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Abstract 
 

Susan M. Deupree:  Bioanalytical Methods for Investigating Bacterial Adhesion and the 
Antibacterial Action of Nitric Oxide 

 
(Under the direction of Professor Mark Schoenfisch.) 

 
 

Infection is a continuing problem in both hospital and community settings, further 

compounded by swift adaptation and rising emergence of more virulent and antibacterial-

resistant pathogens.  The complex mechanisms underlying the process of infection must be 

understood in order to develop preventative technologies.  Simultaneously, effective 

solutions must be devised to counter infections as they arise.  My dissertation research has 

contributed to both aspects by working to understand the process of adhesion as well as the 

development of novel therapeutic strategies. 

To investigate bacterial adhesion at a fundamental level, a quantitative method was 

developed for measuring the shear force required to detach individual adhered bacteria using 

atomic force microscopy (AFM) that featured both improved accuracy and higher-throughput 

data acquisition.  This technique was employed to characterize the adhesion strength kinetics 

of Pseudomonas aeruginosa and Staphylococcus aureus.  Both the magnitudes of detachment 

force and rates of increase in adhesion strength were greater for P. aeruginosa than for S. 

aureus.  Furthermore, adhered cells demonstrated a range of adhesion forces that broadened 

with time, indicating that change in adhesion strength does not proceed uniformly. 
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Morphological analyses were conducted to study the antimicrobial properties of nitric 

oxide (NO) against two Gram-negative pathogens. The effects of NO as a function of 

concentration, exposure time, and delivery format were studied using two materials with 

differing NO-release properties.  Analysis of cell topography revealed that higher doses of 

NO correlated with increasing membrane roughness.  Treatment with amoxicillin, an 

antibiotic that compromises the integrity of the cell wall, led to morphologies resembling 

those resulting from NO treatment.  Our observations indicated cell wall deterioration is a 

consequence of NO-exposure for both species studied. 

The combination of NO and silver sulfadiazine (AgSD) was evaluated for bactericidal 

efficacy using a modified broth microdilution technique and a checkerboard-type assay.  The 

combination of NO and AgSD proved synergistic against most pathogens, particularly the 

Gram-positive species.  A highly synergistic effect was produced against S. aureus and E. 

faecalis, including a vancomycin-resistant strain.  The synergistic activity of AgSD and NO 

against a broad range of pathogens advocates future investigation of this therapeutic 

combination for use as a topical anti-infective. 
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Chapter 1: 
 

Introduction to the problem and process of bacterial infection and the 

development of antibacterial agents used to remediate infection 

 

1.1 Bacterial adhesion and infection 

1.1.1 Bacteria as human pathogens.  There are approximately 10 times more bacteria 

living in a human body than there are human cells of which that body is composed.1  

Populations of bacteria colonize the skin, the mouth, and the digestive and genitourinary tract 

of humans.2  Most resident bacteria are harmless, existing in symbiotic relationships with 

their hosts that are either commensal (neither beneficial nor harmful to the host) or 

mutualistic (beneficial to both parties).  In fact, the colonization of the human body by 

innocuous bacteria actually protects against disease by occupying the preferred niches of 

more harmful species, thereby providing a passively beneficial function to the host through 

competitive exclusion.1,2  However, a small fraction of bacteria are pathogenic (infectious 

disease-causing), including many species that constitute the natural flora of the host.2 

 The first level of defense against pathogenic bacteria is provided by physical and 

mechanical barriers such as the skin, the mucosa lining the hollow organs, cilia, and flushing 

mechanisms.3  Once the exterior barriers have been breached, the host immune system 

responds through stimulation of the inflammatory response and recruitment of phagocytes 

(i.e., monocytes, macrophages, and neutrophils) that engulf and destroy the microorganisms.  

Ideally, the skin and the immune system work in tandem to protect against invasion of 



foreign pathogens, although certain events that compromise these defense systems, such as 

removal of the skin barrier (e.g., burns, wounds), introduction of foreign materials (e.g., 

implantation of medical devices), or a weakened immune systems (e.g., human 

immunodeficiency virus (HIV) or cystic fibrosis (CF) patients), leave the host more 

vulnerable to attack from harmful bacteria.   

All clinically significant species of bacteria are chemoorganotrophs (heterotrophs), 

relying upon organic compounds with carbon backbones such as sugars, amino acids and 

proteins for nutrition.4  Pathogenic bacteria cause infection by successfully colonizing animal 

tissue and utilizing the nutritive resources of the host in a relationship that is detrimental to 

the infected organism.  Successful colonization of the host proceeds via four steps:5 

1. adherences at the surface (biomaterial, tissue); 

2. survival at the surface and/or penetration into the tissue; 

3. multiplication within the host; and 

4. undermining, evading, or eliminating the host defense response. 

Infection by a pathogenic species does not always lead to disease expression, and the 

degree of pathogenicity of a microbe is termed its virulence.2  Pathogenic bacteria possess 

characteristics, termed virulence determinants, which support their ability to survive within 

and cause disease to the host.6  Virulence determinants may function by promoting 

attachment and colonization, evading the host immune defense, or damaging tissue.  

Virulence determinants often impart qualities that aid bacterial survival and proliferation 

within a very particular environment, such as in the lungs or on protein-coated material, and 

thus bacterial infections are characteristically localized to a specific area of the body. 
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1.1.2 The bacterial cell envelope.  As the interface between the microbe and its 

surroundings, the cell envelope plays an integral role in determining both the bacterium’s 

ability to colonize and infect its host as well as its susceptibility to various antimicrobial 

agents.  Composed of the cell wall and one or two lipid membranes, the bacterial envelope 

provides shape and structure, governs transport of molecules into and out of the cell, protects 

against numerous environmental stressors, and determines (in part) the degree of 

pathogenicity toward a particular host environment.5  Thus, knowledge of the structure and 

components of the cell wall is integral to understanding the fundamental process of infection 

as well as identifying potential treatment options. 

Pathogenic bacteria are frequently classified according to similarities in the architecture 

of the cell envelope, a system that is particularly useful from a clinical standpoint.  Two 

fundamental types of cell wall exist, which are often differentiated using the Gram stain 

procedure.  Developed by Hans Christian Gram in 1884 prior to elucidation of cell wall 

structure,4 immobilized bacteria are first stained with the positively charged dye crystal 

violet, now known to interact electrostatically with the negatively charged functional groups 

ubiquitous on the exterior of bacteria.7,8  Following subsequent rinses with dilute iodine and 

ethanol solutions, some bacteria retain the initial violet stain (Gram positive) while others are 

decolorized by the ethanol (Gram negative), dependent upon chemical and physical 

properties of the envelope.  A counter-stain, such as the red dye safranin, is frequently 

applied to visualize the otherwise colorless Gram-negative bacteria using a light microscope.4  

The Gram-positive cell envelope is schematically illustrated in Figure 1.1A.  It is a two-

tiered structure composed of a cytoplasmic lipid bilayer surrounded by a thick peptidoglycan 

cell wall.  Peptidoglycan is the fundamental skeletal feature of the bacterial cell wall  

 3
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comprised of long saccharide polymers crosslinked by peptide chains forming a two-

dimensional, meshed network.  Possessing many layers of peptidoglycan, Gram-positive 

bacteria efficiently retain the crystal violet dye and appear purple after Gram staining.  The 

thick cell wall (constituting 40-60% of the entire cell mass) imparts a tremendous degree of 

rigidity and resistance to mechanical disruption, such that Gram-positive bacteria can 

withstand up to 50 atm of external pressure.5  The peptidoglycan lattice has an estimated pore 

size of 2.2 nm and permits passage of hydrophilic molecules up to ~55 kDa (based on a 

globular protein structure).5  Polysaccharides of mostly anionic character, including teichoic 

acids linked directly to peptidoglycan as well as lipoteichoic acids and lipoglycans tethered at 

the cytoplasmic membrane level (Fig. 1.1A), constitute 10-60% of the cell wall by mass, and 

the high negative charge density serves to bind essential metal cations (e.g., Mg2+, Ca2+, K+).5   

By contrast, Gram-negative species exhibit a three-tiered architecture, with a much 

thinner peptidoglycan stratum enclosed in the periplasmic space between a cytoplasmic 

membrane and a second, outer membrane (Fig. 1.1B).  During the final ethanol rinse of the 

Gram-staining procedure, the outer membrane is dissolved and the peptidoglycan network is 

insufficiently thick to retain the crystal violet dye, decolorizing the cells.  Gram-negative 

bacteria are much more flexible and prone to rupture (resisting only ~5 atm external pressure 

at the maximum) than their Gram-positive counterparts.5   

The outer membrane of Gram-negative bacteria is of paramount importance, primarily as 

it functions as an extraordinarily efficient permeability barrier, with several classes of 

specific and non-specific channel-forming proteins required to facilitate entry of essential 

hydrophilic or charged molecules into the cell (Fig 1.1B).  The exterior leaflet is composed 

of large quantities of lipopolysaccharides (LPS), possessing a hydrophobic segment (lipid A) 
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inserted into the lipid bilayer and a hydrophilic carbohydrate segment that extends out into 

the extracellular environment.9  The hydrophilic portion is constructed of a core 

oligosaccharide, functionalized with numerous phosphate and carboxyl groups, capped by a 

much larger and more variable O-antigen polysaccharide.5  Positioned just above the 

membrane, the layer of polysaccharides poses an additional barrier layer to hydrophobic 

compounds.5  Bacteria deficient in O-antigen exhibit increased susceptibility to hydrophobic 

antibiotics.10  While the structure of the Gram-negative cell envelope renders it particularly 

resistant to penetration by many molecular species, the anionic character of the core region 

attracts positively charged biocides such as aminoglycoside antibiotics or poly-cationic 

peptides like defensins.5 

The sterically massive (up to 65 kDa)9 and negatively charged LPS molecules make the 

outer membrane of Gram-negative bacteria inherently unstable,11 although certain structural 

aspects provide a stabilizing effect.  Specifically, the hydrophobic lipid A portion rich in fatty 

acid chains (~ 6) anchors this bulky molecule into the membrane, while the negatively 

charged functional groups in the core region are typically counterbalanced by divalent 

cations.5  Under stress, vesicles of LPS, sometimes charged with excreted toxins, are shed in 

a process termed blebbing.5  Notably, the lipid A portion of LPS represents an important 

virulence determinant as it is an endotoxin that can cause serious inflammation (e.g., fever, 

septic shock) only when released from the cell membrane during blebbing or lysis.4,5   

Thus, while the Gram-positive cell wall possesses greater rigidity but remains relatively 

permeable to large, hydrophilic molecules, the Gram-negative cell wall exhibits opposing 

characteristics, namely being less resilient to physical stresses but capable of preventing the 

passive diffusion of most molecules across the cell envelope.  Both Gram-negative and -
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positive bacteria frequently produce a gel-like matrix of exopolysaccharides (EPS) called the 

capsule (if attached) or slime layer (if only loosely associated) which surrounds and 

encapsulates the cell, concentrating chemical nutrients and protecting against dessication.4,5  

This feature further elevates the overall virulence of the bacteria by preventing permeation of 

biocides, aiding the evasion of immune detection, and improving surface adhesion.5    Gram-

positive bacteria express a wide range of adhesins as cell-surface proteins that act as 

virulence determinants by promoting adhesion through specific and non-specific binding.  

One example are the M family proteins, which aid in evading phagocytosis and promote 

adhesion to host tissue through specific recognition of and binding to such proteins as 

albumin, fibrinogen, and fibronectin.5  Adhesins are also present on fimbriae, filamentous 

appendages expressed almost exclusively by Gram-negative bacteria whose main function 

seem to be to support adhesion to host sugars via lectin interactions, characterized by very 

specific molecular recognition with regard to both the host and organ (tissue type).5 

1.1.3 Bacterial adhesion to substrata.  Bacteria that are planktonic (free) differ from their 

sessile (attached) form.  While planktonic bacteria are believed to proliferate more quickly 

and exist to spread into new regions, sessile bacteria live in communities focused on 

perserverance.12  It is evident that the exterior surface of bacteria is highly complex, and the 

process of bacterial adhesion to material surfaces has been previously reviewed in detail.13-15  

The number and relative contribution of independent interactions between the bacteria and 

the substrate are dependent upon multiple factors including species,16,17 surface properties 

(e.g., hydrophobicity),16,18-20 adsorption of proteins and other conditioning elements on the 

surface,17,21-24  various experimental system parameters (e.g., temperature, exposure time and 

 7



conditions),25,26 and the culture environment (e.g., growth phase, ionic strength, pH)14,16,27,28  

under which adhesion occurred.   

The interactions involved in attachment and adhesion are frequently described in basic 

physicochemical terms.  The time-dependent process of bacterial adhesion is often depicted 

as occurring in two distinct phases where a reversible, physicochemical association (Phase I) 

precedes irreversible adhesion through intimate molecular binding interactions (Phase II),29-32 

as shown in Figure 1.2.  Phase I occurs quickly, where a combination of mechanical 

processes including Brownian motion, gravity, implementation of motility structures, and 

chemotaxis (locomotion in response to chemical signals) are first responsible for bringing the 

bacteria close enough to the surface for physical forces of attraction and repulsion to be felt.  

Attachment may then proceed via a combination of physicochemical interactions and long- 

and short-range reversible chemical interactions (i.e., electrostatic attractions/repulsions, 

hydrophobic interactions, and van der Waals forces) that occur along vectors perpendicular 

to the surface (Fig. 1.2A).33  If the net attraction exceeds the repulsive forces, the bacteria 

become ‘irreversibly’ attached to the surface, and enter Phase II of adhesion. 

During Phase II, macromolecules present on the exterior of the bacterium mediate 

attachment to the substratum via cellular and molecular interactions in a complex process 

that extends over a number of hours, signifying the transition from planktonic to sessile states 

(Fig. 1.2B).  The two phases of adhesion differ distinctly.  While Phase I involves 

interactions occurring away from and perpendicular to the surface eventually leading to a 

reversible association, Phase II is characterized by the reinforcement of attachment through 

numerous intimate binding interactions in order to establish a firm adherence of the cell to 

the underlying substrate.  Surface proteins of Staphylococcus subspecies (SSP-1 and SSP-2)  
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Figure 1.2  Schematic illustrating typical interactions involved in (A) Phase I and (B) Phase 
II of bacterial adhesion to a substratum. 
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have been shown to form pili-like structures to mediate attachment to bare plastic surfaces.34  

Motility structures may also prove to be important factors for adhesion, as Pseudomonas 

aeruginosa mutants deficient in flagella have been shown to attach poorly to 

polyvinylchloride (PVC).35  During Phase II, bacteria attain irreversible adhesion to the 

surface and will not spontaneously dissociate. 

In the absence of specific molecular recognition, this process is termed non-specific 

adhesion and may be useful for modeling a scenario where biomaterials become 

contaminated prior to implantation.  Once implanted within the body, bare devices are 

instantaneously coated by a conditioning layer of proteins (e.g. fibrinogen, fibronectin), 

water, and organic molecules, which then mediates both non-specific and specific (receptor-

mediated) interactions (Fig. 1.2B).36  Specific interactions between biomacromolecules of the 

bacteria and host often play an important role in the adhesion process.  Many pathogenic 

bacteria have evolved virulence factors that promote and enhance their ability to successfully 

colonize tissue or protein-coated materials.  For example, alginate is an EPS excreted by P. 

aeruginosa almost exclusively within the lungs of CF patients and constitutes an important 

virulence determinant in this environment.37,38  Furthermore, numerous proteins (e.g., 

lectins), phospholipids, and carbohydrates present on the surface of bacteria are all thought to 

act as adhesins in specific binding events.5,39-41 

1.1.4 Biofilm formation and infection.  Attachment of bacteria to a surface confers the 

dual advantages of permanent residence at a preferential site and subterfuge from host 

defenses.42  Once bacteria have securely attached to a surface, they alter phenotypically by 

aggregating into microcolonies, composed of nearby sessile, daughter, and recruited 

planktonic cells.  Costerton et al.43 have compared these microcolonies to the tissue that 
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composes organs, suggesting they constitute the essential building blocks of biofilms.  

Confocal fluorescence microscopy has illuminated the surprising complexity of biofilm 

structure.44  Biofilm communities form on either biotic or abiotic substrata,12,45 and although 

counterintuitive, biofilms form preferentially in high-shear environments, where lateral 

forces aid in reorganization and strengthening of the underlying structure.46  They excrete an 

EPS matrix, sometimes termed a glycocalyx, that binds them together as a structured 

consortium while trapping nutrients and allowing communication (via quorum sensing) and 

differentiation between cells.  Existence in biofilms also confers resistance to immune system 

defenses as the bound community is too large to phagocytose.47   

Failure of the immune system to control invading pathogens and prevent infection leads 

to an escalated inflammatory response.  Ultimately, pathogenesis of infection may result in 

the self-destruction of the host, e.g., via extended fever, kidney failure due to massive 

deposition of immune complexes, or acute wasting disease caused by the overproduction of 

some cytokines such as tumor necrosis factor.48  Thus, it is imperative to effectively treat 

infections as they arise.  But as the development of antibiotic resistant infections becomes 

more common while the rate of discovery of novel antimicrobials has slowed almost to a 

halt, it is increasingly necessary to prevent infection from forming, therefore sidestepping the 

need for treatment.  Much research in recent years has been devoted to understanding the 

fundamental process of bacterial adhesion to surfaces with the ultimate goal of developing 

surfaces that resist bacterial adhesion.  Hence, there is a simultaneous need both to 

understand the process of infection in order to design the next generation of infection-

resistant biomaterials and to devise novel and effective treatment options for present clinical 

application. 
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1.2 Techniques for studying bacterial adhesion 

As the first step in bacterial colonization and infection, the adhesion of bacteria to a 

substrate is a necessary prerequisite to the development of infection.  Therefore, complete 

elucidation of the fundamental process of bacterial adhesion is the primary hurdle to 

designing adhesion-resistant biomaterials that will prevent infection.  As outlined in Section 

1.1.3, the attachment of bacteria to a surface is a time-dependent process usually described in 

two phases.  Two physical aspects of bacterial adhesion readily lend themselves to 

quantitative study: the affinity for association and the resistance to dissociation.  Appraisal of 

the propensity for attachment relates information on the first stage of adhesion, while 

evaluating resistance to detachment provides insight into Phase II.  

Numerous techniques have been used to study aspects of bacterial adhesion, and these 

have been previously reviewed.49,50  Molecular biology and genetic screening allow the 

identification of specific genes and proteins that are essential to bacterial adhesion.41,51 

Additionally, techniques designed for the empirical observation of bacterial adhesion have 

been applied toward unraveling the complex interactions undergone during the adhesion 

process as well as evaluating substrata for potential biomedical uses.  These employ more 

direct and non-invasive approaches that allow the study of adhesion under controlled 

circumstances and the determination of parameters such as the attachment rate and strength 

of adhesion.   

The choice of bacteria and substrate for adhesion experiments depends on the type of 

problem being investigated.  For example, if the aim of the experiment is to identify 

promising materials for improved hip implants that resist bacterial adhesion, Staphylococcus 

aureus would be a likely candidate as a common and particularly virulent pathogen in 
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orthopedic infections.52,53  If, instead, the goal is to identify proteins that promote the binding 

of S. aureus to blood-contacting devices, then a representative biomaterial would be chosen 

and coated with relevant plasma proteins.  Other experimental conditions that affect bacterial 

attachment include culture growth stage,54,55 pH,56,57 and ionic strength.55-58  

1.2.1 Propensity for attachment.  The proclivity of bacteria to interact and form 

associations with a surface is typically evaluated by determination of the rate of adhesion and 

the overall surface coverage of cells adhered to a substrate.  Bacteria may be exposed to a 

surface under either static or flow conditions.  Static experiments are the simplest to conduct 

and evaluate and involve incubating a segment of substrate within a suspension of bacteria 

for a specified length of time.  The primary limitation to the static procedure is disruption of 

attached cells by an air-liquid interface upon removal for analysis.59  Bacteria may also be 

exposed to a surface using dynamic (flow) systems.   The ability to exchange liquid volumes 

by switching reservoirs of pumped fluid eliminates the need for introducing an air-water 

interface.  Other advantages of using dynamic conditions include ease in obtaining kinetic 

attachment rates, continuous replenishment of bacteria at the surface, and simulation of 

shearing environments (e.g., circulatory systems).  The two devices most commonly 

employed in dynamic studies are the parallel plate flow chamber (PPFC)60 and radial 

stagnation point flow (RSPF) system,55 depicted in Figure 1.3.  For such experiments, the 

substrate may be placed within a chamber over which a bacterial suspension or rinse solution 

flows at a controlled rate.  Differences in the direction of fluid movement inherent to each 

device have been shown to affect the overall number and rate of attachment of bacteria.61  

For example, the RSPF system exhibits a higher initial deposition rate, which has been 

attributed to the convection-controlled mass transport of bacteria to the substrate surface  
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Figure 1.3  Schematic diagrams of (A) a radial stagnation point flow (RSPF) system and (B) 
a parallel plate flow chamber (PPFC). 
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(Fig. 1.3A) compared to the slower, diffusion-controlled transport mechanism characteristic 

of the PPFC (Fig. 1.3B).61  Once surface-bound, bacteria can be detected by myriad 

techniques. 

Microscopy is the most direct method for observing the propensity for attachment.  The 

two parameters primarily determined via microscopy in bacterial adhesion studies are the 

adhesion rate (enumeration of individual cells as they adhere) and the overall percentage of 

the substrate surface area covered.  In addition, patterns of adhesion (i.e., in clusters or 

individually) can be observed.  As bacterial dimensions are on the micron scale, optical 

(light) microscopy (OM) is the most straightforward approach for visualizing adhered cells.  

A substantial advantage of OM is the ability to monitor the rate of bacterial adhesion in 

dynamic studies in real time through the coupling of a digital recording device.  However, 

OM is only applicable to studies that use optically transparent systems (i.e., substrate, media, 

and apparatus), and the resolution limit often leads to difficulty discriminating between 

individual bacteria.  Other methods, such as scanning electron microscopy (SEM), may be 

used to directly observe adhesion to opaque substrates while providing sufficient resolution 

to simultaneously distinguish cellular morphology.  The sample preparation necessary for 

SEM, however, eliminates the possibility for in situ examination. 

Fluorescence microscopy is a particularly powerful technique for studying bacterial 

adhesion that utilizes fluorochromes available in a variety of colors and labeling specificities.  

Blue fluorescent intercalating agents such as 4',6-diamidino-2-phenylindole (DAPI) and 

Hoechst stains readily transverse intact cell membranes and tightly bind to nucleic acids of 

both living and fixed bacteria.  62  Using fluorophore-conjugated biomolecules, molecular 

recognition may be harnessed to label and detect the presence of specific interactions.  For 
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instance, whole cells can be marked and directly visualized using fluorescent antibodies.  

Fluorescence microscopy can also be used to detect and enumerate viable cells.  Combination 

staining with SYTO 9 and propidium iodide can differentiate between healthy bacteria and 

those with compromised membranes.  Similarly, metabolic activity may be monitored using 

fluorescence techniques or by detecting other biochemical markers, such as the production of 

ATP, and is assumed to indicate cell viability.  Bacteria genetically modified to express 

fluorescent tags, such as green fluorescent protein (GFP), propagate the tag through cellular 

division.  This technique allows specific detection of the genetically modified species and 

can be used to monitor growth (e.g., biofilm formation).63  Some additional advantages 

conferred by fluorescence microscopy include rapid enumeration and the reduction of 

operator bias when combined with image analysis software.50   

Viable bacteria may also be indirectly detected by sonication or homogenization of 

substrates with adhered bacteria followed by plating aliquots of the resulting solution on agar 

media.  Each colony grown results from a single viable bacterium recovered from the 

substrate.  While only viable cells may be detected by plating, dead bacteria are also of 

interest as they may possess virulence factors as well as provide specific receptors that 

promote binding and colonization of additional microbes.64  Therefore, a complete technique 

for evaluating the propensity for attachment would enumerate both viable and dead cells.  

Such data may be obtained using fluorescent stains or a Coulter counter. Alternatively, 

radiolabeling bacteria has been implicated as a highly sensitive enumeration technique.65  

While viability cannot be determined as bacteria must be removed from a substrate and lysed 

prior to detection, this technique can be used to accurately determine the overall number of 

adhered cells.  Less common techniques include QCM66,67 and SPR,68,69 which indirectly 
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detect bulk quantities of adhered bacteria and may be applied to determining attachment 

rates. 

1.2.2 Resistance to detachment.  While enumeration of surface-associated cells is more 

useful for understanding Phase I adhesion (where bacteria form a loose association with the 

surface), studying resistance to detachment lends information on the reinforcement of 

adhesion that accompanies Phase II.  The adhesion strength that results from the multitude of 

specific and/or non-specific interactions between the bacterium and the substrate may be 

assessed by applying a measurable force along the surface until the interactions are 

physically disrupted and the bacteria detach.  This is key to understanding how difficult the 

removal of pathogenic bacteria from a bare surface (e.g., a device prior to implantation) may 

be once adhesion occurs, or how bacteria adhered to a protein-coated material (e.g., an 

implanted device) behave when exposed to biologically relevant forces such as the shear 

stresses of blood flow or the mechanical impact resulting from patient movement.  

Additionally, determining how adhesion strength changes as a function of time yields 

important information on the fundamental behavior of bacterial interactions with surfaces. 

Lateral forces may be applied using techniques such as micromanipulation to induce 

mechanical disruption (particularly useful for measurement of biofilm adhesion 

strength),54,70,71 the air-liquid interface introduced by a passing air bubble,72 or most 

commonly by applying shearing forces with laminar flow.19,61,73-75  As bacteria are essentially 

charged colloids, an electrophoretic technique has also been reported for determining the 

strength of adhesion based upon the applied electric field required to detach cells.76  These 

techniques are limited by the inability to simultaneously control both the magnitude and 
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location of applied forces, with the exception of micromanipulation, which possesses a limit 

of force detection that exceeds that achieved by individual bacteria. 

The same principle behind the dynamic systems (e.g., PPFC and RSPF) used to study 

bacterial attachment rates may be modified to apply lateral forces to detach adhered bacteria 

using laminar flow, and detachment is easily monitored using light microscopy.  Using a 

microjet impingement technique closely related to RSPF, the adhesion strength of 

Pseudomonas stutzeri was shown to be 2- to 3-fold greater on hydrophobic indium tin oxide 

coated substrates relative to bare hydrophilic glass, agreeing well with theoretical 

predictions.73  A PPFC was used to evaluate the effect of shear stress on receptor mediated 

adhesion of S. aureus to collagen coated substrates as a function of flow rate and densities of 

both receptor and ligand.77  Another hydrodynamic approach involves the use of a spinning 

disk, where the applied shear stress during rotation is a function of the density and viscosity 

of the fluid as well as the angular velocity, which varies linearly with the radial distance.74 

Recently, atomic force microscopy (AFM) has emerged as the prominent technique for 

studying the forces of bacterial adhesion.  Overall, AFM has surpassed flow cells in 

publications related to bacterial adhesion after the year 2000 (138 vs. 129), while among the 

techniques used to study individual forces of adhesion, it far exceeds the publication numbers 

for optical tweezers (25).  AFM has gained this prominence through being particularly 

versatile.  Traditionally, AFM has been used to probe interaction forces perpendicular to the 

substrate, generating curves of force felt by the AFM probe as a function of distance between 

the probe and the surface measured in the z-direction.  In terms of understanding bacterial 

adhesion, surface-adhered bacteria have been probed using bare or modified AFM tips.57,78-80  

Conversely, bacteria have been used to probe various surfaces by covalently crosslinking 
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them either directly onto the AFM probe81-83 or to a colloid that is subsequently attached to 

the tip of a cantilever.84,85  Of particular interest, bacteria-modified cantilevers can be used to 

survey for low-biofouling surfaces.86   

While the versatility and control over the interactions investigated using AFM is 

unprecedented, force measurements acquired normal to the surface have generally been 

restricted to acquiring data in the early stage of adhesion, ranging from attractive or repulsive 

interactions felt during approach to the force of detachment following physical contact over 

perhaps the first few seconds or minutes.  Bond strengthening has been shown over the short 

term using AFM force spectroscopy.87-89  Long-term adhesive forces have not been evaluated 

using this method, primarily due to low throughput.  Only one vertical force measurement 

may be obtained per increment of time over which adhesion strength is to be evaluated. 

More recently, a technique for applying a lateral force to adhered bacteria using AFM has 

been reported.90-93  Here, bacteria adhered to a substrate are mechanically detached by an 

AFM probe scanning over the substrate, and this technique allows for analysis of many 

bacteria simultaneously, while maintaining control over the applied force.  Detection of 

bacteria and bacterial detachment can be simultaneously monitored if the lateral forces are 

applied while imaging (contact mode).  This method has been used to compare the effect of 

surface roughness/topography91,93 and surface hydrophobicity92 on the strength of bacterial 

adhesion, drawing empirical relationships between the normal force between the probe and 

the underlying substrate (assumed constant due to feedback loop adjustment).   Later 

modifications to this technique introduced a more quantitative approach for determining the 

force applied to bacteria, applying it to monitor the long-term (Phase II) kinetics of adhesion 
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strength of P. aeruginosa and S. aureus over an 8 h time period (18-26 h after initial 

attachment).90 

 

1.3 Antibacterial agents 

It wasn’t until the revolutionary introduction of germ theory in the latter half of the 19th 

century, spearheaded by such luminaries as Louis Pasteur and Robert Koch, when the 

connection was finally made between microorganisms and disease.  Infections were 

relatively common occurrences, but rarely treatable and frequently deadly, and, therefore, 

viewed with a degree of superstition.  Once microbes, invisible to the naked eye, were finally 

recognized as causative agents, doctors could begin to search for strategies to circumvent and 

treat infection.  Vaccination against disease is one ingenious stratagem that obtained 

prominence with the acceptance of germ theory and has resulted in the prevention of 

countless infections.94  Injection of a small amount of antigenic material (attenuated or 

inactivated pathogen) stimulates the immune system to produce antibodies that quickly 

recognize and bind to characteristic epitopes, tagging the microbe for destruction.94  More 

frequently used to prevent viral infection, immunization has also enjoyed some success in 

preventing bacterial infection (e.g., tetanus, anthrax).   

With the introduction of penicillin into clinical practice, hailed as the so-called ‘magic 

bullet,’ it seemed like bacterial infection was under control for the first time.1  The 

Penicillium fungi had evolved the production of this molecule specifically to elicit 

bactericidal action, and penicillin could be used to rapidly cure infections caused by Gram-

positive pathogens with no toxic effects.  The natural products of thousands of 

microorganisms were intensively screened and additional drug candidates identified.  
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Ironically, it soon became evident that these drugs, when used inappropriately, became the 

selective pressure responsible for promoting the emergence of resistant species.  Thus, there 

is always a drive for the discovery of new antibacterial agents and the identification of novel 

treatment options in the ongoing race to fight infection.   

1.3.1 General overview of antibiotics.  Antibiotics are a broad class of antimicrobial 

agent derived directly from microbial species that inhibit the growth of other microbial 

species.  The production of antibiotics evolved as a partial solution to microbial competition 

for space by poisoning nearby microorganisms that vie for the same nutrients.95  While 

conferring a selective advantage to antibiotic-producers, biofilm formation and other 

resistance mechanisms co-evolved as a protective response.45  Classification as an antibiotic 

also requires that the natural products possess low molecular weights and efficacy at low 

concentrations.95  Hence, neither lysozyme nor ethanol, both products of microorganisms 

with biocidal effects, is considered to be an antibiotic.  Although antibiotics technically refer 

to an inhibitor of the growth of any microbe (e.g., bacteria, fungi, protozoa), only bactericidal 

antibiotics are considered here.   

For therapeutic application in treating infectious disease, antibacterial agents should 

possess certain characteristics.95  Of primary importance is a high level of efficacy (the 

ability to efficiently eradicate infectious pathogens) combined with minimal harmful side 

effects to the patient.  A drug should also possess good bioavailability, or distribution to the 

infected part of the body, and elimination properties.  The overall risk and toxicity to the 

patient should be low.  Other preferable characteristics include that the drug be inexpensive 

to produce and exhibit activity against a range of pathogens.  Around 10,000 antibiotics have 

been discovered, although only a small percentage of them have proven useful in treating 
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infectious disease.  Antibiotics function by molecular recognition of and specific binding to a 

macromolecule or cellular component that performs a vital function within the bacteria.  If 

the effects are lethal, the antibiotic is bactericidal, while if the growth of the bacteria is only 

inhibited (usually reversibly), the antibiotic is bacteriostatic.  The major targets for antibiotic 

action are cell wall biosynthesis, protein biosynthesis, and DNA replication and repair. 

Antibiotics are frequently classified into families based upon common chemical structure 

and biological properties, which are generally named after the first antibiotic of the family to 

be discovered.95  The principle classes included β-lactams (penicillins), tetracyclines, 

aminoglycosides, macrolides, ansamycins, as well as certain peptides and glycopeptides.  In 

order to improve action, bioavailability, or circumvent resistance to these natural products, 

pharmaceutical scientists have introduced minor modifications while preserving the structure 

of the active regions, and many semi-synthetic analogs have been successfully used to treat 

infection.  For example, ampicillin and methacillin are two well known variants of penicillin, 

all three possessing the β-lactam ring structure that inhibits peptidoglycan synthesis.  Finally, 

there are three families of fully-synthetic antibiotics used clinically: the sulfonamides, 

introduced in the 1930s; quinolones, introduced in the 1960s, and oxazolidanone, approved 

by the FDA in 2000.95  To date, a virtual encyclopedia of information has been accumulated 

on biometabolism, structure/function relationships, mechanisms of action and of antibiotic 

resistance, bioavailability, therapeutic uses and treatment protocols of the various 

antibiotics.95,96  

Antibiotics are popularly prescribed due to their high selectivity and low-dosage 

requirement, but due to the tendency for overuse, the co-evolution of numerous genetic 

resistance traits, and rapid adaptability of bacteria when faced with new stressors, it now 
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appears that antibiotic use in the sense we know it today will be of limited use.1  The 

discovery of new antibiotics is slow.  Identification of key bacterial targets helps direct 

attempts at developing new synthetic antibiotics, but with limited success.  Furthermore, the 

introduction of a safe and effective new antibiotic has historically led to widespread use and 

subsequent development of resistance.95  It is evident that antibiotics are losing their 

effectiveness for fighting infection, and other therapeutic options must be developed.  Two 

candidates with proven antibacterial efficacy, ionic silver (Ag+) and nitric oxide (NO), are 

discussed in detail below. 

1.3.2 Ionic silver and silver compounds.  With records dating back thousands of years, 

silver is perhaps the antimicrobial with the longest history of use by man.97  Nano- to 

micromolar concentrations exhibit broad-spectrum bactericidal activity, showing efficacy 

against Gram-negative and -positive species including those resistant to traditional 

antibiotics.98-101  Ag+ reacts covalently with electron-donating groups (e.g., cysteine) and 

electostatically with negatively charged molecules (e.g., DNA).  While the promiscuous 

reactivity of this species raises questions of toxicity to the host, centuries of use combined 

with modern clinical studies indicate that therapeutic doses of Ag+ do not pose a serious 

health risk for humans.97,98  For example, the minimum dose of silver nitrate (AgNO3) 

causing inhibition of respiration in skin tissue culture was shown to be 25-fold greater than 

the quantity required to inhibit growth of P. aeruginosa,102 a common pathogen in burn 

patients.  The broad-spectrum activity exhibited against a wide range of microorganisms, 

including antibiotic-resistant species, ensures the continued interest in developing novel 

silver treatments, particularly for topical applications (e.g., burn and wound management).100 
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Storage of water in silver vessels was a common practice in ancient times.  Silver in its 

solid, metallic (Ag0) form is unreactive, and bacterial toxicity is limited by the rate of 

oxidation to the biologically active state (Ag+).   While this rate may be adequate to 

neutralize the relatively few microbes that might be present in drinking water to a sanitary 

level, bacterial infections are characterized by microbial densities of at least 105 organisms 

per gram of tissue mass.99   The clinical solution for effective topical delivery of Ag+ has 

been the use of silver compounds, particularly AgNO3 (Fig 1.4A) and silver sulfadiazine 

(AgSD) (Fig 1.4B).  These compounds, used clinically for over 40 years, represent the gold 

standard in silver delivery systems, releasing 3.8 x 104 (0.5% solution) and 1.6 x 104 (1% 

solution) µg Ag+ in-2 d-1, respectively.99  Their nearest market competitor (in levels of Ag+ 

released) is nanocrystalline silver, a metallic solid possessing high surface-to-volume ratios, 

though the quantity of Ag+ delivered is almost two orders of magnitude lower.99  The primary 

advantage of the nanocrystalline delivery formulation relates to its anti-inflammatory 

properties,103,104 as prolonged inflammation can be deleterious to the wound healing 

process.99 

Gram-negative bacteria are typically more susceptible to the effects of Ag+.100,105-107  

Feng et al. attributed this to the protective nature of the thicker peptidoglycan layers 

possessed by Gram-positive species.105  A screen of the efficacy of AgSD against 657 

clinical isolates representing 22 bacterial species clearly demonstrated the susceptibility of 

Gram-negative species.100  The authors pointed out the remarkable resistance displayed by 

Enterococci as a group, though surprisingly did not comment further on the overall trend of 

higher Gram-negative susceptibility evident in their data.100  They did conclude that the most 

relevant pathogens for burn and wound infections were susceptible to doses of AgSD that  
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Figure 1.4  Molecular structures of the compounds (A) silver nitrate (AgNO3) and (B) silver 
sulfadiazine (AgSD), commonly used for the topical delivery of Ag+. 
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were easily achieved topically.  Unfortunately, despite its efficacy, resistance to Ag+ has been 

documented.97,108-110  As with antibiotics, the expression of Ag+-resistance primarily becomes 

a problem when the infection is treated with sub-bactericidal levels.99  Li et al. showed that 

silver-resistant mutants of Eschericia coli could be cultivated in vitro through a step-wise 

exposure and selection procedure using low levels of AgNO3.108  The mechanism of Ag+ 

resistance is thought to lie at the cell envelope level111 and there is evidence of both porin 

deficiency and active efflux of Ag+ in E. coli.108 

The mechanism of bactericidal action of Ag+ is still not clear.  This is partially due to the 

broad level of reactivity, with numerous target sites and subsequent chains of cause-and-

effect that are potentially interwoven.  To complicate the elucidation process, the changes 

elicited from in vitro experiments with AgNO3 differ somewhat from those observed when 

AgSD is used.111-113  However, significant progress has been made in elucidating certain 

aspects of Ag+ toxicity.  One comprehensive set of studies aimed at elucidating the 

mechanism of AgSD activity utilized radioactive elements to trace the presence of 110Ag in 

various cellular components (i.e., lipids, proteins and polysaccharides, and nucleic acids) of 

P. aeruginosa and verified that the majority of Ag+ reacts with proteinaceous functional 

groups.114,115  It is well known that thiol groups readily bind covalently to heavy metals such 

as Ag+, and Liau et al. showed that the addition of compounds containing free thiol groups 

neutralized the bactericidal activity of AgNO3 against the same species.116  Adsorption to 

proteins inhibits their ability to function, and Ag+ has been implicated in causing both 

structural and metabolic disruption to bacteria.112,117 

Most of the bacterial target sites of Ag+ probably lie in the vicinity of the cell 

membrane.117,118  It has been shown that Ag+ associates with cell wall components.105,117  
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After treatment with AgNO3, electron-rich conglomerations on the order of tens of 

nanometers deposited around the cell wall of E. coli were visualized using transmission 

electron microscopy (TEM).105  Images of E. coli and S. aureus treated with AgNO3 also 

clearly showed detachment of the cytoplasmic membrane from the cell wall structure.105  

Using the same technique, AgSD-sensitive Enterobacter cloacae and P. aeruginosa 

demonstrated abnormal morphologies (e.g., blebbing) after exposure to this compound, while 

AgSD-resistant strains did not exhibit these changes.111,119 

The effects of broad-scale membrane-oriented protein deactivation are not limited to 

structural damage.  Importantly, a number of studies indicate that low concentrations of Ag+ 

(≤ 10 µM) inhibit cellular respiration in bacteria by decoupling the respiratory chain from 

oxidative phosphorylation, resulting in a lethal deenergization of the cell.118,120-122  Dibrov et 

al. showed that treatment of Vibrio cholerae membrane vesicles with AgNO3 caused a 

massive proton leakage and subsequent collapse of the proton gradient across the membrane 

ultimately dissipating the proton motive force.120  Further evidence that Ag+ affects electron 

transport at the membrane was provided by Holt and Bard,118 who demonstrated that AgNO3 

caused an initial stimulation followed by a complete cessation of respiration in E. coli. 

In addition to adsorption at the cell membrane level, some studies indicate that Ag+ 

penetrates the bacterial cell and interacts directly with cytoplasmic proteins and DNA.  TEM 

showed condensation of chromosomal DNA after treatment with AgNO3, purportedly 

inhibiting replication and division.105,119  Complementary analyses of electron-dense granules 

in the vicinity using X-ray microanalysis positively identified both Ag and S, suggesting that 

Ag+ interacts with intracellular protein thiols as well.105  Cell fractionation experiments of P. 

aeruginosa treated with radiolabeled silver compounds showed a positive correlation 
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between growth inhibition and the quantity of DNA-associated Ag+, despite the low level of 

interaction relative to Ag bound to the protein fraction. 

1.3.3 Nitric oxide and NO-donors.  Nitric oxide is a highly reactive, diatomic free 

radical endogenously produced by the enzyme nitric oxide synthase (NOS), which catalyzes 

the oxidation of L-arginine to L-citrulline.123  NO has been implicated as a mediator in 

diverse physiological processes, ranging from regulatory roles in the cardiovascular and 

nervous system to the inducible host response to infection.124,125  Various therapeutic 

properties attributed to NO, including tumor cytotoxicity,126,127 vasodilation, and improved 

wound healing and tissue integration at implant sites128  may prove beneficial in a number of 

pharmacological applications.129,130  In particular, the antimicrobial properties of NO, an 

essential part of the body’s endogenous first line defense against foreign pathogens,131,132 are 

of interest as a therapeutic option for the treatment of infection.  The very fact that this role is 

conserved133 yet continually effective implies a limited ability on the part of bacteria to 

develop resistance to the antimicrobial action of NO.  In terms of NO-tolerance, low 

molecular weight thiols play a role in scavenging NO in bacterial cells,131 while E. coli, S. 

aureus, and Salmonella typhimurium bacteria have been shown to upregulate the production 

of certain proteins in the presence of NO in order to resist NO-mediated damage.134-137  

However, it is unlikely that bacteria possess mechanisms sufficient to tolerate therapeutic 

doses of NO, as these are much higher than the quantities produced endogenously by the 

host’s immune system. 

Like Ag+, NO is a broad-spectrum antibacterial agent of somewhat dubious mechanisms 

and is known to react either directly or indirectly with cysteine residues and transition-metal 

centers of proteins, DNA, and lipids.131,138,139  The effects of direct NO-modification are 
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more prominent at low concentrations (<1 µM) and include reaction with metal and metal-

oxygen complexes (including hemoglobin) as well as other high energy radicals.138  At 

concentrations in the micromolar range and above, NO elicits indirect effects through the 

formation of reactive nitrogen oxide species (RNOS) that then render nitrosative and 

oxidative stresses upon biomolecules.138  Oxidative stresses involve hydroxylation reactions 

as well as the withdrawal of 1 to 2 electrons from a substrate.138  Nitrosative stress may refer 

either to nitrosation by the addition of NO+ to an amine or thiol or to nitration of aromatic 

groups by the addition of an equivalent of NO2
+.138  When NO reacts with oxygen (O2) or 

superoxide (O2
-), species commonly encountered near bacteria lipid membranes, highly 

reactive RNOS intermediates are formed.131,138,140  Reaction with O2 forms nitrogen dioxide 

(NO2) and dinitrogen trioxide (N2O3), which primarily function via deamination of 

nucleotides and nitrosation of thiols and amines.138,140,141  The strong oxidant peroxynitrite 

(ONOO-) is formed by reaction with O2
- and has been implicated in the radical lipid 

peroxidation leading to membrane degradation in addition to deleterious modification of 

proteins and DNA.131,138  Despite a solid understanding of the types of reactions undergone 

by NO and RNOS, it is not clear which target sites are critical for bactericidal activity.131  

Considering the lipophilic nature of NO and the proximity of O2 and O2
- to the cytoplasmic 

membrane,140 it is likely that many targets are concentrated in this vicinity. 

Due to its high level of reactivity, diverse regulatory roles, diffusibility,142 and short half-

life in blood (< 1 s),143 the ability to target therapeutic NO delivery locally is critical.  

Gaseous NO (gNO), delivered from a cylinder of compressed gas, has been evaluated for 

topical application144 and as a potential treatment of pulmonary infections via direct, 

intermittant inhalation of gNO diluted in medical-grade air.145,146  For treatment of infections 
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that are not directly available for gNO exposure, a NO-delivery system is needed.  Nitric 

oxide donating compounds, such as S-nitrosothiols147,148 and N-diazeniumdiolates,129 

decompose to release NO and hence serve as vehicles for its storage and transport (Fig. 1.5).  

As the name suggests, S-nitrosothiol functionalities, usually abbreviated RSNO, consist of an 

NO group bonded directly to a sulfur atom and embody the endogenous solution to the 

problem of NO storage (Fig. 1.5A).  Release of NO from RSNO is catalyzed by light, heat, 

metal ions, or via direct transfer to a second thiol.148,149  Most RSNO also decompose 

spontaneously, and their inherent instability limits their shelf life.148,149  N-Diazeniumdiolates 

(NONO-ates) represent a second class of NO-donor functionality that store NO on primary or 

secondary amines (Fig 1.5B).143  Stable at low temperatures and in aprotic environments, 

diazeniumdiolate moieties rapidly decompose into two equivalents of NO under 

physiological pH and temperature (regenerating the parent amine), a characteristic of clinical 

significance.129 

A number of materials, including nanoparticles,150,151 films and coatings,152,153 and small 

molecules,154,155 have employed diazeniumdiolate chemistry with varied physicochemical 

and NO-release properties that are dependent upon the structure of the NONO-ate as well as 

the chemical environment provided by the material backbone.156  Stabilizing effects may be 

provided, for example, by nearby positively charged amines or by protection of the moiety 

from solvent (e.g., within a xerogel polymer matrix), slowing decomposition according to the 

rate of water permeability.  By contrast, many small molecule donors such as 

diazeniumdiolate-modified proline (PROLI/NO)155 possess a very short half life in water 

since the protic solvent has ready access to the diazeniumdiolate moiety.  Tuneable NO-

release properties are a key feature of diazeniumdiolate-modified materials as it allows  
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Figure 1.5  Molecular structures of representative NO-donor compounds.  (A) S-
Nitrosothiol-modified penicillamine (SNAP) and (B) N-diazeniumdiolate-modified proline 
(PROLI/NO) store one and two equivalents of NO per molecule, respectively.   
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control over both duration and dose of therapeutic NO delivered.156 

The antimicrobial properties of NONO-ate materials have been characterized against a 

number of pathogenic bacterial species, including Gram-negative, -positive, and antibiotic-

resistant species.107,157-159  Nitric oxide released from xerogel coatings have been shown to 

reduce the rate of bacterial attachment158,160,161 while killing those that do adhere.158  As 

would be expected, a positive correlation exists between the dose of NO and the level of 

antibacterial activity.107,157,158  Short-term delivery of NO via a bolus results in a higher 

degree of cellular damage than equivalent doses delivered more slowly as a sustained, but 

localized, surface flux.157  However, a localized bolus delivery of NO from nanoparticles was 

shown to be more effective than a dissipated, but higher concentration, bolus dose from 

PROLI/NO.159  Therefore, both the dose of NO and the proximity of NO release to the 

pathogens appears to be important for antibacterial efficacy.  Nitric oxide-releasing 

nanoparticles have also proven effective against day-old biofilms of Gram-negative and -

positive species in addition to an infectious species of yeast (Candida albicans).162  At 

bactericidal levels, the toxicity of NO against mammalian cells is low,145,159 and in some 

cases has been shown to promote proliferation of epithelial cells and increase survival of 

macrophages.145  Therefore, materials that store and release NO are very promising for their 

potential to both reduce the likelihood of initial bacterial attachment and treat established 

infection. 

 

1.4 Techniques for evaluating antimicrobial activity 

1.4.1 Morphology.  Bacteria, though invisible to the naked eye, are of very convenient 

dimensions for viewing microscopically.  Further, healthy cells of a particular species have a 
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relatively standard outer appearance.  Thus, with the introduction of high-resolution 

microscopes such as SEM, TEM, and AFM, scientists have the tools to directly observe 

antibacterial effects.  Morphological analyses of bacteria aid in understanding mechanisms of 

antibiotic action by allowing visualization of changes in the appearance of the microbe 

undergone subsequent to treatment.  The images obtained using electron microscopy are 

primarily utilized to obtain qualitative comparisons.  For example, dose-dependence can be 

monitored as a function of concentration or exposure time.  In addition, antimicrobials that 

function by similar mechanisms can be compared.  With the introduction of AFM for 

morphological evaluation, semi-quantitative information on changes in bacterial surface 

roughness could be obtained simultaneously with high-resolution three-dimensional 

reconstructions of cell morphology.157,163  An added benefit of AFM is the flexible and 

adaptable nature of cantilevers as transducers that allow detection of other physical (e.g., 

elasticity) or chemical (e.g., charge distribution) surface parameters simultaneously with the 

acquisition of height information.57,78,163,164 

Changes in appearance, or morphology, of bacteria exposed to various antimicrobials 

have been frequently reported since the 1970s.105,111,112,165-168  As described in Section 1.3.2, 

TEM was vital for demonstrating the structural damage wrought by Ag+ on Gram-negative 

and -positive species and well as visualizing adsorption to DNA.105,111,112  Klainer and 

Russell166 used SEM analysis to show that two antibiotics that inhibit protein synthesis 

(chloramphenicol and streptomycin) rendered a similar spectrum of morphological changes 

on E. coli.  Another study compared the effects of two β-lactam antibiotics amoxicillin and 

ampicillin on E. coli, and found a correlation between morphology and the superior activity 

of amoxicillin.168 
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While electron microscopy has been employed toward this end for decades, atomic force 

microscopy (AFM) has recently been used with increasing frequency.169-174 As a surface 

characterization tool, AFM is ideal for morphological studies of surface-adhered bacteria as 

it allows cells to be imaged in situ with high resolution without requiring chemical drying, 

metal coating, or exposure to ultra-high vacuum.  Atomic force microscopy has been applied 

to visualizing the antimicrobial action of peptides,169,171,173 chitosan,170 quantum dots,172 and 

the β-lactam antibiotics penicillin and amoxicillin.174  It has also been used to monitor the 

dose-dependence of NO on cell roughness and to compare the efficacy of two NO-donor 

delivery methods.157 

1.4.2 Efficacy.  While microscopy is very useful for visualizing the effects of biocides, 

it is very important from a clinical standpoint to evaluate antimicrobial efficacy in 

quantitative terms.  To be clinically effective, it is essential that therapeutic drug 

concentrations are achieved at the site of infection.  Pharmacodynamics represent the dose of 

an antibacterial agent necessary to elicit bacteriostatic (inhibitory) or bactericidal effects.175  

The interaction between the drug and the patient’s body, or the pharmacokinetics, also plays 

a role in overall efficacy.  Pharmacokinetics encompasses absorption, biodistribution, 

metabolism and elimination of the drug by the patient.175 Parameters describing the 

pharmacokinetics and pharmacodynamics of an antibiotic help quantify the degree to which a 

treatment will be effective against infection.  

Due to the broad medical application and need for consistency, there are relatively 

standardized techniques for evaluating the efficacy of an antibacterial.176  In determining the 

pharmacodynamic interplay between a target microorganism and antibacterial agent in vitro, 

the minimum inhibitory concentration (MIC) and/or the minimum bactericidal concentration 
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(MBC) are generally determined.177  The classical approach for evaluating the antibacterial 

efficacy of a biocide is determination of the MIC, or the drug concentration sufficient to 

arrest further growth of the bacteria in nutrient broth.  A common technique is the 

microdilution broth method, where the MIC is determined by inoculating a vial of bacteria 

(at concentrations below detection via optical density) with a series of concentrations of the 

drug and allowing growth at 37 °C overnight.177  The MIC falls between the lowest 

concentration vial retaining transparent media and the highest concentration vial exhibiting 

visible turbidity.177  A similar approach utilizes solid media prepared with two-fold, stepwise 

dilutions of the antibacterial.  Bacteria are spread upon the agar surface, and inhibition is 

determined by the lowest concentration that inhibits colony growth.96 

Inhibition of growth, however, does not indicate bactericidal doses.  In fact, inhibitory 

doses often have reversible effects, and treating infection-causing bacteria with sub-

bactericidal levels tends to select for and allow further growth of mutants and naturally 

resistant strains.  Common methods for evaluating the bactericidal activity of an 

antimicrobial are killing curves and determination of minimum bactericidal concentration 

(MBC).177  Determination of the MBC is more clinically useful, though more work intensive, 

than the MIC.  The MBC, usually conducted by counting colony-forming units (cfu) grown 

on agar plates before and after treatment, was historically determined by plating an aliquot of 

each vial containing transparent media following an MIC assay.  The lowest concentration of 

bactericidal agent capable of eliciting a 3-log reduction in viable bacteria is the MBC, and 

any higher concentration should be bactericidal as well.177 

Evaluating efficacy using in vitro infection models is fast and inexpensive, and the main 

disadvantage lays in the simplicity of the system (also an advantage). For instance the 
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conspicuous absence of the immune system means that contributions to efficacy from 

endogenous defenses cannot be evaluated in concert with the antibiotic.175  It is also known 

that bacteria in vitro grow faster and express decreased levels of virulence.178  Additionally, 

the microdilution broth methods to determine MIC and MBC values evaluate inhibition and 

viability of planktonic cells, which are faster-growing and more susceptible to antimicrobials 

that disrupt metabolic processes than would their sessile, slow-growing counterparts.  

Although it is more convenient to study planktonic cells, it is also important to evaluate 

antimicrobial efficacy on biofilms. 

Biofilms (Section 1.1.4), characterized by sessile communities of bacteria, are commonly 

associated with recurrent, chronic, and device-related infection and are responsible for an 

estimated 60% of human infections.45  The evolution of matrix-encased, cooperative 

community organizations that reduce susceptibility to antibiotics (natural products) was 

certainly advantageous in the microbial competition for space in nature.  This protective 

advantage has been carried over to infectious biofilms,45 rendering them notoriously difficult 

to treat.  The underlying causes of reduced susceptibility of biofilms is multifactorial and not 

fully understood: the EPS encapsulating the biofilm renders them relatively impermeable to 

most antibacterials; cells in a biofilm exhibit decreased rates of growth and metabolism; 

alterations in phenotypic and genotypic expression of sessile bacteria may affect their 

sensitivity; and, finally, the rather ambiguous theory of the persister cell that expresses a 

temporary tolerance to antibacterials due to the necessity to survive under stress.  

Biofilms often require from 10 to 1,000-fold greater concentrations than planktonic 

bacteria to achieve efficacy.179-182  Based upon the poor correlation in efficacies obtained for 

planktonic vs. biofilm bacteria and subsequent difficulties in predicting the therapeutic 

 36



outcome of treating suspected biofilm-related infections using planktonic (MIC or MBC) 

determinations, a new procedure was necessary to present quantitative information regarding 

the reduced susceptibility of biofilms.45  The minimum biofilm eradication concentration 

(MBEC) assay was thus designed to assess antimicrobial efficacy against these surface-

associated communities.45,179,182,183  Briefly, equivalent biofilms are grown simultaneously in 

each well of a 96-well microtitre plate.  After exposure to antibacterial agents for 24 h, the 

biofilm is removed via sonication and transferred to sterile nutrient broth.  The MBEC is the 

lowest dilution of biocide at which bacteria fail to regrow. 

1.4.3 Combination therapy.  Resistance to standard antibiotic treatments is a growing 

problem and resistance to all clinically used antibiotics has been documented, while the 

discovery of novel antibiotics or synthetic antibacterial agents is a slow process.1  Elucidation 

of the genes and proteins essential for bacterial vitality allows us to pinpoint specific targets 

in order to intelligently design and assay potential new treatment options.95  Bacteria faced 

with a new antibacterial agent must adapt or die.  Unfortunately for us, the rate at which 

bacteria divide is exceptionally fast.  Though adaptation through mutation is slow for most 

organisms, bacteria quickly adapt to new agents, developing resistance mechanisms that 

allow them to flourish.  As bacteria often share genetic material, the genes that code for 

resistance may be passed not only to the offspring of the resistant mutant, but also to other 

bacterial species, particularly those that reside in close proximity either on the body of the 

patient or in the nearby community.1,184  Due to the pressing problem of resistance, there is a 

continual need for the introduction of novel treatment options.  Until the time that it becomes 

possible to prevent infections from forming, it is necessary to treat infections that do form 

while taking care to stave off developing resistance. 
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One approach is combination therapy, the concerted use of two or more antibacterial 

agents.  There are numerous benefits to using antimicrobial combinations.  One reason is to 

enhance the spectrum of activity through multiple mechanisms of action, and this may be 

particularly useful when treating polymicrobial infections, such as wound beds, or seriously 

ill patients.185  The presence of multiple bactericidal mechanisms also reduces the likelihood 

for resistance to develop, in addition to allowing treatment of infections that may already 

express some resistance to one of the agents.  One final advantage to combination therapy is 

the potential to minimize any toxic effects imposed by the individual antibacterial agents.185  

If the effects of combined usage are at least additive, then only half the dose of each 

individual biocide in combination would be necessary to elicit the response garnered from 

the full dose of either agent independently. 

Synergy between agents is another possible outcome of combination therapy.  Synergism 

is achieved when the coincident use of two agents is characterized by a greater than additive 

effect than when the agents are dosed individually.  This may be expressed as a greater rate 

of action or in the absolute magnitude of bacterial killing.186  In order to intelligently predict 

advantageous combinations, knowledge of the mechanisms of action of individual agents is 

important.187  Synergistic combinations represent a particularly attractive avenue for slowing 

the rate of emerging resistance, possessing all the advantages of combination therapy in 

addition to further reducing potential toxicity by requiring even smaller doses.  Depending 

upon the mechanism of action, the use of synergistic combinations may also further reduce 

the probability of emerging resistance.186 

One route to attain synergy involves combining a cell permeabilizer with an agent that 

functions primarily within the cytoplasm, with the end goal of improving the accessibility of 
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the target to the biocide.  For example, the combined use of penicillin, a cell wall-active 

agent, and the aminoglycoside streptomycin has synergistic activity against most Gram-

positive bacteria, including Enterococci,188,189 Streptococci,190 and Staphylococci,191 as well 

as some Gram-negative bacteria.192,193  Other agents that enhance membrane permeability, 

such as p-aminobenzoic acid (PABA)194 and positively charged glycopeptides,195 have 

successfully been combined with intracellularly active agents to produce synergy. 

Another synergistic mechanism is brought about if one agent serves to protect the second 

agent, for example, through inhibition of a modifying enzyme.  One resistance determinant 

currently expressed by many bacteria is the β-lactamase enzyme, which hydrolyzes and 

cleaves the β-lactam ring of penicillin-like antibiotics.  In an attempt to circumvent the 

detrimental effect of this enzyme, much research has focused on developing analogs that 

express a lower affinity for the β-lactamase and numerous generations of β-lactam family 

have been generated.95  Another approach to overcoming the β-lactam resistance utilizes the 

synergistic combination of a β-lactamase inhibitor, a molecule possessing a higher affinity 

for the enzyme, used in concert with a typical β-lactam antibiotic.196 

The sequential blockage of steps in a metabolic pathway has also been shown to elicit 

synergistic activity.  The combination of trimethoprim with a sulfa drug such as 

sulfamethoxazole or sulfadiazine exhibits synergistic activity by inhibiting two important 

enzymes that synthesize folic acid (dihydropteroate synthetase and dihydrofolate 

reductase).197,198  While each agent is typically bacteriostatic when used independently, the 

combination elicits bactericidal activity and is effective against a wide range of pathogens 

(both Gram-negative and -positive species).185,199 
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The synergistic activity between two biocides is typically evaluated using a checkerboard 

assay to determine the ideal combined concentration to elicit either inhibitory or bactericidal 

effects.185  This technique is carried out by creating an array of all possible combinations of 

two antibiotics serially diluted within a desired range.200  The endpoint is typically evaluated 

at the lowest concentrations that inhibit growth (as determined by turbidity) and is expressed 

as the fractional inhibitory concentration (FIC) as determined from Equation 1.1:200,201 

 

AB BA

A B

MIC MICFIC
MIC MIC

= +         Eq. (1.1) 

 

where MICA and MICB are the inhibitory concentrations for the individual agents and MICAB 

and MICBA are the lowest combined concentrations to elicit an inhibitory effect.  The 

endpoint of the assay can be modified to require bactericidal activity, and can be combined 

with the principle of time-kill techniques200 to determine dose-dependency by evaluating 

viability as a function of time.107 

 

1.5 Summary of dissertation research 

My dissertation research has focused on the improvement and implementation of 

bioanalytical techniques to investigate non-specific bacterial adhesion and characterize the 

antimicrobial properties of NO.  The specific aims of my research included: 

 

1. the development of an improved AFM methodology for quantifying the lateral force 

required to detach bacteria adhered to a surface; 
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2. characterization of the kinetics of adhesion strength exhibited by P. aeruginosa and S. 

aureus to a hydrophobic xerogel coating in late stages of adhesion (> 18 h after 

attachment); 

3. the application of high-resolution AFM imaging to qualitatively visualize the 

morphological changes of two Gram-negative pathogens, E. coli and P. aeruginosa, 

after exposure to NO; 

4. determination of the concentration-dependent effects of NO released as a bolus from 

a small-molecule donor and time-dependent effects of NO released via a sustained 

surface flux from a xerogel coating using a quantitative analysis of membrane 

roughness; and 

5. the evaluation of the bactericidal efficacy elicited by NO and AgSD in combination 

against a wide range of pathogenic bacteria, including two antibiotic-resistant strains, 

using modified viability assays that require bactericidal efficacy within 2 h. 

 

The goal of this introduction (Chapter 1) was to provide background on the problem and 

process of infection as well as an overview of infection treatment in order to generate a 

context for understanding the motivation and potential applications of my dissertation 

research.  Chapter 2 introduces an improved technique for measuring the adhesion strength of 

bacteria and its application toward observing late-stage adhesion kinetics.  Chapter 3 

discusses the implementation of AFM to qualitatively observe changes in bacterial 

morphology after treatment with NO and compare with the effects of treatment with a cell 

wall-active agent, amoxicillin.  In addition, quantitative measurements of membrane 

roughness used to evaluate the dose-dependence of NO and compare two NO-delivery 
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methods are described.  Chapter 4 focuses on the use of stringent efficacy assays to 

determine the antimicrobial activity of NO and AgSD alone and in combination, while 

potential mechanisms to account for the observed synergistic activity are postulated.  Finally, 

Chapter 5 summarizes my dissertation research and suggests several interesting avenues for 

future research based upon both lateral force measurements acquired with AFM and the 

antimicrobial properties of NO. 
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Chapter 2: 

Quantitative method for determining the lateral strength of bacterial adhesion and 

application for characterizing adhesion kinetics 

 

2.1 Introduction 

Elucidation of the mechanisms of bacterial adhesion at surfaces is required to improve 

methods for preventing and treating implant-related infection.  As a necessary step in the 

pathogenesis of local infection, bacteria attach to the surface of medical devices and/or 

nearby host tissue.  The complicated mechanisms involved in bacterial adhesion to material 

surfaces have been reviewed previously.1-3  The type, number, and strength of the 

interactions involved in adhesion depend on multiple factors including microbial species,4,5 

surface properties,4,6-8 the presence of proteins or other conditioning layers on the surface,5,9-

12 experimental system parameters (e.g., temperature, exposure time and conditions),13,14 and 

the culture environment (e.g., growth phase, ionic strength, pH)2,4,15,16 under which adhesion 

occurred.   

The process of non-specific bacterial adhesion is often described as consisting of two 

distinct phases where initial, reversible physicochemical attachment precedes irreversible 

adhesion through molecular binding interactions (Section 1.1.3).17-20  In Phase I, the cell 

approaches the surface through a combination of mechanical processes (e.g., Brownian 

motion, gravity, motility structures) and long- and short-range reversible chemical 

interactions (e.g., electrostatic and hydrophobic interactions, and attractive van der Waals 



forces).  Once association has been established, the cell fortifies its attachment during Phase 

II via cellular and molecular interactions between macromolecules present on the exterior of 

the bacterium and the substratum in a complex and time-dependent process (>1-3 h).  The 

two phases of adhesion differ distinctly.  While Phase I involves interactions occurring away 

from and along vectors perpendicular to the surface and eventually leads to reversible 

attachment, Phase II is characterized by lateral reinforcement of adhesion through numerous 

irreversible binding interactions serving to establish a firm adherence of the cell to the 

underlying substrate after it reaches the surface.   

Two physical characteristics of bacterial adhesion, each related to either Phase I or Phase 

II, readily lend themselves to quantitative study: the affinity for association and the resistance 

to dissociation.  The proclivity of bacteria to interact and form associations with a surface is 

typically evaluated by determination of surface coverage of adhered cells.  While 

enumeration of surface-associated cells is more useful for understanding Phase I adhesion 

(where bacteria form a loose association with the surface), information on the lateral 

reinforcement or strength of adhesion that accompanies Phase II may be assessed by 

applying a measurable, physical force to dislodge the cells from the surface.  Lateral 

adhesion strength, studied by applying forces along a surface until the interactions are 

disrupted and the bacteria detach, is a measure of the friction force established between the 

cell and a surface due to a multitude of specific and non-specific chemical interactions.  

Previous studies have employed laminar flow21 and the application of an air-liquid interface 

via passage of air bubbles22 to dislodge bacteria attached to a surface and quantify lateral 

adhesion strength.  Both methods are limited by the inability to apply both controlled and 
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directed forces at a specific location.  Furthermore, the forces applied by laminar flow may 

be insufficient to detach all cells from the surface.21  

More recently, atomic force microscopy (AFM) has been used to apply forces with a 

probe while scanning in contact mode.23-25  Indeed, the ability to simultaneously detect the 

presence of single cells, apply a controlled and measurable force at a known location, and 

detect subsequent detachment of each adhered cell, all under pseudo-physiological conditions 

(i.e., in buffer) make AFM a useful tool for studying adhesion of living cells.  Atomic force 

microscopy has been used previously to evaluate the effect of surface 

roughness/topography23,25 and surface hydrophobicity24 on the strength of bacterial adhesion.  

These studies assumed a constant normal force between the probe and the underlying 

substrate (due to feedback loop adjustment) without determining the actual force applied by 

the probe to the cell at the time of its detachment.  Herein, we present a rigorous quantitative 

method for calculating the lateral strength of the adhesion of individual cells to a surface 

using AFM by determining the total cantilever compression (deflection) at each detachment 

event and accounting for probe geometry.   

While the kinetics of Phase I adhesion strength have been previously examined,26,27 a 

logical, and heretofore unexplored, application of AFM is the characterization of Phase II 

kinetics, the rate at which bacteria are capable of establishing lateral reinforcement and 

resistance to detachment.  The ability of cells to irreversibly enhance their stability against 

lateral or shear forces applied during relevant processes such as blood flow, the blinking of 

an eyelid, or wiping/scrubbing of a surface during a cleansing process are essential in their 

pathogenesis and the development of infections.  To this end, we apply the quantitative 
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method introduced to elucidate the kinetics of Phase II adhesion strength by observing the 

strength of adhesion as a function of time for P. aeruginosa and S. aureus.   

 

2.2 Experimental 

2.2.1 Materials.  Ethanol (absolute) was purchased from Fisher Scientific (Pittsburgh, 

PA).  N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3) was obtained from Gelest 

(Tullytown, PA).  Isobutyltrimethoxysilane (BTMOS) was purchased from Aldrich (St. 

Louis, MO).  The amino- and alkoxysilanes were stored over dessicant.  The above 

chemicals were used without further purification.  Distilled water was purified with a 

Millipore Milli-Q UV Gradient A-10 system (Bedford, MA) to a resistivity of 18.2 MΩ*cm.  

P. aeruginosa (ATCC #19143) and S. aureus (ATCC #29213) were obtained from American 

Type Culture Collection (Manassas, VA). 

2.2.2 Substrate preparation.  Glass slides were coated with optically clear xerogel 

polymer films formed via sol-gel chemistry.  Briefly, a 40% (v:v total silane content) mixture 

of AHAP3/BTMOS was prepared via a 2-step process.28  First, 120 µl BTMOS was mixed 

with 60 µl water, 200 µl ethanol, and 10 µl of 0.5 M HCl for 1 h.  Then, 80 µl of AHAP3 was 

added, and the solution was mixed for an additional hour.  To cast a film, 40 µl of the 

polymer precursor solution was pipetted onto clean glass slides (dim. 13 x 17.5 mm) and 

allowed to dry at 85 °C for 3 d.  The xerogel-coated slides were stored in dessicators at room 

temperature until used.   

2.2.3 Cell culture.  P. aeruginosa and S. aureus were cultured separately at 37 °C in 

sterile tryptic soy broth (TSB) while shaking, centrifuged for 10 min at 4500 g, rinsed with 

ultrapure water, resuspended in 15% (v:v) glycerol, and stored as stock suspensions at -80 
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°C.  Bacterial cultures for daily use were grown from the -80 °C stock overnight at 37 °C.  

Next, 1 mL of overnight culture was inoculated in 100 mL of TSB and incubated at 37 °C for 

3-5 h until the culture reached a target optical density at 600 nm (OD600 ≈ 0.2 ± 0.1 for P. 

aeruginosa and OD600 ≈ 0.5 ± 0.1 for S. aureus) corresponding to mid-exponential log phase 

as determined by growth curves (data not shown).  

2.2.4 Substrate characterization.  Xerogel films have been used extensively in our 

laboratory to study bacterial adhesion28-30 and possess several suitable characteristics for 

AFM analysis of non-specific cell adhesion strength.  The xerogel coatings (40% (v:v) 

AHAP3/BTMOS) are hydrophobic (water contact angle ~90°).28,29  In addition, xerogel films 

resist the physical damage and deformation common to softer polymers.  AFM images of 

bare xerogels indicated a topologically featureless surface, providing a homogenous 

substratum for adherence.  The average RMS roughness of three separate regions of three 

independently prepared 40% (v:v) AHAP3/BTMOS xerogel films was 0.75 ± 0.47 nm over 

40 µm2 areas and 0.14 ± 0.02 nm over 1 µm2 areas.  The former is representative of the scan 

sizes evaluated for adhesion measurements while the latter represents surface roughness on 

the scale of a single bacterium. 

2.2.5 Bacterial adhesion.  Xerogel-coated substrates were rinsed with ultrapure water and 

ethanol, and dried under a stream of nitrogen.  A 200-µL aliquot of bacterial suspension in 

nutrient broth was pipetted directly onto the substrate and incubated at room temperature for 

1 h.  The substrate with adhered bacteria was immersed into a dish of PBS (pH = 7.4, Ic = 

0.16 M) for 3 h, rinsed with ultrapure water, and dried under a gentle stream of nitrogen.  The 

surface coverage of cells on the substrate was determined by imaging representative 40 µm2 

regions of the surface using contact mode AFM.  After 1 h in ambient air, the substrate was 

 64



placed into a fresh PBS solution at room temperature until analysis.  The short drying step, 

modeling the type of cellular transfer that might occur prior to in vivo implantation of a 

medical device, proved necessary to initiate firmly-adhered cells. 

2.2.6 CFU viability count.  To determine the viability of adhered cells under experimental 

conditions, prepared substrates were briefly sonicated for 5 min in PBS, and rinsed with an 

additional 5 mL of PBS to remove cells loosened, but not detached, by sonication.  Serial 

dilutions of the sonicant were prepared, 100-µL aliquots spread onto nutrient agar plates, and 

incubated at 37 °C overnight.  Observed colonies were then counted.  The total number of 

viable cells removed from the substrate was back-calculated. 

2.2.7 AFM imaging.  Simultaneous AFM height, deflection, and lateral images were 

obtained in contact mode using an Asylum MFP-3D atomic force microscope (Santa 

Barbara, CA) with manufacturer provided software.  Silicon nitride (Si3N4) triangle-shaped 

cantilevers with nominal spring constants of 0.06, 0.12, and 0.32 N/m were used to obtain 

images and measure forces (DNP-S, Veeco, Santa Barbara, CA).  Root mean square (RMS) 

measurements of xerogel surface roughness were obtained in air using the most rigid 

cantilever.  Images for force measurement were acquired in PBS at a scan rate of 1 Hz and 

scan size of 40 µm2 with a 512 x 512 line/pixel resolution.  The scan size and resolution were 

optimized to collect data from multiple cells during a single run while maintaining sufficient 

resolution to observe single cells for positive identification and force determination (e.g., ~10 

pixels across the width of the cell). 

2.2.8 Force calculation.  The tip-surface force applied by an AFM probe to the 

underlying substrate during scanning was calculated using Hooke’s Law, Fz = k d, where the 

cantilever is approximated as a spring with an associated spring constant, k, and is 
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compressed (deflected) by a distance, d, as it interacts with the surface during scanning (Fig. 

2.1A).  Direct application of Hooke’s Law gives the applied force normal to the compression 

of the spring, which in the case of AFM is the force applied by the tip of the probe.  

However, when the probe interacts with a large feature such as a bacterium, the point of 

interaction moves from the tip to the side of the probe, and the applied force normal to the 

plane of interaction is calculated from Equation 2.1  

 

Fapp = k d sin (θ + Φ)                        Eq. (2.1) 

 

where the angles θ and Φ are parameters of the probe geometry and cantilever orientation, 

respectively (Fig. 2.1B).  The lateral component (Flat) of the applied force (Fapp) is 

responsible for applying the shear force to detach adhered cells and is determined using 

Equation 2.2 

 

Flat = Fapp cos (θ).         Eq. (2.2) 

 

The cantilever deflection, d, for any point in an image was determined by d = ∆V S-1, 

where the total change in the output signal due to vertical movement of the laser on the 

photodiode detector resulting from compression, ∆V, is multiplied by the inverse optical 

lever sensitivity (S-1), a calibration factor relating the deflection-detector sensitivity.  The 

inverse optical lever sensitivity (S-1), the value of the slope in the constant compliance region 

of a force curve (deflection (nm) versus output signal (V)), was determined before each 

experiment using a clean mica substrate. 
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Figure 2.1  (A)  The vertical and lateral components of the normal force applied by an AFM 
probe to an adhered cell are illustrated schematically.  The latter component is responsible 
for applying the lateral force to detach cells, and is directly related to the normal force by the 
angle θ.  (B)  By modeling the slightly compressed cantilever as a straight line, a direct 
relationship can be drawn between Φ, which varies with the distance of compression, and θ. 
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2.2.9 Kinetic assay.  A kinetic assay was designed to identify a time frame of dynamic 

change in adhesion strength.  An initial image of adhered bacteria was obtained in contact 

mode in PBS at a setpoint (user-defined change in output signal maintained by the feedback 

loop through cantilever compression and corresponding to an approximate tip-surface force) 

near the limit of detection.  For our system, the limit of detection was approximately 0.2 nN 

with k = 0.06 N/m.  Of note, the limit of detection will vary directly with k and S-1 and is a 

function of detector sensitivity.  The imaged cells were counted to establish the baseline 

number of total cells detected.  The ability of these cells to withstand scanning at higher tip-

surface forces (Fz) was tested by adjusting the setpoint to predetermined low and high Fz of 

2.5 nN and 15 nN, respectively, and rescanning the same region at each threshold.  The 

percentage of cells able to withstand detachment at each threshold was then determined.  The 

assay was repeated at different regions of the substrate every 6 h for 48 h after exposure of 

the substrate to the bacterial suspension. 

2.2.10 Measurement of adhesion kinetics.  To observe detailed changes in bacterial 

adhesion strength, an analogous process of acquiring consecutive images over a region was 

employed.  In contrast to the kinetic assay, however, the actual lateral force applied to each 

individual bacterium at the time of detachment was determined.  As before, an initial image 

was obtained at a low setpoint (~ 5 nN) to establish the number of cells present within a 40 

µm2 scan region.  This starting threshold force was empirically determined for our system 

(e.g., adhesion conditions, substrate) to select for securely adhered bacteria representative of 

Phase II bacterial adhesion, while removing loosely attached cells.  Of note, scanning at 

lower tip-surface forces did not yield significantly more cells.  The setpoint was increased 

incrementally for subsequent scans so that increasingly higher forces were applied until all 
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cells in the scan region were removed.  No cell was imaged in subsequent scans that did not 

appear in the first scan.  After displacement, cells likely become planktonic, at least briefly, 

as the imaging artifacts observed (i.e., streaks) clearly indicate that rolling or pushing of cells 

does not extend to the periphery of the scan.  After all cells in a scan region were displaced, 

the probe was systematically moved to a different location on the substrate several 

millimeters away from the previous analysis area, and the process was repeated. 

  To calculate the force applied for removal of a cell, the set of height and deflection 

scans consisting of a run was visually examined to identify the image in which each cell was 

last detected (partially imaged cell) (Fig. 2.2A-C).  Cell removal was indicated by greater 

error in setpoint deflection relative to previous line scans and was occasionally accompanied 

by a streaking artifact.  Such streaks originate from temporary continued association of the 

cell with the tip as the cell moves away from the location of its attachment.  The error in 

setpoint deflection is easily visualized in the deflection image, and the force responsible for 

bacterial detachment likely originates from an accumulation of cantilever bending prior to 

feedback loop correction (Fig. 2.2D-E).  Thus, the line where detachment occurred was 

identified for each bacterium.  The total compression of the cantilever at the time of 

detachment was calculated by summing the distance of compression required to obtain the 

setpoint from the free air deflection (i.e., position of the laser on the photodiode before the 

probe contacts the surface) with the additional error from the setpoint at detachment (Fig. 

2.3).  Upon determining the total cantilever compression responsible for cell detachment on 

an individual basis and the geometrical analysis of the system, Flat was calculated 

independently for each bacterium, using Eq. 2.2. 
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Figure 2.2  In three consecutive AFM scans, S. aureus cells are imaged at ∆Vsetpoint of (A) 
0.80 V, (B) 1.35 V, and (C) 3.00 V.  The partially imaged cell highlighted in (B) is an 
example of a bacterium undergoing detachment.  This cell is imaged completely in (A) and is 
no longer visible in (C).  The scale bar indicates error from setpoint deflection, where 
increased cantilever compression corresponds to positive values.  (D-E) From the deflection 
values of the scan line where the cell detaches, the change in deflection (∆d) is determined, 
which is directly related to ∆Vdeflection error by a factor of S-1.  ∆d is calculated as the difference 
between the baseline (setpoint) deflection and the peak in deflection error (indicated by the 
round cursor) and can be converted to the additional force applied by cantilever compression 
beyond the setpoint. 
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Figure 2.3  The laser position on the position sensitive diode (PSD) changes in response to 
cantilever compression.  Position 1 represents the laser position at free air deflection.  When 
the tip engages with the surface, the cantilever is compressed to the setpoint (position 2) and 
the total change in output signal is ∆Vsetpoint.  During scanning when the probe encounters a 
raised feature, the cantilever is compressed past the setpoint.  This additional compression is 
termed deflection error and is illustrated as the change in output signal, ∆Vdeflection error, 
between position 2 and 3 on the PSD.  The total compression of the cantilever, deflecting the 
laser from position 1 to 3, is used to determine the force applied at detachment.
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2.3 Results  

2.3.1 Long-term observation of adhesion kinetics.  A kinetic assay of bacterial adhesion 

strength was utilized to monitor the adhesion dynamics of P. aeruginosa in PBS over 2 d.  

First introduced by Boyd et al.,23 the technique involves determining the number of cells 

capable of withstanding probe interaction at pre-set vertical tip-surface forces (setpoints).  

However, neither the lateral component of the applied force nor the applied force for 

individual cell removal based on total cantilever compression was determined.  Instead, all 

cells remaining after scanning at a particular setpoint (Fz) were assigned an empirical 

threshold adhesive force related to the setpoint.  This simple assay allowed efficient 

observation of increasing adhesion strength trends over time and was useful in identifying a 

time window of interest for in-depth kinetic studies.  Nevertheless, it does lack the accuracy 

of the more time-consuming method based on determining the total cantilever compression at 

the time of detachment (used later in our study). 

The percentages of surface-adhered P. aeruginosa cells that withstood probe interaction 

at both low and high threshold probe-surface forces as a function of time are shown in Figure 

2.4.  At 18 h after initial adhesion, two significant and related observations were made.  The 

percentage of cells with adhesion strength greater than the lateral force applied by a setpoint 

of 2.5 nN began to increase at an accelerated rate.  Furthermore, some cells had generated 

sufficient adhesion strength to withstand a six-fold greater scanning force (i.e., 15 nN).  

Between 18 and 42 h, the percentage of cells remaining attached continued to increase, with 

the most drastic rise occurring 24–30 h after exposure, where the amount of cells remaining 

adhered was approximately six- fold higher than that achieved in the 6 h period immediately 

prior.  The percentage of cells capable of withstanding 15 nN of tip-surface force increased  
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Figure 2.4  The percentage of P. aeruginosa cells which remain adhered to the substrate 
after scanning the surface at threshold tip-surface setpoint forces of 2.5 (■) and 15 nN (●). 
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~ four-fold during the same 6 h time window compared to the previous period (14.3% and 

3.3%, respectively).  Based on these observations, the most notable adhesion dynamics 

occurred over an 8 h period.   

2.3.2 Quantitative measurement of adhesion kinetics.  The quantitative method for 

determining the strength of bacterial adhesion was used to study the adhesion strengths of 

individual adhered P. aeruginosa and S. aureus cells over similar periods to compare the 

non-specific adhesion of two distinct pathogenic strains of bacteria.  The experiments were 

conducted from different cultures in triplicate for each species.  The average lateral force 

required to remove all cells within a scan region is shown in Figure 2.5.  As the majority of 

cells detected were typically removed during the first half of the run, the points in the graph 

representing the average force for a region correspond to the length of time after exposure 

associated with the lowest setpoint scan.  The overall magnitude of forces required to detach 

P. aeruginosa (Fig. 2.5A) was significantly greater than for S. aureus (Fig. 2.5B).  In fact, the 

cantilevers were no longer capable of applying sufficient force to remove every P. 

aeruginosa cell from the xerogel substrate after ~26 h.  Table 2.1 lists both the average 

adhesion strength rates measured for independent experiments and the overall average and 

standard deviation for each species.  The average rate of adhesion strength increase was 

almost seven-fold faster for P. aeruginosa (3.36 ± 0.08 nN/h) than for S. aureus (0.50 ± 0.09 

nN/h).  

Figure 2.6A shows the average lateral forces necessary to detach S. aureus in a single 

experiment.  Examination of the component measurements used in calculating these average 

forces revealed two additional trends in adhesion kinetics that could not be resolved from the  
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Figure 2.5  The average lateral force required for cell detachment measured for each (A) P. 
aeruginosa (▼) and (B) S. aureus (■) cell within a scan region between 19 and 27 h after 
substrate exposure to cell suspension.  The error bars indicate the standard error over all 
measurements taken with a scan area.  Data points obtained during duplicate and triplicate 
experiments are indicated by the open and cross-hatched symbols, respectively. 
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Table 2.1 Average, basal and elite adhesion rates for P. aeruginosa 19 – 26 h after initial 
adhesion and S. aureus 19 – 28 h after initial adhesion from three independent kinetics 
experiments per species.  After 26 h, the cantilevers used in this study were no longer able to 
apply sufficient lateral force to detach all P. aeruginosa cells from the substrate. 
 
 
 

species average (nN/h) basal (nN/h) elite (nN/h) 
P. aeruginosa 3.36 ± 0.08 0.0 ± 0.2 9 ± 1 

S. aureus 0.50 ± 0.09 0.17 ± 0.09 1.4 ± 0.4 
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Figure 2.6  (A) The average force of detachment measured for S. aureus per scan region (■) 
as a function of time for a single experiment.  The error bars indicate the standard error of all 
measurements taken within the scan region.  (B) The average force of detachment measured 
for S. aureus per scan in the same experiment at the following timepoints:  19 h ( ), 20 h 
( ), 21 h (●), 22 h (+), 24 h (x), 25 h ( ), and 26 h ( ).  The error bars indicate the standard 
deviation over all measurements taken with a single scan. 
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average values alone.  By breaking down the average lateral forces measured in each scan 

region during an entire run into adhesion measurement averages for each scan (Fig. 2.6B), a 

large range of detachment forces were evident in each region.  Furthermore, the range of 

forces broadened with time.  Though example data is provided for a single S. aureus 

experiment, similar trends were observed for all other experiments involving both species of 

bacteria.  The trends indicate that adhesion strength increases vary with bacteria species.   

A population of cells whose detachment occurs in the first scan of each run was always 

apparent.  In contrast, another population of cells, the last to be removed from each scan area, 

became increasingly more difficult to detach over time.  Examining only those cells that were 

detached in the first and last scan of each run in relation to the average over the entire region 

(Fig. 2.7) allowed for the deterimination of adhesion kinetics for “basal” and “elite” cell 

populations, respectively (Table 2.1).  The elite S. aureus population was characterized 

having a ten-fold larger rate of adhesion over the basal cells (1.4 ± 0.4 nN/h and 0.17 ± 0.09 

nN/h, respectively).  The basal P. aeruginosa population exhibited no appreciable increase in 

adhesion rate (0.0 ± 0.2 nN/h), while the adhesion strength kinetics of the elite population 

increased at 9 ± 1 nN/h, a value significantly greater than that observed for elite S. aureus.  

Additional plots of basal and elite P. aeruginosa and S. aureus populations are provided in 

Figure 2.8.  

2.3.3 Intercellular interactions.  To evaluate the effect of cell-cell interactions on force 

measurements, standard statistical analysis was employed.  Only S. aureus were examined as 

such cells have a tendency to grow and adhere in clusters.  In contrast, P. aeruginosa cells 

were observed to adhere more typically as single cells.  Forces in a particular run were 

grouped as either clustered or independent, and an Anova single-factor analysis was  
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Figure 2.7  Adhesion kinetics from a single experiment for (A) S. aureus basal (♦), average 
(■), and elite ( ) population of cells and (B) P. aeruginosa basal ( ), average (▼), and elite 
(●) cell populations. 
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Figure 2.8  Average measured (A) basal and (B) elite detachment forces for replicate P. 
aeruginosa experiments.  Average measured (C) basal and (D) elite detachment forces for 
replicate S. aureus experiments. 
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conducted.  Cells with a neighbor oriented perpendicular to the applied lateral force were 

evaluated separately from those with a neighbor oriented in line with the direction of probe 

movement.  No statistical difference in force measurements existed between independent 

cells and those in close proximity to neighboring cells.  At least three runs encompassing 

both high and low setpoints were evaluated for each neighbor orientation. 

2.3.4 Cell viability.  The viability of P. aeruginosa and S. aureus was evaluated after 30 h 

resident adhesion time by sonication of the colonized surfaces, and subsequent plating and 

growth on agar nutrient medium.  The number of viable cells removed per surface area was 

calculated from the number of colonies observed after overnight incubation at 37 °C (Table 

2.2).  The numbers of viable colonies observed were in close agreement with the average 

number of cells detected during an experimental run. 

 

2.4 Discussion 

The primary aim of our studies was to develop an improved method for more accurately 

measuring and comparing the strength of adhesion of bacterial cells in situ via AFM.  By 

employing a geometrical analysis of the applied force vectors coupled with quantification of 

the total cantilever compression responsible for applying the detachment force for each 

individual cell, the lateral force (Flat) necessary to overcome the force of adhesion was 

determined on a per cell basis.  The method is broadly applicable to any number of species, 

substrates, and preparation procedures.  Upon evaluating changes in bacterial adhesion 

strength as a function of time, a number of interesting observations became evident. 
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Table 2.2   Comparison of the number of viable cells recovered after 30 h adherence in PBS 
to the average number of cells detected using AFM.  The number of cfu counted was back-
calculated to determine the average number of viable cells recovered from a 40 µm2 region of 
the substrate. 
 
 
 
 

species viable cells recovereda cells detecteda

P. aeruginosa 14.4 14.6 ± 7.5 
S. aureus 35.5 32.2 ± 20.0 

 

aper 40 µm2 surface area of the substrate 
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2.4.1 Variation in interspecies kinetics.  Regardless of the time adhered to our model 

substrate, the adhesion of P. aeruginosa was significantly greater relative to S. aureus.  

Assessing the differences in cell-surface properties that exist between the two species may be 

helpful in understanding the gap in measured adhesion strength.  Both the size and shape of 

the bacteria differ significantly.  P. aeruginosa is a rod-shaped bacterium (1 x ~3 µm) while 

S. aureus is spherically shaped (d ~ 1 µm).  Larger, rod-shaped bacteria would be expected to 

contact the substrate to a greater extent due to their size and degree of curvature.  Gomez-

Suarez et al. also reported superior adhesion of rod-shaped bacteria over coccal species upon 

exposure to low-velocity air bubbles.22   

Another likely contributing factor for the differences in adhesion strength may stem from 

the intrinsic flexibility, or lack thereof, inherent in the varying component layers of the cell 

wall.  The gram-positive cell wall is coated with a thick peptidoglycan layer that is rigid in 

nature.  In contrast, the gram-negative cell wall is characterized by a thinner layer of 

peptidoglycan matrix surrounded by a flexible outer phospholipid bilayer.  Thus, not only is 

P. aeruginosa capable of establishing a larger footprint of contact, but its added flexibility 

allows additional freedom to conform or expand against the substrate to further increase its 

surface area of interaction.  The effect of flexibility on increasing surface contact area has 

been observed previously for Bacillus mycoides spores on a similarly modified glass 

substrate.31  

In addition to cell morphology, the polymeric and proteinaceous structures present on the 

exterior of the cell differ between species and strains.  In general, it is difficult to predict the 

mediating effect of these variations on non-specific attachment, but recent studies have 

shown increasing adhesion forces over short surface-resident time periods (~100 s) between 
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colloids and protein coated surfaces.32,33  Additionally, greater surface contact between 

features of the cell and the substrate presumably lead to an increase in the number of 

potential interactions (e.g., van der Waals interactions) that may be established to reinforce 

adhesion strength.  While the contribution to adhesion of each individual non-covalent bond 

is small, the combined effect generates an essentially irreversible attachment.  A number of 

studies point to the roles of proteins and polysaccharides at the exterior of the cell on 

bacterial adhesion.34,35  In addition to having filimentous proteinaceous features termed 

fimbriae, or pili, P. aeruginosa is known to produce an alginate extracellular polysaccharide 

slime (glycocalyx) that facilitate both non-specific and specific adhesion.  Likewise, S. 

aureus produces a microcapsule that with other external components, such as lipoteicoic acid 

and a variety of specific protein receptors plays a role in the adhesive mechanisms of the 

species.36  The importance of surface-adsorbed matrix proteins such as fibrinogen and 

fibronectin for promoting S. aureus colonization of biomaterial surfaces has been reported 

previously and may partially explain the lower measured adhesive forces observed for S. 

aureus relative to P. aeruginosa using bare biomaterial substrates.37-40  

2.4.2 Intraspecies population kinetics.  As evidenced by our data, not all cells of the same 

species and culture are equally capable of establishing the ability to withstand detachment 

from the same surface.  Dickenson and Cooper observed a similar phenomenon while 

studying the detachment rate of S. aureus adhered to different polymeric surfaces in a 

laminar flow field as a function of shear stress.41  They reported that cell attachment followed 

first-order rate kinetics.  However, the detachment rate of adhered cells at early periods was 

more rapid, slowing with time.  The range of shear stresses used in their experiments was 

insufficient to remove all cells adhered to the substrates.  These results correspond with our 
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observation that most cells were detached when subjected to low tip-cell forces, while a 

certain population of cells required much larger applied forces to initiate cell detachment.  

Dickenson and Cooper proposed that a homogeneous cell population exhibiting a 

heterogeneous adhesion energy distribution may result from a combination of the small 

surface contact area established by each cell and the variation in molecular components 

existing in this contact region.  Other researchers have reported similar heterogeneity in the 

detachment of receptor-coated beads that model cells.41-43  

The wide range of adhesion forces measured for cell detachment may also be attributed to 

the complex combinations of changes in metabolic processes resulting from surface adhesion 

or proximate cell signaling.  Sauer et al. described a number of changes in gene regulation for 

P. aeruginosa at discrete stages of biofilm development following initial attachment, 

including 57 specific proteins expressed in cell populations at the irreversible attachment 

stage (Phase II) that were absent or weakly detected in planktonic cells.44  While some of the 

changes in gene regulation were linked directly to quorum sensing, the authors suggested 

additional surface-induced expression of proteins that might play a role in increasing 

adhesion strength after initial attachment.  The heterogeneity in adhesion strength observed 

in this study may be an observation of such physiological changes that occur after bacteria 

attach to a surface. 

Local variations in substrate properties may also influence bacterial adhesion.  Deviations 

from theoretical predictions of adhesion behavior have previously been attributed to 

heterogeneity in surface properties.  Using AFM force-mapping, Vadillo-Rodríguez et al. 

reported the presence of a small number of randomly distributed high-adhesion sites on silica 

and metal oxide surfaces.45  The model surfaces used in our study were partially composed of 
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aminosilanes whose amines are protonated at physiological pH.  While we assumed that 

these charges were distributed across the surface due to repulsive interaction, it is possible 

that higher densities of aminosilanes may exist locally.  Bacteria with negatively charged 

functional groups present on the exterior of the membrane would be attracted to such regions.  

Such interactions would likely yield greater adhesion to the surface over time due to 

increased water exclusion and hydrophobic interactions. 

2.4.3 Quantitative force determination.  The premise of previous reports relies on the 

principle that when imaging a surface in contact mode, the applied force between the probe 

and substrate is held constant by a feedback loop.  Thus, empirical relationships were drawn 

between the tip-surface setpoint force maintained by the feedback loop of the AFM and the 

number of cells withstanding imaging at such applied forces to evaluate bacterial adhesion 

strength.23-25  While this method has merit for preliminary studies of bacterial adhesion 

kinetics, we believe it is not adequate for quantitative determination of the actual force that is 

applied at cell detachment.  Rather, the feedback loop response occurs after a finite time.  

When a large feature such as a cell is encountered, an instantaneous increase in cantilever 

deflection is unavoidable.  This phenomenon may be observed in real time and collected as 

an image by directing an AFM channel to record the difference between setpoint deflection 

and actual deflection (i.e., deflection error) for each point corresponding with the height 

image.  The effect is exacerbated by using cantilevers with low spring constants and low 

setpoints where additional force due to deflection error contributes a significant percentage of 

the overall force applied to the cell by the probe.  By examining the total force applied to all 

cells removed at representative low (0.10 V) and high (5.00 V) setpoint scans (Table 2.3), the 

contribution to normal force calculation from deflection error becomes evident.  Without  
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Table 2.3  Comparison of the actual normal force applied to the cell and the tip-surface force 
adjusted for by the feedback loop for both small and large setpoints. 
 
 
 
 

 
setpoint 

(V) 

deflection 
error  
(nm) 

total 
compression 

(nm) 

normal 
forcea  
(nN) 

setpoint 
forcea

(nN) 

percent 
errorb  
(nN) 

0.100 24.1 106 12.8 9.32 -27.2 
0.100 24.8 107 12.9 9.32 -27.8 
0.100 41.7 127 15.3 9.32 -39.1 

      
5.00 15.0 706 84.7 82.5 -2.60 
5.00 35.1 730 87.6 82.5 -5.82 

 
aNominal spring constant = 0.12 N/m 
bPercent error from the normal force (calculated from the total compression of the cantilever) 
obtained by using the setpoint force  
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correcting for setpoint deflection error, the values calculated for the applied forces within 

each scan would all be equivalent and systematically underrepresented. 

While determining total cantilever compression was a key improvement to the method 

introduced herein, other modifications were made in force measurement and data acquisition 

procedures to further improve accuracy of bacterial adhesion strength values.  First, the free 

air deflection of the probe was measured before and after each scan to account for thermal 

drift.  Large areas (40 µm2) were scanned to observe the adhesion strength of many cells (~10 

to 50) simultaneously, improving the statistical significance of the data generated.  In 

addition, proper orientation of the cantilever and tip during imaging scans was maintained.  

Only deflection data accumulated from the ‘retrace’ (i.e., movement of the probe from tip 

end along the long axis of the cantilever toward the cantilever holder) was used in acquiring 

force measurements.  If scanning along the long axis in the opposite direction, buckling of 

the cantilever may occur.  Changes in the output signal due to buckling would be 

indistinguishable from those resulting from bending.  In contrast, scanning laterally (along 

the short axis of the cantilever) torsional force is applied by twisting in the cantilever due to 

tip-cell interactions twist the cantilever.  Buckling and twisting of the cantilever deviate from 

the spring model and Hooke’s Law.   

In addition to assuring that our force application system can be approximated by Hooke’s 

Law, it is much more relevant to determine and report the actual force responsible for 

detachment (Flat) versus the applied force (Fapp) or setpoint force (Fz).  By approximating the 

slightly bent cantilever as a straight line, geometrical analysis showed that the directional 

change of the normal force applied by a pyramidal probe at a known tilt was not significant 

over the range of cantilever compression used in this study (Fig. 2.2B, Appendix).  As such, 
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the lateral forces reported herein were calculated using the known tilt of the cantilever and 

geometry of the AFM probe. 

 

2.5 Conclusions 

A quantitative method for measuring the strength of bacterial adhesion was described 

enabling the discrimination of adhesion forces measured by AFM at a single setpoint by 

determining total cantilever compression from deflection error image analysis.  Compared to 

previous methods, this method allowed for more accurate measurement of the actual normal 

and lateral force applied to bacteria while imaging in contact mode.  We thus describe a 

useful tool for characterizing changes in non-specific adhesion strength of bacteria that may 

be easily applied to evaluating the effect of a number of variables including protein 

mediation and substrate properties on bacterial adhesion. 

Analysis of adhesion forces measured for P. aeruginosa and S. aureus as a function of 

time indicated that the strength of bacterial adhesion is both dynamic and non-uniform for 

both species.  P. aeruginosa demonstrated significantly greater overall adhesion forces and 

rates of increasing adhesion strength than S. aureus.  The size, shape, and cell wall structure 

of P. aeruginosa contribute to its superior ability to adhere non-specifically to a substrate.  

The apparent heterogeneity in the adhesion of cells of the same species under similar 

conditions may be attributed to variation in the states of adhesion energy attained, local 

variation in surface characteristics, and/or metabolic changes in gene regulation after surface 

attachment.   
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Chapter 3: 

Morphological analysis of the antimicrobial action of nitric oxide on Gram-negative 

pathogens using atomic force microscopy 

 

3.1  Introduction 

Nitric oxide (NO) is a highly reactive diatomic radical endogenously produced by the 

enzyme-catalyzed oxidation of L-arginine to L-citrulline.  It has been implicated as a 

mediator in multiple physiological processes, ranging from regulatory roles in the 

cardiovascular and nervous system to the inducible host response to infection.1,2  Various 

therapeutic properties attributed to NO, including tumor cytotoxicity,3,4 antimicrobial 

activity, and improved wound healing and tissue integration at implant sites,5  may prove 

beneficial in a number of pharmacological applications.6,7  Due to its reactivity, diverse 

regulatory roles, and short half-life in blood (< 1 sec),8 the ability to target therapeutic NO 

delivery locally is critical.  Nitric oxide donating compounds, such as N-diazeniumdiolates6 

and S-nitrosothiols,9,10 decompose to release NO and hence serve as vehicles for its storage 

and transport.  A number of materials, including nanoparticles,11,12 films and coatings,13,14 

and small molecules,15,16 have employed NO-donor chemistry with varied physicochemical 

and NO-release properties.  

The role of NO in the innate immune response is a conserved feature through a wide 

range of species, from Drosophila to human.17  In mammals, macrophages and other immune 

cells produce NO in response to invading pathogens.18  The antimicrobial properties of NO 



may be elicited by direct modification of biomacromolecules or by formation of reactive 

nitrogen species (RNS) via reaction with oxygen (O2) or superoxide (O2
-).19  These RNS may 

render nitrosative stress by the formation of compounds such as dinitrogen trioxide (N2O3) 

and oxidative stress via the formation of peroxynitrite (ONOO-).19-22  The spectrum of 

potential bactericidal mechanisms is thus broad, encompassing DNA damage resulting from 

deamination of deoxyribonucleotides, protein damage via numerous potential reactive sites 

(e.g. heme groups, thiols, amines) that disrupts normal cellular transport and metabolism, and 

membrane damage propagated by radical lipid peroxidation.  The local physiological 

environment plays a key role in determining the metabolic pathways available to NO, and it 

would thus be expected that the bactericidal mechanism(s) of NO produced endogenously in 

phagosomal compartments would differ from NO released extracellularly (e.g., from an 

implanted biomaterial) as a result of differences in local conditions and substrates available 

in the biological milieu.   

In vitro, NO has proven a potent antimicrobial agent effective against a range of 

microorganisms, including both Gram-negative and Gram-positive bacteria.  Gaseous NO 

was found to be toxic against a number of pathogenic species, including C. albicans and 

methacillin-resistant S. aureus.23  N-Diazeniumdiolate-modified NO-releasing surfaces have 

been shown to reduce initial P. aeruginosa adhesion relative to controls,24-26 and kill those 

that do adhere.27  Nitric oxide release from silica nanoparticles has been characterized by 

significant toxicity to bacterial cells with reduced toxicity to L929 mouse fibroblasts.28  

While the bactericidal effects of NO and NO-releasing biomaterials have been demonstrated 

repeatedly, details on the primary targets resulting in bacterial cytotoxicity and the 

corresponding cellular effects of NO on microbial species remain speculative. 
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Morphological analyses of bacteria aid in understanding mechanisms of antibiotic action 

by allowing visualization of changes in the appearance of the microbe undergone subsequent 

to treatment.  While electron microscopy has been employed toward this end for decades,29-31 

atomic force microscopy (AFM) has been used with increasing frequency.32-37  As a surface 

characterization tool, AFM is ideal for morphological studies of surface-adhered bacteria as 

it allows cells to be imaged in situ with high resolution without requiring chemical drying, 

metal coating, or exposure to ultra-high vacuum.  An added benefit of AFM is the flexible 

and adaptable nature of cantilevers as transducers that allow detection of other physical (e.g., 

elasticity) or chemical (e.g., charge distribution) surface parameters simultaneously with the 

acquisition of height information.  Atomic force microscopy has been applied to visualizing 

the antimicrobial action of peptides,32,34,36 chitosan,33 quantum dots,35 and the β-lactam 

antibiotics penicillin and amoxicillin.37   

Herein, we report a morphological analysis of P. aeruginosa and Escherichia coli after 

exposure to NO released from two N-diazeniumdiolate-modified materials: a small molecule 

NO-donor derived from proline (PROLI/NO) and a NO donor-modified xerogel surface 

coating.  The diazeniumdiolate moiety stores two molecules of the antimicrobial agent NO 

on each functionalized amine.  Exposure to proton sources such as buffer and blood catalyzes 

the release of NO.  Using topographical surface mapping and nanometer-scale height 

resolution, changes in bacteria shape and surface roughness were studied as a function of 

exposure time, material, and quantity of NO released. 
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3.2  Experimental 

3.2.1 Materials.  Ethanol and methanol were purchased from Fisher Scientific 

(Pittsburgh, PA).  Argon, NO, nitrogen (N2), and a 25.7 ppm gaseous NO standard in N2 

were purchased from National Welders (Raleigh, NC).  N-(6-aminohexyl) 

aminopropyltrimethoxysilane (AHAP3) was obtained from Gelest (Tullytown, PA).  

Amoxicillin was obtained from Fluka (Buchs, Switzerland).  Isobutyltrimethoxysilane 

(BTMOS), L-proline, sodium methoxide, and dimethylsulfoxide (DMSO) were purchased 

from Sigma-Aldrich (St. Louis, MO).  The amino- and alkoxysilanes were stored over 

desiccant.  The above chemicals were used without further purification.  Distilled water was 

purified with a Millipore Milli-Q UV Gradient A-10 system (Bedford, MA) to a resistivity of 

18.2 MΩ cm. 

3.2.2 Cell culture.  P. aeruginosa (ATCC #19143) and E. coli (ATCC #53323) were 

obtained from American Type Culture Collection (Manassas, VA) and cultured in tryptic soy 

broth (TSB).  Stock cultures were prepared and stored at -80 °C for subsequent experiments. 

A 1-mL aliquot from an overnight culture was inoculated in ~100 mL of TSB and incubated 

at 37 °C for 3-5 h until the culture reached mid-exponential log phase as determined from 

optical density at 600 nm (OD600 = 0.2 ± 0.1), corresponding to ~108 colony forming units 

(cfu) mL-1.  

3.2.3 Synthesis of xerogel films.  Glass slides were coated with a 40% (v:v total silane 

content) AHAP3/BTMOS xerogel film via a 2-step process as described by Marxer et al.13  

Briefly, 120 µl BTMOS was mixed with 60 µl water, 200 µl ethanol, and 10 µl of 0.5 M HCl 

for 1 h.  Then, 80 µl of AHAP3 was added, and the solution was mixed for an additional 

hour.  Glass slides were cut into sections (dim. 13 x 17.5 mm), rinsed with ultrapure water 
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and ethanol, dried under a stream of nitrogen, and cleaned for 30 min in a UV-ozone cleaner 

(BioForce, Ames, IA).  To cast a film, 40 µl of the sol was pipetted onto clean glass slides, 

dried for 30 min at ambient temperature, and cured at 85 °C for 3 d.  Control xerogel films 

were stored in desiccators at 22 °C.   

3.2.4 NO-donor synthesis and characterization.  Xerogels were modified to release NO 

by exposing the films to 5 atm of NO for 72 h as previously described.13  The NO chamber 

was flushed twice with 5 atm Ar to remove atmospheric impurities (e.g., oxygen, water) prior 

to introducing NO gas.  After 3 d, unreacted NO was removed by flushing the vessel with Ar.   

L-proline was converted to PROLI/NO following a procedure previously reported by 

Saavedra et al.16  Briefly, 10 g of L-proline was dissolved in 39 mL of 25% sodium 

methoxide in methanol.  This solution was combined with an additional 20 mL of methanol, 

and exposed to NO gas (5 atm) as described above.  The resulting PROLI/NO formed as a 

white precipitate that was collected via filtration, washed with ether, and vacuum dried.  All 

NO-releasing materials (i.e., PROLI/NO and xerogels) were stored in vials purged with 

nitrogen at -20 °C until use in order to stabilize the NO donor. 

A chemiluminescent nitric oxide analyzer (NOA) (Sievers Model 280, Boulder, CO) was 

used to measure NO release in real time.  A known quantity of the NO-release material was 

placed in a flask containing phosphate buffered saline (PBS, pH = 7.4) positioned in a water 

bath maintained at 37 °C.  The NO generated via diazeniumdiolate decomposition was 

carried into the analyzer via a stream of N2 bubbled into the solution at a flow rate of 80 mL 

min-1.  The detector was calibrated by a 2-point curve using an atmospheric sample passed 

through an NO zero filter and a 25.7 ppm NO standard. 
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3.2.5 Bacterial adhesion to control and NO-releasing xerogels.  Prior to use, the NO-

releasing xerogels were allowed to reach ambient temperature.  Control and NO-releasing 

films were rinsed briefly with ultrapure water and dried under a stream of nitrogen 

immediately prior to bacterial adhesion.  After diluting bacterial suspensions in TSB (1:2 in 

PBS), a 200-µL aliquot of the solution was beaded directly onto the xerogel surface.  

Substrates were covered to reduce evaporation and incubated for either 1 h (in preparation for 

treatment in antibiotic solutions) or 2 h (NO-releasing xerogels) at 37 °C to allow for 

bacterial adhesion. 

3.2.6 Antimicrobial treatment.  For time points exceeding 2 h, NO-releasing xerogels 

with adhered bacteria were placed in vials containing 5 mL of PBS and incubated at 37 °C 

for the remainder of the exposure period.  For treatment with PROLI/NO, the appropriate 

mass was first weighed into chilled, dry vials.  The correct volume of PBS (~5 mL) was 

added to obtain the desired concentration, vortexed briefly, and a control (unmodified) 

xerogel with adhered, untreated bacteria was immediately added to the PROLI/NO solution 

and incubated for 2 h at 37 °C.  Amoxicillin treatment was achieved by preparing a 1 µg mL-

1 solution in PBS from a 9.6 mg mL-1 stock solution in DMSO, into which a control xerogel 

(with adhered bacteria) was placed and incubated for 2 h at 37 °C.  Each xerogel time point 

and antibiotic concentration was replicated for each species studied.  A detailed description 

of the substrate rinsing process is provided below. 

3.2.7 Substrate preparation technique.  A gentle-rinse procedure was developed to ensure 

that adhered cells remained relatively undisturbed for subsequent treatment and/or imaging 

experiments.  A rinse step was accomplished by pipetting a single, 300-µL aliquot of the 

appropriate rinse solution onto the substrate.  Immediately thereafter, the solution was 
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removed with a narrow-tipped pipette in 100-µL increments.  Of note, the pipette was only 

applied to the outer edge of the substrate to remove residual rinse solution so as not to disturb 

the surface to be imaged. 

For both control and NO-releasing xerogels, excess cell suspension in TSB was removed 

from the surface after the adhesion period, followed by five consecutive rinses with PBS to 

remove TSB, non-adhered cells, and trace cellular components.  If adhered cells were 

subsequently treated, the substrate was added to a vial containing the appropriate 

concentration of antimicrobial agent in PBS (PROLI/NO, amoxicillin) for 2 h or PBS (40% 

AHAP3/BTMOS xerogel time points exceeding 2 h) at 37 °C.  The final rinse steps consisted 

of 5 washes with ultrapure water to remove antibiotic and/or salts, after which the substrate 

was dried using capillary action by placing absorbent paper at the edge of the substrate to 

draw excess water off the surface.  A thin layer of water remained, which was allowed to 

evaporate prior to imaging.  It has previously shown that the process of drying bacteria at 

xerogel surfaces does not affect their viability.38 

3.2.8 AFM imaging.  Simultaneous AFM height, amplitude, and phase images were 

obtained in AC mode on the air-dried substrates using an Asylum MFP-3D AFM (Santa 

Barbara, CA).  Olympus AC240TS silicon beam cantilevers (Center Valley, PA) with a 

spring constant of 2 N m-1 and resonant frequency of 70 kHz were used to image bacteria in 

air.  At least three 20 µm2 survey images were obtained at random locations at an interior 

region of each substrate.  Additional images captured control and antibiotic treated cells at 

greater magnifications.  Images were acquired at a resolution of 512 x 512 pixels and scan 

speed of 1 Hz.  Individual root-mean-square (rms) roughness of cell membranes was 

calculated using the MFP-3D software from 500 and 800 nm2 regions of P. aeruginosa and 
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E. coli, respectively.  Images used for roughness determination were acquired in the central 

part of a cell and were flattened by one order to reduce contributions from cell curvature at 

the edges of the image.  Membrane roughness values were averaged from at least 3 different 

cells per species, agent, and dose.  Artificial color and light were added to the three-

dimensional reconstructions of height data to aid visualization of image detail. 

 

3.3  Results and Discussion 

3.3.1 Material characterization and experimental design.  Bacterial cells were exposed to 

two NO-releasing materials that differ in their kinetic release profiles.  A representative NO-

release profile and the average integrated dose delivered from a 40% AHAP3/BTMOS 

xerogel film as a function of time are provided in Figure 3.1 and Table 3.1, respectively.  

Nitric oxide is released from these films via a surface flux, increasing rapidly upon exposure 

to aqueous solution and reaching a maximum within half an hour.  Thereafter, the NO release 

gradually reduces to a flux averaging ~50 pmol cm-2 s-1 over 24 h.  Hetrick, et al.27 reported 

that a total dose of NO between 375 and 425 nmol cm-2 delivered from 40 % 

AHAP3/BTMOS xerogels 5 – 7 h after initial bacterial adhesion was sufficient to eradicate 

all adhered P. aeruginosa cells at room temperature.  By contrast, PROLI/NO is a water-

soluble, small molecule diazeniumdiolate NO donor derived from the amino acid proline.  

PROLI/NO releases a bolus of nitric oxide upon breakdown by water.  Due to a short half-

life (t1/2 = 100 s), the majority of stored NO (10.4 ± 2.1 µmol NO mg-1) is released within 300 

s (Table 3.1).  Standard plating experiments indicated a minimum bactericidal concentration 

of 4 and 8 mg mL-1 PROLI/NO after 2 h (MBC120) for E. coli and P. aeruginosa, respectively 

(3-log reduction in cfu).   
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Figure 3.1  Nitric oxide released from a 40% AHAP3/BTMOS xerogel coating in PBS at 37 
°C.
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Table 3.1  Measured NO released from antibacterial materials 

 
 

 
Material NO delivery exposure dose NOb  
xerogel surface flux 2 h 1.32 ± 0.13 (µmol cm-2) 

  4 h 1.93 ± 0.19  
  6 h 2.39 ± 0.23  
  8 h 2.70 ± 0.27  

PROLI/NO bolus 70 s 3.4 ± 1.1 (µmol mg-1) 
  300 sa 8.8 ± 2.0  

 

aThe majority of NO has been released after this time.  The total NO released by 1 mg of 
PROLI/NO is 10.4 ± 2.1 µmol NO. 
bAverage dose of NO reported with standard deviation 
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Nitric oxide release from the materials used in this study was measured in deoxygenated 

PBS per the convention for measuring NO accurately via chemiluminescence.  In contrast, 

the experiments to evaluate the bactericidal effects of these materials were conducted in 

normal PBS (i.e., not deoxygenated), since the bacteria are aerobic.  Nevertheless, control 

experiments indicated that the NO release from AHAP3/BTMOS xerogels in normal PBS 

was indistinguishable from measurements made in deoxygenated PBS over 0 – 24 h, the time 

frame of our experiments (data not shown). 

Due to the nature of diazeniumdiolate decomposition to NO (at physiological pH and 

temperature), bacterial adhesion to NO-releasing xerogel films occurs concurrently with 

exposure of the bacteria to a local NO flux.  Although slower compared to control xerogels, 

the surface coverage of P. aeruginosa to NO-releasing 40% AHAP3/BTMOS xerogels have 

been shown to reach a steady state at 60 min under static conditions.27  For these 

experiments, NO-releasing surfaces were exposed to cell suspensions for 2 h, followed by 

removal of loose cells and preparation of substrates for imaging (for 2 h time points) or 

transfer of the substrates to PBS (for extended time points).   To apply a similar approach for 

treatment with antibiotic solutions (i.e., PROLI/NO and amoxicillin), bacteria were allowed 

to adhere to control xerogel substrates for an hour prior to transfer of the cell-covered 

substrate to a vial of antibiotic solution.  Treating surface-adhered cells with antibacterial 

agents provided the added benefits of capturing cell damage and debris locally on the surface 

at the time of treatment while more nearly approximating an infection-causing scenario.   

3.3.2 Morphologies of P. aeruginosa and E. coli adhered to control xerogels.  Control 

40% AHAP3/BTMOS xerogels have been reported to be non-toxic to bacteria adhered at 

exposure periods > 24 h.38  Thus, they represent a suitable substrate for the study of normal 
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morphologies, while providing a consistent sub-stratum for comparison of healthy and 

antibiotic-treated (solution) cells to those treated via a surface flux of NO.  Representative 

images of untreated P. aeruginosa and E. coli cells adhered to control xerogels are illustrated 

in Figure 3.2.  P. aeruginosa cells are rod-shaped and exhibit regular dimensions (~ 1 x 3 

µm) with an inflated appearance and smooth cell exterior.  Also rod-shaped, E. coli are 

somewhat larger and more variable in length.  On control surfaces, P. aeruginosa adhered in 

well organized patterns that maximized contact along the long axis of the cells while 

maintaining apparent structural integrity.  By comparison, E. coli cells tended to maintain 

some physical separation (i.e., adhering individually or in small groups of 2 to 3 cells).  

While P. aeruginosa are motile via flagella, E. coli have a characteristic crown of fimbriae.  

Healthy cells of both species appeared intact with no visible pores, holes, grooves, or 

breakages in the cell envelope.  To negate any possible effect derived from the presence of 

proline, E. coli and P. aeruginosa preadsorbed on control xerogels were incubated for 2 h 

with 2 and 4 mg mL-1 proline, respectively.  Physically, the proline exposed cells were 

indistinguishable from untreated cells.  Equivalent cell viability was verified by growing 

colonies on nutrient agar. 

3.3.3 Morphologies of NO-treated P. aeruginosa and E. coli.  Sub-bactericidal 

concentrations such as those used in this study have historically been applied to study 

antimicrobial effects as they provide ‘snapshots’ of the organism’s morphology between 

healthy and dead states.31,34,39  Figure 3.3 illustrates examples of P. aeruginosa and E. coli 

bacteria after exposure to NO.  A representative collection of images was chosen to 

demonstrate the full spectrum of related morphologies resulting from NO treatment.  Many 

of the effects of NO exposure (e.g., membrane degradation) were exhibited at multiple doses.   
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Figure 3.2  Deflection images depict the morphology of healthy (A) P. aeruginosa; and (B) 
E. coli bacteria. 
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Figure 3.3  Three-dimensional reconstructions of height images illustrate P. aeruginosa and 
E. coli morphologies, shown in the left and right columns, respectively.  Parts (A-E) depict 
cells treated by NO flux from 40% AHAP3/BTMOS xerogels for (A, C) 4 h; (B) 6 h; (D, E) 
8 h.  Parts (F-J) show examples of bacteria treated with sub-bactericidal concentrations of 
PROLI/NO for 2 h at (F-H) 1 mg mL-1; (I) 4 mg mL-1; and (J) 2 mg mL-1.   
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A comprehensive list of the morphologies observed after treatment with NO is included in 

Table 3.2.  Many bullets are identical or similar for each species indicating related 

mechanisms of action against both Gram-negative bacteria.  Such features include mild to 

extensive membrane degradation, debris present on the surface in the vicinity of cells, 

blebbing or cellular parts abnormally attached to cells, cellular collapse, and lysis.  

Spheroplast formation and increasingly short cellular length were more infrequent 

morphologies common to both species, generally observed on xerogels after longer 

exposures to surfaces fluxes of NO (6 – 8 h, Fig. 3.3D-E).  Neither species exhibited 

population arrangements on NO-releasing xerogels similar to those observed on controls.  P. 

aeruginosa adhered in a disorganized array, while E. coli cells abandoned their active 

tendency to maintain spatial separation on a surface.  Cells were occasionally observed to 

adhere across a previously adhered cell, despite a low overall surface coverage. 

The collection of morphologies observed indicates cell envelope damage as a visible and 

significant contributing mechanism to the cytotoxic effect of NO against P. aeruginosa and 

E. coli.  The morphologies observed in this AFM study closely resemble those reported by 

Li, et al.34 who concluded that their antibacterial peptides disrupted, permeabilized, and 

eventually destroyed the stability of the outer and inner lipid membranes of P. aeruginosa 

and E. coli.  The single morphology that points strictly to protein damage in this study, the 

broken fimbriae frequently observed for E. coli, also occurred at the cell membrane.  Nitric 

oxide-mediated membrane damage has recently been reported by Hetrick, et al.28 using 

confocal fluorescence microscopy.  In that study, P. aeruginosa membranes became 

permeable to propidium iodide, a fluorescent dye that may only enter bacterial cells with  
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Table 3.2  Morphologies exhibited by Gram-negative bacteria after NO treatment 
 
 
 

P. aeruginosa            E. coli 

 

 Cellular debris  Cellular debris 
• Granule-like particles near cell • Most often concentrated on surface in 

vicinity of cell • Occasionally cell-associated 
 Membrane degradation • Occasionally cell-associated 

 Membrane degradation • Large increases in surface roughness 
• Increased surface roughness • Bumps and crevices in cell surface 

 Cell collapse • Layered appearance 
 Cell lysis • Pores and crevices easily visualized 
 Decreased height and length  Cell collapse 
 Spheroplast formation • Lower height (< ~30 nm) 
 Damage at apical ends and along sides of 

cell 
• Flatter appearance 
• Some internal structures visible 

• Frequent collapse of apical ends  Cell lysis 
• Collapse of specific regions of the cell  Decreased cell length 

° Usually along edge of cell   Spheroplast formation  
° Occasionally in cell interior  Breakage 

 Blebbing  Broken fimbriae  
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compromised membranes, after exposure to NO-releasing silica nanoparticles (maximum NO 

flux ≈ 21,700 ppb mg-1). 

Both delivery routes used in this study released NO exterior to, but in the vicinity of, 

surface-adhered bacteria.  As a broad-spectrum antibiotic, NO exerts both oxidative and 

nitrosative stress on biomolecules at cell surfaces.  Physically, NO and O2 are lipophilic and 

membrane permeable leading to the concentration and sequestering of these molecules and 

their reactive metabolites (e.g., N2O3) near lipid bilayers,21 where membrane-bound and other 

local proteins become targets of nitrosative stress.  The formation of peroxynitrite from the 

reaction of NO with intracellular O2
- initiates the radical peroxidation of lipid membranes 

(oxidative stress), potentially the cause of the observed degradation of these structural 

components.   

3.3.4 Analysis of membrane roughness after NO treatment.  To further characterize the 

effect of NO on the Gram-negative cell, AFM images were obtained of the bacterial 

membrane.  The cell membrane damage by NO was readily observed in representative three-

dimensional reconstructions from height images after 2, 4, 6, and 8 h exposures to NO flux 

from xerogels (Fig. 3.4). The vertical scale is consistent across images (15 nm) to allow 

comparison between AFM images.  Gram-negative cell envelopes are composed of an outer 

and inner lipid membrane, each about 10 nm thick, separated by a thin, cross-linked 

peptidoglycan layer.  Holes in the outer lipid membrane began forming as early as 2 h (Fig. 

3.4B) after exposure to NO surface fluxes.  Over time, the degree of membrane degradation 

continued to increase, with large holes and crevices penetrating into the inner membrane (Fig 

3.4C-E).  In fact, at exposure times exceeding 4 h the roughness of the membrane exceeded 

the height scale.  The image analysis software was then used to apply light/shadow at  
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Figure 3.4  P. aeruginosa membranes on a control surface (A), and after exposure to NO 
surface flux for (B) 2 h, (C) 4 h, (D) 6 h, and (E) 8 h from a 40% AHAP3/BTMOS xerogel, 
and (F) after exposure to 0.07 µM NO in solution (bolus delivery). 
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identical angles and pitch to add a sense of depth.  By comparison, Figure 3.4A depicts the 

membrane of a healthy P. aeruginosa cell adhered to a control xerogel for 24 h.  Its 

morphological analysis confirms that changes in membrane roughness are a function of NO-

exposure and not surface residence time. 

The quantitative rms roughness of cell membranes as a function of bacteria species and 

NO exposure time/concentration is given in Table 3.3.  As expected, longer exposure to a NO 

surface flux (40% AHAP3/BTMOS xerogels) correlates with rougher cell membranes 

ranging from ~1.6 nm for controls to nearly 4 and 12 nm after 8 h NO release for P. 

aeruginosa and E. coli, respectively.  Similarly, membrane roughness was greater for E. coli 

for cells treated with greater concentrations of PROLI/NO (15.2 ± 4.6 and 28.9 ± 7.9 nm for 

1 and 2 mg mL-1, respectively) (Fig. 3.5). Of note, the measured roughness for P. aeruginosa 

was the same at both sub-bactericidal (MBC120 of PROLI/NO for P. aeruginosa is 8 mg mL-

1) concentrations of PROLI/NO (2 and 4 mg mL-1), and approximately double that measured 

for the longest exposure to NO-releasing xerogels. If the deterioration of the lipid bilayer 

leads to increased surface roughness, this may be indirect evidence that protein and/or DNA 

damage contributes significantly to the cytotoxic effect of PROLI/NO against this species. 

3.3.5 Comparison of morphologies resulting from NO and amoxicillin treatment.  

Amoxicillin, a β-lactam antibiotic, functions by inhibiting enzymes that cross-link chains in 

the peptidoglycan layer.  Treatment of E. coli with a sub-bactericidal concentration of 

amoxicillin was therefore expected to generate morphologies typical of cell wall degradation.  

(P. aeruginosa was not treated with amoxicillin as it has demonstrated resistance to the 

effects of this β-lactam.)  The most common morphologies observed by imaging amoxicillin- 
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Table 3.3  Root-mean-square (rms) roughness of cell membranes 

 

species material exposure average (nm)a

P. aeruginosa xerogel control 1.61 ± 0.27 
  2 h 2.13 ± 0.09 
  4 h 2.25 ± 0.30 
  6 h 3.20 ± 0.31 
  8 h 3.84 ± 0.76 
 PROLI/NO 2 mg mL-1 7.15 ± 1.52 
  4 mg mL-1 7.10 ± 0.86 
 NO solution 0.07 µM 3.16 ± 0.61 

E. coli xerogel control 1.55 ± 0.21 
  2 h 2.66 ± 0.66 
  4 h 3.24 ± 0.45 
  6 h 4.33 ± 0.55 
  8 h 11.7 ± 1.9 
 PROLI/NO 1 mg mL-1 15.2 ± 4.6 
  2 mg mL-1 28.9 ± 7.9 

 

aAverage rms roughness reported with standard deviation  

  

 114



 

 

 

 

 
 
Figure 3.5  Three-dimensional reconstructions of E. coli membranes compare (A) untreated 
relative to (B) the degradation sustained after 6 h NO-release from a xerogel surface.  
Treatment with sub-bactericidal PROLI/NO concentrations of (C) 1 mg mL-1 and (D) 2 mg 
mL-1 show more extensive damage only 2 h after exposure.  Note the difference in scale 
range. 

 115



treated E. coli were perforations in the cell surface (pore formation) and regions of collapsed 

cell wall, both concentrated (but not restricted to) the apical ends of the cells (Fig. 3.6C, D).  

These observations are in agreement with a study that used AFM to compare the 

morphological changes sustained by E. coli after treatment with amoxicillin and its parent 

molecule, the natural product penicillin.37  Both E. coli (Fig. 3.6A) and P. aeruginosa (Fig. 

3.6B) exhibited analogous morphologies to the amoxicillin-treated cells when treated with 

low levels of NO.  In fact, these morphologies were only visualized on NO-releasing 

xerogels at 2 h time points, and thus at the lowest concentrations of NO treatment used in this 

study.  At greater NO doses, these morphologies were obscured as the extent of membrane 

damage increased and the incidence of localized effects decreased.  Interestingly, the 

morphologies observed for treatment of E. coli with penicillin, described by Yang, et al.37 as 

randomly distributed grooves and holes, strongly resemble the morphological changes 

sustained by both E. coli and P. aeruginosa at greater NO doses.  The similarity of 

morphologies observed after treatment with amoxicillin, which functions by a known 

mechanism of action, to those after exposure to NO offers additional support to the 

conclusion that exposure to NO results in the deterioration of the cell envelope of Gram-

negative bacteria. 

3.3.6 Comparison of NO delivery methods.  Comparing NO-delivery methods proved less 

straightforward than varying exposure time or concentration for a single delivery method.  

Both the NO-release kinetics (slow versus fast) and manner of delivery (surface flux versus 

burst of NO release) differ for 40% AHAP3/BTMOS xerogels and PROLI/NO.  While 

treatment with PROLI/NO resulted in rougher, more highly deteriorated cells than exposure 

to a sustained surface flux as visualized qualitatively (Fig. 3.3) and measured quantitatively  
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Figure 3.6  Comparison of the morphological effects caused by treatment with NO on (A) E. 
coli and (B) P. aeruginosa strongly resemble the morphologies demonstrated by E. coli after 
treatment with (C) amoxicillin, a β-lactam that inhibits cell wall synthesis.  Furthermore, the 
three-dimensional rendering of (D) the compromised cell wall after treatment with 
amoxicillin resembles the holes and crevices exhibited by P. aeruginosa and E. coli after NO 
treatment, which is indicative of membrane damage. 
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(Table 3.3), the total amount of NO released as a bolus from sub-bactericidal concentrations 

of PROLI/NO exceeded that delivered by sub-bactericidal fluxes of NO from 

40%AHAP3/BTMOS.  As the molecules of NO released from PROLI/NO were dispersed 

throughout the solution rather than being concentrated at the location of bacterial adhesion 

(i.e., at the surface), this may explain the significantly greater quantities of NO necessary 

induce a bactericidal effect.   

To deconvolute the efficacy of the delivery routes, P. aeruginosa cells were treated with 

a bolus of NO slightly less than that delivered by a 40% AHAP3/BTMOS xerogel over 2 h.  

Xerogel-adhered P. aeruginosa cells were immediately added to a 0.07 µM solution of NO in 

5 mL of PBS (prepared from a saturated NO solution) and incubated for 2 h under conditions 

identical to the PROLI/NO experiments.  The membrane roughness remained greater when 

cells were treated by a bolus compared to surface flux from an NO-releasing 40% 

AHAP3/BTMOS xerogel (3.2 ± 0.6 nm vs. 2.1 ± 0.1 nm, respectively) (Table 3.3), and a 

comparison of the P. aeruginosa membrane after treatment with an NO solution (Fig. 3.4F) 

to that after 2 h exposure to surface flux (Fig. 3.4B) clearly demonstrates larger pores and 

crevices in the former. 

Bacterial species have evolved strategies to protect against the harmful effects of NO.40  

For example, specific transcription factors (e.g., SoxR, OxyR) identified in E. coli are 

capable of sensing NO released from macrophages and respond by up-regulating gene 

expression to combat toxic effects.41,42  Once detected in vivo,  these proteins convert NO to 

less toxic by-products such as nitrate.43  Although the molecules of NO released from 

PROLI/NO are dispersed throughout the medium, the total concentrations of NO and RNS 

available to react with the adhered cells are greater during the initial period of incubation 
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when they are released via a bolus.  Delivered in a highly concentrated burst, NO may 

devastate bacterial cells before they are capable of mounting a defense.  As an extension of 

this hypothesis, future studies should investigate the behaviour of bacteria selected after 

exposure to increasing concentrations of NO in an attempt to foster tolerance and probe the 

upper limit of resistance to NO. 

 

3.4 Conclusions  

The morphologies of two Gram-negative species of bacteria were observed using AFM 

after treatment with the antimicrobial agent NO.  Quantitative measurements of surface 

roughness and qualitative observation of increased surface debris and changes in cell shape 

(e.g., blebbing) and adhesion patterns indicate that membrane degradation is a significant 

contributing factor to NO’s bacterial cytotoxicity.  Comparison of morphological effects 

perpetrated via a single, known mechanism (i.e., inhibition of cell wall synthesis by 

amoxicillin) to those observed from treatment of NO aids in confirming the antimicrobial 

mechanism of the latter.  By evaluating NO sources with different NO-release kinetics, we 

conclude that greater levels of NO released over short durations are more damaging to Gram-

negative bacteria than sustained, lower-level surface fluxes.  The double lipid bilayer of 

Gram-negative bateria typically acts as a permeability barrier to antibiotics that function 

within the cell.  Ironically, it is this same structural characteristic that renders these cells 

particularly susceptible to NO-induced membrane damage.  As degradation of the cell 

envelope leads to an increase in permeability, treatment with NO may elicit synergistic 

effects when used in concert with antibiotics. 
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Chapter 4: 

Synergy of nitric oxide and silver sulfadiazine against Gram-negative, -positive, and 

antibiotic-resistant bacteria 

 

4.1 Introduction 

The antimicrobial properties of silver or more specifically ionic silver (Ag+) have been 

recognized and utilized for millennia.  Nano- to micromolar concentrations of Ag+ exhibit 

broad-spectrum bactericidal (including Gram-negative and Gram-positive species), 

fungicidal, viricidal, and protozoicidal activity,1 bonding covalently to electron-donating 

groups (e.g., the sulfhydryl of cysteine) or electrostatically to negatively charged molecules 

(e.g., DNA).  Most bacterial sites targeted by Ag+ are proteinaceous, where alterations in 

amino acid residues lead to structural damage and disruption of replicative and metabolic 

processes resulting in cell death.1-6  Evidence suggests that interactions with DNA also play 

an important role in the antimicrobial efficacy of Ag+.4,5  In wound treatment, Ag+ is 

generally delivered via silver compounds such as silver (I) sulfadiazine (AgSD).7  Most 

causative pathogens related to burns and chronic wound infections are susceptible to the 

levels of AgSD attainable topically.8,9  Fortunately, exposure to clinical levels of Ag+ 

generally does not pose a threat to human health, despite the broad range of reactivity.1,7 

The endogenous expression of nitric oxide (NO) has been conserved throughout higher 

organisms as the immune system’s first-line defense against infection.10-13  Like Ag+, NO is a 

broad-spectrum antimicrobial agent that targets a number of reactive sites.  Although NO can 



modify proteins and other biological macromolecules directly,14 it is a highly reactive radical 

and frequently combines with locally abundant small molecules such as oxygen (O2) and 

superoxide (O2
-) creating an arsenal of reactive byproducts that include dinitrogen trioxide 

(N2O3) and peroxynitrite (ONOO-).11,15  Collectively these reactive species evoke potent 

antibacterial effects by rendering nitrosative and oxidative stresses to bacteria.11,15-19  In vitro, 

NO administered from both a gas cylinder and via soluble, small-molecule diazeniumdiolate 

NO donors has been shown to kill a range of pathogens.20-22  Furthermore, our group has 

demonstrated the bactericidal activity of NO-releasing xerogel coatings that simultaneously 

reduce the incidence of bacterial adhesion.23-25  These studies suggest that site-directed NO 

delivery is a promising strategy for treatment of infection.   

Although the appropriate use of antimicrobials to treat infection is a beneficial practice, 

artificial pressures resulting from over use, patient non-compliance, and widespread 

application have promoted the unnatural selection of inherently resistant microbes.26  Even 

resistance to broad-spectrum agents has been observed.7,27  To complicate matters, methods 

of gene sharing employed by bacteria promote the localized collection of resistance 

determinants, often on transferable plasmids, leading to the emergence of multi-drug resistant 

(MDR) and extensively drug resistant (XDR) species.28,29  In recent years, a dramatic rise in 

the incidence of ‘super bugs,’ or bacteria that are resistant to those antibiotics generally 

reserved as a last resort treatment option, has become prevalent.30,31  Unfortunately, the 

discovery of new antimicrobials progresses slowly while resistance to all clinically employed 

antimicrobial agents rapidly continues to emerge,26 highlighting the critical need for 

alternative approaches to treating infection. 
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Combination therapy is one strategy for stemming the emergence of resistant species.32-34  

The concerted use of two or more biocides with different mechanisms of action decreases the 

likelihood that an organism will possess all the traits necessary to ensure its selection and 

survival.  Agents possessing a broad spectrum of antimicrobial action may both lower the 

probability of developing resistance and manage the polymicrobial burden typically found in 

topical infections.33,34  As smaller quantities of each drug are generally required in the 

application of combination therapy, dose-related toxicity experienced to a particular biocide 

may also be reduced.33,34  Finally, the combination of certain antimicrobials may result in 

synergistic effects.33,34  Synergistic combinations are more potent than equivalent doses 

administered individually, further reducing potential toxicity to the patient and cost of 

treatment.  Herein, NO generated from diazeniumdiolate-modified proline (PROLI/NO) and 

AgSD were evaluated alone and in combination using acute (2 h) viability assays to 

determine in vitro efficacy against two Gram-negative and four Gram-positive pathogenic 

strains of bacteria, including two antibiotic-resistant ‘super bugs’.  

 

4.2 Experimental 

4.2.1 Materials.  L-proline, sulfadiazine (SD), and AgSD were obtained from Sigma-

Aldrich (St. Louis, MO).  Tryptic soy broth (TSB) and tryptic soy agar (TSA) were 

manufactured by BD (Franklin Lakes, NJ) and purchased from Fisher Scientific (Pittsburgh, 

PA).  Sodium chloride, potassium chloride, and sodium phosphate monobasic obtained from 

Fisher and sodium phosphate dibasic obtained from Sigma-Aldrich were used to prepare 

phosphate buffered saline (PBS, Ic = 0.16 M, pH = 7.4).  Distilled water was purified using 

the Millipore Milli-Q UV Gradient A-10 system (Bedford, MA) to a resistivity of 18.2 MΩ 
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cm and used to prepare the reagents for bactericidal assays.  Materials used for growing 

bacteria and/or evaluating bactericidal activity were exposed to UV radiation or sanitized in 

an autoclave prior to use, unless purchased sterile.   Argon, NO, nitrogen (N2), and a NO 

standard (25.7 ppm in N2) were purchased from National Welders (Raleigh, NC). 

4.2.2 Cell culture.  The strains of bacteria used in this study were obtained from 

American Type Culture Collection (ATCC, Manassas, VA).  The ATCC identification 

number for each strain was as follows: E. coli (53323), vancomycin-susceptible E. faecalis 

(VSEF) (29212), vancomycin-resistant E. faecalis (VREF) (51299), P. aeruginosa (19143), 

methacillin-susceptible S. aureus (MSSA) (29213), methacillin-resistant S. aureus (MRSA) 

(33591). Experiments requiring transfer of biohazardous materials were conducted in a 

dedicated laminar flow hood equipped with UV lamp.  Lyophilized bacteria were 

reconstituted in TSB and cultured overnight at 37 °C.  A 1-mL aliquot of culture was grown 

in 100 mL of TSB for 2-4 h until reaching an optical density at 600 nm (OD600) ~ 0.15-0.3.  

The resulting culture was stored at -80 °C in 1-mL aliquots.  For daily experiments, 1 mL of 

bacteria culture was grown in 100 mL of TSB overnight at 37 °C.  Re-cultured in fresh TSB 

the next day, the bacteria were then grown to mid-exponential phase, as determined by OD600 

measurements.  The relationship between the OD600 and the concentration of bacteria in the 

culture suspension was calibrated for each strain using a Spectronic 301 spectrophotometer 

(Milton Roy, Ivyland, PA) and enumeration of cfu from culture dilutions grown on TSA 

plates.   

4.2.3 Synthesis and characterization of PROLI/NO.  The synthesis protocol reported by 

Saavedra, et al. was used in the preparation of PROLI/NO.35  Briefly, 10 g of L-proline was 

dissolved in 39 mL of 25% sodium methoxide in methanol.  An additional 20 mL of 
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methanol was added, and the solution was placed into a custom NO reaction bomb, which 

was then purged with Ar.  The proline solution was then exposed to 5 atm of NO for 3 d to 

form PROLI/NO as a white precipitate in the methanol.  After purging the bomb with Ar, the 

precipitate was isolated by vacuum filtration, washed with ether, and dried under vacuum.  

The white solid (PROLI/NO) was divided into small aliquots (< 1 g) and stored over 

dessicant at -20 °C.   

Nitric oxide release from PROLI/NO was characterized using a chemiluminescent NO 

analyzer (Sievers Model 280, Boulder, CO).  Briefly, a known quantity of PROLI/NO was 

inserted into a glass flask containing PBS at 37 °C.  Nitric oxide generated into solution via 

diazeniumdiolate NO donor decomposition was carried to the analyzer by N2 bubbling 

through the solution at a flow rate of 80 mL min-1.  The NO analyzer was calibrated using an 

atmospheric sample passed through an NO zero filter and a 25.7 ppm NO standard.  The NO 

release from PROLI/NO was measured periodically to ensure no significant decomposition 

of the NO donor over the duration of the study. 

4.2.4 Single-agent bactericidal assays.  The bactericidal efficacy of single agents (e.g., 

AgSD, PROLI/NO) was evaluated against each pathogenic strain of bacteria using a 

technique adapted from the standard microdilution broth procedure as described below.36  

The minimum bactericidal concentration at 120 min (MBC120) was defined as the 

concentration of AgSD or PROLI/NO that resulted in a 3-log reduction in viability for a 

particular bacteria species over 120 min.  Each strain of bacteria was tested against 5 

concentrations each of AgSD and PROLI/NO.  The antimicrobial concentrations tested were 

adjusted such that at least one concentration bracketed the MBC120 at low and high levels, 

and the results were verified in independent replicates (n = 3).  To prevent thermal 
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decomposition of the NO donor moiety, PROLI/NO was pre-weighed into chilled vials, and 

the appropriate volume of cell suspensions was added to obtain the target PROLI/NO 

concentration.  The bactericidal assays were conducted at 37 °C with shaking, and cell 

viability was assessed at 0, 60, and 120 min by plating aliquots of the treated bacteria diluted 

in PBS on TSA plates.  The toxicity of SD and proline were evaluated at the concentrations 

equivalent to and via the protocols used for determining the MBC120 of AgSD and 

PROLI/NO, respectively. 

4.2.5 AFM imaging.  Atomic force microscopy was employed to visualize the 

membrane degradation rendered to E. coli by treatment with sub-bactericidal concentrations 

of PROLI/NO.  Bacteria were adhered to a non-toxic substrate as described previously37 and 

treated with sub-bactericidal concentrations of PROLI/NO (1 and 2 mg mL-1) for 2 h.  

Control (untreated) and NO-treated cells were imaged in air using AC mode with Olympus 

AC240TS silicon beam cantilevers (Center Valley, PA) possessing a spring constant of 2 N 

m-1 and resonant frequency of 70 kHz.  Simultaneous height, amplitude, and phase images 

were acquired at a resolution of 512 x 512 pixels and a scan speed of 1 Hz. 

4.2.6 Checkerboard assay.  The checkerboard method33 was employed to determine the 

efficacy of AgSD and PROLI/NO in combination.  Modifications analogous to those used in 

the single-agent bactericidal assays were adopted as described below.  Briefly, bacteria were 

incubated with an array of antimicrobial combinations of AgSD and PROLI/NO for 2 h at 37 

°C.  The highest concentration for each antimicrobial (arbitrarily termed agent A and B) 

initially tested was chosen at half its MBC120, as determined in the single-agent assay.  Three 

additional dosages at stepwise, two-fold reductions in concentration were evaluated, resulting 

in 16 total combinations of AgSD and PROLI/NO tested against each strain of bacteria.  For 
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strains that were particularly susceptible to the combination (i.e., MSSA, VSEF, VREF), 

lower concentrations of each agent were selected to probe the synergistic limit.  Again, viable 

cells were enumerated at 0, 60, and 120 min.  The fractional bactericidal concentration index 

at 120 min (FBC120) was calculated using Equation 4.1: 

 

120 120
120

120 120

AB BA

A B

MBC MBCFBC
MBC MBC

= +        Eq. (4.1) 

 

adapted from the fractional inhibitory concentration index (FIC) reported by Elion et al.,38 

where MBC120A and MBC120B are the values determined for agent A and B, respectively, in 

the single-agent assay; and, MBC120AB and MBC120BA are the concentrations of agent A and 

B that constituted the most effective bactericidal combination as determined by a 3-log 

reduction of viability.  Synergy assays were conducted in three independent experiments for 

each strain of bacteria.  A FBC120 < 0.5 was defined as synergistic, while a FBC120 < 0.25 

was considered highly synergistic. 

 

4.3 Results 

4.3.1 Bactericidal activity of AgSD and PROLI/NO independently.  The MBC120 values 

for AgSD and PROLI/NO were evaluated against two Gram-negative (P. aeruginosa and E. 

coli) and four Gram-positive (VSEF, VREF, MSSA, and MRSA) pathogenic species of 

bacteria, including two antibiotic-resistant ‘super bugs’.  The MBC120 was assigned as the 

integer concentration that was repeatedly identified as producing a 3-log reduction in 

viability.  Broth microdilution experiments indicated an extensive bactericidal range for 

AgSD spanning 3 orders of magnitude (Table 4.1).  P. aeruginosa exhibited levels of  
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Table 4.1 Bactericidal activity of AgSD and PROLI/NO independently and in combination. 
 
 
 
 

Species Gram 
class 

MBC120 
AgSD 

(mg L-1) 

MBC120 
AgSD 

(mmol L-1) 

MBC120 
PROLI/NO 

(g L-1) 

MBC120
total NO 

(mmol L-1) 
FBC120

P. aeruginosa - 5 0.014 8 83 0.58 ± 0.04 
E. coli - 50 0.14 4 42 0.34 ± 0.04 

S. aureus + 50 0.14 12 130 0.23 ± 0.07 
E. faecalis + 2000 5.60 18 190 0.07 ± 0.01 

MRSA + 200 0.56 18 190 0.52 ± 0.08 
VREF + 2000 5.60 30 310 0.15 ± 0.03 
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susceptibility in the low micromolar range (14 µM, 5 mg L-1) comparable to previous 

reports.4,39  The bactericidal concentrations for E. coli and MSSA were a full order of 

magnitude greater (140 µM, 50 mg L-1) than P. aeruginosa, while MRSA required a four-

fold greater dose (560 µM , 200 mg L-1) than the MSSA strain.  Both Enterococcus strains 

required a ten-fold greater dose to achieve a 3-log reduction in viability (5600 µM, 2000 mg 

L-1) compared to MRSA.   

Bactericidal concentrations of PROLI/NO also varied significantly between pathogens.  

The Gram-negative species E. coli and P. aeruginosa required the lowest PROLI/NO doses 

at 4 g L-1 (42 mmol L-1 NO) and 8 g L-1 (83 mmol L-1 NO), respectively.  The most 

susceptible Gram-positive strain was MSSA, with an MBC120 of 12 g L-1 (130 mmol L-1 

NO), followed by VSEF and MRSA, both requiring 18 g L-1 (190 mmol L-1 NO).  VREF 

exhibited the greatest resistance to NO, tolerating concentrations of PROLI/NO up to 30 g L-

1 (310 mmol L-1 NO).   

To verify that dissociated SD or regenerated proline did not contribute to observed 

cytotoxicity, we examined the bactericidal activity of these compounds with similar testing 

protocols.  Molar concentrations of SD equaling the MBC120 for AgSD against each of the 6 

pathogens studied proved overwhelmingly non-toxic to the bacteria, having neither a 

bacteriostatic nor bactericidal effect.  In all cases the bacteria continued to multiply during 

treatment, such that populations increased between 2- to 10-fold over 2 h.  Proline exhibited 

a similar non-toxic effect at concentrations equaling the MBC120 of PROLI/NO for each 

species.  Thus, the bactericidal activity of AgSD and PROLI/NO as single agents can be 

ascribed to Ag+ and NO, respectively, under the experimental protocol adopted against these 

pathogens in this study. 
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The Gram-positive species studied generally exhibited superior tolerance to the single 

agents, Ag+ and NO, than the Gram-negative species.  Indeed, the two strains of E. faecalis 

indicated the greatest tolerance to both PROLI/NO and AgSD.  The resilience of these strains 

mirrors a report on the efficacy of dilute honey, another broad-spectrum antimicrobial, 

against a variety of bacterial species, where E. faecalis again displayed exceptional 

fortitude.40  Among the Gram-positive species examined in our study, the antibiotic-resistant 

strains tended to demonstrate greater tolerance to each biocide than their antibiotic-

susceptible congeners.  We observed that MRSA exhibited significantly greater tolerance to 

both Ag+ and NO than its methicillin-susceptible counterpart.  Similarly, VREF required 

nearly twice the dose of PROLI/NO than the vancomycin-susceptible strain.  The 

phenomenon that resistant bacteria selected by exposure to one antimicrobial frequently 

demonstrate resistance to other agents has been documented repeatedly.41-43   

By determining cell viability at one or more intermediate time points, the dose-response 

of bacteria to a drug may be monitored over time, circumventing the all-or-none result 

typically obtained from inhibition or endpoint-only bactericidal assays.   Figure 4.1 depicts 

cell viability for each species treated with MBC120 concentrations of AgSD and PROLI/NO at 

0, 1, and 2 h.  Most bacteria have already undergone a full log reduction in viability by the 

first 60 min, indicating swift bactericidal action.  The Gram negative strains suffered a less 

drastic decrease in viability in the first hour after treatment with AgSD than Gram-positive 

bacteria. 

4.3.2 Synergistic activity of AgSD and PROLI/NO in combination. Using the 

checkerboard technique and Eq. 4.1, FBC120 values were determined to evaluate the 

combined efficacy of AgSD and PROLI/NO against P. aeruginosa, E. coli, VSEF, VREF, 
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Figure 4.1  Bacteria viability over 120 min obtained using assays to evaluate the efficacy of 
PROLI/NO and AgSD independently and in combination.  Curves indicate representative 
data obtained at MBC120 and FBC120 levels for (A) E. coli, (B) P. aeruginosa, (C) VSEF, (D) 
VREF, (E) MSSA, and (F) MRSA.  Each inset lists the concentration of PROLI/NO (CP) and 
the concentration of AgSD (CA) used to obtain the FBC120 curve. 
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MSSA, and MRSA.  The FBC120 values provided in Table 4.1 were averaged from 3 

independent checkerboard arrays.  Bactericidal synergism (FBC120 < 0.5) was evident for 4 

out of 6 species tested, including VREF.  Two species (P. aeruginosa and MRSA) exhibited 

FBC120 values near 0.5 and, under the acute treatment duration, may have experienced a 

borderline synergistic effect. Two species (P. aeruginosa and MRSA) exhibited FBC120 

values near 0.5 and, considering the acute treatment duration, may have experienced a 

borderline synergistic effect.  While Gram-positive bacteria were least susceptible to both 

AgSD and PROLI/NO as individual antimicrobial agents, the combination of AgSD and 

PROLI/NO was most synergistic against these same species. A highly synergistic effect 

(FBC120 < 0.25) was observed for half of the strains tested, all of which were Gram-positive 

species. Both E. faecalis strains demonstrated the greatest tolerance to each agent 

individually, but suffered the highest degree of susceptibility to the combination of AgSD 

and PROLI/NO, with FBC120 values of 0.15 and 0.07, respectively.  The MSSA strain also 

exhibited a high degree of susceptibility to this combination (FBC120 = 0.23), although 

MRSA was affected to a lesser degree (FBC120 = 0.52).  The lowest degree of cooperativity 

was observed for P. aeruginosa (FBC120 = 0.58). Notably, this species was the most 

susceptible, by an order of magnitude, to AgSD alone.  E. coli, the other Gram-negative 

species studied, exhibited an FBC120 of 0.34.  Representative cell viability data for all species 

at synergistic levels of AgSD and PROLI/NO are shown in Figure 4.1.  The synergistic 

combinations, like the bactericidal concentrations for single agents, also show a high efficacy 

in the first hour, as cell viability was again reduced by a full log in all cases except the 

antibiotic resistant strains. 
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4.4 Discussion 

4.4.1 Bactericidal efficacy of PROLI/NO and AgSD.  To understand the synergism 

observed in this study, it is first necessary to parse out the mechanisms of AgSD and 

PROLI/NO action.  The various roles of NO in killing bacteria have been reviewed 

previously.11,14,17,44  As an indiscriminate and short-lived reactant, the target sites available in 

the immediate vicinity of NO play a key role in determining the type of antimicrobial action 

rendered.  Nitric oxide may react directly with the thiols, amines, and transition-metal centers 

of proteins.  It may also react with local small molecules, forming reactive intermediates that 

elicit effects through nitrosative and oxidative interactions with biological molecules.  The 

NO donor used in our study (PROLI/NO) releases NO rapidly upon exposure to aqueous 

solution (t1/2 = 100 s),35,37 where NO and its reactive intermediates likely modify 

biomolecules on the exterior of bacteria, such as membrane-bound proteins and lipids.  

Reaction with O2
- forms ONOO-, a strong oxidant that can degrade membranes through lipid 

peroxidation and oxidize nearby proteins, compromising cellular integrity.  Additionally, NO 

is a lipophilic, uncharged, diatomic molecule that readily diffuses across lipid membranes.  

Upon gaining access to the cytoplasm, NO and its congeners may react with numerous 

intracellular proteins and DNA, disrupting crucial cellular processes.  Thus, NO is both an 

extra- and intra-cellular threat to bacteria.  Although the bactericidal effects have been 

demonstrated frequently, little progress has been achieved in identifying specific critical 

targets of NO and its by-products,19,45 likely due to these multi-faceted mechanisms. 

Despite its long-term application for treating chronic and burn wounds topically, AgSD’s 

mechanism(s) of action also remains uncertain.  In aqueous media, AgSD gradually 

dissociates into Ag+ and SD.  Ionic silver reacts directly with thiol-containing amino acids.46  
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Mechanistic studies have shown that treatment with Ag+ affects DNA replication and cellular 

respiration, among other functions.1-6  A member of the sulfonamide family of semisynthetic 

antibacterial agents, SD is a biocide in its own right.  Sulfonamides are structural analogues 

of p-aminobenzoate characterized by their ability to interfere with folate synthesis by 

competitively binding the enzyme dihydropteroate synthase within the cytoplasm of bacteria.  

This process is specifically detrimental to bacteria, as higher organisms obtain this metabolite 

through dietary ingestion.  At physiological pH ~ 7 SD is negatively charged (pKa = 6.48)47 

and less likely to diffuse across biological membranes to access its intracellular target.48  

Despite the potential antimicrobial activity of SD, it is generally believed that Ag+ serves as 

the primary biocide upon AgSD dissociation, at least for topical applications.49  This 

phenomenon was verified in our experiments by showing that treatment with SD alone was 

non-toxic to the 6 strains of bacteria studied. 

As evidenced by the ineffectiveness of SD, the ability of a biocide to access target sites is 

imperative for antimicrobial efficacy.  The outer membrane characteristic of Gram-negative 

species acts as a particularly efficient permeability barrier, conferring intrinsic resistance to 

host defense mechanisms, bile salts and digestive enzymes, and many biocides that are 

effective against other types of bacteria.50  Thus, Gram-negative bacteria are generally more 

tolerant than Gram-positive species of antimicrobial agents.51  Hence, the greater efficacy of 

Ag+ and NO (individually) observed against Gram-negative species may indicate that 

important targets of these biocides reside on the exterior of the bacteria where the rate of 

passive diffusion is less important. When considering the reactivity of Ag+, NO, and NO-

derived by-products, this is not entirely surprising.  Empirical evidence drawn from 

morphological observation supports this hypothesis.  For example Feng et al. used TEM to 
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visualize cell wall damage for E. coli and S. aureus bacteria induced by silver nitrate, with 

the Gram-negative E. coli exhibiting a more pronounced detrimental effect.5  Similarly, 

electron micrographs of AgSD-treated P. aeruginosa and Enterobacter cloacae have 

indicated altered cell wall morphology, while resistant species did not show any changes.52,53  

As previously discussed, NO may function by degrading the lipid membrane itself.  Confocal 

microscopy and atomic force microscopy studies of bacteria after treatment with NO have 

demonstrated increased permeability of the cell wall to dye compounds and deterioration of 

the cell envelope.24,37  Figure 4.2 depicts representative AFM images of E. coli before and 

after treatment with PROLI/NO that both demonstrate degradation of the cell membrane after 

treatment with NO and a positive correlation between dosage and degree of damage. 

4.4.2 Proposed mechanisms for the synergistic action of PROLI/NO and AgSD.  Two 

possible cooperative mechanisms seem plausible based on the cumulative knowledge of Ag+ 

and NO activity, neither of which are mutually exclusive.  Agents that act by disrupting the 

structure of the lipid bilayer or otherwise compromising the cell wall, independent of the 

level of bactericidal activity possessed alone, should in principle work synergistically when 

combined with a second agent whose activity is frustrated by low levels of permeability.  

Such a mechanism was previously demonstrated for the efficacy of streptomycin against E. 

faecalis where the use of cell wall-active agents such as penicillin and vancomycin improved 

the intracellular permeability of the antibiotic.54,55  A similar phenomenon has been 

demonstrated against other Gram-negative and -positive species.34  We hypothesize that such 

synergism may occur if cell wall or membrane damage elicited by Ag+ and/or NO 

significantly increases the permeability of bacteria.  Both of the antimicrobial agents 

evaluated in our study have intracellular activity that would be expected to be enhanced by a  
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Figure 4.2  Representative AFM images of E. coli cells 120 min after treatment with (A) 0 g 
L-1, (B) 1 g L-1, and (C) 2 g L-1 PROLI/NO.  Membrane damage sustained after exposure to 
NO trend with increasing PROLI/NO concentrations. 
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faster rate of entry into the bacteria.  Furthermore, increased permeability of the lipid 

membrane could also allow intracellular access to the anionic SD inhibiting folate synthesis 

in the cytoplasm of bacteria. 

To evaluate this hypothesis, representative Gram-negative (P. aeruginosa) and -positive 

(S. aureus) bacteria were treated with a range of SD concentrations in combination with 

doses of PROLI/NO at one half and one quarter of the respective bactericidal levels.  The 

concentrations of SD tested included the molar bactericidal concentration of AgSD, and 

solutions two- and four-fold greater and less than this concentration.  As SD was found to be 

non-toxic to all the species tested in this study, typical FBC120 indices were unobtainable.  No 

synergistic effect was observed against S. aureus, as the bacterial viability at all 

combinations was indistinguishable from treatment with PROLI/NO alone (Fig. 4.3A-B).  P. 

aeruginosa suffered a slight decrease in viablility at the highest concentration of PROLI/NO 

(4 g L-1) but no obvious synergism was observed at the lower PROLI/NO concentration (2 g 

L-1) (Fig. 4.3C-D).  Thus, although some synergism was observed for P. aeruginosa, the 

effect was lower than what would be expected if this were the primary synergistic 

mechanism.  Even the lowest concentration of SD evaluated (0.875 mg L-1) was almost three-

fold greater than the concentration of AgSD required for synergy against P. aeruginosa (0.31 

mg L-1) with a 4 g L-1 dose of PROLI/NO.  These results indicate that combination treatment 

with NO and SD was not particularly effective against P. aeruginosa or S. aureus over a 2 h 

time frame.  Some enhanced effect may occur at extended periods once endogenous folate 

reserves are depleted and cellular activity decreases due to starvation, but the primary 

mechanism of the acute synergy observed involves both NO and Ag+. 
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Figure 4.3  Bacteria viability over 120 min obtained using efficacy assays to evaluate 
synergy between PROLI/NO and SD.  S. aureus (MSSA) viability was determined using the 
listed range of SD concentrations in combination with (A) 3 g L-1 and (B) 6 g L-1 PROLI/NO.  
Similarly, the viability of P. aeruginosa was evaluated using the SD concentrations listed in 
combination with (C) 2 g L-1 and (D) 4 g L-1 PROLI/NO. 
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Such a mechanism was discussed by Fang,11 who suggested a possible synergistic effect 

in bactericidal efficacy for NO when present during bursts of bacterial respiratory activity.  

Among other bactericidal mechanisms, Ag+ has been implicated in disruption of cellular 

respiration.  Uncoupling of the respiratory chain initially results in stimulated respiration as 

bacteria attempt to regenerate the proton gradient across the membrane.  Dibrov et al. 

demonstrated that the interaction of Ag+ with reconstituted membrane vesicles of Vibrio 

cholerae resulted in the collapse of the proton motive force and dissipation of the proton 

gradient across the bacterial membrane.3  Holt and Bard showed that AgNO3 inhibited the 

respiratory chain by preventing the transport of protons outside of the cell.6  One important 

implication of their study was the probable accumulation of reactive oxygen species such as 

O2
- and OH- at the membrane.   The bactericidal efficacy of NO would increase with the 

number of reactive by-products it produces.  For example, if a high concentration of O2
- is 

generated upon treatment with Ag+, the resulting increase in ONOO- formation in the 

presence of NO would result in a more rapid rate of oxidative membrane and protein damage.  

Thus, the generation of large quantities of reactive nitrogen and oxygen species following the 

Ag+-induced collapse of the proton gradient across the cell membrane may explain the 

synergistic activity of combined AgSD and PROLI/NO treatment. 

To evaluate this mechanism, both direct and indirect experiments are planned.  The 

production of NO, O2
-, and ONOO- may be monitored using metabolite-sensitive fluorescent 

dyes.  Using confocal fluorescent microscopy, co-localization of these reactants with 

bacterial cells may be verified.  Furthermore, the synergistic mechanism may be indirectly 

probed by adjusting the sequence of addition.  If the build-up of O2
-results in increased 

ONOO- formation and greater bactericidal efficacy, cellular respiration must still first be 
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inhibited by Ag+.  Hence, synergistic effects observed by varying the order of antimicrobial 

addition may prove useful for verifying the mechanism of action. 

 

4.5 Conclusions 

The combination of AgSD and PROLI/NO is synergistic across a wide range of bacteria 

types, including Gram-positive, Gram-negative, and antibiotic-resistant ‘super bugs’.  

Possible explanations for the synergy include increased access to the cytoplasm due to 

compromised cell envelope and/or an abundance of reactive species resulting from 

uncoupling of cellular respiration.  While it is not clear why the combination of AgSD and 

PROLI/NO is so effective against Gram-positive species, particularly E. faecalis, this trend is 

clear.  The evidence presented herein provides an impetus to further investigate the clinical 

uses of NO in combination with AgSD and other antibiotics.  Possessing the ability to 

efficiently eradicate a wide range of bacterial species, such combinations may be particularly 

useful in topical wound treatment due to the potential for treating polymicrobial and 

antibiotic-resistant infections without fostering selection for resistant species.  Further 

mechanistic studies aimed at elucidating the synergistic action of AgSD and NO would 

provide a strong foundation for developing and improving additional combination therapies. 
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Chapter 5:  

Summary and future research directions 

 

5.1 Summary of research 

The overall goal of my dissertation research has been to contribute to the current 

knowledge of the process of infection and the development and evaluation of novel treatment 

options.  Chapter 2 described the development of a technique for using AFM to measure the 

force required to detach bacteria adhered to a surface using an AFM probe to apply a lateral 

force sufficient to break the adhesive bacteria-surface interactions during a normal contact-

based imaging mode.  Large scan sizes (40 µm2) allowed for concerted acquisition of 

detachment forces for multiple bacteria.  In addition, the total compression of the cantilever 

was determined for each cell detachment event using deflection image analysis.  The 

resulting methodology enabled a more accurate and high-throughput measurement of the 

forces necessary to remove individual cells compared to previous reports.  This technique 

was then applied to measuring Phase II adhesion kinetics (>18 h after initial attachment) of 

two representative pathogens, P. aeruginosa and S. aureus, on a bare substrate.  P. 

aeruginosa reinforced its adhesion to the surface at a rate 7-fold faster than S. aureus, while 

the overall adhesion strength of P. aeruginosa was larger than S. aureus.  Furthermore, it was 

observed that changes in adhesion strength did not proceed uniformly across a population of 

the same species.   



As discussed in Chapter 3, AFM was also employed conduct an analysis of the 

morphological changes undergone by two pathogenic Gram-negative species, E. coli and P. 

aeruginosa, subsequent to NO-treatment.  The Schoenfisch lab has developed and 

characterized numerous NO-releasing scaffolds with bactericidal properties.  Two materials 

embodying different NO-delivery routes were used in this study, namely a polymer coating 

that released NO as a sustained surface flux and a small-molecule donor that delivered its 

payload of NO as a short-duration bolus.  In a qualitative sense, changes in cell morphologies 

subsequent to exposure to NO demonstrated a considerable increase in cellular debris and 

deterioration of the cell wall relative to control cells, while similarities to the morphologies 

exhibited after treatment with the β-lactam amoxicillin also suggested that deterioration of 

the cell envelope is one visible effect of NO-treatment.  From a quantitative standpoint, 

measurements of cell surface roughness were obtained to study the membrane degradation 

induced by NO as a function of time, concentration, and NO-delivery route.  A positive 

correlation was observed between membrane roughness and dose of NO, while NO delivered 

quickly in a bolus induced more damage than a comparable amount of NO delivered via a 

sustained surface flux. 

Chapter 4 introduced modified viability assays that were designed to further explore the 

antimicrobial properties of NO, specifically in combination with a second drug AgSD.  As 

NO is a cell wall-active agent that should increase bacterial permeability, it was hypothesized 

that the combination of NO with a drug whose bactericidal mechanism functions 

intracellularly would elicit a synergistic bactericidal effect.  Previous studies have implicated 

dissociated Ag+ as the primary biocide responsible for antimicrobial action.  As a member of 

the sulfonamide family of synthetic antibiotics (inhibitors of folic acid synthesis), SD has 
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potential intracellular antimicrobial action.  However, it is thought to be inert in topical 

applications as the active, charged species has very low membrane permeability.  Thus, a 

synergistic effect was postulated upon combination of PROLI/NO and AgSD, as membrane 

damage rendered during a burst of NO release should allow SD access to the interior of the 

cell where it can fulfill its antibiotic potential without inhibiting the function of Ag+.   

Standard microdilution and checkerboard viability assays were modified to require 

bactericidal efficacy over a short-duration treatment window (2 h) and conducted to evaluate 

the activity of PROLI/NO and AgSD both individually and in combination. Synergistic 

activity was demonstrated against both Gram-negative and -positive bacteria.  A highly 

synergistic reaction was seen against three of four Gram-positive species tested, including 

vancomycin-resistant E. faecalis.  Two species (P. aeruginosa and MRSA) exhibited FBC120 

values near 0.5 (the standard upper limit for indication of synergy).  Although not technically 

synergistic by traditional standards, it is possible that some synergistic action was observed 

since the duration of exposure used in this study was very short relative to the standard 

synergy determinations for which the FIC and FBC indices were developed. 

 

5.2 Future directions 

5.2.1 Applications of lateral force measurements using AFM to evaluate bacterial 

adhesion.  As presented in Chapter 2, an AFM technique was developed for applying a 

lateral force to detach adhered bacteria.  This method was specifically designed to probe late-

stage (Phase II) adhesion forces, which may be characterized by both specific and non-

specific interactions (see Section 1.1.3 and Fig. 1.2).  While the application described in 

Chapter 2 investigates non-specific interactions developed by S. aureus and P. aeruginosa on 
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bare substrates, a second evident research direction would involve the study of specific 

protein-bacteria interactions.  Specific interactions, characterized by molecular recognition 

and (frequently) high-affinity, often confer greater resistance to detachment than non-specific 

interactions.1,2  Some types of specific interactions, termed catch-bonds, are actually 

strengthened in high shear environments.3,4  S. aureus, in particular, has been shown to 

specifically recognize and bind to numerous proteins, including fibrinogen, fibronectin, and 

collagen.2,5-7 Strong interactions with these proteins, present as a conditioning layer on 

implanted material surfaces, are thought to be responsible for the high percentage of S. 

aureus-produced device-related infections.8,9  

Some important variables in experimental design must be optimized.  Surface-bound 

protein may be simply adsorbed or covalently attached to the surface.  Relying on adsorption 

is preferable as it mimics in vivo conditions, while covalent modification may alter protein 

structure, thereby reducing incidence or degree of specific recognition and binding.  

Conversely, it is important to ensure that interactions are breaking between the bacterium and 

the protein, not between the protein and the surface.  In addition, for the investigation of non-

specific interactions, an intermediate drying step proved necessary for achieving measurable 

adhesive forces.10  While this appropriately mimics contamination of a material surface ex 

vivo, it is uncertain how this dehydration step would affect the specific interactions formed 

between bacteria and protein that typically occur in vivo.  Maintaining a hydrated surface 

would be preferable as this would most closely simulate the situation where a bacterium such 

as S. aureus would come into contact with a protein-coated biomaterial. 

Preliminary experiments were undertaken to evaluate the adhesion of S. aureus to 

collagen-coated polyurethane (PU).  Using a polydimethylsiloxane (PDMS) stamp, collagen 
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was patterned onto a PU surface.  Sandwiching the protein between areas of bare substrate 

allows for intra-experiment controls to evaluate both preference and strength of adhesion.  

Protein adsorption was verified, as collagen patterns (e.g., 10 µm stripes) were visualized 

using AFM deflection images, while the stamped region became increasingly hydrophobic on 

the macroscopic scale.  Although sub-monolayer coverage was obtained within the patterned 

regions, S. aureus was seen to preferentially adhere to the protein-patterned regions after 1 h 

incubation.  To more closely mimic an in vivo situation, a closed fluid cell (CFC) that would 

house the cantilever and substrate within a buffered, hydrated environment was coupled to 

the AFM.  A 5-mL suspension of S. aureus was introduced into the CFC for 1 h.  The system 

was flushed with 15 mL of PBS and then imaged in PBS using contact mode.  The overall 

surface coverage of detected cells was low, indicating some unknown variable that either 

discouraged attachment or prevented measurable adhesion forces (i.e., bacteria were 

dislodged at undetectable forces).  Although further optimization is needed, measurement of 

bacterial adhesion to protein-coated materials represents an important line of study for 

understanding both fundamental adhesive interactions and how bacteria adhered to tissue or 

implanted medical devices behave within shearing environments. 

There is no doubt that S. aureus is a troublesome pathogen, expressing not only a variety 

of specific adhesins but also developing resistance mechanisms (e.g., methacillin resistance) 

that are subsequently propagated to future generations and even shared between near 

relatives (e.g., Enterococcus subspecies).11  Our previous study (Chapter 2), however, 

indicated that S. aureus exhibited relatively low adhesion rates to bare xerogel materials 

compared to P. aeruginosa.  This may indicate that materials that resist protein adsorption 

may inhibit the success of S. aureus adhesion events and, subsequently, colonization and 
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infection.  Therefore a second potential application of lateral force measurements would 

entail screening promising materials for their anti-adhesive properties. 

5.2.2 Induction of NO-resistance in bacteria.  Nitric oxide is ubiquitously produced in all 

living systems as a signaling molecule, while in higher organisms it also functions in the 

immune response to infection.  One pressing question that must be asked of any promising 

clinical antibacterial is the potential prevalence for resistance to develop.  Given the 

conserved nature of NO as an endogenous antibacterial (natural selection), it would be 

expected that many pathogenic bacteria would have already evolved resistance mechanisms 

to NO.  To a certain extent this is true, as some bacteria produce low molecular weight 

scavengers and/or up-regulate the expression of certain proteins when exposed to low levels 

of NO.12-16  But, unlike the efflux pumps that efficiently remove large quantities of an 

antibiotic from bacteria, the mechanisms identified for deactivating NO function on a 

molecule-to-molecule basis.  In other words, one protein can effectively neutralize only a 

single molecule of NO.  In fact, this is not surprising as the inherently reactive, broad-

spectrum nature of NO would render most typical means of resistance ineffective.  Thus, 

known NO-resistance mechanisms require a large input of energy, and would likely prove 

insufficient to handle levels of NO-exposure exceeding endogenous concentrations.  

Hence, we hypothesized that the development of resistance to high levels of NO would 

be unlikely.  To probe the upper limit of tolerance, we are attempting to induce bacterial 

resistance to NO.  Cultures of E. coli are treated for 2 h with concentrations of PROLI/NO at 

half the MBC120.  Aliquots of the treated cells are plated on agar, and colonies that grow 

(NO-survivors) are re-cultured in nutrient broth and cycled through another treatment 

process.  Such step-wise selection procedures have proven successful in isolating bacteria 
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resistant to Ag+.17  Through 6 cycles completed thus far, we have been unable to induce a 

tolerance to NO.  While the continuation of negative results only indicates that NO-resistant 

species have not yet emerged, the greater number of consecutive generations exposed to this 

type of treatment can speak for the unlikelihood of resistance developing.  This series of 

experiments is currently under investigation. 

5.2.3 Efficacy of NO against biofilms.  Previous research has inarguably shown the 

effectiveness of NO as an antibacterial agent.18-23  Most of these studies, however, have 

evaluated bacteria either in a planktonic state or within hours after adhesion.  More than half 

of infections, however, are caused by bacteria present in a biofilm community, which are 

notoriously difficult to treat (Section 1.1.4).  In light of NO’s antimicrobial properties, a final 

promising avenue of investigation would be characterization of anti-biofilm activity.  Some 

recent studies have begun to evaluate the efficacy of NO on biofilm communities.  High 

levels of NO delivered from diazeniumdiolate-modified silica nanoparticles were effective at 

killing a range of day-old biofilm-based microbes,23 while low levels of NO delivered from 

S-nitrosothiols have been implicated in initiating dispersal of P. aeruginosa biofilms.24   

To further investigate the anti-biofilm properties of NO, we propose the combined use of 

SEM and confocal fluorescence microscopy.  The excellent resolution afforded by SEM 

allows detailed observation of biofilm morphology before and after NO-treatment.  As 

discussed in Section 1.2.1, fluorescent labelling is a particularly versatile method for 

studying specific qualities of bacteria.  For example, fluorescent tags may be used to 

distinguish between viable and dead bacteria subsequent to treatment.  In addition, the 

simultaneous use of a confocal microscope would allow three-dimensional visualization of 

fluorescence to elucidate properties of the structured community, such as the depth to which 
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NO is capable of rendering bactericidal activity.  To compliment these techniques, metabolic 

activity and biofilm dispersal may be monitored by sampling the liquid matrix containing the 

biofilms.  Certain metabolic intermediates (e.g., ATP) may also be fluorescently labelled and 

quantified, while viable planktonic cells characteristic of dispersal may be detected by 

plating aliquots onto nutrient agar plates and counting the colonies that grow.  Each of these 

techniques could be used to study the pathogen- and dose-dependent effects of NO on 

biofilm viability. 
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5.3 Conclusions 

While it is widely accepted that bacterial adhesion is a time-dependent process, 

surprisingly little is known about how the strength of adhesion changes subsequent to initial 

attachment, primarily as a methodology suitable for acquiring accurate and high-throughput 

force data was lacking.  To address this gap in the infection model, a quantitative technique 

was developed and then applied to obtain the first reported measurements of the kinetics of 

late-stage bacterial adhesion.  Besides contributing to the fundamental understanding of how 

bacterial adhesion changes with time, this technique may be applied to evaluate ultra-low 

adhesion materials that would aid in resisting colonization as well as probing the strength of 

bacteria-protein interactions.  In terms of investigating the problem of infection, the atomic 

force microscope proved an invaluable tool not only for measuring the forces of adhesion, 

but also for visualizing the morphologies of bacteria subsequent to antimicrobial treatment.  

Based on the observed changes in bacterial shape and surface roughness, one cytotoxic 

mechanism of NO proposed was membrane stress.  The presumed increase in cell wall 

permeability would potentially allow improved intracellular access to other antibiotics.  Upon 

combination of NO and AgSD, synergistic activity was indeed noted against a wide range of 

pathogens, including antibiotic-resistant species, highlighting the potential clinical 

application of NO in combination therapy.  Further studies aimed at elucidating the 

synergistic mechanism would aid in identifying additional promising therapeutic 

combinations. 
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Appendix:  

Discussion of assumptions in force measurement 

 

Two assumptions associated with the validity of our technique for force measurement were 

examined: (1) the vectors of the normal force had comparable lateral components over the range 

of cantilever compression values, and (2) all bending of the cantilever occurred in a manner that 

could be modeled, via adaptation of Hooke’s Law (F = k d), to the compression of a spring (i.e., 

along the long axis of the cantilever). 

The force directly measured by the AFM is applied in a direction normal to the bending 

probe (e.g. Fz when scanning a level, flat surface as in Figure 2.1A).  However, when the contact 

point changes from the tip of the probe to the side of the probe, as when imaging a large feature 

such as a bacterium, the applied force (Fapp) felt by the feature is a component of the measured 

force (Eq. 2.1).  The lateral component Flat is the shear force that detaches the cell and is directly 

proportional to the normal force Fapp (Eq. 2.2) (Fig. 2.1B), where θ is the angle between Fapp and 

Flat. 

The actual shape of the cantilever curve as a function of total cantilever compression is 

difficult to predict.  It is thus impossible to accurately determine θ as a function of cantilever 

compression.  By accounting for the geometry of the probe and the cantilever, a model was 

conceived that would yield an approximate value for θ that varies with the degree of cantilever 

deflection.    The lengths of cantilevers used were 115 µm and 196 µm, and the maximum 

displacement from equilibrium achieved during any measurement conducted in these 



experiments did not exceed 800 nm.  As the curvature of the cantilever is slight, it can be 

approximated at a straight line, forming the opposite side of a right triangle (Fig. 2.1B).  The tilt 

of the cantilever from a horizontal position is given by the angle Φ and is equal to 11° for our 

MFP 3D cantilever holder at free air deflection.  As shown in Figure 2B, a direct relationship 

between the angle Φ and the angle θ between the normal force vector and the lateral, or shear, 

component along the x axis can be established under such an approximation for a pyramidal 

probe of known geometry.  The maximum change ∆maxθ between the value of θ at free air 

deflection θmin and that at maximum compression θmax is 0.41° for cantilevers at 115 µm length 

and 0.25° for cantilevers at 186 µm length.  The resulting decrease in Φ corresponds directly 

with the increase in θ.  Using the two equations 

 

Flat, free air    = k d sin (θmin + Φmax) cos (θmin) and 

Flat, maximum compression  = k d sin (θmax + Φmin) cos (θmax) 

 

to determine the variation in vector contribution that could be expected at minimum and 

maximum compression of the cantilevers, we determined that the maximum potential error 

introduced to Flat calculations by assuming the angle θ to be constant is 0.2 % and 0.1 % for 115 

µm and 186 µm cantilevers, respectively.  In all reported Flat, we used a value of 24° for θ, which 

corresponds to the value at free air deflection. 

By adapting Hooke’s Law to calculate forces applied by the probe, this study also assumes 

the cantilever can be modeled by an ideal spring.  In this case the laser position will only move 

along a vertical course on an aligned photodiode in response to lever compression.  However, 

some degree of torsion (i.e., a twisting motion) in the cantilever will naturally occur as a function 
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of normal scanning of a featured surface.  Twist in the cantilever affects the measured deflection 

by causing the position of the laser on the photodiode to move with both a vertical and lateral 

component.  Hooke’s Law converts the measured change in deflection to applied force, and 

deflection measurements are thus read only as the change in output signal resulting from vertical 

displacement of the laser position.  Torsion in the cantilever may become problematic if the 

feedback loop attempts to compensate for the lost z-deflection measured if the twisting is either 

sustained or ill-timed to coincide with piezo adjustment by the feedback loop or if a significant 

lateral force is applied during natural correction of the torque.   

To monitor the level of torsion that occurs during normal scanning, one channel of the AFM 

was directed to monitor the lateral signal (i.e., the displacement of the laser position to the left or 

right of the vertical axis to which it is aligned).  For typical microfabricated triangular cantilevers 

such as the ones used in this study, the detector response for lateral signal change is ~20 – 80 

times smaller than for normal force signals.1  However, we found that under our experimental 

conditions the change in the lateral signal is on the order of nV, at least three orders of 

magnitude smaller than the changes measured in vertical deflection (mV to V), indicating only 

minor degrees of torsion in the cantilever. 
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