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ABSTRACT 
 

Elizabeth R. W. Knight:  Immune Molecules Regulate Medulloblastoma  
and Neuronal Apoptosis  

  (Under the direction of Mohanish Deshmukh) 

While the brain has long been considered an immunoprivileged region, recent 

research reveals that immune genes play important roles in neurons and the nervous 

system.  Neurons not only express immune genes but these genes can serve immune or 

neuron-specific functions.  Additionally, cytokines produced by immune cells can influence 

neuronal characteristics and survival.  In this work, I investigated the role of an immune 

cytokine, interferon-gamma (IFN-γ), on neuronal apoptosis and the role of an immune gene, 

ASC (Apoptosis-associated speck-like protein containing a caspase recruitment domain), in 

cancer of the cerebellum.      

While IFN-γ induces apoptosis in many cell types to limit the spread of infection, 

here we show that it protects sympathetic neurons from death with NGF deprivation or 

pan-kinase inhibition.  Specifically, we determined that IFN-γ inhibited apoptosis at the 

point of mitochondrial permeabilization, yet did not induce expression of a number of 

proapoptotic genes in sympathetic neurons that are upregulated in other cell types.  The 

ability of IFN-γ to promote sympathetic neuronal survival while inducing pro-death 

pathways in pathogens is likely a physiologically important mechanism which could ensure 

the long-term survival of these neurons during critical situations of infection.   
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We also examined the function of another immune gene, ASC, in the context of 

brain development and medulloblastoma, the most common malignant pediatric brain 

cancer.   ASC exerts pro-death effects in several cell types, is silenced in many cancers, and 

acts as a tumor suppressor in colon cancer.  Here, we present the unexpected findings that 

ASC deficiency robustly suppressed tumor incidence, delayed age of tumor onset, reduced 

premalignant lesion size, decreased EGL (external granule layer) proliferation, and increased 

TGF-β pathway expression and signaling in a mouse model of medulloblastoma.  These 

results identify a critical function of ASC in driving proliferation and tumorigenesis in this 

medulloblastoma model.  Therapies targeting ASC may be a promising strategy for 

preventing tumor progression of this challenging disease.  Together, these studies illustrate 

the ability of immune genes and signals to exert powerful effects on neuronal apoptosis and 

on a cancer of the nervous system.   
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CHAPTER I:  INTRODUCTION 

 

1.1  Apoptosis Overview 

Introduction 

 Cells can die by one of several mechanisms: apoptosis, pyroptosis, autophagy, or 

necrosis.  In apoptosis, the cell degrades its contents via cysteine proteases and 

compartmentalizes its fragments into apoptotic bodies to be engulfed by phagocytic cells.  

Thus apoptosis is an orderly way for a cell to die, leaving no trace behind.  Apoptosis is 

required for normal development, maintaining homeostasis, and preventing tumors and 

autoimmune diseases (Fink and Cookson, 2005; Taylor et al., 2008; Duprez et al., 2009).   

Pyroptosis, the newly discovered inflammatory cell death in immune cells is caused 

by the inflammasome complex activation of cysteine protease caspase-1, resulting in the 

cell lysing, spilling its contents into the milieu.  Released cellular cytokines activate the 

immune system to respond to the alarm, recruiting immune cells to the site of damage, 

where they can either promote healing or further destruction.  Pyroptosis is important for 

limiting infection and evoking immune response to pathogen and danger signals (Fink and 

Cookson, 2005; Duprez et al., 2009).   

 Autophagy, an intracellular catabolic mechanism that recycles cellular components 

inside autophagic vacuoles, can promote cell survival but can also induce cell death.  
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Autophagy-induced cell death is implicated in the demise of salivary gland cells during 

Drosophila metamorphosis (Fink and Cookson, 2005; Duprez et al., 2009). 

 Necrosis has been the catch-all phrase for uncontrolled, passive cell death involving 

caspase-1-independent cell lysis.  Necrosis is considered a back-up cell death mechanism 

when other types of cell death are blocked.  For instance, when death receptors are 

activated but apoptosis is blocked by caspases inhibition, a necrosis pathway involving RIP1 

(receptor interacting protein kinase -1) called necroptosis ensues.  Necrosis also results 

following TLR (toll-like receptors) or RLR (RIG-I-like receptors) activation by pathogen- or 

danger-associated signals and occurs in pathological conditions such as myocardial 

infarction, stroke, or traumatic brain injury.  Thus, cells can die by one of several 

mechanisms, characterized by environmental signal, biochemical pathways, and 

morphology (Fink and Cookson, 2005; Duprez et al., 2009).   

 

History of apoptosis 

 Apoptosis was first described in 1842 in the notochord of tadpoles by Carl Vogt, 

followed by extensive discoveries in chondrocytes, neurons, and other cell types (Clarke and 

Clarke, 1996).  Apoptosis was coined in 1972 by Kerr, Wyllie and Currie for the Greek 

meaning “falling off” of leaves from trees and was characterized in several human and rat 

tissues as an active, controlled cell deletion, with cells breaking apart into membrane-bound 

fragments which are then phagocytosed (Kerr et al., 1972).  The absence of cellular debris 

following cell death is a hallmark of apoptosis which allows a quiet death that does not elicit 

an immune response (Danial and Korsmeyer, 2004).  In 1976, John E. Sulston published his 



 

3 

 

findings on the programmed death of cells in C. elegans, demonstrating that cells 

reproducibly die during development.  Ellis and Horvitz then published in 1986 their findings 

in C. elegans of the first known genes required for apoptosis, ced-3 and ced-4 (Ellis and 

Horvitz, 1986).  Since these seminal discoveries, much progress has been made to elucidate 

the apoptotic machinery and mechanisms in varied organisms and cell types.   

 

Physiological functions of apoptosis 

Apoptosis was first discovered as a developmental process, and is required for 

normal organism development including organogenesis and vestigial organ removal, tissue 

remodeling including interdigital web removal (Milligan et al., 1995; Sharma et al., 2009), 

and death of neurons in the immature nervous system (Davies, 2003) (Figure 1.1).  

Apoptosis is also instrumental in maintaining homeostasis, for example by executing faulty 

or self-reactive immune cells (Marsden and Strasser, 2003), eliminating cells with a high 

turnover rate (e.g. red blood cells which die at a rate of 3000 cells per second) (Erwig and 

Henson, 2007), and post-development tissue remodeling, such as during mammary gland 

involution which restores mammary epithelial cells to pre-pregnancy number (Erwig and 

Henson, 2007).  Through the elimination of cells in the adult organism, apoptosis is able to 

balance the number of cells created to maintain homeostasis (Vaux and Korsmeyer, 1999).   

In addition to regulating development and homeostasis, apoptosis can either 

prevent or exacerbate various diseases (Fadeel and Orrenius, 2005).  Human embryonic 

stem cells exposed to DNA damage undergo rapid apoptosis, thereby eliminating chance of 

propagating mutated cells during embryogenesis (Dumitru et al., 2012).  Likewise, epithelial 
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cells undergo apoptosis following DNA damage (Green and Evan, 2002).  Apoptosis of cells 

infected with virus or bacteria limits the spread of infection (Dafny and Yang, 2005; Maher 

et al., 2007). Finally, immune cells induce apoptosis in tumor cells to block cancer 

development (Wang and El-Deiry, 2003).  Thus, apoptosis eliminates infected, 

dysfunctional, or damaged cells to promote the health of the organism (Carson and Ribeiro, 

1993). 

When apoptosis does not occur normally, cells that have accumulated mutations 

may proliferate uncontrollably, becoming tumor cells.  If these tumor cells escape apoptosis 

by evading immune surveillance, they may develop into cancers.  Furthermore, some 

mutations can suppress the apoptotic pathway or enhance survival pathways, thereby 

rendering the tumor cell resistant to external apoptotic signals (Martin, 2003; Yu and Zhang, 

2003; Wright and Deshmukh, 2006).  Inadequate apoptosis of immune cells can also cause 

systemic autoimmunity (Siegel et al., 2000). 

While insufficient apoptosis may lead to pathology, increased apoptosis can also 

occur in disease states.  Reperfusion following an ischemic event induces apoptosis in 

cardiac or brain tissue (Honda and Ping, 2006; Jung et al., 2010).  Also, many 

neurodegenerative diseases are characterized by apoptosis of mature neurons, which 

normally live for the lifetime of the organism (Honig and Rosenberg, 2000; Gorman, 2008; 

Nakamura et al., 2012). Neurotoxins released in neurodegenerative disease states induce 

apoptosis in neurons (Gorman, 2008).  Blocking apoptosis can reduce the deleterious effects 

of diseases.  Repressing apoptosis in models of traumatic brain injury, stroke, or ALS 

(amyotrophic lateral sclerosis) reduces cell death and improves clinical outcome (Hara et al., 
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1997; Hara et al., 1997; Kostic et al., 1997; Yakovlev et al., 1997).  Furthermore, inhibiting 

apoptosis in telencephalic neurons exposed to fibrillar amyloid beta, a hallmark of 

Alzheimer disease, prevented neuron death (Selznick et al., 2000).  Thus, apoptosis can be 

both a cause and a consequence in many pathologies.   

 

Apoptotic mechanisms 

In 1986, Ellis and Horvitz demonstrated a requirement for ced-3 and ced-4 genes in 

normal developmental apoptosis in C. elegans (Ellis and Horvitz, 1986).  The Horvitz lab later 

discovered the requirement of ced-9 “to protect cells that normally survive from undergoing 

programmed cell death” (Hengartner and Horvitz, 1994).  Ced-9 prevents Ced-4 from 

activating Ced-3 to subsequently cause apoptosis (Hengartner et al., 1992; Danial and 

Korsmeyer, 2004).  The mammalian homologs of the nematode genes were determined to 

be BCL-2 (B-cell lymphoma 2; Ced-9), Caspase-3 (Ced-3), and Apaf-1 (Ced-4) (Danial and 

Korsmeyer, 2004).  Sequence homology analysis to Ced-3 led to the discovery of an entire 

family of caspases, inactive zymogens that, upon activation, become cysteine proteases that 

cleave aspartic acid motifs.  Apoptotic caspases, including caspases-8, -9, and -3, degrade a 

multitude of cellular substrates to cause the apoptotic morphology characterized by cell 

shrinkage, membrane blebbing, DNA fragmentation, and chromatin condensation (Danial 

and Korsmeyer, 2004). 

After several decades of research since the discovery of the nematode genes, the 

major players in the apoptotic pathway have been elucidated.  Apoptosis can occur due to 

extrinsic or intrinsic signals.  Extrinsic signals such as Fas, TRAIL, or TNFα bind to their 
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respective receptors, inducing activation of the extrinsic apoptotic pathway.   Ligand-

receptor binding activates caspase-8, which cleaves Bid into tBid, which translocates to the 

mitochondria to cause mitochondrial permeabilization and cytochrome c release (Ozoren 

and El-Deiry, 2003; Riedl and Shi, 2004).  Since our lab studies intrinsic apoptosis, this 

section will focus on the intrinsic, or mitochondrial, apoptotic pathway.  

In intrinsic apoptosis, signals from DNA damage, trophic factor deprivation, ER 

stress, or other insults trigger the activation of pro-apoptotic BH3-only proteins through 

upregulation or phosphorylation (Vaux and Korsmeyer, 1999).  Pro-apoptotic BH3-only 

proteins are in the Bcl-2 family and contain a single BH3 (Bcl-2 homology -3) domain.  

Examples of BH3-only proteins are Bim, Bad, Bid, Puma, Noxa, Bmf, and DP5 (Chao and 

Korsmeyer, 1998).  Anti-apoptotic Bcl-2 family members, Bcl-2, Bcl-XL, and Bcl-w contain BH 

domains 1-4 and are localized at the mitochondrial membrane where they prevent 

mitochondrial permeabilization by associating with pro-apoptotic proteins Bax and Bak 

(Cory and Adams, 2002).  Bax and Bak are Bcl-2 family members that contain BH domains 1-

3 (Danial and Korsmeyer, 2004).  BH-3 only proteins, such as Bim and Bid, can be 

“activators" by binding and activating Bax/Bak directly through induction of an allosteric 

conformational change (Figure 1.2).  Other BH-3 only proteins, including Bad and BMF, are 

“sensitizers” that compete for binding to anti-apoptotic Bcl-2 and Bcl-XL, preventing their 

suppression of Bax/Bak (Letai et al., 2002; Deng et al., 2007; Ren et al., 2010).  When 

released from repression by Bcl-2 and Bcl-XL, Bax and Bak undergo a conformational 

change, inserting and oligomerizing in the mitochondrial membrane, forming a pore in the 
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outer membrane that then releases cytochrome c, Smac, AIF, and other mitochondrial 

proteins (Danial and Korsmeyer, 2004; Chipuk and Green, 2008).       

In the mitochondria, cytochrome c transfers electrons as an essential part of the 

electron transport chain.  When cytochrome c is released from the mitochondria into the 

cytosol, it binds to the WD40 repeat domain of Apaf-1 (Figure 1.3).  Binding of cytochrome c 

to Apaf-1 in the presence of dATP releases the autoinhibition of WD40 and induces a 

conformational change which exposes the CARD (caspase activation and recruitment 

domain) of Apaf-1.  The CARD domain recruits procaspase-9 via homotypic CARD binding.  

This tripartite structure composed of cytochrome c, Apaf-1, and procaspase-9 oligomerizes 

as a heptameric apoptosome, a ~700 kDa structure that activates procaspase-9 through 

autocatalytic cleavage (Srinivasula et al., 1998; Acehan et al., 2002; Cain et al., 2002; Riedl et 

al., 2005).   

Caspase-9, once activated by the apoptosome, induces a cascade of caspase 

activation.  Caspase-9 activates caspase-3/7 and indirectly activates caspase-6.  Caspase 3 

then can activate caspase-2/6, which then activate caspase-8/10.  Caspase 3 also can 

activate caspase-8/9, escalating a positive feedback loop of caspase activating amplification 

(Creagh et al., 2003; Riedl and Shi, 2004).  

Caspases are cysteine proteases that exist as zymogens until activated.  While 

individual caspases can have many substrates, each caspase cleaves a specific substrate 

sequence of four residues amino-terminal to an aspartic acid motif (Hengartner, 2000).  

Initiator caspases include caspase-9, -8, -2 and -10, which are activated directly by the 

apoptotic machinery to initiate the caspase cascade (Figure 1.4).  Initiator caspases have a 
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CARD or DED (death effector domain) N-terminal prodomain that allows for homotypic 

protein interactions (Riedl and Shi, 2004; Boucher and Denault, 2012).  Initiator caspases 

activate effector caspases, such as caspase-3, -6 and -7, which cleave an array of substrates 

to produce the morphology of apoptosis- membrane blebbing, DNA fragmentation, cell 

shrinkage, and chromatin condensation (Thornberry and Lazebnik, 1998; Riedl and Shi, 

2004).   

Interestingly, caspases can have nonapoptotic functions, for instance caspase-3 

plays a role in differentiation of erythroblasts and inhibition of B-cell proliferation (Nhan et 

al., 2006; Lamkanfi et al., 2007).  Furthermore, additional caspases exist that do not play a 

role in apoptosis.  Caspase-1, originally known as ICE (interleukin-1β converting enzyme) 

was first discovered as the homolog to the C. elegans gene ced-3, which promoted 

apoptosis in nematodes, yet caspase-1 has been determined to have a role not in apoptosis, 

but in inflammation (Riedl and Shi, 2004).  Likewise, caspase-4, -5, (human) and -11 (mouse) 

are also activated primarily in inflammatory responses (Creagh et al., 2003).  Inflammatory 

caspases have an N-terminal CARD or DED prodomain for homotypic protein binding (Figure 

1.4) (Creagh et al., 2003; Martinon and Tschopp, 2007). 

Following apoptosome formation and initiation of the caspase activation cascade, 

apoptotic caspases can be blocked by inhibitors of apoptosis proteins (IAPs).  Eight 

mammalian IAPs have been discovered thus far and include XIAP (X-linked IAP), NAIP 

(neuronal apoptosis inhibitory protein), c-IAP1, c-IAP2, ML-IAP (melanoma IAP)/Livin, 

Survivin, ILP2 (IAP-like protein-2), and Bruce.  IAPs contain a baculoviral IAP repeat (BIR) 

domain and can block caspases by binding directly or targeting them to the ubiquitin-
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proteasome pathway for degradation.  XIAP is the only mammalian IAP that has been 

shown to bind caspases directly.  XIAP mediates caspase inhibition by binding a tetrapeptide 

motif on active caspases directly through one of its BIR domains and sterically blocking 

substrates from binding with the active caspases.  Research also suggests that XIAP may 

ubiquitinate caspases through its C-terminal RING finger domain, which has E3 ubiquitin 

ligase activity (Riedl and Shi, 2004; Eckelman et al., 2006). 

Inhibitors of apoptosis proteins themselves have an inhibitor: Smac/DIABLO.  Smac is 

a mitochondrial protein that is released with cytochrome c into the cytosol following 

mitochondrial permeabilization.  The IAP-binding tetrapeptide motif in Smac competes with 

caspases for binding to the BIR domain of IAPs, allowing both initiator and effector caspases 

to remain unimpeded (Hengartner, 2000; Riedl and Shi, 2004). 
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1.2  Neuronal Apoptosis 

Introduction 

Sensory neurons were first discovered to undergo elimination in 1889, followed by a 

discovery of spinal ganglion cell death in chick embryos in 1906 (Clarke and Clarke, 1996).  

Since then, scientists have discovered that apoptosis occurs throughout the nervous 

system- in spinal cord, the retina, cerebellum, cortex, brain stem, and sensory and 

autonomic ganglia (Buss et al., 2006).  The importance of apoptosis for normal nervous 

system development is revealed upon removal of any single gene required for apoptosis.  

Apaf-1, caspase-9, or caspase-3 knockout animals have enlarged brains and a high incidence 

of embryonic lethality (Kuida et al., 1996; Cecconi et al., 1998; Kuida et al., 1998; Buss et al., 

2006).  Between 20 and 80% of all neurons that are born undergo cell death during 

development (Oppenheim, 1991).  Deletion of neurons may correct errors in cell migration, 

axonal pathfinding, or target innervation, and thus refine functional nervous system 

circuitry (Buss et al., 2006).  Furthermore, apoptosis ensures that neurons that are 

outcompeted for limited trophic factors via target innervation are eliminated (Buss et al., 

2006).  In summary, neuronal apoptosis is required for proper wiring and development of 

the nervous system. 

 

Sympathetic neurons 

In the sympathetic nervous system, superior cervical ganglia (SCG) innervate the 

eye, and salivary and tear glands (Vinken and Bruyn, 1999).  Sympathetic neurons of the 

SCG extend axons to their targets which secrete neurotrophic growth factor (NGF).  NGF 
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was the first neurotrophic factor to be discovered and is required by sympathetic neurons 

for survival (Thoenen and Edgar, 1985).  When neutralizing antibodies block this single 

growth factor in vivo, 99 % of the sympathetic neurons in young mouse SCGs are ablated 

(Levi-Montalcini and Booker, 1960).   

Sympathetic neurons can be studied in vitro as well since primary sympathetic 

neurons from rat or mouse SCG can be dissociated and maintained in very pure cultures.  

NGF deprivation causes virtually all neurons to undergo apoptosis within 48 hours, with the 

classic features of DNA fragmentation, chromatin condensation, neurite degeneration, and 

membrane blebbing.  Because these cells are able to be maintained in pure cultures and 

also undergo apoptosis in response to one signal, sympathetic neurons are an ideal model 

with which to study the apoptotic pathway (Deshmukh and Johnson, 1997; Rubin, 1997).   

During development, immature sympathetic neurons extend their axons to their 

NGF-secreting targets.  Sympathetic neurons either fail to reach their target, thus 

undergoing NGF-deprivation-induced apoptosis, or the neurons innervate their targets and 

mature, losing sensitivity to NGF deprivation with maturation around P11 (Glebova and 

Ginty, 2005).  The sympathetic neuron experiments presented in this dissertation were 

conducted in young (P5) neurons, which undergo apoptosis in response to NGF deprivation. 

The presence of NGF stimulates activation of pro-survival pathways, while the 

absence of NGF triggers an active pro-apoptotic response (Figure 1.5).  NGF phosphorylates 

the tyrosine kinase receptor, TrkA on sympathetic neuron axon terminals, activating the PI-

3-kinase/Akt pathway which promotes cell survival (Brunet et al., 2001).  In the absence of 

NGF, an active signaling pathway requiring transcription and translation executes apoptosis 
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(Martin et al., 1988; Deshmukh and Johnson, 1997).  NGF deprivation triggers activation of 

Rho GTPase Cdc42, which leads to activation of the MLK (mixed lineage kinase) and MAPK 

(mitogen-activated protein kinase) pathways.  MKK4/MKK7 activate JNKs including JNK3, 

which phosphorylate c-Jun at serine residue 63 (Xia, Dickens et al. 1995; Eilers, Whitfield et 

al. 1998; Maroney, Finn et al. 1999; Ham, Eilers et al. 2000; Bruckner, Tammariello et al. 

2001).  Ser63 phosphorylation activates transcription factor activity of c-Jun, which induces 

transcription of c-Jun and BH3-only genes including Bim, DP5, Puma, and Bmf (Putcha, 

Moulder et al. 2001; Imaizumi, Benito et al. 2004; Kole, Swahari et al. 2011; Kristiansen, 

Menghi et al. 2011).  Upregulation of the BH3-only proteins is required to block Bcl-2 and 

Bcl-XL and promote Bax activation.  Active Bax oligomerizes and forms a pore in the 

mitochondrial outer membrane, releasing cytochrome c into the cytosol, as described 

above (see previous section).  Cytochrome c binds to Apaf-1, initiating apoptosome 

formation and subsequent caspase activation.  Blocking any step of this pathway inhibits 

apoptosis in NGF-deprived sympathetic neurons.  Thus, NGF deprivation executes 

mitochondrial permeabilization and exploits the intrinsic apoptotic pathway in sympathetic 

neurons. 

 

Apoptosis inhibition in sympathetic neurons 

Sympathetic neurons have several mechanisms by which they can suppress key 

players of the apoptotic pathway.  Firstly, neurons have a truncated form of Bak, N-Bak, 

which lacks BH3 domains necessary for pro-apoptotic activity.  Thus, neurons rely solely on 

Bax for mitochondrial permeabilization (Deckwerth et al., 1998) and loss of Bak expression 
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does not alter neuronal death with NGF deprivation (Putcha et al., 2002; Sun et al., 2003; 

Uo et al., 2005).  Furthermore, mature neurons upregulate miR-29, which blocks translation 

of BH3-only genes in these cells (Kole et al., 2011).  MiR-29-mediated restriction of BH3-only 

gene expression prevents Bax activation, thus providing another obstacle to apoptosis (Kole 

et al., 2011).    

Sympathetic neurons also restrict apoptosis at the point of cytochrome c release.   In 

healthy young neurons, cytochrome c is inactivated by the reduced environment.  Thus tBid 

microinjection induces apoptosis in MEFs (mouse embryonic fibroblasts) but no death in 

sympathetic neurons (Vaughn and Deshmukh, 2008).  NGF deprivation in neurons generates 

reactive oxygen species which oxidize the cytosol, allowing cytochrome c to become 

activated and cause programmed cell death (Vaughn and Deshmukh, 2008).  Autophagy-

independent degradation may be another mechanism to suppress cytochrome c (Davidescu 

et al., 2012).   

Once functional cytochrome c is released, Apaf-1 binding is required for apoptosome 

formation.  Apaf-1 protein levels have been shown to decrease with development (P3 vs 

E16) and are further reduced with maturation (Wright et al., 2004) in sympathetic neurons 

via chromatin repression (Wright et al., 2007).  Apaf-1 levels are also decreased in PC12 

cells with neuronal-like differentiation (Wright et al., 2004).  Apaf-1 expression is required 

for apoptosis in sympathetic neurons (Wright et al., 2007) and some types of apoptotic 

insults, such as DNA damage, upregulate Apaf-1 mRNA and protein to promote apoptosis 

(Vaughn and Deshmukh, 2007). 
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Following apoptosome formation, XIAP serves as a formidable opponent to caspase 

activation in sympathetic neurons.  Caspase-9 and -3 are required for sympathetic neuron 

apoptosis with NGF deprivation (Wright et al., 2007) and are rendered incompetent by XIAP 

(Vaughn and Deshmukh, 2008).  Endogenous Smac released from the mitochondria is 

insufficient to block XIAP in sympathetic neurons (Vaughn and Deshmukh, 2008), yet 

microinjection of excess Smac along with cytochrome c enables XIAP neutralization and 

death (Potts et al., 2003).  Thus, endogenous Smac does not serve as a brake to XIAP 

inhibition of caspases in sympathetic neurons.  To remove XIAP, neurons degrade XIAP 

mRNA and protein in response to NGF deprivation, enabling these cells to undergo 

apoptosis (Potts et al., 2003; Vaughn and Deshmukh, 2007).  Thus, even at the level of 

caspase activation, sympathetic neurons have developed an important guardian of cell 

survival, XIAP, to constrain apoptosis. 

By utilizing these hurdles to inhibit apoptosis at every step of the pathway, 

sympathetic neurons ensure survival in instances of slight damage, cytochrome c release, or 

caspase activation.  These brakes prevent accidental initiation of apoptosis yet enable cell 

death warranted by significant insult.  This remarkable resistance to apoptosis ensures the 

survival of these cells which must persist for the lifetime of the organism. 
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1.3  Medulloblastoma 

Medulloblastoma (MB), a tumor of cerebellar progenitors, is the most common 

malignant brain cancer in children (Hatten and Roussel, 2011), with 20% of pediatric central 

nervous system tumors, or 540 cases  (0.6 per 100,000 children 0-19 years old) in the U.S. 

diagnosed each year (Polkinghorn and Tarbell, 2007; Lau et al., 2012).  Symptoms of 

medulloblastoma include morning vomiting, ataxia, and headaches.  30% of childhood cases 

show cerebrospinal fluid metastasis at diagnosis (Polkinghorn and Tarbell, 2007).  5 year 

overall survival rates are approximately 60%, yet side effects from radiation treatment 

include cognitive impairment (reduction of up to 30 IQ points), psychiatric illness, bone 

growth retardation, hearing loss, and endocrine disruption (Polkinghorn and Tarbell, 2007; 

Ellison, 2010; Roussel and Hatten, 2011).   

In the past, MBs have been classified into histological categories including classic, 

desmoplastic, large cell/anaplastic (LC/A), and medulloblastoma with extensive nodularity 

(MBEN) (Gilbertson and Ellison, 2008; Roussel and Hatten, 2011).  Recent research, 

however, has used molecular characteristics (mutations, deletions, amplifications, etc.) to 

categorize tumors based on the specific pathway altered, including SHH (Sonic Hedgehog), 

WNT/β-catenin, MYC, Notch, BMP, and/or TGF-β signaling pathways (Marino, 2005; 

Polkinghorn and Tarbell, 2007; Ellison, 2010; Gibson et al., 2010; Cho et al., 2011; Hatten 

and Roussel, 2011; Roussel and Hatten, 2011; Northcott et al., 2012).  Amplification of the 

SHH pathway is the best characterized of these subgroups, with 25% of MBs having 

mutations in Patched, Sufu (Suppressor of Fused Homolog), Smoothened, or other genes in 

the pathway (Marino, 2005; Gibson et al., 2010).  During normal development, activation of 
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the SHH pathway stimulates proliferation of cerebellar granule neuron progenitors (CGNPs), 

which undergo rapid division in the external granule layer (EGL), then differentiate and 

migrate to the internal granule layer (IGL) during the early postnatal period (Hatten and 

Heintz, 1995).  In medulloblastoma, overactive SHH signaling induces CyclinD1 and CyclinD2 

expression which promote the hyperproliferation of CGNPs.  Mutations that activate SHH 

signaling cause predisposition to medulloblastoma in humans with Gorlin Syndrome and in 

genetically engineered mouse models (Polkinghorn and Tarbell, 2007; Hatten and Roussel, 

2011).  These models, which operate through either Patched deletion or insertion of 

constitutively active alleles of Smoothened, consistently implicate CGNPs as the cells of 

origin for SHH-driven medulloblastoma (Hallahan, Pritchard et al. 2004; Yang, Ellis et al. 

2008).   

In conclusion, while advances in treatment have increased the survival of 

medulloblastoma patients, mortality remains significantly high (30%) and debilitating side 

effects result from current treatment regimens (Polkinghorn and Tarbell, 2007; Jones et al., 

2012).  Thus, advancing the understanding of the genetic components of medulloblastoma 

tumorigenesis is needed to develop improved targeted therapies. 
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1.4  Figures and Legends 

 

Figure 1.1.  Syndactylyl is caused by insufficient apoptosis 

Apoptosis is required for normal development, including cell death of interdigital webbing. 
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Figure 1.1 
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Figure 1.2.  The Bcl-2 family 

The Bcl-2 family is comprised of pro-apoptotic Bax and Bak, anti-apoptotic Bcl-2 and Bcl-XL, 

and sensitizer or activator BH3-only proteins.   
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Figure 1.2 
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Figure 1.3.  Formation of the apoptosome complex 

Cytochrome c binds to the WD40 domain of Apaf-1, inducing a conformational change that 

releases auto-inhibition and recruits procaspase-9 to the CARD domain of Apaf-1. 
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Figure 1.3 
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Figure 1.4.  The Caspase family 

The caspases were discovered by sequence homology analysis with nematode gene ced-3.  

Caspases have a primary role as initiators or executioners of apoptosis, or in inflammation.  

Executioner proteins lack an N-terminal protein interaction domain such as CARD or DED.  

The family of murine caspases is below.   
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Figure 1.4 
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Figure 1.5.  The NGF deprivation apoptotic pathway 

NGF absence activates Rho GTPase Cdc42, which activates MLK and MAPK pathways, 

phosphorylating JNK.  JNK phosphorylates c-Jun, which upregulates the BH3-only genes.  

BH3-only genes block Bcl-2 and Bcl-XL and activate Bax.  Bax oligomerizes at the 

mitochondrial membrane, forming a pore which releases cytochrome c into the cytosol.  

Cytochrome c binds the WD40 domain of Apaf-1, which induces apoptosome formation 

with procaspase-9, activating caspase-9.  If caspases escape XIAP inhibition, caspase-9 

initiates a positive feedback loop of caspase activation. 
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Figure 1.5 
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CHAPTER II:  INTERFERON-GAMMA PROTECTS SYMPATHETIC NEURONS FROM  

APOPTOSIS AT THE POINT OF CYTOCHROME C RELEASE 

 

2.1  Overview 

While immune responses during nervous system injury and disease are well studied, 

exactly how primary neurons respond to immune signals is still largely unknown.  We find 

that primary sympathetic neurons respond unexpectedly to interferon-gamma (IFN-γ), a 

cytokine released by immune cells in response to infection.  While IFN-γ induces apoptosis 

in many cell types, it has the opposite effect on sympathetic neurons by protecting them 

from apoptotic stimuli.  We found that IFN-γ addition enabled sympathetic neurons to 

become resistant to nerve growth factor (NGF) deprivation- or pan-kinase inhibition-

induced apoptosis.  In investigating how IFN-γ modulates the apoptotic pathway, we 

discovered that c-Jun phosphorylation and Bim induction in response to NGF deprivation 

were unchanged with IFN-γ.  Downstream of the mitochondria, however, IFN-γ blocked 

cytochrome c release and caspase-3 activation in NGF-deprived neurons.  Microinjection of 

cytochrome c into XIAP-/- neurons revealed no difference in cell death with IFN-γ addition, 

demonstrating a role for IFN-γ at the point of mitochondria permeabilization.  These results 

identify Bax activation as the likely point at which IFN-γ acts to inhibit neuronal apoptosis.  

Finally, microarray analysis revealed that sympathetic neurons respond to IFN-γ by 

upregulating interferon-inducible genes and several pro-apoptotic genes.  Together, our 
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results show that IFN-γ is not only incapable of inducing apoptosis in neurons but 

remarkably enables neurons to become resistant to apoptosis.  As sympathetic neurons 

become exposed to IFN-γ during infection or injury, the ability of IFN-γ to inhibit apoptosis 

in neurons is likely important for ensuring the long-term survival of neurons during 

situations of pathological stress.  
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2.2  Introduction 

Overview of Interferons 

A major mechanism of cellular host response to pathogenic infection is the secretion 

of interferons (IFNs).  IFNs are upregulated and released by cells to inhibit pathogen 

replication and regulate activation of immune cells.  In particular, IFNs are known to induce 

apoptosis of both infected cells and pathogens to limit the spread of infection (Dafny and 

Yang, 2005; Maher et al., 2007).  Additionally, IFNs modulate angiogenesis and regulate cell 

growth, proliferation, and differentiation (Chawla-Sarkar et al., 2003; Maher et al., 2007).  

IFNs also exert these functions during injury and in tumor suppression (Chawla-Sarkar et al., 

2003; Maher et al., 2007).  IFNs are classified into different subtypes where Type I IFNs (IFN-

α and IFN-β) are produced by almost all cell types, with hematopoietic cells being major 

producers of IFN-α and fibroblasts being the main source of IFN-β (Schroder et al., 2004; 

Maher et al., 2007).  Th1 lymphocytes and natural killer (NK) cells are the major source of 

Type II IFN, IFN-γ (Chawla-Sarkar et al., 2003; Schroder et al., 2004; Dafny and Yang, 2005; 

Maher et al., 2007).  Type III IFN, IFN-λ, was recently discovered through sequence 

homology analysis and is not well characterized (Maher et al., 2007). 

The signaling pathway for IFN production has been well characterized in the context 

of the immune system.  IRFs (IFN regulatory factors) induce interferon production in 

response to pathogen-associated molecular patterns or other signals (Maher et al., 2007).  

IFN-α/β bind IFNAR (IFN-α receptor) and IFN- γ binds to IFNGR (IFN-γ receptor), but both 

types phosphorylate and activate the JAK (Janus tyrosine kinase)/STAT (signal transducers 

and activators of transcription) pathway (Schroder et al., 2004).  STATs bind to ISRE (IFN-
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stimulated response element sequence in promoter) or GAS (gamma interferon-activated 

sequence) sequences to mediate the regulation of at least 300 interferon-stimulated genes 

(ISGs) (Dafny and Yang, 2005; Maher et al., 2007).  The activation of the JAK/STAT pathway 

mediates the antiproliferative, antiviral, and immunomodulatory functions of interferons 

(Maher et al., 2007).  Phosphorylation of JAK leads to downstream activation of the PI3K 

pathway (Akt, mTOR), insulin and IGF-1 receptor signaling, and also p38, JNK (c-Jun N-

terminal kinases) and ERK (extracellular signal regulated kinases) MAPKs (mitogen-activated 

protein kinases) (Kalvakolanu and Roy, 2005; Maher et al., 2007; Hervas-Stubbs et al., 

2011).  Interferon activation can also lead to NF-κB activation (Hervas-Stubbs et al., 2011). 

 

Interferons regulate apoptosis 

In addition to inhibiting translation and transcription in cells to suppress expression 

of viral genes and proteins, interferons also induce apoptosis of infected or surrounding 

cells through gene regulation in a variety of cell types to limit spread of infection.  Through 

upregulation of genes involved in the apoptotic pathway and other genes that induce cell 

death through unknown mechanisms (DAPs, IRFs, RIDs, RNaseL), the interferons induce 

apoptosis in many cell types including endothelial cells (Chawla-Sarkar et al., 2003), 

keratinocytes (Maher et al., 2007), hepatocytes (Barber, 2000; Chawla-Sarkar et al., 2003), 

oligodendrocytes (Baerwald and Popko, 1998), fibroblasts (Dijkmans et al., 1990), and many 

types of cancer cells (Barber, 2000; Becher et al., 2000; Chawla-Sarkar et al., 2003; Clemens, 

2003; Schroder et al., 2004; Pokrovskaja et al., 2005; Maher et al., 2007; Zhang et al., 2008; 

Das et al., 2009).  Additionally, interferons can also sensitize cells to apoptosis by viral 
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infection or apoptotic stimuli through upregulation of apoptotic genes (Choi et al., 1999; 

Sedger et al., 1999; Nishikawa et al., 2001; Chawla-Sarkar et al., 2003; Clemens, 2003; 

Maher et al., 2007; Gysemans et al., 2008).   

Although interferons are considered apoptosis-inducing cytokines (Chawla-Sarkar et 

al., 2003; Schroder et al., 2004) there is evidence that interferons may inhibit apoptosis in 

activated T cells and primary B cells (Barber, 2000; Clemens, 2003; Pokrovskaja et al., 2005).  

Mechanisms for an anti-apoptotic response include blocking cell cycle (p21 upregulation in 

macrophages (Barber, 2000; Chawla-Sarkar et al., 2003; Clemens, 2003), activation of NF-κB 

(Clemens, 2003; Hervas-Stubbs et al., 2011), PI3K activation (Clemens, 2003), or 

upregulation of ifi202b (interferon-inducible protein 202b), which modulates activity of 

multiple transcription factors (Koul et al., 1998; Clemens, 2003). 

 

Interferons in neuronal apoptosis 

While interferons overwhelmingly exert a pro-apoptotic effect on most cell types, 

there is evidence for a mixed outcome in neurons.  IFN-γ transgenic HSV-infected mice 

displayed reduced neuronal apoptosis than wild-type mice, while IFN-γ-/- mice exhibited 

greater neuronal death and exacerbated encephalitis and ataxia.  In both cases, increased 

IFN-γ signaling corresponded to increased neuronal expression of Bcl-2 and these effects 

were independent of viral replication and neuroinvasion (Geiger et al., 1994; Geiger et al., 

1995; Geiger et al., 1997).  Similarly, IFN-γ-/- mice infected with Borna disease virus (BDV) 

exhibited increased hippocampal neuronal apoptosis during CD8+ T cell responses than 

wild-type mice (Richter et al., 2009).  Other research shows that IFN-α/β sensitizes 
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fibroblasts, but not dorsal root ganglia (DRG) neurons to cell death by poly(I:C) (Yordy et al., 

2012).   

Conversely, other research indicates that interferons can induce apoptosis in 

neurons.  Type I IFN inhibited BDNF (brain-derived neurotrophic factor)-mediated survival 

and neurite outgrowth of primary mouse cortical neurons, which was associated with 

caspase activation and reduced TrkB, Akt, and ERK1/2 signaling (Dedoni et al., 2012).  In 

vitro, IFN-γ either induced apoptosis in motoneurons (Smith et al., 2009; Aebischer et al., 

2011) or had no effect (Mir et al., 2009), however in vivo, spinal cord motoneurons in 

untreated IFN-γ-/- mice were positive for apoptotic markers (TUNEL, active Casp3), unlike 

wild-type mice (Victorio et al., 2010).  Another study found that IFN-γ does not induce death 

of cortical, hippocampal, DRG, or striatal neurons but protects motoneurons from death 

induced by mutant SOD astrocyte media (Aebischer et al., 2011).  Thus, interferons’ effects 

on neuron survival can be protective, neutral, or deleterious and further research is needed 

to elucidate the role of interferons in neuronal apoptosis. 

 

Interferons and sympathetic neurons 

Sympathetic neurons of the peripheral nervous system may be particularly exposed 

to infectious microorganisms and immune cells (Rottenberg and Kristensson, 2002), as 

some pathogens first invade sensory nerves and spread to the brain via centripetal axonal 

transport (Rottenberg and Kristensson, 2002).  DRG (dorsal root ganglia) and SCG 

(sympathetic cervical ganglia) express interferon receptors and interferons protect 

peripheral neurons from viral and bacterial infection (Tsukamoto and Price, 1982; Chang et 
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al., 1990; Rottenberg and Kristensson, 2002; Burdeinick-Kerr et al., 2009; Mitchell et al., 

2012).  Additionally, Chang et al. found that rat sympathetic neurons exposed to IFN-γ are 

resistant to apoptosis induced by nerve growth factor (NGF) deprivation (Chang et al., 

1990).  In this study, we show that IFN-γ suppresses apoptosis in sympathetic neurons 

treated with nerve growth factor deprivation or pan-kinase inhibition.  Importantly, we 

report that IFN-γ acts at the point of mitochondrial permeabilization to suppress the 

intrinsic apoptotic pathway in NGF-deprived neurons.  Interestingly, IFN-γ exerts this 

protective effect on sympathetic neurons despite inducing the expression of several pro-

apoptotic genes.  These findings point to inhibition of Bax activation as the likely mechanism 

by which this immune cytokine inhibits sympathetic neuron apoptosis.  
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2.3  Methods 
 
Cell Culture:    

Primary sympathetic neurons were dissected from the superior cervical ganglia of 

P0-1 wild-type ICR or XIAP-deficient C57BL/6 mice, dissociated and maintained until P5 

equivalent, as previously described (Potts et al., 2003).  At P5-6, neurons were untreated or 

treated with NGF deprivation, pan-kinase inhibition with 100 nM staurosporine (STS), DNA 

damage with 20 μM etoposide, or ER stress with 2.5 μM tunicamycin (TUN).  NGF deprived 

neurons were washed three times and then maintained in NGF-deficient media with anti-

NGF neutralizing antibody.  Unless otherwise indicated, 500 U/ml IFN-γ was added 

simultaneously with apoptotic insult, with boiled IFN-γ serving as a negative control.   

 

Immunofluorescence:   

Neurons were fixed with 0.4 % paraformaldehyde at 12 hours for phospho-c-Jun, 24 

hours for cleaved caspase-3, or 48 hours for cytochrome c.  Pan-caspase inhibitor 25 μM Q-

VD-OPh (MP Biomedicals) was added during cytochrome c immunofluorescence 

experiments.  Immunofluorescence staining was performed as previously described 

(Deshmukh and Johnson, 1998).  Primary antibodies used were anti-cytochrome c 

(#556432, BD Biosciences; 1:100 dilution), anti-phospho-c-Jun-Ser63 (#9261, Cell Signaling; 

1:1000 dilution), and cleaved caspase-3 (1:100, Cell Sig.).  Secondary antibodies were Cy3 

(1:400) or Alexa 488 (1:1000)-conjugated antibodies (Jackson Immunoresearch Laboratories 

Inc.; 1:400 dilution).  Nuclei were counterstained with 4’6-diamino-2-phenylindole (DAPI) in 

mounting media (Vector Laboratories) or Hoechst 33258 (Molecular Probes).   
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Western blot analysis:   

Mouse cerebella and tumors were homogenized in RIPA buffer and protein 

concentration was determined by Pierce BCA assay (ThermoScientific, Waltham, MA, USA).  

Immunoblotting was performed as previously described (Deshmukh et al., 2002) or by using 

a SNAP ID device (Millipore) per protocol.  Blots were probed with antibodies to Apaf-1 

(1:500, Alexis), XIAP (1:500, MBL), β-actin (Sigma, 1:10000), Bax (1:500, Santa Cruz Biotech), 

Bcl-XL (1:1000, Cell Sig.), Bim (1:1000, Cell Sig.), cleaved caspase-3 (1:500, Cell Sig.), 

procaspase-3 (1:1000,Stressgen), phospho-c-Jun (1:500, Cell Sig.), Puma (1:1000,Cell Sig.), 

alpha-tubulin (Sigma-Aldrich), and Smac (R&D).  Antibody conjugates were visualized by 

chemiluminescence (ECL; GE Healthcare, Buckinghamshire, UK). 

 

Microinjection:   

XIAP-/- sympathetic neurons were injected with (8 μg/μL) rhodamine-dextran (Sigma) 

with or without 15 mg/ml bovine cytochrome c as previously described (Potts et al., 2003).  

500 U/ml IFN-γ was added where indicated to plates 24 hours before injection.   

 

Quantitation of cell survival: 

Neuron survival was assessed by morphology immediately at treatment or 

microinjection and at various time points.  Survival was assessed by counting clearly 

identifiable neurons with intact phase-bright cell bodies, whereas dead neurons were 

atrophied.  Cell survival was expressed as a percentage of the original number of treated or 
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microinjected cells.  This method of assessing survival correlates well with other cell survival 

assays such as staining with calcein AM or trypan blue exclusion (Potts et al., 2003).  Data 

presented are mean ± s.e.m analyzed by Student’s t-test.  Experiments were done at least 

three times.  Boiled 500 U/ml IFN-γ, boiled 5 min at 99˚C, serves as a negative control.  All 

IFN-γ treatments are 500 U/ml unless otherwise stated. 

  

Quantitative RT-PCR: 

Total RNA was extracted from sympathetic neurons using Trizol Reagent (Invitrogen, 

Carlsbad, CA, USA) or RNeasy mini kit (Qiagen, Germantown, MD, USA) as per protocol.  

200-1000 ng RNA was converted to cDNA using previously described methods (Kole et al., 

2011).  Each 25 μl PCR reaction contained 25 ng cDNA, 400 nM of each primer, and 

PowerSYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK).  Primers were 

designed using Primer Express software (Applied Biosystems) or obtained from the 

literature (sequences in Table 2.1).  For each set of primers, post-amplification melting 

curves were performed to verify a single amplification product.  Amplification was 

conducted in an ABI7500 system (Applied Biosystems) and relative quantification was 

calculated using the 2-ΔΔCT method.  5-6 samples per group were run in triplicate with a 

negative control (no SuperScript II).  Significance was determined by a one-tailed Mann-

Whitney statistical test.  Results were duplicated in at least three independent experiments 

and target gene expression was normalized to 18S or GAPDH levels.   
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Table 2.1.  qRT-PCR primers (5’-3’) used in this study.  

Gene  Forward Reverse 

Ifi202b GCAGTGGCATCCTAGAGATCAA TTGGGCACTTCAATAATTTGGTT 

18S TTGACGGAAGGGCACCACCAG GCACCACCACCCACGGAATCG 
(Sato et al., 2013) 

Gapdh TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA 

 

Microarray analysis: 

Total RNA was purified from sympathetic neurons treated with or without 500 U/ml 

IFN-γ for 24 hours using Trizol Reagent (Invitrogen) as per protocol.  RNA integrity was 

assessed on a 2100 Bioanalyzer using an RNA6000 nano chip (Agilent Technologies, Sugar 

Land, TX, USA) and concentration was quantified using a NanoDrop 1000 

spectrophotometer.  500 ng RNA per sample was labeled using the Low Input Quick Amp 

Labeling Kit (Agilent Technologies) per manufacturer instructions.  500 ng RNA from 

untreated P5 sympathetic cervical ganglia was amplified and labeled with Cy3 as a reference 

for each sample.  Overnight hybridization of two-color whole mouse genome 4x44K 

microarrays (Agilent Technologies) and scanning on an Agilent G2505C microarray scanner 

were performed at the UNC Genomics Core according to manufacturer recommendations.  

500 ng RNA from untreated P5 sympathetic neuron served as an internal reference for each 

slide.  Raw data was processed and analyzed by GeneSpring GX Version 11.0 (Agilent 

Technologies).  Genes with a corrected P value <0.05 following unpaired t-test and 

Benjamini and Hochberg false discovery rate procedure were considered differentially 

expressed. 
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Image acquisition and processing: 

Images were acquired by an ORCA-ER digital B/W CCD camera (Hamamatsu) 

mounted on a DMI6000 B inverted fluorescence microscope (Leica) using MetaMorph 

version 7.6 software (Molecular Devices).  Adobe Photoshop was used to adjust size and 

crop images to prepare the final figures.   
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2.4  Results 

IFN-γ suppresses neuronal apoptosis induced by NGF deprivation and pan-kinase 

inhibition 

IFN-α/β/γ induce apoptosis or increase sensitivity to apoptosis in many cell types 

(Dijkmans et al., 1990; Baerwald and Popko, 1998; Barber, 2000; Becher et al., 2000; 

Chawla-Sarkar et al., 2003; Clemens, 2003; Schroder et al., 2004; Pokrovskaja et al., 2005; 

Maher et al., 2007; Zhang et al., 2008; Das et al., 2009), however, there is evidence that IFN-

γ inhibits apoptosis in sympathetic neurons undergoing NGF deprivation (Chang et al., 

1990).  To determine whether interferons affect neuronal apoptosis, we exposed 

sympathetic neurons. to apoptotic stimuli with or without IFN-γ.  By 36 hours, 80% of 

sympathetic neurons died with NGF deprivation, however about 55% remained alive with 

addition of IFN-γ (Figure 2.1a).  This antiapoptotic effect of IFN-γ was not specific to NGF 

deprivation as IFN-γ addition also inhibited sympathetic neuronal apoptosis in response to 

staurosporine (STS) addition.  While fewer than 20% of sympathetic neurons alive at 72 hrs 

after STS addition, IFN-γ treatment promoted the survival of 60% of neurons at this 

timepoint (Figure 2.1b).  500 U/ml IFN-γ was observed to be the concentration yielding the 

highest, most consistent saving of sympathetic neurons (Supplemental Figure 2.1a).  

Remarkably, sympathetic neurons treated with NGF deprivation (or STS, images not shown) 

and IFN-γ resembled healthy control neurons, with intact neurites and smaller but phase-

bright cell bodies (Figure 2.1c).  While Kim et al. found that IFN-γ induces dendritic 

retraction and reduced neurite outgrowth in sympathetic neurons, we did not observe this 

in our model (Kim et al., 2002).  Type I IFN at high concentrations also protects neurons 
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from apoptosis with NGF deprivation or STS (data not shown) (Chang et al., 1990).  IFN-γ 

had no impact on apoptosis of sympathetic neurons treated with DNA damage or ER stress 

(Supplemental Figure 2.1b and c).  Together, these data indicate that IFN-γ protects 

sympathetic neurons from apoptosis with NGF deprivation or pan-kinase inhibition.  Chang 

et al. (Chang et al., 1990) previously reported reduced apoptosis in IFN-γ-treated 

sympathetic neurons with NGF deprivation, yet how IFN-γ alters the neuronal apoptotic 

pathway is unknown.   

 

IFN-γ blocks apoptosis at the point of cytochrome c release in NGF-deprived neurons 

To determine the precise effects of IFN-γ function on neuronal apoptosis, we 

investigated the result of IFN-γ treatment on specific steps of the apoptotic pathway 

induced by NGF deprivation.  NGF withdrawal leads to the phosphorylation and activation 

of transcription factor c-Jun, which upregulates BH3-only proteins, resulting in 

mitochondrial cytochrome c release, caspase activation, and cell death (Figure 2.2a) (Eilers, 

Whitfield et al. 1998; Whitfield, Neame et al. 2001).  We first examined phospho-c-Jun, 

which is upregulated and translocates to the nucleus upon activation.  Robust staining of 

nuclear phospho-c-Jun was similar in sympathetic neurons treated with or without IFN-γ at 

12 hours of NGF deprivation, indicating that IFN-γ did not affect c-Jun phosphorylation 

(Figure 2.2b).     

Next, we tested the effect of IFN-γ on cytochrome c release from the mitochondria.  

Following NGF deprivation, cytochrome c staining is faint, indicating release into the cytosol 

(Deshmukh and Johnson, 1998).  Neurons treated with IFN-γ, however, maintained 
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cytochrome c staining in the mitochondria, demonstrating IFN-γ blocks mitochondrial 

permeabilization in response to NGF deprivation (Figure 2.2c).  IFN-γ also blocked caspase-3 

activation downstream of cytochrome c release in response to NGF deprivation (Figure 

2.2d).  Consistent with these findings, Western blot analysis showed no change in phospho-

c-Jun or BH3-only proteins, Bim and Puma, but a decrease in active caspase-3 with IFN-γ 

addition with NGF deprivation (Figure 2.2e).  Levels of additional apoptosis-related proteins 

remained unchanged (Supplemental Figure 2.1).  Thus, these findings demonstrate that IFN-

γ inhibits apoptosis in neurons downstream of BH3 protein induction and upstream of 

cytochrome c release. 

 

IFN-γ does not alter apoptosis downstream of cytochrome c release 

Our data reveal a distinct suppression of active caspase-3 with IFN-γ treatment in 

NGF-deprived neurons.  Previous research shows that interferons can regulate expression of 

caspases and caspase inhibitors to modulate apoptosis downstream of mitochondrial 

permeabilization (Chawla-Sarkar et al., 2003; Clemens, 2003; Pokrovskaja et al., 2005).  To 

investigate whether IFN-γ also acts downstream of cytochrome c release, we microinjected 

cytochrome c into XIAP-/- sympathetic neurons with or without IFN-γ 24 hr pretreatment.  

Cytochrome c induced similar rates of cell death in treated neurons, demonstrating that 

IFN-γ does not suppress the apoptotic pathway downstream of cytochrome c release 

(Figure 2.3). 
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IFN-γ modulates gene expression in sympathetic neurons 

Interferons stimulate expression of pro-apoptotic genes, including Fas, TRAIL, XAF-1, 

and caspases, in a variety of cell types, which induces apoptosis in these cells either with or 

without additional stressors (Dijkmans et al., 1990; Baerwald and Popko, 1998; Barber, 

2000; Becher et al., 2000; Chawla-Sarkar et al., 2003; Clemens, 2003; Schroder et al., 2004; 

Pokrovskaja et al., 2005; Maher et al., 2007; Zhang et al., 2008; Das et al., 2009).  To first 

determine whether IFN-γ modulates gene expression in sympathetic neurons as it does in 

other cell types, we conducted quantitative RT-PCR on sympathetic neurons with or without 

IFN-γ.  Levels of ifi202b, an interferon-responsive gene in the HIN-200 family, increased 30-

fold with 24 hours of IFN-γ treatment (Figure 2.4).  This finding reveals that IFN-γ modulates 

gene expression in sympathetic neurons, indicating it is possible IFN-γ exerts its anti-

apoptotic effects in neurons by regulating gene expression.   

To evaluate whether IFN-γ stimulates the expression of genes regulating apoptosis in 

neurons as it does in other cell types, we conducted a microarray experiment comparing 

gene expression of sympathetic neurons with or without 500 U/ml IFN-γ.  24 hours of IFN-γ 

exposure in neurons significantly upregulated many interferon-inducible genes including 

Stat1 and the HIN-200 gene family, while downregulating only five genes (Table 2.2).  

Microarray data have been deposited in Gene Expression Omnibus under the accession 

number GSE48683.  Surprisingly, although IFN-γ protects sympathetic neurons from 

apoptosis, pro-apoptotic gene Trail (Tnfsf10) is upregulated yet no anti-apoptotic genes 

were significantly altered by IFN-γ (Table 2.2).  Among the pro-death genes that are 

upregulated by IFN-γ in other cell types, very few of these genes were induced by IFN-γ in 
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sympathetic neurons (Table 2.3).  However,  Irf1, Irf8 (interferon-regulatory factor 1 and 8) 

and PKR (protein kinase, interferon-inducible double stranded RNA dependent), genes that 

promote cell death through the extrinsic pathway in other cell types (Barber, 2000; Chawla-

Sarkar et al., 2003; Clemens, 2003; Schroder et al., 2004; Pokrovskaja et al., 2005) were 

strongly upregulated by IFN-γ in these neurons (Table 2.3).  Interestingly, Ifi202b has been 

shown to either promote or inhibit apoptosis, depending on the cell type, by binding and 

inhibiting transcription factors including c-Jun, c-Fos, c-Myc, NF-κB, E2F2, and p53 (Min et 

al., 1996; Asefa et al., 2004; Choubey and Panchanathan, 2008; Mondini et al., 2010).  

Although we found ifi202b to be strongly upregulated by IFN-γ in sympathetic neurons 

(Figure 2.4 and Table 2.3), microinjection of ifi202b plasmid or sh-ifi202b into neurons did 

not affect apoptosis with NGF deprivation (data not shown). 

Together, these data demonstrate that, while IFN-γ prompts apoptosis in other cell 

types, IFN-γ exerts an anti-apoptotic effect on sympathetic neurons by blocking apoptosis at 

the point of cytochrome c release. 
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2.5  Discussion 

In this study, we examined the effects of IFN-γ on sympathetic neuron survival.  We 

found that, while sympathetic neuron survival was not affected by IFN-γ alone, IFN-γ 

inhibited neuronal apoptosis with NGF-deprivation or pan-kinase inhibition, but not with 

DNA damage or ER stress.  IFN-γ treatment of NGF-deprived sympathetic neurons did not 

alter c-Jun phosphorylation or induction of BH-3 only genes, but decreased mitochondrial 

cytochrome c release and subsequent caspase 3 activation.  Although some studies report 

upregulation of caspases and XAF-1 by interferons (Chawla-Sarkar et al., 2003; Clemens, 

2003; Maher et al., 2007) cytochrome c injection experiments showed that IFN-γ did not 

affect neuronal apoptosis downstream of the mitochondria.  Finally, we report that IFN-γ 

modulated gene expression in sympathetic neurons, including the upregulation of 

apoptosis-related genes, including ifi202b.  While ifi202b is implicated in apoptosis 

inhibition in other cell types (Choubey and Panchanathan, 2008), ifi202b knockdown and 

overexpression did not alter neuronal apoptosis.  These results demonstrate that despite 

IFN-γ inducing expression of several pro-apoptotic genes in sympathetic neurons, IFN-γ 

suppresses apoptosis at the point of mitochondrial permeabilization during NGF 

deprivation.   

The ability of IFN-γ to suppress apoptosis in sympathetic neurons is quite intriguing.  

IFN-γ has been reported to activate p38 and JNK MAPK pathways (Xia et al., 1995; Bruckner 

et al., 2001; Kalvakolanu and Roy, 2005; Maher et al., 2007; Hervas-Stubbs et al., 2011), as 

well as suppress NF-κB activity (Hervas-Stubbs et al., 2011), either of which induce 

apoptosis in sympathetic neurons (Maggirwar et al., 1998; Bruckner et al., 2001).  Thus, 
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interferon’s pro-survival effect in sympathetic neurons suggests the inability of IFN-γ to 

activate JNK or suppress NF-κB in these neurons, which would promote apoptosis.  

Similarly, inhibition of transcription or translation inhibits apoptosis in sympathetic neurons 

(Martin et al., 1988; Xia et al., 1995).  Although interferon inhibits protein synthesis through 

activation of EIF2α to limit viral replication (Xia et al., 1995; Chawla-Sarkar et al., 2003; 

Schroder et al., 2004; Pokrovskaja et al., 2005), induction of BH3-only protein was not 

suppressed in IFN-γ-treated NGF-deprived neurons (Figure 22).  Interestingly, BH3-only 

protein induction is inhibited by miR-29 (Kole et al., 2011), which is upregulated by IFN-γ in 

melanoma cells (Schmitt et al., 2012).  In this study, we found no suppression of BH3-only 

induction in interferon-treated sympathetic neurons with NGF deprivation.   

While neurons upregulated several pro-apoptotic genes (Trail, Irf1, Irf8, PKR) in 

response to interferon, it was not sufficient to cause apoptosis in NGF-maintained or 

deprived sympathetic neurons.  Previous research shows that sympathetic neuron survival 

is resistant to TNF-α (Marz et al., 1996) and there is no literature on the expression or ability 

of death receptor ligands to activate the extrinsic apoptotic pathway in sympathetic 

neurons.  Therefore, it is possible that these neurons are insensitive to this gene 

upregulation (due to lack of death receptor expression), pro-apoptotic signals were 

insufficient to promote apoptosis, or a pro-survival mechanism(s) such as Mig (monokine 

induced by interferon-gamma) (Uwabe et al., 2005) overrode the pro-death signal. 

Cytochrome c release is the point of divergence for IFN-treated neurons undergoing 

NGF deprivation, suggesting Bax activation as the likely molecule altering mitochondrial 

permeabilization.  Our data at the protein level excludes main modulators of Bax activation, 
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Bcl-XL as well as the BH3-only proteins, however Bax-activating candidates Ku70 (Cohen et 

al., 2004) and phosphorylated Bim have not been excluded (Lei and Davis, 2003; 

Pokrovskaja et al., 2005).  Inhibition of mitochondrial permeabilization by IFN-γ prevents 

damage to this important organelle, allowing maintenance of neuronal metabolism.  

Although some studies report upregulation of caspases and XIAP inhibitor, XAF-1, by 

interferons (Chawla-Sarkar et al., 2003; Clemens, 2003; Maher et al., 2007), cytochrome c 

injection experiments showed that IFN-γ did not affect neuronal apoptosis downstream of 

the mitochondria.   

Bernabei et al. proposed that cells with higher levels of IFN-γ receptor (IFN-γR2) 

undergo rapid Stat1 activation of apoptosis in response to IFN-γ, while a slower Stat1 

activation with lower levels of IFN-γ receptor does not induce apoptosis (Bernabei et al., 

2001; Bernabei et al., 2001; Boselli et al., 2010).  However, sympathetic neurons express 

IFN-γ receptors at a higher level than cortical neurons, which undergo apoptosis in response 

to IFN-γ (Rottenberg and Kristensson, 2002; Dedoni et al., 2012).  Thus, expression of the 

IFN-γ receptor does not appear to be the determining factor of apoptosis in neurons. 

An infection or injury stimulates interferon production and recruitment of 

macrophages, natural killer (NK) cells, and T lymphocytes (Chawla-Sarkar et al., 2003; 

Schroder et al., 2004).  IFN-γ activates macrophages to release nitric oxide radicals, which 

can contribute to neuronal death (Rottenberg and Kristensson, 2002).  Sympathetic neurons 

co-cultured with active, but not resting, macrophages triggered neurite loss and neuronal 

death (Arantes et al., 2000; Almeida-Leite et al., 2007).  Similarly, activated T cells or NK 

cells following IFN-γ exposure can mediate neurite and DRG and hippocampal neuron 
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elimination (Rottenberg and Kristensson, 2002; Yong et al., 2007).  In vivo, CD8+ T cells 

entering Borna disease virus (BDV) infected brain did not cause hippocampal neuron death 

unless the mice lacked IFN-γ (Richter et al., 2009).  Therefore, IFN-γ’s ability to promote 

neuronal survival may counteract the cytotoxic signals from immune cells in the neurons’ 

milieu as well as protecting neurons from death due to viral infection (Burdeinick-Kerr et al., 

2009). 

Overall, these findings demonstrate that sympathetic neurons, unlike most cell 

types, respond to interferon by suppressing the apoptotic pathway at the point of 

mitochondrial permeabilization.  Despite upregulation of several proapoptotic genes, 

neurons treated with IFN-γ display a remarkable ability to suppress cell death with NGF 

deprivation or pan-kinase inhibition.  The ability  of  IFN-γ to promote sympathetic neuronal 

survival while inducing pathways that kill pathogens is likely a physiologically important 

mechanism which could ensure the long-term survival of these neurons during critical 

situations of pathogenic infection.  
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2.6  Figures and Legends 

 

Figure 2.1.  IFN-γ protects neurons from apoptosis in response to nerve growth factor 

deprivation or pan-kinase inhibition.   

 

Neurons were treated with (A) nerve growth factor (NGF) deprivation or (B) staurosporine 

(pan-kinase inhibition; STS) with or without 500 U/ml IFN-γ and survival was assessed by 

morphology at 36 hours or 72 hours, respectively.  Boiled 500 U/ml IFN-γ, boiled 5 min at 

99˚C, served as a negative control.  (C) Phase images were taken of neurons after 40 hours 

of NGF deprivation.  Data represent mean +/- s.e.m. analyzed by Student’s t-test.  

Experiments were done at least three times.  * P<0.05; **P<0.01; *** P<0.001. 
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Figure 2.1 
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Figure 2.2.  IFN-γ inhibits apoptosis at the point of cytochrome c release.   

 

(A)  Schematic representation of the apoptosis pathway induced after NGF deprivation.  (B)  

Neurons were untreated or deprived of NGF with or without IFN-γ and fixed for phospho-c-

Jun immunofluorescence at 12 hours.  Percentage of cells with phospho-c-Jun nuclear 

staining and representative images of phospho-c-Jun staining in neurons.  Data is mean ± 

std. dev.  (C)  Neurons were untreated or deprived of NGF with or without IFN-γ, in the 

presence of caspase inhibitor, QVD, and fixed for cytochrome c immunofluorescence at 48 

hours.  Data is mean percentage of cells with mitochondrial cytochrome c staining ± s.e.m. 

analyzed by the Student’s t-test.  *P= 0.0279.  Images are representative of neurons with 

cytochrome c staining.  (D)  Neurons were untreated or deprived of NGF with or without 

IFN-γ and fixed for cleaved-caspase-3 (c-Casp3) immunofluorescence at 24 hours.  Data is 

mean percentage of cells with c-Casp3 staining ± std. dev.  Images are representative of 

neurons with c-Casp3 staining.  (E)  Neurons were untreated, deprived of NGF, or deprived 

of NGF with 200 U/ml or 500 U/ml IFN-γ.  Cell lysates were collected at 24 hours and 

examined by western blotting analysis.  500 U/ml IFN-γ reduces cleaved caspase-3 but does 

not alter levels of phospho-c-Jun or induction of BH3-only apoptotic proteins.   
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Figure 2.2
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Figure 2.2 continued 
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Figure 2.3.  IFN-γ does not alter the apoptotic pathway downstream of cytochrome c 

release.   

 

Cell death with microinjection of cytochrome c was equivalent with and without IFN-γ 

addition.  XIAP-/- neurons pretreated with or without IFN-γ for 24 hours were microinjected 

with cytochrome c and survival was assessed by morphology.  Data are mean ± s.e.m. of 

four independent experiments with at least 40 cells injected per experiment. 
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Figure 2.3 
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Figure 2.4.  IFN-γ regulates gene expression in sympathetic neurons.   

 

Quantitative RT-PCR analysis demonstrating neurons exhibit upregulated expression of 

interferon-inducible ifi202b mRNA with 24 hours 500 U/ml IFN-γ treatment.  Ifi202b 

expression is normalized to 18S levels.  Data are mean of at least five samples per group ± 

s.e.m. analyzed by the Mann-Whitney test.  **P=0.0043. 
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Figure 2.4 
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Table 2.2.  IFN-γ modulates gene expression in sympathetic neurons.   

 

Summary of genes differentially expressed with 24 hours 500 U/ml IFN-γ in sympathetic 

neurons (P<0.05 following unpaired t-test and Benjamini and Hochberg false discovery rate 

procedure). 
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Table 2.2    

Symbol Gene Name Fold change 

Up-regulated   
Gbp3 guanylate nucleotide binding protein 3 142 
Gvin1 GTPase, very large interferon inducible 1 111 
Ifi44 interferon-induced protein 44 101 
Rtp4 receptor transporter protein 4 65 
Batf2 basic leucine zipper transcription factor, ATF-like 2 59 
Irgb10 interferon-gamma-inducible p47 GTPase 51 
Igtp interferon gamma induced GTPase 37 
Tnfsf10 (Trail) tumor necrosis factor (ligand) superfamily, member 10 34 
Parp14 poly (ADP-ribose) polymerase family, member 14 23 

Ifit1 interferon-induced protein with tetratricopeptide repeats 1 23 
Gbp6 guanylate binding protein 6 22 
Stat1 signal transducer and activator of transcription 1 18 
Mx2 myxovirus (influenza virus) resistance 2 18 
RP23-14F5.8 similar to T-cell specific GTPase 18 
Ifi204 interferon activated gene 204 17 
Irgm immunity-related GTPase family, M 17 
Iigp2 interferon inducible GTPase 2 16 
Isg15 ISG15 ubiquitin-like modifier 15 
Gbp2 guanylate nucleotide binding protein 2 15 
Ifih1 interferon induced with helicase C domain 1 14 
Tap1 transporter 1, ATP-binding cassette (MDR/TAP) 14 

Tgtp T-cell specific GTPase 13 
Ifi203 interferon activated gene 203 13 
Fbxo39 F-box protein 39 12 
Irf8 interferon regulatory factor 8 12 
Bst1 bone marrow stromal cell antigen 1 12 

Rsad2 radical S-adenosyl methionine domain containing 2 12 
Parp9 poly (ADP-ribose) polymerase family, member 9 11 
Ifi203 interferon activated gene 203 11 
Oasl2 2'-5' oligoadenylate synthetase-like 2 9.9 
RP23-14F5.7 hypothetical gene Rp23-14f5.7 9.8 
Irf1 interferon regulatory factor 1 9.7 

Oas1g 2'-5' oligoadenylate synthetase 1G 9.6 
H2-T22 histocompatibility 2, T region locus 22 9.5 
Psmb9 proteosome (prosome, macropain) subunit, beta type 9 9.4 
Bst2 bone marrow stromal cell antigen 2 9.0 
Il18bp interleukin 18 binding protein 8.9 
Gls Glutaminase 8.1 
Socs1 suppressor of cytokine signaling 1 7.8 
Herc5 hect domain and RLD 5 7.6 
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Psmb8 proteosome (prosome, macropain) subunit, beta type 8 6.7 

Cd274 CD274 antigen 6.6 
Myh7 myosin, heavy polypeptide 7, cardiac muscle, beta 6.2 
Tap2 transporter 2, ATP-binding cassette (MDR/TAP) 6.2 
Cd52 CD52 antigen 5.8 
Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 5.7 
Tex14 testis expressed gene 14 5.7 
Abhd8 abhydrolase domain containing 8 5.5 
Samhd1 SAM domain and HD domain, 1 5.4 
Parp12 poly (ADP-ribose) polymerase family, member 12 5.4 
Psmb10 proteasome (prosome, macropain) subunit, beta type 10 5.0 
B2m beta-2 microglobulin 4.8 

Arts1 type 1 TNF receptor shedding aminopeptidase regulator 4.6 
Pnpla5 patatin-like phospholipase domain containing 5 3.9 
Lgals3bp lectin, galactoside-binding, soluble, 3 binding protein 3.9 
Ly75 lymphocyte antigen 75 3.8 
Plec1 plectin 1 3.7 
Ifit3 interferon-induced protein with tetratricopeptide repeats 3 3.7 
Slamf8 SLAM family member 8 3.6 
Psme2 proteasome (prosome, macropain) 28 subunit, beta 3.4 
Pla1a phospholipase A1 member A 3.3 
Nmi N-myc (and STAT) interactor 3.2 
Tapbp TAP binding protein 3.1 
Tnfsf13b tumor necrosis factor (ligand) superfamily, member 13b 3.1 

Isgf3g IFN dependent positive acting transcription factor 3 gamma 3.1 
Ifi35 interferon-induced protein 35 3.0 
Lap3 leucine aminopeptidase 3 2.9 
Megf6 multiple EGF-like-domains 6 2.6 
Ube2l6 ubiquitin-conjugating enzyme E2L 6 2.5 
Pbef1 pre-B-cell colony-enhancing factor 1 2.5 
Zfp313 zinc finger protein 313 2.4 

H2-Oa histocompatibility 2, O region alpha locus 2.1 
Psme1 proteasome (prosome, macropain) 28 subunit, alpha 2.0 
Spo11 sporulation protein, meiosis-specific, SPO11 homolog  2.0 
Col23a1 procollagen, type XXIII, alpha 1 1.9 

Rbm4 RNA binding motif protein 4 1.2 
Down-regulated   
Olfr912 olfactory receptor 912 -2.3 
Chrnb2 cholinergic receptor, nicotinic, beta polypeptide 2 -1.3 
Tmem110 transmembrane protein 110 -1.2 
Tktl2 transketolase-like 2 -1.2 
Polr2e polymerase (RNA) II (DNA directed) polypeptide E -1.1 
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Table 2.3.  Sympathetic neurons upregulate few pro-apoptotic genes in response to IFN-γ.   

 

Expression of genes reported to be regulated by interferon in other cell types (Koul et al., 

1998; Choi et al., 1999; Barber, 2000; Nishikawa et al., 2001; Chawla-Sarkar et al., 2003; 

Clemens, 2003; Schroder et al., 2004; Pokrovskaja et al., 2005; Maher et al., 2007) were 

evaluated by gene array in sympathetic neurons treated with 24 hours 500 U/ml IFN-γ.  

Indicated P value is corrected P value following unpaired t-test and Benjamini and Hochberg 

false discovery rate procedure (ns= non-specific). 
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Table 2.3 

Symbol Gene Name Fold change P value 

Pro-apoptotic    
Fas Fas (TNF receptor superfamily member) 2.1 ns 
FasL Fas ligand (TNF superfamily, member 6) -1.0 ns 
Trail   tumor necrosis factor (ligand) superfamily 10 34.1 0.0178 
Trail receptor TNF receptor superfamily, member 10b -1.0 ns 
TNF  tumor necrosis factor 2.5 ns 
TNFα receptor TNF receptor superfamily, member 1a 1.4 ns 
Fadd Fas (TNFRSF6)-associated via death domain -1.0 ns 
Daxx Fas death domain-associated protein 1.2 ns 

Bak1 BCL2-antagonist/killer 1 1.2 ns 
Bax Bcl2-associated X protein 1.1 ns 
Casp1 caspase 1 5.3 ns 
Casp3 caspase 3 1.1 ns 
Casp4 caspase 4 3.1 ns 
Casp7 caspase 7 3.0 ns 
Casp8 caspase 8 1.4 ns 
Casp9 caspase 9 -1.1 ns 
RnaseL ribonuclease L -1.0 ns 
Irf1 interferon regulatory factor 1 9.7 0.0177 
Irf2 interferon regulatory factor 2 1.1 ns 
Irf3 interferon regulatory factor 3 1.0 ns 

Irf4 interferon regulatory factor 4 -1.6 ns 
Irf5 interferon regulatory factor 5 1.8 ns 
Irf6 interferon regulatory factor 6 -1.5 ns 
Irf7 interferon regulatory factor 7 8.0 ns 
Irf8 interferon regulatory factor 8 12.3 0.028 

PKR eukaryotic translation initiation factor 2-α kinase 2 3.5 0.054 
OAS1 2'-5' oligoadenylate synthetase 1 3.1 ns 
Oas3 2'-5' oligoadenylate synthetase 3 5.4 ns 
Pml promyelocytic leukemia 1.4 ns 
Dap death-associated protein -1.2 ns 
Dap3 death associated protein 3 1.0 ns 

Dapk1 death associated protein kinase 1 -1.1 ns 
Dapk2 death-associated kinase 2 1.8 ns 
Dapk3 death-associated kinase 3 -1.1 ns 
Hif1a hypoxia inducible factor 1, alpha subunit 1.2 ns 
Plscr1 phospholipid scramblase 1 1.5 ns 
Plscr2 phospholipid scramblase 2 2.1 ns 
Plscr3 phospholipid scramblase 3 1.1 ns 
Plscr4 phospholipid scramblase 4 1.1 ns 
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p21 cyclin-dependent kinase inhibitor 1A (P21) -1.5 ns 

Ctsd cathepsin D -1.2 ns 
Anti-apoptotic    
Bcl2 B-cell leukemia/lymphoma 2 -1.4 ns 
Bcl-XL  Bcl2-like 1 (Bcl2l1) -1.1 ns 
XIAP baculoviral IAP repeat-containing 4 (Birc4) -1.0 ns 
c-FLIP CASP8 and FADD-like apoptosis regulator (Cflar) 1.2 ns 
Survivin baculoviral IAP repeat-containing 5 (Birc5) 2.5 ns 
Pro- or anti-apoptotic   
Mcl1 myeloid cell leukemia sequence 1 1.1 ns 
ifi202 interferon activated gene 202B 21.7 0.112 
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Supplemental Figure 2.1.  Varying concentrations of IFN-γ protect sympathetic neurons 

from apoptosis with NGF deprivation but IFN-γ does not protect neurons from DNA 

damage or ER stress.   

 

(A)  Neurons were treated with NGF deprivation and with varying concentrations of IFN-γ 

and survival was assessed by morphology at 36 hours.  (B) Neurons were subjected to DNA 

damage with etoposide or (C) ER stress with tunicamycin with or without 500 U/ml IFN-γ 

and survival was assessed by morphology at 72 hours or 48 hours, respectively.  Boiled 500 

U/ml IFN-γ, boiled 5 min at 99˚C, served as a negative control.  Experiments were done at 

least three times. 
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Supplemental Figure 2.1 

 

  



 

65 

 

Supplemental Figure 2.2.  IFN-γ doesn’t alter pro-caspase-3 or other apoptotic proteins in 

neurons.   

 

Neurons were untreated, deprived of NGF, or deprived of NGF with 200 U/ml or 500 U/ml 

IFN-γ.  Cell lysates were collected at 24 hours and examined by western blotting analysis.  

Levels of indicated pro- and anti- apoptotic proteins are unchanged by IFN-γ. 
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Supplemental Figure 2.2 
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CHAPTER III:  ASC DEFICIENCY SUPPRESSES PROLIFERATION AND PREVENTS 

MEDULLOBLASTOMA INCIDENCE 

 

3.1  Overview 

Apoptosis-associated speck-like protein containing a caspase recruitment domain 

(ASC) is silenced by promoter methylation in many types of tumors, yet ASC’s role in most 

cancers remains unknown.  Here, we show that ASC is highly expressed in a model of 

medulloblastoma, the most common malignant pediatric brain cancer.  Importantly, while 

ASC deficiency did not affect normal cerebellar development, ASC knock-out mice in the 

Smoothened (ND2:SmoA1) transgenic model of medulloblastoma exhibited a profound 

reduction in medulloblastoma incidence and delayed tumor onset.  Additionally, ASC 

deficiency increased age at tumor onset in a second model of medulloblastoma, GFAP-

Cre:SmoM2 mice.  Premalignant lesions in cerebella of ASC-/-;ND2:SmoA1 mice displayed a 

striking decrease in number of ectopic progenitors.  While proliferation rates decreased 

with ASC deletion, apoptosis and differentiation markers remained unchanged.  

Interestingly, ASC deficiency disrupted expression of genes in the TGF-β pathway and 

increased the level of nuclear Smad3 in this medulloblastoma model.  Together, these 

results demonstrate an unexpected requirement for ASC in Sonic hedgehog-driven 
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medulloblastoma tumorigenesis, thus identifying ASC as a promising novel target for anti-

tumor therapy.   
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3.2  Introduction 

Medulloblastoma, a tumor of cerebellar progenitors, is the most common malignant 

brain cancer in children (Hatten and Roussel, 2011).  During normal development, 

proliferation of progenitors in the cerebellum extends into the early postnatal period, as 

cerebellar granule neuron progenitors (CGNPs) undergo rapid division in the external 

granule layer (EGL), then differentiate and migrate to the internal granule layer (IGL) 

(Hatten and Heintz, 1995).  CGNPs proliferate in response to endogenous Sonic hedgehog 

(Shh; mouse), and mutations that activate SHH (human) signaling cause predisposition to 

medulloblastoma in humans with Gorlin Syndrome, and in genetically engineered mouse 

models (Polkinghorn and Tarbell, 2007; Hatten and Roussel, 2011).  These models, which 

operate through either Patched deletion or insertion of constitutively active alleles of 

Smoothened (Smo), consistently implicate CGNPs as the cells of origin for Shh-driven 

medulloblastoma (Hallahan, Pritchard et al. 2004; Yang, Ellis et al. 2008).  Importantly, while 

advances in treatment have increased the survival of patients with medulloblastoma, 

mortality remains significantly high and debilitating cognitive and endocrine side effects 

result from current treatment regimens (Polkinghorn and Tarbell, 2007).  Thus, advancing 

the understanding of the genetic components of medulloblastoma tumorigenesis is needed 

to develop improved targeted therapies. 

ASC (apoptosis-associated speck-like protein containing a caspase recruitment 

domain; also known as TMS-1, target of methylation-induced silencing-1) is expressed in 

many human tissues, however, is silenced by promoter hypermethylation in many tumor 

types, including glioblastoma (Stone et al., 2004), neuroblastoma (Alaminos et al., 2004), 
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breast cancer (Conway et al., 2000), melanoma (Guan et al., 2003), and lung cancer 

(Machida et al., 2006).  Ectopic ASC expression sensitizes pancreatic, breast, and colon 

cancer cells to apoptosis (Conway et al., 2000; Ohtsuka et al., 2004; Ohtsuka et al., 2006; 

Parsons and Vertino, 2006; Ramachandran et al., 2010; Hong et al., 2013), while knocking 

down endogenous ASC inhibits cell death of osteosarcoma cells (Ohtsuka et al., 2004), colon 

cells (Hong et al., 2013), and breast epithelial cells (Parsons et al., 2009).  Additionally, ASC 

is the adaptor protein of the inflammasome, a cytosolic complex that senses pathogen-

associated molecules and subsequently responds by activating pro-inflammatory 

substrates, pro-interleukin-1β (pro-IL-1β) and pro-IL-18, which recruit and activate immune 

cells (Fernandes-Alnemri et al., 2009; Franchi et al., 2009; Davis et al., 2011).  Consistent 

with the expectation that ASC inactivation promotes tumorigenesis, ASC-deficiency has 

been shown to enhance polyp formation in a colitis-associated colon cancer mouse model 

(Allen et al., 2010; Zaki et al., 2010).  Together, these studies point to ASC as a functional 

tumor suppressor. 

In this study, we examined the role of ASC in medulloblastoma using the ND2:SmoA1 

transgenic mouse model.  Our results reveal the unexpected finding that ASC promotes 

tumorigenesis in medulloblastoma.  ASC was highly expressed in these tumors and the 

genetic deletion of ASC markedly reduced proliferation, hyperplasia, and mortality.  These 

findings identify a novel role for ASC in promoting tumorigenesis in medulloblastoma. 
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3.3  Results and Discussion 

 

ASC is highly expressed in medulloblastomas 

To investigate the role of ASC in cerebellar development and medulloblastoma, we 

evaluated ASC expression during mouse cerebellum development.  ASC protein levels were 

high in postnatal-day 7 (P7) cerebellum, which corresponds to the peak period of CGNP cell 

proliferation, and decreased with cerebellar maturation (Figure 3.1a).  ASC is reported to 

enhance apoptosis upon expression and is often silenced via methylation in a variety of 

cancers (Conway et al., 2000; Ohtsuka et al., 2004; Ohtsuka et al., 2006; Parsons and 

Vertino, 2006; Allen et al., 2010; Ramachandran et al., 2010).  To determine whether ASC 

was also silenced in cancer of cerebellar origin, we examined ASC expression in 

medulloblastoma.   We used the ND2:SmoA1 (SmoA1) mouse model of medulloblastoma 

which expresses the activated allele of Smo in CGNPs, resulting in CGNP hyperproliferation 

and tumor growth as a consequence of the constitutive activation of the Sonic hedgehog 

pathway (Hallahan et al., 2004).  In contrast to the reports in other cancer types, we 

unexpectedly detected high levels of ASC in medulloblastoma (Figure 3.1a).  Also, ASC 

mRNA levels closely matched protein levels throughout development and in the tumor 

(Figure 3.1b).  These data reveal the surprising observation that ASC is not subjected to 

silencing but is induced in a mouse model of medulloblastoma. 

In human medulloblastoma, publicly available gene expression profiling data in the 

Oncomine database reveals ASC to be expressed in human medulloblastomas, with 

increased expression in desmoplastic versus classic tumors (Figure 3.1c) (Kool et al., 2008; 
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Fattet et al., 2009).  Since SHH-associated medulloblastomas are generally characterized by 

a desmoplastic histology (Thompson et al., 2006; Cho et al., 2011; Fellay et al., 2011), this 

data suggests that ASC expression is more upregulated in medulloblastomas with SHH 

pathway disruption than other subtypes.  Thus, in SHH-driven medulloblastomas ASC is 

upregulated in both human and mouse tumors.   

 

ASC deficiency does not affect normal cerebellum development 

To investigate whether ASC expression is important in medulloblastoma 

tumorigenesis, we first evaluated whether ASC deficiency affected normal cerebellar 

development.  Cerebellar development occurs postnatally with rapid CGNP proliferation in 

the EGL peaking at P7.  As CGNPs terminally differentiate into cerebellar granule neurons 

(CGNs), they migrate to the IGL to form the mature cerebellum by P20 (Hatten and Heintz, 

1995).  We therefore compared cerebellar architecture of ASC+/+ and ASC-/- mice during this 

key developmental period.  H&E staining revealed no differences in gross morphology 

between wild-type and ASC-deficient cerebella throughout development (Figure 3.1d).   To 

specifically examine whether proliferation was altered by ASC deficiency, we compared 

expression of proliferation markers cyclin D2 and phospho-histone H3 (pH3) in ASC+/+ and 

ASC-/- P7 cerebellum.  No differences in cyclin D2 levels and pH3 staining were observed 

between wild-type and ASC-deficient cerebella (Figures 3.1e and f). 
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ASC deficiency suppresses SmoA1- and SmoM2-induced medulloblastoma 

Next, to determine whether ASC deficiency affects medulloblastoma, we generated 

ASC+/+, ASC+/-, and ASC-/- SmoA1 mice and compared the time of tumor emergence in each 

group.  In this Smo transgenic medulloblastoma model, signs of tumors typically emerge at 

3-8 months and precede death from the disease by only a few days; thus, once signs 

emerge, mice are in a moribund state (Hallahan et al., 2004).  Surprisingly, ASC deficiency 

conferred a striking reduction in tumor incidence and a delay in tumor onset in the SmoA1 

transgenic mice (Figure 3.2a).  Overall tumor incidence by P300 was significantly reduced in 

mice lacking ASC: while 12 of 15 ASC+/+;SmoA1 mice exhibited tumors, only 5 of 18 ASC-/-

;SmoA1 mice developed medulloblastoma (Figure 3.2b).  Additionally, ASC deficiency 

markedly delayed latency to tumor formation in ASC-/-;SmoA1 mice compared to 

ASC+/+;SmoA1 and ASC+/-;SmoA1  mice (Figure 3.2a).  ASC heterozygous SmoA1 mice also 

exhibited a delayed rate of tumorigenesis when compared to wild-type mice (Figure 3.2a).  

These results demonstrate a profound suppression of medulloblastoma tumorigenesis with 

ASC deletion.   

To test whether ASC deficiency affects tumorigenesis in another model of 

medulloblastoma, we utilized the SmoM2 model.  SmoM2 is a constitutively active Shh-

driving Smo mutation discovered to aggressively induce medulloblastoma in mice by P20 

(Xie et al., 1998; Jeong et al., 2004; Mao et al., 2006).  We generated ASC+/+, ASC+/-, and  

ASC-/- GFAP-Cre:SmoM2 (SmoM2) mice and evaluated time to tumor emergence and 

moribund status.  ASC deficiency markedly reduced tumorigenesis in the SmoM2 model, 

with loss of one or two ASC alleles extending survival (Figure 3.2c).  While all mice 
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developed medulloblastoma in this model, the average age at which mice became 

moribund was delayed in ASC heterozygous and knock-out mice (Figure 3.2d).  Thus, ASC 

deficiency profoundly reduced tumorigenesis and extended survival in two mouse models 

of medulloblastoma. 

In addition to other functions, ASC acts as the adaptor protein for the 

inflammasome, a complex that, when triggered by intracellular signals, cleaves 

proinflammatory substrate pro-IL-1β into its mature form (Fernandes-Alnemri et al., 2009; 

Franchi et al., 2009; Davis et al., 2011).  IL-1β has been reported to have several functions 

promoting cancer, although it has not been studied in medulloblastoma (Apte et al., 2006).  

To determine whether ASC requires IL-1β for medulloblastoma development, we evaluated 

tumorigenesis in IL-1β deficient mice in the SmoA1 model.  IL-1β deficiency did not affect 

medulloblastoma onset or incidence (Figures 3.2e and f). 

To determine the point at which ASC deficiency blocks tumorigenesis in 

medulloblastoma, we compared wild-type and ASC-deficient SmoA1 cerebella at multiple 

time points during tumor development.  In this tumor model, ectopic CGNP proliferation 

can be detected by P20 and progresses into tumor in adulthood.  To determine whether 

ASC deficiency affects CGNP hyperproliferation during the pre-tumor stages (P20, P60), 

histological H&E stained sections of ASC+/+ and ASC-/- SmoA1 cerebella were compared.   

ASC-/-;SmoA1 cerebella exhibited equivalent ectopic CGNP proliferation and EGL 

architecture as seen in ASC+/+;SmoA1 mice at P7 and P20 (Figure 3.3a).  However, by P60, 

ASC deletion significantly reduced CGNP hyperproliferation and reduced the proportion and 

thickness of EGL in the cerebella (Figures 3.3a and b).  Thus, ASC deficiency did not block the 
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initial stages of CGNP hyperproliferation but markedly diminished ectopic EGL in the 

cerebellum by P60. 

 

ASC deficient SmoA1 cerebella exhibit reduced proliferation 

Tumorigenesis can be regulated by the balance of proliferation, differentiation, and 

apoptosis.  We sought to determine which factors were responsible for the requirement of 

ASC in Shh-driven medulloblastoma.  To test whether proliferation was altered in the ASC 

knock-out cerebella in the medulloblastoma model, we performed Western blot analysis for 

cyclin D2 and immunohistochemistry for the mitotic marker pH3 in wild-type and ASC-

deficient SmoA1 mice.  Cyclin D2 levels were unchanged at P7, but were reduced by P20 

with ASC deficiency.  This difference was even more striking by P60, at which point cyclin D2 

levels were virtually undetectable in the ASC-deficient mice but were sustained in the wild-

type mice on the SmoA1 background (Figure 3.3d).  Thus, even though gross reduction in 

hyperplasia was not detected by P20 in the ASC-/-;SmoA1 cerebella, markers of proliferation 

showed an emerging trend of reduction at this time point.  To directly test whether ASC 

expression affected proliferation of the CGNPs in the EGL, we conducted pH3 

immunohistochemistry.  Consistent with the reduction in cyclin D2 levels, pH3 staining was 

also reduced by nearly 50 % at P20, revealing a lower mitotic frequency in the EGL with ASC 

deletion (Figures 3.3e and f).  These results identify a role for ASC in regulating ectopic 

proliferation of CGNPs in medulloblastoma.   

ASC RNA and protein levels were both high during the peak period of CGNP 

proliferation at P7 and decreased with cerebellar maturation during normal development 
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(Figure 3.1a), but continued to be expressed throughout development in the 

medulloblastoma model where CGNP proliferation persists (Figure 3.3d).  Previous studies 

have reported a decrease in proliferation with ASC deficiency in stimulated CD4+ and CD8+ 

T cells, splenocytes, and lymph node cells (Kolly et al., 2009; Ippagunta et al., 2010; Narayan 

et al., 2011).  However, other studies have reported either no difference in proliferation of 

ASC knock-out splenocytes or an increase in proliferation with ASC deletion in keratinocytes 

(Shaw et al., 2010; Drexler et al., 2012).  Together, these data point to a complex role for 

ASC in regulating cell proliferation, with our results showing that ASC deficiency markedly 

reduces proliferation in medulloblastoma. 

Numerous studies have shown that ASC is proapoptotic when overexpressed in 

cancer cell lines (Conway et al., 2000; Ohtsuka et al., 2004; Ohtsuka et al., 2006; Parsons 

and Vertino, 2006; Ramachandran et al., 2010; Hong et al., 2013).  Furthermore, knockdown 

of endogenous ASC reduces apoptosis of breast epithelial cells (Parsons et al., 2009), colon 

cancer cells (Hong et al., 2013), and osteosarcoma cells (Ohtsuka et al., 2004).  We 

examined whether ASC altered apoptosis or differentiation during tumorigenesis and found 

no statistical differences in the differentiation marker NeuN or the apoptosis marker 

cleaved caspase-3 between wild-type and ASC-deficient P20 SmoA1 EGL (Figures 3.3e and 

f).  Likewise, other groups have found no difference in apoptosis with loss of endogenous 

ASC in keratinocytes or splenocytes (Kolly et al., 2009; Drexler et al., 2012).  Together, these 

results identify reduced proliferation as the likely key factor suppressing medulloblastoma 

tumorigenesis in ASC deficient mice, as no significant differences in cell differentiation or 

apoptosis were observed between wild-type and ASC-deficient cerebella.   
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ASC deficient SmoA1 cerebella exhibit increased TGF-β signaling 

To determine the mechanism by which ASC deficiency inhibits proliferation in 

medulloblastoma, we conducted a microarray analysis comparing gene expression of ASC-/- 

versus ASC+/+ cerebella on the SmoA1 background.  We focused on P20 because the 

differences in the ASC-/- and ASC+/+ cerebellar phenotypes begin to emerge at this timepoint.  

Microarray data are available in Gene Expression Omnibus under the accession number 

GSE48682.  Microarray analysis revealed only 3 genes (in addition to ASC) to be 

differentially expressed between ASC-/- and ASC+/+ SmoA1 cerebellum at this timepoint 

(Table 3.1).  Of these, Tgfb1i1 (transforming growth factor beta-1-induced transcript 1), 

which was 2.5 fold higher in the ASC knock-out samples, is known to be upregulated with 

TGF-β (transforming growth factor-β) (Shibanuma et al., 1993).  Interestingly, Tgfb1i1 (also 

known as Hic-5) has been reported to inhibit cell proliferation when overexpressed in cells 

(Shibanuma and Nose, 1998; Dabiri et al., 2008).  We next examined whether the TGF-β 

pathway was altered in the absence of ASC.  Indeed, quantitative PCR analysis confirmed 

dysregulation of TGF-β pathway genes in the knock-out, with Tgfb1i1 significantly 

upregulated while the TGF-β inhibitor Tgif1 was significantly downregulated in ASC-

deficient P20 SmoA1 mice.  Furthermore, cell cycle genes cyclin D2 and Cdk2 were 

decreased in the ASC knock-out SmoA1 cerebella (Figure 3.4a). 

Dysregulation of the TGF-β pathway has been recognized in a subgroup of 

medulloblastomas (Cho et al., 2011; Aref et al., 2012; Northcott et al., 2012).  To investigate 

whether TGF-β signaling is altered in ASC-/- transgenic cerebella, we evaluated cellular 
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phospho-Smad3 localization using immunohistochemistry.  Interestingly, we found a greater 

percentage of cells with nuclear Smad3 in the ASC deficient SmoA1 transgenic cerebella 

(Figure 3.4b).  These data reveal an unexpected link between ASC and the TGF-β pathway 

whereby ASC deficiency results in an increase in signaling via the TGF-β pathway in a mouse 

model of medulloblastoma. 

Interestingly, TGF-β activation has a dual role in cancer, as the pathway promotes 

epithelial-mesenchymal transition and metastasis, but early TGF-β activation restricts 

tumorigenesis by inducing apoptosis and reducing cell proliferation (Rich, 2003; Massague, 

2008).  The dichotomous effects of the TGF-β pathway are evident in medulloblastoma.  

One group found disruption of TGF-β pathway genes in one of four subsets of 

medulloblastoma, namely deletion of TGF-β inhibitors and amplification of Type II activin 

receptors and TGFBR1 (Northcott et al., 2012).  In contrast, we observed an association 

between increased TGF-β pathway gene expression and signaling and decreased CGNP 

proliferation in the ASC knock-out SmoA1 P20 cerebella.  Consistent with our results, 

increasing TGF-β signaling with Smad5 overexpression in the presence of Shh stimulation 

reduces CGNP proliferation in vitro (Rios et al., 2004).  Furthermore, increased TGF-β 

signaling (e.g. increased nuclear Smad3) in SHH-related human medulloblastomas is 

correlated with a more favorable prognosis (Aref et al., 2012). 

While these results in medulloblastoma identify a clear role of ASC in promoting 

tumorigenesis, ASC has also been described as a tumor suppressor in specific cancer 

models.  ASC suppresses tumorigenesis in a colitis-associated colon cancer mouse model, 

where ASC deficiency enhanced polyp formation and clinical exacerbation, resulting in 
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reduced survival (Allen et al., 2010; Zaki et al., 2010).  In melanoma, ASC has a complex role 

in which selective deletion of ASC in bone marrow derived macrophages suppressed tumor 

number but ASC ablation in keratinocytes promoted tumorigenesis (Drexler et al., 2012).  

When ASC was deleted from the whole animal, ASC knock-out mice showed no differences 

from wild-type in melanoma susceptibility (Drexler et al., 2012).  A recent study found that 

ASC-deficient metastatic melanoma cells injected into nude mice displayed reduced tumor 

growth as compared to wild-type tumor cell implantation.  In contrast, ASC-deficient 

primary melanoma implants hastened tumor growth versus wild-type controls (Liu et al., 

2013).  Thus, the role of ASC in carcinogenesis appears to depend on cancer type and the 

stage of cancer progression.   

In summary, our results identify a critical function of ASC in driving proliferation and 

tumorigenesis in Shh pathway-driven models of medulloblastoma.  Improved therapeutics 

for this cancer are needed due to the high mortality and devastating side effects of current 

treatment.  Our results show that targeting ASC may be a promising strategy for preventing 

tumor progression of medulloblastoma. 
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3.4  Figures and Legends 

 

Figure 3.1.  ASC is expressed in cerebellum and medulloblastoma but ASC deficiency does 

not affect normal cerebellum development.   

 

(a) Western blot analysis of cerebellar lysates reveals ASC expression during normal 

cerebellum development and increased ASC expression in medulloblastoma.  (Tumor 

sample shown is from postnatal 101-day-old, P101, mouse.)  Densitometric quantification 

reveals ASC levels are increased in medulloblastomas.  Data are mean of at least three 

separate experiments +/- s.e.m. analyzed by Student’s t-test.  ASC levels are normalized to 

loading controls and average P60 levels were set to 1.0 for each experiment.  *P<0.05.  

Cerebella were collected at specified ages and lysates were probed with antibodies against 

ASC (Alexis Biochemicals, Lausen, Switzerland; Adipogen, San Diego, CA, USA), Cyclin D2 

(CD2; Cell Signaling, Danvers, MA, USA) and α-tubulin (Sigma-Aldrich, St. Louis, MO, USA).  

(b) Quantitative RT-PCR analysis demonstrates ASC mRNA decreases during normal 

cerebellum development and is induced in medulloblastoma.  Cerebella were collected at 

the ages specified (n≥4 per age).  Tumors were collected at an average age of P138 (P101-

P205; n=8).  qRT-PCR was conducted similarly as previously described (Kole et al., 2011), 

using ASC primers Pycard-FW: 5’-GACCAGCACAGGCAAGCA-3’, Pycard-Rev: 5’-

TCCAGCACTCCGTCCACTTC-3’, Gapdh-FW: 5’-TGTGTCCGTCGTGGATCTGA-3’, and Gapdh-Rev: 

5’-CCTGCTTCACCACCTTCTTGA-3’, and normalizing to GAPDH levels.  Data are mean ± s.e.m 

analyzed by the Mann-Whitney test.   Experiments were done in triplicate at least three 
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times.   **P<0.01;  *P<0.05.  (c) Oncomine analysis of independent gene profiling studies, 

with data from Kool et al. (Kool et al., 2008) and Fattet et al. (Fattet et al., 2009) used to 

compare ASC mRNA expression levels in classic versus desmoplastic human primary 

medulloblastomas.  Each dataset had equivalent proportions of desmoplastic tumors (22%) 

and classic tumors (78%) and F-test analysis determined the datasets did not have unequal 

variance (F=0.054).  Each dataset mean was adjusted to zero to correct for technical bias 

between datasets.  Data are median, minimum to maximum values (*, P=0.025, two-tailed 

t-test, F-test=0.054.  n=74 classic; n=21 desmoplastic).  (P=0.047 in comparison of 

unadjusted data.)  (d) Representative images of H&E stained sagittal sections of ASC+/+ and 

ASC-/- cerebella at specified ages show no differences in gross cerebellar architecture with 

development between genotypes (n≥3 per group).  Scale bars represent 1 mm and 200 µm 

(inset).  (e) ASC+/+ and ASC-/- cerebellar lysates at specified ages were immunoblotted as 

described above.  (f) Immunohistochemistry (IHC) for phospho-histone H3 (pH3; Cell 

Signaling) in P7 ASC+/+ and ASC-/- sagittal cerebellar sections.  Quantitative comparison of 

cells expressing pH3 in ASC+/+ and ASC-/- EGL (n≥3 per group).  The EGL region was manually 

annotated using Aperio ImageScope V12 and analyzed with Aperio Nuclear V9 Algorithm 

(Aperio Technologies, Inc., Vista, CA, USA).  The data represent mean +/- s.e.m. analyzed by 

Student’s t-test.  Scale bar represents 200 µm.   
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Figure 3.1 
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Figure 3.1 continued 
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Figure 3.2.  ASC deficiency suppresses medulloblastoma tumorigenesis in the SmoA1 and 

SmoM2 mouse models.   

 

(a) Kaplan-Meier analysis of ASC+/+;SmoA1 mice (n=15), ASC+/-;SmoA1 mice (n=34), and ASC-

/-;SmoA1 mice (n=18) reveals a significant difference in tumor incidence with ASC expression 

(P=0.0019; Log-Rank test).   ASC deficiency significantly decreased tumor frequency and 

increased tumor latency when compared to ASC+/+;SmoA1 (P=0.0004; Log-Rank test) and 

ASC+/-;SmoA1 mice (P=0.0077; Log-Rank test).   (P=0.1108 between ASC+/-;SmoA1 and 

ASC+/+;SmoA1 mice; Log-Rank test.)  (b) Overall incidence of medulloblastoma by P270 is 

reduced in ASC-/-;SmoA1 versus ASC+/+;SmoA1 (P=0.0049) and ASC+/-;SmoA1 (P=0.0088) 

mice; **P<0.01 (Fisher’s exact test). (c)  Kaplan-Meier analysis of ASC+/+;SmoM2 mice (n=4), 

ASC+/-;SmoM2 mice (n=9), and ASC-/-;SmoM2 mice (n=6) reveals a significant difference in 

tumor incidence with ASC expression (P= 0.0004; Log-Rank test).  ASC+/+;SmoM2 mice 

displayed shorter tumor latency than either ASC-/-;SmoM2 (P=0.0025; Log-Rank test) or 

ASC+/-;SmoM2 (P=0.0003; Log-Rank test) mice.  (P=0.7317 between ASC+/-;SmoM2 and ASC-/-

;SmoM2 mice; Log-Rank test.)  (d)  Average age mice become moribund is increased with 

ASC deficiency in ASC-/-;SmoM2 mice and ASC+/-;SmoM2 mice.  **P=0.004; *P=0.025 

(Student’s t-test).  (e) IL-1β deficiency does not affect tumorigenesis in the SmoA1 

medulloblastoma model.  Kaplan-Meier analysis of IL-1β+/+;SmoA1 mice (n=19), IL-1β+/-

;SmoA1 mice (n=59), and IL-1β-/-;SmoA1 mice (n=11) reveals no difference in tumorigenesis 

with IL-1β expression (P=0.792; Log-Rank test).  (f) Overall incidence of medulloblastoma by 

P270 is unaffected by IL-1β deficiency (Fisher’s exact test). 
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Figure 3.2 

 

 



 

86 

 

 

Figure 3.3.  ASC deficiency reduces proliferation in the SmoA1 cerebella.  

 

(a)  Representative H&E stained sagittal sections of ASC+/+;SmoA1 and ASC-/-;SmoA1 

cerebella at specified ages reveals reduced EGL with ASC deficiency.  Scale bars represent 1 

mm and 200 µm (inset).  EGL was quantified at P7, P20, and P60 by (b) EGL area in 

proportion to cerebellum (CB) area and (c) maximum EGL thickness in ASC+/+;SmoA1 and 

ASC-/-;SmoA1 cerebella at the specified ages (n≥3 per group).  ASC deficiency reduced EGL 

area proportion and maximum EGL thickness in P60 cerebella.  **P=0.0049;*P=0.045 

(Student’s t-test).  ASC status significantly altered both EGL proportion and thickness over 

all timepoints (P=0.035 and P=0.04 respectively; two-way ANOVA).  (d) Western blot 

analysis of ASC+/+;SmoA1 and ASC-/-;SmoA1 cerebellar lysates at the specified ages as 

described above.   Densitometric quantification at P60 reveals Cyclin D2 (CD2) levels are 

reduced with ASC deficiency.  Data are mean +/- s.e.m. analyzed by Student’s t-test (n≥5 per 

group).  ***P=0.00039.  (e) IHC for pH3, NeuN (Millipore, Billerica, MA, USA), and cleaved 

caspase-3 (CC3; Biocare Medical, Concord, CA, USA) of P20 ASC+/+;SmoA1 and ASC-/-;SmoA1 

cerebella (n≥3 per group).  Scale bar represents 200 µm.  (f) Quantification of positively 

stained cells in the P20 EGL reveals a significant decrease in pH3 staining with ASC 

deficiency.  *P= 0.017.  The data represent mean +/- s.e.m. analyzed by Student’s t-test (n≥3 

per group). 
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Figure 3.3 
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Figure 3.3 continued 
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Table 3.1.  Summary of genes differentially expressed with ASC deficiency in P20 SmoA1 

cerebella. 

 

Total RNA was purified from P20 SmoA1 cerebella (n=5, ASC+/+;SmoA1; n=4, ASC-/-;SmoA1) 

and 1000 ng RNA per sample was labeled using the Quick Amp Labeling Kit (Agilent 

Technologies, Sugar Land, TX, USA) and hybridized on two-color whole mouse genome 

4x44K microarrays (Agilent Technologies).  1000 ng RNA from pooled P16 wild-type 

cerebella was amplified and labeled with Cy3 as a reference for each sample.  Raw data was 

processed and analyzed by GeneSpring GX Version 11.0 (Agilent Technologies).  Genes with 

a corrected P value <0.05 following unpaired t-test and Benjamini and Hochberg false 

discovery rate procedure were considered differentially expressed. 
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Table 3.1 

 

Symbol   
 

RefSeq 
 

Gene Name  
 

Fold 
change  

P 
value  

Up-regulated    

Gdpd3  
 

NM_024228  
 

Glycerophosphodiester phospho-
diesterase domain containing 3  

+5.914 
  

0.0268 
 

Tgfb1i1 
 

NM_009365  
    

Transforming growth factor beta 1 
induced transcript 1  

+2.504  
 

0.0494 
 

Down-regulated    

Sec23ip  NM_001029982 Sec23-interacting protein  -1.492 0.0268 
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Figure 3.4.  ASC deficiency alters the TGF-β pathway in SmoA1 cerebella.   

 

(a) Quantitative RT-PCR analysis reveals several genes in the TGF-β pathway are 

differentially expressed in ASC-/- versus ASC+/+ P20 SmoA1 cerebella.  qRT-PCR was 

conducted similarly as previously described (Kole et al., 2011), using primers Tgfb1-FW: 5’-

ACCATGCCAACTTCTGTCTG-3’ and Tgfb1-Rev: 5’-CGGGTTGTGTTGGTTGTAGA-3’; Tgfb1i1-FW: 

5’-CCTTTTCGCCCCGAGTGCTA-3’ and Tgfb1i1-Rev: 5’-CGGATGGGTTGGTTACAGAAG-3’; Tgif1-

FW: 5’-GAGGATGAAGACAGCATGGA-3’ and Tgif1-Rev: 5’-TTCTCAGCATGTCAGGAAGG-3’; 

Cyclin D2-FW: 5’-TCGATGATTGCAACTGGAAG-3’ and Cyclin D2-Rev: 5’-

AGAGCTTCGATTTGCTCCT-3’; and Cdk2-FW: 5’-TCATGGATGCCTCTGCTCTCAC-3’ and Cdk2-

Rev: 5’-TGAAGGACACGGTGAGAATGGC-3’; Gapdh-FW: 5’-TGTGTCCGTCGTGGATCTGA-3’ and 

Gapdh-Rev: 5’-CCTGCTTCACCACCTTCTTGA-3’, and normalizing to GAPDH levels.  Data are 

mean ± s.e.m analyzed by the Mann-Whitney test.   Experiments were done in triplicate at 

least three times (n≥3 per genotype).  **P<0.01;  *P<0.05.  (b) Quantification of Smad3 IHC 

(Abcam, Cambridge, MA, USA) in P20 ASC+/+;SmoA1 and ASC-/-;SmoA1 cerebella reveals an 

increase in cells positive for nuclear Smad3.  50 μm wide bands of the outer internal 

granular layer and molecular layer were analyzed and Purkinje cells were excluded from the 

analysis.  *P<0.05.  The data represent mean +/- s.e.m. analyzed by Student’s t-test (n≥3 per 

group). 
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Figure 3.4 
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CHAPTER IV:  DISCUSSION 

 

4.1  Summary of Findings 

 While the brain has long been considered an immunoprivileged region, our 

perceptions are shifting to recognize that immune genes play important roles in neurons 

and the nervous system.  Research is revealing the unexpected results that neurons express 

immune genes such as complement and toll-like receptors (TLRs), and now, the NLRs and 

inflammasome genes.  Surprisingly, the role of immune molecules in neurons varies from 

neuronal or immune functions to no known function.  For instance, complement proteins 

direct synapse elimination in developing brain (Stevens et al., 2007) and TLR-3 activation 

can suppress axonal growth (Cameron et al., 2007) or reduce HSV-1 infection (Zhou et al., 

2009).  Furthermore, cytokines produced by immune cells can influence neuron-specific 

characteristics, such as IL-2 regulating neurite outgrowth of sympathetic neurons (Haugen 

and Letourneau, 1990).  In turn, sympathetic nerves of the peripheral nervous system can 

regulate the immune system by modulating cytokine release and immune cell recruitment 

into target organs (Madden et al., 1994; Li et al., 2004).  Finally, immune genes can regulate 

tumorigenesis, as has been shown with ASC promoting metastatic melanoma (Liu et al., 

2013) and colon cancer (Allen et al., 2010).  This dissertation work is the first to investigate 

the role of ASC expression on a cancer of the nervous system and also the first to elucidate 
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how the sympathetic neuron apoptotic pathway is affected by interferon-gamma. Thus, we 

are in a nascent stage in a burgeoning field at the crossroads of neurobiology and 

immunology.  The findings from this dissertation are summarized below.   

 

 
Interferon-gamma protects sympathetic neurons from apoptosis at the point of cytochrome 

c release:   

1. Whereas IFN-γ induces apoptosis in many cell types, IFN-γ protects sympathetic 

neurons from apoptosis induced by nerve growth factor (NGF) deprivation or 

pan-kinase inhibition.  

2. The inhibition of apoptosis by IFN-γ occurs at the point of mitochondrial 

permeabilization. 

3. IFN-γ does not change neuron death with cytochrome c injection, revealing that 

it does not directly act downstream of mitochondrial permeabilization. 

4. Despite inhibiting apoptosis in neurons, IFN-γ induces upregulation of interferon-

stimulated genes and proapoptotic genes in sympathetic neurons. 

5. Many proapoptotic genes that are induced by interferon in other cell types are 

not induced by IFN-γ in sympathetic neurons. 

 

ASC deficiency suppresses proliferation and prevents medulloblastoma incidence: 
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1.  ASC, which is silenced by promoter methylation in many cancers, is upregulated 

at the RNA and protein level in a Sonic hedgehog-driven model of 

medulloblastoma. 

2. ASC is expressed in human medulloblastomas and its expression is increased in 

Sonic hedgehog-driven tumors over classic tumors. 

3. ASC knock-out cerebella on a non-tumor background display gross architecture 

and proliferation markers similar to wild-type. 

4. ASC deficient ND2:SmoA1 mice exhibit a profound reduction in medulloblastoma 

incidence and a delayed tumor onset. 

5. ASC heterozygous and knock-out GFAP-Cre:SmoM2 mice display a markedly 

extended survival. 

6. IL-1β deficiency does not affect tumorigenesis in the SmoA1 model. 

7. Premalignant lesions in cerebella of ASC-/-;ND2:SmoA1 mice displayed a striking 

decrease in number of ectopic progenitors. 

8. Markers of proliferation, but not apoptosis or differentiation, decreased with 

ASC deletion in ND2:SmoA1 cerebella. 

9. ASC deficiency disrupted expression of genes in the TGF-β pathway and 

increased the level of nuclear Smad3 in the SmoA1 model. 
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4.2  Discussion of the Major Findings and Future Directions 
 
 

Interferon-gamma protects sympathetic neurons from apoptosis at the point of cytochrome 

c release 

During infection, injury, or tumors, interferons (IFNs) are produced and released by 

cells to inhibit pathogen replication, regulate immune cells, modulate cell growth, 

proliferation, and differentiation, and induce cell death (Chawla-Sarkar et al., 2003; Maher 

et al., 2007).  Interferons are considered apoptosis-inducing cytokines (Schroder et al., 

2004) and induce apoptosis and other forms of cell death in many cell types (Dijkmans et 

al., 1990; Baerwald and Popko, 1998; Barber, 2000; Becher et al., 2000; Chawla-Sarkar et al., 

2003; Clemens, 2003; Schroder et al., 2004; Pokrovskaja et al., 2005; Maher et al., 2007; 

Zhang et al., 2008; Das et al., 2009) to limit the spread of infection (Dafny and Yang, 2005; 

Maher et al., 2007).  Sympathetic neurons of the peripheral nervous system may be 

particularly exposed to infectious microorganisms and immune cells, as some pathogens 

first invade sensory nerves and spread to the brain via centripetal axonal transport 

(Rottenberg and Kristensson, 2002). 

In this research, we show that the effect of IFN-γ on sympathetic neurons is 

completely the opposite of what is seen in other cell types.  Not only does IFN-γ fail to 

induce apoptosis, but it suppresses apoptosis in sympathetic neurons treated with NGF 

deprivation or pan-kinase inhibition (Fig. 2.1).  We have probed the apoptotic pathway in 

IFN-γ-treated sympathetic neurons and found that IFN-γ inhibited the events that occur 

after the point of mitochondrial permeabilization including cytochrome c release and 
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caspase-3 activation but didn’t change the early events of c-Jun phosphorylation or BH3-

only protein induction (Fig. 2.2).  Thus, IFN-γ acts at the point of mitochondrial 

permeabilization, likely through inhibition of Bax activation, to suppress the intrinsic 

apoptotic pathway in NGF-deprived sympathetic neurons.  Cytochrome c injection 

experiments also revealed that IFN-γ does not inhibit apoptosis after the point of 

mitochondrial permeabilization in sympathetic neurons (Fig. 2.3).  Interestingly, gene array 

analysis showed that IFN-γ upregulates several proapoptotic genes in sympathetic neurons, 

but this induction is insufficient to cause apoptosis in these cells (Table 2.3).  Finally, IFN-γ 

did not induce expression of a number of proapoptotic genes in sympathetic neurons as it 

does in other cell types (e.g. Fas, FADD, caspases) (Table 2.3).  Overall, these findings 

demonstrate that sympathetic neurons, unlike most cell types, respond to interferon by 

suppressing the apoptotic pathway.  Thus, IFN-γ promotes survival of these terminally 

differentiated sympathetic neurons, which must persist for the lifetime of the organism. 

The data presented in this dissertation pinpoints mitochondrial permeabilization as 

the step in the apoptotic pathway which IFN-γ inhibits in NGF-deprived sympathetic 

neurons.  Our hypothesis is that IFN-γ acts directly at the point of Bax activation to inhibit 

neuronal apoptosis.  One approach to test this hypothesis is as follows.  In the extrinsic 

apoptotic pathway, Bid is cleaved by active caspase-8 into tBid, which then induces the 

oligomerization of Bax at the mitochondria, forming a pore in the outer membrane (Eskes et 

al., 2000; Grinberg et al., 2002).  Thus, tBid can be used as a tool to directly trigger Bax 

activation in cells.  We will perform microinjection of truncated Bid (tBid) into sympathetic 

neurons with or without IFN-γ and assess cytochrome c release.  If IFN-γ suppresses Bax 
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activation, tBid injection will result in reduced Bax activation and cell death with IFN-γ.  An 

alternative approach to this question would be to inject GFP-Bax plasmid into neurons with 

pan-caspase inhibitor QVD-OPH.  GFP-Bax translocates from a diffuse cytosolic expression 

to a punctate pattern at the mitochondria upon activation (Wolter et al., 1997).  

Microinjection of this plasmid into sympathetic neurons treated with or without IFN-γ will 

result in similar or differential Bax localization and activation, revealing whether IFN-γ 

suppresses Bax activation.   

Our data show that levels of Bax, Bcl-XL, Bim, and Puma are unchanged with IFN-γ 

(Fig. 2.2), thus future research is needed to determine the exact mechanism by which IFN-γ 

suppresses mitochondrial permeabilization in sympathetic neurons.  Several candidates not 

yet examined here have previously been shown to affect Bax activation.  For example, we 

will examine levels of another BH3-only protein, Mcl-1, which may be regulated by protein 

kinase casein kinase 2  (Chang and Chao, 2013).  Another candidate is Ku70, which binds Bax 

to sequester it from the mitochondria and prevent mitochondrial permeabilization (Cohen 

et al., 2004).  Furthermore, while Bim and Bmf are induced by phospho-c-Jun during 

apoptosis, phosphorylation of these BH3-only proteins may free them from sequestration at 

dynein motor complexes, allowing engagement in the apoptotic pathway (Lei and Davis, 

2003).  Thus, we will examine whether IFN-γ decreases the phosphorylation of Bim and Bmf, 

reducing their ability to activate Bax. 

We found HIN-200 gene ifi202b to be highly induced in sympathetic neurons with 

IFN-γ treatment (Fig. 2.4).  ifi202b encodes p202, which binds and inhibits several 

transcription factors, including c-Jun, c-Fos, c-Myc, NF-κB, E2F2, and p53 (Min et al., 1996; 
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Asefa et al., 2004; Choubey and Panchanathan, 2008; Mondini et al., 2010).  p202 can 

enhance or diminish apoptosis in cells depending on which transcription factors are active 

in each cell type (Choubey and Panchanathan, 2008).  While c-Jun induction and 

phosphorylation was unchanged by IFN-γ in NGF-deprived sympathetic neurons (Fig. 2.2), it 

is possible IFN-γ could act through p202 to regulate the activity of other transcription 

factors, such as NF-κB or E2Fs, which regulate sympathetic neuron survival (Maggirwar et 

al., 1998; Wright et al., 2007).  We found that microinjection of ifi202b plasmid or sh-ifi202b 

into neurons did not affect apoptosis with NGF deprivation (data not shown).  However, 

since levels of p202 are constitutively high in neurons compared to other cell types (data 

not shown), overexpression or IFN-γ induction of p202 may not confer additional 

protection.  Methodologically, the individual cell assay of microinjection experiments only 

allows for evaluation of cellular expression by immunofluorescence, and the p202 antibody 

had not been tested in knock-out cells.  Future experiments should utilize sympathetic 

neurons from a p202 knock-out organism to assess the importance of p202 in modulating 

neuronal survival. 

The data presented here show that sympathetic neurons respond to IFN-γ by 

upregulating an array of genes including interferon-stimulated genes and also several genes 

(e.g. Trail, Irf1, Irf8, and PKR), which promote activation of the extrinsic apoptotic pathway 

(Table 2.2 and 2.3) (Barber, 2000; Chawla-Sarkar et al., 2003; Clemens, 2003; Schroder et 

al., 2004; Pokrovskaja et al., 2005).  The induction of proapoptotic genes was insufficient to 

reduce survival of sympathetic neurons, however, perhaps due to these cells being resistant 

to apoptosis induced by death receptor ligands (Marz et al., 1996).  No anti-apoptotic genes 
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were identified in the unbiased gene array (Table 2.2).  Importantly, sympathetic neurons 

did not upregulate many of the proapoptotic genes reported to be induced by interferon in 

other cell types, revealing a differential response in these neurons (Table 2.3).  We are 

currently quantitatively comparing IFN-γ-induced gene expression between sympathetic 

neurons and other cell types using publically available microarray data on Gene Expression 

Omnibus (GEO).  The findings will reveal which of the tens of thousands of genes are 

differentially expressed in neurons versus other cell types, illuminating neuron-specific gene 

induction in response to IFN-γ. 

 

IFN-γ promoting neuronal survival:  possible physiological implications 

Sympathetic neurons are vulnerable to apoptosis during development but resistant 

during maturity (Kole et al., 2011).  The data presented here indicate that IFN-γ protects 

developing sympathetic neurons from apoptosis.  The ability of IFN-γ to inhibit neuronal 

apoptosis could be a physiological mechanism that protects neurons from the harmful 

effects of immune cell activation, infection, or injury during development.  Sympathetic 

neurons of the peripheral nervous system may be particularly exposed to infectious 

microorganisms, as some pathogens first invade sensory nerves and spread to the brain via 

centripetal axonal transport (Rottenberg and Kristensson, 2002).  In addition to inhibiting 

replication of neurotrophic viruses and bacteria, such as Listeria monocytogenes 

(Rottenberg and Kristensson, 2002), IFN-γ protects against neuronal death from herpes 

simplex virus-1 (Geiger et al., 1997), Sindbis virus (Burdeinick-Kerr et al., 2009), and Borna 

disease virus (Richter et al., 2009).  IFN-γ is secreted by macrophages, NK cells, and T 
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lymphocytes, which are recruited to the site of infection or injury (Chawla-Sarkar et al., 

2003; Schroder et al., 2004).  IFN-γ activates macrophages, which then release molecules 

such as nitric oxide radicals that can kill pathogens, but could also inadvertently trigger 

sympathetic neuron death (Arantes et al., 2000; Rottenberg and Kristensson, 2002; 

Almeida-Leite et al., 2007).  Similarly, stimulated T or NK cells can promote DRG and 

hippocampal neuron death (Rottenberg and Kristensson, 2002; Yong et al., 2007).  IFN-γ 

protects neurons from activated macrophages, T lymphocytes, and NK cells, indicating that 

IFN-γ counteracts cytotoxic signals from the immune cells in the neurons’ milieu 

(Burdeinick-Kerr et al., 2009; Richter et al., 2009).  Thus, control of infection depends on 

recruitment and activation of immune cells which produce IFN-γ that both inhibits 

microorganisms and protects neurons from death.  Disruption of IFN-γ signaling can 

therefore render the nervous system vulnerable to infection.  For example, 

immunodeficiency disorders such as Human Immunodeficiency Virus (HIV) are characterized 

by disruption of immune cells, leading to lower IFN-γ and increased susceptibility to 

infections (Koirala et al., 2008).  Therefore, clinical administration of IFN-γ may be 

advantageous in certain immunodeficient individuals to prevent infection and protect 

developing sympathetic neurons from cell death.  Since IFN-γ can induce cell death of many 

cell types, including cortical neurons (Dedoni et al., 2012), IFN-γ administration should be 

localized to the site of infection in treated individuals.  Finally, it remains to be seen 

whether IFN-γ can be an effective therapeutic for disorders of mature neuron degeneration, 

for instance in HIV-related neuropathies of the peripheral nervous system (Kamerman et al., 
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2012), which are characterized by macrophage-induced loss of DRG neurons (Pardo et al., 

2001). 

 
ASC deficiency suppresses proliferation and prevents medulloblastoma incidence: 

ASC, also known as TMS-1, target of methylation-induced silencing-1, is silenced by 

promoter methylation in many types of cancers (Conway et al., 2000; Guan et al., 2003; 

Alaminos et al., 2004; Stone et al., 2004; Machida et al., 2006)  Ectopic ASC expression 

induces cell death (Conway et al., 2000; Ohtsuka et al., 2004; Ohtsuka et al., 2006; Parsons 

and Vertino, 2006; Ramachandran et al., 2010; Hong et al., 2013), while knock down of 

endogenous ASC inhibits apoptosis in several cell types (Ohtsuka et al., 2004; Parsons et al., 

2009; Hong et al., 2013).  Furthermore, ASC is the adaptor protein for the inflammasome, 

which when activated can induce cell death (Satoh et al., 2013).  Due to ASC’s pro-death 

functions, ASC has been considered a tumor suppressor in several cancers.    

The data presented here reveal the unexpected results that ASC potently promotes 

tumorigenesis in two Sonic hedgehog-driven models of medulloblastoma, the most 

common malignant pediatric brain cancer (Hatten and Roussel, 2011).  ASC was expressed 

at high levels in tumors and ASC deficiency robustly suppressed medulloblastoma incidence 

and delayed age of tumor onset (Fig. 3.1, 3.2).  ASC deficient mice displayed reduced 

premalignant lesions as well as EGL proliferation, while EGL apoptosis and differentiation 

remained unchanged (Fig. 3.3).  Furthermore, ASC deficiency led to an increase in cerebellar 

TGF-β pathway expression and signaling (Fig. 3.4).   

Interestingly, although ASC had a profound effect on medulloblastoma incidence, 

ectopic EGL volume, and proliferation, there was no discernible difference between ASC 
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knock-out and wild-type on the non-tumor background in gross cerebellar architecture or 

proliferation (Fig. 3.1).  Thus, ASC is not required for normal cerebellum development but is 

necessary for cerebellum cancer development.  These findings reveal a requirement of ASC 

in hyperproliferation but not normal proliferation of CGNPs.  Further research is needed to 

elucidate the mechanisms underlying these differences.  

ASC promotes proliferation markers in the ectopic EGL in the medulloblastoma 

model.  To examine whether the effects of ASC in CGNP proliferation was cell autonomous, 

we cultured CGNPs from ASC wild-type or ASC knock-out mice and compared cyclin D2 

expression using Western blotting.  Surprisingly we found that cyclin D2 levels were 

equivalent regardless of ASC expression in this cell culture model (data not shown).  This 

finding suggests that ASC expression may not have a cell-autonomous effect on CGNP 

proliferation.  ASC is a ubiquitously expressed gene and is known to be expressed in 

astrocytes and microglia.  Therefore, other cell types that secrete factors to regulate CGNP 

proliferation may be impacted by ASC expression.  For instance, astrocyte-secreted GDNF 

(glial cell line- derived neurotrophic factor) increases proliferation of neural progenitors in 

the hippocampus (Chen et al., 2005). 

Our research shows that ASC modulates expression of genes in the TGF- β pathway 

(Table 3.1).  ASC has a CARD and PYRIN domain, which are protein interacting domains that 

allow it to bind caspases, NLRs, and other proteins via homotypic CARD or PYRIN domain 

binding.  Through protein-protein interactions with IKKα and IKKβ through the PYRIN 

domain, ASC has been shown to bind and enhance or inhibit transcription factor activity of 

NF-κB (Stehlik et al., 2002).  Thus, there is precedent for ASC regulating gene expression 
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indirectly.  Determining how ASC is regulating expression of TGF-β pathway genes is a 

promising area for further research.  Furthermore, TGF-β signaling is dysregulated in many 

disorders, including muscular dystrophy (Ceco and McNally, 2013), glaucoma (Prendes et 

al., 2013), and many cancers, where it promotes epithelial-mesenchymal transition (EMT) to 

drive metastasis (Katsuno et al., 2013).  It will be interesting to see if ASC modulates the 

TGF-β pathway in these disease states as well.  

In addition to other functions, ASC is the adaptor protein of the inflammasome, a 

cytosolic complex that responds to pathogen or danger-associated molecules by activating 

Caspase-1, which then activates its substrates including IL-1β and IL-18.  To test whether 

ASC’s role in promoting medulloblastoma was inflammasome-dependent, we tested 

whether Caspase-1 or IL-1β expression altered tumor incidence similarly to ASC expression.  

IL-1β knock-out ND2:SmoA1 mice exhibited equivalent tumor incidence and rate of 

tumorigenesis as IL-1β+/+;ND2:SmoA1 mice (data not shown), demonstrating that ASC’s 

effects on medulloblastoma are independent of IL-1β.  Results for Caspase-1 are pending 

and will determine whether ASC requires Caspase-1 and the inflammasome in this model.  If 

ASC is acting via the inflammasome to promote tumorigenesis in medulloblastoma, clinical 

consideration should be given to avoid chemotherapeutics such as gemcitabine and 5-

fluorouracil which activate the inflammasome (Bruchard et al., 2013).   

Tumors consist of regions of apoptotic and necrotic cells which release ATP, 

triggering activation of the NLRP3 inflammasome (Ghiringhelli et al., 2009).  Inflammasome 

activation stimulates and recruits immune cells to the site of activation.  It is possible that 

dying cells in medulloblastomas also trigger inflammasome activation, which may result in 
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immune cell recruitment.  Our research reveals that medulloblastoma tumors are 

characterized by enhanced astrocyte and microglial recruitment and activation, as 

compared to non-tumor cerebellum.  We found no difference in astrocyte or microglial 

activation in fully developed ASC-/- tumors, however there was reduced astrocyte activation 

and fewer microglia in the P20 ASC knock-out ND2:SmoA1 EGL (data not shown).  The 

influence of these cell types has not been studied in medulloblastoma, thus how the 

activation of these cells influence medulloblastoma progression remains an unexplored and 

intriguing area for future study.   

We found ASC deficiency decreased markers of proliferation, cyclin D2 and pH3, in 

ectopic EGL in a medulloblastoma model (Fig. 3.3), however, ASC deletion has varied effects 

on tumor growth in other cancers.  In a model of melanoma, ASC deficiency of metastatic 

melanoma cells was determined to decrease tumor growth upon implantation into nude 

mice (Liu et al., 2013).  However, the same study found ASC knock down in primary 

melanoma cells to hasten tumor growth versus wild-type controls (Liu et al., 2013).  

Furthermore, ASC deletion in macrophages suppressed tumor number but ASC silencing in 

keratinocytes spurred tumorigenesis (Drexler et al., 2012).  In colitis-associated colon 

cancer, ASC deficiency clearly enhanced tumor formation and progression (Allen et al., 

2010; Zaki et al., 2010).  These studies reveal a complex role for ASC in tumorigenesis which 

depends on the cancer, the type of cells expressing ASC, and the stage of tumor 

progression.  These findings reveal that ASC, like TGF-β, can either suppress or promote 

tumorigenesis. 
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The discovery of a gene that has such a stark effect on medulloblastoma 

tumorigenesis is very rare and promising.  Based on the data presented here, we propose 

ASC as a promising target for cancer therapeutics.  Current treatments of medulloblastoma 

have devastating side effects and, even with treatment, mortality remains high for this 

disease (Polkinghorn and Tarbell, 2007).  Targeted gene therapy to knock down ASC 

expression in tumors and surrounding areas may prove effective in reducing growth or 

metastasis of medulloblastoma. 
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