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ABSTRACT 

Bryan Allen Johnson: The activation and consequences of the ATM mediated DNA 
damage response in HPV infected cells 

(Under the direction of Cary Moody) 

 

Infection with Human papillomavirus (HPV) is the most prevalent sexually 

transmitted disease in the world. From a public health standpoint, a subset of 

mucosa-tropic HPVs termed the high-risk genotypes are of most concern, as they 

are the causative agents of over 99 percent of cervical cancers and are increasingly 

linked to other forms of cancer. HPV initially infects the basal keratinocytes of the 

host epithelium and subsequently undergoes a life cycle tightly linked to the 

differentiation of its host cell. Despite having a small coding capacity, HPV is a 

master manipulator of the host cell, subverting a number pathways in order to 

ensure its own replication. Manipulation of the host cell is largely achieved through 

the expression of HPV’s two major oncoproteins, E6 and E7, to dysregulate p53 and 

Rb-E2F signaling respectively. 

 This dissertation examines the function of the E7 protein in the viral life cycle. 

E7 expression has been linked previously to the activation of the ATM DNA damage 

repair pathway throughout infection and the induction of G2 arrest in the upper layers 

of the stratified epithelium. Here I show that deletion of the Rb binding domain of E7 

ablates its ability to increase the levels of ATM pathway proteins in HPV positive 

cells. Additionally, I demonstrate that E7 broadly upregulates the stability of DNA 
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repair factors to increase their levels, regulating the transcription of only a subset of 

factors. I also show that the activity of the ATM kinase is necessary to increase the 

levels of proteins regulating the G2/M checkpoint, but does not play a role in 

increasing the levels of most DNA repair factors. Together, these data establish a 

model for ATM activation by E7 during HPV infection. 
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CHAPTER 1: INTRODUCTION 

OVERVIEW 

 Human papillomaviruses (HPVs) are small, non-enveloped, doubled stranded 

DNA viruses with a genome approximately 8 kilobases (Kb) in length. To date, there 

have been more than 100 genotypes of HPV identified, which can phylogenetically 

be divided into the alpha, beta, and gamma sub types. Infection with HPV is 

extremely prevalent and generally considered the most common sexually 

transmitted infection worldwide (48). From a public health standpoint, a subcategory 

of mucosatropic alpha papillomaviruses termed the “high-risk” genotypes (such as 

HPV 16, 18, 31, and 45) are of most concern, as they have been shown to be the 

etiological agent of over 99% of cervical cancers (167). Annually, high risk HPVs are 

responsible for some 490,000 cases of cervical cancer worldwide, resulting in 

270,000 deaths (160). Increasingly, HPV infection has been linked to the 

development of other forms of cancer as well, including over 40% of oropharyngeal 

cancers (167). Given the disease burden caused by high risk HPVs, my dissertation 

research focused on the high-risk genotype HPV31. In particular, I focus on the role 

of the HPV31 E7 protein, a key manipulator of the host cell which ensures an 

environment conducive to viral replication. 

INTRODUCTION 

 Organization of the viral genome. The prototypical Human papillomavirus 

(HPV) genome consists of a circular, double stranded DNA molecule approximately 
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8 kilobases (Kb) in length called an episome. As shown in Figure 1.1, eight viral 

proteins are encoded in the genome consisting of the six early (E) proteins (E1, E2, 

E4, E5, E6, and E7) and two late (L) structural proteins (L1 an L2).  Each HPV 

genome also contains a distinct non-coding region, referred to as the upstream 

regulatory region (URR) or long control region (LCR). The URR (used hereafter) is 

the primary site where viral replication and transcription is regulated, containing 

HPV’s origin of replication, numerous transcription factor binding sites, as well as 

binding sites for the E1 and E2 proteins. High Risk HPVs contain two promoters, 

termed the early and late promoters respectively, which are activated at different 

phases in the viral life cycle. The early promoter is contained within the URR, while 

the late promoter is positioned within the E7 open reading frame (ORF) (30). HPV 

transcripts are heavily spliced to form multiple polycistronic RNAs that are translated 

through leaky scanning by the ribosomal machinery (122). 

 Replication of the HPV genome is regulated through the viral E1 and E2 

proteins, as evidenced by E1 an E2 binding sites located in close proximity to the 

origin of replication (51, 153). The E1 protein is both an ATPase and a DNA 

helicase, and recruits a variety of cellular replication proteins to the viral genome 

(26, 72, 93, 98, 113). E1 itself binds only weakly to the viral origin, but its affinity is 

greatly enhanced by E2 (51, 104, 130, 153). In addition to increasing E1’s affinity for 

the origin, E2 is thought to be the primary regulator of transcription through the early 

promoter (29, 138). The functions of E4 and E5 are poorly understood, and are 

mainly expressed during the productive phase of the life cycle where they are both 

needed for productive replication. E4, also called E1^E4, consists of the first 5 amino 
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acids of E1 alternatively spliced with the E4 open reading frame. E4 is abundantly 

expressed in the upper layers of the stratified epithelium where it is hypothesized to 

play a role in virion release (39). E5 is thought to play a role in modulating EGFR 

signaling and in immune evasion (36). E6 and E7 are multifunctional and well-

studied, and have been identified as the primary oncoproteins of high risk HPVs. 

Most famously, E6 abrogates p53 function by binding p53 and targeting it for 

proteasomal degradation in order to inhibit the induction of apoptosis and cell cycle 

arrest (70). Similarly, E7 binds and targets the pocket protein Rb for degradation, 

resulting in the activation of the E2F family of transcription factors to drive forward 

the cell cycle (124). The late proteins, L1 and L2, serve as the structural proteins of 

the HPV capsid and are only expressed late in infection (111).  

THE HPV LIFE CYCLE 

The life cycle of HPV can be divided into four distinct phases: viral entry, 

establishment, maintenance, and amplification. What follows is a brief discussion of 

each phase, including a description of important protein functions. What is lacking is 

a detailed discussion of E7 function, which will be discussed thoroughly in the 

following section. An overview of the HPV life cycle can be found in Figure 1.2. 

 Viral Entry and Establishment: HPV’s entry into the cell is a multi-step, 

incompletely understood process. Infection by high risk HPV begins with a small 

wound in the mucosal epithelium called a microabrasion. A microabrasion is critical 

for HPV infection, as it gives HPV access to the basement membrane which is the 

site of initial binding in vivo (123). While bound to the basement membrane, L1 binds 

HPV’s primary receptor, heparin sulfate proteoglycans (HSPGs), found on the 



4 
 

 

Figure 1.1 Map of the HPV genome: The viral open reading frames are indicated 

by blue arrows (early genes) and red arrows (late genes). The URR is indicated by 

the black box. 

surface of keratinocytes in the lowermost or basal layer of the epithelium. Binding to 

HSPGs triggers a conformational change in the HPV capsid, exposing the L2 protein 

which then binds to an unknown co-receptor. Internalization then occurs by 

endocytosis (69). HPV then enters endosomes where it is eventually released into 

the cytoplasm and traffics to the nucleus (127). After nuclear entry, the HPV early 

promoter then becomes active, producing transcripts encoding for E1, E2, E6, and 

E7 (104, 153). HPV then replicates its genome to approximately 50-100 copies per 
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cell in a manner requiring the E1 and E2 proteins, before entering into the 

maintenance phase of the viral life cycle.  

Maintenance Phase: After establishment replication, HPV replicates its 

genome synchronously with its host‘s DNA as it divides, maintaining viral copy 

number at 50-100 copies per cell. As mentioned above, E1 and E2 work together 

during this phase to regulate both the replication of the HPV genome and 

transcription through its early promoter by recruiting cellular factors to the genome 

(13, 100). Copy number is thought to be controlled in part by the E2 protein, which 

binds to 4 conserved sites flanking either side of the early promoter (142). E2 

stimulates transcription from the early promoter at low concentrations while inhibiting 

transcription at high concentrations (32, 37, 145). Similarly, E2 binding to these sites 

has been shown to affect viral replication in a similar dose dependent manner (142). 

Thus, HPV self-regulates its copy number through an E2 controlled negative 

feedback loop, where increased levels of E2 inhibit additional viral replication by 

decreasing transcription of early genes (100). E2 also functions during maintenance 

phase to ensure proper distribution of viral genomes to the daughter cells as the 

host cell divides by tethering viral episomes to host chromosomes (101). E6 and E7 

are also required for episomal maintenance (147). Collectively, E6 and E7 serve to 

create an environment conducive to replication through a wide variety of functions, 

including inhibition of apoptosis, subverting normal control of the cell cycle, and 

immune evasion (124, 154).  

 Amplification Phase: When an HPV infected basal keratinocyte divides, one 

daughter cell will form a new basal cell while another moves upward in epithelium 
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and begins to differentiate, marking entry into the productive phase of the viral life 

cycle. Differentiation activates HPV’s late promoter, increasing the levels of a 

heterogeneous pool of mRNAs encoding E4, E5, L1, and L2, as well as the 

replication proteins E1 and E2 (57, 73, 146). Unlike the early promoter, expression 

from the late promoter occurs independent of E2 (141). The profile of transcriptional 

repressor and activators binding to known regulatory elements in the URR is known 

to be altered upon differentiation, suggesting that changes in transcription factors 

trigger late promoter activation (132). Expression from the early promoter is also 

maintained throughout the differentiation process, ensuring the continue expression 

of both E6 and E7 during differentiation (74). This is critical, as E7 works to create 

an environment permissive for productive replication by forcing infected 

keratinocytes to re-enter S-phase rather than exiting the cell cycle as uninfected 

keratinocytes (47, 53). This process is largely the result of E7’s dysregulation of the 

Rb-E2F pathway through the degradation of the Rb, p107, and p130 pocket 

proteins, though a number of other E7 functions have been shown to be necessary 

for S-phase entry and productive replication (22, 35, 47, 52, 61, 66, 78, 102, 105, 

165). It is then, after the host genome is finished replicating, that HPV productively 

replicates its genome through a process called amplification in cellular environment 

similar to G2 arrest (10, 156). Increased levels of E1 and E2 resulting from activation 

of the late promoter drive genome amplification, increasing the number of HPV 

genomes per cell from 50-100 copies per cell to more than 1000 (83).  

Both E4 and E5 are expressed primarily in the differentiating epithelia and are 

necessary for amplification, though their functions are poorly defined (36, 39). E4 is   
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Figure 1.2 Overview of the HPV life cycle in the stratified epithelium. HPV particles 

(indicated by red hexagons) infect basal keratinocytes after initially binding to basement 

membrane. Upon infection, HPV will initially replicate its genome to approximately 50 

copies per cell and begin early gene expression. From there, HPV undergoes 

maintenance replication, replicating its genome synchronously with the cell as it divides. 

Upon division, one daughter cell of the basal keratinocyte will move upwards in the 

epithelium and begin the process of differentiation, triggering the productive phase of 

the viral life cycle. Late gene expression will begin and host keratinocytes will re-enter 

S-phase and replicate their genome. After S-phase and host replication is complete, 

cells will arrest in G2 and HPV will replicate its genome to over 1000 copies per cell 

through a process termed amplification. Afterwards, infected keratinocytes will exit the 

cell cycle, assemble virions, and progeny will be released from the cell. 
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expressed abundantly in the upper layers of the epithelium where viral amplification 

is occurring. E4 expression has been shown to re-locate cyclin B-Cdk1 complexes to 

the cytoplasm to prevent mitotic entry, suggesting that it may play a role in cell cycle 

regulation (31). Additionally, overexpression of E4 has shown to induce the collapse 

of the cytokeratin network, suggesting it may play a role in virion release (157). E5 

function in the productive life cycle is unclear, though again modulation of EGFR and 

immune evasion have been suggested (39). The L1 and L2 structural proteins are 

also only highly expressed in the uppermost layers of the epithelium after 

amplification has been completed, where capsid assembly, encapsidation of the viral 

genome, and the release of mature virions is thought to occur (28). 

THE ATM MEDIATED DNA DAMAGE RESPONSE AND G2/M CHECKPOINT 

 The cellular response to DNA damage, collectively called “the DNA damage 

response” (DDR), is a robust and dynamic process involving a diverse set of 

biochemical pathways. Coordination of DDR is largely achieved through three class-

IV phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) kinases: ataxia 

telangiectasia mutated (ATM), ATM and Rad3 related (ATR), and DNA dependent 

protein kinase (DNA-PK), which phosphorylate hundreds of downstream targets to 

promote DNA repair, arrest the cell cycle, and prime the cell for apoptosis. Each of 

these kinases is activated in response to a distinct type of DNA damage and 

promotes a distinct mechanism of DNA repair, though cross talk between pathways 

has been firmly established (6). ATR activates the response to a number of types of 

DNA damage that result in single stranded DNA, such as stalled replication forks 

(25). DNA-PK and ATM on the other hand are both activated in response to double 
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stranded breaks in DNA (DSBs), but promote different DNA repair pathways. DNA-

PK promotes DNA repair through the error prone non-homologous end joining 

(NHEJ) and is dominant when the cell is in G1, while ATM promotes homologous 

repair (HR) which only occur in S-phase and G2 when unbroken sister chromatids 

are available (71). Both ATR and ATM play a role in arresting the cell cycle in 

response to damage, giving the cell time to repair its DNA before cell division. This is 

accomplished in part through the phosphorylation of checkpoint kinase 1 and 2 

(Chk1 and Chk2) by ATR and ATM. Phosphorylation activates Chk1 and Chk2 which 

in turn phosphorylate additional proteins to arrest the cell cycle (6).  

Activation of both ATR and ATM have both been implicated in the productive 

replication of HPV, while the role of DNA-PK has not been examined. Levels of both 

ATR and ATM are increased in HPV infected cells, and inhibition of their kinase 

activity prevents genome amplification (2, 66, 105). Numerous targets of ATM 

including proteins involved in HR and cell cycle regulation have increased levels in 

HPV positive cells and are required for productive replication (3, 10, 20, 54, 105). My 

research has focused on the mechanism and consequences of ATM activation, thus 

it is necessary to examine in detail the ATM DDR pathway outside of infection in 

order to frame its role during HPV infection. We will only focus on the two most 

important functions of ATM for this dissertation: cell cycle arrest and HR. 

Activation of the ATM pathway: As detailed in Figure 1.3, after a double 

stranded DNA break occurs the first step in activation of the ATM DDR is the 

recruitment of the MRN protein complex to the site of the break (6). The MRN  
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Figure 1.3 Diagram of ATM activation in response to DNA damage. Briefly, the 

MRN complex is recruited to the site of double stranded breaks in DNA. The MRN 

complex subsequently recruits and activates ATM. ATM then phosphorylates 

numerous downstream targets in order to facilitate DNA repair, cell cycle arrest, and 

promote apoptosis if repair is unsuccessful. 



11 
 

complex consists of three proteins: MRE11, Rad50, and NBS1. MRE11 possesses 

nuclease activity and is involved in DSB end resection to facilitate repair (114). 

Rad50 is an ATPase that binds to DNA, and is thought to aid in ATM activation by 

undergoing conformational changes (87). NBS1 interacts directly with ATM which is 

crucial for ATM’s recruitment to DSBs (44, 163). Together, the MRN complex 

activates ATM by recruiting inactive ATM dimers to the site of the break, triggering 

ATM’s auto-phosphorylation at Ser1981 and disassociation into active monomers (7, 

88, 89). While the phosphorylation of ATM at Ser1981 is the canonical marker of 

ATM activation, additional post-translational modifications are also implicated in the 

full activation of the ATM pathway, including auto-phosphorylation at Ser367 and 

Ser1893 and the acetylation of Lys3016 by Tip60 (85, 143, 144). Upon activation, 

ATM then phosphorylates hundreds of downstream targets at a conserved 

ATR/ATM phosphorylation site consisting of either a Serine or Threonine followed by 

a Glutamine (S/TQ motif) (81).  

ATM mediated DNA repair by homologous recombination: A key function 

of the ATM pathway is to facilitate the repair of DNA by homologous recombination 

(HR). One target ATM uses to achieve this is the modified histone protein H2A.X 

which is phosphorylated on Ser139 (called H2A.X when phosphorylated). H2A.X 

acts as a marker of damaged DNA, recruiting additional repair factors to the site of 

the break. One such factor is MDC1 (also an ATM target), which co-operates with 

H2A.X to recruit additional ATM molecules. These newly recruited ATM molecules 

then phosphorylated additional H2A.X proteins, creating a positive feedback loop 

that extends megabases from the site of the break along the damaged chromosome 
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(135). MDC1 binding also recruits RNF8/RNF168 which ubiquitylate H2A.X acting as 

a marker for the recruitment of BRCA1 and 53BP1 which promote HR and NHEJ, 

respectively (24, 94).  

BRCA1 drives the decision toward HR by promotion of end resection, where 

nucleotides from one strand on each end of the DSB is removed in a 3’-5’ manner in 

a manner dependent on MRE11’s nuclease activity (19). The single stranded DNA 

produced by resection is then coated by a protein called RPA, and in the case of 

HR, subsequently by Rad51 by a process regulated by BRCA1 (159, 161). DNA 

repair then follows one of three sub pathways: double stranded break repair (DSBR), 

break induced replication (BIR), or synthesis-dependent strand annealing (SDSA) 

(71). The details of these pathways fall outside the scope of this dissertation, but are 

reviewed extensively elsewhere (24). 

ATM induced cell cycle arrest: Distinct mechanisms exist that allow ATM to 

arrest the cell cycle at many different “check-points” in response to DSBs. When 

cells are in G1, ATM activates p53 to prevent entry into S-phase through increased 

transcription of p21CIP1 (i.e. the G1/S checkpoint). Activation of p53 is achieved 

both through direct phosphorylation by ATM as well as indirectly through 

phosphorylation by Chk2. Chk2 also phosphorylates cdc25a to inactivate cyclin 

dependent kinase 2 (Cdk2), whose activation is necessary for S-phase entry (58). 

Similarly, ATM has been shown to activate an intra-S checkpoint as well, though the 

details are poorly defined (137). Critically for the context of this dissertation, ATM 

activation prevents entry into mitosis from G2 by inducing the G2/M checkpoint. 

Transition from G2 into mitosis is primarily regulated by cyclin dependent kinase 1 
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(Cdk1)-cyclin B kinase complexes, together known as the mitosis or maturation 

promoting factor (MPF) (120). In the absence of cell cycle arrest, cytoplasmic cyclin 

B levels increase during G2 (119). To trigger entry into mitosis, cyclin B will bind 

Cdk1, activating Cdk1 kinase activity and both proteins will traffic to the nucleus 

(120). Mitotic entry also requires the activity of cdc25c, which removes inhibitory 

phosphorylations of Cdk1, Thr14 and Tyr15, which are conferred by the Myt1 and 

Wee1 kinases, respectively (38). During DNA damage, ATM inhibits this process by 

phosphorylating and activating checkpoint kinase 2 (Chk2) at Thr68 (1, 103). Chk2 

then phosphorylates Serine 216 of the cdc25c phosphatase, inactivating it and 

leading to the accumulation of the inhibitory Thr14 and Tyr15 phosphorylations on 

Cdk1 (99, 115). Thus, ATM triggers G2 arrest by initiating a phosphorylation cascade 

that eventually results in the inhibition of MPF, preventing mitotic entry. 

FUNCTIONS OF THE E7 PROTEIN 

 E7 as a viral oncogene: Throughout the 1980s and early1990s a plethora of 

evidence emerged linking the E7 expression to cancer development. E6 and E7 

were shown to be expressed in cell lines derived from cervical carcinomas (129, 

162). Additionally, the integration of the HPV genome within the E2 ORF (commonly 

seen in HPV related cancers) increases proliferation through the increased 

expression of both E6 an E7 through the loss of E2 expression. (76). Silencing of E6 

and E7 expression through the reintroduction of E2 triggers senescence of cancer 

cells in tissue culture, highlighting a role for E6 and E7 for in the growth of tumor 

cells (50, 56). Early studies demonstrated that E7 was the dominant of the two 

oncoproteins, as E7, but not E6, can alone transform immortalized and primary (in 
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co-operation with Ras) rodent cells (11, 12, 23, 43, 46, 77, 117, 155, 158). In the 

same vein E7, but not E6, is sufficient to immortalize primary human epithelial cells, 

though E6 can greatly enhance this function (60, 77, 106, 131). Mouse models 

recapitulate these findings, where E7 expression has been shown to induce tumors 

in various contexts (8, 9, 17, 75, 136, 149). Together, these studies clearly identify 

E7 as a potent oncoprotein in HPV related cancers. 

 While a definitive model has yet to be established, E7 contributes to a number 

of phenotypes that may play a role in its ability to promote oncogenesis. The classic 

function of E7 is to bypass growth arrest through the dysregulation of the cell cycle 

(33, 63, 109, 125, 128). Relatedly, and perhaps as a consequence of, E7 expression 

is linked to a number of mitotic abnormalities including bypass of the mitotic spindle 

checkpoint, multipolar mitoses, abnormal centrosome number, anaphase bridges, 

and micronuclei formation (40-42, 96, 148). Expression of E7 is also linked to the 

induction of replication and oxidative stress, DNA damage, activation of the DNA 

damage response, loss of heterozygosity, and genomic instability, providing direct 

mechanisms by which oncogenic mutations may occur (14, 21, 41, 105, 140). Taken 
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together, these studies demonstrate E7 likely promotes cancer development through 

multiple distinct mechanisms.  

Figure 1.4 Diagram of the HPV E7 oncoprotein. Approximate amino acid position 

is indicated above the diagram. Blue boxes indicate major functional domains CR1, 

CR2, and CR3. The three most common mutants of E7 are indicated in their 

approximate positions in CR1 and CR2. A representation of the CXXC double zinc 

binding motif in CR2 is also indicated. 

E7 Structure, posttranslational modifications, and localization: The HPV 

E7 protein varies in size from 98 to 105 amino acids depending on the genotype 

(82). Structural studies have demonstrated that E7 contains two distinct regions; a 

highly disordered N-terminal region and well-structured C-terminal zinc binding 

region (91, 110). As shown in Figure 1.4,The N-terminus of E7 contains two regions 

of conserved homology with other viruses, known as conserved region 1  and 

conserved region 2 (CR1 and CR2), separated by a small non-conserved linker 

(116, 117). Several phosphorylation sites have been identified in the N-terminus, 

including Threonines 5 and 7 (linked to the regulation of HPV 16 E7 stability) in CR1 

as well as the casein kinase II recognition site (CKII) within CR2 (4, 12, 45, 90). Also  
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Table 1.1: Phenotypes associated with deletion of LXCXE motif. Abbreviated list 

of binding partners of E7 and phenotypes and associated with the loss the deletion 

of the Rb binding domain, with relevant citations. 

Phenotype Citation 

Protein Binding  

Loss of pRb/p107 binding (33, 80, 92, 107, 116) 

Loss of E2F/Cyclin A binding (5) 

Loss of IRF-1 binding (112) 

Loss of -tubulin binding (108) 

Loss of phosphorylated ATM binding (105) 

Loss of NBS1 binding (3) 

Other Relevant Phenotypes  

Fails to activate pRB-E2F dependent transcription (18, 64, 116, 121) 

Fails to destabilize pRb/p107/p130 (63, 80) 

Reduces transformation of rodent cells (18, 116) 

Fails to bypass cell cycle checkpoints (33, 63, 140) 

Reduces p21 inhibition (78) 

Fails to increase cyclin E levels (95) 

Fails to Induce DNA synthesis (27, 121) 

Fails to block cyclin B degradation (164) 

Fails to immortalize normal human keratinocytes (15, 63) 

Fails to induce G2 arrest (10) 
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within CR2 is the LXCXE motif or Rb binding domain that is responsible for binding 

E7’s most famous binding partners, the cellular pocket proteins pRb, p107, and p130 

(124). The C-terminus of E7, collectively referred to as conserved region 3 (CR3), 

consists of two CXXC zinc binding motifs separated by 29-30 amino acids. Within 

this region there is an S-phase specific phosphorylation site on Serine 71, the 

significance of which is poorly understood (97, 139). HPV E7 has been reported in 

both the nuclear and cytoplasmic fractions of host cells, and likewise contains both 

nuclear import and export sequences (84).  

 Anatomy of the Rb binding domain: The core Rb binding domain, also 

called the LXCXE motif, is a 5 amino acid motif within CR2. This motif is found in 

both adenovirus E1A and SV40 T-antigen, which lead to the identification as the site 

used by HPV E7 to bind to Rb (12, 117). Homology is highly conserved among HPV 

genotypes within this region. Three of the five amino acids, that is the leucine (L), 

cysteine (C), and glutamic acid (E), are conserved in a near universal manner 

across high and low risk HPV genotypes, while the other two amino acids (the two 

Xs in LXCXE) show some variation (124). In addition to this core sequence, the 

amino acid just prior to the LXCXE domain has been shown to be important in 

determining the affinity of HPV E7 for Rb. Among High Risk HPVs this residue is 

aspartic acid (D) and confers high affinity for Rb, while in low risk genotypes it is 

generally a glycine (G) and confers low Rb affinity. Swapping this amino acid alone 

among high and low risk HPV genotypes was shown to alter E7’s affinity for Rb, 

decreasing affinity for high risk genotypes and increasing it for low risk (62).  
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Mutational analysis of E7 has long been used as an effective strategy for 

assaying E7 function, and the Rb binding domain is no exception. Perhaps the most 

common mutation used is the LXCXE deletion, completely removing the motif from 

the protein. A number of different phenotypes have been reported for this mutant 

and are summarized in Table 1.1 (for a more extensive list see Tables 6 and 7 in 

124). Most prominently, the LXCXE mutant is unable to bind and destabilize pRb, 

p107, and p130 (63). E7-LXCXE is unable to bind a diverse set of other cellular 

proteins as well, highlighting the critical nature of this motif. Biologically, this mutant 

ablates E7’s to induce E2F dependent transcription, drive cells into S-phase, induce 

tumors in mice, or extend keratinocyte life span (27, 59, 63, 64, 116). In addition to 

the LXCXE, two other less commonly used mutations of this site exist, C24G and 

C24S, both of which demonstrate similar though non-identical phenotypes from the 

deletion mutant (124). Together, these studies demonstrate the importance of the 

Rb binding domain in normal E7 function. 

 Dysregulation of the Cell Cycle by E7: The quintessential function of the E7 

protein is the dysregulation of S-phase entry through the binding and degradation of 

the Rb protein. Outside the context of infection, the Rb protein serves to regulate 

entry into S-phase through the binding and inactivation of the E2F family of 

transcription factors. During the G1/S transition, the Rb protein is 

hyperphosphorylated by Cdks, triggering the release of E2F transcription factors to 

drive the expression of S-phase genes. The E2F family consists of 8 proteins that 

serve as both activators and repressors of transcription. The activator E2Fs are 

E2F1-E2F3, while E2F4-E2F8 are the repressor E2Fs. Of these, E2F1-E2F3 are 
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regulated by Rb itself and are the members responsible for driving the expression of 

S-phase genes. E2F4 and E2F5 form complexes with the other two Rb family 

members, p107 and p130, and serve to repress the transcription of S-phase genes 

and regulate entry into G1 from G0. Binding to p107 and p130 is required for E2F4 

and E2F5 function, and during G1 p107 and p130 are also hyperphosphorylated by 

Cdks triggering the release of E2F4 and E2F5. E2F4 and E2F5 are then exported to 

the cytoplasm where they are unable to act as transcriptional repressors. Thus, entry 

into S-phase is largely controlled by the hyperphosphorylation of the Rb pocket 

protein family, which in turn increase S-phase gene expression through the 

inactivation of E2F4 and E2F5 and the activation of E2F1, E2F2, and E2F3. The 

functions of E2F6-E2F8 are poorly understood, though they are thought to function 

independently of pocket proteins in G2 to shut off E2F-dependent transcription (150).  

 High risk HPV E7 subverts this carefully regulated process through direct 

interactions with all three members of the Rb pocket protein family. Classically, E7 

binds to the pRb, p107, and p130 through its LXCXE motif within the CR2 region 

and marks it for proteasomal degradation (12, 16, 33, 34, 55, 63, 79, 80, 92, 166). 

Deletion of the LXCXE motif (LHCYE) prevents binding and degradation of all three 

pocket proteins, as well as the immortalization of keratinocytes and transformation of 

rodent cells (15, 18, 63, 80, 116). Interestingly, sequences within the CR1 region of 

E7 are also required for the degradation of the Rb family members, but not for 

binding. Mutating E7’s second residue from a Histidine to Proline (H2P) results in 

ablation of E7’s ability to degrade, but not bind, Rb (33, 63). Experiments with the 

H2P mutant demonstrate that binding of E7 to Rb is alone not sufficient to drive 
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entry into S-phase, and that degradation of Rb is required. Rb degradation is also 

required for E7’s ability to immortalize primary human keratinocytes, reiterating the 

importance of the E7-Rb-E2F relationship (63). Deletion of residues 6-10 (PTLHE) 

of CR1 yielded similar phenotypes with regards to Rb degradation, E2F activation, 

and immortalization, confirming the importance of CR1 (33, 63, 80, 121). Finally, E7 

is known to bind directly to both E2F1 and E2F6, demonstrating that E7 employs 

multiple mechanism to subvert Rb/E2F control of the cell cycle. 

 While the disruption of the Rb/E2F pathway is necessary for E7 to drive cells 

in to S-phase, it is not sufficient, insinuating that E7 must use other mechanisms to 

subvert the cell’s control of S-phase entry (63). To this end, E7 has been shown to 

block the activity of the Cdk inhibitors p21 and p27 through residues in its C-terminal 

domain (52, 63, 78, 165). E7’s ability to block p21 and p27 is necessary for E7’s 

ability to induce S-phase entry, as evidenced by the introduction of E7 mutations that 

ablates E7’s ability to do so (33, 63, 151). E7 also increases the activity of Cdk2 and 

interacts with cyclin E/Cdk2 and cyclin A/Cdk2 complexes through p107 (61, 102). 

Together, these data indicate that E7 uses multiple Rb independent mechanisms to 

promote S-phase entry. Within the context of the viral life cycle, this is most 

important in suprabasal keratinocytes, where E7 drives re-entry into S-phase upon 

the initiation of differentiation (22).  

 In addition to driving cells into S-phase, HPV infected cells have recently 

been shown to undergo a prolonged G2 phase. Experiments with organotypic raft 

cultures demonstrate that in the stratified epithelium levels of HPV DNA increases 

after host DNA has finished replicating in cells with cytoplasmic cyclin B and low 
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levels of cyclin A, a marker of late G2 (156). Later, in a seminal study by Banerjee et 

al., it was discovered that numerous signs of G2 arrest were present in differentiating 

HPV infected keratinocytes (10). HPV infected cells grown in raft culture also exhibit 

high levels of cytoplasmic cdc25c and cytoplasmic Cdk1 in raft cultures, a phenotype 

consistent with G2 arrest (38, 120). E7 expression was sufficient to induce 

cytoplasmic localization of cyclin B, Cdk1, and cdc25c, while E7-LXCXE 

expression was not (10). This suggested that HPV induces these phenotypes 

through E7 in a manner dependent on its Rb binding domain. Western blot analysis 

of homogenized raft cultures demonstrated that total Cdk1 and cdc25c levels are 

elevated in HPV infected cells relative to uninfected cells. Cdc25c showed increased 

phosphorylation at Serine 216 while Cdk1 has increased phosphorylation at Thr14 

and Tyr15, suggesting the G2/M checkpoint is activated. Levels of Myt1 and Wee1, 

the kinases responsible for the inhibitory phosphorylation of Cdk1, were also 

increased. Again, expression of wild type E7 alone was sufficient to recapitulate 

these phenotypes (10). Together, these data suggest that E7 not only promotes 

entry into G1/S to facilitate productive replication, but also induces the G2/M 

checkpoint in order hold cells in an environment suitable for amplification.  

Activation of the DNA damage Response: Manipulation of the DDR has 

been reported in numerous viruses, and HPV is no exception (65, 126). Recent 

research has revealed that activation of the DNA damage response plays a critical 

role in the HPV life cycle. In a landmark study, Moody and Laimins demonstrated 

that a number of DDR factors are increased in HPV31 positive cells across the 

differentiation dependent life cycle, including the ATM and Chk2 kinases. In that 
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study, it was demonstrated that pharmacological inhibition of the kinase activity of 

either ATM or Chk2 blocked genome amplification. Additionally, it was shown that 

expression of HPV31 E7 alone was sufficient to increase the phosphorylation and 

total levels of Chk2, suggesting that HPV E7 contributes to genome amplification in 

part through activation of the ATM pathway. Consistent with this, wild type HPV31 

E7 was found to immuno-precipitate with ATM, while the HPV31 E7-LHYCE mutant 

was not. Together, these data suggest that HPV activates the ATM pathway through 

E7 in order to facilitate the amplification of its genome (105) 

Subsequent studies have further established a role for the ATM pathway in 

the replication of HPV. Several ATM pathway proteins localize to HPV replication 

foci, including ATM itself as well as prominent targets such as H2A.X, Chk2, the 

MRN complex, Rad51, and BRCA1 (3, 54, 105). H2A.X was shown to precipitate 

with HPV DNA, suggesting that it is present in the nucleosomes of HPV episomes 

(54, 105). Given H2A.X’s role in recruiting DNA repair factors to DSBs (24), this 

finding suggests a mechanism by which HPV may recruit DNA repair factors to its 

genome in order to facilitate replication. Outside of infection, the histone deacetylase 

SIRT1 is known to promote the recruitment of homologous repair proteins to DSBs 

in order to promote HR (152). During HPV infection, it was shown that SIRT1 binds 

HPV DNA where it regulates H1 and H4 acetylation. Pharmacological inhibition of 

SIRT1 blocked productive replication, while SIRT1 knockdown reduced levels NBS1 

and Rad51 bound to the genome (86).Together, these data suggest that DDR 

proteins are actively recruited to the viral genome and that their recruitment may 

play a role in productive viral replication.  
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The levels of a number of DNA repair factors involved in activation of the ATM 

pathway and HR are increased in both HPV positive cells and cells expressing E7 

alone (3, 20, 105). All three components of the MRN complex are increased 

dramatically in HPV31 positive cells and those stably expressing HPV31 E7. Like 

phosphorylated ATM, HPV 31 E7 was found to bind NBS1 and Rad50, but not 

MRE11. Disruption of the MRN complex through NBS1 knockdown was found to 

block amplification, as was pharmacological inhibition of MRE11 nuclease activity 

(3). Similarly, HPV31 E7 expression is sufficient to increase levels of HR proteins 

BRCA1 and Rad51. As was the case with NBS1, knockdown of either protein blocks 

genome amplification (20). Together, these studies demonstrate that proteins both 

upstream and downstream of ATM activation are necessary for productive HPV 

replication.  

  While the link between ATM activation and productive HPV replication is well 

established, the exact mechanism of ATM activation is less clear. While HPV E7 

expression is sufficient to increase the levels of many proteins involved in the ATM-

mediated DDR, the underlying mechanism E7 uses to activate the ATM is not known 

(3, 20, 105). Several studies have linked STAT5 activation to the activation of the 

ATM pathway. STAT5 is activated in HPV31 infected cells and 31 E7 expressing 

cells. Pharmacological inhibition of STAT5 suppressed ATM and Chk2 

phosphorylation as well as amplification of the HPV31 genome, while knockdown of 

STAT5 decreased the levels ATM, Chk2, BRCA1, and Rad51 upon differentiation in 

calcium (68). STAT5 activation was shown to be required for activation of Tip60 in 

HPV31 positive cells, whose acetylation of ATM is necessary for ATM activation 
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outside the context of infection (24, 67). However, while E7 expression can alone 

activate STAT5 and the ATM pathway it does not induce Tip60 activation, thus Tip60 

activation alone cannot account for the E7 induced activation of the ATM pathway 

(67). Thus, the exact mechanism by which E7 activates STAT5 and its role in ATM 

activation has not been examined. Dysregulation of the Rb-E2F pathway is sufficient 

to induce DSBs,  promote the formation of H2A.X and MRE11 foci, and increase 

levels of ATM, Chk2, and Chk1 outside the context of infection (49, 118, 133, 134).  

Given that a key function of E7 is the binding and degradation of Rb, it is possible 

that Rb degradation also contributes to ATM activation in HPV positive cells. Thus, 

the exact mechanism of activation of the ATM pathway by E7 has not been 

established.  

RATIONALE FOR DISSERTATION 

Due to the relatively small size of the HPV genome, HPV must alter the 

cellular environment of its host cell in order to carry out its life cycle. The HPV E7 

protein is one of the primary proteins responsible for achieving this goal. In a classic 

model, E7’s primary function is to drive cells into S-phase in order promote the 

expression of host replication factors needed for replication of the HPV genome. 

Recent studies have begun to expand this view. The link between HPV E7’s 

activation of DDR and HPV genome amplification is a function of E7 that at face 

value is largely unrelated to S-phase entry, but the mechanistic details of how E7 

induces ATM activation are incomplete. Additionally, the observation that E7 

expression alone is sufficient to induce the G2/M checkpoint suggests that E7 
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manipulates the cell cycle in a more complex manner than merely driving suprabasal 

cells into S-phase.  

In Chapter 2, I describe how the activation of the ATM pathway in HPV31 

positive and E7 expressing cells requires the Rb binding domain. Specifically, I 

demonstrate that the Rb binding domain is necessary for increased protein levels of 

ATM and its target Chk2, the ATR target Chk1, all three MRN complex proteins, as 

well as the HR proteins BRCA1 and Rad51. This phenotype was conserved in both 

HPV31 positive cells and cells expressing 31 E7 alone. Additionally, I show that 

increases in DDR factors do not only occur at the level of increased mRNA 

transcription, as might be expected if triggered by the dysregulation of the Rb-E2F 

pathway. Instead, HPV31 E7 greatly increases the half-lives of these proteins in a 

manner dependent on the Rb binding domain.  

In Chapter 3, I explore preliminary data with regards to ATM’s role in inducing 

the G2/M checkpoint. I demonstrate that while inhibition of ATM kinase activity has 

no effect on the levels of DDR factors, upon differentiation it does cause a decrease 

in the levels of proteins regulating G2 arrest. Together, these data suggest an 

additional role for E7 and the ATM pathway in HPV’s differentiation dependent life 

cycle. 

As a whole, my research continues the elucidation of a detailed life cycle of 

HPV. Understanding the HPV life cycle will facilitate the development of novel 

therapeutics to combat the replication and spread of HPV. Understanding the 

function of E7 within the HPV life cycle may also illuminate mechanisms by which E7 

promotes oncogenesis. 
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CHAPTER 2: THE RB BINDING DOMAIN OF HPV31 E7 IS REQUIRED TO 

MAINTAIN HIGH LEVELS OF DNA REPAIR FACTORS IN INFECTED CELLS1 

OVERVIEW 

Human papillomaviruses (HPV) exhibit constitutive activation of ATM and ATR 

DNA damage response (DDR) pathways, which are required for productive viral 

replication. Expression of HPV31 E7 alone is sufficient to activate the DDR through an 

unknown mechanism. Here, we demonstrate that the E7 Rb binding domain is required 

to increase levels of many DDR proteins, including ATM, Chk2, Chk1, the MRN 

components MRE11, Rad50, and NBS1, as well as the homologous recombination 

repair proteins BRCA1 and Rad51. Interestingly, we have found that the increase in 

these DNA repair proteins does not occur solely at the level of transcription, but that E7 

broadly increases the half-life of these DDR factors, a phenotype that is lost in the E7 

Rb binding mutant. These data suggest that HPV-31 upregulates DNA repair factors 

necessary for replication by increasing protein half-life in a manner requiring the E7 Rb 

binding domain. 

 

 

                                                        
1 This chapter previously appeared as an article in Virology. The original citation is as 
follows: Johnson, B. A., H. L. Aloor, and C. A. Moody. 2017. The Rb binding domain of 
HPV31 E7 is required to maintain high levels of DNA repair factors in infected cells. 
Virology 500:22-34. 
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INTRODUCTION 

High-risk human papillomaviruses (HPV) are the etiological agents of cervical 

cancer, and are also associated with other genital malignancies, as well as an 

increasing number of head and neck cancers (47). HPV has adapted its life cycle to be 

linked closely with epithelial differentiation, with late viral events being restricted to the 

uppermost layers of the epithelium (27). HPV is thought to infect dividing, basal cells of 

the stratified epithelium through a microwound, where upon entry into the nucleus, the 

virus is maintained as a low copy episome. As an infected cell divides, one daughter cell 

migrates upward and initiates differentiation.  Differentiation triggers the productive 

phase of the viral life cycle, which requires cellular factors.  HPV maintains 

differentiating cells active in the cell cycle through viral gene expression, allowing for 

initiation of DNA synthesis and amplification of viral genomes to thousands of copies 

per cell.  Late gene expression, as well as virion assembly and release occur 

concomitantly with productive replication (30).  

Previous studies demonstrated that the productive replication of high-risk HPV31 

requires activation of an ATM-dependent DNA damage response (DDR) (31). ATM is a 

serine/threonine kinase that is activated primarily in response to double strand DNA 

breaks (DSBs), resulting in phosphorylation of a variety of substrates important in 

activating cell cycle checkpoints, as well as DNA repair (8). If left unrepaired, DSBs 

have the potential to generate chromosomal translocations, aneuploidy, and increased 

incidence of malignancy (1, 14). Though the DNA damage response plays a crucial role 

in the maintenance of genomic stability, many viruses have been shown to exploit repair 

pathways to facilitate replication (15, 39). We have previously shown that DNA repair 
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factors localize to sites of HPV replication, indicating a direct role for these factors in 

efficient viral replication (13).  In support of this, we have found that the histone variant 

H2AX, one of the first targets of ATM, is bound to HPV DNA (13).  In addition, we 

recently demonstrated that the MRN complex (Mre11, Rad50, Nbs1), which facilitates 

ATM activation in response to ionizing radiation (24, 25, 35), is localized to HPV31 

genomes and required for productive replication (2).  In addition, we have found that 

Rad51 and BRCA1, two factors essential for repair of DSBs through homologous 

recombination (8), are required for productive viral replication (7). Although numerous 

studies support a role for the ATM pathway in productive replication of HPV (2, 7, 13, 

17, 18, 31), the mechanism by which ATM is activated in HPV-infected cells remains 

unclear.  

The E6 and E7 oncoproteins of high-risk HPV types contribute to carcinogenesis 

largely through their ability to target the tumor suppressors p53 and Rb for degradation, 

respectively (19, 38). This is especially important upon differentiation, as E6 and E7 

ensure virus production by promoting S-phase re-entry of a subset of differentiating 

cells (30). The ability of E6 and E7 to target critical regulators of cell cycle progression 

results in the bypass of checkpoints normally involved in the elimination of abnormal 

cells (32). While this is necessary for viral replication, checkpoint abrogation can also 

result in genomic instability in HPV-immortalized cells that eventually leads to cancer 

(42). High-risk E7 expression has been shown to lead to DSB induction and genomic 

instability in a manner thought to be dependent on Rb inactivation and deregulation of 

E2F transcription factors (5, 10, 36). Inactivation of Rb outside the context of HPV 

infection is sufficient to induce DSBs, formation of H2AX and MRE11 positive foci, and 
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increase levels of ATM, Chk2, and Chk1 (12, 36, 40, 41). Previous studies 

demonstrated that expression of high-risk HPV31 E7 alone is sufficient to induce ATM 

signaling (31), raising the possibility that E7 contributes to the differentiation-dependent 

phase of the life cycle through modulation of the DDR. More recent studies by Hong et 

al. demonstrated that the phosphorylation of STAT5 is required for ATM activation in 

HPV31 positive cells, potentially through E7-mediated Rb inactivation (17, 18). Studies 

by this same group have also provided a link between STAT5, activation of the ATR 

DNA damage kinase and productive replication of HPV31 (16). Although Rb inactivation 

by E7 is important for providing an environment conducive to productive viral replication, 

whether a direct link exists between Rb binding and ATM/ATR activation has not been 

demonstrated. However, recent studies linked the development of female reproductive 

tract cancers, as well as head and neck cancers in HPV16 transgenic mice to E7-

mediated inactivation of pocket proteins (Rb, p107, p130) and resultant DNA damage 

(33, 34). 

In this study, we investigated whether the Rb binding domain of E7 is required for 

activation of ATM, as well as ATR signaling pathways in HPV31 positive cells. We have 

found that deletion of the Rb binding domain in the context of the HPV31 genome 

results in decreased levels of DNA repair factors compared to cells maintaining wild-

type HPV31 genomes. A similar phenotype was observed in cells expressing wild-type 

HPV31 E7 alone compared to cells expressing an E7 Rb binding mutant. Interestingly, 

we found that E7 maintains high levels of DNA repair factors required for productive 

replication through increased protein stability, rather than exclusively through increased 

gene expression, with exceptions limited to the ATR target Chk1, and the homologous 
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recombination repair factors BRCA1 and Rad51. Together, these data suggests that the 

E7 Rb binding domain is important for increased ATM/ATR activation by virtue of 

increasing total protein levels through increased protein stability, and that increases in 

DNA repair factor levels in HPV positive cells depends largely on the ability of E7 to 

bind and target Rb for degradation.  

MATERIALS AND METHODS 

Cell Culture: Human foreskin keratinocytes (HFKs) were isolated from neonatal 

foreskins as previously described and were cultured in E medium supplemented with 5 

ng/ml mouse epidermal growth factor (EGF; BD Biosciences) (43). HFK-31, HFK-31 

ΔLHCYE, pLXSN-31 E7, pLXSN-31 E7 ΔLHCYE cells were also cultured in E medium 

supplemented with 5 ng/ml mouse epidermal growth factor. All lines were cultured in the 

presence of mitomycin C-treated J2 3T3 fibroblast feeder cells, as previously described 

(43). J2 feeder cells were removed from HPV-positive cells with 1mM EDTA in 

phospho-buffered saline (PBS) as necessary. 

Plasmids: The pBR322-HPV31 plasmids containing the wild-type HPV31, 

HPV31 E7 ΔLHCYE mutant genomes have been previously described (20, 26). Briefly, 

the E7 ΔLHCYE plasmid contains an in-frame deletion of the Rb binding site. The 

pLXSN retroviral vectors encoding wild-type HPV31 E7 and the E7-Rb binding mutant 

(ΔLHCYE) have been described previously (26).  

Generation of HFK-31 lines: HFKs maintaining wild type HPV31, as well as 

mutant HPV 31 genomes (HFK-31 E7 ΔLHCYE) (43).  Briefly, HPV genomes were 

digested with HindIII to release them from the pBR322 plasmid backbone. T4 DNA 

ligase (Life Technologies) was then used to re-ligate the excised HPV genomes.  HFKs 



 47 

were co-transfected with 2.5μg of ligated HPV genomes and 2.5μg of pSV2-neo using 

PolyJet transfection reagent as per the manufacturer’s instructions (Signagen 

Laboratories), followed by selection in G418 (Sigma). Surviving populations were 

expanded for further analysis. 

Keratinocyte Differentiation: Differentiation of keratinocytes was performed by 

suspending cells in 1.5% methylcellulose, as previously described (43). Cells were 

harvested as an undifferentiated sample (T0), as well as 24 and 48hrs after suspension 

in methylcellulose. At each time point, DNA, RNA and protein were harvested. 

Western Blot Analysis: Whole cell lysates were harvested by lysing cell pellets 

in RIPA buffer supplemented with Complete Mini protease inhibitor (Thermo Scientific) 

and PhoSTOP phosphatase inhibitor tablets (Roche). Total protein concentrations were 

determined by Bio-Rad protein assay (Bio-Rad). Equal amounts of protein were 

separated by SDS-page and transferred to polyvinylidene difluoride (PVDF) 

membranes. (Immobilon-P; Millipore). The following primary antibodies were used: 

phospho-ATM Ser1981, Chk1, NBS1 (Abcam); ATM (Bethyl laboratories); phospho-

Chk1 Ser345, phospho-Chk2 Ser68, Chk2, E2F1 (Cell Signaling Technology); E2F2, 

E2F3, GAPDH, Rad51 (Santa Cruz); MRE11, Rad50, and BRCA1 (GeneTex). 

Secondary antibodies used were horseradish peroxidase (HRP)-conjugated anti-rabbit 

(Cell Signaling Technology) and HRP-conjugated anti-mouse (GE Life Sciences). 

Western blots were developed using Enhanced Chemiluminescence Prime blotting 

substrate (GE Life Sciences). Images were captured with the Biorad ChemidocMP 

imaging system, and analyzed with Biorad Imagelab 5.0 software. 
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Southern Blot Analysis: DNA isolation and Southern blotting were performed 

as previously described (11). Briefly, cells were harvested in DNA lysis buffer (400mM 

NaCl, 10mM Tis pH 7.5 and 10mM EDTA), then lysed by the addition of 30uL 20% 

SDS. Samples were subsequently treated with 15ul of 10mg/mL proteinase K overnight 

at 37˚C. DNA was extracted using phenol chloroform, followed by ethanol precipitation 

in the presence of sodium acetate. 5ug of DNA was digested with either BamHI (New 

England Biolabs) (does not cut the genome), or HindIII (New England Biolabs) (cuts the 

genome once). DNAs were resolved on a 0.8% agarose gel for 15 h at 40 V and were 

then transferred to a positively charged nylon membrane (Immobilon-Ny+; EMD 

Millipore). The DNA was fixed to the membrane via UV irradiation and then hybridized 

to a radioactive DNA probe consisting of 32P-labeled linearized HPV31 genome. 

Real-time PCR: RNA was extracted from primary HFKs, HFK-31, HFK-31 

ΔLHCYE, pLXSN, pLXSN-31 E7, and pLXSN-31 E7 ΔLHCYE cells using RNA STAT 60 

(Tel-test). DNA was removed from samples via treatment with RQ1 DNAse (Promega) 

via the manufacturer’s protocol. cDNA was made using the iScript reverse transcription 

kit (Bio-Rad). Quantitative RT-PCR was performed in triplicate on 50 ng of cDNA using 

375 nM primers and iTaq Universal SYBR Green Supermix (Bio-Rad) in a total reaction 

volume of 10 μl. Reactions were performed using an ABI QuantStudio 6 Flex thermal 

cycler and analyzed with version 1.0 of the QuantStudio 6 and 7 Flex software. The 

thermal profile used for PCR is as follows: 10 min denaturation at 95ºC followed by 40 

cycles of 95ºC for 15 sec, then 60 sec at 60ºC (ATM, Chk2, Chk1, MRE11, Rad50, 

NBS1, E2F2, E7) or 63ºC (BRCA1, Rad51, E2F1), followed by 72ºC for 30 sec. A melt 

curve was run to ensure primer annealing. Relative transcript levels were determined 
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using the threshold cycle method (ΔΔCT) with GAPDH serving as an endogenous 

control gene. Values were normalized relative to transcript levels of primary HFKs or 

pLXSN control cells. The primer sequences are as follows: ATM Forward, 5′-

TGTTCCAGGACACGAAGGGAGA-3′; ATM Reverse,  5′-

CAGGGTTCTCAGCACTATGGGA-3′; BRCA1 Forward, 5′-

CTGAAGACTGCTCAGGGCTATC-3′; BRCA1 Reverse, 5′-

AGGGTAGCTGTTAGAAGGCTGG-3′;  Chk1 Forward 5′-

TGAGAATCCATCAGCAAGAATTACC-3′; Chk1 Reverse, 5′-

ATCCACTGGGAGACTCTGACACA-3′; Chk2 Forward, 5′-

GCAGCAGTGCCTGTTCACA-3′; Chk2 Reverse, 5′-TGGATATGCCCTGGGACTGT-3′; 

E2F1 Reverse 5′-ATCTGTGGTGAGGGATGAGG-3′ E2F2 Forward, 5′-

CTCTCTGAGCTTCAAGCACCTG-3′; E2F2 Reverse, 5′-

CTTGACGGCAATCACTGTCTGC-3′; HPV31 E7 Forward, 5′-

ACACCTACGTTGCAAGACTATG-3′; GAPDH Forward, 5′-

CTGTTGCTGTAGCCAAATTCGT-3′; GAPDH Reverse, 5′-

ACCCACTCCTCCACCTTTGAC-3′; HPV31 E7 Reverse, 5′-

CGAATATCTACTTGTGTGCTCTGT-3′, Mre11 Forward, 5′-

GCCTTCCCGAAATGTCACTA-3′; Mre11 Reverse, 5′-TTCAAAATCAACCCCTTTCG-3′; 

NBS1 Forward, 5′-TCTGTCAGGACGGCAGGAAAGA-3′; NBS1 Reverse, 5′-

CACCCCAAAGACAACTGCGGA-3′; Rad50 Forward, 5′-

GGAAGAGCAGTTGTCCAGTTACG-3′; Rad50 Reverse, 5′-

GAGTAAACTGCTGTGGCTCCAG-3′; Rad51 Forward, 5′-



 50 

TCTCTGGCAGTGATGTCCTGGA-3′, Rad51 Reverse, 5′-

TAAAGGGCGGTGGCACTGTCTA-3′. 

Measurement of Protein Half-Life: Primary HFKs, HFK-31, HFK-31 ΔLHCYE, 

pLXSN, pLXSN-31E7 and pLXSN-31E7 ΔLHCYE cells were grown in 10 cm dishes until 

~80% confluency. Whole cell lysates were then harvested from one dish for the 0 hr 

time point and at the indicated time points after treatment with 50 μg/ml cycloheximide. 

J2 fibroblasts were removed prior to harvest using Versene (1mM EDTA in PBS). 

Western blot analysis was performed using 50 μg of total protein as described above. 

Westerns were digitally imaged using the Bio-Rad Chemidoc MP system, and 

densitometry was performed with the Biorad ImageLab 5.0 software. 

RESULTS 

The Rb binding domain of E7 is required for ATM and ATR activation in 

HPV31 positive cells: To examine the importance of the E7 Rb binding domain to DDR 

activation and maintenance of high levels of DDR factors in HPV31 positive cells, we 

generated human foreskin keratinocyte (HFKs) lines that maintain either wild-type 

HPV31 genomes (HFK-31), or genomes containing a mutation in the E7 LXCXE Rb 

binding domain (HFK-31 ΔLHCYE). Previous studies demonstrated that this mutation 

does not alter the stability of E7, and that HFK-31 ΔLHCYE mutant genomes are 

maintained extrachromosomally, though copy number decreases over time compared to 

wild-type genomes (26). In addition, these studies showed that the E7 Rb binding site is 

required for efficient amplification of viral genomes upon differentiation (26), and we 

have found similar results in this study (Figure 2.1A). To determine the effect of the 

ΔLHCYE mutation on DDR activation throughout the viral life cycle, cells were 
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harvested both prior to and after the induction of epithelial differentiation in 

methylcellulose, a method commonly used to activate the productive phase of the viral 

life cycle. We first examined the importance of the E7 Rb binding domain on the 

activation of the ATM and ATR pathways. As shown in Figure 2.1B, both the 

phosphorylated and total levels of ATM, the ATM target Chk2, and the ATR target Chk1 

were increased in HFK-31 cells compared to uninfected HFKs, indicating activation of 

ATM/ATR signaling pathways, as published previously (16, 31). While the levels of total 

ATM and Chk2 decreased in HFK-31 positive cells upon differentiation, the 

phosphorylated levels of ATM and Chk2 remained elevated, indicating DDR activation is 

increased during the productive phase of the viral life cycle. In contrast, both 

phosphorylated and total levels of Chk1 decreased upon differentiation, despite being 

required for productive replication (16). Interestingly, we found that the levels of 

phosphorylated and total ATM and Chk2, as well as Chk1 dramatically decreased in the 

HFK-31 ΔLHCYE cells at all time points, exhibiting levels similar to that found in the 

uninfected HFKs (Figure 2.1B). These data suggest that in the setting of an HPV 

infection, the Rb binding domain of E7 is necessary for ATM and ATR activation. 

Previous studies demonstrated that HPV31 E7 expression is alone sufficient to 

activate the ATM and ATR pathways in keratinocytes (16, 31). Additionally, studies by 

other groups have shown that E7 expression alone induces DNA damage and activates 

the DDR (10, 36). To determine if the E7 Rb binding domain is required for DDR 

activation outside the context of viral infection, we stably transduced HFKs with either a 

retroviral control vector (pLXSN), a vector encoding wild type HPV31 E7, or HPV31 E7 

containing the ΔLHCYE mutation. We then analyzed ATM and ATR activation from both 
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undifferentiated and methylcellulose-differentiated cells by Western blot analysis. As 

shown in Figure 2.1C, HFKs expressing wild-type HPV31 E7 exhibited increased levels 

of both phosphorylated and total ATM, Chk2, and Chk1 relative to control cells, 

confirming that E7 expression alone is sufficient to activate ATM and ATR signaling 

pathways. However, this phenotype was lost in cells expressing the E7 ΔLHCYE mutant 

(Figure 2.1C). Overall, these results indicate that maintenance of high levels of ATM, 

Chk2 and Chk1 in HPV31 positive cells requires the Rb binding domain of E7, which 

likely contributes to the ability of HPV to activate ATM and ATR signaling pathways.   
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Figure 2.1. The Rb binding domain of E7 is required for ATM and ATR activation 

in HPV31 positive and E7-expressing keratinocytes. (A) Southern blot analysis 

performed on DNA harvested at the indicated time points from human foreskin 

keratinocytes maintaining wild-type HPV31 genomes (HFK-31), as well as HFK-31 cells 

containing a mutation in the E7 Rb binding site (HFK-31 ΔLHCYE). DNA was digested 

with either BamH1, which does not cut the viral genome, or HindIII, which cuts the 

genome once. The HPV31 genome was used as a probe.  (B) Western blot analysis 

was performed on lysates harvested from HFKs, HFK-31 cells, or HFK-31 ΔLHCYE 

cells. Lysates were harvested from undifferentiated cells (T0), as well as after 24 and 

48hr differentiation in methylcellulose (MC). Primary antibodies used were 

phosphorylated ATM on Ser1981 (pATM), total ATM, phosphorylated Chk2 on Ser68 

(pChk2), total Chk2, phosphorylated Chk1 on Ser345 (pChk1), and total Chk1. GAPDH 

served as a loading control. Shown are blots representative of five independent 

experiments across four HFK backgrounds. (B)  Whole cell lysates were harvested from 

undifferentiated (T0) as well as differentiated (24, 48hr MC) HFKs stably transduced 

with either a retroviral control construct (pLXSN) or retroviral constructs expressing wild-

type HPV31 E7 (pLXSN-31 E7), or HPV31 E7 containing a mutation in the Rb binding 

domain (pLXSN-31 E7 ΔLHCYE). Immunoblotting was performed as described in panel 

A. Western blots shown are representative of three independent experiments across 

two HFK backgrounds. 

Maintenance of high levels of DNA repair factors in HPV31 positive cells 

requires the Rb binding domain of E7: The MRN protein complex (consisting of 

MRE11, Rad50, and NBS1) is a DNA damage sensor that activates the DDR by 
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recognizing DSBs and activating ATM (24, 25, 35). Previously, we showed that the 

levels of MRN components are increased in HPV31 positive cells, and that the 

maintenance of the MRN complex is necessary for productive viral replication (2). We 

next wanted to determine if the E7 Rb binding domain is also required for the 

maintenance of high levels of MRN complex members in HPV31 positive cells. As 

shown in Figure 2.2A, levels of all three MRN components were elevated in 

undifferentiated HFK-31 cells compared to primary HFKs, and this phenotype was 

maintained upon differentiation in methylcellulose. However, this phenotype was lost in 

cells containing E7 ΔLHCYE mutant genomes, with levels of MRN components 

resembling those found in HFKs (Figure 2.2A). Similar results were observed in E7-

expressing lines, with cells expressing the E7 ΔLHCYE mutant exhibiting levels of MRN 

components similar to that of HFKs (Figure 2.2B). Together, these data suggest that the 

Rb binding site of E7 is necessary for maintenance of high levels of MRN components 

in HPV31 positive cells. 

BRCA1 and Rad51 are two proteins essential to homologous recombination, a 

DSB repair mechanism that also requires ATM activity (8). Previously, we demonstrated 

that levels of BRCA1 and Rad51 are increased in HPV31 positive cells and are required 

for productive viral replication (7). As shown in Figure 2.2C, HFK-31 cells exhibited 

increased levels of BRCA1 and Rad51 compared to HFKs, as previously reported (7, 

13). However, the E7 ΔLHCYE mutation resulted in decreased BRCA1 and Rad51 

levels, similar to those found in HFKs, indicating the E7 Rb binding domain is required 

for increased levels of BRCA1 and Rad51 in HPV31 positive cells. These findings were 

recapitulated in cells expressing E7 alone, with the E7 Rb binding domain being 
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required for maintenance of high levels of BRCA1 and Rad51 (Figure 2.2D). Overall, 

these results indicate that E7 expression is necessary for HPV31 to increase the levels 

of DDR factors and that this increase requires the E7 Rb binding domain.  

Figure 2.2. Levels of the MRN complex, as well as the homologous recombination 

proteins BRCA1 and Rad51, are maintained in HPV31 positive cells in a manner 

dependent on the E7 Rb binding domain. (A) Whole cell lysates were harvested from 

HFKs, HFKs stably transfected with wild-type HPV31 genomes (HFK-31), or HPV31 

genomes with a mutation in the E7 Rb binding domain (HFK-31 ΔLHCYE) at T0 

(undifferentiated), as well as after 24 and 48hr differentiation in methylcellulose (MC). 

Western blotting was performed using antibodies for MRE11, Rad50, and NBS1, with 

GAPDH serving as a loading control. Western blots shown are representative of five 

independent experiments across four HFK backgrounds. (B) Whole cell lysates were 

harvested from HFKs stably transduced with either the empty retroviral vector (pLXSN), 

wild type HPV31 E7 (pLXSN-31 E7), or an E7 containing a mutation in the Rb binding 
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domain (pLXSN-31 E7-ΔLHCYE) at T0 (undifferentiated) as well as after 24 and 48hr 

differentiation in MC. Western blotting was performed with antibodies targeting MRE11, 

Rad50, and NBS1. The blots shown are representative of three independent 

experiments across two HFK backgrounds. (C) Whole cell lysates were harvested from 

HFKs, HFK-31, and HFK-31 ΔLHCYE cells, both at T0 and after 24 and 48hr 

differentiation in MC. Western blot analysis was performed for BRCA1 and Rad51, with 

GAPDH serving as a loading control. The data shown is a representative example of 

five independent experiments across four HFK backgrounds. (D) Whole cell lysates 

were harvested from pLXSN, pLXSN-31 E7, and pLXSN-31 E7-ΔLHYCE cells both prior 

to and 24 and 48 hours post differentiation in MC, and Western blot analysis was 

performed using BRCA1 and Rad51 antibodies, with GAPDH serving as a loading 

control. Shown is a representative Western blot from three independent experiments 

across two HFK backgrounds. 

Elevated levels of DNA repair factors in HPV31 positive cells cannot solely 

be explained by increased transcription: The inactivation of Rb results in the 

constitutive activation of a subset of E2F transcription factors termed the activator E2Fs 

(E2F1-3) that drive transcription of a number of cellular genes not only involved in 

facilitating S-phase entry, but DNA repair as well, including ATM, Chk1, BRCA1, and 

Rad51 (6). Previous studies by the Laimins lab showed that E2F2 protein levels are 

increased in HPV31 positive cells upon differentiation in a manner dependent on the E7 

Rb binding domain (28). E7 may therefore contribute to activation of the DDR, at least in 

part, by increasing transcription of key DNA repair genes in an E2F-dependent manner. 

To investigate this possibility, we first examined if the protein levels of the other 
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activator E2Fs, E2F1 and E2F3, are also affected by the E7 ΔLHCYE mutation in 

HPV31 positive cells. As shown in Figure 2.3A, the levels of E2F1 and E2F2, but not 

E2F3, were increased in HFK-31 cells compared to uninfected HFKs, and this 

phenotype was lost in cells containing E7 ΔLHCYE mutant genomes. We next 

confirmed these results in cells stably expressing E7 alone. As shown in Figure 2.3B, 

while HFKs expressing wild-type E7 exhibited elevated E2F1 and E2F2 protein levels, 

this increase was not observed in the E7 ΔLHCYE mutant, similar to results found with 

the HFK-31 ΔLHCYE mutant genome lines (Figure 2.3A). Additionally, E2F3 was 

regulated in a manner similar to E2F1 and E2F2 in E7-expressing cells (Figure 2.3B), 

which was not observed within the context of the HPV genome (Figure 2.3A). Given the 

relationship between the E7 Rb binding domain and maintenance of E2F proteins, we 

examined the possibility that E7 increases the levels of DNA repair factors at the level of 

gene expression.  
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Figure 2.3. The Rb binding domain of E7 is necessary for increased levels of E2F1 

and E2F2 in HPV positive and E7-expressing keratinocytes. (A) Whole cell lysates 

were harvested from HFKs, HFKs containing wild-type HPV31 genomes (HFK-31), or 

HPV31 genomes containing an E7 Rb deletion mutant (HFK-31 ΔLHCYE) that were 

undifferentiated (T0) or differentiated for 24 or 48 hours in methylcellulose (MC). 

Western blot analysis was performed using antibodies to E2F1, E2F2, and E2F3. 

GAPDH served as a loading control. The Western blots shown are representative of five 

independent experiments across four HFK backgrounds. (B) Whole cell lysates were 

harvested from HFKs stably transduced with a retroviral control vector (pLXSN), or 

vector expressing wild-type HPV31 E7 (pLXSN-31 E7), or an E7 containing a mutation 

in the Rb (pLXSN-31 E7-ΔLHCYE) that were undifferentiated (T0) or differentiated in 

methylcellulose for 24 and 48 hours. Western blot analysis was performed as described 
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in Panel A. Shown are Western blots representative of three independent experiments 

across two HFK backgrounds. 

We first examined the effect of mutating the E7 Rb binding domain on the 

transcript levels of ATM, Chk2, and Chk1 in HPV31 genome-containing HFKs (Figure 

2.4). As shown in Figure 2.4A, HFK-31 cells exhibited no significant changes in 

transcript levels for ATM, Chk2, or Chk1 in comparison to uninfected HFKs, despite 

exhibiting substantially increased protein levels (Figure 2.1A). While loss of the E7 Rb 

binding domain did slightly affect the levels of ATM, Chk2, and Chk1 transcripts, these 

changes were statistically insignificant (p>0.05) (Figure 2.4A).  In E7-expressing HFKs, 

no significant changes were observed for ATM or Chk2 transcripts compared to control 

cells, however, mRNA levels of ATM and Chk2 were reduced in the E7 ΔLHCYE mutant 

(Figure 2.4B). For Chk1, E7-expressing cells exhibited a minor, though significant 

increase in transcript levels compared to HFKs. Similar to ATM and Chk2, Chk1 

transcript levels were decreased in the E7 ΔLHCYE mutant cells (Figure 2.4B). These 

results indicate that while elevated transcription may contribute to the increased protein 

levels of Chk1, the moderate changes in ATM and Chk2 transcript levels in HFK-31 

cells compared to HFKs cannot solely account for the high protein levels observed in 

HPV31 positive cells. In addition, the decrease in transcript levels observed in the 

ΔLHCYE mutant cannot fully account for the differences in protein levels observed in 

these cells and suggest that E7 may also regulate levels of these DDR factors in a post-

transcriptional manner.  

We next determined if loss of the Rb binding domain affects the mRNA levels of 

MRN complex components in HPV31 positive cells (Figure 2.4C), as well as E7-
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expressing cells (Figure 2.4D) Previously, we reported that in HPV31 E7-expressing 

cells, MRE11 gene expression was slightly, though significantly elevated compared to 

control cells, with no change in Rad50 and NBS1 transcripts (2). To confirm these 

results in HPV31 positive cells and determine if loss of the Rb binding domain affects 

expression of MRE11, Rad50, and NBS1, we first examined mRNA levels in HFKs and 

HFK-31 cells, as well as in HFK-31 ΔLHCYE cells. As shown in Figure 2.4C, we found 

no significant changes in transcript levels for MRE11, Rad50, or NBS1 between HFK 

and HFK-31 cells. Similarly, while small reductions in mRNA levels for MRE11, Rad50, 

and NBS1 were observed in HFK-31 ΔLHCYE cells when compared to HFK-31 cells, 

these changes were not significant. In HFKs expressing HPV31 E7 alone, we observed 

no significant changes between wild-type E7-expressing cells and the vector control for 

any of the MRN components (Figure 2.4D). The disparity in these data for Mre11 and 

our previously published results likely owes to the very small changes observed in both 

cases (<2 fold increase in MRE11). Similar to ATM, Chk2, and Chk1, we did observe a 

small but significant decrease in transcript levels for both MRE11 and NBS1, but not 

Rad50, in cells expressing the E7 ΔLHCYE mutant. Taken together, these data suggest 

that transcription may play a minor role in the increase in the MRN components 

observed in HPV31 positive cells, however, increased gene expression alone cannot 

fully explain the changes observed in MRN protein levels. 

Previously, we demonstrated that HPV31 positive cells exhibit increased 

transcript levels of BRCA1 and Rad51, with E7 expression alone being sufficient for this 

increase (7). To determine if the increase in gene expression requires the E7 Rb 

binding domain, we examined BRCA1 and Rad51 mRNA levels in uninfected HFKs, as 
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well as HFKs containing wild-type HPV31 genomes, or E7 ΔLHCYE mutant genomes 

(Figure 2.4E). As shown in Figure 2.4E, transcript levels for BRCA1 and Rad51 were 

increased in HFK-31 cells compared to uninfected HFKs, and this increase was lost in 

cells expressing the E7 ΔLHYCE mutant. Similar results were observed for E7-

expressing cells (Figure 2.4F), with BRCA1 and Rad51 transcripts being present at a 

significantly increased level compared to control cells, as published previously (7). This 

phenotype was again lost in the E7 ΔLHCYE mutant (Figure 2.4F), indicating that in 

addition to maintenance of BRCA1 and Rad51 protein levels (Figure 2.2C-D), the E7 Rb 

binding domain is also required for increased gene expression of BRCA1 and Rad51. 

Overall, these data suggest that E7 regulates the levels of a subset of DDR proteins in a 

transcription-independent manner (ATM, Chk2, MRN), while conferring a mechanism of 

transcriptional dependence, to a certain extent, on other DDR factors (Chk1, BRCA1, 

Rad51).  
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Figure 2.4. The E7 Rb binding domain is required for increased transcript levels 

of Chk1, BRCA1 and Rad51. RNA was extracted from undifferentiated (A, C, E) HFKs, 

HFKs maintaining wild type HPV-31 genomes (HFK-31), and HPV-31 genomes 

containing a deletion in the E7 Rb binding site (HFK-31 ΔLHCYE); (B, D, F) or 

undifferentiated HFKs retrovirally transduced with either a control vector (pLXSN), wild 

type HPV31 E7 (pLXSN-31 E7), or the E7-Rb binding mutant (pLXSN-31 E7-ΔLHCYE). 

Reverse transcription quantitative PCR (RQ-PCR) was performed using gene-specific 

primers for ATM, Chk2, and Chk1 (A, B), MRE11, Rad50, and NBS1 (C, D), or BRCA1 

and Rad51 (E, F). Shown is fold change in transcripts calculated using the 2-ΔΔCT 

method. Values shown are transcript levels relative to either HFK (A, C, E) or pLXSN 
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(B, D, F), which are set to 1. Error is indicated as +/- the standard error of the mean. 

Each panel represents the results from four independent experiments derived from two 

different HFK donors. For all panels, the student’s t-test was used to test significance. * 

P ≤ 0.05, and ** P ≤ 0.01.   

The E7 Rb binding domain is required for increased protein stability of a 

subset of DNA repair factors in HPV31 positive cells: Previous studies have 

demonstrated that the E7 Rb binding domain is required for maintenance of high levels 

of E2F2 in a post-transcriptional manner (28). In addition, our lab has previously shown 

that BRCA1 and Rad51 exhibit an increased protein half-life in HPV31 positive CIN612 

cells (7). These studies, taken together with the observation that the transcript levels of 

ATM, Chk2, Chk1, and the MRN components were not substantially altered in HFK-31 

ΔLHCYE cells raises the possibility that E7 may contribute to increased DDR protein 

levels in infected cells through influencing protein stability.  

To determine the impact of protein stability on the maintenance of DDR factors in 

HPV31 positive cells, we first examined the half-life of ATM, Chk2, and Chk1 in HKFs 

compared to HFK-31 cells using cycloheximide to inhibit protein synthesis.  As shown in 

Figure 2.5A and 2.5B and summarized in Table 2.1, the protein half-lives for ATM, 

Chk2, and Chk1 in HFKs were 5.8+/-1.3, 7.0+/-0.02, and 4.5+/-0.3 hours, respectively. 

In contrast, in HFK-31 cells the half-lives of ATM, and Chk2 increased to greater than 

12 hours (the longest time point measured). For Chk1, the half-life was also increased 

in HFK-31 cells (5.8+/-0.5 hours vs. 4.5 +/-0.3 in HFKs), though not to the same extent 

as ATM and Chk2. To determine if the E7 Rb binding domain was required for the 

increase in protein stability observed, we examined the half-lives of ATM, Chk2, and 
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Chk1 in cells containing HPV31 genomes with the ΔLHCYE mutation. Interestingly, in 

HFK-31 ΔLHCYE cells, the half-lives of ATM, Chk2, and Chk1 were reduced to 4.5+/-

0.8, 9.6+/-2.0, and 4.2+/-0.4 hours, respectively, similar to the half-lives observed in 

HFKs for each protein (Figure 2.5A-B, Table 2.1). These results suggest that high levels 

of ATM, Chk2, and Chk1 are maintained in HPV31 positive cells, at least in part, 

through an increase in protein stability.  

To determine if E7 expression alone is sufficient for the increase in protein 

stability observed, we examined the half-life of ATM, Chk2, and Chk1 in HFKs 

expressing wild-type E7, as well as the E7 ΔLHCYE mutant (Figure 2.5C-D). As shown 

in Figures 2.5C and 2.5D and summarized in Table 2.2, similar to HPV31 genome-

containing lines, the half-life of ATM increased from 4.5+/-0.3 hours in HFKs to >12 

hours in E7-expressing cells. In contrast, the half-life of ATM decreased to 4.9+/-0.9 

hours in the E7 ΔLHCYE mutant. Similar results were observed for Chk2, with the half-

life increasing to >12 hours in HFK-31 cells from 7.5+/-0.5 hours in HFKs. Similar to 

ATM, Chk2 exhibited a reduced half-life in cells expressing the E7 ΔLHCYE mutant 

(Figure 2.5C-D, Table 2.1). Since the half-life of Chk2 in the E7 ΔLHCYE mutant cells 

extended past our time course, we were unable to determine the full effect of loss of the 

E7 Rb binding domain on Chk2 protein stability. However, the observation that the 

relative levels of Chk2 decrease in the E7 ΔLHCYE mutant at each time point compared 

to HFK-31 cells suggests that the E7 Rb binding domain is important for extending the 

half-life of the Chk2 protein. The half-life of Chk1 was also extended in E7-expressing 

cells, increasing to 5.6+/-0.8 hours from 3.5+/-0.6 hours in control cells. Similar to ATM 

and Chk2, the increase in protein stability was lost in cells expressing the E7 ΔLHYCE 
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mutant (3.9+/-0.3 hours). Taken together, these data indicate that HPV maintains high 

levels of ATM, as well as ATR pathway components by increasing protein stability. 

Furthermore, these data indicate that the increase in half-life observed in HPV31 

positive cells occurs in an E7-dependent manner through its Rb binding domain.  
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Figure 2.5. The half-lives of ATM, Chk2, and Chk1 are increased in HPV31 

positives cells in an E7-dependent manner. (A, B) Uninfected HFKs, HFKs 

maintaining wild type HPV31 genomes (HFK-31), HPV31 genomes containing a 

mutation in the E7 Rb binding site (HFK-31 ΔLHYCE), as well as (C, D) HFKs stably 

transduced with a retroviral vector expressing wild type E7 (pLXSN-31 E7), or E7 with a 

mutation in the Rb binding domain (pLXSN-31 E7 ΔLHCYE) were treated with 50 g/ml 

cycloheximide over 12 hour time course, with whole cell lysates being harvested at the 

indicated time points. Western blot analysis was performed using antibodies targeting 

ATM, Chk2, and Chk1, as well as GAPDH, which served as a loading control. (A, B) 

Shown is representative Western blots from three independent experiments from two 

different HFK donors. (C, D) Data shown are representative Western blots from three 

independent experiments from one HFK donor. (B) Graphed are the average protein 

levels of ATM, Chk2, and Chk1 in HFK, HFK-31, and HFK-31 ΔLHCYE cells over three 

independent experiments +/- the standard error of the mean. Westerns were digitally 

imaged using the Bio-Rad Chemidoc MP system, and densitometry was performed with 

the Biorad ImageLab 5.0 software. Values are shown relative to each T0, which was set 

to100.  (D) Graphed are the average protein levels of ATM, Chk2 and Chk1 in HFKs, 

pLXSN-E7 and pLXSN E7 ΔLHCYE cells over three independent experiments. 

Densitometry was performed as described above. Error bars represent +/- the standard 

error of the mean. 

We next determined if HPV31 also maintains components of the MRN complex 

by increasing protein stability. As shown if Figures 2.6A and 2.6B and summarized in 

Table 2.1, the half-life of MRE11 was substantially increased from 4.8+/-0.4 hours in 
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HFKs to >12 hours in HFK-31 cells. In contrast, the half-life of MRE11 in HFK-31 

ΔLHYCE cells (4.2+/-0.2 hours) mirrored that found in HFKs. Similarly, the half-life of 

Rad50 was increased in HFK-31 cells (>12 hours) compared to HFKs (8.3+/-0.9 hours). 

We were unable to determine the effect of the ΔLHCYE mutation on Rad50 protein 

stability as the half-life extended beyond our time course (>12 hours) (Figure 2.6B). 

However, the observation that the relative levels of Rad50 decreased in the E7 

ΔLHCYE mutant at each time point compared to HFK-31 cells suggests that protein 

stability is affected by loss of the Rb binding domain. For NBS1, the half-life increased 

from 7.1+/-1.1 hours in HFKs to more than 12 hours in HFK-31 cells, and was reduced 

to 9.4+/-1.1 hours in HFK-31 ΔLHYCE cells. Similar results for the MRN complex 

components were observed in E7-expressing cells (Figure 2.6C-D). As shown in Figure 

2.6C and 2.6D and summarized in Table 2.2, the half-lives of MRE11 and NBS1 

increased from 3.2+/-0.2 and 5.0+/-0.4 hours in HFKs, respectively, to >12 hours in cells 

expressing wild-type E7. In cells expressing the E7 ΔLHYCE mutant, the half-lives for 

MRE11 and Nbs1 were reduced to 3.6+/-0.8 and 4.6+/-0.7 hours, respectively, similar to 

that found in HFKs (Figure 2.6C-D). Similar to the HPV31 genome containing lines, the 

half-life for Rad50 increased to >12 hours in E7-expressing cells compared to 8.4+/-0.3 

hours in HFKs. In cells expressing the E7 ΔLHCYE mutant, we were again unable to 

calculate the half-life of Rad50 based on the 12-hour time-course utilized. However, at 

each time point the relative levels of Rad50 were lower in the E7 ΔLHCYE mutant 

compared to wild-type E7-expressing cells, again suggesting that loss of the Rb binding 

mutant affects Rad50 stability. Overall, these data suggest that protein stability is a 

contributing factor to the maintenance of MRN complex members in HPV31 positive 
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cells and this regulation occurs through a mechanism requiring Rb binding domain of 

E7. 
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Figure 2.6. The E7 Rb binding domain is necessary for the increased half-lives of 

MRN complex components in HPV31 positive cells. (A, B) Uninfected HFKs, HFKs 

maintaining wild type HPV31 genomes (HFK-31), HPV31 genomes containing a 

mutation in the E7 Rb binding site (HFK-31 ΔLHYCE), as well as (C, D) HFKs stably 

transduced with a retroviral vector expressing wild type E7 (pLXSN-31 E7), or E7 with a 

mutation in the Rb binding domain (pLXSN-31 E7 ΔLHCYE) were treated with 50 g/ml 

cycloheximide over 12 hour time course, and whole cell lysates were harvested at the 

indicated time points. Western blot analysis was performed using antibodies to MRE11, 

Rad50, and NBS1, as well as GAPDH, which served as a loading control. (A, B) Data 

shown are representative blots from three independent experiments from two different 

HFK donors, and for (C, D) data shown are representative blots from three independent 

experiments from one HFK donor. (B, D) Graphed are the average protein levels of 

MRE11, Rad50, and NBS1 over three independent experiments. Westerns were 

digitally imaged using the Bio-Rad Chemidoc MP system, and densitometry was 

performed with the Biorad ImageLab 5.0 software. Values are shown relative to each 

T0, which was set to100.  Error bars represent +/- the standard error of the mean. 

As mentioned, we previously reported that BRCA1 and Rad51 exhibit increased 

protein stability in HPV31 positive CIN612 cells (7). We next wanted to determine if this 

phenotype was affected by the E7 ΔLHCYE mutation. As shown in Figures 2.7A and 

2.7B and summarized in Table 2.1, the half-lives of BRCA1 and Rad51 were 

significantly elevated, increasing from 2.9+/-0.3 and 5.4+/-0.2 hours in HFKs to 6.0+/-

0.5 and 10.2+/-0.3 hours in HFK-31 cells, respectively. Similar to the other DDR 

proteins examined, this increased stability was lost in HFK-31 ΔLHCYE cells for both 



 70 

BRCA1 (3.0+/-0.3 hours) and Rad51 (4.6+/-0.2 hours). Similar results were observed in 

the E7-expressing cells, as shown in Figures 2.7C and 2.7D and summarized in Table 

2.2. We found the half-lives of BRCA1 and Rad51 increased from 3.3+/-0.4 and 5.0+/-

1.4 hours in HFKs to 6.9+/-0.2 and 12.1+/-1.4 hours in E7-expressing cells, 

respectively. In the E7 ΔLHCYE mutant cells, the half-lives decreased to levels similar 

to that found in HFKs for both BRCA1 (2.6+/-0.1 hours) and Rad51 (5.0+/-0.9). This 

data, along with our analysis of BRCA1 and Rad51 gene expression (Figure 2.4E-F), 

suggests that BRCA1 and Rad51 are regulated by HPV31 both transcriptionally, as well 

as post-transcriptionally via protein stability in an E7-dependent manner. Additionally, 

our data indicate that the Rb binding site of E7 contributes to both mechanisms. 
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Figure 2.7.  Increased protein stability in an E7-dependent manner contributes to 

the increased levels of BRCA1 and Rad51 in HPV31 positive cells. (A, B) Primary 

HFKs, HFKs maintaining wild type HPV31 genomes (HFK-31) or mutant HPV31 

genomes with a mutation in the Rb binding site (HFK-31 ΔLHCYE), as well as (C, D) 

pLXSN-E7 and pLXSN E7 ΔLHCYE cells were treated with 50 g/ml cycloheximide 

over a 12 hour time course. Whole cell lysates were harvest at the indicated times using 

antibodies to BRCA1 and Rad51, with GAPDH serving as a loading control. (A, B) Data 

shown are representative blots from three independent experiments from two different 

HFK donors, and for (C, D) data shown are representative blots from three independent 

experiments from one HFK donor.  (B, D) Graphed are the relative protein levels at 

each time point, with T0 for each cell line set to 100. Densitometry was performed 

across three independent experiments using Biorad ImageLab 5.0 software. Error bars 

represent means +/- standard error.  

 

Table 2.1. Protein half-lives for DDR factors in primary HFKs, HFK-31 cells, and 

HFK-31 ΔLHCYE cells. Half-lives of the indicated proteins were determined by 

performing linear regression on values obtained by densitometry from Figure 2.5B, 
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Figure 2.6B, and Figure 2.7B across three independent experiments from two HFK 

backgrounds. Error represents +/- standard error of the mean.  

 

Table 2.2. Protein half-lives for DDR factors in primary HFKs, pLXSN 31-E7 cells, 

and pLXSN 31-E7 ΔLHCYE cells.  Linear regression was performed on values 

obtained by densitometry in Figure 2.5D, Figure 2.6D, and Figure 2.7D to determine the 

half-life of the indicated proteins. Shown are the average half-lives across three 

independent experiments from one HFK background with the error representing +/- 

standard error of the mean.  

DISCUSSION 

Previous studies demonstrated that activation of both the ATM and ATR DNA 

damage response (DDR) pathways are required for the productive replication of HPV31 

(16, 31). Expression of E7 alone has been shown to be sufficient for activation of both 

ATM and ATR signaling (16, 37). It is well established that E7 plays a central role in 

facilitating viral replication by binding and targeting the degradation of Rb, resulting in S-

phase re-entry by a subset of differentiating keratinocytes (3). The introduction of the 

HPV31 genome, or expression of HPV31 E7 alone is sufficient to increase the levels of 

a broad range of DNA repair factors in primary keratinocytes, including ATM, Chk2, 
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Chk1, the MRN complex, BRCA1, and Rad51, all of which are required for productive 

replication (2, 7, 31, 37). Interestingly, loss of Rb activity has been shown to recapitulate 

many of these phenotypes (12, 36), raising the possibility that E7 activates the DDR and 

provides DNA repair factors for productive viral replication through its ability to bind and 

target Rb for degradation. Consistent with this idea, we have found that the E7 Rb 

binding domain is required for maintenance of ATM and ATR activation, as well as the 

increased levels of DNA repair factors observed in both HPV31 positive and E7-

expressing cells.  

We have found that deletion of the HPV31 E7 Rb binding domain results in 

decreased levels of both phosphorylated and total levels of ATM, as well as its 

downstream target Chk2. In addition, we have found that this domain is required for 

maintenance of total and phosphorylated levels of Chk1, a target of the ATR DNA 

damage kinase.  The concomitant decrease in total levels along with the 

phosphorylated forms of ATM, Chk2, and Chk1 in E7 Rb binding deficient cells 

suggests that in addition to inducing DDR activation, E7 contributes to maintenance of 

the DDR through increasing total levels of DNA repair factors. Additionally, we show 

that while total levels of ATM and Chk2 decrease upon differentiation in HPV31 positive 

cells, the phosphorylated forms remain increased, suggesting that the DDR is further 

activated during the productive phase of the viral life cycle. In contrast, loss of the Rb 

binding domain resulted in a minimal decrease in total levels of DDR factors upon 

differentiation, similar to that observed for uninfected HFKs. In cells expressing HPV31 

E7 alone, these phenotypes were recapitulated, further highlighting the importance of 
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the E7 Rb binding domain in the regulation of these DDR factors in HPV31 positive 

cells. 

Our studies demonstrate that loss of the E7 Rb binding site results in reduced 

levels of all three components of the MRN complex (Mre11, Rad50, and Nbs1). The 

MRN complex is required for the activation of ATM in response to DNA damage (24, 25, 

35). However, we previously published that the MRN complex is not required for ATM 

activation in HPV31 positive cells, but is required for productive viral replication (2). 

These results suggest that the decrease observed in ATM phosphorylation upon the 

loss of the Rb binding domain is not due to decreased levels of MRN components. In 

addition, we have found that the levels of the homologous repair proteins BRCA1 and 

Rad51, both of which are also required for productive replication (7), are maintained at 

high levels in HPV31 positive cells and E7-expressing cells in a manner dependent on 

the Rb binding domain. Together, these data further suggest that the Rb binding domain 

is required for HPV to maintain adequate levels of DNA repair factors required for viral 

DNA synthesis.  

The most well-known function of the E7 LXCXE domain is the binding of Rb, 

resulting in its targeted degradation and the constitutive activation of E2F transcription 

factors. Based on this function of E7, the simplest explanation of the reduction in total 

protein levels observed in Rb binding deficient cells is that transcription of DNA repair 

genes is decreased. In support of this, several of these factors are E2F responsive, 

including ATM, Chk1, BRCA1, and Rad51 (6). However, while we found that E2F1 and 

E2F2 protein levels are increased in HPV positive cells in a manner dependent on the 

Rb binding domain, only Chk1, BRCA1, and Rad51 were significantly affected at the 
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transcriptional level by the E7 ΔLHCYE mutation, suggesting that the other DNA repair 

factors examined (ATM, Chk2, and MRN) are regulated primarily in a post-

transcriptional manner.  In support of this, we found that all of the DDR proteins 

examined exhibited some level of regulation at the level of protein stability, with five 

proteins (ATM, Mre11, NBS1, BRCA1, and Rad51) at least doubling their half-lives in 

HPV31 positive and/or E7-expressing cells compared to uninfected HFKs. Importantly, 

this increase in half-life was lost in the ΔLHCYE mutant both in the context of the viral 

genome, as well as in cells expressing E7 alone. Together, these observations suggest 

that E7 uses a two-pronged approach to elevate levels of DNA repair factors: increasing 

the transcription of a subset of DNA repair factors and broadly increasing the stability of 

these proteins. Interestingly, our studies indicate that HPV ensures adequate levels of 

BRCA1 and Rad51 by targeting both the regulation of gene expression and protein 

stability. 

The mechanism by which E7 increases the protein stability of DNA repair factors 

in HPV positive cells is currently unclear, although several possibilities exist. E7 has 

been shown to interact with multiple DDR components, including ATM, Rad50, NBS1, 

and BRCA1 (2, 31, 46), which may influence the stability of these proteins.  Importantly, 

the interaction of E7 with ATM and NBS1 is lost upon depletion of the Rb binding 

domain (2, 31), and whether this affects the stability of these proteins will be the focus 

of future investigations. Another possibility is that E7 influences DDR factor protein 

stability through effects on protein degradation machinery. E7 has been shown to inhibit 

the anaphase promoting complex/cyclosome (APC/C) (44), a ubiquitin ligase complex 

involved in regulation of mitotic progression, as well as the DDR (9). However, whether 
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E7-mediated inhibition of this complex occurs in a manner dependent on the Rb binding 

domain is not known.  

We have found that E7 requires the Rb binding domain to maintain ATM, as well 

as ATR activity. ATM has been shown to affect DDR factor stability both directly through 

phosphorylation, as well as indirectly through regulation of proteasomal degradation (8). 

Therefore, loss of ATM activity in the E7 ΔLHCYE mutant may result in decreased 

stability of downstream targets through either loss of phosphorylation and/or increased 

degradation. The increase in pChk2 observed upon differentiation in HPV31 positive 

cells despite decreased total levels supports this possibility. ATM regulates the activity 

of ubiquitin ligases, including MDM2, through phosphorylation, in turn increasing the 

stability of p53, as well as Chk2.  (29) (23). ATM also regulates the stability of Chk1 

through phosphorylation and stabilization of the zinc-finger like protein ZEB1, which 

interacts with the deubiquitylase USP7 to prevent proteasomal degradation of Chk1 

(45). Additionally, p300 is phosphorylated and stabilized by ATM in response to DNA 

damage, and is in turn required for the stabilization NBS1 (21, 22). Interestingly, p300 

has also been shown to bind directly to the LXCXE domain of HPV16 E7 (4), providing 

a potential direct link between the Rb binding site of E7 and the regulation of NBS1 

stability. Furthermore, previous studies have linked Rb inactivation to ATM activation 

and DSB induction (36, 40, 41), as well as the control of Tip60-dependent acetylation of 

ATM (40), which is required for ATM autophosphorylation and activation. Importantly, 

recent studies have shown that Tip60 is required for productive replication of HPV31 

(17), presumably through facilitating ATM activation. Determining if the Rb binding 

domain is required for ATM activation through Tip60, as well as whether ATM activity is 
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required for maintenance of DDR factor stability in HPV31 positive cells will be 

important areas of future investigation.  

In addition to increasing protein stability, our studies suggest that E7 elevates 

transcription of a subset of DNA repair genes (Chk1, Rad51, and BRCA1) in a manner 

dependent on the Rb binding domain, though the mechanism by which this occurs is 

unclear. Previous studies demonstrated a requirement for the STAT5 transcription 

factor in the activation of both the ATM and ATR pathways in HPV31 positive cells (16, 

18).  The activation of STAT5 was shown to be E7-dependent and may require the Rb 

binding domain. STAT5 knockdown decreased the total levels of ATM, Chk2, BRCA1, 

and Rad51 in HPV31 positive cells, while only affecting the phosphorylated levels of 

ATR and Chk1 (16, 18). However, whether the decrease in ATM, Chk2, BRCA1, and 

Rad51 is regulated transcriptionally or post-transcriptionally is unclear. Additionally, the 

expression of both BRCA1 and Rad51 is known to be regulated in manner dependent 

on E2F transcription factors (6), opening the possibility that E7 increases their 

transcription through its ability to inactivate Rb or its related pocket proteins p107 and 

p130. Identifying the mechanism(s) by which E7 regulates the transcription of these 

DNA repair factors will be important to further understand how HPV manipulates DNA 

damage signaling to facilitate viral replication. 
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CHAPTER 3: ATM KINASE ACTIVITY IS NECESSARY FOR THE MAINTENANCE 

OF G2/M CHECKPOINT PROTEINS IN DIFFERENTIATED HPV POSITIVE 

KERATINOCYTES 

OVERVIEW 

 Human papillomaviruses (HPV) productively replicate their genome in the upper 

layers of the stratified epithelia while host keratinocytes are arrested in G2. Levels of 

numerous proteins regulating mitotic entry from G2 are increased in HPV positive cells 

and exhibit post-translational modifications and localization consistent with activation of 

the G2/M checkpoint. While it has been shown that the expression of the HPV E7 

protein is sufficient to recapitulate these phenotypes in organotypic raft cultures, the 

underlying mechanism enabling G2 arrest in HPV infected cells is largely unexplored. 

Here, we demonstrate that the activity of the ATM kinase is necessary for increased 

levels of G2/M regulating proteins upon differentiation. Taken with the fact that ATM 

kinase activity is also needed for productive replication, these data suggest that ATM 

functions in HPV infected cells to create an environment conducive to productive 

replication by inducing the G2/M checkpoint. 

INTRODUCTION 

 Human papillomavirus (HPV) infection is one of the most common sexually 

transmitted infections in the world (10). Infection with a subset of HPVs, termed the 

high-risk HPVs, has been found to be the causative agent of nearly all cervical cancer 

cases (32). High-risk HPVs infect the keratinocytes of the stratified epithelium, and 
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HPV’s life cycle is tied directly to the differentiation state of the host cell. Infection 

begins when an HPV virion gains access to the basal layer of the epithelium through a 

small wound called a microabrasion (26). HPV then infects basal keratinocytes to begin 

early gene expression prior to replication of its genome up to 50 copies per cell. From 

there, HPV replicates its DNA synchronously as the host keratinocyte divides. When a 

basal cell divides, one daughter cell will move upwards in the epithelium and begin the 

process of differentiation. Differentiation triggers late gene expression and the onset of 

the productive phase of the viral life cycle. Upon the initiation of differentiation, 

uninfected cells exit the cell cycle while HPV infected keratinocytes re-enter S-phase 

and replicate their DNA (5). After host DNA has been replicated, cells then enter a state 

resembling G2 arrest (3, 6, 29). It is only then that HPV will begin the productive 

replication of its genome, termed amplification, increasing the number of HPV genomes 

per cell to over 1000 (5). After amplification is complete, infected keratinocytes exit the 

cell cycle, assemble mature virions, and subsequently release progeny. 

 Ataxia-telangiectasia mutated (ATM) is a serine-threonine kinase responsible for 

coordinating the cellular response to double stranded DNA breaks (DSBs) by 

phosphorylating hundreds of downstream targets to induce DNA repair, cell cycle arrest, 

and in the event DNA repair fails, apoptosis (27). During HPV infection, the levels of 

numerous proteins in the ATM pathway are increased (23). Pharmacological inhibition 

of the ATM kinase or its downstream target checkpoint kinase 2 (Chk2) is sufficient to 

block amplification, as is the disruption of the MRN complex (the DNA damage sensor 

responsible for activating ATM) and knockdown of the homologous repair proteins 

BRCA1 and Rad51 (2, 4, 23). Taken together with the fact that these factors are known 
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to be recruited to viral replication centers (2, 14), these findings suggest that HPV may 

activate the ATM pathway in part to utilize DNA repair factors in the replication of its 

DNA. However, the role of ATM activity in increasing the levels of these factors has not 

been examined. Half-lives of these DNA repair factors are greatly increased in HPV 

infected cells and ATM activation has been shown to stabilize a subset of these factors 

outside the context of infection (17-19, 31). Thus, it is possible that ATM activity 

functions to increase levels of DNA repair factors necessary for viral replication. 

 Entry into mitosis from G2 is regulated by the maturation or mitosis promoting 

factor (MPF). MPF is a complex of two proteins, cyclin B and cyclin dependent kinase 1 

(Cdk1). In a cell with undamaged DNA, levels of cytoplasmic cyclin B rise sharply in G2 

and bind Cdk1. In order to trigger mitotic entry, cyclin B and Cdk1 are imported to the 

nucleus and Cdk1 is activated by the phosphatase cdc25c which removes inhibitory 

phosphorylation marks on Cdk1  (24). During DNA damage, ATM phosphorylates and 

activates Chk2, which in turn phosphorylates the cdc25c phosphatase, inactivating it. 

Inactivation of cdc25c leads to the accumulation of inhibitory phosphorylation marks on 

Cdk1, arresting the cell cycle (28). During HPV infection, the levels of cyclin B, Cdk1, 

cdc25c, as well as Myt1 and Wee1 (the kinases responsible for inhibiting Cdk1) are all 

increased relative to uninfected keratinocytes (3). Importantly, analysis of the 

localization and posttranslational modifications of these factors suggest that the G2/M 

checkpoint is activated in the upper layers of the epithelium in which HPV replicates its 

genome (3, 29). Specifically, the MPF exhibits cytoplasmic localization and Cdk1 shows 

increased levels of inhibitory phosphorylation. Additionally, cdc25c is inhibited while 

total levels Myt1 and Wee1 are increased relative to uninfected cells (3). Together, 
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these data suggest HPV promotes cell cycle arrest in G2 in order to facilitate genome 

amplification. 

 HPV E7 is a major oncoprotein linked to HPV related cancer. Within the context 

of the viral life cycle, HPV E7 is most famous for its degradation of the pocket protein 

Rb to release E2F transcription factors and drive the cell into S-phase. However, E7 has 

been shown to have a number of other functions as well (25). Expression of E7 alone 

has been shown to recapitulate both ATM activation and increase the expression of 

proteins regulating the G2/M checkpoint (3, 23). Interestingly, deletion of the Rb binding 

domain of E7 completely ablates both phenotypes (3, 19). Taken with the fact that ATM 

is a key regulator of the G2/M checkpoint (27), we hypothesized that HPV may induce 

G2/M arrest through E7’s activation of ATM. In this study, we begin to examine this 

question through the use of the small molecule inhibitor of ATM kinase activity, KU-

55933. We demonstrate that inhibition of ATM is sufficient to lower levels of G2/M 

checkpoint proteins in differentiated HPV31 positive keratinocytes. In contrast, we found 

that inhibition of ATM kinase activity had no effect on levels of DNA repair factors, with 

the exception of Rad51. These data suggest that ATM functions to promote G2/M arrest 

in HPV infected keratinocytes in order to create an environment conducive to viral 

replication. 

MATERIALS AND METHODS 

Cell Culture: CIN612 (9E) cells are a clonal cell line derived from a CIN1 

cervical lesion, previously shown to stably maintain HPV31 epitomes (16).Cells were 

grown in E-medium supplemented with 5 ng/ml mouse epidermal growth factor (EGF) 

and J2 3T3 fibroblasts growth arrested with mitomycin C, as described previously (30). 
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Prior to harvesting either protein or DNA, J2 feeder cells were removed by treating with 

1mM EDTA in phosphate buffered saline (PBS) for 5 minutes, then washing twice with 

PBS. 

Differentiation in High Calcium Medium: CIN612 cells were differentiated for 

72 hours in high calcium media as previously described (23) . Briefly, cells were 

harvested during log phase growth at approximately 90% confluency (0 hr). The 

remaining plates were washed with PBS and serum starved in keratinocyte growth 

media with supplements for 16 hours (KGM; Lonza). Cells were washed again with PBS 

and then incubated in high calcium medium (1.8mM CaCl2 KGM without supplements) 

for 72 hours. The media was removed at 48 hours and replaced with fresh high calcium 

media. DNA and protein was harvested at each time point. 

Drug Treatment: KU-55933 was obtained from Selleckchem. For 

undifferentiated samples (0 hr), cells were treated with 10 M KU-55933 or DMSO 24 

hours prior to harvest. For differentiated samples (72 hr), cells were treated with either 

10 M KU-55933 or DMSO upon the addition of high calcium media. 10 M KU-55933 

or DMSO was added again when the media was changed at 48 hours. 

Western Blot Analysis: Whole cell lysates were taken by suspension in RIPA 

lysis buffer supplemented with PhoSTOP phosphatase inhibitor (Roche) and Complete 

Mini protease inhibitor (Thermo Scientific). The concentration of protein in each lysate 

was determined using the Bio-Rad protein assay (Bio-Rad). Equal amounts of protein 

for each sample were then loaded, separated by size via SDS-page, and transferred to 

a polyvinylidene difluoride (PVDF) membrane (Immobilon-P; Millipore). The following 

primary antibodies were used during western blotting: phospho-ATM Ser1981, NBS1 
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(Abcam); ATM (Bethyl laboratories); cdc25b, phospho-cd25c Ser216, phospho-Cdk1 

Thr14, phospho-Cdk1 Tyr15, phospho-Cdk1 Thr161, Cdk1, phospho-Chk2 Ser68, 

Chk2, cyclin A, Myt1, Wee1, (Cell Signaling Technology); cyclin B1, cdc25c, GAPDH, 

Rad51 (Santa Cruz); MRE11, Rad50, and BRCA1 (GeneTex). Horseradish peroxidase 

(HRP)-conjugated secondary antibodies used were: anti-rabbit (Cell Signaling 

Technology) and anti-mouse (GE-life sciences). Enhanced chemiluminescence Clarity 

(Bio-Rad) substrate was used to develop blots, and images captured using the 

ChemidocMP imaging system and Imagelab 5.0 software (BioRad). 

Southern Blot Analysis: Isolation of DNA and Southern blotting has been 

described previously (9). Briefly, cell pellets were suspended in lysis buffer containing 

400mM NACL, 10mM Tris pH 7.5, 10 mM EDTA, and 30 L of 20% Sodium Dodecyl 

Sulfate (SDS). Samples were then incubated overnight at 37°C with 15 L of 10 mg/ml 

proteinase K. DNA was extracted using phenol-chloroform and precipitated with 200 

proof ethanol. The restriction enzymes HINDIII and BAMHI (New England Biolabs) were 

used to digest total DNA to produce HPV genomes that were cut either once or not at 

all, respectively. DNA samples then underwent electrophoresis for 16 hours at 40V in a 

0.8% agarose gel and vacuum transferred to a positively charge nylon membrane 

(Immoblin-NY+; EMD Millipore). DNA was fixed to membranes using UV irradiation and 

hybridized to P32 labeled probes derived from HPV31 plasmids. 

RESULTS 

Inhibition of ATM kinase activity has no effect on the levels of DDR factors 

in HPV31 positive cells: To determine the function of ATM kinase activity in the 

productive Human papillomavirus (HPV) life cycle, we utilized the small molecule 
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inhibitor of ATM kinase activity KU-55933. Our lab has previously used this inhibitor to 

study the effect of ATM inhibition on HPV infection, demonstrating that ATM kinase 

activity is necessary for genome amplification but not for episomal maintenance (23). 

HPV31 positive CIN612 cells were treated with Ku-55933 either for 24 hours prior to 

differentiation or for 72 hours during differentiation in high calcium media, shown to 

initiate the productive phase of the HPV life cycle. Whole cell lysates were harvested 

and the levels of DNA repair factors were then examined by western blot analysis. As 

can be seen in Figure 3.1A, KU-55933 treatment decreased the phosphorylation of ATM 

at Serine1981, a marker of activated ATM, both prior to and after 72 hours 

differentiation in calcium medium. Phosphorylated levels of the ATM target Chk2 were 

also decreased upon KU-55933 treatment. KU-55933 treatment did not affect total 

levels of ATM or Chk2. Furthermore, levels of the differentiation marker involucrin were 

not affected by KU-55933 treatment suggesting differentiation proceeded normally.  

This phenotype is consistent with previous studies utilizing KU-55933, and indicates 

successful inhibition of ATM kinase activity (23). Additionally, KU-55933 treatment 

blocked amplification of the HPV31 genome (Figure 3.1B), as previously reported (23).  

 Many DNA repair proteins previously shown to be necessary for amplification are 

also the targets of ATM phosphorylation, including MRE11, Rad50, NBS1, and BRCA1 

(11-13, 20). We previously showed that the stability of these proteins is greatly 

upregulated in HPV31 positive cells (19). Given that ATM activation has been shown to 

regulate the stability of its downstream targets (7), we next wanted to determine if the 

loss of amplification of the HPV31 genome could be explained by decreased levels of 

DNA repair factors required for productive replication. To examine this possibility, we 
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determined the total protein levels of the MRN complex proteins MRE11, Rad50, and 

NBS1 as well as the homologous repair factors BRCA1 and Rad51 in response to 

inhibition of ATM activity. As shown in Figure 3.1C, inhibition of ATM kinase activity had 

no effect on the total levels of MRE11, Rad50, NBS1, or BRCA1 in HPV31 positive 

CIN612 cells over our time course. In contrast to this, Rad51 levels were decreased 

slightly, though only after differentiation for 72 hours in calcium media. Together these 

data suggest that while ATM kinase activity may play a role in increasing total protein 

levels of Rad51 specifically, it cannot account for the broad increase in DNA repair 

factor levels seen in HPV infected cells. 

 

 

Figure 3.1. Levels of the MRN complex, as well as the homologous repair protein 

BRCA1, are not affected by inhibition of the ATM kinase. (A) Western blot analysis 

was performed on whole cell lysates from HPV31 positive CIN612 cells harvested prior 

to (0) and 72 hours after differentiation in high calcium. Cells were treated with either 

the ATM kinase inhibitor KU-55933 (ATMi) or DMS0 as a vehicle control, as indicated. 
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Western blot analysis was performed using phospho-specific antibodies to determine 

the activation of ATM (Serine 1981) and Chk2 (Thr68), as well as total protein levels. 

The differentiation marker involucrin was used to confirm differentiation. GAPDH was 

used as a loading control (B) DNA was harvested from undifferentiated (0) CIN612 cells 

or those differentiated in high calcium media for 72 hours. Southern blot analysis was 

performed using an HPV31 specific probe to determine relative levels of HPV31 

replication. (C) Western blot analysis was performed as in (A), utilizing antibodies 

specific for BRCA1, Rad51, MRE11, Rad50, or NBS1. GAPDH served as a loading 

control. 

ATM kinase activity is required to maintain levels of G2/M checkpoint proteins 

upon differentiation: Previous studies have demonstrated that HPV amplifies its 

genome when the host keratinocyte is arrested in G2 after the host DNA has finished 

replication (3, 6, 29). Additionally, the levels of several proteins involved in the G2/M 

checkpoint are increased in HPV infected cells and HPV E7 expressing cells (3). Given 

that the ATM pathway is a key activator of the G2/M checkpoint outside the context of 

infection (8), we wanted to determine if ATM played a role in arresting cells in G2. To 

test this hypothesis, we determined if inhibition of ATM kinase activity by KU-55933 

treatment was sufficient to reduce levels of G2/M proteins in HPV positive cells. We first 

examined the levels of cyclin B and Cdk1, as these two proteins together regulate 

mitotic entry by forming a complex known as the maturation or mitosis-promoting factor 

(MPF). As seen in Figure 3.2A, inhibition of ATM activity decreased total levels of Cdk1, 

but not cyclin B, after differentiation in calcium. No effect was seen prior to 

differentiation on either protein. In addition to the binding of cyclin B, activity of Cdk1 is 
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regulated by three phosphorylation sites. Phosphorylation on Threonine 14 and 

Tyrosine 15 serve to inhibit Cdk1 activity, while Cdk1 is activated by phosphorylation at 

Threonine 161. When the levels of the three regulatory phosphorylation sites of Cdk1 

were examined, similar decreases in levels were found in all three cases. Together, 

these data suggest that ATM kinase activity is necessary for the increased levels of 

Cdk1, but not cyclin B, in HPV31 positive cells upon differentiation.  

 During DNA damage, activity of the MPF is largely regulated by the cdc25b and 

cdc25c phosphatases. During normal cycling, cdc25b and cdc25c remove the inhibitory 

phosphorylation marks from Cdk1, allowing MPF to become active and drive cells into 

mitosis from G2. The activity of cdc25c is itself inhibited by phosphorylation of Serine 

216 by the ATM target Chk2 during DNA damage, thus preventing MPF activity by 

causing the accumulation of inhibitory post translational modifications. Cdc25b’s activity 

is more specialized, and is inhibited by phosphorylation of p38 and Chk1 in response to 

UV irradiation (28). As with Cdk1, both the phosphorylated and total levels of cdc25c 

are upregulated in HPV infected and E7 expressing cells, while cdc25b levels have not 

been examined (3). We next wanted to determine if inhibition of ATM activity by KU-

55933 decreased levels of cdc25b and cdc25c in HPV31 positive cells. As shown in 

Figure 3.2B, while inhibition of ATM had no effect on either phosphorylated or total 

cdc25c levels prior to differentiation, both were reduced upon differentiation in calcium.  

An identical phenotype was observed for total levels of cdc25b. Together these data 

indicate that ATM activity is necessary to maintain high levels of cdc25 proteins upon 

differentiation in HPV31 positive cells. 
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Levels of Myt1 and Wee1, the kinases responsible for conferring inhibitory 

phosphorylation marks on Cdk1, are also increased in HPV positive and E7 expressing 

cells (3). Given the observation that Cdk1 and cdc25 levels are decreased upon 

inhibition of the ATM kinase, we next examined the levels of Myt1 and Wee1. As see in 

Figure 3.2C, levels of Myt1, but not Wee1, were reduced in both unidifferentiated and 

differentiated HPV positive cells by ATM inhibition. As seen with Cdk1 and cdc25 levels, 

ATM had no effect prior to differentiation. Together, these data suggest that the ATM 

kinase is required for increased levels of key proteins regulating the G2/M checkpoint in 

differentiating HPV31 positive cells. 

 

Figure 3.2. Inhibition of the ATM kinase results in decreased levels of G2/M 

regulatory proteins in HPV31 positive cells. (A-C) Whole cell lysates from HPV31 

positive CIN612 cells were harvested either before (0) or 72 hours after differentiation 

was induced with high calcium media. Cells were treated with DMSO vehicle control or 

the KU-55933 (ATMi) inhibitor of ATM kinase activity, as indicated. (A) Western blot 

analysis was performed with phospho-specific antibodies targeting Threonine 14, 
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Tyrosine 15, or Threonine 161 of Cdk1, as well as total Cdk1 and cyclin B. (B) Western 

blot analysis was performed using a phospho-specific antibody for Serine 216 of 

cdc25c, as well as antibodies targeting total cdc25c and cdc25b. (C) Western blot 

analysis was performed using antibodies Myt1 and Wee1. GAPDH was used as a 

loading control in all panels. 

DISCUSSION 

 It has been previously established that Human papillomavirus (HPV) productively 

replicates its genome when cells are arrested in G2, as evidenced by the high levels of 

cytoplasmic cyclin B in cells amplifying viral DNA (29). Furthermore, HPV infected 

keratinocytes exhibit elevated levels of G2/M regulatory proteins such as cyclin B, 

cdc25c, Cdk1, Myt1, and Wee1. When it has been examined, all of these proteins have 

post-translational modifications and localization consistent with arrest in G2. Expression 

of wild type E7 is sufficient to recapitulate these phenotypes, while expression of an E7 

lacking its LXCXE Rb binding motif is not (3). To date, the underlying mechanism of 

how E7 is able to induce G2/M arrest within cells replicating HPV DNA has not been 

explored. Outside the context of infection, the ATM kinase, through its downstream 

target Chk2, can induce G2/M arrest in response to DNA damage (27). HPV infected 

cells have increased levels of activated ATM and Chk2, and inhibition of the kinase 

activity of either protein inhibits productive replication (23). Similar to the arrest of HPV 

infected cells in G2, this phenotype can be recapitulated by the expression of wild type 

E7, but not by an E7 lacking its Rb binding domain (19). Given that ATM is an 

established inducer of the G2/M checkpoint and the phenotypic similarities between 

G2/M checkpoint induction and ATM activation in HPV infected cells, we hypothesized 
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that ATM activity is necessary for productive HPV replication in part because it ensures 

the induction of G2/M arrest during the HPV life cycle. 

 It was first important to determine if inhibition of ATM had any effect on the levels 

of DNA repair factors in HPV31 positive cells. The half-lives of many DNA repair factors 

are increased in HPV31 positive cells. Given that ATM itself has been shown to 

modulate the stability of some of its downstream targets outside the context of infection 

(7, 19), it was possible that inhibition of ATM kinase activity could result in decreased 

levels of DNA repair factors in HPV31 positive cells. However, we found that inhibition 

of the ATM kinase had no effect on MRE11, Rad50, NBS1, and BRCA1 levels. In 

contrast, Rad51 levels were mildly decreased. Thus, while ATM kinase activity does 

play a role in regulating Rad51 levels in HPV infection, it cannot account for the broad 

increase in DNA repair factor levels seen in HPV infected cells. 

 We next examined the effect of ATM kinase inhibition on the levels of proteins 

regulating the G2/M checkpoint in HPV infected cells. We first examined the levels of 

cyclin B and Cdk1, the two proteins that make up the maturation or mitosis promoting 

factor (MPF), which directly controls entry into mitosis from G2 (24). We found that 

inhibition of the ATM kinase in HPV positive cells decreased the levels of Cdk1, but not 

cyclin B, after differentiation in high calcium media. No effect was seen prior to 

differentiation on either cyclin B or Cdk1. Additionally, the levels of Cdk1 phosphorylated 

at Threonine 14 and Tyrosine 15 (the inhibitory phosphorylation sites of Cdk1) as well 

as Threonine 161 (the activating phosphorylation site of Cdk1) were decreased to a 

similar extent. Similarly, the levels of the Cdk1 regulating phosphatases cdc25b and 

cdc25c were reduced in HPV infected cells when ATM was inhibited, but only after 



96 
 

differentiation in high calcium media. Myt1, the kinase responsible for phosphorylating 

Cdk1 at Threonine 14, was similarly reduced upon differentiation. In contrast to this, 

ATM inhibition had no effect on Wee1, the kinase responsible for phosphorylating Cdk1 

at Tyrosine 15. Together, these data indicate that ATM activity is necessary for 

increased levels of G2/M checkpoint proteins in differentiating HPV infected cells. 

 Given the preliminary nature of the data presented here, a number of additional 

experiments are needed to fully explore the implications of our findings. First and 

foremost, it is important to demonstrate that G2 arrest is actually being inhibited in the 

upper layers of the stratified epithelium, as a reduction in the levels of proteins 

regulating the G2/M checkpoint does not necessarily demonstrate that arrest does not 

occur. To demonstrate this more thoroughly, we will determine if ATM inhibition alters 

the localization of cyclin B and Cdk1 in organotypic raft cultures. If ATM inhibition 

prevents arrest in G2, we would expect to see increased levels of nuclear cyclin B and 

Cdk1 in suprabasal keratinocytes. These data would demonstrate that MPF is no longer 

inhibited and that the G2/M checkpoint is no longer active. 

 Because of ATM’s large number of downstream targets (27), we would next 

examine the exact mechanism ATM uses to induce the G2/M checkpoint. The most 

likely hypothesis is that ATM activates the G2/M checkpoint through Chk2, the kinase 

ATM activates in order to induce G2 arrest in uninfected cells. Despite the seemingly 

obvious nature of this experiment, demonstrating that Chk2 inhibition recapitulates the 

effects of ATM inhibition on the G2/M checkpoint is critical, as it begins to separate oG2 

arrest from other ATM dependent functions. To further support the idea that arrest in G2 

is a specific function of ATM activation needed for productive replication, 
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pharmacological inhibition of either Myt1 or Wee1 could be used. If inhibition of either 

kinase blocks productive replication in addition to G2 arrest, it would suggest that arrest 

in G2 is specifically needed for productive HPV replication. Similarly, expression of 

dominant negative forms of cdc25c or Cdk1 could be used to further support this 

conclusion. Together, these experiments would demonstrate that G2 arrest by ATM 

activation is needed for productive replication of the HPV genome.  

 In addition to ATM, the ATR single stranded DNA break repair pathway is 

activated during HPV infection, and inhibiting the kinase activity of ATR or its 

downstream target Chk1 also blocks productive replication (1, 15). During DNA damage 

in uninfected cells, there is considerable cross talk between the ATM and ATR 

pathways (22). Both Chk1 and Chk2 are implicated in the induction of the G2/M 

checkpoint, with some reports suggesting that ATR-Chk1 signaling plays a dominant 

role in certain contexts (21). Thus, the ATR pathway may play a role in activation of the 

G2/M checkpoint in HPV infected cells. In the future, it would be interesting to examine 

the consequences of ATR and Chk1 inhibition on G2/M arrest, as it is possible that HPV 

utilizes both pathways to efficiently arrest cells in G2 in order to facilitate the replication 

of its genome. 

 In summary, these data suggest that ATM kinase activity in HPV infected cells is 

required to increase levels of proteins that regulate the G2/M checkpoint upon initiation 

of the productive life cycle by epithelial differentiation. In contrast, ATM activity was not 

found to be necessary to increase levels of DNA repair factors of the ATM pathway, with 

the notable exception of Rad51. While these data do not preclude ATM from having 

additional functions, they do suggest that ATM is required for productive replication of 
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the HPV genome in part because it induces arrest in G2. In the future, we hope to more 

conclusively demonstrate ATM’s role in inducing G2 arrest in HPV infected cells. 

Determination of the role of ATM, and eventually ATR, pathways in G2 arrest will allow 

the development of a more complete model of cell cycle manipulation by HPV, and may 

aid in the identification of novel interventions to prevent productive HPV replication. 
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CHAPTER 4: SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

GENERAL SUMMARY 

This dissertation examined the activation of the ATM-mediated DNA damage 

response (DDR) during human papillomavirus (HPV) infection. Previous studies 

established two important conclusions upon which this dissertation is based. First, 

papers from the Moody and Laminins labs established that levels of many DDR 

proteins are increased in HPV positive cells, recruited to viral replication centers, 

and are required for productive replication (1, 2, 7, 14, 15, 31). Additionally, several 

studies from the Chow lab showed that productive replication occurs when infected 

keratinocytes are arrested in G2 (4, 9, 46). Critically, expression of the HPV E7 

protein alone is sufficient to recapitulate these phenotypes.  

I expanded on these observations by demonstrating that the Rb binding 

domain of HPV31 E7 is necessary to increase the levels of DDR proteins in HPV31 

positive cells. I also demonstrated that HPV31 increases the levels of these factors 

by greatly extending their half-lives rather than solely through increased 

transcription. Additionally, I showed that ATM kinase activity is dispensable for 

increased levels of DNA repair factors in HPV31 positive cells. In contrast to this 

result, I found that inhibition of the ATM kinase decreased the levels of proteins 

regulating the G2/M checkpoint HPV positive cells undergoing differentiation, 

suggesting that ATM activates the G2/M checkpoint during HPV infection. In this final 

chapter, I will describe these observations in the wider context of HPV infection,



103 
  

detailing a model of how E7 exploits the ATM pathway in order to facilitate the 

replication of HPV DNA. I will also describe the potential implications of these 

findings on HPV induced oncogenesis. 

THE FUNCTION OF THE E7 RB BINDING DOMAIN IN THE ACTIVATION OF THE 

ATM PATHWAY DURING HPV INFECTION 

 Previous studies firmly established that the expression of HPV E7 is sufficient 

to activate the DDR by increasing the levels of numerous DNA repair factors (1, 2, 7, 

14, 15, 31). Previous studies by Hong et al. linked E7-dependent activation of the 

ATM pathway with E7-dependent activation of STAT5 (16, 17). However, which 

domain of E7 is responsible for STAT5 activation has not been established. 

Furthermore, many previous studies outside the context of HPV infection have linked 

the dysregulation of the Rb-E2F pathway to DNA damage and ATM activation (13, 

37, 43). Given that HPV E7 degrades Rb, dysregulated Rb-E2F signaling could also 

contribute to E7-mediated ATM activation. Given these studies, in Chapter 2 I 

hypothesized that the Rb binding domain of HPV E7 was necessary for the 

upregulation of the ATM pathway during HPV infection. 

 To test this hypothesis, I established cell lines containing either wild type 

HPV31 (HFK-31 cells) or an HPV31 genome in which the Rb binding domain of E7 

was deleted (HFK-31 LHCYE). In parallel, I established similar cell lines stably 

expressing either wild type HPV31 E7 (31 E7) or an E7 lacking the Rb binding 

domain (31 E7-LHCYE). These lines served as a platform on which the rest of the 

study was built, comparing the levels of proteins or transcripts in these cell lines to 

the appropriate controls. To examine any phenotypes observed over the entirety of 
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the HPV life cycle, cells were harvested prior to confluency during log-phase growth 

(representing the maintenance phase), as well as while differentiating in 1.5% 

methylcelluose media (representing the productive phase). 

 I first determined whether the deletion of the Rb binding domain ablates the 

ability of HPV31 to activate the ATM pathway. As expected, I found that the levels of 

both phosphorylated (activated) and total ATM and Chk2 were increased in HFK-31 

cells relative to uninfected human foreskin keratinocytes (HFKs). In contrast, HFK-31 

LHYCE cells completely lost this upregulation. This phenotype was maintained 

both prior to and after differentiation in methylcellulose. I then examined the levels of 

Chk1, a protein involved in the activation of the related ATR single stranded break 

repair pathway. I found that levels of phosphorylated (activated) and total Chk1 were 

increased in HFK-31 cells but not HFK-31 LHCYE cells across my time course. 

Together, these data suggest that the Rb binding domain of E7 is necessary to 

induce elevated levels of ATM, Chk2, and Chk1 in HFK-31 cells. To confirm these 

results, I examined levels of these proteins in cells expressing E7 alone. As 

expected, the levels of phosphorylated and total ATM, Chk2, and Chk1 were 

increased in cells expressing wild type 31 E7 relative to vector control (pLXSN), but 

not in those expressing 31 E7-LHCYE. Together, these data suggest that the Rb 

binding domain of HPV31 E7 is necessary to induce increased levels of DDR 

proteins in HPV infected cells. 

 Given these data, I determined whether the Rb binding domain of E7 played a 

role in increasing the levels of other DNA repair factors during HPV infection. 

Outside of HPV infection, the MRN complex (consisting or MRE11, Rad50, and 
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NBS1) acts as a sensor for double-stranded DNA breaks (DSBs), activating ATM in 

response to DNA damage. In contrast, BRCA1 and Rad51 function downstream of 

ATM activation by regulating homologous repair (HR) (10). Previous studies have 

established that the levels of these proteins are increased in HPV31 positive and 31 

E7 expressing cells, and that the MRN complex, BRCA1, and Rad51 are required for 

productive HPV replication (2, 7). As expected, I found that the levels of all three 

MRN complex proteins as well as BRCA1 and Rad51 were increased in HFK-31 

cells, but not in HFK-31 LHYCE cells, relative to uninfected HFKs across my time 

course. Similar results were seen in 31 E7 and 31 E7-LHCYE expressing cells. 

Together, these data demonstrate that the Rb binding domain HPV31 E7 is 

necessary to induce increased levels of DNA repair factors during HPV infection. 

 Taken with the fact that Rb-E2F dysregulation can activate DDR outside of 

infection (13, 37, 43), these data allowed me to construct a model of ATM pathway 

activation during HPV infection. I postulated that HPV E7 increases the levels of 

DNA repair factors during HPV infection through the dysregulation of the Rb-E2F 

pathway. Thus, deletion of the Rb binding domain of E7 ablated increases in DNA 

repair factor levels by preventing activation of E2F dependent transcription. 

Preliminary evidence was consistent with this, as both E2F1 and E2F2 levels were 

increased in HFK-31 and 31 E7 expressing cells, but not HFK-31 LHYCE or 31 E7-

LHYCE cells (it should be noted that this phenotype is consistent with previous 

reports for E2F2) (26). However, when I examined the transcript levels of these DNA 

repair factors in HPV31 positive cells, I found no statistically significant changes for 

most transcripts. Briefly, only BRCA1 showed a statistically significant increase in 
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transcript levels when comparing HFK and HFK-31 cells. When comparing HFK-31 

and HFK-31 LHCYE cells, only BRCA1 and Rad51 transcripts were significantly 

reduced. Similar results were obtained in cells expressing E7 alone. Together, these 

data indicate that while increased transcription plays a role in increasing the levels of 

a subset of DNA repair factors in HPV31 positive cells, increased transcription is not 

completely responsible for the increased levels of DNA repair factors during HPV 

infection. 

 Based on these data, I hypothesized that HPV31 increases levels of DDR 

proteins by increasing protein stability. Consistent with this hypothesis, our lab 

previously published that BRCA1 and Rad51 exhibit increased half-lives in HPV 

positive cells relative to uninfected HFKs (7). Using cycloheximide, a potent inhibitor 

of translation, I measured protein degradation over a 12-hour time course in HFK, 

HFK-31, and HFK-31 LHYCE cells and then cacluated the protein half-lives by 

linear regression analysis. Examining ATM, Chk2, and Chk1 degradation, I found 

that the half-lives of ATM and Chk2, but not Chk1, were greatly increased in HFK-31 

cells relative to both HFK and HFK-31 LHCYE cells. When the experiment was 

repeated in cells expressing 31 E7 or 31 E7-LHYCE alone, similar results were 

obtained. Together, these data suggest that HPV31 E7, through its Rb binding 

domain, increases the levels of ATM and Chk2 by greatly increasing their stability. 

 Encouraged by these findings, I next investigated whether proteins in the 

MRN complex are regulated in a similar manner. I found that MRE11, Rad50, and 

NBS1 all exhibited increased half-lives in HFK-31 cells relative to HFKs. In HFK-31 

LHYCE cells, this phenotype was completely ablated for MRE11. In contrast, an 
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intermediate level of stabilization was observed for both Rad50 and NBS1 in HFK-31 

LHYCE cells when compared with HFKs and wild type HFK-31 cells. When the 

half-lives of these proteins were examined in cells expressing 31 E7 alone, similar 

results were obtained. The half-lives of MRE11 and NBS1 were increased in 31 E7 

cells when compared with both HFKs and 31 E7-LHYCE cells, which had almost 

identical half-lives. For Rad50, while the half-life was increased 31 E7 cells 

compared with HFKs, an intermediate level of stabilization was also observed in 31 

E7-LHCYE cells. Together, these data indicate that increased protein stability plays 

a role in the upregulation of the MRN complex expression levels during HPV 

infection. These data also suggest that independent of Rb association, HPV retains 

some ability to stabilize the MRN complex, as the deletion of the E7 Rb binding 

domain did not completely ablate the phenotype. HPV E1 is a likely candidate, as 

the expression of E1 alone can also induce DNA damage (41). 

 Finally, while we previously published that BRCA1 and Rad51 show 

increased half-lives in HPV31 positive cells, I wanted determine whether the E7 Rb 

binding domain was necessary for this stabilization (7). I found that both BRCA1 and 

Rad51 showed increased half-lives in HFK-31 cells compared with HFKs, a 

phenotype that was lost in HFK-31 LHYCE cells. When cells expressing 31 E7 

were compared with HFKs and 31-E7 LHYCE cells, a similar phenotype was 

observed. Together, these data indicate that BRCA1 and Rad51 have increased 

half-lives in HPV31 positive cells, and that this phenotype requires the E7 Rb binding 

domain. 
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 Given these findings I then considered a new model whereby the E7 Rb 

binding domain is necessary for the upregulation of DNA repair factors during HPV 

infection, and the dysregulation of E2F dependent transcription cannot completely 

account for the increased levels of DNA repair factors. Thus, the Rb binding domain 

of E7 is important for increasing the stability of DDR proteins. A number of 

hypotheses can be made, though it is difficult to speculate which may explain the 

observed phenotypes. The simplest possibility is that a single function of E7 causes 

the upregulation of all of the observed factors, but to date there has not been a 

“smoking gun” to which this phenotype can be attributed. 

An attractive hypothesis is that HPV E7 activates ATM directly, and the 

subsequent increase in ATM kinase activity is responsible for increasing protein 

stability. The Discussion section of Chapter 2, describes precedence for ATM 

regulating protein stability in this manner as ATM is known to phosphorylate the 

ubiquitin ligase MDM2 which it inactivates to stabilize both p53 and Chk2 (24, 29). 

Additionally, ATM can stabilize Chk1 and NBS1 through the phosphorylation of 

ZEB1 and p300, respectively (20, 21, 51). Thus, activation of the ATM kinase may 

be responsible for the stabilization of the other DNA repair factors during HPV 

infection. However, as discussed in Chapter 3, inhibition of the ATM kinase exhibits 

no effect on the levels of DDR proteins in HPV31 positive CIN612 cells, with the sole 

exception of Rad51. These results suggest that ATM kinase activity is dispensable 

for the upregulation of DNA repair factors during HPV infection. Thus, E7 must 

upregulate the stability of DDR proteins independent of E7’s activation of the ATM 

kinase activity. 
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As discussed in Chapter 1, a large number of proteins require the “Rb binding 

domain” in order to interact with the HPV E7 protein, perhaps making it more 

appropriate to refer to the Rb binding domain as the LXCXE motif (see Table 1.1 

and reference 39). A likely hypothesis for this observation is that one of the proteins 

known to bind to E7 through the LXCXE motif is responsible for the broad increase 

in DNA repair factor stability. One candidate is p300,which as previously mentioned, 

regulates the stability of NBS1 (5, 20, 21). Because E7 and p300 directly interact, it 

is possible that E7 induces NBS1 stability independent of ATM activation. Moreover, 

E7 binds ATM, Rad50, NBS1, and BRCA1 (2, 31, 52). Thus, E7 may directly 

increase the half-lives of these proteins through direct binding. Consistent with this, 

E7’s interaction with ATM and NBS1 have been shown to require the LXCXE motif 

(2, 31). Interestingly, E7 binding to ATM is ablated by the inhibition of ATM kinase 

activity, suggesting that at least in the case of ATM, direct binding cannot explain the 

increase in protein half-life (31). 

 Another possibility is that E7 somehow directly interferes with the machinery 

that regulates turn-over of DNA repair factors. E7 has been shown to inhibit the 

anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase complex that 

has been shown to regulate DDR in addition to its canonical function of regulating 

mitosis (12, 49). While its exact role is poorly defined, APC/C is activated in 

response to DNA damage where it modulates the stability of target proteins (12, 44). 

E7’s interaction with the complex may stabilize DDR factors in an undetermined 

manner. 
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 One important area of future research will be linking STAT5 activation to the 

Rb binding domain. As mentioned, previous studies by Hong et al. linked the ability 

of E7 to activate STAT5 to the activation of Tip60, whose acetylation of ATM is 

required for ATM activation independent of HPV infection (10, 15, 17). However, the 

mechanism linking the deletion of the E7 Rb binding domain to the activation of both 

STAT5 and Tip60 has not been elucidated. Knockdown of STAT5 was sufficient to 

decrease levels of ATM, Chk2, BRCA1, and Rad51; however, whether STAT5 

knockdown results in decreased transcript levels or a loss of protein stability has not 

been investigated. In order to establish a complete mechanism of ATM activation by 

HPV E7, it will be important to clarify the exact contribution of STAT5. 

INDUCTION OF THE G2/M CHECKPONT IN THE STRATEFIED EPITHELIUM 

Chapter 3 of this dissertation examined the function of ATM kinase activity in 

the HPV life cycle by determining the role of ATM in the induction of the G2/M 

checkpoint in differentiating keratinocytes. Previous studies established that HPV 

replicates its genome while the host cell is arrested in G2, as evidenced by the 

cytoplasmic localization of cyclin B and Cdk1 (4, 46). It was found that the levels of 

proteins regulating the G2/M checkpoint are increased in HPV infected cells as well 

as cells expressing E7 alone. Importantly, the E7 Rb binding domain was shown to 

be required for increased levels of cytoplasmic Cdk1 and cyclin B in E7 expressing 

organotypic raft cultures (4). Given that the ATM mediated DNA damage response is 

a known inducer of the G2/M checkpoint (10), and that both G2 arrest and ATM 

activation require the Rb binding domain (4, 23), I hypothesized that ATM activation 

is necessary for G2/M arrest in HPV infected cells. 
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To test this hypothesis, I utilized the small molecule inhibitor of ATM kinase 

activity KU-55933, which was previously shown by our lab to inhibit productive HPV 

replication and ATM activation during HPV infection (31). Use of this inhibitor 

allowed me to determine whether the inhibition of the ATM kinase affects the levels 

of many proteins regulating the G2/M checkpoint. I found that while levels of cyclin B 

were unaffected by ATM inhibition both prior to and after differentiation in high 

calcium media, the total levels of its binding partner Cdk1 were specifically reduced 

upon differentiation. When the phosphorylation levels of all three regulatory sites in 

Cdk1 were examined (Thr14 and Tyr 15 are inhibitory, whereas Thr161 is activating) 

similar decreases were observed. Additionally, cdc25b and cdc25c, phosphatases 

that serve to activate Cdk1 by dephosphorylating Thr14 and Tyr15, showed similar 

decreases in expression levels in cells that were differentiated in high calcium 

media. Finally, Myt1, the kinase responsible for phosphorylating Thr14 of Cdk1 was 

also decreased upon ATM inhibition upon differentiation. These data suggest that 

the maintenance of high expression levels of G2/M proteins upon differentiation 

requires ATM kinase activity. 

While these data demonstrate that ATM inhibition decreases the levels of 

G2/M checkpoint proteins in differentiating HPV positive cells, they are insufficient to 

demonstrate that arrest in G2 does not still occur. Thus, the next step in this project 

is to directly determine whether the inhibition of ATM is sufficient to inhibit G2 arrest 

in HPV positive cells. An important step in mitotic entry is the re-localization of the 

cyclin B-Cdk1 complexes from the cytoplasm to the nucleus (38). Activation of the 

G2/M checkpoint has been shown to prevent this re-localization. As mentioned, 
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differentiated HPV positive cells exhibit high levels of cytoplasmic cyclin B and Cdk1. 

Thus, I am curious whether the inhibition of ATM kinase activity is sufficient to trigger 

nuclear localization of these proteins. To examine this, I am currently performing 

immunohistochemistry (IHC) on organotypic raft cultures of HPV31 positive CIN612 

cells, shown to faithfully recapitulate the HPV life cycle in the stratified epithelium. 

Using KU-55933, I will determine whether ATM inhibition is sufficient to induce 

nuclear localization of both cyclin B and Cdk1 (together known as the MPF), a 

phenotype that would indicate that HPV positive cells no longer arrest in G2.  

If the above hypothesis is correct, the next step would be to separate any 

effect that ATM inhibition has on the G2/M checkpoint from other potential functions 

of ATM. The ATM kinase has hundreds of downstream targets. Thus, while the 

inhibition of ATM kinase itself is illuminating, chemical inhibition of ATM is a rather 

blunt instrument for assessing the role of the ATM pathway in the productive HPV 

life cycle. Indeed, as detailed in Figure 4.1, there are several functions that ATM 

may utilize in productive replication, and inhibition of ATM kinase activity blocks all of 

them simultaneously. Thus, in order to determine whether ATM is necessary for 

productive replication in part because of ATM activates the G2/M checkpoint, it is 

necessary to more thoroughly examine the signaling cascade between ATM 

activation and inhibition of the MPF.  To test this hypothesis, I will first inhibit the 

activity of the ATM downstream target Chk2, which was also shown by our lab to 

block amplification of the HPV genome (31). As detailed in Chapter 1, Chk2 is a 

kinase activated by ATM phosphorylation and plays a major role in activating the 

G2/M checkpoint through its inhibition of cdc25 proteins. I hypothesize that inhibition 
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of Chk2 via the small molecule Chk2 inhibitor II will be sufficient to decrease the 

expression levels of G2/M checkpoint proteins and prevent differentiating HPV 

positive cells from arresting in G2, as evidenced by nuclear localization of cyclin B in 

organotypic raft cultures. Next, I would investigate proteins further downstream in 

the ATM pathway to determine whether Myt1 and Wee1 (the kinases directly 

responsible for inhibiting Cdk1) activity are also necessary for the induction of the 

G2/M checkpoint and productive HPV replication. If either Myt1 or Wee1 are also 

found to be necessary for the activation of the G2/M checkpoint and productive HPV 

replication, then these data would suggest that activation of the G2/M checkpoint is 

itself required for productive infection. To demonstrate this further, dominant 

negative versions of Cdk1 or cdc25c could be expressed. Together, these would 

demonstrate that the ATM pathway is required for productive HPV replication, at 

least in part, because it activates the G2/M checkpoint. 

A MODEL OF ATM ACTIVATION AND FUNCTION IN HPV INFECTION 

 Taken as a whole, my dissertation when combined with the work of others 

provides evidence for a model of ATM activation by E7 in the replication of the HPV 

genome (Figure 4.1). During infection, levels of ATM pathway proteins are increased 

by HPV E7 through its LXCXE motif (also called its Rb binding domain) by broadly 

upregulating their stability, thus making them available for use in the productive life 

cycle (23). Many of these factors are then recruited to the viral genome (14). Upon 

differentiation, the ATM pathway serves several important functions. First, there is 

evidence that ATM activity is necessary for the recruitment of DNA repair factors to 

the viral genome through the promotion of certain histone modifications. While 
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bound, they play a direct role in an HR-dependent replication mechanism, supported 

by the observation that many of these factors are required for replication (2, 7, 31). 

Also supporting this hypothesis is the finding that inhibition of MRE11 and Rad51 

activity, both of which are required for HR, blocks productive HPV replication (2).  

Additionally, ATM is known to phosphorylate and activate many of these factors, 

suggesting the ATM kinase may directly regulate HR to promote the replication of 

viral DNA (10, 34). Finally, ATM arrests cells in G2 in the upper layers of the stratified 

epithelium in order to create an environment conducive to productive replication of 

the HPV genome (4, 46). 

 While research regarding this model is ongoing, several key insights from my 

dissertation can be made. The most enigmatic of these is the observation that DNA 

repair factors are largely regulated at the level of protein stability, with some showing 

no statistically significant difference in transcript levels between HPV31 positive and 

uninfected cells. The observation that ATM activity is dispensable for the 

upregulation of protein levels further complicates any potential explanation of how 

the levels of these DNA repair factors are increased. Cleary, there are unrecognized 

aspects of HPV biology at play, the elucidation of which are required to understand 

how the ATM pathway is activated. Additionally, connecting ATM activation to G2/M 

arrest begins the process of fitting ATM activation into a biological (i.e. needed to 

arrest the cell cycle) rather than a merely biochemical (i.e. ATM is needed to activate 

Chk2) framework, allowing the field to see the “bigger picture.” This shift will allow 

the development of new hypotheses that may lead to the development of novel 

antivirals capable of minimizing HPV related disease. 
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Figure 4.1 HPV utilizes the ATM DDR pathway to replicate the viral genome. 

Shown is a hypothetical model of the function of ATM activation during HPV 

infection. Briefly, HPV E7 stabilizes DNA repair factors and activate ATM 

independently. The ATM protein then facilitates the recruitment of repair factors to 

the genome, induces the G2/M checkpoint, and activates homologous recombination 

in order to amplify the viral genome. 
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DISSERTATION IMPACT: THE POTENTIAL ROLE OF E7-DEPENDENT 

UPREGULATION OF DNA REPAIR FACTORS IN ONCOGENESIS 

 As mentioned above, HPV is the etiological agent of nearly all cervical 

cancers and has increasingly been linked to other forms of cancer as well (53). 

Given that HPV E7 is one of the major oncoproteins of HPV, it is curious that HPV 

E7 increases the levels of ATM pathway proteins, as ATM signaling is generally 

thought to be tumor suppressive (11, 30). Nevertheless, there are several 

mechanisms by which E7-dependent upregulation of DDR factor levels may 

contribute to the development of cancer. 

 Integration of the HPV genome into host chromosomes is a hallmark of HPV 

related oncogenesis (36, 47). Increased levels of HPV integration are associated 

with the progression from low to high grade precancerous cervical intraepithelial 

neoplasias (CINs), and can be used as a marker of disease progression (3, 18, 19). 

Integration of the HPV genome often ablates the regulation of early gene expression 

by E2, leading to increased expression of E6 and E7, increased cellular proliferation, 

and is believed to promote oncogenesis (18, 22). Additionally, integration itself can 

modulate the expression of nearby cellular genes which hypothetically could 

promote oncogenesis (35, 42). To date, no “hot spots” for integration have been 

identified, although so-called fragile sites (areas of chromosomes that are 

particularly susceptible to damage) have been suggested by some studies (45). 

Despite the frequency at which HPV integration has been observed in tumors and its 

association with the progression of precancerous CINs, the mechanism by which the 

HPV genome is integrated into the host chromosome has not been determined.  
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 Microhomology (MH) refers to short sections within two DNA sequences that 

are identical, with the majority of these sequences lacking significant similarity. A 

recent study by Hu et al. performed a genome-wide analysis of integration sites on 

135 samples containing HPV DNA (26 CINs, 104 cervical carcinomas, and 5 

established cell lines). They demonstrated that chromosomal regions immediately 

flanking sites of HPV integration have significantly enriched amounts of MH with the 

ends of integrated HPV genomes (18). This observation suggests that integration of 

the HPV genome may occur through an MH-based mechanism. There are three 

known mechanisms of MH-based DNA repair and replication that may be involved in 

HPV integration. These include microhomology-mediated end joining (MMEJ), fork 

stalling and template switching (FoSTeS), and microhomology-mediated break-

induced replication (MMBIR) (32). Of these three pathways, the molecular details of 

MMEJ are best understood. Like HR, MMEJ occurs most frequently in the S and G2 

phases of the cell cycle and requires DNA resection by the MRN complex and CtIP 

(25, 28, 48). However, unlike the relatively accurate HR pathway, MMEJ is error-

prone and commonly results in the deletion, duplication, or rearrangement of small 

sections of DNA (32). How the cell decides between the activation HR or MMEJ is 

poorly understood, but MMEJ is believed to exist as a “back up” repair pathway that 

is induced when DNA repair by HR is unsuccessful. Rather than relying on 

significant homology between sister chromatids, as in HR, MMEJ joins free DNA 

ends with limited amounts of homology (5-25 bp, i.e. MH), resulting in less accurate 

repair (28). In contrast, FoSTeS and MMBIR involve the collapse of replication forks 

followed by the invasion of the replicating DNA strand into DNA sequences sharing 



118 
  

MH sites. After strand invasion, replication restarts using the invaded regions as a 

templates. Strand invasion in FoSTeS and MMBIR can occur in multiple successive 

rounds, resulting in an often complex pattern of duplications and deletions 

depending on the number of strand invasion events and on the location(s) of the MH 

site (50). 

 As discussed throughout this dissertation, many proteins involved in HR are 

increased in HPV positive and E7 expressing cells (2, 7, 31). Interestingly, a subset 

of the factors upregulated by E7 also function in MMEJ (25, 48). However, other 

factors, such as BRCA1, function to promote HR and inhibit MMEJ (32). Given that 

HPV E7 expression broadly increases ATM pathway proteins and that the proteins 

regulating all three MH-based pathways are poorly described, it is difficult to 

determine the role that increased levels of DDR factors may play in HPV genome 

integration. Nevertheless, several promising hypothetical models can be considered. 

In the case of an MMEJ-based integration mechanism, the first step is the 

spontaneous occurrence of DNA damage in an HPV infected basal keratinocyte. E7 

may increase the frequency of such events by increasing oxidative and replicative 

stress (6, 8, 27).  HR begins with the successful resection of the DSB. However, 

when HR fails, the MMEJ pathway is activated to rescue DNA repair. Because of 

MH shared between the damaged section of the host chromosome and the HPV 

genome, MMEJ then mistakenly incorporates existing HPV genomes into the host 

chromosome resulting in integration. HPV E7’s upregulation of DDR proteins may 

facilitate this process. 
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Alternatively, HPV may be integrated by a FoSTeS or MMBIR based 

mechanism. In this model, free ssDNA resulting from collapsed replication forks 

invades HPV genomes in a process mediated by shared MH. Replication then 

resumes on the invading ssDNA strand using the HPV genome as a template. Thus, 

the HPV genome is integrated into host chromosomes through MH-mediated 

replication rather than direct incorporation of existing HPV genomes. As mentioned, 

E7-dependent induction of replication stress may increase the frequency by which 

this occurs (6). Additionally, E7-dependent upregulation of DDR factors and their 

recruitment to viral genomes may facilitate replication by this mechanism. In 

conclusion, E7-mediated manipulation of DDR protein expression may contribute to 

oncogenesis in part by increasing the likelihood of HPV integration.  

HPV E7-dependent upregulation of DDR factors may function in cancer 

progression independent of integration of the HPV genome as well. Indeed, ATM 

signaling has been reported to be upregulated in some forms of cancer, including 

melanoma, prostate, and pancreatic cancers (11). In such cases, ATM is thought to 

promote cell survival under stress in situations where apoptosis and cell cycle 

dysregulation have already been subverted (11). Given that apoptosis is efficiently 

subverted by E6-dependent degradation of p53 and that E7 subverts cell cycle 

control in addition to activating ATM, it is possible that increased levels of DDR 

proteins in HPV infected cells serve to promote cancer progression by ensuring the 

survival of infected cells. Consistent with this idea, inhibition of ATM in cell lines 

derived from cervical carcinomas decreases cell survival (i.e. radioresistance) in 

response to irradiation, suggesting that ATM pathway activation promotes survival of 
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cervical cancer cells (40). Additional research is needed to investigate the validity of 

this model, as the degree to which DDR proteins serve to promote cell survival in 

different grades of precancerous lesions and HPV infections (compared with cervical 

carcinoma lines) has not been examined. 

A final model for the role for HPV E7-dependent upregulation of DDR factors 

in oncogenesis derives from the current ambiguity regarding the extent to which 

DNA repair is active in HPV infected cells. While research from our lab and others 

has firmly established that DDR protein levels are increased in HPV and E7 

expressing cells, it is less clear as to whether DNA repair is itself activated. At least 

one study suggested that DNA repair has delayed kinetics in response to high risk 

HPV E7 expression, despite increased levels of the HR protein Rad51 (33). Thus, in 

an alternative model, DNA repair by HR may be less efficient in HPV infected cells 

resulting in an increased rate of oncogenic mutations despite having increased 

levels of DNA repair factors. If true, then this model begs the question as to why high 

levels of DNA repair factors do not facilitate DNA repair. One possibility is that HPV 

upregulates DNA repair proteins required for replicating its genome and then 

sequesters the factors to replication foci (see Figure 4.1), thereby preventing them 

from participating in the repair of host DNA. 

The differentiation between the accuracy of these model(s) of HPV E7-

induced oncogenesis will provide insights into the development of cervical and other 

forms of HPV related cancers. Given the long temporal lag between initial HPV 

infection and cancer development, elucidation of the exact details of HPV induced 

oncogenesis may allow for the development of interventions to prevent HPV related 
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disease. Given that cervical cancer still results in the death of over 270,000 women 

annually worldwide and that current vaccines are not therapeutic (53), such 

interventions are vitally important for public health. 
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