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ABSTRACT 

Patrick J. Reynolds: Genetic and Molecular Characterization of Roc-Cullin Interactions 
in Drosophila melanogaster E3 Ubiquitin Ligases 

(Under the direction of Robert J. Duronio) 
 

Cullin-dependent E3 ubiquitin ligases (CDL) are key regulators of protein 

destruction that participate in a wide range of cell biological processes. The Roc subunit 

of CDL contains an evolutionarily conserved RING domain that recruits ubiquitin 

charged E2 and is essential for ubiquitylation. Drosophila melanogaster contains three 

highly related Roc proteins: Roc1a, Roc1b, and Roc2. We previously reported that 

mutation of Roc1a and Roc1b causes lethality and male sterility, respectively. Here we 

show that these disparate phenotypes are partially due to the ability of the Rocs to bind 

specific Cullins. Roc1a binds Cul1-4, Roc1b binds Cul3, and Roc2 binds Cul5. Through 

domain swapping experiments, we demonstrate that specific Cullin binding is strongly 

influenced by the Roc NH2-terminal domain, which forms an inter-molecular β-sheet 

with the Cullin. Substitution of the Roc1a RING domain with that of Roc1b results in a 

protein with similar Cullin binding properties to Roc1a but that cannot complement 

Roc1a mutant lethality, indicating that the identity of the RING domain is an important 

determinant of CDL function as well. We also identified null mutations of Roc2 and Cul5 

and show that they cause no overt developmental phenotype, consistent with our 

observation that Roc2 and Cul5 proteins are exclusive binding partners.
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CHAPTER I 

Introduction 

 

Protein Degradation Pathways 

 Many aspects of cell and developmental biology require precise timing and 

regulation of protein destruction. There are two major protein destruction systems in a 

cell: the ubiquitin-proteasome system (UPS) and the macroautophagy-lysosome system 

(MALS) [1-3]. Many components of these two pathways overlap, but their mechanisms 

are distinct. The UPS targets soluble, ubiquitin-tagged proteins for destruction or 

cleavage by the 26S proteasome. Macroautophagy degrades proteins in bulk (soluble or 

insoluble) during nutrient starvation [4,5]. Both pathways can be used to degrade 

misfolded proteins, but it is thought that most specific protein degradation occurs via the 

UPS. 

 

E1-E2-E3 Enzymatic Cascade  

Protein ubiquitylation requires the action of three families of proteins: E1 

Ubiquitin Activators (Uba), E2 Ubiquitin Conjugators (Ubc), and E3 Ubiquitin Ligases 

(Ubl) [1,3]. Ubiquitin monomers are activated through conjugation via a thiolester 

linkage to an internal cysteine in E1, which then transfers the ubiquitin to a cysteine 

residue of an E2 protein. The E2 interacts with an E3 to mediate covalent attachment of 

ubiquitin onto substrate proteins. Repeated rounds of E2/E3-mediated ubiquitin transfer 
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result in polyubiquitylation, allowing substrate proteins to be recognized and destroyed 

by the proteasome (Figure 1.1). For proper proteasomal degradation of some substrates in 

vivo, another factor termed E4 is required [6]. E4 binds the ubiquitin conjugates and 

helps form multi-ubiquitin chains. 

 

Figure 1.1: Ubiquitin Enzymatic Cascade. Polyubiquitylation of a substrate is achieved through several 

sequential steps. Ub is first activated by binding to an internal cysteine of an E1 (Uba). It is then transferred 

to an E2 (Ubc). The E2 then interacts with an E3 (Ubl) and mediates transfer of the Ub onto the substrate. 

Several rounds of this create a poly-ubiquitin chain, which then targets the substrate for degradation by the 

26S proteasome. 

 

Vertebrates and sea urchins have two distinct E1 enzymes, and most other 

organisms are thought to only have a single E1[7,8]. While there are considerably more 

E2’s (twelve in Drosophila), much of the modularity of the ubiquitin-proteasome 

pathway comes from the large number of different E3 ligases (on the order of hundreds).  

There is also variation in the way the ubiquitin chains are assembled. The first ubiquitin 

monomer is added to a lysine residue in the substrate, and subsequent monomers are 
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added to lysines in the previous ubiquitin. Different branching sites for the ubiquitin 

chain have been shown to have different outcomes. For example, K48 linked ubiquitin 

chains of four or greater target proteins for proteasomal degradation [9]. K63 linked 

chains do not target the substrate to the proteasome, but instead are involved in activating 

proteins for diverse functions such as DNA repair and receptor internalization [10,11]. 

 

E3 Ligase Components 

E3’s can be broadly categorized as either HECT domain or RING domain. 

Ubiquitin is directly conjugated to an internal cysteine residue of HECT domain E3’s 

before being transferred onto the substrate protein [12]. RING E3’s do not conjugate 

ubiquitin, but rather stimulate its transfer from the E2 to the substrate [13,14]. RING 

domains contain conserved cysteine and histidine residues that chelate zinc ions to 

provide a structure that interacts with an E2 [15,16]. Several RING domain structures 

have been solved, and they share extensive structural conservation. At least two of these 

RING proteins, c-Cbl and Rbx1/Roc1, use a similar hydrophobic groove in the protein to 

bind an E2. All of the Zn++ chelating residues of the RING domain (as well as the Zn++ 

ions) are required for proper folding and function of the protein [14,16-19]. The 

importance to E3 ligase function of residues or domains outside of the RING domain is 

not currently understood. 

RING E3’s can be further categorized as either single or multi-protein complexes. 

Single protein E3’s, like c-Cbl, perform the entire function of the E3 within the context of 

one polypeptide [20]. Other single protein RINGs, like BRCA1, can heterodimerize. 

While BRCA-1 has ligase activity on its own, this activity is greatly increased when it 
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heterodimerizes with another RING finger protein BARD-1[21,22]. Multi-protein RING 

E3 ligases, like the Anaphase Promoting Complex (APC) and Cullin-Dependent Ligases 

(CDL), use a complex of many different proteins to facilitate ubiquitin transfer [20]. CDL  

 

 

Figure 1.2: Components of Roc-Cullin E3 Ligases. Each CDL consists of a Cullin protein, a Roc protein, 

and one or several substrate adapter proteins. In this figure, the components bound to the left end of the 

Cullin are the substrate adapters. The proteins that have been drawn as polyubiquitinated are example 

substrates of each CDL. 

 

are composed of three modules (Cullin, Roc, substrate adapter/receptor), each with a 

distinct role (Figure 1.2) [23]. The Cullin serves as a scaffold, binding a Roc protein at its 

COOH-terminus and a substrate adapter/receptor module at its NH2-terminus. The Roc 
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protein provides an interaction surface for ubiquitin-bound E2, and thereby recruits 

charged ubiquitin to the E3 ligase machinery. The substrate adapter/receptor module (a 

single protein in Cul3 CDL and multiple proteins in all other CDL) binds directly and 

specifically to one or a small subset of proteins targeted for polyubiquitylation and 

destruction. Large gene families encode these substrate adapter/receptor modules, which 

are thought to provide most of the CDL substrate specificity [24,25]. For instance, the F-

box family (33 members in Drosophila [26]) contains a diverse group of proteins that 

recruit specific substrates to the Cul1 E3 ligase via the Skp1 adaptor, which binds both 

the NH2-terminus of Cul1 and the F-box domain [27,28]. For most F-box proteins, the 

substrate is not recognized by the E3 until it is phosphorylated on one or several specific 

residues. This F-box/substrate binding is highly specific. An example of this is the 

SCFCdc4 (a Cul1-based E3 ligase with Cdc4 as the F-box protein) ubiquitin ligase. Sic1 is 

a CKI (cyclin-dependent kinase inhibitor) that must be ubiquitinated and destroyed late in 

G1to allow for proper onset of DNA replication. In order for Sic1 to be destroyed, it must 

be phosphorylated on each of six residues [29]. Mutation of any one of these residues 

does not allow for recognition by CDC4 and fails to cause proper proteasomal 

degradation of Sic1 [29,30]. This reveals a high level of regulation for precise timing of 

protein degradation.  

 

RING Proteins 

 The RING-finger motif was first described in the human Really Interesting New 

Gene 1 (RING-1) [31,32]. It is similar to the zinc finger, but it adopts a different cross-

brace structure consisting of eight zinc-chelating residues [31,33]. The motif has an 
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ordered structured even in the absence of zinc ions [31], but the zinc ions are necessary 

for the Roc1 protein to form the tertiary structure that is recognized by the E2 [28]. 

 There are over 200 RING proteins that have been reported [15], yet very few of 

them have been studied in the context of ubiquitination. The RING finger was first 

suggested to be involved in ubiquitylation by a study where Potuschak et al. noticed the 

PRT1 gene in Arabidopsis (an N-end rule E3) contained a motif that was also present in 

several other proteins known to be involved in ubiquitylation [34]. The consensus RING 

finger sequence is CX2CX(9-39)CX(1-3)HX(2-3)C/HX2CX(4-48), where C and H represent 

cysteines and histidines respectively, and X represents any amino acid [35]. RINGS are 

defined by the cross-braced pattern of eight cysteine and histidine residues [15,20,31]. 

These cysteine and histidine residues bind the zinc ions, and other metal-binding residues 

can be substituted. Interestingly, Rbx1 (as well as Drosophila melanogaster Roc1a and 

Roc1b-see Figure 2.2), has an aspartic acid at the eighth zinc coordination site. It has 

been shown that in this protein, substitution of the aspartic acid with any other amino acid 

(including cysteine and histidine) produces a protein that is less efficient in promoting 

global cullin neddylation [36]. The RING finger proteins are further sub-categorized as 

RING-HC or RING H2 depending on the identity of the fifth zinc-binding residue [37]. 

The Drosophila Rocs are therefore defined as RING-H2 proteins, as they contain a 

histidine residue at this position. 

 

Drosophila Roc Proteins 

 Rocs were the last component found to be a part of the SCF complex [38]. These 

Roc proteins are an essential component of E3 ubiquitin ligases, and they are encoded by 
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a gene family [23]. Humans and C. elegans contain two Roc proteins, Roc1 and Roc2, 

while there has been a radiation of the Roc1 family in Drosophilids (see Figure 4.1). For 

instance, Drosophila melanogaster (D. melanogaster) encodes three Roc proteins named 

Roc1a, Roc1b and Roc2 [39]. The level of functional redundancy among metazoan Roc 

proteins has remained largely unexplored. We have been addressing this issue in D. 

melanogaster by generating and characterizing mutations in the Roc genes. We 

previously showed that Roc1a mutants are lethal, while Roc1b mutants are male sterile 

[39,40]. These different phenotypes suggest that the Rocs are not redundant in function, 

even though Roc1a and Roc1b are 78% identical in the RING domain (Figure 2.2). 

Moreover, this lack of redundancy is not a result of tissue specific expression, since full 

compensation of Roc1a mutant phenotypes in wing imaginal cells cannot be achieved via 

over-expression of either Roc1b or Roc2 [40]. These data suggest that there exist intrinsic 

differences in the highly related Roc proteins. Here we show that each Drosophila Roc 

protein binds a distinct set of Cullin proteins. 

 

Roc-E2 Interactions 

 The Roc component of CDL’s provides the bridge for ubiquitin transfer from E2 

to substrate. Although Roc’s are not known to form any covalent bonds with either 

ubiquitin or any Ubc, their interaction with an E2 is an essential part of the ubiquitylation 

reaction. The E2 interacts with the Roc and transfers the ubiquitin monomer onto the 

substrate (bound on the other end of the E3 by the substrate adapter). One of the ongoing 

mysteries with E2-E3 interaction is that there is a very large molecular distance of ~50Å 

between the substrate and the E2 active site [28,41,42]. Most of this distance is made up 



 8 

by the large scaffold protein Cul1. Cul1 has a rigid cylindrical structure, and it has been 

shown that this rigidity is essential for SCF function, eliminating the notion that the cullin 

may bend and bring the E2 and substrate together in the middle [28]. Interestingly, the 

ubiquitin-bound E2 must disengage from the Roc1 before transferring the ubiquitin onto 

the substrate [43]. It can then be recharged with another ubiquitin monomer and begin the 

cycle again. Several rounds of this create a poly-ubiquitin chain and target the substrate 

to the proteasome. It is also known that the E2 cannot interact with the E1 and E3 

simultaneously [44]. This is consistent with a model whereby the E1 transfers the 

ubiquitin onto the E2, the E2 then interacts with the E3 to transfer the ubiquitin onto the 

substrate, and then the E2-E1 interaction occurs again. 

 

Dissertation Goals 

In this thesis, I will describe my work characterizing the specific interactions 

between Roc and Cullin proteins in Drosophila melanogaster. In Chapter II, I show that 

Roc-Cullin interactions are specific when expressed at endogenous levels in S2 cells as 

well as in D.melanogaster embryos. There are several distinct Rocs and Cullins, and they 

are not all functionally interchangeable. In brief, I show that Roc1a binds Cul1-4, Roc1b 

binds Cul3, and Roc2 binds Cul5. Rocs can broadly be broken down into two domains: 

the NH2-terminus and the COOH-terminal RING domain. We created and analyzed 

chimeras between the three Roc proteins to map binding determinants and demonstrate 

that both the RING and NH2-terminus of the Roc proteins can influence Cullin binding. 

For example, a construct that contains the NH2-terminus of Roc1a fused to the RING 

domain of Roc1b can still bind all the same cullins as Roc1a, and it is functional as an E3 
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ligase. Surprisingly, fusing the Roc1a NH2-terminus with the Roc2 RING domain creates 

a protein that cannot bind any cullins and is completely inactive as an E3 ligase. This 

suggests that rather than simply providing an E2 binding interface for Cullin proteins, the 

Roc proteins are structurally distinct, and specific RING domains play an important role 

in determining overall CDL function during development. In Chapter III, I show these 

results are relevant in vivo. By creating transgenic fly lines expressing each of these 

constructs, I show that although ANBR can bind the same panel of cullins as Roc1a, it is 

not able to functionally substitute for Roc1a. When expressed under control of the Roc1a 

promoter, ANBR cannot rescue the lethality of Roc1a mutation. Conversely, I reveal that 

BNAR protein, which binds all the same cullins as Roc1b, is able to functionally 

substitute for Roc1b in vivo. Several independent transgenic BNAR lines rescue the 

Roc1b mutant male sterile phenotype as well as control Roc1b transgene. Interestingly, 

BNAR cannot rescue the sterility when expressed under control of the Roc1a promoter, 

suggesting complex regulation of Roc expression in the male germline. Finally, in 

Chapter IV I provide the first detailed analysis of the Roc2 and Cul5 loci, including 

characterization of mutants. Surprisingly, Roc2 null mutants are viable and only display a 

slight reduction in female fecundity. We could observe no other overt morphological 

defect in the mutants. We also identified and characterized Cul5 mutant flies. Consistent 

with Roc2 and Cul5 being exclusive binding partners, we also could not detect any 

obvious phenotypes in the Cul5 mutant flies. We provide evidence that knocking down 

the level of either protein greatly reduces the level of the other. Furthermore, we show 

that Roc1a cannot bind Cul5 even in a Roc2 deficient background. Thus, these are the 
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first proteins of the Roc or Cullin family shown to be dispensable for viability and 

fertility. In Chapter V, all of these results are summarized and discussed broadly.
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CHAPTER II 

Molecular Characterization of Roc-Cullin Interactions 

 

Preface 

Most of this work has been submitted for publication in PLoS One. I performed 

all the published experiments, except for the analysis of AN2R and 2NAR cullin 

interactions in transgenic flies (performed by Jeff Simms). Jeff Simms also contributed 

transgenic stocks. I wrote the paper, and Robert Duronio designed the project (along with 

Tim Donaldson) and finalized the manuscript. 

 

Background 

 The RING domain has been known to mediate ligase activity for a decade [1]. 

Besides the functional activity of the RING domain, little is known about the function of 

other regions of RING-containing Roc proteins. The crystal structure of the SCF complex 

revealed that the NH2-terminus of Roc1 forms a β-sheet with several β-strands of the 

Cul1 protein [2]. It also showed that the RING domain forms a globular structure, with 

several E2-interacting residues present on the outer solvent-exposed side of the protein. 

Another report has shown that deletions into the NH2-terminus of Roc1 eliminate cullin 

binding, but the resulting protein still retains its ligase activity [3]. The same paper 

showed that the reciprocal is also true: deletions into the COOH-terminal RING domain 

abolish ligase activity, but the resulting protein is still able to bind cullin. This suggests a 
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model whereby the NH2-terminus of the Roc binds cullin, while the COOH-terminus 

binds E2. 

 

Summary 

 To investigate the interactions between Rocs and Cullins, we began with a 

molecular/biochemical approach. After discovering that each Roc binds a distinct subset 

of Cullins in vivo, we sought to determine what region of the Roc is responsible for this. 

Since creating transgenic fly lines is time consuming, we tested transgenic constructs for 

expression and binding in S2 cells by transient transfection. This system is much faster, 

and I was able to recapitulate the binding data I observed in the whole organism (for 

Roc1a, Roc1b, and Roc2). Thus, this seemed like a reasonable model in which to test for 

molecular interactions and ligase activity. This rapid “interaction screening” allowed us 

to return to Drosophila after interesting results were obtained and see if they also 

occurred in vivo. We created a series of mutants including RING swap constructs that 

join the NH2-terminus of one Roc protein with the COOH-terminal RING domain of 

another. We found that while the NH2-terminus is responsible for most of the specific 

cullin binding, the RING domain also makes an important contribution. Swapping the 

NH2-termini and RING domains between Roc1a and Roc1b created proteins that still 

displayed cullin binding specificity and were active as Ubl’s. Chimeras between Roc1a 

and Roc2, however, displayed different results. A chimera consisting of the Roc1a NH2-

terminus bound to the Roc2 RING was unable to bind cullin and it was inactive as a Ubl. 

The reverse chimera consisting of the Roc2 NH2-terminus and Roc1a RING domain was 
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able to bind cullin and function as an E3 ligase, suggesting that the Roc1a RING makes 

more of a contribution to cullin binding than the Roc2 RING. 

 

Materials and Methods 

Cell Culture and Transfection 

S2 cells were maintained in Schneider’s medium supplemented with 10% FBS and 100 

U/ml penicillin and 100 ug/ml streptomycin. Cells were transfected using Effectene 

according to the manufacturer’s instructions (Qiagen), and protein lysates were obtained 

48 hours later. All transfected DNA’s were cloned into the pCaSpeR-4 vector. 

 

Cloning 

The RING swap constructs were made by using the CAICR protein sequence that is 

common to all Drosophila Roc proteins (see Fig. 1B) as a region of overlap for primer 

design. Chimeras were expressed with either a Roc1a- or Roc1b-grf (genomic rescue 

fragment). The Roc1a-grf was previously described [4] and contains 980 bp upstream of 

the Start codon and 620 bp downstream of the stop codon. A FLAG- or V5- tag was 

inserted in frame immediately downstream of the initiating methionine. The Roc1b-grf, 

containing 840 bp upstream from the Start codon and 330 bp downstream from the Stop 

codon, was also previously described [5], and here we inserted an in frame V5 tag 

downstream of the Start codon. The A>2, 2>A, and all “∆” constructs were made using 

the Stratagene Quikchange kit. The following primer sequences were used:  

A>2 alpha: 5’-GGCGATAAGAAGCGCTTCACGGTGAAGAAGTGGAACGCC-3’ 

A>2 beta: 5’-GAACCAGGCGTCCGCGGTTAGCGAGGAGTGCACCGTG-3’ 
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A>2 gamma: 5’-TGCAACCACGCCTTCCATCATCACTGCATCTCTCGCTGG-3’ 

A>2 delta: 5’-GAGTGGGATTTCCAGAAGATGGGCCACTAAAATGACGTC-3’ 

2>A alpha: 5’-GGCAAACCGGAAAAAATGTTTGAGCTGAAGAAATGGAACGC-3’ 

2>A beta: 5’-GCGGACAACAAGCGGGATACCATGGGTCGCCAGGACTGC-3’ 

2>A gamma: 5’-TGCAACCACTCCTTTCACTTCTGCTGCATGTCGCTGTGG-3’ 

2>A delta: 5’-GAGTGGTCCATTCAGCGCTACGGAAAATAAGACGTCCTT-3’ 

1a∆F:5’-CAGGCGAACCAGGCGCGGGATGTGATGGGTAGCGAGGAGTGCACC-3’ 

1a∆R: 5’-GGTGCACTCCTCGCTACCCATCACATCCCGCGCCTGGTTCGCCTG-3’ 

2∆F: 5’-CAGGCGGACAACAAGTCCGCCACTCGCCAGGACTGCGTG-3’ 

2∆R: 5’-CACGCAGTCCTGGCGAGTGGCGGACTTGTTGTCCGCCTG-3’ 

 

Creation of GST-fusion Proteins 

Using the pCaSpeR-4 Roc constructs as template [5], PCR products were made using 

primers that added EcoR1 sites on either side, and the product was then cloned into 

pGEX-1 (GE Healthcare) and confirmed by sequencing. Primers used are as follows. 

Roc1a 5’Eco: 5’-CAGAGGAATTCGAAGTCGACGAGGATGGATAC-3’ 

Roc1a 3’Eco: 5’-CAGAGGAATTCTTAGTGGCCGTACTTC-3’ 

Roc1b 5’Eco: 5’-TCATTAGAATTCGCCGAGGAGATAGAGGTTG-3’ 

Roc1b 3’Eco: 5’-CAGAGGAATTCACCGGTCTAGCGGCCGTACTTC-3’ 

Roc2 5’Eco: 5’-TGACAGGAATTCGCTGATGATCCAGAAAACTC-3’ 

Roc2 3’Eco: 5’-CAGAGGAATTCACCGGTTTATTTTCCCATGCG-3’. 

Protocol used for isolation of GST fusion proteins was previously described [3]. 

Constructs were transformed into BL21DE3 bacteria and induced by adding IPTG to 
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0.4mM. GST-Roc proteins were purified using Glutathione-Sepharose 4B beads (GE 

Healthcare). Protein concentration was determined by Coomassie stain using BSA 

standards. 

 

Ubiquitin Ligase Assay 

Ligase assays were performed essentially as described [4] for 45 minutes at 370C 

with the following components: 50mM Tris-HCl pH 7.5, 5mM MgCl2, 2mM NaF, 0.6 

mM DTT, 2mM ATP, 10nM Okadaic Acid, 40 ng rabbit Ube1 (Boston Biochem), 300 ng 

UbcH5, 12 µg bovine Ub (Sigma), and 250 ng GST-Roc. Samples were run by SDS-

PAGE on a 12% gel followed by Western blotting for Ubiquitin. 

 

Virtual Alanine Scanning 

The ClustalX program was used to align the amino acid sequences of 3 ROC proteins 

from Drosophila melanogaster with the sequence of the Human Rbx1 protein.  Residues 

in this alignment were classified as 1) invariant and highly-conserved, or 2) non-

conserved. This classification was mapped onto the experimentally determined structure 

1LDJ (PDB accession code) of Human RBX1 in complex with Human Cullin 1 obtained 

from the Protein Data Bank (www.rcsb.org) [6]. The InsightII molecular modeling 

system from Accelrys Inc., (www.accelrys.com) was used to identify residues in the 

Human Cullin 1 protein that interact with the invariant/conserved residues and with the 

non-conserved residues in Rbx1. The crystal structure of human Cul1-Rbx1a (PDB: 

1U6G) was used for analysis. The sequence of Drosophila Cul1, Rbx1a and Rbx2 were 

threaded on 1U6G using Rosetta design software. The residues responsible for drosophila 
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Cul1-Rbx1a binding were identified by virtual Alanine scanning (http://robetta.org/). The 

residues at the interface which were different in the cases of Rbx1a and Rbx2 were 

probed further for binding analysis using Rosetta software for binding energy. The 

residues E23, V24, L32, T64, F81 and Y106 of Rbx1a at the Cul1-Rbx1a interface did 

not match with corresponding residues T26, L27, M35, V67, H86, M111 of Rbx2 and 

were probed. We analyzed the change in binding energy (∆ Binding Energy in Table 1a) 

of Cul1-Rbx1a when residues in Rbx1a were mutated to correspond to Rbx2. Since Cul1 

does not bind Rbx2, we looked for mutations predicted to weaken binding, a positive ∆ 

Binding Energy (Table 1a). Similarly, we analyzed the change in binding energy (Table 

1b) of Cul1-Rbx2 when residues in Rbx2 were mutated to correspond to Rbx1a.  In this 

case, we looked for mutations predicted to enhance binding, a negative ∆ Binding Energy 

(Table 1b). 

 

Results 

Roc proteins are thought to bridge the Cullin and E2, thus allowing Ubiquitin to 

be transferred onto the substrate. Human Roc1 has been shown to interact with all cullins 

by yeast two-hybrid analysis and when overexpressed in tissue culture [7,8]. Other 

experiments have indicated that there may be some specific binding between Rocs and 

Cullins[3,5,9]. We tested this in vivo by creating transgenic fly lines that express each of 

the individual Drosophila Roc proteins (Roc1a, Roc1b, and Roc2) under control of the 

ubiquitously expressed Roc1a promoter [4]. We used the same promoter for each to 

reduce false negatives caused by lack of expression of a Roc protein in a particular tissue. 

All of the transgenic proteins contained an in-frame FLAG epitope at the NH2-terminus. 
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Embryo protein lysates were made and subjected to immunoprecipitation with an anti-

FLAG antibody. After washing, the beads were boiled in Laemmli buffer and SDS-

PAGE was performed on the supernatant. To visualize bands, the gel was stained with 

either Coomassie, Silver Stain (Figure 1.2), or Sypro Stain. Based on the known 

molecular weight of the Cullin proteins (~90-100kDa), we narrowed our analysis to 

bands that were present in this range in the transgenic lanes but absent in the control non-

transgenic lane. These bands were then identified by mass spectrometry (Figure 2.1). 

Roc1a binds Cul1, Cul2, and Cul3. Roc1b binds Cul3, and Roc2 binds Cul5. This 

revealed that the Rocs do indeed have specific binding partners when expressed at 

physiological levels. While differential transcriptional regulation of the Rocs certainly 

occurs [4], this result suggested that there is also something physically different about the 

Roc proteins that causes these specific interactions. To further this analysis, I obtained 

antibodies for all five of the cullins (and created the Cul5 antibody, see Chapter IV). I 

then performed the same immunoprecipitation, this time followed by Western blotting for 

each cullin (Figure 2.1). Roc1a binds Cul1-4, Roc1b binds Cul3, and Roc2 binds Cul5. 

Thus, the results were consistent between experiments, and they displayed a clear binding 

preference between specific rocs and cullins. 

Figure 2.1: Rocs Display Unique Cullin Binding Profiles. (A) Silver stained SDS-PAGE gel of FLAG-
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Roc immunoprecipitates. Bands present in the transgenic lanes but absent in the control non-transgenic lane 

were identified by mass spectrometry. Bands were identified as follows: Roc1a lane-Cul1, Cul2, Cul3. 

Roc1b lane-Cul3. Roc2 lane-Cul5. (B) FLAG-Roc immunoprecipitates were probed with antibodies to all 

of the cullins. Roc1a binds Cul1-4, Roc1b binds Cul3, and Roc2 binds Cul5.  

 

After observing this network of Roc-Cullin interactions, we wanted to determine 

what regulates the binding. The crystal structure for a partial SCF complex consisting of 

Roc1, Cul1, and Skp1 has been solved [2]. It shows that the Roc protein is made up of an 

NH2-terminal β-strand and a COOH-terminal RING domain. The NH2-terminal β-strand 

residues interact with the Cul1 protein, and the RING domain is thought to mediate 

interaction with the E2 (the E2 is not present in the crystal structure). Since Roc1a and 

Roc2 are the most divergent in sequence (Figure 2.2) and have opposite patterns of Cullin 

binding, we began our analysis with these two proteins. In collaboration with Ramesh Jha 

in Brian Kuhlman’s lab (UNC-Chapel Hill), we performed “virtual alanine scanning” to 

identify amino acids that significantly reduced binding between Roc1 and Cul1 when 

converted to alanine (thereby removing the side chain). The purpose of this was to 

identify all residues that are important for Roc-Cullin interaction, regardless of 

specificity. Of these amino acids, we looked for residues that were significantly different 

between Roc1a and Roc2, and thus could contribute the most to specific cullin binding. 

The Roc2 sequence was superimposed over the Roc1-Cul1 crystal structure to compare 

Roc-Cullin interactions between these two complexes. By measuring changes in binding 

energy (Table 2.1) when the individual residues were changed from Roc1a to Roc2 

sequence (and vice versa), we narrowed our analysis to E23, T64, F81, and Y106 in Roc1a 

(T26, V67, H86, and M111 in Roc 2). We were initially surprised that three of the four 
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residues were located in the COOH-terminal half of the protein, while the crystal 

structure suggested that most of the interactions occur in the NH2-terminal β-strand. It is 

possible that the majority of all Roc-Cullin contacts are in the NH2-terminus of the Roc, 

but some of the specific contacts are in the RING domain. 

 

 

Figure 2.2: ClustalW Alignment of Drosophila Rocs. The protein sequences of Roc1a, Roc1b, and Roc2 

were aligned using ClustalW and separated into the NH2-terminus and RING domain. The carats indicate 

Roc1a residues that interact with Cul1[2]. The asterisks indicate the essential RING domain residues that 

chelate Zn++ ions. Residues of RING insertion are underlined for Roc1a. 

 

 

Table 2.1: Roc point mutations change Roc-Cullin Binding Energy. WT (no amino acid change) is set 

at zero. Change in binding energy was determined in software (see Methods) when changing the specified 

residues. A. Roc1a residues were changed to the corresponding Roc2 residues. A positive (or very low 

negative) change in binding energy suggests the Roc1a residue forms a more favorable interaction with 

Cul1 than the Roc2 residue. B. Roc2 residues were changed to the corresponding Roc 1a residues. In this 
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case, a negative change in binding energy suggests the Roc1a residue forms a more favorable interaction 

with Cul1 than the Roc2 residue. 

 

I created constructs (Figure 2.3) that mutated all four of the Roc1a residues to 

Roc2 and vice versa. These constructs are named A>2 (4 residues mutated to Roc2 

sequence) and 2>A (four residues mutated to Roc1a). If these residues are responsible for 

mediating specific cullin binding, these constructs should switch the cullin binding 

partners. As Figure 2.4a shows, this did not alter the binding specificity of the Roc-Cullin 

interactions: A>2 behaved just like Roc1a, and 2>A behaved just like Roc2. Thus, these 

residues alone are not responsible for cullin binding specificity. They may still be 

important for binding in the context of a larger region. 

 

 

Figure 2.3: Schematic of All Transgenic Constructs. All constructs contained an N-terminal V5 tag. 

Roc1a sequence is indicated by white, Roc1b by light gray, and Roc2 by dark gray. The brackets above the 

constructs indicate the NH2-terminues and RING domain (same as in Figure 1.3).  

 

Although these individual point mutations were not able to alter the interactions, 

it is possible that a larger stretch of amino acids is responsible for this. The SCF crystal 
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structure also reveals that the Roc proteins have a RING insertion between the S1 and S2 

β-strands that is not found in other RING proteins [2]. This region is in close proximity to 

the cullin protein, and the sequence is highly divergent between Roc1a and Roc2 (Figure 

2.2). After initial attempts to swap this entire sequence between the Rocs proved 

unsuccessful (too large for efficient mutagenesis with Stratagene Quikchange Kit), we 

narrowed our analysis to the most divergent portion of the insertion. To test if this region 

mediates binding specificity, I mutated the S62A63T64 residues of the Roc1a RING 

insertion to the corresponding R65D66V67M68G69 residues of Roc2, and vice versa. I 

named the constructs 1a∆ and 2∆ to indicate that this region is “changed.” As Figure 2.4b 

shows, this also failed to alter cullin binding. Although these amino acids may be 

important for Roc-Cullin binding, they are not responsible for the majority of the 

specificity. 

 

 

Figure 2.4: Point Mutants and Delta Constructs. A. All constructs are expressed with the Roc1a 

promoter and regulatory regions, and the chimeric proteins contain an amino-terminal V5 tag. A. Control 

Roc1a and Roc1b or A>2 and 2>A constructs were transfected into S2 cells and cellular extracts were 

immunoprecipitated with anti-V5 antibodies and probed for the presence of Cul1 and Cul5 by 

immunoblotting. B. Control Roc1a and Roc2 or A∆ and 2∆ constructs were transfected into S2 cells and 

cellular extracts were immunoprecipitated with anti-V5 antibodies and probed for the presence of Cul1 by 

immunoblotting. Control is a non-specific band for loading control. 
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It is likely that a larger region of the Roc protein interacts with the Cullin. We 

widened our search even further and broke the Roc into two domains: the NH2-terminal 

β-strand and the COOH-terminal RING domain (Figure 2.2 and 2.3). If the NH2-terminus 

alone is sufficient for Cullin binding, then the identity of the RING domain should not 

influence this interaction. To test this, I created a series of “RING Swap” constructs that 

contain the NH2-terminus of one Roc connected to the RING domain of another. For 

example, ANBR consists of the Roc1a NH2-terminus and the Roc1b RING domain. To 

determine if the N-terminus or the RING domain imparts the specificity, we began with 

the AN2R and 2NAR constructs. Surprisingly, AN2R failed to bind any cullin, although 

it was stably expressed at levels comparable to the other RING Swap proteins (Figure 

2.5a). In the reciprocal experiment, however, 2NAR bound to Cul5 just as Roc2 alone 

does. It is likely that the AN2R protein does not fold properly and is completely inactive 

as a ligase. Interestingly, 2NAR also bounds Cul1 to a much lesser degree. This results 

was surprising, considering Roc2 does not bind Cul1. This suggests that while the NH2-

terminus plays the larger role in cullin binding, the RING domain (at least in the case of 

Roc1a’s RING domain) also makes a contribution. Consistent with this idea, we found 

that the 2NAR construct also interacted with Cul3 (Figure 2.5c), another binding partner 

of Roc1a. We also examined the cullin binding for ANBR and BNAR (Figure 2.5b). In 

this case, the interaction appeared to be solely mediated by the N-terminus: ANBR binds 

the same cullins as Roc1a, and BNAR binds the same cullins as Roc1b. 

To confirm some of these observations in vivo, we generated multiple AN2R and 

2NAR transgenic lines and analyzed embryo extracts by IP-Western analysis as in Figure 

2.1. We consistently obtained similar results as in S2 cells; AN2R bound no Cullin, while 
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2NAR bound Cul5, as did normal Roc2 (Figure 2.6a). In addition, 2NAR also bound 

Cul3 (Figure 2.6b). Thus, the Roc NH2-terminus provides a strong determinant for Cullin 

binding specificity, but is not always sufficient. In addition, since full length Roc2 does 

not bind either Cul1 or Cul3, our data suggest that the Roc1a RING domain plays a more 

important role in Cullin binding specificity than the Roc2 RING domain.  

 

Figure 2.5: RING Swap Constructs and Cullin Binding in S2 Cells: A. Control Roc1a and Roc1b or 

ANBR and BNAR constructs were transfected into S2 cells and cellular extracts were immunoprecipitated 

with anti-V5 antibodies and probed for the presence of Cul1 and Cul3 by immunoblotting. B. Control 

Roc1a and Roc2 or AN2R and 2NAR constructs were transfected into S2 cells and cellular extracts were 
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immunoprecipitated with anti-V5 antibodies and probed for the presence of Cul1 and Cul5 by 

immunoblotting. 

 

 

Figure 2.6: RING Swap constructs and Cullin binding in embryos. A. RING-swap chimeric proteins 

were immunoprecipitated from transgenic embryo extracts and tested for interaction with Cul1 and Cul5 by 

immunoblotting. Two independent transgenic lines of AN2R and 2NAR are shown. B. Two 2NAR 

transgenic lines were tested for interaction with Cul3. 

 

To determine if the RING domain could actually inhibit some Roc-Cullin 

interactions in the context of a chimeric protein, I also created constructs consisting only 

of the NH2-terminus. These constructs, however, were completely unstable in S2 cells 

and could not be detected by Western blot (data not shown). Therefore I could not 

determine if the NH2-terminus alone is sufficient for some of the cullin interactions. This 

instability may be caused by an inability to form a protective Roc-Cullin-CAND1 

complex, as several Roc COOH-terminal residues are known to make important contacts 

with CAND1 [10]. Finally, I created RING Swap constructs that also contain the “∆” 

region of the opposite Roc in the RING insertion (AN2R∆ and 2NAR∆, See Figure 2.3). 
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For example, AN2R∆ is the same as AN2R, but with the RING insertion sequence of 

Roc1a. These proteins displayed the same cullin binding as the normal RING Swap 

proteins (data not shown), further suggesting that this RING insertion does not play a 

major role in cullin binding specificity. 

 

 

Figure 2.7: Activity of Rocs with Various E2 Enzymes. A. Loading control for GST-Roc proteins. 

Ligation reactions containing either control (GST alone), GST-Roc1a, GST-Roc1b, or GST-ANBR were 

separated by SDS-PAGE and blotted for GST. Bracket indicates GST-Roc proteins. Asterisk indicates 

GST. Lower bands in transgenic lanes are degradation products. B. Ligation reactions were run (see 

Methods) with control (no E2) or one of several Ubc enzymes and blotted for Ub to detect ubiquitin 

conjugates. High molecular weight conjugates are visualized as smearing (see Ubc5 panel). 

 

Although some of these chimeric Rocs are capable of binding cullins, we did not 

know if they were functional as E3 ligases. It has been shown previously that RING 

proteins have ligase activity even in the absence of cullins and other associated factors 
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[3,4,8,11-15]. We were interested in knowing if the RING Swap Rocs were active 

ligases, and if this activity was E2 specific. Therefore, I created GST-fusions of all the 

Rocs and RING Swaps and tested them for ligase activity (see Methods). We were unable 

to detect polyubiquitylation with Ubc1, Ubc2, Ubc4, Ubc7, Ubc9, or CDC34 as the E2 

(Figure 2.7). Since this result is completely negative, the Rocs may still interact with 

different E2’s in vivo. We did not have a proper positive control to test for the activity of 

each E2. All of the Rocs, however, had varying amounts of ligase activity in the presence 

of UbcH5. While Roc1a and Roc2 displayed high ligase activity with UbcH5, Roc1b 

showed a weaker ability to promote poly-ubiquitination (Figures 2.7 and 2.8). This 

suggests that differential tissue expression of Rocs or E2’s is not the sole determinant of 

their interaction, since all components are expressed at equal levels in this experiment. 

We next examined the ability of the RING Swap proteins to promote poly-

ubiquitylation. Interestingly, BNAR showed an almost identical pattern of laddering as 

Roc1b (Figure 2.8). Looking at the poly-ubiquitin laddering, a pattern emerges: Roc1a 

and ANBR have high levels, and Roc1b and BNAR have low levels. Both of these 

groups have the same NH2-terminus. Thus, even though the RING domain is known to 

mediate most of the physical interaction with the E2 [2], the N-terminus of the protein 

appears to play a significant role in determining efficiency of poly-ubiquitination with a 

particular E2. AN2R protein, which was unable to bind any cullin (Figure 2.5), is also 

non-functional as a ligase in this assay. It is likely that this chimera does not fold properly 

and is completely inactive. 2NAR, which we showed is able to bind to Cul5 and Cul3, is 

an active ligase. It is interesting that these reciprocal protein chimeras have completely 

different activities. 
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We also observed that the pattern of poly-ubiquitination is different amongst the 

Roc proteins. Roc1a promotes formation of lower molecular weight ubiquitin conjugates, 

and Roc2 forms higher molecular weight conjugates. 2NAR, however, appears to form 

conjugates that span the entire range of the other two individual Rocs. What this means 

biologically remains to be determined, but it does suggest another level of complexity 

above a simple “on-off” switch for poly-ubiquitination. 

 

Figure 2.8: Ligase activity of RING swap proteins. A. GST-fusions of all Roc proteins and chimeras 

were made. Coomassie stain showing even levels of Roc protein were used in the ligase assay. Bracket 

indicates GST-Roc proteins. Lower bands are degradation products. B. All Drosophila Roc proteins and 

chimeras were assessed for ligase activity in a substrate free assay. Briefly, 250 ng of Roc protein (or 

control GST) were added to a ubiquitin ligase mixture containing UbcH5, ubiquitin, and ligase buffer and 

incubated for 45 minutes. “-” indicates that no E2 was added to the reaction, and “+” indicates it was. 

Ubiquitin conjugates were detected by Western using an anti-Ub antibody (bracket indicates poly-ubiquitin 

chains). 
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Discussion 

 In this study we show that the Roc proteins play a part in the functional 

modularity of Cullin-dependent E3 ligases. Our data show that selective Roc-Cullin 

interactions occur in vivo in D. melanogaster, and that the highly conserved Roc proteins 

serve distinct roles as members of different Cullin E3 ligase complexes. 

 

Roc-Cullin interaction determinants 

The Roc NH2-terminus is necessary for binding to Cullin protein [3] and forms a 

β-strand that makes an inter-molecular β-sheet with the Cullin protein [2,16]. Our 

analysis of “RING swap” protein chimeras indicates that in some instances the Roc NH2-

terminal β-strand is the primary contributor to Roc-Cullin binding specificity. Both fusing 

the Roc2 NH2 terminus to the Roc1a RING domain (2NAR) and fusing the Roc1a NH2-

terminus to Roc1b (ANBR) results in proteins that primarily display the Cullin binding 

preferences of Roc2 and Roc1a, respectively. However, our data clearly indicate that the 

RING domain also makes a contribution to Cullin binding preference. While a full length 

Roc1a construct bound Cul1-4 (Figure 2.1), a construct consisting of the Roc1a NH2-

terminus fused to the RING domain of the more distantly related Roc2 (AN2R) was 

unable to bind any Cullin. Substituting in the Roc1b RING domain, however, was able to 

restore Cullin binding, and the resulting ANBR protein displayed a Cullin binding profile 

identical to Roc1a. This suggests that a region of the RING domain that is more similar 

between Roc1a and Roc1b than Roc2 participates in Roc1a-Cullin binding preferences. 

Roc1a is 78% identical to Roc1b across the RING domain, while it only shares 45% 

identity with Roc2 in this region. In addition, the 2NAR protein bound detectably to Cul3 
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while normal Roc2 protein did not, again suggesting that the Roc1a RING domain 

influences Cullin selection. Taken together, we conclude from our data that the Roc NH2-

terminal β-strand makes a relatively stronger contribution to Cullin binding preference 

than the RING domain. 

The lethality of Roc1a mutants is presumably caused by the inappropriate 

accumulation of at least one target of a Roc1a-containing Cullin dependent E3 ligase [4].  

The ANBR protein cannot rescue the lethality of Roc1a mutants even though it binds all 

of the Cullins that Roc1a does. Thus, even though ANBR can activate polyubiquitin 

chain formation in vitro (Figure 2.7 and 2.8), fusion of the Roc1a NH2 terminus with the 

Roc1b RING domain does not create a fully biologically active Roc1a protein. One 

possible interpretation of this result is that in vivo the Roc1b RING domain cannot 

productively interact (i.e. stimulate ubiquitylation of critical targets) with all of the E2s 

that Roc1a does. This may occur at the level of direct binding, such that there are some 

E2s that only bind the RING domain of Roc1a and not Roc1b, or at the level of 

stimulating ubiquitin transfer to substrate in the context of a fully assembled CDL. 

However, we show here that neither Roc1a nor ANBR can stimulate poly-ubiquitin chain 

formation using Ubc1, Ubc2, Ubc7, or Ubc9 in a substrate free in vitro ligase assay. 

A similar observation was previously reported for TRAF3 and TRAF5 RING 

domain proteins [17]. TRAF5 can activate the NF-κB pathway when overexpressed, 

while TRAF3 cannot. This is dependent on the RING domain, as mutation of a key RING 

cysteine inhibits this activation. A construct that fuses portions of the RING domains of 

TRAF3 and TRAF5 is also incapable of NF-κB activation. The authors proposed that 

these chimeric proteins might not be able to chelate zinc ions or fold properly. This may 
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explain why AN2R is unable to bind any Cullin.  However, the other Roc chimeras we 

constructed were able to bind Cullin and were active as E3 ligases. Moreover, the rescue 

of male sterility by the ANBR chimera (see below) indicates that Roc protein chimeras 

can be functional in vivo. 

In the Drosophila male germline, Roc1b forms a complex with a testes-specific 

Cul3 isoform and the BTB protein KLH10 to regulate caspase activation during 

spermatid differentiation [18]. Consequently, Roc1b mutants are male sterile [5]. 

Interestingly, the BNAR chimera, which binds well to Cul3, effectively rescues Roc1b 

mutant male sterility. This is consistent with our previous data showing that Roc1a can 

partially rescue the male sterility of Roc1b mutants when expressed from the Roc1b 

promoter [5]. These data suggest that in the context of the testes specific Cul3 complex, 

the RING domains of Roc1a and Roc1b can productively interact with a similar set of 

E2s. Thus, our genetic rescue experiments with Roc1a and Roc1b mutants can be 

explained if Roc1b interacts with a subset of all the E2s that interact with Roc1a. It is 

possible that Roc1a can also interact with other E2’s we did not test in vivo. Finally, the 

functional redundancy of Roc1a and Roc1b in the male germ line is only detected with 

the Roc1b promoter, suggesting that the Roc1a and Roc1b genes are expressed differently 

during spermatogenesis. 

 The structure of another RING-containing protein Cbl in complex with UbcH7 

provides more interesting clues as to the nature of the E2-E3 interaction [19]. The authors 

showed that the F63 residue of UbcH7 interacts with the W108 and I383 residues of the Cbl 

“RING groove.”  They suggest that this interaction contributes to the specificity amongst 

other E2-E3 pairs. However, these residues are identical across all three Drosophila 
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Rocs. Thus, if the Drosophila Rocs do bind different E2’s, this is not accounted for by 

these residues. It is possible that while all eukaryotes are thought to use an E1-E2-E3 

enzymatic cascade, the exact nature of the system may have evolved differently in certain 

organisms. 
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CHAPTER III 

Genetic Characterization of Roc-Cullin Interactions 

Preface 

 The work presented in this chapter has been submitted for publication in PLoS 

One. I performed all the experiments and wrote the manuscript. Robert Duronio finalized 

the manuscript. Max Nourredine and Tim Donaldson created the Roc1a and Roc1b 

alleles (respectively) used in this chapter. 

 

Background 

 Roc1a mutants are inviable [1]. This is presumably caused by improper 

accumulation of at least one target of a Roc1a-based E3 ligase. Considering the large 

amount of work published on different Roc1 complexes (and the fact that Roc1a can bind 

cullins 1-4), there are most likely many substrates that accumulate in the absence of 

Roc1a. This lethality shows that neither Roc1b nor Roc2 can participate in all the same 

complexes as Roc1a when under the control of their endogenous promoters. However, 

Roc1b can partially fulfill some Roc1a function when driven by the Roc1a promoter 

(1a::1b) [2]. While 1a::1b cannot rescue lethality, Ci (a known Roc1a-based Ubl target) 

accumulation is partially rescued with this transgene in a Roc1a mutant background. 

Roc2, however, cannot function analogously to Roc1a even when overexpressed [2]. 

 Roc1b mutants are viable, but male sterile [2].Thus, there are no essential targets 

of a Roc1b-based E3 ligase. This sterility suggests that during normal development, 
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neither Roc1a nor Roc2 can substitute for Roc1b. Sperm from Roc1bdc3 males are 

completely immotile, even though the sperm bundles are individualized properly. 

Interestingly, Roc1a can partially rescue the Roc1b mutant male sterility when driven by 

the Roc1b promoter, whereas Roc2 cannot [2]. In this chapter, we characterize which 

portions of the Roc proteins mediate their specific functions in the developing fly. 

 

Summary 

 In the previous chapter, I established that the ANBR and BNAR chimeras bind 

cullins and have ligase activity as measured by a substrate free in vitro ligase assay. In 

this chapter, I examine the functionality of these proteins in vivo. I show that the ANBR 

protein is unable to rescue the lethality of Roc1a mutation, even though it binds the same 

cullins as Roc1a and has ligase activity (see Chapter II). This is not due to a lower level 

of expression, as several transgenic ANBR lines expressed protein at levels comparable 

to Roc1a (which did rescue Roc1a mutant lethality). BNAR, however, is able to rescue 

the male sterility induced by Roc1b mutation when expressed under control of the Roc1b 

promoter (1b::BNAR). Interestingly, BNAR expression induced by the Roc1a promoter 

(1a::BNAR) is not able to rescue Roc1b mutant male sterility, even though it is expressed 

at comparable levels to 1b::BNAR. This suggests that spatial expression of Roc1a and 

Roc1b in the male germline is very tightly regulated.
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Materials and Methods 

Immunoprecipitations and Western Blotting 

For embryo lysates, overnight egg collections (0-16hrs) were dechorionated for 3 minutes 

in 50% bleach and dounce homogenized with 10 volumes of NP-40 lysis buffer (50mM 

Tris pH8.3, 150 mM NaCl, 0.5% NP-40, 1 ng/ml leupeptin, 0.5 ng/ml pepstatinA, 1mM 

PMSF). Lysates were centrifuged at 14,000 rpm for 10 min at 40C and the supernatant 

was collected. For immunoprecipitations, 25 µl protein-A beads were washed 3x with 1 

ml NP-40 lysis buffer, and then pre-incubated with antibody for 2h before adding to 1ml 

of lysate (1mg/ml protein). Immunoprecipitations were performed overnight at 40C.  

 

Antibodies 

The following antibodies were used: rabbit anti-Cul1 (Zymed), rabbit anti-Cul2 (gift of 

Dr. Yue Xiong, UNC), guinea pig anti-Cul3 (gift of Dr. Jim Skeath, Washington 

University), rabbit anti-Cul4 [5], affinity purified rabbit anti-Cul5, guinea pig anti-Roc2 

whole serum, mouse anti-FLAG (Invitrogen), mouse anti-V5 (Invitrogen), and Rabbit 

anti-Ub (Covance). Anti-peptide antibodies against Roc2 and Cul5 were generated using 

synthetic peptides (Invitrogen) coupled to KLH (Pierce). The peptide sequences are 

CADDPENSVDRPTDD (Roc2) and CKRDRDIFEEVWPDK (Cul5). Injections and 

serum withdrawal were performed at Pocono Rabbit Farm & Laboratory, Inc. High titer 

bleeds of anti-Cul5 were purified with the same peptide using the Sulfolink Kit (Pierce). 
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Stocks and Genetics 

The Roc1a
G1 and Roc1b

dc3 alleles have been described previously [1,2]. The 

Roc2
KG07982, Roc2

pBacf00911, and Cul5
EY21463 alleles were obtained from the Bloomington 

stock center. To test for rescue of Roc1a lethality, Roc1a
G1

, sn, FRT /FM7, Act-GFP 

females were mated to males that expressed a specific transgene (V5-Roc1a or V5-

ANBR) under control of the Roc1a promoter. Rescue was scored by the presence of sn 

males in the progeny. To test for rescue of Roc1b male sterility, males of the genotype 

Roc1b
dc3

/ TM3, Sb and containing a transgene insertion on the second chromosome (V5-

Roc1b, V5-ANBR, or V5-BNAR) were mated to Roc1b
dc3

/TM3, Sb females. w+ 

(indicating the presence of the transgene), Sb
+, Roc1b

dc3
/Roc1b

dc3
 male progeny were 

then mated with w1118 virgin females to assay for rescue of sterility. Five batches of 100 

eggs from this cross were transferred onto individual grape juice plates, and the numbers 

of hatched eggs quantified 36 h later. 

 

Results 

After we created chimeric proteins that could still bind specific cullins (ANBR 

and BNAR-see Figure 2.5), we wanted to test if they were functional in vivo. I showed in 

Chapter II that both are functional in an in vitro ligase assay with UbcH5 (Figure 2.7), but 

it is not known if these different RING domains interact with other Ubc’s in vivo to 

mediate substrate degradation. Several transgenic lines of ANBR and BNAR were 

created. In this case, ANBR was put under control of the Roc1a promoter, and BNAR 

was put under control of the Roc1b promoter. This was to ensure they were expressed at 

the same time and in the same tissues as the endogenous proteins (Roc1a and Roc1b 
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respectively), as Roc1a and Roc1b have been shown to be differentially expressed 

developmentally [1]. 

 

The Roc1b RING domain cannot provide all Roc1a function 

Since the ANBR protein displays the same binding specificity as Roc1a, we 

wanted to determine whether it could rescue the lethality caused by the null Roc1a
G1 

allele[1]. Roc1a is located on the X chromosome, and thus Roc1a
G1 males are not viable. 

We set up an experiment where fathers carrying an autosomally located Roc1a (as 

control) or ANBR transgene (expressed with the Roc1a promoter) were crossed to 

Roc1a
G1/FM7 mothers and scored for the presence of rescued Roc1a

G1 males (Figure 

3.1). 

 

 

Figure 3.1: Roc1a mutant rescue crossing scheme. Males carrying a single copy of the transgene were 

crossed to females heterozygous for the Roc1a null allele (Roc1aG1). Four possible genotypes are possible 

in the progeny, as shown. FM7-Act-GFP is a balancer chromosome expressing GFP under control of the 

Actin promoter. sn is a recessive bristle marker. Bar is a dominant eye marker. V5-trans indicates a 

transgene (Roc1a or ANBR) with a V5 epitope tag. 

 

While the wild type Roc1a transgene was able to rescue the lethality of the 

Roc1a
G1 mutation, none of 5 different ANBR transgenic insertions were able to do so 
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(Figure 3.2a). This was not a result of expression level differences, because all five of the 

ANBR proteins accumulated to a level comparable to the control Roc1a transgenic 

protein Figure 3.2b). Thus, while ANBR binds Cul1 (Figure 2.4) and Cul2-4 (data not 

shown) like Roc1a, it is unable to function the same as Roc1a. This was somewhat 

surprising, considering that Roc1a and Roc1b share 78% protein identity in the RING 

domain. One possibility is that the Roc1b RING domain is unable to interact with the 

same E2’s as the Roc1a RING domain when assembled into Cullin complexes in vivo, 

which would suggest that at least one essential target of a Roc1a E3 ligase is dependent 

on the specific RING domain sequence of Roc1a. The AN2R construct was also unable 

to rescue Roc1a
G1 lethality (data not shown), consistent with the failure of the AN2R 

protein to bind Cullin. In several of these rescue experiment crosses we detected a small 

number of unbalanced male progeny that did not display the sn phenotype (see “% non-

FM7 male “column), and thus did not contain the Roc1a
G1 mutant chromosome. We do 

not unambiguously know the origin of these males, but since they were invariably sterile 

they are likely XO male progeny resulting from meiotic non-disjunction events in the 

Roc1a
G1/FM7 females. This raises the possibility that reduction of Roc1a gene dose in 

females affects meiotic chromosome segregation in Drosophila. Consistent with this, 

Rbx1 has been shown to be essential for meiosis and proper chromosome condensation 

and segregation in C. elegans [3]. 

 

Chimeric Roc proteins can function in vivo 

Recently, Arama et al. showed that a testes-specific Cul3 isoform forms an E3 

ligase with Roc1b in the testes, and Roc1b mutant males are sterile because of a failure to 
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complete the late stages of sperm differentiation[4]. Since the BNAR construct displays 

the same binding specificity as Roc1b, we tested whether the BNAR chimera could 

rescue the male sterility caused by the Roc1b
dc3 null mutation (Figure 3.3) [2]. Male 

fertility was measured by determining the proportion of eggs that hatched into first instar 

larvae after mating to wild type females. 

 

 

Figure 3.2 ANBR does not rescue the lethality of Roc1a mutation. A. Transgenes expressing chimeric 

ANBR proteins were tested for rescue of Roc1a
G1 lethality (see Methods for genetics). All F1 progeny 

contain a single copy of the transgene expressed under control of the Roc1a regulatory sequences. The 

percentage of progeny with each genotype is indicated, as is the total number of progeny scored (n). B. V5 

immunoblot of extracts prepared from adult males containing the indicated transgenes. (-) indicates non-

transgenic wild type control. 
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Figure 3.3: Roc1b Mutant Rescue Crossing Scheme. This crossing scheme was used to obtain a male fly 

that carried a transgene in a Roc1b mutant background (Roc1bdc3). V5-trans denotes a V5-tagged transgene 

(1a, 1b, or BNAR). Cyo and TM3 are second and third chromosome balancers, respectively. D is a 

dominant wing marker. w1118 is a w- wild-type strain. 

 

Three different transgenic lines expressing V5 epitope-tagged Roc1b under the 

control of the Roc1b promoter were able to rescue the male sterile phenotype (Figure 

3.4a). Six different BNAR lines rescued the male sterility defect, five of them to the level 

of the control Roc1b transgenes. The BNAR chimeric proteins were expressed from the 

Roc1b promoter at levels comparable to normal Roc1b (Figure 3.4b). Because BNAR 

rescues the Roc1b- male sterility, we conclude that the Roc1a RING domain can provide 

Roc1b function during spermatogenesis. This finding is consistent with our previous 

observations indicating that forced expression of normal Roc1a from the Roc1b promoter 

can partially rescue the Roc1b male fertility defect [2]. When considered together with 

the failure of ANBR to rescue the Roc1a mutant, these results suggest that, within the 

context of the male germ line-specific Cul3 E3 ligase complex, the Roc1a RING domain 

can productively interact with the same E2s as Roc1b, while Roc1b cannot do so with all 

of the E2s that function with Roc1a in vivo. 



 46 

Interestingly, expression of wild type Roc1b from the Roc1a promoter was unable 

to rescue male sterility (Figure 3.4a). This suggests that while the Roc1a promoter is 

active in the male body [1], it is not expressed in the male germline in a manner 

appropriate to provide Roc1b function. Thus, the Roc1b regulatory sequence appears to 

confer expression in the testes that cannot be duplicated by the Roc1a promoter. 

 

 

Figure 3.4: BNAR rescues the Roc1b mutant male sterility. A. Egg hatching was assessed for progeny 

of Roc1b
dc3 homozygous mutant males containing the indicated transgene. “Control” indicates Roc1b

dc3
/+ 

genotype. (–) indicates no transgene; i.e. a Roc1b
dc3 homozygous mutant. 1A::1B indicates Roc1b driven by 

the Roc1a regulatory sequences. All other lines are under control of the Roc1b regulatory sequences. 500 

eggs were analyzed for each line. B. V5 immunoblot of extracts prepared from adult males containing the 

indicated transgenes. 
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Discussion 

The lethality of Roc1a mutants is presumably caused by the inappropriate 

accumulation of at least one target of a Roc1a-containing Cullin dependent E3 ligase [1].  

The ANBR protein cannot rescue the lethality of Roc1a mutants even though it binds all 

of the Cullins that Roc1a does. Thus, even though ANBR can activate polyubiquitin 

formation in vitro, fusion of the Roc1a NH2-terminus with the Roc1b RING domain does 

not create a fully biologically active Roc1a protein. One possible interpretation of this 

result is that in vivo the Roc1b RING domain cannot productively interact (i.e. stimulate 

ubiquitylation of critical targets) with the same set of E2’s as Roc1a. This may occur at 

the level of direct binding, such that there are some E2s that only bind the RING domain 

of Roc1a and not Roc1b, or at the level of stimulating ubiquitin transfer to substrate in 

the context of a fully assembled CDL. The fact that different Drosophila E2’s have been 

found to be involved in different developmental processes (including apoptosis, 

spermatogenesis, and telomere maintenance) suggests that they are not redundant in 

function [6-9]. We tested various E2’s for interaction with Roc proteins (Chapter III), and 

were only able to detect an interaction with Ubc5. This does not, however, rule out that 

other Roc-E2 interactions occur in vivo. 

In the Drosophila male germline, Roc1b forms a complex with a testes-specific 

Cul3 isoform and the BTB protein KLH10 to regulate caspase activation during 

spermatid differentiation [4]. The testes-specific Cul3 isoform is almost identical to the 

predominant somatic isoform, but it has a different NH2-terminal extension and 5’ UTR. 

Null mutations of Cul3 are lethal, and this lethality is presumably caused by improper 

accumulation or at least one Roc1a-Cul3 E3 ligase substrate [10,11]. Roc1b mutants are 
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male sterile [2]. Interestingly, the BNAR chimera, which binds well to Cul3, effectively 

rescues Roc1b mutant male sterility. This is consistent with our previous data showing 

that normal Roc1a can partially rescue the male sterility of Roc1b mutants when 

expressed from the Roc1b promoter [2]. These data suggest that in the context of the 

testes specific Cul3 complex, the RING domains of Roc1a and Roc1b can productively 

interact with a similar set of E2s. Finally, the functional redundancy of Roc1a and Roc1b 

in the male germ line is only detected with the Roc1b promoter, suggesting that the 

Roc1a and Roc1b genes are expressed differently during spermatogenesis. While 

endogenous Roc1a is expressed in the male body [1], it may not be expressed at the same 

developmental time or in the same part of the germline. This provides a glimpse at the 

amazing level of regulation in assembling Roc-Cullin E3 ligases. 
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CHAPTER IV 

Characterization of Roc2 and Cul5 

Preface 

 Most of the work in this chapter has been submitted for publication to PLoS One. 

I performed all the experiments and wrote the manuscript. Robert Duronio finalized the 

manuscript. 

 

Background 

 Drosophila melanogaster is unique in that it has three members of the Roc family, 

while all other non-drosophilid metazoans have two. Previous studies have examined 

Roc1a and Roc1b mutants [1,2], but Roc2 has remained largely unanalyzed in a multi-

cellular organism. It should be noted that D. melanogaster Roc2 is more similar in 

sequence to Roc2 from other species than to any of the other D. melanogaster Rocs. 

Thus, it appears that the Roc1 family undergone a divergence in Drosophilids, while 

Roc2 has maintained its existence as the sole member of its class. Interestingly, another 

Drosophilid (Drosophila pseudoobscura) has undergone an even further divergence, 

possessing four Roc1 family members, while still maintaining a single Roc2 gene (Figure 

4.1).
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Figure 4.1: Clustering Diagram of Insect Roc proteins. ClustalX was used to create a branched 

clustering diagram of insect Roc proteins. Ag=Anopheles gambia, Am=Apis mellifera, Dm=Drosophila 

melanogaster, Dp=Drosophila pseudoobscura, Ds=Drosphila simulans, Dy=Drosophila yakuba. 

 

Roc2 has been evolutionarily conserved, yet very little is known about its 

function. Several reports have suggested that it has a role in inhibiting apoptosis [3-6], 

but none of these studies have been carried out using mutational analysis in a 

multicellular organism (thereby making the physiological relevance difficult to interpret). 

Indeed, these papers often refer to Roc2 as SAG (sensitive to apoptosis gene). SAG was 

cloned as a redox-inducible early response gene in mouse tumor cell lines [7]. It was 

subsequently found to have antioxidant properties (free radical scavenging) when 

overexpressed after induction of redox stress. Further, SAG has been reported to bind 

pro-caspase-3 and induce its degradation [5]. This report is conflicting, however, as it 

shows SAG performing this function through the F-box protein β-TrCP, and only Roc1a 

is known to be part of a complex containing an F-box protein. Thus, it appears that 
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overexpression of a Roc protein can cause it to perform a function that it may not do in 

vivo at physiological levels. Consistent with this, another report showed SAG to be part 

of a feedback loop with HIF-1α [6]. Tan et al. claim that HIF-1α activates SAG 

expression in response to hypoxia, and that a SAG-Cul5-VHL complex then ubiquitinates 

HIF-1α, leading to its degradation. But other reports have shown that only Roc1-Cul2 

and not Roc2-Cul5 complexes can bind to VHL and other “VHL-box” proteins [8]. Since 

Roc1-Cul2 and Roc2-Cul5 both use elongins B and C to bind substrate adapters, it may 

be that these complexes can be forced into substituting for each other at higher expression 

levels. In another paper, Sasagawa et al. suggested that Roc1 and Roc2 may be redundant 

for some targets in C. elegans [9]. Interestingly, these studies showed that the rocs 

perform their overlapping function while still maintaining cullin binding specificity. 

Thus, Roc1-Cul2 and Roc2-Cul5 complexes, while unique, may be able to target some of 

the same proteins for degradation. 

I have provided evidence that Roc2 and Cul5 are exclusive binding partners in 

vivo (Figure 2.1). This preferential binding appears to be conserved in humans as well 

[8], yet little is known about the role of this Roc2-Cul5 complex. It has been shown that 

several lentiviruses hijack the cell’s Cul5- or Cul4-based E3 ligase machinery to degrade 

the host’s family of defense proteins (APOBEC family) [10-14]. APOBEC3G is an 

antiviral factor with cytidine deaminase activity. When it is packaged into newly 

replicated virions, it induces C->U mutations during reverse transcription [15-22], 

thereby rendering the viral DNA unreadable. 

Feng et al. recently identified a role for Cul5 in neuronal development [23]. 

Reelin is a secreted molecule that helps guide neuronal precursor cells to their final 
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positions. The authors show that Reelin phosphorylates the intracellular signaling protein 

Dab1 and leads to its degradation by a Cul5-based E3 ligase, thus suggesting that 

substrate adapters besides the F-box proteins may use specific phosphorylation as a way 

of targeting substrates to the E3 ligase machinery. Cul5 has also been shown to be highly 

expressed in the brain, although its function there is not well known [24,25]. 

 

Summary 

 In this chapter, I identify molecular null alleles of both Roc2 and Cul5. The 

presence of a single member of the Roc2 family has been well conserved throughout 

evolution. I show that mutation of Roc2 does not cause any overt phenotype. Rather, it 

only causes a slight reduction in female fecundity. This does not mean that Roc2 mutants 

have no phenotype, but it does reveal that Roc2 does not have any essential role during 

development. In Chapter II, I showed that Roc2 and Cul5 exclusively bind each other. In 

this chapter, I identify a null allele of Cul5 as well. Consistent with this exclusive 

binding, I also found that Cul5 mutants are viable and fertile. I created antibodies to both 

Roc2 and Cul5 and show that the mutant alleles of both proteins are devoid of protein 

expression. Interestingly, mutation of either Roc2 or Cul5 greatly reduces expression of 

the other. Finally, I show that Roc1a cannot bind the low level of Cul5 that remains in a 

Roc2 mutant. Thus, it is likely that Roc2 and Cul5 form an exclusive complex with a 

non-essential role during development.
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Materials and Methods 

RT-PCR Analysis 

RNA was extracted from embryos using TRIzol (Sigma-Aldrich) according to the 

manufacturer’s instructions. RT-PCR was previously described [1]. 

Primer sequences used for RT-PCR are as follows: 

CG8234F: 5’-CACCCATGTGTCCTTCTCCGT-3’ 

CG8234R: 5’-TGACCACGGTTCACAAACCAG-3’ 

CG30035F: 5’-GAGAACATCCGTCATGCGGTG-3’ 

CG30035R: 5’-GAGCAGGATGCCTATGTTACC-3’ 

Cul5F: 5’-CACAAAGTTCATTTGACGAGGCG-3’ 

Cul5R: 5’-TGTGGCCAGGCGGAGATTCTC-3’ 

Roc2F: 5’-CAGAGACCGGTATGGCTGATGATCCAGAA-3’ 

Roc2R: 5’-CCCATGCGCTGAATGGACCA-3’ 

 

Immunoprecipitations and Western Blotting 

For embryo lysates, overnight egg collections (0-16hrs) were dechorionated for 3 minutes 

in 50% bleach and dounce homogenized with 10 volumes of NP-40 lysis buffer (50mM 

Tris pH8.3, 150 mM NaCl, 0.5% NP-40, 1 ng/ml leupeptin, 0.5 ng/ml pepstatinA, 1mM 

PMSF). Lysates were centrifuged at 14,000 rpm for 10 min at 40C and the supernatant 

was collected. For immunoprecipitations, 25 µl protein-A beads were washed 3x with 1 

ml NP-40 lysis buffer, and then pre-incubated with antibody for 2h before adding to 1ml 

of lysate (1mg/ml protein). Immunoprecipitations were performed overnight at 40C. 
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Antibodies 

The following antibodies were used: rabbit anti-Cul1 (Zymed), affinity purified rabbit 

anti-Cul5, guinea pig anti-Roc2 whole serum, mouse anti-FLAG (Invitrogen), and mouse 

anti-V5 (Invitrogen). Anti-peptide antibodies against Roc2 and Cul5 were generated 

using synthetic peptides (Invitrogen) coupled to KLH (Pierce). The peptide sequences are 

CADDPENSVDRPTDD (Roc2) and CKRDRDIFEEVWPDK (Cul5). Injections and 

serum withdrawal were performed at Pocono Rabbit Farm & Laboratory, Inc. High titer 

bleeds of anti-Cul5 were purified with the same peptide using the Sulfolink Kit (Pierce). 

 

Results 

 To gain a better understanding of the Roc2 and Cul5 proteins, I identified alleles 

of each gene. I initially performed an imprecise P-element excision screen using the 

Roc22487 allele (Figure 3.2). The Roc22487 insertion is lethal, although this lethality is not 

caused by mutation of Roc2. The Roc22487 insertion in trans to a deficiency that removes 

the Roc2 locus is not lethal, suggesting that the lethality is caused by another insertion on 

the chromosome. After an unsuccessful excision screen, I discovered that several new 

alleles were available: Roc2pBac and Roc2KG (Figure 4.2a). The pBac insertion is in the 5’ 

UTR, just upstream of the first coding exon. The KG allele is in a large (~25kb) intron 

separating the first and second coding exons. I also acquired a single allele of Cul5, 

termed Cul5EY. This Cul5 allele is in the middle of the second coding exon. 
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Figure 4.2: Schematics of Roc2 and Cul5 Loci. A, Schematic of the Roc2 locus. CG8234 and CG30035 

are genes of unknown function as annotated by FlyBase (putative sugar transporters). B, Schematic of the 

Cul5 locus. Right angle arrows indicate start of transcription. Open arrow heads show the position of 

primers used for RT-PCR. Larger black triangles are P-element or piggyBac insertions. The boxes indicate 

exons, and the shaded regions represent the open reading frame. Dotted line indicates splicing. 

 

 I tested the new alleles by RT-PCR and found that the Roc2pBac allele is 

hypomorphic and the Roc2KG allele is null at the level of mRNA detection (Figure 4.3a). 

Neither allele down regulates the expression of nearby sugar transporter genes CG30035 

and CG8234. Also, the Cul5EY allele does not express a detectable level of Cul5 mRNA 

(Figure 4.3b). 
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Figure 4.3: RT-PCR of Roc2 and Cul5 Mutants. A. RT-PCR analysis of the Roc2 alleles. KG and pBac 

are homozygous for the insertions, and KG/pBac is a transheterozygote. Ribosomal protein 49 (rp49) was 

used as a positive control. B. RT-PCR analysis of the Cul5 allele. –RT indicates that no reverse 

transcriptase was added. 

 

 To further establish the severity of these alleles, I created antibodies against both 

Roc2 and Cul5. In both cases, I designed a peptide corresponding to the NH2-terminus of 

the protein (see Methods) and conjugated it to Keyhole Limpet Hemocyanin (KLH) to 

increase immunogenicity. Guinea pigs were used for the Roc2 injections, and rabbits 

were used for the Cul5 injections. High titer production bleeds were tested for their 

ability to recognize tagged full length Roc2 or Cul5 constructs induced in bacteria 

(Figure 4.4). Once serum of high sensitivity was identified, the serum was further tested 

for its ability to recognize the proteins from Drosophila embryo lysates (Figure 4.4). The 

Cul5 antibody was then further affinity purified (see Methods) using more of the same 

peptide. 



 58 

 

Figure 4.4: Testing of Roc2 and Cul5 Antibodies. A. Test bleeds from three guinea pigs injected with 

KLH-Roc2 peptide. Induced indicates the protein construct that was induced in BL21DE3 bacteria using 

IPTG (pGEX-1 vector). For antibody, each blot was probed with either α-GST or crude serum from one of 

three guinea pigs tested. Asterisk indicates GST-Roc2 protein. B. Test bleeds from two rabbits injected 

with KLH-Cul5 peptide. Either empty pTYB4 vector (-) or pTYB4-3xMyc-Cul5 was induced in BL21DE3 

bacteria using IPTG. Each blot was probed with either α-Myc, one of the pre-immune bleeds (Pre), or one 

of the test bleeds (Post). Arrow indicates 3xMyc-Cul5. 

 

 We then used these antibodies to test the Roc2 and Cul5 mutants for protein 

expression by Western analysi. As Figure 4.5 shows, both the Roc2KG and Cul5EY alleles 

are completely deficient in their corresponding protein expression. Thus, both of these 

alleles are molecular nulls. Consistent with Roc2 and Cul5 forming an exclusive complex 

(Figure 2.1), genetically removing one protein greatly reduces expression of the other. 

We were therefore surprised when both mutants were viable and fairly fertile (they both 

display a slight reduction in female fecundity). Since both proteins are very well 

conserved throughout evolution, they most likely serve a functional role that is not 

overtly apparent in Drosophila. 
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 While Roc1a does not bind Cul5 when Roc2 protein is present, it is possible that 

we were unable to observe a phenotype in Roc2 mutants because Roc1a can bind the 

remaining low level of Cul5 in a Roc2 mutant, and thereby functionally substitute for 

Roc2. We tested this by introducing a Roc1a transgene into the Roc2
KG null mutant 

background. Even in this genotype, Roc1a bound to Cul1 but not detectably to Cul5 

(Figure 4.6). Moreover, as we show in Figure 4.5c, the pool of Cul5 available for binding 

Roc1a is greatly reduced in Roc2 mutant animals relative to wild type. Thus, the Cul1 

and Cul5 E3 ligase complexes form independently of one another and do not compete for 

the same pool of Roc proteins. 

 

Figure 4.5: Western Analysis of Roc2 and Cul5 Mutants. A. Immunoblot comparing Roc2 protein levels 

in wild-type (w1118) and homozygous Roc2
KG embryos. B. Immunoblot comparing Cul5 protein levels in 

wild-type and homozygous Cul5EY embryos. In each case the embryos were derived from crosses between 

mutant mothers and fathers. C. Embryo extracts from Cul5 and Roc2 mutants were blotted with antibodies 

against the respective proteins. 
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Figure 4.6: Roc2 and Cul5 are Exclusive Binding Partners. Extracts were prepared from embryos with 

either a wild-type (Gen=+) or Roc2 mutant (Gen=Roc2
KG) background and the indicated transgene. The 

immunoprecipitated FLAG-Roc protein is indicated at the top. (-) indicates no transgene. 

 

Discussion 

Function of the Roc2-Cul5 E3 ligase 

We show here that Roc2 and Cul5 only bind to each other, and that knocking out 

one protein greatly reduces the level of the other. The Roc2-Cul5 complex is conserved 

in other species including C. elegans and humans [8,9]. What is the function of the Roc2-

Cul5 complex in vivo? A previous Drosophila study used viable P element insertions in 

the 5’UTR of Cul5 for over-expression experiments that suggested Cul5 is involved in 

cell fate specification and bouton formation in the larval CNS [26]. This study indicated 

that the insertion alleles were very weakly hypomorphic, and consistent with this we were 

not able to detect a difference in the Cul5 mRNA levels of these alleles by RT-PCR (data 

not shown). Here we report the identification of Roc2 and Cul5 transposon insertion 

alleles in which we cannot detect protein by immunoblot analysis of mutant embryos. 

These mutants develop into morphologically normal adults. Thus, Roc2-Cul5 is not 

required for development.  
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 It is possible that Roc2-Cul5 is redundant with other CDL. A recent report 

showed that Roc1-Cul2 and Roc2-Cul5 complexes may act redundantly during meiotic 

cell cycle progression in C. elegans [9]. RNAi knockdown of Roc2 or Cul5 did not reveal 

an obvious phenotype, consistent with our results. However, RNAi knockdown of either 

Roc2 or Cul5 mRNA in a cul-2 mutant background caused complete sterility, whereas 

cul-2 mutants only display partial sterility. We occasionally observed a small, but 

inconsistent reduction in female fecundity in both the Drosophila Roc2 and Cul5 

mutants, perhaps reflecting such redundancy. It should also be noted that Cul2- and Cul5-

based E3 ligases use similar substrate adapter machinery, consisting of ElonginB, 

ElonginC, and a variable BC box protein [8,27,28]. This suggests that Cul2 and Cul5 

complexes may have overlapping substrates in some organisms. Our data indicate that 

any potential redundancy between Cul2 and Cul5 in Drosophila must occur by utilizing 

different Roc proteins, as Roc1a is not part of a Cul5 complex, and Roc2 is not part of the 

Cul2 complex. 

 There have been several papers published on the role of a Cul5 complex in viral 

evasion of host immune response [10-12,29,30]. Primate lentiviruses, including HIV-1, 

code for a protein called Vif (Virion Infectivity Factor) that assembles with the host 

Cul5-ElonginB-ElonginC E3 ligase to target APOBEC3G (an antiviral cytidine 

deaminase) for degradation. Although a BLAST search using human APOBEC3G does 

not identify an obvious ortholog in Drosophilids, it is possible that some pathogens may 

use a similar Cul5 E3 ligase-hijacking system in Drosophila. Thus, perhaps Drosophila 

Roc2-Cul5 is involved in a stress response that is not revealed under standard laboratory 

growth conditions. That this specific complex has been conserved evolutionarily suggests 



 62 

that it plays an important role in many organisms. The role may not be essential, 

however, as Arabidopsis thaliana have no functional homologue for Cul5 (or Cul2)[31]. 
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CHAPTER V 

Discussion 

 

Roc-Cullin interaction determinants 

The Roc NH2-terminus is necessary for binding to Cullin protein [1] and forms a 

β-strand that makes an inter-molecular β-sheet with the Cullin [2,3]. Our analysis of 

“RING swap” protein chimeras indicates that in some instances the Roc NH2-terminal β-

strand is the primary contributor to Roc-Cullin binding specificity. Both fusing the Roc2 

NH2 terminus to the Roc1a RING domain (2NAR) and fusing the Roc1a NH2-terminus to 

Roc1b (ANBR) results in proteins that primarily display the Cullin binding preferences of 

Roc2 and Roc1a, respectively. However, our data clearly indicate that the RING domain 

also makes a contribution to Cullin binding preference. While a full length Roc1a 

construct bound Cul1-4 (Fig. 1a), a construct consisting of the Roc1a NH2 terminus fused 

to the RING domain of the more distantly related Roc2 (AN2R) was unable to bind any 

Cullin. Substituting in the Roc1b RING domain, however, was able to restore Cullin 

binding, and the resulting ANBR protein displayed a Cullin binding profile identical to 

Roc1a. This suggests that a region of the RING domain that is more similar between 

Roc1a and Roc1b than Roc2 participates in Roc1a-Cullin binding preferences. Roc1a is 

78% identical to Roc1b across the RING domain, while it only shares 45% identity with 

Roc2 in this region. Over the NH2-terminus, Roc1a and Roc1b identity drops to 50%, and 

Roc1a and Roc2 identity is 42%. Thus, Roc1a and Roc1b are more similar to each other 
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than to Roc2 over the entire protein sequence, but their identity is much higher in the 

RING domain. In addition, the 2NAR protein bound detectably to Cul3 while normal 

Roc2 protein did not, again suggesting that the Roc1a RING domain influences Cullin 

selection. Taken together, we conclude from our data that the Roc NH2-terminal β-strand 

makes a relatively stronger contribution to Cullin binding preference than the RING 

domain. 

 

RING Chimeras 

 One of our RING proteins, AN2R, was expressed but completely unable to bind 

Cullin and lacked ligase activity. A similar observation was previously reported for the 

TRAF3 and TRAF5 RING domain proteins [4]. Both proteins have a high level of overall 

sequence conservation, especially in the RING finger and zinc finger domains. TRAF5, 

however, can activate the NF-κB pathway when overexpressed, while TRAF3 cannot. 

This is dependent on the RING domain, as mutation of a key RING cysteine inhibits this 

activation. Substituting the RING domain and first zinc finger of TRAF3 with the 

corresponding sequence from TRAF5 creates a protein that can activate the NF-κB 

pathway as well as TRAF5 alone. However, a construct that fuses portions of the RING 

domains of TRAF3 and TRAF5 is not capable of NF-κB activation. The authors 

proposed that this chimeric protein might not be able to chelate zinc ions or fold properly. 

They also noted that TRAF5 has an aspartic acid in one of the zinc chelating residues 

where TRAF3 has a cysteine. Mutating the TRAF5 aspartic acid to cysteine inhibited 

TRAF5’s ability to activate the NF-κB pathway, even though both residues have the 

potential to coordinate metal ions. This may also explain why AN2R is unable to bind 
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any Cullin (and why it is inactive as a ligase). The eighth zinc coordination residue in 

Roc1a (and Roc1b) is an aspartic acid, while the corresponding residue in Roc2 is a 

cysteine. This suggests that RING proteins may have evolved to possess very specific 

metal-ion-interacting residues, and that all of these residues may not function identically 

in the context of the RING domain. However, the other Roc chimeras we constructed 

were able to bind cullins (ANBR, BNAR, 2NAR), and rescue of male sterility by the 

BNAR chimera indicates that Roc protein chimeras can be functional in vivo. While we 

could not test for rescue of any Roc2 mutant phenotype (because we could not detect 

one), the 2NAR protein was able to bind Cullins, albeit with a slightly different 

specificity than endogenous Roc1a or Roc2. 

 

RING-E2 Interactions 

The ANBR protein cannot rescue the lethality of Roc1a mutants even though it 

displays the same Cullin binding profile as Roc1a. Since we were able to show that 

ANBR can stimulate polyubiquitin chain formation using UbcH5 as the E2, why is this 

protein still unable to substitute for Roc1a? One possibility is that ANBR cannot bind the 

same E2’s as Roc1a in vivo. We were unable, however, to find any E2’s that interact with 

only Roc1a or Roc1b (Figure 2.7). While we were able to detect an interaction of all Rocs 

with Ubc5, it is possible that other factors are required in vivo for other Roc-E2 

interactions. It has been previously shown that some RING domains will interact with 

E2’s by in vitro assays that they do not interact with in vivo. An example of this is the 

Hrd1p RING domain. While the Hrd1p RING domain can use several E2’s for its 

function in an in vitro ligase assay, it can only use Ubc7 (and to a lesser extent Ubc1) in 
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vivo [5]. In this case, it was determined that other portions of Hrd1p, a membrane 

anchoring protein Cue1p, and proper cellular localization all influence specific RING-E2 

interactions in vivo [6]. Thus, it is important to confirm RING-E2 interactions in vivo 

before considering relevance for the organism. There are several other reports consistent 

with the idea that each RING domain only interacts with a small subset of E2’s in the cell 

[5-10]. 

There is a great deal of structural conservation between the published Cbl and 

Rbx1 crystal structures [3,11]. In their study, Zheng et al. superimposed Rbx1 onto the 

Cbl structure [3]. The authors noted that the E2-interacting residues are conserved (or at 

least maintain their hydrophobicity) between the two RING proteins. It is interesting that 

all of the E2-interacting residues as well as all the COOH-terminal Cul1 interacting 

residues they describe are identical between Roc1a and Roc1b. It may be that there is a 

difference in overall structure between Roc1a and Roc1b (which could be imparted by 

non-Cul1- or E2-interacting residues) that influences E2 interactions. Or there may be 

unidentified factors that aid or prevent certain RING-E2 interactions in vivo. 

 

Function of the Roc2-Cul5 E3 ligase 

We show that Roc2 and Cul5 only bind to each other, and that knocking out one 

protein greatly reduces the level of the other. The Roc2-Cul5 complex is conserved in 

other species including C. elegans and humans [14,15]. What is the function of the Roc2-

Cul5 complex in vivo? A previous Drosophila study used viable P element insertions in 

the 5’UTR of Cul5 for over-expression experiments that suggested Cul5 is involved in 

cell fate specification and bouton formation in the larval CNS [16]. This study indicated 
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that the insertion alleles were very weakly hypomorphic, and consistent with this we were 

not able to detect a difference in the Cul5 mRNA levels of these alleles by RT-PCR (data 

not shown). Here we report the identification of Roc2 and Cul5 transposon insertion 

alleles in which we cannot detect protein by immunoblot analysis of mutant embryos. 

These mutants develop into morphologically normal adults. Thus, Roc2-Cul5 is not 

required for development.  

 It is possible that Roc2-Cul5 is redundant with other CDL.  A recent paper 

showed that Roc1-Cul2 and Roc2-Cul5 complexes may act redundantly during meiotic 

cell cycle progression in C. elegans [14]. Consistent with our results, RNAi knockdown 

of Roc2 or Cul5 did not reveal an obvious phenotype. However, RNAi knockdown of 

either Roc2 or Cul5 mRNA in a cul-2 mutant background caused complete sterility, 

whereas cul-2 mutants only display partial sterility. We occasionally observed a small, 

but inconsistent reduction in female fecundity in both the Drosophila Roc2 and Cul5 

mutants, perhaps reflecting such redundancy. It should also be noted that Cul2- and Cul5-

based E3 ligases use similar substrate adapter machinery, consisting of ElonginB, 

ElonginC, and a variable BC box protein [15,17,18]. This suggests that Cul2 and Cul5 

complexes may have overlapping substrates in some organisms. Our data indicate that 

any potential redundancy between Cul2 and Cul5 in Drosophila must occur by utilizing 

different Roc proteins, as Roc1a is not part of a Cul5 complex, and Roc2 is not part of the 

Cul2 complex. 

 There have been several papers published on the role of a Cul5 complex in viral 

evasion of host immune response [19-23]. Primate lentiviruses, including HIV-1, code for 

a protein called Vif (Virion Infectivity Factor) that assembles with the host Cul5-
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ElonginB-ElonginC E3 ligase to target APOBEC3G (an antiviral cytidine deaminase) for 

degradation. Although a BLAST search using human APOBEC3G does not identify an 

obvious ortholog in Drosophilids, it is possible that some pathogens may use a similar 

Cul5 E3 ligase-hijacking system in Drosophila. Thus, perhaps Drosophila Roc2-Cul5 is 

involved in a stress response that is not revealed under standard laboratory growth 

conditions. That this specific complex has been conserved evolutionarily suggests that it 

plays an important role in many organisms. 
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