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Abstract

This paper describes an architecture to support opportunistic collaboration and an implementation of
it designed for collaboration between students and instructors in computer programming courses. The
implementation is scalable and interoperates with existing collaboration tools where possible, and can be
easily extended to support other collaboration scenarios. This paper extends it to support online programming
environments and an IoT system to demonstrate that the number of reusable components of the original
system is proportional to the similarity of the new system.

I. Introduction

This work builds on the trend of looser notions
of collaboration and looser work coupling in
collaborative systems. Some of the first col-
laborative systems were designed as what you
see is what I see (WYSIWIS) systems - all col-
laborators saw the same screen. This has the
advantage that collaborators are always aware
of each others’ state, but it is inflexible and pro-
vides no benefits that go "beyond being there" [1]
- collaboration could be at least as effectively re-
produced if two programmers were collocated
and working side-by-side.

This motivated the next generation of collab-
oration, mixed-focus collaboration, which has col-
laborators switching between individual work
and pair or group work [2] [3]. It assumes
that users are working on the same artifact, but
allows for work on different aspects of it. It
requires awareness mechanisms since when users
are working on different aspects of the shared
artifact they need to be caught up on what
others have done prior to collaborating.

A specific type of mixed-focus collabora-
tion is opportunistic mixed-focus collaboration,
which has the switch from individual work to
group work triggered by an event (such as two
users simultaneously editing interdependent

sections of code) rather than being planned.
Still more flexible is mixed-activity collabora-

tion, which allows users to work on different
artifacts [4].

Many tools exist that support WYSIWIS,
mixed-focus collaboration and opportunistic
mixed-focus collaboration. This paper de-
scribes an architecture to support opportunistic
mixed-activity collaboration and an implemen-
taiton of it designed to aid in the instruction of
computer programming courses that interop-
erates with some of these. This paper further
generalizes collaboration and considers scenar-
ios outside of the context of programming and
outside of human-to-human interaction that
the architecture supports.

II. Driving Problem

The motivating problem for the architecture
and implementation presented is that of in-
structors providing help to students in pro-
gramming courses where the students work in
the IDE Eclipse. The work flow correspond-
ing to this problem is shown in figure 1. The
students interact with the programming envi-
ronment (Eclipse) through their programming
activity. Sensors collect information both about
the programming environment (e.g. the con-
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Figure 1: Driving Problem Work Flow

tents of the code editor) and the students (e.g.
how much difficulty they are experiencing).
The sensors relay this information to the in-
structors. Based on the information they re-
ceive, instructors can choose to collaborate with
students.

II.i. Related Problems

The work flow in the driving problem resem-
bles many others. Most obviously, the choice
of programming environment does not affect
the work flow. Any programming environment
could be substituted for Eclipse in figure 1 and
the diagram would remain the same.

A less obvious mutation is shown in figure
2. Here the students have been replaced by
walkers (i.e. people who walk, and are ostensi-
bly aiming to walk more). The programming
environment is replaced with a fitness tracker,
which the walkers interact with through their
activity. The sensor records how many steps
have been taken and reports this back to the
walkers. In addition this information is re-
layed to an anomaly detector that alerts both
the walkers and a group of observers when
the walkers’ activity level is low. This can be
viewed as an opportunistic collaboration trig-
ger, where the initiated "work coupling" is the
observers offering encouragement to the walk-
ers to return them to the "correct" state - one
with higher levels of activity.

This work flow exhibits features that are lack-
ing in the work flow given for the driving prob-
lem (figure 1) that could be useful if translated.

Figure 2: Fitness Tracker Work Flow

Figure 3: Networked Loops in the Fitness Tracking Ex-
ample

Note that the walkers are included in the
feedback loop; they are notified of their num-
ber of steps and detected anomalies. Perhaps
if students in programming courses received
information about their programming activity
(e.g. how much time they spend programming)
they would be encouraged to lead a healthier
programming life.

Another important feature of the fitness
tracker work flow is that the observers can
be other walkers. This introduces the notion of
networked loops: the walkers can exist in their
own loops while serving as observers to other
walkers’ loops. This is shown in figure 3. Two
walkers being aware of each others’ activity is
a type of work coupling and can serve to drive
both towards the correct state. This idea has
an obvious extension to the driving problem.
Making students in a class aware of each others’
programming activity can drive them towards
the "correct" state - one where they complete
their work on time and correctly.

A final example of a related work flow is
shown in figure 4. This example is unique be-
cause the actor is non-human; it is an HVAC
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Figure 4: HVAC Collaboration Loop

unit. Despite this, the collaboration work flow
is roughly the same, which demonstrates the
generality of this type of interaction. The
HVAC affects a subject, the room or building,
by its action of heating or cooling. Sensors de-
tect both the state of the room - its temperature
- and the state of the HVAC Unit - in this ex-
ample through monitoring the noise it makes.
Feedback goes both back to the unit, by means
of telling it whether it has made the room too
hot or too cold, and to a human observer. The
trigger for opportunistic collaboration is a no-
tification that the unit is faulty (this would be
triggered if the unit were making a lot of noise,
for example). Upon receiving this notice, a hu-
man observer joins the loop to inspect the unit
and repair it if it is broken.

III. Architecture and

Implementation Goals

These examples indicate several properties the
architecture and implementation should have.

They should be reusable in other scenarios to
the extent that the two are similar, which will
be referred to as proportional reuse. The archi-
tecture describes a collaborative system, and
it should be modular in the sense that other
collaborative systems can use the relevant com-
ponents of it without much or any modifica-
tion. Similarly, an opportunistic collaboration
application should be able to use the collabo-
ration tools from the implementation as well
as the opportunistic collaborative tools. Most
specifically, a collaboration tool designed to be
used for programming should be able to reuse
almost all components of the implementation.
In general, the more similar the two systems,

the larger the number of shared components
between them. Additionally, the implementa-
tion should be easily extendable so that it can
be modified to meet the needs of other similar
problems (an example would be collaborative
programming in a work environment rather
than an educational one). So alternatively, the
more similar the two applications, the fewer
the number of modifications needed to morph
the implementation to the needs of the new
scenario.

In the same way that parts of the implemen-
tation should be reusable in scenarios other
than the driving problem, it should also reuse
components from other systems. For exam-
ple, it is an instance of a collaborative system,
and many tools exist that facilitate collabora-
tion (e.g. email, screen sharing and instant
messaging clients). It should interoperate with
these as much as possible. Interoperability al-
lows for separation of concerns. For example,
plenty of software exists specifically designed
to tackle the challenging problem of support-
ing communication between a large number of
clients. Rather than solving this and other dif-
ficult problems, it is better to leverage existing
technology.

The final goal is scalability. The implemen-
tation should scale to allow anyone on the in-
ternet to collaborate with anyone else on the
internet. This is a powerful way to satisfy the
"beyond being there" requirement. Internet
communities such as Stack Overflow dedicated
to helping their members solve programming
problems have been enormously successful. In
the same way, anyone who wants to act as an
observer of students’ loops should be able to
(provided the student allows this - privacy and
security will be discussed later).

This goal is also impactful for related sce-
narios. Imagine an environmental agency sets
up IoT devices in streams around the country
to gather data on water quality. Eventually
these devices will require a change of batteries.
Having agency employees service each device
is not a scalable solution. Rather, using a dif-
ferent implementation of the architecture that
reuses components of the implementation for
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Figure 5: A Dynamic Hybrid Loop, as described in [4]

the driving problem, battery information from
these devices could be shared with an online
community, and members living near the de-
vices could replace their batteries when they
see that they are low.

Note that this type of scalability carries as a
necessary sub-goal technical considerations for
scalability, such as a robust server that can han-
dle a large number of connections. This goal is
easily met if the implementation interoperates
with scalable technologies. For example, if the
implementation needs to support instant mes-
saging, the goal of scalability would require
that the chat system be able to support a large
number of clients. If the implementation inter-
operates with an existing, scalable system, it
meets this goal and contributes to the goal of
interoperability.

IV. Starting Points

IV.i. Work Flow Abstraction

Before attempting to construct an architecture
that supports the driving problem and meets
the goals from section III, it is helpful to be
more precise about the abstract work flow the
architecture is supposed to support. Fortu-
nately such a work flow, which encompasses
all the examples considered, has already been
described by Dewan in [4]. This work flow,
called a Dynamic Hybrid Loop, is shown in fig-
ure 5.

The dynamic hybrid loop is an extension of
the Closed Loop System prevalent in control the-
ory. Closed loops consist of an actor, a subject
and a sensor. The actor acts on the subject and
the sensor measures the state of the subject.

Based on the information from the sensor the
actor changes its behavior to drive the subject
closer to some desired state. A typical exam-
ple is a controllable oven. A heating unit (the
actor) increases the temperature of the oven
(the subject). A thermometer (the sensor) mea-
sures the temperature and tells the heating unit
either to continue to heat the oven if the tem-
perature reported by the sensor is less than the
desired temperature or cease heating it if the
temperature exceeds the desired temperature.

The dynamic hybrid loop makes two modifi-
cations to this model. First, it is dynamic in the
sense that in addition to static actors it has poten-
tial actors. These are actors that are not initially
a part of the loop, but can join the loop based
on events received from an anomaly detector.
The HVAC repair person as described in sec-
tion II.i is an example. In the driving problem
potential actors in one loop can be static actors
in another. For example, students are static ac-
tors in their own loops, but since they have the
ability to join a peer’s loop, they are a potential
actor in their peer’s. The second change the
dynamic hybrid loop makes to the closed loop
is that it allows actors - both static and poten-
tial - to be either humans or machines. In this
sense it is a hybrid loop. In typical closed loops,
the actor is a machine. As noted in section II.i,
the architecture should support these hybrid
scenarios, and the abstraction of a dynamic
hybrid loop in general.

IV.ii. Eclipse Helper

Systems supporting scenarios similar to the
driving problem already exist; the one most
closely related to the goal system is Eclipse
Helper, which is described by Carter and De-
wan in [5]. Eclipse Helper is a collaboration
tool designed to allow instructors of computer
programming courses to more efficiently pro-
vide help to struggling students. Students
install an Eclipse Plugin that records events
within Eclipse such as inserts, deletes and file
scrolling and uses these to predict if they are
in difficulty. If they are, instructors are noti-
fied and can view their workspaces, which are
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Figure 6: Eclipse Helper Architecture. See [5] for more
information.

uploaded by the plugin to a server the instruc-
tors can access. Once the instructors determine
what the issue is, they can email the students
offering help. This architecture is shown in
figure 6.

Eclipse Helper does not satisfy the goal of
proportional reuse. It was designed to specifi-
cally support its driving problem, and as such,
does not do a good job of supporting other
similar scenarios. It provides no mechanism by
which it can be extended, besides direct modi-
fication of its source code. So, for example, if a
university had an Eclipse Plugin that automati-
cally graded students’ assignments and wanted
to link this to Eclipse Helper so that instruc-
tors could provide help to students who had
a low score on the assignment, this would not
be possible without creating their own special
version of Eclipse Helper. In addition to not
being extensible, Eclipse Helper is not modular.
Components of Eclipse Helper that support
general collaboration are not reusable in other
scenarios that need to support general collab-
oration. Aside from interoperating with the
Eclipse Plugin Fluorite (Fluorite is described
in [6]) to gather events from Eclipse and us-
ing email to facilitate communications, Eclipse
Helper uses custom solutions for all other prob-
lems. Its server is custom-made, which carries
implications for the goal of scalabilitly. Not
only could the Eclipse Helper server likely not
handle a large number of clients, but the archi-
tecture was not even designed with scalability
in mind; it was designed for use by a single
instructor individually assisting any student in
difficulty.

Eclipse Helper is a solution for the driving

Figure 7: How Eclipse Helper handles difficulty predic-
tion.

problem, but it does not satisfy the goals from
section III. This paper presents an architecture
that does satisfy these goals as a series of mod-
ifications to the Eclipse Helper design, each
bringing it closer to realizing them.

V. Morphing Eclipse Helper Into

Goal System

V.i. External Processing of Sensor
Data

An obvious obstacle to Eclipse Helper meeting
the system goals is its tight coupling to Eclipse.
For example, if one wished to extend Eclipse
Helper to support an online browser, such as
Ideone, all difficulty prediction logic would
need to be reproduced, as it all happens within
the Eclipse Helper Eclipse Plugin. The way
difficulty prediction is done is shown in figure
7.

A more modular way to handle difficulty pre-
diction is to break the difficulty predictor mod-
ule into its two logical components: the event
sensor and the difficulty predictor. The diffi-
culty predictor can then be moved to the server
because nothing it does is Eclipse-specific, so
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Figure 8: A more modular way to handle difficulty pre-
diction.

long as it is modified to respond to virtual
events rather than physical ones. The event
sensor, after converting the physical events it
records into virtual ones, sends them to the
server, which contains the logic for using these
events for difficulty prediction. This removes
the need for the logic of the difficulty predictor
to be reproduced in every environment where
it can be used. Each environment should col-
lect the events needed by the difficulty pre-
dictor, convert them to virtual events, and
send them to the server for processing, which
is where the difficulty prediction takes place.
This scheme is shown in figure 8.

This is a general principle followed by the ar-
chitecture: specific environments (e.g. Eclipse)
should only perform operations that are spe-
cific to that environment (e.g. collecting phys-
ical events). Any function that can be shared
across multiple environments (e.g. difficulty
prediction) should be performed on the server
to avoid duplicated logic. This implies that
only simple events should be sent from the en-
vironment to the server, which is an important
design principle for a different reason: it allows
events to be used in ways other than originally
intended, without the need to change anything
on the environment side. For example, the
events from the event sensor used in difficulty
prediction could also be used as a rough metric

of how much activity is occurring, provided
the server is extensible.

V.ii. Decoupling Sensor Processing
from the Server

An extensible server means the processing of
sensor data happens in a process outside of the
server itself. This is necessary for two reasons.
As noted in section V.i, if all sensor processing
happened in the server code itself, processing
sensor data in a new way would require modi-
fying the server’s source code. In addition to
using existing sensor data in new ways, the
server also needs to be extensible so that when
new sensors are added, the server can be up-
dated to handle the data being sent by them.

A design pattern that meets this need is the
message bus, as described in [7]. A message bus
is a relay through which independent applica-
tions can communicate with each other. The
specific type of message bus useful here is the
message bus with content-based publish/subscribe.
Message bus clients tell the message bus what
messages they are interested in receiving and
when the message bus receives a message from
a sensor, it forwards it to all clients who have
subscribed to messages of the message’s type.
An example is shown in figure 9.

Messages can come either from sensors or
from other message bus clients. Message bus
clients sending messages to each other through
the message bus will be referred to as client
piping. This allows message bus clients to take
advantage of each others’ processing. An ex-
ample is shown in figure 10. Client piping
allows message bus clients to be highly mod-
ular. The difficulty predictor, though it needs
some way to communicate its predictions to
the outside world, does not have to implement
this functionality. It can count on another spe-
cialized message bus client, such as the notifier,
to do this on its behalf. This allows for com-
mon functionality to be reused across clients.
Many conceivable message bus clients need
to communicate processed information to the
outside world. Rather than implementing this
functionality in each one, they can rely on a
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Figure 9: A message bus with content-based publish/subscribe. In this example the message bus clients tell the message
bus what messages they are interested in receiving by sending the message bus a regular expression (the red
arrows). When a message arrives (blue arrow), each entry in its tags array is checked against the regular
expression of each client. If there is a match, the message is forwarded to the client (blue arrow).

specialized client to have this functionality.

V.iii. Decoupling Sensors From Mas-
ter Plugin

For the same reasons that processing of sensor
data should be decoupled from the server (i.e.
to allow for extensibility), sensors themselves
should be decoupled from the master plugin -
the component in the students’ environment
with a connection to the message bus. Decou-
pling the sensors from the master plugin and
providing a way for new sensors to be added to
the system allows users to tweak the system to
their custom needs by adding the appropriate
sensors. Returning to the example in section
IV.ii, suppose a university has a plugin that au-
tomatically grades students’ assignments. With
sensors decoupled from the master plugin they
can connect this plugin to the master plugin
and have it send grading events to the message
bus.

V.iv. Identifying Universal Message
Bus Clients

Although the architecture aims for flexibility
and is designed to allow users to build custom
solutions to their specific problems by adding

Figure 10: An example of client piping. In this example
a delete event is sent from an event sensor
to the message bus. Its tags include "Dele-
teEvent" and "Edit". The difficulty predictor
message bus client has subscribed to at least
one of these message types, so the message is
forwarded to it. Upon receiving the message,
it determines that the student the message
came from is in difficulty. It then sends a
message to the message bus with the tags
"Notify" and "Publish", along with a mes-
sage describing the situation. This message
is forwarded to any client interested in such
messages. In this example, there is just one,
the Notifier client, which does something like
publish the message to a publicly viewable
place.
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sensors and message bus clients, there are gen-
eral message bus clients that are useful to al-
most all work flows.

The first of these is concerned with com-
municating the instantaneous state of actors to
observers, which may themselves be actors in
their own loops. An example of where this is
useful is the fitness tracker application from
section II.i. Here the instantaneous state of
the actors (how many steps they have taken) is
communicated to other actors (walkers) and ob-
servers (coaches, etc.). Supporting this requires
a message bus client capable of disseminating
information to all actors and observers in a
scalable way. The client that handles this task
is the notifier client.

A second universal message bus client is
the aggregator. It collects information from all
actors in the network and condenses it. An
example that demonstrates the particular use-
fulness of the notifier and aggregator in the
driving problem is that of having an aggrega-
tor that records how many students in a class
have begun work on an assignment. Through
client piping to the notifier client, this infor-
mation can be shared with all students in the
class. In the same way that being aware of their
friends’ fitness activity can encourage people to
be more active, being aware of their peers’ pro-
gramming activity could encourage students
to begin assignments early.

In addition to having a way to communicate
the instantaneous state of actors, there is also
a need to be able to communicate their histori-
cal state. In the driving problem, the historical
state of students would include their current
workspace as well as its state throughout time.
The message bus client that allows observers
to view historical state is called the cloud store
because it needs to be a scalable file repository
that is accessible from any computer and ide-
ally most internet-connected devices; for exam-
ple, smart phones. Historical state is necessary
because prior to collaborating with actors, ob-
servers needs to know their current context.
This requires knowing both the current state
of the actors and their historical state. For ex-
ample, it may be difficult to figure out how

Figure 11: Coupling instantaneous and historical state.
An event from a sensor is forwarded to the
aggregator. The aggregator decides it needs
to publish a message through the notifier, but
it first requests a link to the associated histori-
cal state from the cloud store. After receiving
this link, it publishes it along with its original
message through the notifier. In the driving
problem this may happen if the difficulty de-
tector client - here replacing the aggregator -
detects that a student is in difficulty. It may
request a link to the student’s workspace his-
tory and then publish a notification with this
link and the notification of difficulty through
the notifier. Then interested observers can
view the student’s workspace (along with its
history) to decide if they are able to offer as-
sistance.

students broke their code just from looking at
their current workspaces. Being able to navi-
gate through recent changes to the workspaces
makes this an easier task.

In addition to the notifier and cloud store
being universal message bus clients, their inter-
action is also universal. An example is shown
in figure 11.

V.v. State of the Art Collaboration
and Beyond: Lightweight, In-Place and
Artifact-Based

The architecture now satisfies the goals as far
as concerns everything except how explicit col-
laboration takes place between an observer and
an actor; i.e. how both perform work on the
same artifact simultaneously. In Eclipse Helper
this happens through email, which is problem-
atic for several reasons. It requires a student to
leave the programming environment to receive
help. It feels inappropriate to send an email

8



for a brief message such as: "concatenate two
strings with a ’+’ rather than a ’,’". And fi-
nally it has been shown that communication is
far more cumbersome when the involved par-
ties are unable to point to shared artifacts to
explain what they are referring to [3]. The im-
plementation should have, and the architecture
should describe, a communications system that
does not require actors to leave their environ-
ment to receive assistance from observers, al-
lows light-weight communication (e.g. instant
messaging), and provides a way to perform
shared editing. Such an architecture and im-
plementation, with additional features as well,
is described in ??. A further qualification on
this last point is that the shared editing must
be receiver-initiated. This makes the collabora-
tion process more seamless because instructors
can immediately begin helping students when
desired. If instructors need to request that stu-
dents initiate a shared editing session, students
may fumble with setting one up, and in addi-
tion to helping to resolve the original problem,
instructors may need to help them solve the
problem of how to begin the session.

V.vi. Complete Architecture

This concludes Eclipse Helper’s transforma-
tion. To summarize, the following changes
have been made: external processing of sensor
data, decoupling of sensor processing from the
server, decoupling of sensors from the master
plugin, identification of universal message bus
clients, and addition of state-of-the-art com-
munication tools. The complete architecture is
shown in figure 12.

While this architecture contributes to achiev-
ing the goal of proportional reuse, it makes no
contribution as far as concerns interoperabil-
ity and scalability. These are implementation
goals.

VI. Implementation

The server side (the message bus and universal
clients) is general - nothing about it is tied to
the driving problem of programming collabora-

tion; it is equally usable in other opportunistic
collaboration scenarios. The client side (the
master plugin and sensors) is implemented in
Eclipse to support the driving problem. How-
ever, other client implementations that support
different scenarios are given in section VII.

VI.i. Sensor Implementation

In Eclipse the master plugin is implemented
as an Eclipse plugin. It interoperates with the
Eclipse plugin framework to support extensible
sensors. It exposes an extension point (see
[9] for more information about Eclipse and
plugins) that sensors can target. On startup, it
queries the extension registry maintained by
Eclipse to obtain a list of all declared sensors,
which it subsequently initializes. Additionally,
the master plugin exposes a public method
that can be called by sensor plugins to send
messages to the message bus. The details of
this communication are covered in section VI.iv.
A diagram of this implementation is shown in
figure 13.

To add a new sensor, a user writes an Eclipse
plugin that targets the extension point declared
by the master plugin and calls the master plu-
gin’s sendMessage method when the sensor
wishes to send information to the message bus.

Several sensors were implemented to sup-
port the driving problem. These include:

• Editor Contents Collector
• Console Contents Collector
• Time Tracker
• Self-Reported Difficulty Sensor

These are fairly self-explanatory. The Editor
Contents Collector listens for changes to any
document in the workspace and sends these
changes to the message bus. The console con-
tents collector does the same except for the
console rather than for the editor. Any time a
program is run within Eclipse and outputs to
the console, the output is sent to the message
bus (similarly for any compilation errors that
are written to the console). The time tracker
logs how much time students actively spend
in Eclipse. If no activity is detected (activity is
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Figure 12: Complete architecture of the goal system.

Figure 13: Sensor implementation via Eclipse plugins.

Figure 14: Self-Reported Difficulty Sensor UI.

detected through interoperating with Fluorite,
much like Eclipse Helper) for a certain period
of time, the "session" is ended and a message
indicating the start time, end time and length
of the session is sent to the message bus. A new
session begins when activity is again detected.
The self-reported difficulty sensor provides a
UI to students for reporting how much diffi-
culty they are experiencing on a scale of 1-5.
When they change their level of difficulty a
message is sent to the message bus. This sen-
sor also provides a text box that students can
populate with a help query to explicitly request
help. Any time they click "Request Help" on a
button below the query form, their request is
sent to the message bus. This UI is shown in
figure 14.
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VI.ii. Message Bus Implementation

This section describes the implementation of a
light-weight message bus with content-based
publish/subscribe. A custom solution is pre-
sented rather than interoperating with an ex-
isting implementation for reasons discussed
below. First, the message bus also acts as a
starter. When it is initialized, it reads a file that
contains a command describing how to start
each message bus client (to add a new message
bus client append a line to this file) and creates
a process for each client and attaches a writer
to its stdin and a reader to its stdout. This
is how the message bus communicates with
clients and how clients communicate with the
message bus. Each message begins with an
integer giving the number of characters in the
following message - this is to avoid the use of
delimiters that may occur within the message
itself - followed by the message. Message bus
to client communication only forwards mes-
sages. Client to message bus communication
can either be to forward a message to other
clients (client piping), to subscribe to specific
types of messages (which is done by sending
a regular expression that will match one of
the tags of messages the client is interested
in receiving), or to write to the message bus’s
output. To declare what type of message the
client is sending to the message bus it prefaces
the message with one of three starting strings:
"<msg>", "<tags>" or "<output>". The imple-
mentation includes libraries for java, node and
python that implement this protocol so writing
clients in any of these languages is especially
easy. The protocol is simple enough that writ-
ing a custom client in any language should be
simple. This is one of the benefits of a custom
message bus implementation: it allows users
to write clients in any language, as every lan-
guage has support for standard I/O, whereas
more complicated protocols, such as sockets,
may not have uniform implementations in all
languages. Similarly, users’ familiarity with
standard I/O lowers the barrier to creating
message bus clients. A diagram illustrating
this implementation is given in figure 15.

VI.iii. Human Communication Imple-
mentation

To implement the architecture design of
lightweight, in-place and artifact-based collab-
oration, as well as to satisfy the goals of scal-
ability and interoperability, the implementa-
tion interoperates with the Eclipse Communi-
cations Framework (ECF) and the Extensible
Message Passing Protocol (XMPP). ECF is a
suite of communications tools for Eclipse. For
more about working with ECF see [10]. It pro-
vides instant messaging and shared editing,
though not receiver-initiated shared editing,
which is a new concept and other collabora-
tion tools that offer shared editing do not offer
receiver-initiated shared editing either, presum-
ably for privacy and security reasons. XMPP
is an extensible messaging protocol with "soft-
ware for every platform and libraries for ev-
ery language" [11]. XMPP is also one of the
main protocols supported by ECF. Additionally
it claims to be ideal for IoT applications [11],
which will be discussed in section VII.ii. Set-
ting up the communications system involves
running an XMPP server - of which many im-
plementations exist; a popular open source ver-
sion is Openfire - and creating connections to
the server on the actor’s and observer’s end.
The actor’s connection is established through
a modified (to allow for receiver-initiated shar-
ing) version of ECF and the observer’s end
can either be through ECF (if the instructor
is using Eclipse) or through any number of
XMPP clients. Many client implementations ex-
ist, both for desktop and mobile devices. One
popular desktop implementation is Spark. This
is shown in figure 16.

As specified in the architecture, this imple-
mentation allows for students to communi-
cate within the programming environment and
supports both instant messaging and receiver-
initiated sharing. Further, both ECF and XMPP
have demonstrated their ability to support
internet-scale loads.
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Figure 15: Message bus with content-based publish/subscribe implementation.

Figure 16: Human-to-human Communication with XMPP and ECF.
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VI.iv. Master Plugin to Message Bus
Communication

In addition to supporting communication
for explicit collaboration, the implementation
needs to provide a way for sensor data to be
sent from the master plugin to the message bus.
This can also be achieved using XMPP. Thanks
to the communications setup described in sec-
tion VI.iii, there is already an XMPP server
running. By creating an XMPP connection in
the master plugin that can be accessed by sen-
sors through the master’s exposed method for
sending messages to the message bus and on
the message bus, sensors can send messages
to the message bus. XMPP has client libraries
in many languages, so this poses no difficulty.
This satisfies both the interoperability goal as
well as the scalability goal. As already noted,
XMPP servers are designed to handle a large
number of clients and high traffic among them.
This implementation has the added benefit that
it only requires the running of a single server
for both human-to-human communication and
master to message bus communication. A dia-
gram of this implementaiton is shown in figure
17.

VI.v. Cloud Store with History Imple-
mentation

The cloud store client needs to be a file repos-
itory that stores the history of each file and
has a way to easily present both the file and
its history to observers. Ideally it is accessible
from a number of devices. Google Drive per-
fectly fits this description, and in addition is
easy to interoperate with. Google Drive has a
public API that allows for the programmatic
creation and editing of files, specifically Google
Docs. Google Docs internally store a list of all
revisions made to them, so by simply modi-
fying the Google Doc, the history of the file
is automatically stored. This history can be
viewed within the Google Doc itself or in more
detailed ways through third-party extensions
such as DraftBack. Implementing the cloud
store is as easy as interoperating with Google

Drive, which is simple thanks to its API and
client libraries. A diagram is shown in figure
18.

Sharing files through Google Drive is scal-
able and also offers security and privacy, which
has been shown to be an important feature in
collaborative systems ([5]). On the students’
side, there is an option within the Editor Con-
tents Collector plugin to set the privacy of the
files that are uploaded to Google Drive.

VI.vi. Notifier Implementation

The notifier client needs to be able to dissem-
inate information to a large number of ob-
servers and ideally in a medium that can be
accessed from a variety of devices. Facebook
provides a perfect solution. The timeline con-
cept is ideal for this type of communication,
it is scalable, offers privacy and security, is
viewable on many platforms and has a well-
documented and easy to use API. The notifier
client receives messages from the message bus
- either text or images - and posts them to the
wall of a Facebook page that is set up on the
first run of the client. This Facebook page is
viewable to all observers.

Both this implementation and the Cloud
Drive implementation support the coupling
described in section V.iv; a post can be made
to the Facebook wall containing a link to the
workspace folder in Google Drive for a specific
student.

VI.vii. Complete Implementation

This completes the implementation of the ar-
chitecture. It includes implementations for
sensors and the master plugin, the message
bus, human-to-human communication, mas-
ter plugin-to-message bus communication and
two universal clients. As noted in the discus-
sion of the architecture, the server side - the
message bus along with XMPP software - is
reusable among all opportunistic collaboration
scenarios. This implementation is shown in
figure 19.

The Eclipse implementation should only con-
tain components that are specific to Eclipse,
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Figure 17: Master plugin to message bus implementation using XMPP and the XMPP server for human-to-human
communication.

Figure 18: Cloud Drive Implementation by Google Drive.

Figure 19: Complete server side implementation. Message bus + XMPP.
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and will necessarily have different implemen-
tations in different environments (e.g. the way
in which the editor contents are collected is
necessarily an environment-specific implemen-
tation). This implementation is shown in figure
20. It includes the Console Listener, Editor Lis-
tener, Time Tracker and Difficulty Reporter, as
discussed in section VI.i.

VII. Implementations for

Different Scenarios

To demonstrate the flexibility of the architec-
ture and implementation given, the following
sections present implementations that support
opportunistic collaborations scenarios that dif-
fer from the driving problem. As already noted,
the server side (XMPP server, message bus and
message bus clients) remains unchanged. Cre-
ating a new implementation, in both examples
given here and most conceivable ones, amounts
to creating an XMPP connection in the client
environment, exposing a way for sensors to
send messages through this connection, and
writing sensors.

VII.i. Online IDEs

The implementation presented in this section
also addresses the driving problem, except it is
for a Chrome extension to support online IDEs,
rather than for an Eclipse Plugin to support
Eclipse development. The extension creates an
XMPP connection using the javascript library
Strophe. It collects editor contents by scraping
the DOM and sends them to the server using
the same XMPP messages that the Eclipse im-
plementation uses. Without changing anything
on the server side, the file history is stored in
a Google Doc in the same manner it is in the
Eclipse implementation.

VII.ii. Microcontrollers

As discussed previously, this architecture is es-
pecially useful in IoT applications. As such,
this section gives an implementation for the

Raspberry Pi. The server’s message bus is du-
plicated on the Pi to create an XMPP connec-
tion and to allow for extensible sensors, which
are the message bus clients. The microcon-
troller has a button programmed to append
a line to a Google doc each time it is pressed
to demonstrate that with this implementation
data can be collected from a physical environ-
ment and published to many observers. Addi-
tionally it has an LED that can be controlled
by incoming XMPP messages to demonstrate
that the physical environment can be affected
by remote observers.

VIII. Evaluation

VIII.i. Proportional Reuse

To properly evaluate how well the architecture
and implementation satisfy the goal of propor-
tional reuse requires creating implementations
that solve related problems and looking at the
effort required to do so, as well as the amount
of the original solution that can be reused. Im-
plementing solutions for more distantly related
problems should require more effort than im-
plementing solutions for more closely related
problems, as closely related problems should
be able to reuse more components of the orig-
inal solution than distantly related problems.
Of course, the complexity of the problem will
also affect how much effort is required. Three
scenarios are considered:

• Adding a sensor to support automatic
grading

• Supporting online IDEs
• IoT Framework

Adding a sensor to support automatic grading
involves adding a new sensor to Eclipse and
adding a client to the message bus to process
events from this sensor.

Supporting an online IDE involves imple-
menting a communications system and a mas-
ter plugin that can send messages to the mes-
sage bus. Additionally any desired sensors
will need to be implemented. Fortunately any
processing of sensor data will remain the same.
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Figure 20: Complete Eclipse implementation.

So if a programming difficulty detector exists
as a message bus client, the online program-
ming environment can make use of it just as
the Eclipse implementation would.

The IoT Framework will involve the same
work that supporting the online IDE did, ex-
cept it will not be able to take advantage of
programming-specific message bus clients like
the difficulty predictor. Because of this, there
will be less reuse of the original implementa-
tion, as was expected since the application is
more removed. Still, a large amount of the
infrasture can be reused.

These examples demonstrate that the archi-
tecture and implementation achieve the goal
of proportional reuse. Figure 21 provides a
summary of this discussion.

VIII.ii. Scalability

Scalability issues have been passed off to XMPP
implementations, Google Drive, and Facebook,
all of which have demonstrated their robust-
ness under large loads. Additionally, the im-
plementation allows for anyone on the internet
to collaborate with anyone else on the internet,
which was the motivating goal. Because mes-
sages are sent through XMPP, which requires
that students are logged into an XMPP account,
the problem of authentication is also solved.

VIII.iii. Interoperability

The given implementation interoperates with
Google, Facebook, Openfire, Smack (an XMPP
library for java), Spark and Eclipse. The only

place where it fails to take advantage of an
opportunity to interoperate with existing tech-
nology is with the custom message bus imple-
mentation, although the reason for creating a
custom solution is motivated in section VI.ii.

IX. Discussion

IX.i. Contributions

This paper has given an architecture and imple-
mentation that support scalable mixed-activity
opportunistic collaboration.

The architecture makes a couple of signif-
icant contributions. It puts forth the idea of
the importance of coupling instantaneous and
historical state information as well as creating
the notion of receiver-initiated sharing.

The implementation supports the driving
problems and meets the set out goals. Addi-
tionally it is able to facilitate both human-to-
human and master-to-message bus communi-
cation with a single server, an idea that can
certainly be translated to other domains.

The message bus implementation presented
here is of potential interest in any application
where a message bus is needed. And in fact is
used in the microcontroller implementation in
section VII.ii.

Both Google Docs and Facebook were used
in novel ways. Machine-generated content was
automatically uploaded to Google Docs, and a
machine layer was placed between the humans
in the human-to-human network that Facebook
was designed to support. And in the micro-
controller scenario, Facebook can be used as a
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Figure 21: Proportional Reuse Evaluation.

Machine-to-Human network.

IX.ii. Future Work

Immediate future work will revolve around im-
plementing more message bus clients, such as
a time tracking client to aggregate the informa-
tion recorded by the time tracking sensor and
publish it to Facebook and a difficulty reporter
that aggregates the information recorded by
the difficulty sensor and publishes it. The sys-
tem needs to be tested for robustness, and once
verified, deployed for a field study.

Longer term work includes comparing this
implementation to other non-scalable UIs, cre-
ating implementations for other scenarios (e.g.
helping students in English class write papers -
see [12]), creating a comprehensive IoT Frame-
work, making server setup simple with config-
uration management, and making a running
server easy to manage by creating a web tool
to configure message bus clients.
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