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Abstract
TRACY L. NOLEN, MSTAT: RANDOMIZATION INFERENCE AND
PRINCIPAL STRATIFICATION IN HIV PREVENTION STUDIES

(Under the direction of Michael G. Hudgens, Ph.D.)

Infectious disease prevention studies often aim to test or estimate the “causal effect”

of a preventive measure on outcomes by comparing the potential outcomes individuals

would have under treatment versus control. Examples of outcomes of interest include

infection incidence or post-infection outcomes (e.g., disease severity, death). Two an-

alytical challenges of interest exist for these studies. First, analyses on post-infection

outcomes are subject to selection bias as only a subset of the randomized population

become infected (i.e., infection status is a post-randomization measure on which analy-

ses are often conditioned). Treatment comparisons conditional on post-randomization

measures using standard analytic methods do not have a causal interpretation in that

the estimates obtained are not unbiased estimates of the contrast between potential out-

comes. The principal stratification framework provides estimates of treatment causal ef-

fect in the presence of potential selection bias due to post-randomization measures; how-

ever, existing methods comprise only Bayesian or large-sample frequentist approaches.

To date a general approach to randomization inference within principal strata has not

been developed. Furthermore, while principal stratification approaches are abundant in

statistical literature, their presence as an applied analytic approach within infectious

disease journals is limited. The second challenge of prevention studies involves the

analysis of repeated low-dose mucosal challenge preclinical studies of potential vaccines

which are becoming more prevalent in an attempt to conduct studies that better mirror

‘real life’ human transmission. Current statistical literature exploring the analysis of
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these studies is somewhat limited and simulation results for certain proposed analytic

approaches have demonstrated an inflated type I error. Therefore, in this dissertation

we 1) develop methods for exact randomization-based causal inference within principal

strata in the presence selection bias due to post-randomization measures, 2) present a

discussion of selection bias in randomized studies and the use of principal stratifica-

tion analytic approaches for handling such bias targeted at subject-matter investigators

and 3) present a discussion of appropriate analytic approaches for repeated low-dose

challenge preclinical vaccine studies.
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Chapter 1

Literature Review

1.1 Motivating Examples

1.1.1 Mother-to-Child Transmission of HIV

In sub-Saharan Africa, approximately 40% of new human immunodeficiency virus

(HIV) infections occur via breast milk transmission from mother to child (Mofenson

2009). Options such as replacement feeding in place of breastfeeding that have made

HIV mother-to-child transmission (MTCT) through breast milk extremely uncommon

in developed countries are simply not viable solutions in resource limited settings such

as sub-Saharan Africa. Specifically, the cost of replacement feeding and increased risk

of other diseases such as diarrhea, pneumonia and malnutrition associated with re-

placement feeding in these settings make replacement feeding an impractical approach

to reducing MTCT in resource-limited settings (Mofenson 2009). As such, an impor-

tant area of research in MTCT reduction involves identifying an effective prophylactic

treatment for use on the mother and/or the infant prior to and/or during breastfeed-

ing. Examples include the Petra trial which assessed the efficacy of prophylactic therapy

given to women during pregnancy and 1 week postpartum, the ZEB study which as-

sessed the efficacy of early weaning, the Mma Bana study which assessed the efficacy

of prophylactic therapy given to women during pregnancy and breastfeeding and the



BAN study which assessed the efficacy of prophylactic therapy given to women and

infants during breastfeeding (Petra Study Team 1999; Kuhn, Aldrovandi and Sinkala

et al. 2008; Shapiro, Hughes and Ogwu et al. 2010; Chasela, Hudgens and Ogwu et al.

2010).

HIV MTCT prevention studies pose interesting analytical challenges. As evidenced

by the examples provided above, the prophylactic treatments of interest are typically

started during or shortly after birth; therefore, randomization must occur before or

soon after birth. Additionally, HIV MTCT can occur in utero, perinatal and post-

partum (Mock 1999). When the effect of interest is the ability of the treatment to

reduce postpartum breast milk transmission, some of the randomized infants infected

in utero or perinatal are not relevant for the analyses of interest. As such, in utero and

perinatal infections must be accounted for when estimating treatment effect during the

breastfeeding period (Mofenson 2010).

An additional challenge of MTCT prevention studies is that post-infection endpoints

are often of interest for secondary analyses. For example, a secondary outcome of

interest in the ZEB study was post-infection survival (Kuhn, Aldrovandi and Sinkala

et al. 2008). Analysis of such outcomes are challenging because such outcomes are

only observed for a portion of the randomized infants, the subset that become infected,

and infected infants typically comprise a small proportion of the study population

(Mofenson 2010). As such, approaches that appropriately control for infection status

and do not require large sample frequentist assumptions are required.

1.1.2 HIV Vaccine Development in Macaques

Preclinical proof-of-concept vaccine trials using animal models limit the risk, time

and cost of clinical trials involving human subjects by providing preliminary evidence of

potential safety and efficacy of an investigational vaccine (Koff 2006; Shedlock, Silvestri

2



and Weiner 2009). While chimpanzees are the only non-human primate that can be

infected with HIV-1, research on chimpanzees is limited due to ethical and financial

considerations as chimpanzees are endangered and expensive to maintain (Shedlock

et al. 2009; Smith 2009). Therefore a large portion of the preclinical studies of HIV

vaccines have been conducted using macaques and viral surrogates of HIV, simian

immunodeficiency viruses (SIVs), as the disease progression of SIVs in macaques mirrors

that of HIV in humans (Shedlock et al. 2009).

The virus challenge in these preclinical trials has historically been administered

via a single high-dose intravenous or mucosal inoculation which often resulted in near

guaranteed infection of all animals (Hudgens et al. 2009). Although single high-dose

challenge studies are appealing in that high infection rates allow for a greater chance

of observing an effect of vaccine assuming the vaccine is completely protective against

infection, the vaccine efficacy in these trials may not translate directly to vaccine effi-

cacy in ‘real life’. For example, the high infection rates of these challenge studies do

not mirror the low per heterosexual probability of HIV transmission per sexual act,

estimated at < 0.01 in various studies of US, European, Thai and African populations

(Gray et al. 2001; Boily et al. 2009) . Likewise, per month probability of late postnatal

HIV transmission via breastfeeding is estimated at 0.01 (WHO 2007). Additionally, it is

unlikely that vaccines are equally efficacious against high-dose and low-dose challenges.

Therefore potential vaccines that would be efficacious against low-dose challenges may

be discarded because they were not observed to be efficacious in the high-dose challenge

studies (Regoes, Longini, Feinberg, and Staprans 2005).

As an alternative, repeated low-dose mucosal challenge studies that attempt to more

accurately mirror ‘real life’ human transmission have been proposed and are becoming

more prevalent (McDermott et al. 2004; Hessell et al. 2009; Hudgens et al. 2009). For

these studies, each individual is challenged multiple times (i.e., until infected or until a
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maximum number of challenges Cmax has been performed) such that each individual has

the potential for multiple outcomes corresponding to the number of times the individual

was challenged. Currently literature exploring the design of these repeated low-dose

challenge studies is somewhat limited (Regoes et al. 2005; Hudgens and Gilbert 2009;

Hudgens et al. 2009). Specifically, Regoes et al. (2005) performed a statistical power

analysis of repeated low-dose challenge studies that involved summarizing outcome data

using a 2× 2 contingency table of infection status by treatment assignment where the

cell counts are the number of challenge events falling in each category, and analyzing

the results using a one-tailed Fisher’s exact test. Hudgens et al. (2009) performed

additional power analyses using simulations which showed that in certain settings, this

approach had an inflated type I error (rates as high as 0.20 for scenarios simulated).

Therefore additional research into the appropriate analytic approaches for these designs

is warranted.

1.2 Causal Inference

1.2.1 Introduction

The primary goal of most randomized and non-randomized studies is to estimate

the effect of an intervention on an outcome of interest. This effect is often described

as the ‘causal effect’ of the intervention and a framework for inference about this effect

is Rubin’s causal model (Holland 1986). For example, the causal effect of aspirin

on the outcome of resolution of a headache is the measure of the aspirin’s ability

to cure a headache. This can be quantified as an odds ratio (e.g., the ratio of the

odds of the headache resolving when aspirin is taken versus the odds of the headache

resolving when no aspirin is taken). The causal effect of vaccine on disease incidence is

often measured by vaccine efficacy, defined as the reduction in disease incidence among
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vaccinated individuals compared to the incidence in unvaccinated individuals (Hudgens

and Halloran 2006).

For Rubin’s model, consider a setting where a population of n individuals (units) are

observed at a specific time and place and each individual receives a particular treatment

(intervention). For ease of discussion, assume there are only two potential treatments

and let Zi represent treatment assignment for the ith individual such that Zi = 0 for

control and Zi = 1 for treatment. When discussing causal effects, it should be hypo-

thetically possible for each individual to receive any of the potential interventions; a

concept often referred to as ”No causation without manipulation” (Rubin 1978, Holland

1986). Denoting the outcome measure of interest as Yi(Zi), there are then 2 potential

outcomes, Yi(0) for the true outcome under control and Yi(1) for the true outcome under

treatment. The fundamental problem of causal inference is that it is impossible to ob-

serve both potential outcomes on any one individual (Holland 1986). Therefore, define

the observed outcome for each individual as Y obs
i ≡ ZiYi(1)+(1−Zi)Yi(0) (Rosenbaum

2010). Because of this fundamental problem, potential outcomes are often described in

terms of counterfactuals (Robins and Greenland 1992). Specifically, the counterfactual

circumstance is the potential outcome that would have been observed for an individual

under the treatment scenario that individual did not receive (e.g., what would have

happened to an individual that was treated had they received control instead).

Under this framework, an example of a measure of the causal effect of treatment on

an individual is the difference in potential outcomes, Yi(1) − Yi(0). Because both po-

tential outcomes cannot be observed for an individual, it is not possible to make direct

inference about Yi(1) − Yi(0) for each individual. Therefore, Neyman (1923) proposes

estimating or testing the ‘typical’ causal effect of the intervention such as the average

causal effect for the observed population of individuals, n−1
∑

i(Yi(1)−Yi(0)). To make

inference about the average causal effect of an intervention, the treatment assignment

5



mechanism must be specified or modeled (Rubin 2005). A significant characteristic

of Rubin’s framework is that, in the setting of a randomized trial, the treatment as-

signment mechanism is “ignorable” in that it is independent of the potential outcomes

for each individual (Rosenbaum and Rubin 1983, Little and Rubin 2000). In other

words, Pr(Zi|Yi(1), Yi(0)) = Pr(Zi) for all i. Therefore, assuming n/2 individuals are

randomly assigned to each treatment group, an unbiased estimate of the average causal

effect is simply the difference in the observed treatment group means of our population,

(n/2)
∑

i(Y
obs
i (Zi)− Y obs

i (1− Zi)) (Neyman 1923).

Analyses using the potential outcome model have been employed in a variety of

settings including observational and randomized studies in the health and social sci-

ence and econometric fields (Winship and Morgan 1999, Heckman and Vytlacil 1999,

Greenland 2000, Sobel 2000).

1.2.2 Randomization-Based Inference

Randomized studies are the gold standard in clinical trials for evaluating the effects

of biomedical interventions because randomization (i) produces in expectation compa-

rable groups with respect to measured and unmeasured covariates and (ii) provides a

basis for statistical inference. Regarding (i) balance of covariates between treatment

groups allows any observed difference between treatment groups to be attributed to

treatment assignment and therefore, allows for estimation and testing of the causal

effect of treatment (Rubin 2008, Foster 2010). Regarding (ii) randomization-based in-

ference of treatment effects is based on distributions created from the randomization

process rather than assuming random sampling from an infinite population or that

particular parametric distributions hold (Koch, Gillings and Stokes 1980; Rubin 1991;

Rosenbaum 2002a). Specifically when comparing the effect of two treatments, random-

ization allows for the calculation of the exact probability of how unusual the observed
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difference in effect between the treatment groups is under a specified hypothesis where

the calculation of these probabilities relies solely only on the randomization design im-

plemented for the study, the specified hypothesis and the observed data (Rubin 1974,

Rosenbaum 2010). Therefore, randomization-based inference allows for inference in

small to intermediate sample size settings where methods based on asymptotic approx-

imations may not be appropriate.

To further explore randomization-based inference, consider the sample of n indi-

viduals introduced in Section 1.2.1 to be a finite, fixed population that are randomly

assigned treatment using a fixed randomization scheme such that n/2 individuals are

randomly assigned to each treatment group. For randomization-based inference, the set

of potential outcomes for each individual is considered a fixed feature of the population

and therefore is denoted as (yi(0), yi(1)) (Rosenbaum2010). As treatment assignment

is random and Y obs
i is a function of treatment assignment, Y obs

i is considered to be

random. Assume the null hypothesis of interest is that there is no effect of treatment

on the outcome of interest, H0 : yi(0) = yi(1) for i = 1, . . . , n. Additionally, assume the

one-sided alternative hypothesis where the response under control is greater than that

under treatment (e.g., disease incidence is more likely or disease severity is greater in the

control group compared to the treated group). The primary question of randomization-

based inference is “To what extent do the data from the randomized experiment provide

evidence against the null hypothesis of no treatment effect?” (Rosenbaum 2010). The

null hypothesis specified here is referred to as Fisher’s sharp null hypothesis of no ef-

fect and implies that each individual would experience the same outcome regardless of

whether they received treatment or control (Rubin 2005). This implication is impor-

tant as it means both potential outcomes for each individual are observed under the

null and therefore, the distribution of any test statistic can be obtained by calculating

the value of the test statistic for each possible treatment assignment combination using
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the observed outcome data (Rubin 2005, Foster 2010).

Specifically recall that like any pretreatment covariates, yi(0) and yi(1) are fixed fea-

tures of the population while treatment assignment is assumed to be random. Therefore,

randomized trials are “unconfounded” in that the potential outcomes are independent

of treatment assignment (i.e., treatment is ignorable, Pr(Zi|yi(0), yi(1)) = Pr(Zi)) and

as such there are
(
n
n/2

)
possible treatment assignment combinations that are all equally

likely to be selected (Rubin 2008, Rosenbaum 2010). Since yi(0) = yi(1) under the null

hypothesis, H0 provides a unique setting where both potential outcomes are observed

for each individual and therefore, Y obs
i is fixed regardless of treatment assignment. For

this simple setting a randomization-based definition of the p-value is the probability of

obtaining a treatment assignment combination that results in a distribution of outcomes

as or more extreme than what was observed when assuming all treatment assignments

are equally likely.

1.2.3 Intermediate Post-Randomization Outcomes

In many situations, assessing the causal effects of treatment on the outcome of

interest in randomized studies is complicated by the presence of an intermediate post-

randomization outcome. Rubin (2005) used the term “concomitant variable” and de-

scribes it as“an outcome variable that is not the outcome of primary outcome of interest,

but may be on the causal pathway of the treatment affecting the primary outcome vari-

able” (Rubin 2005). An example of interest for this research is HIV prevention studies

where an outcome of interest is disease severity (Hudgens, Hoering and Self 2003). For

this example, the intermediate post-randomization outcome is occurrence of disease as

only individuals who become diseased will have a measurable level of disease severity.

Other examples include assessing causal treatment effect in the presence of compet-

ing risks or informative censoring such as truncation by death or loss-to-follow and in the
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presence of treatment noncompliance. For studies with the competing risk of truncation

by death, the intermediate post-randomization outcome is occurrence or death as the

outcome of interest may only be observed or be of interest for individuals who survive

(Robins 1995). In randomized studies where there is treatment noncompliance, com-

pliance to randomized treatment assignment can be considered an intermediate post-

randomization outcome as compliance status impacts the outcome of interest (Angrist,

Imbens and Rubin 1996). Various statistical approaches have been used to conduct

analyses conditional on these intermediate post-randomization outcomes; however, not

all of these approaches truly allow for estimation of the causal effects of treatment on

the outcome of interest. For example, analyses of disease severity often condition on

infection status such that only infected individuals are included in the analyses or are

performed via a composite analysis of both disease incidence and severity (Mick 2010;

Chang, Guess and Heyse 1994). Analyses in the presence of non-compliance are often

performed using an intention-to-treat approach where all individuals are classified by

their assigned treatment group regardless of actual compliance (Lachin 2000).

To explore this topic further, amend the scenario described in Section 1.2.2 by

denoting the intermediate post-randomization outcome as si(Zi). Now each individual

has four potential outcomes (si(1), si(0), yi(1), yi(0)) where all four of these potential

outcomes are considered fixed features of the finite population of individuals and Zi

is still considered a random variable. Thus define the observed intermediate post-

randomization outcome, Sobsi analogously to Y obs
i such that Sobsi ≡ Zisi(1)+(1−Zi)si(0).

Hence, Sobsi and Y obs
i are both random variables since they depend on Zi.

One standard method that adjusts for intermediate post-randomization outcomes is

referred to as the ‘net-treatment effect adjusting for the intermediate post-randomization

outcome’ (Frangakis and Rubin 2002). This approach is a comparison of the distri-

bution of the observed outcome of interest under each treatment assignment among
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individuals with the same observed outcome for the intermediate post-randomization

outcome:

Pr[Y obs
i |Sobsi = s, Zi = 0] compared to Pr[Y obs

i |Sobsi = s, Zi = 1] (1.1)

which, in our randomized study setting, is equivalent to the comparison of:

Pr[Y obs
i |si(0)] compared to Pr[Y obs

i |si(1)] (1.2)

If treatment has any effect on the intermediate post-randomization outcome, then

the net-treatment effect conditioning on the intermediate post-randomization outcome

does not equal the causal effect of treatment on the outcome of interest (Robins and

Greenland 1992). Specifically, if treatment has an effect on si(Zi), the net-treatment

effect estimate is subject to post-randomization selection bias as the individuals with

Sobsi = s under control are not necessarily the same as those with Sobsi = s under

treatment (Rosenbaum 1984). Due to the potential introduction of selection bias,

the analytical benefits of conducting a randomized study are lost when conditioning

on an intermediate post-randomization outcome. Halloran and Struchiner (1995) and

Hernán, Hernández-Dı́az and Robins (2004) provide further details about the selection

bias present in standard analytic methods when assessing a treatment’s effect on the

outcome of interest in the presence of intermediate post-randomization outcomes.

Alternative analytic approaches have been proposed for assessing causal effects in

these types of settings. For example, Angrist, Imbens and Rubin (1996) propose the

use of instrumental variables in the presence of treatment non-compliance in order

to estimate the causal effect of treatment within the subgroup of individuals consid-

ered compliers. Robins and Greenland (1992) describe a process where a covariate

that ‘controls/explains’ the intermediate variable is identified and incorporated into
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a G-computation algorithm in order to obtain estimates of the direct/causal effects

of treatment on the outcome of interest. Of particular interest, Frangakis and Rubin

(2002) describe the framework of principal stratification as an alternative analytic ap-

proach for obtaining estimates of causal effects of treatment on the outcome of interest.

1.2.4 Principal Stratification

Frangakis and Rubin (2002) formally introduced the concept of principal stratifica-

tion in causal inference as an alternative to the standard approaches that do not allow

for a causal interpretation. While the framework proposed by Frangakis and Rubin

is applicable to a wide range of settings including observational studies; for our pur-

poses, we restrict our focus to the setting of randomized studies. As such, what we

refer to as the “intermediate post-randomization outcome” is more generally described

in Frangakis and Rubin as the “post-treatment variable for which adjustment is re-

quired”. Frangakis and Rubin define principal stratification as a “cross-classification of

the units based on their joint potential values of [the intermediate post-randomization

outcome] under each of the treatments being compared” and subsequently define prin-

cipal effects as the ”comparison of treatments within principal strata”. The attraction

of principal stratification is that, because the potential outcomes are not affected by

treatment assignment then membership in the principal strata is also not affected by

treatment assignment and therefore principal strata membership can be treated in a

manner similar to pretreatment covariates. For example, by comparing potential out-

comes for a common set of people (i.e., those within a particular principal strata), this

approach allows for causal inference.

Though principal stratification was not formally defined until 2002, the approach

was used previously in specific settings (e.g., Baker, Wax and Patterson 1993; Fran-

gakis and Rubin 1999; Rubin 2000). For example, Frangakis and Rubin (1999) show
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that the standard intent-to-treat (ITT) analytic approach can be biased in the presence

of noncompliance and missing outcome data and proposed an alternate test using the

framework of potential outcomes where principal strata are defined as compliers (those

that only take experimental therapy when assigned) and never-takers (those that never

take experimental therapy regardless of treatment assignment). Theoretically, the prin-

cipal strata defined by compliance also includes always takers (those that always take

experimental therapy regardless of treatment assignment) and defiers (those that only

take experimental therapy when not assigned); however, under the construct of a ran-

dom trial, it is assumed that only subjects assigned experimental therapy have access

to the therapy and therefore, these latter two strata do not exist.

Frangakis and Rubin (2002) provided the following formal definitions and properties:

Definition: The “basic principal stratifications” P0 with respect to post-treatment vari-

able s is the partition of units i = 1, . . . , n such that, within any set of P0, all units

have the same vector (si(1), si(0)).

Definition: A “principal stratification” P with respect to post-treatment variable s is a

partition of the units whose sets are unions of sets in the basic principal stratification

P0.

Definition: Let sPi indicate the stratum of P to which unit i belongs. The “principal

effect” with respect to that principal stratification is defined as a comparison of potential

outcomes under the two treatments within a principal stratum c in P , i.e., a comparison

between the ordered sets yi(1) : sPi = c and yi(0) : sPi = c

Property: The stratum sPi to which individual i belongs is unaffected by treatment for

any principal stratification P .

Property: Any principal effect is a causal effect

Therefore, conditioning on principal stratum membership allows for inference of the

causal effect of treatment on the outcome of interest. However, because only a subset
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of the potential outcomes are observed, either (si(1), yi(1)) or (si(0), yi(0)) depending

on treatment assignment additional assumptions about individual membership to the

principal strata and missing outcomes are required in order to make inference about

principal effects (Frangakis and Rubin 2002).

Methods for inference within principal strata often appeal to large sample frequentist

or Bayesian theory. Assumptions typically used to aid in the identification of principal

strata membership and draw inference within strata include the stable unit treatment

value assumption, independent treatment assignment, and monotonicity. For example,

in the infectious disease setting, the principal strata of interest are the always infected

(those infected regardless of treatment), protected (those infected under control but

not under treatment), harmed (those infected under treatment but not under control)

and immune (those not infected regardless of treatment) strata. Monotonicity implies a

person who is infected when treated would also become infected if not treated and there-

fore is a member of the always infected group. However, additional assumptions are

needed in order to completely identify always infected strata membership in the control

group. Assumptions in the form of selection bias models have been suggested to attain

identifiability (e.g., see Gilbert et al. 2003; Shephard et al. 2006). These models are

helpful if one can elicit prior information regarding the selection bias model parameter

(Scharfstein, Halloran, Chu and Daniels 2006; Shepherd, Gilbert and Mehrotra 2007).

Alternatively, large sample bounds of the distribution of the outcome of interest in the

control group and therefore of treatment effect can be obtained assuming maximum

possible levels of positive and negative selection bias (Zhang and Rubin 2003; Hudgens

et al. 2003; Imai 2008). These upper and lower bound estimates of treatment effect

provide the full range of estimates consistent with the observed data. To draw inference

about these estimates, large sample frequentist methods such as profile likelihood CIs

(Hudgens and Halloran 2006) or bootstrap tests (Gilbert et al. 2003; Mehrotra et al.
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2006) have been employed.

For HIV prevention studies with an objective of understanding the effects of a

preventive treatment (e.g. vaccine administered prior to infection) on post-infection

events, methods have been developed to assess causal treatment effects on post-infection

outcomes in the always infected principal strata (Hudgens, Hoering and Self 2003;

Gilbert, Bosch and Hudgens 2003; Mehrotra, Li and Gilbert 2006; Shepherd, Gilbert,

Jemiai and Rotnitzky 2006; Jemiai, Rotnitzky, Shepherd and Gilbert 2007; Shepherd,

Gilbert and Lumley 2007). Similarly, in studies to prevent MTCT of HIV infection

the outcome of interest is long term HIV infection status among infants not infected

at or shortly after birth (Chasela et al. 2010). When infants are randomly assigned

treatment at birth, the principal stratum of interest is individuals who would not be

infected shortly after birth regardless of treatment assignment. Other settings where

principal stratification has been applied include treatment noncompliance (Angrist,

Imbens and Rubin 1996; Baker, Frangakis and Lindeman 2007; Jin and Rubin 2009),

truncation by death (Robins 1995; Zhang and Rubin 2003; Rubin 2006), and evaluation

of surrogate endpoints (Gilbert and Hudgens 2008; Joffe and Greene 2009).

1.3 Summary

In summary, assessing the causal effect of treatment on infection occurrence and

post-infection outcomes in infection-prevention studies is an important goal. However,

interest in post-infection outcomes, small sample sizes and characteristics of certain

study designs can make addressing this goal challenging even when randomization is

employed. Specifically, while large sample frequentist principal stratification causal

inference approaches are available, a randomization-based approach for inference within

principal strata has not been developed and the presence of principal stratification

approaches in the applied literature is limited. Additionally, published approaches for
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analyzing data from repeated low-dose mucosal challenge preclinical vaccine studies

have been shown to have inflated type I error.

Accordingly, we first developed methods for exact randomization-based causal in-

ference within principal strata in the presence selection bias due to post-randomization

measures. Characteristics of the new method are supported by mathematical proofs

and simulations (e.g., proof that resulting p-value is a valid p-value and simulations

to assess power) as well as comparisons to ITT-based approaches using composite out-

comes. The developed approach was expanded by augmenting the test to allow for

adjustment for covariates and creating confidence intervals for the causal effect by in-

verting the proposed test. Second, we present a general discussion of selection bias

in randomized studies and principal stratification approaches for handling such bias

targeted at subject-matter investigators in order to expand knowledge and use of these

analytic approaches. Lastly, we present a discussion of appropriate analytic approaches

for repeated low-dose challenge preclinical vaccine studies aimed at preclinical vaccine

researchers.
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Chapter 2

Randomization-Based Inference
within Principal Strata

2.1 Introduction

2.1.1 Principal Stratification

Sometimes in randomized studies, treatment comparisons conditional on interme-

diate post-randomization outcomes are of interest. For example, in vaccine studies, a

common question of interest is whether infections in vaccinated individuals are more or

less severe than infections in unvaccinated individuals (Hudgens and Halloran 2006).

Unfortunately, the estimands underlying standard methods typically employed for these

comparisons do not have a causal interpretation (Rosenbaum 1984). To address this

deficiency, Frangakis and Rubin (2002) proposed a general framework for comparing

treatments adjusting for the intermediate post-randomization outcomes. In particular,

they defined causal effect estimands within strata determined by a cross-classification

of individuals defined by the joint potential intermediate post-randomization outcomes

under each of the treatments being compared. Since these “principal strata” are not

affected by treatment assignment, they can be conditioned on just as any pretreatment

covariate. Accordingly, causal effect estimands within principal strata do not suffer



from the complications of standard post-randomization adjusted estimands.

The simple framework of principal stratification has a wide range of applications.

For example, in human immunodeficiency virus (HIV) prevention studies an objective

is understanding the effects of a preventive treatment (e.g., vaccine administered prior

to infection) on post-infection events, such as severe disease or death. Assessing a

treatment’s effect on post-infection outcomes is challenging since such outcomes may

only be defined for infected individuals and standard comparisons between infected

treated individuals and infected controls are subject to selection bias (Halloran and

Struchiner 1995; Hernán, Hernández-Dı́az and Robins 2004). Moreover, because the

set of individuals who would become infected if assigned treatment is likely not identical

to the set of those who would become infected if not assigned treatment, comparisons

that condition on infection do not have a causal interpretation. Recently, methods

have been developed to assess causal treatment effects on post-infection outcomes in the

principal strata of individuals who would be infected regardless of treatment assignment

(Hudgens, Hoering and Self 2003; Gilbert, Bosch and Hudgens 2003; Mehrotra, Li and

Gilbert 2006; Shepherd, Gilbert, Jemiai and Rotnitzky 2006; Shepherd, Gilbert and

Lumley 2007). Similarly, in studies to prevent mother-to-child HIV transmission the

outcome of interest is long term HIV infection status among infants not infected at or

shortly after birth (Chasela et al. 2010). When infants are randomly assigned treatment

at birth, the principal stratum of interest is individuals who would not be infected

shortly after birth regardless of treatment assignment. Other settings where principal

stratification has been applied include treatment noncompliance (Angrist, Imbens and

Rubin 1996; Baker, Frangakis and Lindeman 2007), truncation by death (Robins 1995;

Zhang and Rubin 2003) and evaluation of surrogate endpoints (Gilbert and Hudgens

2008; Joffe and Greene 2009).

Methods for inference within principal strata often appeal to large sample frequentist
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or Bayesian theory. Assumptions typically used to aid in the identification of principal

strata membership and draw inference within strata include the stable unit treatment

value assumption, independent treatment assignment and monotonicity. However, ad-

ditional assumptions are needed in order to completely identify principal strata mem-

bership in the both treatment groups. For example, assumptions in the form of selection

bias models have been suggested to attain identifiability (e.g., see Gilbert et al. 2003;

Shephard et al. 2006). These models are helpful if one can elicit prior information

regarding the selection bias model parameter (Scharfstein, Halloran, Chu and Daniels

2006; Shepherd, Gilbert and Mehrotra 2007). Alternatively, large sample bounds of the

distribution of the outcome of interest in the control group and therefore of treatment

effect can be obtained assuming maximum possible levels of positive and negative se-

lection bias (Zhang and Rubin 2003; Hudgens et al. 2003; Imai 2008). These upper and

lower bound estimates of treatment effect provide the full range of estimates consistent

with the observed data. To draw inference about these estimates, large sample frequen-

tist methods such as profile likelihood CIs (Hudgens and Halloran 2006) or bootstrap

tests (Gilbert et al. 2003; Mehrotra et al. 2006) have been employed.

2.1.2 Randomization-Based Inference

Randomized studies are the clinical trial gold standard for evaluating treatment ef-

fects because randomization (i) produces in expectation comparable groups with respect

to measured and unmeasured covariates and (ii) provides a basis for statistical infer-

ence. Regarding (ii) randomization inference is based on distributions created from the

randomization process rather than assuming random sampling of individuals from an

infinite population (Koch, Gillings and Stokes 1980; Rubin 1991; Rosenbaum 2002a).

Unfortunately, the benefits of conducting a randomized study are lost when condi-

tioning on an intermediate post-randomization outcome, as the treatment and control
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groups are no longer comparable. Ideally one would like to conduct randomization-

based inference within principal strata determined by the set of intermediate potential

outcomes. However, while randomization inferential methods have been proposed in the

instrumental variable setting (Rosenbaum 1996; Rosenbaum 2002a; Imbens and Rosen-

baum 2005; Hansen and Bowers 2009), to date a general approach to randomization

inference within principal strata has not been developed.

Another benefit of randomization-based inference is that the methods are exact,

allowing for inference in small to intermediate sample size settings where methods

based on asymptotic approximations may be inappropriate (Imbens and Rosenbaum

2005). In the HIV vaccine setting, small trials are often employed to screen possible

vaccines for larger Phase III efficacy studies (Rida, Fast, Hoff and Fleming 1997). For

instance, Mehrotra et al. (2006) describe a proof-of-concept (POC) efficacy trial where

the study is ceased after just 50 HIV infections are observed in the vaccine and placebo

arms combined. In these small sample settings, Bayesian inference about treatment

effects within principal strata may not be ideal if investigators are hesitant to make

assumptions regarding prior distributions. On the other hand, large sample frequentist

methods may lead to incorrect inferences in such settings. For example, simulation

studies have demonstrated inflated type I error of bootstrap tests and under-coverage

of bootstrap and Wald based confidence intervals (CIs) when the principal stratum of

interest is small (Hudgens et al. 2003; Gilbert et al. 2003; Shepherd et al. 2007; Jemiai,

Rotnitzky, Shepherd, and Gilbert 2007). It will be seen that the proposed method lifts

these limitations.

2.1.3 Outline

This paper considers randomization-based methods for inference within principal

strata. The main development is an exact test for a causal treatment effect within
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principal strata. In Section 2.2, the principal stratum exact test (PSET) is developed.

Section 2.3 presents simulation results comparing the PSET to a large sample frequen-

tist approach for testing a treatment effect within principal strata. Section 2.4 includes

examples of applications of the PSET. Section 2.5 includes some empirical compar-

isons between the PSET and intent-to-treat (ITT) based tests. Section 2.6 describes

an extension of the PSET to allow for adjustments for covariates. In Section 2.7 exact

CIs for treatment effect are derived by inverting the PSET.Areas for future work are

discussed in Section 2.8 and proofs are provided in Section 2.9.

2.2 Principal Stratum Exact Test

2.2.1 Assumptions and Notation

Suppose there are n individuals assigned to treatment or control. Assume:

A.1 Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1980): Treatment as-

signment of one individual does not affect another individual’s outcomes (no interfer-

ence) and there are not multiple versions of treatment.

Under SUTVA, let si(z) denote the potential intermediate post-randomization out-

come and yi(z) denote the outcome of interest of the ith individual given treatment

assignment z, where z = 0 for control and z = 1 for treatment. Assume the inter-

mediate post-randomization outcome is binary. For ease of presentation, assume the

intermediate outcome represents infection status. As such, si(z) = 1 if the ith individ-

ual is infected when assigned treatment z and si(z) = 0 if uninfected. The principal

strata are formed by classifying individuals according to their pair of infection poten-

tial outcomes (si(1), si(0)). The always-infected (AI) principal stratum is defined as the

individuals with si(0) = si(1) = 1, i.e., individuals who would be infected regardless
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of treatment assignment. Similarly the harmed stratum is defined as those individu-

als with si(0) = 0, si(1) = 1; the protected stratum by si(0) = 1, si(1) = 0; and the

immune (never-infected) stratum by si(0) = si(1) = 0.

The goal of this paper is to develop a principal stratum exact test of treatment

effect on a post-infection outcome, y, among individuals within a principal stratum.

Assume the stratum of interest is the AI stratum such that the desired comparison is

between {yi(1) : si(0) = si(1) = 1} and {yi(0) : si(0) = si(1) = 1}. While motivated by

infectious disease settings where the AI stratum is of interest, the PSET is applicable to

alternative strata such as the immune stratum as well as other settings. For example, if

the intermediate variable represents compliance status, the principal strata of interest

might be those that are always compliant regardless of assigned treatment (Angrist et

al. 1996). Likewise, if the intermediate variable is survival status, the principal strata

of interest might comprise those that always survive regardless of treatment assignment

(Zhang and Rubin 2003).

To develop a PSET of treatment effect on the post-infection outcome, consider

testing the sharp null hypothesis

H0 : yi(1) = yi(0) for all i ∈ A I , (2.1)

where A I ≡ {i : si(1) = si(0) = 1} is the set of individuals in the AI stratum. Using

terminology of VanderWeele (2008), the null (2.1) corresponds to no principal stratum

direct effect. An exact test requires the resulting p-value, p, be exact in the sense that

Pr[p ≤ α] ≤ α for each α ∈ [0, 1] under the null (Casella and Berger 2002).

While each individual has four potential outcomes (si(1), si(0), yi(1), yi(0)), only two

of these outcomes are observed dependent on treatment assignment, either (si(1), yi(1))

or (si(0), yi(0)). Let Zi denote the treatment assignment for individual i and let

Z = (Z1, ..., Zn). To make inference about treatment effect, the treatment assignment
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mechanism must be specified or modeled. This paper uses randomization inference

whereby the randomization distribution induced by the experimental design forms the

basis for statistical inference (Rubin 1991). In particular, the potential outcomes are

considered fixed features of the finite population of individuals while Zi is considered a

random variable. Let Sobsi ≡ Zisi(1) + (1 − Zi)si(0) denote the observed intermediate

post-randomization outcome and define Y obs
i analogously. Both Sobsi and Y obs

i are ran-

dom variables since they depend on Zi. To develop a test of (2.1), assume independent

treatment assignment:

A.2 Independent treatment assignment: Pr[Z = z] = Pr[Z = z′] for any z, z′ such

that
∑n

i=1 zi =
∑n

i=1 z
′
i where z = (z1, ..., zn), z′ = (z′1, ..., z

′
n) are treatment assignment

vectors.

If principal stratum membership was known, for the AI stratum in particular, the

development of an exact test of (2.1) would be straight forward. As assumptions A.1 and

A.2 are generally not sufficient to identify principal stratum membership, an additional

assumption often made is that treatment does not cause infections:

A.3 Monotonicity: si(1) ≤ si(0) for all i ∈ {1, . . . , n}.

Assumption A.3 identifies AI stratum membership for individuals assigned to treat-

ment. Specifically, A.3 implies infected treated individuals (i.e., Sobsi = Zi = 1) would

have become infected if assigned control (i.e., si(0) = 1) and are therefore members

of the AI stratum i.e., {i : Sobsi = 1, Zi = 1} ⊆ A I . Unfortunately, A.1-A.3 do not

identify AI stratum membership for individuals in the control group because infected

control individuals are a mixture of members of the AI and protected strata.

In Section 2.2.3 the PSET of (2.1) is developed under A.1-A.3. In infectious disease

settings A.1 may be violated due to interference between individuals, although this is

unlikely in certain settings such as mother-to-child transmission studies. A.2 generally

holds in randomized studies. While A.3 cannot be verified from the observable data,
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it has testable implications. For example, A.3 implies a non-negative average causal

treatment effect on infection, i.e., n−1
∑n

i=1{si(0)−si(1)} ≥ 0. Should the data provide

evidence to the contrary, A.3 can be rejected. Even if the proportion infected is not

higher in the treated arm, the veracity of A.3 may be questionable in some settings. For

example, results from a recent HIV vaccine trial (Buchbinder et al. 2008) suggest certain

vaccine recipients were more likely to be infected than placebo recipients. Similar

concerns arise in vaccine development for other viruses (Greenwood 1997, Tirado and

Yoon 2003). A vaccine that causes many infections is likely of no utility, making

inference about post-infection endpoints moot. However, if a vaccine causes a few

infections but prevents many more, then effects on post-infection endpoints are of

interest but invoking A.3 may be dubious. Violations of A.3 are discussed further in

Section 2.3.

2.2.2 Example with Binary Outcome

Suppose for now that yi(z) is a binary variable where yi(z)=1 if the event of interest

occurs (e.g., death or severe disease), 0 otherwise. To test (2.1), first imagine we know

exactly which individuals are in A I . Then the following 2×2 table can be constructed

Event No Event

Treatment
∑

i∈A I ZiY
obs
i

∑
i∈A I Zi(1− Y obs

i )
∑

i∈A I Zi

Control
∑

i∈A I (1− Zi)Y obs
i

∑
i∈A I (1− Zi)(1− Y obs

i )
∑

i∈A I (1− Zi)∑
i∈A I Y obs

i

∑
i∈A I (1− Y obs

i ) m

(2.2)
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where m ≡
∑

i∈A I 1 is the number of individuals in A I . Under the sharp null,

Y obs
i = yi(0) implying (2.2) can equivalently be written as

Event No Event

Treatment
∑

i∈A I Ziyi(0)
∑

i∈A I Zi(1− yi(0))
∑

i∈A I Zi

Control
∑

i∈A I (1− Zi)yi(0)
∑

i∈A I (1− Zi)(1− yi(0))
∑

i∈A I (1− Zi)∑
i∈A I yi(0)

∑
i∈A I (1− yi(0)) m

(2.3)

For randomization-based inference, the potential outcomes are fixed features of the

finite population. The column totals of (2.3) depend only on the potential outcomes

and thus can be considered fixed. Therefore, conditional on the row totals, (2.1) can

be tested by applying Fisher’s exact test to (2.2) where the p-value is obtained by

calculating the probability of each possible table using the hypergeometric distribution.

Because principal strata membership is not completely known, we cannot construct

(2.2). Instead the following table of infected individuals is observable

Event No Event

Treatment
∑
ZiS

obs
i Y obs

i

∑
ZiS

obs
i (1− Y obs

i )
∑
ZiS

obs
i

Control
∑

(1− Zi)Sobsi Y obs
i

∑
(1− Zi)Sobsi (1− Y obs

i )
∑

(1− Zi)Sobsi∑
Sobsi Y obs

i

∑
Sobsi (1− Y obs

i )
∑
Sobsi

(2.4)

where here and in the sequel
∑

denotes the summation over i = 1, . . . , n.

To develop an exact test of (2.1), information from (2.4) can be used to make

inference about the unobservable table (2.3). Under A.3, ZiS
obs
i = 1 implies i ∈ A I .
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Thus assuming A.3, under (2.1) the observable table (2.4) can be written as

Event No Event

Treatment
∑

i∈A I Ziyi(0)
∑

i∈A I Zi(1− yi(0))
∑

i∈A I Zi

Control
∑

(1− Zi)Sobsi yi(0)
∑

(1− Zi)Sobsi (1− yi(0))
∑

(1− Zi)Sobsi∑
Sobsi yi(0)

∑
Sobsi yi(0)

∑
Sobsi

(2.5)

Table (2.5) differs from (2.3) only in that the principal stratum membership of

control recipients who become infected is unknown. This problem is analogous to

conducting a test in the presence of nuisance parameters. The following section will

detail how an exact p-value for testing (2.1) can be obtained by conducting exact tests

over a range of plausible values of the nuisance parameters and defining the exact

p-value as a function of the largest p-value from this set of exact tests.

2.2.3 PSET Development

Now assume that yi(1) and yi(0) are any type of event and not necessarily binary.

Let Y ai
1 ≡ {Y obs

i : Zi = 1, i ∈ A I } and Y ai
0 ≡ {Y obs

i : Zi = 0, i ∈ A I } and define

p(Y ai
1 ,Y

ai
0 ) as the p-value for an exact randomization-based test of (2.1) assuming AI

membership were known. For example, if no ties exist in (Y ai
1 ,Y

ai
0 ) then the usual

exact Wilcoxon rank sum test could be employed to compute p(Y ai
1 ,Y

ai
0 ).

As illustrated in Section 2.2.2, the set of AI stratum membership indicators for the

infected control individuals can be viewed as unknown nuisance parameters. Analogous

to Barnard’s test, an exact test can be constructed by conducting a test for each

possible AI subset of the infected control individuals and reporting the largest p-value

(Barnard 1947). Unfortunately, this approach is overly conservative because it almost

always fails to reject (2.1). Specifically, the set of possible AI subsets from infected

control individuals includes subsets comprising only one individual. Provided there
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is at least one infected control individual with a post-infection outcome yi(0) that is

not significantly different from {yi(1) : si(1) = 1, Zi = 1}, (2.1) will not be rejected.

Furthermore, this approach ignores information available about the AI stratum. While

the observed data do not identify which infected control individuals are in the AI

stratum, the data do provide some information about the number of control individuals

in the AI stratum. Thus an alternative approach is to view the number of control

individuals in the AI stratum as the nuisance parameter and to obtain bounds for

possible values of this nuisance parameter based on the observed data.

Let M0 ≡
∑

i∈A I (1 − Zi) and M1 ≡
∑

i∈A I Zi be the number of individuals in

A I assigned control and treatment such that M0 + M1 = m. Since the number of

individuals in A I does not depend on Z, m is fixed, whereas M0 and M1 are random

variables. Under A.3, M1 =
∑
I[Zi = Sobsi = 1] is observable. In contrast, M0 is not

observable.

Suppose contrary to fact that M0 is observed. Then an exact p-value could be

obtained by performing an exact test for all possible selections of M0 individuals from

{i : Zi = 0, Sobsi = 1} and taking the maximum of the resulting p-values. Define this

p-value as

pai(M0) ≡ max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)} (2.6)

where Ω(M0) equals the set of subsets of {Y obs
i : Zi = 0, Sobsi = 1} of size M0.

Although M0 is not observed, it is bounded above by
∑
I[Zi = 0, Sobsi = 1].

Moreover, the observed M1 provides information about m and thus M0. Specifi-

cally, conditional on the total number assigned treatment
∑
Zi, under assumption

A.2 an exact 100(1 − γ)% CI for m, say Cγ ≡ [Lm, Um], can be computed based on∑
ZiS

obs
i =

∑
i∈A I Zi using standard results about simple random sampling (e.g.,

26



Thompson 2002). Then, following Berger and Boos (1994) , define

paiγ ≡ max{pai(m̃−M1) : m̃ ∈ Cγ}+ γ. (2.7)

The following proposition indicates that paiγ is an exact p-value for testing (2.1).

Proposition 1: For any γ ∈ [0, 1], Pr[paiγ ≤ α] ≤ α for all α ∈ [0, 1] under H0 (2.1).

The choice of γ should be made prior to looking at the data in a formal hypothesis

testing scenario as the proposition holds only assuming γ is fixed. Section 2.3 presents

simulation studies which provide empirical evidence suggesting γ = α/2 may be rec-

ommended in certain settings. For tests where pai(m̃ − M1) tend to decrease as m̃

increases, letting Um =
∑
Sobsi and computing a one-sided (1− γ)% CI for m to obtain

Lm should result in a test with higher power compared to using a two-sided CI.

2.2.4 Computations

Calculating pai(M0) can be computationally intensive because it requires performing(∑
(1−Zi)S

obs
i

M0

)
exact tests corresponding to Ω(M0). In many settings, the computation

requirements can be reduced by implicitly determining max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)}

without having to calculate p(Y ai
1 ,Y 0) for each Y 0 ∈ Ω(M0). The proposition below

shows how pai(M0) can be implicitly determined for a particular class of test statistics.

First consider the situation where AI membership is known such that the exact p-

value p(Y ai
1 ,Y

ai
0 ) can be calculated. Let j1, j2, ..., jm denote the labels of individuals in

AI such that A I = {j1, ..., jm} and Y ai
1 ∪ Y ai

0 = {Y obs
j1 , Y obs

j2 , ..., Y obs
jm }. Let yai denote

the vector (Y obs
j1 , Y obs

j2 , ..., Y obs
jm ), which is fixed under the null (2.1), and correspondingly

let Zai = (Zj1, Zj2, ..., Zjm). Following Rosenbaum (2002a), let t(Zai,yai) denote the

test statistic corresponding to p(Y ai
1 ,Y

ai
0 ). Assuming large values of t(Zai,yai) are
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considered evidence against the null (2.1), the exact one-sided p-value is calculated as

p(Y ai
1 ,Y

ai
0 ) =

|{zai ∈ Ωai
m : t(zai,yai) ≥ t(Zai,yai)}|(

m
M1

) (2.8)

where |A| denotes the number of elements in the set A and Ωai
m denotes the set of

possible treatment assignment vectors of length m with M1 ones and M0 zeros.

Define the test statistic t(zai,yai) to be effect increasing (Rosenbaum 2002a) if

t(zai,yai1) ≥ t (zai,yai2) for two possible response vectors yai1 and yai2 whenever

(yai1j − yai2j )(2zaij − 1) ≥ 0 for j = 1, ...,m where in general uj denotes the jth element

of vector u. Informally, t is effect increasing if the value of the statistic increases

when responses for the treated group are increased and the responses for the control

group are decreased. Next define t(zai,yai) to be invariant if t(zai,yai) = t(zaijk,y
ai
jk)

for all j, k, where in general ujk denotes the vector formed by interchanging the jth

and kth elements of u. In words, t(zai,yai) is invariant if permuting the labels of

individuals does not change the value of the statistic. Many common statistics such

as Fisher’s exact test statistic and the Wilcoxon rank sum statistic are invariant and

effect increasing (Rosenbaum 2002a). According to the proposition below, for invariant

and effect increasing statistics max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)} can be determined by

calculating a single p-value.

Proposition 2: If t(zai,yai) is invariant as well as effect increasing, then pai(M0) =

p(Y ai
1 ,Y

ai
0 [1:M0]) where Y ai

0 [1:M0] is the set of M0 largest values of {Y obs
i : Zi =

0, Sobsi = 1}.

2.2.5 Positive Effect

The choice of test statistic used for conducting the PSET of (2.1) will be dictated

by the type of post-infection outcome (e.g., whether y is binary, ordinal, continuous,
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etc) and alternative hypothesis of interest. One possible alternative hypothesis is that

treatment has a positive effect (Rosenbaum 2002a; see also Lehmann 1998) in the AI

stratum, i.e.,

HA : yi(1) ≥ yi(0) for all i ∈ A I (2.9)

where the inequality in (2.9) is strict for at least one i ∈ A I . In words, treatment

has a positive effect if it increases y for at least one individual and does not decrease

y for any individual in AI. The additivity model yi(1)− yi(0) = δ for all i ∈ A I and

constant δ > 0 is a special case of (2.9). If the test statistic t is effect increasing, the

following proposition shows the PSET is an unbiased test of (2.1) against (2.9), i.e.,

the PSET is at least as likely to reject H0 at the α significance level when HA holds as

compared to when H0 holds.

Proposition 3: If t(zai,yai) is effect increasing, then Pr[paiγ < α|HA] ≥ Pr[paiγ < α|H0].

2.2.6 Plug-in P-value Alternative

An alternative testing approach that has been proposed for addressing the presence

of nuisance parameters entails conditioning on estimates of the unknown parameters;

the resulting p-value is sometimes referred to as the “plug-in p-value” (Bayarri and

Berger 2000). For example, a plug-in p-value approach has been advocated as an

alternative to Fisher’s exact test (Storer and Kim 1990). Plug-in p-values are compu-

tationally straight forward and asymptotically exact under certain assumptions about

the form of the test statistic (Robins, van der Vaart, and Ventura 2000). Considering

m to be a nuisance parameter when testing (2.1), a plug-in type p-value can be defined

by conditioning on an unbiased estimate M̂ = nM1/
∑
Zi (Thompson 2002) of m:

paiplug ≡ pai(M̂ −M1) ≡ max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M̂ −M1)}
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Unfortunately such an approach does not take into account uncertainty about m and

therefore paiplug is not guaranteed to be exact. For example, consider the following

population of 8 individuals with potential infection and post-infection outcomes si(z)

and yi(z) where yi(z) = ∗ indicates the post-infection outcome is not defined if si(z) = 0.

Suppose by design Pr[
∑
Zi = 4] = 1.

i si(0) si(1) yi(0) yi(1) i si(0) si(1) yi(0) yi(1)

1 1 1 8 8 5 1 1 4 4

2 1 1 7 7 6 1 0 3 ∗

3 1 1 6 6 7 1 0 2 ∗

4 1 1 5 5 8 1 0 1 ∗

Suppose a one-sided Wilcoxon rank sum test is used to test (2.1), where t(Zai,Y ai) =∑
i∈A I Rai

i Z
ai
i with Rai

i denoting the rank of Y obs
i among {Y obs

i : i ∈ A I } and the

p-value is computed by (2.8). Then for α = 0.05, Pr[paiplug ≤ α] = 0.07 > α because

paiplug ≤ α for 5 of the
(

8
4

)
= 70 possible treatment assignment permutations.

2.3 Simulation Study

A primary objective of preventive HIV vaccine trials is to assess whether vaccination

has an effect on viral load in individuals who become infected. Gilbert et al. (2003) and

Hudgens et al. (2003) developed bootstrap tests of the null hypothesis that vaccination

has no effect on viral load in the AI principal stratum. To evaluate the operating char-

acteristics (type I error and power) of these proposed tests, they conducted simulation

studies of HIV vaccine trials with 2000 HIV negative individuals randomized 1:1 to

either vaccine or placebo under various assumptions regarding the rates of infection

in the vaccine and placebo arms. In settings where the expected number of observed

infections was moderate or large, the proposed tests preserved the nominal type I error

probability. However, in settings where the expected number of observed infections was
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small (45 infections in the placebo arm, 31.5 in the vaccine arm), the bootstrap tests

demonstrated inflated type I error. Therefore we conducted a simulation study under

identical assumptions to assess how the PSET performs in comparison.

Let z = 0 for placebo individuals and z = 1 for vaccinated individuals. For as-

signment z, si(z) = 1 if an individual is infected and yi(z) is the log-transformed viral

load when si(z) = 1. Thus, the null (2.1) corresponds to the vaccine having no effect

on viral load in the AI principal stratum. It is of interest to test the null against the

one-sided alternative that viral load is higher when vaccinated, given concerns that an

HIV vaccine may actually increase viral load in breakthrough infections (Hudgens et

al. 2003).

The following steps were performed for each trial simulation. First, si(0) was set

equal to 1 for i = 1, ..., 90 and si(0) = 0 for i = 91, ..., 2000. For i = 1, ..., 90, yi(0) was

randomly generated from a normal distribution with mean 4.5 and standard deviation

0.6. Next, selection bias was simulated by setting si(1) = 1 for the 63 individuals with

the largest values of yi(0) and si(1) = 0 otherwise. Thus vaccination caused a 30%

reduction in the number of infections, with only individuals who would have low viral

load if not vaccinated being protected from infection by vaccine. Vaccine effect on viral

load was simulated by letting yi(1) = yi(0) + δ for i ∈ A I . Finally, 1000 individuals

were randomly assigned placebo, the remaining 1000 assigned vaccine and the observed

outcomes were selected from (si(1), si(0), yi(1), yi(0)) accordingly.

For each simulated dataset, the PSET, nonparametric mean bootstrap test of Hud-

gens et al. (2003) and plug-in p-value from Section 2.2.6 were calculated. For the

PSET, we used a one-sided 100(1 − γ)% CI of m to obtain Lm and a Wilcoxon rank

sum test to compute the conditional p-value pai(M0) in (2.6). Simulations using a two-

sided 100(1− γ)% CI to obtain Lm and Um resulted in reduced power compared to the

one-sided approach (results not shown). Table 2.1 gives the empirical type I error and
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power of the PSET for various values of γ and significance level α, based on 10,000

simulations per combination of γ and α. As expected, in all scenarios the empirical

type I error of the PSET was less than α. In contrast, for α = 0.05 the empirical type

I errors of the bootstrap test and plug-in p-value were 0.11 and 0.19 respectively, i.e.,

over twice the nominal level. For α = 0.05 the power of the PSET was highest for

γ = 0.030. For α = 0.10, γ = 0.05 yielded the greatest power. Thus, choosing γ = α/2

may be recommended in this setting.

Additional simulation studies were conducted to compare the power of the PSET

to the bootstrap test when the AI stratum sample size was increased. Specifically, the

simulations studies described above were repeated twice, but with 90 and 135 expected

observed infections in the placebo arm and vaccination causing a 30% reduction in the

number of infections in both scenarios. For 90 expected placebo arm infections, the

empirical type I error and power for δ = 1/3 and 2/3 were 0.004, 0.426, and 0.990 and

0.057, 0.742, and 0.999 for the PSET and bootstrap tests respectively. For 135 expected

placebo arm infections, the empirical type I error and power for δ = 1/3 and 2/3 were

0.005, 0.664, and 0.999 and 0.039, 0.908, and 1.00 for the PSET and bootstrap tests

respectively. Thus for larger AI stratum the bootstrap test controlled the type I error

and had greater power than the PSET for small δ.

As discussed in Section 2.2.1, the veracity of A.3 may be of concern in some settings.

To assess the robustness of the PSET when A.3 is violated, additional simulations

were conducted where some individuals infected under vaccine belong to the harmed

stratum. Data were simulated as described in the original scenario (where 90 individuals

were infected if not vaccinated), except that 6 (10%) of the 63 individuals infected if

vaccinated were from the harmed stratum. In particular, for each trial, si(0) and yi(0)

were generated as described above. Selection bias was simulated by setting si(1) = 1 for

a random selection of 57 of the 63 individuals with the largest values of yi(0). Vaccine
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effect on viral load in the AI stratum was simulated by letting yi(1) = yi(0) + δ for

these individuals. Harmed individuals were then simulated by setting si(1) = 1 for

i = 91, ..., 96 and generating yi(1) from the same normal distribution used to generate

yi(0). All subsequent steps of the simulation were the same as before. The PSET

empirical type I error and power for δ = 1/3 and 2/3 were 0.003, 0.108, and 0.649. That

is, the PSET type I error was less than the nominal α despite A.3 not holding, and the

PSET power was slightly diminished relative to simulations where A.3 holds. Similar

results were obtained when 20% and 30% of individuals infected when vaccinated were

members of the harmed stratum.

2.4 Application

2.4.1 Zambia Exclusive Breastfeeding (ZEB) Study

The ZEB study was a randomized study to evaluate whether abrupt weaning at 4

months as compared to continued breastfeeding increases survival of children of HIV in-

fected mothers (Kuhn et al. 2008). The trial was conducted in 958 HIV-infected women

and their infants in Lusaka, Zambia with 481 children randomized to the intervention

and 477 randomized to standard practice of continued breastfeeding. Randomization

occurred at one month postpartum to allow for sufficient preparation time for weaning

at 4 months. Kuhn et al. present an analysis of the effect of weaning on survival through

24 months based on a log-rank test comparing survival between randomization groups

for the subset of infants who became HIV-infected prior to 4 months but survived more

than 4 months. A total of 62 individuals in the intervention arm were HIV-infected and

alive at 4 months, 39 (63%) who died prior to 24 months. Likewise, 70 in the standard

practice arm were HIV-infected and alive at 4 months, 32 (46%) who died prior to 24

months. The log-rank p-value was 0.007, leading Kuhn et al. to conclude that there is
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evidence of a harmful effect of weaning on survival among HIV positive infants alive at

4 months.

Because the reported analysis conditions on infection and survival status at 4

months, the results do not necessarily have a causal interpretation and could be due to

selection bias. Specifically, any differences between the study arms during months 1-4

could affect infection and survival status at 4 months. For instance, at month 2 women

in the intervention group were counseled on techniques for weaning and given a three

month supply of infant formula and fortified weaning cereal. This may have caused

women in the intervention group to wean earlier than had they been randomized to

the control group, in turn perhaps impacting HIV acquisition. In fact, more women in

the intervention arm weaned by 4 months (37 versus 18) and, possibly because of this,

fewer infants in the intervention arm became HIV positive at or before 4 months (71

versus 81).

The principal stratum of interest is the AI stratum, defined as all individuals who

would be HIV-infected and alive at 4 months regardless of randomization assignment.

The PSET was used to test the null hypothesis of no effect of the intervention on death

in the AI stratum. To compute (2.6), a one-sided Fisher’s exact test was used where

each individual was classified as having died or not. An exact log-rank test might be

preferable for calculating the conditional p-values, however the individual death and

censoring times were not reported by Kuhn et al. For γ = 0.025, the PSET resulted in

paiγ = 0.98 suggesting no evidence of a harmful effect of weaning on survival for the AI

stratum. The one-sided CI for m, i.e., the total number of infants in the AI stratum, is

104 to 132. Figure 1 plots the p-values from Fisher’s exact test conditional on m = m̃

for each m̃ ∈ Cγ = [104, 132] . While a Fisher’s exact test using all available data

and ignoring the potential for selection bias is less than α = 0.05 (p-value= 0.0355),

27 of the 29 conditional p-values are greater than 0.05. Additionally, even testing the
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hypothesis using the plug-in p-value (i.e. m = M̂) results in paiplug = 0.1611 > α. In

order reject to (2.1) based on the PSET for α = 0.05 and γ = 0.025, 58 of 62 individuals

would have had to die in the intervention arm compared to the 32 of 70 in the standard

practice arm (paiγ = 0.0375).

2.4.2 Breastfeeding, Antiretroviral and Nutrition (BAN) Study

The BAN study was a randomized trial of infants of HIV infected mothers to eval-

uate whether daily administration of nevirapine (NVP) to the infant through 28 weeks

decreased risk of HIV transmission via breastfeeding to infants when compared to a

control arm receiving no antiretroviral therapy (Chasela et al. 2010). A total of 668

mothers and their infants were randomized to control while 852 were randomized to

infants receiving NVP. Fewer mother-infant pairs were randomized to control because

the data and safety monitoring board (DSMB) stopped enrollment in this arm early.

The effect of NVP on infection status through 28 weeks was assessed using a log-rank

test that compared infection between treatment groups for all infants who were not

infected at two weeks. Of the 632 infants not infected at two weeks in the control arm,

32 (5.1%) were infected by 28 weeks. Likewise, of the 815 infants not infected at two

weeks in the NVP arm, 12 (1.5%) were infected by 28 weeks. The log-rank p-value was

< 0.001, suggesting NVP prevents breast milk transmission of HIV. However, these re-

sults do not have an immediate causal interpretation and could be subject to selection

bias because the analysis conditions on a post-randomization outcome: HIV infection

status at two weeks. To guard against this Chasela et al. also reported results from an

ITT analysis of all infants randomized, including those infected before two weeks. How-

ever, a primary objective of BAN was to investigate the effect of NVP to prevent breast

milk transmission. Thus the investigators were primarily interested only in infections

occurring after two weeks, as infants who were HIV positive by two weeks may have
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been infected in utero or during birth. Because daily NVP from birth could potentially

effect infection status at two weeks, the groups of infants not infected at two weeks in

each study arm may not be comparable.

The principal stratum of interest is the never-infected (NI) stratum, defined as

individuals who would be HIV uninfected at two weeks regardless of randomization

assignment. The PSET can be used to test the null of no treatment effect on infection

by 28 weeks in the NI stratum. In contrast to the AI stratum, membership in the

NI stratum is known for control individuals not infected at two weeks since by A.3

infants not infected at two weeks when assigned control would also not be infected at

two weeks when assigned NVP. On the other hand, membership in the NI stratum is

unknown for infants assigned NVP not infected at two weeks. Thus the PSET can

be conducted in the NI stratum with the roles of the treated and control individuals

reversed relative to conducting the PSET in the AI stratum. For given γ, denote the

PSET p-value for the test of no principal stratum direct effect in the NI stratum by

pniγ , which is computed analogous to (2.7). Because enrollment was stopped early in

one arm, we compute pniγ using only data available prior to the DSMB decision. These

data include all the control arm infants described above but only 670 of the infants in

the NVP arm, 639 of who were not infected at two weeks. Of these 639 infants, 10

(1.6%) were infected by 28 weeks. Because the BAN study was a multi-arm trial, the

analysis plan stipulated that tests between the NVP and control arms be conducted

at the α = 0.025 significance level. Letting γ = 0.0125 and using a one-sided Fisher’s

exact test, the PSET resulted in paiγ = 0.0131 indicating a benefit of NVP among infants

who were immune to infection at two weeks. Using an exact log-rank test with Monte

Carlo sampling (Mehta and Patel 2007) yielded a similar result with paiγ = 0.0127.
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2.4.3 Sensitivity Analysis

As discussed in Sections 2.2 and 2.3, A.3 is a key assumption of the PSET. In

the BAN study, comparison of infection rates at two weeks provides no evidence that

monotonicity is violated, with the proportion infected at two weeks slightly lower in

the NVP arm. Additionally, multiple other studies (Mofenson 2009) have shown daily

administration of NVP protects infants from breast milk transmission of HIV and to

date there is no evidence suggesting NVP may cause HIV transmission. Nonetheless,

when A.3 may be of concern, a sensitivity analysis can be conducted.

To illustrate one possible sensitivity analysis, suppose there was concern about A.3

in the BAN study. Without A.3 the 632 control arm infants uninfected at two weeks are

not all necessarily members of the NI stratum. Rather, some of these infants may belong

to the harmed stratum, i.e., they may have been infected by two weeks if randomized

to NVP. Suppose h of the 632 are from the harmed stratum. If these h infants could be

identified, the PSET could be conducted based on the remaining 632 − h control arm

infants uninfected at two weeks. Because the h infants cannot be identified without

additional assumptions, the sensitivity analysis entails considering different scenarios.

Specifically, divide the h infants into h1 from the 600 control arm infants not infected

by 28 weeks and h2 = h − h1 from the 32 control arm infants infected by 28 weeks.

Then conduct the PSET for different combinations of (h1, h2). For the BAN study the

PSET p-value (based on a one-sided Fisher’s exact test) is more sensitive to changes

in h2 than h1. For example, for γ=0.0125, h1 = 8 and h2 = 0 yields pniγ = 0.013,

while h1 = 0 and h2 = 8 yields pniγ = 0.027. Holding h1 = 0 fixed, pniγ < 0.025 for

h2 = 0, 1, 2, . . . , 7 and pniγ > 0.025 for h2 > 7. In words, NVP was beneficial in the NI

stratum at the 0.025 significance level provided no more than 7 of the 32 control arm

infants infected by week 28 were from the harmed stratum.
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2.5 Comparisons with ITT Approaches

Principal stratification provides a method for dealing with possible selection bias in-

duced by conditioning on an intermediate post-randomization outcome. Alternatively,

an ITT based approach can be employed. The ITT principle generally refers to an-

alyzing all individuals according to randomization assignment. ITT has become the

gold standard in clinical trials as it ensures the validity of testing the null hypothesis of

no treatment effect (assuming perfect compliance) and helps minimize bias such that

observed differences in outcomes between the groups can be attributed to the treat-

ment under study. The ITT approach does however have some potential drawbacks.

For instance, in the infectious disease setting, unlike principal stratification the ITT

approach does not clearly differentiate treatment effects on infection and post-infection

outcomes. Also, it is conceptually challenging to define post-infection outcomes for non-

infected individuals. Similarly, quality of life outcomes may be considered undefined in

individuals not alive (Rubin 2006).

To obviate the latter problem, Chang, Guess and Heyse (1994) proposed an ITT-

based burden of illness (BOI) test for assessing treatment effect on disease severity

by assigning burden of illness scores to each incident infection, with individuals who

escape infection receiving a score of zero. Denote the observed disease severity scores

by W obs
i where W obs

i = Y obs
i if Sobsi = 1 and W obs

i = 0 if Sobsi = 0. Then define

W ITT
1 ≡ {W obs

i : Zi = 1}, W ITT
0 ≡ {W obs

i : Zi = 0} and p(W ITT
1 ,W ITT

0 ) as the p-value

for an exact randomization-based test comparing W ITT
1 and W ITT

0 . As opposed to

(2.1), the null hypothesis of the randomization BOI test is H0 : wi(1) = wi(0) for all i ∈

{1, . . . , n}. Assuming Y obs
i > 0 whenever Sobsi = 1, it follows that the null hypothesis

of the BOI test is equivalent to testing the composite hypothesis:

H0 : si(1) = si(0) and yi(1) = yi(0) for all i ∈ {1, . . . , n}, (2.10)
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Because the BOI test may have poor power when infections are rare, Follmann, Fay,

and Proschan (2009) proposed the chop-lump test as an alternative ITT test of (2.10).

For this method, a test statistic is calculated based on a subset of the data obtained by

removing (or “chopping”) min{
∑

(1−Zi)(1−Sobsi ),
∑
Zi(1−Sobsi )} observations where

W obs
i = 0 from each randomization group such that the remaining data from at least one

of the groups has no observations where W obs
i = 0. The test statistic (e.g., difference

in means between groups) is computed based on this subset. Randomization-based p-

values are obtained in the usual fashion, i.e., by considering all possible randomization

assignments of the n individuals and computing the test statistic for each possibility.

For the simulation scenario of Section 2.3, the power was < 0.05 for the BOI for

all δ and 0.181, 0.370 and 0.483 for the chop-lump for δ = 1/3, 2/3 and 1 respectively.

For these tests, let W obs
i = 0 for uninfected individuals (Sobsi = 0) and W obs

i = Y obs
i for

infected individuals (Sobsi = 1). Then for both tests the Wilcoxon rank sum test statistic

was used to compare W obs
i and one-sided p-values were computed corresponding to the

vaccine causing higher viral load. The lack of power for the ITT tests in this setting

is partially due to the opposite direction of vaccine effects on infection and viral load,

i.e., for δ > 0 the vaccine is protecting some individuals but causing a higher viral load

in the AI stratum.

To compare the BOI, chop-lump and PSET when the vaccine only effects the post-

infection outcome, additional simulations were conducted similar to that described in

Section 2.3 except we let si(1) = si(0) for all i such that the expected number of

observed infections was 45 for each arm. For α = 0.05, the empirical type I error and

power for δ = 1/3, 2/3 and 1 were 0.049, 0.061, 0.062 and 0.063 for the BOI test; 0.048,

0.365, 0.747 and 0.898 for the chop-lump; and 0.002, 0.100, 0.644 and 0.978 for the

PSET (with γ = 0.025). That is, the PSET is markedly more powerful test than the

BOI approach for all δ and comparable in power to the chop-lump for larger values
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of δ. Mehrotra et al. (2006) presented similar findings when comparing large-sample

frequentist based principal stratification tests with a BOI test.

The PSET is unambiguously better for testing principal stratum direct effects than

the BOI, chop-lump and other ITT-based tests in settings where treatment z has an

effect on infection s but not on the post-infection outcome y. For then the ITT-based

tests may reject (2.10) even though the null hypothesis of interest (2.1) is true (i.e.,

treatment has no effect on the post-infection outcome y). For example, consider the

scenario described in Section 2.3 where vaccine causes a 30% reduction in the number

of infections, there are 45 expected infections in the placebo arm, and δ = 0 (i.e.,

(1) is true). Suppose the alternative hypothesis of interest is that the vaccine reduces

viral load. In this scenario, one-sided BOI and chop-lump tests reject (2.10) at the

α = 0.05 level of significance for over 50% of the simulated data sets. In other words,

the BOI and chop-lump tests do not have the correct size for testing (2.1) when there

is a treatment effect on s.

2.6 Adjusting for Covariates

Covariate adjustment is often used in analysis of randomized experiments to account

for chance imbalances that may exist between study arms, thereby allowing for more

precise inference. Following Rosenbaum (2002b), in this section we consider extending

the PSET to incorporate baseline (i.e., pre-randomization) covariates. This approach

entails first regressing the outcomes of interest on covariates and then conducting an

exact test on the residuals. Ideally, the residuals obtained from the regression model are

less variable than the original outcomes of interest, resulting in increased power of the

PSET. The appeal of this approach is no distributional assumptions about the response

nor the selected regression model are required. As before, randomization inference is

employed such that the potential outcomes as well as the covariates are assumed to be
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fixed features of the finite population and not affected by treatment assignment.

2.6.1 PSET Development Adjusting for Covariates

Let xi represent the baseline covariate value for individual i. Denote the function

that creates residuals from yi(z) and xi by g such that g(yi(z), xi) = ei(z) where ei(z) is

the residual for the ith individual when assigned treatment z. Under the null hypothesis

(2.1), yi(1) = yi(0) and therefore ei(1) = ei(0) for all i ∈ A I . Therefore, a test of

(2.1) can be constructed using the residuals.

The covariate-adjusted PSET is constructed in a similar fashion to the PSET from

Section 2.2.3 except Y obs
i is replaced with the observed residuals, Eobs

i = Ziei(1) + (1−

Zi)ei(0). The exact randomization-based test used to obtain p(Y ai
1 ,Y

ai
0 ) need not be

the same test used on the residuals as the choice of tests depends on the characteristics

of yi(z), xi and g(, ). For example, consider the logistic regression setting where yi(z)

is binary, xi has no ties and g(y, x) = y − exp(β̂0 + β̂1x)/{1 + exp(β̂0 + β̂1x)} where

β̂0 and β̂1 are obtained by maximum likelihood estimation. Resulting values for ei(z)

will typically have no ties. Accordingly, Fisher’s exact test could be used to obtain

p(Y ai
1 ,Y

ai
0 ) while a Wilcoxon rank sum test could be used on the residuals.

2.6.2 Simulations

To assess the power of the covariate adjusted PSET, the simulation scenario de-

scribed in Section 2.3 was updated to include baseline CD4 count, a measure of immune

function. Baseline CD4 count xi was assumed to be normally distributed with mean

850 and standard deviation 300. For all individuals who would be infected if assigned

control, CD4 count xi and post-infection log viral load when receiving control yi(0)

were simulated under various levels of correlation (ρ = 0.0, 0.1, ..., 0.9). Residuals were

obtained using g(Y obs
i , xi) = Y obs

i − (β̂0 + β̂1xi) where β̂0 and β̂1 are solutions to the
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normal equations for the linear regression model of Y obs
i on xi for all i with Sobsi = 1. A

one-sided 100(1− γ)% CI was computed to obtain Lm and a one-sided Wilcoxon rank

sum test of the residuals was used to obtain the conditional p-values pai(M0) in (2.6).

Results of the simulations for α = 0.05 and γ = 0.025 are displayed in Table

2.2. Comparing to Table 2.1, adjusting for xi increased the power of the PSET when

ρ > .5, markedly so for the larger value of δ. For weak levels of correlation, an increase

in power was not observed; for ρ=0 there was a slight loss of power when adjusting for

the covariate. While the covariate-adjusted PSET is not guaranteed to increase power

compared to the unadjusted PSET, it is still guaranteed to be exact.

2.7 Confidence Intervals

The PSET can be used to form an exact CI for a principal stratum direct effect.

Suppose treatment effect in the AI stratum is additive such that yi(1) − yi(0) = δ0

for all i ∈ A I . Then a CI for the principal stratum direct effect δ0 can be obtained

by inverting a generalized version of the PSET developed in Section 2.2.3. The CI

is constructed by conducting the generalized PSET for all possible values of δ0 and

forming the set of values where the test is not rejected (Lehmann 1959, Rosenbaum

2002a).

The first step is to adapt the PSET to allow for testing a more general null hypoth-

esis. For some constant δ not necessarily equal to zero, consider testing:

H0 : yi(1)− yi(0) = δ for all i ∈ A I , (2.11)

Note under (2.11) that (Y obs
i −δ)Zi+Y obs

i (1−Zi) = (yi(1)−δ)Zi+yi(0)(1−Zi) = yi(0)

is constant. Thus the PSET of (2.11) can be constructed as in Section 2.2.3 except Y obs
i

is replaced with Y obs
i − δ for individuals where Zi = 1 (Rosenbaum 2002a). A one-sided
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100(1 − α)% CI for the true δ0 is formed by the set of all δ where a one-sided test of

(2.11) is not rejected.

More specifically, let pδ(Y
ai
1 ,Y

ai
0 ) = p(Y ai

1 − δ,Y ai
0 ) denote the one-sided p-value

from an exact randomization-based test of (2.11) using Y obs
i − δ for individuals where

Zi = 1, and let paiδ (M0) = max{pδ(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)} and paiγ,δ = max{paiδ (m̃ −

M1) : m̃ ∈ Cγ}+γ. Let δmin and δmax denote the lower and upper limits of the range of

possible values for δ0. Following Mehta and Patel (2007), define the lower bound of the

100(1 − α)% one-sided CI of δ0 by ∆α
γ = sup{δ : pai

γ,δ̃
≤ α for all δ̃ < δ}. If there does

not exist δ such that pai
γ,δ̃
≤ α for all δ̃ < δ then ∆α

γ is set to δmin. The upper bound of

the CI is set to δmax. According to the following proposition, the interval [∆α
γ , δmax] is

an exact one-sided 100(1−α)% CI of the principal stratum direct effect δ0 because the

probability of covering the true value of δ0 is at least (1− α).

Proposition 4: For γ ∈ [0, 1] and α ∈ [0, 1], Pr[δ0 ∈ [∆α
γ , δmax]] ≥ 1− α.

2.8 Discussion

2.8.1 Summary

In randomized studies, comparisons between randomized groups that condition on

intermediate post-randomization outcomes generally do not have a causal interpreta-

tion. An alternate approach entails comparisons within principal strata defined by

the intermediate potential outcomes that would be observed under each randomiza-

tion assignment. In this paper, we develop exact, randomization-based methods for

inference about the treatment effect within a principal stratum. The three key as-

sumptions for the PSET are SUTVA (A.1), random treatment assignment (A.2), and

monotonicity (A.3); no assumptions are required about random sampling or that par-

ticular parametric distributions hold. Simulation studies indicate the PSET can be as
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or more powerful than ITT approaches when treatment has no impact on the inter-

mediate post-randomization outcome. The power of the PSET can be increased by

adjusting for baseline covariates and exact CIs for the principal stratum direct effect

can be obtained by inverting the PSET.

2.8.2 Other applications

This work is motivated by infectious disease prevention studies where the treatment

is some preventive measure (such as a vaccine), the intermediate variables s is infection,

and the outcome of interest y is a post-infection endpoint (such as death). Two other

settings where principal stratification methods are typically employed include trunca-

tion by death (Zhang and Rubin 2003) and non-compliance (Angrist et al. 1996). For

the truncation by death problem, the PSET can readily be employed. In this setting,

the intermediate variable s is death (0 for alive, 1 for death), the outcome of interest y is

some measurement such as quality of life that is only well defined when individuals are

alive, and the principal stratum of interest is the set of individuals who would be alive

under either treatment assignment. The stratum of interest {i : si(0) = si(1) = 0} is di-

rectly analogous to the never infected principal stratum discussed in Section 2.4.2. Here

the monotonicity assumption A.3 indicates no individuals would die due to treatment.

In the non-compliance setting, the intermediate variable s is compliance to random-

ization assignment z and the goal is to make inference about the outcome of interest y

for those individuals who would comply under either randomization assignment. Fol-

lowing Angrist et al. (1996), let si(z) = 1 if individual i actually receives treatment and

si(z) = 0 if individual i receives control when assigned z. If individual i always com-

plies with their randomization assignment then si(z) = z. Thus the principal stratum

of interest, the compliers, is {i : si(0) = 0, si(1) = 1}. Typically a form of monotonicity
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is assumed such that there are no individuals who always defy their randomization as-

signment, i.e., {i : si(0) = 1, si(1) = 0} is empty. Additionally, often it is assumed that

randomization assignment has no effect on individuals who ignore treatment assign-

ment, i.e., yi(0) = yi(1) if si(0) = si(1). Under this exclusion restriction and assuming

monotonicity, the principal stratum direct effect null

H0 : yi(0) = yi(1) for all i ∈ {j : sj(0) = 0, sj(1) = 1} (2.12)

will be true if and only if the ITT null

H0 : yi(0) = yi(1) for i ∈ {1, . . . , n}, (2.13)

is true, so that the usual randomization tests of (2.13) can be used to test (2.12), as

suggested by Rosenbaum (1996).

If one is not willing to make the exclusion restriction assumption above (e.g., see

Jo 2002), then (2.12) and (2.13) are not equivalent and thus the usual randomization

(ITT) tests will generally not have the correct size for testing (2.12), since effects of

randomization on y in non-compliers can lead to rejection of (2.13) even though (2.12)

is true. In certain settings treatment may not be available to individuals randomized

to control (e.g., see Ten Have et al. 2003, Little et al. 2009), so that si(0) = 0 always.

In this setting and assuming monotonicity, the PSET applies; individuals with Zi =

Sobsi = 1 must be compliers (just as infected treated individuals must be in the AI

stratum) and individuals with Zi = Sobsi = 0 are a mixture of compliers and never

takers (just as infected controls are a mixture of individuals from the protected and AI

strata).
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2.8.3 Future Directions

We close by mentioning five possible avenues of future research. (i) The develop-

ment of the PSET as an exact test of (2.1) arose from viewing individuals’ principal

stratum memberships as partially unknown nuisance parameters and then employing

the approach developed by Berger and Boos (1994). Other approaches to testing in

the presence of nuisance parameters might be adapted to the principal stratification

setting, giving rise to exact tests of (2.1) different from the PSET in this paper. (ii)

Extensions to observational settings where assumption A.2 does not necessarily hold

could be considered. For examples of permutation inference in observational studies

see Rosenbaum (1984, 2002). (iii) A method for obtaining an exact CI of the principal

stratum direct effect by inverting the PSET was presented in Section 2.7. This method

assumes the treatment effect is additive (i.e., constant) within the principal stratum of

interest. Future research could entail relaxing this assumption. Similar to Rosenbaum

(2001), one approach might entail extending the PSET to the more general null hy-

pothesis H0 : yi(1)− yi(0) = δ0i for i ∈ A I where the individual treatment effects δ0i

may differ between individuals; this extended PSET could then, perhaps, be inverted to

obtain a CI for the average principal stratum direct effect (VanderWeele 2008). (iv) As

discussed in Sections 2.2, 2.3 and 2.4, the monotonicity assumption may be dubious in

certain settings. Additional investigation is needed into weakening assumption A.3. (v)

Covariate adjustment was considered in Section 2.6 as a method for possibly increas-

ing the power of the PSET. Alternatively, baseline covariates could be used to predict

principal stratum membership (e.g., see Roy et al. 2008) and perhaps this information

could somehow be incorporated within the randomization-based inference framework.
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2.9 Proof of Propositions

Proof of Proposition 1

Proof: Suppose H0 (2.1) is true. Fix γ ∈ [0, 1] and α ∈ [0, 1]. If γ > α, then

paiγ = max{pai(m̃ − M1) : m̃ ∈ Cγ} + γ > α. Therefore Pr[paiγ ≤ α] = 0 ≤ α. If

γ ≤ α, then

Pr[paiγ ≤ α] = Pr[paiγ ≤ α,m ∈ Cγ] + Pr[paiγ ≤ α,m ∈ Cγ]

≤ Pr[max{pai(m̃−M1) : m̃ ∈ Cγ}+ γ ≤ α,m ∈ Cγ] + Pr[m ∈ Cγ]

≤ Pr[pai(m−M1) + γ ≤ α,m ∈ Cγ] + γ

≤ Pr[pai(m−M1) ≤ α− γ] + γ

≤ α− γ + γ = α

where the 2nd inequality holds since max{pai(m̃−M1) : m̃ ∈ Cγ} ≥ pai(m−M1) when m ∈

Cγ and the 4th inequality holds due to the following Lemma.

Lemma: pai(m − M1) is an exact p-value, i.e., Pr[pai(m − M1) ≤ α] ≤ α for each

α ∈ [0, 1] under the null (2.1).

Proof of Lemma: Suppose H0 (2.1) is true.

Pr[pai(m−M1) ≤ α] = Pr[max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)} ≤ α]

≤ Pr[p(Y ai
1 ,Y

ai
0 ) ≤ α] ≤ α

where the 1st inequality holds because max{p(Y ai
1 ,Y 0) : Y 0 ∈ Ω(M0)} ≥ p(Y ai

1 ,Y
ai
0 )

and the 2nd inequality holds because p(Y ai
1 ,Y

ai
0 ) is an exact p-value under (2.1).
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Proof of Proposition 2

Proof: Assume t is an invariant and effect increasing statistic. The proposition is proved

if we can show p(Y ai
1 ,Y

ai
0 [1:M0]) ≥ p(Y ai

1 ,Y 0) for all Y 0 ∈ Ω(M0). Let Y 0 be an

element of Ω(M0) and define the labels k1, . . . , km such that Y ai
1 ∪Y 0 = {Y obs

k1
, . . . , Y obs

km
}.

Let Y ai1 = (Y obs
k1
, Y obs

k2
, . . . , Y obs

km
) and Zai1 = (Zk1 , Zk2 , . . . , Zkm).

Since t is invariant, we can assume without loss of generality that the labels k1, . . . , km

are defined such hat Zai1
j = 1 for j = 1, . . . ,M1; Zai1

j = 0 otherwise; and Y ai1
j ≥ Y ai1

k

if j ≤ k and Zai1
j = Zai1

k . In other words, the elements of Zai1 are in descending

order and the elements of Y ai1 are in descending order within fixed levels of Zai1.

Similarly define the labels l1, . . . , lm such that Y ai
1 ∪Y ai

0 [1:M0] = {Y obs
l1
, . . . , Y obs

lm
}. Let

Y ai2 = (Y obs
l1
, Y obs

l2
, . . . , Y obs

lm
) and define Zai2 analogously. Assume the labels l1, . . . , lm

are defined similar to k1, . . . , km such that Zai2 = Zai1 and Y ai2
j ≥ Y ai2

k if j ≤ k and

Zai2
j = Zai2

k .

Note the first M1 elements of Y ai1 and Y ai2 are the same, such that if Zai1
i = 1,

then Y ai2
i = Y ai1

i . On the other hand, if Zai
i = 0, then Y ai2

i ≥ Y ai1
i because (i)

Y ai2 and Y ai1 are both in descending order within fixed levels of Zai2 = Zai1 and

(ii) Y ai2 contains the M0 largest values of {Y obs
i : Zi = 0, Sobsi = 1}. This implies

(Y ai1
j − Y ai2

j )(2Zai
j − 1) ≥ 0 for j = 1, . . . ,m. Since t is an effect increasing statistic, it

follows t(Zai1,Y ai1) ≥ t(Zai2,Y ai2), which implies p(Y ai
1 ,Y

ai
0 [1:M0]) ≥ p(Y ai

1 ,Y 0).

Proof of Proposition 3

Proof: Fix γ and α. Let Z denote a randomly selected treatment assignment vector and

let paiγ denote the resulting PSET p-value. By Proposition 2, there exists an m̃ ∈ Cγ

such that paiγ −γ = p(Y ai
1 ,Y 0[1:(m̃−M1)]). Similar to the proof of Proposition 2, define

the labels l1, . . . , lm̃ such that Y ai
1 ∪ Y 0[1:(m̃ −M1)] = {Y obs

l1
, . . . , Y obs

lm̃
}. Let Y aim̃ ≡

(Y obs
l1
, Y obs

l2
, . . . , Y obs

lm̃
) and define Zaim̃ analogously. Let yaim̃0 ≡ (yl1(0), . . . , ylm(0)) be
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the vector of potential outcomes if individuals l1, . . . , lm were all assigned control. Note

if zlk = 1 then lk ∈ A I and thus Y obs
lk

= ylk(1) ≥ ylk(0) under (2.1) or (2.9). On the

other hand, by construction the lk element of Y aim̃ and the lk element of yaim̃0 are equal

if zlk = 0. Because t is effect increasing, it follows t(Zaim̃,Y aim̃) ≥ t(Zaim̃,yaim̃0 ) when

either (2.1) or (2.9) hold. Therefore

∑
z∈Ωai

m̃
I[t(z,Y aim̃) ≥ t(Zaim̃,Y aim̃)](

m̃
M1

) ≤
∑

z∈Ωai
m̃
I[t(z,Y aim̃) ≥ t(Zaim̃,yaim̃0 )](

m̃
M1

)
(2.14)

The left side of (2.14) equals p(Y ai
1 ,Y 0[1:(m̃−M1)]) under HA where as the right side

of (2.14) equals p(Y ai
1 ,Y 0[1:(m̃−M1)]) under H0. Therefore

Pr[p(Y ai
1 ,Y 0[1:(m̃−M1)]) < α− γ|HA] ≥ Pr[p(Y ai

1 ,Y 0[1:(m̃−M1)]) < α− γ|H0]

which implies Pr[paiγ < α|HA] ≥ Pr[paiγ < α|H0], i.e., the probability of rejecting the

null is at least as likely given (2.9) as compared to given (2.1).

Proof of Proposition 4

Proof: Let δ0 be the true (unknown) value of the principal stratum direct effect. Fix

γ ∈ [0, 1] and α ∈ [0, 1]. If γ > α then the PSET does not reject (2.11) for any choice

of δ. Therefore, Pr[δ0 /∈ [∆α
γ , δmax]] = Pr[δ0 /∈ [δmin, δmax]] = 0 ≤ α. If γ ≤ α then

Pr[δ0 /∈ [∆α
γ , δmax]] = Pr[δ0 /∈ [∆α

γ , δmax],m ∈ Cγ] + Pr[δ0 /∈ [∆α
γ , δmax],m ∈ Cγ]

≤ Pr[δ0 /∈ [∆α
γ , δmax],m ∈ Cγ] + Pr[m ∈ Cγ]

≤ Pr[δ0 < ∆α
γ ,m ∈ Cγ] + γ

≤ Pr[paiγ,δ0 ≤ α,m ∈ Cγ] + γ

≤ α− γ + γ = α
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where the 3rd inequality follows from the definition of ∆α
γ (i.e., δ0 < ∆α

γ implies paiγ,δ0 ≤

α) and the 4th inequality follows for reasons analogous to the proof of Proposition 1.
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Table 2.1: Empirical type 1 error and power for α significance level, 100(1 − γ)% CI
for m, and δ increase in log10 viral load in the AI stratum, where δ = 0 under the null
hypothesis (2.1)

α γ δ = 0 δ = 1/3 δ = 2/3 α γ δ = 0 δ = 1/3 δ = 2/3
0.05 0.005 0.001 0.09 0.65 0.05 0.045 0.002 0.13 0.73
0.05 0.010 0.002 0.12 0.72 0.10 0.010 0.004 0.18 0.79
0.05 0.020 0.003 0.16 0.77 0.10 0.050 0.009 0.29 0.89
0.05 0.025 0.004 0.16 0.77 0.10 0.090 0.009 0.25 0.86
0.05 0.030 0.005 0.17 0.78 0.10 0.095 0.005 0.21 0.84
0.05 0.040 0.003 0.15 0.77

Table 2.2: Empirical type 1 error and power for α = 0.05, γ = 0.025, and δ increase in
log10 viral load in the AI stratum, where δ = 0 under the null hypothesis (2.1), when
adjusting for baseline CD4 count at various levels of ρ between viral load and CD4
count

ρ δ = 0 δ = 1/3 δ = 2/3 ρ δ = 0 δ = 1/3 δ = 2/3
0.0 0.004 0.16 0.76 0.5 0.002 0.17 0.82
0.1 0.004 0.16 0.76 0.6 0.002 0.18 0.85
0.2 0.004 0.16 0.77 0.7 0.001 0.21 0.90
0.3 0.003 0.16 0.78 0.8 0.001 0.27 0.96
0.4 0.003 0.16 0.80 0.9 < 0.001 0.50 > 0.99
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Figure 2.1: Plot of the 29 conditional p-values, pai(m̃ −M1), for mother-to-child HIV
transmission weaning study. Horizontal reference line indicates significance level α =
0.05. Vertical reference line indicates paiplug where m̃ = M̂ = nM1/
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Chapter 3

Addressing Selection Bias In
Infectious Disease Prevention

Studies

3.1 Introduction

Randomized trials are commonly used to estimate treatment effects. Such trials

are often preferred over using observational data because the observational data may

provide biased estimates of treatment effect if a subject characteristic that impacts

treatment choice is associated with the outcome. For example, if women have a higher

risk of infection (whether or not vaccinated) but are also more likely to choose vaccina-

tion then the vaccine effect will be underestimated as the beneficial effect will be hidden

by the higher proportion of women observed in the vaccine group. Randomization re-

moves this source of bias as it produces comparable groups with respect to baseline

subject characteristics. This benefit is characterized as the randomized trial being “un-

confounded” and implies that any observed difference between treatment groups can

be attributed to treatment assignment (Rubin 2008).

Even in randomized studies bias can be introduced if analyses are conducted on a

subset of the randomized population where the subset is defined by an event occurring

post-randomization but prior to the outcome. These intermediate post-randomization



events may cause the outcome to be missing for a subset of subjects or limit research

interest to a subset of subjects (Rubin 2005). For example, one aim of prevention stud-

ies is to determine the treatment effect on post-infection outcomes including disease

severity or death (Fitzgerald et al. 2011). Analyses of these endpoints often condition

on the intermediate post-randomization event of infection since outcomes are only ob-

served for infected individuals. If treatment reduces probability of infection, then the

set of individuals with observed post-infection outcomes in the treated group is not

comparable to the set in the control group. Therefore estimates conditional on infec-

tion status (e.g. difference between treatment groups in proportion of infected subjects

who survive) are subject to selection bias. Likewise, analyses restricted to uninfected

individuals in prevention studies suffer from the same potential bias (Gray et al. 2010).

Other examples of intermediate post-randomization events include early infections in

analysis of postpartum infections due to mother to child transmission (MTCT) via

breast milk, presence of competing risks such as mortality that lead to truncation by

death (i.e. missing outcomes due to death) and treatment non-compliance (Thior et

al. 2006; Kuhn et al. 2008; Chasela et al. 2010; Grant et al. 2010; Gilbert et al. 2011).

One approach for addressing selection bias is to use intent-to-treat (ITT) methods

that include all randomized individuals. For analyses of disease severity one ITT ap-

proach comprises assigning all uninfected individuals the lowest disease severity (i.e.

burden of illness analyses) (Chang, Guess and Hayes 1994). However, such approaches

are a joint test of the infection and post-infection outcomes and therefore fail to separate

treatment effect on infection from that on post-infection outcomes. Such approaches are

not ideal when the goal is to isolate the treatment effect on the post-infection outcome.

An alternate approach that allows for testing the treatment effect solely on the outcome

of interest is principal stratification (PS). While PS techniques appear in methodolog-

ical literature and are implemented in other fields, these approaches have rarely been
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implemented in published infectious disease research likely due researchers being unfa-

miliar with these techniques. This paper introduces PS techniques to infectious disease

research by implementing PS approaches to relevant study examples.

3.2 Principal Stratification Methodology

Within the potential outcomes framework each individual has a set of potential

outcomes for any outcome of interest, the outcome the individual would have under

treatment and that under control. A measure of the “causal effect” of an infectious

disease preventative for an individual is the difference in the potential outcome the

individual would have under treatment versus control (Holland 1986). This difference

is written as Yi(0) − Yi(1) where Yi(Z) is the potential outcome for the ith individual

under treatment Z (0 for control, 1 for active treatment). For example, vaccine effect on

disease severity can be defined as decrease in severity for an individual when vaccinated

compared to when not vaccinated. Because both potential outcomes cannot be observed

for an individual, PS focuses on estimating average treatment effect.

PS categorizes individuals into principal strata based on their potential outcomes for

the intermediate post-randomization event and then treatment effect on the outcome of

interest is estimated within a stratum (Frangakis and Rubin 2002). For post-infection

outcomes, the intermediate post-randomization event of infection is denoted as Si(Z)

(1 if infected under treatment Z, 0 if not). The four principal strata are immune (never

infected [NI]), harmed (infected under vaccine, not control), protected (infected under

control, not vaccine) and doomed (always infected [AI]) individuals (Table 3.1). A

randomized trial being unconfounded is also described as treatment assignment being

“ignorable” in that treatment assignment is independent of the individual potential out-

comes (Rosenbaum 1983). Due to ignorability, strata membership defined by potential

outcomes for the intermediate post-randomization event is not affected by observed
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treatment assignment and therefore strata membership can be conditioned on without

introducing bias. For example, analysis of post-infection outcomes within the AI stra-

tum is unbiased and of interest as post-infection outcomes occur under both treatment

assignments only for these individuals.

The PS approaches applied assume ignorability (obtained via randomization) and

no interference (i.e. treatment assignment of one individual does not affect another

individual’s outcome). Because only one potential outcome is observed per subject,

Si(1) or Si(0) depending on treatment assignment, additional assumptions are needed

to determine strata membership (Frangakis and Rubin 2002). Monotonicity (Si(1) ≤

Si(0) for all individuals) can be assumed which implies in the post-infection outcome

setting that treatment does no harm such that it does not cause infection. Accordingly,

the harmed stratum is empty and infected active treated individuals belong to the

AI stratum. To identify infected control individuals in the AI stratum, assumptions

about possible selection bias are required. The most conservative approach assumes

the maximum amount of selection bias.

For example, assume a one-sided test of the null hypothesis of no difference between

treatment groups in the post-infection outcome among AI individuals versus the one-

sided alternative that vaccine increases the post-infection outcome in AI individuals

(e.g. vaccine is harmful with respect to disease severity such that it increases severity

among subjects that would become infected regardless of treatment assignment). As-

suming maximum selection bias means assuming the infected control individuals with

the worst post infection outcomes are AI stratum members. Suppose NZ individuals

are randomized to the Zth treatment group, randomization is 1 : 1 such that N0 = N1,

and nZ individuals are infected in the Zth group. A potential test statistic is simply

the mean difference for individuals assumed to be in the AI stratum when assuming

the maximum amount of selection bias, TM = n0
−1{
∑n1

i=1 Yi(1) −
∑n0

i=n0−n1+1 Y(i)(0)}
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where Y(i)(0) is the ith order statistic of the control group post-infection outcomes

{Y1(0), ...., Ync(0)} (Hudgens, Hoering and Self 2003). The distribution of the test

statistic under the null and a corresponding p-value for the observed data can be ob-

tained using bootstrap procedures. Large values of Tm are evidence against the null.

All PS techniques employed in this paper are conducted using the sensitivityPStrat

package in R.

3.3 Examples and Applications

3.3.1 Post-Infection Outcomes and Truncation by Death

The ZEB trial evaluated whether abrupt weaning at 4 months (intervention) versus

continued breastfeeding (control) increases survival of children of HIV infected mothers

(Kuhn et al. 2008). The trial included 958 HIV-infected women and their infants with

481 children randomized to intervention and 477 to control. Randomization occurred

at one month postpartum to allow for preparation time for weaning at 4 months. Kuhn

presents analyses of the weaning effect on 24 month survival based on a log-rank test

for the subset of infants HIV-infected and alive at 4 months. Sixty-two individuals

assigned to intervention were HIV-infected and alive at 4 months, 39 (63%) who died

prior to 24 months. Likewise, 70 assigned to control were HIV-infected and alive at

4 months, 32 (46%) who died prior to 24 months. The reported p-value was 0.007,

and the authors concluded there is evidence of a harmful effect of weaning on survival

among HIV positive infants alive at 4 months.

Because the analysis conditioned on infection and survival status at 4 months, the

findings could be due to selection bias. Specifically, any differences between groups

during months 1-4 could affect infection and survival status at 4 months. For instance,

at month 2 women assigned intervention were counseled on weaning techniques and
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provided infant formula and fortified weaning cereal. This may have caused women

assigned intervention to wean earlier than had they been assigned control, in turn per-

haps impacting HIV acquisition. In fact, more women assigned intervention weaned by

4 months (37 versus 18) and, possibly because of this, fewer infants in the intervention

arm became HIV positive at or before 4 months (71 versus 81).

The AI stratum includes all infants who would be HIV-infected and alive at 4

months regardless of randomization assignment. The Hudgens, Hoering and Self (2003)

PS approach was used to test the null hypothesis of no intervention effect on death

in the AI stratum (2003). While the reported analyses used time-to-event data, the

PS analyses use the binomial outcome of 24 month survival as individual death and

censoring times were not reported. Applying the conditional approach of the published

results to a binomial outcome also results in a significant p-value (0.036). The PS

p-value was 0.22 suggesting no evidence of a harmful effect of weaning on survival for

the AI stratum (Table 3.2).

3.3.2 Exclusion of Early Infections

The BAN trial evaluated whether daily administration of nevirapine (NVP) to in-

fants of HIV infected mothers through 28 weeks decreased breast milk MTCT risk

versus no antiretroviral therapy (control) (Chasela et al. 2010). A total of 668 mother-

infant pairs were randomized to control and 852 to NVP. Fewer mother-infant pairs

were randomized to control because the data monitoring committee (DMC) stopped

enrollment in this arm early. Treatment effect on infection through 28 weeks was as-

sessed using a log-rank test that compared infection between groups among infants not

infected at two weeks. Of the 632 control infants not infected at two weeks , 32 (5.1%)

were infected by 28 weeks. Of the 815 NVP infants not infected at two weeks, 12 (1.5%)

were infected by 28 weeks. The log-rank p-value was < 0.001, suggesting NVP prevents
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breast milk MTCT.

Because the analyses conditioned on 2-week infection status, the findings could be

due to selection bias. To guard against this bias, an ITT analysis including infants

infected before two weeks was reported. However, given a primary objective of BAN

was to investigate the NVP effect on breast milk transmission, the investigators were

primarily interested only in infections occurring after two weeks, as infections prior to

two weeks may have occurred in utero or during birth. Because NVP from birth could

potentially effect infection status at two weeks, the infants not infected at two weeks

in each group may not be comparable.

The NI stratum includes all infants who would be HIV uninfected at two weeks re-

gardless of randomization assignment. A PS technique developed by Shepherd, Gilbert

and Lumley was used to test the null of no NVP effect on infection by 28 weeks in the

NI stratum (2007). In contrast to the AI stratum, NI stratum membership is known

for control individuals not infected at two weeks since by monotonicity infants not in-

fected at two weeks under control would also not be infected at two weeks under NVP.

Membership in the NI stratum is unknown for NVP infants not infected at two weeks.

Thus the PS technique is applied to the NI stratum with the roles of the treated and

control individuals reversed relative to conducting the test in the AI stratum. Because

enrollment was stopped early in one group, we use only data available prior to the

DMC decision. These data include all control infants but only 670 NVP infants, 639

of who were not infected at two weeks. Of these 639 infants, 10 (1.6%) were infected

by 28 weeks. The PS p-value was < 0.001 indicating a benefit of NVP among infants

who were immune to infection at two weeks (Table 3.3).
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3.4 Discussion

PS techniques are appropriate for addressing potential selection bias in analyses us-

ing only a subset of the randomized population defined by a post-randomization event.

While the examples presented above consider post-randomization events of mortality

and infection status, the approach is also applicate to other post-randomization events

including compliance.

For the compliance setting, consider the iPrEx trial which evaluated whether an-

tiretroviral chemoprophylaxis (intervention) decreased HIV transmission in men who

have sex with men versus placebo (control) (Grant et al. 2010). A log-rank test that

compared infection between treatment groups resulted in a p-value of 0.005, suggesting

chemoprophylaxis prevents transmission. Because pill use was lower in the intervention

group versus control, the authors also conducted analyses adjusting for treatment com-

pliance (≥ 90% pill use). However, these analyses are subject to selection bias since

they incorporate the post-randomization event of observed compliance. In this setting,

the principal strata are defined by whether or not subjects take more than 90% of the

active chemoprophylaxis pills such that the four strata are always compliers (take under

intervention, not control), never takers, always takers and defiers (take under control,

not intervention) (Table 3.4). Monotonicity holds as subjects did not have access to

chemoprophylaxis unless assigned intervention and therefore the always takers strata

is empty. As such, any individuals who take more than 90% of the chemoprophylaxis

pills when assigned intervention will not take any chemoprophylaxis pills under control

and so are always compliers. However, individuals in the control group are a mixture of

always compliers and never takers. Thus this scenario is similar to conducting analyses

for the AI stratum of our previous examples and therefore the methods applied above

are applicable to this scenario. Of note regarding the above methods is that compliance

with respect to the placebo pill is ignored in these analyses. While the exclusion of this
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information may be considered a limitation of the approach, it could also be argued

that compliance with respect to placebo should be ignored as it does not necessarily

provide information regarding compliance with respect to active therapy as subjects are

likely to comply or not comply with active therapy for different reasons than placebo

(e.g., failure to comply due to perceived lack of efficacy on placebo versus failure to

comply due to side effects on active therapy).

As with all analytic approaches, there are limitations with the PS techniques. Pri-

marily, PS methods are only valid when the underlying assumptions hold. For the em-

ployed approaches, the key assumptions that may not always be valid are monotonicity

and no interference. For example, monotonicity fails in the post-infection setting if the

prophylactic treatment can cause infection or in the treatment non-compliance setting

if control subjects can receive treatment. Additionally, conclusions based on PS tech-

niques are limited to the stratum to which the analyses are restricted. For example,

a test of disease severity in the AI stratum will not detect the scenario in which there

is no difference in the disease severity in the AI stratum but all infected individuals in

the harmed stratum have severe disease and all individuals in the protected stratum

have mild disease (Joffe 2011). However, ITT approaches could be used to test for this

type of effect. In general, while PS techniques are not intended to answer all ques-

tions in infectious disease prevention research, PS is an appropriate alternative to the

often used but inappropriate approach of conditioning on observed post-randomization

events when such events may introduce selection bias.
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Table 3.1: Potential outcomes for post-infection endpoint example

Infection Post-Infection
Principal Strata S(0) S(1) Y (1) Y (0)
Immune (Never infected) 0 0 ∗ ∗
Protected 1 0 Y (1) ∗
Harmed 0 1 ∗ Y (0)
Doomed (Always Infected) 1 1 Y (1) Y (0)

Table 3.2: ZEB trial analysis results

Control Intervention
Randomized 477 481
Infected and Alive at 4 Months 70 62
Post-infection Deaths at 24 Months 32(46%) 39(63%)
Published p-value 0.007
- Using Binary Outcome 0.036
AI p-value 0.215

Table 3.3: BAN trial analysis results

Control Intervention
All pre-DSMB

Randomized 668 852 670
Not Infected at 2 Weeks 632 815 639
Infections among Non-infectees at 28 Weeks 32(5.1%) 12(1.5%) 10(1.6%)
Published p-value: All < 0.001
NI p-value: pre-DSMB < 0.001

Table 3.4: Principal strata for compliance example (S(Z) = 1 for > 90% chemopro-
phylaxis and 0 otherwise)

Principal Strata S(0) S(1)
Never Takers 0 0
Defiers 1 0
Always Compliers 0 1
Always Takers 1 1
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Chapter 4

Analysis of Repeated Low-Dose
Challenge Studies

4.1 Introduction

Preclinical proof-of-concept vaccine trials using animal models limit the risk, time

and cost of clinical trials involving human subjects by providing preliminary evidence of

potential safety and efficacy of an investigational vaccine (Koff 2006; Shedlock, Silvestri

and Weiner 2009). A large portion of the preclinical studies of HIV vaccines have

been conducted using macaques as the disease progression of simian immunodeficiency

viruses in macaques mirrors that of HIV in humans (Shedlock et al. 2009). The virus

challenge in these preclinical trials has historically been administered via a single high-

dose intravenous or mucosal inoculation which often resulted in a high probability of

infection for all unprotected macaques (McDermott et al. 2004; Straprans, Feinberg,

Shiver and Casimiro 2010).

Although single high-dose challenge studies are appealing in that high infection

rates allow for a greater chance of observing a vaccine effect assuming a vaccine is

completely protective against infection, the vaccine efficacy in these trials may not

translate to ‘real life’ (Straprans et al. 2010). For example, high infection rates in

challenge studies do not mirror the low probability of heterosexual HIV transmission



per sexual act or low per month probability of late postnatal HIV transmission via

breastfeeding (Gray et al. 2001; Boily et al. 2009; WHO 2007). Vaccines may not

be equally efficacious against high-dose and low-dose challenges, such that vaccines

efficacious against low-dose challenges may be discarded due to not demonstrating

efficacy in high-dose challenge studies (Regoes, Longini, Feinberg, and Straprans 2005).

As an alternative, repeated low-dose mucosal challenge studies have been employed

more recently (McDermott et al. 2004; Hessell et al. 2009; Hudgens et al. 2009). In

these studies, each macaque is challenged multiple times (i.e., until infected or a maxi-

mum number of challenges Cmax are performed) such that each macaque has numerous

observed outcomes corresponding to the number of times the macaque was challenged.

Regoes, et al. (2005) performed a power analysis of repeated low-dose challenge (RLC)

studies demonstrating that these trials are viable alternatives to traditional single high-

dose challenge studies.

A standard analysis used for the single-dose challenge study entails performing

Fisher’s exact test on a 2 × 2 contingency table of infection status by treatment as-

signment where cell counts are the number of the macaques in each category (e.g., vac-

cinated/infected, vaccinated/not-infected, control/infected, control/not-infected). For

the RLC setting, Regoes et al. proposed the Fisher’s exact test be conducted on a

similar 2× 2 contingency table of infection status by treatment assignment except that

the cell counts are the number of challenge events falling in each category. Hudgens et

al. (2009) showed via simulations that in certain settings this approach has an inflated

type I error. Alternative analytic approaches implemented in this setting include the

exact log-rank test implemented using StatXact as well as non-exact (i.e., large sample)

approaches including the log-rank test and Cox proportional hazard modeling (Cytel

Software Corporation 2007; Garćıa-Lerma et al. 2008; Hessell et al. 2009; Parikh et al.

2009; Reynolds et al. 2010). Unfortunately, some of these analytic approaches employed
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in the RLC setting are not appropriate in that assumptions required for these tests are

not met while other analysis methods may not be easy to implement using software

available to clinical researchers.

This paper describes appropriate analytic approaches for RLC studies. The impor-

tant aspects of the data collected from RLC studies are that 1) infection status is a time

to event endpoint subject to censoring, and 2) sample sizes are often very small such

that large sample, frequentist analytic approaches may yield incorrect inference. Given

that macaques are challenged at discrete time-points with determination of infection

and censoring status occurring within the interval between each challenge, the resulting

data are naturally modeled using discrete time-to-event survival methods.

The outline of this paper is as follows. Section 4.2 introduces notation used in the

remainder of the paper and Section 4.3 reviews randomization-based inference, a mode

of inference appropriate for randomized studies with small sample sizes. Section 4.4

provides details regarding why Fisher’s exact test is invalid for RLC studies. Valid an-

alytic approaches for RLC studies are provided in Section 4.5 and compared in Section

4.6. In Section 4.7 the various methods are compared using data from a recent RLC

study. Section 4.8 includes a discussion and Section 4.9 provides SAS and R code for

the various analytic approaches.

4.2 Notation

Notation will be defined for both single and repeated challenge studies to allow for

discussion and comparison. Suppose there are n macaques. In the single challenge

study, let xi(z) denote the potential infection outcome when macaque i is assigned z,

where z=0 denotes control and z=1 denotes vaccine. Let xi(z) = 1 if the macaque

becomes infection and xi(z) = 0 otherwise. Prior to the study each macaque has two

potential outcomes, only one of which is observed during the trial, which we denote by
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Xobs
i = xi(0)(1− Zi) + xi(1)Zi = Xi(Zi) where Zi is the treatment randomly assigned

for the ith macaque.

For RLC studies, let ti(z) denote the potential outcome for the number of challenges

each macaque receives when assigned z, where ti(z) ≤ Cmax. Similarly, let di(z) denote

the potential outcome for infection indicator, where di(z) = 1 if the macaque would

become infected when assigned z and di(z) = 0 otherwise. Only either (ti(1), di(1)) or

(ti(0), di(0)) are observed, which we denoted by (T obsi , Dobs
i ) defined in a similar manner

to Xobs
i .

4.3 Randomization-Based Inference

Since preclinical challenge studies typically randomize a small number of macaques,

randomization-based statistical methods are ideal for inference about vaccine effect.

Randomization-based inference is based on distributions created from the randomiza-

tion process rather than assuming random sampling from an infinite population or that

particular parametric distributions hold (Koch, Gillings and Stokes 1980; Rubin 1991;

Rosenbaum 2002a). Under randomization-based inference the potential outcomes, (i.e.,

(xi(1), xi(0)) or (ti(1), ti(0), di(1), di(0))) are considered fixed, discrete features of the

finite population of n macaques and Zi is considered a random variable. As observed

outcomes are functions of treatment assignment, they are also considered random.

Consider the null hypotheses that vaccine has no effect on any of the n macaques

for a single challenge study:

H0 : xi(0) = xi(1) for i = 1, . . . , n. (4.1)

66



Likewise, the null hypothesis in a RLC study is:

H0 : di(0) = di(1) and ti(0) = ti(1) for i = 1, . . . , n. (4.2)

This type of null is referred to as Fisher’s sharp null hypothesis of no effect and states

potential outcomes under both treatment groups are the same (Rubin 2005).

Under the null (4.1 or 4.2) all potential outcomes are observed for each macaque and

therefore, the observed outcomes are fixed regardless of treatment assignment. Assum-

ing a permutation randomization scheme is employed such that exactly m macaques

are randomly assigned to vaccine and the remaining to control, there are
(
n
m

)
possible

treatment assignment combinations that are all equally likely to be selected. There-

fore, a simple approach for calculating a p-value for testing H0 is to define the p-value

as the probability of obtaining a treatment assignment combination that results in a

distribution of outcomes as or more extreme than what was observed when assuming

all treatment assignments are equally likely. Specifically, a test statistic is calculated

for all permutations of treatment assignment and the p-value is simply the proportion

of test statistics as or more extreme than the test statistic value calculated based on

the observed data and treatment assignment. Since the p-value in randomization-based

inference is obtained by permuting treatment assignment, the tests are often referred

to as permutation tests. The resulting p-values are considered exact in that they are

based on calculating the exact permutation distribution of the test statistic as opposed

to relying on asymptotic properties of the statistic.
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4.4 Fisher’s Exact Test

Fisher’s exact test is a randomization-based test for 2 × 2 tables that calculates

p-values based on the probability of the observed table under Fisher’s sharp null hy-

pothesis that the vaccine has no effect on the number of challenges until infection for

any macaque. While Regoes et al. proposed using Fisher’s exact test for RLC studies,

this test is not valid for testing (4.2) in that it is not guaranteed to protect against in-

flated type I error. To further detail the inappropriateness of the test, we first illustrate

its justification for single challenge studies.

4.4.1 Single Challenge Study

Suppose a single challenge study is conducted where four macaques are randomized

such that 2 receive vaccine and 2 receive control. The
(

4
2

)
= 6 possible treatment

assignment combinations are all equally likely, each with probability of 1/6. Assume

the observed treatment assignments are Z1 = Z2 = 1 and Z3 = Z4 = 0. Further

assume only one macaque, i = 1 is uninfected (Xobs
1 = 0 and Xobs

2 = Xobs
3 = Xobs

4 = 1).

Under the null where potential outcomes are observed for all macaques, the potential

treatment assignments include:

Comb Z1Z2Z3Z4
∑

iZiX
obs
i

∑
iZi(1−Xobs

i )
∑

i(1−Zi)Xobs
i

∑
i(1−Zi)(1−Xobs

i )

1 1100 1 1 2 0

2 1010 1 1 2 0

3 1001 1 1 2 0

4 0110 2 0 1 1

5 0101 2 0 1 1

6 0011 2 0 1 1

(4.3)
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where combination 1 is observed. The Fisher’s exact p-value for H0 (4.1) versus a one-sided

alternative that vaccine has a protective effect is calculated as the proportion of combinations

that result in an outcome distribution at least as extreme as the observed data (in the direction

of the alternative). This set includes combinations where the number of infected vaccine

macaques is ≤ 1 (combinations 1-3). Therefore the p-value is 3/6 = 0.5.

Since multiple treatment assignment combinations result in the same 2 × 2 table the

calculations for Fisher’s exact test only consider unique tables (e.g., treatment permutation

combinations 1-3 all result in the same 2 × 2 table). As such, the p-value is calculated by

summing the probabilities of each unique table that is as or more extreme than the observed

table (in the direction of the alternative). The table based on observed data is constructed

as:

Infected Non-infected

Vaccine
∑

i ZiX
obs
i

∑
i Zi(1−Xobs

i )
∑

i Zi

Control
∑

i(1− Zi)Xobs
i

∑
i(1− Zi)(1−Xobs

i )
∑

i(1− Zi)∑
iX

obs
i

∑
i(1−Xiobs) n

(4.4)

For example (4.3), this table is:

Infected Non-infected

Vaccine 1 1 2

Control 2 0 2

3 1 4

(4.5)

Fisher’s exact test assumes row and column margins are considered fixed. As such, only

one other table in addition to (4.5) is possible for example (4.3). This other table switches the

cells for vaccine and control macaques such that there is one non-infected vaccine macaque

and zero non-infected control macaques. The probability for each table under the null (4.1) is

obtained by realizing the first table cell,
∑

i ZiX
obs
i has a hypergeometric distribution under

the fixed margins assumption. For example (4.3), the probability for each table is 0.5 and
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therefore, the final p-value is 0.5.

In single challenge studies, the fixed margins assumption holds as the number of macaques

assigned each treatment is fixed by design and the number of infected and non-infected

macaques are observed, fixed features of the finite population under (4.1).

4.4.2 Repeated Low-Dose Challenge Studies

Expand the example such that Cmax = 2 and all infected macaques are infected on the

first challenge. Thus, (T obsi , Dobs
i ) = (2, 0) for i = 1 and (T obsi , Dobs

i ) = (1, 1) for i = 2, 3, 4.

Regoes et al. propose conducting a Fisher’s exact test of the following table:

Infected Non-infected

Vaccine
∑

i ZiD
obs
i

∑
i Zi(T

obs
i −Dobs

i )
∑

i ZiT
obs
i

Control
∑

i(1− Zi)Dobs
i

∑
i(1− Zi)(T obsi −Dobs

i )
∑

i(1− Zi)T obsi∑
iD

obs
i

∑
i(T

obs
i −Dobs

i )
∑

i T
obs
i

(4.6)

For the expanded example, this table is:

Infected Non-infected

Vaccine 1 2 3

Control 2 0 2

3 2 5

(4.7)

To apply Fisher’s exact test, the probabilities of the table given in (4.7) and 2 other tables

are calculated. The first table (a) has 1 non-infection event each in the vaccine and control

groups and the second table (b) has both non-infection events in the control group. However,

it is not possible to observe table (a) as both non-infection events occur within one macaque

and therefore the 2 ’non-infected’ events cannot be divided between the vaccine and control

rows of the table. In general, Fisher’s exact test in this setting uses the incorrect set of

potential tables such that non-zero probabilities of observation are assigned to tables that are
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not actually observable when permuting treatment assignments among macaques and zero

probabilities are assigned to tables that are observable.

More formally, the assumption of fixed margins required for Fisher’s exact test is not valid

in this setting because the number of challenges per treatment group (row margins) are not

fixed. This violation is the cause for the inflated type I error. For example, assume a trial

with n = 6 macaques where 5 are infected after the first challenge and the remaining macaque

remains uninfected. Regardless of treatment assignment, the probability of rejecting the null

(4.2) in favor or a two-sided alternative for all α > 0.012 is 1 as the Fisher exact test two-sided

p-value is always 0.012.

4.5 Analytic Approaches

Both parametric and nonparametric survival analysis methods are available for analyzing

right-censored discrete time to event data. Methods frequently employed include the non-

parametric log-rank test statistic as well as parametric-based approaches that typically use

large-sample likelihood methods based on the asymptotic distribution of one of three test

statistics: the likelihood ratio test (LRT), score and Wald’s test statistics. These statistics

and associated large sample p-values can be obtained via a variety of statistical packages.

Randomization-based p-values for these test statistics can be obtained using standard pack-

ages but options are limited. This section details these tests as implemented in discrete time

settings including asymptotic distributions used for large-sample p-vales and methods for

obtaining randomization-based p-values.

4.5.1 Nonparametric Log-Rank Tests

The log-rank test is nonparametric in the sense that no assumptions are required about the

distribution of the survival time random variable. Since time is discrete, macaques censored

at challenge t are accounted for by excluding these macaques from the number of macaques

at risk for all subsequent time-points.
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The conditional probability of infection at challenge t for randomized treatment group z, pt

is estimated as Dt(z)/Nt(z) where Nt(z) =
∑

i:Zi=z
I(T obsi ≥ t) is the number of macaques at

risk and Dt(z) =
∑

i:Zi=z
I(T obsi = t,Dobs

i = 1) is the number infected. The joint probability

function of infection at challenge t in the vaccine and control group is expressed as the product

of independent binomial terms, one for each treatment group where pt is common to both

treatment groups under the null (4.2). As such the conditional distribution of Dt(1) given the

total number of infections observed for challenge t, Dt = Dt(0) +Dt(1) has a hypergeometric

distribution. The log-rank test statistic is then defined as LR =
∑Cmax

t=1 {Dt(1) − E(Dt(1))}

where E(Dt(1)) = Nt(1)Dt/Nt, Nt = Nt(0) +Nt(1), and E(Dt(1)) is the expected number of

infections in the vaccine group under the null based on the hypergeometric distribution.

P-values are obtained by dividing LR by its variance assuming a hypergeometric distribu-

tion LRCMH = LR/
∑Cmax

t=1 V (Dt(1)) where V (Dt(1)) = Nt(1)Nt(0)/{Dt(Nt −Dt)N
2
t (Nt −

1)}. The LRCMH is equivalent to the test statistic obtained stratified Cochran-Mantel-

Haenszel test where strata are defined by time. As such, LRCMH would have an asymptoti-

cally chi-square distribution if the Cmax tables were independent (Mantel 1966). While these

tables are clearly not independent, in the discrete time setting LRCMH is also equivalent

to the partial likelihood-based score test statistic (detailed in Section 4.5.2) and therefore

asymptotic p-values for the LRCMH are obtained using a chi-square distribution (Kalbfleisch

and Prentice 1980).

4.5.2 Parametric Tests

For parametric approaches, the probability of the ith macaque being infected at challenge

t is defined as fit(z) = Pr(ti(z) = t). The corresponding survival function and hazard rate

are defined as Sit(z) = Pr(ti(z) ≥ t) =
∑t

j=1 fit(z) and pit(z) = Pr(ti(z) = t|ti(z) ≥ t) =

fit(z)/Sit(z). The survival function can be expressed as Sit(z) = (1−pi1(z))(1−pi2(z)) . . . (1−

pi(t−1)(z)).

A model for the conditional odds of infection and its dependence on time and treatment

often assumed for discrete time is the semi-parametric Cox odds model which is also referred
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to as a relative risk model

pit(z)

1− pit(z)
=

p0t

1− p0t
exp (ziβ) (4.8)

which can be also written as logit(pit(z)) = αt + ziβ where αt = logit(p0t) is a function of the

baseline hazard at each time-point and β is the shift in the hazard caused by treatment (Cox

1972). Typically interest is primarily focused on the treatment effect β and not the baseline

log odds αt, in which case αs are treated as unknown nuisance parameters and the basis of

inference is the partial likelihood function:

Lpartial =

Cmax∏
t=1

exp (β)
∑

i∈Dt
Zi∑

q∈Zt
exp(β)

∑
l∈q Zi

(4.9)

where Dt is the set of Dt macaques infected at challenge t and Zt is the set of all subsets of

macaques of size Dt chosen from the set of Nt macaques at risk at t without replacement.

Inference about β then proceeds by applying the usual large sample maximum likelihood

methods based on (4.9).

Alternatively model (4.8) can be fit using a logistic regression model with standard para-

metric maximum likelihood approaches providing estimates of both β and the αs (Brown

1975, Allison 1982, Singer and Willett 1993). These parameter estimates are used to ob-

tained estimates of odds ratios (as opposed to relative risks). Estimates of β obtained by

maximizing the full likelihood compared to maximizing the partial likelihood (4.9) will tend

to be similar but not identical. Benefits of the binomial likelihood approach include that

restrictions can be placed on the αs and inclusion of additional covariates (both fixed and

time-varying) in the binomial likelihood approach is less computationally demanding than in

the partial likelihood approach (Allison 1982, Singer and Willett 1993, Allison 2010).

Specifically, under the assumption that macaques are independent the likelihood function

can be written as

Lfull =

n∏
i=1

T obs
i∏
t=1

pit(z)
Xobs

it (1− pit(z))1−Xobs
it (4.10)

where Xobs
it for t = 1, ..., T obsi are the observed outcomes for each macaque (Xobs

it = 0 if
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the macaque is not infected and 1 if infected at the tth challenge), Pr(ti(z) = T obsi ) =

pit(z)
∏T obs

i −1
t=1 (1 − pit(z)) is the probability of an uncensored macaque becoming infected at

T obsi and Pr(ti(z) > T obsi ) =
∏T obs

i
t=1 (1 − pit(z)) is the probability of a censored macaque

remaining uninfected at the last challenge (Singer and Willett 1993). Since this likelihood

is equivalent to the likelihood of Nt = T obs1 + ... + T obsn independent Bernoulli trials with

probability parameters pit(z), maximizing (4.10) using the logistic parameterization in (4.8)

provides maximum likelihood estimates for the αs, β and pij(z).

Assuming the probability of infection is constant within treatment groups and across

challenges (i.e., pit(z) = pz for all t for all macaques receiving z), the likelihood is

Lfull =
n∏
i=1

{pz(1− pz)X
obs
i −1}I(Dobs

i =1)[(1− pz)X
obs
i ]I(D

obs
i =0) (4.11)

This likelihood represents a vaccine that has a leaky effect in that infection susceptibility is

changed by a constant factor at each challenge for vaccinated macaques.

The partial (4.9) or full likelihood (4.11) can be used to test for a vaccine effect by

computing the LRT, score, or Wald statistics given, respectively, by:

−2 log{L(0)/L(β̂)} (4.12)

{
∂

∂β
logL(0)

}2

/

{
∂2

∂β2
logL(0)

}
(4.13)

β̂2/

{
∂2

∂β2
logL(β̂)

}
(4.14)

where L is either the partial or full likelihood. These test statistics are all asymptotically chi-

square distributed with one degree of freedom for a test of vaccine versus control; however, the

LRT generally most closely follows the asymptotic distribution in small to moderate sample

size settings (Kalbfleisch and Prentice 2002).
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4.5.3 Implementation

Large sample p-values for the discrete time setting LRT, score/log-rank and Wald statistics

can be obtained via a variety of software packages. For example, p-values for the LRCMH

log-rank test statistic can be obtained using the LIFETEST procedure from SAS R© software

and the SURVDIFF function from the R SURVIVAL package (SAS Institute Inc. 2008; R

Development Core Team 2010). Since this statistic is equivalent to the partial likelihood-

based score test, it can also be obtained using the FREQ and PHREG procedures in SAS

or corresponding CMH EST and COXPH functions in R. The LRT and Wald statistics from

the SAS PHREG and LOGISTIC procedures will differ slightly as PHREG uses the partial

likelihood and LOGISTIC uses the full likelihood. In R, the COXPH function obtains the

LRT and Wald statistics based on the partial likelihood while the GLM function obtains these

statistics using the full likelihood.

Exact randomization-based p-values using these statistics can be obtained by calculating

the probability of obtaining a value for the test statistic as or more extreme than the observed

test statistic under the sharp null (4.2). This probability is simply the proportion of test

statistic values arising from permuting treatment assignment that are greater than or equal to

the observed test statistic. Built-in procedures for calculating randomization-based p-values

based on these test statistics are limited.

StatXact R© includes a built in procedure for obtaining randomization-based p-values for

the log-rank test statistic (Cytel Software Corporation 2007). While the log-rank test statistic

employed in StatXact is a valid randomization-based test, the test statistic is not equivalent

to LR or LRCMH in the discrete time setting (Callaert 2003). Specifically, the exact ‘log-rank

test’ in StatXact is based on Savage scores and therefore is only equivalent to the LR when

there are no ties or censoring. An exact p-value based on LR can be obtained in StatXact

by calculating log-rank scores for each individual and then conducting a general permutation

test (Callaert 2003). Both approaches are valid and the difference in the resulting p-values are

typically minimal. Because StatXact is a specialized licensed software package for performing

exact inference it is less frequently available in comparison to SAS or R. Accordingly alternate
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approaches that are easier to employ are preferred. The SURVTEST function from the R

COIN package also produces randomization-based p-values for a log-rank test statistic that

converges to a z-test statistic (as opposed to the chi-square distribution). The square of

the resulting statistic will be close to LRCMH but not equivalent. While the numerator of

the squared SURVTEST log-rank test statistic is LR, the denominator is a variance estimate

conditional on integer-valued log-rank scores instead of the variance estimate used in LRCMH

(Hothorn and Lausen 2003).

Alternatively, exact conditional logistic regression models using the SAS LOGISTIC pro-

cedure with an EXACT option provide a randomization-based p-value based on the score

statistic. Exact conditional logistic regression comprises generating the permutation or ex-

act distribution for the parameter of interest based on the likelihood conditional on sufficient

statistics for all other parameters in the model which are considered nuisance parameters (Cox

1970). In the simplest case where time is the only covariate in the model besides treatment,

conditioning on sufficient statistics for time is equivalent to conditioning on the margins of the

challenge life-tables. Thus the resulting full likelihood score statistic is equivalent to LRCMH

and the partial likelihood score statistic.The procedure uses multivariate shift algorithm for

processing through the treatment permutations and producing the exact p-value (Hirji et al.

1987). Besides being easily employed in SAS, exact conditional logistic regression also allows

for covariate adjustment and treatment effect estimation, neither of which apply to exact

log-rank tests in StatXact or R.

While no built-in procedures provide randomization-based p-values based on Wald or LRT

statistics, such p-values can be obtained via user-developed code that calls SAS PHREG or

LOGISTIC procedures or R COXPH or GLM functions for all possible treatment assign-

ment permutations. Advanced programing knowledge is required and computations quickly

become infeasible as sample size increases as there are
(
n
m

)
possible treatment assignment

combinations. In cases where obtaining all permutations is not possible, the exact p-value

can approximated using a Monte Carlo sampling approach.

Details on the data construct and syntax required for each of these approaches are detailed
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in Section 4.9.

4.5.4 Modifying the Likelihood

The likelihood used for the parametric tests previously described assumes a leaky effects

model where all macaques within a treatment group have the same probability of being

infected at each challenge. This likelihood can be modified to account for heterogeneity in

the per-exposure probability of infection or for immunity within a subset of the population

(Longini and Halloran 1996, Regoes et al 2005, Hudgens and Gilbert 2009, Hudgens et al

2009). The likelihood modified for heterogeneity is the same as (4.11) except that pz is

replaced by an individual transmission probability for each macaque piz (often assumed to

follow a beta distribution). The modified likelihood for immunity is:

Lfull =
n∏
i=1

[(1− θ)(1− pz)X
obs
i −1pz]

I[Dobs
i =1][θ + (1− θ)(1− pz)X

obs
i ]I[D

obs
i =0] (4.15)

where θ is the probability that a macaque is immune (i.e., not susceptible to infection).

Likelihoods can also be constructed assuming a leaky effect with both heterogeneity and

immunity, an all-or-none vaccine effect such that a macaque susceptible to disease when

receiving control is no longer susceptible (i.e., immune) when receiving vaccine as well as a

mixture vaccine effect where the vaccine provides both all-or-none and leaky effects. There

is currently no default SAS or R procedure that assume these likelihoods; however, user-

developed code that manually defines and optimizes the likelihood function can be constructed

to obtain the corresponding LRT statistics and large sample p-values.

Since the results obtained from optimization packages available in both R and SAS may

be sensitive to the observed data as well as specified optimization methods, parameter bound-

aries, and starting values, analyses employing this approach should explore various optimiza-

tion options to assess the stability of the results. Conceptually this code can also be augmented

in order to obtain randomization-based p-values by obtaining the LRT statistic based on the
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modified likelihood for all possible treatment assignment permutations. However, optimiza-

tion options that consistently provide results for all treatment permutations are not immedi-

ately identifiable, and sensitivity of the study results to the specified options cannot easily be

assessed for all treatment permutations. Accordingly, randomization-based p-values assum-

ing these modified likelihoods are not further considered; however, the randomization-based

p-values assuming the original partial or full likelihoods, (4.9) or (4.11) are still appropriate

and valid even when data arise from the modified likelihood in that the type I error is still

guaranteed to be less than α.

4.5.5 Power

The LRT, score and Wald test statistics all converge asymptotically to chi-square distri-

butions with one degree of freedom but do not have equivalent power for all sample sizes

and treatment effects (Sen 1993). As such, identifying the test with the greatest power is of

interest. In the large sample setting, the Neyman-Pearson lemma states that T = L0/L1 ≥ α

where L0 is the likelihood under the null and L1 is the likelihood under the alternative is the

most powerful test statistic for testing H0 against a simple alternative assuming the likelihood

employed in the test is the correct underlying likelihood (specifically reject H0 if LRT ≥ kα

where P{t ≥ kα|H0} = PL0{t ≥ kα} = α). A uniformly most powerful (UMP) test statistic

is one that is most powerful against an entire set of possible alternatives.

As discussed the survival model for discrete time under non-informative censoring corre-

sponds to the binomial likelihood. Unfortunately, there is no unconditional UMP test for the

logistic distribution (Lehmann and Romano 2005). However, if the assumptions about the

likelihood are correct the LRT will have best average power when the number of observations

is large and therefore the LRT is the preferred test statistic (Wald 1943). Additionally, the

Wald test statistic is not recommended in the binomial likelihood setting. Specifically there

is nonmonotonicity in the power function for this test such that as the distance increases

between the parameter estimate of treatment effect and its null value (i.e., settings where

there appears to be large evidence of a treatment effect), the test statistic counter intuitively
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decreases to zero in certain settings (Hauck and Donner 1977). This characteristic is due to

the test statistic’s reliance on the estimated variance of the sufficient statistic under the null

hypothesis. Specifically, for data resulting from a setting where there is a large treatment

effect the variance estimate is large and subsequently the estimated test statistic is small thus

resulting in reduced power for the Wald statistic in comparison to other test statistics in this

setting (Ullah, Wan and Chaturvedi 2002). With respect to randomization-based tests (per-

mutation tests based on the LRT, score or Wald statistics), the LRT-based permutation test

will asymptotically remain the most powerful as the power of the LRT-based permutation

test converges to the power of the parametric LRT as sample sizes goes to infinity (Hoeffding

1952).

4.6 Simulations

Simulations were conducted to compare the operating characteristics of the exact tests

as well as to assess type I error rates for the large-sample p-values using varying values of N

and Cmax. RLC trials were simulated with macaques randomized 1:1 to either vaccine or a

placebo control challenged repeatedly under three different sets of assumptions about rates

of infection in the vaccine and placebo arms. In the first setting (Scenario 1), a leaky effects

scenario was simulated where the probability of infection at each challenge for all macaques

when receiving placebo was p0 while the probability of infection when receiving vaccine was

p1 = φp0. Simulations were completed by performing Bernoulli trials for each challenge with a

p0 or p1 event probability depending on treatment assignment. The second setting (Scenario

2) simulates a leaky effect with heterogeneity in the per-exposure probability of infection

where mean probability of infection at each challenge for all macaques was p0 and p1 = φp0

when receiving placebo and vaccine respectively. Individual macaque probabilities of infection

used in the Bernoulli trials were obtained using a beta distribution as detailed in Regoes et al.

(2005) where µ = p0 for the placebo group, µ = p1 for the vaccine group and the coefficient

of variation, CV = µ/σ = 0.5 for both groups. The last setting (Scenario 3) simulates the
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leaky effects model from Setting 1 with a proportion of the population immune to infection

(θ = 0.2).

Figure 4.1 displays the empirical type I error and power of the randomization-based tests

for various values of φ = .1, .2, . . . , 1 (φ = 1 under the null) based on 2,000 simulations. In

all settings, exact p-values based on the LRT (full) assume the leaky effects model with no

heterogeneity or immunity. P-values for the exact Wald test and LRT were approximated

using Monte Carlo methods with 4,000 samples. All exact tests have appropriate type I error

rates even when the underlying likelihood for the simulated data does not correspond to the

likelihood used as a basis for the test. The LRT (full) is the most powerful test in all scenarios;

however, power is lower when the leaky effects model is not the true underlying likelihood of

the simulated data. The Wald tests (both full and partial) consistently have the lowest power.

The power for the log-rank/score test which is computationally easiest to obtain compared

to the LRT is reduced by up to 0.05 in the first simulation setting with no heterogeneity or

immunity and by up to 0.11 in the other settings. Larger values of Cmax do not substantially

reduce the difference in power between these tests; however, for larger N (i.e., N ≥ 20 in the

simulated settings) the power curves are approximately equal for the exact tests (results not

shown).

Figure 2 displays the type I error of the large sample tests for various values of Cmax and

N based on 10,000 simulations. The type I error varies by test but tends to be inflated for

most values of Cmax and N . Note in this simulation scenario the inflation amount appears

to increase with Cmax; however, the inflation amount tends to be < .02 for N greater than

or equal to 30.

4.7 Application

Hessell et al. (2009) presented analyses of a repeated low-dose challenge study with 4

macaques in the control group and 5 macaques in each of two vaccine groups (b12 and LALA).

All groups were initially challenged with a very low-dose challenge (3TCID). After only one
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macaque was infected after 11 challenges (infected at the 6th challenge), the challenge dose

was slightly escalated (10TCID). In the published results of the study, the macaque that was

infected while being challenged with 3TCID was treated as though they were infected at the

first 10TCID challenge; otherwise the 3TCID challenges were ignored in the analyses. Of the

4 control macaques, 3 macaques were infected after 2 10TCID challenges and 1 macaque was

infected after 4 10TCID challenges. Of the 5 b12 macaques, 4 macaques were infected after

1, 6, 23, and 38 challenges and 1 macaque remained uninfected after 40 challenges.

Hessell et al. declared a significant difference between these groups based on a Fisher’s

exact test (p-value=0.0016). As discussed in Section 4.4.2, the calculation for Fisher’s ex-

act test considers a set of 2 × 2 tables inconsistent with permuting treatment assignment

and therefore may reject the null hypothesis too often. Based on the score test from exact

conditional logistic regression (equivalent to an exact log-rank test), the null (4.2) is not re-

jected (p-value=0.1095) although there is suggestion of a trend. Exact p-values based on

the LRT(full) and Wald test statistics (assuming no heterogeneity or immunity) are all also

> 0.05.

4.8 Discussion

In RLC studies with small sample sizes, randomization-based inference should be em-

ployed in order to protect type I error. While randomization-based tests constructed us-

ing the LRT statistic tend to be the most powerful if the assumed underlying likelihood

is correct, such tests are computationally difficult to employ as they require user-defined

programming and must rely on Monte-Carlo sampling for even moderate sample sizes. In

contrast, randomization-based tests constructed using the log-rank or score statistic which

are equivalent for the discrete time to event setting, are easy to obtain in either R or SAS (R

Development Core Team 2008, SAS Institute Inc. 2008). Specifically, p-values based on the

exact log-rank test can be obtained using the SURVTEST function from the COIN package in

R while p-values based on the exact score test can be obtained via exact conditional logistic
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regression using the LOGISTIC procedure with an EXACT option in SAS. The power of

these tests is approximately comparable to the power of the randomization-based test using

the LRT when there is no heterogeneity or immune fraction. An added benefit to the exact

conditional logistic regression approach in comparison to exact log-rank test approaches is

that covariates of potential interest can easily be incorporated into the model. Additionally,

estimates of treatment effect can also be obtained from this approach.

4.9 Analysis Code

A. SAS Code

The code below if for version 9.1.3 or higher. Section 1 creates two datasets for the same

RLC study (STRUCTURE1 has one observation per subject while STRUCTURE2 has one

observation per subject/challenge). Section 2 of A provides code for calculating large sample

p-values based on the log-rank test (PROC LIFETEST); time-stratified CMH test which is

equivalent to the log-rank test (PROC FREQ); the Wald, score and LRT using the partial

likelihood with no heterogeneity or immunity (PROC PHREG); as well as the the Wald

and LRT using the full likelihood with no heterogeneity or immunity (PROC LOGISTIC).

The LRT using the full likelihood is not included in the SAS output. Instead it is calcu-

lated as -2[LogL(full)-LogL(reduced)] where the reduced model is obtained via an additional

PROC LOGISTIC call that only includes time. Section 3 of A provides code for calculating

randomization-based p-values using built-in SAS procedures including the exact p-value based

on the log-rank test statistic using Savage scores (PROC TWO SAMPLE, requires STATX-

ACT PROCs SAS license) and the exact p-value based on the score test statistic obtained via

exact conditional logistic regression (PROC LOGISTIC with EXACT statement). Section

4 of A provides a MACRO (with inputs of the number of MC samples and number of indi-

viduals randomized to active treatment) for calculating randomization-based p-values using

user-defined code and Monte-Carlo approximation. The p-values calculated are based on the

Wald, Score and LRT statistics using the partial likelihood while assuming no heterogeneity
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or immunity. A similar process can be used for obtaining the randomization-based p-values

for the Wald and LRT statistics using the full likelihood while assuming no heterogeneity or

immunity.

1. Data Structure

DATA STRUCTURE1;

INPUT ID TRT TIME INFECTION @@;

CARDS;

1 1 3 1 2 1 4 0 3 1 4 1 4 1 5 1 5 1 5 1

6 0 1 1 7 0 2 0 8 0 3 1 9 0 3 1 10 0 5 1;

DATA STRUCTURE2;

INPUT ID TRT TIME CHALLENGE_INFECTION @@;

CARDS;

1 1 1 0 1 1 2 0 1 1 3 1

2 1 1 0 2 1 2 0 2 1 3 0 2 1 4 0

3 1 1 0 3 1 2 0 3 1 3 0 3 1 4 1

4 1 1 0 4 1 2 0 4 1 3 0 4 1 4 0 4 1 5 1

5 1 1 0 5 1 2 0 5 1 3 0 5 1 4 0 5 1 5 1

6 0 1 1

7 0 1 0 7 0 2 0

8 0 1 0 8 0 2 0 8 0 3 1

9 0 1 0 9 0 2 0 9 0 3 1

10 0 1 0 10 0 2 0 10 0 3 0 10 0 4 0 10 0 5 1;

2. Large Sample P-values

PROC LIFETEST data=STRUCTURE1;

time TIME*INFECTION(0); strata TRT;
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PROC FREQ data=STRUCTURE2;

tables TIME*TRT*CHALLENGE_INFECTION /cmh;

PROC PHREG data=STRUCTURE1;

model TIME*INFECTION(0)=TRT/ ties=discrete;

PROC LOGISTIC data=STRUCTURE2 descending;

class TRT TIME /param=ref; model CHALLENGE_INFECTION=TRT TIME;

3. Randomization-Based P-values (built-in procedures)

PROC TWOSAMPL data=STRUCTURE1;

lo/ex; po TRT; re TIME; ce INFECTION;

PROC LOGISTIC data=STRUCTURE2 descending exactonly;

class TRT TIME /param=ref; model CHALLENGE_INFECTION=TRT TIME;

exact TRT /estimate=both;

4. Randomization-Based P-values (manual; monte-carlo approximation)

%MACRO RAND(SAMPLES=,NTRT=);

*create dataset with set of observations for each permutation

DATA STRUCTURE1_RANDT1 (drop=TRT); set STRUCTURE1;

do PERM=1 to &SAMPLES; RANDORDER=rand("Uniform"); output; end;

PROC SORT data=STRUCTURE1_RANDT1; by PERM RANDORDER;

DATA STRUCTURE1_RAND; set STRUCTURE1_RANDT1;

retain PERMID; by PERM;

if first.PERM then PERMID=1; else PERMID=PERMID+1;

if PERMID<=&ntrt then TRT=1; else TRT=0; run;

*calculate test statistics for all permutations;

PROC PHREG data=STRUCTURE1_RAND;
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ODS OUTPUT GLOBALTESTS=PHTESTSPERM;

by PERM; model TIME*INFECTION(0)=TRT/ ties=discrete;

*calculate test statistics for observed data;

PROC PHREG data=STRUCTURE1;

ODS OUTPUT GLOBALTESTS=PHTESTSMAIN (rename=(CHISQ=MAIN));

model TIME*INFECTION(0)=TRT/ ties=discrete; run;

*shell dataset to ensure 1 observation for each permutation;

DATA SHELL;

do PERM=1 to &SAMPLES;

test="Likelihood Ratio"; output;

test="Score"; output;

test="Wald"; output;

end;

PROC SORT data=PHTESTSPERM; by TEST PERM;

PROC SORT data=SHELL; by TEST PERM;

DATA PHTESTSPERM; merge PHTESTSPERM SHELL; by TEST PERM;

PROC SORT data=PHTESTSMAIN; by TEST;

*calculate the probability of treatment assignment as or more

extreme than that observed based on each test statistic;

DATA PHTESTS; merge PHTESTSPERM PHTESTSMAIN; by TEST;

if CHISQ>=MAIN then PVALUE=1; else PVALUE=0;

PROC MEANS data=PHTESTS; by TEST; var PVALUE; run;

%MEND;

B. R Code

The code below is for version 2.12.0. Section 1 creates two vector sets for the same

RLC study (TRT, TIME, INFECTION have one observation per subject while TRTCHALL,
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CHALLENGE and INFECHALL have one observation per subject/challenge). Section 2 of B

provides code for calculating large sample p-values based on the log-rank test (SURV); time-

stratified CMH test (CMH TEST); the Wald, score and LRT using the partial likelihood

with no heterogeneity or immunity (COXPH); as well as the the Wald and LRT using the

full likelihood with no heterogeneity or immunity (GLM). As with the SAS code, the LRT

using the full likelihood is not included in the output and must be calculated by constructing

a reduced model. Section 3 of B provides code for calculating randomization-based p-values

using built-in procedures including the exact p-value based on the log-rank test statistic using

conditional variance (SURV with exact statement). Section 4 of B provides code (with input

of the number of MC samples) for calculating randomization-based p-values using user-defined

code and Monte-Carlo approximation. The p-values calculated are based on the Wald, Score

and LRT statistics using the partial likelihood while assuming no heterogeneity or immunity.

A similar process can be used for obtaining the randomization-based p-values for the Wald

and LRT statistics using the full likelihood while assuming no heterogeneity or immunity.

1. Data Structure

TRT<-c(rep(1,5),rep(0,5))

TIME<-c(3,4,4,5,5, 1,2,3,3,5)

INFECTION<-c(1,0,1,1,1,1,0,1,1,1)

TRTCHALL<-c(rep(1,21),rep(0,14))

CHALLENGE<-c(1,2,3, 1,2,3,4, 1,2,3,4, 1,2,3,4,5, 1,2,3,4,5,

1, 1,2, 1,2,3, 1,2,3, 1,2,3,4,5)

INFECHALL<-c(0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0,1, 0,0,0,0,1,

1, 0,0, 0,0,1, 0,0,1, 0,0,0,0,1)

2. Large Sample P-values

survdiff(Surv(TIME,INFECTION)~TRT)
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CMHTEST<-array(c(0,5,1,4, 0,5,0,4, 1,4,2,1, 1,3,0,1, 2,0,1,0),

dim=c(2,2,5), dimnames=list(Treatment=c("Vacc","Cont"),

Response=c("Infected","Not"),Time=c("1","2","3","4","5")))

CMHTABLE <- as.table(CMHTEST)

cmh_test(CMHTABLE)

PHTEST<-coxph(formula=Surv(TIME, INFECTION)~TRT, method="exact")

summary(PHTEST)

LOGFULL<-glm(INFECHALL~TRTCHALL+strata(CHALLENGE),family=binomial)

summary(LOGFULL)

3. Randomization-Based P-values (built-in procedures)

TRTC <-c(rep(’A’,5),rep(’B’,5))

SURVDATA<-data.frame(TIME,TRTC,INFECTION)

surv_test(Surv(TIME, INFECTION)~TRTC,data=SURVDATA,

distribution="exact")

4. Randomization-Based P-values (manually computed)

*calculate test statistic for observed data

PHTEST<-coxph(formula=Surv(TIME,INFECTION)~TRT,method="exact")

MAINLRT<--2*(PHTEST$loglik[1]-PHTEST$loglik[2])

MAINWALD<-PHTEST$wald.test

MAINSCORE<-PHTEST$score

MCrejects<-matrix(0,SAMPLES,3)

for (KK in 1:SAMPLES){

*permute treatment assignment

TRT<-sample(TRT)

*calculate test statistics for permutation
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PHTEST<-coxph(formula=Surv(TIME,INFECTION)~TRT,method="exact")

PERMLRT<--2*(PHTEST$loglik[1]-PHTEST$loglik[2])

PERMWALD<-PHTEST$wald.test

PERMSCORE<-PHTEST$score

if (PERMLRT>MAINLRT) MCrejects[KK,1]<-1

if (PERMWALD>MAINWALD) MCrejects[KK,2]<-1

if (PERMSCORE>MAINSCORE) MCrejects[KK,3]<-1

}

LRTPVALUE<-mean(MCrejects[,1])

WALDPVALUE<-mean(MCrejects[,2])

SCOREPVALUE<-mean(MCrejects[,3])
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Figure 4.1: Empirical type 1 error and power for α = 0.05 significance level, p0 = 0.5
probability of infection, N = 10 macaques, and Cmax = 12 maximum challenges
per macaque, where Scenario 1 includes no heterogeneity or immunity, Scenario 2 in-
cludes heterogeneity, and Scenario 3 includes immunity (LRT=solid line [full=black,
partial=gray], Score/Log-rank=dot/dashed line, Wald=dashed line [full=black, par-
tial=gray])
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Figure 4.2: Empirical type 1 error for α = 0.05 significance level, p0 = p1 = 0.5 proba-
bility of infection under Scenario 1 (no heterogeneity or immunity) for various values of
N and Cmax (LRT=solid line [full=black, partial=gray], Score/Log-rank=dot/dashed
line, Wald=dashed line [full=black, partial=gray])
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Chapter 5

Conclusion

Approximately 2.6 million new cases of human immunodeficiency virus (HIV) infection

occur each year (Dieffenbach and Fauci 2011). Accordingly a primary goal of future research

is to identify interventions that will successfully prevent future infections. In research for pre-

venting infectious diseases including HIV, randomized studies are often employed as a means

for assessing the effectiveness of an intervention in preventing infection as well as in assess-

ing the effect of the intervention on secondary outcomes such as a post-infection outcomes

of death or disease severity. Unfortunately randomized studies are sometimes complicated

by small sample sizes or the presence of intermediate post-randomization events. In such

settings, researchers may employ inappropriate analytic methods for the data available and

therefore the results reported may be invalid. Examples of invalid analytic approaches used in

infectious disease prevention research include making treatment comparisons conditional on

post-randomization events using standard analytic methods as well as using analytic meth-

ods for repeated low-dose challenge studies requiring assumptions inconsistent with the study

data.

With respect to presence of intermediate post-randomization events, which is the focus

of Chapters 2 and 3, the biggest concern with researchers employing standard analytic ap-

proaches is that findings of a significant treatment effect on an outcome of interest may be

unfounded. Specifically, the observed data may not support such a finding when the po-

tential selection bias is taken into account. The publication of significant findings based on



invalid approaches incorrectly informs decisions regarding continued research or future use

of potential preventive therapies. Principal stratification approaches have been developed

and proposed for addressing potential selection bias due to intermediate post-randomization

events. Unfortunately, approaches that are valid in small sample settings were previously

not available and in general, use of principal stratification approaches is extremely limited in

published infectious disease prevention research.

Accordingly, in this dissertation, we first addressed these issues by developing methods for

exact randomization-based causal inference within principal strata in the presence of selection

bias due to the presence of post-randomization events. This development work also included

augmenting the proposed test via adjusting for baseline covariates to increase power as well as

the development of exact CIs for the principal stratum direct effect. Secondly, we presented

a broader discussion of the use of principal stratification analytic approaches for handling

selection bias in randomized studies. This discussion is targeted at subject matter experts and

includes an overview of the problem with using standard analytic approaches in the presence

of potential selection bias, describes how principal stratification approaches are generally

employed and also compares the results obtained from principal stratification approaches to

published results based on standard analytic approaches that ignore the potential selection

bias.

The major goal of the research associated with these chapters is to better inform analyses

conducted on outcomes subject to selection bias due to intermediate post-randomization

events. The introduction of the principal stratum exact test (PSET) provides researchers

with a valid analytic approach using the principal stratification framework for small sample

settings while the general discussion of principal stratification introduces clinical researchers to

a potential analytic option for addressing this type of selection bias. One potential limitation

of the PSET is that the test may be overly conservative as the type I error rate is exceptionally

low. Areas for future research regarding randomization-based inference within principal strata

include pursuing other avenues for deriving an exact test that results in a more powerful test,

relaxing the assumptions of monotonicity or independent treatment assignment for the PSET,
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and relaxing the additivity assumption with respect to constructing a CI for the principal

stratum direct effect.

Repeated low-dose challenge (RLC) studies, the focus of Chapter 4, were developed such

that preclinical randomized studies of potential vaccines more accurately mirrored ‘real-life’

human transmission of infection and therefore, vaccines identified for future research would be

more likely to be effective when applied to the human population. However, the application

of invalid analytic approaches such as methods that rely on assumptions about asymptotic

distributions of test statistic that may be inappropriate in the small sample setting or as-

sumptions that are not met by the data collected in RLC studies may lead to inaccurate

study results and therefore remove all benefits of conducting a RLC study. Again, signifi-

cant findings based on invalid approaches in this setting will also incorrectly inform decisions

regarding continued research of potential preventive therapies.

Therefore, we presented a discussion of appropriate analytic approaches for RLC pre-

clinical vaccine studies that included a comparison of the operating characteristics of these

approaches as well as detail on how to employ these approaches using standard statistical

software. A possible avenue of future research is determining a computationally feasible route

for constructing an exact, randomization-based test of vaccine effect for the more complex

models such as a leaky effects model assuming heterogeneity or an all-or-none or mixture

vaccine effects model. Additionally, the current research presented in Chapter 4 is primarily

intended for an audience with a statistical background. To increase general knowledge of ap-

propriate analytic approaches for RLC studies, it would be helpful to present an abbreviated

version of this paper to a journal geared towards clinical investigators.
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