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ABSTRACT 

MICHELE ANN GAUGER:  Cryptochrome, Circadian Cycle, Cell Cycle Checkpoints, and 
Cancer 

 (Under the direction of Aziz Sancar) 
 

 The mammalian circadian clock is a global regulatory system that controls many 

aspects of physiology, including behavior, metabolism, cell cycle progression, and overall 

fitness.  CRYPTOCHROMES (CRYs) are core elements of the mammalian circadian clock, 

and loss of CRY expression leads to arrythmicity.  Although much work has been done 

analyzing the mammalian clock, the molecular mechanisms underlying the clock and 

resulting from its disruption are still largely unknown.  There is growing evidence that 

circadian rhythm disruption in both humans and rodents leads to predisposition to cancer and 

poor prognosis; however, it has not been determined if cancer predisposition is a hallmark of 

all types of clock disruption.  Here I present evidence that arrhythmic Cry1-/-Cry2-/- mice 

possess an intact DNA damage checkpoint and repair system and are not predisposed to 

ionizing radiation-induced cancers relative to wild-type mice.  In addition, experiments were 

conducted to determine the direct effect, if any, that CRY1 exerts on CLOCK-BMAL1 

heterodimer DNA-binding.  I find that CRY1 neither inhibits nor modifies the DNA binding 

of a heterodimer consisting of BMAL1 and a 342-amino acid fragment of CLOCK 

(CLOCK342) in vitro.  However, this does not rule out the possibility that CRY1            

could have an effect on a heterodimer of BMAL1 and full-length CLOCK in vitro.  
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CHAPTER 1 

 
CRYPTOCHROME AND THE MAMMALIAN CIRCADIAN 

CLOCK 
 
 

Introduction 

The solar cycle is perhaps the most pervasive environmental stimulus for organisms 

on Earth.  Adaptation to this stimulus and ability to perceive changes in light conditions 

confers a selective advantage. The earliest application of this adaptation is thought to have 

evolved for the purpose of protecting replicating DNA from ultraviolet light during the 

daytime hours.  Since then, organisms ranging from cyanobacteria to humans have evolved 

mechanisms to synchronize physiological processes to the 24-hour solar day, allowing 

organisms to predict and prepare for constantly changing environmental conditions.  These 

mechanisms comprise an organism’s circadian (circa-24 hours) clock and regulate such 

processes as behavior, metabolism, cell division, sleep-wake cycles, body temperature, heart 

rate, and hormone production; indeed, most physiological functions undergo circadian 

oscillation (Rutter et al., 2002).   

The circadian clock exerts its control over physiological processes through finely 

tuned control of gene expression; it is estimated that up to 10% of cellular genes in mammals 

undergo circadian oscillation in expression (Panda et al., 2002).  Although the endogenous 

circadian clock maintains synchronization under constant environmental conditions, 

disturbance in clock synchronization by the solar cycle can result in physiological disorders 



in humans.   Under conditions of jet lag, a rapid change of local time causes the internal 

clock to not fully synchronize with the local time; this can result in fatigue, irritability, and 

has been shown to affect fitness and tumor growth in mouse models (Filipski et al., 2005; 

Filipski et al., 2006).  Rotating shift work is another example of environmental clock 

disruption that can lead to fatigue, insomnia, and has been associated with a higher risk of 

breast cancer in women (Hansen, 2000).  Molecular disruption of circadian rhythms in 

humans has been associated with seasonal affective disorder (SAD), familial advanced phase 

sleep syndrome, delayed sleep phase syndrome, cancer, and generally decreased fitness 

(Sancar, 2000; Stevens, 2005).  Although we have thus far gleaned much information on the 

mammalian clock, evidence towards the biochemical mechanisms underlying the clock are 

generally lacking.   

 

The Mammalian Circadian Clock 

Most eukaryotic organisms possess an intrinsic circadian rhythm with a periodicity of 

approximately, but not exactly, 24 hours (24.2 hours in humans (Czeisler et al., 1999), 23.5 

hours in mice).  These rhythms exist in the absence of external stimuli (i.e. in constant 

darkness) and are self-sustained in every eukaryotic cell, including cells cultured ex vivo 

(Nagoshi et al., 2004).   

Endogenous circadian rhythms in mammalian peripheral tissues are entrained to the 

exact 24-hour solar day through signals from a central circadian pacemaker organ.  In 

mammals, the central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) 

in the hypothalamus (Hastings and Maywood, 2000).  The SCN consists of a cluster of 

neurons that exhibits robust light-induced changes in gene expression, with light signals 
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being received through visual photoreceptors and photoreceptive retinal ganglion cells.  The 

response of the SCN to light-induced changes is rapid, with complete entrainment to a shift 

in daily light-dark cycle occurring within one day of the change (Yamazaki et al, 2000).  

Photoentrainment of the SCN does not require vision (rod and cone photoreceptors in the 

outer retina); as such, blindness in humans and mice does not destroy the ability to 

synchronize the circadian clock (Sancar, 2000).  Rather, the non-visual photoreceptors in the 

inner retina are sufficient for complete photoentrainment.  The SCN is critical for 

maintenance of circadian rhythmicity (Ralph et al., 1990; Sakamoto et al., 1998; Rusak and 

Zucker, 1979).  Lesions of the SCN cause complete ablation of the circadian clock in rats 

(Klein et al., 1991).   The circadian rhythm machinery in the SCN is similar to that in all 

mammalian cells with the exception of photoreceptive capability.  This allows the SCN, 

through an uncharacterized signaling pathway, to reset an organism’s circadian rhythm phase 

according to the solar cycle and other environmental stimuli, called zeitgeibers (literally, 

“time-givers”).  Information from the SCN is passed onto the pineal gland, causing 

oscillations in secretion of the hormone melatonin.  Consequently, these signals are passed 

onto peripheral tissue clocks to synchronize and regulate transcriptional activity throughout 

the day.   

To date, there is a great deal of genetic evidence for the mechanisms underlying the 

mammalian circadian clock; however, biochemical characterization of the clock is lacking.  

Genetic studies have led to the formulation of the current model for the mammalian circadian 

clock, in which the clock is engendered mainly by the interplay of positive and negative 

transcriptional feedback loops (Figure 1.1; Gauger and Sancar, 2005).  Similar mechanisms 

have been indicated for all organisms whose circadian rhythms have been extensively studied 

 3



(Rutter et al., 2002).  At the center of these loops are the core clock proteins, whose gene 

products are necessary to maintain circadian rhythmicity in individual cells (Takahashi, 

2004).  The core clock proteins participating in this loop will be described in detail in Section 

1.3.  Four core clock proteins, BMAL1, CLOCK, PERIOD (PER), and CRYPTOCHROME 

(CRY), are particularly important in this model.  A heterodimer of BMAL1 and CLOCK 

participate in the positive segment of the transcriptional feedback loop, in which the 

BMAL1-CLOCK complex activates transcription of genes whose promoters contain E-box 

elements (CACGTG).  These genes include clock-controlled genes (CCGs) whose products 

are not directly involved in the circadian clock machinery, and also the core clock genes 

period and cryptochrome.  PER and CRY proteins, after transcription and translation, form 

the negative segment of the transcriptional feedback loop by inhibiting the BMAL1-CLOCK 

heterodimer through an unknown mechanism.  In this way, PER and CRY negatively 

regulate their own transcription.  In a second, minor feedback loop, the circadian proteins 

REV-ERBα and RORα regulate transcription of Bmal1 by repression and activation, 

respectively (Sancar, 2000; Wijnen and Young, 2006).  Rev-Erbα and Rorα are both targets 

of CLOCK-BMAL1-mediated transcription, thereby regulating their own expression.  In 

addition to the positive and negative transcriptional feedback loops themselves, other 

elements are believed to contribute to the 24-hour periodicity of oscillation of gene 

expression in the circadian clock.  These elements likely include regulation of protein 

accumulation in the cytoplasm/nucleus and/or posttranslational modifications; however, 

these regulatory elements have not been clearly elucidated yet. 

The canonical transcription-translation feedback loop (TTFL) model of the 

mammalian circadian clock has been challenged of late.  For some time it has been known 
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that in addition to contributions from the TTFL model, post-translational modification of the 

clock proteins occurs and is likely a component of their regulation (Lee et al., 2001).  In the 

clock system of the cyanobacterium Synechococcus, in which a similar TTFL had been 

implicated for many years, it has been recently shown that circadian rhythmicity can be 

reconstituted using purified proteins in a closed in vitro system (Nakajima et al., 2005; 

Kageyama et al., 2006).  This data indicates that, in at least one system, a circadian rhythm 

can persist in the absence of transcription or translation and is prompting serious re-

evaluation of the orthodox mammalian circadian clock model (reviewed in Lakin-Thomas,  

2006).   

 

The Core Circadian Clock Proteins 

 In the mammalian circadian clock, the four main core clock components are the 

Clock, Bmal1, Period (Per; Per1, Per2, and Per3), and Cryptochrome (Cry; Cry1 and Cry2) 

genes and their gene products, CLOCK, BMAL1, PER (PER; PER1, PER2, and PER3), and 

CRY (CRY; CRY1 and CRY2), respectively.  These four proteins comprise the positive and 

negative arms of the transcriptional feedback loops that engender the mammalian clock.  

Mutations in the core clock components result in the most dramatic clock phenotypes.  I will 

provide a detailed description of these components here. 

CLOCK 

 Clock was the first mammalian clock gene to be identified (King et al., 1997; Antoch 

et al., 1997).  Homologues of mammalian CLOCK have been found in Drosophila 

(dCLOCK) (Allada et al., 1998) and zebrafish (zCLOCK) (Ishikawa et al., 2002) and a 

complex orthologous to CLOCK-BMAL1 is formed in Neurospora (the White-Collar 
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Complex) (Wijnen and Young, 2006).  The mammalian Clock gene encodes a basic helix-

loop-helix (b-HLH) PAS protein that acts as a transcription factor when in complex with 

another core clock protein, BMAL1 (King et al., 1997; Antoch et al., 1997).  The CLOCK-

BMAL1 heterodimer binds to E-box elements in gene promoters, most notably the promoters 

of the Period (Per) and Cryptochrome (Cry) core circadian genes, along with circadian gene 

Rev-Erbα and many clock-controlled genes that do not participate in the clock itself.  

CLOCK has been shown to interact physically with not only BMAL1 but also the CRY and 

PER proteins (Lee et al., 2001).  Clock is somewhat unique among the four main clock 

component genes in that its expression does not oscillate and is not under circadian control; 

CLOCK protein levels likewise are constant throughout the circadian cycle (Lee et al., 2001).  

Mice homozygous for a mutation of Clock exhibit an abnormally long circadian period, 

becoming arrhythmic in constant darkness (Vitaterna et al., 1994).  CLOCK protein resulting 

from this mutation lacks residues encoded for in exon 19 of the Clock gene.  In heterozygous 

mutant animals, the mutant protein can compete with wild-type CLOCK protein (King et al., 

1997); in homozygous mutant animals, the mutant protein results in functionally defective 

CLOCK:BMAL1 heterodimers (Gekakis et al., 1998; Jin et al., 1999).  Interestingly, it was 

recently reported that CLOCK is not an absolutely essential circadian clock component 

(DeBruyne et al., 2006).  CLOCK-null mice demonstrate altered responses to light and 

alterations in circadian clock gene expression; however, they still display robust circadian 

rhythms as measured by locomotor activity.  The discrepancy between results obtained with 

CLOCK-mutant mice and CLOCK-null mice is hypothesized to be due to the dominant-

negative effect of CLOCK-mutant protein.  A CLOCK-redundant protein has been proposed 
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to heterodimerize with BMAL1 in the absence of CLOCK to maintain general circadian 

clock function; NPAS2 is a likely candidate for this.   

 In addition to DNA-binding and transcriptional activating activities, CLOCK has also 

been recently shown to have histone acetyltransferase (HAT) activity.  The carboxy-terminus 

of CLOCK shows significant structural similarity to the carboxy-terminus of the HAT 

protein ACTR (Chen et al., 1997) and CLOCK exhibits HAT activity in experiments using 

purified histones as substrates (Doi et al., 2006).  CLOCK’s HAT activity appears to be 

essential for its function in circadian regulation, as ectopic expression of a HAT-deficient 

CLOCK mutant protein in a homozygous Clock mutant background does not restore 

circadian transactivation of the Per and Dbp genes (Doi et al., 2006).  However, it is 

unknown what the effect of ectopic expression of HAT-deficient CLOCK in a true CLOCK-

null background will be.  The HAT activity of CLOCK indicates that regulation of histone 

acetylation may be involved in circadian gene expression and specifically CLOCK:BMAL1 

function.  This hypothesis supports reports that CLOCK interacts with histone acetylases 

(Etchegaray et al., 2003) and that histone modification displays circadian variation 

(Ripperger and Schibler, 2006).   

BMAL1 

 BMAL1 (sometimes referred to as MOP3) was originally found as a protein with high 

expression in mammalian brain and muscle (Ikeda and Nomura, 1997; Hogenesch et al., 

1997).  BMAL1 has homologues in Drosophila (CYCLE) (Rutila et al., 1998) and zebrafish 

(zBMAL1) (Ishikawa et al., 2002) and a complex orthologous to CLOCK-BMAL1 is formed 

in Neurospora (the White-Collar Complex) (Wijnen and Young, 2006).  Like CLOCK, 

mammalian BMAL1 is a bHLH-PAS transcription factor.  BMAL1 heterodimerizes with 
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CLOCK to activate transcription off of E-box-containing promoters, notably those promoters 

of the Per and Cry genes in addition to other CCGs.  While CLOCK-BMAL1 does not 

control transcription of Bmal1, this gene is still under circadian clock control as the orphan 

nuclear receptor RORα activates its transcription (Sato et al., 2004) and REV-ERBα, another 

clock protein, negatively regulates its transcription (Reppert and Weaver, 2002).  PER2 has 

also been shown to stimulate transcription of Bmal1, through an ill-defined mechanism 

(Hogenesch et al., 2003; Shearman et al., 2000). BMAL1 protein levels oscillate with 

circadian periodicity (Fu et al., 2002).  Loss of expression of mBmal1 causes complete loss of 

circadian clock function and therefore   Bmal1-/- mice are arrhythmic at both the behavioral 

and molecular levels (Bunger et al., 2000).  Additionally, a variety of other physiological 

phenotypes have been seen in Bmal1-/- mice, including decreased activity levels and body 

weight, joint disease, and shortened life span (Bunger et al., 2000; Rudic et al., 2004; Bunger 

et al., 2005; Laposky et al., 2005; Shimba et al., 2005; Kondratov et al., 2006; Sun et al., 

2006).  This suggests that BMAL1 may play tissue-specific roles in addition to its circadian 

clock function; this theory has been supported by a recent report (McDearmon et al., 2006).   

 BMAL1 undergoes post-translational modifications that are thought to contribute to 

its regulation.  Phosphorylation of BMAL1, and of CLOCK, correlates with CLOCK-

BMAL1’s transcriptional activity (Lee et al., 2001).  Also, BMAL1 has been shown to be 

sumoylated in a CLOCK-dependent manner (Cardone et al., 2005).  The C-terminus of 

BMAL1 (specifically the section containing the last 43 amino acids) has been recently 

demonstrated to be required for its transcriptional activation activity as well as for its 

interaction with CRY1; this process is also dependent on the presence of CLOCK (Kiyohara 

et al., 2006).  This portion of BMAL1 is not necessary, however, for association with PER2.  
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BMAL1 has been found to interact physically with CLOCK, CRY, and PER proteins in what 

may be a large clock-protein complex (Lee et al., 2001).   

 BMAL1 has been shown to be important in the regulation of the CLOCK-BMAL1 

heterodimer.  Nuclear accumulation of CLOCK protein and its subsequent degradation is 

largely dependent on BMAL1, through a poorly-understood mechanism (Kondratov et al., 

2003).  In support of this, Kwon and colleagues have recently reported that 

nucleocytoplasmic shuttling of BMAL1 is necessary for the transactivation and degradation 

of CLOCK-BMAL1 (Kwon et al., 2006).   

PERIOD  

 The Drosophila period gene was first cloned in 1984, spawning a search for its 

mammalian homologue.  Eventually three mammalian homologues were identified (Per1, 

Per2, Per3) and cloned (Albrecht et al., 1997; Zylka et al., 1997; Shigeyoshi et al., 1997; Sun 

et al., 1997; Tei et al., 1997).  All three mammalian Per genes display homology to 

Drosophila period and oscillation in both the SCN and the retina (Whitmore et al., 1998).  

PERs are PAS-domain proteins with widespread expression patterns, localizing in the SCN 

as well as many peripheral tissues (Tei et al., 1997; Albrecht et al., 1997; Shearman et al., 

1997; Zylka et al., 1998; Shigeyoshi et al., 1997).  Mice deficient in mPer1 have a persistent 

circadian rhythm with a shortened period; these mice also show impaired ability to maintain 

precision and stability of the circadian period (Zheng et al., 2001).  Mice carrying a 

homozygous mutation in mPer2 display a similarly short period, with complete loss of 

circadian rhythmicity in constant darkness (Zheng et al., 1999).  In contrast, mice deficient in 

mPer3 display an essentially normal circadian clock with a slightly shortened period 

(Shearman et al., 2000a; Reppert and Weaver, 2002).  Taken together, these studies suggest 
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that PER2 is the most critical clock component of the PER proteins, while PER3 is 

considered to be outside the core circadian clockwork (Bae et al., 2001).  A genetic variant in 

human Per2 was the first mutation identified as a cause of familial advanced sleep-phase 

syndrome (Toh et al., 2001).  Expression of PER oscillates with the highest amplitude of the 

core clock proteins.   

 PER proteins have been shown to function in the nucleus but do not directly bind to 

DNA (Fu et al., 2002).  In Drosophila, dPER is one of the two main negative regulators of 

dCLOCK-CYC (the other being dTIM) (Wijnen and Young, 2006; Lee et al., 1999).  

Although mammalian PER has been reported to associate with CRY to negatively regulate 

CLOCK-BMAL1, it is widely accepted that CRY is the more potent circadian repressor in 

mammals (Reppert and Weaver 2002; Yu and Hardin, 2006).  PER2 can suppress 

transcription by NPAS2-BMAL1 (a circadian transcriptional activator complex similar to 

CLOCK-BMAL1) as shown by reporter gene assay (Fu et al., 2002).  Studies suggest that, in 

addition to its repressor function, PER2 also acts as a positive regulator, stimulating 

transcription of BMAL1 (Shearman et al., 2000).  The NONO and WDR5 proteins, which 

associate with PER1, have been shown to modulate PER function:  NONO likely functions 

as an antagonist to PER, while WDR5 appears to assist PER function (Brown et al., 2005).  

Stability of PER2 appears to be dependent, either directly or indirectly, on mCRY, as mPER2 

protein levels in the SCN are markedly reduced in Cry1-/-Cry2-/- animals (Shearman et al., 

2000).   

 PER1 and PER2 may also function in the cell cycle.  mPer2m/m mice were found to be 

hypersensitive to ionizing radiation, and thymocytes from these mice fail to undergo cell 

cycle arrest or apoptosis after exposure to IR.  Additionally, IR was shown to cause an 
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increase in transcription of mPer1, mPer2, Clock, Cry1, and Bmal1 (Fu et al., 2002).  

Overexpression of mPer2 induces apoptosis in cancer cell lines and alters the expression of 

apoptosis-related genes (Hua et al., 2006).  PER1 has also been linked to the cell cycle 

through interaction with checkpoint proteins ATM and Chk2.  Overexpression of Per1 

sensitizes cancer cells to apoptosis after exposure to IR.  In contrast, inhibition of Per1 

expression by siRNA causes a marked decrease in IR-induced apoptosis (Gery et al., 2006).  

Together, these data suggest that the PER family of proteins plays a role in the cell cycle, 

though it is unknown whether or not this function is independent of PER’s circadian clock 

role.   

CRYPTOCHROME 

 CRYPTOCHROME was originally identified as a plant blue-light photoreceptor 

which was especially important in cryptogamic plants and possessed a “cryptic” nature 

(Ahmad and Cashmore, 1993; Sancar, 2000).   The first Cryptochrome gene isolated was 

from the mustard plant and was at first thought to be a photolyase (Batschauer, 1993).   

CRYs belong to the photolyase/cryptochrome family of structurally analogous flavoproteins, 

having high structural and sequence similarity to DNA photolyase.  DNA photolyase, present 

in prokaryotes and lower eukaryotes but missing in humans, is a repair enzyme which utilizes 

blue light to repair UV-damaged DNA (Rupert et al., 1958; Sancar, 1994).  

CRYPTOCHROMEs, while having high similarity to DNA photolyase, by definition exhibit 

no repair activity (Sancar, 2000).  Rather, plant CRYs use blue light to regulate growth and 

adaptation to the environment, while animal CRYs entrain the circadian clock to the daily 

light-dark cycle.  CRY possesses a region of very high structural homology to photolyase, 

called the photolyase homology region (PHR) and most CRYs, especially those found in 
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eukaryotes, have a C-terminal extension whose sequence varies widely (Sancar, 2000;  

Partch and Sancar, 2005).  This C-terminal extension is largely unstructured and is thought to 

be important in regulating CRY activity through a signal transduction cascade.  In humans, 

CRY1 and CRY2 share a high amount of homology (80%) but have highly divergent C-

terminal extensions.  CRY1 also contains a well-conserved nuclear localization signal in its 

C-terminal extension whose deletion abrogates its translocation into the nucleus (Chaves et 

al., 2006).  Both photolyases and CRYs contain two covalently-bound chromophores; most 

commonly, these are 5,10-methenyltetrahydrofolate (MTHF) and flavin adenine dinucleotide 

(FAD) (Sancar, 2003).  MTHF acts as a photoantenna, absorbing a photon of blue light 

(Sancar, 2003; Johnson et al., 1988) while FAD is the catalytic chromophore, facilitating 

electron transfer (Kao et al. 2005; Saxena et al., 2005).  Mammalian CRY uses its bound 

chromophores to function as a circadian photoreceptor in the SCN, absorbing blue light to 

entrain the circadian clock.  CRY may also, as in plants, act as a mammalian blue-light 

photoreceptor (Sancar, 2000).   

Role of CRYPTOCHROME in the Circadian Clock  

The CRY proteins are essential to the mammalian circadian clock (Sancar, 2000; 

Kume et al., 1999; van der Horst et al., 1999).  Cry mutant animals show seemingly normal 

circadian behavior under a 12 hour light:12 hour dark (LD 12:12) regimen; however, this 

behavior is masking caused by visual light perception (Sancar, 2000).  Under constant 

darkness, normal animals should exhibit their endogenous circadian period; it is under these 

conditions that the phenotype of circadian mutant animals is most apparent.  Deletion of 

mCry1 results in a shortened circadian period in constant darkness (van der Horst et al., 

1999).  In contrast, deletion of mCry2 lengthens the circadian period (Thresher et al., 1998; 
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van der Horst et al., 1999).  mCRY1 and mCRY2, therefore, are necessary to maintain 

normal circadian periodicity.  Mice deficient in both mCry1 and mCry2 show complete loss 

of circadian rhythmicity in constant darkness (van der Horst et al., 1999; Sancar, 2000).   

With regard to clock gene expression, induction of Per1 expression is severely blunted in 

both Cry1-/- and Cry2-/- mice; however, in the double Cry1-/-Cry2-/- knockout Per1 is 

expressed at high, non-oscillating levels with no induction after light pulses (Sancar, 2000).  

Interestingly, in both Cry1-/- and Cry1-/-Cry2-/- mice Per2 continues to oscillate, with a higher 

amplitude than that seen in wild-type mice (Vitaterna et al., 1999), with overall high levels of 

gene expression.  Therefore there appears to be a CRY-independent pathway for Per2 

expression.  Although Per transcript levels are high, PER protein levels in Cry mutant 

animals are low, suggesting that CRY plays a role in PER protein stability.  In constant 

darkness, neither Per1 nor Per2 expression are oscillatory in Cry1-/-Cry2-/- mice (Sancar, 

2000), consistent with their arrhythmic behavior under such conditions.  The status of Per1 

and Per2 expression in the Cry mutant animals is consistent with a role of CRY in negative 

regulation of Per expression.   

Indeed, CRY has been determined to be the main negative regulator of the 

mammalian CLOCK-BMAL1 transcriptional activator complex, effectively “closing” the 

clock feedback loop (Kume et al., 1999; Sancar, 2000).  After CLOCK-BMAL1-mediated 

transcription of the Per and Cry genes, PER and CRY proteins are translated in the 

cytoplasm and form complexes which translocate into the nucleus and downregulate 

CLOCK-BMAL1-driven transcription (Sancar, 2000).  Both CRY1 and CRY2 have been 

shown to strongly inhibit CLOCK-BMAL1-mediated transcription (Griffin et al., 1999; 
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Kume et al., 1999; Okamura et al., 1999).  In this way, CRY proteins negatively regulate 

their own transcription, along with that of Per and other CCGs.   

Interactions of CRYPTOCHROME with other Clock Proteins 

 Mammalian CRY has been shown to interact with a number of proteins.  Yeast two-

hybrid screens and co-immunoprecipitation experiments have shown interactions of CRY 

with BMAL1, CLOCK, PER1, PER2, PER3, and TIM (Griffin et al., 1999, Shearman et al., 

1999, Sancar, 2000).  CRY’s interaction with CLOCK and BMAL1 is likely important for its 

repressor function; recently CLOCK and BMAL1 mutants were identified which are resistant 

to CRY-mediated repression (Sato et al., 2006).  These mutants also showed decreased 

interaction with CRY and, to a lesser extent, PER.  CRY’s interaction with PER is thought to 

be important for PER protein stability and translocation into the nucleus (Kume et al., 1999).  

Clock proteins have been found to form large, time-specific multimeric complexes (Lee et 

al., 2001) including CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, and CK1ε.  A yeast 

two-hybrid screen of CRY2 detected protein phosphatase 5 (PP5) as an interacting protein 

(Zhao and Sancar, 1997).  This protein is a serine/threonine kinase which was subsequently 

shown to regulate activity of CK1ε; this regulation is modulated by CRY (Partch et al., 

2006).   

Evolution of CRYPTOCHROME in Animals 

 Other animal systems with proteins homologous to mammalian CRY include 

Drosophila, Xenopus, zebrafish, monarch butterfly, honeybee, bumblebee, red flour beetle, 

and mosquito (Yuan et al., 2007; Reppert 2006).  By phylogenetic analysis, Cryptochrome 

evolution appears to have given rise to two Cry genes in insects, now thought to represent the 

basal animal Cry lineage.   This is a novel viewpoint because until recently the Drosophila 
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circadian system, about which the most is currently known, was thought to represent the 

basal evolutionary lineage.  Drosophila contains only one Cry gene (dCry) which is a known 

photoreceptor to entrain the circadian clock; however, it is not required for circadian 

behavioral rhythms (Stanewsky et al., 1998; Helfrich-Forster et al., 2001).  dCRY has 

traditionally not been considered a transcriptional repressor; however, recent work has shown 

that it can indeed repress CLOCK-CYCLE in cell culture (Collins et al., 2006).  One 

important feature of dCRY is that it is degraded by light (Lin et al., 2001).  Although 

Drosophila expresses only one CRY protein, other insects including the mosquito and 

monarch butterfly express two CRY proteins, one with homology to dCRY and one with 

homology to mammalian-like CRYs (Zhu et al., 2005).  Monarch butterfly CRY1, similar to 

dCRY1, is degraded by light; monarch butterfly CRY2, similar to mCRYs, can act as a 

circadian transcriptional repressor (Zhu et al., 2005).  Other insects, including the honey bee 

and red flour beetle, contain only a mammalian-like CRY (Zhu et al., 2005; Rubin et al., 

2006).  A new model of CRY evolution has emerged, suggesting that the mosquito and 

butterfly and those organisms having both types of CRY represent the ancestral insect 

lineage, and Drosophila diverged to retain only one CRY primarily acting as a photoreceptor 

and other insects diverged with only a mammalian-like CRY acting as a transcriptional 

repressor (Yuan et al., 2007).   

Other Circadian Clock Proteins 

 In addition to the core clock components, there are other proteins that participate in 

the mammalian circadian mechanism.  These are Casein Kinase 1ε (CK1ε), REV-ERBα, 

RORα, NPAS2, Protein Phosphatase 5 (PP5), and Timeless (TIM).  I will provide a brief 

description of these proteins here. 
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Casein Kinase 1ε (CK1ε) 

 CK1ε is a kinase homologous to the DOUBLETIME kinase in Drosophila.  CK1ε has 

been shown to phosphorylate PER proteins, which results in their ubiquitin-dependent 

degradation (Akashi et al., 2002).  CK1ε can also phosphorylate CRY1, CRY2, and BMAL1 

in vitro (Eide et al., 2002; Akashi et al., 2002).  Although cellular levels of CK1ε do not 

appear to oscillate, its subcellular localization does appear to be circadian-dependent (Lee et 

al., 2001).  Additionally, it has been found in a large complex of clock proteins whose 

formation is time-dependent.  As post-translational modifications are becoming increasingly 

important components of the mammalian clock model, CK1ε’s circadian function is of great 

interest.  A second related kinase, CK1δ, with high homology to CK1ε has been shown to 

display similar properties and is likely also a modulator of clock proteins.  Activity of both 

CK1ε and CK1δ is tightly regulated by inhibitory autophosphorylation (Gietzen and Virshup, 

1999) and the protein phosphatase PP5 has been indicated as having a role in this process 

(Partch et al., 2006).   

REV-ERBα and RORα 

 REV-ERBα and RORα are both orphan nuclear receptor proteins.  These proteins 

both participate in regulation of expression of Bmal1, in a second mammalian feedback loop.  

Both the Rev-Erbα and Rorα genes are targets of CLOCK-BMAL1 transcriptional activation; 

their gene products REV-ERBα and RORα subsequently regulate Bmal1 expression by 

repression (REV-ERBα) or activation (RORα) (Preitner et al., 2002; Ueda et al., 2002).   

NPAS2 

 The Npas2 gene encodes a functional analog of CLOCK which can heterodimerize 

with BMAL1 and activate clock gene expression off of E-box promoters (Reick et al., 2001;  
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Hogenesch et al., 1998).  However, the expression profile of Npas2 differs in that it is most 

highly expressed in the brain.  NPAS2 has been shown to contain a bound heme cofactor 

which renders the DNA-binding activity of NPAS2-BMAL1 sensitive to CO gas; in this way, 

NPAS2 may couple the circadian clock to the heme metabolic cycle (Dioum et al., 2002).  

NPAS2 may also couple the circadian cycle to cellular redox rhythms.  NPAS2 is thought to 

bind nicotinamide adenine dinucleotide (NAD) through its bHLH domain (Wijnen and 

Young, 2006) and the DNA-binding of NPAS2-BMAL1 can be modulated by NAD in vitro 

(Rutter et al., 2001).  This could be especially important in circadian entrainment through 

feeding, which induces changes in cellular NAD concentrations (Damiola et al., 2000).  

NPAS2 has also been proposed as a candidate redundant protein to CLOCK which, in the 

absence of CLOCK, helps to maintain circadian rhythmicity in the SCN.  Clock-/- mice were 

recently found to maintain circadian cycling, suggesting a redundant factor; however Npas2 

RNA is undetectable in the SCN (DeBruyne et al., 2006).  The ability of NPAS2 to 

compensate in the absence of CLOCK is, therefore, of great interest.   

Protein Phosphatase 5 (PP5) 

 PP5 is a serine-threonine kinase that is expressed in both the SCN and peripheral 

tissues in a non-oscillating fashion (Partch et al., 2006).  Outside of the circadian clock, PP5 

has been implicated in cell cycle by interaction with and regulation of DNA-PKcs (Wechsler 

et al., 2004), regulation of p53 function (Zuo et al., 1998), and dephosphorylation of the 

proapoptotic protein ASK1 (Morita et al., 2001).  PP5 interacts with CRY1 and CRY2 and 

this interaction inhibits PP5 activity (Zhao and Sancar, 1997).  PP5 can also interact with 

CK1ε both in vitro and in vivo, regulating its activity in both cases (Partch et al., 2006); CRY 

noncompetitively modulates this process.  PP5 is emerging as an important component of the 
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mammalian circadian clock, as a result of its interactions with clock proteins and the finding 

that knockdown of PP5 by shRNA impairs circadian cycling in cultured cells (Partch et al., 

2006).     

Timeless (TIM) 

 The inclusion of mammalian TIM in the cadre of circadian clock proteins has been 

controversial (Barnes et al., 2003; Albrecht, 2002).  Deletion of mTim results in an 

embryonic lethal phenotype (Gotter et al., 2000); as this has not been observed for any other 

bona fide clock protein, many took this as evidence that mTim, although partially 

homologous to Drosophila clock gene dTim, does not belong to the group of mammalian 

core clock genes.   However, more recent data contradicts this finding, reporting that 

conditional knockdown of mTim expression in the SCN disrupts activity rhythms and alters 

the expression levels of clock proteins (Barnes et al., 2003).  In this report, mTim expression 

was found to oscillate with 24-hour periodicity.  In addition to interacting with CRY2, TIM 

has been shown to interact with the DNA damage checkpoint proteins CHK1 and ATR-

ATRIP, and that its expression oscillates also with the cell cycle (Unsal-Kacmaz et al., 2005).  

Knockdown of mTim expression by siRNA abrogates CHK1 phosphorylation after 

hydroxyurea treatment and results in premature chromatin condensation (PCC).  These data 

have led to the proposal of TIM as one of the components that couples the cell cycle to the 

circadian cycle; this relationship is of great interest, especially with regard to the involvement 

of circadian rhythm disruption with cancer predisposition (Gauger and Sancar, 2005; 

discussed in detail in Chapter 2). 
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Circadian Clocks in Other Organisms 

 Other than mammals, the circadian clock systems of cyanobacteria, Neurospora 

crassa, Arabidopsis thaliana, and Drosophila melanogaster have been the best characterized.  

I will provide a brief summary of these systems here.   

Cyanobacteria 

 The cyanobacterium Synechococcus elongatus displays a clear circadian rhythm that 

profoundly affects its cellular metabolism (Liu et al., 1995).  The cyanobacterial core 

oscillator consists of a complex of the KaiA, KaiB, and KaiC proteins (reviewed in Iwasaki 

and Kondo, 2004).  KaiC protein can autophosphorylate; this action is enhanced by KaiA and 

antagonized by KaiB.  The cyanobacteria clock was at first thought to consist of a 

transcription-translation-derived oscillatory feedback loop, similar to that which has been 

proposed in the mammalian clock, which does not regulate a specific set of clock-controlled 

genes but rather regulates genome-wide gene expression (Nakahira et al., 2004).  In this 

model, the core loop revolves around the expression of the kaiBC operon (Wijnen and 

Young, 2006).  KaiA enhances expression of kaiBC, forming the positive segment of the 

feedback loop.  KaiC represses its own (kaiBC) expression, forming the negative segment of 

the feedback loop.  Kai proteins exhibit robust circadian patterns of accumulation, synthesis, 

degradation, localization, and phosphorylation (Kageyama et al., 2006).  Phosphorylation in 

particular is integral to the cyanobacterial clock, as mutation of KaiC’s phosphorylation sites 

abolishes circadian rhythmicity (Nishiwaki et al., 2004).  The canonical cyanobacterial clock 

TTFL model would require transcription and translation for oscillation to occur.  However, 

recently clock oscillation has been reconstituted with the Kai proteins in a closed system, in 

which cyclic phosphorylation of KaiC occurred in vitro after mixing the three Kai proteins 
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with ATP (Kageyama et al., 2006).  Because this oscillation occurred in the absence of 

transcription/translation, the canonical clock model in cyanobacteria has been reevaluated.  A 

new model was proposed in which, over time, KaiA associates with KaiC, resulting in KaiC 

phosphorylation; KaiB then associates with phosphorylated KaiC, inactivating KaiA and 

resulting in KaiC dephosphorylation; KaiB subsequently dissociates from KaiC and the cycle 

begins again (Kageyama et al., 2006).  These findings support the theory that in many 

systems, the TTFL is not solely responsible for circadian cycling and many of the well-

characterized clock models are now undergoing a reevaluation.   

Neurospora crassa 

 Similar to other systems, a TTFL is at the core of the filamentous fungus Neurospora 

crassa circadian clock mechanism.  The positive arm of the feedback loop in this system is 

engendered by the transcription factor White-Collar Complex (WCC), consisting of PAS 

proteins White Collar-1 (WC-1) and White Collar-2 (WC-2) proteins.  The negative arm of 

the feedback loop involves the Frequency (FRQ) protein, which negatively regulates WCC 

activity.  The Frequency gene, frq, is a transcriptional target of WCC; therefore FRQ 

regulates its own expression (Wijnen and Young 2006).  FRQ also participates in the positive 

arm of the feedback loop, helping to assemble the WCC complex in the cytoplasm (Cheng et 

al., 2001).  Post-translational modification, especially phosphorylation, is also important in 

this system.  Hypophosphorylated nuclear FRQ stimulates phosphorylation of WCC, 

inhibiting WCC’s transcriptional activity.  Hyperphosphorylated FRQ accumulates in the 

cytoplasm over the course of the day, which promotes WCC complex assembly.  

Phosphorylation of FRQ also leads to its degradation (Wijnen and Young 2006).   Light 
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response in Neurospora is mediated by the WC-1 protein, which is a blue-light photoreceptor 

(Froehlich et al., 2002).   

Arabidopsis thaliana 

 In plants, circadian rhythms regulate many processes including photomorphogenic 

growth, chloroplast localization, hypocotyls growth, stomata opening, and flowering time.  

The most well-characterized plant circadian clock is in the model organism Arabidopsis 

thaliana.  Again, a set of transcriptional feedback loops governs this clock mechanism.  The 

DNA-binding proteins LHY, CCA1, and LUX participate in the positive feedback loop, 

activating transcription of a number of genes including the PRR5/7/9 genes (activated by 

LHY and CCA1), LHY, and CCA1 (both activated by LUX).  Also involved in positive 

regulation of transcription are the ELF4, GI, and TOC1 proteins.  In turn, PRR5/7/9 and 

ELF3 repress transcription of the LHY and CCA1 genes.  The CK2 protein regulates CCA1 

activity through phosphorylation.  In this way, CK2 inhibits transcription of not only 

PRR5/7/9 but also the ELF3, GI, LUX, ELF4, and TOC1 genes. Photic input in the 

Arabidopsis system is signaled by the ZTL and CRY proteins, which absorb blue light, and 

PHY, which absorbs red light.  CRY does not participate in negative regulation in this 

organism; rather, it acts exclusively as a blue light photoreceptor.  (reviewed in Wijnen and 

Young, 2006) 

Drosophila melanogaster 

 The best-studied insect circadian system is that of Drosophila melanogaster, although 

with the discovery of both insect-like and animal-like CRY proteins in other insect systems 

such as the monarch butterfly (Yuan et al., 2007), it is likely that we will soon know much 

more about the clock mechanisms of other insects.  The Drosophila clock is thought to be 
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engendered by two feedback loops systems.  The first loop is somewhat similar to that of 

mammals:  a transcriptional activation complex comprised of the bHLH-PAS proteins 

CLOCK and CYCLE (CYC) induces rhythmic transcription of target genes including clock 

negative regulators dPer and dTim (Wijnen and Young, 2006).  PER and TIM, in turn, act in 

complex as the main repressors of CLOCK-CYC in the Drosophila system, inhibiting their 

own transcription.  The DOUBLETIME (DBT) protein (homologous to mammalian CK1ε) 

modulates subcellular localization of PER, resulting in its degradation.  In the second 

feedback loop of this system, the CLOCK-CYC heterodimer activates transcription of the 

Pdp1 and Vri genes, whose gene products PDP1 and VRI act as positive (PDP1) and negative 

(VRI) regulators, respectively, of expression of the Clock and Cry genes (Wijnen and Young, 

2006).  The major difference between the mammalian and Drosophila circadian systems is 

the function of CRY (Collins et al., 2006).  While mammalian CRYs are core clock 

components that repress gene transcription and are required for circadian rhythmicity (van 

der Horst et al., 1999; Sancar, 2000), dCRY is not required for maintenance of behavioral 

circadian rhythms in Drosophila (Stanewsky et al., 1998).  Rather, the function of dCRY has 

been suggested to be primarily as a blue-light photoreceptor that entrains the circadian clock 

and targets TIM for light-dependent degradation (Wijnen and Young, 2006).  However, a 

recent report showed that dCRY can repress CLOCK-CYC activity in cell culture, appearing 

to be confined to peripheral clocks (Collins et al., 2006).  This suggests that part of dCRY’s 

function is similar to that of mCRY.   
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Conclusion 

 Although much work has been done to elucidate the mechanisms underlying the 

mammalian circadian clock, many questions still remain.  Microarray studies indicate that a 

large number of cellular genes are potentially under circadian control, and the effect of this 

extensive gene regulation on cellular processes is likely to be far-reaching.  In particular, 

recent studies demonstrating the involvement of circadian genes with cancer development is 

a field of growing importance.  In Chapter 2, I will describe my endeavors to determine the 

effect of Cryptochrome loss on tumor predisposition and DNA damage checkpoint status in 

mice.  Another, more basic, question is the mechanism by which CRY negatively regulates 

CLOCK-BMAL1.  Genetic evidence shows that CRY can inhibit CLOCK-BMAL1, as do 

reporter gene assays; however, without biochemical characterization the molecular 

mechanism by which this occurs cannot be determined.  In Chapter 3, I will describe 

experiments done to determine the validity of one theory of how CRY inhibits CLOCK-

BMAL1.  Together, the experiments described here give important information to increase 

our knowledge of the physiological role(s) of mammalian CRYPTOCHROME.  
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Figure 1.1.   Model for Circadian Clock in Mammals.  CLOCK and BMAL1 are 
transcriptional activators that make up the CLOCK-BMAL1 complex, which activates the 
transcription of Cry, Per, and Bmal1 genes.  The CRY (CRY1 and CRY2) and PER (PER1 
and PER2) proteins are transcriptional repressors that interfere with the activity of CLOCK-
BMAL1 and downregulate transcription of genes controlled by these factors.  In addition, 
PER stimulates the transcription of Bmal1 by an ill-defined mechanism which is regulated by 
the orphan nuclear receptors RORα and REV-ERBα.  Clock-controlled genes (CCGs), which 
include Wee1 and c- myc, are regulated by the clock proteins but do not affect the activity of 
the clock proteins or the transcription of the clock genes.  Wee1 expression is positively 
regulated by CLOCK-BMAL1 and c-myc expression is repressed by this complex.  Hence, in 
the absence of CRY or PER, Wee1 expression is expected to be upregulated due to lack of 
inhibition of CLOCK-BMAL1 by CRY and PER.  It has been reported that c-myc 
transcription is elevated in Per2 mutant mice because of a reduced level of BMAL1, which 
represses the c-myc promoter.   
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CHAPTER 2 

EFFECT OF CIRCADIAN CLOCK DISRUPTION AND 
CRYPTOCHROME LOSS ON TUMORIGENESIS AND THE 

DNA DAMAGE CHECKPOINT IN MICE1 
 

Summary 

It has been reported that disruption of the circadian clock may lead to increased risk 

of breast cancer in humans and to a high rate of ionizing radiation (IR)-induced tumors and 

mortality in mice.  CRYPTOCHROME1 and 2 proteins are core components of the 

mammalian circadian clock and mice mutated in both genes are arrhythmic.  I tested Cry1-/-

Cry2-/- mice and fibroblasts derived from these mice for radiation-induced cancer and killing, 

and DNA damage checkpoints and killing, respectively.  I find that the mutant mice are 

indistinguishable from the wild-type controls with respect to radiation-induced morbidity and 

mortality.  Similarly, the Cry1-/-Cry2-/- mutant fibroblasts are indistinguishable from the wild-

type controls with respect to their sensitivity to IR and ultraviolet (UV) radiation and IR-

induced DNA damage checkpoint response.  These data suggest that disruption of the 

circadian clock in itself does not compromise mammalian DNA repair and DNA damage 

checkpoints and does not predispose mice to spontaneous and IR-induced cancers.  I 

conclude that the effect of circadian clock disruption on cellular response to DNA damage 

and cancer predisposition in mice may depend on the mechanism by which the clock is 

disrupted.   

1The majority of this chapter was published as:  Gauger M.A. and Sancar A.  (2005)  Cryptochrome, Circadian Cycle, Cell 
Cycle Checkpoints, and Cancer.  Cancer Research 65(15), 6828-34.



Introduction 

 The circadian clock and cell cycle are two global regulatory systems in most 

eukaryotic organisms.  It has been known for some time that disruption of the circadian 

rhythm by genetic or environmental factors causes a variety of disorders in humans, such as 

sleep disturbances, seasonal affective disorder, and jet lag.  Disruption of cell cycle 

regulation causes cancer.  Recent epidemiological studies have raised the possibility that 

disruption of the circadian clock may also increase cancer risk in humans (Stevens, 2005) 

and adversely affect prognosis in cancer patients (Mormont and Levi, 1997).  In particular, it 

was reported that women working night-shift exhibited a significant increase in breast cancer 

risk (Davis et al., 2001; Schernhammer et al., 2001).  Similarly, it was reported that cancer 

patients with altered circadian rhythm had poorer survival relative to patients with normal 

rhythm (Mormont et al., 2000).   

 These epidemiological studies were complemented by studies with mouse model 

systems.  In one study, transplantation of an osteosarcoma or a pancreatic adenocarcinoma 

into mice with ablations to the master circadian clock, the SCN, caused accelerated tumor 

growth rate relative to animals with intact SCN (Filipski et al., 2002).  In a second study, it 

was found that mice that were rendered arrhythmic by repeat 8-hour advance of the light-

dark (LD) cycle every 2 days exhibited faster rates of implanted tumor growth relative to 

control mice maintained under a LD 12h:12h cycle (Filipski et al., 2004). 

 Finally, the circadian rhythm was disrupted in mice by targeted mutations of the core 

clock genes that engender the molecular clock not only in the SCN but in all peripheral 

organs and the effect of this disruption on cell growth and spontaneous and IR-induced tumor 

incidence were analyzed.  The core clock proteins are CLOCK and BMAL1 that act as 
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transcriptional activators of the cryptochrome (Cry), Period (Per), and Bmal1 genes; and the 

CRY1, CRY2, PER1, and PER2 proteins that function as transcriptional repressors of the 

CLOCK-BMAL1-driven genes (Young and Kay, 2001; Reppert and Weaver, 2002) (Figure 

1.1).  The effect of these core clock proteins is modulated by additional proteins such as 

REV-ERBα and CK1ε to generate a rather precise molecular oscillator with approximately 

24-hour periodicity.  This periodicity is transmitted to the clock-controlled genes (CCGs) that 

constitute about 10% of the expressed genes in a given tissue to generate rhythmic outputs at 

the physiological and behavioral levels (Delaunay et al., 2002).  The molecular mechanism of 

the mammalian circadian clock has been elucidated in considerable detail in recent years, 

making it possible to investigate the interfacing of this global regulatory pathway with other 

global regulatory systems, such as cell cycle checkpoints, at a mechanistic level.  One such 

study found that in mice with a Per2 mutation, c-Myc transcription was upregulated and p53 

was downregulated; as a consequence, these animals had increased incidence of spontaneous 

and ionizing radiation (IR)-induced lymphomas and an increased rate of mortality after IR 

(Fu et al., 2002).  Another study reported that in CRYPTOCHROMEless mice, WEE1 anti-

mitotic kinase was elevated and, as a consequence, liver regeneration in these mice following 

partial hepatectomy was delayed relative to wild-type controls (Matsuo et al., 2003).  Finally, 

our laboratory has recently found that the mammalian TIMELESS protein, which is 

considered to be a clock protein according to some studies (Barnes et al., 2003) but not others 

(Gotter et al., 2000), binds to DNA damage checkpoint proteins ATR and CHK1 and is 

essential for the DNA damage checkpoint response (Unsal-Kacmaz et al., 2005).   

 Taken together, the epidemiological data, the data from mouse model systems, and 

that from cell-based assays have led to an emerging consensus that the circadian cycle and 
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cell cycle are tightly coupled and that disruption of the circadian cycle by any means would 

disrupt cell cycle checkpoints as well, causing animals with circadian clock disruption to be 

more prone to spontaneous and DNA damage-induced cancers (Stevens, 2005; Mormont and 

Levi, 1997; Davis et al., 2001; Schernhammer et al., 2001).  Within this conceptual 

framework, then, I wished to examine the effect of circadian clock disruption caused by 

Cryptochrome knockout on DNA damage checkpoints and on predisposition to spontaneous 

and IR-induced cancers.  I find that clock disruption by Cryptochrome knockout does not 

measurably affect DNA damage checkpoints and does not cause mice to be more susceptible 

to cancer.  I conclude that circadian clock disruption per se does not prime cells to cancerous 

transformation, presumably due to the presence of homeostatic mechanisms, in addition to 

the circadian rhythm, that regulate cell cycle and cellular responses to DNA damage.   
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Experimental Procedures 

Mice, IR Treatment, and Survival   

Cry1-/-Cry2-/- mice (Selby et al., 2000; Vitaterna et al., 1999) were backcrossed with 

C57BL/6J six times to obtain Cry mutant mice in essentially the same genetic background as 

wild-type control C57BL/6J mice obtained from the Jackson Laboratory.  The mice were 

maintained on an LD 12:12 schedule under ambient room lighting at an ambient temperature 

of 21-23°C and 50-70% humidity.  For irradiation treatment, a cesium-137 radiation source 

emitting γ-rays at a rate of 0.82 Gy/min was used.  24 wild-type and 27 Cry1-/-Cry2-/- mice 

were treated at 8 weeks of age with a single dose of 4 Gy at zeitgeiber time (ZT) 10.  (By 

convention, ZT0 is the time of lights-on and ZT12 is the time of lights-off.)  For the 

experiment described in Figure 2.6, 8 wild-type (4 males, 4 females) and 8 Cry1-/-Cry2-/- (4 

males, 4 females) mice were treated at approximately 8 weeks of age with 6 Gy of IR at ZT 

10.   

Fibroblast Cell Lines, Growth Rate Measurement, and UV and IR Survival   

Dermal fibroblast cell lines were isolated as described (Thompson et al., 2004) using 

skin biopsies from wild-type and Cry1-/-Cry2-/- mice.  Fibroblasts underwent spontaneous 

immortalization.  Figure 2.1 shows Western blots confirming the loss of CRY1 and CRY2 

protein expression in the Cry1-/-Cry2-/- cell line.   

 Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; Gibco) 

supplemented with 10% fetal bovine serum (Gemini) and 100 units/ml penicillin and 100 

μg/ml streptomycin (Gibco).  Cells were maintained in an incubator at 37°C under 5% CO2.  

For growth rate measurements, cells were plated in 150mm plates at low density to ensure 
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continued proliferation throughout the duration of the experiment.  Cells were trypsinized 

and counted at the indicated timepoints using a hemocytometer. 

 Cell survival to radiation was determined by clonogenic assay.  Wild-type and Cry1-/-

Cry2-/- fibroblasts were plated at low density to ensure the formation of approximately 200 

colonies per 100 mm plate in the absence of radiation treatment.  Following plating, cells 

were incubated in growth medium for 10-14 hours and then treated with either ultraviolet 

(UV) or IR of appropriate doses.  UV treatment at the indicated doses was performed using a 

GE germicidal lamp emitting mainly at 254 nm.  Cells were washed with PBS, irradiated 

with UV at a fluence rate of 0.65 J/m2s in the absence of growth medium, and new growth 

medium was added after treatment.  For IR treatment, cells in growth medium were irradiated 

from a cesium-137 radiation source at a rate of 0.82 Gy/min.  After radiation treatment, cells 

were incubated for 9-10 days until colonies were readily visible.  Cells were fixed for 20 

minutes in 3:1 methanol:acetic acid, rinsed with water, and stained with Giemsa stain.  

Colonies containing 50+ cells were scored.   

Flow Cytometry   

Fibroblasts were grown in DMEM and plated to achieve a density of 1-2 million cells 

at the time of experiment.  Cells were treated with IR as described above.  At the indicated 

time post-treatment, cells were trypsinized and fixed in 70% ethanol.  DNA content analysis 

was performed using propidium iodide staining and a Beckton-Dickinson FACScan 

analytical flow cytometer.  Data acquisition and representation was done with Cicero 

Software (Cytomation, Inc.).  
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Western Blotting   

Standard western blotting procedures were used for CRY1, CRY2, WEE1, c-MYC, 

and BMAL1 proteins from wild-type and Cry mutant mouse liver extracts and fibroblast cell 

lysates.  For some of the western blots we used livers from Cry mutant mice in an rd/rd 

background because of the ready availability of these animals (Thompson et al., 2004).  The 

rd mutation does not affect the molecular clock (Young and Kay, 2001; Reppert and Weaver, 

2002).  Anti-CRY antibodies produced in our laboratory were used to probe for CRY1 and 

CRY2 proteins.  Anti-WEE1 rabbit polyclonal antibody (H-300, Santa Cruz Biotechnology) 

and anti-cMYC mouse monoclonal antibody (9E10, Santa Cruz Biotechnology) were used to 

probe for WEE1 and c-MYC, respectively.  Anti-BMAL1 guinea pig polyclonal antibody 

(Lee et al., 2001) was a kind gift of Dr. Choogon Lee (Florida State University).  Anti-IgG 

rabbit and mouse antibodies (Amersham Pharmaceuticals) and anti-IgG guinea pig antibodies 

(Jackson Immunoresearch Laboratories) were used for secondary antibody blotting. 
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Results 

Expression of BMAL1, WEE1, and c-MYC in Cryptochromeless Mice and Fibroblasts  

In the conventional clock model, CLOCK and BMAL1 constitute the positive 

regulatory branch while the CRYs and PERs make up the negative branch of the 

autoregulatory oscillatory circuit (Figure 1.1).  In addition, CRYs and PERs appear to 

stimulate transcription of BMAL1 by an ill-defined mechanism (Young and Kay, 2001; 

Reppert and Weaver, 2002).  As a consequence, Per and Cry mutants often exhibit similar 

molecular and behavioral phenotypes.  However, it must be noted that there are subtle but 

significant differences between Cry and Per mutant mice.  Hence, it is not possible to predict 

the responses of Cry or Per mutant cells and mice to a certain treatment based on responses 

observed with their Per or Cry mutant counterparts, respectively. 

 Recently, it was reported that in Cry mutant mice, the level of anti-mitotic WEE1 

kinase was elevated in the liver (Matsuo et al., 2003) and that in Per2 mutant mice, c-Myc 

transcription was upregulated (Fu et al., 2002).  Both genes are CCGs that contain multiple 

E-boxes in their promoters, which are recognized by the CLOCK-BMAL1 complex.  In the 

case of wee1, the binding of CLOCK-BMAL1 to the promoter stimulates transcription; in the 

case of c-Myc, binding of the heterodimer (or of the CLOCK-NPAS2 complex) inhibits 

transcription.  The elevation of WEE1 in the Cry mutant was ascribed to the lack of 

inhibition of CLOCK-BMAL1 by CRY (Matsuo et al., 2003; Oishi et al., 2003).  

Upregulation of c-Myc transcription in the Per2 mutant was ascribed to the reduced level of 

BMAL1 because PER2, in addition to its inhibitory effect on the CLOCK-BMAL1 complex, 

stimulates transcription of the Bmal1 gene (Fu et al., 2002, Hogenesch et al., 2003, Shearman 

et al., 2000).  Thus, to begin to investigate the effect of cryptochrome knockout on cellular 
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and organismic response to DNA damage, I wished first to determine the expression of 

BMAL1, c-MYC, and WEE1 in Cry mutant mice and fibroblasts.  Loss of expression of both 

CRY1 and CRY2 proteins in knockout mice and derived fibroblasts was confirmed by 

Western blotting (Figure 2.1).   

BMAL1 is expressed very highly and at comparable levels in wild-type and Cry 

mutant fibroblasts (Figure 2.2 A).  However, in comparing BMAL1 expression in the liver, I 

find that BMAL1 is expressed with a circadian periodicity in wild-type liver, but at a reduced 

and non-oscillating level in the Cry mutant (Figure 2.2 B), in agreement with a previous 

report (Lee et al., 2001).  The level of c-MYC has not been previously analyzed in Cry 

mutant mice.  However, it was reported that c-Myc transcription is upregulated in Per2 

mutant mice, presumably due to a reduced BMAL1 level (Fu et al., 2002).  Since BMAL1 is 

reduced in the Cry mutant, I expected to observe elevated c-MYC levels in Cry mutant mice 

and possibly fibroblasts as well.  Figure 2.2 C, D shows that c-MYC is expressed in mutant 

and wild-type fibroblasts at comparable levels and at statistically indistinguishable and non-

oscillating levels in the livers of mutant and wild-type mice.  These results differ from those 

of the previous study, which reported that reduction in BMAL1 levels as a consequence of 

Per2 mutation causes a substantial increase in c-MYC activity (Fu et al., 2002).  However, in 

that study the c-Myc RNA, but not protein level, was measured.  Regardless the cause of the 

discrepancy between the two studies it appears that a decrease in the BMAL1 transcriptional 

regulator does not necessarily lead to increased c-MYC protein in the mouse liver or 

fibroblasts. 

Because it has been reported that CRY and PER regulate Wee1 (Matsuo et al., 2003) 

and c-Myc transcription through their effects on BMAL1 activity and Bmal1 transcription, 

 34



respectively, I reasoned that the reduced BMAL1 in the Cry mutant would be accompanied 

by elevated WEE1. Figure 2.3 A, B shows that WEE1 is indeed elevated in Cry mutant 

fibroblasts and liver, respectively, relative to the wild-type control and the moderately 

elevated (relative to the low level of WEE1 in wild-type mice) WEE1 in Cry mutant liver 

does not oscillate, in agreement with previous reports (Matsuo et al., 2003; Oishi et al., 

2003).   

DNA Damage Checkpoints and DNA Repair in CRYPTOCHROMEless Fibroblasts 

 WEE1 is a cell cycle kinase that plays a key role in the G2/M transition.  Ongoing 

DNA replication or the presence of DNA damage activate WEE1, which then phosphorylates 

Y14 of the CDC2 mitotic kinase, causing its inactivation and delay of mitosis or arrest of the 

cell cycle at the G2/M interface (Nyberg et al., 2002; Sancar et al., 2004).  It is conceivable 

that elevated WEE1 in Cry mutant mice phosphorylates CDC2 at an increased rate even in 

non-stressed cells, slowing down the G2/M transition and the overall growth rate.  Indeed, it 

was reported that 3 days after partial hepatectomy the regenerating liver of 

CRYPTOCHROMEless mice contained fewer mitotic figures and lagged in weight recovery 

by about 15% relative to the wild-type control (Matsuo et al., 2003).  Based on these 

considerations, then, I expected CRYPTOCHROMEless fibroblasts to grow more slowly 

than wild-type fibroblasts and to arrest for a longer period at the G2/M boundary after DNA 

damage, possibly remaining at this interface indefinitely and thus undergoing replicative 

death.  Interestingly, I did not observe either of these two effects.  First, 

CRYPTOCHROMEless fibroblasts grew at a rate indistinguishable from wild-type 

fibroblasts under standard growth conditions (Figure 2.3 C).  Second, and more importantly, 

after 8 Gy of IR the CRYPTOCHROMEless fibroblasts appear to arrest at the G2-M and to 
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recover from this arrest at the same rate as wild-type fibroblasts (Table 2.1).  It is likely that 

multiple factors contribute to the difference between the reported effect of CRY on liver 

regeneration rate and our results with tissue culture.  It is also possible that the tissue culture 

conditions do not possess the requisite sensitivity to detect a 15% difference in growth rate.  

Regardless of these considerations, however, it is safe to conclude that the approximately 3-

fold increase in WEE1 level in CRYPTOCHROMEless cells does not cause a comparable 

decrease in cell growth rate and it has no detectable effect on the DNA damage checkpoint 

response.   

 As a further test of DNA damage checkpoint response in the absence of a functional 

clock, I determined the survival of CRYPTOCHROMEless fibroblasts to ultraviolet and 

ionizing radiation.  Figure 2.4 shows that the Cry mutant is indistinguishable from wild-type 

in its response to both genotoxicants.  As most checkpoint defects increase cellular sensitivity 

to genotoxicants (Nyberg et al., 2002; Sancar et al., 2004) these results further confirm the 

conclusion based on Table 1 that, in the absence of CRY, DNA damage checkpoints are 

normal.  Of equal significance, the data in Figure 4 also reveals that nucleotide excision 

repair (as measured by UV resistance) and double-strand break repair (as measured by 

resistance to IR) are unaffected by loss of the clock.  Thus, I conclude that, in the absence of 

a circadian clock, both DNA damage checkpoints and the two major DNA repair pathways 

for repairing base damage and backbone breaks operate essentially normally.   

IR-induced Morbidity and Mortality in CRYPTOCHROMEless/Clockless Mice   

Per2 mutant mice lack circadian rhythm and were reported to be more sensitive to the 

acute and chronic effects of ionizing radiation relative to wild-type controls (Fu et al., 2002).  

The acute effects included hair graying, hair loss, and skin ulcerations.  Chronic effects were 
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an approximately 10-fold increase in incidence of lymphomas relative to wild-type controls 

and a comparable increase in mortality within 70 weeks following treatment with 4 Gy of IR.  

The increased incidence of lymphomas and higher mortality rate were ascribed in part to the 

elevated c-Myc and in part to a general dysregulation of cell cycle genes as a result of clock 

disruption. 

 To determine whether or not clock disruption by any means has similar effects on IR-

induced morbidity and mortality, I irradiated 8-week old Cry1-/-Cry2-/- mice and wild-type 

controls with 4 Gy of IR at ZT10 and followed their survival for 90 weeks.  The results 

obtained differed from those obtained with Per2 mutant mice.  First, I did not observe a 

difference in the timing and intensity of hair graying and loss between Cry mutant and wild-

type mice (data not shown).  Second, and most significantly, over the 90-week observation 

period there was no significant difference in the mortality of irradiated Cry mutant mice and 

wild-type mice (Figure 2.5).  Moreover, in contrast to the similarly treated Per2 mutant mice, 

I did not detect overt lymphomas in irradiated Cry mutant animals.  The irradiated mice died 

from a variety of causes including genitourinary prolapses and infections, paralysis, and 

seizures that necessitated euthanasia, and in some cases from indeterminable causes.  

Importantly, however, there was no detectable difference between the causes of death of 

CRYPTOCHROMEless and wild-type animals.  These results suggest that clock disruption 

per se does not make mice hypersensitive to the acute effects of IR, nor does it predispose 

them to increased incidence of spontaneous of IR-induced cancers or mortality from any 

other cause.  The significance of these findings is discussed in detail in the Discussion 

section.   
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 In addition to examining the chronic effects of IR on mice, I was also interested in the 

acute effects of IR in wild-type and Cry1-/-Cry2-/- animals.  A small cohort of wild-type (8; 4 

males and 4 females) and Cry1-/-Cry2-/- (8; 4 males and 4 females) were irradiated with a 

higher dose of 6 Gy IR at 8 weeks of age at ZT 10.  Interestingly, I found that there was a 

difference in the acute effects of IR between wild-type and Cry1-/-Cry2-/- mice (Figure 2.6).  

Both male and female wild-type mice showed a strong acute response to IR, displaying a 

high amount of hair graying and/or hair loss.  However, while male Cry1-/-Cry2-/- mice 

showed a similarly strong acute IR response by hair graying and loss (Figure 2.6 A), female 

Cry1-/-Cry2-/- mice were largely unaffected, exhibiting very little if any hair graying or hair 

loss (Figure 2.6 B).  These results, though representative of only a small sample of 

individuals, would indicate that loss of Cry expression could protect against acute response to 

DNA-damaging agents, and that hormonal regulation, which is a primary physiological 

difference between females and males, may play an important role in this function.  This data 

is supported by a recent report by Gorbacheva and colleagues (Gorbacheva et al., 2005), 

showing that Cry1-/-Cry2-/- mice exhibit less morbidity relative to wild-type mice after 

treatment with cyclophosphamide, a chemotherapeutic drug which causes DNA damage by 

alkylation.   
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Discussion 

Circadian Cycle and Cell Cycle   

The circadian cycle and cell cycle are two global regulatory mechanisms that directly 

or indirectly influence all biochemical reactions in cells.  Hence, it is logical to assume that 

disruption of one would cause deregulation of the other with adverse consequences for the 

cell (Bjarnason et al., 2000; Nagoshi et al., 2004; Welsh et al., 2004). Recent advances 

in understanding the circadian clock at the molecular level have provided the opportunity to 

approach the circadian cycle-cell cycle connection from a mechanistic perspective.  Thus, it 

was reported that the core circadian clock machinery affects cell cycle progression in 

proliferating cells by controlling the expression of WEE1, a kinase that regulates the activity 

of CDC2 and hence the G2/M transition (Matsuo et al., 2003).  Another study concluded that 

Per2 mutant mice had constitutively elevated levels of the cell growth/proliferation gene c-

Myc and reduced expression of p53, which plays a critical role in the G1/S checkpoint (Fu et 

al., 2002).  Finally, our laboratory has recently found that the mammalian TIM plays a direct 

role in cell cycle checkpoints including the intra-S and replication checkpoints (Unsal-

Kacmaz et al., 2005).  Although the role of the mammalian TIM in the circadian clock is a 

matter of some debate (Barnes et al., 2003; Gotter et al., 2000), these studies in aggregate 

have given credence to the general view that circadian disruption by whatever means may 

lead to a failure of cell cycle checkpoints (Fu and Lee, 2003).  However, this view needs to 

be critically tested experimentally.  In particular, it remains to be determined if proteins that 

have been presumed to be exclusively clock proteins such as CLOCK and BMAL1, which 

work as partners in the positive branch of the clock, and CRY and PER, which work as 

partners in the negative branch, also perform functions outside of the clock and unique to 
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each protein.  In the case of mammalian TIM, it is clear that the protein participates in cell 

cycle control independent of its role in the clock (Unsal-Kacmaz et al., 2005).  If the so-

called canonical clock proteins CLOCK, BMAL1, CRY, and PER have unique cellular 

functions outside of the clock machinery, then the mutants of these proteins are expected to 

exhibit some unique features as well.  An additional possibility is that different clock mutants 

disturb the circadian cycle in different ways, leaving a different pattern of circadian genes 

“on” and “off” depending on when the clock stops.  Although the molecular clock does not 

“stop” at a given time but rather falls into a stable equilibrium that terminates the cycles in 

the abundance of its components, one can imagine that leaving certain circadian genes “on” 

or “off” might cause a susceptibility to cancer or not, without necessarily making cancer 

susceptibility caused by clock disruption specific to a particular clock gene.  Moreover, cell 

cycle and carcinogenic transformation are also regulated by homeostatic mechanisms and 

therefore a potentially cell cycle-disruptive effect of a clock gene mutation might be 

mitigated or completely alleviated by such compensatory mechanisms.  As a consequence, a 

priori it cannot be known whether all circadian disruptions will have the same effect on cell 

cycle and DNA damage checkpoints and whether their potential cell cycle-disruptive effects 

will necessarily lead to actual disruption. 

Cell Cycle Checkpoints in the Absence of Circadian Rhythm   

In this study I analyzed the growth properties, cell cycle checkpoints, and DNA repair 

capacity of Cry1-/-Cry2-/- fibroblasts and the susceptibility to IR-induced cancer and mortality 

of Cry1-/-Cry2-/- mice.  Based on published reports of Cry and Per mutations on cellular 

growth (Matsuo et al., 2003) and damage response (Fu et al., 2002), I was expecting the Cry 
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mutants to be defective in DNA damage checkpoints and to exhibit increased IR-induced 

morbidity and mortality for the reasons outlined below. 

 First, current clock models presume that CRY and PER function as heterodimers and 

since it has been reported that in Per2 mutant mice, c-Myc is upregulated, p53 is 

downregulated, and there is a general cell cycle dysregulation (Fu et al., 2002), I expected 

that the Cry mutant fibroblasts would exhibit some cell cycle checkpoint defects and that the 

Cry mutant mice, like the Per2 mutants, would be cancer-prone.  I find that in Cry mutant 

livers, BMAL1 expression, as in the case of the Per2 mutant, is reduced.  However, in an 

apparent contrast to the Per2 mutant mice, the c-MYC level is not elevated in either Cry 

fibroblasts or mice, indicating that PERs and CRYs affect c-Myc expression differently.  It 

must be noted, however, that in the Per2 mutant mice the c-Myc RNA, but not the protein 

level, was measured.  It is conceivable that even in the Per2 mutant mice the elevated level 

of c-Myc mRNA is not accompanied by elevated c-MYC protein and that the increased 

incidence of spontaneous and IR-induced lymphomas reported in these animals was caused 

by an unknown effect of PER2 on cell growth and proliferation. 

 Second, it was reported (Matsuo et al., 2003) that WEE1 kinase, which inhibits the 

G2/M transition, is elevated in Cry mutant mice and evidence was presented suggesting that 

after partial hepatectomy, the liver of Cry mutant mice regenerates more slowly than that of 

wild-type controls, presumably because of inhibition of mitosis by elevated WEE1.  In 

agreement with previous reports (Matsuo et al., 2003; Oishi et al., 2003), I find that WEE1 is 

elevated in Cry mutant fibroblasts and liver and other tissues of Cry mutant mice.  However, 

despite this elevation in WEE1 level the Cry mutant fibroblasts grow at a rate 

indistinguishable from the wild-type controls.  It appears that exponentially growing cultures 
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of mutant fibroblasts had fewer mitotic figures than wild-type (data not shown); I assume that 

a slight delay in mitotic entry was compensated by faster progression through other phases of 

the cell cycle such that there was no change in overall growth rate relative to the control.  

Importantly, the mutant cells did not exhibit an amplified checkpoint response to DNA 

damage and, as a consequence, their kinetics of checkpoint-induced inhibition of cell cycle 

progression through G2/M was indistinguishable from wild-type controls.  This again 

indicates the presence of compensatory mechanisms that ensure normal checkpoint response 

even in the presence of elevated WEE1.  These results appear to be contradictory to the 

report indicating slower recovery of liver mass in Cry mutant mice after partial hepatectomy 

(Matsuo et al., 2003).  However, it is possible that the apparent discrepancy may stem from 

differences in stress responses induced by DNA damaging agents, as opposed to partial 

hepatectomy, and the nature of the cell types analyzed in the two studies. 

Circadian Disruption and Cancer Predisposition   

Epidemiological studies have suggested that circadian disruption may contribute to 

cancer incidence (Stevens, 2005) and adversely affect the course of the disease (Mormont 

and Levi, 1997).  A prospective study with Per2 mutant mice appears to have provided a 

molecular explanation for the connection between circadian rhythm disruption and cancer 

predisposition.  My work indicates that disruption of the clock does not necessarily 

predispose mice to cancer.  The cancer predisposition of Per2 mutant mice was ascribed, in 

large part, to decreased BMAL1 expression and the consequent increase in c-Myc expression.  

BMAL1 expression is reduced in both Per2 and Cry mutant mice (Fu et al., 2002; Lee et al., 

2001; this work) and hence it remains to be proven that the increased c-Myc transcription 

reported in Per2 mutant mice is a direct consequence of BMAL1 reduction, which, in the 
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form of either BMAL1-NPAS2 or BMAL1-CLOCK heterodimer, represses c-Myc 

transcription (Fu et al., 2002).  Whatever the cause of elevation of c-Myc transcription in 

Per2 mutants, I do not observe a measurable change in the c-MYC protein level in Cry 

mutant mice and hence it is possible that the absence of PER2 makes mice cancer-prone not 

by overexpression of c-Myc but through an unknown mechanism.  It must be noted, however, 

that the IR-induced mortality of the wild-type mice in our study was the same as that of the 

Cry mutant and, importantly, it was significantly higher than that of the wild-type control 

mice used in the Per2 mutant mouse study.  It is possible that the genetic background 

(C57BL/6J in our study and C57/SV129 in the Per2 study) affects the susceptibility of even 

“wild-type” mice to both IR-induced cancers and IR-induced mortality.  In my study both the 

Cry mutant and the wild-type control mice were in C57BL/6J background and therefore we 

suggest that the lack of difference in morbidity and mortality between the wild-type and Cry 

mutant mice is most likely because circadian clock disruption by eliminating Cry does not 

affect cell cycle checkpoints, DNA repair, or apoptosis in a way that would result in 

increased mutations, reduced apoptosis, and eventually cancer.   

 It should be of interest to find out how mutations in other clock genes, in particular 

Clock and Bmal1, affect the incidence of spontaneous and IR-induced cancers.  A report was 

recently published demonstrating that the sensitivity of mice to the acute effects (weight loss 

and death) of high doses of cyclophosphamide, an alkylating anti-cancer drug, was strongly 

dependent on the circadian time of drug delivery (Gorbacheva et al., 2005) and that the Cry 

mutant used in my study was resistant to the acute effects of cyclophosphamide at all times 

of the day.  Clearly, further studies are needed to explain the apparent resistance of Cry 

mutant mice to the acute effects of cyclophosphamide and, if reproducible, to the acute 
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effects of IR as well as shown by my studies.  Regardless the precise mechanism of the 

resistance, the results of the study on the acute effects of a DNA damaging agent and our 

study on the long-term effects of IR are, in general, in agreement in demonstrating that clock 

disruption per se does not make mice more susceptible to the acute or chronic effects of DNA 

damaging agents. 
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Figure 2.1.   Confirmation of loss of CRY1 and CRY2 proteins in Cry1-/-Cry2-/- mice.  
The figure shows Western blots of (A) cellular lysate from WT and Cry1-/-Cry2-/- (KO) 
fibroblast cell lines and (B) liver extracts from WT and Cry1-/-Cry2-/- (KO) mice.  Protein 
expression was observed using immunoblotting with anti-CRY1 and anti-CRY2 monoclonal 
antibodies.  * denotes the CRY-reactive species. 
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Figure 2.2.   Effect of CRYPTOCHROME on BMAL1 and c-MYC Expression in 
Mouse Fibroblasts and Mouse Liver.  (A and B) BMAL1 expression analysis.  (A) (200 
μg) from wild-type (WT) or Cry mutant fibroblasts were analyzed for BMAL1 expression by 
Western blotting using actin as a loading control.  (B) Liver extracts from wild-type (WT) 
and Cry mutant mice were prepared at the indicated zeitgeiber times (ZT0 = lights on, ZT12 
= lights off) and analyzed for BMAL1 expression using actin as a loading control.  It has 
been reported that in the liver of WT mice, BMAL1 levels are lowest at ZT6 and highest at 
ZT18.  (C and D)  c-MYC expression analysis.  Extracts (200 μg) from fibroblasts (A) or 
mouse liver (B) were probed for c-MYC and actin by Western blotting.  Top, western blot; 
bottom, quantitative analysis of Western blot.  Averages of 3 independent experiments, 
including the one shown in top panel.  Bars indicate standard deviation (n=3).  
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Figure 2.3.   Effect of CRY on WEE1 Expression and Growth Rate of Mouse 
Fibroblasts.  (A and B) WEE1 expression analysis.  Extracts (200 μg) from fibroblasts (A) 
or mouse liver (B) were probed for WEE1 and actin by Western blotting.  Liver extracts were 
prepared at the indicated zeitgeiber times.  (C) Growth kinetics of immortalized fibroblasts 
from wild-type (circle) and Cry1-/-Cry2-/- (triangle) are shown.  Cells were plated at densities 
of approximately 104 cells/dish and cells were counted at the indicated timepoints.  Error bars 
indicate standard deviation (n=3).   
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Figure 2.4.   Radiation Survival of Wild-type and Cryptochrome Mutant Fibroblasts.  
(A) UV survival; (B) IR survival.  Circle, wild-type; triangle, Cry mutant.  Data points are 
averages of 3 independent experiments and the error bars indicate standard deviation (n=3).   
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Figure 2.5. IR survival of wild-type (solid line) and Cry1-/-Cry2-/- (broken line) mice.  
8-week-old mice were exposed to 4 Gy at ZT10 and were observed for 90 weeks.  Survival is 
plotted according to the Kaplan-Meier method.   
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Figure 2.6.   Acute Effect of IR on Wild-type and Cry1-/-Cry2-/- mice.  8-week-old mice 
were exposed to 6 Gy at ZT10 and were observed for 20 weeks (males) or 12 weeks 
(females).  (A) Male wild-type and Cry1-/-Cry2-/- mice; photographs were taken 20 weeks 
post-treatment.  (B) Female wild-type and Cry1-/-Cry2-/- mice; photographs were taken 12 
weeks post-treatment. 
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A 
WT ♂ Cry1-/-Cry2-/- ♂ 

B 
Cry1-/-Cry2-/- ♀ WT ♀ 
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Table 2.1. G2-M checkpoint in wild-type and Cry mutant fibroblasts after ionizing 
radiation treatments.  Exponentially growing cells were irradiated and at the indicated 
times were fixed, stained with propidium iodide, and analyzed by flow cytometry for DNA 
content.  The percentage of cells in G2 and M at 0, 8, and 24 h are shown in bold to highlight 
the G2-M arrest and subsequent recovery.  Percentages are average values from 3 individual 
experiments. 
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CHAPTER 3 
 

NEGATIVE REGULATION OF CLOCK-BMAL1 BY 
CRYPTOCHROME 

 

Summary 

 Although it is known that mammalian CRYPTOCHROME represses transcription by 

CLOCK-BMAL1, the biochemical mechanism by which this occurs is unknown.  In vitro 

experiments were performed to determine the direct effect of CRY1 on DNA binding of the 

CLOCK-BMAL1 heterodimer.  Assays were performed with purified mammalian BMAL1, 

CRY1, CLOCK, and CLOCK342 (a 342-aa truncation of CLOCK).  I find that, although 

experiments with full-length CLOCK are inconclusive, CRY1 has no observable effect on 

the binding of CLOCK342-BMAL1 to an E-box DNA substrate.  Additionally, I investigated 

the induction of CLOCK342-BMAL1 DNA binding by two agents, NADH and DTT in 

response to conflicting reports that NADH or DTT can increase the DNA binding of the 

heterodimer complex.  I find that under one set of reaction conditions, NADH can increase 

the DNA binding of the CLOCK342-BMAL1 heterodimer while DTT cannot, and under a 

slightly different set of conditions DTT can increase heterodimer DNA binding while NADH 

cannot.  The physiological relevance of these findings is in question, as the NADH 

concentrations used are likely out of the range of physiological levels and DTT is not a 

physiologically relevant agent.   

 



Introduction 

The current model of the mammalian molecular clock depicts a network of positive 

and negative transcriptional feedback loops (Figure 1.1).  In this model, the CLOCK-

BMAL1 heterodimer drives the positive arm of the feedback loop, activating transcription of 

the clock genes Period and Cryptochrome (along with other CCGs).  In the negative arm of 

the feedback loop, PER and CRY proteins negatively regulate their own expression by 

inhibiting CLOCK-BMAL1.  There is much genetic evidence and molecular evidence to this 

model:  Cry1-/-Cry2-/- knockout mice show elevated levels of Per1 transcript, while Per 

mutant animals show elevated levels of Cry transcript (Sancar, 2000; Fu et al., 2002);  

numerous reports have shown that CRY can inhibit activity of CLOCK-BMAL1 in luciferase 

reporter gene assays (Sato et al., 2006).  While both CRY and PER proteins repress CLOCK-

BMAL1, CRY1 and CRY2 have been shown to inhibit the complex more strongly than PER 

proteins (Maemura et al., 2000; Shearman et al., 2000; Gotter et al., 2000).  

Although it is known that CRY functions in the mammalian circadian clock as a 

repressor of CLOCK-BMAL1, the molecular mechanism by which this occurs is unknown.  

Recent studies in the mammalian system along with Drosophila and zebrafish have 

postulated numerous possible mechanisms.  The mammalian CRY proteins have been found 

to interact with CLOCK and BMAL1, by both yeast two-hybrid (Griffin et al., 1999) and 

immunoprecipitation assays (Lee et al., 2001). It is likely that this interaction is important for 

CRY’s negative regulation of CLOCK-BMAL1, either through direct or indirect effects on 

the complex, since it correlates with the time of highest CRY repression (Lee et al., 2001).   

One possible mechanism by which CRY represses CLOCK-BMAL1 is through 

modulation of post-translational modifications.  In Drosophila, phosphorylation of dCLOCK 
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has been shown to be dependent on PER, perhaps through PER-dependent entry of 

DOUBLE-TIME kinase into the CLOCK-CYCLE complex (Yu et al., 2006).  In the 

Neurospora circadian clock, posttranslational modification of not the White-Collar Complex 

(analogous to mammalian CLOCK-BMAL1, the transcriptional activator) but its regulator 

FRQ changes FRQ from a repressor to an activator. In the mammalian system, transcriptional 

activation of CLOCK-BMAL1 correlates with phosphorylation of both proteins, nuclear 

translocation, and subsequent degradation (Kondratov et al., 2003).  CRY may be involved in 

one or more of these posttranslational modifications, possibly through recruitment of a kinase 

or other protein-modifying enzyme.  It is important to note that phosphorylation of CLOCK 

and/or BMAL1 is not necessary for their heterodimerization; however, phosphorylation may 

be important for interaction with the negative regulators CRY and PER, as it is mainly 

hyperphosphorylated CLOCK that immunoprecipitates with these proteins (Lee et al., 2001). 

Chromatin modification is involved in the regulation of expression of many 

mammalian genes, and has been proposed as a key regulator of CLOCK-BMAL1-activated 

transcription.  Histone modification through both aceytlation and methylation has been linked 

to circadian clock gene expression.  Rhythms in histone H3 aceytlation and trimethylation 

have been correlated with circadian gene expression (Etchegaray et al., 2003; Ripperger and 

Schibler, 2006; Naruse et al., 2004).  In addition to CLOCK’s recently-identified histone 

acetyltransferase (HAT) activity (Doi et al., 2006), the HAT p300 has been shown to 

immoprecipitate with CLOCK in a time-dependent fashion; additionally, CRY inhibits a 

p300-induced increase in CLOCK-BMAL1-activated transcription (Etchegaray et al., 2003; 

Ripperger and Schibler, 2006).  Overexpression of p300 can overcome CRY2-mediated 

repression of NPAS2-BMAL1 (Curtis et al., 2004).  The PCAF and ACTR HAT proteins 
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also associate with CLOCK and its ortholog NPAS2 (Curtis et al., 2004).  WDR5, a 

component of a histone methyltransferase complex, has been found to associate with PER1 

(Brown et al., 2005).  Finally, the polycomb group enzyme EZH2, which catalyzes 

methylation of histone H3, associates with both CLOCK and BMAL1 (Etchegaray et al., 

2006).  Taken together, it is likely that histone and chromatin modification plays at least 

some part in regulation of clock gene expression. 

Due to the physical interaction of CRY with CLOCK and BMAL1, it is possible that 

CRY directly affects the CLOCK-BMAL1 complex’s DNA binding properties.  This could 

occur in a number of ways (Figure 3.1).  CRY could prevent CLOCK-BMAL1 from binding 

to E-box DNA, perhaps through formation of a trimeric complex or causing conformational 

change in the CLOCK-BMAL1 heterodimer (Figure 3.1, #1).  Such a mechanism has been 

proposed in the Drosophila circadian clock, where the negative regulators PER and TIM 

inhibit the DNA binding of CLOCK-CYC without appearing to disrupt the heterodimer itself 

(Lee et al., 1999).  Alternatively, CRY could form a trimeric complex with CLOCK-BMAL1 

that, while still binding to E-box DNA, is no longer transcriptionally active (Figure 3.1, #2).  

This has been implicated in the zebrafish circadian system, in which zCRY1a forms a large 

complex on DNA with zBMAL and zCLOCK (Ishikawa et al., 2002). A third possibility is 

that CRY disrupts the CLOCK-BMAL1 heterodimer by replacing one of the components 

(Figure 3.1, #3).  Although the aforementioned studies suggest mechanisms in the 

Drosophila and zebrafish clock systems, both studies are missing important experimental 

controls which are necessary for conclusions to be drawn.  The DNA-binding status of 

CLOCK-BMAL1 throughout the circadian cycle is somewhat controversial.  It has been 

reported that the CLOCK-BMAl1 heterodimer is constitutively bound to DNA throughout 
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the circadian cycle (Lee et al., 2001).  However, a recent report by Ripperger and Schibler 

contradicts this somewhat, showing that CLOCK-BMAL1 is rhythmically bound to E-box 

DNA and this binding is correlated with changes in chromatin modification and expression 

of the mouse clock-controlled gene Dbp (Ripperger and Schibler, 2006).   

In light of the conflicting evidence concerning the mechanism of CRY’s negative 

regulation of CLOCK-BMAL1, we examined the effect of CRY on direct DNA-binding of 

CLOCK-BMAL1 in in vitro DNA-binding assays.  We find that CRY has no effect on the 

DNA-binding of a heterodimer consisting of BMAL1 and CLOCK342, a 342-amino acid 

fragment of CLOCK.  Future studies must be done with purified full-length CLOCK to 

determine what the effect of CRY is on what is thought to be a more physiologically relevant 

protein. 
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Experimental Procedures 
 
Expression and Purification of Recombinant mBMAL1 and hCLOCK from SF-21 cells 
 
 mBMAL1 and hCLOCK proteins were expressed and purified from SF-21 cells as 

described in the Bac-to-Bac Baculovirus standard protocol (Invitrogen).  Baculovirus for 

expression of Flag-His-mBMAL1 was created by cloning into the pFastBac expression 

vector by Dr. Laura Lindsey-Boltz.  Flag-His-mBMAL1 has a single Flag and a single 6xHis 

tag N-terminal to mBMAL1.  Baculovirus for expression of Flag-hCLOCK was created by 

cloning into the pFastBac expression vector (by Dr. Christopher Selby) and the virus was 

prepared by Dr. Sezgin Ozgur.  Flag-hCLOCK has a single Flag tag N-terminal to hCLOCK.   

 For expression and purification of Flag-His-mBMAL1 and Flag-hCLOCK, 300 ml of 

SF-21 cells at a density of 1 x 106 cells/ml were inoculated with the appropriate virus (MOI = 

30-100).  Cells were incubated at 27° C for 48 hours after virus inoculation.  The cells were 

then harvested by centrifugation at 3000 rpm for 10 minutes and washed once with 1X 

phosphate-buffered saline (PBS).  The cell pellets were frozen and kept at -80° C until 

purification.  The cell pellets were subjected to three freeze-thaw cycles before lysis.  Cells 

were lysed in NP-40 lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10% glycerol (v/v), 1% 

Tween-20 (v/v), 0.1% NP-40 (v/v)) by sonication (8 cycles of 30 seconds), Dounce 

homogenization (10 rounds), and, in the case of Flag-hCLOCK, shearing through a 22g 

needle; this led to 50-80% protein solubility in both cases.  Soluble cell lysate was prepared 

by centrifuging the cell lysis mixtures at 15000 rpm for 45 minutes at 4°C.  The supernatant 

was incubated overnight with Flag-agarose (Sigma; 150-300 μl packed resin) at 4°C.  The 

resin was then centrifuged at 4000 rpm for 5 minutes and flow-through removed and 

discarded.  The resin was washed with lysis buffer, tris-buffered saline (TBS) with 1M NaCl, 
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TBS, and TBS with 10% glycerol (15 ml each wash).  Bound protein was eluted in 200-400 

μl of elution buffer (TBS with 10% glycerol and 0.1 mg/ml Flag-peptide) and purification 

products were visualized using silver staining.  Protein concentration was determined using 

the Bio-Rad protein assay and absorbance at 595 nm. 

Expression and purification of His-mCLOCK342 in E. coli 

His-mClock342 had been previously cloned into the pet15b bacterial expression 

vector (Novagen) by Dr. Christopher Selby.  The expression construct was transformed into 

and expressed in BL-21 Gold (Invitrogen) bacterial cells.  His-mCLOCK342 expression was 

induced in 1 L of cells at an O.D. of 0.45 using 0.2 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and shaking at room temperature for 8 hours.  Bacteria were 

harvested by centrifugation at 4000 rpm for 10 minutes and washed once with 1X PBS.  

Expression using this system resulted in nearly 100% insoluble His-CLOCK342 which was 

subsequently purified by extraction and salvation from inclusion bodies.  After washing with 

PBS, the cell pellet was resuspended in 20 ml of resuspension buffer (10 mM Tris pH 8.0, 

100 mM NaCl, 1 mM EDTA) and sonicated (5 cycles of 30 seconds).  The mixture was 

centrifuged for 10 minutes at 10000 rpm and the supernatant discarded.  The pellet was then 

resuspended in 20 ml of homogenizing buffer (50 mM Hepes pH 7.9, 2 mM EDTA, 0.1 mM 

DTT, 0.05% deoxycholate, 1% Triton X-100, 5% glycerol) and subjected to 10 cycles of 

Dounce homogenization.  Inclusion bodies were collected by centrifugation for 10 minutes at 

10000 rpm.  Inclusion bodies were then stirred overnight at 4°C in 40 ml of denaturing buffer 

(20 mM Hepes pH 7.9, 500 mM KCl, 0.2 mM EDTA, 2 mM DTT, 8M urea).  The 

resolubilized mixture was centrifuged to remove precipitate and the supernatant containing 

the solubilized His-CLOCK342 was dialyzed against storage buffer (20 mM Hepes pH 7.9, 
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100 mM KCl, 0.2 mM EDTA, 2 mM DTT).  Dialyzed protein was centrifuged to remove 

precipitate and soluble His-CLOCK342 was visualized using Coomassie staining.  Protein 

concentration was determined using the Bio-Rad protein assay and absorbance at 595 nm. 

Expression and purification of Flag-Myc-His-hCRY1 in HEK293T cells 

Flag-Myc-His-hCry1 had been previously cloned into the pcDNA4 mammalian 

expression vector (Invitrogen) by Dr. Carrie Partch.  The construct included a single Flag, a 

single Myc, and a single 6xHis tag at the N-terminus of hCry1.  This construct was 

transfected into HEK293T cells (20 150-cm plates; approximately 70% confluence) using 

standard calcium chloride transfection protocol.  After 48 hours, cells were harvested and 

washed once with 1X PBS.  Cells were lysed in NP-40 lysis buffer on ice for 20 minutes and 

then sonicated (5 cycles of 10 seconds); soluble cell lysate was prepared by centrifugation of 

the lysed cells at 15000 rpm for 45 minutes at 4°C.  The supernatant was incubated overnight 

with Flag-agarose (Sigma; 200 μl packed resin) at 4°C.  The resin was then centrifuged at 

4000 rpm for 5 minutes and flow-through removed and discarded.  The resin was washed 

with lysis buffer, tris-buffered saline (TBS) with 1M NaCl, TBS, and TBS with 10% glycerol 

(15 ml each wash).  Bound protein was eluted in 300 μl of elution buffer (TBS with 10% 

glycerol and 0.1 mg/ml Flag-peptide) and purification products were visualized using silver 

staining.  Protein concentration was determined using the Bio-Rad protein assay and 

absorbance at 595 nm. 

Electrophoretic Mobility Shift Assays (EMSAs) 

 EMSA was used to investigate the effect of hCRY1 on the DNA binding properties of 

the CLOCK-BMAl1 heterodimer.  Either a double-stranded 14mer containing a single E-box 

element (M34) or a double-stranded 58mer containing a single E-box element (E58), as 
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indicated in the figure legends, was used as the DNA probe in reactions at a concentration of 

approximately 1 nM.  Figure 3.3, panel A shows the sequences of the M34 and E58 

substrates.  The DNA probes were 5’-radiolabeled with 32P using a standard radiolabeling 

protocol.  Flag-His-mBMAL1, His-mCLOCK342, Flag-hCLOCK, and/or Flag-Myc-His-

hCRY1 were incubated at the indicated concentrations with 1 nM DNA probe in 25 μl 

reactions containing (unless otherwise indicated) 50 mM Tris pH 8.0, 100 mM KCl, 100 

μg/ml BSA, 1 mM EDTA, 8 mM DTT, 1 μg poly dI/dC, and 10% (v/v) glycerol for 20 

minutes at room temperature and 10 minutes at 4° C.  Reactions were loaded onto a pre-run 

4% nondenaturing polyacrylamide gel in 0.5X TBE (25 mM Tris-borate, pH 7.9, 0.6 mM 

EDTA) and electrophoresis was carried out at 4° C for approximately 3 hours.  After 

electrophoresis, the gel was dried and exposed to a PhosphorImager screen and analyzed by 

autoradiography using ImageQuant software.   
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Results 

Expression and Purification of Mammalian Circadian Clock Proteins 

Although genetic evidence shows that CRY inhibits transcriptional activation by 

CLOCK-BMAL1, there is little biochemical data indicating the mechanism by which this 

occurs.  For this reason, I decided to use a biochemical approach to answer this question, 

using electrophoretic mobility shift assays (EMSA) to directly assess the effect of CRY on 

CLOCK-BMAL1 DNA binding in an in vitro system.  Bacterial, baculovirus, and 

mammalian cell expression systems were used to purify CLOCK342, BMAL1, CLOCK, and 

CRY1 proteins (Figure 3.2).  The proteins were fused to small peptide tags to enable 

purification and to minimize any interference of the tags with protein folding or DNA 

binding.  Full-length hCRY1 (with N-terminal Flag, Myc, and 6xHis tags; Lane 2) was 

affinity-purified after transient transfection in HEK293T cells.  Flag-Myc-His-CRY1, of a 

molecular weight of ~65 kDa, was obtained in high purity using this system.  Full-length 

mBMAL1 (with N-terminal Flag and 6xHis tags; Lane 3) and hCLOCK (with a N-terminal 

Flag tag; Lane 5) were affinity-purified from SF-21 insect cells using the baculovirus 

expression system.  Flag-His-BMAL1, of a molecular weight of ~85 kDa, was obtained in 

high purity using this system.  Flag-CLOCK, of a molecular weight of ~105 kDa, 

consistently co-purified with a ~70 kDa contaminant protein.  This is likely Hsp70, perhaps 

associating with CLOCK due to its C-terminal poly-Q region.    

 Previously, a truncated from of mCLOCK containing the N-terminal 342 amino acids 

of the protein, which includes the bHLH and PAS domains, has been used successfully in 

EMSAs (Rutter et al., 2001).  A construct for bacterial expression of this protein (referred to 

here as CLOCK342) was obtained from Dr. Christopher Selby (UNC Chapel Hill).  
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CLOCK342 (with a N-terminal 6xHis tag; Lane 4) was expressed in and purified from E. 

coli; expression using this system generated exclusively insoluble protein that was 

subsequently purified from inclusion bodies.   

Effect of CRY on DNA-Binding of CLOCK-BMAL1 Heterodimers 

 Once the clock proteins were purified, their DNA-binding activity had to be 

determined.  This was done using electrophoretic mobility shift assays (EMSAs).  CLOCK-

BMAL1 activates transcription off of E-box DNA promoter elements (Gekakis et al., 1998) 

and has been shown to bind to E-box DNA elements specifically; therefore, as DNA 

substrates I used either a ds 14mer containing a single E-box (referred to as M34; Figure 3.3 

A) or a ds 58mer containing a single E-box (referred to as E58; Figure 3.3 B).  Under 

standard conditions, reactions containing full-length CLOCK alone result in a smear pattern, 

while CLOCK342 alone binds to DNA with extremely low affinity and again results in a 

slight smearing of the DNA (Figure 3.3 C, lanes 2 and 3).  BMAL1 has been shown to bind 

to DNA in the absence of CLOCK, presumably as a homodimer (Rutter, Reick, McKnight, 

Science 2001); I was able to reproduce this under standard conditions (Figure 3.3 C, lane 4).  

Formation of the CLOCK342-BMAL1 heterodimer was readily observable (Figure 3.3 C, 

lane 6), and was heavily favored over formation of the BMAL1 homodimer (compare lane 4 

to lane 6).  In comparison, when full-length CLOCK and BMAL1 were incubated together, 

although formation of the BMAL1 homodimer on DNA was inhibited, I was unable to 

observe discrete formation of CLOCK-BMAL1 heterodimer (Figure 3.3 C, lane 5).   For this 

reason, further experiments to determine the effect of CRY1 on heterodimer DNA-binding 

were performed using both the CLOCK-BMAL1 heterodimer and the CLOCK342-BMAL1 

heterodimer.   
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 Although CRY proteins share high homology with DNA photolyases, they lack any 

DNA repair activity (Sancar, 2000).  However, the similarity between the proteins suggests 

that CRY, like DNA photolyase, may also bind DNA in vivo.  Human CRY2 has been shown 

to bind to DNA, with a much higher affinity to single-stranded DNA than to double-stranded 

DNA; this binding was indifferent to DNA sequence but displayed a preference for DNA 

containing a (6-4) UV photoproduct (Ozgur and Sancar, 2003).  Human CRY1 also displayed 

DNA-binding activity on a double-stranded substrate with moderate-to-high affinity, 

qualitatively (Figure 3.4).  The previous work with hCRY2 suggests that hCRY1’s DNA-

binding activity is likely to be nonspecific, though this has yet to be conclusively determined.   

 I performed titration experiments with hCRY1 to determine the effect of increasing 

concentrations of the protein on the DNA-binding activity of the CLOCK-BMAL1 and 

CLOCK342-BMAL1 heterodimers.  Although I was unable to detect discrete formation of 

the CLOCK-BMAL1 heterodimer on DNA, I did observe a slow-migrating smear pattern 

which was unaffected by the addition of increasing concentrations of CRY1 (Figure 3.4).  I 

performed similar experiments using the CLOCK342-BMAL1 heterodimer, which formed a 

discrete species on DNA and led to more conclusive results.  These experiments were 

performed under conditions where CRY1 bound to DNA with both high affinity (Figure 3.5, 

left) and low affinity (Figure 3.4, right) to lessen the possibility that any inhibitory effect 

seen of CRY1 would be due to nonspecific competition.  In both cases, increasing 

concentrations of CRY1 had no observable effect on the DNA-binding intensity of 

CLOCK342-BMAL1.  These data would indicate that CRY1 does not affect the heterodimer 

by inhibiting its DNA-binding activity.  However, there are a number of caveats to this set of 

experiments.  First, it is possible that the type of assay used, EMSA, cannot observably 
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capture any inhibitory effect of CRY1 on the heterodimer.  Second, the truncated 

CLOCK342 protein may not be a physiologically relevant protein to use in this experiment.  

It may display an increased ability, relative to full-length CLOCK, to bind to DNA in the 

CLOCK342-BMAL1 heterodimer form, which could abrogate CRY1’s inhibitory effect.  

Also, as CLOCK342 is not full-length it may be missing a residue/motif necessary for 

repression and/or interaction with CRY1; this will be discussed further in the Discussion 

section.   

 It was also of interest to determine whether CRY1 can affect the binding of the 

individual clock proteins to DNA.  This is a relevant question due to the recent finding that 

CRY’s interaction with CLOCK and BMAL1 is increased when both CLOCK and BMAL1 

proteins are overexpressed, relative to interaction levels when only one of the proteins is 

overexpressed (Kiyohara et al., 2006).  Although a discrete DNA-binding species can only be 

seen in the case of BMAL1, it appears that CRY1 does not affect either discrete binding of 

BMAL1 homodimer to DNA or the lower-affinity binding of either CLOCK342 or CLOCK 

to DNA (Figure 3.6).   

Effect of NADH and DTT on CLOCK342-BMAL1 DNA-Binding Activity 

 It has been suggested that modulation of cellular redox state is the mechanism by 

which feeding entrains the circadian clock (Rutter et al., 2001).  Rutter and colleagues 

showed that addition of reduced NAD intermediates (NADH, NADPH), which change as a 

function of expression of lactate dehydrogenase (LDHA) during cellular respiration, increase 

DNA-binding activity of both NPAS2-BMAL1 and CLOCK-BMAL1 on a ds E-box DNA 

substrate.  However, experiments using homologous zebrafish clock proteins zfCLOCK2 and 

zfBMAL3 showed no NAD/NADH dependence, although increased concentration of DTT 
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resulted in increased DNA-binding activity of the heterodimer (Ishikawa et al., 2002).  

Additionally, previous experiments in our laboratory showed DTT-dependent enhanced 

DNA-binding of CLOCK-BMAL1 but no NAD/NADH dependence (data not shown).  It was 

therefore of interest to resolve this discrepancy.  Using standard conditions, identical to those 

used in previous experiments in our laboratory, addition of 10 mM NADH did not induce 

CLOCK342-BMAL1 DNA-binding; however, addition of 10 mM DTT resulted in a marked 

increase in heterodimer DNA-binding (Figure 3.7).  However, different results were obtained 

when conditions were adjusted to reflect those used by Rutter and colleagues (Rutter et al., 

2001).  These conditions, though still within physiological range, are slightly less stringent 

than the standard conditions used in my other experiments.  Using these reaction conditions, 

addition of NADH up to 10 mM dramatically increased the DNA-binding of CLOCK342-

BMAL1, while addition of DTT to 10 mM had no effect (Figure 3.8).  Because both the 

NAD/NADH effect and the DTT effect on heterodimer binding is very sensitive to slight 

changes in reaction conditions, it is difficult to assess the physiological relevance of either 

effect.  This will be discussed in more detail in the Discussion section.   

 

 

 

 

 

 

 

 

 71



Discussion 

Repression of CLOCK-BMAL1 by CRY1 

Despite much genetic evidence which led to proposal of the current mammalian clock 

model, biochemical evidence indicating the molecular mechanisms underlying the clock is 

generally lacking.  This is especially true in the case of mammalian CRYPTOCHROME, a 

protein whose in vivo biochemical function is still unclear.   

Determining the mechanism by which CRY inhibits transcriptional activation by 

CLOCK-BMAL1 will fill in a long-standing gap in the current clock model.  Data from 

previously published reports has shed some light on how the negative circadian feedback 

loop works in other model systems.  In zebrafish, zCRY1a forms a large complex with 

zfCLOCK2 and zfBMAL3 on DNA which is presumably transcriptionally inactive (Ishikawa 

et al., 2002).  A different mechanism is indicated in Drosophila, where negative regulators 

dPER and dTIM eliminate the binding of dCLOCK-CYC to DNA (Lee et al., 1999).  While 

distinct mechanisms are indicated in both zebrafish and Drosophila, in both systems negative 

regulation occurs through direct modulation of CLOCK-BMAL1 (or CLOCK-CYC) DNA-

binding.    Therefore, in the present study I investigated the possibility of direct modulation 

of CLOCK-BMAL1 DNA binding by CRY in the mammalian system.  Here I present 

evidence that, under the conditions of the experimental system used, mammalian CRY1 does 

not inhibit or otherwise affect the DNA-binding of the CLOCK-BMAL1 heterodimer.   

Although the data presented here indicates no effect of CRY1 on CLOCK-BMAL1, 

there is an important caveat to consider.  The experiments described used a truncated form of 

CLOCK containing only the first 342 N-terminal amino acids of the protein (CLOCK342).  

This protein has been shown to efficiently form a heterodimer with BMAL1 on E-box DNA 
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(Rutter et al., 2001; unpublished results from our laboratory).  However, the DNA-binding 

activity of this protein may not be identical to that of full-length CLOCK.  If CLOCK342 

binds to DNA in the heterodimer form with a much higher affinity compared to that of 

CLOCK, it is possible that the concentrations of CRY1 used are insufficient to affect 

CLOCK342-BMAL1 DNA binding.  An additional consideration to these experiments was 

brought to light in a recent report which identified CLOCK and BMAL1 mutations that 

eliminate repression by CRY.   A single mutation in residue 360 of CLOCK resulted in 

abrogation of repression of CLOCK-BMAL1 by CRY1 (Sato et al., 2006); this residue is 

notable because it is outside of the 342-aa fragment of CLOCK342.  This would again 

indicate that CLOCK342 may not be a physiologically relevant, as it lacks a residue that is 

necessary for CRY’s repression function.  There exists the possibility that the reason I saw no 

effect of CRY on CLOCK342-BMAL1’s DNA binding in my EMSA experiments is the 

absence of this key residue.  Taken together, these considerations illustrate the need to do 

these experiments with full-length mammalian CLOCK protein in order to ensure relevant 

activity levels and that all necessary residues are present in the proteins being used.  If the 

results of those experiments mirror those described here and again show no effect of CRY1 

on CLOCK-BMAL1 DNA-binding, it would suggest that repression by CRY1 is not 

achieved through modulation of DNA binding state, and would support the proposals that 

modification of chromatin and/or CLOCK-BMAL1 post-translational changes are more 

likely candidates for the pathway involved. 

Effect of NADH and DTT on CLOCK-BMAL1 DNA Binding 

Identification of the physiological factors that, in addition to light, can entrain the 

circadian cycle is crucial to fully understand the mechanisms underlying the clock.  It is 
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known that feeding cycles can entrain the mammalian clock, and one proposal for how this 

occurs is through inducing rhythmic changes in the redox state of nicotinamide adenine 

dinucleotide cofactors.  Rutter and colleagues demonstrated by EMSA that increasing 

concentrations of NADPH and NADH induce DNA binding of NPAS2-BMAL1 and 

CLOCK342-BMAL1 (Rutter et al., 2001); they surmised from these data that changes in 

cellular NAD redox state, which would give rise to NADPH and NADH, could be the 

mechanism by which feeding entrains the clock.   

However, there are questions as to the physiological relevance of the aforementioned 

data.  This effect was not seen with homologous zebrafish clock proteins (Ishikawa et al., 

2002), although an increase in CLOCK-BMAL1 heterodimer DNA binding was seen upon 

addition of increasing concentrations of dithiothreitol.  In my experiments, I was able to 

reproduce induction of CLOCK342-BMAL1 DNA binding by DTT; after slight changes in 

reaction conditions, I was also able to replicate induction by NADH.  Because both sets of 

reaction conditions were within physiological ranges (with the exception of NADH and/or 

DTT concentration), the relevance of either effect is suspect.  Additionally, the 

concentrations of NAD cofactors used by Rutter and colleagues are likely much higher than 

mammalian cellular concentrations reach, by at least a factor of ten, perhaps much more 

(Bergmeyer, 1974; Tischler et al., 1977; O’Donnell and Kuhn, 1997).   

 

In conclusion, there is a clear need for further experiments both to determine the 

relevance of induction of CLOCK-BMAL1 DNA binding by NADH and/or DTT and to fully 

elucidate the mechanism by which CRY represses clock-activated gene transcription.  

Biochemical experiments similar to those described here will be crucial to understand the 
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molecular mechanisms underlying the mammalian clock.  This will be especially useful in 

the current re-evaluation of the TTFL mammalian circadian clock model.   
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Figure 3.1. Possible Mechanisms for CRY’s Negative Regulation of CLOCK-BMAL1 
by Directly Affecting DNA Binding.  CRY may directly affect CLOCK-BMAL1 by (1) 
changing the conformation of CLOCK-BMAL1, possibly by forming a trimeric complex, 
such that the complex no longer binds to DNA; (2) forming a trimeric complex on DNA 
which no longer is transcriptionally active; or (3) replacing one of the components of the 
CLOCK-BMAL1 heterodimer to form a transcriptionally inactive complex on DNA. 
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Figure 3.2. Purified hCRY1, mBMAL1, mCLOCK342, and hCLOCK proteins.  
(Lane 1) Molecular weight marker.  (Lane 2) Flag-Myc-His-hCRY1, purified from transient 
transfection of 293T cells.  Protein was purified to a concentration of approximately 314 nM.  
(Lane 3) Flag-His-mBMAL1, purified from baculovirus infection of SF-21 insect cells.  
Protein was purified to a concentration of approximately 312 nM.  (Lane 4) His-CLOCK342, 
purified from inclusion bodies in E. coli.  Protein was purified to a concentration of 
approximately 2 μM.  (Lane 5) Flag-hCLOCK, purified from baculovirus infection of SF-21 
insect cells.  Protein was purified to a concentration of approximately 115 nM.  * denotes a 
contaminant, likely heat-shock protein.  Proteins were visualized by silver-staining. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 78



 

 

 

 

 

 

 

 

 

 

 

 

 

 79



Figure 3.3. Formation of CLOCK342-BMAL1 and (possible) CLOCK-BMAL1 
Heterodimer on E-box DNA.  (A) M34 DNA substrate sequence.  (B) E58 DNA substrate 
sequence.  (C) EMSAs were carried out as described using E58 ds radiolabeled DNA.  (Lane 
1) DNA alone.  (Lane 2) DNA + CLOCK.  (Lane 3) DNA + CLOCK342.  (Lane 4)  DNA + 
BMAL1.  (Lane 5) DNA + CLOCK + BMAL1.  (Lane 6) DNA + CLOCK342 + BMAL1.  
Arrows denote DNA-protein complexes.  Protein concentrations used:  CLOCK (20 nm), 
BMAL1 (50 nm), CLOCK342 (80 nm).    
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5’ GGGACACGTGACCC  3’ 
3’ CCCTGTGCACTGGG  5’    
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5’ CATCACCCACTCACCCCTTACTACACGTGGGCCCTCAATTGCCCTTCTCCAGGATCTG     3’ 
3’ GTCGTGGGTGAGTGGGGAATGATGTGCACCCGGGAGTTAACGGGAAGAGGTCCTAGAC     5’ 
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Figure 3.4. Effect of CRY1 on Binding of CLOCK-BMAL1 to E-box DNA.  EMSAs 
were carried out as described using E58 ds radiolabeled DNA.  Arrows indicate the binding 
of BMAL1-BMAL1 homodimer, CLOCK-BMAL1 heterodimer, or CRY1 to DNA.  Protein 
concentrations used:  BMAL1 (50 nm), CLOCK (20 nm), CRY1 (14-100 nm).    
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Figure 3.5. Effect of CRY1 on Binding of CLOCK342-BMAL1 to E-box DNA.  
EMSAs were carried out as described using E58 ds radiolabeled DNA under conditions of 
either high CRY1 DBA-binding affinity (left panel) or low CRY1 DNA-binding affinity 
(right panel).  Arrows indicate the binding of BMAL1-BMAL1 homodimer, CLOCK342-
BMAL1 heterodimer, or CRY1 to DNA.  Protein concentrations used:  BMAL1 (50 nm), 
CLOCK342 (80 nm), CRY1 (14-100 nm).    
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Figure 3.6. Effect of CRY on DNA-Binding of BMAL1, CLOCK342, and CLOCK 
Individual Proteins.  EMSAs were carried out as described using E58 ds radiolabeled DNA 
under standard conditions. Arrows indicate the binding of BMAL1-BMAL1 homodimer, 
CLOCK342-BMAL1 heterodimer, CLOCK342, CLOCK, or CRY1 to DNA.  Protein 
concentrations used:  CLOCK (20 nm), BMAL1 (50 nm), CLOCK342 (80 nm), CRY1 (10-
40 nm).    
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Figure 3.7. Effect of NADH and DTT on DNA-Binding of CLOCK342-BMAL1 
heterodimer under standard conditions.  EMSAs were carried out using the M34 DNA 
probe under standard conditions without DTT:  50 mM Tris pH 8.0, 100 mM KCl, 100 μg/ml 
BSA, 1 mM EDTA, 0.5 μg poly dI/dC, and 10% (v/v) glycerol for 20 minutes at room 
temperature and 10 minutes at 4° C.  10 mM DTT or 10 mM NADH was included in the 
reaction as indicated.  Protein concentrations used:  BMAL1 (20 nm), CLOCK342 (50 nm).    
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Figure 3.8.  Effect of NADH and DTT on DNA-Binding of CLOCK342-BMAL1 
heterodimer under low-stringency conditions.  EMSAs were carried out using the M34 
DNA probe under low-stringency conditions:  10 mM Tris pH 7.5, 50 mM KCl, 1 mg/ml 
BSA, 1 ug poly dI/dC, and 10% glycerol for 30 minutes at room temperature.  DTT or 
NADH was included in the reaction as indicated; concentrations ranged from 1.25 mM 
(lowest concentration) to 10 mM (highest concentration).  Protein concentrations used:  
BMAL1 (50 nm), CLOCK342 (50 nm).    
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CHAPTER 4 

FINAL DISCUSSION AND FUTURE DIRECTIONS 

 

 The development of life on Earth would not have been possible without the sun’s 

energy.  Although this is a well-known concept, the extent to which the sun has shaped 

evolution of Earth organisms is even more remarkable.  The first advent of adaptation to the 

daily solar cycle is thought to have been necessary to protect replicating genetic material 

from damage by ultraviolet light during Precambrian times before the protective ozone layer 

developed.  The absence of the ozone layer resulted in heavy daily exposure to ultraviolet 

radiation for Earth organisms, forcing them to adapt in order to survive.  To avoid UV, which 

can penetrate 25 meters of clear water, metazoans descended deep into the oceans during the 

daytime and migrated closer to the surface at night.  Blue light is the only wavelength in the 

visual spectrum that can penetrate deep ocean water.  Consequently, blue light became the 

cue for the organisms’ internal timekeeping mechanism (Gehring and Rosbash, 2003).  

The evolutionary adaptation demonstrated by the metazoans has extended into an 

extremely complex set of pathways in organisms ranging from cyanobacteria to humans.  

These pathways, called circadian clocks, synchronize behavioral processes, metabolism, 

hormone production, cell division, and a host of other important cellular processes to the 

daily solar cycle.  Although organisms possess endogenous ~24 hour rhythms, entrainment 

by light-time signals synchronizes endogenous clocks to the precise 24 hour cycle of the 



Earth’s rotation.  Again, blue light is likely the most important wavelength of light in this 

process, evidenced by the fact that the human eye is most sensitive to blue light.   

Clearly, the effect of light on Earth organisms is extensive, and expanding our 

understanding of how we adapt to light-time signals will be a great scientific step.  Perhaps 

the newly-discovered model system of Danaus plexippus, the monarch butterfly, will be 

especially helpful in achieving greater understanding of circadian clock mechanisms in 

animals.  A sophisticated clock exists in the monarch butterfly, indicated by their complex 

yearly migration pattern which uses light to signal the fall and early spring journeys, for 

long-range navigation, and to cause seasonal variations in reproduction.  While the more 

characterized Drosophila system has only one CRY (insect-like) and the mammalian system 

has two similar CRYs which are somewhat divergent from Drosophila, Danaus possesses 

both an insect-like CRY and a mammalian-like CRY (Reppert, 2006).  This discovery has led 

to Danaus’s emergence as a new model system for the animal circadian clock and study of 

this system will greatly increase our understanding of how CRY functions and, more 

generally, of the mechanisms underlying the clock.   

 Here I describe experiments to further characterize the role of CRY in cancer 

predisposition and as a negative regulator of CLOCK-BMAL1.  Various reports link 

circadian clock disruption to increased risk of breast cancer in humans (Hansen, 2000; 

Stevens, 2005), and mice with SCN ablation exhibit a faster rate of growth of transplanted 

tumors (Filipski et al., 2002).  Furthermore, mice with a mutant form of Per2 are 

hypersensitive to IR-induced mortality and have an abrogated DNA damage checkpoint (Fu 

et al., 2002).  Although circadian disruption is indicated as a possible cancer risk factor, the 

mechanism through which this occurs is unknown.  My experiments with Cry1-/-Cry2-/- mice 
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show no predisposition to cancer or abrogation of DNA damage checkpoints relative to wild-

type, indicating that circadian disruption per se does not increase cancer risk.  This does not 

rule out involvement of circadian proteins with cell cycle; indeed, reports suggest that a 

function of the PER family of proteins, possibly outside of their clock role, is the connection 

between circadian rhythms and cancer (Fu et al., 2002; Gery et al., 2006; Hua et al., 2006).  

Further characterization of circadian control of the cell cycle will be key to both the possible 

establishment of clock disruption as a cancer risk factor and the use of chronotherapy, which 

seeks to maximize efficacy of chemotherapy while minimizing side effects through 

modulation of time of treatment (Hrushesky, 1995).   

 The mechanism by which CRY represses CLOCK-BMAL1 activity has been as 

“cryptic” as the protein’s name suggests.  Work with Drosophila and zebrafish proteins has 

indicated that in both organisms, negative regulation of CLOCK-BMAL1 by its repressors is 

achieved through effects on the DNA binding of the complex (Lee et al., 1999; Ishikawa et 

al., 2002).  If one of these mechanisms was preserved in mammals, it would logically follow 

that CLOCK-BMAL1’s binding to DNA would be rhythmic.  However, reports on this are 

conflicting:  there is evidence that the complex is constitutively bound to DNA (Lee et al., 

2001), and a recent report claims rhythmic binding (Ripperger and Schibler, 2006).  In order 

to clarify these conflicting reports, I used purified proteins to examine the effect of CRY1 on 

CLOCK-BMAL1 (using a 342-aa fragment of CLOCK, CLOCK342) in in vitro DNA 

binding assays.  I show here that CRY1 does not change the DNA binding of CLOCK342-

BMAL1.  This is a notable finding as it would indicate that mammalian CRY represses 

CLOCK-BMAL1 by a mechanism distinct from that in other animal systems.  However, it is 

possible that CLOCK342 is not a physiologically relevant protein for use in these assays as it 
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is missing a residue recently discovered to be crucial to repression of the heterodimer by 

CRY (Sato et al., 2006).  Therefore, to conclusively determine if CRY directly affects the 

DNA binding of CLOCK-BMAL1, these experiments must be repeated with full-length 

CLOCK.  Additionally, I investigated the effect of both NADH and DTT on induction of 

CLOCK-BMAL1 DNA binding in response to previous reports (Rutter et al., 2001; Ishikawa 

et al., 2002).  This phenomenon is of interest because modulation of cellular redox state has 

been proposed as the pathway by which feeding entrains the circadian clock (Rutter et al., 

2001).  I find that in conditions where NADH induces heterodimer DNA binding, DTT does 

not; and in conditions where DTT induces heterodimer DNA binding, NADH does not.  

Based on these data, the physiological relevance of the effect of either NADH or DTT is in 

doubt.   

 Overall, these experiments contribute to our overall understanding of the mammalian 

circadian clock.  However, ever more biochemical evidence is needed in order for us to fully 

comprehend this complex mechanism.   
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