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Abstract

FENG LIU: Statistical Analysis on Market Microstructure Models
(Under the direction of Chuanshu Ji.)

The field of market microstructure studies the trading mechanisms and costs of

providing transaction services, with their impact on the short run behavior of security

prices. Investors are involved in the market for securities and related information. The

cost of a trade depends on the asymmetric information possessed by different partici-

pants in the trade. In this thesis, we perform empirical studies of stock microstructure

data and infer on several market microstructure models. The generalized Roll model

(1984) and Hasbrouck’s (2009) approach, although considered as a good starting point,

are too simple to be realistic. Kyle (1985), Glosten and Milgrom (1985) represent two

most important models that involve asymmetric information and transaction costs. We

derive a new characterization of Kyle’s equilibrium model and develop new algorithms

to solve recursive equations with computational efficiency. We also propose an exten-

sion of Kyle’s model in which the private information is gradually revealed into the

security price. Bayesian inference on model unknowns enables us to discover the trad-

ing strategies of the informed traders. These approaches facilitate real applications of

market microstructure models.
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Chapter 1

Introduction

The need for studies in financial economics becomes more urgent than ever after we have

experienced the recent downturns in financial markets. Statistics play an increasing role

in such studies. In the literature of mathematical finance and related statistical analysis,

most of the elegant results hold under the assumption of a “perfect market” or “fully

efficient market”, i.e. no transaction costs, no bid/ask spread, same information shared

by all market participants, no tax, no limit for short selling, etc. Conceivably that is

far from what happens in real financial markets. The area of market microstructure

studies what factors and mechanisms affect an asset price, how informed traders and

uninformed ones differ in obtaining information and using it to optimize their trading

strategies, etc. Research in this area ultimately will enhance our understanding of the

real markets and have more practical impacts on various issues. That is what we plan

to study.

Microstructure theory focuses on how specific trading mechanisms affect the price

formation process. In a trading market, financial assets are not transformed but trans-

ferred from one investor to another. The field of market microstructure studies the

costs for trading securities and the impact of trading costs on the short-run behavior

of security prices. Costs are reflected in bid-ask spreads. Typical market participants



are the investors who demand or supply the ultimate immediacy and the dealers who

facilitate the trading. An investor usually wishes to trade immediately and to buy low

and sell high. In reality however, traders actually buy at an (higher) ask price and

sell at a (lower) bid price. Those bid/ask prices are quoted by dealers (market makers,

limit order traders), and the spread “ask price minus bid price” is the compensation

that dealers receive for offering immediacy.

The literature on asset pricing often assumes that markets operate without costs

and frictions whereas the essence of the market microstructure research is to analyze the

impact of trading costs and various friction factors. The investors are generally involved

in the market for securities and related information. The market for securities deals

with the determinants of security prices such as earning per share etc. The market

for information deals with the supply and demand of information. It incorporates

the incentives of security analysis and related information transfer. The asymmetric

information is closely related to transaction services since the cost of a trade depends

on the information possessed by the participants in the trade.

The Efficient Market Hypothesis (EMH) asserts that financial markets are ”informa-

tionally efficient”, or that prices on traded assets already reflect all known information,

and instantly change to reveal new information. Therefore, according to the theory,

it is impossible to consistently outperform the market by using any information that

the market already knows. Investors and researchers have disputed the EMH both

empirically and theoretically. Dreman and Berry (1992) shows low P/E stocks have

greater returns. Behavioral economists Daniel Kahneman, Amos Tversky, and Richard

Thaler attribute the imperfections in financial markets to a combination of biases such

as overconfidence, overreaction, information bias in reasoning and information process-

ing. These errors in reasoning lead investors to avoid high-value stocks and buy growth

stocks at expensive prices.
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Market microstructure studies market friction and asymmetric information impact

on security prices. When we look at the security price dynamics with respect to market

microstructure, our focus has shifted from monthly or daily to minute or tick level with

more features such as bid price, ask price, bid size, ask size, trade price and trade volume

etc. The additional features of price and trading dynamics reflect the complexity of

microstructure.

Let Ft be the information set available to the market at time t, the payoff of a

security be a random variable, denote by v. Then the conditional expectation pt =

E(v|Ft) is referred to as the fundamental value or the efficient price of the security.

The information set is the starting point for many microstructure models. One of the

basic goals of microstructure analysis is a detailed study of how informational efficiency

arises, and the process by which new information comes into play or is reflected in

the price movement. In microstructure analysis, transaction prices are usually not

martingales. By imposing economic or statistical structure, it is often possible to

identify a martingale component of the price with respect to a particular information

set.

Roll (1984) suggests a model of high frequency trade prices which incorporate trad-

ing dynamics. This model is fundamental to market microstructure models such that

it illustrates the distinction between price movement due to fundamental security value

and those attribute to the market organization and trading mechanism. To estimate the

effective trading cost and returns formed from daily data, Hasbrouck (2009) advocates

a Bayesian approach based on a generalized Roll model. This method accommodates a

long time span by daily data, and the cost estimate is validated against microstructure

data. Although the Roll model is too simple to capture many realistic features in the

market, it articulates an important aspect of the bid-ask effect on trading price, and

serves as a good starting point.
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The public information set consists of some common knowledge concerning a proxy

of probability structure of the economy, i.e. various possible scenarios of a terminal

security value and associated types of agents. Most models make no provision for the

updates of non-trade public information (e.g., news release). As trading unfolds, the

most important updates to the public information set are market data, such as bid,

ask, closing prices and volumes of trades. Private information may consist of signals

about security value, i.e. more detailed knowledge of the terminal security value.

When all agents are ex ante identical, they are said to be symmetric. This does not

exclude private values or private information. The symmetry means that all individual-

specific variables (e.g., the coefficient of risk aversion, the signal) are identically dis-

tributed across all agents. The Roll model is still informational symmetric. In an

asymmetric information model, a subset of agents has superior private information

which leads to a trading advantage.

The majority of asymmetric information models in market microstructure examines

market dynamics subject to a single source of uncertainty. At the end of the trading, the

security payoff is known and realized. Thus, the trading process is an adjustment from

one well-defined information set to another set. The dynamics are neither stationary

nor ergodic, although path realizations could be stacked to disclose trading behaviors.

There are two main sorts of asymmetric models, among others:

(a) Sequential trade model

Randomly selected traders arrive at the market one by one, sequentially , and

independently . Reference include Copeland and Galai (1983), and Glosten and

Milgrom (1985). In Glosten-Milgrom model, orders arrive and are executed by a

market maker individually. The arrival rates of informed and uninformed traders

are determined exogenously. Informed traders trade when chosen by this mecha-

nism as if they have no future opportunities to trade. In other words, when trade

4



is profitable, they trade as much as possible.

(b) Strategic trade model

A seminal strategic model is studied in Kyle (1985). The Kyle model is a model

of a batch-auction market, in which market makers see the order imbalance at

each auction date. And market makers compete to fill the order imbalance, and

matching orders are executed at market clearing prices. Unlike the sequential

trade model, the strategic informed agent could trade at multiple times. Kyle

develops the optimal trading behavior for the informed trader and shows that the

agent will trade on his information only gradually, rather than exploit it to the

maximum extent possible.

The essence of both models is that a trade from the informed trader will reveal

his/her private information assuming traders are all rational. The ”buy” order orig-

inates from a trader who has positive private information, but not from those who

possess negative information (here we rule out ”bluffing”, i.e. the informed trader is

”bluffing” if he knowingly sells an undervalued or buys an overvalued asset). And the

competitive market makers will set their bid-ask quotes accordingly. In consequence,

greater information asymmetry would lead to wider spreads in quotes. The spread and

trade impact are major empirical implications of these models.

There is an extensive literature in market microstructure. Besides many research

and survey papers, here we mention several good books: Brunnermeier (2001), de

Jong, F. and Rindi, B. (2009), Harris, L. (2003), O’Hara, M. (1995), and Vives, X.

(2008).

Our focus in this thesis is model-based empirical studies. Research in empirical mar-

ket microstructure has two important aspects. On the economic side, certain trading

mechanisms and market frictions, such as transaction costs and asymmetric informa-

tion, are incorporated in a proposed microstructural model with a utility function. The
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resulting constrained optimization problem is tackled, and its equilibrium solution will

yield an optimal trading strategy from the perspective of each market participant, and

a risk-neutral clearing price for every traded asset. In particular, the solution often

enables us to interpret the economic impacts of certain parameters contained in the

model. On the statistical side, inference on model parameters is performed based on

real market data, usually represented by time series of asset prices and returns, trading

volumes, orders and quotes, etc. whether they are daily or involving intra-day activities.

More often than not, goodness-of-fit of the proposed model need not be satisfactory.

Naturally, more sophisticated models can be considered. However, a purely statistical

approach based on goodness-of-fit may not address the issue of economic interpretation.

Financial economists always pay greater attentions to what we can learn from a model.

To reconcile the economic and statistical aspects, a natural “spiral up” development

can start with a basic economic model, fit it by market data; With observed deviations

between the data and the proposed model, we proceed to modify the model and try

to derive the corresponding equilibrium solution, then check it with data again, etc.

The hope is to improve the goodness-of-fit and enhance the understanding of market

behaviors in each new iteration along such a research path.

This approach will be illustrated in a framework of the celebrated strategic trade

model in Kyle (1985). We aim at fitting several extensions of Kyle’s models using intra-

day data, and retaining its interpretability. Dynamic Bayesian modeling [see West and

Harrison (1997)] appears to fit our need, because in many problems sequential updating

between observed data and various unknowns follow a natural path. The unknowns

include model parameters (e.g. market depth and noise trading volatility) and latent

variables (e.g. an inside trader’s order).

Our contributions in this thesis include a new characterization of Kyle’s equilibrium

6



solutions. The algorithm we provide offers a computationally more efficient way to char-

acterize the equilibrium solutions, which also enables us to develop similar equilibrium

solutions in certain extensions to Kyle’s model, such as the one with noisy signals of

the asset value observed by the informed trader. We also propose an extended model

to Kyle’s in which the (reciprocal of) market depth {λn} and the informed trading in-

tensity {βn} form time series. A Bayesian inference procedure based on real intra-day

market data (at Wharton’s Database Services) is conducted for this dynamic model.

This dissertation is organized as follows. Several well-known market microstructure

models are summarized in Chapter 2, including the generalized Roll model, sequential

trade and strategic trade models. Chapter 3 describes our pre-modeling data analysis

and key findings which pave the way for our research. In Chapter 4, we present related

research on market liquidity. Chapter 5 outlines the new characterization of Kyle’s

model and inference on an extended model. We propose our dynamic Bayesian model

in Chapter 6 and carry out simulation studies for the Bayesian inference. The empirical

studies based on intra-day microstructure data are performed in Chapter 7. In Chapter

8, we discuss other research topics we have conducted.

7



Chapter 2

Basic Formulation and Major

Topics

2.1 Overview

The theoretical aspect of major microstructure research has concentrated on a number

of important models. These models provide useful tools for microstructure research and

results from the models are often directly referenced. Every model contains a number

of parameters. A lot of efforts are devoted to interpret how those parameters impact

market behaviors and investment decisions made by market participants. In contrast,

systematic empirical studies are falling behind, i.e. little has been done in statistical

inference on those proposed models and for model validation. Such limitation would

hinder further development in applications of those models.



2.2 Market dynamics

2.2.1 Price movement and information set

When we look at the security price dynamics with respect to microstructure, our focus

has shifted from monthly or daily to minute or tick level with more features at fine

granularity. Such features include bid price, ask price, bid size, ask size, trade price and

trade volume etc. The following figure illustrates ticker CSCO (Cisco System) traded

on Jan, 3 2002 at second level, data source from TAQ (Trade and Quote) database.

The trade price is augmented by bid/ask price quotes.

Figure 2.1: Sample Cisco trade price, bid, ask quotes

The three prices (bid, ask, and trade) differ. The ask (solid) is always higher than

the bid (dot-dashed), and trades (dashed) usually occurs at posted bid and ask prices,

but not always. They converge to each other. Those features reflect the complexity of

market microstructure.

For simple illustration, consider the evolution of fundamental security value de-

scribed by a random walk. Let pt denote the transaction price at time t, where t index
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regular point of time. The random-walk model with drift is: For t = 1, 2, ...,

pt = pt−1 + µ+ ut, (2.1)

where ut are iid N(0, σ2) random variables, and µ is the expected price change (the

drift). In microstructure data samples the mean of µ is often small relative to its

estimation variance, i.e, E(µ) < V ar(µ). It is often preferable to drop the mean return

from the model in most microstructure analysis.

When µ = 0, E(pt|pt−1, pt−2, ..) = pt−1, where E(|pt|) <∞ for all t. The pt process

follows a martingale. A more general definition involves conditioning on information

sets.

Let Ft be the information set available to the market at the time t, the payoff

of a security is a random variable, denote as v. Then the conditional expectation

pt = E(v|Ft), for all t is a martingale with respect to sequence of information sets Ft.

When the conditional information is all public information, the conditional expectation

is referred to as the fundamental value of the security.

In microstructure analysis, transaction prices are usually not martingales. By im-

posing economic or statistical structure, it is often possible to identify a martingale

component of the price with respect to a particular information set. In the random-

walk equation (2.1), ut are iid, the price process are time-homogeneous, that is, it

exhibits same behavior whenever we sample it. This is plausible only if the economic

environment underlying the security is also time-homogeneous. Securities like stocks

often violate this condition and are not suitable to be approximated by a random walk.

On the other hand, they usually have well-defined boundary conditions at maturity

that affect their values during the process: securities have different valuation far from

maturity compared to close to maturity. In market microstructure, the short-term be-

havior may still be approximated by a random-walk model, but this model is not a

10



valid choice to describe market behavior in the long-run.

2.2.2 Issues and interpretation

In equation (2.1), price change is ∆pt = pt − pt−1, which is iid with mean 0, variance

V ar(ut) = σ2, and µ set to 0. When we analyze the actual data samples, the short-run

security price changes always exhibits extreme dispersion and auto-correlation between

successive observations.

For financial security data samples, the price changes at time horizon often have

sample distributions with fat tails. The standard assumption that price changes are

normally distributed is violated. For a random variable X, the population moment of

order α is defined as EXα. If EXα is finite, as x→∞ , then the corresponding sample

estimate
∑
Xα
t /T , T is the sample size, is the consistent estimate of of EXα. To get a

consistent estimate of the standard error of mean, we require a consistent estimate of

the variance. Not all moments are finite if the normal assumption is violated. Recent

studies suggest that finite moments for daily equity returns exist only up to order 3,

and the trading volume only up to order 1.5 (Gabaix 2003). These findings impose

substantial restrictions on the sort of microstructure models we could estimate. The

existence of extreme values in finite samples may lead to many practical consequence.

Increasing the sample size may not increase the precision as fast as we expected, and

estimated parameters are very sensitive to model specification.

The price increments ∆pt in the random walk are iid and uncorrelated. But data

samples show the first-order autocorrelations of price changes are usually negative and

non-zero. For time series ∆pt, the autocovariance and autocorrelation is defined as

γk = Cov(∆pt,∆pt−k) and ρk = Corr(∆pt,∆pt−k). When the mean is zero, γk could

be estimated as the sample average γ̂k = T−1
∑T

t=1 ∆pt∆pt−k, and the autocorrelations

as ρ̂k = γ̂k/γ̂0.

11



We collect the data from WRDS TAQ database. The data samples we studied are

MSFT (microsoft Inc) trade prices from Jan, 2 to Jan, 5 2002. There are 200,000+

trades in MSFT at tick level. The estimated first-order autocorrelation of price incre-

ments is ρ̂1 = −0.4561, with standard error of 0.004. The p-value of significance test is

less than 10−5 which rejects zero autocorrelation hypothesis.

We would expect to find ρ̂k = 0 for k = 1 for a random walk model. But the

empirical study verifies the contrary. The economic explanation about this contradic-

tion motivates the Roll model, which explains autocorrelations of price increments by

meaningful economic and statistic implication.

2.3 Generalized Roll model

2.3.1 Roll model

Roll (1984) suggests a model of high frequency trade prices which incorporate market

dynamics. This model is fundamental to many market microstructure models such that

it illustrates the distinction between price movement due to fundamental security value

and those attribute to market organization and trading mechanism. The former arises

from the earning capability and future cash flows of the underlying security, whereas the

later are transient due to market behavior. The model provides meaningful economic

interpretation, and in some cases, explains the market movement well.

For t = 1, 2, ...,

pt = mt + c qt, (2.2)

mt = mt−1 + ut, (2.3)

which consists of an observation equation (2.2) and a state evolution equation (2.3),
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where mt denote the martingale efficient price at tth trade, pt is the trade price. The qt

are direction indictors, which take on the value 1 (buy) or -1 (sell) with equal probability,

the shocks u1, u2, ... are iid N(0, σ2) random variables, the parameters c > 0 and σ > 0

represent the effective cost and the volatility respectively. The two sequences {qt} and

{ut} are assumed to be independent. Note that only {pt} are observed, while {mt} and

{qt} are treated as latent variables.

The model implies

∆pt = c∆qt + ut, (2.4)

from which it follows that c = [−cov(∆pt,∆pt−1)]1/2, if cov(∆pt,∆pt−1) < 0, and

c = 0, otherwise. The first-order autocovariance is non-zero. ∆pt exhibits volatility

and negative serial correlation as the result of effective cost. The intuition is: If mt is

fixed so that prices take on only two values, the bid and the ask, and if the current

price is the ask, then the price change between the current price and the previous price

must be either 0 or −2c, and the price change between the next price and the current

price must be either 0 or 2c. The moment estimate is feasible, however, only if the

first-order sample autocovariance of the price change is negative.

If the dealers compete to the point where the costs are just covered, the bid and the

ask are mt−c and mt+c, with the spread 2c, a constant. We collect the data of 200,000

trades for MSFT on Jan, 2 to Jan, 5 2002 from TAQ, the first-order autocovariance is

γ̂1 = −0.00522. This implies c = $0.035, and bid-ask spread of 2c = $0.070; while the

estimates from TAQ database shows the bid-ask spread is $0.0625 which is close.
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2.3.2 Hasbrouck’s approach

To estimate the effective trading cost and returns formed from daily data, Hasbrouck

advocates a Bayesian approach based on the Roll model. This method accommodates a

long time span by daily data, and the cost estimate is validated against microstructure

data.

The unknowns comprise both the model parameters {c, σ2} and the latent data {qt}.

We could get posterior distribution f(c|σ2, p1, p2, ..., pT ) and f(σ2|c, p1, p2, ...pT ) via

multivariate Bayesian methods. However, the posterior joint density f(c, σ2|p1, p2, ..., pT )

is not obtained in a closed-form. This motivates the Gibbs sampler. The Gibbs sam-

pler constructs full posterior densities by iteratively simulating from full conditional

distributions for c, σ and qt.

The trading cost estimates from US stocks are formed from daily CRSP data. The

CRSP/Gibbs estimates are very close to TAQ estimates (with correlation 0.96), which

shows that the daily Gibbs estimates have strong validity. The estimation procedure

tries to resolve the two components among the sample price path: the permanent

innovations (due to the efficient price), and the transient effective cost (due to bid-ask

effect). When c >> σ, the bid/ask bounce generates reversals that are easy to pick out

which leads to clear resolution of the two components. When c is relative small, the

bid/ask effect is swamped by innovations in the efficient price.

Empirical sample results:

• Ticker symbol NEWE (Jan 1990) bid = 3.625, ask = 4.125, c ≈ 0.25, daily

volatility σ = 0.031 clear resolution

• Ticker symbol MSFT (Jan 2005) bid = 26.67, ask = 26.68, c ≈ 0.005, σ = 0.073

poor resolution

Although the Roll model captures important aspect of bid-ask effect on trading
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price, it nevertheless lacks completeness in terms of determinants. For expected returns,

it shows weak evidence of trading cost as a characteristic, and it shows no evidence

that the trading cost variation is a risk factor. In fact, Glosten and Milgrom (1985)

argues that c is determined endogenously and is unlikely to be independent of {mt},

the permanent component.

Most microstructure models including Roll model are dynamic over time and have

latent variables. Dynamic latent variable models can be formulated in state-space

form and estimated by maximum likelihood. For Gaussian cases, it could be estimated

using multivariate linear regression; For non-Gaussian latent variables(e.g., the buy/sell

indicator), the estimation procedure often involves nonlinear smoothing or Bayesian

MCMC methods. Hasbrouck’s work sheds light on Bayesian type of analysis.

2.4 Sequential trade model

We begin with Glosten-Milgrom model. Consider one security valued at V ∈ {Vh, Vl},

with Pr(Vl) = δ. The value is revealed at the end of trade. There are two types of

traders: the informed I and the uninformed U , the proportion of informed traders

among the population is µ. The market maker posts bid and ask quotes, B and A. A

trader is randomly drawn from the population. If the trader is informed, he buys if

V = Vh, sells if V = Vl. If the trader is uninformed, she buys or sells randomly with

equal probability. The market maker does not know the types of the trader. A buy is

a purchase by the trader at the dealer’s ask price, A; a sell is a trading at the bid, B.

We assume that the competition among dealers drives the expected profit to zero. The

market maker’s inference given that the first trade is a buy or a sell can be summarized

by his posterior belief about the low outcome.

Let pk(buy), (or pk(sell)) k = 1, 2..., denote the probability of a low outcome given

the kth trade is a buy (or a sell). p0 is the unconditional probability being a low
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outcome, which is δ. Let Bk denote kth order is buy, Sk denote kth order is sell. Then

the market maker’s posterior belief of a low outcome after the first trade is buy is,

p1(buy) = Pr(Vl|B1) =
Pr(Vl, buy)

Pr(buy)
=

δ(1− µ)

1 + µ(1− 2δ)
, (2.5)

and dealer’s expectation of the value given first buy order is E(V |B1) = Pr(Vl|buy)Vl +

(1 − Pr(Vl|buy))Vh. If competition drives the expected profit to zero, then the posted

”ask price” is the dealer’s expected value.

A = E(V |B1) =
δ(1− µ)Vl + (1− δ)(1 + µ)Vh

1− (1− 2δ)µ
, (2.6)

The bid price is similar, followed by a sell to the dealer. The dealer saw the first trader

is a sell order and post the bid price.

p1(sell) = Pr(Vl|S1) =
Pr(Vl, sell)

Pr(sell)
=

δ(1 + µ)

1− µ(1− 2δ)
, (2.7)

B = E(V |S1) =
δ(1 + µ)Vl + (1− δ)(1− µ)Vh

1 + (1− 2δ)µ
, (2.8)

The bid-ask spread is:

S = A−B =
4(1− δ)δ(Vh − Vl)µ

1− (1− 2δ)2µ2
, (2.9)

The dealer updates his belief and posts new quotes on each trades sequentially. This

process repeats for k=1,2,... This updating procedure could be expressed in general

forms since all probabilities in the event tree are constant except pk(.).

pk(buy|pk−1(.)) =
pk−1(.) (1− µ)

1 + µ(1− 2pk−1(.))
, (2.10)

pk(sell|pk−1(.)) =
pk−1(.) (1 + µ)

1− µ(1− 2pk−1(.))
, (2.11)
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It can be shown that pk(buy|pk−1(buy), pk−2(sell)) = pk(buy|pk−1(sell), pk−2(buy)), for

all k. The arrival sequence of the buy or sell orders does not matter. Therefore the

proportion of buy or sell orders is deterministic to the outcome.

The conditional expectation of the ask can be decomposed as

A = E(V |buy) = E(V |U, buy) Pr(U |buy) + E(V |I, buy) Pr(I|buy), (2.12)

rearranging terms gives

(A− E(V |U, buy)) Pr(U |buy) = −(A− E(V |I, buy)) Pr(I|buy), (2.13)

In this model, the economic interpretation for equation (2.13) is that the gain from

an uninformed trader on the left side is equal to the loss to the informed trader on

the right side (subject to zero profit expectation for the market maker). There is net

wealth transfer from the uninformed to the informed.

Although the trader is independently drawn from both population for order execu-

tion, one subset of the population (the informed) always trade in the same direction.

The result is that orders are serially correlated. We will do empirical study on this

topic in the next chapter.

One important economic justification of G-M model is trades update the price.

For any security at kth given trade, a buy order on the (k + 1)th trade will make a

upward revision in the conditional probability of a high outcome, and consequently

increase both ask and bid quotes and drive trading price upward. In contrast, a sell

order will drive price downward. The trade price impact is a particular useful empirical

implication.

In the Roll model, we denote {qt} as the trade direction variable (+1 buy, -1 sell)

with equal probability. In the G-M model, the order flow has no equal probability
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attributes to asymmetric information processed by difference traders, the informed

traders always trade in the direction of his knowledge.

The asymmetric information in the G-M model is µ, the proportion of the informed

trader in the population. In equation (2.11) and (2.9), the asymmetric information

parameter µ is positively related to pk(sell), and the bid-asked spread. The justification

behind is when the market have more informed traders, a sell order will be more likely

submitted by an informed trader instead of a uninformed, the probability of a low

outcome after sell is high; similarly, the probability of a high outcome given buy order

is also high. In consequence, the dealer will post wider bid-ask spread in response to

the change of posterior beliefs. These results suggest use of the bid-ask spread or the

impact of an order has on subsequent prices as proxies for the asymmetric information.

We have more discussions in the empirical study.

The limitation of G-M model is the informed traders are drawn randomly by the

market mechanism. When she is selected, she will trade once and the maximum (one

unit of order). There are no trading strategies for the informed trader to maximize her

profit. The order execution timing and order sizes are two important aspects to the

informed in empirical work while remain unaddressed in G-M model.

2.5 Strategic trade model

We follow the basic framework in Kyle (1985) with modified notation.

• Fix an asset in what follows. Suppose N auctions take place sequentially over a

trading period (e.g. day, month, year). For each n = 0, 1, . . . , N , tn denotes the

time for the nth auction, with 0 = t0 < t1 < · · · < tN = 1.

• There is a single informed trader who knows the liquidation value V of the asset, and

let Xn denote the aggregate position of the insider trader after the nth auction,
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so that ∆Xn = Xn −Xn−1 denotes the quantity traded by the insider at the nth

auction. However, V ∼ N(p0,Σ0) is considered as a random variable by a set of

noise traders.

• The quantity traded by noise traders at the nth auction is denoted by ∆Un ∼

N(0, σ2∆tn) with ∆tn = tn − tn−1. Assume U1, ..., UN are independent, and V is

independent of {U1, ..., UN}.

• Let pn be the asset’s market clearing price at the nth auction, ∆Yn = ∆Xn + ∆Un

denote the total orders at the nth auction. The information set FUn available to

uninformed traders (including a market maker and all noise traders) at tn consists

of the observations {p1, ..., pn; ∆Y1, ...,∆Yn}.

• The informed trader (insider) has a richer information set available to him before

making his move at the nth auction. Such a set F In−1 includes {X1, ..., Xn−1;V }

in addition to FUn−1. The insider chooses ∆Xn based on F In−1.

• After the move made by both insider and noise traders at the nth auction, the

market maker determines the price pn based on FUn−1 and ∆Yn.

• Let

πn =
N∑
i=n

(V − pi) ∆Xi (2.14)

be the total profits of the insider to be made at auctions n, n + 1, ..., N , and

X = (X1, ..., XN), P = (p1, ..., pN) denote the insider’s trading strategy and the

market maker’s pricing rule respectively. Hence πn = πn(X,P ).

Definition 1. A sequential auction equilibrium is defined as a pair (X,P ) such that

the following conditions hold:
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(C1) (profit maximization) For n = 1, ..., N and all X
′
= (X

′
1, ..., X

′
N) with X

′
i = Xi,

i = 1, ..., n− 1, we have

E[πn(X,P )|F In−1] ≥ E[πn(X
′
, P )|F In−1]. (2.15)

(C2) (market efficiency) For n = 1, ..., N we have

pn = E(V |FUn−1,∆Yn). (2.16)

Definition 2. A sequential auction equilibrium (X,P ) is called a linear equilibrium if

the component functions of X and P are linear, and a recursive linear equilibrium in

which there exist parameters λ1, ..., λN such that

pn = pn−1 + λn ∆Yn, n = 1, ..., N. (2.17)

The following theorem is the major result in Kyle (1985) which proves the existence

and uniqueness of linear equilibrium, and characterizes those modeling parameters in

it.

Theorem 1. There exists a unique linear equilibrium (X,P ), represented as a recursive

linear equilibrium, characterized by (for n = 1, ..., N)

∆Xn = βn (V − pn−1) ∆tn, (2.18)

pn = pn−1 + λn∆Yn, (2.19)

Σn = V ar(V |FUn ), (2.20)

E[πn|F In−1] = αn−1 (V − pn−1)2 + δn−1; (2.21)
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Given Σ0, the parameters βn, λn,Σn, αn, δn are the unique solutions to equations

αn−1 = [4λn(1− αnλn)]−1, (2.22)

δn−1 = δn + αn λ
2
n σ

2 ∆tn, (2.23)

βn ∆tn = (1− 2αnλn) [2λn(1− αnλn)]−1, (2.24)

λn = βn Σn σ
−2, (2.25)

Σn = (1− βnλn ∆tn) Σn−1, (2.26)

subject to αN = δN = 0 and λn(1− αnλn) > 0.

In Kyle’s model, nobody knows the market clearing price when they submit their

orders. Because the liquidity trader order flow is exogenous, there are really only two

players: the informed and the market maker. The informed trader wants to trade

aggressively on her private information, i.e., buy a large quantity if her information is

positive. But the market maker knows that if he sells into a large net buy customer,

he himself is more likely to be on the wrong side of the trade. He protects himself by

setting a price that is increasing in the net order flow. This acts as a brake on the

informed trader’s desires: if she wishes to buy a lot, she will have to pay a high price.

This is the economic implication of Kyle’s solution to the model.
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Chapter 3

Data Structure and Empirical

Study

We conduct our empirical studies on market microstructure models discussed previ-

ously. The results presented in this chapter motivate us both theoretical and empirical

implications of those models.

3.1 Trade volume or order imbalance

Figure 3.1: Relationship between trade volume and return

The trade volume is the total number of trade orders or trade size at specific time



frame, e.g. daily. The basic sequential trade model has one trade quantity in each trade.

Trades in the real markets, of course, occur in varying quantities. The trade volume is

an important market dynamics. To get a preliminary impression about trading volume

and stock return, we obtain 10 randomly chosen firms, data from Jan 1988 to Dec 2004

from CRSP database, and plot the cross-sectional daily stock return over daily trade

volume in Fig. 3.1. The summary statistics is shown in table 3.1.

Table 3.1: Summary statistics of daily returns vs. daily volume

Variables Sample period Observations Mean SD

Return 01/1988 - 12/2004 32890 0.00126 0.022964
Volume 01/1988 - 12/2004 32890 22173.54 30640.38

Variables Max Min Skewness Kurtosis

Return 0.195652 -0.15598 0.06162 3.839
Volume 236675 81 1.63798 2.60493

From Fig. 3.1, we know that volume are quite symmetric across zero return and

high volume does not tend to be associated with high return. In Kyle’s strategic trading

model, the author conjectures a relationship between a firm’s stock price change and its

order flow. In Pasquariello and Vega (2009) empirical study, they address cross-trading

effect with daily aggregated order imbalance. Chordia and Subrahmanyam (2004) show

that the total number of transactions has greater explanatory power for stock-return

fluctuation than trading volume. We will take similar approach with modified setting.

The intuition is that total trade volumes can be decomposed into sell orders and buy

orders, it is the order imbalance between sell and buy orders which drive the market

movement.

We use intraday, transaction-level data from trade and quotes (TAQ) database

during regular market hours (9:30am to 4:00pm). Corresponding daily price data comes

from CRSP. We obtain MSFT (Microsoft) transaction level trading data on January
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2001 as a starting point. First, we filter the TAQ data by deleting small number of

traders and quotes representing possible data error (e.g., negative prices or quotes).

We then assign the trades using the following procedure.

1. If a transaction occurs above (or below) the prevailing mid-point of bid-ask spread

at that particular time, we assign buy (or sell) sign to that transaction.

2. If the transaction price is at the mid-point of the spread, we will label it a buy

(or sell) if the sign of the last trade price change is positive (or negative).

We define the trade direction variable as +1 (buy) or -1 (sell) for each transaction,

similar to the Roll model. Then we get the signed order flow by multiple trade direction

and order size, denote as ∆̂yt, where ∆yt = ∆xt + ∆ut in Kyle’s setting.

We denote order imbalance as the total number of signed order flows at given time

period, e.g. daily. We would expect the signed order flows or order imbalance have

greater explanatory power.

3.2 Trade direction

We use {qt}, +1 (buy) or -1 (sell), t = 1, 2... to denote intraday trade directions as we

did in the previous chapter. In the Roll model, qt has equal probability, which implies

E(qt|Ft−1) to get zero in the empirical study. Each trading date has one series of high

frequency trade directions. We got intraday estimates of the first-order autocorrelation

of this high frequency series ρ̂k = Corr(q̂t, ˆqt−k), with k = 1. Table 3.2 shows MSFT

first-order autocorrelation for intraday trade directions in Jan 2001.

In table 3.2, the first column is the trading date. Within each trading date, we

got positive correlation between {qt} and {qt−1} as shown in the second column. The

intraday correlation estimates are all strongly nonzero by pearson’s test. We are sur-

prised to get very close intraday positive correlations among all trading dates, with
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Table 3.2: Sample first-order autocorrelation of trade direction

Date Autocorrelation N P-Value

2 0.3306 40237 <0.001
3 0.3049 58859 <0.001
4 0.3331 48718 <0.001
5 0.3341 42902 <0.001
8 0.3559 41755 <0.001
9 0.3543 55388 <0.001
10 0.3837 48945 <0.001
11 0.3232 41093 <0.001
12 0.3545 36273 <0.001
13 0.3653 33158 <0.001
17 0.3529 31529 <0.001
18 0.3786 42356 <0.001
19 0.3526 73470 <0.001
22 0.3871 37743 <0.001
23 0.4009 31299 <0.001
24 0.3995 45075 <0.001
25 0.3954 36869 <0.001
26 0.3934 34915 <0.001
29 0.3666 27078 <0.001
30 0.3769 25538 <0.001
31 0.3449 34231 <0.001

Mean 0.3614 41306.24
Std 0.0270 11258.93

mean 0.3614 and standard error 0.027.

These results have meaningful empirical implications. First, the assumption of the

Roll model is not valid in practice. The sequence of the order types are more likely

to pair with each other, buy after buy, sell after sell. Secondly, this may imply the

asymmetric information processed by difference traders, since the informed traders

always trade in the direction of his knowledge. Finally, this explains how day traders

could make money by following the market. The daily order flows have high probability

to be in the same trade directions sequentially. We would like to address this finding

in our statistical inference.

The intraday signed order flows ∆̂yt on the other hand do not exhibit positive
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autocorrelation, it is not significant against zero hypothesis. The order sizes are indeed

exogenous along the time horizon (e.g. 500 size order could be followed by another 10

or 2000 size order).

3.3 Asymmetric information

In G-M model, the asymmetric information is µ, the proportion of the informed trader

in the population. The asymmetric information parameter µ is positively correlated to

pk(sell), and the bid-asked spread from the previous chapter. These results suggest use

of the bid-ask spread or the impact of an order has on subsequent prices as proxies for

the asymmetric information. We study the intraday bid-ask spread movement across

one year.

Figure 3.2: MSFT intraday bid-ask spread movement

Fig. 3.2 depicts the MSFT intraday bid-ask spread movement in year 2001. From

the figure, we know that the intraday bid-ask spread are disjoint and stable. And the

market maker does not post irrational bid-ask spreads based on trade price movement.

The conclusion is that this spread remained constant at least for intraday or short time
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period (i.e., one week).

On the other hand, we look at the trade price movement vs. the bid-ask spread. Fig.

3.3 illustrates the trade price movement in corresponding year. The bid-ask spread does

Figure 3.3: MSFT trade price movement

not have strong correlation with the trade price either positively or negatively. The

spread contains dealer’s posterior inference about the degree of informed traders, and

this measurement is constant at short period. In Fig. 3.2 and 3.3, dealer’s posterior

beliefs about the degree of asymmetric information is decreasing, therefore we have

seen higher spread in January-April than later the same year, while the trade price still

move upward or downward in both directions.

The degree of informed trading among total market participants may not change in

the short time period, at least from the dealer’s viewpoint (dealers only see aggregated

order flow, not distinguished one). This implies that the market maker makes no

inference when he see the total order imbalance at tick level. He will shift the whole

bid-ask band rather than change the spread itself.
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3.4 Market depth

The market depth is an important characteristics of market dynamics. It refers to the

size of an order flow innovation required to change the price in a given amount. In

Kyle’s framework, the market depth is λ−1
n , with pn = pn−1 + λn∆Yn for n = 1, ..., N .

It deals with order imbalance with respect to the price increment. We do empirical

studies at intraday transaction level.

First, we present the aggregated intraday transaction level order imbalance across

trade price increments. Figure 3.4 illustrates MSFT aggregated order imbalance vs.

price changes at each trading date using microstructure data. The correlation between

Figure 3.4: Aggregated intraday order imbalance vs. price change

the two series is 0.76. The results show strong explanatory power of order imbalance

in the price change movement.

We conjecture the market depth (or λn) is constant in Kyle’s model. We use regres-

sion to do our analysis. The t-statistics for λ coefficient is 5.09, with p-value less than

10−5 which rejects zero coefficient null hypothesis. The line fit chart is depicted in 3.5.
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Figure 3.5: Line fit with market depth (or λn)

The empirical results show that the market depth could be modeled with the intro-

duction of order imbalance or signed order flow. These findings have significant impact

on the model inference.

In Kyle’s model, the informed trader wants to trade aggressively on her private

information, i.e., buy a large quantity if her information is positive. But the market

maker knows that if he sells into a large net buy customer, he is more likely to be on

the wrong side of the trade. He protects himself by setting a price that is increasing in

the net order flow. This acts as a brake on the informed trader’s desires: if she wishes

to buy a lot, she will have to pay a high price. If there is an imbalance between buy

and sell orders, the market maker makes up the difference in the Kyle’s model. The

results assert that it is the order imbalance that drives the price movement (price set

by the market maker).
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3.5 Market liquidity

In the previous section, we considered the liquidity parameter λ, and the results show

that demanding liquidity has a cost. Intuitively, if you demand high liquidity, the price

would be high. In Kyle’s single period trading model, the λ takes following form:

λ =

√
Σ0

2σ
, (3.1)

√
Σ0/σ is ratio of volatilities, i.e., the value uncertainty vs. the noise order uncertainty.

Therefore, the λ ∆Y is like a liquidity risk, where ∆Y is the total order imbalance.

λ ∆Y =

√
Σ0

2

∆Y

σ
, (3.2)

∆Y/σ is proportional to the percentage of order imbalance. The higher σ, the lower

the price impact. It is scaled by the value uncertainty
√

Σ0. The higher the security

value uncertainty, the higher the price impact.

The factor model starts with Fama and French (1992), which shows that factors

related to company size and BtoM (Book to Market) ratio are able to explain a signifi-

cant amount of the common stock variation in stock returns. They run the three-factor

model of the form:

Fama and French 3-factor

Rjt−Rf t = αj + βj (Rmt−Rf t) + γj SMBt + ξj HMLt + εjt, (3.3)

where Rjt is the return to portfolio j for time t, Rf t is the risk-free return for time t.

SMBt is the small cap stock vs big cap stock, and HMLt is the high BtoM stocks vs

low BtoM stocks. We would conjecture market liquidity as an additional factor given

that demanding liquidity has a cost.
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Chapter 4

Liquidity in market microstructure

models

4.1 Liquidity and expect returns

Financial markets deviate from the perfect-market ideal in which there are no impedi-

ments to trade. A large and growing body of work has identified a variety of market im-

perfections, ranging from information asymmetries, participation costs, different forms

of trading costs, inventory risk(i.e., the market maker, being exposed to the risk of price

changes while he holds in inventory, requires compensation), to search frictions(i.e., a

tradeoff between search and quick trading at a discount) etc. These cost of illiquidity

should affect the securities prices if investors require compensation for bearing them.

In addition, because liquidity varies over-time, risk-averse investors may require a com-

pensation for being exposed to liquidity risk. These effects of liquidity on asset prices

are important. Most papers focus on theoretical study of a specific imperfection that

predicts how liquidity affects a security’s expected return and/or the empirical connec-

tion between the two. The basic premise in these studies is that illiquidity is positively

related to the expected returns.



We start the overview with different liquidity measures, and explore the effect of

liquidity on assets expected returns by empirical evidence. The literature on liquidity

is vast. Madhavan (2002), Bias, Glosten and Spatt (2005), Cochrane (2005), Vayanos

and Wang (2009) have surveyed on liquidity and asset prices. While the effects of

imperfections on market liquidity and further on expected returns have received much

attention, their focuses are expected returns and mostly based on factor models, i.e,

adjusted CAPM, adjusted Fama-French models etc. We then distinguish our work from

those related literature such that we study the origins of illiquidity(e.g., in the form of

bid-ask spreads or market impact) and fundamentals of the imperfections on the price

movement with high frequency microstructure data.

4.2 Liquidity measures

One strength of a frictionless economy is that a security’s cash flows and the pricing

kernel are sufficient statistics for the pricing operation described as:

pt = Et{ (pt+1 + dt+1)
mt+1

mt

}. (4.1)

where mt is the stochastic discount factor, dt is the dividend process. Equation (4.1) is

the main building block of standard asset pricing theory. The assumption of frictionless

market is combined with no arbitrage, agent optimality and equilibrium. No arbitrage

means that one can not make money in one state of nature without paying money in

at least one other state of nature. Agent optimality derives investor’s optimal portfolio

choice only on a solution in the absence of arbitrage. If the investor’s preferences are

represented by an additively separable utility function Et
∑

s us(cs) for a consumption

process c, then mt = u′t(ct) is the marginal utility of consumption. In a complete

market, agents i = 1, ..., I with separable utility functions ui compete to a competitive
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equilibrium, (4.1) is satisfied with utility function ut =
∑

i λ
iuit where λi is the Pareto

Weights and depend on agents’ endowments. In a frictionless market, the assumption

of no arbitrage is essentially equivalent to the existence of a stochastic discount factor.

That means the pricing kernel summarizes all the needed information contained in

utility functions of agents, endowments, correlation with other securities etc.

In an economy with frictions, the price depends additionally on the security’s liq-

uidity and the liquidity of all other securities. In some liquidity models, there still

exists a pricing kernel m such that (4.1) holds. In this case, illiquidity affects mt, but

the pricing of securities can still be summarized using a pricing kernel. The empirical

analysis of Pastor and Stambaugh(2003) is based on an assumption that there exists

an m that depends on a measure of aggregate illiquidity. In other models of illiquidity,

however, there is no pricing kernel such that (4.1) applies. For instance, in transaction-

cost-based models, securities with the same dividend cash flows have different prices

if they have different transaction costs. Hence, a security’s transaction cost not only

affects the nature of market equilibrium, it is the fundamental attribute of the security.

If there does not exist a pricing kernel, the general equilibrium prices with illiquidity

may depend on the fundamental parameters in a complicated way that does not have a

closed-form expression. Nevertheless, we still can get important insight into the main

principles how liquidity affects assets expected return under certain assumptions and

with the assistance of empirical studies.

We consider the challenges of choosing a liquidity measure L. The problem of

estimating liquidity on asset returns relies on how to measure liquidity since there

is hardly a single measure that captures all of its aspects. Moreover, measures used

in empirical studies are constrained by data availability. High-frequency data that

enable the estimation of liquidity from the actual sequence of trade and quote become

available in U.S only recently and are thus available for a relative short period of time.
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Consequently, researchers requires a long time series to increase the power of the tests.

In stock market outside U.S., high frequency data are hardly available, researchers

need to find other measures of liquidity using low-frequency data, such as daily return

data, and trading volume etc. The empirical studies from related work employ various

measure of liquidities.

4.2.1 Bid-ask spread

Amihud and Mendelson(1986) studies the liquidity on stock’s expected return using

quoted bid-ask spreads. These predictions are tested using stock returns over the

period 1961-1980 and data on quoted relative spreads. The spreads are the average of

the beginning- and end-of-year end-of-day quotes, collected from Fitch quote sheets for

NYSE and AMEX stocks. The estimation model is:

Rj = a+ b βj + c ln(Sj). (4.2)

where Rj is the monthly stock portfolio return in excess of the 90-day Treasury Bill rate,

βj is the systematic risk, estimated from the preceding period, and Sj is the relative

bid-ask spread. All coefficients are significant.

The model’s estimations are: (1) the portfolio return increases with the bid-ask

spread, which is the main result. (2) the return-spread slope decreases in the bid-

ask spread, reflecting concavity which is due to clientele effect. In equilibrium, less

liquid assets are allocated to investors with longer holding periods, which mitigates the

compensation that they require for the costs of illiquidity. (3). the size effect reflects

an aspect of liquidity - it is less costly to trade stocks of large companies - then the size

effect should weaken if stock expected return equation includes the bid-ask spread, i.e.,

the bid-ask spread is known to be negatively related to firm size.

34



Figure 4.1: Relationship between stocks’ excess monthly returns and bid-ask spreads

While on NYSE and AMEX, individual investors could trade through limit orders

that had priority over the specialist’s quotes and thus avoid the cost of spread although

incurring the cost of risk and delay, on Nasdaq trading are done mostly through mar-

ket makers, and investors have to endure the cost of spread. The estimated effect of

the bid-ask spread is expected to be stronger when using Nasdaq stocks than NYSE

and AMEX. This is shown in Eleswarapu(1997), who estimates a model where stock

return is regressed on the stock’s beta, relative spread and log(size). The estimation is

performed for individual stocks employing Fama and MacBeth method. The consistent

significant effect is the relative spread which has positive effect.

4.2.2 Kyle’s λ

A finer measure of illiquidity is Kyle’s λ, which is used by Brennan and Subrah-

manyam(1996); Chordia, Huh and Subrahmanyam (2007) and Chordia et al (2009).
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Chordia et al. named it ”theory-based” illiquidity as it originates from Kyle’s frame-

work.

Brennan and Subrahmanyam(1996) estimate λ by regressing the price change, on

the transaction size. The slope coefficient from the regression is Kyle’s λ which measures

the price impact of a unit of trade size, being larger for less liquid stock. The regression

model also includes φ = Dt −Dt−1, where Dt = 1 for a buy transaction and Dt = −1

for a sell transaction. The coefficient of this differential, φ, reflects the fixed cost of

trading that is unrelated to the order size. The illiquidity variables that are used

are: (1) Cq = λ q/P , the average of the marginal cost of trading, where q and P are

monthly averages of trade size and price. (2) φ/P , the relative fixed cost of trading.

These measures of illiquidity are then used in a cross-section regression of monthly

NYSE stock returns for the years 1984-1991. The regression model employs Fama and

French (1992) three factors model in addition to the illiquidity variables: The market

return index, the small-minus-big firm return indexes and high-minus-low book-to-

market return index.

The results show that Cq have a positive and significant effects on returns adjusted

by Fama-French factors. In addition, C2
q has a negative and significant effect, consistent

with Amihud and Mendelson (1986) clientele effect that generates an increasing and

concave relationship between returns and illiquidity costs.

Chordia, Huh and Subrahmanyam (2009) consider the illiquidity λ in Kyle-type

framework with extension to N informed traders and each informed trader i observes a

signal with an error εi, i = 1, 2, ...N , where εi ∼ N(0, vε). The asset payoff is W = W̃+δ,

where W̃ is expected payoff, and δ ∼ N(0, vδ). The informed traders maximize their

expected profit, while the uninformed traders who trades randomly and submit order
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size, z ∼ N(0, vz). The author shows the Kyle’s measure λ is given by:

λ =
vδ

(N + 1)vδ + 2vε

√
N(vδ + vε)

vz
. (4.3)

where N is the number of informed traders. vδ is the variance of the asset payoff,

vz is the variance of uninformed trades, vε is the variance of signal innovation. Note

that this measure requires proxies, for instance, a proxy for the variance of the signal

innovation, as well as that of the signal itself. Each of those variance is represented

by different proxies. vδ is proxied through the earnings volatility from the most recent

eight quarters. vε is proxied by the earnings surprise defined as the absolute value of

the current EPS minus the EPS forecast four quarters ago. vz is proxied by the average

daily dollar volume (in million dollars) within the previous month.

The main model is still multi-factor model. The key contribution is that it uses

Kyle’s λ to derive a liquidity measure and to establish the connection between liquidity

and expected returns.

4.2.3 Daily returns, trading volume and ILLIQ

Researchers often use alternative measures based on daily data on volume, shares out-

standing, and prices, which are available for most markets.

Brennan, Chordia, and Subrahmanyam(1998) uses stock’s dollar trading volume as

a measure of liquidity in a multi-factor asset pricing model, version of the APT. Datar,

Naik and Radcliffe (1998) use stock turnover (the ratio of stock volume to the number

of shares outstanding) as a measure of liquidity. The logic behind the scene is that if

in equilibrium less liquid stocks are allocated to investors with longer holding periods

(Amihud and Mendelson, 1986), or investors reduced their trading frequency of illiquid

stocks (Constantinides, 1986), then even though liquidity is not directly observed, it
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can be inferred from the average holding period of the stock, which is the reciprocal of

the stock turnover. Datar et al. estimate the cross-section of NYSE stock returns on

stock returns in years 1963-1991, controlling for size, book-to-market ratio and beta,

employing the Fama and MacBeth method. The result is that the longer the average

holding time which implies lower liquidity, or low turnover, the high the expected

return.

Amihud (2002) examines the effect of illiquidity on the cross-section of stock returns

using an illiquidity measure called ILLIQ, where ILLIQ = |R|/(P ∗ V OL), where R

is daily return, P is the closing daily price and V OL is the number of shares traded

during the day. Intuitively, ILLIQ reflects the relative price change that is induced by

a given dollar volume, which is related to Kyle’s pricing impact λ, but on a daily basis.

4.3 Liquidity risk

Liquidity varies over time which means the investors are uncertain what transaction cost

they will incur in the future. Secondly, since liquidity affects the level of prices, liquidity

fluctuations can affect the asset volatility itself. For both reasons, liquidity fluctuations

constitute a new level of risk that impact the fundamental risk. This section explores

liquidity models of the effect of a security’s liquidity risk on its expected returns.

Acharya and Pedersen (2005) presents a model which gives rise to a ”liquidity-

adjusted CAPM” model that shows how liquidity risks are captured by three liquidity

betas, and how shocks affect future expected returns. Re-writing the one-beta CAPM

in net returns in terms of gross returns, we get a liquidity-adjusted CAPM for gross

returns. Acharya and Pedersen introduce three liquidity betas, βL1, βL2, βL3.

Et(r
i
t+1) = rf + Et(c

i
t+1) + λt(βt + βL1

t − βL2
t − βL3

t ). (4.4)
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where λt = Et(r
M
t+1 − cMt+1 − rf ) is the risk premium. Et(c

i
t+1) is the expected relative

illiquidity cost. The models states that the required excess return is the expected

relative cost plus four betas times the risk premium.

The first liquidity beta βL1
t measures the covariance between the asset’s illiquidity

and the market illiquidity. The model implies the expected return increases with this

covariance, because investors want to be compensated for holding a security that be-

comes illiquid when the market in general becomes illiquid. The second liquidity beta

βL2
t measures the exposure of asset i to marketwide illiquidity, which is usually nega-

tive. This beta affects return negatively because investors are willing to accept a lower

return in times of market illiquidity. The more negative the exposure to the market

illiquidity, the greater is the expected return. The third liquidity beta βL3
t measures the

sensitivity of the asset’s illiquidity to the market conditions. This beta is also negative

for most stocks.
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Chapter 5

Inference on an Extended Kyle’s

Model

Research in empirical market microstructure has two important aspects. On the eco-

nomic side, certain trading mechanisms and market frictions, such as transaction costs

and asymmetric information, are incorporated in a proposed microstructural model

with a utility function. The resulting constrained optimization problem is tackled, and

its equilibrium solution will yield an optimal trading strategy from the perspective of

each market participant, and a risk-neutral clearing price for every traded asset. In

particular, the solution often enables us to interpret the economic impacts of certain

model parameters contained in the model. On the statistical side, inference on model

parameters is performed based on real market data, usually represented by time series

of asset prices and returns, trading volumes, orders and quotes, etc. whether they

are daily or involving intra-day activities. More often than not, goodness-of-fit of the

proposed model need not be satisfactory. Naturally, more sophisticated models can

be considered. However, such purely statistical approach may deviate us from an in-

terpretable economic framework, and it may not be clear what we can learn from an

improved model even it fits data better.



This work begins with the celebrated strategic trade model in Kyle (1985). It aims

at fitting a modified version of Kyle’s model using some intra-day data, and retaining

its interpretability. Our study consists of three parts:

[1] an alternative characterization of the equilibrium solution to Kyle’s model;

[2] derivation of the equilibrium solution to an extended Kyle’s model in which the

informed trader observes a noisy signal of the asset value;

[3] A case study of simulated equilibrium solutions.

[4] MCMC dynamic Bayesian inference on a proposed extension of Kyle’s model in

the next chapter.

Kyle (1985) proves the existence and uniqueness of a linear equilibrium solution in

which the parameters are derived via a set of recursive formulas. In Part [1], we provide

a new method to reproduce those parameters. Our method is computationally more

convenient and direct. It also paves a road for deriving equilibrium solutions to certain

extended models. One extension is analyzed in Part [2], in which the informed trader

observes a noisy signal of the asset value v instead of vitself. In Part [4], we perform

Bayesian inference on an extended model based on real microstructure data.

5.1 New derivation of Kyle’s equilibrium solution

Recall the basic framework and major result in Kyle (1985).

• Fix an asset in what follows. Suppose N auctions take place sequentially over a

trading period (e.g. day, month, year). For each n = 0, 1, . . . , N , tn denotes the

time for the nth auction, with 0 = t0 < t1 < · · · < tN = 1.
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• There is a single informed trader who knows the liquidation value v of the asset, and

trades a quantity ∆xn at the nth auction. However, v ∼ N(p0,Σ0) is considered

as a random variable by (uninformed) noise traders.

• The quantity traded by noise traders at the nth auction is denoted by ∆un ∼

N(0, σ2
u∆tn) with ∆tn = tn − tn−1. Assume ∆u1, ...,∆uN are independent, and

they are also independent of v.

• Let ∆yn = ∆xn + ∆un be the batch order at the nth auction, and FUn−1 denote the

information set available to uninformed traders (including a market maker and all

noise traders) at the beginning of the nth auction, consisting of the observations

{p1, ..., pn−1; ∆y1, ...,∆yn−1}, where pi represents the asset’s market clearing price

determined at the ith auction.

• The informed trader (insider) has a richer information set available to him before

making his move at the nth auction. Such a set F In−1 includes {∆x1, ...,∆xn−1; v}

in addition to FUn−1. The insider chooses ∆xn based on F In−1.

• After the move made by the insider at the nth auction, the market maker determines

the price pn based on FUn−1 and ∆yn.

• Let

πn =
N∑
i=n

(v − pi)∆xi (5.1)

be the total (future) profits of the insider to be made at auctions n, n+ 1, ..., N ,

and X = (∆x1, ...,∆xN), P = (p1, ..., pN) denote the insider’s trading strategy

and the market maker’s pricing rule respectively. Hence πn = πn(X,P ).

Definition 3. A sequential auction equilibrium is defined as a pair (X,P ) such that

the following conditions hold:
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(C1) (profit maximization) For n = 1, ..., N and all X
′
= (∆x

′
1, ...,∆x

′
N) with ∆x

′
i =

∆xi, i = 1, ..., n− 1, we have

E[πn(X,P )|F In−1] ≥ E[πn(X
′
, P )|F In−1]. (5.2)

(C2) (market efficiency) For n = 1, ..., N we have

pn = E(v|FUn−1,∆yn). (5.3)

Definition 4. A sequential auction equilibrium (X,P ) is called a linear equilibrium if

the component functions of X and P are linear, and a recursive linear equilibrium if

there exist parameters λ1, ..., λN such that

pn = pn−1 + λn∆yn, n = 1, ..., N. (5.4)

The following theorem is the major result in Kyle (1985) which proves the existence

and uniqueness of linear equilibrium, and characterizes those modeling parameters in

it.

Theorem 2. There exists a unique linear equilibrium (X,P ), represented as a recursive

linear equilibrium, characterized by (for n = 1, ..., N)

∆xn = βn (v − pn−1) ∆tn, (5.5)

pn = pn−1 + λn∆yn, (5.6)

Σn = V ar(v|FUn ), (5.7)

E[πn|F In−1] = αn−1 (v − pn−1)2 + δn−1; (5.8)
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Given Σ0 and σ2
u, the parameters βn, λn,Σn, αn, δn are the unique solutions to equations

αn−1 = [4λn(1− αnλn)]−1, (5.9)

δn−1 = δn + αn λ
2
n σ

2
u ∆tn, (5.10)

βn ∆tn = (1− 2αnλn) [2λn(1− αnλn)]−1, (5.11)

λn = βn Σn σ
−2
u , (5.12)

Σn = (1− βnλn ∆tn) Σn−1, (5.13)

subject to αN = δN = 0 and the second order condition

λn(1− αnλn) > 0. (5.14)

5.1.1 The original derivation of Kyle’s solution

As is suggested on page 1325 in Kyle (1985), combining (5.11) and (5.12) yields

(1− λ2
nσ

2
u∆tn/Σn)(1− αnλn) =

1

2
, (5.15)

which is a cubic equation in λn, given nonnegative values of αn, Σn and σ2
u. (5.15) has

three real roots. The middle one is the only solution that satisfies the second order

condition. Overall, the sequences {λn}, {βn}, {αn}, {δn} and {Σn} can be determined

by iterating n = N,N − 1, ..., 1 backwards, given a pair (Σ0, σ
2
u) and the boundary

condition αN = δN = 0. Since ΣN is also unknown, we have to set an initial value

arbitrarily and run a search until it converges. The detail is given as follows.

Given Σ0, σ2
u and the boundary condition αN = δN = 0, an iterative algorithm

consists of the following steps:

S1: Make an initial guess Σ∗N for ΣN ;
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S2: Get λN =

√
Σ∗N

σu
√

2∆tn
using αN = 0 and (5.15);

S3: Set n = N ;

S4: Get βn and Σ∗n−1 from (5.12) and (5.13);

S5: Get αn−1 from (5.9);

S6: Solve the cubic equation (5.15) and use its middle root for λn−1;

S7: Replace n by n− 1 and go to S4 if n > 0;

S8: If |Σ∗0 − Σ0| > ε where ε is a prescribed error bound, go to S2 with a different

initial value Σ∗N , and repeat ...

This backward induction search algorithm contains an outside loop and an inside

loop: the outside loop, as shown in S1 — S8, determines Σ∗N up to an acceptable error,

while the inside loop solves a cubic equation for each n in S6. Even for a fixed pair

(Σ0, σ
2
u), the computational complexity for a desirable target result is O(N2). However,

we can only fix (Σ0, σ
2
u) in a simulation study. In an empirical study using real market

data, Σ0 and σ2
u have to be treated as unknowns and estimated. Conceivably, the

required computational complexity for that task will increase rapidly and make the

algorithm impractical. That is why we propose the following alternative algorithm,

which is more efficient and has not been explored, to the best of our knowledge.

5.1.2 An alternative characterization of Kyle’s solution

Proposition 1. Assume the same conditions in Theorem 2 with ∆tn = 1
N
∀ n, and let

dn = αnλn. Then for every n = N,N − 1, ..., 1 (running backwards and in particular,

dN = 0 follows from αN = 0), there exists a unique real root dn−1 ∈ (0, 1/2) for the

cubic equation

8 d3
n−1 − 8 d2

n−1 − 2 Kn dn−1 +Kn = 0, (5.16)
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where

Kn =
1

1− 2dn
. (5.17)

Other parameters in Theorem 2 are determined iteratively by

Σn =
1

2(1− dn)
Σn−1, (5.18)

λn =

[
(1− 2dn) Σn

2(1− dn)∆tn σ2
u

]1/2

, (5.19)

βn =
1− 2dn

2λn (1− dn)∆tn
. (5.20)

Furthermore, the sequence {dn} satisfies the property

1

2
> d1 > d2 >, ..., > dN−1 > dN = 0. (5.21)

The sequence {dn} plays a central role in obtaining other parameters in Kyle’s

model. dn has two factors: αn as the coefficient for a quadratic utility function repre-

senting the expected future (at auctions n, n+1, ..., N) profit from the informed trader;

and λn as a measure for the market depth (a smaller value of λn corresponds to a deeper

market). There is another important parameter βn, which models the informed trad-

ing intensity. The following proposition, derived from Proposition 1, depicts how the

sequences {βn} and {λn} will evolve as more auctions take place.

Proposition 2.

βn
βn−1

, hn =

√
2(1− dn−1)

1− 2dn
1− 2dn−1

> 1 (5.22)

λn
λn−1

, kn =

√
1− 2dn

1− 2dn−1

1− dn−1

2(1− dn)2
>

1

2
. (5.23)

See Appendix for detailed proofs of Propositions 1 and 2.
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Remark: There are several advantages for the proposed algorithm given in Proposition

1.

• Computational efficiency: With this algorithm, the cubic equation (5.16) only need to

be solved for each n once for all, i.e. it does not depend on the values of Σ0 and σ2
u.

Therefore, this part of computation is purely off-line. Having solved for the entire

sequence dn, n = N − 1, ..., 1, we can run a forward algorithm, with n = 1, ..., N

and an assigned pair (Σ0, σ
2
u) to obtain other sequences {λn}, {βn}, {αn}, {δn} and

{Σn}. Suppose we have done the calculation for a given N , and decide to run it

again for a larger N ′ > N . Then we can reuse the result of dN , dN−1, ..., d1 for

dN ′ , dN ′−1, ..., dN ′−N+1, and continue to calculate only new values for dN ′−N , ..., d1.

Moreover, the only computational errors involved in the new algorithm come from

numerical solutions for (5.16). No “trial-and-error” with different values for Σ∗N

in the previous numerical search is required. The greater value of N , the more

efficient the new algorithm will be.

• From Proposition 2, we learn that the informed trader increases his orders as more

auctions take place. As trading unfolds and more information is released to him,

the insider has no incentive to hide his private information hence trades more

aggressively. Following our derivation, neither ratio βn/βn−1 nor ratio λn/λn−1

depend on any other parameters in the model, except for the auction horizon

N . However, the initial values β0 and λ0 do depend on the inputs Σ0 and σ2
u

[see (5.12)], and such dependence will carry on in subsequent values βn and λn.

Once the sequence {dn} is solved, ratios for both sequences will be uniquely

determined. Moreover, the sequence {βn} exhibits a consistent growth, while λn

does not reveal this property.

• As we mentioned, our main objective is to improve goodness-of-fit for an extended
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Kyle’s model in parameter estimation with real data. The new algorithm turns

out to offer a useful clue for what extensions we may consider. We will elaborate

on that part in the next section.

Figure 5.1 demonstrates the numerical results of {dn} sequence given number of

periods N . {dn} is a decreasing sequence as we expect. It also shows that the beginning

portion of {dn} sequence are concentrated within the range of 0.45−0.5 when the total

number of periods N > 10. When N is large, {dn} would be decreasing slowly for the

majority of time periods, and drop sharply at the end of trading.

Figure 5.1: {dn} series with various sample periods N

We illustrate the patterns of λn and βn in figure 5.2 given same initial condition with

different sample periodsN . βn represents the insider’s strategy while λn is the reciprocal

of market depth. βn is an increasing sequence under Kyle’s equilibrium model, and it

follows a pattern of flat at the beginning and gradually more steep toward the end of

trading periods. If we compare βn across different N , the results are favorable to the

insider if he is trading in a longer time horizon, in which he could exercise his strategy
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over longer periods. The λn sequence is at no surprise. It flattens out through the

entire time horizon, and drop at the end of trading periods.

Figure 5.2: {βn} and {λn} series with various sample periods N
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at each auction

5.2 An extension of Kyle’s model

In this section, we consider an extended Kyle’s model in which the informed trader

observes a noisy signal about true value v at each auction, but not v itself. We will

focus on the case of sequential (multiple) auctions after skimming over the single period

case.

5.2.1 The single period case

Consider an asset with payoff v ∼ N(p0,Σ0). The quantity traded by noise traders is

denoted by u ∼ N(0, σ2
u). Different from the original Kyle’s model, here we assume

the informed trader observes a signal s = v + ε at the beginning of the period where

ε ∼ N(0, σ2
ε ). Conditioning on s, the informed trader maximizes his expected profit

by choosing his trading strategy x. Assume that v, u, and ε are independent of each

other. There is a competitive risk-neutral market maker, who sets the asset price as

p(y) = E(v|y) based on the batch order y = x+ u.

Lemma 1. There exists a unique equilibrium (X,P ), in which the insider’s trading

strategy X and the market maker’s pricing rule P are linear functions of s and y

respectively:

x(s) = β (s− p0), (5.24)

p(y) = p0 + λ y, (5.25)
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where

λ =
Σ0

2
√
σ2
u(Σ0 + σ2

ε )
, (5.26)

β =

√
σ2
u

Σ0 + σ2
ε

. (5.27)

Proof: Let π = [v − p(y)] x. Following the linearity assumptions (5.24), (5.25) and

conditioning on the signal s, the informed trader will choose x = x(s) to maximize his

expected profit

E(π|s) = E[(v − p0 − λy) x|s]

= x E(v − p0|s)− x λ E(x+ u|s)

= x E(v − p0|s)− λ x2, (5.28)

where the projection theorem implies

E(v − p0|s) =
Cov(v − p0, s)

V ar(s)
(s− Es)

=
Σ0

Σ0 + σ2
ε

(s− p0)

= γ (s− p0), (5.29)

with

γ =
Σ0

Σ0 + σ2
ε

. (5.30)

Maximizing E(π|s) with respect to x leads to −2λx+ E(v − p0|s) = 0, hence

x = β (s− p0) (5.31)
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with

β =
γ

2λ
. (5.32)

Furthermore, the projection theorem and (5.25) imply

p(y) = E(v|y)

= p0 +
Cov(v, y)

V ar(y)
(y − Ey)

, p0 + λ y, (5.33)

and

λ =
Cov(v, β (v − p0 + ε) + u)

V ar(y)

=
βΣ0

β2 (Σ0 + σ2
ε ) + σ2

u

. (5.34)

Therefore, (5.26) and (5.27) follow from (5.30) and (5.32). Moreover,

E(π|s) =
Σ0

√
σ2
u

2(Σ0 + σ2
ε )

3/2
(s− p0)2.

The ex-ante profit for the insider is given by

E(π) =
Σ0

√
σ2
u

2 (Σ0 + σ2
ε )

1/2
. (5.35)

The special case with ε = 0 will return to the original Kyle’s solution, i.e., λ = 1
2

√
Σ0

σ2
u

and β =
√

σ2
u

Σ0
. Note that the noisy signal reduces the insider’s profit compared to the

case with ε = 0 as we expected. The higher the noise signal (larger σ2
ε ), the lower the

profit, also the lower the insider’s trading intensity β, since the insider would trade

more cautiously due to his imperfect knowledge about the asset value v.
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5.2.2 The multiple period case

We now turn our attention to the multiple period case. The set up in Kyle’s model

(Section 1) will be followed with a distinction: We assume the informed trader observes

a noisy signal sn = v + anεn at the nth auction, where the errors ε1, ..., εN are iid

N(0, σ2
ε ) random variables, the sequence {εn} is independent of v, and a1, ..., aN are

positive constants that decrease as n→ N . The information set F In−1, as a knowledge

base for the informed trader to determine his strategy ∆xn at the nth action, now

contains {∆x1, ...,∆xn−1; s1, ..., sn}, in addition to the uninformed traders’ information

set FUn−1, which includes {p1, ..., pn−1; ∆y1, ...,∆yn−1}. It makes sense for the informed

trader to base his decision at the nth auction on the difference E(v|s1, ..., sn) − pn−1

since he does not know v. For instance, the strategy ∆xn = βn(s̄n − pn−1) ∆tn may be

chosen with s̄n = 1
n

∑n
i=1 si. However, that would present some technical difficulty in

the derivation of recursive equilibrium solution to this problem. In what follows, the

trading rule ∆xn = βn(sn − pn−1) ∆tn will be adopted which makes it easier to extend

Kyle’s original solution to the current setting.

Theorem 3. There exists a unique linear equilibrium (X,P ), represented as a recursive

linear equilibrium, characterized by (for n = 1, ..., N)

∆xn = βn (sn − pn−1) ∆tn, (5.36)

∆pn = pn − pn−1 = λn∆yn = λn(∆xn + ∆un), (5.37)

E[πn|F In−1] = αn−1 (sn − pn−1)2 + δn−1. (5.38)

Given Σ0, σ2
u, σ2

ε , the sequences βn, λn, αn, Σn, δn are the unique solutions to difference

53



equations

αn−1 =
b2
n

4λn (1− αnλn)
, where bn =

Σn−1

Σn−1 + a2
nσ

2
ε

, (5.39)

βn ∆tn =
bn (1− 2αnλn)

2λn (1− αnλn)
, (5.40)

λn =
1

βn∆tn
bn

+ σ2
u

βnΣn−1

=
βnΣn

β2
n∆tn (b−1

n − 1) Σn−1 + σ2
u

, (5.41)

Σn = (1− βnλn∆tn) Σn−1, (5.42)

δn−1 = δn + αnλ
2
n σ

2
u∆tn + αn(1− bn) Σn−1 + αn a

2
n+1σ

2
ε , (5.43)

subject to the boundary conditions αN = 0, δN = 0 and the second order condition

λn (1− αnλn) > 0. (5.44)

See Apendix for the proof of Theorem 3.

Note: In the special case with ε = 0, (5.39) — (5.43) go back to the solutions for the

original Kyle’s difference equations in Theorem 2.

Now we make some additional assumptions and present the following proposition

(also to be proved in Appendix), which is an extension of Proposition 1, and plays an

important role in characterization of the equilibrium solution provided in Theorem 3.

Proposition 3. Assume a2
nσ

2
ε

Σn−1
≡ c ∈ (0, 1) (constant), hence bn = 1

1+c
, γ ∈

(
1
2
, 1
)

for

all n = 1, ..., N . We also assume ∆tn = 1/N , ∆ for all n. Given Σ0, σ2
ε , σ2

u and ∆,

let qn = αnλn and consider the cubic equation

8q3
n−1 − 8q2

n−1 − 2Knqn−1 +Kn = 0 (5.45)
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with n = N,N − 1, ..., 1 moving backwards, where

Kn =
γ4

(1− 2qn) [2(1− qn)− γ(1− 2qn)]
. (5.46)

For every n, (5.45) has a unique root qn ∈
(
0, 1

2

)
that is economically meaningful.

Having obtained the sequence {qn}, other parameters can be derived recursively (moving

forwards):

Σn =

[
1− γ(1− 2qn)

2(1− qn)

]
Σn−1, (5.47)

λn =

[
(1− 2qn) γ Σn−1

4(1− qn)2 σ2
u∆

]1/2

=

{
(1− 2qn) γ Σn

2(1− qn) [2(1− qn)− γ(1− 2qn)] σ2
u∆

}1/2

,(5.48)

βn =
γ(1− 2qn)

2λn (1− qn)∆
, (5.49)

αn−1 =
γ2

4λn (1− qn)
. (5.50)

See Apendix for the proof of Proposition 3.

5.3 Simulation study of Kyle’s equilibrium solution

In this section, we carry out simulation studies of equilibrium solution with the help of

new algorithm developed from part [1].

We use σu = 0.5, Σ0 = 0.4, p0 = 2.0 and N = 50. Figure 5.3 demonstrates the

equilibrium solution to model parameters. With all model parameters, we do simulation

on order flows from both insider as well as from the noise traders, trade prices and profit.

The true value of underlying security is assumed to be V = 2.5.
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Figure 5.3: Kyle model parameters, β, λ, α, δ,Σ
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Figure 5.4: Order flows, trade prices and profit
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There are some findings from the solutions to Kyle’s model. For market depth(inverse

of the λ), it is almost constant. Neither increasing nor decreasing market depth is con-

sistent with behavior by the informed trader which is ”stable” enough to sustain an

equilibrium. For the informed trader, the optimal trading strategy β is through gradual

submission, rather than abruptly. When true value revelation becomes close, the in-

formed has no incentive to hide his private information and trade aggressively to benefit

from the last-minute opportunity. The α and δ define the quadratic profit function.

The leftover information Σ diminishes as trading unfolds which is not surprising. The

end of period information left ΣN (N=50 in our case) is non-zero which is determined

dynamically from equilibrium solution.

The order flows and trade price evolution from figure 5.4 are illuminating with fol-

lowing properties: (1).The informed trader is actively disguise his informed orders(∆x)

among the uninformed orders(∆u). (2). Informed orders are larger after negative un-

informed trades. i.e.,Assume informed trader has positive projection, V is greater than

current price p. After a large uninformed buy, the informed sends a small buy order;

whereas, after a large uninformed sell, the informed submits a large buy order.(3).

Informed order size increases over time. As trading unfolds, informed orders become

more aggressive. (4) The volatility of trade prices is determined by the noise traders

but not by the insider. There is a sense in which the ”trading volume” of the insider

is small. Despite his small trading volume, however, the insider ultimately determines

what price is established at the end of trading. He does this because his trades, unlike

the trades of noise traders, are positively correlated from period to period. (5). The

end of trade price would not converge to the true value while trade price moves toward

its value. p50 = 2.43 against true value of 2.5 in this simulation.
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Chapter 6

Dynamic Bayesian Inference

In this chapter, we propose a Bayesian time series model, and carry out simulation

studies. The model is originated from Kyle’s model, and in particular, motivated by the

derivation of Kyle’s equilibrium solution as shown in Proposition 3 from last chapter.

We establish the theoretical framework for Bayesian time series. First we look at

Bayesian approach, since they constitute the foundation of the field; we move on to

Bayesian time series with important properties but also their limitations. We developed

a Bayesian time series model based on ideas originally put forth in market microstruc-

ture models. We then discuss Markov Chain Monto Carlo (MCMC) algorithms with

proposal of different methods. The empirical studies and Bayesian model assessment

will be presented in the next chapter.

Statistical time series analysis using state space models were developed in the 1970-

80’s. Although the model was originally introduced as a method primarily for use

in aerospace-related research, it has been applied to modeling data from economics,

Harvey and Pierse (1984), West and Harrison (1997), Durbin and Koopman (2001).

The impressive growth of applications is largely due to the possibility of solving com-

plicated problems using Monte Carlo methods in a Bayesian framework. A Bayesian

approach has several advantages, both methodological and computational. The time



series models like ARMA can be regarded in terms of state space models. But Bayesian

framework offer more flexibility in treating non-stationary time series, or modeling hi-

erarchical data with structural changes, and are often more easily interpretable. The

more general class of Bayesian models extend the analysis to non-Gaussian and non-

linear dynamic systems. We start with basic notions.

6.1 Basic notions

The Bayesian estimation assumes a T x 1 vector y
.
= (y1, ..., yT )′ of observations

described through a probability density p(y|θ). The unknown parameter θ is a d-

dimensional vector, where θ ∈ Θ ⊆ Rd. The difference between the Bayesian and the

classical approach lies in the mathematical nature of θ. In the classical framework,

it is assumed that there exist a true and fixed value for parameter θ. Conversely,

the Bayesian approach consider θ as a random variable which is characterized by a

prior distribution denoted by π(θ|η), where η is a vector of hyerparameters. Inference

concerning θ is then based on its posterior distributions, given by

p(θ|y, η) =
p(y, θ|η)

p(y|η)
=

f(y|θ)π(θ|η)∫
Θ
f(y|u)π(u|η)du

(6.1)

The result of the integral in the denominator is sometimes written as m(y|η), the

marginal distribution of the data y given the value of the hyperparameter η. If η is

known, we often suppress it in the notation and the posterior distributions would be

written as p(θ|y).

If we are unsure as to the proper value for η, the proper Bayesian solution would

be to quantify this uncertainty in a second-stage prior distribution called hyperprior.

Denoting this distribution by h(η), the posterior for θ is now obtained by marginalizing
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over η,

p(θ|y) =
p(y, θ)

p(y)
=

∫
p(y, θ, η)dη∫ ∫
p(y, u, η)dηdu

=

∫
f(y|θ)π(θ|η)h(η)dη∫ ∫
f(y|u)π(u|η)h(η)dηdu

(6.2)

In principle, this is no reason why the hyperprior for η can not itself depend on a

collection of unknown parameters λ, resulting in a generalization of (6.2) featuring a

second-stage prior h(η|λ) and third-stage prior g(λ). This type of specification of a

model over several levels is called Bayesian hierarchical modeling, with each new distri-

bution forming a new level in the hierarchy. This constitutes an important framework

to model structural changes.

The main objective of a statistical analysis is forecasting ; the event of interest is the

value of a future observation y∗. The prediction of a future value y∗ given the data y

is observed by computing the conditional distribution of y∗ given y is called predictive

distribution. It can be written as,

π(y∗|y) =

∫
f(y∗, θ|y)dθ =

∫
f(y∗|y, θ)p(θ|y)dθ (6.3)

where p(θ|y) is posterior distribution of θ.

6.2 Time series in Bayesian framework

A univariate or multivariate time series is described probabilistically by a sequence of

random variables or vectors (Yn : n = 1, 2, ...), where the index n denotes time. One

basic problem is to make forecasts about the value of the next observation, Yn+1 say,

having observed data up to time n, Y1 = y1, ..., Yn = yn or Y1:n = y1:n for short. If we are

able to specify the joint density π(y1, ..., yn) for any n >= 1, and Bayesian forecasting
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would be solving by computing the predictive density,

π(yn+1|y1:n) =
π(y1:n+1)

π(y1:n)
(6.4)

Suppose θ is the unknown parameter, and a prior π(θ) on θ, we obtain the joint den-

sity π(y1:n) =
∫
π(y1:n|θ)π(θ)dθ. More importantly, Bayesian time series characterize

some favorable mechanism which are not present from other approaches.

The dependence structure in Bayesian time series is normally assumed to be con-

ditional independence, i.e., Y1, ..., Y2 are conditionally independent and identically dis-

tributed (i.i.d) given parameter θ, θ could have complicated structures, or even time

dependent. π(y1:n|θ) =
∏n

i=1 π(yi|θ).

Note that Y1, ..., Yn are only conditionally independent: the observations y1, ..., yn

provides information about the unknown value of θ and, through θ, on the value of

the next observation Yn+1. Thus, Yn+1 depends, in a probabilistic sense, on the past

observations Y1, ..., Yn. The predictive density can be computed as

π(yn+1|y1:n) =

∫
π(yn+1, θ|y1:n)dθ

=

∫
π(yn+1|θ, y1:n)π(θ|y1:n)dθ

=

∫
π(yn+1|θ)π(θ|y1:n)dθ (6.5)

where π(θ|y1:n) is the posterior density of θ, conditioning on the data y1, ..., yn. As we

can see, the posterior density can be computed via Bayes formula,

π(θ|y1:n) =
π(y1:n|θ)π(θ)

π(y1:n)
∝

n∏
t=1

π(yt|θ)π(θ)

Note that the denominator π(y1:n) is a normalized constant which does not depend on

θ. Therefore, the posterior density could be computed recursively. At time (n− 1), the
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information available about θ is described by conditional density

π(θ|y1:n−1) ∝
n−1∏
t=1

π(yt|θ)π(θ)

This density plays the role of prior when we move to time n. Once the new information

about yn becomes available, we just have to compute the likelihood function, which is

π(yn|θ, y1:n−1) = π(yn|θ) by the assumption of conditional independence, and update

the prior π(y1:n−1) by Bayes rule, obtaining

π(θ|y1:n−1, yn) ∝ π(θ|y1:n−1)π(yn|θ) ∝
n−1∏
t=1

π(yt|θ)π(θ)π(yn|θ)

This recursive structure is critical in time series analysis. In contrast to non-Bayesian

time series approaches, Bayesian analysis offers more flexibility and requires no model

fitting with all past and current information due to the fact the past information has

all been incorporated in its conditional densities. We ”update” density functions with

newly available information.

6.3 Dynamic Bayesian Model

We develop a Dynamic Bayesian Factor Model (DBFM) which incorporates multi-

variate dynamic factors, and time-varying patterns that arise from the microstructure

settings. The DBFM, in basic form, models dynamic multivariate factors such as eco-

nomic conditions, hierarchical structures, common time-varying component in multiple

time series etc; in its advanced form, it models time-varying volatilities like stochastic

volatility (SV) or ARCH/GARCH.

The dynamic factor model is an extension to dynamic linear model. There has been

an increasing interest in the application of dynamic linear model (henceforth DLM),
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or state space models in time series analysis. They allow a natural interpretation

of a time series as the combination of several components, such as trend, regressive

or volatility components. At the same time, the computation can be implemented

by recursive algorithms. The problems of estimation and forecasting are solved by

recursively computing the conditional distribution of the quantities of interest, given

the available information. Such desirable features are quite naturally treated in a

Bayesian framework.

Dynamic factor models can be used to model univariate or multivariate time series,

also in the presence of non-stationary, structural changes, and irregular patterns.

We present the DLM in its generalized matrix notation.

Definition 5. The dynamic linear model, in its basic form, employs the following

relationship,

Yt = F ′tθt + νt νt ∼ N [0, Vt] (6.6)

θt = Gtθt−1 + ωt ωt ∼ N [0,Wt] (6.7)

(θ0|D0) ∼ N [m0, c0] (6.8)

where νt and ωt are independent. m0 and c0 are some prior moments.

Denote Yt a (r x 1) vector of observations on the time series over time t = 1, 2, ...n.

Ft is a known (n x r) matrix for regression. Gt is a known (n x n) matrix for state space

evolution. Vt is a (r x r) matrix, and Wt is a (n x n) matrix for variance-covariance.

Equation (6.6) is called observation equation, which defines sampling distribution

for Yt conditional on θt. Given θt, Yt is independent of all other observations and states.

F ′tθt is the mean response, and νt is the observation error.

Equation (6.7) is called system, or evolution equation, which defines the time evo-

lution of the state vector. The conditional independence structure of state space shows
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that, given θt−1 and the known value of Gt and Wt, the conditional distribution of θt

is fully independent of Yt−1. The system error is ωt.

Consider a univariate DLM model that is closed to external information at time

t ≥ 1, such that given initial prior information D0 at t = 0, at any future time t, the

available information set is Dt = {Yt, Dt−1}, where Yt is the observed value at time t.

At any time t, for all k ≥ 0, define,

at(k) = E(θt+k|y1:t) (6.9)

Rt(k) = V ar(θt+k|y1:t) (6.10)

ft(k) = E(Yt+k|y1:t) = E[F ′t+kθt+k|y1:t], (6.11)

Qt(k) = V ar(Yt+k|y1:t) (6.12)

The Forecast Function is ft(k). For k strictly greater than 0, the forecast function

provides the expected values of future observations given current information.

ft(k) = E[Yt+k|Dt] for all k ≥ 1 (6.13)

Our model is a fully dynamic multivariate factors representation of market mi-

crostructure models by the integration of microstructure settings from Kyle’s frame-

work.

6.4 The Model

We continue the derivation from previous chapter, and present formal definitions of our

time series model.

Consider an asset that pays off, v ∼ N(p0,Σ0), p0 is the expected value, and Σ0

is the value uncertainty at the beginning of the trade. There are multiple trading
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periods, with n = 1, ..., N , and t = 0, ..., 1. The quantity traded by noise traders is

denoted by ∆un, where ∆un ∼ N(0, σ2
u∆tn). The informed trader observes true value

v. The informed trader maximizes his expected profit by choosing optimal trading

strategy ∆xn. It is assumed that v, ∆un are all independent. There are competitive

risk-neutral market-makers, who set the prices of asset equal to the expected value of

the liquidation values conditional on the information about the quantities traded by

the strategic insider trader and noise traders, ∆yn = ∆xn + ∆un. We also assume

∆tn = 1/N for all n. The model is specified as follows,

order flows : ∆yn = βn (v − pn−1) ∆tn + ∆un, (6.14)

βn = βn−1 + µn−1 + ∂βn (6.15)

µn = µn−1 + ∂µn (6.16)

∆un ∼ N(0, σ2
u ∆tn) (6.17)

∂βn ∼ N(0, σ2
β) (6.18)

∂µn ∼ N(0, σ2
µ) (6.19)

price : ∆pn = pn − pn−1 = λn ∆yn + εn (6.20)

λn = λn−1 + ∂λn (6.21)

εn ∼ N(0, σ2
ε ) (6.22)

∂λn ∼ N(0, σ2
φ) (6.23)

where βn, µn and λn are dynamic components, ∂βn, ∂µn and ∂λn are stochastic terms

which are assumed to be uncorrelated. In our model, µn has the interpretation of

incremental growth in the level of the series over the time interval n− 1 to n, evolving

during that interval according to the addition of the stochastic element ∂µn. The level

βn at time n evolves systematically via the addition of the growth µn and undergoes a
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further stochastic shift via the addition of ∂βt.

The state vector is defined as θn = (βn, µn)′, n = 1, ..., N . Denoting mn−1 =

(β̂n−1, µ̂n−1)′, where β̂n−1 and µ̂n−1 are estimates at time n − 1. The one-step ahead

state estimates and point forecasts are given by,

an = Gnmn−1 =

β̂n−1 + µ̂n−1

µ̂n−1

 (6.24)

fn = Fnan = (β̂n−1 + µ̂n−1)(v − pn−1)∆tn (6.25)

The kth-period ahead state forecast is:

an(k) = (β̂n + k µ̂n) (6.26)

which is a linear function of k.

The model is always observable, since the observability matrix is always full-rank,

with Ω:

Ω =

1 1

0 1

 (6.27)

Therefore, given σµ > 0, there exist limiting values for Rn, Cn, and An (see West and

Harrison; 1997). In particular, the gain An converges to a constant matrix A = (A1 A2)′

(Theorem 7.2).

Given the existence of limiting values, we obtain the asymptotic properties of up-

dating equations. Writing en = Yn − fn, the updating equations in terms of limiting
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values:

Yn = (β̂n−1 + µ̂n−1)(v − pn−1)∆t+ en (6.28)

β̂n = β̂n−1 + µ̂n−1 + A1 en (6.29)

µ̂n = µ̂n−1 + A2 en (6.30)

With a limiting second difference equation

Yn − 2Yn−1 + Yn−2 = en − φ1en−1 + φ2en−2 (6.31)

where

φ1 = 2− A1 − A2 (6.32)

φ2 = 1− A1 (6.33)

This can be written in terms of backshift operator B as

(1−B)2Yn = (1− φ1B + φ2B
2)en (6.34)

There are a number of point prediction methods which take the form of equation (6.31).

Such methods include Box and Jenkins’ predictor, Exponential weighted regression, and

Holt’s liner methods. Our inference employs Bayesian MCMC methods.

6.5 Markov Chain Monte Carlo (MCMC)

In Bayesian analysis, two types of strategies are used in the summarization of the

posterior distributions. If the sampling density has a familiar functional form, such as

a member of an exponential family, and a conjugate prior is chosen for the parameter,
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then the posterior distribution is often expressed in terms of conjugate probability

distributions. In this case, conjugate priors permit posterior densities to emerge without

numerical integration. However, the easy calculations of this specification comes with

a price due to the restrictions they impose on the form of the prior. A second type of

computation strategy is called simulation-based methods. In many cases, it is unlikely

that the conjugate prior is an adequate representation of the prior state of knowledge,

and the posterior distribution is not a familiar functional form. In such cases, the

asymptotic approximations or Monte Carlo methods are required.

In terms of simulation-based methods, rejection sampling with a suitable choice

of proposal density is a general method for simulating from an arbitrary posterior

distribution. Importance sampling and sampling importance re-sampling (SIR) are

alternative methods for computing integrals and simulating from a general posterior

distribution. The SIR algorithm is especially useful when one wishes to integrate the

sensitivity of a posterior distribution with respect to changes in the prior and likelihood

functions.

Monte Carlo integration and posterior approximation via rejection sampling or im-

portance sampling involve direct simulation from an sampling distribution, usually

viewed as an approximation to the true density p(X). However, when the dimension

of the model becomes large, both rejection sampling and importance sampling can be

difficult to setup because they require the construction of a suitable proposal density.

Markov Chain Monte Carlo (MCMC) algorithm becomes the only way to approximate

the posterior density in high-dimensional problems. The idea of MCMC sampling was

first introduced by Metropolis, Rosenbluth, Teller (1953) and was subsequently gener-

alized by Hasting (1970). A general and detailed statistical theory of MCMC methods

can be found in Tierney (1994).

The MCMC sampling strategy relies on the construction of a Markov chain with
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realizations θ[0], θ[1], ..., θ[j], ... in the parameter space Θ. Under appropriate regularity

conditions (see Tierney 1994), asymptotic results guarantee that as j tends to infinity,

then θ[j] converge in distribution to p(θ|y). Hence, the realized values of the chain can

be used to make inference about the joint posterior. All we required are algorithms to

construct the chains.

We first introduce Gibbs sampler algorithm, and then present the MCMC analysis

on two Bayesian models: the original Kyle’s model, and our dynamic model. Our

simulation studies are based on the new algorithms we developed from the previous

chapter.

6.5.1 The Gibbs sampler

The Gibbs sampler is an algorithm based on successful generations from the full condi-

tional densities. An elementary exploration can be found in Casella and George (1992).

See also Gelfand and Smith (1990), Tanner and Wong (1987). The full condition den-

sity p(θi|θ6=i, y) is the posterior density of the ith element of parameter θ
.
= (θ1, ..., θd)

′,

d is the total dimension of parameter θ, given all other elements, where elements of θ

can be scalars or sub-vectors. The Gibbs algorithm works as follows:

1. Initialize the iteration counter of the chain to j = 1 and

set the initial value θ[0] .= (θ
[0]
1 , ...θ

[0]
d )′

2. Generate a new value θ[j] from θ[j−1] through successive

generation values:

θ
[j]
1 ∼ p(θ1|θ[j−1]

6=1 , y)

θ
[j]
2 ∼ p(θ2|θ[j]

1 , θ
[j−1]
3 , ..., θ

[j−1]
d , y)

...

θ
[j]
d ∼ p(θd|θ[j]

6=d, y)
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3. Change counter j to j + 1 and go back to step 2 until

convergence is reached.

As the number of iterations increases, the chain approaches its stationary distribu-

tion and convergence is then assumed to hold approximately (Tierney 1994). Sufficient

conditions for the convergence of the Gibbs sampler are given in Roberts and Smith

(1994). As noted in Chib and Greenberg (1996), these conditions ensure that each full

conditional density is well defined and that the support of the joint posterior is not sep-

arated into disjoint regions since this would prevent exploration of the full parameter

space.

The Gibbs sampler is most frequently used MCMC sampling strategy when it is easy

to write down full conditional densities from which we could generate draws. When

the expression p(θi|θ6=i, y) has no functional form, we might consider reject methods

(Ripley 1987), the Giddy-Gibbs sampler when θi is univariate (Ritter and Tanner 1982),

adaptive rejection sampling (Gilks and Wild 1992) or Metroplis-Hasting Algorithm.

6.5.2 MCMC for original Kyle’s model

The original Kyle’s model has exact solutions to a set of difference equations. We

derived new methods of solving these difference equations which boils down to solving

just one cubic equation on {dn} sequence, where dn = αnλn.

The parameter sequence {dn} depend on the choice of N , the number of periods,

and independent on all other parameters. Given {dn} values, we could solve all other

parameters exactly once for all instead of recursive approximation. Consequently, we

only requires two priors for original Kyle’s model.
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Original Kyle’s model can be written as:

∆un ∼ N(0, σ2
u∆tn), (6.35)

∆yn = βn (v − pn−1) ∆tn + ∆un, (6.36)

pn = pn−1 + λn(∆xn + ∆un), (6.37)

Σn = V ar(v|FUn ), (6.38)

where ∆tn = 1
N
, ∀ n = 1, ..., N.

In order to write the posterior likelihood function, we define ψ
.
= (Σ0, σ

2
u). And vec-

tors Yn
.
= (∆y1,∆y2, ...,∆yn)′, and Xn

.
= {(v− p0)∆t1, (v− p1)∆t2, ..., (v− pn−1)∆tn}′.

Xn and Yn are observed information at time n. Given the initial prior informa-

tion D0 at time t = 0, at any future time, the available information set is thus

Dn = {Dn−1, Xn, Yn}.

Define Θn = (θ0, θ1, ...θn), which includes all latent variables, in our case, θ
.
=

{λ, β, α, δ}. The conditional posterior function of ψ can be expressed as follows:

p(ψ|Θn, Dn) = p(Σ0|Θn, Dn)p(σ2
u|Θn, Dn) (6.39)

this implies the independence between two priors.

The likelihood function,

`(σ2
u|Θn, Dn) ∝ p(σ2

u|D0)(σu)
−n exp

[
− n

2σ2
u

(Y −Xβ)′(Y −Xβ)

]
(6.40)

We propose the following priors on the parameters Σ0 and σ2
u of the preceding
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model:

σ2
u ∼ IG(α, β) (6.41)

Σ0 ∼ N(µ, σ2)I{Σ0>0} (6.42)

where α, β, µ, σ2 are hyperparameters, I{.} is the indicate function which equals unity if

the constraints holds and zero otherwise. The prior σ2
u has inverted gamma distribution,

while Σ0 has improper prior distribution since Σ0 follows exact equilibrium solutions

given the available information set. And p(ψ) = p(σ2
u)p(Σ0).

Then we construct the joint posterior densities:

p(ψ|Θn, Dn) ∝ `(ψ|Θn, Dn)p(ψ) (6.43)

6.5.3 MCMC for our dynamic Bayesian model

In this subsection, we provide derivations of MCMC via our dynamic model. Our

proposed model provides more insights about market behaviors when we carry out

empirical studies in the next chapter.

The state vector for period n is defined as

θn = (βn, µn)′ (6.44)

where n = 1, ..., N . Write Θn = {θ0, θ1, ...θn} for all n state vectors. This is sometimes

called latent variable.

We obtain,

∆un ∼ N(0, V ), (6.45)

ωn
.
= (∂βn, ∂µn)′ ∼ N(0,W ) (6.46)
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Where V = σ2
u∆tn, and W is the variance-covariance matrix of vector (∂βn, ∂µn)′. Both

V and W are constant and independent over time n. Define model parameters,

ψ = {V,W} (6.47)

We also define the information set at time n asDn. Let vectors Yn
.
= (∆y1,∆y2, ...,∆yn)′,

and Xn
.
= {(v − p0)∆t1, (v − p1)∆t2, ..., (v − pn−1)∆tn}′. Xn and Yn are observed data

at time n. Given the initial prior information D0 = θ0 at time t = 0, at any future

time, the available information set is thus Dn = {Dn−1, Xn, Yn}.

This structure is evident in considering MCMC based on Gibbs sampling. Gibbs

sampling suggests the full posterior distribution:

p(Θn, ψ|Dn) (6.48)

may be simulated by iterating between two conditional posteriors

p(Θn|ψ,Dn)↔ p(ψ|Θn, Dn) (6.49)

Note that this procedure is different from original Gibbs sampling. This involves sam-

pling Θn, and separately ψ, from their full, multivariate conditional posteriors, rather

than sequencing through individual scalar elements as in the original definition of Gibbs

sampling.

Gibbs sampling procedure:

1. Simulating p(Θn|ψ,Dn)

This procedure is standard. Based on the observation that the analysis is con-

ditioning on ψ, simulation of LHS of (6.49) will be accessible as a multivariate

normal distribution.
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2. Simulating p(ψ|Θn, Dn)

This procedure depends on the model form, we will illustrate in details.

3. Repeat these steps until convergence

In our proposed model, the conditional posterior for ψ is

p(ψ|Θn, Dn) = p(V |Θn, Dn)p(W |Θn, Dn) (6.50)

We assume prior independence between parameter V and W .

It can be shown that, the posterior likelihood function for V is:

`(V |Θn, Dn) ∝ p(V |D0)(V )−n/2 exp
[
− n

2V
(Y −Xβ)′(Y −Xβ)

]
(6.51)

and the posterior likelihood function for W ,

`(W |Θn, Dn) ∝ p(W |D0)|W |−n/2 exp
[
−n

2
trace(ŴnW

−1)
]

(6.52)

where ωn = θn −Gtθn−1 = (ωn,1, ωn,2)′ for each n, and Ŵn = n−1
∑n

t=1 ωtω
′
t.

We propose the following priors on the parameters ψ = {V,W} andW =

W1 0

0 W2

:

V ∼ IG(a1, b1) (6.53)

W1 ∼ IG(a2, b2) (6.54)

W2 ∼ IG(a3, b3) (6.55)

where a{.}, b{.} are hyperparameters. V , W1 and W2 have inverted gamma distributions.

And p(ψ) = p(V )p(W ).
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Then we obtain the joint posterior density:

p(ψ|Θn, Dn) ∝ `(ψ|Θn, Dn)p(ψ) (6.56)

6.6 Simulation

It is instructive to compare our dynamic models through simulation studies. The target

data set is generated from original Kyle’s model. Two simulations are carried out on

the target data set: one is Bayesian MCMC for our dynamic model, another is MCMC

for original Kyle’s model.

Recall that the original Kyle’s model only depends on two parameters, we first

assume σu = 0.5, Σ0 = 0.4, N = 50, and obtain sequences of all parameters {λn, αn,

βn, Σn, δn} for n = 1, ..., N . Then we take market initial condition at p0, and simulate

the market prices sequence and order imbalance. The order flow sequence consists of

aggregated order flows from both the informed trader as well as the uninformed.

Suppose we know the market information i.e., the market price evolution and the

aggregated order imbalance, that represent what may be observed in a real market

situation. And all model parameters are unknown, we then perform MCMC simulations

and infer on model unknowns.

Given the price sequence {pn}, and net order flow sequence {∆yn}, with n = 1, ..., N ,

we run Bayesian MCMC for our proposed model.

In table 6.1, our model has the estimate of posterior mean of σ2
u = 0.27315 which is

close to the true value σ2
u = 0.25. The deviance information (DIC = -115.6) suggests

good fit (details about Bayesian model selection will be discussed in the next chapter).

Figure 6.1 shows MCMC method for our dynamic modeling picks up the trend well;

the turning point is near n = 42 which is consistent with actual data. Figure 6.2

presents Bayesian results for λn. The posterior mean of λn is flat throughout and
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Figure 6.1: Insiders’ strategy, original vs. MCMC for our model
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Figure 6.2: Reciprocal of market depth, original vs. MCMC for our model
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Table 6.1: Parameters and Deviance Bayesian results

Parameters Mean SD

σ2
u 0.27315 0.095075
σ2
β 0.06745 0.122625
σ2
µ 0.03597 0.053575
σ2
ε 0.00005 3.461E-7
σ2
φ 0.00050 0.000019

deviance -115.50 0.12940

drop at the end of trading periods as we expect. We notice that the variance term

σ2
ε has fairly small mean 0.00005 and small variance which represents the stochastic

term of price equation. This is true since this is how we construct the dataset initially.

The data generated from original Kyle’s model does not carry stochastic term, the

price evolution is proportion to total order imbalance with the price set by the market

market. The Bayesian results reflect the relationship well with minor stochastic terms.

This assumption may be further investigated when we do empirical studies using real

market data set. Figure 6.3 shows results of order flows from our dynamic model. The

insider is actively hide his position among noise order flows while he is trading in the

direction of his own knowledge.

We then illustrate details of our Bayesian MCMC analysis.

Figure 6.4 displays trace plots of the simulated draws of variance component. Note

that we have 6000 iterations with first half burn-in. The simulated draws appear to

have reached the main support of the posterior of variance component.

Figure 6.5 shows density plots of parameters. They all have single modal shape

which suggest good support for the posterior mean.

One can observe the autocorrelation structure of the sequences by using autocorre-

lation plots produced in Figure 6.6. The autocorrelations are very close to one for lag

one and reduce quickly as a function of the lag.

In the second simulation, we perform MCMC method for original Kyle’s model, i.e.,
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Figure 6.3: Bayesian results of order flows
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Figure 6.4: Parameter and deviance trace plots
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MCMC using two-variable Kyle’s model on the same data set we created. The posterior

mean for σu is 0.5002 vs. actual value of 0.5, and the posterior mean for Σ0 is 0.3402

vs. true value 0.4. The Bayesian methods provide robust and consistent results in our

simulation studies. Since there are only two unknown variables, the model performs

well if we can infer on those two variables successfully, and other parameters are derived

accordingly. The βn series shown in Figure 6.7 is at no surprise.

Table 6.2: Parameters and Deviance Bayesian results via original Kyle’s model

Parameters Mean SD True value

Σ0 0.3402 0.02768 0.4
σu 0.5002 0.0021 0.5

deviance -114.510 0.07764

Figure 6.7: MCMC Estimates of beta via original Kyle’s model vs. actual beta
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Chapter 7

Empirical studies and Bayesian

model selection

In previous chapters, we derived our dynamic model and validated through simula-

tion studies, we turn to applications of the model in real market condition. First, we

set up our target data. Secondly, we compare dynamic model vs. original kyle’s model.

We do model inference on different length of real market data in the third section. The

empirical results on different stocks and various periods will be discussed in the fourth

section. Finally, we summarize Bayesian model diagnosis on different models.

7.1 Data

We study the informed trading prior to the corporate earning release which took place

every quarter on NYSE stocks. The intraday, transaction-level data are collected from

trade and quote (TAQ) database. The size of intraday data set is enormous because it

contains all trades and quotes per second. The daily time frame is regular trading hours

from 9:30AM to 4:00PM. Corresponding daily data come from CRSP and quarterly

earning data are from COMPUSTAT database. Since every stock has its own earning

announcement date and varies by calendar year, we have separate treatment to adjust



different quarterly earning periods (start, end, and number of trading periods) even for

the same stock.

All trade data are matched against quote database to find the corresponding quote

information. The intra-day data are aggregated to small intervals, in our case, 30

minutes. We use the algorithm mentioned in chapter 3. All trades are translated to

signed order imbalance.

The data set are aggregated to different number of periods with observed market

information. To study the model performance on the size of data set, we have different

length of periods on the same data set. For example, the whole period should span a

quarter of high frequency data, which is roughly three-month data depending on two

consecutive earning release dates. We also take a subset of the whole data set, for

instance, the last one-month data to study the behavior of the model since the original

model would expect more intensive activity at the end of trading periods, this is the

spirit of original model. We would like to explore the robustness of our dynamic model

under various trading periods.

We randomly choose 5 NYSE stocks on four different earning announcement peri-

ods. The four sampled periods are: 2003Q4, 2005Q2, 2006Q3 and 2008Q3, that cover

sample periods from both boom periods like from year 2003, 2005 and stressed economic

environment like from year 2008, that is what we have experienced most recently.

7.2 Dynamic Model vs. original Kyle’s Model

We take one NYSE stock, ticker IBM, and study one sample period at 3rd quarter of

calendar year 2008. The quarterly data for IBM 2008Q3 consists of roughly three-month

intraday data.

Figure 7.1 illustrates dynamic model results for the insider’s strategy. It is relatively

smooth at the beginning of that period, and starts to trade aggressively at period

86



n = 565 which is around Oct,2 2008. We further look at the trade price evolution

during that period and check if there is any irregular pattern. From Figure 7.2, we

do not see disconnectivity during the whole 3-month period. The price data exhibits

rather smooth pattern while the insiders’ strategy has steep slope toward the end of

trading periods. The result shows that, the dynamic model produces some information

about insiders’ strategy which may not be observed or derived by price evolution alone.

We observe our dynamic model performs well under both positive and negative true

value position, i.e., the true value (which is known to the insider) is higher (or lower)

than the prevailing market prices. In this example, the insider has negative true value

projection, i.e., his knowledge about the true value is lower than market prices, and he

should take the short position. The model inference confirms that the insider’s strategy

is still positive and grow aggressively (short more) over the time.

Figure 7.1: Insiders’ strategy, MCMC for dynamic model on IBM 2008Q3

We also calculate order flows from our dynamic model. Figure 7.3 illustrates the

insider is actively hiding his position among the order flows from noise traders, and he

trades more aggressively toward the end of trading periods. Notice that order flows are

negative for the insider which means ”sell” positions since he is trading in the direction
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Figure 7.2: Trade prices on IBM prior to 2008Q3 earning announcement

Figure 7.3: Order flows, MCMC for our model on IBM 2008Q3
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of his knowledge, in this case an unfavorable true value.

Figure 7.4 shows MCMC results of the reciprocal of market depth, i.e., λn sequence.

The λn sequence is little jumpy from the model inference which means the market depth

could be noisy on the high frequency data. This parameter reflects the actual market

condition that may vary rapidly across the time, such market conditions include macro

economic condition, correlation with other industry stocks etc. If we take a further

look at the data, we may still discover that the λn sequence drops at the end of trading

periods.

Figure 7.4: Reciprocal of market depth, MCMC for our model on IBM 2005Q2

We then run Bayesian MCMC for original Kyle’s model. The parameter results are

shown in Table 7.1. The original Kyle’s model has deviance of 2324.019.

We present the Bayesian MCMC results for βn and λn using original Kyle’s model

in Figure 7.5 and 7.6. Since the original model is fully determined by two parameters

and number of periods, the upward slope are close to the end of trading periods, in

this case, takes place in the last day of trading periods (Oct, 16 2008) before earning

announcement. We notice the same pattern as simulated data of Kyle’s model.
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Figure 7.5: Beta, MCMC for original Kyle’s model on IBM 2008Q3

Figure 7.6: Lambda, MCMC for original Kyle’s model on IBM 2008Q3

90



Table 7.1: Parameters and Deviance results via original Kyle’s model on IBM 2008Q3

Parameters Mean SD

Σ0 0.567 0.07693
σu 33.636 0.02558

deviance 2324.019 0.06774

7.3 Model fitting with different sample periods

In this section, we compare model performance on various length of periods. In real

market condition, we may observe portion of the data set, like one-month of the data

close to the earning release, or we may want to explore using subset of the data. The

spirit of the original kyle’s model is the insider would trade more intensively at the end

of the trading periods.

In the first analysis, we observe only last month data for IBM 2008Q3 without

knowing what happened in the first two months. And we run Bayesian MCMC for our

dynamic model. We observe exactly same pattern as with three-month data, see figure

7.7. The left figure shows results for complete quarter data while the right figure shows

only last-month data are applied via Bayesian methods. We then take derivative of

estimates and get m = 1 at n = 591 for quarterly and n = 151 for monthly, the first

one happens on Oct 2, 2008, 11:30AM, the second one is on Oct 2, 2008, 12:00PM,

they are right on with each other.

Table 7.2: MCMC for original Kyle’s model using different length of data

Parameters Mean1Qtr SD1Qtr Mean1Mo SD1Mo

Σ0 0.567 0.07693 0.474 0.06802
σu 33.636 0.02558 14.711 0.01929

deviance 2324.019 0.06774 730.34 0.06901

We then perform Bayesian MCMC for original Kyle’s model on the same data sets.

Table 7.2 shows the result of MCMC for original Kyle’s model using one quarter and

one month separately. In Figure 7.8, the corresponding insider strategies are plotted
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Figure 7.7: MCMC for dynamic model using different length of data

over different periods. We get derivative m = 1 at n = 682 and n = 277 respectively,

which is 11:30AM on Oct, 15 2008 and 10:30AM on Oct, 16 2008. They have one-day

gap.

Figure 7.8: MCMC for original Kyle’s model using different length of data

We did exercises on other sample periods, and on other stocks, the conclusion

remains unchanged. The Bayesian dynamic models provide robust results in terms of

various length of periods.
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7.4 Sample stocks

We choose 5 randomly sampled stocks on four different periods. The four sampled

periods are: 2003Q4, 2005Q2, 2006Q3 and 2008Q3. Each period span the whole period

of time between two consecutive earning announcement dates, which is approximately

three months. The sampled periods are chosen from favorable economic environment

as well as stress environment.

Figure 7.9-7.13 illustrate 5 stocks on four different periods. The overall trend of

βn is increasing as we expected, while the insiders take different approaches to execute

their strategies.

Figure 7.9: Results of IBM through four different periods
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Figure 7.10: Results of BA through four different periods
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Figure 7.11: Results of FUN through four different periods
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Figure 7.12: Results of LUK through four different periods
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Figure 7.13: Results of RGR through four different periods
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7.5 Bayesian model selection

We provide model selection on three models: Kyle’s two-variable model, dynamic model

and GARCH(1,1) Bayesian model. The selection method is based on DIC and PLC

and we developed methods to calculate those metrics. The modified GARCH (1,1)

Bayesian model has advantage over the other two models in terms of model selection.

1 The DIC criteria

Spiegelhalter et al. (2002) propose a generalization of the AIC, whose asymptotic

justification is not appropriate for hierarchical (3 or more level) models. The general-

ization is based on the posterior distribution of the deviance statistic,

D(θ) = −2 log f(y|θ) + 2 log h(y), (7.1)

where f(y|θ) is the likelihood function and h(y) is some standardizing function of the

data. These authors suggest summarizing the fit of a model by the posterior expectation

of the deviance, D = Eθ|y[D] and the complexity of a model by the effective number

of parameters pD. In the case of Gaussian models, one can show that a reasonable

definition of pD is the expected deviance minus the deviance evaluated at the posterior

expectations.

pD = Eθ|y[D]−D(Eθ|y[θ]) = D −D(θ), (7.2)

The Deviance Information Criterion(DIC) is then defined as

DIC = D + pD = 2D −D(θ), (7.3)

with smaller values of DIC indicating a better-fitting model. Both building blocks of

DIC and pD, Eθ|y[D], D(Eθ|y[θ]) are estimated via MCMC methods.

DIC is remarkably general, and computed as part of an MCMC run without any need
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for extra sampling, or complicated loss function determination. Moreover, experience

with DIC to date suggests it works remarkably well, despite the fact that no formal

justification for it is yet available outside of posteriors that can be well approximated

by a Gaussian distribution. Still, DIC is by no means universally accepted by Bayesians

as a suitable model choice tool.

Since model comparison using DIC is not invariant to parametrization, the most

sensible parametrization must be carefully chosen beforehand. Unknown scale param-

eters and other restructuring of the model can also lead to subtle changes in the DIC

value.

Finally, DIC will depend on what part of the model specification is considered to

be part of the likelihood, and what is not. Spiegelhalter et al. (2002) refer to this as

the focus issue, i.e., determining which parameters are of primary interest, and which

should count in pD.

Our bayesian MCMC kyle inference has hierarchical parametrization, and DIC are

sensitive to the scale and choice of parameter space.

2 Posterior predictive loss criteria

Another approach is also implemented from the output from posterior simulation is

the posterior predictive loss approach of Gelfand and Ghosh (1998). The PLC is based

on the posterior predictive distributions, and hence, irrespective of the dimensions of

the parameter space, it can be used to compare different models.

We define yl,obs, l = 1, ..., n as observed data, and yl,pred, l = 1, ..., n as prediction.

The selected model are those perform well under balanced loss function: this loss func-

tion penalizes actions both for departure from the corresponding observed value ”fit” as

well as for departure from what we expect the prediction to be ”smoothness”. The loss

puts weights k and 1 on these two components, respectively, to allow for adjustment of

relative regret for the two types of departure.
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For squared loss, the resulting criterion becomes:

Dk =
k

k + 1
G+ P, (7.4)

where G =
∑n

l=1(µl − yl,obs)2, and P =
∑n

l=1 σ
2
l . µl, and σ2

l are the mean and variance

of the predictive distribution of yl,pred given the observed data yl,obs.

The components of Dk have natural interpretations. G is a goodness-of-fit term,

while P is a penalty term. To clarify, we are seeking to penalize complexity and reward

parsimony, just as DIC and other penalized likelihood criteria do. For a poor model

we expect large predictive variance and poor fit. As the model improves, we expect to

do better on both terms. But as we start to overfit, we will continue to do better with

regard to goodness of fit, but also begin to inflate the variance.

If under model m we have parameters θ(m), then,

p(yl,pred|y) =

∫
p(yl,pred|θ(m))p(θ(m)|y)dθ(m), (7.5)

Hence each posterior realization (say, θ∗) can be used to draw a corresponding yl,pred

from p(yl,pred|θ(m) = θ∗). The resulting y∗l,pred has marginal distribution p(yl,pred|y).

With samples from this distribution we can obtain µl and σ2
l .

3 Model assessment

We fit three different models and calculate DIC and PLC on different sample periods.

The DIC numbers have marginal difference since DIC is sensitive to parameter spaces

while PLC provides better assessment. The GARCH(1,1) Bayesian model has the

lowest DIC and PLC, our dynamic model ranks the second. The original Kyle’s model

has the worst goodness-of-fit in terms of DIC and PLC. Table 7.3 illustrates the model

assessment for sample period of IBM 2001Q2.
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Table 7.3: Model assessment by different criteria

Model DIC PLC

Original Kyle’s mode 839.60 4062.955
Dynamic model 821.00 3485.356

GARCH(1,1) dynamic model 820.20 2094.378
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Chapter 8

Other Topics

Two models with asymmetric information, among others, have occupied arguably

the most significant stage in the development of market microstructure research. They

complement each other in a couple of aspects. The sequential trade model represented

by Glosten and Milgrom (1985), referred to as G-M model in what follows, incorporates

the trade orders (buy and sell) and the related bid-ask spread explicitly, but omits the

aspects of trading time and volume. On the other hand, the strategic trade model

introduced by Kyle (1985) articulates the informed trader’s trading strategy in terms

of trading time and volume, but does not separate buy and sell trading orders, hence

there is no bid-ask spread included in the model.

A major task in our research is to perform model-based empirical studies in the

area of market microstructure, especially using high frequency intra-day data. The G-

M model appears to be oversimplified, i.e., the assumptions of several Bernouli variables

in the G-M settings makes it inconvenient to be related to TAQ data. Although we have

extended G-M model in two ways, the modified G-M settings are still not appropriate

for empirical studies. We illustrate the major research we conducted.

Kyle’s model (and the extensions we study) incorporates informational asymmetry

in the informed trader’s strategy and it also quantifies the market liquidity by using



{λn}. Since it uses batch orders instead of limit orders, it does not model transaction

costs directly which is another important factor in market microstructure. Glosten

and Milgrom (1985) proposes a limit order model (G-M model), and Back and Baruch

(2004) provides a unified view on Kyle’s model and the G-M model. A further research

topic for us down the road will concern empirical studies related to the G-M model and

the work of Back and Baruch (2004).

1: The first extension of G-M model

G-M studies a discrete time series. At each time epoch, not only the order buy

or sell is a binary variable, but also the possible value for an asset is assumed to be

either Vl (low) or Vh (high). Such simplification makes it inconvenient to connect G-M

with Kyle’s model in which both the security value and trading volume follow normal

distributions. More importantly, making the security value a continuous variable will

pave a road for empirical studies.

In what follows, we propose a modified G-M setting using interchangeable (or ex-

changeable) sequences in probability. In fact, G-M model is a special application of

interchangeability. Recall that random variables X1, ..., Xn are said to be interchange-

able if their joint distribution is invariant under permutations. A sequence of random

variables X = {Xn, n = 1, 2, ...} is said to be interchangeable if every finite subset of

X is interchangeable. A useful example of X is a mixture of iid random variable that

we are to define. See Chow and Teicher (2003) or other probability books for more

detailed discussion on interchangeability.

• Let µ ∈ (0, 1) represent the proportion of informed traders. Assume one trading

order is processed per unit time.

• At time 0, let the security value be a normal random variable V0 ∼ N(p0,Σ0) whose

density is denoted by f0(·).

• Generate a sample V0 = v from f0(·). Define the conditional probability for an
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informed trader to place a buy order when observing v by an inverse logit trans-

formation,

PI1(B|v) = 1−PI1(S|v) =
eβv

1 + eβv
with the symbols B = “buy” and S = “sell”,

, β is the coefficient. While for an uninformed (noise) trader,

PU1(B|v) = 1− PU1(S|v) =
1

2
, ∀v

i.e. overall, noise traders are insensitive to a particular asset value when they

decide whether to buy or sell. Overall, we have

P1(B|v) = 1− P1(S|v) = µPI1(B|v) + (1− µ)PU1(B|v). (8.1)

• The unconditional probability of the trading order is given by

P1(B) = 1− P1(S) = µ

∫ ∞
−∞

eβv

1 + eβv
f0(v) dv +

1− µ
2

.
= K1. (8.2)

• The posterior density of the security value V1 after one trade resulted from a buy

order will follow from Bayes’ formula:

f1(v|B) = f0(v) P1(B|v)/P1(B) =
1

K1

f0(v) [µ
eβv

1 + eβv
+

1− µ
2

], (8.3)

and similarly,

f1(v|S) = f0(v) P1(S|v)/P1(S) =
1

(1−K1)
f0(v) [µ

1

1 + eβv
+

1− µ
2

], (8.4)

Note that these two conditional densities are different from the unconditional
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density of V1. Moreover, the bid price, ask price and bid-ask spread can be

defined respectively by

B1 = E(V1|S) with respect to the density f1(v|S)

A1 = E(V1|B) with respect to the density f1(v|B)

and A1 −B1.

• To move forward with the evolution of more orders, let On denote the order vari-

able associated with the nth trade taking a value “B” or “S”, and Vn be the

asset value after the nth trade. Assume On, n = 1, 2, ... are conditionally iid

Bernoulli random variables given v ∈ IR, with the common conditional distribu-

tion {P1(B|v), P1(S|v)} given in (8.1). Therefore, the sequence {On, n = 1, 2, ...}

is interchangeable. Note that (unconditionally) O1, O2, ... are dependent with a

positive correlation. Symbolically, Bayes’ formula yields the posterior density for

the asset value Vn given the trading flow {O1, ..., On}:

fn(v|O1, ..., On) =
f0(v) P (O1, ..., On|v)

P (O1, ...On)
=
f0(v)

∏n
i=1 P (Oi|v)

P (O1, ..., On)
, (8.5)

Theorem 4. The trading flow {O1, ..., On} is invariant with respect to any particular

order of O1, ..., On. If we let bn and sn denote the total numbers of buy and sell orders

respectively among O1, ..., On, then

fn(v|O1, ..., On) = fn(v|bn) =
f0(v) [P1(B|v)]bn [P1(S|v)]sn∫∞

−∞ f0(v′) [P1(B|v′)]bn [P1(S|v′)]sn dv′
. (8.6)
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Proof. Given two order sequences, B1, S2 or S1, B2, we have,

f2(v|B1, S2) =
f1(v|B1) Pr(S2|B1, v)

Pr(B1, S2)
=

f1(v|B1) Pr(S2|v)∫∞
−∞ f1(v|B1) Pr(S2|v)dv

=
f0(v)[µ eβv

1+eβv
+ 1−µ

2
][µ 1

1+eβv
+ 1−µ

2
]∫∞

−∞ f0(v)[µ eβv

1+eβv
+ 1−µ

2
][µ 1

1+eβv
+ 1−µ

2
]dv

=
f1(v|S1) Pr(B2|v)∫∞

−∞ f1(v|S1) Pr(B2|v)dv

=
f1(v|S1) Pr(B2|S1, v)

Pr(B2, S1)

= f(v|S1, B2),

Replace f0(v) with fn−1(v) gives the proof by induction.

Because the posterior densities depend on the trading record path O1, ..., On only

through a 1D summary statistic bn (or sn). Now we have a general formula for the

posterior density:

fn(v|bn) =
f0(v) [P1(B|v)]bn [P1(S|v)]n−bn∫∞

−∞ f0(v′) [P1(B|v′)]bn [P1(S|v′)]n−bn dv′
. (8.7)

The following theorem states that the bid and ask price quotes converge over time

to the true value.

Theorem 5. Suppose v = v∗, let askn and bidn denote bid and ask price after nth

trade, for n = 1, 2..., then they converge exponentially to v∗.

lim
n→∞

askn = lim
n→∞

bidn = v∗ a.s. (8.8)

Proof. Given ε > 0, let P (v), ∀v ∈ (−∞,∞) denote the probability of v at interval

[v − ε, v + ε]. If we let bn and sn denote the total numbers of buy and sell orders
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respectively among O1, ..., On. For v = v′, we have,

Pn(v′) =

∫ v′+ε

v′−ε
fn(v|bn)dv,

Pn(v′)

Pn(v∗)
=

f0(v′) [P1(B|v′)]bn [P1(S|v′)]sn
f0(v∗) [P1(B|v∗)]bn [P1(S|v∗)]sn

,

Take logarithm,

1

n
log

Pn(v′)

Pn(v∗)
=

1

n
log

f0(v′)

f0(v∗)
+
bn
n

log
P1(B|v′)
P1(B|v∗)

+ (1− bn
n

) log
P1(S|v′)
P1(S|v∗)

, (8.9)

The first term on the right hand side of equation (8.9) is 0 as n→∞.

Since v = v∗, by Strong Law of Large Numbers,

bn
n
→ P1(B|v∗) as n→∞

Similarly, sn/n → P1(S|v∗) as n → ∞, Let P1(B|v∗) = q, q ∈ [0, 1] which is fixed for

v = v∗. Also let P1(B|v′) = y, y ∈ [0, 1] which is random ∀v′, equation (8.9) could be

written as,

1

n
log

Pn(v′)

Pn(v∗)
→ f(y) = q log

y

q
+ (1− q) log

1− y
1− q

as n→∞,

f ′(y) =
q

y
− 1− q

1− y
= 0,

y∗ = q,

f”(y) =
−q
y2
− 1− q

(1− y)2
< 0,

indicates y∗ is maximum.

f(y) < f(q) = 0, (y 6= q)

Pn(v′)

Pn(v∗)
→ 0 as n→∞ ∀v′ 6= v∗,
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It follows that, limn→∞ askn = limn→∞ bidn = v∗ exponentially a.s.

We can summarize the results so far in

Theorem 6. Let Y = {(bn, Vn) : n = 0, 1, 2, ...} and b0 = 0.

[1] Y is a Markov chain over the state space IN+ × IR where IN+ = {0, 1, 2, ...}, whose

transition probability function is given by (8.7) and

P (bn+1|v, bn) = [P1(B|v)]bn+1−bn [P1(S|v)]1−(bn+1−bn). (8.10)

[2] V0, V1, ... are iid N(p0,Σ0) random variables.

[3] O1, O2, ... are interchangeable random variables with a constant correlation

corr(Oi, Oj) = ρ ≥ 0 ∀ i 6= j. More specifically, O1, O2, ... are a mixture of iid

random variables, i.e. they are iid conditioning on V0 = v.

[4] The (predicted) ask price and bid price after n trades are given by

An = E(Vn|bn−1, On = B), (8.11)

Bn = E(Vn|bn−1, On = S). (8.12)

Given v = v∗ (insider knows v∗), they converge exponentially to v∗ as n→∞.

2: The second extension of G-M model

In the first extended G-M model, an over-simplified assumption is every order (buy

or see) has to be of size one. Apparently, variable trading volumes affect the fluctuation

of asset prices, and should not be ignored in market microstructure studies. Now we

propose another extension of G-M model that incorporates trading volumes.

Let the same notation On represent the (signed) volume (# of shares) in the nth

trade, where the sign indicates the direction of order imbalance: On > 0 (resp. On < 0)
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corresponds to a net “buy order” (resp. “sell order”) effect. We basically follow the

formulation in the first extended G-M model except for defining On’s as continuous

random variables and making related adjustments accordingly.

• With µ ∈ (0, 1) denoting the proportion of informed traders, we still assume one

trading order is processed per unit time. Suppose V0 ∼ N(p0,Σ0) with the density

f0(·).

• Given V0 = v, suppose On, n = 1, 2, ... are conditionally iid with a common condi-

tional density (as a mixture of two normal densities) defined by

g1(u|v) = µ gI1(u|v) + (1− µ) gU1(u|v), (8.13)

where

gI1(· |v) ∼ N(µI(v), σ2
I (v)) and gU1(· |v) ∼ N(0, σ2

U) (8.14)

for an informed trader and a noise trader respectively.

• Once again, given the trading volume history Oi = ui, i = 1, ..., n, Bayes’ formula

yields the posterior density for the asset value Vn:

fn(v|u1, ..., un) =
f0(v)

∏n
i=1 g1(ui|v)∫∞

−∞ f0(v′)
∏n

i=1 g1(ui|v′) dv′
. (8.15)

However, (8.15) is not as practically useful as (8.7) due to the lack of summary

statistics such as bn in (8.7). Consequently, the posterior density becomes gen-

uinely path-dependent. As more and more trades are made, the required memory

grows exponentially, which makes the updating intractable.
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Chapter 9

Conclusions

This thesis studies market microstructure models at high frequency tick level. We

propose a novel dynamic Bayesian model derived from Kyle’s microstructure framework

in which informational asymmetries and liquidity needs motivate trade. Bayesian infer-

ence allows us to interpret the economic impacts of certain parameters contained in the

model. A new algorithm is developed to characterize Kyle’s solution with a significant

reduction in computational complexity when the model is expanded to encompass the

real data. The empirical studies on NYSE TAQ data illustrate the applications of Kyle’s

model and our dynamic model. The approach developed in this thesis can be extended

to characterize variation of microstructure models and other dynamic determinants.

The dynamic model is estimated and tested for intraday data on five randomly

chosen stocks over four different sample periods. Our study focuses on informed trading

between two consecutive quarterly earning announcement. The test of our dynamic

model indicates that the specification is broadly consistent with the original Kyle’s

model through simulation, while our dynamic model performs vastly better than the

equilibrium solution in real data. This work is subject to future validation with new

measures and compared against other microstructure models.

The magnitude of trading intensity βn from Bayesian inference provides interesting



implications of insider’s strategies, while we do not find persuasive influence of market

depth λ−1
n through our dynamic model. In the meantime, we observe strong persis-

tency in the order imbalance volatility. The GARCH(1,1) modification is a prominent

candidate to embrace such property. We develop our GARCH dynamic model and

implement it with empirical data analysis. The results are promising. The impact

could be substantial to explain high volatility persistency measures founded in both

price evolution and order flows. Thus, future research in this area is likely to stem from

theoretical work that bridge equilibrium solution and GARCH dynamic model, and the

interplay between price and order imbalance volatility processes.
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Appendix

A: Proof of Proposition 1:

First of all, we show by backward induction that λn, αn, βn are nonnegative for all

n. Starting from the second order condition (5.14) and αN = 0 we have λN > 0, which

plus (5.9) implies αN−1 > 0. Then λN−1 > 0 and αN−1λN−1 < 1 would follow from

(5.14), etc. This argument shows αn > 0 for n = N − 1, N − 2, ..., 1 and λn > 0 for

n = N,N − 1, ..., 1. Furthermore, (5.12) implies βn > 0 ∀ n.

Next, with dn = αnλn, it follows from (5.9) that

αn−1 =
1

4λn(1− dn)
, and

dn−1 = αn−1λn−1 =
λn−1

4λn(1− dn)
, (A1)

which implies

λn
λn−1

=
1

4 dn−1(1− dn)
. (A2)

From (5.12), we have

λn
λn−1

=
βn
βn−1

Σn

Σn−1

. (A3)

Plugging (5.13) in (A3) yields

λn
λn−1

=
βn
βn−1

(1− βnλn∆tn). (A4)

Note that (5.11) implies

βn ∆tn =
1− 2dn

2λn (1− dn)
, (A5)
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from which substituting βn and βn−1 into (A4) leads to

λn
λn−1

=
1− 2dn

2λn (1− dn)

2λn−1 (1− dn−1)

1− 2dn−1

1

2(1− dn)
, (A6)

and

λ2
n

λ2
n−1

=
1− 2dn

2(1− dn)2

1− dn−1

1− 2dn−1

. (A7)

Squaring both sides of (A2) and matching (A7), we have

8 d2
n−1(1− dn−1)

1− 2dn−1

=
1

1− 2dn
, Kn, (A8)

which can be expressed as the cubic equation (5.16):

8 d3
n−1 − 8 d2

n−1 − 2Kn dn−1 +Kn = 0,

with the boundary condition dN = 0, KN = 1 following αN = 0. Furthermore, (5.18) –

(5.20) follow from (5.11) – (5.13) straightforwardly.

To show the existence and uniqueness of the solution in the interval (0, 1/2) to

equation (5.16) for each n, note that the definition Σn = V ar(v|FUn ) appears to imply

Σn < Σn−1, which along with (5.18) shows [2(1 − dn)]−1 < 1, hence Kn > 0 and

0 < dn < 1/2 for all n = N − 1, ..., 1. However, these assertions need to be justified

more rigorously via backward induction.

Rewrite (5.16) as L(dn−1) = R(dn−1) where

L(dn−1) = 8d2
n−1 (dn−1 − 1), (A9)

R(dn−1) = Kn (2dn−1 − 1). (A10)
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Since 0 < dn−1 < 1 ∀ n by the second order condition, L(dn−1) < 0 ∀ n. Starting

from KN = 1, we have 2dN−1 − 1 < 0, hence dN−1 < 1/2 and KN−1 > 0. Successive

iterations between (A10) and (5.17) lead to dn ∈ (0, 1/2) for all n = N − 1, ..., 1. Note

for every n = N − 1, ..., 1, the first-order derivatives

L
′
(dn−1) = 8dn−1(3dn−1 − 2) < 0,

R
′
(dn−1) = 2Kn > 0

imply that L(dn−1) decreases in dn−1 ∈ (0, 1/2) and R(dn−1) increases. Observing

L(0) = 0, L(1/2) = −1, R(0) = −Kn < 0 and R(1/2) = 0, there is a unique intersection

between the two curves L(dn−1) and R(dn−1) at dn−1 ∈ (0, 1/2). Also, Kn is increasing

in dn and satisfies Kn > 1.

Finally, as for the monotonicity of sequence {dn}, notice that the graph of L(·)

remains unchanged in the interval [0, 1/2] but that of R(·) will change due to its de-

pendence on Kn for different n. More specifically, KN−1 > 1 = KN pushes the (vertical

axis) intercept for R(dN−2) downwards relative to the intercept for R(dN−1), which

implies dN−2 > dN−1. Following the inductive argument, we obtain (5.21):

1

2
> d1 > d2 >, ..., > dN−1 > dN = 0.

This completes the proof of Proposition 1.

B: Proof of Proposition 2:

First,

hn =

√
2(1− dn−1)

1− 2dn
1− 2dn−1

easily follows from (5.20) and (A7). Since 1−2dn
1−2dn−1

> 1 and dn−1 < 1/2, we have hn > 1.
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Next, (A7) implies

kn =

√
1− 2dn

1− 2dn−1

1− dn−1

2(1− dn)2
.

Furthermore, kn > 1/2 follows from 1−2dn
1−2dn−1

> 1 and 1−dn−1

2(1−dn)2
> 1/4.

This completes the proof of Proposition 2.

C: Proof of Proposition 3:

To characterize the equilibrium solution for the case with noisy signals observed by

the informed trader, we rely on the same method applied to Proposition 1, instead of

Kyle’s original approach.

Define qn = αnλn, from equation (5.39)

αn−1 =
γ2

4λn (1− qn)
,

qn−1 = αn−1λn−1 =
λn−1

λn

γ2

4(1− qn)
, (A11)

Which implies

λn
λn−1

=
γ2

4qn−1(1− qn)
. (A12)

From equation (5.41), we have,

λn
λn−1

=
βn
βn−1

Σn

Σn−1

β2
n−1

(
1
γ
− 1
)

Σn−2∆ + σ2
u

β2
n

(
1
γ
− 1
)

Σn−1∆ + σ2
u

,
βn
βn−1

Σn

Σn−1

W. (A13)

Let En−1(·), V arn−1(·), Covn−1(·, ·) and corrn−1(·, ·) denote the conditional mean, vari-

ance, covariance and correlation operators respectively given FUn−1. Since order flows

from the insider are much less volatile than the trades from the uninformed and the

115



insider is actively hiding his trading behavior, V arn−1(∆xn) << V arn−1(∆un). There-

fore,

V arn−1(∆xn) = V arn−1[βn∆ (v − pn−1 + εn)] = β2
n (Σn−1 + a2

nσ
2
ε ) ∆2

= β2
n Σn−1∆2/γ << V arn−1(∆un) = σ2

u∆,

which leads to W ≈ 1. (5.42) turns (A13) to

λn
λn−1

=
βn
βn−1

(1− βnλn∆). (A14)

(5.40) now becomes

βn ∆ =
γ(1− 2qn)

2λn(1− qn)
, (A15)

from which substituting βn and βn−1 into (A14) we have

λn
λn−1

=
1− 2qn

2λn (1− qn)

2λn−1 (1− qn−1)

1− 2qn−1

2(1− qn)− γ(1− 2qn)

2(1− qn)
. (A16)

Therefore,

λ2
n

λ2
n−1

=
1− 2qn

1− 2qn−1

1− qn−1

1− qn
2(1− qn)− γ(1− 2qn)

2(1− qn)
. (A17)

Squaring both sides of equation (A12) and equating with equation (A17),

8q2
n−1(1− qn−1)

1− 2qn−1

=
γ4

(1− 2qn) [2(1− qn)− γ(1− 2qn)]
= Kn, (A18)
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which is equivalent to the cubic equation

8q3
n−1 − 8q2

n−1 − 2Knqn−1 +Kn = 0. (A19)

Note that the boundary condition αN = 0 implies qN = αNλN = 0. Moreover, KN =

γ4

2−γ ∈ (1/24, 1/2).

We then show there exists one unique root which makes economic sense. From the

second order condition from (5.44), we have λn(1− qn) > 0, then qn < 1 for all n.

Follow from equation (5.47), we have 0 < γ(1−2qn)
2(1−qn)

< 1, which leads to qn < 1/2, for

all n. We could rewrite (A19) as

8q2
n−1(qn−1 − 1) = 2Knqn−1 −Kn. (A20)

It is straightforward to show that there exists a unique intersection qn−1 ∈ (0, 1/2)

between the RHS function and the RHS function in (A20).

This completes the proof of Proposition 3.

D: Proof of Theorem 3:

We follow a backward induction procedure. Denote the conditional mean and vari-

ance given F In by EI
n(·) and V arIn(·) respectively. Suppose at the (n+ 1)th auction, the

insider’s expected profit satisfies

EI
n(πn+1) = αn(sn+1 − pn)2 + δn. (A21)

Since πn = (v − pn) ∆xn + πn+1, we have

EI
n−1(πn) = max

∆x
EI
n−1[(v − pn)∆x+ αn(sn+1 − pn)2 + δn]. (A22)
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A linear equilibrium requires

pn = pn−1 + λn(∆xn + ∆un) + h, (A23)

where h is a function of ∆y1, ...,∆yn−1. Plugging (A23) into (A22) and evaluating the

conditional expectation,

EI
n−1(πn)

= max
∆x

EI
n−1[(v − pn−1 − λn∆x− h) ∆x+ αn(sn+1 − pn−1 − λn∆x− h− λn∆un)2 + δn]

= max
∆x
{[EI

n−1(v − pn−1)− λn∆x− h] ∆x+ αn E
I
n−1(sn+1 − pn−1)2

+ αn(λn∆x+ h)2 − 2αn (λn∆x+ h) EI
n−1(sn+1 − pn−1) + αn λ

2
nσ

2
u∆tn + δn}.(A24)

Recall bn = Σn−1

Σn−1+a2
nσ

2
ε
. Note that for each n, the information set FUn−1 does not include

sn. We have

EI
n−1(v − pn−1) =

Covn−1(v − pn−1, sn)

V arn−1(sn)
(sn − pn−1) = bn (sn − pn−1); (A25)

EI
n−1(sn+1 − pn−1) = EI

n−1[(v − pn−1) + an+1εn+1] = bn (sn − pn−1); (A26)

EI
n−1(sn+1 − pn−1)2 = EI

n−1[(v − pn−1) + an+1εn+1]2

= EI
n−1(v − pn−1)2 + a2

n+1σ
2
ε

= V arIn−1(v − pn−1) + [EI
n−1(v − pn−1)]2 + a2

n+1σ
2
ε

= V arn−1(v) {1− [corrn−1(v, sn)]2}+ b2
n(sn − pn−1)2 + a2

n+1σ
2
ε

= Σn−1 (1− bn) + b2
n(sn − pn−1)2 + a2

n+1σ
2
ε . (A27)

Note: Compared to En−1(v−pn−1) = 0, (A25) shows a distinction between the informed

trader and uninformed ones.
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The first order condition in maximizing the future profit yields

bn(sn − pn−1)− 2λn∆x− h+ 2αnλn(λn∆x+ h)− 2αnλn bn(sn − pn−1) = 0.

Hence

∆x =
bn(1− 2αnλn)

2λn (1− αnλn)
(sn − pn−1) + h fn, (A28)

with fn = 2αnλn−1
2λn(1−αnλn)

and the second order condition

λn (1− αnλn) > 0. (A29)

From (A24), we can verify (5.39):

αn−1 =
b2
n

4λn(1− αnλn)
.

We claim that h = 0. In fact, the market efficient condition implies E(∆pn|FUn−1) = 0.

It follows from (A23) and (A28) that

E{∆pn|FUn−1} = h (1 + λnfn) = 0, (A30)

which implies h = 0, and also (5.40):

βn ∆tn =
bn (1− 2αnλn)

2λn (1− αnλn)
.

It follows from the pricing equation pn = En−1(v| FUn−1; ∆yn) and the projection
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theorem that

pn − pn−1 = E[v − pn−1| FUn−1; ∆yn]

=
Covn−1(v − pn−1,∆yn)

V arn−1(∆yn)
(∆yn)

= λn ∆yn, (A31)

hence

λn =
Covn−1(v − pn−1,∆xn + ∆un)

V arn−1(∆xn + ∆un)

=
βn∆tn Σn−1

β2
n(∆tn)2(Σn−1 + a2

nσ
2
ε ) + σ2

u∆tn

=
βnΣn−1

β2
n∆tn (Σn−1 + a2

nσ
2
ε ) + σ2

u

=
1

βn∆tn
bn

+ σ2
u

βnΣn−1

. (A32)

Since the (joint) conditional distribution of the vector (v − pn−1, ∆yn) given FUn−1 is

bivariate Gaussian, (5.42) follows from

Σn = V ar{v − pn−1| FUn−1; ∆yn}

= Σn−1

{
1− [corrn−1(v − pn−1,∆yn)]2

}
= Σn−1

{
1− [Covn−1(v − pn−1,∆xn + ∆un)]2

V arn−1(v) V arn−1(∆xn + ∆un)

}
= Σn−1

{
1− λnCovn−1(v − pn−1,∆xn + ∆un)

V arn−1(v)

}
= Σn−1

(
1− λnβn∆tn Σn−1

Σn−1

)
= Σn−1 (1− λnβn∆tn).
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Now (A32) and (5.42) imply

λnβn∆tn
bn

+
λnσ

2
u

βnΣn−1

= 1,

and

λnβ
2
n∆tn

(
b−1
n − 1

)
Σn−1 + λnσ

2
u = βnΣn,

which turns to (5.41) easily.

Finally, collecting relevant terms in (A24) entails

δn−1 = δn + αnλ
2
n σ

2
u∆tn + αn(1− bn) Σn−1 + αn a

2
n+1σ

2
ε . (A33)
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