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Abstract 

Stephanie Hall Hart 

Vascular endothelial cadherin phosphorylation modulates endothelial cell permeability  

and leukocyte transendothelial migration 

(Under the direction of Keith Burridge, Ph.D.) 

 

Leukocyte transendothelial migration (TEM) is a key step in many functions of the immune 

system such as immune surveillance, inflammation and wound repair. The controlled 

disassembly of endothelial adherens junctions (AJs) is a major component of TEM 

regulation. Studies have shown the tyrosine phosphorylation of VE-cadherin, a protein 

important in AJs, disrupts junctions and increases vascular permeability. We found that 

blocking the phosphorylation of VE-cadherin on residues Y658 and Y731 using non-

phosphorylatable VE-cadherin mutants lead to increased barrier function and decreased 

endothelial cell monolayer permeability. This demonstrates that phosphorylation of VE-

cadherin residues Y658 and Y731 is necessary for the disassembly of endothelial junctions. 

We demonstrated that blocking phosphorylation of these residues also inhibited neutrophil 

transmigration across endothelial cells. Together, these data demonstrate that 

phosphorylation of VE-cadherin residues, Y658 and Y731, are required for the regulation of 

endothelial cell junction permeability and also for effective neutrophil transendothelial 

migration through endothelial cell monolayers.  
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CHAPTER I 
 

Introduction 
 

 The human immune system is a complex and intricate system of organs, tissues, cells 

and proteins that protects the body from infection, disease and other unwanted pathogens. An 

important part of both the innate and adaptive immune responses is the ability of leukocytes 

to leave the blood stream and enter the surrounding tissues. This migration of leukocytes out 

of the blood vessels is required for immune surveillance of pathogens and allows for rapid 

accumulation of leukocytes at sites of infection and injury. During immune surveillance, 

lymphocytes a specific type of leukocyte recirculate between the blood and lymphoid tissue. 

This occurs at specialized sites of the blood vessels, namely the high endothelial venules 

(HEVs). For immune defense, leukocytes enter tissues that are inflamed due to infection or 

injury. Leukocytes enter the inflamed tissue through blood vessels called postcapillary 

venules that have been activated by inflammatory stimuli (1). The lumen of blood vessels is 

lined with a sheet of cells called endothelial cells. This sheet or monolayer of endothelial 

cells forms a physical barrier to contain the blood and other cells within the blood vessels. 

Leukocytes must migrate through this barrier of cells in order to leave the blood stream. This 

migration of leukocytes across the endothelial cells is referred to as transendothelial 

migration (TEM). It is a key step in many functions of the immune system such as immune 

surveillance, inflammation and fighting infection. Because TEM is such an important, 

complex and on-going process, it is very tightly regulated. When TEM is misregulated, it can 

 



  

lead to pathological events. Over-activation of TEM can lead to pathologies such as chronic 

inflammation, atherosclerosis, multiple sclerosis, rheumatoid arthritis, psoriasis, and 

ischemia reperfusion injury. In contrast, inefficient TEM can lead to chronic and fatal 

bacterial infections as seen in patients with Leukocyte Adhesion Deficiency (LAD) 

syndromes.  

 The development of atherosclerosis illustrates the ramifications that over-activation 

of TEM can have in disease. Atherosclerosis is a chronic inflammatory disease of the arterial 

wall, which begins with damage to the inner wall of the artery, namely the endothelium. It is 

thought that the initial damage is caused by the deposit of lipids from the blood into the 

endothelium, which then triggers an inflammatory response. Monocytes, a specific type of 

leukocyte, are then recruited from the bloodstream, transmigrate through the endothelium 

and take up residence in the arterial wall. The monocytes differentiate into macrophages 

which then phagocytose the lipid deposits. These macrophages turn into foam cells due to 

high lipid content in their internal vesicles and eventually die. The death of these 

macrophages further propagates the inflammatory response leading to more transmigration of 

monocytes into the arterial wall which eventually leads to calcification and stimulates 

proliferation of smooth muscle cells. This sequence of events leads to formation of 

atherosclerotic plaques which can then rupture to cause heart attacks and strokes. 

 Conversely, inefficient TEM leaves the body vulnerable to infection as leukocytes 

cannot leave the bloodstream in order to migrate to sites of injury and invasion of pathogens. 

One cause of inefficient TEM is a gene mutation in the integrin β2 subunit (CD18) which is 

located on the long arm of chromosome 21 (2). This is known as Leukocyte Adhesion 

Deficiency (LAD) syndrome I and is a genetically inheritable syndrome. Patients with this 
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mutation in the β2 subunit show absent or dramatically reduced surface levels of β2 integrins, 

which are important molecules for the transmigration of leukocytes. The consequences of 

leukocytes not being able to transmigrate out of the bloodstream are frequently lethal and 

include recurrent infection, systemic sepsis, impaired immune surveillance and incomplete 

wound repair (2).   

Leukocyte transendothelial migration  
 
 Transendothelial migration involves many complex interactions and signaling 

pathways between the leukocytes and the endothelial cells that line the lumen of the blood 

vessels. There are a number of obstacles that must be overcome for the efficient TEM of 

leukocytes. For one, the leukocytes are flowing through the blood vessels at a fast rate and 

must slow down in order to firmly attach to the endothelial cells and migrate through them. 

Another challenge is that in order to contain the blood and other macromolecules in the 

lumen of the blood vessel, the endothelial cells make an impermeable barrier which the 

leukocytes must penetrate. Endothelial cells make this impermeable barrier by forming a 

single monolayer of cells and attaching to the adjacent endothelial cells via multiple 

junctions such as tight and adherens junctions. It was once thought that the leukocytes 

actively bound to and crossed the endothelial cells and that the endothelial cells themselves 

were passive partners in this process. However, recent research has shown that the 

endothelial cells play an equally important role during transendothelial migration as do the 

leukocytes themselves. 

 Transendothelial migration can be divided into three stages in which the leukocytes 

adhere weakly to and roll across the endothelial cells, develop firm adhesions and finally 

transverse the endothelial cells (Figure 1). This is known as the multi-step paradigm (3, 4). 
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The activated endothelium in inflamed tissue and the HEVs of lymph nodes use several 

different molecules to achieve leukocyte TEM. The first step is the initial tethering of the 

leukocyte to the endothelium and reversible rolling. During this step the proteins endothelial 

selectin (E-selectin) and platelet selectin (P-selectin) on the endothelial cell binds to 

carbohydrates on the leukocytes and leukocyte selectin (L-selectin) binds to carbohydrate 

ligands on the endothelium (Figure 1) (5). The binding of these molecules between the 

leukocyte and the endothelial cell allows the leukocyte to slow down in the bloodstream and 

roll along the endothelial cells. Rolling leukocytes are then in contact with chemokines 

secreted by the endothelial cells. These chemokines activate leukocyte integrins which then 

initiate the next step in transmigration; firm adhesion (1). In firm adhesion, vascular 

endothelial cell adhesion molecule (VCAM) on the endothelium binds to activated integrins, 

α4β1 (VLA-4, very late antigen-4) and α4β7 on the leukocyte; while intercellular adhesion 

molecule (ICAM) on the endothelial cells binds to the activated β2 integrins, αLβ2 (LFA-1, 

lymphocyte function associated antigen-1) and αMβ2 (Mac-1, macrophage integrin-1), on the 

leukocyte (Figure 1) (5). This firm adhesion process enables the leukocyte to bind tightly 

enough to the endothelial cells to resist the shear force of blood flow and allows the 

leukocyte to begin the migration through the endothelium into the surrounding tissues. In 

addition to the molecules required for firm adhesion, two other molecules are needed for the 

third step; diapedesis. These are platelet endothelial cell adhesion molecule (PECAM) and 

cluster differentiation (CD99). These are found on both the leukocytes and the endothelial 

cells and bind through homophilic interactions (Figure 1) (6). In order for the leukocyte to 

cross the endothelial barrier, the endothelial cells must break their attachment to adjacent 
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endothelial cells to which they are bound in order to create a gap through which the 

leukocyte may pass.  

 This passing of the leukocyte between adjacent endothelial cells is known as 

paracellular migration. Another form of transmigration, namely transcellular migration, is 

also known to occur in which the leukocyte passes not in between adjacent endothelial cells 

but through a single endothelial cell. Only a minority of leukocytes transmigrate through 

endothelial cell monolayers using the transcellular route in vitro; 7% of monocytes, 5% of 

neutrophils, and 11% of lymphocytes (7).  Consequently, paracellular migration is the most 

common form of leukocyte TEM (7-10) and thus this discussion will focus on paracellular 

TEM.  
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Endothelial Cell-cell junctions 
 
 The endothelial cells that line the blood vessels form an impermeable barrier to 

contain the blood, cells and other macromolecules within the blood vessels. A number of 

junctions between adjacent endothelial cells maintains the integrity of the endothelium and 

regulates vascular permeability. Despite this impermeable barrier, leukocytes must be able to 

leave the blood stream for immune surveillance and to fight infection. Thus adjacent 

endothelial cells must disassemble their junctions for the leukocyte to pass through the 

endothelium and allow this paracellular migration of leukocytes to occur. The controlled 

disassembly of these junctions is a major component of TEM regulation. There are two types 

of junctions important in endothelial cell-cell junctions, tight junctions and adherens 

junctions. Tight junctions are the most apical junctions and form between pairs of endothelial 

cells. These junctions are important in permeability of vasculature as they restrict the flux of 

fluid, solutes and other molecules across the endothelium especially across the blood brain 

barrier. Tight junctions are composed of three families of transmembrane proteins: occludin, 

claudins, and junctional adhesion molecules (JAMs), each of which has multiple members. 

Also important to tight junctions are many proteins found within the endothelial cells which 

serve as scaffolding and signaling partners. These include zonula occludens 1 (ZO-1) and 

cingulin (11). Tight junctions are not thought to be as important as adherens junctions in 

regulating TEM in HEVs and inflammation because the majority of leukocytes cross at 

tricellular junctions of endothelial cells where tight junctions are discontinuous. This has 

been confirmed in studies of proteins important in tight junction such as JAM-A. Antibodies 

against JAM-A inhibit recovery of cell contacts after disruption by calcium depletion but do 

not effect neutrophil migration through an endothelial monolayer (12,13).  
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 Adherens junctions (AJs) are important junctions in regulating macromolecular 

permeability in microvascular endothelium and thus are important in regulating TEM (11). 

The major protein in adherens junctions is vascular endothelial-cadherin (VE-cadherin), a 

cell adhesion molecule essential for the maintenance of these interendothelial contacts. VE-

cadherin has five homologous extracellular domains and a cytoplasmic tail (Figure 2) (14). A 

classical cadherin, VE-cadherin, links adjacent endothelial cells together through homophilic 

interactions of its extracellular domains and connects to the actin cytoskeleton through its 

intracellular domains (1). Of all the proteins that have been shown to be involved in 

leukocyte transmigration, the endothelial cell-specific cadherin, VE-cadherin, is unique 

because it is the only protein that blocks TEM rather than supporting it (1). Most of the 

proteins described so far in this discussion that are important in TEM serve as binding and 

signaling proteins between leukocytes and endothelial cells in order to recruit leukocytes to 

sites of inflammation; selectins bind carbohydrate moieties, ICAM-1 binds LFA-1, VCAM 

binds VLA-4, PECAM and CD99 are both homophilic adhesion molecules. Antibodies 

against these proteins disrupt leukocyte endothelial binding and thus inhibit TEM (15-20). In 

contrast, VE-cadherin forms a barrier against migrating leukocytes. Studies have shown that 

antibodies that bind VE-cadherin disrupt the homophilic VE-cadherin interactions that bind 

adjacent endothelial cells together thus creating gaps between endothelial cells which 

promotes leukocyte TEM (21-25).  

VE-cadherin 
 
 These and other studies have shown that VE-cadherin is a crucial player in vascular 

permeability and leukocyte TEM. Knocking out VE-cadherin in mice leads to embryonic 

lethality at 9.5 days of gestation due to impairment of vascular maturation and remodeling 
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(26). In vitro, antibodies directed against the extracellular domain of VE-cadherin disrupt 

VE-cadherin adhesion and clustering and increases endothelial cell permeability (21).  A 

similar finding was shown to hold true in vivo, as administration of anti-VE-cadherin 

antibodies in mice leads to a significant increase in vascular permeability, fragility and 

hemorrhages (27). Leukocyte and also hematopoietic stem cell TEM was increased in vitro in 

endothelial cells pretreated with blocking antibodies against VE-cadherin (23,24).  Increased 

leukocyte TEM into inflamed peritoneum was shown in vivo in a mouse peritonitis model 

upon i.v. injection of anti-VE-cadherin antibodies (25). Allport et al., Shaw et al. and van 

Buul et al. have shown transient displacement of VE-cadherin at sites of transmigration upon 

leukocyte binding (10,24,28). Consequently, adherens junctions and specifically VE-cadherin 

is certainly an important regulator in vascular permeability and leukocyte paracellular 

transmigration. Therefore regulation of VE-cadherin within endothelial cells must also be an 

important part of regulation of leukocyte TEM. 

 Regulation of VE-cadherin occurs through many avenues, such as association with 

binding partners, level of protein expression, and phosphorylation. Homophilic binding of 

VE-cadherin is important for junctional integrity, while binding of other partners such as the 

catenin family regulates association of VE-cadherin and thus adherens junctions to the actin 

cytoskeleton. These regulatory pathways are not isolated events- each one affects the other. 

Binding of certain proteins affects VE-cadherin level of protein expression and stability at 

the plasma membrane, while phosphorylation of VE-cadherin affects the affinity to which it 

binds its intracellular partners.  

 Like other members of the cadherin family, VE-cadherin is linked through its 

cytoplasmic tail to other catenin binding proteins and also to the actin cytoskeleton. VE-
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cadherin’s cytoplasmic tail is bound by the adaptor proteins β-catenin and plakoglobin (γ-

catenin) (Figure 2) (29). In turn, β-catenin and plakoglobin bind to α-catenin, which binds 

directly to the actin cytoskeleton and also binds to other actin binding proteins α-actinin, 

vinculin, AF6, ZO-1 and others (30,31). It should be mentioned that recent studies have 

shown that a stable actin filament, α-catenin, β-catenin, cadherin complex does not exist; that 

α-catenin cannot bind actin filaments and catenin-cadherin simultaneously (32,33). Though 

these studies were done with E-cadherin and not VE-cadherin, these two proteins are both 

classical cadherins that are calcium-dependent, homophilic adhesion molecules that bind 

similar adherens junction proteins (14,29,34). Another protein, p120 catenin, binds to the 

juxtamembrane domain in the C-terminal tail of VE-cadherin. This interaction with p120 

catenin is important for VE-cadherin stability at the plasma membrane as well as abundance 

of cadherin protein levels within the endothelial cell (Figure 2) (35-37). 

 It has been shown previously that tyrosine phosphorylation of adherens junction 

proteins correlates with the disassembly of endothelial cell-cell junctions (38-40). Cadherin / 

catenin complexes have specifically been shown to be regulated by tyrosine phosphorylation 

(41,42). A decrease in tyrosine phosphorylation of adherens junctions and of VE-cadherin / 

catenin is observed with an increase in the confluence of endothelial cells (43). This makes 

sense, as endothelial cells make a confluent monolayer the more tight and stable cell-cell 

junctions they will make. It follows then that if leukocytes are to migrate through these 

endothelial cells, they need to initiate signaling within the endothelial cells that will increase 

the phosphorylation of VE-cadherin, which disrupts cell-cell junctions and creates gaps 

between adjacent endothelial cells through which the leukocytes may pass. This is exactly 

what has been shown to happen.  
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 When the leukocyte binds firmly to the endothelial cells it initiates a cascade of 

signals within the endothelial cells that facilitates the weakening of the junctions with 

adjacent endothelial cells. This allows for paracellular migration of leukocytes between the 

endothelial cells (11). Both ICAM-1 and VCAM-1 initiate signaling within endothelial cells 

that is required for transmigration of leukocytes (44,45). When LFA-1 on the leukocyte binds 

to ICAM-1 on the endothelial cell, ICAM-1 clusters around the leukocyte and initiates 

signaling within the endothelial cell. Blocking ICAM clustering with antibodies inhibits the 

adhesion and migration of leukocytes across the endothelium (46).  It has been shown 

previously that ICAM-1 engagement activates Src kinase (47,48). More recently, Allingham 

et al. showed that ICAM-1 engagement activates endothelial proline-rich tyrosine kinase 2 

(Pyk2) in addition to Src. They demonstrated that both Src and Pyk2 are recruited to sites of 

ICAM-1 engagement and that inhibition of either kinase results in decreased tyrosine 

phosphorylation in response to ICAM-1 engagement (49). Potter et al. identified two critical 

residues in the C-terminal tail of VE-cadherin that become phosphorylated and lead to the 

disassembly of cell-cell junctions. These two tyrosine residues, Y658 and Y731, are located 

within the binding sites for two important VE-cadherin binding partners, p120-catenin and β-

catenin, respectively. When these tyrosines, Y658 and Y731, become phosphorylated, p120- 

and β-catenin binding to the C-terminal tail of VE-cadherin is disrupted, which ultimately 

leads to a disruption of cell-cell junctions (Figure 2) (50). Loss of β-catenin binding to VE-

cadherin uncouples VE-cadherin from the actin cytoskeleton, weakening cell-cell junctions 

and promoting their disassembly. Since p120-catenin is important for stable VE-cadherin at 

cell-cell junctions, loss of p120-catenin binding to VE-cadherin leads to clathrin-mediated 

endocytosis and thus disassembly of cell-cell junctions (37,51,52). VE-cadherin 
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phosphomimetic mutants Y658E and Y731E showed defects in endothelial cell barrier 

function and failed to bind to p120- and β-catenins, respectively. Phosphorylation of VE-

cadherin and loss of barrier function were recently shown to be important specifically in 

leukocyte TEM. Incubation of endothelial cells with leukocytes caused an increase in 

tyrosine phosphorylation of VE-cadherin and engagement of ICAM-1 specifically caused a 

significant increase in phosphorylation of residues Y658 and Y731 on VE-cadherin (49). 

Allingham et al. demonstrated that ICAM-1 engagement initiates phosphorylation of VE-

cadherin by activating Src and Pyk2 kinases. Inhibiting the activity of either Src or Pyk2 

causes a significant decrease in the phosphorylation of VE-cadherin on both residues, Y658 

and Y731, even below baseline levels (49). Inhibition of the activity of Src and Pyk2 also 

caused a significant decrease in leukocyte transmigration across endothelial cell monolayers 

(49). In summary, the two critical VE-cadherin residues are phosphorylated in response to 

ICAM-1 engagement and phosphorylation of these residues require the activity of Src and 

Pyk2 kinases. Inhibition of ICAM-1 engagement, Src kinase activity or Pyk2 kinase activity 

leads to a significant decrease in leukocyte TEM. These findings lead us to hypothesize that 

these two VE-cadherin tyrosine residues will also be important in leukocyte TEM.  

 In this thesis, we demonstrate that the tyrosine residues Y658 and Y731 in VE-

cadherin are indeed important in leukocyte TEM. We also show that mutating these two 

tyrosine (Y) residues individually or both together to a non-phosphorylatable phenylalanine 

(F) residue inhibits the ability of leukocytes to transmigrate across endothelial cell 

monolayers. This inhibition of leukocyte TEM is due to increased barrier function and 

tightening of endothelial cell-cell junctions. This work was initiated by Michael Allingham 

as he generated the VE-cadherin Y to F mutants and performed the initial transmigration 
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experiment of leukocytes transmigrating across endothelial cell monolayers expressing the 

single VE-cadherin Y658F and Y731F mutants. My work focuses on characterizing the 

changes in barrier function of endothelial cells expressing the VE-cadherin single mutants, 

Y658F and Y731F, and the VE-cadherin double mutant, Y658F / Y731F. This project also 

investigates the changes in leukocyte TEM across endothelial cells expressing the VE-

cadherin single mutants, Y658F and Y731F, and the VE-cadherin double mutant, Y658F / 

Y731F. 
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CHAPTER II 
 

Materials and Methods 

 

Molecular Cloning and Virus Production 

 The wild type VE-Cadherin GFP adenovirus was a gift of Drs. F. Nwariaku and D. 

Nahari (Univeristy of Texas Southwestern Medical Center, Dallas, TX.) All other adenoviral 

constructs were generated using the Virapower Adenoviral Expression System (Invitrogen 

Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions. The VE-

cadherin-GFP wildtype construct (pEGFP, BD Biosciences Clontech, Mountain View, CA) 

was used as a template to create single point mutations in VE-cadherin. Residues Y658 and 

Y731 were individually mutated to phenylalanines using Stratagene’s (La Jolla, CA) 

Quikchange kit according to manufacturer’s instructions. The VE-cadherin GFP Y731F 

single mutant was then used as a template to create the double VE-cadherin mutant Y658F / 

Y731F. Primers were then used to create a 5’ CACC site in the VE-cadherin GFP constructs 

in order to subclone them into Invitrogen’s (Carlsbad, CA) pENTR/ D-Topo construct. The 

VE-cadherin GFP constructs with the 5’ CACC site were then amplified using PCR, gel 

purified, and ligated into pENTR/ D-Topo. The VE-cadherin pENTR/ D-Topo contructs 

were then transformed into bacteria, plated on LB agar and allowed to grow overnight at 

37°C. Single colonies were picked, grown in LB media and purified using Qiagen’s 

(Valencia, CA) miniprep kit according to the manufacturer’s protocol. The VE-cadherin 

pENTR/ D-TOPO constructs were sequenced to check for the appropriate mutations in VE-

 



   

cadherin and to assure no spontaneous mutations had occured. The VE-cadherin pENTR/ D-

TOPO contructs were then recombined into the adenoviral expression construct, 

pAd/CMV/V5 (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. The VE-

cadherin pAd/CMV/V5 constructs were then transformed into bacteria, plated on LB agar, 

and grown overnight at 37°C. Single colonies were picked, grown in LB media and purified 

using Qiagen’s (Valencia, CA) midiprep kit according to the manufacturer’s protocol. The 

purified VE-cadherin adenoviral constructs were then digested with Pac-I restriction enzyme 

(New England Biolabs, Ipswich, MA) and transfected into 293a cells with FuGene6 (Roche, 

Indianapolis, CA) according to the manufacturer’s protocol. The infection of the 293a cells 

was allowed to proceed for 10-14 days until cytopathic effects were present. The cells were 

then harvested to produce a crude viral lysate. The crude viral lysate was then used to 

reinfect new 293a cells and amplify the VE-cadherin adenoviral stocks. The amplified VE-

cadherin adenoviral stocks were then harvested and used to infect mammalian cells so that 

they expressed either VE-cadherin wildtype, Y658F, Y731F or the double mutant 

Y658F/Y731F.  

Tissue Culture 

 The culturing of human derived cell lines was done according to standard laboratory 

procedure. All cells were incubated at 37°C at 5% CO2. Stocks of cells were stored at -180°C 

in liquid nitrogen. Frozen cells were thawed as necessary to maintain low passage cells.  

 HUVECs 

 
  Human umbilical vein endothelial cells were obtained from Cambrex/ 

Clonetics (East Rutherford, NJ). HUVECs were grown in EGM-2 (Cambrex/Clonetics) 
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media replacing the media every other day and routinely used between passage 3-6. 

Monolayers of HUVECs were formed by seeding at near confluent density and culturing for 

2-5 days. (53) Endothelial cells were activated with 10ng/ml TNF-α (R&D Systems, 

Minneapolis, MN) overnight as indicated to mimic inflammation for transendothelial 

migration assays.  

 Neutrophils 
  Primary human neutrophils were isolated from healthy volunteers according 

to Institutional Review Board-approved protocols as described previously (54). Briefly, 8ml 

of blood was added to a vacutainer cell preparation tube with sodium citrate (BD Vacutainer, 

Franklin Lakes, NJ). Monocytes and platelets were removed using density gradient 

centrifugation by spinning the vacutainers for 20 minutes at 1500rpm. Erythrocytes were 

lysed by resuspending the pellet fraction in ice-cold isotonic NH4Cl solution (155 mM 

NH4Cl, 10 mM KHCO3, 0.1mM EDTA, pH 7.4). Remaining neutrophils were washed once 

with PBS and resuspended in EGM-2 without FBS or GA-1000 plus 0.25% delipidated BSA 

for transmigration assays.  

 293a Cells 
  293a cells were grown in DMEM (Invitrogen, Gibco, Carlsbad, CA) plus non-

essential amino acids. Cells were split 1:10 apporximately every 4-5 days for maintenance. 

Cells were used for adenoviral production according to Invitrogen’s (Carlsbad, CA) 

ViraPower Adenoviral Expression System.  
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Adenoviral VE-cadherin GFP Expression 

 HUVECs were seeded at near confluent density in 60mm dishes and grown to 

confluence in EGM-2 media (Cambrex/Clonetics, East Rutherford, NJ). They were then 

infected with VE-cadherin adenovirus by adding amplified adenoviral stock to the culture 

media. Infections were allowed to proceed for 24 hours. VE-cadherin GFP expression was 

analyzed by lysing HUVECs in hot sample buffer and boiled for 15 minutes. Cell lysates 

were run on 7.5% SDS-polyacrylamide gels and transferred to nitrocellulose membrane 

(Millipore Immobilon, Billerica, MA). Lysates were blotted for VE-cadherin, GFP, and actin. 

Monoclonal antibodies against VE-cadherin were obtained from BD Transduction 

Laboratories (Lexington, KY). Monoclonal antibodies against GFP were obtained from 

Invitrogen (Carlsbad, CA). Monoclonal antibodies against actin were obtained from 

Millipore Chemicon (Billerica, MA).  

Immunocytochemistry 

 HUVECs were cultured on glass coverslips coated with Matrigel (BD Matrigel, 

Bedford, MA) and infected with either VE-cadherin wildtype, Y658F, Y731F, or 

Y658F/Y731F adenovirus. Adenoviral infections were allowed to proceed for 24 hours then 

the cells were fixed with 4% formaldehyde for 10 minutes. Coverslips were mounted on 

glass slides using Mowiol (EMD Calbiochem, San Diego, CA). Images were recorded with a 

Zeiss Axiovert 200 inverted fluorescence microscope (Carl Zeiss, Gottingen, Germany) using 

Metamorph 7.1.7.0 (Molecular Devices, Downington, PA).  

 

 

 18



   

FITC-Dextran Passage Assay 

 FITC-Dextran passage assays were performed by culturing HUVECs on Transwell 

filters (Corning Inc., Corning, NY) of 12mm diameter and 0.4µm pore-size. The cells were 

seeded at near confluent density and allowed to form a monolayer for 2-3 days. The 

HUVECs were infected with either VE-cadherin wildtype, Y658F, Y731F, or Y658F/Y731F 

adenovirus. Adenoviral infections were allowed to proceed for 24 hours and then the FITC-

Dextran passage assay was performed. The HUVECs were incubated with assay media 

(EGM-2, Cambrex/Clonetics) containing 400 ng/ml FITC-Dextran 10,000 mw (Invitrogen 

Molecular Probes, Eugene, OR). The lower chamber was filled with assay media. The cells 

were then incubated at 37°C, 5% CO2. 50µl samples were taken from the lower chamber 

every 30 minutes for 3 hours and transferred to a 96-well plate. The amount of FITC-Dextran 

that had passed through to the lower chamber was quantitated with a fluorescence plate 

reader.  

 

RT-CES 

 HUVECs were seeded at confluent density (30,000 cells/well) on a 16X microplate, a 

specialized microplate integrated with sensor electrodes made specifically for the RT-CES 

system (ACEA Biosciences, San Diego, CA). Cells were infected with either VE-cadherin 

wildtype, Y658F, Y731F, or Y658F/Y731F adenovirus. Barrier function as a measure of cell 

index was recorded every 15 minutes for 24 hours. After 24 hours of adenoviral infection, 

HUVEC monolayers were then stimulated with 10 ng/ml thrombin (Sigma Aldrich, St. 

Louis, MO) and the barrier function as a measure of cell index was recorded every 2 minutes.  
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Transendothelial Migration Assay 

 Migration assays were performed by culturing HUVECs on Transwell filters 

(Corning Inc., Corning, NY) of 6.5mm diameter with 8µm pores and coated with Matrigel 

(BD Matrigel, Bedford, MA). The cells were grown to confluence and infected with either 

VE-cadherin wildtype, Y658F, Y731F, or Y658F/Y731F adenovirus. Adenoviral infections 

were allowed to proceed for 24 hours and then the assay was performed. HUVECs were 

activated by treating with 10 ng/ml TNFα overnight. A coverslip coated with Matrigel (BD 

Matrigel, Bedford, MA) was inserted into the lower chamber which was filled with assay 

media (EGM-2 minus FBS and GA-1000, plus 0.25% delipidated BSA [Sigma Aldrich, 

St.Louis, MO]) plus 5ng/ml IL-8 (R&D Systems, Minneapolis, MN) as a chemoattractant. 

HUVECs were washed twice with the assay media and then incubated with 1x105  freshly 

isolated human neutrophils for 1 hour at 37° C, 5% CO2. Transwells (Corning Inc.) were 

removed and the coverslips with attached transmigrated neutrophils were fixed with 4% 

formaldehyde for 10 minutes. Neutrophil nuclei were stained using Hoechst dye (Invitrogen 

Molecular Probes, Eugene, OR). Coverslips were mounted with Mowiol (EMD Calbiochem, 

San Diego, CA) and imaged using a Zeiss microscope. Neutrophil nuclei were quantitated 

using Metamorph’s nuclei count application. To check for efficient expression of VE-

cadherin GFP constructs, HUVECs were simultaneously grown on coverslips coated with 

Matrigel (BD Matrigel) in a 24-well dish and treated with an equivalent amount of VE-

cadherin GFP adenovirus and analyzed by fluorescence microscopy. 
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CHAPTER III 
 

Results 
 

Characterization of VE-cadherin GFP wildtype, single and double mutant constructs 

 It has been shown previously that tyrosine phosphorylation of adherens junction 

proteins correlates with the disassembly of endothelial cell-cell junctions (38,39). Cadherin / 

catenin complexes have specifically been shown to be regulated by tyrosine phosphorylation 

(41). Potter et al. identified two critical residues in the C-terminal tail of a classical cadherin, 

VE-cadherin, which become phosphorylated and leads to the disassembly of cell-cell 

junctions. These two tyrosine residues, Y658 and Y731, are located within the binding sites 

for two important VE-cadherin binding partners, p120-catenin and β-catenin, respectively. 

When these tyrosines, Y658 and Y731, become phosphorylated, p120- and β-catenin binding 

to the C-terminal tail of VE-cadherin is disrupted which ultimately leads to a disruption of 

cell-cell junctions (50). Thus these two tyrosine residues are critical in stability of endothelial 

cell-cell junctions. Allingham et al. demonstrated that incubation of endothelial cells with 

leukocytes caused an increase in tyrosine phosphorylation of VE-cadherin and that 

engagement of ICAM-1 specifically caused a significant increase in phosphorylation of 

residues Y658 and Y731 on VE-cadherin (49). In order to determine whether the 

phosphorylation of tyrosine residues Y658 and Y731 in VE-cadherin are necessary in 

leukocyte TEM, we mutated each tyrosine residue individually or both together to a non-

phosphorylatable phenylalanine (F) residue. These VE-cadherin GFP wildtype, single mutant 

 



   

Y658F and Y731F and double mutant (DM) Y658F / Y731F constructs were cloned in an 

adenoviral expression system. To determine if these VE-cadherin GFP constructs were 

expressed properly primary endothelial cells, we infected HUVECs with either VE-cadherin 

GFP wildtype, Y658F, Y731F, or double mutant adenoviral particles. VE-cadherin GFP 

expression was analyzed by western blot using anti-VE-cadherin and anti-GFP antibodies. 

Equal loading was determined using an anti-actin antibody. We observed that all four VE-

cadherin GFP construct expression was detectable in HUVECs 24 hours after adenoviral 

infection (Figure 3A).  We next wanted to determine whether these VE-cadherin single 

(Y658F and Y731F) and double (Y658F / Y731F) mutant constructs localized properly to 

endothelial cell-cell junctions. HUVECs plated on glass coverslips coated with Matrigel were 

infected with either VE-cadherin GFP wildtype, Y658F, Y731F, or double mutant 

adenovirus. After 24 hours of infection, the HUVECs were then fixed and mounted on glass 

slides. VE-cadherin GFP localization was determined by fluorescence microscopy. We 

observed that all four VE-cadherin constructs, wildtype, Y658F, Y731F, and double mutant, 

localized properly to endothelial cell-cell junctions in HUVEC monolayers (Figure 3B).  
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Phosphorylation of tyrosine residues Y658 and Y731 in VE-cadherin are important in 

barrier function of endothelial cell monolayers 

 It has previously been shown that tyrosine residues Y658 and Y731 in VE-cadherin 

become phosphorylated in response to stimuli that increase vascular permeability (42,55). 

Potter et al. demonstrated that phosphorylation of tyrosine residues Y658 and Y731 in VE-

cadherin is sufficient to abolish barrier function by use of phosphomimetic VE-cadherin 

single mutants, Y658E and Y731E (50). To determine whether phosphorylation of these 

tyrosine residues is necessary for regulating barrier function and junctional permeability, the 

characterized non-phosphorylatable VE-cadherin single mutants Y658F, Y731F and the 

double mutant Y658F / Y731F were expressed in primary endothelial cell monolayers and 

junctional permeability was assessed. Junctional permeability was assessed using a FITC-

Dextran passage assay where HUVEC monolayers were grown on transwell filters coated 

with Matrigel. These transwell filters have a top and bottom chamber that are separated by a 

filter with 0.4µm pores (Figure 4A). While these pores allow the passage of small molecules 

they are too small to allow cells pass through to the bottom chamber. When the HUVECs 

form a monolayer over this filter the passage of molecules between the top and bottom 

chambers is dependent upon the junctional permeability of the HUVEC monolayer. In this 

assay, the lower chamber is filled with assay media while the top chamber is filled with assay 

media plus FITC-Dextran. The passage of FITC-Dextran through the HUVEC monolayer is 

then determined by taking media samples from the lower chamber and measuring the amount 

of FITC-Dextran fluorescence using a fluorescence plate reader. Compared to the HUVEC 

monlayer expressing VE-cadherin GFP wildtype, the HUVEC monolayers expressing VE-

cadherin GFP Y658F, Y731F and the monolayer expressing the VE-cadherin GFP double 
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mutant all showed significantly* decreased FITC-Dextran passage to the lower chamber at 

steady state (*p<0.05) (Figure 4B) indicating an increased barrier function and decreased 

endothelial cell monolayer permeability.  Similar results were obtained with another barrier 

function assay using the real-time cell electronic sensing (RT-CES) system. RT-CES 

measures electrical impedance of sensor electrodes integrated onto the bottom of specialized 

microplates to quantify barrier function in real time. Based on measured impedance, a cell 

index is derived and reported to provide quantitative information about the barrier function of 

the plated cells. HUVECs were seeded at confluent density on these specialized microplates 

and allowed to form a monolayer. These HUVEC monolayers were then infected with either 

VE-cadherin GFP wildtype, Y658F, Y731F or double mutant Y658F / Y731F adenovirus. 

Barrier function of the HUVEC monolayers at steady state was recorded as a measure of cell 

index every 15 minutes for 24 hours. Compared to the HUVEC monolayer expressing VE-

cadherin GFP wildtype, the HUVEC monolayers expressing VE-cadherin GFP Y658F, 

Y731F and the monolayer expressing the VE-cadherin GFP double mutant all showed an 

increase in cell index at steady state (Figure 5A) indicating that the HUVEC monolayers 

expressing the VE-cadherin mutants have increased barrier  function and thus tighter cell-cell 

junctions. The endothelial cell monolayers were then stimulated with thrombin (10 ng/ml) to 

determine whether they could still respond appropriately to vascular stimuli utilizing 

signaling pathways other than VE-cadherin. All endothelial cell monolayers expressing the 

VE-cadherin mutants responded appropriately to thrombin showing decreased cell index 

which reflects an increase in endothelial cell monolayer permeability (Figure 5B). 
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These data suggest that phosphorylation of tyrosine residues Y658 and Y731 are indeed 

necessary for the regulation of endothelial cell-cell junctions and increased endothelial cell 

monolayer permeability.  
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Phosphorylation of tyrosine residues Y658 and Y731 in VE-cadherin are important in 

leukocyte transendothelial migration 

 Considering that the phosphorylation of the two tyrosine residues Y658 and Y731 in 

the C-terminal tail of VE-cadherin have been shown to be both necessary and sufficient for 

loss of barrier function in endothelial cell monolayers, we hypothesized that these two 

tyrosine resides would also be important in regulating leukocyte TEM. To test this 

hypothesis, we utilized transendothelial migration assays in which endothelial cell 

monolayers are grown in transwell chambers. These transwell chambers have a top and 

bottom chamber that are separated by a filter with 8µm pores. The filters are coated with 

Matrigel on which the HUVECs form monolayers. The HUVECs are treated with TNFα 

overnight to activate the cells simulating an inflammatory response. The leukocytes are 

placed above the HUVEC monolayer and must transmigrate through the HUVEC monolayer 

and the pores in the filter in order to reach the bottom chamber which is filled with assay 

media plus the chemoattractant IL-8 (Figure 6A). Once the activated leukocytes reach the 

bottom chamber they attach to a coverslip coated with Matrigel at the bottom of the chamber. 

The leukocytes were allowed to transmigrate for 1 hour then the coverslips were fixed and 

stained. For these assays, primary human neutrophils were used. Compared to the endothelial 

cell monolayers expressing VE-cadherin GFP wildtype, the endothelial cell monolayers 

expressing the Y658F, Y731F or Y658F / Y731F mutants had a decreased amount of 

neutrophil transmigration (Figure 6B). This data demonstrates that VE-cadherin 

phosphorylation of tyrosine residues Y658 and Y731 is important in regulating neutrophil 

TEM.  
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CHAPTER IV 
 

Discussion and Future Directions 
  

 Leukocyte transendothelial migration is a key step in many functions of the immune 

system such as immune surveillance, inflammation, fighting infection, and wound repair. 

Transendothelial migration involves many complex interactions and signaling pathways 

between the leukocytes and the endothelial cells that line the lumen of the blood vessels. It 

used to be thought that the leukocytes actively bound and crossed the endothelial cells, while 

the endothelial cells themselves were passive partners in this process. However, it has 

become apparent that the endothelial cells play just as important a role during 

transendothelial migration as the leukocytes themselves. Endothelial cells make an 

impermeable barrier by forming a single monolayer of cells and attaching to the adjacent 

endothelial cells via multiple junctions such as adherens junctions. Adjacent endothelial cells 

must disassemble their junctions to allow for the leukocyte to pass through the endothelium 

in order for paracellular migration of leukocytes to occur. The controlled disassembly of 

these junctions is a major component of TEM regulation. Many studies have shown a 

correlation between tyrosine phosphorylation and disassembly of adherens junctions (31,38-

41,56). In particular, the tyrosine phosphorylation of VE-cadherin, a protein important in 

adherens junctions, has been shown to disrupt cell-cell junctions and increase vascular 

permeability; while decreased tyrosine phosphorylation of VE-cadherin correlates with 

confluent endothelial monolayer and increased barrier function (42,43,49,50,55).  Recently, 

 



   

Potter et al. identified two critical tyrosine residues in the C-terminal tail of VE-cadherin that 

are important in regulation of barrier function in endothelial cells. These two residues, Y658 

and Y731, correlate to binding sites for p120- and β-catenin, respectively. Phosphorylation of  

residue Y658 causes the uncoupling of p120-catenin binding to the C-terminal of VE-

cadherin (50). Since binding of p120-catenin is important for the stability of VE-cadherin at 

the plasma membrane and also level of protein expression of VE-cadherin, loss of p120-

catenin binding leads to clathrin-mediated endocytosis of VE-cadherin and thus disassembly 

of cell-cell junctions (37,50-52). Phosphorylation of residue Y731 causes the loss of β-

catenin binding to the tail of VE-cadherin which uncouples VE-cadherin from the actin 

cytoskeleton which also weakens cell-cell junctions and promotes their disassembly (50). 

 Our findings support the importance of VE-cadherin phosphorylation in regulating 

junctional permeability in endothelial cells. We found that blocking the phosphorylation of 

VE-cadherin on residues Y658 and Y731 using non-phosphorylatable VE-cadherin mutants, 

tyrosine to phenylalanine mutations specifically, lead to increased barrier function and 

decreased endothelial cell monolayer permeability. This demonstrates that phosphorylation 

of residues Y658 and Y731 in the C-tail of VE-cadherin is necessary for the regulation of 

endothelial cell junction permeability. Phosphorylation of VE-cadherin and loss of barrier 

function was recently shown to be important specifically in leukocyte TEM. Allingham et al. 

demonstrated that VE-cadherin Y658 and Y731 becomes phosphorylated downstream of Src 

and Pyk2 following leukocyte binding to ICAM-1 (49). Here we demonstrate that mutating 

tyrosine residues Y658 and Y731 to non-phosphorylatable phenylalanine residues, inhibits 

neutrophil transmigration across endothelial cell monolayers. Together, these data 

demonstrate that phosphorylation of the two VE-cadherin tyrosine residues, Y658 and Y731, 
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are required for increasing endothelial cell junctional permeability and thus for effective 

neutrophil transendothelial migration through endothelial cell monolayers.  

 Though VE-cadherin has been shown by this work and others to be important in 

endothelial cell signaling in leukocyte TEM, there is still much to be discovered in the active 

role that endothelial cells play in leukocyte TEM. For instance, which kinase directly 

phosphorylates the tyrosine residues Y658 and Y731 in the C-terminal of VE-cadherin is not 

known. Allingham et al. showed that Src and Pyk2 kinase activity are required for the 

phosphorylation of these residues but it is unclear if this is a direct or indirect interaction with 

VE-cadherin (49). Also, phosphatases must play a role in the degree of VE-cadherin 

phosphorylation in the endothelium. Vascular endothelial protein tyrosine phosphatase (VE-

PTP) co-precipitates with VE-cadherin and reverses the phosphorylation of VE-cadherin in 

response to VEGFR2 (42). Other phosphatases such as density-enhanced phosphatase-1 

(DEP-1), protein tyrosine phosphatase µ (PTPµ), and SH2-containing phosphotyrosine 

phosphatase (SHP2) have also been shown to associate with VE-cadherin and might play a 

role in its degree of phosphorylation (14,57-59).  

 While the role of VE-cadherin has been shown in paracellular TEM, there is much 

debate whether the paracellular or the transcellular pathways are both used as a means of 

leukocyte TEM. In vivo studies show that leukocytes utilize both the transcellular and 

paracellular routes of TEM (60,61). Most in vitro studies have found that leukocytes 

transmigrate across primary endothelial monolayer preferentially using the paracellular route 

(7,9,62). Though some studies have shown the route taken can be influenced by the type of 

transmigrating cell, the type of blood vessel or the leukocyte recruiting stimulus (1,9,61). For 

example, leukocytes may take different transmigratory routes when they are migrating across 
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high endothelial venules verses the blood-brain barrier. At present, whether leukocyte 

transmigration occurs primarily through a transcellular or paracellular route or both equally is 

a major question still to be determined.  

 In conclusion, we have demonstrated the phosphorylation of tyrosine residues Y658 

and Y731 in VE-cadherin are necessary for increasing endothelial cell junction permeability 

and efficient leukocyte transendothelial migration. Misregulation of leukocyte TEM can lead 

to pathologies such as chronic inflammation, atherosclerosis, multiple sclerosis, rheumatoid 

arthritis, psoriasis, and ischemia reperfusion injury. Anti-adhesion therapies have the 

potential of being some of the most specific and advanced in the treatment of chronic 

inflammatory disease. Thus solving the mystery of transendothelial migration may provide 

new targets for the treatment of inflammatory diseases.  
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