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ABSTRACT 

Veronica T. Cole: Adapting Mixture Models to Take Into Account Measurement Non-Invariance 

(Under the direction of Daniel J. Bauer) 

 Researchers in the social sciences often use finite mixture models to find clusters of 

individuals on the basis of patterns of indicators. Though covariates are often incorporated in 

mixture models, it is most often assumed that these covariates exclusively affect class 

membership, rather than directly impacting the indicators themselves. Violation of this 

assumption indicates that the measurement of the latent classes by a given indicator is not 

constant across all individuals. Such violations, known as differential item functioning (DIF), 

have been well-studied in models for continuous latent variables, but virtually unexamined in 

models for categorical latent variables.  

 The current study extends the analytic and testing framework developed in continuous 

latent variable models to the case of latent class analysis. First, a Monte Carlo simulation 

systematically examined the effects of omitted DIF on mixture model results, as well as the 

performance of tests to detect DIF. In the presence of DIF in the data-generating model, the 

omission of these effects in the fitted model was associated with overestimation of the number of 

classes, as well as biased estimates of covariate effects on class membership and model-implied 

endorsement probabilities, particularly when classes were poorly separated and DIF was large. 

Including DIF in the model, even if the nature of this DIF was misspecified, mitigated this bias 

considerably. Standard model-based procedures drawn from the continuous latent variable 

modeling literature were shown to detect DIF with high sensitivity and specificity. Finally, DIF 
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was examined in an application of latent class analysis to alcohol use disorder (AUD) diagnostic 

criteria in an undergraduate sample. Researchers are advised to test comprehensively for DIF in 

applications of mixture models, in order to ensure that the results obtained are truly applicable to 

all individuals under study. 
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CHAPTER 1 

AN INTEGRATED VIEW OF MEASUREMENT INVARIANCE IN CATEGORICAL 

AND CONTINUOUS LATENT VARIABLE MODELS 

 In behavioral research, it is often of interest to form homogeneous groupings of people 

based on some pattern of variables. These groupings may be regarded as approximations of more 

complex patterns in the population (Nagin, 1999), or they may be directly interpreted as 

scientifically or clinically meaningful categories (Meehl, 1992; 2004). In research into the 

developmental psychopathology of substance use, it has been of interest to determine whether 

there are any number of qualitatively different groups of individuals who endorse different 

patterns of alcohol use disorder (AUD) or substance use disorder (SUD) symptoms in various 

populations. The clinical utility of this endeavor may lie in finding different patterns of symptom 

endorsement among individuals meeting criteria for diagnosis in order to tailor treatment 

interventions (e.g., Chung and Martin, 2001). Alternatively, particularly in studies of young 

adults, the goal may be to identify subthreshold patterns of symptoms which predict poor 

outcomes including risky drinking behavior, use of other drugs, or transition to full-blown 

alcohol or substance use disorder (e.g., O’Connor and Colder, 2005).  

Mixture models (McLachlan and Peel, 2000), a broad class of models which decompose 

a population into homogeneous categories, have frequently been used to form empirically-

derived subgroups in the service of these goals. Commonly used models include latent class 

analysis (LCA; Lazarsfeld and Henry, 1968), latent profile analysis (LPA; Gibson, 1959), and 

factor mixture models (FMM; Lubke and Muthén, 2005; 2007), each of which impose different 

models on items within a given class; the general class of models is referred to interchangeably 

as mixture models and categorical latent variable models going forward. A number of different 

types of mixture models have been used to form homogeneous groupings of adolescents based 
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the use of alcohol, (Chung and Martin, 2001; Reboussin et al, 2006; Beseler et al., 2012) , 

marijuana (Schulenberg et al., 2005; Windle and Wiesner, 2004), and tobacco (Karp et al., 2005; 

Henry and Muthén, 2010), among other substances.  

However, evidence across different applications of mixture models to AUD and SUD 

symptoms has been highly inconsistent, with different numbers and patterns of subgroups being 

found from study to study. Tables 1 and 2 illustrate the indeterminacy of these findings in 

mixture models of AUD symptoms by reviewing a small sample of studies using mixture models 

to find subgroups of individuals based on DSM-IV and DSM-V diagnosis items
1
. As shown in 

Table 1, these studies examine AUD symptoms in a wide diversity of samples, from heavy 

drinking undergraduates (Rinker and Neighbors, 2015), to a community sample of middle- and 

high school students (Mancha, Hulbert, and Latimer, 2011). Table 2 shows the discrepancies in 

findings across studies, with anywhere between 2 and 5 classes being identified across samples. 

Moreover, class solutions differ widely from one another across studies, with different 

prevalence rates in similar classes; further, while most arrange studies along a continuum of 

AUD symptom severity, three (Lynskey et al., 2005; Beseler et al., 2012; Jackson et al., 2014) 

find additional classes characterized by patterns of symptoms falling outside this continuum.  

On the one hand, in light of the view of mixture models as a data reduction strategy 

which provides an imperfect approximation to reality, it is unreasonable to expect that any one, 

true configuration of AUD subgroups holds across samples and measurement contexts 

(Titterington, Smith, and Makov, 1985; Nagin, 1999). In this view, mixture models are not 

applied in an explanatory capacity -- as in, they are not intended to uncover meaningful classes 

which represent behavioral processes that exist in the real world. Rather, they may be employed 

descriptively or predictively, in order to help to describe patterns in the data or make predictions 

about new observations, regardless of whether classes themselves are directly interpretable. 

                                                      
1
 Though the set of items used to diagnose AUD and SUD changed from DSM-IV to DSM-V, there is sufficient 

overlap between the two sets of items that they are compared here; the issue of subtle differences in item sets used to 

diagnose AUD and SUD is elaborated upon in Study 2. 
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Under this view, it is arguably not necessary that mixture modeling results agree across studies, 

so long as each individual application results in a useful description of the data. 

On the other, it may be the case that the lack of generalizability of findings owes to subtle 

differences in measurement properties of test items across samples and measurement contexts. 

The latter possibility represents the violation of a critical assumption in latent variable models 

known as measurement invariance (Meredith, 1993; Millsap, 2006). In the most general terms, 

measurement invariance represents the assumption that the measurement of some latent variable 

is the same across subjects, so that differences across subjects in item responses are solely a 

function of the latent variables they measure (Meredith, 1993). More specifically, measurement 

invariance involves the idea that the implied distribution of a vector of items is related to 

covariates only through its relationship with the latent variable. Thus, given observed item 

responses iy measuring latent variables iη , and covariate values ix , measurement invariance can 

be written as:  

   | , |i i i i if fy η x y η  (1) 

If ix  has no effect on iy  over and above its effect on iη , then iy  shows measurement 

invariance with respect to ix (Mellenbergh, 1989). Violations of measurement invariance occur 

when subjects differ systematically on the basis of a grouping variable in their responses to an 

item, despite having similar levels of the underlying construct that item measures. For example, 

in one study of an alcohol-related consequences index among college students, female 

participants were much less likely to endorse the item, “I spent too much money on alcohol” than 

male participants (Neal, Corbin, and Fromme, 2006). The authors hypothesized that this effect 

occurred because male subjects were more likely to pay for alcohol in mixed-gender settings 

than female subjects; thus, even if a male and female subject had the same level of the 

underlying construct, drinking consequences, the female subject would be much less likely to 

endorse this item, leading to a potentially biased estimate of this subject’s problem drinking. 

Measurement invariance has been explored extensively for the past several decades in 

models for continuous latent variables, such as the confirmatory factor analysis (CFA; Joreskog, 
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1967) and item response theory (IRT; Lord, 1980) models. However, in models for categorical 

latent variables, there has been very little systematic study of measurement invariance, so that 

there exists virtually no consensus on the consequences of unmodeled measurement non-

invariance, as well as the detection and accommodation of measurement non-invariance, in 

mixture models.  

This dissertation seeks to extend the evidence about measurement invariance from the 

continuous latent variable case to the categorical latent variable case in several ways. In Chapter 

1, measurement invariance is described in the context of both continuous and categorical latent 

variables, with attention paid to the interpretation of measurement invariance-related findings. 

Additionally, procedures for identifying and directly modeling measurement non-invariance in 

the continuous and categorical latent variable cases are introduced. In Chapter 2, a computer 

simulation study will is conducted in order to assess (a) the robustness of categorical latent 

variable-related findings to measurement invariance, and (b) the efficacy of the proposed tests in 

the identification of measurement non-invariance in categorical latent variables. In Chapter 3, 

measurement non-invariance within categorical latent variables is examined in an empirical 

setting using a laboratory analog study of the measurement of alcohol and substance use in 

college students, in order to gauge to what extent measurement non-invariance may bias the 

inferences drawn from substantive results. 

 The continuous and categorical latent variable models will first be introduced, before 

proceeding to a general treatment of measurement invariance; finally, the extant testing 

procedures will be reviewed.  

A general framework of latent variable models 

Continuous latent variable models 

Though the common factor model was originally formulated for continuous, normally 

distributed variables, generalization to the case of mixture models, in which indicators of all 

scale types are common, is facilitated by considering a more general approach which allows for a 

wide range of response distributions. The generalized linear factor analysis (GLFA; 
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Bartholomew, Knott, and Moustaki, 2011) is a flexible modeling framework which allow for the 

measurement of M continuous, normally distributed underlying latent variables (m = 1, …, M) 

using a set of J items (j = 1, …, J) and N subjects (i = 1, …, N). As a subset of generalized linear 

models (GLM; McCullagh and Nelder, 1989; Agresti, 2007), the GLFA allows for the 

measurement of latent variables im  by individual items ijy using three basic components: a 

linear composite of latent variables im known as the linear predictor; a link function which 

translates the linear predictor to the expected value of ijy ; and a distributional specification for 

the random component of ijy . In the GLFA the linear predictor, here denoted , follows the 

form of the common factor model: 

 
1

M

ij j jm im

m

   


    (2) 

The effects of im  are transmitted through jm , a factor loading which represents the 

linear effect of im on ij ; individual values of jm  are arranged in a J × M matrix of factor 

loadings Λ . The item intercept j  represents the value of ij  when 0im  ; individual values of 

j are arranged in a J × 1 vector ν . For each subject, individual values of latent variables im  are 

arranged in an M × 1 vector iη . The distribution of iη  is given by  ,i MNη κ Φ , where κ  is an 

M × 1 vector of factor means and Φ is an M × M covariance matrix. 

The expected value of ijy ,denoted ij , is related to the linear predictor ij through the link 

function, : 

     |ij i ij ijg E y g   η   (3) 

where all of a subject i’s expected values ij  may be arranged in a J × 1 vector iμ .Given this 

expected value, the random component of ijy  is then modeled by specifying the conditional 

distribution of iy , the J × 1 vector of observed responses ijy  given latent variables iη . This 

conditional distribution may be any distribution in the exponential family (e.g., normal, 

binomial, Poisson, or gamma).  

Many models commonly used in psychometrics may be considered specific 

parameterizations of the GLFA (Takane and De Leeuw, 1987; Wirth and Edwards, 2007; Bauer 

and Hussong, 2009). For instance, the normal common factor model is obtained when  ijg  is 

ij

 g x
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the identity link, and the conditional distribution of iy  is specified as multivariate normal with 

J×J covariance matrix ΨSimilarly, the two-parameter logistic (2-PL; Birnbaum, 1968) model 

may be parameterized by choosing a logistic link, so that  

   ln
1

ij

ij ij

ij

g


 


 
   

  

  (4) 

and specifying the conditional distribution of iy  as a p-variate vector of independent Bernoulli 

trials The choice of a logistic link function and a Bernoulli distribution yields the familiar 

equation for the probability of individual i endorsing item j: 

   

  

1

1
1|

1 exp

ij ij i M

jm im j

m

P y

  


  
  

    
  


η   (5) 

The intercept parameter j , often denoted jc in the 2-PL model, represents the log-odds of 

endorsing item j given a score of 0 on im The parameter jm (often denoted jma in the 2-PL 

model), referred to here as the loading parameter, is the predicted increment in log-odds of 

endorsing item j given a one-unit increase in im .   

Categorical latent variable models 

Finite mixture models (McLachlan and Peel, 2000) express observed variables iy as a 

function of a given subject’s membership to one of K latent subgroups, each of which is 

governed by its own subgroup-specific set of parameters. We consider finite mixtures with 

arbitrary response distributions of iy  as generalizations of the GLFA above, in which the latent 

variable iη represents membership to a given latent class. This concordance between finite 

mixture models and the GLFA will later allow us to draw parallels between the two models in 

terms of measurement invariance.  

As in the continuous latent variable case, iη  here denotes a vector of latent variables for 

subject i; here, however, iη  is a K×1 vector of latent variables ik which take a value of 1 if 

subject i is in class k and 0 otherwise. Class membership iη  is distributed according to a 

multinomial distribution with endorsement probabilities given by the mixing probability vector π
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, with individual elements k , where, 
1

1
K

k

k




 . Each class is governed by its own set of 

parameters, which produce a class-specific implied distribution of iy  ,  | 1ikf  iy ; these 

distributions are weighted by the mixing probabilities to yield the marginal distribution of 

observed variables: 

  
1

( ) | 1
K

k ik

k

f f 


 i iy y   (6) 

 Each individual may also be characterized by a K×1 vector of posterior probabilities, iτ , 

whose individual elements ik  represent the probability, given iy , that individual i is a member of 

class k. These posterior probabilities are given by Bayes’ Rule as:  

 
 

 
1

| 1

| 1

k ik

ik K

h ih

h

f

f

 


 







i

i

y

y

  (7) 

 The within-class specification of iy  may take a number of different forms. Here we 

consider latent class (LCA; Lazarsfeld and Henry, 1968) and latent profile (LPA; Gibson, 1969) 

models, which specify a conditional independence relationship between items ijy , which may be 

categorical (LCA), continuous (LPA), or any combination thereof. As in the continuous latent 

variable framework, we model the expected values of the items using a linear predictor, a link 

function  ijg  , and a conditional distribution.  

Define subject i’s linear predictor for item j given membership to class k as ijk . In an 

LPA or LCA, no explicit model for values of ijk is invoked within-class; more complex models 

(e.g., factor mixture models) impose a parameterization similar to Equations 2-3 in the GLFA 

within-class. In an LCA or LPA model without covariates,  depends exclusively on class 

membership; thus,  

 
ijk jk    (8) 

where jk is the value of the linear predictor for item j that is assigned to all members of class k. 

The values ijk and jk may each be arranged in J×1 vectors ikω and kδ respectively. 

π

ijk
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The expected value of ijy given membership to class k is denoted ijk  and is related to 

ijk through the link function. Because ijk shows no variance within a given latent class, neither 

does ijk , i.e.: 

      1 1| 1ijk ij ik ijk jkE y g g          (9) 

In the case of an LCA for a binary latent variable, we may wish to use a logit link as 

shown in Equation 5, and specify a Bernoulli distribution for ijy  with class-specific endorsement 

probabilities  given by: 

  
1

1| 1
1 exp( )

ijk ij ik

jk

P y 


   
 

  (10) 

The continuous and categorical latent variable models above do not take into account the effects 

of covariates that might generate measurement non-invariance; we will now extend the models 

accordingly, in order to formally introduce measurement invariance. 

Measurement invariance in continuous and categorical latent variable models 

Equation 1 indicates that measurement invariance rests on determining conditional 

independence between covariates and items. In order to formally make this determination, we 

must distinguish between two sorts of covariate relationships: impact of covariates on the latent 

variable, and direct effects of covariate on the items after controlling for the latent variable. 

Whereas the former indicates true differences between subjects on the underlying latent variable, 

the latter represents violations of the assumption of measurement invariance.  

The effects of covariates in continuous latent variable models 

Ultimately, the relationship between covariates, latent variables, and items may be 

considered in the context of an arbitrary number of covariates of any scale. However, because 

impact and measurement invariance were originally formulated in the context of differences 

across groups (Meredith, 1993; Reise, Widaman, and Pugh, 1993; Widaman and Reise, 1997), 

these basic concepts will be presented in terms of a multiple groups factor model (Joreskog, 

1971) first; definitions will then be generalized to covariates of any scale. 

ijk
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Multiple group approaches. Given some number of groups G, define G – 1 binary 

indicator variables gX  (g = 1, …, G), which take a value of 1 if subject i is a member of group g 

and 0 otherwise. Given this formulation, the GLFA is fit simultaneously to each of the g groups, 

allowing all item parameters to potentially differ across groups (subject to identification 

constraints), so that the expression for the linear predictor of  becomes: 

 
1

M

ijg jg jmg img

m

   


    (11) 

 Note that all terms are now subscripted by g; ijg  is now the expression for the linear 

predictor given membership to group g, jmg  is the loading for the m
th

 latent variable on the j
th

 

item for group g; and jg is the measurement intercept for the j
th

 item for group g. These terms 

may be arranged into J×M matrix gΛ and the J×1 vector gν , respectively. The latent variable 

img may be arranged in a subject-specific, group-specific M×1 vector igη , which is distributed 

according to a group-specific mean and variance, i.e.,  ,ig M g gNη κ Φ . Typically for 

identification purposes, the mean and variance of the latent variable are set to 0 and 1 for 

identification in one group. Differences across groups in gκ and gΦ indicate impact of group 

membership on the distribution of the latent variable. This impact does not violate any model 

assumptions; indeed, it is often expected that there will be differences between groups in these 

aspects of the latent variable distribution (Vandenberg and Lance, 2000).  

By contrast, measurement parameters are expected to be the same across groups; this is 

the assumption of measurement invariance. The most fundamental form of invariance is 

configural (or "pattern") invariance, which generally holds if the same factors account for the 

same items across groups (Steenkamp and Baumgartner, 1998; Meredith, 1993; Widaman and 

Reise, 1997; Horn and McArdle, 1992). Configural invariance thus requires that the number of 

latent variables, and thus the dimension of the gΛ  and gΦ  matrices, must be identical across 

groups. Further, it requires that the pattern of zero loadings in gΛ  be identical across groups, so 

that the general pattern of relationships between igη and iy  is identical across groups, regardless 

of the magnitude of these effects. Configural invariance is critical to establish before further 

iy
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invariance testing, for without it one cannot have confidence that iy represents the same 

construct across subjects (Vandenberg and Lance, 2000).  

Having established configural invariance, one must then examine weak, strong, and strict 

metric invariance (Meredith, 1993; Vandenberg and Lance, 2000; Steenkamp and Baumgartner, 

1998). Under weak metric invariance, the factor loadings Λ must be equal across groups. 

Whereas configural invariance lacks a direct mathematical expression, we may consider weak 

invariance as a simple equality relationship across subjects in Λ. Weak metric invariance holds 

when: g Λ Λ for all g. In general, if researchers wish to make inferences about covariance 

structure which hold across different subjects or groups thereof, weak invariance must hold. 

Under strong metric invariance, weak invariance must hold and, additionally, measurement 

intercepts ν be equal across groups. Considered again in the context of binary grouping variable

gX , strong metric invariance holds when g ν ν .  

If researchers wish to compare factor means between groups, strong invariance must 

hold, as group-specific factor means will be biased in the event that differences in measurement 

intercepts are not accounted for (Bollen, 1989; Joreskog and Sorbom, 1996; Millsap, 2011). 

Finally, in the normal factor model, in which the conditional distribution of the indicators is 

multivariate normal with covariance matrixΨ , the equivalence of this covariance matrix across 

groups may be tested. Thus, under strict metric invariance (Meredith, 1993), both weak and 

strong measurement invariance must hold, but the unique factor covariance matrix Ψmust also 

be equal across all groups, i.e., . 

The form of measurement invariance expressed by Equation 1, which requires that the 

entire distribution of iy depend only on iη , requires strict invariance. However, this is an 

extremely stringent condition which generally does not hold in practice. The presence of weak 

and strong measurement invariance yields what is referred to as first-order invariance (Millsap, 

2006; p. 50)- meaning that, while the entire conditional distribution of iy may not be equal across 

all values of g, the expected values are – i.e.,  

    | , |i i i i iE Ey η x y η   (12) 

g Ψ Ψ
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Furthermore, even though strict invariance of Ψ  matrices is often untenable in practice, it 

is theoretically necessary if one wants to compare score estimates ˆ
iη  derived from test iy  across 

groups in the normal factor model (Millsap, 1997; Millsap, 2006). However, within the GLFA 

setting, the dispersion of iy  given iμ  is defined not always freely estimated but may be 

determined by the distributional specification chosen by the researcher. Thus, in cases such as 

the 2-PL IRT model in which a Bernoulli distribution relates iμ  to iy , strict measurement 

invariance is undefined and strong invariance implies full invariance – and thus equivalence of 

loadings and intercepts are sufficient to ensure that estimates ˆ
iη  are unbiased. 

Under the above formulation, the respective forms of invariance (weak, strong, and strict) 

refer to entire matrices ( gΛ , 
gν , and 

gΨ ) that must be invariant across groups. By contrast, 

“partial measurement invariance” (Byrne, Shavelson, and Muthén, 1989) refers to a condition in 

which some, but not all, items are shown to have measurement parameters which vary across 

groups; thus, partial weak, strong, or strict non-invariance would occur when jmg jm  , jg j 

, or jhg jh  for some h, j, or m.  

The amount of partial non-invariance that is tolerable in a given model depends largely 

on the goals of the researcher. Byrne, Shavelson, and Muthén (1989) argue that even in the case 

of some factor loadings being non-invariant, thus causing the researcher to reject the hypothesis 

of complete weak invariance across all items in test iy , some cross-group comparisons may be 

made as long as non-invariant items are in the minority. The authors, as well as others in later 

work (Steenkamp and Baumgartner, 1998), further argue that if cross-validation work supports a 

test’s validity, a partial lack of metric invariance can often be considered an artifact of the 

sample.  

Importantly, measurement invariance is typically assessed at the item level in IRT as 

differential item functioning (DIF). These item level analyses are synonymous with detection of 

partial non-invariance. Differences in jm  are generally termed non-uniform DIF in IRT; when 

non-uniform DIF is present, differences across groups in the endorsement probability vary across 

levels of the latent variable. Differences in jm  within the IRT setting are typically termed 
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uniform DIF; when uniform DIF is present, differences across subjects in endorsement 

probability do not vary across levels of the latent variable. Importantly, while non-uniform and 

uniform DIF are related to differences in the same parameters as in weak and strong 

measurement invariance, the two approaches differ in that IRT considers uniform and non-

uniform DIF independently of one another, whereas in the CFA framework one form of 

invariance is implied by successive levels (e.g., strong metric invariance necessarily implies 

weak metric invariance). However, when speaking about the topic in general terms (i.e., not 

considering any particular sort of measurement invariance or DIF), the terms DIF and 

measurement non-invariance will generally be used interchangeably in the current work. 

Regression-based approaches. Though most of the original formulations of measurement 

invariance consider it in terms of differences across groups in parameters, it is clear that this does 

not capture the full range of covariates across which the conditional distribution of iy may differ. 

In order to consider measurement invariance in terms of an arbitrary number of ix  variables of 

any scales, it is helpful to consider the multiple-groups expression as a special case of a general 

model which allows parameter differences across covariates ix . Such models include the multiple 

item multiple cause (MIMIC; Joreskog and Goldberger, 1975), and the more general moderated 

nonlinear factor analysis (MNLFA; Bauer and Hussong, 2009), which incorporate covariates 

directly into the expressions for impact and measurement parameters; as the MIMIC is a special 

case of the MNLFA, the latter will be presented here. Given an N×P design matrix of covariates 

X, rows ix  represent individual i’s value on each of p covariates, each individually denoted ipx , 

the MNLFA considers the mean and variance of the latent variable,  iκ x  and  iΦ x , as well 

as measurement parameters  iΛ x  and  iν x , as functions of each subject’s p × 1 vector of 

covariates ix . The M × 1 vector of latent variable means,  iκ x , and the M×M factor covariance 

matrix  iΦ x have individual elements  m i x and , given by:  hm i x



13 
 

 

 

 

0

1

0

1

exp

P

m i m pm ip

p

P

mm i mm mm ip

p

x

x

  

  





 

 
  

 





x

x

  (13) 

where  m i x is the m
th

 element of  m i x and  hm i x is the h, m
th

 element of  iΦ x . Here, 

0m and 0hm  are the intercept values corresponding subject i's predicted mean for factor m and 

covariance between factors m and h, respectively at values of zero on all covariates. The 

coefficients pm  and phm transmit the effect of the p
th

 covariate onto these quantities.  

Measurement parameters are allowed to differ across subjects, with  jm i x and  ij i x

representing the loading and intercept parameter implied by an individual’s covariates ix . These 

values are given by: 

 

 

 
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1

0

1

P

jm i jm pjm ip

p
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j i j pj ip
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x
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


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
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  (14) 

Under the above formulation coefficients pjm and pj  transmit the effect of covariates ix

onto subject i's predicted factor loading and intercept parameters for item j and latent factor m, 

respectively. A nonzero value of pjm  indicates that  jm i x  will vary across levels of ipx ; a 

nonzero value of pj  indicates that  jm i x  will vary across levels of ipx . Thus, weak metric 

invariance holds when 0pjm  for all p, and thus   0jm i jm x for all individuals, and strong 

metric invariance holds when, additionally, pj for all p and thus   0jm i jm x  for all 

individuals. Note that the multiple-groups formulation may be obtained by considering binary 

grouping variable gX as the only element of .  

The expected value of ijy , conditional on covariates ix , may be denoted  ij i x , and is 

given by: 

      1

1

M

ij i j i jm i im

m

g   



 
  

 
x x x   (15) 

where item parameters  j i x and  jm i x now incorporate the effects of covariates . 

The effects of covariates in categorical latent variable models 

ix

ix
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 Though measurement invariance has been explored much less extensively in the 

categorical latent variable framework, a number of parallels to the continuous latent variable 

approach, including the distinction between the multiple-groups and model-based strategy, may 

be drawn. These will now be explored.  

Multiple group analysis. As in the GLFA scenario, measurement non-invariance may be 

examined in terms of a multiple groups LCA (Clogg and Goodman, 1985; McCutcheon, 2000; 

Collins and Lanza, 2010; pp. 113-148). As before, we define a categorical grouping variable gX

which takes a value of 1 if subject i is a member of group g and 0 otherwise. Prior probabilities 

of class membership are now conditional on group membership, so that gπ is the probability of 

membership to class k given membership to group g. Similarly, the class-specific function for the 

distribution of iy is now estimated conditional on membership to group g, and is denoted 

 | 1, 1i ik gf X  y . The marginal distribution of  within group g is now given by: 

  
1

( | 1) | 1, 1
K

i g kg i ik g

k

f X f X 


   y y   (16) 

Within the multiple-groups setting, differences across groups in gπ may be considered as 

a form of impact: as these are the class endorsement rates for group g, the finding gπ differs 

across groups (i.e., g π π ) indicates that the distribution of iη  is different for members of group 

g than nonmembers.  

Given that the vast majority of multiple groups applications focus on the LCA case, we 

discuss this case here and thus assume that  | 1, 1i ik gf X  y specifies a multivariate 

Bernoulli distribution. Define the endorsement probability for ijy for individual i, given that this 

individual belongs to class k and group g, as , which is given by 

  
1

1| 1, 1
1 exp( )

ijkg ij ik g

jkg

P y X 


    
 

  (17) 

Note that, in this case, the linear predictor also differs based on membership to group g; 

i.e., ijkg jkg  . In the context of multiple group LCA, Collins and Lanza (2010) have drawn a 

few comparisons to the continuous latent variable case to begin to define measurement 

invariance. First, configural invariance may be considered to hold when the same number of 

iy

ijkg
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classes K holds across groups (i.e., Kg = K for all g) and, additionally, the general pattern of 

differences across classes in endorsement probabilities is the same across groups. Beyond this 

comparison, however, weak and strong measurement invariance are not generally defined; rather, 

measurement invariance with respect to group is said to hold if 

 
jkg jk ijkg ijk ijkg ijk            (18) 

for all g. In other words, measurement invariance holds if, given membership to a given class, 

individuals in group g have the same probability of endorsing items ijy than those who are not in 

group g.  

Regression-based approaches. As in the continuous latent variable framework, covariate 

effects may be directly modeled in categorical latent variable models. Huang and Bandeen-

Roche (2004) presented an approach which directly models covariate effects in LCA; in allowing 

for the impact of covariates on both item responses and underlying latent variables, this model is 

very similar to the MNLFA presented above, but for categorical latent variables. Reboussin et al. 

(2008) propose a similar model with added constraints to accommodate local dependence 

between item pairs, but because estimation of this model is somewhat complicated and requires 

second-order estimating equations, we present the original formulation here. 

In the presence of covariates, the prior probability of class membership ik becomes

 ik i x , which is related to covariates through a multinomial logistic regression equation as 

follows: 

    
0

1

0

=1 1

exp( )

1|

exp( )

P

k pk ip

p

ik i ik i K P

h ph ip

h p
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x

 

 

 







  





 
x x   (19) 

Here, 0k  is an intercept representing the baseline log-odds of membership to class k, 

and pk is a coefficient transmitting the effect of ipx  on  ik i x . Covariates’ effects on class 

membership may be considered as conceptually similar to impact in the GLFA setting, for they 

represent the effects of covariates on the underlying latent variable. As in the GLFA, we often 
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expect differences between subjects in their class membership probabilities, and the presence of 

such effects is not a violation of any sort of assumption. 

Within the LCA, effects of covariates on the items after controlling for iη are expressed 

by considering the expected value of iy given membership to class k as  k iμ x  with individual 

elements , given by: 

  

0

1

1

1 exp ( )

jk i P

jk pjk ip

p

x



 



 

   
 



x   (20) 

Here the intercept value 0 jk  represents the log-odds of endorsing item j within class k 

when all covariates are zero and pjk  transmits the effect of covariate ipx on this log-odds. As in 

the GLFA, here measurement invariance holds when pjk for all p.  

Though the model was originally proposed in terms of an LCA, it has been extended to 

include measures of all different scales (Muthén 2002) and can be considered in the GLM format 

with a linear predictor given by: 

   0

1

P

ijk i jk pjk ip

p

x  


 x   (21) 

Note that, unlike in Equation 8 in the model without covariates, the linear predictor 

 ijk i x is no longer dependent only on class membership, but also incorporates information 

about covariates ix . The formulation in Equation 20 for binary items may be extended to any 

link function, as in Equation 9: 

     1

ijk i ijk ig x x   (22) 

 Huang and Bandeen-Roche (2004) advise against estimating pjk  across classes, and 

advocate instead for constraining pjk  to be equal to some 0pj  across all classes, citing the 

possibility of under-identification; in particular, they caution that the parameters pjk  may be 

linearly dependent with pk , so that covariate effects on item endorsement probability cannot be 

disentangled from their effects on class membership in the LCA. However, Wang and Zhou 

(2014) offer evidence against this concern by showing conditions for local and global 

identifiability of freely estimated pjk  parameters in a general class of finite mixture models 

 jk i x
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which subsume LCA. In particular, for local identifiability of parameters, they show a number of 

conditions which are sufficient to ensure that the Jacobian matrix of the likelihood function is 

full rank. Furthermore, they extend the results of Kruskal (1977) and Allman (2008) to show that 

sufficient conditions for global identifiability, while difficult to show in practice, are actually 

easier to meet in a model with covariates than one without covariates. 

However, even when the model in Equations 19, 21, and 22 is identified, the meaning of 

class-varying pjk  parameters is not fully straightforward: how does the interpretation of item 

responses under class-varying pjk  differ from the case in which 0pjk pj   for all classes? While 

much of the extant literature examining measurement non-invariance imposes this constraint 

(e.g., Asparouhov and Muthén, 2014; Reboussin et al., 2006), others allow for class-varying pjk

parameters (Muthén, 2004); however, by and large these approaches do not directly interpret this 

distinction. One exception is the factor mixture model (FMM; Lubke and Muthén, 2005; Lubke 

and Muthén, 2007), which relates iy to a combination of categorical and continuous latent 

variables iη . This framework allows for class-varying direct effects pjk  and interprets them as 

evidence of non-invariance, but caution that “although the possibility of specifying different 

class-specific effects is clearly an advantage, it is also obvious that the interpretability of a model 

can rapidly decrease with an increasing number of effects” (Lubke and Muthén, 2007, p. 29).  

One potential interpretation of pjk  arises from expressing the generalized mixture model 

in Equations 29, 21, and 22 in the form of a GLFA. Bartholomew, Knott, and Moustaki (2011; 

pp. 157-191) point out that the categorical latent variable model shown above and the normal 

GLFA are special cases of the same general latent variable model; they differ only in the prior 

distribution of the latent variable, which is multivariate normal in the continuous latent variable 

case and a degenerate distribution with probability k  where 1ik   and 0 elsewhere in the 

categorical latent variable case. They further show that, given the same response distribution 

linking iy  to iμ , a finite mixture model with K classes yields the same values of iμ  as a GLFA 

with K-1 factors. This concordance is particularly useful because, if we reformulate the 

generalized mixture model as a GLFA, the within-class expected values of the linear predictor 
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 ijk i x  may be recast as a function of an intercept and a loading relating class membership to 

the overall expected value of
ijy , permitting mixture models to be considered within the standard 

framework of measurement invariance. 

To see the concordance between these two models, note that the expectation of ijy conditional on 

the latent variable iη is: 

       1

0

1 1 1

| ,
K K P
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 
  x η x x   (23) 

Because iη is an indicator variable which takes a value of 1 when 1ik  and 0 otherwise, 
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  (24) 

Given an LCA or LPA formulation, we may then decompose 0 jk  to be consistent with the 

expression of effects in a GLFA, as follows: 

0 0 0jk jk j     (25) 

Here 0 j  is an intercept term, which does not vary across classes. It may be coded to 

represent either the predicted value of 0 jk in a reference class or a weighted or unweighted 

mean value of 0 jk  across groups. The term 0 jk  is a loading representing the deviation from j  

associated with membership to class k. We can similarly decompose as follows: 

 
pjk pjk pj      (26) 

where pj  is an intercept term, which may be coded to represent either the effect of covariates ix

on jk in a reference class or a weighted or unweighted mean effect of ix on jk  across classes. 

The coefficient pjk represents the deviations from pj  associated with membership to class k.  

Substitution of the above terms into Equation 24 and rearrangement yield the following 

expression for : 

pjk

 ij i x
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 Because values of pj  and pj  do not vary across class, the summation in the second term 

may be eliminated: 
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We may define the first and second terms in parentheses, respectively, as: 
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 Equation 27 becomes the familiar expression which is equivalent to Equation 15 in the 

continuous latent variable case: 

      1

1
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 The formulation presented in Equations 29-30 allows for an intuitive extension of the 

levels of invariance described for continuous latent variable models to categorical latent variable 

models: when   0jk i jk x  for all j, weak metric invariance exists with respect to covariates ix ; 

when   0j i j x  for all j, strong metric invariance exists with respect to covariate ix . Currently, 

mixture models are not fit using this formulation, leading to a relative lack of interpretability of 

mixtures as a general measurement model. However, reparameterization of the basic mixture 

model in Equations 19, 21, and 22 to be consistent with this formulation can be accomplished 

through the use of non-linear constraints. By estimating the model this way, one is able to 

disaggregate levels of measurement invariance with categorical latent variables. 

Having established a theoretical parallel between levels of invariance in continuous and 

categorical latent variable models, I now turn to the issue of how best to test measurement 

invariance in the categorical latent variable framework. Given the parallels established here, I 
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begin by considering existing testing procedures, which are well-developed for continuous latent 

variable models but have received scant attention for categorical latent variable models. 

Tests of measurement invariance in continuous and categorical latent variable models 

Within continuous latent variable methods, the most common method for testing 

measurement invariance is to conduct a multiple groups analysis as outlined in Equation 11. In 

the most general terms, the strategy is to initially set some combination of tem parameters Λ  and 

ν  to be equal across groups, and to remove equality constraints across groups one at a time; if 

removing an equality constraint on a parameter results in a significant improvement in model fit, 

that parameter is non-invariant across classes. Items whose measurement parameters jm  and j  

are held to equality across classes while other items’ measurement parameters are tested for non-

invariance are termed anchor items.  

There exists significant controversy over virtually every aspect of the general procedure 

described above, including the choice of anchor items (Yoon and Millsap, 2007), whether to test 

invariance of multiple items at a time (Stark, Chernyshenko, and Drasgow, 2006), the order in 

which to test different types of parameters (i.e., whether jm  and j  should be tested at the same 

time; Vandenberg and Lance, 2000), and the optimal choice of baseline model (i.e., whether each 

successive model should be compared to a minimally or maximally constrained model; Reise, 

Widaman, and Pugh, 1993). One of the most widely used of these procedures is the likelihood 

ratio test algorithm (IRT-LR-DIF; Thissen, 2001), which is formulated as follows in the case of a 

single latent variable: 

1. Set the mean and variance of i in the reference group G, g and g , to 0 and 1 

respectively; allow the corresponding mean and variance in the other groups to be 

estimated freely. 

2. Allow the loading and intercept for item j to differ between groups – jmg jm   

and . 

3. Set item parameters equal between groups for all other items – i.e., set hmg hm  , 

,hg h h j   . 

jg j 
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The model defined by these constraints is tested against a baseline model. Within the IRT 

literature, a likelihood ratio test comparing the difference in log-likelihoods to a 
2  distribution 

is typically performed
2
. In the CFA framework with normally distributed items, there are a 

number of other fit indices to consult, with the CFI, RMSEA, and SRMR suggested as being 

particularly sensitive to measurement non-invariance (Cheung and Rensvold, 2002; Chen, 

2007)
3
. A significant test statistic indicates that a model with item j’s item parameters allowed to 

freely vary across groups is a better fit to the data than a model in which item j’s parameters are 

invariant – i.e., a significant result indicates that item j shows DIF. This test is repeated for all 

items, which necessitates controlling for multiple comparisons; this may be done using the 

Benjamini-Hochberg procedure (Thissen, Steinberg, and Kuang, 2002).  

Some additional strategies, which do not require that item parameters be tested iteratively 

but instead use a rank-based strategy – i.e., ranking items based on the amount of DIF found in 

an initial model, and choosing anchor items based on those which have the smallest amount of 

DIF (e.g., Woods, 2009) – have also shown strong performance in the MIMIC model setting. 

 The logic of the multiple groups testing procedure above has been partially extended to 

the testing of measurement invariance within categorical latent variables, although considerably 

less evidence exists as to which choices yield optimal detection of non-invariance. Collins and 

Lanza (2010) describe a general procedure for invariance testing within an LCA, which involves 

first determining that the number and general pattern of item endorsements is similar; this is 

generally done by conducting separate LCAs by group and using standard fit indices (e.g., BIC, 

AIC, likelihood ratio test) to determine the optimal configuration of classes within each group. 

After this initial step, testing generally proceeds as in the continuous latent variable case 

described above, by successively testing constraints in a multiple-group LCA. There is some 

                                                      
2
 It should be noted, however, that one of the biggest concerns about the IRT-LR-DIF procedure is that the 

2 will 

yield biased results if the baseline model is misspecified (Maydeu-Olivares and Cai, 2006).  
3
 However, Chen (2007) points out that the SRMR might be more sensitive to differences in factor loadings than 

intercepts or residual covariance matrices 
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evidence (Finch, 2015) that, within this general procedure, comparisons to the baseline model 

should be made using a fit index which makes minimal assumptions, such as the bootstrap 

likelihood ratio test (BLRT; Nylund, Asparouhov, and Muthén, 2007). However, considerably 

more research is needed in order to determine best practices for assessing invariance in the 

multiple-groups LCA setting.  

Regression-based approaches for assessing measurement non-invariance rest on the 

successive significance testing of the corresponding parameters. Within the continuous latent 

variable framework, strategies for successively testing for impact and DIF are similar to the 

multiple-group case: estimate some subset of impact parameters pm  and phm , as well as some 

measurement non-invariance parameters pj  and pjm , while constraining others to zero. In the 

MIMIC model, it has been suggested (Muthén, 1989) that testing proceed in the same order as 

the IRT-LR-DIF algorithm, starting from a model with no measurement non-invariance and then 

freely estimating parameters pj  and pjm  for each item one by one. However, less research exists 

on the proper order to in which to test these parameters than in the multiple group case, and there 

is certainly no consensus on best practices (Finch, 2005; Woods, 2009).  

Furthermore, there is no known work on the proper algorithm for testing for measurement 

non-invariance in the categorical latent variable case. Even setting aside concerns as to the 

robustness of DIF tests to the misspecification of the baseline model (Maydeu-Olivares and Cai, 

2006; Yuan and Bentler, 2004), there are reasons to question whether this robustness will hold 

for categorical latent variables. In particular, fitting a baseline model which erroneously assumes 

no DIF on any items other than the one under study may lead to biased estimates of  k i x ; the 

extent of this bias is not yet known (and will be addressed as part of the current work), but given 

that misspecification in the within-class structure of a mixture model may often lead to bias in 

estimates of between-class parameters (Bauer and Curran, 2003; 2004), it is hypothesized that 

the potential for bias in  k i x  based on misspecification of DIF is significant. Because tests for 

DIF in continuous latent variables have been shown to be biased when the distribution of the 

latent variable is misspecified (Woods, 2008), it stands to reason that bias in the estimated class 
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probabilities  k i x , which govern the distribution of categorical latent variables, is likely to 

lead to bias in DIF tests.  

In general, virtually all methods for testing for measurement invariance for either type of 

model face one significant hurdle: because failing to account for differences across ix in one 

parameter leads to bias when assessing the effect of ix  on another, significant care must be taken 

in determining whether either latent variable impact or measurement non-invariance is present. 

This requires consultation of substantive theory before conducting such tests, and also consulting 

testing procedures which are robust to some degree of model misspecification. 

Post-hoc tests for DIF. The multiple-groups and regression-based testing procedures for 

testing measurement invariance involve the incorporation of either a single grouping variable or 

multiple covariates in the estimation of the model for the latent variables. However, particularly 

within the IRT setting, there are a number of testing procedures which indirectly test for DIF 

outside of model estimation. While many are no longer in use (e.g., Holland and Thayer, 1988), 

one is discussed here due to its potential for extension to the categorical latent variable case. 

First, in applications of IRT with a single latent variable i , the logistic regression procedure 

(Swaminathan and Rogers, 1990) is a post-hoc test for both uniform and non-uniform DIF in 

binary items. After an IRT model presuming no impact or DIF is estimated, estimated values ˆ
i

are obtained and treated as a regressor in a logistic regression equation, which also includes a 

single covariate , as follows: 

   0 1 2 3
ˆ ˆlogit ij i ip ip ix x            (31) 

The logic of this test is that, should there be no DIF between items based on ipx  , there 

should be no association between ijy  and ipx , or the interaction between ipx  and ˆ
i , after 

controlling for ˆ
i . A significant main effect of ipx indicates uniform DIF, whereas a significant 

interaction effect indicates non-uniform DIF.  

The above procedure can be generalized to ijy variables by modeling an arbitrary link 

function of the expected value of ijy , i.e.,  1

ijg 
, rather than a logit. Additionally, more 

independent variables may be added in, as well as their interactions, to test for DIF by P 

ipx
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covariates based on M latent variables on a given item. Thus, a more general expression is given 

by: 

 1

ijg   Γx   (32) 

where Γ  is a  1 KP K   vector of coefficients, and all main effects of ˆ
iη  and ix , along with 

all two-way interaction terms between ˆ
iη  and ix , are collapsed into the  1 1M P MP     

vector x , i.e.,  

         1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ1, , , , , , , , , , , , ,i iM i iP i i i iP iK i iM iPx x x x x x     

   x .  

  The extensibility of this procedure to the categorical latent variable case is immediately 

apparent, given that estimates of class membership ˆ
ik may be used post-estimation in a 

regression identical to the one given by Equation 32. Class membership may be estimated by, 

among other ways, “proportional” or “modal” assignment (Goodman, 1974; Dias and Vermunt, 

2008). In proportional assignment, the vector of posterior probabilities of class membership iτ  is 

used as the estimate of ˆ
iη . In modal assignment, individual i is simply assigned to the class for 

which their posterior probability iτ  is the highest. Define the K×1 vector iη  of these 

assignments, whose individual values ik  are coded as 1 for the element corresponding to the 

class with the highest value of ik and 0 for all other classes. Within the LCA framework, Garrett 

and Zeger (2000) propose a set of post-hoc graphical diagnostics which, while it does not involve 

fitting a logistic regression model, follows the same general logic by plotting expected and 

observed endorsement probabilities based on values of covariates, as well as modal assignments 

iη . Under the logic of this procedure, plotted endorsement probabilities conditional on iη  should 

not differ between covariates; such a difference is suggestive of DIF. A full consideration of the 

post-hoc procedure follows. 

An adjusted post-hoc regression testing procedure. The post-hoc regression procedures to 

test for the effects of ix over and above the effect of iη  suffer from a number of flaws. First, 

because iη is an estimate, it is necessary to account for uncertainty in its measurement, which the 

current procedure does not do, instead treating this modal class estimate as subject i’s true class 

membership. Second, the effects of iη  on each item ijy are tested item-wise, using an estimate of 
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iη from a model without DIF; thus, the test of ix ’s effects on ijy controlling for iη  necessarily 

assume no DIF on other items ihy , h j . A number of methods for accounting for measurement 

error in estimates of iη  have been proposed (e.g., Wang et al, 2005; Lanza et al., 2013; Bolck, 

Croon, and Hagenaars, 2004; Vermunt, 2010; Asparouhov and Muthén, 2014). Here, we will use 

the method of Bolck, Croon, and Hagenaars (2004) and Vermunt (2010), originally formulated in 

order to consider simple relationships between modal classifications iη and categorical outcome 

variables, which was generalized to a wider variety of models by Vermunt (2010) and Bakk, 

Tekle, and Vermunt (2013). In this strategy, the conditional distribution  |i iP η η is represented 

by a K×K table of probabilities, denoted D, with the k, h
th

 element given by: 

  

   11| 1

N

ih ik

i
kh ik ih

h

D P

 

 


   


  (33) 

Diagonal elements of this matrix kkD represent the estimated probability that any given 

individual is correctly classified into class k - i.e., the probability that their modal class estimate 

is class k, given that they are truly a member of class k. Likewise, off-diagonal elements khD

(where k h  ) represent the estimated probability that any given individual is misclassified into 

class k given that they are truly a member of class h. The relative size of diagonal elements kkD

relative to off-diagonal elements khD  represents the general accuracy of measurement of iη .  

 Given the matrix D, one may fit the regression model in Equation 32 using maximum 

likelihood with modal estimates of the latent variable iη in place of iη , weighting each 

individual’s contribution of the log-likelihood function using the rows of D as follows:  

  
1 1

log log | 1, ;
N K

ij ih i kh

i h

L P y D
 

   x ω   (34) 

Note that in this method, the loglikelihood for each individual is calculated under each of 

K classes in Equation 34, resulting in the weighted loglikelihood being maximized on an 

expanded dataset with K N  rows. The form of the loglikelihood will differ based on the scale 

of items ijy , but the general premise of the same regardless: the contribution of individual i to 
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the overall log-likelihood will be adjusted to account for the extent of the certainty with which 

they have been classified using modal classification. This method has been found to produce 

unbiased estimates of regression parameters and their standard errors (Vermunt, 2010), as well as 

generally greater power than resampling and multiple imputation-based methods for accounting 

for uncertainty in the measurement of iη . 

 While this method mitigates the first concern about the post-hoc regression test – error in 

the measurement of iη  – the problem of item-wise testing, which is that estimates iη  are free of 

DIF from other items when testing the effect of iη  on ijy , remains. There are results to suggest 

that, in the absence of extreme non-compensatory DIF across multiple items (i.e., DIF in the 

same direction on all items based on a given covariate), item-wise tests are generally unbiased in 

the model-based (i.e., IRT-LR-DIF) testing framework even if there is some DIF from ix on 

other items (Cohen, Kim, and Wollack, 1996; Bolt, 2002; Kim and Cohen, 1998). However, it is 

unclear to what extent this unbiasedness holds when estimates iη  are used post-hoc. Thus, the 

performance of this test on the basis of the number of items with DIF and the magnitude of this 

DIF will be investigated in the proposed work. 

Summary and research questions 

 There is currently a paucity of evidence as to the extent of mixture models’ robustness to 

measurement non-invariance or differential item functioning (DIF), as well as which strategies 

for testing DIF generalize most successfully from the continuous to the categorical latent 

variable case. Additionally, the extent to which these results make a practical difference in the 

conclusions drawn from mixture model results is not yet known; it may be the case that some of 

the discrepancies between findings from various applications of mixture models may be 

reconciled by accounting for differences in measurement across studies.  

As such, the current work systematically investigated measurement invariance in the 

categorical latent variable framework through two studies, which are described in Chapters 2 and 

3.  

Chapter 2 
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Chapter 2 consists of a Monte Carlo simulation study of DIF in mixture models, in which 

uniform and nonuniform DIF were simulated under a number of different conditions. Monte 

Carlo simulation was pursued to answer Questions A and B because, due to the use of the 

expectation-maximization (EM; Dempster, Laird, and Rubin, 1977) algorithm to estimate 

mixture model parameters, an analytic solution would be intractable. In particular, Chapter 2 

investigated two questions: 

Question A: What are the consequences of ignoring DIF in mixture models? In 

particular, what is the effect of unmodeled DIF on estimated values of model parameters, as well 

as individual-level quantities such as class membership estimates? 

Question B: What is the ideal way to test for DIF in the mixture model setting? In 

particular, how sensitive are post-hoc tests to the presence of DIF relative to strategies which 

model DIF directly? 

Both of the above two questions were addressed using the same data, which was 

generated from a two-class latent class analysis with varying types of DIF. The bias associated 

with omitted DIF effects (Question A), as well as the performance of DIF tests (Question B), 

were examined across four factors: class prevalence; class separation; DIF magnitude; and DIF 

type. The number of cases and items, as well as the overall pattern of DIF, were all held constant.  

Chapter 3 

 Chapter 3 is a secondary data analysis of real data derived from a unique laboratory study 

of the measurement of alcohol use disorder (AUD) in a college sample. Specifically, potential 

DIF according to demographic covariates, as well as prior exposure to AUD items, was 

investigated in a computerized diagnostic battery for AUD. The goals of this chapter are twofold. 

First, whereas Chapter 2 systematically investigates the effects of omitted DIF and the 

performance of DIF tests in simulated data, Chapter 3 provides an example of how DIF testing 

and modeling may be done in real data and the sorts of questions which may be answered by 

investigating DIF in LCA.  
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The second goal of Chapter 3 is to use DIF analyses to determine whether measurement 

bias on the basis of background variables may be partially to blame for discrepancies in mixture 

model findings across different studies of AUD symptoms. Numerous studies (e.g., Lynskey et 

al., 2005; Beseler et al., 2012; Jackson et al., 2014, Rinker and Neighbors, 2015) have been 

conducted with the aim of finding latent classes of AUD symptoms, and many have found 

different numbers and configurations of classes. The reason for these discrepancies are unknown, 

but recent research (e.g., Cole, Bauer, Hussong, and Giordano, 2017) suggests that LCA results 

may be highly sensitive to minor changes in measurement. Strong findings of DIF on the basis of 

background variables would suggest that the measurement properties of tests for AUD may 

indeed by inconsistent across populations and testing situations. 

Chapters 2 and 3 are motivated by the complementary goals described above, and there is 

much overlap between the studies in terms of the nature of the questions they address. As 

mentioned earlier, the goals of applying a mixture model may be explanatory, descriptive, or 

predictive. The goals of the simulation study in Chapter 2 are explicitly explanatory: by 

simulating a mixture model with DIF and either omitting this DIF (Question A) or using testing 

procedures to locate DIF empirically (Question B), we aim to create conditions which allow for 

causal statements about the effects of DIF in mixtures to be made. Moreover, the simulation 

study in Chapter 2 seeks to assess mixture models' explanatory capacity, by determining how 

frequently mixture modeling procedures arrive at the correct number and configuration of classes 

and DIF effects in the presence of DIF. However, as mixture models are so frequently applied 

descriptively or predictively (Nagin, 1999), both Chapters 2 and 3 will aim to also assess how 

well mixture models with DIF approximate the data at both the aggregate and individual levels. 

In particular, the simulation study in Chapter 2 assesses the accuracy of predicted endorsement 

probabilities, and Chapter 3 assesses how predicted endorsement probabilities change based on 

the extent to which DIF is included in the fitted model.  
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CHAPTER 2 

A MONTE CARLO SIMULATION OF OMITTED DIF IN MIXTURE MODELS 

Chapter 2 systematically investigated the following two questions: 

Question A: What are the consequences of ignoring DIF in mixture models? In 

particular, what is the effect of unmodeled DIF on estimated values of model parameters, as well 

as individual-level quantities such as class membership estimates? 

Question B: What is the ideal way to test for DIF in the mixture model setting? In 

particular, how sensitive are post-hoc tests to the presence of DIF relative to strategies which 

model DIF directly? 

Both of the above two questions were addressed using the same data, which was 

simulated from a two-class LCA. The bias associated with omitted DIF effects (Question A), as 

well as the performance of DIF tests (Question B), were examined across four factors: class 

prevalence (2 levels: equal or unequal); class separation (2 levels: small or large); DIF magnitude 

(2 levels: small or large); and DIF type (3 levels: intercept, loading, or both intercept and 

loading). A summary of the models fitted in both Questions A and B are shown in Figure 1. The 

procedures by which Questions A and B were addressed, as well as the results of these two 

separate but related inquiries, are now discussed.  

Question A 

To address the question of bias when DIF is not accounted for in latent class analysis 

(LCA), a series of misspecified models were fit to data generated from a two-class LCA with 

DIF. First, in order to determine whether unmodeled DIF may impact class enumeration, models 

with K = 1 to K = 4 classes were fit to the data both in models with and without covariates effects 

on class membership. Second, even when the correct number of classes is selected, unmodeled 

DIF may have effects on other quantities of interest, including class prevalence rates, covariate 
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effects, endorsement probabilities, and individual class membership assignments. Thus, bias in 

these quantities was assessed in a model with K=2 with only covariate effects on class 

membership (the impact-only model), only covariate effects on item intercepts (the intercept-DIF 

model), and the fully specified model, which contains covariate effects on item intercepts and 

loadings (the intercept-and-loading DIF model).  

Hypotheses 

Class enumeration. In studies which have examined the sensitivity of mixture models to 

changes in measurement in empirical data (Jackson and Sher, 2005; Cole, Bauer, Hussong, and 

Giordano, 2017), class enumeration was generally stable even across drastically different 

measurement conditions. Thus, it was predicted that the correct number of classes (K = 2) would 

be favored by fit indices in most experimental conditions when covariates were not included in 

the model. However, it was predicted that problems in class enumeration might arise when 

covariates with unmodeled DIF were included as predictors of class membership. This follows 

the findings of Kim et al. (2016) and Nylund-Gibson and Masyn (2016) that, in the presence of 

omitted DIF effects, models with covariate effects on class membership tend to overextract 

classes. Thus, it may be the case that spurious classes are estimated which merely capture DIF 

effects. 

Parameter bias. It was predicted that estimated covariate effects on class membership, as 

well as estimated item parameters, would absorb omitted DIF effects. For example, given a class 

with higher levels of item endorsements (a “high-endorsement” class), and given a covariate 

which increases the overall item endorsement probability (i.e., intercept DIF), failure to model 

this DIF may produce an upwardly biased estimate of the covariate’s effect on membership to 

the high-endorsement class. This prediction is based on the results of Chen (2008) in the multiple 

group factor analysis context, omitted DIF effects from a grouping variable to an item often 

manifested as spurious group differences in the underlying latent factor. 

Individual class assignments. It was predicted that individual class assignments would be 

less biased than parameter estimates, even in the case where DIF was omitted entirely. This 
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follows from the finding of Curran et al. (2016), who report in the continuous latent variable case 

that factor scores are often relatively unbiased in the event that DIF is omitted, as long as all 

relevant mean effects of covariates on the underlying latent factor were included.  As such, it was 

predicted here that, as long as all relevant effects of covariates on latent classes were included, 

misclassification would generally be low. 

Data-generating model 

Data were generated from a two-class latent class analysis model. Data generation 

followed a three-step process. First, data were generated on covariates. Then, the binary latent 

class variable was generated as a function of these covariates. Finally, data were generated for 

binary items, conditional on both covariates and latent class membership. Each step will be 

described in turn.  

Class membership and item endorsement are affected by a subject-specific vector of four 

covariates  1 2 3 4, , ,i i i i ix x x xx , where p indexes covariates  1, ,p P  and i indexes 

individuals  1, ,i N . Of these, 1ix , 2ix , and 3ix  affect class membership; 1ix , 2ix , and 4ix  

generate DIF. As such, 3ix  has impact but no DIF, whereas 4ix  has DIF but no impact. These 

covariates are characterized by a multivariate normal distribution, with weak correlations 

between all variables: 
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Define a 2 1  vector of latent class indicator variables iη , whose individual elements ik  

take on a value of 1 if subject i  is a member of class k  and 0 otherwise. The probability of 

membership to class 1, conditional on all covariates ix ,  1i i x , is affected by covariates 

through a typical logistic regression equation, as specified more generally in Equation 19:  

    
  1 1

01 11 1 21 2 31 3

1
1|

1 exp
i i i i

i i i

P
x x x

 
   

  
    

x x   (36) 
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Class membership was coded such that any increase in the probability of membership to 

Class 1 leads to a corresponding decrease in the probability of membership to Class 2. Thus 

2 1p p    for all p.  

For each case, J = 10 binary items, denoted 
ijy   1, ,i N , were generated. The 

probability of endorsing item j, conditional on class membership and covariates ix , is denoted 

 1ij i x  and  2ij i x  for Classes 1 and 2 respectively. These probabilities are given by class-

specific logistic regressions, as expressed more generally in Equation 20: 
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  (37) 

 

where 
0 jk  represents the log-odds of endorsing item j within class k when all covariates are zero 

and 
pjk  transmits the effect of covariate 

ipx  on this log-odds.  

Recall from Equations 23-30 that, although this is the original and most common 

parameterization of direct effects in LCA, the study of DIF is facilitated by decomposing each 

logit parameter 
pjk  into an intercept parameter 

pj  and class-specific loadings 
pjk . As 

explained in Equations 25-26, the model is parameterized such that 
pj  is an unweighted mean of 

pjk  across classes, and 
pjk  represents Class k’s deviation in 

pjk  from this unweighted mean. 

Thus, any increase in 
pjk  in Class 1 must produce a corresponding decrease in Class 2. 

Therefore, logits 
1 1qj qj qj     and 

2 1qj qj qj     for all q, and class-specific endorsement 

probabilities may be written as: 
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  (38) 
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Though data were generated by manipulating values of item parameters 
pj  and 

pjk , a number 

of outcomes (e.g., class-specific covariate effects) are considered in terms of traditional logits 

pjk .  In the presence of exclusively intercept DIF, 
1 ppj j   for k = 1 and k = 2. In the presence 

of exclusively loading DIF, 
11pj pj   and 

12 jpj p   . For a model containing both intercept 

and loading DIF, values of item parameters 
pj  and 

pjk in Table 3 are translated to the 

corresponding class-specific logits 
pjk  in Table 4 for comparison.  

The values of parameters in Equations 36-38 define the differences between experimental 

conditions. Details of how parameter values were chosen are given below.  

Parameters held constant across cells. A number of factors are held constant across all 

cells. These include the magnitude of covariate effects on class membership, number of items, 

baseline item parameters, overall pattern of DIF, and overall sample size.  

Number of items. The number of items J is held constant at J = 10. This value was 

chosen on the basis of yielding adequate power to detect the optimal number of classes in the 

absence of DIF in LCA (Nylund, Asparouhov, and Muthén, 2007).  

Magnitude of covariate effects. The magnitude of 11 21,   and 31  is held constant at 

values of 0.7, 0.7, and 0.7 so that a one-unit increase in covariates 1 2, ,i ix x and 3ix  is associated 

with a roughly 2-fold increase in the odds of membership to class 1, relative to class 2. These 

effect sizes are consistent with those used in previous simulation work (Asparouhov and Muthén, 

2014; Vermunt, 2010), and are expected to produce meaningful differences in class membership 

without driving class membership probabilities to zero or one.  

Number and pattern of DIF items. Each variable affects 2/10 items. As described below 

(under "baseline class separation"), there was some heterogeneity in magnitude among 
0 1j  

coefficients; thus, DIF effects were spread evenly across items. 

The values of the DIF coefficients are shown in Table 3. For covariates 1ix  and 4ix , both 

1pj  or 
pj  effects are positive. For covariate 2ix , both 

1pj  or 
pj  effects are negative. Thus, 

covariates 1ix  and 4ix  only ever increase the difference between classes in their endorsement 

probabilities (through their effect on loadings) and only ever increase the overall item 
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endorsement probability (through their effect on intercepts). Covariate 2ix  only ever decreases 

the difference between classes in their endorsement probabilities (through its effect on loadings) 

and only ever decreases the overall item endorsement probability (through its effect on 

intercepts). This is done in order to create the realistic, compensatory pattern of measurement 

non-invariance often seen in practice, in which measurement non-invariance effects in opposite 

directions may cancel one another out. 

Total sample size. Total sample size was held constant across cells at N=500, a sample 

size consistent with generally good power in mixture models (Nylund, Asparouhov, and Muthén, 

2007). 

Between-cell factors. Four factors are manipulated: overall class membership 

probabilities (2 levels); baseline class separation (2 levels); magnitude of DIF (2 levels); and type 

of DIF (3 levels). This yields 24 unique cells. For each cell, R = 500 replications are evaluated.  

Baseline class membership probability. Class membership probability is manipulated 

between-cells with 2 levels: either classes are of equal size, or classes 1 and 2 contain 

approximately 80% and 20% of the sample respectively. Given covariate effects, these 

prevalences correspond to 01 0   and 01 1.8   . 

Baseline class separation. Class separation is manipulated between cells, with 2 levels: 

small (average value of 
0 1 .75j   across items); and large (average value of 

0 1 1.2j   across 

items). All baseline values of item parameters are listed in Table 3. Note that all values of 
0 j  

are held to zero.  

After generating baseline values of 
0 1j , the corresponding values of entropy were 

determined by simulating 1000 datasets, each with N = 500 cases; this was done for either 

equally-sized classes (i.e., 01 0  ) or unequally-sized classes (i.e., 01 1.8   ), without any 

covariate effects on class membership or item endorsement. For each of these cases, the average 

value of entropy was calculated. For equally-sized classes, entropy was .66 and .91 in the low 

and high class separation, respectively; for unequally-sized classes, entropy was .78 and .94 for 

low and high class separation, respectively. Entropy is necessarily lower for equally-sized classes 
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than unequally-sized classes (Celeux and Soromenho, 1996), and thus the differences between 

the cases of equally and unequally sized classes were expected. 

Type of DIF. The type of DIF is manipulated between-cells with 3 levels: DIF due 

exclusively to differences in intercepts (the intercept-DIF generating model), DIF due 

exclusively to differences in loadings (the loading-DIF generating model), and DIF due to 

differences in both (the intercept-and-loading DIF generating model). Given the findings from 

the continuous latent variable literature that loading DIF may in some cases be more difficult to 

detect (e.g., Stark, Chernyshenko, and Drasgow, 2006), and may exert a strong biasing influence 

on impact parameters when it is not included in the model (e.g., Chen, 2008), it was of interest to 

consider these three instances separately. 

 Magnitude of DIF. The absolute value of DIF parameters pj  and 1pj  is manipulated 

between cells, with 2 levels: small ( 0.8pj   or 1 0.4pj  ) and large ( 1.6pj   or 1 0.8pj  ). 

Importantly, the covariates 1ix , 2ix , and 4ix  are coded so that the values  1 1 1,j j  ,  2 2 1,j j  , 

and  4 4 1,j j   represent the difference in measurement parameter values between individuals at 

1  SD on 1ix , 2ix , and 4ix  controlling for the influence of all other covariates. Table 3 shows 

these parameters, as well as the items they affect. 

Model fitting 

All mixture models were estimated using the accelerated expectation-maximization (EM; 

Dempster, Laird, and Rubin, 1977) algorithm as implemented in Mplus version 7.2 (Muthén and 

Muthén, 2014). This implementation uses multiple random seed values (here 100 were used) and 

a user-defined number of maximum iterations for a given random seed value (here 1000 were 

used).  

Data generation and management was completed using  R. Additionally, all of the 

process flow involving the automation of model-based DIF testing in Mplus was completed 

using the MplusAutomation() (Hallquist and Wiley, 2011) package in R, which allows for 

automatic writing, execution, and reading of code to be evaluated by Mplus.  
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Class enumeration. Both of the models in the left-hand side of the top panel of Figure 1 

were first fit iteratively to the data for increasing numbers of classes from K = 1 to K = 4. This 

included the unconditional model, which assumes no covariate effects on either the latent 

variable or the items as well as the impact-only model, which assumes covariate effects on the 

latent class variable but not the items. 

In all of these models, the values of a number of fit statistics and likelihood ratio test 

results (Akaike, 1973; Schwarz, 1978; Vuong, 1989; Lo, Mendell, and Rubin, 2001; McLachlan 

and Peel, 2000), further described below, were recorded. Regardless of the values of K favored 

by this set of fit statistics, subsequent models were fit on the correct number of classes, i.e., K = 

2. This strategy permitted the problem of correct class enumeration in the presence of 

measurement invariance to be disentangled from the question of whether DIF can be accurately 

identified when the correct number of classes is in fact chosen or known.8 

It is well-known that decisions about the number of classes are sensitive to the inclusion 

of all relevant covariates (Tofighi and Enders, 2008). In particular, when DIF-generating 

covariates are included exclusively as covariates affecting class membership (as in the impact-

only model), recent results (Kim et al., 2016; Nylund-Gibson and Masyn, 2016) suggest that 

spurious classes may be detected. Therefore, it was important to establish the frequency with 

which either the unconditional or impact-only models – which researchers are likely to fit as a 

first step – failed to identify the correct number of classes, K = 2, relative to the correctly-

specified nonuniform DIF model. If a researcher were to proceed with DIF testing in a model 

with the incorrect number of classes, a potentially nonsensical pattern of DIF effects might 

emerge.  

Bias in parameters and individual-level estimates at K=2. In addition to the two models 

described above, for the correct number of classes K = 2, models 2, 3, and 4 in Figure 1 were 

also fit to the data. This included: the impact-only model, which assumes covariate effects on the 

latent class variable but not the items (model 2 in Figure 1); the uniform DIF fitted model, which 

includes DIF on all DIF-containing items (i.e., all items which truly have DIF on  j i x ,  1j i x , 
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or both) but only on the intercept parameters (model 3 in Figure 1);
4
  and the non-uniform DIF 

fitted model, which is the full model containing both intercept and loading DIF (model 4 in 

Figure 1).  As it was well-established that item endorsement probabilities would be severely 

biased in an unconditional LCA (i.e., model 1 in Figure 1), the unconditional model was not 

considered for this aspect of question A. 

It is of interest to establish whether the inclusion of any covariates, even those whose 

effects have been misspecified (as they are in the impact-only model for all cells, and in the 

uniform DIF fitted model for all cells with loading DIF), may absorb omitted DIF effects to 

produce relatively unbiased estimates of model parameters and scores. Curran et al. (2016) have 

found some estimates of scores to be highly accurate in the analogous case (i.e., impact included 

but DIF omitted) in continuous latent variable models. The uniform DIF fitted model was 

included in order to determine whether simply including intercept DIF would absorb the biasing 

effects of covariates ix  on both intercepts and loadings; this is particularly important given that 

the model with intercept DIF only is easier to identify (Huang and Bandeen-Roche, 2004), and 

that researchers might favor this model, despite its being misspecified, for ease of estimation. 

Outcomes of interest 

Outcomes of interest whose quality may be affected by omission of DIF effects included 

the number of classes selected, as well as a number of quantities assessed at the correct number 

of classes. These quantities are divided into three general types. First, we assessed the accuracy 

of model parameter estimates, including covariate effects on class membership and covariate 

effects on endorsement probabilities. Second, we assessed the accuracy of quantities pertaining 

to class membership, including the prevalence of Class 1, as well as the classification accuracy 

of individuals. Third, we assessed the accuracy of average item endorsement probabilities within 

                                                      
4
 Note that, whereas this model is misspecified for the loading DIF and loading-and-intercept DIF condition, it is the 

true model for the intercept DIF condition. Thus, while it will be referred to as a misspecified model from here 

forward, this is only the case for 2/3 DIF type conditions. 
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a given class, which may be calculated a number of ways. These quantities, as well as how they 

are assessed, are described below.  

Class enumeration. Solutions with K=1 to K=4 classes were obtained for all replications 

in all cells. For each cell, the values of several widely-used fit indices were recorded under each 

value of K. The Bayesian Information Criterion (BIC; Schwarz, 1978) and Akaike Information 

Criterion (AIC; Akaike, 1973) two information criteria which weigh the loglikelihood of a given 

model against the number of parameters, balancing fit and parsimony. Lower values of BIC and 

AIC represent better correspondence between model and data. Additionally, two likelihood ratio 

tests, the Lo-Mendell-Rubin likelihood ratio test (LMR; Vuong, 1989; Lo, Mendell, Rubin, 

2001), and the bootstrap likelihood ratio test (BLRT; McLachlan and Peel, 2000) were consulted. 

These two tests compare a model with K classes to one with K – 1 classes, and differ in how they 

approximate the distribution of the test statistic. The LMR and BLRT are applied to models with 

increasing numbers of classes, and the chosen solution is the one with the highest value of K for 

which the fit of a K – 1-class model is significantly worse than that of a K-class model. 

Model parameters. The estimated values of all model parameters under K = 2 were 

recorded in all cells under all data-generating models; this includes class membership 

parameters, baseline endorsement probabilities for each class, and covariate effects on 

endorsement probabilities. Standardized bias (SB) was computed comparing all estimated 

parameters to their true values: 
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  (39) 

Here, ˆ
r  is the estimate of some quantity   under replication r, where R is the total 

number of replications, and  ˆ
rSE   is calculated as the standard deviation of all parameter 

estimates. Standardized bias puts parameter bias in the unit of standard errors for a given 

parameter. It is preferable to relative bias because it may be used to calculate bias in estimates 

where true values are 0. Collins, Schaefer, and Kim (2001) note that standardized bias values of 
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40%, corresponding to a difference in 40% of a standard error between true and estimated 

values, are ever enough to be practically significant.  

For parameters governing class membership, 
1p , intercept parameter 

01̂ was compared 

to a true value of 01 0   for equally-sized classes and 01 1.8    for unequally-sized classes; 

covariate effects were compared to true values of 
1 0.7p   for p = 1, 2, and 3 and 

1 0p   for p 

= 4.  

Finally, for the intercept-DIF and intercept-and-loading-DIF models, standardized bias 

was assessed in logit parameters transmitting covariate DIF effects on items. Rather than 

considering bias in ˆ
pj  and 1

ˆ
pj , which were not estimated for every model (i.e., 1

ˆ
pj  was not 

estimated in the uniform DIF model), we considered standardized bias in 1
ˆ

jk , 2
ˆ

jk , and 4
ˆ

jk , as 

these are the parameters governing item endorsement within each class that researchers may 

obtain without reparameterizing the model.  

Class membership. The whole-sample prevalence of classes may be calculated a number 

of ways, but arguably the most common is to take the average of posterior probabilities across 

cases. Denote the set of estimated parameters for a given replication Θ̂ , and the true model 

parameters Θ . Posterior probabilities of class membership were calculated under the estimated 

model and true models, using Θ̂  and Θ  respectively:  
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  (40) 

The posterior probability of membership to class 1 under true model parameters, 1i , is 

given by: 
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Then, the prevalence of class 1 in each replication, denoted P̂r  under estimated model 

parameters and Pr under true model parameters is calculated as: 
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for estimated model parameters, and  
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for true model parameters, where 1î  and 1i obtained from Equations 40 and 41, respectively. 

The distributions of P̂r  were then compared to true values Pr . 

In addition to overall prevalence of Class 1, the accuracy of individual classifications into 

latent classes was also assessed. For each individual, modal class assignments, ik , were 

generated for each subject by choosing the class to which subject i has the highest value of îk

following Equation 40. Because true class memberships ik were retained in the data-generating 

process, binary modal classifications ik  were compared to true class memberships ik  using the 

Adjusted Rand Index (ARI; Hubert and Arabie, 1985), which is an index measuring the 

concordance between two partitions, adjusting for chance. Given the A×B contingency table with 

rows indexed by a ( 1, , )a A and columns indexed by b ( 1, , )b B , the cell count abn  

represents the number of subjects classified into category a by one classification and category b 

by the other. Then the ARI is computed as follows: 
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The ARI ranges from -1 to 1, with values closer to 1 indicating greater agreement 

between the two classifications. Values of ARI are averaged across cells, yielding a total of 24 

average ARI values.
5
 

                                                      
5
 In addition to modal classifications, the accuracy of posterior probabilities was assessed using an extension of the 

ARI which uses cosine similarity to assess the agreement between two fuzzy partitions (Brouwer, 2009). However, 
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Class-specific endorsement probabilities.  DIF in mixture models presents researchers 

with a challenging problem from an interpretational standpoint: because individual covariates 

affect the expected values of indicators, class-specific expected values are not dependent 

exclusively on class membership. This complicates the traditional practice of showing and 

interpreting differences between classes in expected values of class membership.  

There are (at least) two potential ways researchers may choose to summarize the 

expected values of indicators within a given class, and we assessed bias in both of these 

quantities. The first, which we denote the baseline endorsement probability, represents the 

probability of endorsing item 
ijy  when all covariates are zero. It is calculated as a function of 

item parameter intercepts, as  
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for estimated parameters, and 
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for true parameters. Standardized bias was assessed comparing endorsement probabilities 

generated by 
0

ˆ
j  and 

0 1
ˆ

j  were compared to those generated by true values 
0 j  and 

0 1j . 

 Alternatively, one may calculate the expected value of individual conditional 

endorsement probabilities across all values of covariates. These values, here denoted marginal 

endorsement probabilities, are obtained as sums of class-specific, individual-specific 

endorsement probabilities, 1
ˆ

ij  and 2
ˆ

ij , weighted by class membership probabilities. As with 

                                                                                                                                                                           
 
no meaningful differences were found between these results and the ARI examining hard partitions, and so the 

simpler ARI results are presented. 
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posterior probabilities of class membership, predicted endorsement probabilities were calculated 

under the estimated model and true models, using Θ̂  and Θ  respectively. For true parameter 

values  Θ , values of 
ijk  are calculated using Equation 38. For estimated parameter values Θ̂ , 

predicted endorsement probabilities under each of the two classes are calculated as: 
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Marginal endorsement probabilities  | , 1ij i ikE y  x  are then calculated as averages of 

these individual predicted values, weighted by individual posterior probabilities of class 

membership, as 
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for estimated model parameters, and 
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for true model parameters. Because of the fact that there are direct effects of covariates on items 

over and above class membership, the predicted endorsement probabilities obtained by baseline 

item parameters in Equation 45 may be biased, even when within-class endorsement 

probabilities are not. Relative bias in average posterior probability, comparing cross-replication 

averages of  ˆ| , 1;ij i ikE y  x Θ  to  | , 1;ij i ikE y  x Θ , was then calculated. 

Note that, in the impact-only model and in all indicators with no DIF, the probability of 

endorsing 
ijy  does not depend on covariates; therefore 

0ijk jk   under the impact-only model.  

Results 
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Class enumeration. Rates at which all fit indices chose the correct 2-class solution, as 

well as the average number of classes, are shown in Tables 5 and 6 for unconditional and 

conditional models respectively. In unconditional models, the BIC almost always correctly chose 

the 2-class model, and only very rarely models with more than three classes; only in the presence 

of large DIF and poorly-separated, unequally-sized classes, did the BIC select the 2-class 

solution less than 95% of the time. The AIC selected the 2-class solution less than 50% of the 

time in all cases and typically overestimated the number of classes. The performance of the two 

likelihood ratio tests, the Vuong Lo-Mendell-Rubin test (LMR) and the bootstrap likelihood ratio 

test (BLRT), was considerably more varied. For both these likelihood ratio tests, the tests' ability 

to choose the correct number of classes was most degraded when DIF was severe, rather than 

when classes were poorly separated. For both the LMR and the BLRT, the presence of intercept 

DIF (i.e., in the intercept-DIF and intercept-and-loading DIF generating models) was associated 

with lower levels of the correct 2-class solution being chosen. This effect was considerably 

larger in the BLRT, which performed very well in the presence of only loading DIF but selected 

the correct solution under 40% of the time when large intercept DIF was present. 

In conditional models, rates of correctly choosing the 2-class solution were generally 

quite low for all fit indices. Strong differences according to DIF type emerged with regard to the 

BIC, which chose the correct number of classes almost all of the time when exclusively loading 

DIF was present, with the exception of large DIF and unequally-sized classes. By contrast, the 

BIC overestimated the number of classes virtually all of the time when intercept DIF was 

present. The correct model was chosen virtually none of the time by the AIC and BLRT, which 

consistently overestimated the number of classes. The LMR performed only slightly better, but 

chose the 2-class solution less than half of the time in most cells; though still poor, performance 

was better in the presence of exclusively loading DIF in the generating model. 

Model parameters.Covariate effects on class membership. Table 7 shows standardized 

bias in covariate effects on class membership in the impact-only and uniform DIF fitted models. 

Standardized bias was under 40% when models were correctly specified, i.e., the nonuniform 
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DIF model for all cells, and the uniform DIF model in the presence of exclusively intercept DIF. 

Therefore, bias is only presented for misspecified models.   

The pattern of standardized bias shown in Table 7 demonstrates three primary findings. 

First, bias was greatest under the impact-only fitted model, whereas for most cells under the 

uniform DIF fitted model bias was fairly small. Second, low class separation (small  ) was 

associated with considerably more bias across all other conditions. Finally, there was virtually no 

bias in the effect of 3ix , which has no DIF, on class membership ( 13 ); however, the effects of 

all other covariates, including the null effect of 14x , showed varying degrees of bias across cells 

and fitted models. 

Interestingly, the pattern of bias differed between the impact-only and uniform DIF fitted 

models, with respect to differences between both cells and covariates. In the impact-only model, 

bias was greatest in the presence of intercept DIF (i.e., in the intercept DIF and intercept-and-

loading DIF models) and was virtually absent in the loading-DIF only model. In this case, 

covariate effects 11  and 14  were negatively biased, whereas the covariate effect 12  was 

positively biased. By contrast, in the uniform DIF fitted model, bias was greatest in the presence 

of loading DIF (i.e., in the loading DIF and intercept-and-loading DIF models). Here, covariate 

effects 11  and 14  were positively biased, whereas the covariate effect 12  was negatively 

biased. This is of particular interest given that 11  and 14  are positive in the population, thus 

increasing the likelihood of membership to Class 1, whereas 12  is negative in the population, 

thus decreasing the likelihood of membership to Class 1. 

Covariate effects on items. Table 8 shows standardized bias in covariate effects on items 

in the uniform DIF fitted model. Note that these effects are not estimated in the impact-only 

fitted model, and so are not tabulated. Additionally, as with covariate effects on classes, 

standardized bias was minimal under the nonuniform DIF model for all cells, and under the 

uniform DIF model in the presence of exclusively intercept DIF; therefore, standardized bias is 

not presented here.  Table 8 includes all of the covariate effects included in the data-generating 
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model: the regressions of 3iy  on 1ix  (
31

ˆ
k ), 3iy  on 4ix  (

34
ˆ

k ), 4iy  on 2ix  (
42

ˆ
k ), 4iy  on 4ix  (

44
ˆ

k ), 

8iy  on 1ix  (
81
ˆ

k ), and 8iy  on 2ix  (
31

ˆ
k ). 

As shown in Table 8, when the uniform DIF model was fitted to data with unmodeled 

loading DIF in the data-generating model, bias was (1) very severe across all cells; and (2) of 

opposite signs in Class 1 and Class 2. The distributions of estimates deviated around the true 

parameter value (i.e., absolute bias) are shown for one representative example, the effect of 

covariate 1ix  on 8iy , 
81
ˆ

k , in Figure 2, which provide a clearer picture of the opposing patterns of 

bias between classes observed in the uniform DIF model. Here, the uniform DIF fitted model is 

shown in green and the nonuniform DIF fitted model is shown in blue. Note that nonuniform 

DIF fitted model, shown in the blue boxplots, was associated with minimal bias. Thus, 

standardized bias in the nonuniform DIF model is not tabulated in Table 8, but the distribution of 

estimates is shown here for comparison to highlight bias in the uniform DIF fitted model. Note 

also that in the uniform DIF fitted model, the estimates of covariate effects are the same across 

classes; thus, the distributions of these effects shown in Figure 2 are the same between both the 

upper and lower panels. For items with positive loading DIF effects in the data-generating 

model, including all effects of 1ix  and 4ix , regression coefficients (i.e., 
31

ˆ
k , 

34
ˆ

k , 
44

ˆ
k , and 

81
ˆ

k ) 

are positively biased in Class 1 and negatively biased in Class 2. For items with negative loading 

DIF effects in the data-generating model, including all effects of 2ix , regression coefficients (i.e., 

42
ˆ

k  and  
82
ˆ

k  are negatively biased in Class 1 and positively biased in Class 2.  

Endorsement probabilities. Baseline endorsement probabilities. Tables 9 and 10 show 

standardized bias in baseline endorsement probabilities 
0 1

ˆ
j  and 

0 2
ˆ

j  for the three DIF items 

(items 3iy , 4iy , and 8iy ), as well as a non-DIF item, Item 5iy , for comparison, under the impact-

only and uniform DIF fitted models. Though 5iy  is chosen arbitrarily as a non-DIF comparison 

item, patterns of bias were similar across all non-DIF items. Because standardized bias was 

under 40% in almost all cells under the nonuniform DIF model, standardized bias is not tabulated 

for the nonuniform DIF model. Additionally, because the uniform DIF model is the correct 
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model in the presence of exclusively intercept DIF, Table 10 does not show standardized bias for 

the intercept DIF data-generating model. 

Two similarities emerged between results in the impact-only and uniform DIF models.  

First, under both fitted models bias was more severe for class-specific endorsement probabilities 

of item 3iy  ( 03
ˆ

k ), which had noncompensatory DIF, than for items 4iy  and 8iy  ( 04
ˆ

k  and 08
ˆ

k ), 

which had compensatory DIF. Second, in both fitted models bias was more pronounced for cells 

with large DIF than small DIF. However, patterns of bias were different across the impact-only 

and uniform DIF models. In the impact-only fitted model, bias was similar between the intercept 

DIF and intercept-and-loading DIF data-generating models: 
0 1

ˆ
j  tended to be positively biased, 

and 
0 2

ˆ
j  negatively biased. By contrast, when exclusively loading DIF was present in the data-

generating model, bias was generally less severe, and was uniformly negative across both 

classes. This set of findings stands in contrast to the uniform DIF fitted model, in which bias was 

almost exclusively negative across classes in either model with loading DIF, regardless of 

whether concomitant intercept DIF was also present. 

A clearer picture of the differences across fitted models is shown in Figure 3, where 

average values of 0 jk  for both classes are shown for the impact-only model (shown by the solid 

and dashed red lines), the uniform DIF model (green lines), and the non-uniform DIF model 

(blue lines).
6
 Because bias increased uniformly with large DIF, profile plots are shown only for 

the large DIF conditions. In the presence of intercept DIF, the impact-only fitted model gives the 

erroneous impression that class-specific endorsement probabilities are closer together than they 

truly are. Given low class separation, this bias extends even to items without DIF. By contrast, in 

the uniform DIF fitted model, bias is negative and confined to items with DIF.  

                                                      
6
 Note that in this and all subsequent figures for Question A, plots are shown for cases in which the data-generating 

and fitted models are the same – including the uniform fitted DIF model in the presence of exclusively intercept DIF 

in the data-generating model, and the nonuniform DIF fitted model in the presence of loading DIF –  even though 

standardized bias is not tabulated for these cases. 
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Marginal predictions of endorsement probabilities. Average estimated endorsement 

probabilities for all items within Classes 1 and 2,   1
ˆ| , 1;ij i iE y  x Θ  and  2

ˆ| , 1;ij i iE y  x Θ  

respectively, are shown in Figure 4. Recall that these profiles, which are weighted sums of each 

individual's predicted endorsement probabilities given both their class membership and DIF 

effects, represent average effects marginalizing over all levels of the covariates. Here, bias is 

considerably less severe than in the corresponding estimates of bias in 
0

ˆ
jk . Specifically, bias 

only ever occurred under the impact-only fitted model: even in the presence of loading DIF, the 

uniform DIF model yielded mostly unbiased class-averaged conditionally predicted trends. Even 

under the misspecified impact-only model, bias was only present given low class separation, and 

was less pronounced when classes were equally sized.  

 Because the marginal predicted endorsement probabilities  1
ˆ| , 1;ij i iE y  x Θ  and 

 2
ˆ| , 1;ij i iE y  x Θ   are aggregates of individual predicted endorsement probabilities, 

conditional on a given individual’s configuration of covariates, it is of interest to examine the 

accuracy of these individual values that comprise aggregate-level estimates. The relationship 

between individual endorsement probability estimates for item 3, 3
ˆ

i , and the true values 3i  are 

shown in Figure 5 for high-DIF cells. For each replication within each cell, one case was chosen 

at random, yielding R cases for a given cell; values of 3
ˆ

i  were plotted against true values 3i  

for the intercept DIF, loading DIF, and intercept-and-loading DIF data generating models. In the 

presence of loading DIF, the distribution of 3
ˆ

i  appears to be bimodal under the impact-only and 

uniform DIF fitted models, with values close to 03
ˆ

k indicating that estimates of ˆ
ij  may be 

shrunken toward class means. For most cells, estimates 3
ˆ

i  under the impact-only model are 

quite inaccurate, hovering around .5 even as true values 3i  approach 0 and 1. Notably, these 

individual values are inaccurate in all cells, even those in which class-specific average values 

were generally unbiased  1
ˆ| , 1;ij i iE y  x Θ  and  2

ˆ| , 1;ij i iE y  x Θ .  

Class membership.Class prevalence. Figure 6 shows prevalence estimates for Class 1 

under all data-generating and fitted models, deviated around their true values. Bias was greatest 

in the impact-only fitted model, shown in the red boxplots in all three panels. As with 
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misclassification rates, bias in prevalence estimates under the impact-only fitted model was most 

severe in the presence of intercept DIF in the data-generating model (i.e., in the intercept-DIF 

model and intercept-and-loading DIF models), particularly given low class separation and 

unequally-sized classes. Prevalence estimates under the uniform DIF and nonuniform DIF fitted 

models were largely unbiased. However, in the presence of loading DIF (i.e., in the loading-only 

and intercept-and-loading models), the uniform DIF fitted model slightly underestimated the 

prevalence of Class 1 given low class separation and unequally-sized classes. 

 Classification accuracy. Table 11 shows values of the Adjusted Rand Index (ARI) 

comparing modal classifications ik  and true values ik , which demonstrated three primary 

findings. First, individuals were only misclassified in the case of low class separation; for cells 

with high levels of class separation, values of ARI were close to 1 for most cells even under 

significant model misspecification. Second, among cells with low class separation, 

misclassification was greatest in the presence of large intercept DIF (i.e., large DIF in the 

intercept-DIF or intercept-and-loading DIF generating models), and was exacerbated by 

unequally-sized classes. Finally, in the presence of intercept DIF, classification accuracy mainly 

increased between the baseline and uniform DIF fitted models.  

 The difference in classification accuracy between baseline and uniform DIF fitted 

models was moderate in the presence of small DIF (mean  ARI  across cells = .144) and 

substantial in the presence of large DIF (mean  ARI  across cells = .469). In particular, when 

classes were unequally sized, the impact-only fitted model showed extremely poor classification 

accuracy in the presence of large intercept DIF and poorly separated classes; values of the ARI 

for these cells (ARI = .070 for intercept  DIF; ARI = .076 for intercept-and-loading DIF) suggest 

chance levels of correspondence between estimated and true class membership. Importantly, 

even in the presence of both intercept and loading DIF, the greatest improvements in 

classification accuracy occurred between the baseline and intercept-DIF only models. By 

contrast, when exclusively loading DIF was present in the generating model, agreement between 

estimated and true classifications was considerably better than in the presence of intercept DIF. 
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Here classification accuracy increased mainly between the uniform DIF and nonuniform DIF 

fitted models. This difference was modest in the presence of small DIF (mean  ARI  across 

cells = .036) and moderate in the presence of large DIF (mean  ARI  across cells = .131).  

Discussion 

 The goal of Question A was to determine whether and how omitted DIF effects bias 

class enumeration and parameter values in LCA. A general conclusion which may be drawn 

from this study is that simply fitting a model with covariates affecting class membership (i.e., an 

impact-only model) does not solve the problem of omitted DIF effects. Indeed, in the case of 

class enumeration, the correct number of classes was chosen much more frequently when 

misspecified covariate effects were excluded altogether. In the case of parameter bias, a more 

complicated picture emerges. Whereas omitting DIF in intercepts (i.e., direct effects of 

covariates which do not differ over classes) led to pervasive bias, omitting DIF in loadings (i.e., 

class-varying direct effects of covariates) did not.  

 A clear recommendation emerges from Question A's investigation of class enumeration: 

the number of classes should be decided using an unconditional model, as omitted DIF effects of 

any kind are likely to lead to the detection of spurious classes if a misspecified conditional (i.e., 

impact-only) model is fitted. The same conclusion was recently reached by Kim et al. (2016) in 

regression mixture models, as well as Nylund-Gibson and Masyn (2016) in latent class analysis. 

Unlike the current study, Nylund-Gibson and Masyn also investigated class enumeration given a 

fully-specified DIF model (i.e., they tested classes with varying values of K given direct effects 

of covariates on all relevant items), and found that the BIC, BLRT, and LMR all selected the 

correct number of classes a majority of the time. This comparison was not made here, which 

constitutes a significant limitation of the current work. The reason for this omission was that, in 

initial investigations, models with all relevant DIF effects and K > 2 were generally empirically 

underidentified, likely due to the pervasive nature of DIF in the population model. However, the 

results of Nylund-Gibson and Masyn suggest that if DIF is properly specified, class enumeration 

in a conditional model is at least as accurate as in the corresponding unconditional model. 
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 The investigation of parameter bias in Question A raises an interesting question: does 

loading DIF matter at all, or is the inclusion of class-invariant direct effects (i.e., uniform DIF) 

sufficient to produce acceptably unbiased results? Indeed, these results give the impression that 

unmodeled loading DIF, particularly in the absence of co-occurring intercept DIF, is not 

problematic. Even when the impact-only model was fitted, only minimal bias in item 

endorsement probabilities and class membership was observed and cases were generally not 

misclassified at elevated rates. This general impression is complicated by noticing that bias 

associated with unmodeled loading DIF was still present, and in some cases exacerbated, when 

the uniform DIF model was fitted. In particular, both baseline endorsement probabilities (Figure 

3) and covariate effects on items (Table 8; Figure 2) showed considerable bias under the uniform 

DIF model. However, marginal endorsement probabilities (Figure 4), which incorporate both 

baseline item endorsement parameters and covariate effects on items, were unbiased in almost all 

cases under the uniform DIF fitted model, suggesting that these two sources of bias effectively 

cancel one another out. Similarly, even though class membership effects were biased under the 

uniform DIF model (Table 7), overall prevalence rates were not (Figure 6) and classification 

accuracy was still high (Table 11). Thus results suggest that, in the event that a misspecified 

uniform DIF model is fitted in the presence of loading DIF, individual-level estimates and 

marginal trajectories may still be trusted even if parameter estimates cannot. 

 However, while omitting loading DIF may not yield biased estimates in all cases, 

omitting intercept DIF -- i.e., fitting the impact-only model in the presence of intercept DIF -- 

was considerably more problematic. In the presence of intercept DIF, there were virtually no 

cases -- across all levels of class separation, class size, or DIF magnitude -- in which the impact-

only baseline model provided an acceptable level of accuracy in either model parameters or 

individual-level quantities. In particular, DIF effects appear to be absorbed by covariate effects 

on class membership (Table 7), which are over- or under-estimated depending on the sign of the 

omitted DIF effect. Indeed, particularly in the case of 4ix , which has no effect on class 

membership in the population, a spurious negative effect on class membership was frequently 
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identified. This compounds the increasing body of evidence (Asparouhov and Muthén, 2014; 

Nylund-Gibson and Masyn, 2016) that, when omitted from the model entirely, DIF effects may 

present as covariate effects on class membership. As in the case of continuous latent variables 

(e.g., Chen et al., 2007), the implications for researchers seeking to link covariates to latent 

classes are severe: a DIF effect of one covariate on one or more items, which is essentially a 

nuisance, may manifest as a seemingly meaningful but ultimately spurious covariate effect on 

class membership. The consequences for researchers are equally significant with respect to item 

endorsement probabilities. The configuration of endorsement probabilities across classes (Tables 

9 and 10; Figures 2 and 3) is particularly biased in the presence of poorly-separated classes; here, 

endorsement probabilities are biased even for items without DIF. Because cases are more likely 

to be misclassified when class separation is low (Table 11), the effect of misclassified cases 

likely compounds with the effect of omitted DIF to produce incorrect estimates of item 

endorsements. Critically, in the impact-only fitted model, there are no individually-varying 

endorsement probabilities -- baseline endorsement probabilities, which are severely biased here, 

are all a researcher has to interpret. Therefore, a recommendation resulting from Question A is to 

include all suspected uniform DIF effects in LCA, as the cost of omitting DIF entirely may be 

considerable. 

 However, in order to include all relevant DIF effects, researchers must know that these 

DIF effects exist. In the absence of strong prior theory suggesting that a DIF effect is likely to be 

present for a given covariate on a given item, researchers require tools for identifying whether 

and where DIF is present. The question of how best to identify DIF effects is now addressed in 

Question B. 
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Question B 

The question of whether and how DIF may be detected was addressed by assessing the 

performance of two DIF-testing testing procedures on the same data as Question A. The first is 

the model-based procedure, an adaptation of the aMNLFA procedure for continuous latent 

variable models (Gottfredson, in preparation; described in Chapter 1), which involves repeatedly 

comparing an impact-only LCA to a model with loading and intercept DIF parameters for one 

item at a time. The second is the post-hoc procedure described in Chapter 1, which uses 

covariates and uncertainty-adjusted modal class assignments from an impact-only LCA as 

regressors in a series of logistic regressions, each with one item treated as the outcome. The 

sensitivity and specificity of each of these procedures was then assessed. 

Hypotheses  

The preponderance of evidence from simulation and empirical studies in the continuous 

latent variable case shows that testing procedures perform relatively well at detecting both 

intercept (e.g., Stark, Chernyshenko, and Drasgow, 2006) and loading (e.g., Chen, 2008; Woods 

and Grimm, 2011) DIF. However, the post-hoc approach has been found to have somewhat 

lower power than model-based approaches in the continuous latent variable case, particularly 

when testing for loading DIF (see, e.g., Woods, 2009). Therefore, lower power in post-hoc tests 

than model-based tests was hypothesized here. However, it was predicted that post-hoc tests 

would be more computationally efficient and also outperform the model-based test once DIF 

became sufficiently large (i.e., in the large magnitude condition) for two reasons. First, it was 

predicted that the power of post-hoc tests would catch up to that of model-based tests given 

sufficiently large effect size. Second, it was hypothesized that large DIF might lead to sparseness 

of certain items and response patterns, causing unstable parameter estimates in LCA. .  

Data-generating model 

Data-generating conditions used to investigate Question B are the same as in Question A. 

As such, data were generated from an LCA with 2K   classes ( 1, ,k K  ), 10J   indicators (

1, ,j J  ), 4P   covariates affecting class membership ( 1, ,p P  ) and 500N   cases (
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1, ,i N  ). Due to the computationally intensive nature of the DIF testing procedures tested in 

Question B, a total of 250R  , rather than 500R  , replications were tested here. 

Cells differed from one another according to four factors: class prevalence (2 levels: 

equal or unequal); class separation (2 levels: small or large); DIF magnitude (2 levels: small or 

large); and DIF type (3 levels: intercept, loading, or both intercept and loading). This yielded a 

total of 24 unique cells. Overall sample size, as well as the number and pattern of covariate 

effects on class membership and items, were all held constant. 

Model fitting 

All data generation and management was conducted using R. The post-hoc regression 

procedure of DIF testing was evaluated in R as well, using Rcpp to evaluate the weighted 

likelihood function in Equation 34 in Chapter 1. The use of Rcpp allows for the writing and 

compilation of C++ code in R, which allowed for considerably faster execution of the regression 

procedure. Model-based tests were performed using Mplus 7.2, using the same specifications as 

Question A. 

 A series of model-based and posthoc tests for DIF was conducted for each of the 250 

replications. The path diagrams corresponding to each of these sequentially-applied tests are 

shown in the bottom panel of Figure 1, and explained below.  

Iterative model-based DIF testing. The general set of models in the bottom panel of 

Figure 1 were fit according to an adaptation of the automated MNLFA (aMNLFA; Gottfredson, 

in preparation) procedure for multiple covariates, again for the correct number of classes K=2. 

This model-based framework is altered for the LCA setting as follows. For each of P covariates 

and J items, a model was fit containing impact from covariate p on class membership, as well as 

DIF from covariate p to item j, as follows:  

1. Allow impact of all P covariates on class membership – i.e., 1 0p   for all p . 

2. Allow the loading and intercept for item j to differ across levels of covariate p – i.e., 

1 0pj  , 1 0pj  . 
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3. Set item parameters equal across levels of covariate p for all other items – i.e., set 

1 0ph  , 0,ph h j   . 

Then a penultimate model containing all of the significant effects found in this step (i.e., 

significant DIF effects of all items on all covariates) was fit. Finally, a final model was fit, in 

which any newly non-significant DIF effects were removed.  Importantly, if any itemwise model 

yielded an improper solution, the corresponding item-by-covariate pair was excluded from the 

final model. Given P = 4 and J =10, the above algorithm requires  4 10 2 42    models be fit 

to each replication and was thus fairly computationally intensive. Estimates of the quantities of 

interest, described in subsequent sections, were obtained for the final model. 

Iterative post-hoc DIF testing. The post-hoc regression test for DIF described by 

Equations 32-34 in Chapter 1 were used to detect DIF on the basis of all covariates, using the 

modal class estimates from an impact-only model with K = 2. For each item, the pattern of 

significant main effects of ix (representing uniform DIF) and interactions between iη  and ix

(representing non-uniform DIF) was recorded. As in the model-based framework, a penultimate 

model containing all of the significant effects found in this step (i.e., significant DIF effects of all 

items on all covariates) was fit, followed by a final model with all newly nonsignificant effects 

trimmed. Given P = 4 and J =10, the above algorithm required  4 10 40   logistic regressions, 

but only two additional LCAs (one for the penultimate model, one for the final model), be fit to 

the data; thus, given that logistic regression is less computationally intensive than LCA, fitting 

the post-hoc procedure was predicted to be considerably faster than model-based procedure 

described above. Importantly, as in the model-based procedure above, any item-by-covariate 

combination whose logistic regression yielded an improper result was excluded from the final 

model.  

Estimates of the quantities of interest, described below, were obtained for the final model. 

Outcomes of interest 
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 Computation time. The average per-replication computation time in seconds for each of 

the model-based and posthoc procedures was computed by dividing the total elapsed time by the 

number of replications (R = 250).  

 Improper solutions. In both the posthoc and model-based testing procedures, an improper 

solution for any item-by-covariate test (of which there are 40P J   in this case) results in that 

item-by-covariate test not being included in the final model. In theory, improper solutions 

encompass a wide range of problems with a model (e.g., parameters being fixed at boundary 

values, saddle points, empirical underidentification). However, in both posthoc and model-based 

tests, the only type of improper solutions which ever occurred were non-positive definite Hessian 

matrices, likely associated with complete or quasi-complete separation. For both procedures, the 

number of times such cases occurred was tabulated. 

Sensitivity and specificity. Sensitivity is given by the number of non-zero DIF effects 

accurately detected in a given replication, divided by true the number of non-zero DIF effects – 

i.e., it is the probability of correctly identifying a DIF effect. Specificity is given by the number 

of null DIF effects correctly detected in a given replication, divided by the true number of null 

DIF effects – i.e., it is the probability of correctly failing to find DIF. Sensitivity and specificity 

are generally given by: 

 
 

 

 
  

    

 
  

    

true positive
Sensitivity

true positive false negative

true negative
Specificity

true negative false positive







  (50)  

True positives, false positives, true negatives, and false negatives were assessed in the 

final model. A positive result here is a DIF effect being flagged as significant in the final model; 

a negative result is a DIF effect not being flagged as significant in the final model. As described 

in Table 3, six DIF parameters are different from zero in cells with intercept DIF

31 34 42 44 81 82( , , , , , )      ; six DIF parameters are different from zero in cells with loading DIF 

311 341 421 441 811 821( , , , , , )      ; and twelve DIF parameters are different from zero in cells with 

intercept and loading DIF 31 311 34 341 42 421 44 441 81 811 82 821( , , , , , , , , , , , )            .  
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Thus, a true positive (TP) is defined as one of these parameters being identified as 

significantly different from zero. A false negative (FN) is defined as one of these parameters 

failing to be identified as significantly different from zero. Therefore, sensitivity is defined in 

cells with exclusively intercept DIF and cells with exclusively loading DIF as: 

 
6

TP
Sensitivity    (51)  

and sensitivity is defined in cells with both intercept and loading DIF as: 

 
12

TP
Sensitivity    (52)  

A true negative (TN) is defined as a null effect not being identified. Because there are 4 

covariates, 10 items, and 2 types of DIF (loading and intercept), a total of 4 2 10 80    tests are 

conducted. Therefore, in models with exclusively intercept DIF or exclusively loading DIF, there 

are 80-6 = 74 null effects; in models with both loading and intercept DIF, there are 80-12=68 

null effects. Thus, specificity is defined in cells with exclusively intercept DIF and cells with 

exclusively loading DIF as: 

 
74

TN
Specificity    (53) 

and specificity  is defined in cells with both intercept and loading DIF as: 

 
68

TN
Specificity    (54) 

Results 

Computation time. The posthoc testing procedure was almost eight times faster than the 

model-based procedure. Note that the posthoc procedure consists of two stages: first, a set of 

weighted logistic regressions and, second, and a final model consisting of all effects which were 

significant in the logistic regressions. For a given replication, the set of logistic regressions took 

an average of 1.1 seconds to run, and the writing and running of the final model took an average 

of 19.1 seconds to run. Therefore, for a given replication, the posthoc test was completed in an 

average of 20.2 seconds. By contrast, the model-based procedure was completed in an average of 

144.1 seconds (or 2.4 minutes) for a given replication. 
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Improper solutions. While the total proportion of improper solutions in itemwise tests 

was extremely low (under 2%) for both tests, the two procedures differed greatly in terms of the 

overall number of replications with at least one improper solution (out of 40). Table 12 shows 

the percentage of replications with at least one improper solution in itemwise tests for posthoc 

and model-based procedures. Improper solutions were a considerably more serious issue with the 

posthoc testing procedure than the model-based testing procedure. While the model-based 

procedure had a maximum of 6% of tests with improper solutions (in the case of large intercept 

DIF with poorly separated, unequally sized classes), the percentage of improper solutions ranged 

from 9% to 31% in the posthoc procedure when classes were poorly separated and unequally 

sized. 

Sensitivity and specificity. Table 12 shows sensitivity and specificity for model-based 

and posthoc procedures under all data-generating conditions. Several general findings emerged. 

First, both the model-based and posthoc procedures showed high levels of specificity, only rarely 

identifying false positives. Second, model-based tests were generally more sensitive than posthoc 

tests. Particularly at low levels of class separation, the posthoc procedure frequently failed to 

identify DIF effects of all types. By contrast, the only time the model-based procedure failed to 

identify DIF effects was in the case of small loading DIF. 

 Model-based testing procedures showed high sensitivity in almost all cases. In the case of 

large DIF, sensitivity was uniformly high for detecting both intercept and loading DIF. However, 

given small DIF effects, detection of loading DIF was generally fairly poor; in models with 

exclusively small loading DIF effects, sensitivity dropped to between .48 and .71. In models with 

both intercept and loading DIF, sensitivity to small DIF was slightly better, ranging from .76 to 

.88. Because these latter figures include both intercept and loading DIF effects, true positives 

were disaggregated by DIF type, showing that intercept effects were generally detected far more 

frequently than loading effects in these models. Given equally-sized classes, an average of 5.912 

out of the 6 possible intercept effects were detected, contrasted with 4.232 of 6 possible loading 

effects, for low class separation; when class separation was high, these rates increased to 5.973/6 
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intercept DIF effects vs. 4.620/6 intercept DIF effects. This discrepancy between intercept and 

loading DIF detection rates for small DIF increased for unequally-sized classes, with 5.852/6 

intercept effects vs. 3.356/6 loading effects detected given low class separation, and 5.960/6 

intercepts vs. 3.664/6 loading effects detected given high class separation. 

 Posthoc testing procedures were less sensitive to DIF effects than the model-based 

procedure. Given high levels of class separation, this difference in sensitivity was negligible in 

most cases. However, when classes were poorly separated, the sensitivity of posthoc tests 

suffered considerably more. This difference was particularly pronounced in the case of intercept 

DIF; in the case of exclusively loading DIF, the model-based and posthoc procedures performed 

similarly. Interestingly, the cases in which the sensitivity of the posthoc procedure was most 

compromised relative to the model-based procedure, particularly those with large intercept DIF 

and low class separation, were those with high levels of misclassification in Question A. 

Discussion 

 Question B investigated two strategies for detecting DIF effects in LCA: a posthoc test 

using modal classifications from an impact-only model, and a model-based strategy. By almost 

every metric, model-based testing performed better than the posthoc strategy, which lacked 

power to detect both intercept and loading DIF.  

 The causes and ramifications of the two procedures' differentially good performance are 

interesting to consider in light of the results of Question A. The posthoc test was generally less 

sensitive than the model-based strategy (Table 12), which mirrors results in the continuous latent 

variable setting (Woods, 2009). Interestingly, however, the cases in which the posthoc test's 

sensitivity was the lowest were those in which misclassification was high in Question A: those 

with low levels of class separation and large DIF. This may be due to one of at least two things. 

First, inaccuracy in the class membership variable, which is controlled for in each itemwise 

logistic regression equation, may have led to downwardly biased coefficients corresponding to 

DIF effects. In order to investigate this possibility, relative bias in intercept and loading 

parameters under the posthoc testing procedure was computed for all cases where this effect was 



59 
 

nonzero in the population. Across all item-covariate pairs in all models, intercept effects were 

negatively biased by 16.7%. However, loading bias was considerably more extreme; across all 

item-covariate pairs in all models, loading effects were negatively biased by -158.9%.  

Second, because misclassification probabilities are used to weight the likelihood function 

in Equation 34, high levels of misclassification may have led to inflated standard errors. Even 

though Vermunt (2010) showed standard errors calculated using the weighted likelihood 

estimation in Equations 32-34 to be unbiased, this finding was in the context of class 

membership being an outcome, as opposed to a predictor as it is here. In adaptations of this 

procedure, Bakk, Tekle, and Vermunt (2013) and Bakk, Oberski, and Vermunt (2014) have 

proposed a number of adaptations to these standard errors.  Interestingly, in the posthoc 

regression procedure, standard errors were severely positively biased for intercept parameters. 

Across all item-covariate pairs in all models, estimated standard errors of regression parameters 

were on average 2.02 times as large as the standard deviation of parameter estimates across 

replications. For loading effects, the picture was considerably more varied with severe downward 

bias in some cells and upward bias in others. More research is needed in order to determine how 

biases in parameters and standard errors combine to produce low power in the posthoc testing 

procedure. 

 However, while this question is interesting in its own right, the model-based test 

performed sufficiently well that researchers are well-advised to use it to detect DIF in LCA 

rather than attempting the posthoc test. Another viable option was recently presented by Masyn 

(2017), who proposed a posthoc test based on MIMIC modeling strategies. As with the posthoc 

procedure presented here, this procedure starts with modal classifications from a model without 

DIF, and weights subsequent tests using misclassification probabilities. However, rather than 

testing DIF in one item at a time, this procedure tests DIF on the basis of a given covariate in all 

items at once. This strategy has the strong advantage of not assuming non-invariant anchor items 

(often an untenable assumption) while performing individual DIF tests, as both the model-based 

and posthoc tests proposed here necessarily do. Future work may focus on comparing this 
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approach with the model-based testing strategy. Additionally, the superior performance of the 

model-based procedure to the posthoc procedure was only established here in the case of two 

classes; future work must determine whether this is still the case with more than two classes. In 

the meantime, however, particularly given the potentially biasing effects shown in Question A, 

researchers are well-advised to employ either strategy to test for DIF in LCA and include any 

relevant effects in their final model. 

  



61 
 

 

 

 

CHAPTER 3 

DIFFERENTIAL ITEM FUNCTIONING IN THE MEASUREMENT OF ALCOHOL 

USE DISORDER 

Chapter 2 used artificial data to determine that omitting DIF in mixture models leads to 

bias in results (Question A), and that DIF may be easily tested for and modeled (Question B). In 

this chapter, we explore the question of DIF in mixture models of alcohol use disorder (AUD) 

symptoms. The dual goals of this analysis are to demonstrate the use of mixture models with DIF 

in a real dataset, and to use mixture models to enhance the assessment and diagnosis of AUD.  

The two most commonly used sets of diagnostic criteria for AUD come from the 

International Statistical Classification of Diseases (ICD-10; WHO, 1992) and the Diagnostic and 

Statistical Manual-5 (APA, 2013). The publication of DSM-5 saw a departure from the previous 

edition (DSM-IV; APA, 1994) in terms of the proposed underlying structure of AUD. Though 

the set of items used to measure AUD is almost identical across editions, the DSM-IV considers 

AUDs as two separate disorders, alcohol abuse and alcohol dependence, whereas DSM-5 

considers AUD as one single disorder. Additionally DSM-5 removes legal problems, which had 

been a criterion for alcohol abuse in DSM-IV, and adds in a criterion assessing craving. 

However, aside from these two changes, the two sets of criteria are the same between editions.  

These criteria may be considered as binary items which intend to measure some 

categorical latent variable representing AUD diagnosis. One could conduct a two-class LCA, for 

instance, which seeks to find AUD diagnosis (i.e., class 1 = healthy; class 2 = AUD); such 

diagnostic studies are common in the absence of a “gold standard” diagnostic instrument 

(Rindskopf, 1986); in this case, it would be expected that the prevalence of the AUD class would 

correspond to the prevalence of AUD in the population.  

Alternatively, many researchers have used mixture models not to form a binary diagnosis 

variable, but to attempt to find some other empirically-determined number of clinically 
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meaningful subgroups based on DSM-IV and DSM-5 criteria. A sample of such studies is shown 

in Tables 1 and 2. Though these sets of criteria used to measure AUD are almost completely 

overlapping across these studies, the results are clearly inconsistent with one another. As shown 

in Tables 1, these studies focus on widely varying populations: gender balance differs widely 

across studies, with the proportion of male participants ranging from 0% (LaFlair et al., 2012; 

LaFlair et al, 2013) to over 60% (Chung and Martin, 2001); age groups range from adolescence 

(Mancha, Hulbert, and Latimer, 2011; Wells, Horwood, and Ferguson, 2004) to adulthood up to 

age 60 (Jackson et al., 2014); and racial breakdown ranges from over 80% European American 

(Beseler et al., 2012; Chung and Martin, 2001) to over 95% Hispanic (Mancha, Hulbert, and 

Latimer, 2011). Table 2 summarizes the mixture model results from all of these studies, which 

find anywhere between 2 and 5 classes differing from one another in a number of ways. First, 

while a majority generally find differences between classes in terms of level, with classes 

generally increasing monotonically in severity of symptoms, the proportion of individuals at 

each level of severity differs widely across studies. Additionally, a few studies find classes which 

fall outside of this continuum, with one report of a small, exclusively male class with only abuse 

symptoms (Lynskey et al., 2005), another report of a moderately-sized class with subthreshold 

dependence symptoms only (Jackson et al., 2014), and another report of a class of individuals 

who exclusively endorse tolerance and drinking more than intended (Beseler et al., 2012).  

 There are two general possibilities which may explain the incongruity among these 

results. The first is that differences between groups in these studies actually represent population-

level differences between these groups in the latent structure of AUD. For instance, Jackson et al. 

(2014), who examine AUD symptoms in a nationally representative sample covering a wide 

range of ages (18-60), find four classes and place anywhere between 27% and 36%
7
 of the 

sample in classes characterized by either full AUD or some degree of dependence. This is a 

                                                      
7
 This figure is based on summing the membership proportions of the AUD disordered class and the minimally 

dependent class at either time point. 
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vastly different finding from that obtained by Mancha, Hulbert, and Latimer (2011), who find 

three classes in their sample of young, predominantly Hispanic adolescents, with the majority of 

the sample (86%) characterized by a very low level of symptoms. However, it seems implausible 

to expect that two populations differing this widely in age and ethnicity would show the same 

prevalence of AUD – as such, it may be the case that the latent structure of AUD is not measured 

differently across these studies, but that the two populations are differently located within that 

latent structure. 

 Another possibility, however, is that the indices used to assess AUD show some degree 

of measurement non-invariance across these studies. It may be the case that the differences in 

age, gender, race, ethnicity, and type of sample (e.g., college students versus individuals in 

treatment for AUD) are associated with differences in the measurement properties of AUD 

indices at either the item or test level. Indirect evidence to support this proposition comes from 

two general sources. First, individual configurations of items within class are different across 

studies. In particular, –  some studies find classes which fall outside of a continuum of severity, 

whereas others do not.  These inconsistent findings suggest the possibility that the items most 

responsible for across-study differences are functioning differently (have DIF) based on 

background characteristics that vary between studies. For instance, the finding of Beseler et al. 

(2012) of a class of “diagnostic orphans,” who show elevated probabilities of endorsing tolerance 

and drinking more than intended, may be suggestive of some degree of DIF in these items based 

on the characteristics of the study. In particular, given that this study focuses on heavy-drinking 

undergraduates, it may be the case that the normative culture of drinking in college gives rise to 

an increased probability of developing alcohol tolerance, as well as a greater density of occasions 

to drink more than intended, even among individuals who do not suffer from AUD. 

 Second, in studies treating AUD as a continuous latent variable, a number of DSM-IV 

and DSM-5 criteria have shown DIF on the basis of demographic characteristics, with intercept 

DIF being the most common finding. For instance, in a nationally representative sample, 

tolerance was found to show age-related intercept DIF such that older participants were more 
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likely to endorse this criterion than younger participants (Kahler and Strong, 2006). DIF on the 

basis of gender is another potential problem; in a community sample of adolescents, Martin, 

Chung, Kirisci, and Langenbucher (2006) found four criteria to show intercept DIF based on 

gender, including that female adolescents were less likely to endorse legal problems and 

hazardous use than male adolescents, even at the same level of AUD. Findings on racial and 

ethnic differences have been somewhat less conclusive; drinking was shown to have a somewhat 

complicated pattern of intercept DIF with respect to race in one study of DSM-5 (Casey, 

Adamson, Shevlin, and McKinney, 2012) such that Black participants were more likely and 

Hispanic participants were less likely to endorse several criteria than White participants. Given 

these and other (e.g., Neal, Corbin, and Fromme, 2006; Harford et al. 2009) findings of DIF 

among groups when treating AUD as a continuous latent variable, it stands to reason that at least 

some of these problems will persist – and indeed, may even be exacerbated – when AUD is 

treated as categorical.  

 The goal of this chapter is thus to apply LCA with DIF to AUD symptoms, in order to 

determine whether and how the measurement of AUD differs across demographic covariates 

when AUD is treated as a categorical latent variable. The presence of DIF effects may provide 

evidence that the discrepancies in findings across different studies owe to measurement bias, 

rather than differences across participants in underlying levels of AUD symptoms. 

Method 

Study and sample 

 Study design.  Data come from the Real Experiences and Lives in the University (REAL-

U) study, a study of the measurement of AUD, SUD, and related constructs in an undergraduate 

sample. One of the principal goals of the REAL-U study is to test the biasing effects of subtle 

differences across studies in measurement, and to assess how well data harmonization methods 

such as integrative data analysis (IDA; Bauer and Hussong 2009; Curran and Hussong, 2009; 

Hussong, Curran, and Bauer, 2013) can detect and mitigate this bias. 
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The study consisted of two visits, separated by a period of two weeks. At each of these 

visits, participants answered one of two batteries, denoted Battery A and Battery B. As the goal 

of the REAL-U study is to investigate the extent to which differences in measurement may bias 

results in AUD studies, the two batteries contained slightly different items intending to measure 

the same constructs. Participants were randomized to Battery A at visit 1 and Battery B at visit 2 

(A/B), Battery B at visit 1 and Battery A at visit 2 (B/A), Battery A at both time points (A/A), or 

Battery B at both time points (B/B). 

Sample. Participants (N = 854; 46.7% male) were undergraduates at a large southeastern 

research university, recruited by email. Student contact information was obtained from the 

university Registrar’s office, and African American students (the largest ethnic minority group 

on this campus) and men (given that 57% of the undergraduate population on this campus were 

women) were oversampled. A total of 6,000 students received an initial email inviting their 

participation (and for many, several follow-up emails), yielding a total of 854 study participants. 

In order to be included in the study, subjects must have been between 18-23 years of age and 

consumed alcohol in the past year. Though participants were not all of legal drinking age, having 

consumed alcohol in the past year was an inclusion criterion.  

The sample was relatively ethnically diverse, with 58.7%, 22.1%, 10.5%, 0.5% of 

participants respectively identifying as White, Black, Asian, and American Indian/Native 

American; 6.1% and 2.9% of participants identified as more than one race or some other race. Of 

these participants, 3.0% identified as Hispanic or Latino. The mean age of alcohol initiation was 

17.26 years (SD =1.814). In addition, 28.6% of the participants were first year students, 20.5% 

were sophomores, 20% were juniors, 28.9% were seniors, and 2% were non-students, did not 

specify or were graduate students.  

In order to assess and enhance the generalizability of results, analyses were conducted on 

two equally sized partially overlapping subsamples, denoted sample 1 (N = 419) and sample 2 (N 

= 411). These samples were formed by taking data from visits 1 and 2 in groups A/A, A/B, and 

B/A described above. The measure of AUD used in the current analysis, described below, was 
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only administered in Battery A, so subjects in group B/B were not included. Sample 1 consists of 

individuals from group A/A at visit 1, and group B/A at visit 2; sample 2 consists of individuals 

from group A/B at visit 1, and group A/A at visit 2.  The two samples thus each included Battery 

A measures of AUD, with roughly equal balance between visit 1 and 2.  The two samples are not 

independent replications, since half of the individuals in Sample 1 were also in Sample 2, but this 

overlap provides the advantage of allowing an assessment of the stability of classification for 

individuals in both samples. 

Measures. In both batteries, lifetime AUD was measured using the 12 DSM criteria listed 

in Table 13. This list of criteria includes all items used in either DSM-IV or DSM-5, and thus 

both legal trouble (Item 3; discarded in DSM-5) and craving (Item 12; new to DSM-5) were 

initially included. However, Items 3 (legal trouble) and 8 (gave up activities for drinking) 

showed sufficiently low endorsement probabilities in both samples that they were not retained, 

given the sensitivity of LCA to extremely low-endorsement items at small sample sizes. Thus, 

the final dataset consisted of only ten items. 

AUD criteria was assessed using a computerized adaptation of the Structured Clinical 

Interview for Diagnosis (SCID; APA, 2015), in which each criterion is endorsed on the basis of a 

subject’s answers to a number of other sub-questions. For instance, Item 1 is endorsed if a 

subject answers in the affirmative to any two of the following three questions: “Did you ever 

miss work or school because you were intoxicated, high, or hung over?”, “Did you ever do a bad 

job at work or fail courses at school because of your drinking?”, and “Did you ever have trouble 

with your housing situation because of your drinking (e.g., forgetting to pay rent or bills or not 

keeping your place clean)?”  

Data analytic strategy 

Model testing procedure. For both samples 1 and 2, a number of separate LCAs, 

described in greater detail below, were fit. First, drawing on the results obtained in Chapter 2 

(Question A), an unconditional model without any effects of covariates on either class 

membership was fit with varying numbers of classes, in order to determine the optimal number 
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of classes for subsequent analyses and establish a comparison point for models including DIF. 

Then, an impact-only model, containing only the effects of covariates on class membership, was 

fit using the number of classes chosen at the previous step. A series of itemwise tests, in which 

loading and intercept DIF was tested for each item, was then conducted, according to the model-

based testing procedure which showed superior performance in Chapter 2 (Question B). Finally, 

based on the results of these itemwise tests, final models including all relevant DIF effects were 

fitted to the data. 

The covariates included were age (centered around age 21), gender (dummy coded; 1 = 

male and 0 = female), race (dummy coded; 1 = white; 0 = all other races), and study visit 

(dummy coded; 1 = visit 2; 0 = visit 1). Age was of interest for a number of reasons, including 

widely-reported normative increases in drinking in emerging adulthood (Brown et al., 2008; 

Chan et al., 2007). Gender and race were critical to consider because of the common finding of 

gender- and race-based DIF on a number of diagnostic criteria for AUD (Martin, Chung, Kirisci, 

and Langenbucher 2006; Harford et al. 2009; Casey, Adamson, Shevlin, and McKinney, 2012). 

Finally, visit (i.e., visit 1 vs. visit 2) was considered as a source of DIF in order to account for 

any possible retest effects. 

The fitted LCA. Latent class analyses with some unknown number of classes K were fit 

to the data. Class membership is represented by the K-variate vector iη  with individual elements 

ik  which take a value of 1 if subject i is in class k and 0 otherwise. Each individual i’s 

probability of membership to class k   1, ,k K  and endorsement of item j  1, ,10j   

potentially affected by a subject-specific vector of four covariates 

 , , ,i i i i igender age white visitx . The prior probability of class membership  is related 

to covariates through a multinomial logistic regression equation as follows:   

 

  
 

 

0 1 2 3 4

0 1 2 3 4

1

exp

exp

k k i k i k i k i

k i K

h h i h i h i h i

h

gender age white visit

gender age white visit

    


    


   


   
x    (55) 

 ik i x



68 
 

where  
1

1
K

k i

k




 x  for each individual i and class K is a reference class, for which parameters 

are not estimated. Allowing for the possibility of DIF, the probability that subject i endorses item 

j given class membership and covariates is denoted  
ij , and is given by: 
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Two things are of note about Equation 56. First, the value of DIF effects 
pj  and 

pj  may 

be zero for any covariate p and item j, if there is no DIF for that covariate-item combination. 

Second, latent classes are treated as effects-coded variables here, as initially outlined in Equation 

24 . Thus, 
pj  represents the unweighted mean of the effects of covariate p on item j across all 

classes, and 
pj  represents the deviation for class k from this unweighted mean. Note that this 

effect is not estimable in reference class K, and thus 
1K

pjK pjk

k

 


  for all p. Given class 

membership and covariate effects, items are assumed locally independent. As in Chapter 2, class-

specific predicted endorsement probabilities can be calculated using Equations 25-26. Individual 

i’s probabilities of endorsing item j conditional on class membership and covariates, denoted 
1ij  

and 
2ij  for classes 1 and 2 respectively, are given by: 
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  (57) 

Each individual is characterized by a posterior probability of membership to each class, 

conditional on both covariates ix  and items iy , denoted ik : 
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where 
1

1
K

ik

k




  for each individual i. 

Finally, given posterior probabilities ik  and class-specific trajectories 
ijk , the average 

endorsement probabilities for each class are given by: 
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Results 

The unconditional model 

For both samples 1 and 2, an impact-only model without any covariate effects on either 

class membership or items was first fit. This model is described by Equations 55 and 56, but with 

all class membership parameters aside from 0k , and all item parameters aside from 
0 j  and 

0 jk  

set to 0.  

Models with between K = 1 and K = 5 classes were fit to the data; however, the 5-class 

solution was empirically underidentified in both samples. Table 14 shows fit indices for different 

numbers of classes in both samples. The Akaike Information Criterion (AIC; Akaike, 1973) and 

bootstrap likelihood ratio test (BLRT; McLachlan and Peel, 2000) favored a 4-class model, 

which consisted in both samples of one class with fewer than 10 cases. In both samples, a 2-class 

model was favored by both the Bayesian Information Criterion (BIC; Schwarz, 1978) and the 

Vuong-Lo-Mendell-Rubin likelihood ratio test (VLMR; Vuong, 1989; Lo, Mendell, and Rubin, 

2001). Given that the BIC reliably chose the correct number of classes in Chapter 2, its support 

of a 2-class solution here was given extra weight when adjudicating between fit indices. Thus, K 

=2 was retained for subsequent analyses.  

Model-building 

Following the fitting of the unconditional model, which favored a 2-class solution, an 

impact-only model with K = 2 was fit in both samples. This model, which contains effects of 

covariates only on class membership, is described by Equations 55 and 56, but with all item 
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parameters aside from 
0 j  and 

0 jk  set to 0. In sample 2, the intercept parameter 04  had to be 

fixed at -15, denoting a boundary condition in which the probability of endorsing Item 4 is 

effectively zero. 

Item endorsement patterns in the two-class solution are shown in Figure 7 for the impact-

only model. In both samples, the majority of the sample (73.5% in sample 1; 71.3% in sample 2) 

fell into a class (the “low-symptoms” class) characterized by low levels of AUD symptom 

endorsement. The only symptoms which were endorsed more than 5% of the time in this class 

were Item 5 (uncontrolled drinking), which was endorsed by roughly 40% of individuals in this 

class, and Item 10 (tolerance), which was endorsed by 20% of individuals in this class. In both 

samples, the remainder of the sample (26.5% in sample 1; 28.7% in sample 2) fell into a class 

(the “high-symptoms” class) characterized by higher levels of AUD symptom endorsement. In 

particular, a majority of individuals in the high-symptoms class endorsed Items 5 (uncontrolled 

drinking) and 10 (tolerance),which were endorsed by roughly 95% and 70% of individuals in this 

class respectively. Additionally, roughly half the members of this class endorsed Items 1 (role 

impairment), 2 (drinking in dangerous situations), and 9 (continued drinking despite health or 

psychological problems) in both samples, and between one quarter and one third of members in 

this class endorsed Items 6 (unsuccessful quit attempts) and 7 (spent a lot of time drinking). 

Given cutoffs of 2, 5, and 8 item endorsements required for mild, moderate, and severe AUD 

diagnoses respectively, the modal member of this class met criteria for a least mild AUD. 

In both samples all covariate effects on class membership were significantly different 

from zero in this impact-only model, with the exception of the effect of gender in sample 1. In 

sample 2, male participants were more likely to be in the high-symptoms class than female 

participants (OR = 1.909, z = 2.431, p = .015). In both samples, white participants were more 

likely to be in the high-symptoms class (Sample 1: OR = 1.889, z = 3.037, p = .002; Sample 2: 

OR = 2.037, z = 2.147, p = .032), as were older participants (Sample 1: OR = 1.398, z = 3.446, p 

= .001; Sample 2: OR = 1.362, z = 3.053, p = .002). Finally, in both samples, participants were 
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less likely to be classified into the high-symptoms class at Visit 2 than Visit 1 (Sample 1: OR = 

0.406, z = -3.037, p = .002; Sample 2: OR = 0.325, z = 3.953, p < .001).   

Model-building strategy using itemwise tests 

In both samples, the model-based testing algorithm described in Chapter 2 was conducted 

in order to determine which items, if any, had DIF on the basis of gender, age, race, or visit. Due 

to the superiority of model-based procedures to posthoc tests in Chapter 2 in terms of sensitivity 

and specificity, posthoc tests were not considered here. 

Table 15 shows all significant results for itemwise tests in Samples 1 and 2. For a given 

item-covariate pair, ● denotes that DIF was found. Recall that, during itemwise DIF tests, both 

intercept DIF effects 
jp  and loading DIF effects 

pjk  were tested for each covariate-item pair, 

and a pair was flagged if either 
jp  or 

pjk  were significantly different from zero. Notably, the 

results of itemwise tests were inconsistent across the two samples, sharing only the finding of 

age DIF on Item 10 (tolerance) and visit DIF on Items 5 (uncontrolled drinking) and 9 (continued 

use despite health or psychological problems) in common. Following itemwise tests, a 

penultimate model was fit containing all effects that were significantly different from zero in 

itemwise models. Finally, in the last step of the MNLFA procedure, all effects that were rendered 

nonsignificant in this penultimate model were pruned, resulting in the final model presented 

below. 

The final model 

Parameter estimates for the final model in each sample are shown in Table 16. In general, 

class prevalence and average endorsement probabilities were very similar to those obtained 

under the impact-only model. This is evident from Figure 7, which shows average class-specific 

endorsement probabilities for the impact-only model and the final model; the latter are given by 

Equation 57.  In both samples, the majority of individuals (71.9% in sample 1; 71.7% in sample 

2) fell into a large class (the “low-symptoms” class) characterized by generally low endorsement 

probabilities for all items, aside from Items 5 (uncontrolled drinking) and 10 (tolerance). The 

remainder of individuals (28.1% in sample 1; 28.3% in sample 2) fell into a class (the “high-
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symptoms” class) characterized by considerably higher endorsement probabilities for most items, 

particularly Items 1 (role impairment), 2 (used in dangerous situations), 5 (uncontrolled 

drinking), 9 (continued use despite health problems), and 10 (tolerance). Covariate effects on 

class membership were very similar between the two samples in magnitude, direction, and 

statistical significance. In sample 1, all effects on class membership were significantly different 

from zero, whereas in sample 2 all class membership effects aside from age were significantly 

different from zero.  

Figures 8-10 show patterns of model-implied endorsement probabilities within each class 

for participants of different genders (Figure 8), ages (Figure 9), and study visits (Figure 10). No 

DIF effects were found on the basis of race in either sample. The strongest DIF effect in both 

samples was the uniform DIF effect of visit on item 9, which assesses continued us despite 

health or psychological problems; in both samples 1 and 2, subjects were less likely to endorse 

this item at visit 2 than at visit 1, regardless of class membership. There was an additional 

uniform DIF effect of visit on item 5, which assesses uncontrolled drinking; here too subjects 

were less likely to endorse this item at visit 2 than at visit 1 in both samples. Most other DIF 

effects were inconsistent across samples. In both samples at least one uniform DIF effect of 

gender emerged, but these effects were on different items and in different directions. In sample 1 

the effects of gender on items 1 (role impairment) and 7 (spending a great deal of time drinking) 

were positive, so that being male increased the probability of endorsement. By contrast, in 

sample 2 the only effect of gender was on item 5 (uncontrolled drinking), and this effect was 

negative, so that being female increased the probability of endorsement. Age effects were 

similarly inconsistent. In sample 1, age showed uniform DIF effects on items 1, 10, and 12, and a 

nonuniform DIF effect on item 4; In sample 2, age showed a uniform effects on item 2, and a 

nonuniform effect on item 10. Interestingly, however, despite the fact that the effect of age on 

item 10 (tolerance) was uniform in sample 1 but nonuniform in sample 2, Figure 9 shows that the 

effects of age on model-implied endorsement probability are similar across the two samples. In 

particular, among members of the high-symptom class in both samples, older participants were 
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more likely to endorse experiencing tolerance than younger participants. This finding 

underscores the fact that different sets of DIF parameters may produce similar model-implied 

values, particularly given a nonlinear relationship between the latent variable and the observed 

variable.  

            The majority of DIF effects did not agree between the two samples and thus should not 

be interpreted as substantively meaningful findings. The primary interest in modeling DIF is 

often not to make inferences about the nature of items and their relationship to background 

variables, but to account for the bias that these background variables may cause in the estimation 

of the latent variable. However, given their instability here, it is possible and indeed probable 

that a number of these effects would not generalize to other samples, and should not be regarded 

as systematic bias but rather as indications of error-prone measurement. The most consistent 

effects between the two samples were the differences between visits 1 and 2, which suggest 

effects of prior exposure to items 5 and 9 on their ability to detect AUD.  

Comparing the impact-only and final models 

 The average endorsement probabilities for both classes in both samples are shown in 

Figure 7, along with the class-implied endorsement probabilities under the impact-only model. 

As shown in the figure, these sets of probabilities are virtually identical, suggesting that the 

addition of DIF effects does little to change the implied item endorsement probabilities at the 

aggregate level, except for in item 9.  

 In the impact-only model, almost all covariate effects on class membership were 

significantly different from zero in both samples. When DIF effects were added in the final 

model, most of these effects remained significantly different from zero, with two exceptions. 

First, in sample 1 the effect of gender in sample 1, was not significantly different from zero in 

the impact-only model or in the final model, .334, .738z p  . Second, also in sample 1, the 

effect of visit on class membership was now only marginally significant, 1.847, .065z p   . 

In both samples the effects of visit on class membership were attenuated once DIF effects from 

visit were added to the model. 
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It was of interest to see whether and how individual classifications, as well as the 

accuracy of these classifications, changed based on the addition of DIF. Modal class 

assignments, denoted ik , are generated by assigning individual i to the class k to which their 

estimated posterior probability îk  is the highest. Agreement between modal classifications 

generated by the impact-only and final models was assessed using the Hubert-Arabie Adjusted 

Rand Index (ARI; Hubert and Arabie, 1985; Steinley, 2004), which is shown in Equation 44 in 

Chapter 2. The ARI comparing modal classifications under the impact-only and final models was 

0.901 in sample 1, and 0.844 in sample 2, suggesting high concordance between individual 

classifications generated by the two models. This impression is confirmed by examining 

classification rates, which show that individuals are grouped into the same class by the two 

models 96.1% of the time in sample 1 and 97.6% of the time in sample 2. Of the individuals who 

were assigned different modal classifications under the two models, all met either 2 or 3 

diagnostic criteria, suggesting that these individuals represent borderline cases who would very 

narrowly meet the DSM-5 diagnostic criteria for AUD.   

Discussion 

 In this chapter, the effects of demographic covariates on diagnostic criteria for AUD were 

investigated using LCA in two partially-overlapping samples. After fitting a model in which the 

effects of gender, age, race, and study visit only affected class membership (the impact-only 

model), a series of itemwise DIF tests were conducted in order to find a model with the optimal 

configuration of DIF effects (the final model), which was then fit. In both samples, a 2-class 

solution was the best fit to the data in the impact-only model, and thus this model was retained 

for all subsequent steps. Importantly, the addition of DIF did not change the bulk of aggregate-

level findings. In both the impact-only and full models, roughly three quarters of the sample fell 

into a class (the “low-symptoms” class) with low levels of all symptoms aside from drinking 

more than intended and tolerance, with the remainder falling into a class (the “high-symptoms” 

class) in which most members were likely to meet criteria for at least mild AUD. The effects of 

covariates did not change drastically between the impact-only and final models, and whole-
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sample model-implied endorsement probabilities were virtually identical. A minority of 

individual-level class assignments and posterior class membership probabilities changed between 

the two models. Perhaps unsurprisingly, differences in posterior probabilities of diagnosis (i.e., 

membership to the high-symptoms class) were often found in the presence of strong DIF effects. 

The most striking example of this finding was the effect of visit, which strongly impacted Item 9 

such that subjects were less likely to endorse this item (continued drinking despite health 

problems) at visit 1 than visit 2. For subjects seen at visit 2, posterior probabilities of being in the 

high-symptoms class were considerably lower in the impact-only model than in the full model. 

As such, individual classifications into diagnostic categories might change based on whether DIF 

effects, such as the effect of visit in this study, are explicitly modeled. 

Do the current findings help to reconcile the discrepancies between empirical findings 

between different studies of AUD symptoms? In some sense, particularly given the number and 

prevalence of classes was similar between models with and without DIF, it would appear that 

applications of LCA to AUD symptoms may be surprisingly robust to measurement bias. 

Moreover, because the presence of significant DIF effects based on age and gender was 

inconsistent across samples, there is no DIF effect which can be reliably identified as the cause 

of potential age- or gender-related bias in subsequent analyses. This finding is contextualized by 

previous work (Jackson and Sher, 2005; Cole, Bauer, Hussong, and Giordano, 2017), which 

suggests that even though the number of classes may be stable from one application of LCA to 

the next, patterns of AUD item endorsement may vary substantially based on even minor 

alterations to measurement. Importantly, measurement features of the items – e.g., the wording 

of item stems and response options – were not manipulated in the current study, and thus no 

measurement-related DIF effects were examined. Thus, it may be the case that AUD measures 

are indeed robust to measurement bias from demographic variables, but that differences across 

studies in the instruments used to measure AUD leads to some cross-study inconsistencies in 

results. 
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The findings of Chapter 3 must additionally be considered in light of those of Chapter 2. 

In some sense, a number of the differences – and lack thereof – between the impact-only and full 

models are consistent with those of Question A. As in Question A, while the addition of DIF 

effects did strongly affect the significance and magnitude of covariate effects, neither class 

prevalence nor model-implied endorsement probabilities changed much between the impact-only 

and full models. However, the DIF testing results – i.e., that the model-based DIF tests identified 

DIF effects inconsistently across the two samples – are slightly surprising, given the results of 

Question B, in which the model-based testing procedure used here showed high levels of 

sensitivity and specificity. These differences underscore the challenges of generalizing from 

simulation work to empirical data, and will be considered further in the concluding chapter. 
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CHAPTER 4 

DISCUSSION 

Recent years have seen widespread use of mixture models such as latent class analysis 

(LCA) in the social and behavioral sciences. One of the most attractive features of mixture 

models is their ability to incorporate covariate effects, both on class membership and on items 

themselves. However, while mixture models have long been able to accommodate direct effects 

of covariates on items (Huang and Bandeen-Roche, 2004; Muthén and Shedden, 1999), 

relatively few applications of mixture models include these direct effects, possibly owing to the 

challenges of interpreting them (e.g., Muthén, 2004; Lubke and Muthén, 2007). At the same 

time, increased attention has been paid to the goal of quantifying and interpreting differences 

between groups in mixture model results (Morin et al, 2016; Collins and Lanza, 2010; Finch, 

2015). In the current study, we attempted to integrate these two lines of research by framing 

direct effects in mixture models as measurement non-invariance, and using this framework to 

investigate the ways in which mixture models may incorporate these effects as well as the 

consequences of omitting them. 

More specifically, it was proposed here that measurement non-invariance in mixture 

models be considered, modeled, and tested for in a way similar to traditional methods in 

continuous latent variable models. In the current formulation, uniform DIF is synonymous with 

class-invariant direct effects of covariates on items, and nonuniform DIF is synonymous with 

class-varying direct effects of covariates on items. As in the continuous latent variable case, 

uniform DIF results from differences across levels of a covariate in an intercept parameter; 

nonuniform DIF results from differences in a loading parameter, with or without concomitant 

intercept DIF. The timeliness of this work is underscored by a recent paper by Masyn (2017), 

which also conceptualizes direct effects in mixture models as uniform and nonuniform DIF, 
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using the same formulation as Chapter 1 of the current work. This may reflect a growing 

sentiment that measurement noninvariance is a problem in categorical latent variable models. 

After establishing that mixture models may easily accommodate DIF effects, the next 

step was to empirically determine the extent to which the inclusion of such effects is worthwhile. 

The first part of Chapter 2, Question A, addressed this question through a simulation assessing 

bias due to omitted DIF in LCA. As expected, bias was most severe when classes were not well-

separated and when DIF effects were large. Somewhat more surprising, however, was the fact 

that omitted loading DIF led to much less severe consequences than omitted intercept DIF. The 

presence of omitted intercept DIF was associated with overextraction of latent classes, as well as 

pervasive bias in model parameters, item endorsement probabilities, and class membership at K 

= 2.  

In the second portion of Chapter 2, Question B, two iterative procedures for testing for 

DIF were compared. These tests included a posthoc test, modeled after the posthoc logistic 

regression test in IRT (Swaminathan and Rogers, 1990), and a model-based itemwise test for 

DIF modeled after IRT-LR-DIF (Thissen, 2001) and automated moderated nonlinear factor 

analysis (aMNLFA; Gottfredson, in preparation). The model-based test showed superior 

performance, reliably identifying the correct set of DIF effects under most circumstances. 

Moreover, model-based tests are easy to implement using any standard software for fitting 

mixture models (e.g., Mplus and LatentGold) and, although less computationally efficient than 

the post-hoc procedure, are not excessive in their time requirements. 

As such, the recommendations for researchers following from Chapter 2 are clear. In the 

absence of strong hypotheses about the number of classes or the presence of DIF effects, class 

enumeration should be performed using an unconditional model, given that the misspecification 

of covariate effects was found both here and elsewhere (Nylund-Gibson and Masyn, 2016) to 

lead to overextraction of classes. Once the number of classes has been decided, DIF should be 

tested using iterative model-based procedures. After DIF effects are located, a model including at 

least all relevant uniform DIF effects should be fit. One of the key findings of Question A in 
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Study 2 was that, even if the nature of DIF is misspecified (i.e., a uniform DIF model is fit when 

nonuniform DIF exists in the population), individual classifications and model-implied indicator 

values are accurate, even though parameter values are biased. Thus, if a researcher wishes to 

interpret parameter values such as covariate effects on class membership or item endorsement, 

they should include nonuniform DIF in the event that it is suspected to exist or revealed by DIF 

tests. However, if the sole purpose of the analysis is to obtain individual class assignments or 

predicted endorsement probabilities, the inclusion of uniform DIF is likely sufficient. 

The simulation conducted in Chapter 2 provided strong evidence for the inclusion of DIF 

effects in LCA, but did not give a sense of the sorts of questions which can be empirically 

addressed by testing for DIF or how such tests would perform when implemented with real data. 

Thus, Chapter 3 motivated the study of measurement non-invariance in mixture models by 

showing how they may provide insight into discrepancies in findings across studies in alcohol 

use disorder (AUD) research. In this study, the effects of gender, race, age, and study visit on 

DSM criteria for AUD were investigated using LCA in two partially-overlapping samples. Here, 

the inclusion of DIF did not strongly affect aggregate-level findings, such as the number and 

prevalence of classes. Additionally, DIF effects were not reliably identified across the two 

samples, yielding little in the way of substantively interpretable relationships between covariates 

and items. However, varyingly large DIF effects of gender, race, age, and visit were found for a 

number of items, and posterior probabilities of class membership differed on the basis of the 

inclusion of these effects. Thus, even though these DIF effects are not substantively 

interpretable, the results of Chapter 3 underscore the sensitivity of LCA results to covariate 

effects.  

The lack of consistent findings of DIF across samples in Chapter 3 is in some ways 

discrepant with the results of Question B in Chapter 2, in which the model-based testing 

procedure showed high levels of both sensitivity and specificity in finding DIF effects. Given 

these findings, the inconsistent results in the current chapter raise an important question: what is 

the cause of DIF tests’ inconsistent performance, when the results of Question B indicated that 
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model-based testing procedures should detect DIF effects when they are present? The conditions 

in which DIF was tested here are similar in many ways to the data-generating conditions in 

Chapter 2. The number of covariates (P = 4 in both chapters), items (J = 10 in Chapter 2; J =12 

in Chapter 3), and cases (N = 500 in Chapter 2; N = 419 for Sample 1 and N = 411 for Sample 2 

in Chapter 3) were similar across the two studies. Moreover, the proportion of cases in each class 

(71.9% / 28.1% in Sample 1; 72.3 %/ 27.7% in Sample 2), as well as the degree of class 

separation (Entropy = .816 in Sample 1; Entropy = .827 in Sample 2) are consistent with 

unequally-sized, well-separated classes in Chapter 2. Thus, given the similarity of data-

generating conditions between the two studies, the difference in results is perplexing. 

Thus, it may be of interest to consider the ways in which the current dataset differs from 

the simulated one used in Chapter 2.  One difference is that item endorsement probabilities were 

generally quite low in Chapter 3 (average across items = .180 in Sample 1, average across items 

= .195 in Sample 2). Perhaps model-based DIF testing procedures' performance is degraded 

when base rates are lower. On a more fundamental level, however, these differences underscore 

the limitations of generalizing from simulation results to "messy" real data. Whereas data in 

Chapter 2 were generated from a 2-class LCA, in Chapter 3 data likely possessed a number of 

unknown features that were not addressed by the model. For instance, in both the simulation in 

Chapter 2 and the empirical data in Chapter 3, the fitted model assumed conditional dependence 

of indicators given class membership and covariate effects. While data were generated to meet 

this assumption in Chapter 2, it may be the case that local dependence existed between items in 

Chpater 3, which would have been better accommodated by including continuous latent factors 

within a given class (Lubke and Muthén, 2005; 2007). Additionally, while a number of 

covariates not ultimately used in the final model were also considered, it may be the case that 

important covariate effects were omitted. As such, further simulation work must take into 

account model error (Cudeck and Henly, 1991; MacCallum and Tucker, 1991) by generating 

data for which the fitted model, even one with properly specified DIF, does not hold exactly. On 

a more fundamental level, the simulation study assumed that the data were truly generated from a 
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latent class model. Given the well-documented finding that multiple classes may be spuriously 

detected in homogeneous data given distributional misspecification (Bauer and Curran, 2003; 

Bauer and Curran, 2004), it is certainly plausible that a more exhaustive search of single-class 

models (e.g., IRT models with local dependence between indicators; models with causal 

indicators) might have revealed a better-fitting model for the data in Chapter 3.  

Limitations and Future Directions 

This study is characterized by a number of limitations which should be rectified in future 

work. Possibly the most substantial limitation of the current work is that, while Chapter 1 

presents DIF in mixture models as a problem which may be explored with indicators of any 

scale, in both the simulation and empirical studies only mixture models with binary items (i.e., 

LCA) were considered. One of the draws of modern mixture modeling techniques is that they 

can accommodate multiple outcomes with a diversity of scales (Muthén, 2002). Thus, it is 

critical to empirically establish the effects of unmodeled DIF and the performance of DIF tests 

when items are ordinal, count, or continuous variables. In particular, it is of interest to extend the 

study of DIF in mixture models to ordinal items. This is because the definitions of uniform and 

nonuniform DIF change somewhat in continuous latent variable models when ordinal items are 

used, as each item is characterized not only by an intercept and loading but also individual 

thresholds for each endorsement category (Cohen and Kim, 1998). However, when ordinal 

variables are considered in mixture models, it is not always clear whether and how thresholds 

should be constrained across classes. Thus, considering ordinal indicators using a proportional 

odds model is likely to complicate the parallels established between uniform and nonuniform 

DIF in continuous and categorical latent variable models.  

The simulation study presented in Chapter 2 considered a relatively narrow range of data-

generating models, and could be extended in at least three ways. First, only two-class models 

were considered, and future work should consider models with three or more classes. Models 

with more than two classes are of interest because the nature of differences between classes may 

be considerably more complicated than they were here. For instance, item parameter values may 
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differ in one class relative to all other classes, but be similar between the remaining classes. The 

consequences of "uneven" patterns of DIF such as this remain to be seen, and cannot be 

addressed in a simulation with only two classes. The second obvious extension to the population 

models considered in Chapter 2 is adding more sample sizes. While the one sample size 

considered here, 500N  , is a common sample size associated with adequate power in mixture 

models (Nylund et al., 2007), it is of interest to see whether and how the performance of the DIF 

tests changes at lower and higher sample sizes. In particular, it is possible that posthoc tests may 

have greater power at higher sample sizes (e.g., 1000N  ), or that the uniformly strong 

performance of the model-based tests may deteriorate at lower sample sizes (e.g., 250N  ). 

Finally, the simulation in Chapter 2 only considered a data-generating model with complete local 

independence between indicators. However, a wide diversity of covariance relationships may 

exist between indicators in finite mixture models (McLachlan and Peel, 2000), from LCA 

models with only incidental local dependence (Rebousin et al., 2008) to factor mixture models 

(Lubke and Muthén, 2005; Lubke and Muthén, 2007) in which continuous latent variables 

govern the distribution of indicators within a given class. It remains to be seen how omitted DIF 

biases model parameters, as well as how DIF effects should be interpreted, in the presence of 

dependence between variables.  

Similarly, the nature of the fitted models in Question A of Chapter 2 can and should be 

further extended in order to consider the effects of different types model misspecification when 

incorporating DIF effects. In particular, while the type of DIF (i.e., uniform vs. nonuniform DIF) 

was misspecified in a number of the fitted models, the location of DIF was not. In other words, if 

a data-generating model contained the effect of a given covariate on a given item, the model 

fitted to this dataset necessarily contained a DIF effect for this covariate-item pair. There were no 

models in which only a subset of the existing relationships between covariates and items was 

modeled, nor were any models with spurious DIF effects fit. However, it could be the case that 

as long as a certain percentage (e.g., 50%) of the existing DIF effects are modeled, bias in 

parameters and individual-level quantities is mitigated.  
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In a similar vein, a wider range of testing procedures may be evaluated in further work, 

extending Question B. In particular, the recently proposed MIMIC-LCA test (Masyn, 2017) may 

be compared to the IRT-LR-DIF strategy, which performed optimally in the current analyses. 

Unlike IRT-LR-DIF, in which each itemwise test compares a model with DIF on one item to a 

baseline model with no DIF, MIMIC-LCA compares each itemwise DIF model to a minimally-

constrained baseline model. It may be the case that MIMIC-LCA outperforms the IRT-LR-DIF, 

particularly when sample size, the scale of items, and the nature of the relationships between 

indicators (i.e., local dependence) are manipulated. These hypotheses could not be tested by the 

current simulation design, but should certainly be addressed in follow-up work. 

Finally, while Chapter 3 provided an interesting example of the potential effects of DIF 

in AUD research, results pertaining to discrepancies across studies in mixture models of AUD 

were inconclusive. In essence, the DIF effects found in Chapter 3 provide indirect evidence that 

categorical latent variables formed on the basis of AUD symptom items are not defined 

identically across levels of demographic covariates. However, particularly given that many DIF 

effects were not replicated across partially-overlapping samples, there is not a systematic 

relationship between any subset of AUD items and any demographic covariate. As such, no 

concrete recommendations for items to avoid due to systematic measurement non-invariance 

arise from Chapter 3. Thus, particularly given that this study was performed on a predominantly 

European American college sample, DIF analyses on samples which include wider ranges of 

demographic covariates should be performed in order to determine whether and to what extent 

measurement bias exists in mixture models of AUD symptoms. 
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Table 1. 

Demographic characteristics in a sampling of AUD studies using mixture models. 

Study 

Larger study (if 

applicable) N Inclusion criteria 

% 

Male Age Race/Ethnicity 

Analytic 

strategy Scale of measures Measurement 

Jackson (K.) et al., 

2014 NESARC 

33644 

T1 / 

25186 

T2 

Current drinkers 

measured twice 3-year 

separation between 

waves) 51% age 18-60 

71% European 

American FMM Binary 

AUDADIS-IV, 5 12-month 

alcohol consumption indicators 

La Flair et al., 

2012; La Flair et 

al., 2013 NESARC 11750 

Female current drinkers 

age 18 or older 0% 

young adults 

oversampled 

African 

American, 

Hispanic 

oversampled 

LTA: 2 time 

points, 3 

years apart Binary AUDADIS-IV 

Beseler et al., 2012 College sample 361 

Adults with lifetime 

exposure to alcohol 26.70% 

mean age = 

19.1 

84.8% European 

American (est.) LCA Binary DSM-IV criteria 

Rinker and 

Neighbors, 2015 College sample 394 

Heavy-drinking 

undergraduates (at least 

one binge in past month) 48.50% 

 

62.9% European 

American / 

21.1% Hispanic 

/ 3.6% Africal 

American, 1% 

Asian American LCA Binary DSM-V criteria 

Mancha, Hulbert, 

and Latimer, 2011 

International 

Longitudinal 

Survey of 

Adolescent 

Health 622 

Middle and high school 

students in San Juan, PR 41.60% 

 
95.3% Hispanic LCA 

Binary; collapsed from 3: 

"never" vs. "once" or "two 

times or more" 

DSM-IV abuse and 

dependence 

Chung and Martin, 

2001 

Pittsburgh 

Alcohol 

Research Center 

treatment study 300 

Adolescents recruited 

from outpatient 

treatment centers before 

and after treatment (1-

year separation between 

waves) 62% mean age 16.2 

82% European 

American / 12% 

African 

American / 1% 

Hispanic or 

Asian Amerian / 

5% other 

LTA: 2 time 

points, 1 year 

apart (pre- 

and post-

treatment) Binary DSM-IV SCID 

Lynskey et al., 

2005 

Australian 

National Health 

and Medical 

Research 

Council Twin 

Panel (phone 

survey) 6285 

Twins recruited from 

twin studies 44.70% 

median age = 

30 

 
LCA Binary SSAGA for DSM-IV 

Wells, Horwood, 

and Ferguson 

(2004) 

Chirstchurch 

Health and 

Development 

Study 953 

16-year-olds 

interviewed for 

longitudinal study 50.20% 16-year-olds   LPA 

Continuous quantity, 

ordinal frequency, count 

measures for problems 

Quantity in mL (continuous); 

frequency in past 3 months 

(ordinal) CIDI for DSM-IV 

binned into a count 

 

  

9
4 
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Table 2.  

Findings in a sampling of AUD studies using mixture models. 
      Classes found     

   
Classes along a continuum of severity 

 

Classes outside of continuum 

  

Study 

 Num. 

Classes 

 
None 

Infrequent/ 

Unproblematic Moderate 

Frequent/ 

Problematic 

Excessive / 

Highly 

Problematic / 

AUD Likely 

  
Covariate-related findings 

Jackson (K.) 

et al., 2014 4 

 
  

Infrequent 

(52% T1 / 

42% T2) 

Regular 

moderate 

(23% T1 / 

27% T2)   

AUD 

disordered 

(9% T1 / 13% 

T2) 

 

Minimally 

dependent 

(23% T1 / 

18% T2)    

  
  

La Flair et al., 

2012; La Flair 

et al., 2013 3 

  

No problems 

(87.1%/83.9%) 

 

Hazardous 

(11.3%/14.2%) 

Severe 

(1.5%/1.9%) 

 
      

 

Childhood abuse predicted transition 

to severe or hazardous classes; 

Intimate partner violence predicted 

membership to severe and hazardous 

classes 

Beseler et al., 

2012 3 

 

Class 1: low symptom 

endorsement (60.1%)     

Class 3: high 

symptom 

endorsements 

(8.3%) 

 

Class 2: 

"Diagnostic 

orphans" 

(31.5%)     

 
  

Rinker and 

Neighbors, 

2015 2 

  
Less severe (86%)   

More severe 

(14%) 

 
      

 

Drinker identity predicted membership 

to severe class; drinking refusal self-

efficacy predicted membership to less 

severe class 

Mancha, 

Hulbert, and 

Latimer, 2011 3 

 
  

Low severity 

(86.0%)   

Moderate 

severity 

(11.7%) 

High severity 

(2.3%) 

 
      

 

Associations with a number of risky 

behaviors 

Chung and 

Martin, 2001 3 

 
  

Asymptomatic 

(8% baseline / 

44% follow-

up) 

Mild (35% 

baseline / 43% 

follow-up)   

High risk 

(57% baseline 

/ 13% follow-

up) 

 
      

 

Transition to asymptomatic class was 

less likely for males and those with 

conduct disorder 

Lynskey et al., 

2005 

4 (female) / 5 

(male) 

 

No problems (66.5% F / 43.7% 

M) 

Heavy 

drinking 

(23.9% F / 

34.9% M) 

Moderate 

dependence 

(7.6% F / 

12.5% M) 

Severe 

dependence 

(2.0% F / 

3.2% M) 

 

Excessive 

drinking with 

abuse (5.7% 

M)     

 

Membership to problem drinking 

classes was associated with depression 

and conduct disorder. 

Wells, 

Horwood, and 

Ferguson 

(2004) 4   

Class 1: 

nondrinkers 

(23.5%) 

Class 2: 

Occasional 

drinkers, no 

problems 

Class 3: 

Frequent 

drinkers, some 

problems 

Class 4: 

Frequent 

drinkers, many 

problems             

Membership related to alcohol 

problems at ages 21-25, as well as 

number of sexual partners and 

violence. 

  

9
5 
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Table 3. 

Item parameters in data-generating model under varying levels of class separation and DIF.  

Low Class Separation 

 

Loadings 

  

Intercepts 

Item 0 1j   
 

Small DIF 

 

Large DIF 

 
Item  

0 j  
 

Small DIF 

 

Large DIF 

 

 
1 1j  

2 1j   
4 1j   

 

1 1j   
2 1j    

4 1j    

  

 1 j  2 j   4 j   

 

1 j   2 j    4 j    

1 0.25 

 

0 0 0 

 

0 0 0 

 

1 0 

 

0 0 0 

 

0 0 0 

2 0.5 

 

0 0 0 

 

0 0 0 

 

2 0 

 

0 0 0 

 

0 0 0 

3 0.75 

 

0.4 0 -0.4 

 

0.8 0 -0.8 

 

3 0 

 

0.8 0 -0.8 

 

1.6 0 -1.6 

4 1 

 

0 -0.4 0.4 

 

0 -0.8 0.8 

 

4 0 

 

0 -0.8 0.8 

 

0 -1.6 1.6 

5 1.25 

 

0 0 0 

 

0 0 0 

 

5 0 

 

0 0 0 

 

0 0 0 

6 0.25 

 

0 0 0 

 

0 0 0 

 

6 0 

 

0 0 0 

 

0 0 0 

7 0.5 

 

0 0 0 

 

0 0 0 

 

7 0 

 

0 0 0 

 

0 0 0 

8 0.75 

 

0.4 -0.4 0 

 

0.8 -0.8 0 

 

8 0 

 

0.8 -0.8 0 

 

1.6 -1.6 0 

9 1 

 

0 0 0 

 

0 0 0 

 

9 0 

 

0 0 0 

 

0 0 0 

10 1.25   0 0 0   0 0 0   10 0   0 0 0   0 0 0 

                     High Class Separation 

 

Inter 

  

Intercepts 

Item 0 1j   
 

Small DIF 

 

Large DIF 

 
Item  0 j  

 

Small DIF 

 

Large DIF 

 

 1 1j  2 1j   4 1j   

 

1 1j   2 1j    4 1j    

  

 1 j   2 j   4 j  

 

 1 j   2 j   4 j  

1 0.4 

 

0 0 0 

 

0 0 0 

 

1 0 

 

0 0 0 

 

0 0 0 

2 0.8 

 

0 0 0 

 

0 0 0 

 

2 0 

 

0 0 0 

 

0 0 0 

3 1.2 

 

0.4 0 -0.4 

 

0.8 0 -0.8 

 

3 0 

 

0.8 0 -0.8 

 

1.6 0 -1.6 

4 1.6 

 

0 -0.4 0.4 

 

0 -0.8 0.8 

 

4 0 

 

0 -0.8 0.8 

 

0 -1.6 1.6 

5 2 

 

0 0 0 

 

0 0 0 

 

5 0 

 

0 0 0 

 

0 0 0 

6 0.4 

 

0 0 0 

 

0 0 0 

 

6 0 

 

0 0 0 

 

0 0 0 

7 0.8 

 

0 0 0 

 

0 0 0 

 

7 0 

 

0 0 0 

 

0 0 0 

8 1.2 

 

0.4 -0.4 0 

 

0.8 -0.8 0 

 

8 0 

 

0.8 -0.8 0 

 

1.6 -1.6 0 

9 1.6 

 

0 0 0 

 

0 0 0 

 

9 0 

 

0 0 0 

 

0 0 0 

10 2   0 0 0   0 0 0   10 0   0 0 0   0 0 0 

 

  

9
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Table 4. 

Class-specific logits in data-generating models containing both intercept and loading DIF.   

 

 

  Low Class Separation 

    

Small DIF 

 

Large DIF 

Item 

0 jk  

 

1 jk  

 

2 jk  

 

4 jk  

 

1 jk  

 

2 jk  

 

4 jk  

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

1 -0.25 0.25 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

2 -0.5 0.5 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

3 -0.75 0.75 

 

0.4 1.2 

 

0 0 

 

-0.4 -1.2 

 

0.8 2.4 

 

0 0 

 

-0.8 -2.4 

4 -1 1 

 

0 0 

 

-0.4 -1.2 

 

0.4 1.2 

 

0 0 

 

-0.8 -2.4 

 

0.8 2.4 

5 -1.25 1.25 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

6 -0.25 0.25 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

7 -0.5 0.5 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

8 -0.75 0.75 

 

0.4 1.2 

 

-0.4 -1.2 

 

0 0 

 

0.8 2.4 

 

-0.8 -2.4 

 

0 0 

9 -1 1 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

10 -1.25 1.25 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

                     

 

High Class Separation 

    

Small DIF 

 

Large DIF 

Item 

0 jk  

 

1 jk  

 

2 jk  

 

4 jk  

 

1 jk  

 

2 jk  

 

4 jk  

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

 

1k   2k   

1 -0.4 0.4 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

2 -0.8 0.8 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

3 -1.2 1.2 

 

0.4 1.2 

 

0 0 

 

-0.4 -1.2 

 

0.8 2.4 

 

0 0 

 

-0.8 -2.4 

4 -1.6 1.6 

 

0 0 

 

-0.4 -1.2 

 

0.4 1.2 

 

0 0 

 

-0.8 -2.4 

 

0.8 2.4 

5 -2 2 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

6 -0.4 0.4 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

7 -0.8 0.8 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

8 -1.2 1.2 

 

0.4 1.2 

 

-0.4 -1.2 

 

0 0 

 

0.8 2.4 

 

-0.8 -2.4 

 

0 0 

9 -1.6 1.6 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

 

0 0 

10 -2 2   0 0   0 0   0 0   0 0   0 0   0 0 

9
7 

9
7 
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Table 5. 

Class enumeration results for unconditional models. 
        BIC   AIC   Lo Mendell Rubin LRT 

(LMR) 
  Bootstrap Likelihood 

Ratio Test (BLRT) 

    

Mean # Classes % Correct 

 

Mean # Classes % Correct 

 

Mean # Classes % Correct 

 

Mean # Classes % Correct 

Intercept-only DIF 

           

 

Equal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

3.05 0.27 

 

2.2 0.87 

 

2.15 0.85 

   

Large DIF 2.01 0.99 

 

3.67 0.01 

 

2.4 0.66 

 

2.93 0.17 

  

Large lambda 

           

   

Small DIF 2 1 

 

2.82 0.43 

 

2.31 0.78 

 

2.08 0.92 

   

Large DIF 2.01 0.99 

 

3.78 0.02 

 

2.56 0.58 

 

2.84 0.31 

 

Unequal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

2.98 0.3 

 

2.15 0.89 

 

2.07 0.93 

   

Large DIF 2.02 0.98 

 

3.68 0.03 

 

2.37 0.7 

 

2.89 0.19 

  

Large lambda 

           

   

Small DIF 2 1 

 

2.98 0.3 

 

2.37 0.74 

 

2.1 0.91 

   

Large DIF 2.01 0.99 

 

3.68 0.04 

 

2.64 0.5 

 

2.86 0.21 

               Loading-only DIF 

           

 

Equal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

2.74 0.42 

 

2.13 0.89 

 

2.04 0.96 

   

Large DIF 2 1 

 

2.94 0.35 

 

2.18 0.85 

 

2.09 0.91 

  

Large lambda 

           

   

Small DIF 2 1 

 

2.72 0.51 

 

2.31 0.78 

 

2.01 0.99 

   

Large DIF 2 1 

 

2.82 0.44 

 

2.27 0.8 

 

2.07 0.93 

 

Unequal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

2.75 0.5 

 

2.11 0.92 

 

2.07 0.94 

   

Large DIF 2 1 

 

2.88 0.38 

 

2.09 0.93 

 

2.07 0.93 

  

Large lambda 

           

   

Small DIF 2 1 

 

2.62 0.52 

 

2.19 0.87 

 

2.03 0.97 

   

Large DIF 2 1 

 

3 0.33 

 

2.24 0.81 

 

2.09 0.93 

               Intercept-and-loading DIF 

          

 

Equal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

3.11 0.24 

 

2.3 0.8 

 

2.26 0.77 

   

Large DIF 2.02 0.98 

 

3.58 0.02 

 

2.5 0.62 

 

2.86 0.18 

  

Large lambda 

           

   

Small DIF 2 1 

 

3.06 0.29 

 

2.27 0.79 

 

2.13 0.87 

   

Large DIF 2.01 0.99 

 

3.65 0 

 

2.56 0.52 

 

2.8 0.26 

 

Unequal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

3.38 0.09 

 

2.3 0.77 

 

2.54 0.48 

   

Large DIF 2.17 0.83 

 

3.56 0 

 

2.59 0.41 

 

2.96 0.06 

  

Large lambda 

           

   

Small DIF 2 1 

 

3.32 0.13 

 

2.36 0.73 

 

2.36 0.65 

      Large DIF 2.16 0.84   3.66 0   2.73 0.39   3.05 0.01 
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Table 6. 

Class enumeration results for conditional models. 
        BIC   AIC   Lo Mendell Rubin LRT 

(LMR) 
  Bootstrap Likelihood 

Ratio Test (BLRT) 

    

Mean # Classes % Correct 

 

Mean # Classes % Correct 

 

Mean # Classes % Correct 

 

Mean # Classes % Correct 

Intercept-only DIF 
           

 

Equal classes 

           

  

Small lambda 

           

   
Small DIF 2.61 0.41 

 
4 0 

 
2.74 0.44 

 
4 0 

   

Large DIF 4 0 

 

4 0 

 

3.4 0.06 

 

4 0 

  
Large lambda 

           

   

Small DIF 2.36 0.71 

 

4 0 

 

3.04 0.21 

 

4 0 

   

Large DIF 4 0 

 

4 0 

 

3.72 0.03 

 

4 0 

 

Unequal classes 

           

  

Small lambda 

           

   
Small DIF 2.98 0.02 

 
4 0 

 
3 0.24 

 
3.97 0 

   

Large DIF 3.96 0 

 

4 0 

 

3.35 0.13 

 

4 0 

  
Large lambda 

           

   

Small DIF 2.79 0.21 

 

4 0 

 

3.21 0.16 

 

3.97 0 

   

Large DIF 3.9 0 

 

4 0 

 

3.61 0 

 

4 0 

               Loading-only DIF 

           

 
Equal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

3.98 0 

 

2.92 0.46 

 

3.31 0.26 

   

Large DIF 2.09 0.93 

 

4 0 

 

2.8 0.4 

 

3.94 0 

  

Large lambda 

           

   
Small DIF 2 1 

 
3.99 0 

 
2.75 0.56 

 
3.44 0.18 

   

Large DIF 2.12 0.91 

 

4 0 

 

3.14 0.25 

 

3.99 0 

 
Unequal classes 

           

  

Small lambda 

           

   

Small DIF 2 1 

 

3.96 0 

 

3.02 0.36 

 

3.57 0.09 

   
Large DIF 2.91 0.09 

 
3.99 0 

 
2.9 0.27 

 
3.89 0 

  

Large lambda 

           

   
Small DIF 2 1 

 
3.98 0 

 
2.75 0.55 

 
3.22 0.24 

   

Large DIF 2.88 0.13 

 

4 0 

 

3 0.23 

 

3.93 0 

               Intercept-and-loading DIF 

          

 

Equal classes 

           

  
Small lambda 

           

   

Small DIF 2.86 0.15 

 

4 0 

 

3.11 0.22 

 

4 0 

   
Large DIF 3.96 0 

 
4 0 

 
3.42 0.09 

 
4 0 

  

Large lambda 

           

   

Small DIF 2.86 0.14 

 

4 0 

 

3.23 0.09 

 

3.98 0 

   
Large DIF 3.89 0 

 
4 0 

 
3.61 0.01 

 
4 0 

 

Unequal classes 

           

  

Small lambda 

           

   

Small DIF 3.39 0 

 

4 0 

 

3.4 0.09 

 

4 0 

   

Large DIF 4 0 

 

4 0 

 

3.7 0.04 

 

4 0 

  

Large lambda 

           

   

Small DIF 3.28 0 

 

4 0 

 

3.44 0.05 

 

4 0 

      Large DIF 4 0   4 0   3.66 0   4 0 
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Table 7. 

Class membership parameters under the impact-only and intercept DIF models. 

 
        Impact-Only Model 

 
Uniform DIF Model 

    
𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 

 
𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 

Intercept-only DIF 
           

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF -4.30 -75.45 175.70 18.38 -143.10 

 
     

   
Large DIF -0.75 -65.88 179.90 -19.24 -122.90 

 
     

  
Large lambda 

      
     

   
Small DIF 6.42 -33.65 78.74 7.02 -48.57 

 
     

   
Large DIF -3.76 -42.25 110.70 11.41 -63.26 

 
     

 
Unequal classes 

      
     

  
Small lambda 

      
     

   
Small DIF 21.67 -70.06 154.90 4.74 -124.90 

 
     

   
Large DIF 74.39 -39.98 28.19 -18.56 -26.69 

 
     

  
Large lambda 

      
     

   
Small DIF -12.47 -35.23 70.31 11.81 -53.02 

 
     

   
Large DIF -24.51 -22.69 106.70 10.01 -71.23 

 
     

Loading-only DIF  
           

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF -26.32 18.98 9.33 15.62 -4.99 

 
-27.31 24.73 11.21 15.31 -1.99 

   
Large DIF -44.27 11.03 -12.34 5.78 17.06 

 
-52.82 37.42 -11.61 5.50 35.44 

  
Large lambda 

           
   

Small DIF -11.29 3.14 4.60 13.14 6.56 
 

-12.07 5.38 4.96 13.22 7.46 

   
Large DIF -9.59 7.18 13.99 18.03 -6.57 

 
-12.81 13.26 15.80 18.47 -3.00 

 
Unequal classes 

           
  

Small lambda 
           

   
Small DIF -34.16 2.52 26.54 16.77 -9.02 

 
-87.62 64.81 -19.26 19.89 60.46 

   
Large DIF -24.29 -5.09 34.79 5.72 -20.43 

 
-190.00 142.10 -48.41 4.80 124.00 

  
Large lambda 

           
   

Small DIF -24.18 8.94 15.56 15.18 -1.36 
 

-40.55 29.53 -0.80 16.84 21.12 

   
Large DIF -25.83 -0.69 4.93 5.14 4.05 

 
-87.31 56.81 -29.22 9.81 62.55 

Intercept-and-loading DIF 
          

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF 55.55 -78.17 176.20 4.68 -129.30 

 
-47.87 12.42 3.43 3.99 11.52 

   
Large DIF 86.08 -69.78 180.20 -1.31 -125.60 

 
-59.05 17.91 10.28 9.13 4.74 

  
Large lambda 

           
   

Small DIF 15.43 -25.60 65.55 6.28 -52.38 
 

-16.93 13.68 -5.77 8.29 3.51 

   
Large DIF 19.84 -36.56 107.50 10.59 -75.67 

 
-30.44 11.44 7.38 7.58 4.17 

 
Unequal classes 

           
  

Small lambda 
           

   
Small DIF 106.90 -114.20 183.60 -28.58 -148.40 

 
-84.97 40.40 -17.62 19.02 36.81 

   
Large DIF 192.60 -113.60 120.40 -116.60 -195.00 

 
-102.60 51.45 -34.22 14.57 43.97 

  
Large lambda 

           
   

Small DIF -4.25 -35.20 80.07 5.04 -65.14 
 

-46.61 22.95 8.39 9.93 6.44 

      Large DIF 6.01 -40.41 85.86 2.97 -56.69 
 

-60.74 27.15 -4.38 9.76 20.91 

 

Note: Standardized bias with absolute value greater than 40 is denoted with light shading; 

standardized bias with absolute value greater than 100 is denoted with dark shading and bold 

text. 
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Table 8. 

Effects of covariates on items under the intercept DIF model, given loading DIF in the data-generating model.  
        Y3 on X1   Y3 on X4   Y4 on X2   Y4 on X4   Y8 on X1   Y8 on X2 

    
Class 1 Class 2 

 

Class 1 Class 2 

 

Class 1 Class 2 

 

Class 1 Class 2 

 

Class 1 Class 2 

 

Class 1 Class 2 

Loading-only DIF                  

 
Equal classes                  

  
Small lambda                  

   
Small DIF 358.8 -286.9  391.2 -338.1  -293.8 316.5  339.7 -348.6  330.8 -310.5  -350.5 363.5 

   
Large DIF 526.9 -357.3  605.5 -463.7  -520.9 583.5  611.7 -620.5  636.8 -581.3  -648.9 662 

  
Large lambda                  

   
Small DIF 350.1 -276.3  358.4 -289.8  -285.2 304.7  291.7 -308.7  338.4 -324.4  -340.8 339.1 

   
Large DIF 773.9 -575.5  756.2 -588.3  -508.9 588.3  529.7 -579.8  694.2 -673.1  -684.3 702.9 

 

Unequal classes                  

  
Small lambda                  

   
Small DIF 582.3 -60.86  601.9 -90.56  -519.1 127.8  565.9 -137.4  546.3 -124.9  -558 149.7 

   
Large DIF 910.8 -58.11  968.7 -100.6  -1031 310.8  1028 -279.9  989 -246.7  -1101 318 

  
Large lambda                  

   
Small DIF 549.3 -91.74  575.5 -106.2  -469.9 125.6  472 -116.1  530.2 -134.7  -499.6 134.8 

   
Large DIF 1009 -150.5  1006 -173.2  -884.7 269.4  900.2 -262.5  995.2 -272.7  -983 297.4 

Intercept-and-loading DIF                 

 
Equal classes                  

  
Small lambda                  

   
Small DIF 242 -336.2  261.8 -365.3  -266 348.7  247.2 -302.8  254.7 -337.9  -273.9 361.6 

   
Large DIF 262.1 -571.7  294.7 -657  -301 553.5  309.2 -552.9  293.1 -551.3  -312.8 608.4 

  
Large lambda                  

   
Small DIF 255.5 -329.7  271 -373.6  -244.8 256.3  265.6 -285.1  257.6 -300.2  -277.7 330.6 

   
Large DIF 305.2 -647.3  286 -606.8  -320.2 505.7  312.3 -501.2  319.2 -561.2  -303 544.9 

 

Unequal classes                  

  
Small lambda                  

   
Small DIF 381.1 -103.9  409.8 -134.6  -411.3 115.2  418.3 -129.7  400.9 -129.1  -427.3 137.3 

   
Large DIF 439 -197.9  444.6 -205.1  -502.5 219.5  473.5 -202.6  471.3 -206.6  -482.9 227.3 

  
Large lambda                  

   
Small DIF 395.7 -140.1  433.5 -148.2  -412 106.5  405.1 -113.7  414.7 -121.3  -413.1 119.7 

      Large DIF 443.5 -235.4   470 -279.4   -500.1 179.3   535.5 -192.3   506.2 -234.5   -510.4 246.4 

 

Note: Standardized bias with absolute value greater than 40 is denoted with light shading; standardized bias with absolute value 

greater than 100 is denoted with dark shading and bold text. 

1
0

1 
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Table 9. 

Baseline endorsement probabilities under the impact-only model for all data-generating models. 

                    DIF Items   Non-DIF Items 

    
Y3 

 
Y4 

 
Y8 

 
Y5 

    
Class 1 Class 2 

 
Class 1 Class 2 

 
Class 1 Class 2 

 

Class 
1 

Class 2 

Intercept-only DIF 

           

 
Equal classes 

           

  
Small lambda 

           

   
Small DIF 372.40 -359.70  -65.15 66.70  26.43 -26.06  40.11 -37.18 

   
Large DIF 168.30 -161.40  -85.35 85.41  10.52 -16.14  108.80 -109.80 

  
Large lambda            

   
Small DIF 442.70 -429.60  49.16 -42.59  101.80 -105.50  8.33 3.84 

   
Large DIF 721.50 -726.90  184.70 -187.00  239.20 -256.80  12.05 -16.59 

 

Unequal classes            

  
Small lambda            

   
Small DIF 337.50 -246.20  -85.16 34.75  13.28 -15.01  68.73 -3.68 

   
Large DIF 4.66 39.42  9.14 62.24  45.81 38.76  411.30 -131.90 

  
Large lambda            

   
Small DIF 371.70 -366.20  -13.78 -108.60  66.56 -141.20  6.93 -4.18 

   
Large DIF 616.50 -666.30  51.51 -295.80  149.80 -333.50  23.57 2.40 

Loading-only DIF            

 
Equal classes            

  
Small lambda            

   
Small DIF -122.90 -189.30  50.09 16.18  1.97 -22.89  -13.04 -21.70 

   
Large DIF -176.70 -361.00  122.80 -17.49  33.64 -65.98  -14.93 -36.85 

  
Large lambda            

   
Small DIF -104.10 -204.40  69.47 -5.19  31.32 -36.55  -0.84 -10.48 

   
Large DIF -115.90 -390.70  181.50 -49.80  109.90 -99.58  -7.74 -17.04 

 
Unequal classes            

  
Small lambda            

   
Small DIF -121.30 -152.30  33.44 -16.35  -2.99 -36.55  -11.84 -10.17 

   
Large DIF -183.20 -290.40  83.35 -44.84  0.29 -67.73  -0.57 -13.26 

  
Large lambda            

   
Small DIF -134.20 -157.90  50.24 -28.72  17.13 -48.67  -10.33 0.12 

   
Large DIF -179.60 -383.30  133.10 -126.10  59.46 -139.50  -4.05 -8.71 

Intercept-and-loading DIF           

 
Equal classes            

  
Small lambda            

   
Small DIF 219.70 -470.80  -71.76 39.43  -16.66 -50.00  62.61 -2.71 

   
Large DIF 182.10 -319.20  -104.60 63.44  -6.86 -32.31  105.50 -54.37 

  
Large lambda            

   
Small DIF 212.50 -607.00  -20.35 -112.90  23.51 -183.80  6.97 2.07 

   
Large DIF 407.00 -868.60  30.33 -287.30  103.20 -355.50  29.87 -0.33 

 

Unequal classes            

  
Small lambda            

   
Small DIF 210.30 -170.80  -69.43 77.35  4.50 30.90  136.90 9.20 

   
Large DIF -7.01 -3.26  -18.76 80.88  14.60 36.48  526.30 -116.10 

  
Large lambda            

   
Small DIF 212.00 -549.00  -37.81 -204.60  16.08 -249.80  26.76 4.77 

      Large DIF 399.50 -832.80   -30.43 -317.70   57.72 -436.00   39.49 16.05 

 

Note: Standardized bias with absolute value greater than 40 is denoted with light shading; 

standardized bias with absolute value greater than 100 is denoted with dark shading and bold 

text.  
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Table 10. 

Baseline endorsement probabilities under the intercept DIF model for all data-generating models. 

    
DIF Items 

 
Non-DIF Items 

    
Y3 

 
Y4 

 
Y8 

 
Y5 

    
Class 1 Class 2 

 
Class 1 Class 2 

 
Class 1 Class 2 

 
Class 1 Class 2 

Intercept-only DIF 
           

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF            

   
Large DIF            

  
Large lambda            

   
Small DIF            

   
Large DIF            

 
Unequal classes            

  
Small lambda            

   
Small DIF            

   
Large DIF            

  
Large lambda            

   
Small DIF            

   
Large DIF            

Loading-only DIF 
           

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF -123.50 -154.00 

 
39.95 19.52 

 
-7.46 -12.41 

 
-12.51 -24.59 

   
Large DIF -145.90 -206.80 

 
74.63 -9.06 

 
0.09 -47.10 

 
-17.35 -52.71 

  
Large lambda 

           
   

Small DIF -114.60 -180.20 
 

58.91 1.09 
 

23.52 -28.56 
 

-0.70 -11.65 

   
Large DIF -142.00 -344.40 

 
152.60 -31.25 

 
91.71 -85.72 

 
-8.20 -21.30 

 
Unequal classes 

           
  

Small lambda 
           

   
Small DIF -282.80 -18.96 

 
35.04 -32.87 

 
-29.33 -27.07 

 
-22.25 -38.03 

   
Large DIF -821.70 -12.66 

 
31.06 -79.42 

 
-71.69 -59.38 

 
-27.30 -106.00 

  
Large lambda 

           
   

Small DIF -270.60 -45.38 
 

51.29 -21.41 
 

-0.63 -28.85 
 

-14.72 -9.51 

   
Large DIF -541.10 -104.40 

 
96.70 -108.60 

 
-4.73 -89.45 

 
-22.71 -52.82 

Intercept-and-loading DIF 
          

 
Equal classes 

           
  

Small lambda 
           

   
Small DIF -158.30 -181.90 

 
-51.14 -64.71 

 
-62.93 -74.94 

 
-18.99 -25.21 

   
Large DIF -172.30 -231.10 

 
-86.71 -139.60 

 
-84.07 -123.20 

 
-30.77 -29.42 

  
Large lambda 

           
   

Small DIF -186.40 -235.10 
 

-72.18 -92.87 
 

-80.32 -93.60 
 

-20.46 -15.55 

   
Large DIF -249.40 -345.70 

 
-142.30 -202.90 

 
-134.30 -204.20 

 
-17.49 -22.00 

 
Unequal classes 

           
  

Small lambda 
           

   
Small DIF -298.10 -50.81 

 
-46.85 -59.69 

 
-72.10 -41.47 

 
-20.66 -32.44 

   
Large DIF -378.90 -92.58 

 
-104.10 -92.86 

 
-133.70 -76.79 

 
-47.25 -59.80 

  
Large lambda 

           
   

Small DIF -329.30 -99.84 
 

-51.05 -55.72 
 

-87.59 -62.59 
 

-10.22 -15.45 

   
Large DIF -496.50 -161.30 

 
-170.60 -116.50 

 
-179.10 -122.90 

 
-19.00 -21.23 

 

Note: Standardized bias with absolute value greater than 40 is denoted with light shading; 

standardized bias with absolute value greater than 100 is denoted with dark shading and bold 

text.
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Table 11. 

Adjusted Rand Index (ARI) statistics comparing true and estimated class membership under all 

data-generating and fitted models. 
        Adjusted Rand Index (ARI)   

    

Fitted Model 

 

    

Impact-only  Uniform DIF Nonuniform DIF 

 Intercept-only DIF 

    

 

Equal classes 

    

  

Small lambda 

    

   

Small DIF 0.632 0.716 0.714 

 

   

Large DIF 0.351 0.697 0.694 

 

  

Large lambda 

    

   

Small DIF 0.901 0.926 0.925 

 

   

Large DIF 0.866 0.91 0.909 

 

 

Unequal classes 

    

  

Small lambda 

    

   

Small DIF 0.635 0.746 0.741 

 

   

Large DIF 0.07 0.726 0.721 

 

  

Large lambda 

    

   

Small DIF 0.909 0.932 0.932 

 

   

Large DIF 0.872 0.92 0.919 

 

        Loading-only DIF 

   

 

Equal classes 

    

  

Small lambda 

    

   

Small DIF 0.703 0.702 0.743 

 

   

Large DIF 0.651 0.638 0.783 

 

  

Large lambda 

    

   

Small DIF 0.919 0.919 0.929 

 

   

Large DIF 0.901 0.9 0.937 

 

 

Unequal classes 

    

  

Small lambda 

    

   

Small DIF 0.738 0.743 0.773 

 

   

Large DIF 0.689 0.702 0.818 

 

  

Large lambda 

    

   

Small DIF 0.934 0.932 0.941 

 

   

Large DIF 0.914 0.903 0.944 

 

        Intercept-and-loading DIF 

   

 

Equal classes 

    

  

Small lambda 

    

   

Small DIF 0.639 0.704 0.73 

 

   

Large DIF 0.451 0.681 0.726 

 

  

Large lambda 

    

   

Small DIF 0.898 0.917 0.925 

 

   

Large DIF 0.87 0.905 0.919 

 

 

Unequal classes 

    

  

Small lambda 

    

   

Small DIF 0.431 0.746 0.762 

 

   

Large DIF 0.076 0.718 0.761 

 

  

Large lambda 

    

   

Small DIF 0.907 0.93 0.935 

       Large DIF 0.865 0.911 0.927   

Note: Shading denotes particularly severe values of ARI, with darker shading indicating lower 

concordance between true and estimated class membership. 
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Table 12. 

Percent of replications with improper solutions, sensitivity, and specificity in the model-based 

and posthoc testing procedures. 
        Model-based testing procedure   Posthoc testing procedure 

    

Proportion 

Improper Solutions 

in Itemwise Models 

Sensitivity Specificity 
 

Proportion 

Improper Solutions 

in Itemwise Models 

Sensitivity Specificity 

Intercept-only DIF 

   
 

   
 

Equal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.00 0.98 0.97 
 

0.00 0.65 0.97 

   

Large DIF 0.01 1.00 0.98 
 

0.18 0.81 0.97 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.99 0.97 
 

0.00 0.92 0.99 

   

Large DIF 0.00 1.00 0.97 
 

0.00 1.00 0.99 

 

Unequal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.00 0.95 0.98 
 

0.28 0.85 1.00 

   

Large DIF 0.06 0.97 0.98 
 

0.29 0.67 0.93 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.98 0.97 
 

0.03 0.91 0.99 

   

Large DIF 0.01 1.00 0.97 
 

0.09 0.99 0.99 

       
 

   Loading-only DIF 

   
 

   
 

Equal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.00 0.67 0.97 
 

0.00 0.61 0.99 

   

Large DIF 0.00 0.98 0.98 
 

0.00 0.99 0.99 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.71 0.97 
 

0.00 0.68 1.00 

   

Large DIF 0.00 0.99 0.97 
 

0.00 0.99 0.99 

 

Unequal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.01 0.48 0.98 
 

0.18 0.40 1.00 

   

Large DIF 0.01 0.96 0.98 
 

0.31 0.92 0.99 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.54 0.97 
 

0.03 0.51 0.99 

   

Large DIF 0.00 0.98 0.96 
 

0.02 0.98 0.99 

       
 

   Intercept and loading DIF 
   

    
 

Equal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.00 0.84 0.98 
 

0.01 0.74 0.99 

   

Large DIF 0.00 0.97 0.98 
 

0.16 0.81 0.99 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.88 0.97 
 

0.00 0.83 0.99 

   

Large DIF 0.00 0.99 0.97 
 

0.00 0.99 1.00 

 

Unequal classes 

   
 

   
  

Small lambda 

   
 

   
   

Small DIF 0.01 0.77 0.98 
 

0.18 0.60 0.98 

   

Large DIF 0.02 0.90 0.98 
 

0.22 0.53 0.94 

  

Large lambda 

   
 

   
   

Small DIF 0.00 0.80 0.97 
 

0.02 0.76 0.99 

      Large DIF 0.00 0.96 0.97   0.09 0.90 0.99 

Note: Shading denotes particularly poor performance, with darker shading indicating higher rates 

of improper solutions, as well as lower sensitivity and specificity. 
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Table 13. 

Alcohol Use Disorder (AUD) criteria used in the current study. 

Item Criterion Notes 

1 Role impairment 

 2 Used in dangerous situations 

 3 Legal problems Dropped from DSM-5 

4 Drinking despite problems with family and friends 

 5 Uncontrolled drinking 

 6 Unsuccessful quit attempts 

 7 Spent a lot of time drinking 

 8 Gave up activities for drinking 

 9 Continued use despite health or psychological problems 

 10 Tolerance 

 11 Withdrawal symptoms 

 12 Craving New to DSM-5 
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Table 14. 

Class enumeration statistics for unconditional models in both samples. 

 
    Sample 1   Sample 2 

K #Param LL BIC AIC LMR 
LMR 

p.val 
BLRT 

BLRT 

p.val  
LL BIC AIC LMR 

LMR 

p.val 
BLRT 

BLRT 

p.val 

1 12 -1748.4 3569.43 3520.8 -- -- -- -- 
 

-1754.6 3581.33 3533.1 -- -- -- -- 
2 25 -1504.8 3160.88 3059.57 481.112 0 487.227 0 

 
-1530.8 3212.13 3111.67 441.787 0 447.434 0 

3 38 -1466.7 3163.28 3009.3 75.315 0.0629 76.272 0 
 

-1505.9 3240.6 3087.89 49.152 0.0145 49.78 0 

4 51 -1452.2 3212.98 3006.32 28.615 0.2814 28.979 0 
 

-1487.6 3282.08 3077.13 36.296 0.2015 36.76 0 

5 64 -1438.8 3264.84 3005.51 26.477 1.00E-04 26.814 0.1224   -1476.6 3338.4 3081.21 21.641 0.362 21.917 0.3333 

  

1
0

7
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Table 15. 

Itemwise model-based DIF test results in both samples. 
  Sample 1   Sample 2 

 

Age Gender White Time 

 

Age Gender White Time 

Item 1 ● ● 

      

● 

Item 2 

     

● 

   Item 4 ● 

        Item 5 

   

● 

 

● ● 

 

● 

Item 6 

         Item 7 

 

● 

       Item 9 

   

● 

    

● 

Item 10 ● 

    

● 

   Item 11 ● 

        Item 12 ●                 

 

1
0

8 
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Table 16. 

Class membership and item parameters in the final model. 
    Sample 1 

     

Covariate effects 

  
Intercept 

 
Gender 

 
Age 

 
White 

 
Visit 

  

Est. SE 

 

Est. SE 

 

Est. SE 

 

Est. SE 

 

Est. SE 

Class membership 

              

 

P(High-symptom) -0.465 0.481  0.097 0.290  0.268 0.094  0.648 0.288  -0.484 0.262 

High-symptom class               

 

Item 1 -0.283 0.350  1.132 0.353  0.256 0.118       

 

Item 2 0.071 0.234        

   

  

 

Item 4 1.636 0.321  

   

0.222 0.201       

 

Item 5 -4.307 0.867           -0.620 0.254 

 

Item 6 0.715 0.234             

 

Item 7 1.036 0.356  1.274 0.403          

 

Item 9 -3.833 0.657           -2.812 0.458 

 

Item 10 -0.987 0.248     0.242 0.089       

 

Item 11 1.867 0.306             

 

Item 12 2.994 0.528     -0.497 0.216       

Low-symptom class               

 

Item 1 2.979 0.366  1.132 0.353  0.256 0.118       

 

Item 2 2.802 0.311             

 

Item 4 5.653 0.841     -0.427 0.081       

 

Item 5 -0.422 0.396           -0.620 0.254 

 

Item 6 3.153 0.366             

 

Item 7 5.319 0.702  1.274 0.403          

 

Item 9 -0.682 0.576           -2.812 0.548 

 

Item 10 1.352 0.205     0.242 0.089       

 

Item 11 4.521 0.710             

 

Item 12 5.132 0.591         -0.497 0.216             

                

  

Sample 2 

     

Covariate effects 

  

Intercept 

 

Gender 

 

Age 

 

White 

 

Visit 

  
Est. SE 

 
Est. SE 

 
Est. SE 

 
Est. SE 

 
Est. SE 

Class membership 

              

 

P(High-symptom) 0.796 0.621  0.740 0.266  0.294 0.098  0.681 0.310  -0.758 0.273 

High-symptom class               

 

Item 1 -0.382 0.245     

      

  

 

Item 2 -1.417 0.659     0.285 0.132       

 

Item 4 1.410 0.277             

 

Item 5 -5.750 1.116  -0.644 0.267        -0.801 0.255 

 

Item 6 0.518 0.214             

 

Item 7 0.202 0.247             

 

Item 9 -3.505 0.662           -2.360 0.402 

 

Item 10 -2.673 0.959     0.366 0.187       

 

Item 11 1.896 0.311             

 

Item 12 3.073 0.492             

Low-symptom class               

 

Item 1 2.173 0.219             

 

Item 2 2.014 0.693     0.285 0.132       

 

Item 4 15.000              

 

Item 5 -1.134 0.436  -0.644 0.267        -0.801 0.255 

 

Item 6 2.323 0.236             

 

Item 7 4.046 0.512             

 

Item 9 -0.299 0.576           -2.360 0.402 

 

Item 10 1.812 0.602     -0.116 0.108       

 

Item 11 4.039 0.471             

  Item 12 5.004 0.785                         
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Figure 1.  

Summary of all models fitted in Chapter 2. 
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Figure 2. Logit parameter estimates 81
ˆ

k  in classes 1 and 2 across all models. 

 

1
1
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Figure 3. 

Average baseline endorsement probabilities 0
ˆ

jk  in large DIF conditions. 

1
1

2 



 
 

113 
 

Figure 4. 

 Average estimates of individual predicted probabilities ˆ
ijk  in large DIF conditions. 

 
  

1
1

3
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Figure 5. 

Distribution of randomly-selected individual predicted probabilities 3
ˆ

i  in large DIF conditions. 

  

1
1
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Figure 6: Estimates of prevalence of membership to class 1 across all models. 

 

1
1
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Figure 7. Model-implied endorsement probabilities for both the impact-only and full models. 
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Figure 8. Model-implied endorsement probabilities for male and female subjects under the full 

model. 
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Figure 9. Model-implied endorsement probabilities for subjects of different ages under the full 

model.  
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Figure 10. Model-implied endorsement probabilities for subjects seen at visit 1 and visit 2 under 

the full model.  

 


