disruption is one in which an individual engages in thought or action aimed at managing or resolving a perceived discrepancy between the person and environment. Cognitive appraisal, described above, encompasses both primary appraisal, in which an individual “evaluates whether he or she has anything at stake in the encounter,” and secondary appraisal, in which an individual “evaluates what if anything can be done to overcome or prevent harm or to improve the prospect of benefit” (Folkman et al., 1986, p. 993). Thus to the extent that cognitive appraisal involves secondary appraisal, a cognitive response can ultimately influence behavioral responses.

Following terminology that has long been used in the P-E fit literature, a behavioral response to an event-induced change can take the form of problem-focused coping, which occurs when attempts are made to change the objective person and environment (arrows 6a and 6b in Figure 1); emotion-focused coping, which occurs when efforts are put forth to alter the subjective person and environment (arrows 7a and 7b in Figure 1); or some combination of both forms of coping (Edwards et al., 1998; French et al., 1974). Regardless of the specific form they take, behavioral responses are undertaken in order to regain relative equilibrium between the P and E components which comprise subjective P-E fit.

Individuals may experience a wide range of behavioral responses to a fit-disrupting event, including complaining, working to either increase abilities or decrease demands, adjusting
effort up or down, or disengaging entirely (e.g., quitting). With respect to effort, I suggest that individuals increase their effort in response to an increase in demands up to a point where demands exceed abilities, after which individuals essentially max out on the amount of effort they are willing or able to put forth. This maximum level of effort is engaged as demands continue to move away from abilities, representing a segment of the function along which the slope is zero. Then, as demands begin to far exceed abilities, effort begins to drop off as individuals experience fatigue, disillusionment, and the like in response to the overload.

The surface in Figure 9 represents the hypothesized relationship between effort (running along the vertical axis, Z) and demands (X) and abilities (Y). Starting with the left segment of the surface in Figure 9, the surface is positively sloped relative to the Z-axis as demands increase, up to a threshold where demands exceed abilities (which is the $Y = -2 + X$ line in Figure 9). This threshold represents the left boundary of a zone of indifference, within which the amount of effort put forth to complete a given task neither increases nor decreases. At another threshold where demands further exceed abilities (which is the $Y = -4 + X$ line in Figure 9), effort begins to decrease as demands continue to move away from abilities, and is thus negatively sloped relative to the Z-axis. Summarizing the above:

Hypothesis 6: Effort:

a) *is positively sloped as demands approach abilities and remains positively sloped until a threshold where demands exceed abilities,*

b) *becomes flat as demands further exceed abilities,* and
c) *is negatively sloped as demands far exceed abilities, after some threshold.*
Degree of Disruptiveness

The degree to which an event is disruptive, which can also be referred to as the magnitude of an event, is determined in part by various characteristics of that event. One of the most prevalent determinants of event magnitude is importance, or criticality, which refers to the degree to which an individual has a vested interest in a process or particular outcome (Johnston, 1995; Morgeson & DeRue, 2006; Woodruff et al., 1983). In addition to importance, researchers have also pointed to duration of events (Altmann, Trafton, & Hambrick, 2014; Gillie & Broadbent, 1989; Morgeson et al., 2015; Trafton & Monk, 2007) and frequency of events (Lee & Duffy, 2006) as among the most significant event characteristics.

Importance. With respect to an event, importance refers to either the significance or criticality of either the event itself, or of the work activity interrupted or affected by the event. An event that has no apparent consequences—either in its own right or in terms of its effect on other work responsibilities—will be minimally disruptive in terms of importance, in that the event poses no perceived opportunity or threat and can therefore be ignored or disregarded. Conversely, the more important either an event or the work activity affected by the event is perceived to be, the more attention and resources it will command.

To illustrate, consider a tenure-track faculty member at a university whose core job responsibilities are to teach courses and publish research in high-quality, peer-reviewed journals. Furthermore, assume that teaching and research are the only two responsibilities associated with this faculty member’s position; she does not at this time have any service requirements associated with her job. Consider now a week when this faculty member is frantically working on a manuscript that must be submitted by the end of the week, the timely completion of which is critical to her upcoming bid for tenure. During this particular week, however, which happens
to fall around the time that students are preparing to submit graduate school applications, this faculty member receives an unusually high number of student visitors to her office—students not currently enrolled in any of her courses—seeking education- and career-related advice. While this faculty member would normally be happy to re-allocate her time to accommodate this extra-role activity, her time is of the utmost importance during this particular week, and even the slightest of intrusions is experienced as disruptive.

Based on the above, I hypothesize the following:

Hypothesis 7: An increase in the importance of an event is associated with a decrease in the width of the zone of indifference.

Duration. Next, the duration of an event refers to the length of time that an event lasts, relative to the aspects of work that the event affects or will potentially affect. An event that is very brief relative to an individual’s core job responsibilities is likely to be minimally disruptive to D-A fit, as the abilities, or resources (e.g., time and energy), required by the event may be minimal enough so as to not prevent or delay fulfilment of that individual’s primary duties. Conversely, the longer an event lasts, the more attention and resources an individual must divert to the event, which may prevent or delay fulfilment of his or her primary duties.

Consider again the example of the tenure-track faculty member described above. An instance in which this faculty member is invited to attend (but not speak at) a luncheon organized by a student group on campus represents a brief, and therefore, as I will explain, minimally disruptive event. For this faculty member, attending student events is outside of her realm of responsibility; there no incentive or negative consequence associated with either accepting or declining such invitations. Because she expects she would already be taking time to eat her lunch on the day of the event, agreeing to attend the luncheon requires little more than a few extra
minutes to go to another location on campus. In contrast to the luncheon, however, consider an instance in which this faculty member is invited to direct a multi-day, hands-on workshop for the same student group. Regardless of whether or not the faculty member derives satisfaction from interacting with students, the workshop requires a much more significant outlay of time, in terms of both preparing for and attending the event, and therefore represents a more disruptive event than the luncheon on the basis of event duration.

Based on the above, I hypothesize the following:

Hypothesis 8: An increase in the duration of an event is associated with a decrease in the width of the zone of indifference.

Frequency. Finally, the frequency of an event refers to the number of distinct impact points across which an event (or alternately, a cluster or sequence of related events) occurs. An event that represents an isolated instance of an individual being pulled away from his or her core job responsibilities will generally be less disruptive than an event that repeats itself or that occurs over a period of time, all else being equal. Holding importance, event duration, and other factors constant, greater frequency is more likely to be disruptive as a result of the resources (e.g., time and cognitive resources) that must be allocated to task switching (Leroy, 2009).

Consider once more the example of the tenure-track faculty member whose job responsibilities include only teaching and research. In contrast to the luncheon invitation described above, which represents a one-time event, the faculty member being asked to serve as the student organization’s faculty advisor—which entails attending all meetings and events for the organization—represents greater disruption in terms of the number of times this event, or series of events, would impact the faculty member.

Based on the above, I hypothesize the following:
Hypothesis 9: An increase in the frequency of an event is associated with a decrease in the width of the zone of indifference.
CHAPTER 4: PILOT STUDY

As a starting point for my investigation into how individuals experience and respond to events at work, I conducted an exploratory qualitative pilot study. The primary purpose of this study was to gain preliminary insight into how micro events at work impact fit, in order to guide my theory development and lab study design.

Sample

Data was collected in January 2016. Twenty-nine useable responses to a qualitative questionnaire were gathered from users of Amazon’s Mechanical Turk’s service. To participate in the survey, users were required to be located in the U.S., at least 18 years of age, and currently working a minimum of 20 hours per week. The average age of respondents was 29 ($SD = 6.83$) and 57 percent were female. Respondents reported working, on average, 40 hours per week ($min = 20$ hours, $max = 80$ hours, $SD = 9.88$) and had been with their current organizations for an average of 33 months ($SD = 23.99$).

Procedure

In the survey, participants were first asked to consider their responsibilities at work and list, in order of importance, up to five of the most typical demands associated with their jobs. Participants were then asked to list up to five abilities they typically draw upon to meet each of the demands they listed, with the explanation that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

With these demands and abilities in mind, participants proceeded to the core portion of the survey, in which they were asked to think about a time when they experienced an interruption
related to the first (i.e., most important) job demand they listed. While not all micro events are interruptions—neither are all interruptions necessarily micro events—I focused the questionnaire on a specific type of micro event with which most individuals are familiar and that is generally experienced and thought about in a way that aligns more closely with minor rather than major events.

In response to open-ended question prompts, participants described what happened, how they responded, whether and how the interruption affected their thoughts about fit, and whether and how the interruption affected their satisfaction at work. Similar questions probed at interruptions affecting the other demands the participants had listed earlier. A final open-ended question asked respondents to describe what “fit” meant to them (see Appendix A for the pilot survey instrument).

Results

Participants in the pilot study recounted a variety of micro events in response to the open-ended question prompts described above. Corresponding to Jett and George’s (2003) typology of interruptions, a number of these micro events align with the interruption types of distractions, intrusions, or breaks. For example, in terms of distractions, participants described having to deal with non-work issues such as family emergencies. Related to intrusions, participants described such micro events as co-workers requiring assistance with tasks unrelated to the participant’s own responsibilities; new employees needing assistance or training; and unexpected tasks, projects, or meetings, sometimes requiring working extra hours or on weekends. Aligning with breaks, participants described instances of being away from work due to factors such as illness or vacation. Beyond these three categories, participants also described a number of micro events that constitute hindrances. For example, participants described incidents involving technology
crashes or equipment break-downs, difficult customers or patients, unexpected delays, and mistakes made by themselves or others. Finally, participants also described other micro events, such as personnel changes (e.g., new management) and incidents involving interpersonal conflict with co-workers.

Taken together, participants’ responses indicated that, in some cases, micro events they experienced had minimal or no effect on their abilities to fulfil their work responsibilities, their fit perceptions, or their sense of satisfaction with their job. For example, “This experience wasn’t unusual at all and just comes with the job,” “It’s normal to have to deal with things like that,” or “It happens sometimes” were representative reflections of this category of responses, which led participants in this category to draw such conclusions as, “This honestly did not affect how I fit with my job” and “[This] didn’t affect my thoughts about fit.” In other cases, however, individuals’ responses indicated that the events they described caused them to become aware of and reassess their fit with one or more aspects of the environment. Among these responses, fit-salient events resulted in either worsened or enhanced fit perceptions.

For example, reflecting worsened fit, one participant, a customer service associate, described an incident she experienced while completing a sale when she was new on the job, which resulted in an upset customer who ultimately left without making the purchase. This participant recalled, “It made me feel really inadequate and unfit for the job. . . . I thought about it at home and how embarrassing it was.” On the other hand, reflecting enhanced fit, another participant recounted a time when a computer crashed and important files had not been backed up or saved. As a result, this individual had to put in additional hours to get the computer system up and running again. Thinking about how this event affected her fit, the participant explained, “It helped me feel a part of the organization because I was used to help recreate some files and
remember certain crucial information. It helped me feel I was a good fit for the position, as I was able to handle this type of stress.” Other participants made similar reflections, such as, “This made me think about how integral I am to the organization because of all of the things I manage to do at once” and “it made me feel like I was where I belong since I was able to handle the situation quickly and professionally.”

In addition to supporting the notion that some interruptions are fit-salient while others are not, responses also reflected evidence that various factors affect whether or not a particular interruption will result in a disruption to fit. For example, pointing to event frequency, some participants cited that an event was minimally disruptive because it was a “one-time thing.” Pointing to event duration, several participants who denied that a particular event affected fit indicated that the event they had experienced was brief enough that it posed only a temporary inconvenience. Referencing importance, a number of participants mentioned that an event they had experienced was disruptive because it interrupted something important. Given the prevalence of these three event characteristics—frequency, duration, and importance—I selected these as the moderator variables to include and test in my lab study.
CHAPTER 5: STUDY 1

The primary purpose of Study 1, an in-depth qualitative survey and follow-up to the pilot survey, was to further explore whether and how disruptions to P-E fit are experienced by individuals. The survey instrument was a revised and expanded version of the pilot survey. For example, responses to the pilot survey led to clarified question wording in the Study 1 survey instrument. In addition, time away from work—both for work- and non-work-related reasons—was mentioned a number of times in the pilot survey, which led to the inclusion of specific questions targeting time away from work in the survey instrument for Study 1. Finally, Study 1 allowed for an expanded sample that was more diverse in several respects (e.g., demographics, organizational tenure, etc.). The results of Study 1, together with the results from the pilot study, were primarily used to guide my theory development and lab study designs.

Sample

Data collection took place in July 2016. Participants were recruited through a snowball recruiting method, in which contacts of the author were asked to recruit colleagues to complete the survey. Given the exploratory nature of the survey, the goal for the sample was diversity in terms of gender, industry, career level or stage, and organizational tenure.

The sample included twenty-four participants (mean age = 39 years, range 26-65, $SD = 12$), half of whom were female. Participants represented a variety of industries, including utilities (25 percent of respondents, all from a single organization in the southwestern United States) and finance and insurance (21 percent of respondents, from multiple organizations). The remaining respondents (54 percent) were from industries such as education, healthcare, and software.
Respondents reported a wide range of career levels: 21 percent identified as upper management, 17 percent middle management, 13 percent junior management, and 13 percent administrative staff. Another 17 percent identified themselves as trained professionals, with the remaining 17 percent representing a variety of other positions (e.g., consultant). The average positional tenure was 4 years (range: 4 months to 20 years) and organizational tenure was 7 years (range: 4 months to 37 years). Participants reported working, on average, 46 hours per week (range: 35-70, $SD = 12$).

Taken together, respondents described a total of approximately 120 different micro events, as respondents were asked to describe three incidents related to their primary job responsibilities, one incident related to time away from work for personal reasons, and one incident related to time away from work for professional purposes. The approximately 48 responses related to interruptions in the form of time away from work will be analyzed at a later date, as a part of a separate study examining events that take the form of time away from work.

Procedure

Participants were asked to briefly describe up to three of the most important responsibilities associated with their jobs. Participants were then asked to think about a time when they experienced an interruption related to each responsibility. They were asked to describe: (1) what happened, (2) how they responded, (3) whether and how the interruption affected their thoughts about fit, and (4) whether and how the interruption affected their job satisfaction. To conclude the survey, participants were asked to describe what fit meant to them (see Appendix B) for the survey instrument.

As in the pilot study, micro events were framed as “interruptions” in the questions posed to participants. Responses to the pilot survey indicated that participants had a relatively broad
view of the term “interruption,” such that participants reported incidents ranging, for example, from very brief to longer in duration, seemingly very minor to more involved or impactful occurrences, etc. Therefore, I made the decision to again frame micro events as “interruptions” in Study 1.

Results

As was the case in the pilot study, a number of participants in Study 1 indicated that the incidents they recounted had little to no effect on their sense of fit or the degree to which they were satisfied with their job, even when such incidents objectively impacted to some degree the demands placed upon them or their ability to fulfill their primary work responsibilities. Such responses included the following statements: “This type of thing happens frequently,” “part of my job,” “part of my role,” and “it is inevitable to be interrupted at work at some extent.” Going into greater detail, one participant explained, “In my current work environment it's normal for anyone to make inquiries or requests at any moment, and it tends to go both ways as I am sometimes the one to interrupt to complete a request on my end.” In short, a subset of participant responses indicated that in at least some cases, events experienced at work were not perceived to be fit salient.

In other instances, participants recounted events which either directly or indirectly demonstrated that the events were fit salient, either in terms of having a detrimental or beneficial impact on subjective fit and outcomes stemming from subjective fit. For instance, reflecting worsened fit, one participant described a team member (whom he supervised) retiring, with six months’ notice. After the team member left, the respondent was informed that he could not fill the position as he had expected he would be able to do. He recounted, “I very much questioned how effective I was at showing our executive team how critical that position was . . . Since I am
of retirement age, it made me start wondering if I should give thought to the next step.” Also reflecting worsened fit, another participant describing being asked by a superior to put one project on hold to deal with a crisis on a different project. She recalled, “It caused me to question the way my colleagues/manager manage themselves and others, and my desire to not be in an environment that is crisis to crisis.”

On the other hand, reflecting improved fit, one participant described being asked to participate in a weekly one-on-one meeting with a new colleague in another group. This participant described the impact of this as follows: “As much as it's aggravating to have this intrusion on my time each week, it actually made me feel more valued by my company, and like people actually see me as an owner of something (which makes me feel more like I fit into the puzzle of this large company).” Also reflecting improved fit, another participant described being assigned additional responsibilities due to other employee departures. The additional responsibilities delayed him from completing the pre-existing responsibilities of his job. Interestingly, this participant recalled, “This experience positively affected my thoughts about fit, because my immediate supervisor . . . helped me complete the [work]. This improved my perception that the team I was on was interested in helping all members of the team succeed.”

Among the most frequently-cited types of micro events described by participants of both Study 1 and the pilot study were intrusion-type events, in which an individual was asked or told to do something that was either not part of their typical or expected set of work responsibilities, or which was sprung on them unexpectedly or at the last minute, requiring them to set aside other work in order to address the event. In addition to intrusion-type events, a number of participants in both Study 1 and the pilot study described micro events that took the form of hindrances caused by factors in the environment, such as technology or the actions of co-workers. Based on
the apparent prevalence of these two types of events—intrusions and hindrances—and the potential for these to impact individuals at work in a variety of ways, including fit, I used these two event types as the event types in the two portions of my lab study. I turn now to these studies.
CHAPTER 6: STUDY 2 METHODOLOGICAL APPROACH

The primary purpose of Study 2, a two-part lab study, was to empirically examine the concept of the zone of indifference by simulating micro events and measuring their impact on key outcomes. This study was separated into two parts which utilized similar procedures and tasks, with minor differences in order to test different moderating variables. Study 2a included the moderating variables of event duration and event frequency, while Study 2b included importance. Before proceeding to the chapters detailing Studies 2a and 2b, I now describe the methodology that was used to analyze the data collected in Study 2.

Prior to analyses, I scale centered the demand and ability variables for both data sets in order “to facilitate interpretation such that the \(Y = X \) and \(Y = -X \) lines . . . run diagonally across the \(X, Y \) plain under the surface and intersect at the center of the surface, which is the point \(X = 0 \) and \(Y = 0 \)” (Edwards & Parry, 2017, p. 25). Additionally, in order to account for the panel structure of each data set (i.e., each participant completed multiple tasks, with each task representing a separate observation), I clustered standard errors by participant. I conducted my analyses using Stata 14, using the `regress` command for OLS regression and `nl` command for nonlinear regression. I used the `lincom` and `nlcom` commands for post-estimation tests.

Spline Regression

I analyzed the data from Studies 2a and 2b using spline regression. A new approach among organizational research methods, spline regression is “a method for estimating functions that change slope at one or more points” (Edwards & Parry, 2017, p. 2), which makes it ideal for testing hypotheses involving zones of indifference. Spline regression is similar to but more
advanced than piecewise regression—an approach in which different lines are fit to different segments of a function—in that it treats both the number and points at which a function changes slope as parameters to be estimated rather than parameters that must be specified, as is the case in piecewise regression. Spline regression is also similar to polynomial regression—an approach which allows for examination of the three-dimensional relationship of a pair of congruent predictor variables (e.g., demands and abilities) with an outcome of interest (Edwards, 2001, 2002)—in that it can be used to test congruence hypotheses and “tend[s] to yield similar substantive interpretations [as polynomial regression] when applied to the same data” (Edwards & Parry, 2017, p. 35). However, spline and polynomial regression differ in that “polynomial regression is suited to hypothesized surfaces that are curvilinear and symmetric whereas spline regression applies to surfaces that are linear, potentially asymmetric, and can have more than one line along which the surface changes slope” (Edwards & Parry, 2017, p. 3).

I applied the spline regression procedure as follows, according to the approach described by Edwards and Parry (2017). First, I estimated the following constrained piecewise regression equations in which the different segments of the function were forced to meet, using OLS regression with dummy variables coded according to hypothesized seam locations. Equation 1a applies to functions with a single seam and two segments, while Equation 1b applies to a function with two seams and three segments. Equation 1a corresponds to Equation 29 in Edwards and Parry (2017).

\[Z = b_0 + b_1 X + b_2 Y + b_3 (Y - X)W + e \] (1a)

\[Z = b_0 + b_1 X + b_2 Y + b_3 (Y - 1 - X)W_1 + b_4 (Y + 1 - X)W_2 + e \] (1b)

In these equations, \(Z \) is the dependent variable, \(X \) and \(Y \) are corresponding independent variables (which I designate as demands and abilities, respectively), and \(W, W_1 \) and \(W_2 \) are
dummy variables which are coded according to the hypothesized seam locations. For Equation 1a, when a seam is hypothesized to fall along the $Y = -1 + X$ line, W is coded to equal one when Y is less than $-1 + X$ and zero otherwise. For equation 1b, when seams are hypothesized to fall along the $Y = 1 + X$ and $Y = -1 + X$ line, W_1 is coded to equal one when Y is less than $1 + X$ and zero otherwise, while W_2 is coded to equal one when Y is less than $-1 + X$ and zero otherwise.

Next, I estimated the following spline regression equations using nonlinear regression, utilizing the coefficient estimates from Equations 1 as well as the intercepts and slopes of the hypothesized seams as starting values. Equation 2a applies to functions with a single seam and two segments, while Equation 2b applies to a function with two seams and three segments. Equation 2a and 2b correspond to Equations 39 and 43, respectively, in Edwards and Parry (2017).

$$Z = b_0 + b_1X + b_2Y + b_3(Y - c_0 - c_1X) * (Y < c_0 + c_1X) + e$$ (2a)

$$Z = b_0 + b_1X + b_2Y + b_3(Y - c_{10} - c_{11}X) * (Y < c_{10} + c_{11}X) + b_4(Y - c_{20} - c_{21}X)(Y < c_{20} + c_{21}X) + e$$ (2b)

In Equation 2a, c_0 and c_1 correspond to the intercept and slope, respectively, of a single hypothesized seam. For Hypotheses 4 and 5, the starting values for c_0 and c_1 correspond to the line $Y = -1 + X$, which, as will be explained in Chapters 7 and 8, indicates that the seam is hypothesized to be shifted to the right of the $Y = X$ line. In Equation 2b, c_{10} and c_{11} correspond to the intercept and slope, respectively, of the first hypothesized seam (separating the left and the center segments of the function), and c_{20} and c_{21} correspond to the intercept and slope, respectively, of the second hypothesized seam (separating the center and right segments of the function). For Hypotheses 1, 2, and 3, the starting values for c_{10}, c_{11}, c_{20}, and c_{21} correspond to the lines $Y = 1 + X$ and $Y = -1 + X$, which fall to the left and the right of the $Y = X$ line,
respectively. For Hypothesis 6, the starting values for \(c_{10}, c_{11}, c_{20}, \) and \(c_{21} \) correspond to the lines \(Y = -2 + X \) and \(Y = -4 + X \), which both fall to the right of the \(Y = X \) line.

The coefficient estimates from equations 2a and 2b (see Tables 5 and 13) can be used to assess whether the intercepts and slopes of the hypothesized seams differ from values such as zero and one, in the case of a hypothesis that predicts a seam will run along the \(Y = X \) line. In addition, the coefficient estimates from equations 2a and 2b can be used to calculate the slopes of the various segments of a surface. As shown in Tables 6 and 14, the intercept and slopes of \(X \) and \(Y \) for the middle segment of a surface with two seams can be calculated as follows: \(b_0 - b_3c_1 \) for the intercept, \(b_1 - b_3c_{11} \) for the slope of \(X \), and \(b_2 + b_3 \) for the slope of \(Y \). The intercept and slopes of \(X \) and \(Y \) for the right segment of a surface with two seams can be calculated as follows: \(b_0 - b_3c_{10} - b_4c_{20} \) for the intercept, \(b_1 - b_3c_{11} - b_4c_{21} \) for the slope of \(X \), and \(b_2 + b_3 + b_4 \) for the slope of \(Y \).

To calculate slopes along lines of interest (e.g., the \(Y = -X \) line) for different segments of a surface, the equation for each segment can be substituted into the expression \(Z = a_0 + a_1X + a_2Y \). This results in the following: \(a_1 - a_2 = b_1 - b_2 \) for the left segment, \(a_1 - a_2 = (b_1 - b_3c_{11}) - (b_2 + b_3) \) for the middle segment, and \(a_1 - a_2 = (b_1 - b_3c_{11} - b_4c_{21}) - (b_2 + b_3 + b_4) \) for the right segment. For hypotheses that propose the presence of a zone of indifference, these expressions allow for testing whether a given surface does not deviate from flatness along the \(Y = -X \) line.

To test for moderation as it affects the location of the seams in a given spline function (thereby affecting the width of a given zone of indifference), I followed the approach explained to me by the first author of Edwards and Parry (2017). The approach for testing for moderation involves adding a moderating variable, \(V \), and its product terms to Equations 2a and 2b above. Equation 3a applies to functions with a single seam and two segments, while Equation 3b applies to a function with two seams and three segments.
\[Z = b_0 + b_1X + b_2Y + b_3(Y - c_0 - c_1X - c_2V - c_3XV) \]
\[* (Y < c_0 + c_1X + c_2V + c_3XV) + b_4V + b_5XV + b_6VV \]
\[+ b_7V(Y - c_0 - c_1X - c_2V - c_3XV) * (Y < c_0 + c_1X + c_2V + c_3XV) \]
\[+ e \]

\[Z = b_0 + b_1X + b_2Y + b_3(Y - c_{10} - c_{11}X - c_{12}V - c_{13}XV) \]
\[* (Y < c_{10} + c_{11}X + c_{12}V + c_{13}XV) + b_4V + b_5XV + b_6VV \]
\[+ b_7V(Y - c_{10} - c_{11}X - c_{12}V - c_{13}XV) \]
\[* (Y < c_{10} + c_{11}X + c_{12}V + c_{13}XV) \]
\[+ b_8(Y - c_{20} - c_{21}X - c_{22}V - c_{23}XV) \]
\[* (Y < c_{20} + c_{21}X + c_{22}V + c_{23}XV) \]
\[+ b_9V(Y - c_{20} - c_{21}X - c_{22}V - c_{23}XV) \]
\[* (Y < c_{20} + c_{21}X + c_{22}V + c_{23}XV) + e \]

When \(V \) is hypothesized to impact only the intercept of the seam, Equation 3a and 3b reduce to Equations 4a and 4b, respectively. Equation 4a corresponds to a function with one seam and two segments, while Equation 4b corresponds to a function with two seams and three segments.

\[Z = b_0 + b_1X + b_2Y + b_3(Y - c_0 - c_1X - c_2V)(Y < c_0 + c_1X + c_2V) \]
(4a)

\[Z = b_0 + b_1X + b_2Y + b_3(Y - c_{10} - c_{11}X - c_{12}V) \]
\[*(Y < c_{10} + c_{11}X + c_{12}V) + b_4(Y - c_{20} - c_{21}X - c_{22}V) \]
\[*(Y < c_{20} + c_{21}X + c_{22}V) \]

I estimated Equations 4a and 4b using the coefficient estimates from Equations 1a and 1b and setting the starting values for \(c_2, c_{12}, \) and \(c_{22} \) to zero. Then, after estimating these equations, I
chose values for V to plot simple surfaces, similar to the procedure to plot simple slopes for a moderator variable.

In terms of hypotheses in which a moderating variable is predicted to impact the location of the intercepts that correspond to a given zone of indifference, the zone of indifference can change in two distinct ways. First, the width of a zone of indifference can either increase or decrease; in the case of the former, the intercepts move farther apart, to produce a wider zone, and in the case of the latter, the intercepts move closer together, to produce a narrower zone. A wider zone of indifference represents a larger portion of a surface along which changes in X and/or Y do not impact Z, meaning that such a zone provides greater buffering against changes in outcome variables that result from changes in predictor variables. Conversely, a narrower zone of inference represents a smaller portion of a surface along which changes in X and Y do not impact Z, meaning that such a zone provides less buffering against changes in outcome variables that result from changes in predictor variables.

Second, the location of a zone of indifference can shift relative to a referent line, such as the $Y = X$ line. Such a shift can occur in connection with a change in the width of a zone of indifference, or it can occur independent of it. For example, a zone that shifts to the right of the $Y = X$ line in response to the influence of a moderating variable indicates that demands must exceed abilities to a greater degree before indifference ceases to be experienced.
CHAPTER 7: STUDY 2A

Study 2a tests the concept of the zone of indifference related to cognitive (Hypotheses 1 and 2), affective (Hypotheses 3, 4, and 5), and behavioral outcomes (Hypothesis 6), in addition to testing for moderating effects of the event duration (Hypothesis 8) and frequency (Hypothesis 9).

Study 2a: Sample

The first wave of data collection for Study 2a took place in the Behavioral Research Lab of the Kenan-Flagler Business School during April 2017. The sample for this first wave included approximately 144 undergraduate business students enrolled in BUSI 405 (Leading and Managing) who participated in the lab study for course credit. A second wave of data collection occurred during January 2018, adding approximately 114 additional participants to the final sample. Participants in the second wave were also undergraduate business students enrolled in BUSI 405 who received course credit for their participation.

Study 2a: Procedure

Participants were told that they would participate in a series of tasks to help researchers better understand how individuals manage responsibilities at work. They were instructed that their goal was to complete the tasks assigned to them as efficiently and accurately as possible, and that they should try to complete as much of the tasks assigned to them as they could in the allotted time. Participants were told that they would communicate with a supervisor via instant messaging, who may ask them to complete additional tasks.
After receiving these instructions, participants began the task sequence. The task sequence involved six separate audio transcription tasks, which were sequential segments of a university career center presentation on informational interviewing. Each audio segment was between 124 and 127 words, lasting between 39 and 47 seconds. While completing each transcription task, participants received between one and four chat messages from the supervisor, in which the supervisor asked participants to complete information retrieval tasks via the internet. These additional tasks were grouped into six sets and the order in which participants received the additional task assignment sets varied, with participants randomly assigned to one of twelve possible task sequences according to a digram-balanced Latin square design. The audio transcription tasks represented the participants’ primary work responsibilities while the interrupting tasks represented micro-events. Hereafter, the additional information retrieval tasks associated with Study 2a will be referred to as “interruptions.”

The six interruption sets included the following: (1) one short interruption, (2) two short interruptions, (3) four short interruptions, (4) one long interruption, (5) two long interruptions, and (6) four long interruptions. Short interruptions involved information retrieval of one piece of information (e.g., the phone number of the campus career center), while long interruptions involved information retrieval of two distinct pieces of information (e.g., the publication years for two different peer-reviewed journal articles). One, two, and four interruptions were used in order to allow for comparisons between equal numbers of short and long interruptions (e.g., one short interruption versus one long interruption), as well as the same approximate cumulative interruption load between short and long interruption sets (e.g., two short interruptions versus one long interruption).
Participants were assigned to one of two abilities levels for each of the six transcription tasks, with abilities representing the amount of time available to complete each transcription task. The two different ability levels were three minutes (low) and four minutes (high). This random assignment was done according to a fractional factorial design, in which participants received one of two task sequences involving three interruption sets at the low ability level and three interruption sets at the high ability level. Each transcription task was estimated to take approximately 3 minutes to complete (based on the estimate that 1 minute of audio requires approximately 4 minutes to transcribe), each short interruption was estimated to take approximately 10 to 15 seconds to complete, and each long interruption was estimated to take approximately 20 to 30 seconds to complete. Demands were held constant across conditions for the transcription task due to the time constraints of the lab study (i.e., the lab session was limited to one hour), which limited the number of trials each participant could complete. Furthermore, I expected that in the context of this lab experiment, altering demands (i.e., the length of the transcription that needed to be completed within a set period of time) would have a similar effect as altering abilities (i.e., the time available to complete the transcription task); thus, I made the decision to alter only abilities rather than both demands and abilities, in order to not overly-complicate the study design.

After completing each transcription task, participants completed a short questionnaire before proceeding to the next transcription task (see Appendix C for the survey instrument). The transcription tasks and post-task questionnaires were contained within a single Qualtrics survey interface. Communications from the supervisor were sent to participants via the instant-messenger application, ChatPlat. ChatPlat and the task/questionnaire interface were situated side-by-side on participants’ computer screens, with ChatPlat on the left on the left and the
task/questionnaire interface on the right. Both interfaces were visible at all times, to ensure that participants could see the chat messages from the supervisor as soon as they were sent.

Study 2a: Measures

The independent variables—subjective demands and abilities—were measured by asking participants to report, on a scale of zero to six minutes, how many minutes completing each task required (demands) and how many minutes they spent on each task (abilities). The task environment was structured such that participants spent a predetermined amount of time on each task—they could spend neither more nor less—thus asking how many minutes they spent on the task reflected their perceptions of the time that was available to them to complete the task.

The dependent variables were measured as follows. Perceived pace required was measured with a single item in which participants were asked to evaluate, using a 7-point scale with -3 and 3 as the endpoints, whether the pace of work required to complete the task was too slow (-3), reasonable (0), or too fast (3). Perceived time required was measured with a single item in which participants were asked to evaluate, using a 7-point scale with -3 and 3 as the endpoints, whether the time available to complete the task was too little (-3), reasonable (0), or too much (3). Dissatisfaction was measured with the items “disappointed,” “discouraged,” “unhappy,” and “dissatisfied” on a 4-point scale ranging from “not at all” to “to a great extent” using the question stem, “To what extent did you feel the following while working on this task?” Stress was measured with the items “anxious,” “overwhelmed,” “stressed,” and “under pressure” on a 4-point scale ranging from “not at all” to “to a great extent” using the question stem, “To what extent did you feel the following while working on this task?” Time pressure was measured with the items “hurried,” “rushed,” and “pressed for time” on a 4-point scale ranging from “not at all” to “to a great extent” using the question stem, “To what extent did you feel the following
while working on this task?” Finally, effort was measured with the single item, “How much effort did you exert on this task?” using a scale from 0 (labeled “low”) to 6 (labeled “high”).

Study 2a: Manipulation Checks

In order to provide variance in terms of abilities for Study 2a, participants were assigned to one of two ability levels: low, or three minutes, and high, or four minutes. These levels represented the amount of time a participant had available to complete each transcription task. The difference between these two ability levels was significant at the $p < .001$ level when regressed on the ability variable ($M_{low} = 4.58$, $M_{high} = 4.79$). In other words, participants in the low ability condition (less time available) reported having less time available to complete each task than participants in the high ability condition (more time available), which was in accordance with the study design. As explained earlier, baseline demands in Study 2a (i.e., the demands associated with the transcription task) were held constant.

Study 2a considered the moderating variables of event duration and event frequency. In order to manipulate duration, participants were randomly assigned to experienced either short or long interruptions (i.e., micro events). Short tasks involved the retrieval of one piece of information per interruption, while long tasks involved the retrieval of two pieces of information per interruption. In order to manipulate frequency, participants were assigned to receive one, two, or four interruptions (i.e., micro events) during each transcription task. Both the duration ($M_{short} = 5.20$, $M_{long} = 5.41$) and frequency ($M_1 = 4.99$, $M_2 = 5.30$, $M_4 = 5.63$) manipulations were significant at $p < .001$ when regressed on the demands variable. In other words, participants who had longer interrupting tasks perceived their overall task load to be more demanding (i.e., requiring more time to complete) than did participants who had shorter interrupting tasks, which was in accordance with the study design. Similarly, participants who were interrupted more
frequently perceived their overall task load as more demanding than did participants who were
interrupted fewer times, which was also in accordance with the study design.

A separate study was conducted to test the manipulations related to event duration and
event frequency, as including these manipulation checks in the main lab study could have altered
participant behavior and responses due to the repeated trial design of the study. This
manipulation check study was conducted on Amazon MTurk in May 2018. One hundred and
ninety-two responses were retained for analysis; sixteen for each of twelve study conditions. All
participants in the final sample were located in the United States; 59 percent were female, 75
percent were Caucasian, and the average age was 32 ($SD = 9.03$). The manipulations were tested
by using a simplified version of the original study. Participants were asked to transcribe one
audio passage; while working on the transcription, they were interrupted and asked to complete
one, two, or four information retrieval tasks. These tasks were either short (requiring
approximately 10-15 seconds) or long (requiring approximately 20-30 seconds), and participants
had either three or four minutes to complete the transcription plus information retrieval tasks.
This resulted in a total of twelve conditions; participants were randomly assigned to a condition
at the start of the study.

Using ANOVA, the differences between the conditions were statistically significant for
both duration and frequency. I tested these manipulations using both qualitative (for duration,
response options included “no time,” “a little time,” “a moderate amount of time,” “a lot of
time,” and “a substantial amount of time;” for frequency, response options included “never,”
“rarely,” “sometimes,” “often,” and “a great deal;”) and quantitative (seconds for duration and
number of times for frequency) measures. For duration, the differences were significant for each
interrupting task (qualitative: $F(1,190) = 14.90, p < .001$; quantitative: $F(1, 190) = 14.40, p <$
For frequency, the differences were significant qualitatively ($F(2,189) = 108.78, p < .001$) and quantitatively ($F(2,189) = 124.80, p < .001$). All pairwise comparisons within both the duration and frequency conditions were significantly different at the $p < .01$ level. The means for these conditions are reported in Table 2.

Study 2a: Results

Two hundred and four participant response sets—corresponding to the first 17 participants in each of the 12 conditions—were utilized for the analyses of Study 2a. Table 3 reports the means, standard deviations, correlations, and reliability estimates for the variables used in Study 2a.

Results for the constrained piecewise regression equations for Hypotheses 1 to 6 are reported in Table 4, and results for the spline regression equations are reported in Table 5. Hypotheses 1, 2, 3, and 6 correspond to Equation 2b, which is the equation for a function with two seams, while results for Hypotheses 4 and 5 correspond to Equation 2a, which is the equation for a function with one seam. As described in Chapter 6, the coefficients obtained from estimating the constrained piecewise regression equations were used as starting values for the spline regression analyses. For Hypotheses 2 and 3, which predicted a zone of indifference bound by the $Y = 1 + X$ and $Y = -1 + X$ line, starting values for c_{10}, c_{11}, c_{20}, and c_{21} were set at 1, 1, -1, and 1, respectively. For Hypothesis 6, which predicted a zone of indifference shifted to the right of the $Y = X$ line, starting values for c_{10}, c_{11}, c_{20}, and c_{21} were set at -2, 1, -4, and 1, respectively. For Hypotheses 4 and 5, which each predicted a single seam running along the $Y = -1 + X$ line, starting values for c_0 and c_1 were set at -1 and 1. As the models for Hypotheses 1 (perceived pace required) and 3 (dissatisfaction) did not converge with the starting values
specified above, the models were ultimately estimated with starting values of zero for c_{10}, c_{11}, c_{20}, and c_{21}.

Surfaces corresponding to these results are shown in Figures 10 through 15. As explained in Chapter 6, the coefficient estimates reported in Table 5 were combined to be able to assess the intercepts and slopes associated with the various segments of each surface, as reported in Table 6, as well as the slopes along the $Y = -X$ line for the various segments, as reported in Table 7.

For Hypothesis 1, which relates to the perceived pace required to complete a given task, the surface (see Figure 10) reflects two seams falling on either size of the $Y = X$ line, as hypothesized. However, the coefficients on c_{10} and c_{20} (which correspond to the intercepts of the left and right seams, respectively) do not statistically differ from zero (see Table 5), nor do they statistically differ from one another. Thus, Hypothesis 1 is not supported in terms of the hypothesized seams. In terms of the predicted slopes, as shown in Table 7, the slope of the left segment of the surface along the $Y = -X$ line does not differ from zero, thus failing to support part (a) of Hypothesis 1 that predicted a positive slope. However, both the center and right segments are as predicted in parts (b) and (c) of Hypothesis 1, with a slope that does not differ from zero for the center segment and a positive slope for the right segment. This upward slope on the right segment of the surface indicates that as demands exceed abilities, individuals increasingly perceive that the pace of work required is too fast. Taken together, these results provide partial support for Hypothesis 1.

For Hypothesis 2, which relates to the perceived time available to complete a given task, the surface (see Figure 11) reflects two seam falling on either size of the $Y = X$ line, as hypothesized. The coefficient on c_{10}, corresponding to the intercept of the left seam, is significant (see Table 5), thereby supporting that the seam is located away from the $Y = X$ line;
furthermore, the coefficients on c_{10} and c_{20} statistically differ from one another ($p < .001$). Thus, Hypotheses 2 is partially supported in terms of the zone of indifference. As shown in Table 7, the slope of the left segment of the surface along the $Y = -X$ line does not differ from zero, thus failing to support part (a) of Hypothesis 2 that predicted a negative slope for this portion of the surface. However, both the center and right segments have slopes as predicted in parts (b) and (c) of Hypothesis 2; the slope that does not differ from zero for the center segment and the slope is negative for the right segment. This negative slope on the right segment of the surface indicates that as demands exceed abilities, individuals increasingly perceive that the amount of time available to complete a given task is too little. Taken together, these results provide partial support for Hypothesis 2.

For Hypothesis 3, dissatisfaction, only one seam is visible in the corresponding surface (see Figure 12). This is the right seam, with the left seam falling outside of the range of the data. The coefficient corresponding to the intercept of this right seam (c_{20}) does not statistically differ from zero, thereby failing to support for Hypothesis 3 in terms of the location of the predicted seams, as the right seam was predicted to lie to the right of the $Y = X$ line. As shown in Table 7, none of the segments of this surface has a slope that differs from zero along the $Y = -X$ line; as such, only part (b) of the hypothesis that relates to the slope of the center segment of the surface (i.e., that it would not differ from zero) is supported. Taken together, these results indicate that dissatisfaction does not statistically differ across different regions of the surface, meaning that dissatisfaction does not differ when demands either fall short of or exceed abilities, compared to when they equal abilities. Hypothesis 3 is therefore not supported.

For Hypothesis 4, experienced stress, the surface demonstrates the presence of a seam, as hypothesized (see Figure 13), although the coefficient corresponding to the intercept of this seam
(c_1) does not statistically differ from zero, thereby failing to support that this seam is located to the right of the Y = X line, as was hypothesized. As shown in Table 7, the slope of the left segment of this surface does not differ from zero, which is as hypothesized in part (a), while the slope on the right side is positive, as hypothesized in part (b). These results indicate that individuals are increasingly likely to experience stress as demands exceed abilities, as predicted. With the exception of the location of the seam, these results offer some support for Hypothesis 4.

For Hypothesis 5, experienced time pressure, the surface demonstrates the presence of a seam, as hypothesized (see Figure 14), although the coefficient corresponding to the intercept of this seam (c_1) does not statistically differ from zero, thereby failing to support that this seam is located to the right of the Y = X line. As shown in Table 7, the slope of the left segment of this surface does not differ from zero, as hypothesized in part (a), while the slope on the right side is positive, as hypothesized in part (b). These results indicate that experienced time pressure increases as demands exceed abilities, as predicted. With the exception of the location of the seam, these results offer some support for Hypothesis 5, mirroring the results for Hypothesis 4, described above.

Lastly, for Hypothesis 6, effort, the corresponding surface depicts two seams (see Figure 15), although only the coefficient corresponding to the intercept of the second seam (c_{20}) differs from zero (see Table 5), therefore the portion of Hypothesis 6 that predicted that both seams are located to the right of the Y = X line is only partially supported. As shown in Table 7, the slope of the left segment of this surface does not differ from zero, while the slopes for both the center and right segments of the surface are negative. Given that the right segment was predicted to have a negative slope, these results partially support part (c) of Hypothesis 6. Substantively, these
results also support the prediction that effort drops off after demands exceed abilities by a certain threshold.

I turn now to Hypotheses 8 and 9, which predicted moderating effects of duration and frequency of micro events on the six outcome variables tested above. Table 8 presents the results of the test of moderation related to the duration of a micro event, while Table 9 presents the results of the test of moderation related to the frequency of a micro event. For duration, the coefficient on the moderating variable \(c_{12} \) is significant for experienced time pressure, offering support for moderation related to this outcome. Figure 16 presents surfaces at the two levels of this moderating variable, short (a) and long (b). Moving from short to long duration, the seam shifts to the left, which indicates that for micro events that are longer in duration, individuals experience feelings of time pressure when demands exceed abilities to a lesser extent than for micro events that are shorter in duration. Thus, for experienced time pressure, Hypothesis 8 is supported.

For frequency, the coefficients on the moderating variables \(c_{12} \) and \(c_{22} \) are significant for perceived time available, as well as for experienced time pressure \(c_{12} \). Figures 17 and 18 present surfaces corresponding to perceived time available and experienced time pressure, respectively, at the three levels of frequency: one, two, and four instances of micro event occurrences during a given task. First, for perceived time available (see Figure 17), the seams move farther apart as frequency increases, which opposite to the effect that was predicted in Hypothesis 9 for perceived time available. Thus Hypothesis 9 was not supported for perceived time available. Second, for experienced time pressure (see Figure 18), the location of the seam shifts to the left as frequency increases, which is as predicted in Hypothesis 9. In other words, for micro events that occur with greater frequency, individuals experience feelings of time pressure
when demands exceed abilities to a lesser extent than for micro events that are of a briefer duration. Thus Hypothesis 9 was supported for experienced time pressure.
CHAPTER 8: STUDY 2B

While Study 2a is an important first step in testing the relationships between outcome variables with demands and abilities—as predicted in Hypotheses 1 through 6—as well as considering the impact of such event characteristics as duration and frequency—as predicted in Hypotheses 8 and 9—a second study, Study 2b, was performed for four primary reasons. First, as Study 2a represents one of the first empirical examinations of the zone of indifference in the fit literature, Study 2b provides the opportunity to try to replicate the findings from Study 2a. Second, Study 2b uses a different type of event (a hindrance, rather than an intrusion, as in Study 2a) as the focal event, which is an important step in terms of being able to generalize study findings to the concept of events more broadly, rather than to one specific type of event. Third, Study 2a did not manipulate the level of demands, only the level of abilities, and the abilities manipulation was limited to two experimental conditions. In contrast, Study 2b includes five demand and five ability levels, thus providing more variance on the independent variables in order to increase likelihood of detecting the hypothesized relationships. Lastly, Study 2a did not allow for the inclusion of the importance moderating variable, which is incorporated into study 2b.

Study 2b: Sample

The first wave of data collection for Study 2b took place in the Behavioral Research Lab of the Kenan-Flagler Business School during October 2017. The sample for this first wave included approximately 188 undergraduate business students enrolled in BUSI 405 (Leading and Managing) who participated in the lab study for course credit. A second wave of data collection
occurred during January 2018, adding approximately 64 additional participants to the final sample. Participants in the second wave were also undergraduate business students enrolled in BUSI 405 who received course credit for their participation.

Study 2b: Procedure

Participants were told that they would participate in a series of tasks to help researchers better understand task coordination at work. They were told that they would communicate virtually with a supervisor who would be coordinating tasks among virtual partnerships, and that this communication would occur via the instant-messenger application, ChatPlat. Participants were instructed that it was very important for them to respond promptly to the supervisor’s communications and that their key objective was to complete all work assigned to them within the allotted time. After each task, participants completed a brief survey before proceeding to the next task.

After receiving these instructions, participants began the task sequence. At the start of the task sequence, participants were told by the supervisor via the messaging interface that each virtual partnership would work together to complete the transcription of a series of audio passages, and that each individual in a partnership would be responsible for either (a) transcribing the audio passage or (b) editing the passage that the other partner has transcribed. In actuality, all study participants were told that they were the partner assigned to edit the transcription passages and that their virtual partners would complete the actual transcription work by producing a first draft of the transcription before passing it along to the participant to be edited. Furthermore, in actuality, no virtual partner existed, meaning that the passages the participants received to edit (and in most cases, complete the transcription for) were determined in advance.
The task sequence involved five separate transcription editing tasks. The passages that participants received to edit varied in completeness, ranging from not completed at all (requiring the participant to do the transcription themselves) to complete but with some errors (requiring the participant to simply edit the transcription). There were five specific levels of completeness: 0% complete, 25% complete, 50% complete, 75% complete, and 100% complete. For each partially complete passage, participants were told by the supervisor that because their partner was unable to complete the transcription, they would need to transcribe the passages in addition to editing it. The order of the passages (i.e., the level of completeness) varied, based on a digram-balanced Latin square design.

The time allotted for participants to complete each task varied, depending on the task sequence condition to which participants were assigned. The five specific times were two minutes, two and a half minutes, three minutes, three and a half minutes and four minutes. These times represent five different levels of abilities.

In order to manipulate importance, participants were randomly assigned to one of three incentive conditions. In the first condition, which represents low importance, no task-completion incentive was offered. In the second condition, which represents medium importance, participants were told they could earn $0.50 for each successfully completed task, with the potential to earn up to $2.50 total across the five tasks. In the third condition, which represents high importance, participants were told they could earn $1.00 for each successfully completed task, with the potential to earn up to $5.00 total across the five tasks. A manipulation check was included in a sixth survey administered after the fifth and final task and post-task survey.

After completing each task, participants completed a brief questionnaire before proceeding to the next task (see Appendix D for the questionnaire). Communications from the
supervisor were sent to participants via the instant-messenger application, ChatPlat. ChatPlat and the task/questionnaire interface were situated side-by-side on participants’ computer screens, with ChatPlat on the left on the left and the task/questionnaire interface on the right. The transcription tasks and post-task questionnaires were contained within a single Qualtrics survey interface. Both interfaces were visible at all times, to ensure that participants could see the chat messages from the supervisor as soon as they were sent.

After completing all tasks, participants completed a final post-task questionnaire. When all participants in a session had completed the final questionnaire, the lab attendant debriefed the participants and all participants received the maximum possible level of compensation of $5.

Study 2b: Measures

The dependent variables were measured as follows. Perceived pace required was measured with a single item in which participants were asked to evaluate, using a 7-point scale with -3 and 3 as the endpoints, whether the pace of work required to complete the task was too slow (-3), reasonable (0), or too fast (3). Perceived time required was measured with a single item in which participants were asked to evaluate, using a 7-point scale with -3 and 3 as the endpoints, whether the time available to complete the task was too little (-3), reasonable (0), or too much (3). Dissatisfaction was measured with the items “disappointed,” “discouraged,” “unhappy,” and “dissatisfied” on a 4-point scale ranging from “not at all” to “to a great extent” using the question stem, “To what extent did you feel the following while working on this task?” Stress was measured with the items “anxious,” “overwhelmed,” “stressed,” and “under pressure” on a 4-point scale ranging from “not at all” to “to a great extent” using the question stem, “To what extent did you feel the following while working on this task?” Time pressure was measured with the items “hurried,” “rushed,” and “pressed for time” on a 4-point scale ranging from “not
at all” to “to a great extent” using the question stem, “To what extent did you feel the following while working on this task?” Finally, effort was measured with the single item, “How much effort did you exert on this task?” using a scale from 0 (labeled “low”) to 6 (labeled “high”).

Study 2b: Manipulation Checks

In order to provide variance on the demands and abilities measures, participants were assigned to one of five levels of demands and one of five levels of abilities. Demands levels varied according to the percentage of completeness of the transcription passage received from the virtual partner, ranging from 0% to 100% in 25% increments. Abilities levels ranged from having two minutes to four minutes (with differences in 30-second increments) available to complete the assigned transcription editing task. All differences among ability levels ($M_{2\text{ minutes}} = 3.12, M_{2.5\text{ minutes}} = 3.50, M_{3\text{ minutes}} = 3.72, M_{3.5\text{ minutes}} = 4.30, M_{4\text{ minutes}} = 4.45$) were significant at the $p < .05$ level when regressed on the ability variable with the exception of the difference between the three and a half and four minute conditions, which was not significant. In other words, with the exception of the difference between the three and a half and four minute conditions, participants who were given less time to complete each transcription editing task reported having less time available to complete each task than did participants who received more time, which was in accordance with the study design. All differences among demands levels ($M_{100\%} = 3.37, M_{75\%} = 4.05, M_{50\%} = 4.41, M_{25\%} = 4.74, M_{0\%} = 5.09$) were significant at the $p < .001$ level when regressed on the demand variable. In other words, participants whose virtual partners completed less of their portion of the task (e.g., 0%) reported the task as more demanding (i.e., requiring more time) than did participants whose virtual partners completed more of their portion of the task (e.g., 100%).
As explained above, to manipulate importance, participants were randomly assigned to one of three conditions in which they were (1) not told they would receive an incentive to complete study tasks accurately, (2) told they would receive a $0.50-per-task incentive to complete study tasks accurately (up to $2.50 total), or (3) told they would receive a $1.00-per-task-incentive to complete study tasks accurately (up to $5.00 total). In order to test this manipulation, participants were asked, after completing all tasks and post-task questionnaires, the following three questions: “How important to you was your performance on this task?” “To what extend do you think your performance on this task mattered?” and “How critical was it to perform this task effectively?” This was done using a five-point scale with options ranging from “not at all important” to “very important.” Cronbach’s alpha for this scale was .81. This manipulation was not successful, as the differences on the importance scale were not significant between conditions ($M_{\$0.00} = 4.00, M_{\$0.50} = 4.09, M_{\$1.00} = 4.39$). There was a significant difference between only the no-incentive ($M = 3.81$) and 1.00-per-task incentive ($M = 4.84$) conditions for the second item of the scale (“To what extent do you think your performance on this task mattered?”).

A separate study was conducted to test the manipulations related to the completeness of the passages participants received to edit, as including this manipulation check in the main laboratory study could have altered participant behavior and responses due to the repeated trial design of the study. This manipulation check study was conducted on Amazon MTurk in May 2018. One hundred and fifty responses were retained for analysis; six for each of twenty-five study conditions. All participants in the final sample were located in the United States; 69 percent were female, 74 percent were Caucasian, and the average age was 36 ($SD = 12.68$). The manipulation was tested by using a simplified version of the original study. Participants were
told that they would work in a virtual partnership and that they were the partner assigned to the role of editing the transcription of one brief audio passage that their partner would complete. The transcription that participants received to edit varied in terms of completeness (0%, 25%, 50%, 75%, and 100% complete).

I used one-way ANOVA to test that the differences between the conditions were statistically significant, using both quantitative and qualitative measures. The response options for the quantitative items included “0%,” “25%,” “50%,” “75%,” and “100%,” while the response options for the qualitative items included “none of it,” “some of it,” “half of it,” “quite a bit of it,” and “all of it.” The differences among conditions were significant for both qualitative ($F(4,149) = 75.81, p < .001$) and quantitative ($F(4,145) = 112.84, p < .001$) measures. All pairwise comparisons among conditions were significantly different at the $p < .05$ level. The means for the completeness conditions are reported in Table 10.

Study 2b: Results

Two hundred and twenty five participant response sets—corresponding to the first 3 participants in each of the 75 conditions (five ability levels times five scripts times three incentive levels)—were utilized for the analyses of Study 2b. Table 11 reports the means, standard deviations, correlations, and reliability estimates for the variables used in Study 2b.

Results for the constrained piecewise regression equations for Hypotheses 1 to 6 are reported in Table 12, and results for the spline regression equations are reported in Table 13. Hypotheses 1, 2, 3, and 6 correspond to Equation 2b, which is the equation for a function with two seams, while results for Hypotheses 4 and 5 correspond to Equation 2a, which is the equation for a function with one seam. As described in Chapter 6, the coefficients obtained from estimating the constrained piecewise regression equations were used as starting values for the
spline regression analyses. For Hypotheses 2 and 3, which predicted a zone of indifference bound by the $Y = 1 + X$ and $Y = -1 + X$ line, starting values for c_{10}, c_{11}, c_{20}, and c_{21} were set at 1, 1, -1, and 1, respectively. For Hypothesis 6, which predicted a zone of indifference that was located to the right of the $Y = X$ line, starting values for c_{10}, c_{11}, c_{20}, and c_{21} were set at -2, 1, -4, and 1, respectively. For Hypotheses 4 and 5, which each predicted a single seam running along the $Y = -1 + X$ line, starting values for c_0 and c_1 were set at -1 and 1. As the models for Hypotheses 1 (perceived pace required) and 5 (experienced time pressure) did not converge with the starting values specified above, the models were ultimately estimated with starting values of zero for c_{10}, c_{11}, c_{20}, and c_{21}.

Surfaces corresponding to these results are shown in Figures 19 through 24. As explained in Chapter 6, the coefficient estimates reported in Table 13 were combined to be able to assess the intercepts and slopes associated with the various segments of each surface, as reported in Table 14, as well as the slopes along the $Y = -X$ line for the various segments, as reported in Table 15.

For Hypothesis 1, which relates to the perceived pace required to complete a given task, the surface (see Figure 19) reflects that only one of the hypothesized seams runs somewhat parallel to the $Y = X$ line, which is the left seam. The coefficient on c_{10}, which corresponds to the intercept of this seam, is significant, although only the lower portion of this seam falls to the left of the $Y = X$ line as hypothesized. The coefficients on c_{10} and c_{20} do not statistically differ from one other, thus failing to support a zone between the two seams. In terms of the predicted slopes, as shown in Table 15, the slope of the left segment of the surface along the $Y = -X$ line does not differ from zero, thus failing to support part (a) of Hypothesis 1 that predicted a positive slope. Furthermore, the middle segment of the surface has a positive slope, in contrast to the prediction.
in part (b) of Hypothesis 1 that the slope is negative in the center. However, the right segment is positively sloped, as predicted in part (c) of Hypothesis 1. For this portion of the surface, this upward slope indicates that as demands exceed abilities, individuals increasingly perceive that the pace of work required to complete a given task is too fast. Taken together, these results provide limited support for Hypothesis 1.

For Hypothesis 2, which relates to the perceived time available to complete a given task, the surface (see Figure 20) reflects two seam falling on either side of the $Y = X$ line, as hypothesized. The coefficient on c_{10}, which corresponds to the intercept of the left seam, is not significant (see Table 13), thereby failing to support that the seam is located to the left of the $Y = X$ line as predicted. However, the coefficient on c_{20}, which corresponds to the intercept of the right seam, is significant, and further indicates that the seam lies to the right of the $Y = X$ line, as predicted. Furthermore, the coefficients on c_{10} and c_{20} statistically differ from one another ($p < .001$). Thus, Hypothesis 2 is partially supported in terms of the hypothesized seams as they relate to a zone of indifference. As shown in Table 15, the slope of the left segment of the surface along the $Y = -X$ line does not differ from zero, thus failing to support part (a) of Hypothesis 2 that predicted a negative slope for this portion of the surface. Furthermore, the center segment is negatively sloped, rather than flat as predicted in part (b), and the slope of the right segment does not differ from zero, rather than negatively sloped as predicted in part (c). Taken together, these results provide limited support for Hypothesis 2.

For Hypothesis 3, dissatisfaction, the corresponding surface in Figure 21 depicts a narrow zone that is slightly offset from the $Y = X$ line. However, neither of the intercepts associated with these seams differ statistically from zero (see Table 13), nor do they statistically from one another. Therefore, the portion of Hypothesis 3 that relates to the location of the seams for the
zone of indifference, or the presence of a zone of indifference, is not supported. In terms of the slopes for the different segments of the surface, the slope for the left segment does not differ from zero, in contrast to the negative slope predicted in part (a) of Hypothesis 3. The center segment has a slope that does not differ from zero, however, thus providing support for part (b), and the right segment has a positive slope, providing support for part (c). These slopes indicate that dissatisfaction does increase as demands move away from abilities, but only when they are in excess of abilities rather than when they fall short of them. Taken together, these results provide partial support for Hypothesis 3.

For Hypothesis 4, experienced stress, the surface (see Figure 22) demonstrates the presence of a seam, as hypothesized, although the coefficient corresponding to the intercept of this seam (c_1) does not statistically differ from zero (see Table 13), thereby failing to support that this seam is located to the right of the $Y = X$ line, as was hypothesized. As shown in Table 15, the slope of the left segment of this surface does not differ from zero, which is as hypothesized in part (a), while the slope on the right side is positive, as hypothesized in part (b). These results indicate that individuals are increasingly likely to experience stress as demands exceed abilities, as predicted. With the exception of the location of the seam, these results offer strong support for Hypothesis 4.

For Hypothesis 5, experienced time pressure, the surface in Figure 23 demonstrates the presence of a seam, as hypothesized, although the location of this seam runs more parallel to the $Y = -X$ line than to the $Y = X$ line, as was predicted. As shown in Table 15, the slopes on both segments of the surface are positive, indicating that experienced time pressure increases as demands increase, regardless of whether demands fall short of or exceed abilities. This supports
part (b) of the hypothesis, but not part (a), which predicted a slope of zero for the left segment of the surface. Taken together, these results offer partial support for Hypothesis 5.

Lastly, for Hypothesis 6, effort, the corresponding surface (see Figure 24) depicts two seams, although only the coefficient corresponding to the intercept of the left seam \((c_{10}) \) differs from zero (see Table 13), therefore the portion of Hypothesis 6 that predicted that both seams are located to the right of the \(Y = X \) line is only partially supported. However, coefficients on \(c_{10} \) and \(c_{20} \) differ statistically from one another \((p < .001) \), offering support for the presence of a zone as hypothesized. As shown in Table 15, the slope of the left segment of this surface is positively sloped, as predicted in part (a) of this hypothesis, the slope of the center segment does not differ from zero, as predicted in part (b), and the right segment is negatively sloped, as predicted in part (c). Substantively, these results support the prediction that effort increases up to a point past where demands exceed abilities, but then drops off after a threshold where demands far exceed abilities. Thus, Hypotheses 6 was largely supported.

Hypothesis 7 predicted that an increase in the importance of an event would be associated with a decrease in the width of the zone of indifference. As described above, the incentive manipulation intended to influence importance was not successful. In other words, although the intent was for individuals receiving greater incentive amounts to attribute more importance to the assigned tasks, in actuality, there was not a statistically difference in perceived importance between participants who did and did not receive incentives, or between participants who received different incentive amounts. Therefore, testing for moderation of importance using the incentive conditions as the moderating variable was not warranted. However, given that the scale used to measure importance was reliable \((\alpha = 0.81) \) and demonstrated a reasonable amount of variance, I considered that the importance variable itself might have moderating effects on the
width of the zone of indifference. The results of this test of moderation are shown in Table 16. As the coefficients or pairs of coefficients associated with the moderating variable (c_{12} and c_{22}) were not significant for any of the outcomes examined, Hypothesis 7 was not supported.
CHAPTER 9: GENERAL DISCUSSION

In my dissertation, I integrated P-E fit with events to explore the impact of micro events on subjective P-E fit, with an emphasis on the concept of zones of indifference. As a starting point, I suggested that the degree to which fit is a salient aspect of employment is variable, and that events are one way through which the salience of fit may be triggered during the ongoing-tenure phase of employment. Next, I developed theory around the zone of indifference, which helps to shed light on whether and to what extent P-E fit is impacted by events. I then proposed hypotheses related to the zone of indifference in terms of specific cognitive, affective, and behavioral responses, as well as hypotheses regarding specific factors—importance, event duration, and event frequency—that moderate the size of the zone of indifference. I tested these hypotheses using spline regression.

Taken together, the results from Study 1, Study 2a, and Study 2b offer preliminary empirical support for various aspects of the zone of indifference concept. Qualitatively, results from the qualitative pilot study and Study 1 pointed to the possible existence of zones of indifference, given that participants described various micro events as either being fit salient or not fit salient, in addition to describing factors that influenced salience. Empirically, results from Studies 2a and 2b offered at least partial support for the presence of seams along the various surfaces tested, further supporting the zone of indifference concept. While the intercepts for a number of these seams did not statistically differ from zero, there were several instances in which support was demonstrated for seam locations that were hypothesized to be located away from the $Y = X$ line (e.g., in Study 2a, the left seam for perceived time available and the right
seam for effort, and in Study 2b, the left seam for perceived pace required, the right seam for perceived time available, and the left seam for effort). Even in cases in which one of two seams did not differ from zero, a statistical difference between the two seam locations provided support for the presence of a zone (e.g., for Hypothesis 2, related to Perceived Time Available, in both Study 2a and Study 2b). Furthermore, in many instances, the slope of the \(Y = -X \) line in the center segment of the three-region surfaces and the left segment of the two-region surfaces were found to not differ from zero, as predicted (for all outcomes variables except effort in Study 2a, and for dissatisfaction and effort in Study 2b). These findings offers support for regions of a surface within which the outcome variable is not expected to change in response to changes in \(X \) or \(Y \).

Theoretical and Methodological Implications

From a theoretical standpoint, my dissertation makes an important contribution to the P-E fit literature in that I consider and examine fit in the context of change—specifically change that arises due to events—both in terms of theory and study design. While P-E fit has long been a central concept in organizational behavior, and has thus received much theoretical and empirical attention over the years, there is a growing need for P-E fit to be considered from a more dynamic perspective. As the theory presented in my dissertation suggests, the zone of indifference concept brings new insights into not just how fit develops and shifts over time, but also how it can undergo rapid shifts in response to events ranging from minor to major. Thus, additional consideration of how zones of indifference operate with respect to fit is warranted, particularly from a within-person perspective in order to better understand how shifting zones of indifference can impact fit.

Beyond the area of P-E fit, the concept of the zone of indifference has potentially wide applicability across a range of topics related to management and organizations. Whereas
organizational research has long focused on establishing that relationships exist between and among variables of interest, considering whether and how a zone of indifference impacts various organizational phenomena could greatly expand our understanding of the more nuanced aspects of those previously-identified relationships. For example, the presence of zones of indifference can help to explain why some outcomes are weaker than expected (or absent) at certain levels of predictor variables. Likewise, the potential for zones of indifference to shift can shed light on why expected outcomes either do or do not materialize at given points in time, all else appearing to be equal. Finally, movement from within to outside of a zone of indifference can involve more than just moving from indifference to awareness; it can also trigger sense-making and re-evaluation of past experiences. In this sense, and others, the concept of the zone of indifference has important temporal implications that warrant further consideration and exploration.

From a methodological standpoint, my dissertation makes an important contribution to the broader organizational literature in that it is one of the first studies to make use of the spline regression approach. As described in Chapter 6, this methodological approach integrates and builds upon existing approaches such as piecewise and polynomial regression to enable researchers to test three dimensional relationships among variables that may involve asymmetries in terms of both intercepts and slopes for different regions of a resulting function or surface. Especially for P-E fit, which has long relied on polynomial regression to test hypothesized relationships, the ability to test for asymmetrical fit effects is an important advancement and allows for testing more nuanced hypotheses related to fit, which will ultimately deepen and enrich our understanding of this concept that is so central to understanding how individuals experience and interact with the various environmental components that make up organizational life.
Practical Implications

Beyond these theoretical and methodological implications, my dissertation has important practical implications for managers and organizations. For example, by focusing specifically on events, my dissertation adds to the increasing recognition that events are an important potential source of change for individuals, and that various types and dimensions of fit are susceptible to change as a result of events. Because of the well-established relationship of fit with important outcomes such as performance, well-being, and satisfaction, it is critical for organizations and managers to be aware of the potential for individuals to experience sudden and dramatic changes to various types and dimension of fit as a result of events that occur in the organizational context.

Events provide both challenges and opportunities for organizations and managers, with respect to individuals’ fit at work. For example, in terms of challenges, events at work can push individuals into states of overload, in which they lack the necessary resources—whether physical, temporal, or emotional—to complete their work. Although employees may be able to withstand or tolerate temporary states of overload, which can be a result of being within a zone of indifference for a given type or dimension of fit—the recurrence of such events might lead to more enduring shifts in fit over time as a result of chronic overload. Beyond productivity and performance issues, both acute and chronic overload may lead to stress, burnout, counter-productive work behaviors, and turnover.

With respect to opportunities associated with events at work, organizations have a range of options that they can employ to better and more proactively assist individuals in managing events that will inevitably arise in the course of fulfilling their work responsibilities. Explicitly thinking about the presence of zones of indifference and taking steps to adjust the size of these can be particularly beneficial. For instance, for contexts in which it is desirable for individuals to
be more resilient in the face of change, or to be more tolerant in the presence of differences, steps can be taken to make relevant zones of indifference wider. Conversely, for contexts in which it is desirable for individuals to be more responsive in the face of change, or to be more sensitive in the presence of differences, steps can be taken to make relevant zones of indifference narrower. Working to mitigate factors that narrow certain zones of indifference while supporting factors that broaden other zones creates important buffers that are likely to lead to enhanced employee well-being, satisfaction, and other positive outcomes.

Limitations and Future Directions

This dissertation is the starting point of a program of research in which I plan to further explore both the impact of events on individuals at work and the concept of the zone of indifference, particularly as these two areas of research relate to P-E fit. Beyond the scope of my dissertation, there are several potentially fruitful directions for additional research. I highlight several of these below, in addition to discussing limitations in the studies I presented in my dissertation that should be addressed in this future research.

First, the lab study portion of my dissertation, while beneficial in allowing for randomization and manipulation that would be difficult, if not impossible, to impose in a field setting, has several limitations. For example, the logistical challenges associated with incorporating multiple event characteristics limited the number of characteristics that could be examined across the two lab studies; furthermore, it did not allow for consideration of how different event characteristics might interact with and impact one another. Additionally, a lab study, while allowing for a longitudinal analysis of events, applies most readily to the most micro of events. Follow-up studies that occur in a field setting will allow for considering a broader range of event magnitudes than would be possible to examine in the lab.
Second, specific to Study 2a—in which participants were interrupted to perform additional work tasks—the interrupting tasks were structured such that participants were able to work on each task for a period of time before being interrupted, which is important because fit cannot be disrupted unless it exists in the first place. However, this period of time varied depending on the experimental condition, such that participants in some conditions had only very brief periods of time to establish baseline fit before experiencing the first micro event. Longer baseline periods during which fit can be established could be useful in future studies that consider the impact of events on fit.

Third, although very limited, I found some support for the moderating effects of duration and frequency. However, additional work is necessary to better understand these and other factors, including importance, which may affect the width of various zones of indifference. For frequency in particular, it is possible that frequency is experienced relative to what an individual is used to experiencing or expects to experience. In other words, additional work is necessary in order to distinguish between the effects of predictability and frequency on event disruptiveness.

Fourth, although I factored the panel structure of the data into my analyses, I did not specifically test the zone of indifference at the within-person level of analysis. Future work should consider whether the zone of indifference phenomenon is the same at the between- versus within-person levels, which would represent an important extension of the fit literature.

Fifth, although I focus on D-A fit in my dissertation, the theory I propose also applies to N-S fit. A number of respondents to the pilot study and Study 1 referenced aspects of N-S fit, which I would use as a starting point to exploring how events impact N-S fit specifically.

Sixth, I primarily consider potentially negative or detrimental events in my dissertation. However, events can also be potentially positive or beneficial, as evidenced by the various
responses in the pilot study and Study 1 that described positive outcomes resulting from micro
events, such as individuals feeling more confident or valued as a result of a given micro event.

Seventh, related to events, future inquiries should consider specific types of events, such
as time away from work. The survey instrument for my qualitative study included questions
referring to time away from work for both work-related and personal reasons; responses to these
questions would serve as a starting point for work related to this specific type of event. Also
related to events, there may be additional event characteristics that contribute to whether and to
what extent events are disruptive, beyond the characteristics of importance, frequency, and
duration that I empirically examine in my dissertation, which merit identification and testing.
Furthermore, characteristics of the individual, such as polychronicity, which is the degree to
which individuals prefer to work on multiple tasks simultaneously versus one at a time, can also
impact the size of a given zone of indifference (Hecht & Allen, 2005; Slocombe & Bluedorn,
1999) and should therefore be examined.

Finally, with respect to the zone of indifference, there may be additional features of the
zone of indifference concept that warrant further investigation, beyond what is considered in my
dissertation. For example, a given zone of indifference may be asymmetrical, meaning that the
width of that particular zone might vary depending on the specific levels of the corresponding
person and environment factors which relate to that zone. In addition, future work should address
how the zone of indifference is affected by forms of change other than event-based changed,
such as gradual or cyclical change. Another aspect of the zone of indifference that should be
investigated is how multiple zones impact one another; for example, certain zones may have
compensatory effects on other zones. Finally, the zone of indifference is a concept that has
potentially wide application and relevance to a number of topics within the management
literature, yet it has seldom been considered since its appearance in the management literature decades ago. Future research should propose theory related to and test the concept of the zone of indifference as it relates to domains other than P-E fit.
Table 1. Sample D-A Fit Disruptions

<table>
<thead>
<tr>
<th>INCREASE</th>
<th>Objective</th>
<th>Subjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demands</td>
<td>increased workload</td>
<td>information that own workload exceeds others' workloads, all else being equal</td>
</tr>
<tr>
<td>Abilities</td>
<td>acquisition of a new skill</td>
<td>enhanced self-efficacy resulting from positive feedback</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECREASE</th>
<th>Objective</th>
<th>Subjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demands</td>
<td>decreased workload</td>
<td>information that own workload falls short of others' workloads, all else being equal</td>
</tr>
<tr>
<td>Abilities</td>
<td>an existing skill becomes obsolete (e.g., new software)</td>
<td>diminished self-efficacy resulting from negative feedback</td>
</tr>
</tbody>
</table>
Table 2. Study 2a Means and Standard Deviations for Duration and Frequency Manipulation Checks

<table>
<thead>
<tr>
<th>Duration</th>
<th>Qualitative</th>
<th></th>
<th>Quantitative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Short</td>
<td>2.378</td>
<td>0.766</td>
<td>21.93</td>
<td>15.800</td>
</tr>
<tr>
<td>Long</td>
<td>2.875</td>
<td>1.000</td>
<td>31.88</td>
<td>20.252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Qualitative</th>
<th></th>
<th>Quantitative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>1</td>
<td>2.167</td>
<td>0.507</td>
<td>2.094</td>
<td>0.684</td>
</tr>
<tr>
<td>2</td>
<td>3.276</td>
<td>0.828</td>
<td>3.313</td>
<td>0.906</td>
</tr>
<tr>
<td>4</td>
<td>4.026</td>
<td>0.775</td>
<td>5.094</td>
<td>1.488</td>
</tr>
</tbody>
</table>
Table 3. Study 2a Means, Standard Deviations, and Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demands (minutes required)</td>
<td>1.30</td>
<td>1.49</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Abilities (minutes available)</td>
<td>0.69</td>
<td>1.43</td>
<td>0.64*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Perceived Pace Required</td>
<td>1.40</td>
<td>1.28</td>
<td>0.53*</td>
<td>0.31*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Perceived Time Available</td>
<td>-1.18</td>
<td>1.41</td>
<td>-0.41*</td>
<td>-0.19*</td>
<td>-0.48*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Dissatisfaction</td>
<td>2.07</td>
<td>0.85</td>
<td>0.24*</td>
<td>0.17*</td>
<td>0.35*</td>
<td>-0.25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Experienced Stress</td>
<td>2.50</td>
<td>0.89</td>
<td>0.43*</td>
<td>0.32*</td>
<td>0.56*</td>
<td>-0.38*</td>
<td>0.70*</td>
<td>(.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Experienced Time Pressure</td>
<td>3.02</td>
<td>0.88</td>
<td>0.53*</td>
<td>0.37*</td>
<td>0.68*</td>
<td>-0.47*</td>
<td>0.52*</td>
<td>0.80*</td>
<td>(.93)</td>
<td></td>
</tr>
<tr>
<td>8. Effort</td>
<td>4.63</td>
<td>1.42</td>
<td>0.45*</td>
<td>0.41*</td>
<td>0.45*</td>
<td>-0.25*</td>
<td>0.26*</td>
<td>0.49*</td>
<td>0.47*</td>
<td>---</td>
</tr>
</tbody>
</table>

*p < 0.05. Reliability estimates (Cronbach’s alpha) are reported along the diagonal for multi-item scales.
Table 4. Study 2a Results for Constrained Piecewise Regression Equations

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>0.42</td>
<td>0.09</td>
<td>0.34</td>
<td>-0.34</td>
<td>-0.18</td>
<td>0.29</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>-0.35</td>
<td>-0.09</td>
<td>-0.25</td>
<td>0.25</td>
<td>0.34*</td>
<td>0.20</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.83***</td>
<td>0.01</td>
<td>0.13</td>
<td>-0.05</td>
<td>-0.15</td>
<td>0.06</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>2.16***</td>
<td>0.16**</td>
<td>0.12*</td>
<td>-0.15</td>
<td>---</td>
<td>0.19</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>2.61***</td>
<td>0.21***</td>
<td>0.11*</td>
<td>-0.16</td>
<td>---</td>
<td>0.28</td>
</tr>
<tr>
<td>Effort</td>
<td>4.09***</td>
<td>0.32***</td>
<td>0.19**</td>
<td>-0.09</td>
<td>3.60***</td>
<td>0.24</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Table 5. Study 2a Results for Spline Regression Equations

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>c_{10}</th>
<th>c_{11}</th>
<th>b_4</th>
<th>c_{20}</th>
<th>c_{21}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>-0.03</td>
<td>0.28*</td>
<td>0.47</td>
<td>-0.30</td>
<td>-0.53</td>
<td>0.82***</td>
<td>-0.43</td>
<td>1.83</td>
<td>0.17</td>
<td>0.30</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>4.74</td>
<td>0.37</td>
<td>-2.03</td>
<td>2.03</td>
<td>2.64***</td>
<td>0.35***</td>
<td>0.35*</td>
<td>-0.79</td>
<td>0.90***</td>
<td>0.20</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>0.57</td>
<td>0.46</td>
<td>0.16</td>
<td>-0.04</td>
<td>[32.48]</td>
<td>-12.21**</td>
<td>-0.23*</td>
<td>-0.39</td>
<td>0.80**</td>
<td>0.07</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>2.15***</td>
<td>0.15***</td>
<td>0.13**</td>
<td>-0.20**</td>
<td>-0.66</td>
<td>0.78***</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.19</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>2.34***</td>
<td>0.08</td>
<td>0.33***</td>
<td>-0.36***</td>
<td>0.60</td>
<td>0.73***</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.29</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>4.14***</td>
<td>0.32***</td>
<td>0.14*</td>
<td>2.23</td>
<td>[-10.06]</td>
<td>2.99***</td>
<td>2.03***</td>
<td>-1.68***</td>
<td>0.19***</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001

Note: Values in brackets fall outside of the range of the data.
Table 6. Study 2a Spline Regression Surfaces

<table>
<thead>
<tr>
<th></th>
<th>LEFT SEGMENT</th>
<th>CENTER SEGMENT</th>
<th>RIGHT SEGMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INT</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Perceived Pace</td>
<td>-0.03</td>
<td>0.28*</td>
<td>0.47</td>
</tr>
<tr>
<td>Required</td>
<td>4.74</td>
<td>0.37</td>
<td>-2.03</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>0.57</td>
<td>0.46</td>
<td>0.16</td>
</tr>
<tr>
<td>Expressed Stress</td>
<td>2.15***</td>
<td>0.15***</td>
<td>0.13**</td>
</tr>
<tr>
<td>Experienced Time</td>
<td>2.34***</td>
<td>0.08</td>
<td>0.33***</td>
</tr>
<tr>
<td>Pressure</td>
<td>Effort</td>
<td>4.14***</td>
<td>0.32***</td>
</tr>
</tbody>
</table>

* *p < 0.05 ** *p < 0.01 *** *p < 0.001

Note: Values in brackets fall outside of the range of the data.
Table 7. Study 2a Slope of \(Y = -X \)

<table>
<thead>
<tr>
<th></th>
<th>LEFT SEGMENT</th>
<th>CENTER SEGMENT</th>
<th>RIGHT SEGMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1) - (b_2)</td>
<td>(\frac{b_1 - b_3 c_{11}}{b_2 + b_3})</td>
<td>(\frac{b_1 - b_3 c_{11} - b_4 c_{21}}{b_2 + b_3 + b_4})</td>
<td></td>
</tr>
<tr>
<td>Perceived Pace Required</td>
<td>-0.19</td>
<td>0.35</td>
<td>0.86***</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>2.40</td>
<td>-0.33</td>
<td>-0.99***</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>0.30</td>
<td>-0.15</td>
<td>0.26</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>0.02</td>
<td>---</td>
<td>0.38***</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>-0.25</td>
<td>---</td>
<td>0.38***</td>
</tr>
<tr>
<td>Effort</td>
<td>0.18</td>
<td>-8.71***</td>
<td>-11.14***</td>
</tr>
</tbody>
</table>

* \(p < 0.05 \) \quad * * \(p < 0.01 \) \quad * * * \(p < 0.001 \)
Table 8. Study 2a Results for Spline Regression Equations, Duration Moderation

<table>
<thead>
<tr>
<th>Outcome</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>c_{10}</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>b_4</th>
<th>c_{20}</th>
<th>c_{21}</th>
<th>c_{22}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>0.05</td>
<td>0.14</td>
<td>0.46</td>
<td>-0.28</td>
<td>1.67</td>
<td>0.68</td>
<td>1.10</td>
<td>-0.41**</td>
<td>0.28</td>
<td>0.59***</td>
<td>-0.47</td>
<td>0.30</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>4.19</td>
<td>0.22</td>
<td>-1.87</td>
<td>1.83</td>
<td>2.50***</td>
<td>0.30</td>
<td>0.20</td>
<td>0.42**</td>
<td>-0.10</td>
<td>0.70***</td>
<td>-0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>4.16***</td>
<td>-0.06</td>
<td>0.14</td>
<td>-0.02</td>
<td>-3.77</td>
<td>5.77</td>
<td>14.58</td>
<td>-0.25*</td>
<td>-0.22</td>
<td>0.78***</td>
<td>-1.13*</td>
<td>0.08</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>2.16***</td>
<td>0.16**</td>
<td>0.14*</td>
<td>-0.17</td>
<td>-2.12</td>
<td>1.19*</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>2.32***</td>
<td>0.05</td>
<td>0.34**</td>
<td>-0.36*</td>
<td>0.48</td>
<td>0.80***</td>
<td>0.43*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Effort</td>
<td>4.09***</td>
<td>0.28***</td>
<td>0.21**</td>
<td>-0.21</td>
<td>[-21.94]</td>
<td>7.76***</td>
<td>0.69</td>
<td>2.72***</td>
<td>-2.95**</td>
<td>0.62</td>
<td>0.18</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* $p < 0.05$ ** $p < 0.01$ *** $p < 0.001$

Note: Values in brackets fall outside of the range of the data.
Table 9. Study 2a Results for Spline Regression Equations, Frequency Moderation

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>c_{10}</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>b_4</th>
<th>c_{20}</th>
<th>c_{21}</th>
<th>c_{22}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>0.27</td>
<td>0.06</td>
<td>0.40</td>
<td>-0.29</td>
<td>0.55</td>
<td>1.00</td>
<td>0.45</td>
<td>-0.32</td>
<td>0.14</td>
<td>0.67**</td>
<td>-0.14</td>
<td>0.31</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>1.42</td>
<td>0.16</td>
<td>-0.86***</td>
<td>0.69***</td>
<td>2.28***</td>
<td>0.43</td>
<td>0.29***</td>
<td>0.46***</td>
<td>0.19**</td>
<td>1.09***</td>
<td>-0.34*</td>
<td>0.22</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.68***</td>
<td>-0.11</td>
<td>0.18*</td>
<td>-0.05</td>
<td>-1.06</td>
<td>2.27</td>
<td>2.04</td>
<td>-0.19</td>
<td>0.27</td>
<td>0.95**</td>
<td>-0.41</td>
<td>0.08</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>1.90***</td>
<td>0.21**</td>
<td>0.18</td>
<td>-0.16</td>
<td>0.45</td>
<td>0.09</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>2.22***</td>
<td>-0.10</td>
<td>0.38**</td>
<td>-0.39**</td>
<td>0.49</td>
<td>1.07***</td>
<td>0.18*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Effort</td>
<td>4.09***</td>
<td>0.28***</td>
<td>0.21**</td>
<td>-0.42</td>
<td>-6.05</td>
<td>2.46***</td>
<td>-0.07</td>
<td>3.10**</td>
<td>-3.11**</td>
<td>0.74*</td>
<td>0.02</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* $p < 0.05$ ** $p < 0.01$ *** $p < 0.001$
Table 10. Study 2b Means and Standard Deviations for Completeness Manipulation Check

<table>
<thead>
<tr>
<th>Completeness</th>
<th>Qualitative</th>
<th></th>
<th>Quantitative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>0%</td>
<td>1.578</td>
<td>0.792</td>
<td>5.833</td>
<td>12.600</td>
</tr>
<tr>
<td>25%</td>
<td>2.078</td>
<td>0.485</td>
<td>28.333</td>
<td>12.685</td>
</tr>
<tr>
<td>50%</td>
<td>2.822</td>
<td>0.777</td>
<td>46.667</td>
<td>19.402</td>
</tr>
<tr>
<td>75%</td>
<td>3.633</td>
<td>0.663</td>
<td>65.000</td>
<td>19.253</td>
</tr>
<tr>
<td>100%</td>
<td>4.178</td>
<td>0.605</td>
<td>82.500</td>
<td>11.652</td>
</tr>
</tbody>
</table>
Table 11. Study 2b Means, Standard Deviations, and Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demands (minutes required)</td>
<td>0.34</td>
<td>1.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2. Abilities (minutes available)</td>
<td>-0.18</td>
<td>0.99</td>
<td>0.53*</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3. Perceived Pace</td>
<td>0.76</td>
<td>1.45</td>
<td>0.51*</td>
<td>0.15*</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4. Perceived Time</td>
<td>-0.65</td>
<td>1.53</td>
<td>-0.39*</td>
<td>-0.02</td>
<td>-0.61*</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5. Dissatisfaction</td>
<td>1.97</td>
<td>0.81</td>
<td>0.41*</td>
<td>0.11*</td>
<td>0.60*</td>
<td>-0.49*</td>
<td>(.88)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. Experienced Stress</td>
<td>2.33</td>
<td>0.90</td>
<td>0.32*</td>
<td>0.06</td>
<td>0.46*</td>
<td>-0.38*</td>
<td>0.71*</td>
<td>(.92)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7. Experienced Time Pressure</td>
<td>2.81</td>
<td>0.98</td>
<td>0.47*</td>
<td>0.15*</td>
<td>0.69*</td>
<td>-0.59*</td>
<td>0.81*</td>
<td>0.58*</td>
<td>(.94)</td>
<td>---</td>
</tr>
<tr>
<td>8. Effort</td>
<td>4.61</td>
<td>1.53</td>
<td>0.39*</td>
<td>0.23*</td>
<td>0.52*</td>
<td>-0.38*</td>
<td>0.53*</td>
<td>0.27*</td>
<td>0.58*</td>
<td>---</td>
</tr>
</tbody>
</table>

*p < 0.05. Reliability estimates (Cronbach’s alpha) are reported along the diagonal for multi-item scales.
Table 12. Study 2b Results for Constrained Piecewise Regression Equations

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>-0.37</td>
<td>0.09</td>
<td>0.38</td>
<td>-0.80*</td>
<td>0.24*</td>
<td>0.29</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>0.63</td>
<td>0.01</td>
<td>-0.28</td>
<td>0.93*</td>
<td>-0.39*</td>
<td>0.22</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.35***</td>
<td>-0.20</td>
<td>0.33*</td>
<td>-0.48**</td>
<td>-0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>2.18***</td>
<td>0.35***</td>
<td>-0.12</td>
<td>-0.04</td>
<td>---</td>
<td>0.19</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>2.64***</td>
<td>0.54***</td>
<td>-0.22***</td>
<td>-0.20*</td>
<td>---</td>
<td>0.24</td>
</tr>
<tr>
<td>Effort</td>
<td>4.44***</td>
<td>0.64***</td>
<td>-0.12</td>
<td>0.66**</td>
<td>1.54***</td>
<td>0.18</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Table 13. Study 2b Results for Spline Regression Equations

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>c_{10}</th>
<th>c_{11}</th>
<th>b_4</th>
<th>c_{20}</th>
<th>c_{21}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>0.57**</td>
<td>-0.04</td>
<td>0.40</td>
<td>-0.95**</td>
<td>0.40*</td>
<td>0.45***</td>
<td>0.12</td>
<td>3.71</td>
<td>-6.21</td>
<td>0.32</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>0.23</td>
<td>-0.20</td>
<td>-0.22</td>
<td>0.91*</td>
<td>0.53</td>
<td>0.82***</td>
<td>-0.63*</td>
<td>-1.357*</td>
<td>0.83**</td>
<td>0.22</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.63***</td>
<td>-0.06</td>
<td>0.29*</td>
<td>-0.65</td>
<td>0.23</td>
<td>0.77</td>
<td>0.18</td>
<td>-0.31</td>
<td>0.82</td>
<td>0.14</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>1.77***</td>
<td>0.02</td>
<td>0.33</td>
<td>-0.51**</td>
<td>0.75</td>
<td>0.75***</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.20</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>2.74***</td>
<td>0.36***</td>
<td>-0.18***</td>
<td>0.46***</td>
<td>-1.00***</td>
<td>-0.55*</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.26</td>
</tr>
<tr>
<td>Effort</td>
<td>4.44***</td>
<td>0.67***</td>
<td>-0.13</td>
<td>0.55*</td>
<td>-2.41**</td>
<td>1.41**</td>
<td>1.56</td>
<td>-4.00</td>
<td>1.00***</td>
<td>0.18</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Table 14. Study 2b Spline Regression Surfaces

<table>
<thead>
<tr>
<th></th>
<th>LEFT SEGMENT</th>
<th></th>
<th>CENTER SEGMENT</th>
<th></th>
<th>RIGHT SEGMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INT</td>
<td>X</td>
<td>Y</td>
<td>INT</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>b_0</td>
<td>b_1</td>
<td>b_2</td>
<td>$b_0-b_3c_{10}$</td>
<td>$b_1-b_3c_{11}$</td>
<td>b_2+b_3</td>
</tr>
<tr>
<td>Perceived Pace</td>
<td>0.57**</td>
<td>-0.04</td>
<td>0.40</td>
<td>0.95***</td>
<td>0.38***</td>
<td>-0.55***</td>
</tr>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Time</td>
<td>0.23</td>
<td>-0.20</td>
<td>-0.22</td>
<td>-0.25**</td>
<td>-0.95***</td>
<td>0.69***</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.63***</td>
<td>-0.06</td>
<td>0.29*</td>
<td>1.78***</td>
<td>0.45</td>
<td>-0.36</td>
</tr>
<tr>
<td>Experiencing Stress</td>
<td>1.77***</td>
<td>0.02</td>
<td>0.33</td>
<td>2.15***</td>
<td>0.40***</td>
<td>-0.19***</td>
</tr>
<tr>
<td>Experiencing Time</td>
<td>2.74***</td>
<td>0.36***</td>
<td>-0.18***</td>
<td>3.12***</td>
<td>0.61***</td>
<td>0.29*</td>
</tr>
<tr>
<td>Pressure</td>
<td>4.44***</td>
<td>0.67***</td>
<td>-0.13</td>
<td>5.77***</td>
<td>-0.11</td>
<td>0.43</td>
</tr>
<tr>
<td>Effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Table 15. Study 2b Slope of $Y = -X$

<table>
<thead>
<tr>
<th></th>
<th>LEFT SEGMENT</th>
<th>CENTRAL SEGMENT (b_1, b_3c_{11})</th>
<th>RIGHT SEGMENT (b_1, b_3c_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>-0.44</td>
<td>0.93***</td>
<td>1.55***</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>0.21</td>
<td>-1.64***</td>
<td>-0.48</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>-0.35</td>
<td>0.81</td>
<td>0.48***</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>-0.31</td>
<td>---</td>
<td>0.59***</td>
</tr>
<tr>
<td>Experienced Time Pressure</td>
<td>0.54***</td>
<td>---</td>
<td>0.33*</td>
</tr>
<tr>
<td>Effort</td>
<td>0.79***</td>
<td>-0.54</td>
<td>-3.66***</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Table 16. Study 2b Results for Spline Regression Equations, Importance Moderation

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>c_{10}</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>b_4</th>
<th>c_{20}</th>
<th>c_{21}</th>
<th>c_{22}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Pace Required</td>
<td>0.58**</td>
<td>-0.05</td>
<td>0.40</td>
<td>-0.95**</td>
<td>0.15</td>
<td>0.46***</td>
<td>0.06</td>
<td>0.11</td>
<td>2.33</td>
<td>-6.40</td>
<td>0.37</td>
<td>0.32</td>
</tr>
<tr>
<td>Perceived Time Available</td>
<td>0.23</td>
<td>-0.20</td>
<td>-0.23</td>
<td>0.93*</td>
<td>0.57</td>
<td>0.82***</td>
<td>-0.01</td>
<td>-0.66*</td>
<td>-1.27</td>
<td>0.83**</td>
<td>-0.02</td>
<td>0.22</td>
</tr>
<tr>
<td>Dissatisfaction</td>
<td>1.36***</td>
<td>-0.12</td>
<td>0.42*</td>
<td>-0.49*</td>
<td>1.71**</td>
<td>0.70***</td>
<td>-0.20</td>
<td>-0.33**</td>
<td>-4.59*</td>
<td>0.60**</td>
<td>0.78*</td>
<td>0.17</td>
</tr>
<tr>
<td>Experienced Stress</td>
<td>1.70***</td>
<td>0.00</td>
<td>0.36</td>
<td>-0.55*</td>
<td>0.51</td>
<td>0.72***</td>
<td>0.07</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.21</td>
</tr>
<tr>
<td>Experienced Time</td>
<td>2.67***</td>
<td>0.57***</td>
<td>-0.16**</td>
<td>0.02</td>
<td>-13.98</td>
<td>26.02</td>
<td>-4.40</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.26</td>
</tr>
<tr>
<td>Effort</td>
<td>4.44***</td>
<td>0.69***</td>
<td>-0.14</td>
<td>0.50*</td>
<td>-1.94</td>
<td>1.76**</td>
<td>-0.27</td>
<td>1.66***</td>
<td>-4.00</td>
<td>0.98</td>
<td>0.01</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.01 ***p < 0.001
Figure 1. Theoretical Model
Figure 2. Employment Cycle

Figure 3. Zone of Indifference
Figure 4. Hypothesized Surface 1: Perceived Pace Required
Figure 5. Hypothesized Surface 2: Perceived Time Available
Figure 6. Hypothesized Surface 3: Dissatisfaction
Figure 7. Hypothesized Surface 4: Experienced Stress
Figure 8. Hypothesized Surface 5: Experienced Time Pressure
Figure 9. Hypothesized Surface 6: Effort
Figure 10. Estimated Surface 1, Study 2a: Perceived Pace Required
Figure 11. Estimated Surface 2, Study 2a: Perceived Time Available
Figure 12. Estimated Surface 3, Study 2a: Dissatisfaction
Figure 13. Estimated Surface 4, Study 2a: Experienced Stress
Figure 14. Estimated Surface 5, Study 2a: Experienced Time Pressure
Figure 15. Estimated Surface 6, Study 2a: Effort
Figure 16. Moderating Effects of Duration on Experienced Time Pressure

(a) short duration of event

(b) long duration of event
Figure 17. Moderating Effect of Frequency on Perceived Time Available

(a) one interrupting task

(b) two interrupting tasks
(c) four interrupting tasks
Figure 18. Moderating Effect of Frequency on Experienced Time Pressure

(a) one interrupting task

(b) two interrupting tasks
(c) four interrupting tasks
Figure 19. Estimated Surface 1, Study 2b: Perceived Pace Required
Figure 20. Estimated Surface 2, Study 2b: Perceived Time Available
Figure 21. Estimated Surface 3, Study 2b: Dissatisfaction
Figure 22. Estimated Surface 4, Study 2b: Experienced Stress
Figure 23. Estimated Surface 5, Study 2b: Experienced Time Pressure
Figure 24. Estimated Surface 6, Study 2b: Effort
APPENDIX A: PILOT STUDY MATERIALS

Pilot Study: Questionnaire

One way to think about your duties or responsibilities at work is in terms of the typical demands that your job places on you. In the spaces below, list the typical demands associated with your job. List one demand per space, using up to five lines to capture the top five typical demands of your job. Order these from the MOST important demand associated with your job to the LEAST important demand associated with your job.

Demand 1 (MOST important)
Demand 2
Demand 3
Demand 4
Demand 5 (LEAST important)

Below are each of the job demands you listed previously. Drag and drop to order these according to how much of your work time you typically allocate to each, starting with the MOST amount of time and moving to the LEAST amount of time.

With the demands of your job in mind, think now about the abilities you typically draw upon to meet the demands of your job. “Abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

On the next several screens, you will see each of the demands associated with your job that you listed previously. In the space provided below each demand, please describe what abilities you typically draw upon to meet that particular demand.

For the demand listed below, please list up to five abilities that you typically draw upon to meet this job demand. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

{Demand 1}

Ability 1
Ability 2
Ability 3
Ability 4
Ability 5

For the demand listed below, please list up to five abilities that you typically draw upon to meet this job demand. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

{Demand 2}
For the demand listed below, please list up to five abilities that you typically draw upon that enable you to meet this job demand. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

{Demand 3}

Ability 1
Ability 2
Ability 3
Ability 4
Ability 5

{Demand 4}

Ability 1
Ability 2
Ability 3
Ability 4
Ability 5

For the demand listed below, please list up to five abilities that you typically draw upon that enable you to meet this job demand. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

Ability 1
Ability 2
Ability 3
Ability 4
Ability 5
In the course of meeting the typical demands of your job, you may experience interruptions that hinder you from completing your work.

On the next several screens, you will see some of the demands associated with your job that you listed previously.

For each demand, think about a time when an interruption occurred that hindered you from completing your work related to that particular demand.

{Demand 1}

Above is the demand you identified as being most important to your job. Think of a time you experienced an interruption related to this demand. What happened?

How did you react?

How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

{Demand 2}

Above is the demand you identified as being most important to your job. Think of a time you experienced an interruption related to this demand. What happened?

How did you react?

How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

{Demand 3}
{Demand 4}
{Demand 5}

The remaining job demand(s) you identified earlier appear above. Think of a time you experienced an interruption related to at least one of these demands. What happened?

How did you react?
How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

Aside from the specific experiences you have described above, what additional interruptions have you experienced related to your work? Describe these below.

What does “fit” mean to you?

You are almost finished! Please answer each of the demographic questions below.

What is your age?

What is your gender?

☐ Male (1)
☐ Female (2)

On average, how many hours per week do you work?

How many months have you been with your current employer?

How many months have you been in your current position?
In U.S. dollars, what is your annual income?

- Less than $10,000
- $10,000-19,999
- $20,000-29,999
- $30,000-39,999
- $40,000-49,999
- $50,000-59,999
- $60,000-69,999
- $70,000-79,999
- $80,000-89,999
- $90,000-99,999
- $100,000-109,999
- $110,000-119,999
- $120,000-129,999
- $130,000-139,999
- $140,000-149,999
- $150,000 or more

What is the highest level of education you have completed?

- Some high school
- Completed high school
- Some college
- Completed 2-year college degree (e.g., associate's degree)
- Completed 4-year college degree (e.g., B.S. or B.A. degree)
- Some graduate work
- Completed graduate degree (e.g., M.S., M.A., MBA, J.D., M.D.)

Thank you for participating! Your completion code is ${e://Field/random}. Please enter this code on the HIT page.

In this study we asked for information related to the demands associated with your job, as well as information about specific interruptions you have experienced at work. Your participation will help us to better understand how individuals experience interruptions at work.

Press the bottom arrow to make sure your data is recorded. Thank you again!
APPENDIX B: STUDY 1 MATERIALS

Study 1: Questionnaire

Introduction
Thank you for your willingness to participate in this research study!

The questionnaire you are about to complete deals with interruptions that many employees experience at work.

Please answer each question as thoroughly as possible.

Part 1
1. To get started, we’d like for you to think about the most typical responsibilities associated with your job. In the spaces below, briefly describe the three most important responsibilities associated with your job, ordering them from the MOST important to the LEAST important:

 Responsibility 1 (MOST important)
 Responsibility 2
 Responsibility 3 (LEAST important)

Part 2
With the key responsibilities of your job in mind, we’d like for you to think now about the abilities you typically draw upon to meet these responsibilities. “Abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

Below you will see each of the responsibilities associated with your job that you listed previously. In the spaces provided after each responsibility, briefly describe what abilities you typically draw upon to meet that particular responsibility.

2.1. For the responsibility listed below, briefly describe up to three abilities that you typically draw upon to meet this job responsibility. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

 Responsibility: [Responsibility 1]
 Ability 1
 Ability 2
 Ability 3

2.2. For the responsibility listed below, briefly describe up to three abilities that you typically draw upon to meet this job responsibility. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

 Responsibility: [Responsibility 2]
2.3. For the responsibility listed below, briefly describe up to three abilities that you typically draw upon to meet this job responsibility. Recall that “abilities” encompass knowledge, skills, and capabilities, as well as resources such as time, money, and assistance from others.

Responsibility: [Responsibility 3]

Ability 1
Ability 2
Ability 3

Part 3
In the course of fulfilling the typical responsibilities of your job, you may experience interruptions that hinder you from completing your work.

On the next few screens, you will see the responsibilities associated with your job that you listed previously.

For each responsibility, think about a time when an interruption occurred that hindered you from completing your work related to that particular responsibility.

3.1.1. Responsibility: [Responsibility 1]

Above is the responsibility you identified as being most important to your job. Think of a time you experienced an interruption related to this responsibility. What happened?

3.1.2. How did you react?

3.1.3. How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

3.1.4. How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

3.2.1. Responsibility: [Responsibility 2]

Above is the responsibility you identified as being second most important to your job. Think of a time you experienced an interruption related to this responsibility. What happened?

3.2.2. How did you react?
3.2.3. How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

3.2.4. How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

3.3.1. Responsibility: [Responsibility 3]

Above is the responsibility you identified as being third most important to your job. Think of a time you experienced an interruption related to this responsibility. What happened?

3.3.2. How did you react?

3.3.3. How did this experience affect your thoughts about “fit,” such as how you fit with your job, co-workers, supervisor, and/or organization?

3.3.4. How did this experience affect your satisfaction with your job, co-workers, supervisor, and/or organization?

Part 4

“Interruptions” commonly take the form of intrusions or distractions, but also occur when you take time away from work.

4.1. In thinking about time you have taken away from work, we’d like for you to recall the most recent instance in which you took time away from work for vacation or other personal reasons.

4.1.1. In the space below, briefly describe the purpose of your personal time away from work:

4.1.2. How did this time away affect your ability to fulfill the responsibilities of your job?

4.1.3. How did this time away affect your thoughts about “fit” upon returning to work, such as how you fit with your job, co-workers, supervisor, and/or organization?

4.1.4. How did this time away affect your satisfaction with your job, co-workers, supervisor, and/or organization?

4.2. We’d like for you now to recall the most recent instance in which you took time away from your typical job responsibilities for work-related purposes, such as to attend a training or work-related retreat.

4.2.1. In the space below, briefly describe the work-related purpose of your time away from your typical job responsibilities:

4.2.2. How did this time away affect your ability to fulfill the responsibilities of your job?
4.2.3. How did this time away affect your thoughts about “fit” upon returning to work, such as how you fit with your job, co-workers, supervisor, and/or organization?

4.2.4. How did this time away affect your satisfaction with your job, co-workers, supervisor, and/or organization?

4.3. What does “fit” mean to you?

Part 5
You are almost finished! Please answer each of the demographic questions below.

5.1. What is your age?

5.2. What is your gender?

☐ Male
☐ Female

5.3. On average, how many hours per week do you work?

5.4. How many months have you been with your current employer?

5.5. How many months have you been in your current position?

5.6. In U.S. dollars, what is your annual income?

☐ Less than $10,000
☐ $10,000-19,999
☐ $20,000-29,999
☐ $30,000-39,999
☐ $40,000-49,999
☐ $50,000-59,999
☐ $60,000-69,999
☐ $70,000-79,999
☐ $80,000-89,999
☐ $90,000-99,999
☐ $100,000-109,999
☐ $110,000-119,999
☐ $120,000-129,999
☐ $130,000-139,999
☐ $140,000-149,999
☐ $150,000 or more
5.7. What is the highest level of education you have completed?

- Some high school
- Completed high school
- Some college
- Completed 2-year college degree (e.g., associate's degree)
- Completed 4-year college degree (e.g., B.S. or B.A. degree)
- Some graduate work
- Completed graduate degree (e.g., M.S., M.A., MBA, J.D., M.D.)

Conclusion
Thank you for completing this survey!

In this study we asked for information related to the responsibilities associated with your job, as well as information about specific interruptions you have encountered at work. Your participation will help us to better understand how individuals experience and respond to interruptions at work.

Please press the bottom arrow to make sure your data is recorded. Thank you again!
APPENDIX C: STUDY 2A MATERIALS

Study 2a: Post-Task Questionnaire

Please answer each of the questions below, even if they seem repetitive. When the questionnaire refers to “this task,” it is referring task(s) in the set that you just completed.

What skill level did this task require?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

What skill level did you perform at in working on this task?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

How much effort did completing this task require?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6
How much effort did you exert on this task?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

What was the pace of work required to complete this task?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6

At what pace did you work on this task?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6

How many minutes did completing this task require?
- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6
How many minutes did you spend on this task?

- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6

The effort required to complete this task was:

- too little -3
- -2
- -1
- reasonable 0
- 1
- 2
- too much 3

The pace of work required to complete this task was:

- too slow -3
- -2
- -1
- reasonable 0
- 1
- 2
- too fast 3

The time available to complete this task was:

- too little -3
- -2
- -1
- reasonable 0
- 1
- 2
- too much 3
How did you feel while performing this task?
- very irritated -3
- -2
- -1
- neutral 0
- 1
- 2
- very content 3

How satisfied were you with your performance on this task?
- very dissatisfied -3
- -2
- -1
- neutral 0
- 1
- 2
- very satisfied 3

How did you feel while performing this task?
- very stressed -3
- -2
- -1
- neutral 0
- 1
- 2
- very relaxed 3

How successful were you in completing the task, relative to the goal assigned?
- less successful -3
- -2
- -1
- reasonably successful 0
- 1
- 2
- more successful 3
How satisfied were you with your performance on this task?
- very unhappy -3
- -2
- -1
- neutral 0
- 1
- 2
- very happy 3

How successful were you in completing the task, relative to the goal assigned?
- worse performance -3
- -2
- -1
- adequate performance 0
- 1
- 2
- better performance 3

How did you feel while performing this task?
- very discouraged -3
- -2
- -1
- neutral 0
- 1
- 2
- very confident 3

How successful were you in completing the task, relative to the goal assigned?
- poorer outcome -3
- -2
- -1
- adequate 0
- 1
- 2
- better outcome 3
How satisfied were you with your performance on this task?
- very disappointed -3
-2
-1
neutral 0
1
2
very pleased 3

To what extent did you feel the following while working on this task?

<table>
<thead>
<tr>
<th></th>
<th>not at all 0</th>
<th>very little 1</th>
<th>somewhat 2</th>
<th>to a great extent 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>hurried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anxious</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disappointed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overwhelmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>confident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rushed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pleased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bored</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Happy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discouraged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>irritated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pressed for time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unhappy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>satisfied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relaxed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dissatisfied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you have any additional comments on the task or your interactions with your supervisor, etc., please write these below:

Study 2a: Transcription Tasks

Instructions to participants (in Qualtrics interface):

Please transcribe the [1st, 2nd, 3rd, 4th, 5th, 6th] portion of the audio segment, "Informational Interviewing," in the space below.

Task 1: 0:00 to 0:44 (125 words, 44 seconds)
Welcome to informational interviewing. In this presentation we will walk through what an informational interview is, why do it and how to do it. An informational interview is a way for you to get insider knowledge about a career, an industry or a company that you’re interested in. As you can see informational interviews and job interviews have a lot in common. In an informational interview though the tables are turned. You are the person asking questions for your own knowledge and there’s no expectation of walking away with a job or internship. As an act of courtesy though it’s still important to do your research, dress professionally, and thank the person you’re interviewing for their time much like you would at a job interview.

Task 2: 0:46 to 1:25 (125 words, 39 seconds)
So why do an informational interview? As mentioned before you can get an inside perspective that you may or may not get at a job interview. You can get the answers to questions like what’s it like to work in this career or industry? What does this person like or not like about where they’re at? And you can use the information that they’re giving you to make your own choices about where you want to take your career. For example, if you’re debating between a career in nonprofit versus a corporate setting, an informational interview can be one way to clarify which one fits you better. These interviews can also give you confidence in interviewing because you’re not the one in the hot seat.

Task 3: 1:25 to 2:05 (124 words, 40 seconds)
You don’t have to necessarily share your skills or knowledge or what you’ve done but you’re still in that setting getting practice and you realize that this is something you can do. Informational interviews are also a great way to build your professional network for later on when you are looking for a job. When you’re thinking about who to interview, look at the choices on this slide. Think about whether you have a family member, a friend or a neighbor that has a job that you’re interested in and can tell you about it. I suggest starting with those who are closest to you first if they have a career that you’re interested in just because you already have a relationship with them.

Task 4: 2:08 to 2:54 (126 words, 46 seconds)
Ask them if they know someone who is in a career that you’re interested in because chances are someone will. Ask your professors, your roommates, and people you have worked with in the past. Another great tool to use is LinkedIn. You can find alums who were in your shoes not too long ago and ask them about how they went about their choices. So this social networking site is
focused specifically on professional connections. This is also your first online impression to the employer and it’s a tool that can help you connect with others and help build your network online. Employers usually look up candidates on LinkedIn anyway and having a profile is a standard step these days when you’re working towards a career.

Task 5: 2:55 to 3:42 (127 words, 47 seconds)
There are many ways to use this website but it’s one tool that you can use to find people to interview and find information on companies and industries. The UNC Alumni section on LinkedIn is a popular tool that students like to use. This section compiles all LinkedIn users who have listed UNC on their profile. You can find out where UNC alums live, where they work and what they do. You can even find them based on a major that’s similar to yours and then choose a few to reach out to for an interview. Before you start reaching out, it’s important to complete your own profile in just 3 easy steps. 1st create a descriptive headline related to who you are or your professional goals.

Task 6: 3:43 to 4:29 (125 words, 46 seconds)
Profiles with pictures are viewed much more than those that don’t have one so be sure to take a professional-looking photo. Write a short summary of who you are and what your goals are, and then just like you would on a resume, include your experiences, education, and activities. You can also use the LinkedIn URL to put on your resume and other social media materials. Once you have your profile set up you can begin connecting with others. Find friends and family, previous employers and classmates. As you grow your network you’ll see that you’ll continue to receive suggestions to connect with other people which can open up avenues for you to do more informational interviewing. You can also upload your contacts from email.

Study 2a: Interruption Tasks

Interruption set A
3 min: at 1:30
4 min: at 2:00

A1. There is a TED talk that I need the link for. It is called “How great leaders inspire action” by Simon Sinek. Could you find that and send it to me?

https://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action

Interruption set B
3 min: at 1:00 and 2:00
4 min: at 1:20 and 2:40

B1. Could you find out what time UNC’s Davis Library is open on Fridays?

8 am to 8 pm

B2. Can you find out what UNC’s policy is regarding what happens if it rains during the Commencement ceremony? (Just copy and paste what you find). Link:

http://commencement.unc.edu/spring/index.php
If it rains during Commencement, the Chancellor and organizers may shorten the ceremony, but it will not be relocated.

Interruption set C
3 min: at 0:36, 1:12, 1:48, and 2:24
4 min: at 0:48, 1:36, 2:24, and 3:12

 December 7/May 2

C2. I am looking for the phone number for UNC’s University Career Services. Could you get that for me? Link: https://careers.unc.edu/about-ucs/contact-us

 919-962-6507

 Unshakeable/Tribe of Mentors

 Four

Interruption set D
3 min: at 1:30
4 min: at 2:00

D1. I am looking for a couple of statistics that you should be able to find on the second page of the document linked below. (1) What percentage of Kenan-Flagler business majors in the class of 2017/2018 are international students? (2) What percentage of students have a second major or minor outside of the business school? Link: http://www.kenan-flagler.unc.edu/~media/Files/documents/UBP/BSBA%20Recruiting%20Guide%202015_2106.pdf

 (1) 8%, (2) 51%

Interruption set E
3 min: at 1:00 and 2:00
4 min: at 1:20 and 2:40
E1. I need to find out the publication years for a couple of academic journal articles. You should be able to find this information by copying and pasting the title and author information below into Google Scholar. The articles are: (1) “Banana Time” by D Roy, and (2) “On the Folly of Rewarding A while Hoping for B” by S Kerr. Link: http://scholar.google.com/

 (1) 1959, (2) 1975

E2. I’m trying to get some updated information about the GMAT exam. Could you find out the following? (1) The amount of time for the Analytical Writing Assessment, (2) the total exam time. Link: http://www.mba.com/us/the-gmat-exam/gmat-exam-format-timing.aspx

 (1) 30 minutes, (2) 3 hours 30 minutes

Interruption set F

3 min: at 0:36, 1:12, 1:48, and 2:24

4 min: at 0:48, 1:36, 2:24, and 3:12

F1. I’m looking for some information on starting salaries for college graduates. Based on the information in the document linked below (scroll down to the table), what was the mean (average) starting salary for the following majors from the class of 2014? (1) engineering, and (2) education. Link: http://time.com/money/collection-post/3829776/heres-what-the-average-grad-makes-right-out-of-college/

 (1) $64,891, (2) $34,891

F2. I’m trying to find answers to a couple questions about pursuing a PhD, which you should be able to find in the following link. (1) When are most applications for doctoral programs due? (2) How long does a doctoral program usually take to complete? Link: https://www.phdproject.org/resources/faqs/

 (1) January, (2) four to six years

F3. I need a couple of pieces of information related to applying to be a student in the business school. (1) What is the minimum GPA to apply, and (2) which English courses fulfill the prerequisite requirement? Link: http://www.kenan-flagler.unc.edu/admissions/undergraduate-business/eligibility

 (1) 2.0, (2) ENGL 105 or ENGL 105i

 (1) Harvard/Wharton, (2) 18th
APPENDIX D: STUDY 2B MATERIALS

Study 2b: Post-Task Questionnaire

Please answer each of the questions below, even if they seem repetitive. When the questionnaire refers to “this task,” it is referring only to the task you just completed (ONLY part [1,2,3,4,5] of 5).

What skill level did this task require?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

What skill level did you perform at in working on this task?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

How much effort did completing this task require?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

How much effort did you exert on this task?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6
What was the pace of work required to complete this task?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6

At what pace did you work on this task?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6

How many minutes did completing this task require?
- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6

How many minutes did you spend on this task?
- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6

Was the skill level at which you performed this task lower or higher than the skill level required to complete this task?
- lower 0
- 1
- 2
- 3
- 4
- 5
- higher 6
Was the effort you exerted on this task lower or higher than the effort required to complete this task?
- lower 0
- 1
- 2
- 3
- 4
- 5
- higher 6

Was the pace at which you worked on this task slower or faster than the pace required to complete this task?
- slower 0
- 1
- 2
- 3
- 4
- 5
- faster 6

Was the time you had available to work on this task less or more than the time necessary to complete this task?
- less 0
- 1
- 2
- 3
- 4
- 5
- more 6

The skill level required to complete this task was:
- too simple -3
- -2
- -1
- reasonable 0
- 1
- 2
- too complex 3
The effort required to complete this task was:
- too little -3
- -2
- -1
- reasonable 0
- 1
- 2
- too much 3

The pace of work required to complete this task was:
- too slow -3
- -2
- -1
- reasonable 0
- 1
- 2
- too fast 3

The time available to complete this task was:
- too little -3
- -2
- -1
- reasonable 0
- 1
- 2
- too much 3
To what degree...

<table>
<thead>
<tr>
<th></th>
<th>not at all 0</th>
<th>very little 1</th>
<th>somewhat 2</th>
<th>to a great degree 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>...was your skill level a match with the skill level required</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>to complete the task?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...was the effort you exerted a match with the effort required</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>to complete the task?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...was the pace at which you worked a match with the pace of</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>work required to complete this task?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...was the time you had available to complete this task a</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>match with the time required to complete this task?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How did you feel while performing this task?
- very irritated -3
- -2
- -1
- neutral 0
- 1
- 2
- very content 3
How satisfied were you with your performance on this task?
- very dissatisfied -3
- -2
- -1
- neutral 0
- 1
- 2
- very satisfied 3

How did you feel while performing this task?
- very stressed -3
- -2
- -1
- neutral 0
- 1
- 2
- very relaxed 3

How successful were you in completing the task, relative to the goal assigned?
- less successful -3
- -2
- -1
- reasonably successful 0
- 1
- 2
- more successful 3

How satisfied were you with your performance on this task?
- very unhappy -3
- -2
- -1
- neutral 0
- 1
- 2
- very happy 3

How successful were you in completing the task, relative to the goal assigned?
- worse performance -3
- -2
- -1
- adequate performance 0
- 1
- 2
- better performance 3
How much did you enjoy working on this task?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

To what extent did you like working on this task?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

How did you feel while performing this task?
- very discouraged -3
- -2
- -1
- neutral 0
- 1
- 2
- very confident 3

How successful were you in completing the task, relative to the goal assigned?
- poorer outcome -3
- -2
- -1
- adequate 0
- 1
- 2
- better outcome 3

How satisfied were you with your performance on this task?
- very disappointed -3
- -2
- -1
- neutral 0
- 1
- 2
- very pleased 3
How much did you dislike working on this task?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

To what extent did you feel the following while working on this task?

<table>
<thead>
<tr>
<th>Feeling</th>
<th>not at all (0)</th>
<th>very little (1)</th>
<th>somewhat (2)</th>
<th>to a great extent (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hurried</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>anxious</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>content</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>disappointed</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>excited</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>overwhelmed</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>confident</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>rushed</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>pleased</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>bored</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>happy</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>discouraged</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>irritated</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>pressed for time</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>unhappy</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>satisfied</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>stressed</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>under pressure</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>calm</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>relaxed</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>dissatisfied</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

If you have any additional comments on the task you just completed (referring ONLY to part [1, 2, 3, 4, 5] of 5), please share them below:
Study 2b: Final Questionnaire

Q15.2 Please answer each of the questions below, even if they seem repetitive.

Note that this final series of questions refers to your experience across ALL FIVE separate tasks. In other words, answer these questions taking all five parts of the transcription task together.

[You just completed a task in which you had the opportunity to earn cash incentives. In light of this,] how important to you was your performance on this task?
- Not Important
- Slightly Important
- Moderately Important
- Important
- Very Important

[You just completed a task in which you had the opportunity to earn cash incentives. In light of this,] to what extent do you think your performance on this task mattered?
- Did not matter at all
- Mattered slightly
- Mattered moderately
- Mattered a fair amount
- Mattered a great deal

[You just completed a task in which you had the opportunity to earn cash incentives. In light of this,] how critical was it for you to perform this task effectively?
- Not critical at all
- Slightly critical
- Moderately critical
- Very critical
- Extremely critical

What skill level did these tasks require, overall?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6
What skill level did you perform at in working on these tasks, overall?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

How much effort did completing these tasks require, overall?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

How much effort did you exert on these tasks, overall?
- low 0
- 1
- 2
- 3
- 4
- 5
- high 6

What was the pace of work required to complete these tasks, overall?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6

At what pace did you work on these tasks, overall?
- leisurely 0
- 1
- 2
- 3
- 4
- 5
- frantic 6
How many minutes did completing each task require, on average?
- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6

How many minutes did you spend on each task, on average?
- minutes: 0
- 1
- 2
- 3
- 4
- 5
- minutes: 6

Was the overall skill level at which you performed these tasks lower or higher than the skill level required to complete these tasks?
- lower 0
- 1
- 2
- 3
- 4
- 5
- higher 6

Was the overall effort you exerted on these tasks lower or higher than the effort required to complete these tasks?
- lower 0
- 1
- 2
- 3
- 4
- 5
- higher 6
Was the overall pace at which you worked on these tasks slower or faster than the pace required to complete these tasks?
 ☐ slower 0
 ☐ 1
 ☐ 2
 ☐ 3
 ☐ 4
 ☐ 5
 ☐ faster 6

Was the overall time you had available to work on these tasks less or more than the time necessary to complete these tasks?
 ☐ less 0
 ☐ 1
 ☐ 2
 ☐ 3
 ☐ 4
 ☐ 5
 ☐ more 6

The overall skill level required to complete these tasks was:
 ☐ too simple -3
 ☐ -2
 ☐ -1
 ☐ reasonable 0
 ☐ 1
 ☐ 2
 ☐ too complex 3

The overall effort required to complete these tasks was:
 ☐ too little -3
 ☐ -2
 ☐ -1
 ☐ reasonable 0
 ☐ 1
 ☐ 2
 ☐ too much 3
The overall pace of work required to complete these tasks was:
 - too slow -3
 - -2
 - -1
 - reasonable 0
 - 1
 - 2
 - too fast 3

The overall time available to complete these tasks was:
 - too little -3
 - -2
 - -1
 - reasonable 0
 - 1
 - 2
 - too much 3
To what degree...

<table>
<thead>
<tr>
<th></th>
<th>not at all 0</th>
<th>very little 1</th>
<th>somewhat 2</th>
<th>to a great degree 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>...was your skill level a match with the skill level required to complete these tasks, overall?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>...was the effort you exerted a match with the effort required to complete these tasks, overall?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>...was the pace at which you worked a match with the pace of work required to complete these tasks, overall?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>...was the time you had available to complete these tasks a match with the time required to complete these tasks, overall?</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
</tbody>
</table>

How did you feel while performing these tasks, overall?
○ very irritated -3
○ -2
○ -1
○ neutral 0
○ 1
○ 2
○ very content 3
How satisfied were you with your performance on these tasks, overall?
- very dissatisfied -3
- 2
- 1
- neutral 0
- 1
- 2
- very satisfied 3

How did you feel while performing these tasks, overall?
- very stressed -3
- 2
- 1
- neutral 0
- 1
- 2
- very relaxed 3

How successful were you in completing these tasks, overall, relative to the goal assigned?
- less successful -3
- 2
- 1
- reasonably successful 0
- 1
- 2
- more successful 3

How satisfied were you with your performance on these tasks, overall?
- very unhappy -3
- 2
- 1
- neutral 0
- 1
- 2
- very happy 3

How successful were you in completing these tasks, overall, relative to the goal assigned?
- worse performance -3
- 2
- 1
- adequate performance 0
- 1
- 2
- better performance 3
How much did you enjoy working on these tasks, overall?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

To what extent did you like working on these tasks, overall?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

How did you feel while performing these tasks, overall?
- very discouraged -3
- -2
- -1
- neutral 0
- 1
- 2
- very confident 3

How successful were you in completing these tasks, overall, relative to the goal assigned?
- poorer outcome -3
- -2
- -1
- adequate 0
- 1
- 2
- better outcome 3

How satisfied were you with your performance on these tasks, overall?
- very disappointed -3
- -2
- -1
- neutral 0
- 1
- 2
- very pleased 3
How much did you dislike working on these tasks, overall?
- not at all -3
- -2
- -1
- neutral 0
- 1
- 2
- a great deal 3

To what extent did you feel the following while working on these tasks, overall?

<table>
<thead>
<tr>
<th></th>
<th>not at all 0</th>
<th>very little 1</th>
<th>somewhat 2</th>
<th>to a great extent 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>hurried</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>anxious</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>content</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>disappointed</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>excited</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>overwhelmed</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>confident</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>rushed</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>pleased</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>bored</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>happy</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>discouraged</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>irritated</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>pressed for time</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>unhappy</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>satisfied</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>stressed</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>under pressure</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>calm</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>relaxed</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>dissatisfied</td>
<td>○</td>
<td>○</td>
<td></td>
<td>○</td>
</tr>
</tbody>
</table>

If you have any additional comments about your experience completing these tasks overall, please share them below:

160
Study 2b: Transcription Tasks

Instructions to participants (in Qualtrics interface):

Please copy and paste transcription [1, 2, 3, 4, 5] from your partner in the space below. You will edit the transcription in this space. Remember that “edit” means to ensure the text your partnership produces is a word-for-word match with the audio segment. You do not need to be concerned with punctuation or capitalization.

The audio passage is here:[link to corresponding audio passage]

Transcription Scripts:

<table>
<thead>
<tr>
<th>SCRIPT 1</th>
<th>CDBAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-75-25-0-100</td>
<td></td>
</tr>
</tbody>
</table>

[Part 1: 50%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “Welcome to inf interviewing. In this we will walk through what an informational interview is, why do it and how to do it. An informational interview way for you to get insider kn about a career, an industry or a that you’re interested in. As you can see informational interviews and interviews have a lot in common.”

[Part 2: 75%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “So why do an informational interview? As me before you can get an inside perspective that you may not get at a job interview. You can get answers to questions like what’s it like to work in this career industry? What does this like or not like about where they’re at? And you can the information that they’re giving you to make your choices about where you want to take your career. example, if you’re debating between a career in nonpr versus a corporate setting,”

[Part 3: 25%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “You don’t have to share your skills or knowledge or what you’ve done but you still in that setting getting practice and you realize that this is something can’
Unfortunately, the partner assigned to you was unable to complete any of transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited.

Here is the transcription from your partner; it is your job to ensure that it is properly edited:

“Welcome to informational interviewing. In this presentation we will walk through what an informational interview is, why do it and how to do it. An informational interview is a way for you to get insider knowledge about a career, an industry or a company that you’re interested in. As you can see informational interviews and job interviews have a lot in common. In an informational interview though the tables are turned. You are the person asking questions for your own knowledge and there’s no expectation of walking away with a job or internship. As an act of courtesy though it’s still important to do your research, dress professionally, and thank the person you’re interviewing for their time much like you would at a job interview.”
setting getting practice and you realize that this is something can do. Informational interviews are a great way to build your professional net for later on when you are looking for a job. When you’re thinking about to interview, look at the choices on this slide. Think about whether you have a family member, a friend neighbor that has a job that you’re interested in and tell you’’

[Part 4: 50%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:

----- “Ask them if they know someone who in a career that you’re interested in because cha are someone will. Ask your professors, your roommates, and people you worked with in the past. Another tool to use is Link. You can find alums who were in your shoes not too long ago and ask them about they went about”

[Part 5: 25%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:

----- “There are many ways to use this site but one tool that you can use to find people to interview and find information on companies and industries. The Alumni”

<table>
<thead>
<tr>
<th>SCRIPT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEBD</td>
</tr>
<tr>
<td>0-50-100-25-75</td>
</tr>
</tbody>
</table>

[Part 1: 0%]

Unfortunately, the partner assigned to you was unable to complete any of transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited.

[Part 2: 50%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:

----- “So why do an informational interview? As me before you can get an inside perspective that you may not get at a job interview. You can get answers to questions like what’s it like to work in this career industry? What does this like or not like about where they’re at? And you can the information”
Here is the transcription from your partner; it is your job to ensure that it is properly edited. ----- “You don’t have to share your skills or knowledge or what you’ve done but you still in that setting getting practice and you realize that this is something can do. Informational interviews are a great way to build your professional net for later on when you are looking for a job. When you’re thinking about to interview, look at the choices on this slide. Think about whether you have a family member, a friend neighbor that has a job that you’re interested in and tell you about it. I suggest starting with those closest to you first if they have a career that you interested in just because you already have a relations with them”

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “Ask them if they know someone who in a career that you’re interested in because cha are someone will. Ask your professors, your roommates, and people you worked with”

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “There are many ways to use this site but one tool that you can use to find people to interview and find information on companies and industries. The Alumni section on LinkedIn is a popular tool that students use. This section compiles all LinkedIn users who have listed UNC on their profile. You can find out where UNC live, where they work and what do. You can even find them based on a major similar to yours and then choose a few reach out to for an”

<table>
<thead>
<tr>
<th>SCRIPT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECDA</td>
</tr>
<tr>
<td>25-100-50-75-0</td>
</tr>
</tbody>
</table>

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner: ----- “Welcome to inf interviewing. In this we will walk through what an informational interview is, why do it and how to do it. An informational interview way for”

Here is the transcription from your partner; it is your job to ensure that it is properly edited. ----- “So why do an informational interview? As me before you can get an inside perspective that you may not get at a job interview. You can get answers to questions like what’s it like to work in this career.
industry? What does this like or not about where they’re at? And you can the information that
they’re giving you to make your choices about where you want to take your career. example, if
you’re debating between a career in nonpr versus a corporate setting, an informational interview can
be one way to which one fits you better. These interviews can also give confidence in interviewing
because you’re not the one in the seat.”

[Part 3: 50%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this
audio segment. It is very important that this task is completed, so we will need you to complete the
transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:
----- “You don’t have to share your skills or knowledge or what you’ve done but you still in that
setting getting practice and you realize that this is something can do. Informational interviews are a
great way to build your professional net for later on when you are looking for a job. When you’re
thinking about to interview, look”

[Part 4: 75%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this
audio segment. It is very important that this task is completed, so we will need you to complete the
transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:
----- “Ask them if they know someone who in a career that you’re interested in because cha are
someone will. Ask your professors, your roommates, and people you worked with in the
past. Another tool to use is Link. You can find alums who were in your shoes not too long ago and
ask them about they went about their choices. So this networking site is focused specifically on
professional connections. This is your first online impression to the employer and a tool that can
help you connect”

[Part 5: 0%]:

Unfortunately, the partner assigned to you was unable to complete any of transcription for this audio
segment. It is very important that this task is completed, so we will need you to complete the
transcription in addition to ensuring it is properly edited.

<table>
<thead>
<tr>
<th>SCRIPT 5</th>
<th>DBAEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-25-0-100-50</td>
<td></td>
</tr>
</tbody>
</table>

[Part 1: 75%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this
audio segment. It is very important that this task is completed, so we will need you to complete the
transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:
----- “Welcome to inf interviewing. In this we will walk through what an informational interview is,
why do it and how to do it. An informational interview way for you to get insider kn about a career,
an industry or a that you’re interested in. As you can see informational interviews and interviews
have a lot in common. In an informational interview the tables are turned. You, the person asking questions for your own knowledge and no expectation of walking away with a job or”

[Part 2: 25%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:

----- “So why do an informational interview? As me before you can get an inside perspective that you may not get at a job interview. You can get answers”

[Part 3: 0%]

Unfortunately, the partner assigned to you was unable to complete any of transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited.

[Passcode 4:] 4s2b

[Part 4: 100%]

Here is the transcription from your partner; it is your job to ensure that it is properly edited. ----“Ask them if they know someone who in a career that you’re interested in because cha are someone will. Ask your professors, your roommates, and people you worked with in the past. Another tool to use is Link. You can find alums who were in your shoes not too long ago and ask them about they went about their choices. So this networking site is focused specifically on professional connections. This is your first online impression to the employer and a tool that can help you connect with others and help build your network online. Employers usually l up candidates on LinkedIn and having a profile is a standard step these when you’re working towards a career.”

[Part 5: 50%]

Unfortunately, the partner assigned to you was unable to fully complete the transcription for this audio segment. It is very important that this task is completed, so we will need you to complete the transcription in addition to ensuring it is properly edited. Here is the transcription from your partner:

----- “here are many ways to use this site but one tool that you can use to find people to interview and find information on companies and industries. The Alumni section on LinkedIn is a popular tool that students use. This section compiles all LinkedIn users who have listed UNC on their profile. You can find out where UNC”
REFERENCES

168

