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ABSTRACT 

WINNIE YU: Impacts of storms and sea-level rise on coastal evolution between two capes: 

Onslow Bay, North Carolina 

(Under the direction of Antonio B. Rodriguez) 

 

This study examines the stratigraphy of Onslow Beach, a barrier island centrally-

located between Cape Lookout and Cape Fear. Its depositional history is compared to 

predictions from numerical models based on wave climate and sediment transport. The 

models imply that the central embayment experiences greater erosion than cape flanks and 

increased storminess intensifies those trends. Nine paleo-washover fans identified in 

sediment cores collected along the island revealed rapid transgression rates over the last 

~1800 years while a barrier island located near Cape Lookout prograded seaward, which 

supports the numerical model. Washover fan deposition on Onslow Beach was not correlated 

with periods of increased storms, but was related to the increase in rate of sea-level rise in the 

last 150 years. The island is likely more vulnerable to accelerated sea-level rise due to the 

central location of the island within the embayment and the lack of sediment in this region.  
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CHAPTER I 

1.  INTRODUCTION 

 

Genesis of the cuspate shoreline morphology of the southeastern United States has 

been a topic of debate. The regional shoreline is dynamic and, during the post last glacial 

maximum transgression, it has coincided with the relatively straight current shelf margin at 

approximately 35 meters below modern sea-level. The set of four capes along North Carolina 

and South Carolina were likely produced by non-uniform rates of shoreline retreat along the 

coast during the late Pleistocene to Holocene sea-level rise. Although a single conclusive 

theory has yet to emerge, abundant research has explored the processes that control the size 

and time necessary for development of the capes and embayments, particularly the influence 

of underlying geology and shoreface hydrodynamics (Toumey, 1848; Abbe, 1985; Gulliver, 

1896; Hoyt and Henry, 1967; Pierce and Colquhoun, 1970; Heron Jr. et al., 1984; Hoyt and 

Henry, 1971; Ashton et al., 2001).  

This study is a core-based investigation of the evolution of a barrier island, Onslow 

Beach, centrally located between Cape Lookout and Cape Fear in Onslow Bay. The 

fundamental objectives are to (1) identify paleo-environments and interpret the paleo-

geography of Onslow Beach using cores, (2) test that shorelines between two capes migrated 

landward at variable rates during the Holocene by comparing the evolution of Onslow Beach 

to previous studies that focused on barriers located near the capes, and (3) investigate the 

influence of two additional mechanisms: increased storminess and increased rate of sea-level 

rise on shoreline evolution along Onslow Bay.  
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For over a century, the mechanisms that control cape origin and development along 

the well-developed cuspate forelands of the North Carolina and South Carolina coast have 

been heavily researched. Each cape consists of two barrier islands or mainland beach ridges 

attached at approximately right angles. The capes are spaced approximately 100 km apart and 

separated by broad embayments. Early theories speculated that eddy currents shed from the 

Gulf Stream were the dominant forces shaping these prominent coastal features and that 

opposing waves and currents help maintain the cape structure. (Toumey, 1848; Abbe, 1895; 

Gulliver, 1896).  

Abundant hypotheses based on geologic inheritance were formulated since those 

initial theories based on shoreface hydrodynamics. Researchers demonstrated that the present 

coastal configuration results from erosion of formerly more extensive seaward-projecting 

deltas and headlands which reduce the size of the capes and ultimately straighten as sea-level 

continues to rise (Hoyt and Henry, 1967; Pierce and Colquhoun, 1970; Heron Jr. et al., 1984, 

Hoyt and Henry, 1971). Riggs et al. (1995) supported that earlier work by suggesting that 

Cape Fear and Cape Romain are associated with the underlying paleo-Cape Fear River and 

the Santee and Pee Dee Rivers, respectively. Cape Hatteras and Cape Lookout, however, are 

highly influenced by topographic highs and relict capes and are interpreted to have been 

stabilized along the trend of Pleistocene shorelines developed over multiple sea-level cycles 

(Pierce and Colquhoun, 1970; Heron Jr. et al., 1984; Mallinson et al., 2010a). The barrier 

islands from Cape Lookout to Cape Fear were deposited atop a structural high composed of 

late Tertiary sedimentary rock (Riggs and Belknap, 1988). The regional pre-existing geologic 

template has been determined to be an important factor on sediment supply and distribution 
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and geometry of coastal systems (Belknap and Kraft, 1985; Demarest and Leatherman, 

1985).   

Recently, the idea of waves and currents building capes has been resurrected to 

explain the origin and evolution of the large-scale rhythmic morphology of the southeast U.S. 

coast. While past researchers speculated that wave refraction concentrated energy on the 

headlands and caused erosion and reduction in the size of the capes, McNinch and Wells 

(1999) demonstrated that modern sediment transport due to alongshore currents is directed 

toward the cape tip and is actively supplying cape-associated subaqueous shoals with sand.  

Ashton et al. (2001) used a numerical model to show that high-angle waves can develop 

large-scale accretionary landforms that resemble the Carolina Capes. Analysis of modern 

wave climate along the Carolina coasts concludes that waves with large angles between their 

crests and the coast are dominant. These prevailing oblique high angle waves are shown by a 

numerical model to generate small perturbations in the coastline that develop into large capes 

and become more stable than the adjacent embayments over time (Ashton and Murray, 

2006). Thieler and Ashton (2011) reported field data that support the abandonment or the 

“capture” of smaller capes by neighboring stable capes over time, which was observed to 

occur within the simulation. Ridges and swales located approximately 20 km offshore of 

Ocracoke Inlet were interpreted to be relict shoals, offshore extensions of a former cape that 

may have existed between the modern Cape Hatteras and Cape Lookout. The Ashton et al. 

(2001) model, suggesting greater retreat in areas between the stable capes, has not been 

tested with field data.  

The Ashton et al. (2001) model predictions suggest that perturbations of a similar 

scale as the Carolina Capes are produced in a 50,000 year period, which is a greater time 
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frame than the <9,000 years that the continental shelf was flooded after the last glacial 

maximum (Ashton et al., 2001; Thieler and Ashton, 2011). The discrepancy implies coastal 

modification over multiple sea-level cycles and the likely influence of inherited geologic 

framework on coastal evolution during the last episode of sea-level rise (Ashton and Murray, 

2006). Thus, the role of antecedent topography in the model based on the dominant process 

of hydrodynamic regime needs to be explored to better understand the development of cape 

systems. 

Slott et al. (2006) used the Ashton et al. (2001) numerical model to simulate 

cumulative changes from storm impacts on cuspate coastlines by using a wave climate that is 

greater than modern tropical and extra-tropical storm conditions in a 200-year period. The 

study suggested that increased storminess results in accretion near the capes and erosion at 

the embayments that occurs at rates several times higher than rates of shoreline changes 

during modern storm climate. Storms are considered to be significant drivers for rapid 

morphological changes of a coastline by accelerating longshore transport as well as removing 

sediment from the active beach system by producing washover fans and/or flood-tidal deltas.  

Although individual storms occur on short time-scales (days to weeks) and are not 

commonly integrated into long-term shoreline change models (Valvo et al., 2006), changes in 

the storm frequency occur across centennial to millennial time scales and should be 

considered as an important mechanism of changes in coastal morphology. Periods of greater 

storms along the U. S. Atlantic coast have been correlated with centuries of both increased 

and decreased sea surface temperatures identified as the Medieval Warm Period (MWP; 

~1000 cal yr before present (BP)) and the Little Ice Age (LIA; ~400 cal yr BP), respectively 

(Mann et al. 2009; Winter et al., 2000; Mallinson et al., 2011). Direct links between these 
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stormier periods and large morphological changes have mainly been described for barrier 

islands in the Outer Banks. Trends in morphological changes of the Carolina Capes in 

response to increased storminess revealed by the model results have not been empirically 

tested. 

Relative sea-level fluctuations that are connected to these past climate variations may 

directly influence the rate of retreat along the North Carolina coast. Kemp et al. (2011) 

reconstructed a sea-level curve for the past 2100 years for North Carolina that reveals a 

relatively stable rate of sea-level rise with a 400 year period during the MWP of increased 

rate (1.5 mm/y). Sea-level returned to a stable rate of rise until it increased recently between 

1865 and 1892 AD in response to 20
th

 century warming (Kemp et al. 2011). Increase in the 

rate of sea-level rise escalates both shoreline and back-barrier erosion and causes barrier 

islands to be susceptible to overwash processes and tidal inlet formation. Subsurface 

evidence of these responses to a rising sea-level can reveal the mechanisms that control the 

transgressive history of the North Carolina coast.  

Experiments using the numerical model of Ashton et al. (2001) and Ashton and 

Murray (2006) that explained coastal evolution at millennial and centennial time scales along 

coastlines with high-angle waves are tested in this study by comparing model results to the 

geologic history of a cuspate-foreland coastline. The evolution of Onslow Beach from the 

middle Holocene to present will be placed in its regional context of development of the cape 

system. Barrier islands located at the center of a coastal embayment, such as Onslow Beach, 

are predicted to have transgressed more rapidly and experienced increased rates of erosion 

during stormy periods than barrier islands located along cape flanks (Ashton and Murray, 

2006; Slott et al., 2006). Construction of a process-based depositional model based on 
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sediment cores will allow better understanding of the mechanisms that controlled regional 

coastal changes. In addition to examining the impacts of increased storm periods, influence 

from the increase in the rate of sea-level rise at around 1850 AD is also investigated (Kemp 

et al. 2011). Few studies have documented the effects of the most recent acceleration in sea-

level rise on a shoreline, which is important for predicting the influence of future increase in 

rates of sea-level rise.  

 

2.  STUDY AREA 

 

Onslow Beach is a northeast-southwest trending barrier island located in Onslow Bay, 

southeast North Carolina (Figure 1A). This 12-km long island is part of the Marine Corps 

Base Camp Lejeune, which is a site for amphibious military training as well as coastal 

recreation. It is a wave-dominated barrier island with a mean wave height of 0.91 m and tidal 

range of 1.2 m based on NOAA tide gauge at Wrightsville Beach, NC (Station ID 8658163, 

located 60 km southwest of Onslow Beach). The barrier fronts saltmarsh with sinuous tidal 

channels and is bounded by the New River inlet to the southwest and Brown’s Inlet to the 

northeast (Figure 1B). The Intracoastal Waterway (ICW) passes through the back-barrier 

marsh and has been maintained by dredging since its construction in 1931.  

Onslow Beach has a sinusoidal shoreline that consists of a central headland separating 

two embayments (Figure 1C). Each section of the island has a distinct morphology. The 

northern arcuate section has a wide beach (~80 m) and multiple well-developed dune ridges 

(7-9 m in height). Landward of the dune ridges, a narrow (<100-m wide) maritime forest  
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Figure 1. (A) Onslow Beach is located in central Onslow Bay and between Cape Lookout 

and Cape Fear, in the southwestern North Carolina coast. (B) The barrier island is 

separated from the mainland by the Intracoastal Waterway. (C) Onslow Beach has a 

sinusoidal shoreline that is consists of two embayments separated by a headland that 

has outcrops of pre-Holocene sediments on the beach (D).  
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Figure 2. The shoreline shape curve displays the calculated distance between the 2008 

digitized shoreline and the best-fit line through past shorelines since 1938 and 

indicates recent spatial trends in shoreline movement. The shoreline evolution curve 

and r-squared values are determined from Benton et al. (2004) and illustrates the high 

rates of erosion in the southern embayment, stability at the headland, low rates of 

accretion in the northern embayment.   
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abuts the back-barrier salt marsh. This northern part of the barrier has low net decadal rates 

of accretion (~0.25 m/yr; Figure 2; Rodriguez et al., 2012). The central headland area has a 

narrow beach (~20 m wide) with a single discontinuous dune ridge <4 m in height. 

Numerous washover fans extend <100 m across the dunes and the vegetation is dominated by 

shrub thickets but dead standing and fallen trees are frequently observed. Outcrops of peat 

and older sediments are exposed along the beach (Figure 1D). The beach widens significantly 

along the southern embayment from 20 m in the northeast to 80 m in the southwest. The 

discontinuous dunes are <2 m in height and washover fans can be extensive (up to 250 m 

wide) and extend across back-barrier marshes. This southern part of Onslow Beach has a net 

erosion rate of ~2 m/yr and erosion rates decrease toward the headland (Figure 2; Rodriguez 

et al., 2012). The variable morphology of Onslow Beach reflects its central location within 

Onslow Bay as it defines the border between the high-elevation regressive islands with 

multiple beach ridges to the north and the low-elevation, narrow transgressive islands to the 

south (Leatherman et al., 1979; Cleary et al. 1996). 

The central headland is produced by a submarine rock ridge that intersects Onslow 

Beach (Riggs et al. 1995). The rock ridge is composed of the Oligocene Silverdale 

Formation, a sandy, molluscan-mold limestone unit (Harris et al., 2000). The Quaternary 

sediment layer is thin and patchy offshore of southern and central Onslow Beach where over 

50% of the inner shelf is exposed limestone (Johnston, 1997). Although Riggs et al. (1995) 

labeled Onslow Beach as being “sediment starved,” sandy Quaternary sediments thicken on 

the inner shelf from the headland towards the northeast inner shelf (Cleary and Riggs 1999).  

The significant impact of storms on modern geomorphologic change on Onslow 

Beach is evident from the washover fans in the central and southern parts of the island. 
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Hurricane Fran (category 3) made landfall in September 1996 and transported 199 ± 88 x 10
3
 

m
3
 of sand across the back-barrier environments forming an extensive washover fan at the 

southern end of Onslow Beach (Foxgrover, 2009). Hurricane Bertha (category 3) arrived two 

months prior and likely contributed to the significant overwash of the island during Fran by 

lowering the dune profile. Hurricane Irene was the next large storm to strike the North 

Carolina coast in August 2011. Although Irene was a category 1 hurricane (wind speeds 119-

153 km/h), the event caused severe shoreline erosion and the formation of washover terraces 

and fans along the southern and central parts of Onslow Beach. 

 

3.  METHODS 

 

3.1  Coring 

To determine the stratigraphy of Onslow Beach, we collected 43 cores from the 

barrier island and adjacent environments. The cores are arranged in one shore-parallel 

transect, and eight cross-island transects separated by approximately 1.2 km (Figure 1). 

Cores were collected for two dip-oriented transects in the back-barrier environment in the 

northern and southern parts of the island. Transect locations were selected based on 

accessibility, spacing, and presence of relevant geomorphic features like the locations of 

embayments, the headland and washover fans. Many transects were sampled near sandy 

paths leading to the ICW from the main paved road that runs along the central part of the 

island. The northeastern end of Onslow Beach is not accessible because it acts as a buffer 

between a recreational part of the beach and an area that receives live fire and may contain 

unexploded ordinances.  
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Most of the cores were obtained using the standard vibracoring method, which 

resulted in cores that were 0.62 m to 3.94 m in length. The vibracorer had difficulty 

penetrating through the upper dry sediment, requiring hand auguring to the water table (the 

upper ~100 cm) at most of the sites. The augured sediment was logged in the field and the 

depth of the hole was recorded before vibracoring. The washover fan that formed during 

Hurricane Irene was sampled seven days after the storm with four cores between 43 and 65 

cm in length. These short cores were collected by striking an aluminum pipe into the ground 

with a sledgehammer. The locations and elevations of all cores as well as topographic 

profiles crossing the barrier at the eleven transects were surveyed with a Trimble R8/5800 

Real-Time Kinematic GPS unit. Average horizontal and vertical precisions were 0.015 m and 

0.020 m, respectively.  

 The cores were split, photographed, described, and sampled. Interpretations of 

depositional environments relied on lithologies, sedimentary structures, and macrofossil 

assemblages. Approximately 370 subsamples were taken from the cores for grain size 

analyses. A 2000-µm sieve was used to determine the >2000 µm fraction and a Cilas laser 

particle-size analyzer for the 2000 µm to 0.04 µm component. 

 

3.2  Radiocarbon Dating 

Shell and organic material from the cores were selected for radiocarbon dating by 

accelerator mass spectrometry. Articulated bivalves, large pieces of wood, and plant seeds 

were preferentially chosen over bulk organic samples, multiple small wood fragments and 

unpaired valves to minimize the adverse effects of reworking on developing an accurate 

chronostratigraphy. Radiocarbon analysis of 18 samples was performed by Woods Hole 
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Oceanographic Institution and Beta Analytic. All ages in this study are reported in the 

converted calibrated calendar years at two standard deviations obtained by using the CALIB 

6.0 program (Stuiver et al., 2005). 

 

3.3  Loss on ignition 

The organic matter content of approximately 300 subsamples from the cores was 

measured using the loss on ignition method (Heiri et al., 2001). Subsamples were collected at 

15 cm intervals or at 1 or 2 cm intervals for high-resolution analyses of the modern marsh 

sediment. After drying the samples overnight at 110 °C, they were burned at 550 °C in a 

muffle furnace for 5 hours. Percent organic matter was calculated from the dry masses 

measured before and after the burning stage. 

 

4.  RESULTS AND INTERPRETATIONS 

 

4.1  Depositional Environments and Lithologic Facies 

The depositional environments along Onslow Beach, including beach (foreshore and 

backshore), dune, washover fan, and marsh were sampled in the tops of the cores. Lithologic-

facies descriptions of those modern environments were used as benchmarks to help interpret 

the older sedimentary units. Two units, lithologic facies A and B, were sampled at depth and 

were not similar to any of the modern depositional environments that exist across Onslow 

Beach. 

 

Beach Facies 
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Figure 3. Core photos of beach facies. 
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The beach facies is characterized by fine to medium quartz sand (0.91-2.38 Ф) with 

gently-dipping heavy-mineral laminae and beds and gravelly sand beds. Swash processes in 

the foreshore produce the gently-dipping to parallel heavy mineral laminae and beds (Figure 

3A; Davis, 1978), while the weathered shells and gravelly sand beds are the result of major 

reworking and transport that occurs in the high energy surf zone (Figure 3B and C; Komar, 

1976). The average gravel content is 6.75% but can be as high as 41.72% within those 

coarse-grained beds, which were predominantly sampled in the foreshore and contain 

abraded Mercenaria sp., Crassostrea virginica, and Oliva sayana shells and well-rounded 

oblate lithoclasts. The backshore is predominantly influenced by aeolian processes, which 

results in finer grained and better sorted sands there than in the foreshore. The shell beds that 

exist in the backshore were likely emplaced during storms and subsequently winnowed by 

aeolian processes (Figure 3D).  

The beach facies ranges in thickness from 32 cm to >204 cm (in places the core was 

not long enough to sample the entire thickness). Cores from the southwest end of the island 

commonly sampled peat rip-up clasts where this facies is thin (Figure 3E). Overall, the 

thickness of the beach facies decreases, and the percent gravel and the mean grain size of the 

sand fraction increases towards the southwest and from the toe of the foredune seaward. 

Rodriguez et al. (2012) also recognized those trends in sediment texture at Onslow Beach 

from surface-sediment samples.  

 

Dune Facies 

The dune facies is a well-sorted, pale orange (10YR 8/2) fine-grained siliciclastic 

sand with highly spherical and rounded grains. Sand-sized fragmented shell beds may be 
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Figure 4. Core photos of dune facies. 
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present but are generally only a few centimeters thick. These beds were likely emplaced 

during storm events and represent thin localized washover fans (Figure 4A). Plant roots and 

organic detritus were sampled particularly near the top of the unit where dune grasses are 

present (Figure 4B). Steeply dipping heavy mineral cross laminae and bedding are common 

sedimentary structures preserved in the cores (Figure 4B) and are typical of coastal dunes 

(Davis, 1978). The mean grain size of the dune sand decreases slightly towards the northeast 

from 1.81 Ф at cross section F1 to 2.30 Ф at cross section F6. The thickness of this unit 

ranges from 83 cm to >274 cm and generally increases towards the northeast. 

Anthropogenically disturbed material was found at the top of three of the cores collected near 

roads that were constructed on the dunes (Figure 4E). 

 

Marsh Facies 

The marsh facies is an olive gray (5Y 3/2) to brownish gray (5YR 4/1) bioturbated 

carbonaceous muddy sand. The fine sediment fraction is mainly produced by biogenic 

pelletization and settlement from suspension (Davis, 1978). Dense mats of Spartina 

alterniflora and Juncus roemerianus plant, roots and woody material contribute to the 

organic carbon sediment fraction within the marsh facies (Figure 5), which can be as high as 

74%. Marsh sediments have a mean grain size of 3.58 Ф and contain a sand component that 

is transported from the dunes by aeolian processes. The wind-blown sediment has a similar 

texture as the adjacent dunes and is recognized as discrete sand beds (3-15 cm thick; Figure 

5B) or is integrated with the organic-rich muddy sediment through heavy bioturbation. 

Active burrowing from back-barrier species such as fiddler crabs and mud crabs frequently 

destroy primary sedimentary structures that may be present, resulting in intermixed clay and  
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Figure 5. Core photos of marsh facies. 
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fine sand (Figure 5D and E; Staub and Cohen, 1979). Samples of the marsh facies plot near 

the center of the ternary diagram indicating mixed lithologies due to extreme bioturbation 

(Figure 6). 

 

Washover Fan Facies 

Two washover fans that formed at the southwestern end of the island were each 

sampled in cross-shore transects. Transect F1 sampled the washover fan that was generated 

fourteen years prior in September 1996 by Hurricane Fran in its surficial unit (Figure 7). The 

sledgehammer cores in transect F2_wash collected the washover sediments deposited in 

August 2011 by Hurricane Irene several days after the storm passed (Figure 8). Although the 

cores displayed predominantly fine sand in sharp contact with the underlying sediment, 

diverse hydraulic conditions resulted in lateral heterogeneity within the washover fans. The 

zone closer to the backshore is relatively high in elevation. It was identified as the proximal 

washover fan while the distal fan is described as the area adjacent to the landward margin of 

the fan and furthest from the breached dunes. The washover fan facies is divided into 

subfacies that reflect the two zones of overwash deposition. 

Proximal washover fan. This unit is pale yellowish brown (10YR 6/2), medium sand 

that has a fining-upward trend and is dominated by heavy-mineral laminae. Core F2wash_3 

sampled this unit in its entirety and shows that the sand grain size increases from 1.87 Ф to 

1.03 Ф and that the gravel content increases towards the base (Figure 8C). The basal 

gravelly-sand beds are 15-17 cm thick, predominately composed of shell fragments and 

contain up to 7.18% gravel. Those beds are likely scour lag deposits emplaced during high-

energy conditions in the channel throat or mid-fan area (Leatherman and Williams, 1983).  



 19 

 
 

Figure 6. Ternary diagram displaying the grain size distribution of dune and back-barrier 

facies.  
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Figure 7. (A) Transect F2wash in the southern end of the island, sampled a washover fan that 

was recently deposited above the existing back-barrier marsh during the Hurricane 

Irene event.   
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Figure 8. Lithological descriptions, grain size analysis, and photos of (A) ancient and (B, C) 

modern normal graded sand beds with abundant shells that are interpreted as proximal 

washover fan facies. The transect F1_3 example (B) displays the washover fan 

formed from Hurricane Fran that has experienced minimal post-depositional changes 

compared to the proximal washover fan preserved at F6_4 (A). Shaded gray box 

indicates the analyzed and photographed section of the core. Error bars represent one 

standard deviation.  
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The heavy-mineral laminae were likely deposited as the result of swash processes that 

followed the initial high-energy scouring. This facies is similar to the “stratified sand” and 

“normal-graded sand” subfacies identified by Sedgwick and Davis Jr. (2003).  

Distal washover fan. This unit is light olive gray (5Y 6/1) to brownish gray (5YR 

4/1) medium sand containing abundant sand-sized shell fragments. Heavy mineral sand  

laminae are present throughout causing grain size measurements, obtained at 2-cm intervals, 

to alternate between ~1.5 and 2.0 Ф (Figure 9B). This unit was likely deposited at intertidal 

to subtidal elevations in the distal portion of the fan which is furthest from the breached 

dunes and the initial impact of the storm. It has a finer grain size than the proximal washover 

fan, which is likely due to reworking of back-barrier sediments during the overwash event 

and/or lower energy distal flow conditions. Sedgwick and Davis (2003) identified this 

subfacies as a “bioturbated muddy sand” unit. The lack of fine sand laminae or grading 

within the “bioturbated muddy sand” unit was related to intense bioturbation by back-barrier 

species that has yet to occur within the relatively young Irene and Fran fans. Over time, rapid 

marsh colonization may also take place which would increase the fine sediment content, 

bioturbation, and organic matter content.  

 

Facies A 

Facies A was sampled below the modern depositional environments of Onslow Beach 

in all transects except F_2 and F2strike. The facies typically thickens seaward and in places 

is >231 cm thick (some cores were not long enough to sample its entire thickness). The 

whole shells sampled in this unit were always back-barrier fauna such as Tagelus plebius, 

Ilyanassa obsolete, Crassostrea virginica and Macoma balthica. Facies A is composed of  
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Figure 9. Lithological descriptions, grain size and carbon content analysis, and photos of (A) 

ancient and (B) modern bioturbated muddy sand beds that are interpreted as distal 

washover fan facies. The transect F1_7 example (A) displays the washover fan 

preserved below the Hurricane Fran deposits and has experienced post-depositional 

changes compared to the distal washover fan that was deposited by Hurricane Irene 

(B).  Shaded gray box indicates the analyzed and photographed section of the core. 

Error bars represent one standard deviation. 
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two lithologically-distinct subfacies, A1 and A2  

Subfacies A1. This unit is medium light gray (N6) to olive gray (5Y 4/1) sand with 

silty laminae and was sampled by 17 cores. The sediment is 97% sand with a mean grain size 

of 1.77 Ф. Flaser bedding is common in this subfacies (Figure 10A and B). Sand-sized shell 

fragments are common throughout the unit while gravel-sized shell fragments are only 

present as individual beds (Figure 10C) and can be up to 10 cm thick. These gravel beds are 

uncommon and were only sampled in 3 cores. 

Based on the macrofauna and the flaser and gravel beds interpreted as tidal-bedding 

structures and tidal-channel lag deposits, respectively, this subfacies is interpreted as a 

marginal lagoon environment. The high sand fraction indicates bed-load transport by tidal 

currents and waves that can dominate the tidal flat zone (Figure 6; Davis, 1978). Sections of 

mud interbedded with sand are common within this facies and denote alternating bedload and 

suspension transport and deposition on the sand flats. Shell lag deposits imply scouring that 

is typically associated with tidal channels or storm deposits (Davis, 1978). This facies is 

currently being deposited adjacent to the barrier island in Bogue Sound, a shallow lagoon 

located approximately 40 km northeast of Onslow Beach (Figure 1A; Timmons et al., 2010). 

Subfacies A2. This unit is a light gray (N7) to grayish black (N2) mud with abundant 

articulated shells and sand burrows. Subfacies A2 has a greater mud fraction (61% mud) than 

A1, as indicated by samples that cluster around the clay and silt regions of the Ternary 

diagram in Figure 6. The sand fraction is also finer grained than subfacies A1, with a mean 

grain size of 4.0 Ф. Lenticular sand beds up to 5 cm thick are occasionally present (Figure 

11F). Common taxa of whole shells include Tagelus plebius, Ilyanassa obsolete, Crassostrea 

virginica and Macoma balthica (Figure 11A-E). 
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Figure 10. Core photos of subfacies A1: marginal lagoon. 
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Figure 11. Core photos of subfacies A2: central lagoon. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

The high mud content, excellent preservation of estuarine fauna, and bioturbation 

indicates a low-energy, central lagoon environment. Molluscs commonly colonize in reefs 

within low-energy areas and an oyster reef was sampled in core F1_5 (Figure 11A). Silt and  

fine sands accumulate from suspension while periodic high-energy tidal processes and/or 

storm events may deposit coarser-grained sand lenses (Davis, 1978). Sedimentary bedding is 

often disturbed in the central lagoon due to extensive bioturbation and reworking, resulting in 

a homogenous sandy mud (Reading, 1996). A silty clay unit with abundant Crassostrea 

virginica, similar to subfacies A2, was also sampled at the bottom of central Bogue Sound 

(Timmons et al., 2010). 

 

Facies B 

Facies B was sampled at the base of 14 cores and displays a wide range of textural 

characteristics that vary from those observed in the two lagoonal subfacies or in the modern 

depositional units. The cores did not penetrate the entire unit and sampled facies B sediments 

at variable depths that generally decrease landward and towards the southern end of the 

island.  

This facies is primarily composed of a massive moderate yellowish brown (10 YR 

5/4) sand (Figure 12A). The facies is easily distinguished from beach facies by its distinct 

color, finer-grained texture (mean grain size of 2.19 Φ versus 1.75 Φ for the beach facies), 

and poorer sorting, which is caused by a minor silt component (Figure 13). Thin beds of 

well-rounded quartz pebbles within greenish gray (5 G 6/1) to medium gray (N5) or 

moderate brown (5 YR 3/4) sand were sampled underlying the massive yellowish brown fine 

sand (Figure 12D). These beds could represent scour lag deposits of river channels when sea  
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Figure 12. Core photos of facies B. 
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level was lower. Stiff light gray (N7) clay with yellow mottling is also indicative of oxidation 

and subaerial exposure (Figure 12E). Sedimentary structures and organic material were 

generally absent within this basal unit. Although samples from facies B were not radiocarbon 

dated, the homogenous, indurated, and oxidized nature of the upper part of the facies 

suggests subaerial exposure and the unit is interpreted to be pre Holocene in age. 

 

4.2  Stratigraphy 

The stratigraphic cross sections through Onslow Beach show a typical transgressive 

facies succession within the Holocene deposits (Figure 14-23). The contact between the basal 

pre-Holocene unit and the overlying lagoonal mud is sharp and shows evidence of subaerial 

exposure and pedogenesis indicating that it is associated with a significant hiatus. This 

unconformity was sampled at variable depths in the along-beach direction and generally 

slopes seaward with high relief. It is interpreted as the sequence boundary that formed during 

the last sea-level lowstand. The elevation of the sequence boundary strongly controls the 

thickness of overlaying Holocene coastal deposits. The sequence boundary is shallow (>0 m 

NAVD88) in the middle of transect F2 where pre-Holocene strata outcrops in the foreshore 

(Figure 17) but further to the southwest and northeast, the sequence boundary is at deeper 

elevations and overlain by thick (>5 m) coastal deposits (Figure 14, 19-23). 

At transects F2strike, F2, and Pier, carbonaceous sand to sandy mud (20-90 cm thick) 

overlies the sequence boundary where it is shallower than ~-1.50 m NAVD88 (Figure 19). 

That unit is interpreted as fringing marsh and/or maritime forest based on its similar lithology 

to the modern marsh facies sampled in transects F1BB and F6BB (Figure 15 and 23), the  
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Figure 14. Cross section, F1. 
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Figure 15. Cross section, F1BB, sampled in the back-barrier environment. 
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Figure 16. Cross section, F2. 
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Figure 17. Cross section, F2strike, is the only along-strike transect along the island. 
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Figure 18. Cross section, F3. 
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Figure 19. Cross section, Pier. 
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Figure 20. Cross section, F4. 
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Figure 21. Cross section, F5. 
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Figure 22. Cross section, F6. 
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Figure 23. Cross section, F6BB, sampled in the back-barrier environment. 
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presence of wood, and its superposition above the upland pre-Holocene unit. Fringing marsh 

on mainland shorelines represents the leading edge of the Holocene marine incursion. Roots 

extend into the pre-Holocene strata and radiocarbon dates of wood found at the bottom and 

top of this marsh/maritime forest in the Pier transect are 3556- 3728 cal years BP and 2156-

2268 cal years BP, respectively (Figure 19; Table 1).  

Overall, the sequence boundary deepens towards the northern end of the island which 

increases local accommodation and permits thick lagoon sediments to accumulate and be 

preserved beneath the beach facies. Where the sequence boundary is at a depth >1.25 m 

NAVD88 below mean sea-level, it is overlain by lagoonal sands and mud. The lagoonal unit 

is wedge-shaped and pinches out landward towards the modern back-barrier marsh, which is 

dictated by the paleo-topography of the seaward-dipping sequence boundary. Transects F1, 

F4, F5, and F6 show a sharp contact between pre-Holocene and lagoonal strata indicating 

that any fringing marsh and/or maritime forest that may have existed, was likely removed by 

bay-ravinement processes (Figure 14, 20-22). Thicknesses of the lagoonal facies of 224 cm 

or greater are common for the northern core transects (Figure 19-22), but is also observed at 

F3 (Figure 18) where there is a paleo-topographic low.  

Age dates from the basal Holocene coastal deposits suggests a lagoon formed later in 

the southwest than the northeast part of the barrier system. A Macoma constricta valve, 

which is a common open-bay species (Andrews, 1992), sampled at the base of the lagoon 

facies at F1 in the southwest was radiocarbon dated as 885 – 1003 cal yr BP (Figure 14). A 

date obtained from the middle of the lagoon unit at the center of transect F5 in the northeast 

was 902 - 931 cal yr BP (Figure 21). It suggests a deep lagoon was already present at F5 

when shallow-water sedimentation initiated at F1. Radiocarbon dates from the middle of the  
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lagoon unit at F6 are 525-641 cal yr BP and indicate that a lagoon existed landward of 

Onslow Beach until at least ~ 600 years ago. Radiocarbon ages from the lagoon facies fall 

below the estimated relative sea-level for those time periods within the error margins (Kemp 

et al., 2009).  

Above the lagoon unit, a discontinuous organic-rich muddy sand and peat unit, 

interpreted as a back-barrier marsh, was sampled. This carbonaceous unit correlates with the 

modern back-barrier marsh sampled at transects F1BB and F6BB. Due to compaction and 

decaying organic matter following burial, marsh sediments are preserved in the subsurface as 

dusky brown (5 YR 2/2) to black (N1) stiff carbonaceous mud with high organic matter 

content which is identified as peat in this study. The marsh unit is absent where lagoonal 

sediments are directly overlain by the extensive washover fan at F1 and the aeolian dune 

facies at F6. It was likely exhumed at those locations by storm and/or tidal ravinement 

processes (Figure 14, 22). In addition, the marsh unit is missing at F5 and F4 where it was 

likely removed by anthropogenic activities associated with road construction (Figure 20, 21).  

Sharp-based fine sand beds ranging from 12-80 cm thick that pinch out in a landward 

direction are intercalated with the marsh unit at the seaward and middle portions of the 

transects. Based on textural and compositional similarities between these beds and the 

modern washover facies, these beds are interpreted to be the distal portions of relict 

washover fans. Based on the fine-grained texture of these beds and association with salt 

marsh sediment, they were likely emplaced in the intertidal zone and are identified as distal 

washover fan deposits. The paleo-washover fans have experienced some post-depositional 

modifications. These distal paleo-washover fans have a mean grain size 2.17 Φ and have 

greater mud content (~6%) than modern fans. They were re-colonized by marsh vegetation, 



 44 

which was preserved as an overlaying carbonaceous mud bed. Heavily bioturbated sediments 

dominate the upper portion of the washover deposit resulting in mixed sediment of fine sand 

and organics which increases in organic carbon content from 3% at 10 cm below the marsh 

unit to 20% at the contact (Figure 9A). Primary sedimentary structures, like the heavy 

mineral laminae observed in the distal portion of the modern Irene fan are rarely preserved in 

ancient distal washover units due to intensive bioturbation (Sedgwick and Davis Jr., 2003).  

The distal zone of the paleo-washover fans are absent in the modern back-barrier 

marsh (Figure 15 and 23) which is likely due to the protection by the dunes and to the rapid 

translation of the island that allows the more seaward preservation of storm beds. These beds 

are mainly preserved in the subsurface at the seaward margin or central portions of the 

transects. The corresponding proximal zone of the paleo-washover fans have been most 

likely excavated by erosional processes of the shoreface or from subsequent high-energy 

storms. The leading edge of the shoreface ravinement surface is located seaward of the 

dunes. It is defined by the erosional truncation of the older units that extend beneath the 

beach and are exposed and eroding in the surf zone which includes paleo-washover fans and 

the underlying facies. This surface is elevated during storms, which extends the erosional 

processes that lead to the destruction of dunes and old washover fans.   

Dune sediments and washover fans are surficial components of the barrier island. The 

dune facies thickens towards the northeast from 83 cm at F2 to an estimate of greater than 

700 cm at F6 and overlies the back-barrier and lagoon sediments. Sharp-based medium-

grained sand beds were sampled overlying the Fran fan by three cores at F1 and two cores 

behind the high-elevation dunes at F6. These beds have a mean grain size of 1.57Φ and are 

fining upward with lower portions (5-10 cm thick) that contain up to 6.39% gravel and upper 
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portions with heavy-mineral laminae and beds (Figure 8). Based on their similarity to the 

lithology described in the Hurricane Fran and Irene beds, they are interpreted as proximal 

washover deposits that have experienced some post-depositional modification. Reworking by 

aeolian processes following deposition likely removed some upper heavy-mineral laminae 

that dominated the upper decimeters of the modern proximal washover fan facies. Aeolian 

processes also transported dune sand to be deposit above those washover beds (Figure 8). At 

F1, the two proximal storm beds extend across the barrier until the layers amalgamate at the 

distal end of the fan, while at F6 the beds were sampled with single cores.  

 

4.3  Timing of washover fan emplacement 

Tidal currents and aeolian processes are other major mechanisms for transporting 

sand to the back-barrier environment during transgression but the sand layers sampled in the 

marsh preserved below the island are not interpreted as such. These sand beds could not have 

been generated within a flood-tidal delta due to the absence of deep scours and channels 

filled with gravel, representative of past inlets, along the island (Heron Jr. et al., 1984; 

Mallinson et al., 2011). Wind-blown sand lenses, which were sampled in the modern marsh, 

are distinguishable from washover sediments due to their finer grain size signature and 

overall thinness (<12 cm). Thus these beds could only have been generated by episodic 

washover sand deposition in a back-barrier marsh environment.  

Nine distinct distal washover fans were identified along the island. Due to the back-

barrier extent of these washover fans, the marsh sediments above and below the storm units 

were able to be radiocarbon dated to determine the timing of overwash events. At the 

seaward margin of the island along the Pier transect, marsh sediments above and below the 
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washover fan are 644-724 and 1715-1833 cal yr BP, respectively. The two shoreward cores 

in the adjacent transect, F3, sampled a thick landward-thinning washover fan with its basal 

contact at a similar elevation as the washover fan sampled at the Pier transect, which suggests 

deposition during the same event, or close to the same time.  

Ages of the marsh sediments below and above the washover fan sampled in core 

F4_4 were 1293-1376 and 505-559 cal yr BP, respectively, and the washover fan sampled in 

core F2strike_4 were 560-598 and 280-318cal years BP, respectively (Table 1). At the 

seaward margin of F1, two distinct washover fans were sampled in the same core. The base 

of the lower washover fan has a similar elevation as the top marsh layer in nearby-core 

F2strike_4, and is assumed to have been deposited during the same time period (280-318 cal 

yr BP; Table 1). The age of the top washover fan was constrained from plant material in the 

underlying marsh layer, which was deposited within the last 77 years (post-bomb 

radiocarbon age). Washover fans were also sampled towards the middle of the island at 

transects F5, Pier, and F2. Our 
14

C data of the marsh sediments directly underlying the fans 

sampled in cores Pier_5 and F5_5 show that they were deposited by storm events within the 

19
th

 century. The washover fan sampled in core F2_7 was likely deposited in the 20
th

 century 

based on a radiocarbon date of 55-145 cal yr BP from wood sampled at the base of the 

marsh/maritime forest unit sampled in core F2_5 that is ~50 cm below the base of the 

washover fan. 

 

5.  DISCUSSION 

 

5.1  Along-shore variability in rates of shoreline transgression  

along Onslow Beach and Onslow Bay 
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Similar to its geomorphology, the internal facies architecture varies along Onslow 

Beach which suggests that the transgressive history of the barrier island system was not 

uniform along the island (Figure 24). Accommodation controlled by the antecedent geology 

plays a large role in the type of environment that is deposited and preserved above the 

sequence boundary. Sediment deposition was influenced by high-elevation pre-Holocene 

strata at the southern end of Onslow Beach that correlates with the submarine limestone 

headland exposed on the inner shelf. The Holocene record at that region is generally thin due 

to the low accommodation, except at F3 in which a more complete sedimentary record is 

preserved in a paleo-channel (Figure 18 and 24). Lowstand fluvial channels similar to the 

paleo-channel that intersects the island at F3 are commonly observed in seismic data 

collected across adjacent barriers like Bogue Banks to the north (Timmons et al., 2010) and 

Wrightsville Beach to the South (Thieler et al., 2001).  

Although a lagoon does not naturally exist behind Onslow Beach today, lagoon 

formation occurred during the initial Holocene sea-level rise. As a result of the along-strike 

variation in antecedent topography, the timing of inundation of the back-barrier environment 

varied from the south to the north. The pre-existing topographic highs at transect F2 and Pier 

prevented flooding and resulted in the absence of a subsurface lagoon facies and only the 

preservation of a thin fringing marsh and/or maritime forest facies (Figure 16 and 19). Basal 

lagoon sediments collected south of the headland at transect F1 were deposited coevally 

(~1000 cal yr BP) with sediments from the middle of the lagoon unit sampled at the northern 

end at transect F5. This indicates that the initial flooding of the southern end of the island 

occurred as the lagoon was already well established on the northern end. In addition,  
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marsh samples from above the lagoon facies in the seaward margin of transects F4 and Pier 

were radiocarbon dated as 1293-1376 cal yr BP and 1715-1832 cal yr BP , respectively, 

indicating a lagoon existed at the northern part of the study area for >1000 years before the 

southern area of Onslow Beach was inundated. The variable timing of back-barrier lagoon 

emplacement along the island is a consequence of the greater accommodation (lower 

elevation pre-Holocene surface) at the northern end of the region.  

Similar to the along-strike difference in the evolution of the back-barrier environment 

the timing of island transgression was also variable along the barrier. Holocene migration 

rates were estimated along the island by approximating the position of the shorelines 

associated with the paleo-washover fans. The paleo-shoreline was projected a constant 

distance seaward from the landward extent or pinch-out of each paleo-washover deposit. The 

location of pinch-out was estimated to be midway from the core that sampled the deposit and 

the adjacent landward core where evidence of the storm event is absent. Only distal washover 

fans were utilized due to their proximity to the pinch out. The constant width of a washover 

fan (185 m) was determined by the median width of the fans deposited by the modern 

Hurricanes Fran (302 m) and Irene (68 m). Hurricane Fran was a Category 3 storm and 

displaced a greater amount of sediment than the Category 1 Irene. The distance between the 

calculated paleo-shoreline and the modern shoreline divided by the time that the paleo-

washover fan was emplaced yields the long-term shoreline retreat rate. Using a constant 

value for the distance between the landward pinch out of the washover fans and the 

associated shoreline assumes that either the paleo-washover fans were deposited by a storm 

of similar strength or the island responded similarly despite the strength of the storm. This 

method does not account for the paleo-morphology of the barrier. Due to the broad 
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distribution of paleo-washover fans along the entire island, however, calculating the rate with 

a consistent method will reveal spatial and temporal (centennial) trends in the absence of data 

on past island width and morphology.  

Rates of shoreline retreat calculated from washover fans that were deposited along the 

island at similar times were analyzed together to examine along-beach variations in shoreline 

movement due to geologic factors. For example shoreline-retreat rates calculated from a 

washover fan that formed 1800 years ago was not compared to shoreline-retreat rates 

calculated from a washover fan that formed 200 years ago because the rate of sea-level rise 

and storminess were likely different. The three washover fans that formed over the past ~50-

150 years are located at the southern, central, and northern zones of the island and shoreline 

migration rates derived from these features were compared. The resulting rates of shoreline 

transgression in the southern (transect F2) and central (Pier) sections of the island were ~ 

0.77 and 0.36 m/yr, respectively, which is similar to the modern average rates of shoreline 

retreat for those sections (~2.0 – 0.5 m/yr and 0.5 – 0 m/yr, respectively). The northern 

section represented by transect F5, transgressed at a rate of 0.03 m/yr which contrasts with its 

modern rate of shoreline seaward advance of 0.25 m/yr. Rapid transgression in the southern 

part of Onslow Beach likely overstepped the older lagoonal deposits. Due to the slower rates 

of transgression in the central and northern parts of the island, lagoon sediments in those 

regions were preserved below the modern beach. Alongshore variability in shoreline 

migration rates for at least the last 150 years may be linked to local offshore sand sources at 

the northern end of the island. The migration rates reveal that the southern end of Onslow 

Beach continues to transgress rapidly over the past 150 years while the northern side has only 

recently begun to move seaward. 
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Onslow Beach exhibited rapid landward retreat via recurring overwash events along 

the entire length of the island during the late Holocene. The three oldest paleo-washover fans 

preserved below the beach are interpreted to record evidence of an island located seaward of 

the current Onslow Beach. The southern section contains two storm deposits that occurred 

between ~300 to 600 cal yr BP while the central section preserved a paleo-washover fan that 

is older and up to ~1800 cal yr BP. Washover fans are unlikely to occur today on the 

northern end of the island due to the high-elevation continuous dune line but washover 

features are preserved at this region. This suggests that the entire barrier had a low profile in 

the past and was susceptible to overwash during high-energy events. These storm impacts on 

the more robust northern end of the island, however, only resulted in the deposition of 

proximal washover fan facies which are unable to be radiocarbon dated. The older paleo-

washover fans in the younger southern section indicate that the entire island had transgressed 

to its current location by at least ~300 to 600 cal yr BP.  

The overwash-dominated barrier islands of southern Onslow Bay that comprise the 

high-energy flank of the Cape Fear foreland (east facing; Cleary and Hosier, 1979) have a 

similar but slightly older transgressive history than Onslow Beach. Radiocarbon ages of peat 

sampled beneath Masonboro Island, southwest of Onslow Beach, are 902-1066 and 545-797 

cal yr BP. These ages are slightly older than the dates determined from the peat underlying 

Onslow Beach but reveal a similar rapid transgressive history. The inner shelf of 

southwestern Onslow Bay is also sediment-starved and dominated by rock outcrops (Thieler 

et al., 2001), similar to the southern end of Onslow Beach.  

Onslow Beach and Masonboro Island reached their present positions within the past 

~1000 years and are considerably younger than the barriers in northeast Onslow Bay. The 
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barrier islands on the lower energy limb south of Cape Lookout such as Bogue Banks, have a 

history of progradation as evidenced by a higher, wider profile with multiple beach ridges 

and less accounts of inlets and washover fans (Cleary and Hosier, 1979; Heron Jr. et al. 1984; 

Timmons et al., 2010). The oldest beach ridge on Bogue Banks formed ~3300 years ago and 

lagoon sediments sampled in the center of Bogue Sound are ~5500 cal yr BP. The island 

prograded seaward until ~1200 cal yr BP, in part by incorporating reworked paleo-channel-

fill deposits on the shelf (Timmons et al., 2010). From previous work, the northeastern 

barriers along Onslow Bay retreated at a slow rate, migrated a short distance and reached 

their current positions ~3000 yeas ago, while the southeastern barriers rapidly transgressed 

large distances to their current positions within the last ~1000 years. Onslow Beach, located 

centrally in the bay, is interpreted from this study to have the most rapid migration rate in the 

bay, arriving to its modern location ~600 years ago.  

These empirical data support the numerical model formulated by Ashton et al. (2001). 

That model is based on an instability mechanism induced by gradients in alongshore 

sediment transport and implies that the central embayment of cuspate coastlines would 

experience the greatest shoreline retreat rates and transgress larger distances as compared to 

the flanks of the capes. As cuspate-cape shorelines continue to develop and increase in 

amplitude, the local wave climate is modified due to shoreline reorientation and sheltering 

effects. As a result, the highest-angle waves are prevented from reaching areas adjacent to the 

growing capes and leads to erosion in the shadowed embayments. The young radiocarbon 

ages and resultant rapid retreat rates in central Onslow Bay, from our stratigraphic data, 

supports the Ashton et al. (2001) prediction that the highest shoreline retreat rates should 

occur in the central embayment areas between capes at centennial to millennial time scales.  
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5.2  Storm Impacts 

The suite of preserved washover fans along the island suggests that storms played an 

important role in the evolution of Onslow Beach over at least the last ~1800 years. To 

analyze the record of significant overwash events, the timing of emplacement and landward 

pinch out of the distal paleo-washover fans, measured against a baseline, were compared. 

The best-fit linear regression through the 2006 digitized Onslow Beach shoreline was used as 

the baseline which acts as a control on the paleo-shoreline position and provides a straight 

shoreline for the study. Older washover fans are positioned closer to the baseline than 

younger washover fans, which is consistent with transgressive barrier island sequences 

(Figure 25). Figure 25 shows that the landward pinch-out distance of washover fans increases 

exponentially in recent time. More washover fans formed along Onslow Beach over the last 

100 years (five washover fans) than the preceding 1650 years (three washover fans). The 

recent fans extend two to four times farther landward than the older washover fans. If the plot 

of the landward pinch out of washover fans through time was linear and it would indicate a 

steady rate of island transgression. The exponential trend could be the result of changes in 

island morphology (e.g. sediment supply or dune height), storm severity and frequency, 

and/or acceleration in the rate of sea-level rise. 

The areal extent of washover fans is related to the severity of the storms and the 

morphology of the barrier. Greater landward displacement of overwash sediment in the 

recent past than the past few centuries   
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Figure 25. Estimated landward extent of the distal washover fans plotted with their 

radiocarbon ages. Increase in frequency and magnitude of the washover fans in the 

last 150 years corresponds with the recent accelerated rate of sea-level rise. The 

relative sea-level curve shows the spatial and temporal error. Top x-axis indicates 

rates of relative sea-level for North Carolina. Periods of intense storm climates like 

the MWP and LIA, shown in gray boxes, lack an expected increase in washover fan 

deposition. Distal washover fans are labeled by transect. Transects with (1) indicate 

washover deposits preserved below the modern beach and transects with (2) indicate 

a paleo-washover fan preserved below the dunes.  
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can be interpreted as the result of stronger storms or a weaker island. All of the washover 

fans plotted on Figure 25 impacted the back-barrier environment of the paleo-barrier 

suggesting that deposition was the result of storm events with intensities equivalent to the 

recent Hurricanes Fran and Irene. Smaller storm events can overwash the island, but typically 

only impact the dune or older washover fans as proximal washover fans, similar to those 

sampled in dune and washover facies in transects F6 and F1, respectively. Thus, the 

exponential trend is not likely due to differences in storm severity in the past ~2,000 years. 

Alternatively, Onslow Beach may have been less susceptible to overwash in the past due to a 

higher elevation or greater width which would cause less washover fans during that time. 

Currently, the northeastern region is robust and is protected with multiple high dune ridges. 

Those dune ridges, however, were still degraded by at least one paleo-storm. Transect F5 in 

the northern region contains one of those recent paleo-washover fans indicating that 

morphology is not a factor in the pattern of preserved storm deposits. This fan also suggests 

that high dunes can accrete or erode rapidly at centennial timescales. The curve in Figure 25 

is not likely due to severity of the individual storm or morphology of the island. 

The timing of the paleo-washover fans may correspond with periods of increased 

storminess (Figure 25). Increased tropical storms along the U.S. Atlantic coast during the 

Medieval Warm Period (MWP; ~1100 cal yr BP; Mann et al., 2009) was concluded to cause 

increased erosion along the lagoon side of Bogue Banks, North Carolina by Timmons et al. 

(2010) as well as island “collapse” and inlet formation along the northern Outer Banks by 

Culver et al. (2007) and Mallinson et al. (2011). Evidence for overwash deposition on 

Onslow Beach due to high storm activity is absent during this time period (Figure 25). A 

possible explanation for the lack of influence from the MWP is that transgression occurred at 
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such a rapid rate that it decreased the preservation of the washover fans due to major island 

degradation from storm impact. The earliest washover events preserved in our sedimentary 

record, which occurred prior to the stormy period (transects F3, Pier, and F4_4), may have 

been generated by an extremely intense storm that occurred before the rapid transgression 

during the MWP. Another possible explanation for the lack evidence of the MWP on Onslow 

Beach is that the resultant washover fans may have been emplaced between our transect sites 

and were not sampled. 

Many have speculated that the Little Ice Age (~550-50 cal yr BP; LIA) was another 

period of greater storms that impacted the Atlantic coast. During the last ~150 years, a 

greater frequency of washover events as well as an increase in the distance of the landward 

extent of the resultant fans occurred along Onslow Beach. The apparent rapid transgression 

of the island during this period falls within the Little Ice Age, which is a time when 

nor’easters along the U.S. Atlantic coast may have been more intense (Mallinson et al., 

2011). Increased nor’easters during the Little Ice Age has been concluded to have formed 

large inlet complexes along the northern Outer Banks coastline. Most of those inlets, 

however, formed around 300-400 cal yr BP, which is at least 150 years earlier than the 

washover fans preserved along Onslow Beach. In addition, Onslow Beach is southeast facing 

and thought to be impacted less from nor’easters than the Outer Banks north of Cape 

Hatteras, which are facing east-northeast (Mallinson et al., 2011). Despite the later dates of 

washover fan generation on Onslow Beach and the difference in orientation in comparison to 

the northern Outer Banks, the LIA likely had more of an effect than the MWP on the 

evolution of Onslow Beach.  
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Although intense storm periods may have played a role in the increased number and 

landward extent of washover fans emplaced along Onslow Beach over the last ~150 years, 

the rate of relative sea-level rise also increased at that time and may have had a greater 

influence. For the last ~130 years ago, the mean rate of relative sea-level rise was 2.9 mm/yr, 

which was greater than the last 2000 years (Kemp et al., 2011). The increase in the rate of 

sea-level rise at AD 1865-1892 coincides with deposition of three paleo-washover fans along 

the island. The rapid rise in sea-level likely increased the rate that the open-ocean and back-

barrier shorelines were moving landward and the associated rate of island transgression.  In 

addition, increased rates of transgression likely maintained a low-island elevation, making it 

more susceptible to overwash. The most frequent deposition of storm beds occurred in the 

last 150 years and can be linked to the abrupt rise in rate of sea-level. The slow rate of 

transgression suggested from the older paleo-washover fans prior to this period corresponds 

with the stable or low rate of sea-level rise (Kemp et al., 2011).  

A model simulation of the cumulative effects of increased tropical and extra-tropical 

storms, incorporating a greater proportion of high-angle waves, predicts that cuspate bays 

will erode at increased rates while the cape tips will accrete (Slott et al. 2006). In response to 

the increase in storminess during the Medieval Warm Period, an increase in the number of 

washover fans was not seen along Onslow Beach. Bogue Banks, located on the southern 

flank of Cape Lookout, experienced rapid erosion of the back-barrier shoreline during the 

Medieval Warm Period that caused the island to narrow at its center (Timmons et al. 2010). 

Bogue Banks was destructively impacted on its lagoon side by periods of increased storms; 

however, it is unclear if the ocean shoreline experienced accretion as predicted by the 

numerical model. A clear increase in shoreline transgression at Onslow Beach and regression 
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at Bogue Banks was not correlated with periods of intense storm climate such as the MWP 

and LIA as predicted by the Slott et al. (2006) model.  

Discrepancies between the Slott et al. (2006) model and coastal impacts from 

increased storminess along Onslow Bay may result from the assumptions built into the 

model. Slott et al. (2006) modeled the cumulative coastal effects of increased storm activity 

assuming (1) a mainland shoreline; (2) wave-driven alongshore forcing as the mechanism for 

sediment transport; (3) the seafloor is composed of unconsolidated sand and (4) sea-level is 

constant. In the barrier-lagoon complexes that dominate the North Carolina coast, the 

significant role of cross-shore sediment transport is evident in the abundant relict washover 

fans and tidal inlets that many studies have mapped (Mallinson et al. 2011; Davis, 1994; 

Moslow and Heron Jr. 1978). Overwash and inlet processes are two primary mechanisms that 

control island widening and the removal of sediment from the active littoral zone and 

deposition into the back-barrier environment. Shore-perpendicular processes, which Slott et 

al. (2006) did not factor into their model, are driven by rising sea-level and storms. 

Therefore, during periods of increased storm activity, sediment lost from the active system 

cannot be delivered to the cuspate foreland region in its entirety. In addition, the entire 

shoreface is not composed of unconsolidated sandy sediment and the inherited geologic 

framework controls sediment supply and accommodation in this region due to the shallow 

limestone rock outcrops on the shelf near Onslow Beach (Riggs et al. 1995) and sandy paleo-

channels offshore of Bogue Banks (Timmons et al., 2010). The northern region of Onslow 

Beach is currently experiencing a slow rate of accretion, which is not predicted in the 

shoreline evolution models (Rodriguez et al. 2012) and is likely sourced by a sand sheet on 

the inner shelf on that end of the island. Similarly, sediment supply from offshore erodible 
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paleo-channel fill was the primary mechanism that promoted accretion during slow sea-level 

rise for Bogue Banks (Timmons et al., 2010) rather than sediment transport driven by high-

angle waves. 

 

6.  CONCLUSIONS 

 

Onslow Beach is a transgressive barrier island that retreated landward during the late 

Holocene primarily through overwash processes and washover fan formation.  Nine paleo-

washover fans that impacted the coeval back-barrier marsh were preserved below the modern 

beach or dune as opposed to the modern back-barrier marsh environment. Older deposits 

were sampled below the modern beach and revealed the time of emplacement of the barrier 

island. The oldest washover deposits, which were preserved in the central region of the 

island, are ~1800 cal yr BP and suggests that the island was proximate to its present position 

since that time. During this period, the northern region of Onslow Beach was likely separated 

from the mainland by an open-water lagoon. Due to the shallow pre-Holocene surface in the 

southern end, this region was inundated approximately 800 years later. The barrier island in 

the southern region transgressed after the northern part of the island was emplaced. The 

oldest washover fans at the southern end of the island were deposited approximately 600 cal 

yr BP and indicate that the entire island reached its present position fairly recently with 

variable migration rates along the island. Antecedent topography plays a significant role in 

shoreline transgression which varies along the island on millennial and centennial timescales.  

Onslow Beach is slightly younger than Masonboro Island which is located in the 

high-energy southwestern flank of Onslow Bay. Both islands are significantly younger than 
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Bogue Banks in northeastern Onslow Bay which was formed ~3300 cal yr BP.  As the 

morphology of the coastline implies, barriers located at the center of a coastal embayment 

such as Onslow Beach transgressed more rapidly and a longer distance across the continental 

shelf than barriers located along the cape flanks (Bogue Banks), given a straight shoreline 

during the sea-level lowstand. Along with the Masonboro Island and Bogue Banks studies, 

the stratigraphy of Onslow Beach provides geologic evidence for the numerical model of 

Ashton et al. (2001) and Ashton and Murray (2006). 

The age of the paleo-washover fans of Onslow Beach also revealed the probable 

mechanism that controls the migration of the island. Based on our assumptions of the 

landward extent of washover fans in the area, the fairly constant pinch-out of the few fans 

from ~1800 cal yr BP to ~150 cal yr BP indicate that the rate of landward retreat was likely 

relatively low. The slow transgression of the barrier system may reflect the low rates of sea-

level rise that occurred on the coast of North Carolina during that time (1.0-1.5 mm/yr; Kemp 

et al, 2011). At 150 cal yr BP the frequency and magnitude of washover fans, as indicated by 

the landward extent, increased dramatically along the entire island. This increase in island 

retreat likely corresponds with a sharp increase in the rate of sea-level rise from 1.0 mm/yr to 

2.9 mm/yr (Kemp et al., 2011). As a response to rising sea-level, ocean shorelines and dune 

ridges erode and increase the island’s susceptibility to overwash or inlet formation during 

high energy events. The increase of washover fans and rapid transgression of the island 

during its recent history was likely attributed to its increased vulnerability to storms caused 

by the changes in sea-level decreasing island elevation and/or width. Onslow Beach is thus 

likely sensitive to small changes in the rate of sea-level rise, which can be linked to its 
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location at the center of a coastal embayment, its underlying geology that dictates regional 

accommodation and its lack of sand on the inner continental shelf (Riggs et al., 1995).  

Although North Carolina barrier islands have been impacted by periods of more 

intense storms such as the MWP and the LIA, washover fans deposited on Onslow Beach do 

not correlate with these periods. A possible explanation for stormy periods not being 

recorded in the sedimentary record of Onslow Beach is that the dunes are able to recover 

rapidly after storm events, Nor’easters associated with the LIA have less of an erosive impact 

on south facing shorelines, and a possible low preservation of storm deposits that may have 

formed during the MWP.  

Rates of sea-level rise are predicted to increase in the future. Based on this study, 

accelerated rates of sea-level rise will impact Onslow Beach regardless of future changes in 

storm patterns. Further investigation on coastal response to future increased rate of sea-level 

rise is needed. Onslow Beach may be the most susceptible barrier island in Onslow Bay to 

erosion due to its low elevation and low accommodation in the southern region and its 

overall low sediment supply resulting from, in part, its location in the center of two capes.  
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