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ABSTRACT

XUANYAO HE: Statistical Inferences for Correlated Observations: Prediction
and Estimation.

(Under the direction of Richard L. Smith and Zhengyuan Zhu)

This dissertation has three major parts. Chapter 2 compares Bayesian predictive densities

based on different priors and frequentist plug-in type predictive densities when the predicted

variables are dependent on the observations. The performance of different inference proce-

dures is measured, by averaging Kullback-Leibler divergence with respect to the true predictive

density. The notion of second-order KL dominance is introduced, and an explicit condition

is given for a prior to be second-order KL REML-dominant using asymptotic expansions. As

an example, it is shown theoretically that for mixed effects models, the Bayesian predictive

density with any prior from a particular improper prior family dominates the performance of

REML plug-in density, while the Jeffreys prior is not always superior to the REML approach.

Simulation studies are included which show good agreement with the asymptotic results for

moderate sample size. Chapter 3 considers the asymptotic comparison result for both temporal

and spatial AR(1) models, as an important special case of correlated data, using some theoret-

ical results from the previous chapter. We show that all the three candidate priors, the Jeffreys

prior, the reference prior and the inverse reference prior, are dominating the performance of the

REML estimation for variance parameters, in the sense of the expected KL divergence between

the true density and the predictive densities. Simulation results are included, which almost

agree with the asymptotic result when sample size is moderately large. Chapter 4 considers

estimation and prediction problems in modeling with errors in covariances. Many popular top-

iii



ics and data-driven methods on the shrinkage estimation for covariance matrices are discussed.

We also consider a model with semi-parametric covariance matrix, which includes both a para-

metric and an unstructured part. For this model, we derive a plug-in method for parameter

estimation, and also consider how the mean and variance of a kriging predictor are affected if

the true matrix V is replaced by an approximation V̂ . We consider a preliminary estimator

for the unstructured error, a linear combination of the sample covariance and the diagonal

estimator, and we find that in the case of exponential covariance structure (for both simulation

and asymptotic results), this estimator performs better than the sample covariance matrix by

comparing the mean square errors of their resulting regression coefficient estimators. In the

future, we plan to derive some theoretical proofs and more simulation studies.

Keywords: Mixed effect models; Kullback-Leibler divergence; Jeffreys prior; Predictive den-

sity; Prediction fit; Autoregressive Models; Time Series; Spatial Models; Shrinkage Estimation;

Covariance Matrix; Asymptotic Approximation.
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Chapter 1

Introduction

Statistical inferences for dependent observations are in general more difficult to obtain than

those for independent observations. In this dissertation, we study some inference problems for

dependent observations. In particular, Chapter 2 compares Bayesian predictive densities under

different priors and frequentist REML estimator-based plug-in estimative densities, based on a

criteria related to average of Kullback-Leibler divergences. By asymptotic expansion, we derive

explicit conditions for “second-order KL REML-dominance” (see page 24, Section 2.3.3 for the

definition). For a simple mixed effect model, we show that the Jeffreys prior is not second-order

KL REML-dominant, while an alternative family of improper priors is. This result indicates

the improper prior is better than the Jeffreys prior, based on the criterion of averaged KL

divergences. Simulation studies are also conducted, which match well to the asymptotic results

for moderately large sample sizes. Chapter 3 considers the asymptotic comparison result for

both temporal and spatial AR(1) models, as important cases of correlated data, using some

theoretical results from Chapter 2. We show that all the three noninformative priors, the

Jeffreys prior, the reference prior and the inverse reference prior, dominate the performance of

the REML estimation for variance parameters, by the criterion of the expected KL divergence

between the true density and the predictive densities. Simulation results are included, which



agree well with the asymptotic result, when sample size is moderately large. Chapter 4 studies

the impact of different covariance matrix estimations onto parameter estimation and kriging

prediction. In contrast to the structured covariance matrix in Chapter 2, a more complicated

covariance matrix is assumed, that is, a semi-parametric one which includes both a structured

and an unstructured measurement error part. We derive some preliminary results for the “plug-

in” covariance parameter estimation, kriging predictor and prediction error. A brief summary

of the three parts is given in Chapter 5.

1.1 Asymptotic Comparison of Predictive Densities for Depen-

dent Observations

The prediction problem is significant in statistics. Suppose Y = (Y1, Y2, . . . , Yn) is an obser-

vation vector from the distribution f(y; θ), where θ is the parameter. Assume Z is another

variable of interest, whose distribution is also parameterized by θ. Here Y and Z are dependent

and we would like to predict Z based on Y . One intuitive way is to derive the predictive den-

sity of Z given Y under the Bayesian framework based on some priors. Alternatively, we can

consider the plug-in MLE (Maximum likelihood estimator) or REML (Restricted Maximum

Likelihood) estimative density as well. There are various ways to determine the goodness-of-fit

for the predictors. In Chapter 2, we use Kullback-Leibler divergence as the loss function for the

true conditional density and the predictive density. A number of authors have considered com-

parison of different predictive densities using the same criteria for independent observations,

though little has been done for dependent observations. Instead of considering the MLE-based

estimative density, we compare the restricted maximum likelihood (REML) estimator-based

density (REML is often preferred to MLE, because it takes account of the loss of degrees of
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freedom in estimating the mean and also produces unbiased estimating equations for the vari-

ance parameters) and Bayesian predictive densities with some objective priors. Since the KL

divergence of two densities is usually intractable, we derive a higher order Laplace expansion

of the KL divergence, and define the notion of “second-order KL REML-dominant” to com-

pare predictive distributions using the Laplace approximation. A prior on θ is second-order

KL REML-dominant if the REML based estimative distribution is no better than the Bayesian

predictive distribution under this prior for all θ, in the sense that the leading term of the second

order Laplace expansion of their differences for KL divergences is positive. We provide explicit

conditions for second-order KL REML-dominance (see page 23 - 24, Section 2.3.3). In addi-

tion, for a specific mixed effect model, we show that the Jeffreys prior is not second-order KL

REML-dominant, while an alternative family of improper priors is (see page 28 - 29, Section

2.4.2). To our knowledge, this is the first one of such result for the predictive distribution of

Z, which is dependent on Y . Simulation studies match well to the theoretical result. This part

was one of the winners of the 2008 student paper awards of American Statistical Association

(ASA), Section of Bayesian Analysis, and has been submitted for publication.

1.2 Applications with respect to the AR(1) models

Chapter 3 focuses on an intensive exploration with respect to another correlation structure, by

the theoretical methods in Chapter 2. Here we consider two important correlated structure: (1)

Temporal AR(p) case; (2) Spatial AR(p) case. The p-th order autoregressive (AR(p)) model is

one of the most important models in time series analysis. It consists of the data {yt}, satisfying

yt =
∑p

i=1 aiyt−i + ut, where {ut} is a white noise with mean 0 and variance σ2. Assuming the

stationarity, we focus on both the Bayesian estimation and frequentist estimative method for
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the predictive density of the AR(1) model with unknown σ2 and ρ (which is a1 when p = 1),

utilizing the criterion of expected K-L divergence, which we propose in Chapter 2. We also

point out that the reference prior is superior to the other two candidate ones with respect to

the second-order asymptotic approximation. A related work by Tanaka and Komaki (2005)

focused on the Bayesian estimation of the spectral density of the AR(2) model and proposed

a superharmonic prior as a noninformative prior. They also considered the more general case,

the autoregressive moving average (ARMA) model, focusing on the Bayesian estimation of an

unknown spectral density in the ARMA model. They first showed that in the i.i.d. cases,

the Bayesian spectral densities based on a superharmonic prior asymptotically dominate those

based on the Jeffreys prior, using the asymptotic expansion of the risk difference related to

expectation of KL divergence. Actually the stationary Gaussian processes are getting close to

the i.i.d. cases as the sample size becomes large, and they obtained the asymptotic expansion of

the Bayesian spectral density for the ARMA model, which could be written in the differential-

geometrical quantities as in the i.i.d. cases. Finally they obtained the corresponding result in

the ARMA model. However, our work directly compares different predictive densities instead

of the spectral densities, for the case of AR(1) model.

Meanwhile, models for two-dimensional spatial data where the errors follow a spatial ARMA

process have been considered by several authors, e.g. Martin (1990), Cullis and Gleeson (1991),

Zimmerman and Harville (1991) and Basu and Reinsel (1994). No past work has considered the

prior for this kind of AR(p) spatial model. As a special case, we will explore the AR(1) spatial

model for easy presentation, we consider the noninformative priors and the REML estimative

density for the model with noise from a spatial multiplicative AR(1) model (see Basu and

Reinsel (1993) and Martin (1990)), with fixed σ2.
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General definition of the AR(1) model and the necessary notations for Fisher Information

Matrix calculation are briefly reviewed in this chapter. Within this framework, we compare

different Bayesian predictive densities and REML plug-in density, based on the expected KL

divergence, as proposed in Chapter 2. We provide the asymptotic second-order expression of

the differences between their expected KL divergences. In Section 3.3.3 and 3.4.3, we apply

this approach to AR(1) models, for both time series and spatial structure, respectively. We

consider three candidate priors: the Jeffreys prior, the reference prior and the inverse reference

prior. Asymptotically, all the three priors perform quite well as compared to the REML-plug in

density. In particular, we prove that the reference prior dominates the other two priors. Berger

and Yang (1994) also recommended the reference prior, when comparing it with the Jeffereys

prior and the uniform prior (which results in MLE estimator) based on another criterion, the

MSE of the resulting estimator. In Section 3.3.4 and 3.4.4, we perform numerical simulation for

the AR(1) time series and spatial process, illustrating that the asymptotic results hold, when

the sample size is moderately large. Some concluding work can be seen in Section 3.5.

1.3 Parameter Estimation and Prediction with Errors in Co-

variances

A typical linear mixed effect model is Y = XB + E, where Y is the observation vector or

matrix, X is the design matrix, B is the regression coefficient matrix and E is the unobserved

random errors. In Chapter 2, we compare the Bayesian predictive densities with the REML

plug-in estimative density for this model, assuming that the covariance-variance matrix, V (θ),

is an known function of the unknown parameter θ. While in most practical cases, the true

covariance matrix is unknown. Therefore estimation of the covariance matrix is necessary,
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in order to obtain related statistical inferences. In Chapter 4, we assume that the covariance

matrix of given data contains two parts: some known function of the unknown parameter θ, and

the measurement error R, which is not parametrically constrained. We consider two problems

about this model:

(1) Plug-in estimators of θ, by using sample covariance S or a liner shrinkage estimator R̂ν =

νS+(1−ν)S∗, ν ∈ [0, 1], where S∗ is the diagonal estimator of R, in the restricted log-likelihood

function, where ν is an adjustable tuning parameter that represents shrinkage intensity.

(2) How the kriging performance will be affected, when the true covariance matrix is Ktt but

we replace it by K̂tt = Ktt(θ̂, R̂) (see page 67 in Section 4.1 for definition of K) to derive the

likelihood equations.

For problem (1), we suppose θ is a vector and θi is the ith element, and we can show that

the estimation bias, θ̂i−θi depends on the first and the second order moments of the first order

derivative of the plug-in restricted log-likelihood function and the first order moment of the

second order derivative, where “plug-in” means replacing R by R̂ whenever R appears in the

definition of these functions or derivatives. Obviously this needs specification for estimation

methods of the covariance matrix. As a starting point, we consider a model with an exponential

covariance function K and R simultaneously, where R is set to be random, exponential or long

range dependence, respectively (see page 78 - 80 in Section 4.3.2). From both theoretical and

simulation results, we find that certain linear combination of the sample covariance and the

diagonal estimator will result in much smaller mean squared error (MSE) of the plug-in REML

estimator θ̂, given the tuning parameter ν∗, which is the optimal value of ν ∈ (0, 1). We will

investigate if there is a unique and explicit way to express this ν∗, in terms of K,R,S and S∗.

For problem (2), we are making extension on the Mean Squared Prediction Error (MSPE)
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of empirical kriging predictor. In the future, we plan to get the asymptotic expression of the

MSPE, similar to what we have done for problem (1). The next step is to simulate some data

and check the effect of different estimators of R on the empirical MSPE.

1.4 Summary

The rest of the dissertation is arranged as following. Chapter 2 compares Bayesian predic-

tive densities with different priors and frequentist REML-based plug-in estimative densities,

by averaging the Kullback-Leibler divergences. Chapter 3 applies the theoretical method from

Chapter 2, to both temporal and spatial AR(1) models, as important cases of correlated data.

We showed that all the three noninformative priors, the Jeffreys prior, the reference prior and

the inverse reference prior, dominate the performance of the REML estimation for variance pa-

rameters, in the sense of the expected KL divergence between the true density and the predictive

densities. The reference prior dominates the other two in terms of expected KL divergence be-

tween the true density and the predictive density. Simulation results agree with the asymptotic

case when the sample size is not too small. Chapter 4 discusses parameter estimation and

kriging prediction problem in spatial modeling with errors in covariances. Further comments

and discussions are summarized in Chapter 5.
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Chapter 2

Asymptotic Comparison of Predictive

Densities for Dependent Observations

This chapter studies Bayesian predictive densities based on different priors and frequentist plug-

in type predictive densities when the predicted variables are dependent on the observations.

Average Kullback-Leibler divergence to the true predictive density is used to measure the

performance of different inference procedures. The notion of second-order KL dominance is

introduced, and an explicit condition for a prior to be second-order KL dominant is given using

an asymptotic expansion. As an example, we show theoretically that for mixed effects models,

the Bayesian predictive density with prior from a particular improper prior family dominates

the performance of REML plug-in density, while the Jeffreys prior is not always superior to

the REML approach. Simulation studies are included which show good agreement with the

asymptotic results for moderate sample size.

2.1 Introduction

Prediction is of great importance in statistics. The general prediction problem can be described

as follows. Let Y = (Y1, Y2, . . . , Yn) be the observation from the distribution f(y; θ), where θ



is the parameter, and Z be another random variable with distribution also parameterized by

θ. Y and Z may be dependent for time series or spatial data, and we would like to predict Z

based on observation Y . In principle, we would like to know the distribution of Z conditional

on Y . This is usually characterized by a point predictor and a prediction interval in the

frequentist framework, and good prediction means both an accurate point predictor and a

narrow prediction interval with correct coverage probability. Alternatively, one can take a

decision-theoretic approach and define a loss function between the true conditional density

g(z|y, θ) and the predictive density ĝ(z|y). A common measure of discrepancy between two

density functions g and ĝ is the Kullback-Leibler (KL) divergence:

D(g(z|y, θ), ĝ(z|y)) =

∫
g(z|y, θ) log g(z|y,θ)

ĝ(z|y) dz.

To compare two predictive densities g̃1 and g̃2, one can look at the expected difference of

KL divergence

∫
{D(g, g̃1) −D(g, g̃2)}f(y; θ)dy. (2.1)

Numerous authors have considered the comparison of different prediction methods using

(2.1) when Z is independent of Y . In terms of this criterion, Aitchison (1975) claimed that

in general the Bayesian predictive density based on a vague prior is better than the predictive

density g(Z; θ̂), where θ̂ is the maximum likelihood estimate (MLE) (Aitchison refers to it as

the estimative density), and proved that Bayesian predictive density is better in the sense of

(2.1) for all θ for g(y; θ) in the gamma and multivariate normal families. These are apparently

the only two known cases when it is proven that such claim holds exactly, though it is widely
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suspected that the same is true for a much wider class of distributions. Murray (1977) gave a

stronger result in his note, using the information measure together with the idea of invariance

to derive the vague predictive density as the optimum in a wide class of possible estimates

of p(z|θ). Hartigan (1998) showed that, frequently, in more than one dimension the maximum

likelihood estimate plug-in density is asymptotically inadmissible and may be improved upon by

using the predictive density corresponding to a least favorable prior. He also provides solutions

(if they exist) to certain differential equations as the answer to admissibility questions for the

“near ML” estimates. Komaki (1996) considered optimal adjustments of estimative to predic-

tive estimators for exponential families, and confirms Aitchison’s conjecture from the viewpoint

of asymptotic theory. The general form of the average Kullback-Leibler divergence from the

true distribution to a predictive distribution, and the asymptotic expression for Bayesian pre-

dictive distributions are obtained under the assumption that Z independent of Y . Adopting

Kullback-Leibler divergence as a loss function, Komaki (2006) had also provided some kinds

of priors that dominate the Bayesian predictive distributions based on the Jeffreys prior under

some differential geometric conditions. George et al. (2006) introduced the Bayesian predictive

densities under superharmonic priors that dominate the Bayes predictive density under the

uniform prior, for independent p-dimensional multivariate normal vectors. Ren et al. (2006)

investigated the estimation and prediction for exponential distributions with unknown rate pa-

rameter θ and compared the performances of MLE with Bayesian estimates under several loss

functions. They developed second-order asymptotic expressions for the Bayes estimates under

these loss functions, one of which is KL divergence. They also assumed that Z is independent

of Y .
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2.1.1 Background for Restricted log-likelihood estimation Method

Consider a general linear mixed model

Y = Xβ + Zb+ ǫ,

where X and Z are specified design matrices, β is a vector of fixed effect coefficients, b and ǫ

are random, mean zero, and Gaussian if necessary. Usually we can think of b being constant

over subjects, ǫ as independent between subjects, possibly correlated within subjects. Let θ

denote free parameters in the variance specification.

We observe n r.v.s Y . Once the structure of errors is fully specified, and Cov(b, ǫ) = 0, we

have

Y ∼ N(Xβ, V (θ)) (2.2)

V (θ) = Var(ǫ) + ZVar(b)ZT . (2.3)

For mixed models, the covariance matrix V is a function of a q-dimensional parameter θ, and

is assumed to be positive definite for θ in a neighborhood of the true value. Any estimation

or prediction procedure proceeds only if variances and covariances among the observations are

known or, more often, after they have been estimated.

One of the recommended methods for estimating variances and covariances is the Restricted

Maximum Likelihood (REML) method, which has been used and studied over the past 40 years.

In essence, the REML method deals with linear combinations of the observed values whose

expectations are zero. These “error contrasts” are free of any fixed effects in the model. In

contrast to the maximum likelihood estimator (MLE) of the variance components (which can
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be biased downwards in a linear model), REML corrects this problem by using the likelihood of

a set of residual contrasts and is generally considered superior. In other words, REML is often

preferred to maximum likelihood estimation as a method of estimating covariance parameters

in linear models because it takes account of the loss of degrees of freedom in estimating the

mean and produces unbiased estimating equations for the variance parameters.

The restricted or residual maximum likelihood (REML) method was proposed by Thompson

(1962), as a way of estimating dispersion parameters associated with linear models. Numer-

ous authors have given overviews on REML, e.g.Patterson and Thompson (1971) introduced

restricted maximum likelihood estimation (REML) as a method of estimating variance compo-

nents in the context of unbalanced incomplete block designs. Surveys of REML can be found

in articles of Harville (1977), Khuri and Sahai (1985), and Robinson (1987), and in the book by

Searle et al. (1992). Alternative and more general derivations of REML were given by Harville

(1974), Cooper and Thompson (1977) and Verbyla (1990). In all of these the restricted like-

lihood is presented as the marginal likelihood of the error contrasts. Or it can be regarded

as modified profile likelihood in Barndorff-Nielsenn (1983). Some other areas in which REML

has been used include the following: estimating smoothing parameters in penalized estimation

Wahba (1990) (see Speed (1991) for related discussions); the estimation of parameters in ARMA

processes and other time series in the presence of fixed effects (Cooper and Thompson (1977)

and Azzalini (1984)); REML estimation in spatial models (Green (1985) and Gleeson and Cullis

(1987)); or the analysis of longitudinal data in Laird and Ware (1982); and REML estimation

in empirical Bayes smoothing of the census undercount in Cressie (1992). Therefore, in our

work we also consider REML as one candidate method to estimate the variance parameters.

Definition of Log-Likelihood
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From equation (2.2) and (2.3), we get the minus twice the log-likelihood is

(Y −Xβ)TV −1(θ)(Y −Xβ) + log |V (θ)|

Thus, we can get the MLE of θ (denoted by θ̂MLE) by minimizing the above equation. Fur-

thermore, given θ̂ we can find the MLE of β by generalized least squares.

Definition of Restricted maximum likelihood: (REML)

Suppose that we can find some linear combinations AY whose distribution does not depend on

β. In fact we can find up to n − p linearly independent such. One choice is any n − p of the

least-squares residuals of the regression of Y on X. In REML we treat AY as the data and use

maximum-likelihood estimation of θ (the parameters in V).

The REML estimates do not depend on the choice of A, so this procedure is not as arbitrary

as it sounds. Indeed, the REML estimates minimize

(Y −Xβ)TV −1(θ)(Y −Xβ) + log |V (θ)| + log |XTV −1(θ)X|

Indeed, the REML fit criterion is the marginal likelihood, integrating β out with a vague

prior.

2.1.2 Correlated Data

It is worth noting that in many practical problems the data are correlated. Notable examples

include data collected from time series or spatial models, and data that can be modeled by

mixed effect models. In particular, a number of authors have considered Bayesian analysis of

spatially correlated data. Berger et al. (2001) assumed the spatial correlation structure of the
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model is specified with a small number of unknown parameters, and the mean function of the

model is a linear function of some unknown covariates. To construct Bayesian analysis of such

spatial models, they needed to determine an objective prior distribution for the unknown mean

and covariance parameters of the random field. The proposed reference prior for the model

was shown to result in a proper posterior. It was also compared with the commonly used

Jeffreys prior in terms of the ability to produce confidence sets with good frequentist coverage,

indicating that the Jeffreys-rule prior can be quite inadequate. Inspired by this fact and that

Jeffreys (1961a) argued for use of the independence Jeffreys prior in problems that involve

both linear and covariance parameters, we used the independence Jeffreys prior as one choice

of the default prior distributions in this chapter. The model of correlated data can be used

in different areas of spatial statistics such as disease mapping (Ferreira and Oliveira (2007))

or image analysis (Besag et al. (1991)). It has also been used for highly structured stochastic

models such as spatio-temporal models (Sun et al. (2000)). It can also be used in the CAR

model framework, such as in (MacNab (2003)).

In this chapter, we consider the comparison of predictive density using (2.1) when Z and

Y are dependent. Instead of considering the MLE-based estimative density, we compare the

restricted maximum likelihood (REML) estimator-based estimative density and Bayesian pre-

dictive densities with some objective priors. One reason for using the KL divergence is that it

has historically been the principal device for developing noninformative priors (Hartigan, 1998).

Since (2.1) is in general intractable, we use a higher order Laplace expansion to approximate

it, and introduce the notion of “second-order KL REML-dominant” to compare predictive

distributions using the Laplace approximation. We focus on comparisons between Bayesian

predictive densities and REML-based estimative density, although our result can be used to
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compare different class of priors as well. In particular, we call a prior on θ as a second-order KL

REML-dominant if the corresponding predictive distribution under this prior is better than the

REML based estimative distribution for all θ in the sense that the leading term of the second

order Laplace expansion of (2.1) is greater than or equal to zero. We derive explicit conditions

for second-order KL REML-dominance, and show for one specific mixed effect model that the

Jeffreys prior is not second-order KL REML-dominant, while an alternative family of improper

prior is. To our knowledge this is the first of such result for the predictive distribution of Z

dependent on Y . Simulation studies are conducted which show good match to the asymptotic

results for moderately large sample size.

The chapter is organized as follows. Section 2.2 provides notation and the model under

which we derive our results. Section 2.3 derives the Laplace expansion of the expected difference

between the KL divergence of the REML estimative density and the Bayesian predictive density,

and gives explicit conditions for a prior to be second-order KL REML-dominant. Section 2.4

applies the results to a specific mixed effect model to show that Jeffreys prior is not second-

order KL REML-dominant, while a family of improper priors is. Simulation results are also

included. We conclude in Section 2.5 with some discussion and future work.

2.2 Notation and Preliminaries

Let Y = (Y1, ..., Yn)
T be an arbitrary n× 1 observation vector. We are interested in predicting

some unobserved value Z, which is dependent on Y . In this chapter we only consider univariate

Z for simplicity. We assume that Y and Z have joint Gaussian distribution of the form
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


Y

Z


 ∼ N







Xη

x0η


 ,




V (θ) wT (θ)

w(θ) v0(θ)





 , (2.4)

where X and x0 are assumed to be known matrices of regressors of dimensions n × q and

1 × q respectively, and η is an unknown q × 1 vector of regression coefficients. Special cases of

(2.4) include various linear mixed effect models, and spatial linear models where the errors are

assumed to be a realization from a Gaussian random field (GRF). We further assume that the

covariance elements V (θ), w(θ) and v(θ) are all known functions of an unknown p -dimensional

parameter vector θ. In Bayesian analysis we denote the prior density function by π(θ). To

simplify the notation, we write V,w and v without indicating the dependence on θ.

The restricted log likelihood function of Y is given by

ℓn(θ) = −n−q
2 (log 2 + log π) + 1

2 log |XTX| − 1
2 log |V | − 1

2 log |XTV −1X| − G2

2 , (2.5)

where G is the generalized residual sum of squares given by

G2 = G2(θ) = Y T {V −1 − V −1X(XTV −1X)−1XTV −1}Y. (2.6)

See for example, Stein (1999) for more discussion on REML and its advantage over regular

maximum likelihood (MLE) estimators for covariance parameters.

If θ is known, then the Best Linear Unbiased Predictor (BLUP) of z is given by ẑ = λTY ,

where

λ = V −1wT + V −1X(XTV −1X)−1(x0 −XTV −1wT ), (2.7)
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and the corresponding prediction error is given by

σ2
0 = v0 − wV −1wT + (xT0 − wV −1X)(XTV −1X)−1(x0 −XTV −1wT ). (2.8)

Equation (2.7) and (2.8) are also known as the universal kriging formula in geostatistics where

Y are observations from a GRF.

If we assume θ is known and η unknown with a uniform prior density, the Bayes rule under

least squares loss coincides with the Best Linear Unbiased Predictor (BLUP). In this simple

case, the predictive distributions for the frequentist and Bayesian inference are the same, since

both reduce to

ψ(z;Y, θ) = Φ(z−λ
TY

σ0
), (2.9)

where Φ is the standard normal distribution function. This is also the conditional distribution

of Z given Y in a Bayesian framework.

In this work, we study a more complicated case, where θ is assumed to be unknown. Fur-

thermore, under the Bayesian framework, we assume that θ has a prior density π(θ) which is

differentiable over a region that includes the true value of θ, while the prior of η continues to be

assumed uniform (independent of θ). The posterior predictive distribution function of z given

Y is given by

ψ̃(z;Y ) =
∫
eln(θ)+Q(θ)ψ(z;Y,θ)dθ∫

eln(θ)+Q(θ)dθ
, (2.10)

with Q(θ) = log π(θ).

In contrast to (2.10), we also consider the estimative distribution under the frequentist

framework

ψ̂(z;Y ) = ψ(z;Y, θ̂), (2.11)
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where θ̂ is the REML estimator to maximize ℓn(θ).

In this chapter (and also the rest of the dissertation) we use superscripts to denote compo-

nents of θ, e.g. θi for the ith component. For scalar functions of θ, such as ψ(z;Y, θ) (with z and

Y fixed for the time being) or Q(θ), subscripts will indicate derivative with respect to the com-

ponents of θ, i.e. Qi = ∂Q
∂θi , ψij = ∂2ψ

∂θi∂θj , etc. Also we define Ui = ∂ℓn(θ)
∂θi , Uij = ∂2ℓn(θ)

∂θi∂θj , Uijk =

∂3ℓn(θ)
∂θi∂θj∂θk .

All the above quantities are functions of a particular θ, and could be evaluated at the REML

estimator θ̂, which we denote with a hat, such as Ûi, ψ̂ij , and so on. By definition, we have

{Ûi} = 0, and {−Ûij} is the observed information matrix. If the latter matrix is invertible, we

denote its inverse matrix with superscripts, i.e., if A is the p× p matrix with (i, j)-th entry as

Ûij , then if A−1 exist, Û ij is its (i, j)-th entry.

We also use the summation convention, where a repeated index appearing as both a subscript

and a superscript in the same formula implicitly indicates a summation over that index. For

simplicity, it is not explicitly indicated that all the quantities depend on dimension n. The

following assumptions are made for the rest of the chapter.

Assumption 1: ℓn(θ) and all of its derivatives are of Op(n). Expectations of them are of

O(n).

Assumption 2: Q and ψ and their derivatives are of Op(1). Their expectations are of O(1).

Assumption 3: {Ûij} is invertible.

Assumption 1 and 2 are made for consistency with regular maximum likelihood theory for

i.i.d. observations, and are satisfied by many linear mixed effect models. For spatial linear

models, these two assumptions imply that we are working with the framework of “increasing

domain asymptotics”, given by Mardia and Marshall (1984), instead of the alternative “infill
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asymptotics” by Stein (1999).

With the above notations, and also applications of formulae (8.3.50) - (8.3.55) in Chapter

8 of Bleistein and Handelsman (1986), to the numerator and denominator of (7), we get

ψ̃ − ψ̂ = 1
2 Ûijkψ̂ℓÛ

ijÛkℓ − 1
2(ψ̂ij + 2ψ̂iQ̂j)Û

ij +Op(n
−2). (2.12)

We can write Ui = n1/2Zi, Uij = nκij + n1/2Zij, Uijk = nκijk + n1/2Zijk, where κij , κijk are

non-random and Zi, Zij , Zijk are random variables with mean 0, and we assume that all these

quantities are of O(1) or Op(1) as n→ ∞.

Also, let κi,j = E(ZiZj) = −κij , κij,k = E(ZijZk). By standard identity, κi,j is the (i, j)-th

entry of the normalized Fisher information matrix, we assume this matrix to be invertible with

inverse entries κi,j. Explicit formulae exist for calculating these quantities, which can be found

in Section 8.2 of Smith and Zhu (2004).

In this notation and by a standard Taylor expansion of ℓn, we get the approximation

ψ̂ = ψ + n−1/2κi,jZiψj + n−1(κi,jκk,ℓZikZjψℓ + 1
2κ

i,rκj,sκk,tκijkZrZsψt + 1
2κ

i,jκk,ℓZiZkψjℓ)

+Op(n
−3/2), (2.13)

and by (2.12) we have

ψ̃ = ψ̂ + 1
2n

−1{κijkκi,jκk,ℓψℓ + (ψij + 2ψiQj)κ
i,j} +Op(n

−3/2). (2.14)
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2.3 Asymptotic Expression of KL divergences

2.3.1 Kullback-Leibler divergence

Suppose we have some observations, which can be modeled by (2.4), and we want to predict

Z given Y . In this work we will compare predictive and estimative densities using Kullback-

Leibler divergence (KL divergence) as the criterion. Let ψ(z;Y, θ) be the cumulative distribution

function (CDF) of z given Y and θ, then the probability density function (PDF) of z given Y

is of the form ϕ(z;Y, θ) = ∂ψ
∂z , and similarly, for any predictive distribution function ψ∗(z;Y ),

we let ϕ∗(z;Y ) = ∂ψ∗

∂z be the predictive density function. The KL divergence from ϕ∗(z;Y ) to

ϕ(z;Y, θ) (simply written as ϕ below) is given by

D(ϕ(z;Y, θ), ϕ∗(z;Y )) =

∫
ϕ(z;Y, θ) log ϕ(z;Y,θ)

ϕ∗(z;Y )dz (2.15)

We say the predictive density function ϕ∗(1) is KL dominated by ϕ∗(2) if for all θ ∈ Rp,

EY |θ[D(ϕ(z;Y, θ), ϕ∗(1)) −D(ϕ(z;Y, θ), ϕ∗(2))]

=

∫
[D(ϕ(z;Y, θ), ϕ∗(1)) −D(ϕ(z;Y, θ), ϕ∗(2))]ϕ(Y ; θ)dY ≥ 0. (2.16)

Equation (2.16) can be used to compare two prediction procedures or two priors under the

Bayesian framework. In particular, we can compare the estimative and predictive procedure

by taking ϕ̂(z;Y ) as ϕ∗(1), and ϕ̃(z;Y ) as ϕ∗(2), respectively. It will be interesting if in the

Bayesian framework, there exists some prior such that the Bayesian predictive density function

is superior to the REML estimative density function in terms of the KL measure for all θ, and

we call such prior “KL REML-dominant prior”. It is in general difficult to prove exact KL
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REML-dominance. In what follows, we derive the Laplace expansion of (2.16), and use the

leading terms to define second-order KL REML-dominance.

2.3.2 Asymptotic approximation to the KL divergences and their difference

Using Taylor expansion of logarithm, we can approximate the Kullback-Leibler divergence from

ϕ̃ to ϕ by

D(ϕ, ϕ̃) = −
∫

log( ϕ̃ϕ)ϕdz = −
∫

log( ϕ̃−ϕϕ + 1)ϕdz

= −
∫

[( ϕ̃−ϕϕ ) − 1
2( ϕ̃−ϕϕ )2 + o(n−2))ϕdz

= 1
2

∫
(ϕ̃−ϕ)2

ϕ dz + o(n−2). (2.17)

Similarly, we can get D(ϕ, ϕ̂) = 1
2

∫ (ϕ̂−ϕ)2

ϕ dz + o(n−2), and

D(ϕ, ϕ̂) −D(ϕ, ϕ̃) = 1
2

∫
(ϕ̂−ϕ)2−(ϕ̃−ϕ)2

ϕ dz + o(n−2). (2.18)

The above quantity could be expressed explicitly using (2.13) and (2.14). Let

ψ∗(z;Y ) = ψ(z;Y, θ) + n−1/2R(z, Y ) + n−1S(z, Y ) + n−3/2T (z, Y ) +Op(n
−2),

where ψ∗ denotes the predictive distribution function of Z given Y , and could be either ψ̂ or

ψ̃. We have

ϕ∗(z;Y ) = ϕ(z;Y, θ) + n−1/2R′(z, Y ) + n−1S′(z, Y ) + n−3/2T ′(z, y) +Op(n
−2),
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where ϕ∗ denotes the predictive density function of Z given Y , and could be either ϕ̂ or ϕ̃. We

keep the notation of R since it is identical to both ϕ̂ and ϕ̃. For ϕ̂, we denote the resulting S

and T by S1 and T1, respectively. For ϕ̃, we denote the corresponding S and T by S2 and T2.

By (2.13) and (2.14) and their derivatives, we get

R
′

= ∂R
∂z = κi,jZiϕj ,

S′
1 = ∂S1

∂z = κi,jκk,lZikZjϕl +
1
2κ

i,rκj,sκk,tκijkZrZsϕt + 1
2κ

i,jκk,lZiZkϕjl for ψ̂,

S′
2 = ∂S2

∂z = S′
1 + 1

2κ
i,jκk,lκijkϕl + (1

2ϕij + ϕiQj)κ
i,j for ψ̃,

T ′
2 = T ′

1 + κi,jκk,l(Zijk + κt,rZrκijkt) + κi,jκk,lκijkϕlsκ
s,rZr

+ κijkκ
k,lϕl(κ

p,iZpqκ
q,j + κp,qZqκ

i,aκabpκ
b,j)

+ κijkκ
i,jϕl(κ

c,kZcdκ
d,l + κc,dZdκ

k,eκefcκ
f,l)

+ κi,j(κt,rZrϕijt + 2κh,mZmϕiQjh + 2κs,rZrϕisQj)

+ (ϕij + 2ϕiQj)(κ
p,iZpqκ

q,j + κp,qZqκ
i,aκabpκ

b,j) for ψ̃.

Therefore, we have

ϕ̂(z;Y ) = ϕ(z;Y, θ) + n−1/2R
′

(z, Y ) + n−1S′
1(z, Y ) + n−3/2T ′

1(z, Y ) +Op(n
−2),

ϕ̃(z;Y ) = ϕ(z;Y, θ) + n−1/2R
′

(z, Y ) + n−1S′
2(z, Y ) + n−3/2T ′

2(z, Y ) +Op(n
−2), and

D(ϕ, ϕ̂) −D(ϕ, ϕ̃) = 1
2

∫
n−2(2n−3/2R′(S′

1−S′

2)+S
′2
1 −S′2

2 )+2n−2R′(T ′

1−T ′

2)
ϕ dz +O(n−5/2)

= n−3/2

∫
R′(S′

1−S′

2)
ϕ dz + 1

2n
−2

∫
S′

1
2−S′

2
2

ϕ dz + n−2

∫
R′(T ′

1−T ′

2)
ϕ dz +O(n−5/2).

(2.19)
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From (2.9), we get

ϕj = ∂ϕ
∂θj = [−σ0j

σ0
+ (z−λ

T Y
σ0

)(
λT

j Y

σ0
+

σ0j(z−λT Y )

σ2
0

)]ϕ, (2.20)

and

ϕjl = ∂2ϕ
∂θj∂θl =

∂ϕj

∂θl =
∂{[−σ0j

σ0
+(
z−λT Y
σ0

)(
λT

j Y

σ0
+
σ0j(z−λT Y )

σ2
0

)]ϕ}
∂θl . (2.21)

Applying the above expressions, and the fact that z−λTY
σ0

∼ N(0, 1), we have

∫
ϕdϕl
ϕ dz =

λT
d Y λ

T
l Y

σ2
0

+ 2σ0dσ0l

σ2
0
, (2.22)

∫
ϕijϕd

ϕ dz =
λT

ijY λ
T
d Y+2

σ0d
σ0

λT
i Y λ

T
j Y

σ2
0

+ 2
σ0dσ0ij

σ2
0

+ 2
σ0iσ0jσ0d

σ3 , (2.23)

∫
ϕijtϕd

ϕ dz =
λT

ijtY λ
T
d Y+2σ0dσ0ijt

σ2
0

+ 2σ0d

σ3
0

(σ0tσ0ij + σ0jσ0it + σ0iσ0tj

+ λTt Y λ
T
ijY + λTj Y λ

T
itY + λTi Y λ

T
jtY ), (2.24)

∫
ϕijϕbd

ϕ dz =
λT

ijY λ
T
bdY+2σ0bdσ0ij

σ2
0

+ 26
σ0iσ0jσ0bσ0d

σ4

+ 2
(σ0bσ0dσ0ij+σ0iσ0jσ0bd+σ0ijλT

b Y λ
T
d Y+σ0bdλ

T
i Y λ

T
j Y )

σ3
0

+ 2
(λT

i Y λ
T
j Y λ

T
b Y λ

T
d Y+σ0iσ0jλ

T
b Y λ

T
d Y+σ0bσ0dλ

T
i Y λ

T
j Y )

σ4
0

+ 6
(σ0iλ

T
j Y+σ0jλ

T
i Y )(σ0bλ

T
d Y+σ0dλ

T
b Y )

σ4
0

. (2.25)

By substituting the above quantities into the first term on the right hand side of equation

(2.19), we get

n−3/2

∫
R′(S′

1−S′

2)
ϕ dz = −n−3/2

∫
κa,bZaϕb[

1
2κijkκ

i,jκk,lϕl+(
1
2ϕij+ϕiQj)κi,j ]

ϕ dz

= −n−3/2[12κ
a,bZaκijkκ

i,jκk,lϕl(
λT

b Y λ
T
l Y

σ2
0

+ 2σ0bσ0l

σ2
0

)
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+ 1
2κ

a,bZaκ
i,j(

λT
ijY λ

T
b Y+2

σ0b
σ0

λT
i Y λ

T
j Y

σ2
0

+ 2
σ0bσ0ij

σ2
0

+ 2
σ0iσ0jσ0b

σ3 )

+Qjκ
a,bZaκ

i,j(
λT

b Y λ
T
i Y

σ2
0

+ 2σ0bσ0i

σ2
0

)]. (2.26)

Similarly we can get the expressions for 1
2n

−2
∫ (S′

1
2−S′

2
2)

ϕ dz and n−2
∫ R′(T ′

1−T ′

2)
ϕ dz as well.

2.3.3 Integration over Y given θ

To compute the leading terms in (2.16), we need to integrate (2.26), 1
2n

−2
∫ (S′

1
2−S′

2
2)

ϕ dz and

n−2
∫ R′(T ′

1−T ′

2)
ϕ dz, the leading terms of the difference between two KL divergences, over Y

conditional on θ. Let Yε = (Xη)ε + eε, where the subscript ε is an index between 1 and n. we

have E{ZiYε} = n−1/2E{UiYǫ}. Note that

Ui = 1
2 (υαβ

∂ωαβ

∂θj − eαeβ
∂ωαβ

∂θj ),

where {ωαβ} = W = V −1 −V −1X(XTV −1X)−1XTV −1, and also Y TWY = eTWe, we can get

E{ZiYε} = 0.

Furthermore,

E{ZeZfYεYξ} = κe,f (Xη)ε(Xη)ξ + κe,fυεξ + 1
n{V ∂W

∂θe V
∂W
∂θf V }εξ + 1

n{V ∂W
∂θf V

∂W
∂θe V }εξ,

E{ZeZijYεYξ} = κe,ij(Xη)ε(Xη)ξ + κe,ijυεξ + 1
n{V ∂W

∂θe V
∂2W
∂θi∂θj V }εξ + 1

n{V ∂2W
∂θi∂θj V

∂W
∂θe V }εξ,

E{ZeZijkYεYξ} = κe,ijk(Xη)ε(Xη)ξ + κe,ijkυεξ + 1
n{V ∂W

∂θe V
∂3W

∂θi∂θj∂θkV }εξ

+ 1
n{V ∂3W

∂θi∂θj∂θk V
∂W
∂θe V }εξ,
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E{λξjYξλεdYε} = λξjλ
ε
d[(Xη)ε(Xη)ξ + υεξ] = λξjλ

ε
dυεξ,

E{ZaλξbYξλεl Yε} = λξbλ
ε
lE(Zaeεeξ) = −1

2n
−1/2λβb λ

ε
l
∂ωαβ

∂θa (υαευβξ + υαξυβε),

E{λǫiλξjλγaλδbYǫYξYγYδ} = λǫiλ
ξ
jλ
γ
aλ

δ
b(υεξυγδ + υǫγυξδ + υǫδυǫγ).

Integration of (2.26) over Y and the other two leading terms can be evaluated using these

equations, which leads to the following theorem.

Theorem 2.3.1. Under Assumption 1-3,

EY |θ[D(ϕ, ϕ̂) −D(ϕ, ϕ̃)] = g1 − g2 + o(n−2), (2.27)

where

g1 = n−2

σ2
0
{Qjκa,bκi,jλǫiλξb ∂ω

αβ

∂θa (υαǫυβξ + υαξυβǫ)

− 3Qbκ
a,bκi,jκk,l(κijk + κik,j)(λǫlλ

ξ
aυǫξ + 2σ0lσ0a)

− 3Qbκ
a,bκk,l(λǫklλ

ξ
aυǫξ + 2σ0a

σ0
λǫkλ

ξ
l υǫξ + 2σ0aσ0kl + 2σ0aσ0kσ0l

σ0
)

− 1
2κ

i,jκa,b(QjQb + 4Qjb)(λ
ǫ
iλ
ξ
aυǫξ + 2σ0aσ0i)}, (2.28)

g2 = −n−2

σ2
0
{1

4(κa,bκi,jκk,lκkijλ
ξ
bλ
ǫ
l
∂ωαβ

∂θa (υαǫυβξ + υαξυβǫ)

+ κa,bκi,j [λξbλ
ǫ
ij
∂ωαβ

∂θa (υαǫυβξ + υαξυβǫ)]

− 5
2κ

a,bκc,dκi,jκk,lκabc(κik,j + κijk)(λ
ǫ
dλ

ξ
l υǫξ + 2σ0dσ0l)

− 5
2κ

a,bκi,jκk,l(κik,j + κijk)(λ
ǫ
abλ

ξ
l υǫξ + 2σ0l

σ0
λǫaλ

ξ
bυǫξ + 2σ0lσ0ab + 2σ0lσ0aσ0b

σ0
)

− κu,vκi,jκk,l(κu,ijk + κuijk)(λ
ǫ
vλ

ξ
l υǫξ + 2σ0vσ0l) − κv,tκi,j

× [
λǫ

ijtλ
ξ
vυǫξ+2σ0vσ0ijt

σ2
0

+ 2σ0v

σ3
0

(σ0tσ0ij + σ0jσ0it + σ0iσ0tj + λǫtλ
ξ
ijυǫξ + λǫjλ

ξ
itυǫξ + λǫiλ

ξ
jtυǫξ)]
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− 3
8κ

a,bκi,j(λǫijλ
ξ
abυǫξ + 2σ0abσ0ij + 26

σ0iσ0jσ0aσ0b

σ2
0

+ 2
σ0aσ0bσ0ij+σ0iσ0jσ0ab+σ0ijλǫ

aλ
ξ
bυǫξ+σ0abλ

ǫ
iλ

ξ
jυǫξ

σ0

+ 2
λǫ

iλ
ξ
jλ

γ
aλ

δ
b(υǫξυγδ+υǫγυξδ+υǫδυξγ )+σ0aσ0bλ

ǫ
iλ

ξ
jυǫξ+σ0iσ0jλǫ

aλ
ξ
bυǫξ

σ2
0

+ 6
σ0aσ0iλ

ǫ
bλ

ξ
jυǫξ+σ0aσ0jλ

ǫ
bλ

ξ
i υǫξ+σ0bσ0iλ

ǫ
aλ

ξ
jυǫξ+σ0bσ0jλ

ǫ
aλ

ξ
i υǫξ

σ2
0

)}. (2.29)

Remarks: We say a prior π(θ) is “second-order KL REML-dominant”, if under such prior

g1 ≥ g2 for all θ, i.e., the leading term of EY |θ[D(ϕ, ϕ̂) − D(ϕ, ϕ̃)] is greater than or equal to

zero.

2.4 Example: Mixed Effect Model

In this section we compare the plug-in predictive density and the Bayesian predictive density

in terms of their KL divergences to the true conditional density function ϕ(z;Y, θ), for a simple

mixed effect model as an illustration. We consider the Jeffreys prior and a family of improper

priors, and show theoretically that the Jeffreys prior is not second-order KL REML-dominant,

while there exists α∗ such that the improper prior family π(β, s1, s2) ∝ (s1s2)
−α is second-

order KL REML-dominant for α ∈ [α∗, 1). Simulation studies are conducted which have great

agreement with the theoretical results based on asymptotic expansion for moderate sample

sizes.

2.4.1 Model and Notation

Consider the simple mixed effect model

yi,j = β + µi + ǫij, i = 1, ..., n, j = 1, ...,m, (2.30)
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where µi ∼ N(0, s1), ǫij ∼ N(0, s2), and π(β) ∝ constant. Presumably µ and ǫ are independent.

Without loss of generality, we study the predictive density of µ1. Using the vector notation in

model (2.4), we have X = 1mn, x0 = 1, V = Diag{V1, V2, ..., Vn} with Vi = s1 · Jm + s2 · Im,

w = (0m(n−1), s1 · 1m)T , and v0 = s1, where 1mn = (1, ..., 1)T , Im the identity matrix, Jm =

1m1Tm, i = 1, ..., n. By standard computation, we get

|XTX|1/2 = (mn)1/2,

|V |−1/2 = s
−(m−1)n/2
2 (s2 +ms1)

−n/2,

|XTV −1X|−1/2 = (s2 +ms1)
1/2(mn)−1/2,

λ = s2
mn(s2+ms1)

1mn + s1
s2+ms1

(0m(n−1), 1m)T ,

σ2 = s2(mns1+s2)
mn(s2+ms1) ,

W = {ωα,β} = V −1 − V −1X(XTV −1X)−1XTV −1

= Diag{V 1, ..., V n} − 1
nm(s2+ms1)

Jmn,

V i = 1
s2
Im×m − s1

s2(s2+ms1)
Jm, i = 1, ..., n,

K = {κi,j}2×2 =




2n(s2+ms1)2

(n−1)m2 +
2s22

m2(m−1)
− 2s22
m(m−1)

− 2s22
m(m−1)

2s22
m−1


 .

From the matrix form of K, we can derive that the Jeffreys prior of θ = (s1, s2) in this model is

πJ(θ) ∝ 1
s2(ms1+s2)

,

with

Q1J = ∂ log π
∂s1

= − m
ms1+s2

,
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Q2J = − ms1+2s2
s2(ms1+s2)

.

We add the subscript “J” to denote the Jeffreys prior and relevant functions. A family of

improper priors is also considered, which we refer to as

παI (β, s1, s2) ∝ (s1s2)
−α, (2.31)

with α ∈ (0, 1) to guarantee proper posterior distributions (Hobert and Casella, 1996). Corre-

spondingly, we have

Q1I = ∂ log πI
∂s1

= − α
s1
,

Q2I = − α
s2
,

where we add “I” as a subscript to relevant functions under the improper priors.

2.4.2 Theoretical results for the mixed effect model

In this section, we show in Theorem 2 and 3 that for the mixed effect model (2.30), there exists

α∗ such that the family of improper priors πI with α ∈ [α∗, 1) are second-order KL REML

dominant, while the Jeffreys prior is not. In the remarks we give conditions under which

Bayesian predictive density with Jeffreys prior outperforms the REML plug-in estimator, and

more explicit results on α∗. All the results are derived under Assumptions 1 - 3. We first

consider the Jeffreys prior. Substituting Q1, Q2 into equation (2.27) and compare that with

(2.28), we have
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Theorem 2.4.1. For the mixed effect model (2.30), there exists r ∈ (0,∞) such that g1 ≥ g2

iff s1
s2

≥ r as n → ∞, i.e., the Jeffreys prior is not second-order KL REML-dominant for this

specific model.

Proof: For any fixed n and m, n2(g1−g2) is the product of a positive number and a function

of the ratio x = s1
s2

. We have

lim
n→∞

n2(g1 − g2) = CJ(m,n, s1, s2)fJ(x),

where CJ(m,n, s1, s2) = s2
s2+mns1

is positive for all m > 1, n > 0, s1 > 0, s2 > 0, and fJ(x) =

x9 + ax8 + bx7 + cx6 + dx5 + ex4 + fx3 + gx2 + hx+ i, with

a = −14704+16809m−30148m2+43577m3−26714m4+5996m5

2(m−1)2m(144+1429m−2716m2+1200m3)
,

b = 2(−17768+17831m−13642m2+15744m3−9334m4+1985m5)
(m−1)2m2(144+1429m−2716m2+1200m3)

,

c = 9(−13702+13337m−6648m2+5472m3−3180m4+635m5

2(m−1)2m3(144+1429m−2716m2+1200m3)
,

d = −41072+41509m−14628m2+7672m3−4712m4+863m5

(m−1)2m4(144+1429m−2716m2+1200m3)
,

e = −20768+18359m+932m2−5424m3+2232m4−515m5

2(m−1)2m4(144+1429m−2716m2+1200m3)
,

f = − 4(12+234m−223m2+93m3

m5(144+1429m−2716m2+1200m3)
,

g = − 420−518m+355m2

2m6(144+1429m−2716m2+1200m3) ,

h = − 9
m6(144+1429m−2716m2+1200m3)

,

i = − 9
2m6(144+1429m−2716m2+1200m3 .

By the definition, a prior is second-order KL REML-dominant if and only if fJ(x) ≥ 0 for

all x > 0. When n → ∞, fJ(x) is a concave function of x, since f ′′J (x) ≤ 0 for x > 0. It is
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easy to calculate that fJ(0) < 0 and fJ(1) > 0, therefore there exists some r ∈ (0, 1) such that

fJ(x) < 0 for x ∈ (0, r) and fJ(x) ≥ 0 for x ∈ [r, 1), which proves the claim. �

Remarks: It can be shown that for any m, r ∈ ( 1
2m ,

1
m), as n → ∞, since fJ(

1
2m) < 0 and

fJ(
1
m) > 0. At x = 1

2m ,

lim
n→∞

n2(g1 − g2) = −6479184−6072235m+1352974m2−297387m3+182088m4+34992m5

583200(m−1)4m ,

which can be shown to be negative for allm, since the denominator is positive and the numerator

is negative, for m ≥ 2. Similarly, we can show fJ(
1
m) > 0 for all m. Since fJ(x) is a continuous

function of x, there exists at least one solution for fJ(x) = 0 between 1
2m and 1

m .

Next, we consider the improper prior, which has the property given by the following propo-

sition and theorem. This kind of prior has a very intriguing feature as follows,

Proposition 1: For m = 2, under the improper prior family of παI ∝ (s1s2)
−α with α ∈

(0, 1), g1 ≥ g2 always holds as n → ∞, i.e. Bayesian predictive densities under these priors

perform better than the REML plug-in density for any s1, s2 ∈ R+. In other words, the

improper prior family with α ∈ (0, 1) is second-order KL REML-dominant for m = 2.

Theorem 2.4.2. For any m ≥ 3, there exists α∗ ∈ (0, m−3
m−2 ] such that as n → ∞, under the

improper prior πI(β, s1, s2) ∝ (s1s2)
−α with α ∈ [α∗, 1), g1 ≥ g2 for all s1 and s2, i.e., this

improper prior family is second-order KL REML-dominant for α ∈ [α∗, 1). For m = 2, the

improper prior is second-order KL REML-dominant for any α ∈ (0, 1).

Proof: Substituting Q1I , Q2I into equation (2.27), we get

lim
n→∞

n2(g1 − g2) = CI(m,n, s1, s2)fI(x),
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where x = s1
s2
, CI(m,n, s1, s2) =

s102
4s41(m−1)6m9(s2+ms1)6[−48+48m2+m(9−32α+4α2)]

, fI(x) = x10 +

ax9 + bx8 + cx7 + dx6 + ex5 + fx4 + gx3 + hx2 + ix+ j, with

a = 2[−144+4m3(−3+2α+α2)−4m2(−84+2α+3α2)+m(−153−72α+16α2)]
m[−48+48m2+m(9−32α+4α2)]

,

b = {−5184(−3 + 2m) + (−1 +m)2[−848 +m2(2818 + 80α − 192α2) + 4m3(−28 + 28α

+ 17α2) +m(−1669 − 400α + 144α2)]}/{(m − 1)2m2[−48 + 48m2 +m(9 − 32α+ 4α2)]},

c = {4[2592(7 − 6m+m2) + (m− 1)2[−376 +m2(1298 + 212α − 168α2) +m3(−33 + 88α

+ 64α2) +m(−735 − 292α) + 104α2]]}/{(m − 1)2m3[−48 + 48m2 +m(9 − 32α + 4α2)]},

d = {5184(23 − 22m+ 5m2) + (m− 1)2[−1584 +m2(3830 + 2512α − 1344α2) +m3(225 + 672α

+ 560α2) +m(−893 − 2640α + 760α2)]}/{(m − 1)2m4[−48 + 48m2 +m(9 − 32α + 4α2)]},

e = {2[10368(m − 2)2 + (m− 1)2[−400 +m3(437 + 448α + 392α2) − 2m2(277 − 940α + 420α2)

+m(1767 − 1816α + 432α2)]]}/{(m − 1)2m5[−48 + 48m2 +m(9 − 32α + 4α2)]},

f = {[5184(m − 2)2 + (m− 1)[−32 +m3(−5113 + 2288α − 2072α2) +m(−4901 + 2864α

− 592α2) +m4(1191 + 896α + 728α2) +m2(8919 − 6048α + 1936α2)]]}/{(m − 1)2m6[−48

+ 48m2 +m(9 − 32α + 4α2)]},

g = 8[12+2m(170−75α+14α2 )−2m2(163−95α+42α2)+m3(111+84α+56α2)]
m7[−48+48m2+m(9−32α+4α2)] ,

h = 4(141−52α+9α2)−2m(331−184α+96α2 )+m2(383+352α+176α2)
m7[−48+48m2+m(9−32α+4α2)]

,

i = 2[−2(9−8α+6α2)+m(45+56α+20α2)]
m7[−48+48m2+m(9−32α+4α2)]

,

j = 9+16α+4α2

m7[−48+48m2+m(9−32α+4α2)]
.

When m ≥ 3, it is a simple but tedious process to show, by checking the extreme points of each

of the functions a-j as α ∈ [m−3
m−2 , 1), that CI(m,n, s1, s2) and all the coefficients in fI(x) are
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non-negative, which proves the claim. For m = 2, fI(x) is always non-negative for any x > 0,

by checking the extreme point of a -j for α ∈ (0, 1). �

In Figure 2.1, we plot n2(g1−g2) as a function of s1 with s2 = 1, for n = 10, 20, 50, 100, 1000

and m = 2, 5, 10 respectively. The plots on the left is for the Bayesian predictive densities

under the Jeffreys prior, and the plots on the right are for those under the improper prior with

α = 0.9. These plots numerically show that the asymptotic results in Theorem 2 and 3 are

also valid for finite sample size with n as small as 10: The Jeffreys prior are not second order

KL REML-dominant while the improper prior with α = 0.9 are for all the m(= 2, 5, 10) and

n(= 10, 20, 50, 100, 1000) combinations considered. For the Jeffreys prior, the threshold for the

Bayesian predictive distribution to be better than the REML based estimative distribution is

between 1
m and 1

2m , which is also consistent with the asymptotic results.

In Figure 2.2, we make two 3-dimensional plots from different angles for n2(g1 − g2) with g1

calculated under the improper prior, when m = 100. Both the left and right panel show clearly

that, there is some α∗ such that when α ∈ [α∗, 1), the difference will always be positive.

2.4.3 Simulation Studies

In this section we compare both the Jeffreys prior and the proposed improper prior with the

REML estimative density in terms of EY |θ(D(ϕ, ϕ̂)−D(ϕ, ϕ̃)) using simulation. The following

parts gives the implementation details of the numerical procedure for conducting the simulation

experiments, and the simulation results are summarized in the last part.

REML estimator for (s1, s2)

To evaluate EY |θ(D(ϕ, ϕ̂)), we need to plug in the REML estimator from every given data

vector and specific θ(θ = (s1, s2)) in each iteration. For the simple random effect model, we can
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Figure 2.1: Plots of n2(g1 − g2) against s1 when s2 = 1, for n =10 (thin solid line), 20 (broken line),
50 (broken/dotted line), 100 (dotted line),and 1000 (wider broken line). The plots on the left are for
the Bayesian predictive densities under the Jeffreys prior, and those on the right are for those under
the improper prior, with α = 0.9. The three rows from top to bottom correspond to m = 2, 5, and 10
respectively.
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Figure 2.2: Plots of n2(g1 − g2) against s1 with s2 = 1 when n → ∞,m = 100 under the improper
prior. All the plots are made for s1 ∈ (0, 0.2), α ∈ (0, 1), with views from different angles.

explicitly calculate the REML estimator for s1, s2. The restricted log-likelihood for θ = (s1, s2)

is

ℓn(θ) = (1−m)n
2 log s2 + 1−n

2 log(s2 +ms1) − G2

2 , (2.32)

with

G2 = G2(θ) = Y T {V −1 − V −1X(XTV X)−1XTV −1}Y

= 1
s2

∑

i,j

y2
i,j − 1

mn(s2+ms1)(
∑

i,j

yi,j)
2 − s1

s2(s2+ms1)

∑

i

(
∑

j

yi,j)
2 . (2.33)

For general n and m,

ŝ1 =
n

∑n
i=1(

∑m
j=1 yi,j)2−(

∑n
i=1

∑m
j=1 yi,j)2

m2n(n−1)
− m

∑n
i=1

∑m
j=1 y

2
i,j−

∑n
i=1(

∑m
j=1 yi,j)

2

m2n(m−1)
, (2.34)

and

ŝ2 =
m

∑n
i=1

∑m
j=1 y

2
i,j−

∑n
i=1(

∑m
j=1 yi,j)2

(m−1)mn . (2.35)

It is easy to check that ∂2ℓn(θ)
∂s21

, ∂
2ℓn(θ)
∂s22

< 0, and the standard deviation for these above
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REML estimators goes asymptotically to 0 as n goes into infinity.

Sampling for (β, s1, s2)

To calculate the predictive density function, we need to generate s1, s2 from the posterior

distributions. For both the Jeffreys and improper priors, the marginal posterior is complicated.

However, the Metropolis-Hastings algorithm can be used to generate the posterior distributions

as follows:

Step 1. Start with arbitrary s01, s
0
2 from support of the posterior distribution, i.e. (0,∞).

Step 2. At stage n, generate proposal s∗1, s
∗
2 from q(s∗1, s

∗
2|s1, s2). The arbitrary proposal

distribution is defined as q(s∗1, s
∗
2|s1, s2) = 1

s1s2
exp{− s∗1

s1
− s∗2

s2
}, the product of two exponentials

with means s1 and s2.

Step 3. Take sn+1
1 = s∗1, s

n+1
2 = s∗2 with probability α = min{ q(s1,s2|s

∗

1,s
∗

2)πJ (s∗1,s
∗

2)f(y|s∗1 ,s∗2)
q(s∗1,s

∗

2|s1,s2)πJ (s1,s2)f(y|s1,s2) , 1}.

Otherwise, increase n and return to Step 2. This random acceptance is done by generating u ∼

Uniform (0, 1) and accepting the proposal s∗1, s
∗
2 if u ≤ α.

We burn in 1000 out of 2000 simulations (actually 100-500 is enough) to make sure that

there is no influence of the initial values for s1 and s2, so only 1000 variates have been used

to approximate the posteriors, from which we select one in every ten and make records of 100

pairs of (s∗1, s
∗
2). The convergence is justified by the results of Gelman and Rubin’s convergence

diagnostics in the “CODA” package (Output analysis and diagnostics for MCMC simulations)

of R language. The procedure is as follows:

1. Run two parallel chains, each with 1000 pairs of (s1, s2) starting from different initial

values.

2. Discard the first 500 draws in each chain.
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3. Calculate the “potential scale reduction factor” (see Gelman and Rubin (1992), Brooks

and Gelman (1997)) for each parameter (s1 and s2) in the chains, together with upper

and lower confidence limits. Approximate convergence is diagnosed, since the upper limits

are close to 1, indicating both chains have “forgotten” their initial values, and the output

from them is indistinguishable.

We also use the Geweke’s convergence diagnostic to double-check the convergence: first combine

the remaining two chains (2 × 500 = 1000 draws) to produce one chain, and calculate Z-scores

for a test of equality of means (see Geweke (1992)) between the first 10% and last 50% (the

CODA default values) of the chain for both parameters. The calculated values do not fall in

the extreme tails of a standard normal distribution, providing no evidence against convergence.

MC Method for integration of KL divergence

We evaluate EY |θ[D(ϕ, ϕ̂) −D(ϕ, ϕ̃)] for fixed θ by the following algorithm.

Step 1: Generate Y (l) for l = 1, 2, . . . , L using the model (2.30) for fixed θ.

Step 2: For each Y (l), compute the REML estimator θ̂ = (ŝ1, ŝ2) using (2.34) and (2.35),

and the corresponding REML predictive density function is given by ϕ̂(z;Y ) = ϕ(z;Y, θ̂).

Step 3: Approximate ϕ̃(z;Y (l)) by 1
n

∑
i ϕ(z;Y (l), θi), where θi is generated as described in

4.3.2, with Jeffreys and improper priors, respectively.

Step 4: The difference between D(ϕ, ϕ̂) and D(ϕ, ϕ̃) is approximated by quadrature inte-

gration method.

Step 5: To calculate the expected KL divergence for fixed θ, we approximate it by

1
L

∑
l(D(ϕ, ϕ̂|Y (l), θ) −D(ϕ, ϕ̃|Y (l), θ)), where the summation is taken over Y (l).

We set L as 100 here, which is also justified by the convergence diagnostic in “CODA”
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package of R programming.

Simulation Results

In the simulation studies, we set s2 = 1, β = 0, m = 2, 5, 10, n = 10, 20, 50, 100, and s1 =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and carried out the computation for both the Jeffreys prior

and the improper prior with α = 0.75. The results are summarized in Figure 2.3.

The first row of Figure 2.3 describes simulation results for m = 2. The left panel shows the

results under Jeffreys prior, and the right one under the improper prior with α = 0.75. The left

panel indicates that under the Jeffreys prior and when s1 is less than 0.5, the REML plug-in

density performs better than the Bayesian predictive density in terms of KL divergence, while

the Bayes predictive density performs better than the REML competitor otherwise. The right

panel indicates that, under the improper prior the Bayesian predictive density always performs

better than the REML estimative density. Both results are consistent with our theoretical

findings.

The second row of Figure 2.3 gives simulation results for m = 5. The left panel indicates

that when m = 5, the Bayesian predictive density under Jeffreys prior performs better than

REML plug-in estimative density when s1
s2

is greater than some value around 0.2, and the

REML competitor performs better otherwise, which is consistent with the asymptotic results in

Figure 2.1. The right panel displays simulation results under the improper prior with α = 0.75,

which indicates that the Bayesian predictive densities always performs better than the REML

estimative density, which are also consistent with the theoretical results.

The third row of Figure 2.3 gives simulation results for m = 10. We obtain similar conclu-

sions as for m = 2 and 5, except that in the left panel, the change point is around 0.1.
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Figure 2.3: Simulation results of expected difference of KL divergence against s1 with s2 = 1
for n =10 (solid line), 20 (broken line), 50 (broken/dotted line), and 100 (dotted line). The
plots on the left are under the Jeffreys prior, and those on the right are under the improper
prior, with α = 0.75. The three rows from top to bottom correspond to m = 2, 5, and 10
respectively.
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2.5 Discussion

In this chapter we used the asymptotic expansion of the KL divergence as the main tool to

compare different predictive distributions, and derived some explicit results for one-way random

effects models. In particular, we find a class of improper priors which leads to predictive

distributions that are asymptotically superior to the REML based estimative distributions.

Similar results have the potential to hold for more general mixed effects models, including the

spatial linear models commonly used in geostatistics, nevertheless the proof will be explored

elsewhere. The asymptotic expressions we derived for KL divergence is quite general, and can

be used for other purpose, such as spatial sampling design in the context of spatial linear model.

Vidoni (1995) introduced a simple form to express the predictive densities by approximating

the sampling distribution of the maximum likelihood estimator with the p∗-formula and then

using Laplace approximation to integrate out the parameter, for exponential families and for

location models. We could also consider the similar idea when computing the KL divergence

by integrating out the parameter. In particular, we can introduce a design criteria that takes

into account of the Kullback-Leibler divergence between the true density and the REML plug-

in density or the Bayesian predictive density, with respect to the point or block predictor. To

achieve the optimal design, it is reasonable to consider employing the asymptotic approximation

to the KL divergence to the second order, which we obtain as equation (2.25). This might give

some explicit form for the integration of Kullback-Leibler divergences, and possibly reduces the

computation workload.

Garcia-Donato and Sun (2007) discussed objective priors for hypothesis testing for one-way

random effects models, and derived the divergence based (DB) prior and the intrinsic prior.

Their work is related with ours, while their emphasis is on the use of these priors to develop
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consistent objective Bayesian factors, which is different from our purpose. It is interesting to

check whether their priors are also second order KL REML dominate priors, and whether some

of their priors can dominant other priors in the sense of second order KL divergence.
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Chapter 3

Applications to regression models with

temporally or spatially correlated errors

3.1 Introduction

We continue to make intensive exploration on another correlation structure: AR(p) process,

instead of the linear mixed effect model, by using theoretical methods in Chapter 2. The p-

th order autoregressive (AR(p)) model is widely known in time series analysis. It consists of

the data {yt}, satisfying yt = −∑p
i=1 aiyt−i + ut, t = 1, · · · , T , where {ut} is a white noise

with mean 0 and variance σ2. The point estimation of the AR parameters a1, a2, · · · , ap is

well understood and has been vigorously investigated for a long time, e.g. page 238 − 241

in Chapter 8 of Brockwell and Davis (1991). However, the AR(1) model, the simplest case

of AR(p) processes, is surprisingly challenging to objective Bayesians, even in comparatively

simple case of known σ2, as was discussed in Phillips (1991). Phillips and some other discussants

highlighted the issues and controversies in developing a noninformative prior for AR(p) models.

Berger and Yang (1994) investigated the AR(1) model from a Bayesian point of view. Their

approach was based on the reference prior method and the stationarity was not assumed.



They compared different noninformative priors based on the mean squared error or coverage

probability. They considered three candidate priors when making frequentist comparison: the

uniform prior (which results in MLE estimator of ρ), the Jeffreys prior, and the symmetrized

reference prior, which is the reference prior for |ρ| < 1. According to their simulation results for

mean squared error, the symmetrized reference prior seemed generally superior with exception

of the explosive case (|ρ| > 1). On the other aspect, the coverage for the symmetrized reference

prior was generally more attractive as well. Therefore they highly recommended symmetrized

reference prior as the “default” prior for the AR(1) model.

Tanaka and Komaki (2005) looked at the Bayesian estimation of the spectral density of

the AR(2) model and proposed a superharmonic prior as a noninformative prior. They also

considered a more general case, the autoregressive moving average (ARMA) model, focusing

on the Bayesian estimation of an unknown spectral density in the ARMA model. They first

showed that in the i.i.d. cases, the Bayesian spectral densities based on a superharmonic prior

asymptotically dominate those based on the Jeffreys prior, using the asymptotic expansion of

the risk difference. Then they obtained the asymptotic expansion of the Bayesian spectral

density for the ARMA model, which could be written in the differential-geometrical quantities

as in the i.i.d. cases. Finally they obtained a similar result in the ARMA model.

In addition, models for two-dimensional spatial data where the errors follow a spatial ARMA

process have been noticeably considered by several authors, e.g. Martin (1990), Zimmerman

and Harville (1991), Cullis and Gleeson (1991) and Basu and Reinsel (1994). The analysis

of such spatial processes is of interest in many different fields and they have been studied in

such disciplines as geography, geology, biology and agriculture. Many of the developments have

been summarized in the books by Bartlett (1975), Ripley (1981) and Cliff and Ord (1981).
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In particular, Basu and Reinsel (1993) considered the spatial processes defined on a regular

rectangular grid in two dimensions with sites labeled (i, j), with an associated random variable

Yij defined at each site. Examples of such phenomena include data collected on a regular

grid of size m × n from satellites and from agricultural field trials. They concentrated on the

first-order unilateral models of interest, including a special case of the multiplicative (or linear-

by-linear) first-order spatial models, which have proved to be of practical use in modeling of

two-dimensional spatial lattice data. No previous work has considered the prior for this kind

of linear-by-linear spatial model before.

Our work assumes the stationarity, and focuses on both the Bayesian estimation and fre-

quentist estimative method for the predictive density of the AR(1) model with unknown σ2, by

utilizing the criterion of expected K-L divergence, as proposed in Chapter 2. We point out that

the reference prior is superior to the Jeffreys prior and the reference inverse prior, with respect

to the second-order asymptotic approximation (see Sections 3.3.3 - 3.3.4). We also consider the

noninformative priors and REML estimative density for the model with noise from a spatial

multiplicative AR(1) model (see Basu and Reinsel (1993) and Martin (1990)), with fixed σ2 for

simplicity (see Sections 3.4.3 - 3.4.4).

General definition of the AR(1) model and the necessary notations for Fisher Information

Matrix calculation are briefly reviewed in Section 3.3.1 - 3.3.2 (temporal case) and 3.4.1 - 3.4.2

(spatial case), respectively. Our argument is mainly based on the expected K-L divergence,

which is proposed in Chapter 2, with respect to different Bayesian predictive densities or REML

plug-in density within the framework of this type of model. In Chapter 2 we proposed using

the averaged K-L divergence when comparing Bayesian predictive densities with REML plug-in

one and provided the second-order expression of it. In Section 3.3.3 and 3.4.3, we apply this
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approach to the AR(1) model, for time series and spatial structure, respectively. We consider

three candidate priors: the Jeffreys prior, the reference prior and the inverse reference prior. In

an asymptotic sense, all the three priors perform quite well when compared to the REML-plug

in density. In particular, we prove that the reference prior dominates the other two priors.

In Section 3.3.4 and 3.4.4, we perform the numerical simulation for the AR(1) time series and

spatial process, illustrating that the asymptotic results hold,when the sample size is moderately

large. In Section 3.5, we make some concluding remarks for our work.

3.2 Review of Noninformative Priors

3.2.1 Background

The use of noninformative priors has an extensive tradition in statistics, starting with Bayes

(1763) and Laplace (1812) who used the “uniform” prior

πU(θ) = 1. (3.1)

In developing the Bayesian methodology, use of πU was generally very successful, although

there were concerns about its lack of invariance to transformation (because one cannot, for

instance, be simultaneously “uniform” in θ and η = log(θ)). Also, a number of counterexamples

to its use have been encountered, see for example, Mitchell (1967), Monette et al. (1984) and

Ye and Berger (1991).

Jeffreys (1961b) sought to overcome the lack of invariance of πU through the development

of the now-famous Jeffreys prior

πJ(θ) =
√

det(I(θ)), (3.2)

44



where I(θ) is the Fisher information matrix with (i, j) entry

I(θ) = −Eθ[ ∂2

∂θi∂θj
log f(Y|θ)], (3.3)

where f is the likelihood function of Y given θ, and Eθ stands for expectation over X, given

θ. This prior is invariant to reparameterization of the problem, and this method of deriving a

noninformative prior seems to correct a number of the counterexamples to use of πU (θ) = 1,

especially those arising from nonintegrability of the posterior distribution, πU(θ|data). For

instance, for the AR(1) model, with θ = (ρ, σ2) where we assume |ρ| < 1 (the stationary case),

πJ(θ) =
√

I(θ) ∝ σ−2(1 − ρ2)−1/2, (3.4)

(see Jeffreys (1961b), Zellner (1971), and Box and Jenkins (1976), for the |ρ| < 1 case and

Phillips (1991) for the general case). At |ρ| = 1, πJ(θ) can be defined by continuity (see

Phillips (1991)). In our work we only consider the stationary case.

3.2.2 The Reference Prior Approach

Bernardo (1979) initiated an information-based approach to the development of noninformative

priors, called the reference prior approach. A review and discussion of the current status of the

approach can be found in Berger and Bernardo (1992).

The motivation for developing this approach was the acknowledged problems of the Jeffreys

prior in higher dimensions. Even Jeffreys would often alter πJ(θ) in multiparameter problems

to remove perceived inadequacies. The reference prior approach sought to overcome these

difficulties by breaking up multiparameter problems into a series of conditional one-parameter
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problems, for which reasonable noninformative priors could be determined. The approach has

been proven to be remarkably successful in overcoming the inadequacies of Jeffreys prior in

multiparametr problems.

Unfortunately, the motivation for the reference prior method was primarily based on the

i.i.d. asymptotics. An attempt to generalize this to the dependent-data AR(1) model met with

only partial success: the reference prior exists for the stationary case (|ρ| < 1) but not for

the explosive case (|ρ| > 1). This problem could be solved by a symmetrized version of the

stationary case reference, which was ultimately recommended in Berger and Yang (1994).

Indeed, the reference prior algorithm consists of four components (see Berger and Yang

(1994) for more details):

(i) information maximization,

(ii) maximizing asymptotic missing information,

(iii) finding limits of reference priors on compact sets, and

(iv) dealing with multiparameter problems by conditional decompositions (This is the orig-

inal motivation for the algorithm).

Following the above steps, we can find the reference prior for the stationary AR(1) model.

In particular when making applications to the AR(1) model, the multiparameter issue can be

avoided entirely by considering only the case σ2 = 1, then

πR(θ) = 1√
1−ρ2

.

The only change in the reference prior analysis that would result from having σ2 unknown

would be to introduce a multiplicative factor of 1/σ in the prior.

We consider the above reference prior suggested by Berger and Yang (1994), which had also

46



previously been given in Zellner (1977) as an approximate Jeffreys prior. Interestingly, Zellner

(1977) also suggested the inverse of this prior,

πRI = 1
σ (1 − ρ2)1/2,

based on his “Maximal Data Information Prior” (MDIP) approach, which we also consider for

comparison.

3.3 One-Dimensional AR(1) Case

3.3.1 The Temporal AR(1) Model

We consider the linear regression model:

Yt = XT
t β + ǫt, t = 1, ..., n, (3.5)

where Yt represents observation in time t, Xt = (x1t, ..., xrt)
T is an r-dimensional vector of

explanatory variable associated with time t, and β = (β1, . . . , βr)
T is the vector of unknown

regression parameters.

Suppose that the errors {ǫt} are stationary and follow a time series AR(1) process, i.e. the

errors are generated by the following scheme:

ǫ1 = u1/
√

1 − ρ2,

ǫt = ρǫt−1 + ut, t = 2, ..., n,

where |ρ| < 1, assumed to be an unknown autoregressive coefficient; and {ut} is a white noise
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process with zero mean and variance σ2. In addition, we assume the errors have a Gaussian

distribution. For the AR(1) model, we know that γ(0) = Var(ǫt) = σ2/(1−ρ2). Given a sample

of n observations, let Y = (Y1, Y2, ..., Yn)
T and ǫ = (ǫ1, ǫ2, ..., ǫn)

T be the n × 1 data and error

vectors, respectively. Define the n× r matrix X = (X1X2...Xn)
T , and assume X is of full rank,

i.e. rank(X) = r. Then the regression model (1) may be expressed in matrix form as

Y = Xβ + ǫ,

with Cov(ǫ) = σ2V ∗ that |V ∗| = (1−ρ2)−1. It can be easily shown that under given assumptions

the explicit form of the variance-covariance matrix V = Cov(ǫ) is given by

V = σ2V ∗ = σ2

1−ρ2




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1




Note that the matrix V is non-linear in its parameters, especially in the autoregressive coefficient

ρ. Under the constraints |ρ| < 1 and σ2 > 0, matrix V always remains positive definite. As

a function of the parameters ρ and σ2, V (ρ, σ2) belongs to the class C2, i.e. to the class of

twice differentiable functions, satisfying the existence condition for Ui, Uij ... in Chapter 2. The

restricted log likelihood function of Y is

ℓn(θ) = −n−r
2 (log 2 + log π) + 1

2 log |XTX| − 1
2 log |V | − 1

2 log |XTV −1X| − G2

2 , (3.6)
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where G is the generalized residual sum of squares, given by

G2 = G2(θ) = Y T {V −1 − V −1X(XTV −1X)−1XTV −1}Y. (3.7)

3.3.2 Fisher Information Matrix for the AR(1) model

Now we are interested in predicting the density function of the unobserved process Yn+1, which

is dependent on Y . We can show that Y and Yn+1 have joint Gaussian distribution of the form




Y

Yn+1


 ∼ N







Xβ

x0β


 ,




V (θ) wT (θ)

w(θ) v0(θ)





 , (3.8)

where θ = (ρ, σ2).

The covariances V (θ), w(θ) and v(θ) are all known functions of an unknown 2 -dimensional

parameter vector θ. To simplify the notation, we write V,w and v without indicating the

dependence on θ.

To make comparison of Bayesian predictive density and frequentist plug-in type density, we

use the same notations as in Chapter 2 (page 22). Superscripts are used to denote components

of θ, e.g. θi for the ith component. For scalar functions of θ, for example the distribution

function ψ(Yn+1;Y, θ) (with Yn+1 and Y fixed for the time being) or Q(θ) (the logarithm of

prior distributions), subscripts will indicate derivative with respect to the components of θ, i.e.

Qi = ∂Q
∂θi , ψij = ∂2ψ

∂θi∂θj , etc. Also we define Ui = ∂ℓn(θ)
∂θi , Uij = ∂2ℓn(θ)

∂θi∂θj , Uijk = ∂3ℓn(θ)
∂θi∂θj∂θk .

All the above quantities are functions of a particular θ, and could be evaluated at the REML

estimator θ̂, which we denote with a hat, such as Ûi, ψ̂ij , and so on. By definition, we have

{Ûi} = 0, and {−Ûij} is the observed information matrix. If the latter matrix is invertible, we
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denote its inverse matrix with superscripts, i.e., if A is the p × p matrix with (i, j) entry as

Ûij , then if A−1 exist, Û ij is its (i, j)th entry. We also use the summation convention, where a

repeated index appearing as both a subscript and a superscript in the same formula implicitly

indicates a summation over that index.

For simplicity, it is not explicitly indicated that all the quantities depend on dimension n.

It is straightforward to show that for the AR(1) model (both temporal and spatial model), all

the assumption conditions 1-3 in Chapter 2 are satisfied.

We can write Ui = n1/2Zi, Uij = nκij + n1/2Zij, Uijk = nκijk + n1/2Zijk, where κij , κijk are

non-random and Zi, Zij , Zijk are random variables with mean 0, and we assume that all these

quantities are of O(1) or Op(1) as n→ ∞.

Also, let κi,j = E(ZiZj) = −κij , κij,k = E(ZijZk). By standard identity, κi,j is the (i, j)

entry of the normalized Fisher information matrix, we assume this matrix to be invertible with

inverse entries κi,j. Explicit formulae exist for calculating these quantities, which can be found

in Section 8.2 of Smith and Zhu (2004).

If θ is known, then the Best Linear Unbiased Predictor (BLUP) of Yn+1 is given by ŷn+1 =

λT y, where

λ = V −1wT + V −1X(XTV −1X)−1(x0 −XTV −1wT ), (3.9)

with w = σ2

1−ρ2 (ρn, ρn−1, · · · , ρ). And the corresponding prediction error variance is given by

σ2
0 = v0 − wV −1wT + (xT0 −wV −1X)(XTV −1X)−1(x0 −XTV −1wT ). (3.10)

v0 = σ2

1−ρ2 here.
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For simplicity, we can assume X = 1n, and β is an unknown constant. By standard

computation, we get

|XTX|1/2 = n1/2,

|V |−1/2 = (1−ρ2)1/2

σn ,

|XTV −1X|−1/2 = σ{(1 − ρ)[2 + (n− 2)(1 − ρ)]}−1/2,

λ = 1
2+(n−2)(1−ρ) (1 − ρ, (1 − ρ)2, · · · , (1 − ρ)2, 1 + ρ[1 + (n− 2)(1 − ρ)])T ,

σ2
0 = σ2[2+(n−1)(1−ρ)]

2+(n−2)(1−ρ) ,

W = {ωα,β} = V −1 − V −1X(XTV −1X)−1XTV −1

= 1
σ2




1 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ 0 · · · 0

...
...

...
. . .

...
...

...
...

... −ρ 1 + ρ2 −ρ

0
...

...
... −ρ 1




− 1−ρ
σ2[2+(n−2)(1−ρ)]




1 1 − ρ · · · 1 − ρ 1

1 − ρ (1 − ρ)2 · · · (1 − ρ)2 1 − ρ

...
...

. . .
...

...

1 − ρ (1 − ρ)2 · · · (1 − ρ)2 1 − ρ

1 1 − ρ · · · 1 − ρ 1




.
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Furthermore, we can get the normalized Fisher information matrix

I(θ) = {κi,j}2×2 =




1
2σ4 0

0 1
1−ρ2


 .

The general expression for the Fisher Information matric on the AR(p) model has been provided

by Tanaka and Komaki (2005), by using another coordinate system (see Amari (1987)).

3.3.3 Comparison of Noninformative Priors and Estimative Method

We consider the following candidate noninformative priors:

(i) Jeffreys prior: based on the Fisher information matrix I(θ), we can derive the Jeffreys prior

in this model is

πJ(θ) ∝ |I(θ)|1/2 ∝ δ−1(1 − ρ2)−1/2,

where δ = σ2.

(ii) Reference prior: Inspired by the symmetrized reference prior in Berger and Yang (1994),

we consider a noninformative prior as follows

πR(θ) = 1

πσ
√

1−ρ2
.

This prior is proper with respect to ρ.

(iii) Inverse reference prior: πRI(θ) ∝ σ−1(1 − ρ2)1/2, using Maximal data information prior

densities (MDIPs) approach suggested by Zellner (1977), which is similar to the Jeffreys prior

in the sense that it is also invariant to linear transformations of the data and parameters.

Theorem 3.3.1. Within the AR(1) model, we have the following results for the above given
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Figure 3.1: Plots of n2(g1 − g2) against ρ ∈ (−1, 1) as n→ ∞.
Dashed: Jeffreys prior. Solid: Reference Prior. Dotted: Inverse Reference prior

priors:

(1) The Jeffreys prior is second-order KL REML-dominant.

(2) The reference prior is second-order KL REML-dominant.

(3) The inverse reference prior is also second-order KL REML-dominant.

(4) The reference prior is second-order KL dominant to the Jeffreys prior, and better than the

Inverse prior in most stationary cases.

Proof: Let a. = limn→∞ n2(g1 − g2), we have

aJ = 1+7ρ2

2(1−ρ2) > 0,

aR = (3 + 5ρ2)/(2 − 2ρ2) > 0,

aIR = (500 + 3501ρ2)/[1000(1 − ρ2)] > 0,

lim
n→∞

n2(EY |θ[D(ϕ, ϕ̃J ) −D(ϕ, ϕ̃R)]) = aR − aJ = 1 > 0,

lim
n→∞

n2(EY |θ[D(ϕ, ϕ̃IR) −D(ϕ, ϕ̃R)]) = aR − aIR = 1000−1001ρ2

1000(1−ρ2) > 0 for ρ ∈ (−0.9995, 0.9995).
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Figure 3.2: Left: Comparison between reference prior and Jeffreys prior (Solid), and reference prior
and inverse prior (Dashed). Right: Zoom Out Image

Because all the (i) - (iii) candidate priors dominate the REML estimative density, we com-

pare the two priors by the difference between the corresponding expected KL divergence differ-

ences (to the second order) in (4). In particular, comparisons are constructed between reference

prior and the Jeffreys prior, the reference prior and its inverse prior, respectively. Note that,

positive values of equations, e.g. equation (3.12), indicate the Bayesian predictive density based

on the reference prior is closer to the true conditional density than the other one is. Clearly,

we can see within this model, the reference prior dominates the other two candidate priors

(Jeffreys prior and the inverse reference prior) in the sense of averaged KL divergence. Berger

and Yang (1994) also concluded a similar result: πR(θ) is superior to πJ(θ) with respect to the

mean squared error criterion.

In the left panel of Figure 3.2, we plot the asymptotic differences related to the Jeffreys

prior and Reference prior, and the Inverse Reference prior and Reference prior, respectively, for

ρ ∈ (−1, 1) and σ2 ∈ (0, 1). Zoom-Out version is also involved in the right panel.

3.3.4 Simulation results

Our simulation work goes as follows:
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REML estimator for (ρ, σ2)

To evaluate EY |θ(D(ϕ, ϕ̂)), we need to plug in the REML estimator from every given data

vector and specific θ = (ρ, σ2) in each iteration. For the temporal AR(1) model, the restricted

log-likelihood for θ = (ρ, σ2) can be written as

ℓn(ρ, σ
2) = −n−r

2 log(σ2) + 1
2 log(1 − ρ2) − 1

2σ2S(ρ, β̃) − 1
2 log |XTV −1X|, (3.11)

where the sum of squares function

S(ρ, β) = (Y −Xβ)TV −1(Y −Xβ), and β̃ = (XTV −1X)−1XTV −1Y is the GLS estimator of

β. The restricted likelihood equation for σ2 is

∂ℓn
∂σ2 = −(n− r)/(2σ2) + S(ρ, β̃)/(2σ4) = 0, (3.12)

which leads to σ̂2 = S(ρ, β̃)/(n − r) as the REML estimator of σ2.

From (3.14), the restricted likelihood equation for ρ, is given by

∂ℓn
∂ρ = − ρ

1−ρ2 − 1
2σ2 ∂S(ρ, β̃)/∂ρ− 1

2∂ log |XTV −1X|/∂ρ = 0, (3.13)

which, with (10) together can be solved simultaneously after substituting for σ̂2 and ρ̂2.

We check that ∂2ℓn(θ)
∂ρ , ∂

2ℓn(θ)
∂σ2 < 0, and the standard deviation for these above REML esti-

mators goes asymptotically to 0 as n→ ∞.

Sampling for (ρ, σ2)

To calculate the predictive density function, we need to generate ρ∗, σ2(∗) from the posterior

distributions. For all the Jeffreys , reference and reference inverse priors, the marginal posterior
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is complicated. However, Metropolis-Hastings algorithm can be used to generate the posterior

distribution for θ, which is analog to the work in Chapter 2. We burn in 500 out of 1000

simulations to make sure there is no influence of the initial values for ρ and σ2. Only 500

variates have been used to approximate the posteriors, from which we select one in every ten

and make records of 50 pairs of (ρ, σ2). In addition, the convergence is justified by the result

of Gelman and Rubin’s convergence diagnostic in the “CODA” package of R language.

Simulation

Here we compare the above three priors and also the REML plug-in density by utilizing the

following simulation for the time series AR(1) model from (3.8).

First of all, since the REML estimators of θ are invariant with respect to the true value

of β, without loss of generality, we take the regression coefficients as β = 0 in generating the

simulated response data Y = ǫ.

Fix σ2 = 1. Set n = 5, 50, 100, 200, 300, 400, 500 and ρ = −0.9,−0.8, ..., 0, 0.1, ..., 0.9. For

every fixed pair of (n, ρ), we evaluate EY |θ[D(ϕ, ϕ̂)−D(ϕ, ϕ̃)] for fixed θ by the following steps.

Step 1: Generate 100 groups of observation Y = (Y1, ..., Yn) under the AR(1) process.

Step 2: For each specific observation set, Y , compute the REML estimator θ̂ = (ρ̂, σ̂2) from

equations (3.12) and (3.13), and the corresponding REML predictive density function is given

by ϕ̂(Yn+1;Y ) = ϕ(Yn+1;Y, θ̂).

Step 3: Approximate ϕ̃(Yn+1;Y ) by 1
M

∑
i ϕ(Yn+1;Y, θ

i), where θi is generated as described

in previous subsection, with respect to Jeffreys, reference and reference inverse priors, respec-

tively.

Step 4: The difference between D(ϕ, ϕ̂) and D(ϕ, ϕ̃) is approximated by quadrature inte-

gration method.
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Step 5: To calculate the expected KL divergence for fixed θ, we approximate it by

1
L

∑
l(D(ϕ, ϕ̂|Y (l), θ)−D(ϕ, ϕ̃|Y (l), θ)), where the summation is taken over Y (l).L = 100 is also

justified by the convergence diagnostic in “CODA” package in R.

The numerical results (with the confidence interval for each approximation) are plotted in

Figure 3.3. These results illustrate the validity of our method in a practical application.

In summary, we simulate some temporal AR(1) data, approximating the expected K-L

divergence by MCMC method. The simulation results can be seen in Figure 3.3, note that for

the Jeffreys prior and the inverse reference prior, when n is larger than 500, we can achieve

positive comparison result. For the reference prior, the result is positive when n ≥ 400.

3.4 Two-Dimensional AR(1) Case

3.4.1 Spatial AR(1) model

Besides the temporal AR(1) model, we also consider a spatial process defined on a regular

rectangular grid of size m × m in two dimensions with sites labeled (i, j). Let Yij be the

response variable at location (i, j), and suppose the Yij follow a linear regression model of the

form

Yij = XT
ijβ + ǫij , (3.14)

with i, j = 1, ..., n. Xij = (xij1, ..., xijr)
T is an r-dimensional vector of explanatory variables

associated with the location (i, j), and β = (β1, ..., βr)
T is the unknown regression parameter

vector. The errors {ǫij} are assumed to be stationary and follow a spatial multiplicative first-
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Figure 3.3: Simulation results for n2EY |θ[D(ϕ; ϕ̂)−D(ϕ; ϕ̃)], where ϕ̃ is constructed under the Jeffreys
prior, the reference prior and the inverse reference prior, respectively
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order autoregressive model, considered by Martin (1990) and Basu and Reinsel (1993):

ǫij = ρ1ǫi−1,j + ρ2ǫi,j−1 − ρ1ρ2ǫi−1,j−1 + uij, (3.15)

where |ρk| < 1, k = 1, 2, and the {uij} are independent random variables with mean zero and

variance σ2. We also assume {uij} are from Gaussian distribution. The bivariate covariance of

the process {ǫij} at spatial lag (s, t) is given by

Cov(ǫij , ǫi−s,j−t) = γρ
|s|
1 ρ

|t|
2 , s, t ∈ Z,

where γ = V ar(ǫij) = σ2/∆, with ∆ = (1 − ρ2
1)(1 − ρ2

2). Given a sample of n = m2 ob-

servations, let Y = (Y11, Y21, . . . , Ym1, . . . , Y1m, . . . , Ymm)T and ǫ = (ǫ11, ǫ21, . . . , ǫm1, . . . , ǫ1m,

. . . , ǫmm)T be the n × 1 data and error vectors, respectively. Define the n × r matrix X =

[X11X21 . . . Xm1 . . . X1m . . . Xmm]T , and assume X is of full rank r. Then the regression model

can be expressed to the matrix form as

Y = Xβ + ǫ,

with Cov(ǫ) = σ2V ∗. Actually, V ∗ = V2
⊗
V1, where Vk is an m × m matrix with (i, j)th

element ρ
|i−j|
k /(1 − ρ2

k), k = 1, 2, and
⊗

is notation of the Kronecker product. V −1
k = PkP

T
k

has a special patterned form. In particular, |V ∗| = |V1|m|V2|m = (1 − ρ2
1)

−m(1 − ρ2
2)

−m. We

can get the restricted log-likelihood function of Y as

ℓN (θ) = −n−r
2 (log 2 + log π) + 1

2 log |XTX| − 1
2 log |V | − 1

2 log |XTV −1X| − G2

2 , (3.16)
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where G is the generalized residual sum of squares, given by

G2 = G2(θ) = Y T {V −1 − V −1X(XTV −1X)−1XTV −1}Y. (3.17)

3.4.2 Fisher Information Matrix for the AR(1) Model

Now we are interested in predicting the density function of the unobserved process Yn+1,1, which

is dependent on Y . We can show that Y and Yn+1,1 have joint Gaussian distribution of the

form 


Y

Yn+1,1


 ∼ N







Xβ

x0β


 ,




V (θ) wT (θ)

w(θ) v0(θ)





 , (3.18)

where θ = (ρ1, ρ2, σ
2).

The covariances V (θ), w(θ) and v(θ) are all known functions of an unknown 3 -dimensional

parameter vector θ. To simplify the notation, we write V,w and v without indicating the

dependence on θ.

To make comparison of Bayesian predictive density and frequentist plug-in type density, we

use the same notations as in Section 3.2 and Chapter 2 (page 22). It is easy to show that all

the assumption conditions in Chapter 2 are validated.

The following derivations are quite similar to the previous part in this Chapter. If θ is

known, then the Best Linear Unbiased Predictor (BLUP) of Ym+1,1 is given by Ŷm+1,1 = λTY ,

where

λ = V −1wT + V −1X(XTV −1X)−1(x0 −XTV −1wt), (3.19)

with w = σ2

(1−ρ21)(1−ρ22)
(ρm1 , ρ

m
1 ρ2, . . . , ρ

m
1 ρ

m−1
2 , ρm−1

1 , . . . , ρm−1
1 ρm−1

2 , . . . , ρ1, . . . , ρ1ρ
m−1
2 )T . And
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the corresponding prediction error variance is given by

σ2
0 = v0 − wV −1wT + (xT0 − wV −1X)(XTV −1X)−1(x0 −XTV −1wT ), (3.20)

with v0 = γ = V ar(ǫij) = σ2/∆, with ∆ = (1 − ρ2
1)(1 − ρ2

2).

For simplicity, we can assume X = 1n, and β is an unknown constant. By standard

computation, we get

|XTX|1/2 = n1/2 = n,

|V |−1/2 =
(1−ρ21)m/2(1−ρ22)m/2

σn ,

|XTV −1X|−1/2 = σ{(1 − ρ1)(1 − ρ2)[2 + (n− 2)(1 − ρ1)(1 − ρ2)]}−m/2,

λ = 1
[2+(n−2)(1−ρ1)(1−ρ2)]((1 − ρ1)(1 − ρ2), (1 − ρ1)

2(1 − ρ2)
2,

. . . , (1 − ρ1)
2(1 − ρ2)

2, 1 + (ρ1 + ρ2)[1 + (n− 2)(1 − ρ1)(1 − ρ2)])
T ,

σ2
0 = σ2[2+(n−1)(1−ρ1)(1−ρ2)]

[2+(n−2)(1−ρ1)(1−ρ2)] ,

For the spatial AR(1) model, we can get the normalized Fisher information matrix

I(θ) = {κi,j}3×3 =




1
2σ4 0 0

0 1
1−ρ21

0

0 0 1
1−ρ22



.

3.4.3 Comparison of Noninformative Priors and Estimative Method

As a candidate noninformative prior, we have encountered the following:

(i) By similar process as above for the temporal AR(1) model, we can get the Jeffreys prior for
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this spatial process as

πSJ(θ) ∝ |I(θ)|1/2 ∝ δ−1(1 − ρ2
1)

−1/2(1 − ρ2
2)

−1/2,

where δ = σ2.

(ii) The reference prior

πSR(θ) ∝ σ−1(1 − ρ2
1)

−1/2(1 − ρ2
2)

−1/2.

(iii) The inverse of the reference prior

πSIR(θ) ∝ σ−1(1 − ρ2
1)

1/2(1 − ρ2
2)

1/2.

Theorem 3.4.1. Within the spatial AR(1) model, we have

(1) The Jeffreys prior is second-order REML-KL dominant.

(2) The reference prior is second-order KL REML-dominant.

(3) The inverse reference is second-order KL REML-dominant.

(4) The reference prior is second-order KL dominant to the Jeffreys prior, and better than the

Inverse prior in most stationary cases.
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Figure 3.4: Plots of n2(g1 − g2) against ρ1 ∈ (−1, 1), ρ2 ∈ (−1, 1) as n → ∞. Left: Jeffreys prior.
Mid: Reference Prior. Right: Inverse Reference prior

Proof: Let a. = limn→∞ n2(g1 − g2), we have

aSJ =
1+7(ρ21+ρ22−ρ21ρ22)

2(1−ρ21)(1−ρ22)
> 0,

aSR =
3+5(ρ21+ρ22−ρ21ρ22)

2(1−ρ21)(1−ρ22)
> 0,

aSIR =
500+3501(ρ21+ρ22−ρ21ρ22)

1000(1−ρ21)(1−ρ22)
> 0,

lim
n→∞

n2(EY |θ[D(ϕ, ϕ̃SJ ) −D(ϕ, ϕ̃SR)]) = aSR − aSJ = 1 > 0,

lim
n→∞

n2(EY |θ[D(ϕ, ϕ̃SIR) −D(ϕ, ϕ̃SR)]) = aSR − aSIR =
1000−1001(ρ21+ρ22−ρ21ρ22)

1000(1−ρ2)(1−ρ22)
> 0, for most

ρk ∈ (0, 1), k = 1, 2.

When σ2 is fixed (to be 1), we get the comparison results for finite sample size as follows:

3.4.4 Simulation Results

We simulate some spatial AR(1) data with fixed σ2 = 1, approximating the expected value by

MCMC method. The simulation steps are analog to that in the previous section (set ρ1, ρ2 =

−0.9,−0.8, . . . , 0, 0.1, . . . , 0.9), except now we are simulating 100 groups of n = m×m spatial

AR(1) observation for m = 5, 10, 11, 12, . . . , 30 respectively (we do simulation for each fixed n),

instead of one-dimensional AR(1) process. The simulation results can be seen in Figure 3.5,

note that for the Jeffreys prior and the inverse reference prior, when n is larger than 20 × 20,

63



we can achieve positive comparison result. For the reference prior, the simulaiton numerical

value is positive when n ≥ 12 × 12.

3.5 Conclusions

We investigate how to predict the conditional density within the AR(p) process in the Bayesian

framework. As a starting point, we consider the case of AR(1) model. We introduce some

noninformative priors, all of which are proved to be second-order KL REML-dominant. We

also compare among the three candidate priors themselves, illustrating that in the asymptotic

sense the reference prior is superior to the other two ones, in both the temporal and spatial

AR(1) models. We simulate data for both the time series and spatial AR(1) models, of which

the results agree with the asymptotic study when the sample size is moderately large. We

also notice that, when the sample size is very small, the simulation numerical values differ

substantially from the asymptotic second-order approximation, possibly due to the biases of

higher-order with respect to averaged KL divergence. In particular, the smaller the sample size

is, the greater the influence of higher-order biases are.

Our attention has only been paid to the AR(1) model now. For the general AR(p) model,

especially when the order is moderately large, there is another way to estimate the model:

utilizing the Bayesian estimation of the spectral density of the model, e.g. Tanaka and Komaki

(2005) showed that in i.i.d. case the Bayesian estimation of spectral densities based on a

superharmonic prior (if exists) asymptotically dominate thosed based on the Jeffreys prior,

using the asymptotic expansion of the risk difference. Tanaka and Komaki (2008) focused on

the AR(2) process and proposed an explicit form of such a superharmonic prior. On the other

hand, the moving average (MA) model is also one of the most important models in data analysis.
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Figure 3.5: Simulation results for N2EY |θ[D(ϕ; ϕ̂)−D(ϕ; ϕ̃)], where ϕ̃ is constructed under the Jeffreys
prior (Top Row), the reference prior (Middle Row) and the inverse reference prior (Bottom Row),
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The MA models are completely different from the AR models as a stochastic process and in the

information geometrical viewpoint they are known to have different structures. We can also

consider the ARMA model for the most general situation. In addition, it seems that the result

of the special spatial AR(1) model relies heavily on the fact that the covariance function is just

a Kronecker product of two AR(1) time series and therefore, a general spatial process would

still be quite a bit harder to characterize. We will explore this problem in the future.
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Chapter 4

Estimation and Prediction with Errors in

Covariances

Many statistical data analysis involve covariance matrices or their estimations, e.g. kriging

in spatial statistics, time series analysis, multivariate data analysis techniques, etc. In this

chapter, we want to explore parameter estimation and kriging prediction problems with mea-

surement errors. Some related work on covariance estimation is reviewed, and a motivational

example is given. Furthermore, we introduce a framework for this type of problems. Some

theoretical results on the effect of regularized covariance estimation on parameter estimation

and preliminary results of its effect on kriging prediction are provided.

4.1 Introduction

Estimation of covariance matrices in small samples has been studied by many authors. Standard

estimators, like the unstructured sample covariance matrix, can be very unstable when the

sample size is relatively small as compared to the data dimension. In that case, the smallest

estimated eigenvalues tend to be too small. Numerous papers have explored better alternative

estimators for covariance matrices, in both the frequentist and Bayesian frameworks (see for



example, James and Stein (1961), Haff (1977), Chen (1979), Haff (1980), Haff (1991) and

Daniels and Kass (1999)). Many of these estimators gave substantial risk reductions compared

to the sample covariance estimator in small sample sizes. A common underlying property of

many of these estimators is that, they are shrinkage estimators in the sense of James-Stein (see

James and Stein (1961) and Stein (1956)). In particular, the Bayesian approach often yields

estimators which “shrink” towards a structure associated with a pre-specified prior. One of

the first papers to exploit this idea is Chen (1979) who showed that if the prior used on the

inverse covariance matrix is the standard conjugate, i.e. a Wishart distribution, then for an

appropriate choice of the shape (or shrinkage) and scale hyperparameters, the posterior mean

for the covariance matrix is a linear combination of the sample covariance matrix and the prior

mean, as Rajaratnam et al. (2008) showed that the eigenvalues of such estimators are also

shrinkage estimators of the eigenvalues of covariance matrix. Daniels and Kass (1999) shrunk

the matrix toward a diagonal structure and obtained estimates (and posterior distributions)

using combinations of importance sampling and Markov chain Monte Carlo (MCMC). For a

similar approach in the context of a covariance function in time series data analysis, see Daniels

and Cressie (1999). Daniels and Kass (2001) extended their previous work, by considering two

general shrinkage approaches to estimate the covariance matrix and regression coefficients with

correlated (or longitudinal) data. One method was based on shrinking the eigenvalues of the

unstructured ML or REML estimator. The second involved shrinking an unstructured estimator

toward a structured estimator. For both cases, the amount of shrinkage was data-driven.

Both estimators were consistent and gave consistent and asymptotically efficient estimates for

regression coefficients. Finally, they proposed a combination of both shrinkage approaches, i.e.,

shrinking the eigenvalues and then shrinking toward structure.
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There are several other ways to shrink and estimate the covariance matrices. One approach

is to apply the Cholesky decomposition as in Daniels and Pourahmadi (2002), or a modified

Choleskey factorization (see Wu and Pourahmadi (2003) and Huang et al. (2007)), which was

referred as regularized MLE. Another way is to use the penalized likelihood method, which

shrinks the Choleskey factor by adding an Lp penalty to the negative log-likelihood function.

Relatively few work has been done on shrinkage estimation for spatial problems. Zhu and Liu

(2007) described a penalized likelihood method for estimating the spatial covariance structure.

The effect of shrinkage covariance estimation on kriging prediction has not been studied before

and will be the focus of our current work.

4.1.1 A motivating example

Our current work is motivated by the problem of estimating the regional trend of sulfur-dioxide.

The problem faced by the Environmental Protection Agency (EPA) and other environmental

organizations is how to characterize the trend in certain pollutants. For example, during the

1980’s and 1990’s there was a concerted effort to solve the acid rain problem by reducing levels

of sulfur in the atmosphere, the EPA were interested in measuring trends of gaseous sulfur

dioxide (SO2) during this period. However, the trend differs from one place to another, and

there is an additional complication in that the measured SO2 at any particular time depends

on a number of factors unrelated to long-term trends: there is a clear seasonal pattern and it

is also affected by temperature, humidity, wind speed and direction, as well as the long-term

trend. To take account of this, Holland et al. (2000) fitted a two-stage model, where in the first

stage they fitted a generalized additive model (GAM), in which the seasonal and annual factors

as well as various meteorological variables were modeled nonparametrically; while the long-term
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trend was estimated separately for each site, with the estimated standard error. In the second

stage of the model, a spatial process was assumed for the true underlying trend, in which the

spatial parameters were estimated followed by kriging to obtain an optimal reconstruction of

the true spatial trend surface.

In particular, in the second stage, Z(s) was modeled as a spatial process at any location s,

with

E{Z(s)} =

q∑

j=1

βjXj(s), Cov{Z(s), Z(u)} = αMγ(‖s − u‖), (4.1)

where β is a q-vector of unknown regression parameters, Xj ’s are known functions of location

s, α = Var{Z(s)}, Mγ(·, ·) is a correlation function in R2 parameterized by γ, for instance,

γ could be the range parameter for the exponential, spherical, or the Gaussian correlation

function, or the range and smoothness parameters for the Matern correlation function. ‖s−u‖

denotes the Euclidean distance between sites s and u. Assume the covariance function parameter

θ = (α, γ)T in this example. They assumed that the true value of Z is unobserved and unknown,

but estimated by Y (si), along with the standard error σ̃i for each site si. The variables were

related by the equation

Y (si) = Z(si) + ei, (4.2)

where ei ∼ N(0, σ̃i
2) were interpreted as measurement errors, independent of the random field

{Z(·)}. Denote Var(e) = R, in which ei’s could be either independent or correlated. In their

paper, they considered two estimators of R,

(i) where R was assumed to be diagonal with entries σ̃2
1, . . . , σ̃

2
n (simple but not so realistic),

and

(ii) where R was simply estimated by the sample covariance of the regression errors.
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Suppose Z = {Zi} = {Z(si)}, i = 1, ..., n, where si is the site for the spatial data. To make

inference about the value of Z at unmonitored site s0, they applied an extension of kriging

analysis to estimate θ and make empirical prediction of Z(s0), in which the covariance matrix

of measurement error, R, was replaced by an estimator R̂ from the first stage.

Here is how they estimated the covariance function parameter θ: since equations (4.1) and

(4.2) provided a hierarchical model for the “data”, Y = (Y (s1), . . . , Y (sn))
T , they directly

considered the log-likelihood of the model parameters, which is given by

ℓ(β, α, γ;Y ) = −n
2 log(2π) − 1

2 log(|D|) − 1
2(Y −Xβ)TD−1(Y −Xβ), (4.3)

where X is the known n × q matrix of regressors, D = Var(Y ) = K(θ) + R, with K(θ)ij =

αMγ(‖si − sj‖) and R = Var(e). The approximate maximum likelihood estimators for model

parameters β, α and γ can be obtained from equation (4.3), by replacing R by R̂.

Next, given values of Y (si), i = 1, . . . , n, the kriging predictor of Z(s0) at unmonitored

location s0 is

Ẑ(s0) = xT0 β̂ + τT0 D
−1(Y −Xβ̂) (4.4)

where x0 is a known vector, β̂ = (XTD−1X)−1XTD−1Y , and τ0 = (Cov{Z(s0), Y (s1)}, . . .,

Cov{Z(s0), Y (sn)})T , with Cov{Y (s), Z(u)} = αMγ(||s − u||).

The mean-squared prediction error (MSPE) of Ẑ(s0) was given by

σ2(s0) = α− τT0 D
−1τ0 + (x0 −XTD−1τ0)

T (XTD−1X)−1(x0 −XTD−1τ0). (4.5)

Clearly, both Ẑ and σ2(s0) depend on R and θ, and they were replaced by the corresponding
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estimators to obtain the empirical BLUP and MSPE in equations (4.4) and (4.5).

In summary, the kriging predictor was obtained, based on estimate of D = K(θ)+R, where

K(·) is a known function of the parameter vector θ and R is the covariance matrix of some

measurement error that is not parametrically constrained. In order to estimate θ, an estimator

of R has to be supplied, then kriging prediction can be done by replacing D with the estimator

D̂ = K(θ̂)+R̂. In their work, they used the diagonal estimator and sample covariance matrix as

two alternative ways to estimate R. A natural question is: can we find a better estimator of R,

which will reduce the uncertainty in covariance parameter estimation and kriging prediction?

4.1.2 Our Work

We provide a framework to study the effect of regularized covariance estimators on parameter

estimation and kriging prediction. Inspired by the work of Ledoit and Wolf (2004), we consider

the following estimator of the measurement error covariance-variance matrix R,

R̂ν = νS + (1 − ν)S∗, ν ∈ [0, 1],

where S is the sample covariance matrix and S∗ is the diagonal estimator. The sample covari-

ance and diagonal estimator are two special cases of R̂ν , with ν = 1 and 0, respectively.

Theoretical results are provided for the parameter estimation for a mixed effect model,

and certain preliminary results are provided for kriging prediction. Denoting the covariance

parameter (vector) by θ and assuming θi is the ith element, we show that the estimation bias,

θ̂i − θi, depends on the first and the second order moments of the first order derivative of

the plug-in restricted log-likelihood function and the first order moment of the second order

derivative, where “plug-in” means replacing R by R̂ν whenever R appears in the definition of
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these functions or derivatives. As a starting point, we consider a model with an exponential

covariance functionK, and measurement error matrix R , which is set to be random, exponential

or long range dependent, respectively (see page 78 - 80 in Section 4.3.2). We find that certain

linear combination of the sample covariance and the diagonal estimator will result in much

smaller mean squared error (MSE) of the plug-in REML estimator θ̂. Simulation results also

indicate that there always exists certain ν∗ ∈ (0, 1) such that the approximate MSE of resulting

θ̂ based on R̂ν∗ is the substantially smaller than that based on the sample covariance. In the

future, we will investigate if there is a unique and explicit way to express this ν∗, in terms of

K,R,S and S∗.

In Section 4.2, we introduce the framework of a general model which captures the essential

features of the problem and allows for more explicit calculations. In Section 4.3, we derive the

asymptotic approximation for the parameter estimation bias and the MSE of both θ̂S and θ̂R̂

with respect to specific K and R and R̂ν . In Section 4.4, we give some preliminary results about

how to perform empirical kriging, and estimate the Mean Squared Prediction Error (MSPE)

with estimator R̂.

4.2 A general Model

Motivated by Holland et al. (2000), we study a linear mixed effect model, which is similar to

Holland et al. (2000) and allows more explicit theoretical calculation. Let

Y = XB + E, (4.6)
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where Y = {Yti} is an N × n observation matrix at n spatial locations and N times, with

Yti = Y (t, si), t ∈ {1, . . . , N}, and i ∈ {1, . . . , n}. X = (X1, ...,Xp) is an N × p design

matrix with p known covariates. We could assume each entry Xij as a function of location s,

however for simplicity, we just consider the spatially independent case. B is a p × n matrix

of unknown regression parameters, and E = {ǫti} is an N × n matrix of unobserved random

errors. In the remaining parts of this chapter, we assume p = 2 for simplicity. The methodology

developed is quite general and can be applied to models with p arbitrary variables.

We can write X = (X1, . . . ,XN )T , assume Xt = (1, t)T . Let βj = (β1j , . . . , βnj)
T , j =

1 or 2, βi = (βi1, βi2)
T , i = 1, . . . , n. Thus βji = µj + αji, B = (β1, . . . , βn) = (β1, β2)T .

Assume βi = (µ1, µ2)
T + (αi1, αi2)

T are spatially dependent, with αj = (α1j . . . αnj)
T ∼

N(0,Kj(θ)), j = 1 or 2. For convenience, we assume α1⊥α2, but they are not necessar-

ily orthogonal in some other cases. The covariance for βi is given by parametric function

Cj(·, θ), i.e. Kj
lm(θ) = Cj(sl − sm, θ). Let ǫi = (ǫ1i, . . . , ǫNi)

T , ǫt = (ǫt1, . . . , ǫtn)
T , thus

E = (ǫ1, . . . , ǫn) = (ǫ1, . . . , ǫN )T . Furthermore, we assume ǫt
i.i.d.∼ N(0, R) with R an unstruc-

tured covariance matrix, i.e. {ǫti} are spatially dependent and temporally independent. Let

Yi = (Y1i, . . . , YNi)
T = Xβi + ǫi and Y t = (Yt1, . . . , Ytn)

T , therefore Y = {Yti} = (Y1, . . . , Yn) =

(Y 1, . . . , Y N )T , where Yti = β1i+tβ2i+ǫti. Thus at time t and t′, the covariance-variance matrix

between Y t and Y t′ is Ktt′(θ) = K1(θ) + tt′K2(θ) + I(t=t′)R. We are interested in estimating

θ based on the restricted log likelihood function, and also making the spatial prediction for

either αj or Z(t, s0) = (1, t)β0, as in the motivation example, with R a nuisance parameter. We

want to investigate the effect of R estimators on covariance parameter estimation and kriging

prediction.

For estimating the covariance function parameter θ, it is natural to consider the method
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of restricted maximum log likelihood. Under the assumption of the random regression coeffi-

cients and the unstructured errors, the restricted log likelihood for the data Y in terms of the

parameters B, θ and R is given by

ℓ(θ;B,R) = −nN−2
2 (log 2+log π)+1

2 log |(X∗)TX∗|−1
2 log |V |−1

2 log |(X∗)TV −1X∗|−1
2(Y ∗)TWY ∗,

(4.7)

where Y ∗ = ((Y 1)T , . . . , (Y N )T ))T ,X∗ = X ⊗ 1n.

The (i, j)th element of V is given by

Cov(Yti, Yt′i′) =





∑2
j=1 xtj(si)xt′j(si′)K

j
ii′(θ) = K1

ii′(θ) + tt′K2
ii′(θ), if t 6= t′

∑2
j=1 xtj(si)xtj(si′)K

j
ii′(θ) +Rii′ = K1

ii′(θ) + t2K2
ii′(θ) +Rii′ , if t = t′.

,

and we can get W = V −1 − V −1X∗((X∗)TV −1X∗)−1(X∗)TV −1. We could also write

V =




K11(θ) . . . K1N (θ)

. . . Ktt′(θ) . . .

KN1(θ) . . . KNN (θ)



.

To simplify the analysis with respect to the above log-likelihood function, we estimate B

and R by B̂ = (XTX)−1XTY and R̂ = N−1Y TPY , with P = IN×N −X(XTX)−1XT . This

coincides with the MLE of B and R when B are fixed coefficients instead of random variables.

Let β = ((β1)T , (β2)T )T , we can get β̂ = ((β̂1)T , (β̂2)T )T ∼ N(β ⊗ 1n, VB), where

VB =



K1(θ) 0

0 K2(θ)


 + (XTX)−1 ⊗R.
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This is the key equation. Since we can compute β̂ (also written as B̂) without knowing R, then

we use the distributional equation for β̂ to estimate the parameters of VB knowing R. Then we

can explore different estimators for R in terms of how they affect the estimation of θ and then

the subsequent kriging, for instance, the kriging prediction for αj . Here βi and β̂i correspond

to Z(s) and Y (s) in model (4.1), (XTX)−1 ⊗R corresponds to R in the motivational example.

For given R, the restricted log likelihood of θ as a function of B̂ in terms of θ is given by

ℓ(θ; B̂,R) = −2n−2
2 (log 2 + log π) + 1

2 log |XT
BXB | − 1

2 log |VB | − 1
2 log |XT

BV
−1
B XB | − 1

2 β̂
TWB β̂,

(4.8)

where XB =




1n 0

0 1n


 ,WB = {wαβ} = V −1

B − V −1
B XB(XT

BV
−1
B XB)−1XT

BV
−1
B .

The REML estimator of θ based on above equation is much easier to compute than that

from equation (4.7), since the covariance matrix VB in (4.8) is of much lower dimension when

N > 2. Just like the idea from the motivation example, we need to know R or its estimator for

intensive calculations. In Section 4.3 - 4.4, we will study the effects of different estimators of R

onto the Mean Squared Error (MSE) of resulting θ̂.

Another problem we study is to predict α0 or Z(t, s0) = (1, t)β0, which is similar to the

regional trend prediction in previous example. Prediction problem is of great interest in spatial

statistics, a commonly used method is the kriging predictor. From model (4.5), it is well known

that the predictor of so-defined Z(t, s0) at location s0 and time t, using the universal kriging

method (or BLUP, the best linear unbiased predictor) is given by

Ẑ(t, s0) = xT0 β̂0 + τT0 (Ktt)
−1(Y t −X0β̂0) (4.9)
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where x0 = (1, t)T , X0 = (x0, . . . , x0)
T is an n × 2 design matrix, β̂0 is the kriging predictor

of β0 based on VB and β̂, and τ0 = (Cov{Z(t, s0), Yt1}, . . . ,Cov{Z(t, s0), Ytn})T . The mean-

squared prediction error (MSPE) of Ẑ(t, s0) is given by

σ2(t, s0) = c− τT0 K
−1
tt τ0 + (x0 −XT

0 K
−1
tt τ0)

T (XT
0 K

−1
tt X0)

−1(x0 −XT
0 K

−1
tt τ0), (4.10)

where c = c(t, θ) = Var{Z(t, s0)} = C1(0, θ) + t2C2(0, θ).

The right-hand sides of Equations (4.9) and (4.10) both depend onKtt, i.e., on the covariance

parameter θ and unstructured covariance matrix R. We can derive the empirical BLUP and

MSPE by replacing θ and R with their estimates. Here are the steps:

• Estimate R by R̂.

• Plug R̂ into the restricted log-likelihood function in equation (4.3). Let ℓ̂(θ) = ℓ(θ; B̂, R̂).

The approximate REML estimators for covariance function parameter θ can be derived

by maximizing ℓ̂(θ) with respect to θ, which we denote by θ̂R̂.

• Apply θ̂R̂, B̂ and R̂ to equation (4.4) and (4.5) to get empirical kriging predictor and

the corresponding MSPE.

We will investigate the effect of different R̂’s onto the estimation of the covariance function

parameter θ and on kriging prediction, including the point prediction and corresponding MSPE.

We define the meaning of a “good” R̂ as follows:

Consider the following estimator of the measurement error covariance-variance matrix R,

R̂ν = νS + (1 − ν)S∗, ν ∈ [0, 1],
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where S is the sample covariance matrix and S∗ is the diagonal estimator. The sample covari-

ance and diagonal estimator are two special cases of R̂ν , with ν = 1 and 0, respectively.

This linear combination estimator is inspired by Ledoit and Wolf (2004), while they focused

on shrinking toward the identity matrix instead of the diagonal matrix here and considered

the optimal R̂ based on smallest MSE of itself. In this chapter, we are interested in good

estimator of R and also investigating its effect on the estimation of parameter θ and on kriging

prediction. For example, both of the two above estimators’ performances can be compared by

computing MSE of θ̂R̂. If certain shrinkage estimator results in smaller MSE of θ̂, we consider

it as a more efficient estimator of R. Furthermore, we can use the expression of the MSE to

select the optimal tuning parameter ν. Similar things could be done for predicting αj in kriging

calculation.

4.3 Results for Covariance Parameter Estimation

4.3.1 Theoretical Results

To estimate the covariance parameter θ, our analytical procedure is as follows: consider model

(4.6) at time t. Using equation (4.8) for the restricted log-likelihood in terms of VB and the

definition about W, e,Ui, Uij in Chapter 2 (page 17 - 18 in Section 2.2), we can rewrite equation

(4.8) as

ℓn = −2n−2
2 (log 2 + log π) + 1

2 log |XT
BXB | − 1

2 log |VB | − 1
2 log |XT

BV
−1
B XB | − 1

2eαeβw
αβ ,

(4.11)
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where WB = {wαβ} = V −1
B − V −1

B XB(XT
BV

−1
B XB)−1XT

BV
−1
B , and β̂TWB β̂ = eTWBe with

e = {eα} = β̂ −XBβ. Also we have defined Ui = ∂ℓn(θ)
∂θi , Uij = ∂2ℓn(θ)

∂θi∂θj .

From expression (4.11), we get

Ui = 1
2vαβ

∂wαβ

∂θi − 1
2eαeβ

∂wαβ

∂θi , (4.12)

Uij = 1
2
∂vαβ

∂θj
∂wαβ

∂θi + 1
2vαβ

∂2wαβ

∂θi∂θj − 1
2eαeβ

∂2wαβ

∂θi∂θj . (4.13)

Let R̂ be an estimator of R such that A = 1
ǫn

(XT
BXB)−1 ⊗ (R̂−R) = Op(1), where ǫn → 0

as n→ ∞. One example of such R̂ is the MLE of R, for which ǫn = 1√
n
. We write

V̂B =



K1(θ) 0

0 K2(θ)


 + (XT

BXB)−1 ⊗ R̂ = VB + ǫnA.

From the definition of WB in terms of VB, we have

dWB
dǫn

= −WB
dVB
dǫn

WB , (4.14)

d2WB
dǫ2n

= 2WB
dVB
dǫn

WB
dVB
dǫn

WB −WB
d2VB
dǫ2n

WB . (4.15)

Then if we replace WB by ŴB in terms of VB , we get the corresponding ŴB = V̂ −1
B −

V̂ −1
B XB(XT

B V̂
−1
B X−1

B )XT
B V̂

−1
B , and

ŴB = WB − ǫnWBAWB + ǫ2nWBAWBAWB + op(n
−1). (4.16)

Let Ûi and Ûij be Ui and Uij with VB or WB appearing in the definitions replaced by V̂B or

ŴB , respectively, where Û ij is the (i, j)th element of the inverse matrix of {Ûij}. Define the
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estimator θ̂ as the one such that {Ui(θ)} = 0p and θ̂ the one such that {Ûi(θ)} = 0p, then we

get

0 = Ûi(θ̂) = {Ûi(θ)} + (θ̂ − θ){Ûij(θ)} +Op(n
−1),

therefore the bias of the estimator θ̂ is

θ̂i − θi = −Û ijÛj +Op(n
−2). (4.17)

When n→ ∞, we denote

n−1Uij
p→ Bij,

n−1Ûij
p→ B̂ij,

n−1/2Ui
d→ N [0, C],

n−1/2Ûi
d→ N [b̂, Ĉ],

where B̂ij −Bij = O(n−1/2), Ĉ − C = O(n−1/2), b̂ = O(n−1/2). Thus as n→ ∞, we get

Theorem 4.3.1. Under regularity conditions for increasing domain asymptotics, we have

√
n(θ̂ − θ) = −

√
n{Û ij}{Ûj} +Op(n

−3/2)

≈ −
√
n{Ûij}−1{Ûj} d→ N [−B̂−1b̂, B̂−1ĈB̂−1]. (4.18)

Remark: Using the expression of the above theorem, we can calculate the Mean Squared Error

(MSE) of the estimation of covariance parameter vector θ, depending on both K and R.
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In order to maintain the expression of everything in the last term of equation (4.18), we need

to develop asymptotic approximation to b̂, B̂ and Ĉ as n → ∞, which are the approximations

to the first and second order moments of Ui, and the first order moments of Uij. We get

E{Ûi} = 1
2E{v̂αβ − vαβ}E{∂Ŵ

αβ
B

∂θi }

≈ ǫn
2 A

∗
αβ{

∂Wαβ
B

∂θi − ǫn
∂
∂θi (W

βγ
B A∗

γδW
δα
B )}

= ǫn
2 A

∗
αβ

∂Wαβ
B

∂θi − ǫ2n
2 A

∗
αβ(

∂W βγ
B

∂θi A∗
γδW

δα
B +W βγ

B A∗
γδ
∂W δα

B

∂θi ),

E{Ûij} = 1
2E{∂v̂αβ

∂θj

∂Ŵαβ
B

∂θi } + 1
2ǫnE{(v̂αβ − eαeβ)

∂2Ŵαβ
B

∂θi∂θj }

= 1
2E{∂v̂αβ

∂θj

∂Ŵαβ
B

∂θi } + ǫn
2 E{∂vαβ

∂ǫn

∂2Ŵαβ
B

∂θi∂θj }

≈ 1
2{

∂v̂αβ

∂θj [
∂Wαβ

B

∂θi − ǫn
∂
∂θi (W

βγ
B A∗

γδW
δα
B ) + ǫ2n

∂
∂θi (W

βs
B A∗

stW
tδ
B A

∗
δγW

γα
B )]

+ ǫ2nA
∗
αβ[

∂2Wαβ
B

∂θi∂θj − ǫn
∂2

∂θi∂θj (W βγ
B A∗

γδW
δα
B )]}

= 1
2{

∂v̂αβ

∂θj [
∂Wαβ

B
∂θi − ǫn(

∂W βγ
B

∂θi A∗
γδW

δα +W βγ
B A∗

γδ
∂W δα

B
∂θi )

+ ǫ2n(
∂W βs

B

∂θi A∗
stW

tδ
B A

∗
δγW

γα
B +W βs

B A∗
st
∂W tδ

B

∂θi A
∗
δγW

γα
B +W βs

B A∗
stW

tδ
B A

∗
δγ
∂W γα

B

∂θi )]

+ ǫnA
∗
αβ

∂2Wαβ
B

∂θi∂θj }, (4.19)

Var{Ûi} = E{Û2
i } − E{Ûi}2

= 1
4E[(v̂αβ − eαeβ)(v̂γδ − eγeδ)]E{∂Ŵ

αβ
B

∂θi }E{∂Ŵ
γδ
B

∂θi } − E{Ûi}2

≈ 1
4 [ǫ2nA

∗
αβA

∗
γδ + vαγvβδ + vαδvβγ ][

∂Wαβ
B

∂θi − ǫn
∂
∂θi (W

βs
B A∗

stW
tα
B ) + ǫ2n

∂
∂θi (WA∗WA∗W )αβ ]

[
∂W γδ

B

∂θi − ǫn
∂
∂θi (W

γs
B A∗

stW
tδ
B ) + ǫ2n

∂
∂θi (WA∗WA∗W )γδ] − E{Ûi}2

≈ 1
4 [vαγvβδ + vαδvβγ ][

∂Wαβ
B

∂θi

∂W γδ
B

∂θi − ǫn(
∂Wαβ

B

∂θi
∂
∂θi (W

γs
B A∗

stW
tδ
B ) +

∂W γδ
B

∂θi
∂
∂θi (W

βs
B A∗

stW
tα
B ))

+ ǫ2n(
∂
∂θi (W

βs
B A∗

stW
tα
B ) ∂

∂θi (W
γs
B A∗

stW
tδ
B ) +

∂Wαβ
B

∂θi
∂
∂θi (WA∗WA∗W )γδ

+
∂W γδ

B

∂θi
∂
∂θi (WA∗WA∗W )αβ)], (4.20)
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Cov{Ûi, Ûj} = E{ÛiÛj} − E{Ûi}E{Ûj}

= 1
4E[(v̂αβ − eαeβ)(v̂γδ − eγeδ)]E{∂Ŵ

αβ
B

∂θi }E{∂Ŵ
γδ
B

∂θj } − E{Ûi}E{Ûj}

≈ 1
4 [ǫ2nA

∗
αβA

∗
γδ + vαγvβδ + vαδvβγ ][

∂Wαβ
B

∂θi − ǫn
∂
∂θi (W

βs
B A∗

stW
tα
B )

+ ǫ2n
∂
∂θi (WA∗WA∗W )αβ][

∂W γδ
B

∂θj − ǫn
∂
∂θj (W γs

B A∗
stW

tδ
B ) + ǫ2n

∂
∂θj (WA∗WA∗W )γδ]

− E{Ûi}E{Ûj}

≈ 1
4 [vαγvβδ + vαδvβγ ][

∂Wαβ
B

∂θi

∂W γδ
B

∂θj − ǫn(
∂Wαβ

B

∂θj
∂
∂θi (W

γs
B A∗

stW
tδ
B )

+
∂W γδ

B
∂θi

∂
∂θj (W βs

B A∗
stW

tα
B )) + ǫ2n(

∂
∂θi (W

βs
B A∗

stW
tα
B ) ∂

∂θj (W γs
B A∗

stW
tδ
B )

+
∂Wαβ

B

∂θi
∂
∂θj (WA∗WA∗W )γδ +

∂W γδ
B

∂θj
∂
∂θi (WA∗WA∗W )αβ)], (4.21)

where A∗
αβ = E{Aαβ}. Furthermore, we need the following expressions of derivatives to plug

into the above equations:

∂WB

∂θi = −WB
∂VB

∂θi WB ,

∂2WB

∂θi∂θj = WB
∂VB

∂θi WB
∂VB

∂θj WB +WB
∂VB

∂θj WB
∂VB

∂θi WB −WB
∂2VB

∂θi∂θjWB .

Using Theorem 4.3.1, and the fact that

MSE(θ̂) = bias2 + Var(θ̂) = E2(θ̂ − θ) + Var(θ̂)

= 1
n [(B̂−1b̂)2 + B̂−1ĈB̂−1] + o(n−2),

we can calculate equations (4.19) - (4.22) (for specific K,R and R̂), and substitute them into

the above equation to approximate the MSE of θ̂R̂, where R̂ indicates the estimator is derived
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by plugging R̂ into the restricted log-likelihood function (4.8) or (4.11). R̂ could be any possible

estimator of R, e.g. the sample covariance S, or the linear shrinkage estimator R̂ν . In addition,

we can use our calculation results by Theorem 4.3.1 to choose the optimal tuning parameter

for R̂ν . Simulation studies are also necessary for finite sample sizes.

4.3.2 Simulation Results

As a starting point, we consider a model with a specific covariance function K, where both

K1 and K2 are exponential covariance functions with the same parameters, with the (i, j)’th

element of K l set to be K l(i, j) = φ · exp(− |i−j|
ρ ), l = 1, 2. Assume the parameters φ and ρ

are independent of each other. We set φ = .5, 1, 1.5, 2, ρ = 0.25, 0.5, 0.75, 1 and n = 5, N = 30,

respectively. The data are simulated and analyzed as follows:

Step 1: Simulate the data with covariance structure K and random error R together, where R

could be a random positive-definite n× n matrix, an exponential covariance (where the (i,j)’th

element of R is set to be R(i, j) = φR · exp(−|i − j|/ρR), φR = 1, ρR = 1) or a long range

dependence structure (where the (i,j)’th element of R is constructed as R(i, j) =
σ2

R
2 [(|i − j| +

1)2H − 2|i − j|2H + (|i − j| − 1)2H ], with σ2
R = 1,H = 3/4), respectively. In particular, all of

these three types of R and the exponential covariance structure could be constructed directly

in matlab code.

Step 2: For each pair of possible K and R with specific parameter values (4 × 4 × 3 = 48 in

total), we simulate the data for 100 runs. For each i = 1, . . . , 100, we consider the following

estimators of R:

R̂iν = νSi + (1 − ν)S∗
i ,

where ν = 0, 0.05, 0.1, . . . , 1 (corresponding to the sample covariance). S∗
i is the diagonal
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estimator of R.

This family of estimators is inspired by the work in Ledoit and Wolf (2004), while their

motivation is to shrink S toward a re-scaled identity matrix instead of the diagonal matrix

here, and to find the optimal estimator R̂ based on the smallest mean squared error of the

covariance matrix.

On one hand, applying Theorem 4.3.1, we can calculate the theoretical MSE for θ̂R̂.On

the other hand, we can calculate the MSE for θ̂R̂ in the simulation as well, since we can get

R̂iν , i = 1, . . . , 100 and then we can get the corresponding θ̂R̂, so the simulation result for its

MSE should be 1
100

∑100
i=1(θ̂R̂ − θ)2, here θ = φ or ρ.

Step 3 : Since the structure of K is fixed to be exponential here, for each one of the three types

of R (random, exponential and long range dependence, respectively), we make 4× 4 = 16 plots

for the MSE of θ̂R̂ versus. ν = 0, 0.05, . . . , 1.θ = φ or ρ. Figure 4.1 - Figure 4.2 is for random

R, Figure 4.3 - 4.4 for R with the exponential covariance, Figure 4.5 - 4.6 is for the long range

dependence case of R.

From Figure 4.1 - 4.6, we can see clearly that :

• There exists some ν∗ ∈ [0, 1] such that R̂ν∗ will result in the smallest MSE for θ̂ (θ =

ρ or φ), among all the linear combinations of S and S∗. In addition, in most cases the

MSE improvements from the sample covariance are very substantial, say, more than 50%.

• In most cases, the diagonal estimator (when ν = 0) is better than the sample covariance,

resulting in smaller MSE of θ̂.

• It seems that the simulation result for the case of finite sample size agrees well with

calculation by Theorem 4.3.1, which approximates the MSE of θ̂. We could use this
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theorem to choose the optimal tuning parameter for R̂ν , corresponding to the smallest

mean squared error of θ̂R̂.

• Interestingly, the optimal ν which result in smallest MSE of both φ and ρ seem close to

each other, for specific K and R.

The next work we should do is to investigate if there is a unique and explicit way to express

this ν∗, in terms of K,R and R̂.

4.4 Preliminary Results for kriging performance

To make kriging prediction by using R̂ν and θ̂ in place of R and θ respectively, we can proceed

as follows.

Suppose we want to predict the scalar variable Z(s0, t) = x0β0 from model (4.6), with

variance c and Cov(Z, Y t)T = τ0. The standard kriging predictor for Z(s0, t) is Ẑ = λTY t with

mean squared prediction error σ2
0, where

λ = K−1
tt τ0 +K−1

tt X0(X
T
0 K

−1
tt X0)

−1(x0 −XT
0 K

−1
tt τ0), (4.22)

σ2
0 = c− τT0 K

−1
tt τ0 + (xT0 − τT0 K

−1
tt X0)(X

T
0 K

−1
tt X0)

−1(x0 −XT
0 K

−1
tt τ0). (4.23)

When R is substituted by R̂, it is natural to replace λ by

λ̂ = K̂−1
tt τ0 + K̂−1

tt X0(X
T
0 K̂

−1
tt X0)

−1(x0 −XT
0 K̂

−1
tt τ0), (4.24)
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Figure 4.1: When R is random. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots of

MSE(φ̂
R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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Figure 4.2: When R is random. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots of
MSE(ρ̂

R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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Figure 4.3: When R is exponential. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots of

MSE(φ̂
R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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Figure 4.4: When R is exponential. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots of
MSE(ρ̂

R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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Figure 4.5: When R is long range dependence. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots

of MSE(φ̂
R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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Figure 4.6: When R is long range dependence. Covariance function K l = φ exp(−d/ρ), l = 1, 2. Plots
of MSE(ρ̂

R̂
) vs. ν, where R̂ν = νS + (1 − ν)S∗, ν = 0, 0.05, 0.1, . . . , 1. Solid line: theoretical result by

Theorem 4.3.1, Circled line: simulation results (100 iterations).
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and we get the resulting MSPE for Ẑ is

E{(Z0 − λ̂TY t)2} = c− 2λ̂T τ0 + λ̂TKttλ̂. (4.25)

To calculate the right hand side of equations (4.25) and (4.26), we need to expand it in powers

of ǫn, by using the following derivative expressions

∂K−1
tt

∂ǫn
= −K−1

tt
∂Ktt
∂ǫn

K−1
tt ,

= −K−1
tt AK

−1
tt , (4.26)

∂2K−1
tt

∂ǫ2n
= 2K−1

tt
∂Ktt
∂ǫn

K−1
tt

∂Ktt
∂ǫn

K−1
tt −K−1

tt
∂2Ktt
∂ǫ2n

,

= 2K−1
tt AK

−1
tt AK

−1
tt , (4.27)

∂
∂ǫn

(XT
0 K

−1
tt X0) = −XT

0 K
−1
tt AK

−1
tt X0, (4.28)

∂
∂ǫn

(XT
0 K

−1
tt X0)

−1 = (XT
0 K

−1
tt X0)

−1XT
0 K

−1
tt AK

−1
tt X0(X

T
0 K

−1
tt X0)

−1, (4.29)

∂2

∂ǫ2n
(XT

0 K
−1
tt X0)

−1 = 2(XT
0 K

−1
tt X0)

−1XT
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tt X0(X

T
0 K

−1
tt X0)

−1XT
0 K

−1
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−1
tt X0·

(XT
0 K

−1
tt X0)

−1, (4.30)

and so on. Besides, we can write λ̂ as follows,

λ̂ = λ+ ǫn · ∂λ
∂ǫn

+Op(
1
n)

= λ+ ǫn · [τ0 ∂K
−1
tt
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+

∂K−1
tt

∂ǫn
X0(X

T
0 K̂

−1
tt X0)

−1x0

+K−1
tt X0

∂
∂ǫn

(XT
0 K

−1
tt X0)

−1x0 − ∂K−1
tt

∂ǫn
X0(X

T
0 K̂

−1
tt X0)

−1XT
0 K̂

−1
tt τ0

− K̂−1
tt X0

∂
∂ǫn

(XT
0 K

−1
tt X0)

−1XT
0 K̂

−1
tt τ0 − K̂−1

tt X0(X
T
0 K̂

−1
tt X0)

−1XT
0
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∂ǫn

τ0]. (4.31)
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Plugging (4.27) and (4.30) into equation (4.32), we can get the expression of λ̂ and then sub-

stitute into equation (4.26). Similarly to the simulation work we have done in Section 4.3.2, we

can simulate some data and check the effect of R̂ν (with different ν) on the kriging predictor

Ẑ = λ̂TY t and the kriging prediction error σ̂2.

4.5 Summary

In this Chapter, we consider estimating the unstructured covariance matrix in model (4.6). We

study two different estimators R̂’s and their effect on the estimator for θ, and will investigate

how they affect the kriging predictor and kriging prediction error as well. Direct application

of the estimator of covariance matrix leads to the “plug-in” approach for
ˆ̂
θ, Ẑ,MSPE(Ẑ). To

derive asymptotic distribution of the parameter estimator
ˆ̂
θ and the prediction error for an

unobserved variable Z, we need to specify A = 1
ǫn

(XTX)−1(R̂ − R). We consider S (sample

covariance matrix) or R̂ν (a convex linear combination of the sample covariance and diagonal

matrix) here.

For the unstructured measurement error matrix, we could estimate it by the sample covari-

ance S = n−1Y TPY, with P = I −X(XTX)−1XT , or some shrinkage estimator, for instance,

R̂ν = νS+(1−ν)S∗, ν ∈ [0, 1). We are interested in estimating θ and β based on the restricted

log likelihood function ℓ(θ; B̂,R), and also the spatial predictions for αj .

For fixed K and R, we compare the performances of θ̂R̂ (R̂ = S or R̂ν) by computing their

mean squared errors using equations (4.18) - (4.22), simultaneously we can use the latter to

select the tuning parameters ν. From Figure 4.1 - 4.6 we can see clearly that there is substantial

improvement from the sample covariance to the shrinkage estimator, in the sense of the MSE of

resulting covariance parameter estimator θ̂. The next analysis should be to find if there is any
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explicit expression (or feasible algorithm) of ν in terms of K,R, and R̂. Also, we already have

some preliminary results for the kring prediction error as well, similar things could be done for

predicting αj .

Up to now, we only consider the comparison the sample covariance with the linear combina-

tion, without comparing with any other alternative covariance estimators. On the other hand,

we have already assumed the model is spatial-temporal data, so that any results from our work

could be easily applied to either time series or spatial modeling. Both of these remain possible

topics for future research.
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Chapter 5

Summary and Comments

In this chapter, we summarize all the contributes we have already made, and propose some

interesting problems for the future research.

5.1 Summary of the finished work

5.1.1 Asymptotic Comparisons of Predictive Densities for Dependent obser-

vations

In Chapter 2, we used the asymptotic expansion of the KL divergence as the main tool to com-

pare different predictive distributions with dependent observations, and derived some explicit

results for one-way random effect models.

1. In Section 2.3, we have derived the Laplace expansion of the expected difference between

the KL divergence of both the REML-based estimative density and the Bayesian predictive

density. We have also defined “second-order KL REML-dominance” and given explicit

conditions for a prior to be second-order KL REML-dominant.

2. In Section 2.4, we used a specific mixed effect model as an example to illustrate our results.

Under this model, we have proposed a class of improper priors and given specific conditions



for the corresponding predictive distributions to be second-order KL REML-dominant.

We also showed that the commonly used Jeffreys prior does not lead to second-order KL

REML-dominance.

We have already derived the methodology for asymptotic approximation of integration of

KL-divergences, which can be applied to more general mixed effects models, for instance

the spatial linear models commonly used in geostatistics. However the condition for a

“second-order KL REML-dominant” prior in these models is more difficult to get.

5.1.2 Applications regarding the temporal (or spatial) AR(1) models

We indicated how to predict the conditional density on the AR(1) process in the Bayesian

framework by introducing some noninformative priors, all of which are second-order KL REML-

dominant. We also compared among the three candidate priors, of which the result indicates

that in the asymptotic sense the reference prior is superior to the other two, in both the temporal

and spatial AR(1) models. We simulate data for both the time series and spatial AR(1) models,

which also validates the result when the sample size is moderately large. We also noticed that,

when the sample size is very small, the simulation numerical values differ substantially from

the asymptotic second-order approximation, possibly due to the biases of higher-order with

respect to averaged KL divergence. In particular, the smaller the sample size is, the greater

the influence of higher-order biases is. Tanaka and Komaki (2008) considered the comparison

of priors in a different way: they evaluated the performance of the resulting Bayesian spectral

densities and compare their expected KL divergences and suggested a superharmonic prior for

the AR(2) case.
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5.1.3 Estimation and Prediction with Errors in Covariances

For shrinkage estimator of the covariance matrix, and its effect on the estimation of covariance

function parameter and the kriging performance, we have the following results in Chapter 4.

1. In Section 4.1 we consider a general model with a semiparametric covariance matrix V .

We study two estimators for R: S as the sample covariance of R, and a linear shrinkage

estimator R̂ν = νS + (1 − ν)S∗, ν ∈ [0, 1], where S∗ denotes the diagonal estimator of R.

For the parameter θ, an empirical REML estimator based on estimator of R and B̂ has

been proposed. The bias, θ̂i − θ, asymptotically depends on the first and second order

moments of the first order derivative of the restricted log-likelihood function, and the first

order moments of the second order derivative. We have derived the asymptotic expression

for these moments, leading to the computation of MSE(θ̂R̂) with R̂ = S or R̂ν . For fixed

exponential structure of K and three different types of R (random, exponential and long

range dependence, respectively), we have done some simulation work and the numerical

results agrees with theoretical values very well, indicating that in most cases, some R̂ν

with certain ν will result in the smallest MSE of θ̂.

2. Preliminary results for predicting αj and getting the mean squared prediction error in

kriging has been given in section 4.4. If we replace R by R̂ν or S, we can get the empirical

kriging predictor and its mean squared prediction error, depending on K,R and R̂.

5.2 Future work

In the course of this research, additional future work has become apparent. There are many

potential future research problems related to comparisons of densities, estimation for covariance
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function parameter and prediction methods. Here we propose some of them as my future

research topics.

5.2.1 Asymptotic Expansions for KL divergence

1. Asymptotic study of the predictive densities for dependent observations is expected to

give many interesting and insightful results. In the future, we plan to consider spatial

sampling design in the context of spatial linear model. We will consider a design criterion

by use of the Kullback-Leibler divergence between the true density and REML plug-in

density or Bayesian predictive density, with respect to the block predictor. We plan

to derive the optimal design criterion by applying the asymptotic approximation to the

KL divergence to the second order. This gives some explicit form for the integration of

Kullback-Leibler divergences, and reduces the computation workload, when searching for

optimal design.

2. Garcia-Donato and Sun (2007) discussed objective priors for hypothesis testing for one-

way random effects models, and derived the divergence based (DB) prior and the intrinsic

prior. Their work is related with ours, while their emphasis is on the use of these priors

to develop consistent objective Bayesian factors, which is different from ours. We can

check whether their priors are also second order KL REML-dominant, and whether some

of their priors can dominate others in the sense of second order KL divergence, by the

asymptotic expressions we derived for KL divergence (2.26) - (2.28). This could be future

research topic beyond thesis work.
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5.2.2 Applications to the regression models with temporal or spatial corre-

lated error

In Chapter 3, our attentions is mainly paid to the AR(1) model, a special case of AR(p) pro-

cesses. For the general AR(p) model, especially when the order is moderately large, there is

another way to estimate the model: utilizing the Bayesian estimation of the spectral density of

the model, e.g. Tanaka and Komaki (2005) shows that in i.i.d. case the Bayesian estimation

of spectral densities based on a superharmonic prior (if exists) asymptotically dominate those

based on the Jeffreys prior, using the asymptotic expansion of the risk difference. Tanaka and

Komaki (2008) focuses on the AR(2) process and propose an explicit form of such a super-

harmonic prior. We could also consider the AR(2) model from the viewpoint of its predictive

densities and make comparisons of different methods.

On the other hand, the moving average (MA) model is also one of the most important

models in data analysis. The MA models are completely different from the AR models as

a stochastic process and in the information geometrical viewpoint, they are known to have

different structures. We can also consider the ARMA model for the most general situation.

5.2.3 Estimation and Prediction with Errors in Covariances

We could continue the following work as an extension of Chapter 4:

1. In Chapter 4, we compare the empirical REML estimator of parameter θ based on sample

covariance matrix S and the one based on shrinkage estimator R̂ν , in the sense of the

resulting MSE of θ̂ (for specific exponential K, and three kinds of R: random, exponential

and long range dependence, see details on page in Section 4.3). Also we can use the

first one to select the tuning parameter ν. We would consider the underlying connection
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between the choice of ν and the structure of K, R and R̂ν , and propose certain algorithm

to select the optimal tuning parameter.

2. Similar work as above could be done for predicting αj in kriging. In this way we can in-

vestigate the effect of R̂ (R̂ν or S) on kriging prediction and the Mean Squared Prediction

Error (MSPE).

3. Besides the linear combination R̂ν , we will try some other estimators forR, for instance the

Stein-shrinkage estimator (Daniels and Kass (2001)), to check if there will be substantial

improvement from the sample covariance, in the sense of MSE(
ˆ̂
θ) or empirical kriging

prediction MSE.

Besides, certain related future research is as follows:

1. Model (4.6) is assumed to be stationary. We would like to estimate the covariance matrix

without assumption of stationarity, or for non-stationary models, and also check its effect

on parameter estimation and kriging predictions.

2. Illuminated by Section 4.1, we can consider systematic comparison of the Bayesian meth-

ods and the regularized REML as future research work, though the computation cost of

the Bayesian methods is much more now.
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