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ABSTRACT 

Jennifer Y. Yi: Working Memory Network Connectivity and Inhibitory Control in Cocaine Use 
(Under the direction of Stacey B. Daughters) 

 

Support exists for inhibitory control and working memory deficits among cocaine users. 

Existing literature suggests that working memory is central in successful inhibitory control, and 

that working memory processes may be best captured by examining network connectivity. This 

study examined whether working memory network connectivity mediates the relationship 

between group (cocaine users versus controls) and working memory performance, and group and 

inhibitory control performance. Participants completed working memory and inhibitory control 

tasks during functional magnetic resonance imaging. Cocaine users demonstrated poorer 

inhibitory control performance and reduced activation during the working memory task 

compared to controls. Working memory network connectivity did not account for group 

differences in working memory or inhibitory control performance. Specific connectivity between 

the right insula and inferior frontal gyrus and the right precuneus and inferior parietal lobule 

were significantly related to working memory and inhibitory performance, respectively, 

suggesting the role of attention and default mode network regulation. 
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INTRODUCTION 

Cocaine use continues to be a large public health concern, as cocaine is one of the most 

commonly abused illicit drugs in the United States. In 2014, over 14% of the U.S. population 

was estimated to have used cocaine sometime in their life (SAMHSA, 2015). Furthermore, in 

2011, there were over 500,000 emergency department visits related to cocaine use (SAMHSA, 

2013). Consequently, cocaine use places a large economic burden on society as a result of 

numerous costs including healthcare, drug enforcement, incarceration, and work productivity 

loss. Furthermore, cocaine use is associated with a multitude of negative experiences including 

trauma (Freeman, Collier, & Parillo, 2002; Hyman et al., 2008; Thompson, Lown, & Fullilove, 

1992; Wasserman, Havassy, & Boles, 1997), risky sexual behaviors (Campsmith, Nakashima, & 

Jones, 2000; Hudgins, McCusker, & Stoddard, 1995; Joe & Simpson, 1995), mental disorders 

(e.g., depression, attention deficit hyperactivity disorder) (Brown et al., 1998; Kleinman et al., 

1990; Luthar & Rounsaville, 1993; Rounsaville et al., 1991), serious medical conditions (e.g., 

cardiovascular events), and death (Cregler & Mark, 1986). Appropriately, there have been 

considerable efforts to investigate the mechanisms underlying cocaine use in order to better 

understand its etiology and maintenance and ideally inform prevention and treatment.  

Current theories propose that the development and maintenance of substance use 

disorders, as well as vulnerability to relapse, can be conceptualized as a series of transitions from 

voluntary and casual substance-seeking and –taking behaviors to compulsive drug use involving 

cognitive processes such as learning, attention, and memory (Everitt et al., 2008b; Everitt & 

Robbins, 2005; Volkow, Fowler, & Wang, 2004). More specifically, initial substance use is 
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understood to be largely voluntary and primarily motivated by the reinforcing and rewarding 

effects of substances; however, after repeated use, various environmental and internal stimuli 

become associated with substance-seeking and -taking behaviors and subsequently gain saliency, 

procuring greater substance use (Volkow et al., 2004; Volkow & Li, 2004). Eventually, these 

behaviors become habitual and then inflexible and compulsive, ultimately resulting in the loss of 

impulse control (Everitt et al., 2008a).  

Research has suggested that cognitive processes involved in executive control, namely 

processes responsible for the coordination and implementation of goal-directed and more 

complex decision-making (Royall et al., 2002; Tranel, Anderson, & Benton, 1994) may 

contribute significantly to these transitions and vulnerability to relapse (Norman & Shallice, 

2000; Perner & Lang, 1999; Verdejo-García & Pérez-García, 2007). In particular, inhibitory 

control, the ability to inhibit a pre-potent cognitive or motor response (Carlson, Moses, & 

Breton, 2002; Luijten et al., 2014; Roberts, Fillmore, & Milich, 2011; Smith, Mattick, Jamadar, 

& Iredale, 2014) and working memory, the temporary storage, processing, integration, and 

manipulation of gained information (Engle, Tuholski, Laughlin, & Conway, 1999; Kane, 

Bleckley, Conway, & Engle, 2001; Kane & Engle, 2003; Owen, McMillan, Laird, & Bullmore, 

2005) may be two especially important executive control processes related to compulsive 

cocaine use.  

Inhibitory Control 

One important component of executive control is inhibitory control. As a core element of 

behavior, this ability is necessary to implement adaptive control over everyday cognitions and 

behaviors, particularly to maintain appropriately efficient responses to changes in the 

environment (López-Caneda, Holguín, Cadaveira, Corral, & Doallo, 2014; Schachar, Tannock, 
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Marriott, & Logan, 1995). Difficulties with inhibitory control can manifest in several ways 

including increased susceptibility to irrelevant information, initiation of responses before the 

availability of sufficient information, or failure to correct inappropriate or incorrect responses 

(Schachar & Logan, 1990). In everyday behavior, such difficulties can manifest as an inability to 

persist at a task, engagement in behaviors without thoroughly considering potential negative 

consequences, a short attention span, or a tendency to engage in risky behaviors or seek out 

novel situations (Mitchell, Fields, D'Esposito, & Boettiger, 2005). Poor inhibitory control is a 

common symptom shared by a number of clinical disorders characterized by impulsivity, 

including attention deficit hyperactivity disorder (ADHD) (Crosbie et al., 2013; Nigg, 2001; 

Rubia, Smith, Brammer, Toone, & Taylor, 2014), autism spectrum disorders (ASD) (Chan et al., 

2011; Mosconi et al., 2009; Sinzig, Morsch, Bruning, Schmidt, & Lehmkuhl, 2008), obsessive-

compulsive disorder (OCD) (Bannon, Gonsalvez, Croft, & Boyce, 2002; Penades et al., 2007; 

Woolley et al., 2008), and pathological gambling (Goudriaan, Oosterlaan, De Beurs, & Van Den 

Brink, 2006; Leeman & Potenza, 2012).  

Of particular importance, difficulties with inhibitory control are also a prominent 

characteristic of substance use disorders, such as cocaine use disorder (Everitt et al., 2008; 

Garavan & Hester, 2007; Perry & Carroll, 2008), as they are hypothesized to play a central role 

in the development of substance use disorders and propensity to relapse to substance use (Everitt 

et al., 2008; Garavan & Hester, 2007; Perry & Carroll, 2008). Although inhibitory control is 

generally understood as a multifaceted construct, behavioral inhibition (Diamond, 2013), a form 

of effortful inhibition (Nigg, 2001) is arguably most closely tied to inhibitory processes related to 

substance use disorders. According to Goldstein and Volkow (2011), substance use disorders can 

be understood as a behavioral syndrome of impaired response inhibition and salience attribution 
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(iRISA), described by four core symptoms: craving, intoxication, bingeing, and withdrawal. 

Among these cores symptoms, inhibitory control is hypothesized to play a role in all but 

withdrawal. Appropriately, regular use of cocaine and relapse can be understood as a failure of 

inhibitory control or in other words, a failure to inhibit the pre-potent response of cocaine-

seeking and –taking behaviors when encountering cocaine triggers, in turn leading to a 

continuation of associated negative consequences (e.g., financial problems, social isolation, 

poorer physical health, comorbid psychiatric conditions). 

Deficits in inhibitory control may be particularly relevant to the development and 

maintenance of compulsive cocaine use, as well as relapse given the binge-like nature of 

cocaine-seeking and -taking behaviors. The psychoactive effects of cocaine are characterized by 

a relatively short half-life, leading to rapid absorption and delivery to the brain after consumption 

(Benowitz, 1993). Accordingly, the effect of cocaine is short and intense, with studies reporting 

self-reported peak "highs" 5 to 30 minutes after administration and returns to baseline ratings 

after 2 to 4 hours (Fischman, 1984; Van Dyke, Jatlow, Ungerer, Barash, & Byck, 1979; Van 

Dyke, Ungerer, Jatlow, Barash, & Byck, 1983). As such, cocaine is often described to be taken 

in "binge episodes," defined as out-of-control consumption of large amounts of cocaine over an 

extended period time (Mutschler, Covington, & Miczek, 2001), contributing to binge-abstinence 

cycles, in contrast to the regimented manner that other substances (e.g., heroin, nicotine) are 

often used (Goldstein & Volkow, 2011; Pace-Schott et al., 2005). In particular, binge behavior 

may reflect greater deficits in inhibitory control, as evidenced by studies among individuals 

engaging in alcohol-binge behavior (Banca et al., 2016; Bozkurt, Evren, Yilmaz, Can, & 

Cetingok, 2013; Moreno et al., 2012; Poulton, Mackenzie, Harrington, Borg, & Hester, 2016) 
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and binge eating behavior (Claes, Vandereycken, & Vertommen, 2002; Kane, Loxton, Staiger, & 

Dawe, 2004). 

Behavioral deficits in inhibitory control among cocaine users. A commonly used 

behavioral paradigm to measure the behavioral inhibition component of inhibitory control while 

attempting to dissociate these processes from other executive control processes (Simmonds, 

Pekar, & Mostofsky, 2008) is the Go/No-Go task. Although it was primarily designed to assess 

error awareness (Garavan, 2011), it is also widely utilized to measure motor inhibition. During 

Go/No-Go tasks, individuals are required to make a motor response to a more frequently 

presented stimulus and withhold to another, less frequently presented stimulus (Swick, Ashley, 

& Turken, 2011). Inhibitory control performance can be measured with accuracy, calculated as 

the number of errors of commission (i.e., failed inhibitions), such that fewer errors indicate 

greater inhibitory control.  

Task conditions in Go/No-Go tasks can be conceptualized as “consistent mappings,” as 

different stimuli are associated with different responses and have the potential to be learned and 

somewhat automated (Verbruggen & Logan, 2008). Therefore, successful inhibitory control 

performance requires “action restraint” (Eagle, Bari, & Robbins, 2008; Schachar et al., 2007) or 

in other words, withholding a pre-potent response that has not yet been initiated (Morein-Zamir 

& Robbins, 2014; Smith et al., 2014). Such a conceptualization can be appropriately extended to 

better understand the development of compulsive cocaine use such that when cocaine and 

cocaine-related stimuli develop consistent mappings with cocaine-seeking and –taking behaviors 

and become cocaine triggers. Accordingly, in order to remain abstinent, cocaine users must 

inhibit this pre-potent response by overcoming automatic tendencies to engage in cocaine-

seeking and –taking behaviors.  
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 Existing literature supports the existence of deficient inhibitory control among cocaine 

users as they demonstrate poorer performance on Go/No-Go tasks, such that cocaine users 

demonstrate a greater number of errors of commission compared to healthy controls (Fernández-

Serrano, Perales, Moreno-López, Pérez-García, & Verdejo-García, 2012; Hester & Garavan, 

2004; Hester, Simoes-Franklin, & Garavan, 2007; Kaufman, Ross, Stein, & Garavan, 2003; 

Lane, Moeller, Steinberg, Buzby, & Kosten, 2007; Verdejo-García, Perales, & Pérez-García, 

2007; Verdejo-García & Pérez-García, 2007). These findings suggest that cocaine users may 

have impairments in one or more components of inhibitory control, such as stimulus recognition, 

maintenance of stimulus and response associations, and response selection (Simmonds et al., 

2008). Cocaine dependent individuals and healthy controls also demonstrate differences in neural 

response to inhibitory control (Hester, Bell, Foxe, & Garavan, 2013; Hester & Garavan, 2004; 

Kaufman et al., 2003). More specifically, aberrant neural response to inhibitory control among 

cocaine users may reflect inefficient engagement and recruitment of cognitive resources for 

central components of inhibitory control such as appropriate utilization of rule- and goal-oriented 

information to inform response selection and updates of motor planning that ultimately aid in 

response execution (Chambers, Garavan, & Bellgrove, 2009; Chikazoe, 2010; Corbetta & 

Shulman, 2002; Dosenbach et al., 2007; Hampshire, Chamberlain, Monti, Duncan, & Owen, 

2010; Li, Huang, Constable, & Sinha, 2006; Luijten, Littel, & Franken, 2011; Mostofsky & 

Simmonds, 2008; Simmonds et al., 2008). 

Working Memory 

In addition to inhibitory control, working memory is an important component of 

executive control as it is crucial for a wide array of cognitive tasks such as reasoning, 

comprehension, and learning (Baddeley, 2003; Conway, Kane, & Engle, 2003). Importantly, 
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working memory, although bearing some similarities to short term and long term memory, refers 

to information being utilized in order to plan and execute behaviors (Cowan, 2008). Short-term 

memory primarily refers to storage of a limited capacity of information that is marked by its 

temporary accessibility and limitations of decay over time. In comparison, long-term memory 

primarily refers to storage of more permanent skills, knowledge, and information, that is not as 

markedly limited by capacity, but that needs to be accessed by retrieval processes. Thus, working 

memory can be understood as providing an interface between more immediate actions and long 

term memory through which information is maintained and manipulated in a temporarily active 

state. 

Working memory is generally understood to achieve active information storage and 

manipulation through a multi-component system. In particular, Baddeley and Hitch (1974) 

propose a tripartite model of working memory involving a phonological loop, visuo-spatial 

sketchpad, and the central executive. The phonological loop, the first storage component of 

working memory allows active storage of memory traces that can be retrieved and rearticulated 

during recall or recycled by means of rehearsal (Baddeley, 2003). The second storage 

component, the visuo-spatial sketchpad, provides a continuous memory record utilizing feature 

recognition and grouping information (Wheeler & Treisman, 2002). And lastly, the central 

executive, although relatively less understood than the storage components of working memory 

is arguably the most important as it is hypothesized to be involved in the manipulation of 

information and the creation of new representations, beyond simply activating stored information 

and representations (Baddeley, 2003). By maintaining and manipulating relevant information, 

working memory serves the overall function of shielding relevant and significant information 
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from distraction and interference by engaging attentional processes to maintain or suppress 

information (Engle, 2002; Kane et al., 2001). 

Working memory impairment has been found in a range of clinical disorders including 

attention deficit hyperactivity disorder (ADHD) (Martinussen, Hayden, Hogg-Johnson, & 

Tannock, 2005; Rapport et al., 2008), autism spectrum disorders (ASD) (Geurts, Verté, 

Oosterlaan, Roeyers, & Sergeant, 2004; Hill, 2004; Verté, Geurts, Roeyers, Oosterlaan, & 

Sergeant, 2006), schizophrenia (Aleman, Hijman, de Haan, & Kahn, 1999; Lee & Park, 2005), 

and various types of traumatic brain injury (TBI) (Christodoulou et al., 2001). Of particular 

interest, deficits in working memory have also been found among substance users (Franken & 

Wiers, 2013; von der Goltz & Kiefer, 2008) and are associated with more severe cocaine use and 

poorer treatment outcomes (e.g., relapse) (Moeller et al., 2010; Vonmoos et al., 2014). 

Individuals with working memory deficits, like cocaine users, may have a decreased ability to 

discriminate between appropriate/relevant and inappropriate/irrelevant information in their 

working memory (Kane et al., 2001). Indeed, stronger working memory functioning allows for 

greater resources for attention-shifting, self-reflection, and reasoning in order to successfully 

engage in adaptive decision-making, namely choosing to resist cocaine cravings to remain 

abstinent rather than relinquishing to more immediately rewarding and salient alternatives of 

using cocaine (Barkley, 1997, 2001; Finn, 2002; Finn & Hall, 2004; Oberauer, 2002; Unsworth 

& Engle, 2007). According to Engle and colleagues (2002), intact working memory maintains 

goal-oriented information and behavioral options surrounding this information, such as the goal 

to maintain abstinence and decisions to abstain from cocaine-seeking and –taking behaviors. 

However, an individual with working memory deficits is expected to become more susceptible to 

interference and distractions, such as the presence of automatic associations between cocaine 
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triggers and cocaine-seeking and –taking behaviors that increase in saliency due to an attentional 

bias towards cocaine and cocaine-related stimuli. Concurrently, with limited memory storage, 

non-cocaine-related stimuli or the negative aspects of cocaine use become more difficult to retain 

in working memory (Finn, 2002), Ultimately, this difficulty in utilizing abstinence-promoting 

information manifests through problematic response selection and execution that instead favor 

the immediate reward of intoxication. 

Behavioral deficits in working memory among cocaine users. Working memory tasks, 

such as the widely used N-Back task have been utilized to measure working memory 

performance. During N-Back tasks, individuals are required to make a response every time a 

currently presented stimulus (e.g., letter, shape, number) is the same as the stimulus presented 

“n” trials back with increases in “n” reflecting increases in working memory load and capacity 

demands placed on individuals. Thus, in order to perform successfully, individuals must have the 

ability and capacity to engage in continuous monitoring of incoming stimuli, while also updating 

and manipulating content in their working memory, such as previously presented stimuli to 

appropriately inform response selection (Owen et al., 2005).  

In support of the role of working memory in regular cocaine use, studies utilizing N-Back 

tasks have shown behavioral evidence for working memory deficits among regular cocaine users. 

During N-Back tasks, cocaine users demonstrate poorer performance as evidenced by more 

errors compared to healthy controls (Albein-Urios, Martinez-González, Lozano, Clark, & 

Verdejo-García, 2012; Hester & Garavan, 2009; Tomasi et al., 2007a); however, some discrepant 

findings exist as not all studies have found differential behavioral performance on N-Back tasks 

between regular cocaine users and healthy controls. Bustamente and colleagues (2011) did not 

find group differences in accuracy between cocaine dependent men and matched healthy 
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controls. In contrast to studies that found differences in N-Back performance between cocaine 

users and healthy controls, it is not clear whether some of the cocaine dependent men in the 

sample had any other substance dependencies beyond self-reported recreational use of alcohol, 

cannabis, and amphetamine. Comorbid substance dependencies may have contributed to 

differential findings.  

Relationship between Inhibitory Control and Working Memory 

 Although behavioral and neural paradigms seek to isolate the constructs of inhibitory 

control and working memory, these executive control processes are well understood to interact 

with one another in order to give rise to higher-order cognitions and behaviors. In a review 

article, Barrett and colleagues (2004) propose that working memory capacity is related to self-

regulatory processes, such as inhibitory control that engage controlled and reflective processes as 

opposed to relying on more automatic and impulsive processes. Accordingly, when encountering 

environmental or internal stimuli that activate automatic associations, such as those between 

cocaine triggers and cocaine-seeking and -taking behaviors, an individual with intact working 

memory is expected to engage inhibitory processes while utilizing regulatory goal-oriented 

information as a standard of reference for action selection and execution (Hofmann, 

Gschwendner, Friese, Wiers, & Schmitt, 2008). Ultimately, this gives rise to self-regulatory 

cognitions and behaviors, such as those contributing to the maintenance of abstinence from 

cocaine use. In contrast, an individual with impaired working memory should have more 

difficulty engaging in inhibitory processes to impede pre-potent cognitions and behaviors, 

ultimately leading to relapse. 

 Building upon this understanding of inhibitory control and working memory, Bechara 

and Martin (2004) forward a theory of asymmetric dependence in substance use disorders that 
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proposes that decision-making is dependent on the intactness of working memory, while the 

reverse does not need to hold true. In particular, disruptions in working memory may result in 

disruptions in inhibitory control in substance use disorders, resulting in “myopia” for the future, 

such that individuals are unable to successfully operate on the contents of relevant information to 

inform their action selection and execution (e.g., failure to learn from repeated mistakes) 

(Bechara, 2005).  

Additional literature more explicitly investigating the relationship between working 

memory and inhibitory control, as well as impulsivity among healthy controls and individuals 

with other psychopathology lends support to the proposed relationship between these two 

executive control processes (Barkley, 1997, 2001; Finn, 2002). In a series of experiments, 

Hinson and colleagues (2003) utilized a delay discounting task under different working memory 

load conditions with healthy controls in order to examine the relationship between working 

memory and impulsive consequences of action. When asked to make hypothetical and monetary-

based delay discounting decisions under various working memory loads, individuals displayed 

more impulsivity, as evidenced by greater discounting of delayed rewards (i.e., preference 

towards short-term over long-term benefits) with increasing working memory load. Although 

these findings cannot speak to the relationship between specific components of working memory 

and inhibitory control, they demonstrate the influence of working memory on impulsivity such 

that working memory constraints are predictive of more impulsive decision-making.  

Similar findings have been demonstrated with more diverse populations of individuals 

endorsing a range of behavioral disinhibition personality traits (Bogg & Finn, 2010). More 

specifically, behavioral inhibition and working memory capacity were assessed among two 

community samples of adolescents and young adults using multiple personality scales and dual 
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task ability tests. Bogg and Finn (2010) found a negative association between behavioral 

disinhibition personality traits and working memory capacity, arguing that a decreased capacity 

to actively store and utilize information leads to less sufficient attentional control in the presence 

of distractors. In turn, diminished control increases the likelihood of disinhibited decision-

making. Although the working memory paradigms used in this study do not reflect the appetitive 

influences involved in encounters with drug triggers, it reveals the significant relationship 

between working memory and inhibition. 

Most relevantly, Gunn and Finn (2013) examined the relationship between inhibitory 

processes and working memory by examining whether deficits in working memory underlie 

impulsivity among individuals with alcohol use disorder. Alcohol problems were assessed by 

measuring the severity of self-reported physical, psychological, and social problems associated 

with alcohol dependence, while impulsivity was quantified as a latent variable using three 

impulsivity scales. Additionally, working memory capacity was computed as a latent variable 

using two working memory tasks. Utilizing a mediational structural equation model, working 

memory capacity did not mediate the relationship between impulsivity and alcohol problems. 

However, working memory was negatively correlated with both impulsivity and alcohol 

problems. In an alternative model, impulsivity proved to mediate the relationship between 

working memory capacity and alcohol problems, such that poorer working memory capacity 

predicted greater alcohol problems as mediated by greater impulsivity, Although working 

memory capacity did not emerge as a significant mediator, this study suggests that the 

relationship between inhibitory processes and working memory may underlie substance use. 

Future studies need to be conducted in order to further investigate the directionality of the 
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relationship between these constructs, ultimately to better understand increased vulnerability to 

relapse during substance use.  

Neural Deficits in Working Memory among Cocaine Users 

 Although behavioral deficits in working memory among cocaine users are well 

supported, evidence indicates the importance of understanding the system-based neural 

architecture contributing to working memory performance. Studies utilizing fMRI with healthy 

populations have largely demonstrated the central role of the prefrontal cortex (PFC) in working 

memory. In a meta-analysis of N-Back studies, Owen and colleagues (2005) argue for distinct 

working memory functions among more specific divisions of the PFC. The ventrolateral 

prefrontal cortex (VLPFC), primarily the inferior frontal gyrus (IFG) is thought to receive 

information after being initially received and inspected by the posterior parietal cortex in order to 

guide the implementation of current and future plans (D'Esposito, Postle, & Rypma, 2000; Dove, 

Manly, Epstein, & Owen, 2008; John Jonides et al., 1998; Owen & Evans, 1996; E.E. Smith & 

Jonides, 1998; Wagner et al., 1998). During this information transfer, the dorsolateral prefrontal 

cortex (DLPFC), primarily the middle frontal gyrus (MFG) is hypothesized to be involved in the 

use of organization strategies in order to reduce cognitive load accompanying increasing working 

memory demands (Bor, Duncan, Wiseman, & Owen, 2003; D'Esposito et al., 2000; Duncan & 

Owen, 2000; Ericcson, Chase, & Faloon, 1980; Owen, Morris, Sahakian, Polkey, & Robbins, 

1996). This is further accomplished by continuous information monitoring and appropriate 

information manipulation. Additional neural involvement includes the inferior parietal lobule 

(IPL) which has been implicated in a variety of working memory processes including the 

encoding and recoding of temporal information, attention switching (Cabeza, Ciaramelli, Olson, 

& Moscovitch, 2008; Ravizza, Delgado, Chein, Becker, & Fiez, 2004), as well as retrieval and 
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recollection (Cabeza et al., 2008; Vilberg & Rugg, 2008). In addition, the insula, although more 

typically associated with cognitive control surrounding emotion, self-awareness, interoception, 

and motor control has also been hypothesized to be engaged during N-Back tasks (Owen et al., 

2005; Wager & Smith, 2003). Working memory processes must work in an integrated fashion 

with other executive processes, thus the rostral PFC/frontal pole is hypothesized to help 

coordinate relevant information between working memory processes and related cognitive 

processes (Owen et al., 2005; Ramnani & Owen, 2004). 

 During N-Back tasks, regular cocaine users demonstrate aberrant (i.e., both increased and 

reduced) activation in prefrontal regions, as well as reduced activation in the striatum, thalamus, 

and parietal regions compared to healthy controls (Bustamante et al., 2011; Moeller et al., 2010; 

Tomasi et al., 2007a). More specifically, Tomasi and colleagues (2007b) found that cocaine 

dependent individuals had hypoactivation in the MFG, precuneus, parietal cortex, and putamen 

and hyperactivation in the cerebellum compared to healthy controls. These findings are in line 

with behavioral findings for which cocaine dependent individuals had lower accuracy than 

healthy controls. According to previously discussed studies, these findings suggest that regular 

cocaine users may have reduced engagement in storage-related working memory functions, as 

well as decreased utilization of organization strategies to manage working memory demands. 

Reduced activation in the putamen and increased activation in the cerebellum among cocaine 

dependent individuals may more specifically reflect reduced ability to engage in numerical 

sequence learning and memory processes (Rauch et al., 1997), while attempting to compensate 

with greater motor control engagement (Lotze et al., 1999; Stoodley & Schmahmann, 2010). In 

another study, Bustamente and colleagues (2011) found that cocaine dependent individuals 

demonstrated hyperactivation in the right IPL compared to healthy controls despite groups 
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having equal behavioral performance on the task. Increased activation in the inferior parietal 

cortex may indicate increased, yet inappropriate engagement in attentional processes in the face 

of unaffected behavioral working memory performance. Similarly, Moeller and colleagues 

(2010) found that cocaine dependent individuals had hypoactivation in the IFG, putamen, 

caudate, and thalamus, and frontal pole compared to healthy controls during a delayed memory 

task. Like hypoactivation in the putamen, hypoactivation in the caudate may reflect impairment 

in stimulus-response learning (Grahn, Parkinson, & Owen, 2008). Taken together, these findings 

suggest that multiple components of working memory may be impaired in regular cocaine users. 

 Prevailing theories of neural function posit that disruptions to neural circuitry underlying 

cognitive and behavioral processes may be central in the etiology and maintenance of clinical 

symptoms (Insel et al., 2010; Price & Drevets, 2012). One method of describing neural circuitry 

is by examining network connectivity, which refers to contemporaneous information distribution 

and flow across large-scale networks distributed across the brain (Seeley et al., 2007). More 

specifically network connectivity allows for the examination of intrinsically organized brain 

circuit activity and its relation to cognition and behavior, above and beyond isolated mapping of 

individual neural regions gathered from localization-oriented analytic methods (Van Dijk et al., 

2010). Furthermore, such examinations can provide compelling insight about how this neural 

organization and communication is altered in clinical disorders, such as cocaine use disorder. 

 Importantly, inter-individual variability network characteristics such as efficiency and 

connection strengths between neural regions has been found to be associated with various 

measures of cognitive performance (McIntosh, 2000; Sporns, 2011), most notably working 

memory performance. Hampson and colleagues (2006) found a positive correlation between the 

functional connection strength between the posterior cingulate cortex (PCC) and middle frontal 
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gyrus (MFG)/ventral anterior cingulate cortex (vACC) and working memory performance in 

healthy controls. In another study, healthy controls demonstrated a positive correlation between 

greater working memory network connectivity, namely between the dorsolateral prefrontal 

cortex (DLPFC) and left premotor cortex during a working memory task and working memory 

performance (Hampson, Driesen, Roth, Gore, & Constable, 2010). In addition, disruptions in 

functional connectivity during a working memory task have also been demonstrated among 

clinical populations characterized by inhibitory control deficits, such as attention deficit 

hyperactivity disorder (ADHD) and autism. Among adults with ADHD, Wolf and colleagues 

(Wolf et al., 2009) found significantly lower functional connectivity among the bilateral 

ventrolateral prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), superior parietal 

lobule (SPL), and cerebellum during a working memory task compared with healthy controls. 

Adults with ADHD also demonstrated increased functional connectivity in right prefrontal 

regions, left dorsal cingulate cortex, and left cuneus. Koshino and colleagues (Koshino et al., 

2005) found lower functional connectivity between the left inferior parietal lobule (IPL) and 

right dorsolateral prefrontal cortex (DLPFC) and increased functional connectivity between the 

left DLPFC and right inferior temporal lobule during a working memory task, compared to 

healthy controls. Taken together, these studies suggest that functional network connectivity may 

provide an advantageous method of examining the organization and communication of neural 

mechanisms contributing to better understanding of behavioral deficits among clinical 

populations. Despite this evidence, to our knowledge there have been no investigations of 

working memory network connectivity among substance users generally, and cocaine users 

specifically, highlighting the need to examine the role working memory network connectivity in 
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relation to other executive control processes such as inhibitory control in contributing to 

behavioral deficits. 

Summary  

Taken together, in order to more fully understand the deficits in inhibitory control among 

cocaine users that in turn have been shown to predict the frequency of cocaine use and treatment 

outcomes, it is imperative to consider what processes may be accounting for these deficits. In 

particular, based on the reviewed theoretical and empirical evidence, working memory network 

connectivity may play a central role in the maintenance of cocaine use and relapse due to failures 

to engage in inhibitory control processes. 

Current Study 

The current study proposes to examine the relationship between working memory and 

inhibitory control among cocaine users through two aims (Figure 1). Aim 1 is to examine 

whether working memory network connectivity mediates the relationship between group and 

working memory task performance. It is hypothesized that greater working memory network 

efficiency will account for group differences in working memory task performance. Aim 2 is to 

examine whether working memory network connectivity mediates the relationship between 

group and inhibitory control task performance. Greater working network efficiency is 

hypothesized to account for group differences in inhibitory control task performance. 
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MATERIALS AND METHODS 

Participants 

A total of 31 cocaine users and 29 healthy controls were recruited from Baltimore and 

Washington, D.C. metropolitan areas using newspaper flyers, provided verbal and written 

consent approved by the Institutional Review Board (IRB) of the National Institute on Drug 

Abuse (NIDA), and participated in study procedures. Of these participants, 13 were excluded 

from analyses with 4 for excessive head motion (CU n=3, HC n=1), 5 for poor behavioral 

performance defined as greater than 2 standard deviations from the group mean (CU n=2, HC 

n=3), and 4 for technical problems with the fMRI (CU n=3, HC n=1). The final sample included 

23 cocaine users and 24 healthy controls (Figure 2).  

Cocaine users were included if they endorsed regular cocaine (i.e., ≥two times per week) 

and nicotine (i.e., daily smoker) use during the past year prior to participation and did not meet 

DSM-IV (Association, 2000) diagnostic criteria for current or past substance dependence for any 

other substances other than nicotine as assessed by the Structured Clinical Interview for DSM-

IV-TR (SCID-I/NP) (First, Spitzer, & Gibbon, 2002). Healthy controls were included if they did 

not meet DSM-IV criteria for any current or past substance abuse or dependence, and did not 

endorse any use of illicit substances in the past 30 days nor current smoking. Exclusion criteria 

for all participants included: (1) pregnancy, (2) implanted metallic devices (e.g., cardiac 

pacemaker, surgical clips) or claustrophobia rendering them unsafe to undergo a fMRI scan, (3) 

major illnesses (e.g., hypertension, diabetes, HIV), (4) neurological illness (e.g., seizure 

disorders, migraines, multiple sclerosis), (5) current major psychiatric disorders (e.g., borderline 
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personality disorder, psychotic disorders, anxiety disorders), (6) regular use of any prescription, 

over-the-counter, or herbal medications that may alter central nervous system function, 

cardiovascular function, or neuronal-vascular coupling, (7) cognitive impairment (i.e., IQ<85) as 

assessed by the Wechsler Abbreviated Scale of Intelligence (WASI-II) (David Wechsler & Hsiao-

pin, 2011), and (8) acute drug intoxication or positive urinalysis results at the start of the study.  

General Procedure 

The present study includes data from a larger assessment battery (Figure 3). Following 

informed consent procedures, a pre-scan assessment was administered to all participants, 

including a MRI Screening Form to determine a participant’s eligibility and safety to undergo an 

MRI scan, a test for current drug use (Triage®), alcohol use (breathalyzer), and pregnancy, the 

vocabulary portion of the Wechsler Abbreviated Scale of Intelligence (WASI-II VIQ) (D. 

Wechsler, 2011), Fagerström Test for Nicotine Dependence (FTND) (Heatherton, Kozlowski, 

Frecker, & Fagerstrom, 1991), and a questionnaire assessing frequency of substance use across 

11 drug classes in the past year prior to participation. All cocaine users smoked a cigarette 60 

minutes prior to entering the MRI scanner for structural and functional MRI scans. At the end of 

the visit, participants were debriefed and compensated. 

Measures 

Self-report and interview measures. 

Demographics Form. A Demographics Form was used to collect basic demographic 

information such as age, ethnicity/race, and gender.  

Fagerström Test for Nicotine Dependence (FTND) (Heatherton et al., 1991). The FTND 

is a 6-item, self-report questionnaire used to measure severity of nicotine dependence during the 

past 30 days. The FTND demonstrates good test-retest reliability with correlation coefficients 
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ranging from 0.49 to 0.97 (all ps<0.001) on individual items (Pomerleau, Carton, Lutzke, 

Flessland, & Pomerleau, 1994). HC were excluded if they reported being a current smoker. 

MRI Screening Form. The MRI Screening Form was used to help determine a 

participant's eligibility and safety to undergo an MRI scan. It includes questions regarding MRI 

contraindications such as metallic implants (e.g., cardiac pacemakers, braces, screws), 

claustrophobia, and pregnancy.  

Structured Clinical Interview for DSM-IV-TR Non-Patient Version (SCID-I/NP) 

Substance Use Disorders Module E (First et al., 2002). This clinician-administered, non-patient 

version of the SCID Substance Use Disorders module is specifically designed for research 

settings. It has been found to demonstrate fair to excellent median interrater reliability for both 

alcohol (κ=.65-1.0) and drug abuse and dependence (κ=.77-1.0) (Lobbestael, Leurgans, & Arntz, 

2011; Zanarini et al., 2000). It has also been found to demonstrate fair to good test-retest 

reliability for alcohol abuse and dependence (κ=.77), as well as drug abuse and dependence 

(κ=.76) (Zanarini et al., 2000). It was used to determine current or past substance abuse or 

dependence, categorized by seven separate drug classifications (i.e., alcohol, amphetamine, 

cannabis, hallucinogen, opioid, phencyclidine, sedative/hypnotic/anxiolytic).  

 Timeline Followback (TLFB) (Sobell, Maisto, Sobell, & Cooper, 1979). The TLFB is 

used to obtain self-reported estimates of substance use in the past 30 days using a calendar 

format. Interviewers worked backwards from the visit date, day by day and asked participants to 

identify personally meaningful events (e.g., birthdays, holidays) to facilitate recall of substance 

use. Frequency of cocaine use was calculated as the percentage of days in which the participant 

used cocaine during the past 30 days. The TLFB has demonstrated high test-retest reliability with 

intraclass correlation coefficients (ICC) ranging from 0.70 to 0.94 (all ps<0.001) among samples 
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of outpatient substance abuse patients (Fals-Stewart, O'Farrell, Freitas, McFarlin, & Rutigliano, 

2000). In addition, it has demonstrated good convergent and discriminant validity from other 

measures, such as the Addiction Severity Index (ASI) (McLellan, 1985), Michigan Alcoholism 

Screening Test (MAST) (Selzer, 1971), and the Drug Abuse Screening Test (DAST) (Skinner, 

1982) and good agreement with patients' self-reported and collaterals' report of patients' 

substance use and urinalysis results (Fals-Stewart, O'Farrell, Freitas, McFarlin, & Rutigliano, 

2000).  

 Wechsler Abbreviated Scale of Intelligence (WASI-II) (Wechsler & Hsiao-Pin, 2011). 

The WASI-II is an abbreviated version of the Wechsler Adult Intelligence Scales (WAIS-III) 

(Wechsler, 1997) that provides intelligence quotient (IQ) measures. The Vocabulary subtest of 

the WASI-II was administered during the screening procedure. Cognitive impairment and 

learning disabilities have been found to be associated with aberrant neural activity during task, 

thus, participants were deemed ineligible for the study if they had a Vocabulary subtest score 

below 48, corresponding to a full IQ of below 85. In addition, this criterion was implemented to 

ensure that participants were capable of providing informed consent and comprehend study 

instructions. 

Working memory and inhibitory control tasks. 

 Working memory task. All participants completed an N-Back task (Yang, Ross, Zhang, 

Stein, & Yang, 2005) utilized to assess working memory, as shown in Figure 4. The block 

design task consists of an alternating block design between three conditions: a baseline vigilance 

condition (0-back) and two working memory conditions (1-back and 2-back). During the 

baseline vigilance condition, participants were instructed to press a button on a joystick 

whenever an “X” was presented. During the working memory conditions, participants were 
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instructed to press a button on a joystick whenever the letter displayed was the same as the letter 

presented "n" ago (e.g., one or two presentations ago). In total, there are 12 blocks, each 30 

seconds long, consisting of either 15 1-back or 15 2-back trials. The duration of the entire task 

was approximately 10 minutes. Working memory task performance was measured by accuracy, 

calculated as the number of correct working memory trials (“hits”). 

Inhibitory control task. All participants completed a Go/No-Go task (Kaufman et al., 

2003). This event-related design task is used to assess motor inhibitory control, as shown in 

Figure 5. Participants viewed a 1-Hertz serial stream of alternating letters (“X” and “Y” as “Go” 

stimuli) and were instructed to continuously press a button on a joystick for each stimuli, but 

inhibit their responses when Go stimuli were presented consecutively (repeated second stimuli as 

lure/”No-Go” stimuli). Individual ability levels of participants were determined during a practice 

session in the mock scanner before the MRI scan. Participants practiced four levels of difficulty 

for which the stimuli presentations were varied at 600, 700, 800, and 900ms. Following the 

stimuli presentations, a blank screen was presented in order to take up the remainder of the 1-

Hertz serial stream of alternating letters. The level of difficulty for each participant was selected 

in order to most closely achieve near equal numbers of successful inhibitions and errors of 

commission, as well as comparable behavioral performance across participants in each group. 

The duration of the entire task was approximately 15 minutes. Inhibitory control task 

performance was measured with the number of successful inhibitions given the presence of 

group differences. 

Experimental Design Considerations 

Although self-report measures of impulsivity-related constructs are widely utilized, we 

decided to measure inhibitory control with a laboratory-based behavioral task (i.e., Go/No-Go). 
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There is mixed evidence regarding alignment of self-report and laboratory measures of 

impulsivity-related constructs among substance users (Meda et al., 2009; Reynolds, Ortengren, 

Richards, & de Wit, 2006; Sharma, Markon, & Clark, 2014), with the most critical evaluations 

asserting that the two modalities of measurements may assess different components of the 

construct. Such arguments may originate from general concerns surrounding the face validity of 

self-report measures due to factors such as socially desirable responding (SDR) (Cyders & 

Coskunpinar, 2011). Furthermore, there is a high degree of variability in self-reported behaviors 

among substance users, such as frequency and severity of substance use (Maisto, McKay, & 

Connors, 1990). Thus, a behavioral measure of inhibitory control may be a more reliable, valid 

method of capturing differences in inhibitory control performance between cocaine users and 

healthy controls. 

 Studies have utilized a variety of behavioral paradigms in order to measure inhibitory 

control, predominantly relying on Go/No-Go, Stop-Signal, and Stroop tasks. As discussed 

earlier, the Go/No-Go most accurately models the need to inhibit the pre-potent response of 

engaging in cocaine-seeking and -taking behaviors. The task accomplishes this by requiring 

successful "action restraint," (Eagle et al., 2008; Schachar et al., 2007) involving withholding a 

pre-potent response that has not yet been initiated in response to lure/no-go stimuli (Morein-

Zamir & Robbins, 2014; Smith et al., 2014). In contrast, stimuli in Stop-Signal tasks can be 

conceptualized as "inconsistent mappings," (Verbruggen & Logan, 2008) requiring individuals to 

withhold a response when a go signal is followed by a stop signal. Appropriately, this inhibitory 

action can be understood as "action cancellation," (Eagle et al., 2008; Schachar et al., 2007) as a 

response that has already been initiated, needs to be withheld. When cocaine users encounter 

cocaine triggers, they need to engage in action selection from a variety of cognitive and 
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behavioral alternatives, ideally one centered on withholding, as opposed to responding to a 

stimuli that explicitly prompts an inhibitory action.  

Behavioral and Task Data Acquisition and Analysis 

 Preliminary analyses. Initial analyses were conducted among study variables in order to 

(1) examine significant violations of normality and (2) identify potential covariates of study 

variables, thus prompting their inclusion in analyses of Aims 1 and 2. Normality was assessed by 

examining histograms of frequency distributions, generating normality probability plots of all 

variables of interest, and conducting Shapiro-Wilk tests. No transformations to the data to 

approximate normality were deemed necessary. Theoretically relevant sociodemographic 

variables selected a priori (e.g., age, gender, ethnicity/race) were analyzed using Pearson’s 

correlations, chi-square analyses, and independent samples t-tests and were included as 

covariates if they were found to be significantly related to study variables. 

 N-Back and Go/No-Go task performance data acquisition and analyses. Task 

performance data for the N-Back and Go/No-Go tasks were collected using E-Prime Version 2.0 

(Schneider, Eschman, & Zuccoloto, 2007). Task performance variables for the N-Back (e.g., hits, 

response time) and Go/No-Go (e.g., successful inhibitions, errors of commission and omission, 

response time) were extracted from E-Prime, exported into Microsoft Excel Version 14, and 

entered into SPSS Version 22 (IBM Corp, 2013). Descriptive statistics (i.e., mean and standard 

deviations) were calculated for all study variables. Participants were considered outliers for task 

performance and excluded from further analyses if their N-Back and/or Go/No-Go task 

performance was two standard deviations or greater from group means. Independent samples t-

tests were conducted in order to examine group differences in N-Back and Go/No-Go task 

performance. 
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Imaging Acquisition and Analyses 

Acquisition. All imaging data was collected on a Siemens 3T Magnetom Trio MR 

Scanner (Siemens, Erlangen, Germany) with a 12-channel head coil at NIDA Intramural 

Research Program (IRP) in Baltimore, Maryland. Blood oxygen level-dependent (BOLD) 

functional echo-planar imaging (EPI) T2*-weighted images were acquired in 39 axial slices 

(thickness=4mm) covering the whole brain with repetition time (TR)/echo time (TE)=2s/27ms, 

field of view (FOV)=220x220mm, flip angle (FA)=78°, in-plane resolution=3.44x3.44mm, and 

acquisition plane=30° axial to coronal, AC-PC (Deichmann, Gottfried, Hutton, & Turner, 2003). 

Whole-brain T1-weighted structural images (MPRAGE) (1mm3 isotropic voxels, 

TR/TE=1.9s/3.51ms, and FA=9°) were also collected for anatomical reference. 

Pre-processing. Anatomical and functional MRI data was analyzed using FSL FEAT 

(FMRI Expert Analysis Tool) Version 6, part of FMRIB'S Software Library (FSL, 

www.fmrib.ox.ac.uk/fsl). Pre-processing of data included motion correction (MC) with 

MCFLIRT to ensure consistency between voxel positions and actual anatomical locations, high-

pass temporal filtering (Gaussian-weighted least squares straight line fitting with sigma=50s) to 

increase signal to noise ratio, grand-mean intensity normalization of the entire 4D dataset by a 

single multiplicative factor to warp images to fit to the standard template brain, and skull-

stripping of structural images with the Brain Extraction Tool (BET). Functional MRI scan data 

were excluded if relative mean displacement was greater than 0.3mm in any plane. Functional 

MRI data were registered to the T1-weighted anatomical data and the structural MRI data to the 

2mm Montreal Neurological Institute (MNI) standard-space template using FMRIB's Linear 

Image Registration Tool (FLIRT) with an affine transformation using 12 degrees of freedom 

(i.e., linear transformation) to match the sizes and positions of the acquired images. 
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 Whole-brain analysis. In order to examine recruitment and engagement of working 

memory processes during the working memory task and potential group differences, within- and 

between-group whole brain activation maps were generated for the contrast [(2-Back)-(1-Back)], 

including demeaned values of the gender covariate. FMRIB’s Local Analysis of Mixed Effects 

(FLAME) Stage 1. Z Gaussianized T/F statistic images were thresholded at Z>3.0 and a 

corrected cluster significance threshold of p=0.05. 

Regions-of-interest (ROIs) selection. A priori regions-of-interest (ROIs) were selected 

from Wesley and Bickel's (Wesley & Bickel, 2014) meta-analysis of foci from working memory 

studies, and included the right and left inferior parietal lobule (R. and L. IFG), frontal pole (R. 

and L. FP), middle frontal gyrus (R. and L. MFG), inferior frontal gyrus (R. and L. IFG), right 

insula (R. INS), and right precuneus (R. PREC). They were created from lateralized masks from 

the Harvard Oxford Subcortical and Cortical probabilistic atlases set at 10% and overlaid on the 

MNI152 standard-space T1-weighted average structural template image. The average time-series 

for the set of voxels defined by each ROI for each run of the N-Back task was extracted using the 

fslmeants command-line utility and then combined across both runs. 

Working memory network functional connectivity. Individual-level data was 

compiled in a t-by-r matrix, where t was the set of time points (length of a single time-series) and 

r was the number of a priori ROIs (10) for each participant. Both group- and individual-level 

models were selected using the Group Iterative Multiple Model Estimation (GIMME) program 

(Gates & Molenaar, 2012). GIMME has been utilized successfully to produce connectivity maps 

in a significant number of studies, most notably in the investigation of substance use including 

the examinations of the relationship between functional connectivity and cognitive performance 

among nicotine-deprived smokers (Nichols, Gates, Molenaar, & Wilson, 2014) and between 
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functional connectivity, cognitive control, and emotion processing among alcohol users (Beltz et 

al., 2013). GIMME utilizes an iterative search procedure in order to determine the best fitting 

model for the group data, starting with a null (empty) model. Lagrange Multiplier equivalents, 

(i.e., modification indices) are compiled in a matrix indicating how much variation in the ROI 

signal would be explained if the specific path of interest is freed (Gates, Molenaar, Hillary, Ram, 

& Rovine, 2010). The procedure consists of selecting paths in a forward selection procedure until 

the model is no longer significantly improved. This was first executed at the group-level that 

maximized the fit for the majority of the participants’ models in the specified group, producing 

the network connectivity map among the a priori ROIs. This was then executed at the individual-

level to refine each participant’s model to account for individual differences, beginning with the 

paths found in the group-level search. Non-significant paths are pruned from the individual-level 

models, producing models that favor parsimony (reduced complexity). GIMME generated (1) 

network connectivity efficiency, or the number of contemporaneous paths in the working memory 

network, (2) network connectivity strengths, or the average beta weight for all retained paths in 

the working memory network, and (3) individual path strengths, or the individual beta weights 

for all retained paths. More specifically, greater network connectivity efficiency will be reflected 

by a smaller number of contemporaneous paths (less complexity), greater network connectivity 

strengths and individual path strengths are reflected by larger average beta weights. Past studies 

have utilized similar mediation analyses to examine connectivity as a mediator between 

sensation-seeking and alcohol use in youth (Weiland et al., 2013) and testosterone and alcohol 

use in adolescents (Peters, Jolles, Van Duijvenvoorde, Crone, & Peper, 2015) 
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Study Aims 

In order to examine whether working memory network connectivity mediates the 

relationship between group and working memory task performance (Aim 1) and inhibitory 

control processes (Aim 2), two separate parallel mediation models were tested per Aim using the 

PROCESS macro for SPSS (Hayes, 2012) (Figures 6 and 7). This mediation analysis estimated 

the total effect (i.e., direct + indirect effects), direct effects of the independent variable (IV) on 

the DV (path c’), IV on the mediator (path a), the mediator on the DV (path b), and indirect 

effects of the IV on the DV through the mediator, according to principles of mediation 

(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). For the first parallel mediation 

model, the independent variable (IV) was group, the mediators were working memory network 

connectivity efficiency and strength, and the DV was working memory task performance 

(accuracy; Aim 1) and inhibitory control task performance (successful inhibitions; Aim 2). For 

the second parallel mediation model, the mediators were the individual path strengths. 

PROCESS generated individual beta coefficients (unstandardized weights), standard errors (SE), 

t-values, and p-values for each estimated direct effect for each path. Significance testing of the 

indirect effects was calculated using 1000-sample, bias-corrected (BC) bootstrapping to compute 

95% confidence intervals (CI). If zero was not included in the 95% CI, it was argued that the 

indirect effect was significant at p<0.05. 

Sample size considerations. Mediation analyses for both Aims utilized bootstrapping 

procedures programmed into the PROCESS macro for SPSS (Hayes, 2012). Bootstrapping 

procedures are ideal to utilize when determining the significance of potential mediators in 

analyses with sample sizes as small as 20 participants (Efron & Tibshirani, 1994; Preacher & 
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Hayes, 2004). Accordingly, the bootstrapping procedures will direct SPSS to draw 1000 sample 

indirect effects with replacement using the existing data as the proxy “population” data. 

 

  



 30

 

 

 

RESULTS 

Sample Characteristics 

Sample characteristics are presented in Table 1. There were no group differences in age, 

ethnicity/race, IQ, and education. There were significantly more females among the healthy 

controls than the cocaine users. Thus, gender was included as a covariate in all group analyses. 

Cocaine users reported additional use of substances, including alcohol, heroin, marijuana, 

methamphetamine, ecstasy, sedatives, phencyclidine (PCP), and prescription opiates (Table 2). 

Task Performance 

 Task performance on the N-Back and Go/No-Go tasks is presented in Table 3. For the N-

Back, there were no group differences in task performance (accuracy) or response time on 

correct trials. For the Go/No-Go, cocaine users had a significantly more errors of commission 

and less successful inhibitions compared to healthy controls. There were no group differences in 

errors of omission or response time on correct trials. These results suggest that cocaine users are 

performing comparably to healthy controls on the N-Back task, but not the Go/No-Go task, 

particularly in terms of their ability to withhold responses when necessary. 

Association between Sample Characteristics and Task Performance 

For the N-Back task, task performance across all working memory trials was significantly 

associated with IQ (r=0.54, p<0.001). Task performance was not significantly associated with 

gender (t(45)=-0.11, p=ns), age (r=-0.18 p=ns), or ethnicity/race (F(3,42)=2.07, p=ns). Among 

cocaine users, task performance was not significantly associated with level of nicotine 
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dependence (r=-0.05, p=ns). For the Go/No-Go task, task performance was not significantly 

associated with gender (t(45)=-1.12, p=ns), age (r=-0.06, p=ns), ethnicity/race (F(3,42)=0.14, 

p=ns), IQ (r=0.09, p=ns), or level of nicotine dependence (r=-0.16, p=ns). 

Whole Brain Neural Activation in Response to Working Memory Load 

 Whole brain neural activation in response to working memory load during the N-Back 

was obtained with the contrast [(2-back)-(1-back)]. Cocaine users and healthy controls displayed 

expected neural response to working memory load in regions implicated in components of 

working memory and additional cognitive control processes, in line with working memory 

literature (Baddeley, 2003; Owen et al., 2005; Wager & Smith, 2003; Wesley & Bickel, 2014) 

(Tables 4 and 5). Such regions included the middle frontal gyrus (organizational strategy use, 

manipulation of information), inferior frontal gyrus (attentional control, storage, retrieval), 

inferior parietal lobule (encoding, rehearsal), frontal pole (integration), precentral and postcentral 

gyri (sensorimotor integration) suggesting individuals reliably recruited and engaged working 

memory processes in response to working memory load. 

Healthy controls demonstrated greater activation than cocaine users in response to 

working memory load in the right frontal pole, right and left middle frontal gyrus, right 

supramarginal gyrus, and right paracingulate gyrus (Table 6 and Figure 8). Cocaine users did 

not demonstrate greater activation than healthy controls in any regions. These findings are in line 

with previous studies that also provide evidence for decreased activation in regions implicated in 

working memory processes among cocaine users, suggesting functional differences in 

recruitment and/or engagement of working memory processes among cocaine users and healthy 

controls in response to working memory load. 
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Working Memory Network Connectivity as a Mediator Between Group and Working 

Memory Task Performance (Aim 1) 

Model 1 (Table 7) 

Total and direct effects. There were no significant total or direct effects of group on 

working memory network connectivity efficiency or strength. In addition, there were no 

significant direct effects of working memory network connectivity efficiency or strength on 

working memory task performance. 

Indirect effects. All bias-corrected, 1000-sample bootstrapped 95% confidence intervals 

contained zero, suggesting that no within network working memory network connectivity 

parameters emerged as significant mediators between group and working memory task 

performance. 

Model 2 (Table 7) 

Total and direct effects. There were no significant total effect or direct effects of group 

on individual working memory network connectivity paths. There was a significant direct effect 

of the individual working memory network connectivity path from the right insula (R. INS) to 

the right inferior frontal gyrus (R. IFG), in line with the 95% confidence interval that did not 

include zero. There were no other significant direct effects of on individual working memory 

network connectivity paths on working memory task performance. 

 Indirect effects. All bias-corrected, 1000-sample bootstrapped 95% confidence intervals 

contained zero, suggesting that no within network working memory network connectivity 

parameters emerged as significant mediators between group and working memory task 

performance. 
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Working Memory Network Connectivity as a Mediator Between Group and Inhibitory 

Control Task Performance (Aim 2) 

Model 1 (Table 8) 

Total and direct effects. There was a significant total effect of group on inhibitory 

control task performance (Table #), as well as significant direct effects of working memory 

network connectivity efficiency and strength on inhibitory control task performance, in line with 

the 95% confidence intervals that did not include zero. There were no other direct effects of 

group on working memory network connectivity efficiency or strength. In addition, there were 

no significant direct effects of working memory network connectivity efficiency or strength on 

inhibitory task performance. 

Indirect effects. All bias-corrected, 1000-sample bootstrapped 95% confidence intervals 

contained zero, suggesting that no within network working memory network connectivity 

parameters emerged as significant mediators between group and inhibitory control task 

performance. 

Model 2 (Table 8) 

Total and direct effects. There were no significant total effect or direct effects of group 

on individual working memory network connectivity paths. There was a significant direct effect 

of the individual working memory network connectivity path from the right precuneus (R. 

PREC) to the right inferior parietal lobule (R. IPL), in line with the 95% confidence interval that 

did not include zero. There were no other significant direct effects of on individual working 

memory network connectivity paths on inhibitory control task performance. 

 Indirect effects. All bias-corrected, 1000-sample bootstrapped 95% confidence intervals 

contained zero, suggesting that no within network working memory network connectivity 
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parameters emerged as significant mediators between group and working memory task 

performance. 
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DISCUSSION 

This study examined group differences between cocaine users and healthy controls in 

neural response to a working memory task and whether working memory network connectivity 

accounts for group differences in both working memory and inhibitory control task performance. 

As expected, and in line with previous working memory studies (Moeller et al., 2010; Tomasi et 

al., 2007b), cocaine users demonstrated reduced activation during the working memory task 

compared to healthy controls in neural regions implicated in working memory processes, 

including the bilateral middle frontal gyri, right pre- and post-central gyri, and right frontal pole. 

In addition, in line with past inhibitory control studies (Fernández-Serrano et al., 2012; Hester & 

Garavan, 2004; Hester et al., 2007; Kaufman et al., 2003; Lane et al., 2007; Verdejo-García et 

al., 2007; Verdejo-García & Pérez-García, 2007), cocaine users demonstrated deficits in 

inhibitory control task performance, compared to healthy controls. Contrary to study hypotheses, 

working memory network connectivity did not account for group differences in working memory 

or inhibitory control task performance.  

Although the primary aims were not supported, it is of note that particular characteristics 

of working memory network connectivity were significantly associated with working memory 

and inhibitory control task performance. First, the strength of the specific functional connection 

from the right insula (R. INS) to the right inferior frontal gyrus (R. IFG) was significantly 

associated with working memory task performance, such that greater connection strength was 

significantly associated with decreased task performance. The R. INS and R. IFG are well 
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understood to be involved in a larger cognitive control network (Cole & Schneider, 2007), 

including the preparation and execution of goal-oriented tasks, such as those involving working 

memory processes (e.g., inhibition of distractors, maintenance, rehearsal) (Chein & Fiez, 2001; 

McNab et al., 2008). Other studies have highlighted the importance of the connection between 

the insular cortex and R. IFG. Of particular note, Cisler and colleagues (2013) found stronger 

connectivity between the insula and the R. IFG among cocaine dependent individuals compared 

to healthy controls. More specifically, the R. INS and R. IFG are hypothesized to be critical 

components of the right lateralized ventral attentional system, supporting the allocation of 

attention to salient, unpredicted stimuli and spatial organization (Corbetta, Kincade, & Shulman, 

2002). Although there were no significant group differences in the strength of this specific path 

between cocaine users and healthy controls, greater connection between the R. INS and R. IFG 

may thus reflect generally greater inefficiency, as reflected by a need for compensatory 

recruitment of attentional resources and monitoring, as working memory load increases. 

Second, overall working memory network efficiency and strength and the strength of the 

specific functional connection from the right precuneus (R. PREC) to the right inferior parietal 

lobule (R. IPL) were significantly associated with inhibitory control task performance, such that 

greater overall network efficiency and strength and specific path connection strength were 

significantly associated with increased task performance. The precuneus and inferior parietal 

lobule are understood to be critical components of the default mode network (DMN), which is 

typically described as being more active or “on-line” during rest or passive conditions (Raichle, 

2015). During external-based tasks, like working memory tasks, reduction of DMN activity is 

believed to be critical to allocate neural resources to the task-positive network (TPN), including 

the recruitment and engagement of higher order cognitive processes (Fox et al., 2005). 
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Moreover, greater reduction of DMN activity has been found as task difficulty and cognitive 

demand increase (McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003). Thus, this finding 

is in line with other studies that have provided evidence for strong functional coupling between 

DMN regions during working memory tasks, which is attributed to the facilitation and 

monitoring of the DMN throughout the task execution (Gilbert, Simons, Frith, & Burgess, 2006; 

M. Hampson et al., 2006). Regulation of the DMN may contribute to greater allocation of neural 

resources to working memory processes, as well as those, in turn contributing to inhibitory 

control task performance. 

 Given the lack of significant group differences between cocaine users and healthy 

controls in working memory network connectivity, it is important to consider possible factors 

that may contribute to these findings. Although previous working memory studies among 

cocaine and other substance users have utilized versions of the well-validated N-Back task, it is 

important to determine whether the N-Back task with two working memory conditions is the 

most appropriate paradigm to utilize in order to examine differences in working memory 

network connectivity. Group differences in neural response to a working memory task have been 

well document using both whole-brain and region-of-interest (ROI) analyses; however, it is 

possible that an N-Back task with greater working memory demands (e.g., 3- or 4-Back) may be 

a better paradigm to examine working memory network connectivity. While under greater 

cognitive load (i.e., working memory load), efficient communication between neural regions 

may be especially critical in the recruitment, allocation, and engagement of neural resources. 

 Additional factors that may be contributing to these findings are the basic eligibility 

criteria used to recruit cocaine users. Cocaine users were required to endorse regular use of 

cocaine, but were not required to meet criteria for DSM-IV substance dependence. However, 
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based on self-report measures, only 25% of participants reported using cocaine greater than or 

equal to four times a week, 50% of participants reported using cocaine greater than or equal to 

two times a week, and 12.5% of participants reported using cocaine only greater than or equal to 

two times a week. As such it is likely that this sample contains recreational cocaine users who 

according to past work, do not exhibit the same cognitive deficits as regular cocaine users. In one 

study, the magnitude of inhibitory control deficits of recreational cocaine users, as defined as 

using cocaine monthly for a minimum of two years and not meeting DSM-IV substance abuse 

criteria, was proportional to the degree of life cocaine exposure (Colzato, van den Wildenberg, & 

Hommel, 2007). In another study with the same recreational cocaine use criteria, recreational 

cocaine polydrug users did not demonstrate working memory deficits with equivalent 

performance to healthy controls (Colzato, Huizinga, & Hommel, 2009). Taken together, a 

sample including only participants meeting criteria for cocaine use disorder may reduce 

unintended variability in the data.  

 In addition to high variability in cocaine use frequency and severity, cocaine users in the 

study were required to be current smokers, while healthy controls could not meet that criterion. 

Given that all cocaine users were also all current smokers, the influence of nicotine may have 

contributed to the lack of group differences in working memory task performance and network 

connectivity. Past studies have demonstrated the positive effects of nicotine compared to placebo 

on working memory performance, as measured by greater accuracy (Ernst et al., 2001; Kumari et 

al., 2003) and reduced response times (Heishman, Kleykamp, & Singleton, 2010) on accurate 

trials. In addition, nicotine has also been found to contribute to increased neural activity in 

regions implicated in working memory (e.g., anterior cingulate cortex, superior parietal cortex) 

(Kumari et al., 2003). In this study, cocaine users smoked a cigarette 60 minutes before the start 
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of their fMRI scan, thus nicotine could have contributed to enhanced working memory task 

performance, contributing to comparable working memory task performance between cocaine 

users and healthy controls.  

 Taken together, findings from this study suggest the contribution of particular 

characteristics of working memory connectivity, such as attention allocation and engagement, 

and regulation of the DMN in working memory and inhibitory control task performance. 

Limitations and Future Directions 

 Several limitations of this study are of note. Participants were recruited from the 

community, therefore, included non-treatment-seeking cocaine users. Accordingly, the results 

cannot be extended to treatment-seeking cocaine users at this time. In addition, the study findings 

should be cautiously limited to an understanding of the verbal, single-letter working memory 

task utilized. Thus, it is important to determine if and how other N-Back tasks using different 

modalities of stimuli (e.g., spatial, auditory) may reflect task performance and neural response 

differences between cocaine users and healthy controls. This is especially critical given that 

literature has demonstrated that working memory operates differently across modalities (Reuter-

Lorenz et al., 2000; Smith, Jonides, & Koeppe, 1996). For example, verbal working memory has 

been found to activate primarily the left hemisphere, including the inferior parietal and lateral 

frontal blobs, supramarginal gyrus, and premotor areas (Reuter-Lorenz et al., 2000; Smith et al., 

1996), while spatial working memory has been found to activate a more dispersed pattern of 

neural activation across both hemispheres, including the inferior frontal and posterior parietal 

lobes, right occipital gyrus, right premotor area, and right dorsolateral prefrontal cortex (Jonides 

et al., 1998; Smith et al., 1996; Smith, Jonides, Marshuetz, & Koeppe, 1998). Furthermore, the 

modality is also important to consider in terms of what kind of stimuli are most relevant to 
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cocaine use and related experiences. Finally, the N-Back task utilized in this study was limited to 

only two working memory conditions, the 1- and 2-Back. Although more demanding working 

memory conditions (e.g., 3- or 4-Back) will likely result in poorer task performance, a greater 

working memory load may provide more insight into the recruitment and engagement of 

working memory neural resources in response to a working memory task by providing a stronger 

contrast of parameter estimates for neural activity. Greater working memory load may more 

accurately reflect the cognitive demands placed on substance users engaging in goal-oriented 

activities, while also attempting to regulate responses to hypersalient internal and external 

stimuli related to substance use. Lastly, the working memory and inhibitory control tasks were 

counterbalanced; however, task order should be included as a covariate in order to examine the 

potential effect of order on task performance and neural response to the working memory task. 

 Future work should consider the most appropriate and comprehensive method for 

quantifying potential group differences between cocaine users and healthy individuals in the 

neural mechanisms contributing to working memory and inhibitory control task performance. 

Although there are numerous ways to measure neural response during a working memory task, 

one particularly comprehensive approach may be to examine potential group differences in the 

degree of network modularity. Network modularity, also known as community structure 

quantifies the efficiency of network defined by a subset of nodes that are more densely 

interconnected with each other than other nodes and dedicated to dissociable functions (Menon, 

2011). Measuring the degree of modularity is based on two principles (Stevens, Tappon, Garg, & 

Fair, 2012). First, dense connections within network sub-systems result in more efficient 

processing, demonstrated by maximal within-module connections. Second, sparse connections 

between sub-systems contribute to reduced noise, demonstrated by minimal between-module 
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connections. Taken together, greater network modularity reflects more optimal functional 

organization (Dosenbach et al., 2006). Stevens and colleagues (2012) found that network 

modularity predicted individual differences in working memory capacity in healthy controls 

using a visual memory task. Thus, network modularity may provide a particularly promising 

approach to examine the neural mechanisms contributing to working memory and inhibitory 

control deficits in cocaine users.  

Summary 

 Despite these limitations, this study and future work have the potential to contribute 

novel data to the neural mechanisms contributing to executive control deficits in cocaine users 

while importantly considering the relatedness of executive control processes. 
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APPENDIX 1: TABLES 

Table 1. Means (and standard deviations) of self-report sample characteristics 

 
 Cocaine Users 

(n=23) 
Healthy Controls  

(n=24) 
Statistic 

Age (years) 40.39 (8.66) 38.58 (8.68) t(45)=0.71 
Gender (% male) 91.30 58.33 χ2(1)=6.72* 
Ethnicity/Race 
(Black/Hispanic/White/Other) 

16/0/6/1 18/1/4/0 χ2(3)=2.52 

IQ 101.52 (12.32) 107.72 (12.46) t(37)=-1.56 
Note: *p<0.05. 
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Table 2. Frequency of substance use 

 
  Cocaine Users 

(n=23) 
Healthy Controls 

(n=24) 
Cocaine ≥ 4 times/week 25.0% -- 
 ≥ 2 times/week 50.0% -- 
 ≥ 2 times/month 12.5% -- 
 ≤ monthly 6.3% -- 
Alcohol ≥ 4 times/week 18.8% -- 
 ≥ 2 times/week 25.0% 9.1% 
 ≥ 2 times/month 18.7% 9.1% 
 ≤ monthly 31.3% 45.5% 
Heroin ≥ 2 times/month 6.3% -- 
 ≤ monthly 6.3% -- 
Marijuana ≥ 2 times/week 6.3% -- 
 ≥ 2 times/month 6.3% -- 
 ≤ monthly 37.5% -- 
Methamphetamine ≥ 4 times/week 6.3% -- 
 ≤ monthly 6.3% -- 
Ecstasy ≥ 4 times/week 6.3% -- 
Sedatives ≥ 4 times/week 6.3% -- 
Phencyclidine 

(PCP) 

≤ monthly 6.3% -- 

Prescription Opiate ≤ monthly 12.5% -- 
Smoking FTND Score 3.33 (2.11) -- 
 Number of 

cigarettes/day 
9.87 (8.17) -- 

Note: FTND = Fagerström Test for Nicotine Dependence.
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Table 3. Task performance on the N-Back and Go/No-Go 

 
 Cocaine 

Users 
(n=23) 

Healthy Controls 
(n=24) 

Statistic 

N-Back 
Performance 

All trials accuracy 46.17 
(8.62) 

48.33 (6.98) t(45)=-0.95 

1-back accuracy 25.35 
(3.59) 

26.21 (3.79) t(45)=-0.80 

2-back accuracy 19.78 
(5.63) 

22.13 (4.70) t(45)=-1.55 

Response time (ms)    

All trials correct 594.77 
(137.61) 

638.23 (157.61) t(45)=-1.00 

1-back correct 587.97 
(145.87) 

613.77 (156.88) t(45)=-0.58 

2-back correct 605.02 
(137.36) 

666.46 (182.12) t(45)=-1.30 

Go/No-Go 

Performance 

Errors of commission 23.48 
(8.11) 

18.25 (7.08) t(45)=2.36* 

Errors of omission 37.09 
(42.24) 

39.29 (64.98) t(45)=-0.14 

Successful inhibitions 26.52 
(8.11) 

31.75 (7.08) t(45)=-2.36* 

Response time (ms) 
Correct 406.43 

(49.80) 
402.98 (56.49) t(45)=0.22 

Note: *p<0.05. Mean (standard deviation). 
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Table 4. Clusters and max Z-values in response to working memory load [(2-Back)-(1-Back)] 

among healthy controls 

 
Cluster Index Voxels p Z-Max X 

(mm) 

Z-Max Y 

(mm) 

Z-Max 

Z (mm) 

R. postcentral gyrus 
- R. precentral gyrus 

183 
3.00x10-

3 20 -30 68 

L. precentral gyrus 
- L. postcentral gyrus, 
R. precentral gyrus 

135 
1.70x10-

2 -2 -30 64 

L. parietal operculum cortex 
- L. central opercular 
cortex, L. supramarginal 
gyrus (anterior division) 

131 
1.98x10-

2 -44 -28 24 

Note: R = right, L = left. Clusters determined by Z>3.0 and a (corrected) cluster significance 
threshold of p=0.05. 
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Table 5. Clusters and max Z-values in response to working memory load [(2-Back)-(1-Back)] 

among cocaine users 

 
Cluster Index Voxels p Z-Max X 

(mm) 
Z-Max 

Y (mm) 
Z-Max 

Z (mm) 
R. central opercular cortex 

- R. frontal operculum 
cortex, R. insular cortex 

339 9.54x10-7 38 8 8 

L. inferior frontal gyrus (pars 
opercularis) 

- L. precentral gyrus, L. 
frontal operculum cortex 

258 1.85x10-5 -50 10 10 

R. superior frontal gyrus 
- L. superior frontal gyrus 

242 3.46x10-5 2 42 42 

L. middle frontal gyrus 
- L. frontal pole, L. 
superior frontal gyrus 

125 5.62x10-3 -28 34 34 

L. insular cortex 
- L. central opercular cortex 

116 8.78x10-3 -36 4 4 

L. precentral gyrus 
- L. central opercular 
cortex, L. planum polare, 
L. superior temporal gyrus 
(anterior division), L. 
temporal pole, L. planum 
temporale 

107 1.39x10-2 -60 2 2 

L. precentral gyrus 
- L. inferior frontal gyrus 
(pars opercularis), L. 
central opercular cortex, L. 
frontal operculum corterx 

95 2.59x10-2 -52 6 6 

R. precentral gyrus 
- R. temporal pole 

88 3.77x10-2 66 6 6 

Note: R = right, L = left. Clusters determined by Z>3.0 and a (corrected) cluster significance 
threshold of p=0.05. 
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Table 6. Clusters and max Z-values in response to working memory load [(2-back)-(1-back)] for 

the contrast of cocaine users < healthy controls. 

 
Cluster Index Voxels p Z-Max X  

(mm) 

Z-Max Y 

(mm) 

Z-Max Z 

(mm) 

R. frontal pole 
- R. middle frontal 
gyrus 

592 8.01x10-9 40 40 32 

R. precentral gyrus 
- R. postcentral 
gyrus 

432 5.36x10-7 60 -3 48 

R. paracingulate gyrus 
- L. cingulate gyrus 
(anterior division), 
R. cingulate gyrus 
(anterior division) 

337 8.94x10-6 0 32 34 

R. frontal pole 195 9.83x10-4 40 62 6 
L. middle frontal gyrus 

- L. frontal pole 
185 1.42x10-3 -40 36 32 

R. middle frontal gyrus 
- R. inferior frontal 
gyrus (pars 
triangularis), R. 
inferior frontal gyrus 
(pars opercularis) 

104 3.75x10-2 56 24 32 

Note: R = right, L = left. Clusters determined by Z>3.0 and a (corrected) cluster significance 
threshold of p=0.05. 
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Table 7. Aim 1 mediation results of mediators in the relationship between group and working 

memory task performance (accuracy), adjusted for gender 

 
 Coefficient SE BC Boostrap 

95% CI 

Model 1    
Total effect of group on accuracy 2.40 2.49 (-2.62, 7.43) 
Direct effect of group on mediators    

Network efficiency (a1) -0.55 0.98 (-2.52, 1.42) 
Network strength (a2) 0.02 0.02 (-0.03, 0.06) 

Direct effect of mediators on accuracy    
Network efficiency (b1) -0.67 0.72 (-2.11, 0.78) 
Network strength (b2) -36.45 32.53 (-102.10, 29.20) 

Indirect effect of group on accuracy through mediators    
Network efficiency 0.37 1.14 (-1.11, 4.17) 
Network strength -0.58 1.22 (-5.14, 0.89) 

Model 2    
Total effect of group on accuracy 2.99 2.66 (-2.38, 8.35) 
Direct effect of group on mediators    

R. IPL to R. MFG (a1) 0.02 0.08 (-0.15, 0.18) 
R. FP to L. FP (a2) -0.11 0.07 (-0.26, 0.03) 
R. IFG to L. IFG (a3) 0.14 0.09 (-0.04, 0.32) 
R. PREC to R. IPL (a4) 0.03 0.08 (-0.12, 0.19) 
L. IPL to R. IPL (a5) 0.08 0.09 (-0.08, 0.24) 
R. INS to R. IFG (a6) 0.10 0.09 (-0.07, 0.28) 
R. FP to R. IFG (a7) 0.05 0.08 (-0.11, 0.21) 
R. MFG to R. IFG (a8) 0.07 0.08 (-0.09, 0.22) 
L. MFG to L. IPL (a9) -0.01 0.10 (-0.20, 0.19) 
R. MFG to L. MFG (a10) 0.02 0.08 (-0.13, 0.17) 

Direct effect of mediators on accuracy    
R. IPL to R. MFG (b1) 2.08 6.33 (-10.82, 14.98) 
R. FP to L. FP (b2) 3.78 6.90 (-10.28, 17.84) 
R. IFG to L. IFG (b3) 1.35 5.17 (-9.17, 11.87) 
R. PREC to R. IPL (b4) 1.37 6.32 (-11.51, 14.24) 
L. IPL to R. IPL (b5) -5.14 5.78 (-16.92, 6.64) 
R. INS to R. IFG* (b6) -11.56 4.97 (-21.69, -1.43) 
R. FP to R. IFG (b7) -2.68 6.45 (-15.82, 10.46) 
R. MFG to R. IFG (b8) -5.45 6.57 (-18.83, 7.92) 
L. MFG to L. IPL (b9) -2.10 5.14 (-12.57, 8.38) 
R. MFG to L. MFG (b10) -2.21 5.97 (-14.36, 9.95) 

Indirect effect of group on accuracy through mediators    
R. IPL to R. MFG (c1) 0.04 0.70 (-1.22, 1.88) 
R. FP to L. FP (c2) -0.43 0.91 (-3.49, 0.59) 
R. IFG to L. IFG (c3) 0.19 1.36 (-2.21, 3.49) 
R. PREC to R. IPL (c4) 0.05 0.59 (-0.64, 2.24) 
L. IPL to R. IPL (c5) -0.41 0.95 (-2.94, 0.95) 
R. INS to R. IFG (c6) -1.21 1.04 (-4.53, 0.18) 
R. FP to R. IFG (c7) -0.13 0.95 (-3.09, 1.01) 
R. MFG to R. IFG (c8) -0.37 1.24 (-5.16, 0.76) 
L. MFG to L. IPL (c9) 0.02 0.58 (-1.22, 1.22) 
R. MFG to L. MFG (c10) -0.04 0.64 (-2.60, 0.70) 

Note: 95% CI does not include zero. SE=standard error; BC=bias-corrected; CI=confidence 
interval. 
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Table 8. Aim 2 mediation results of mediators in the relationship between group and inhibitory 

control task performance (successful inhibitions), adjusted for gender 

 Coefficient SE 95% CI 

Model 1    
Total effect of group on successful inhibitions* 4.95 2.42 (0.07, 9.83) 
Direct effect of group on mediators    

Network efficiency -0.55 0.98 (-2.52, 1.42) 
Network strength 0.02 0.02 (-0.03, 0.06) 

Direct effect of mediators on correct inhibitions    
Network efficiency* 1.38 0.67 (0.03, 2.72) 
Network strength* 66.61 30.31 (5.44, 127.79) 

Indirect effect of group on successful inhibitions through 
mediators 

   

Network efficiency -0.76 1.66 (-5.43,1.53) 
Network strength 1.07 1.77 (-1.37,5.88) 

Model 2    
Total effect of group on successful inhibitions 4.82 2.59 (-0.40, 10.04) 
Direct effect of group on mediators    

R. IPL to R. MFG (a1) 0.02 0.10 (-0.15, 0.18) 
R. FP to L. FP (a2) -0.11 0.07 (-0.26, 0.03) 
R. IFG to L. IFG (a3) 0.14 0.09 (-0.04, 0.32) 
R. PREC to R. IPL (a4) 0.03 0.08 (-0.12, 0.19) 
L. IPL to R. IPL (a5) 0.08 0.08 (-0.08, 0.24) 
R. INS to R. IFG (a6) 0.10 0.09 (-0.07, 0.28) 
R. FP to R. IFG (a7) 0.05 0.08 (-0.11, 0.21) 
R. MFG to R. IFG (a8) 0.07 0.08 (-0.09, 0.22) 
L. MFG to L. IPL (a9) -0.01 0.10 (-0.20, 0.19) 
R. MFG to L. MFG (a10) 0.02 0.08 (-0.13, 0.17) 

Direct effect of mediators on successful inhibitions    
R. IPL to R. MFG (b1) -2.12 3.02 (-4.36, 7.96) 
R. FP to L. FP (b2) 8.10 5.90 (-3.93, 20.13) 
R. IFG to L. IFG (b3) 7.20 4.42 (-1.80, 16.21) 
R. PREC to R. IPL* (b4) 12.15 5.41 (1.14, 23.17) 
L. IPL to R. IPL (b5) -1.82 4.95 (-11.90, 8.26) 
R. INS to R. IFG (b6) 6.97 5.52 (-1.70, 15.64) 
R. FP to R. IFG (b7) 3.66 5.52 (-7.59, 14.90) 
R. MFG to R. IFG (b8) -7.48 5.62 (-18.92, 3.97) 
L. MFG to L. IPL (b9) 3.37 4.40 (-5.59, 12.34) 
R. MFG to L. MFG (b10) 0.40 5.10 (-10.00, 10.90) 

Indirect effect of group on accuracy through mediators    
R. IPL to R. MFG (c1) -0.04 0.58 (-2.04, 0.71) 
R. FP to L. FP (c2) -0.92 1.03 (-4.48, 0.19) 
R. IFG to L. IFG (c3) 1.01 1.05 (-0.36, 4.53) 
R. PREC to R. IPL (c4) 0.42 1.04 (-1.05, 3.48) 
L. IPL to R. IPL (c5) -0.14 0.70 (-2.32, 0.63) 
R. INS to R. IFG (c6) 0.73 0.63 (-0.13, 2.43) 
R. FP to R. IFG (c7) 0.18 0.76 (-0.72, 2.68) 
R. MFG to R. IFG (c8) -0.50 0.91 (-4.72, 0.35) 
L. MFG to L. IPL (c9) -0.03 0.59 (-1.49, 0.95) 
R. MFG to L. MFG (c10) 0.01 0.50 (-0.97, 1.05) 

Note: 95% CI does not include zero. SE=standard error; BC=bias-corrected; CI=confidence 
interval. 
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Table 9. Correlations (r) between study variables 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 Accuracy (N-Back) -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
2 Correct Inhibitions 
(Go/No-Go) 

0.07 -- -- -- -- -- -- -- -- -- -- -- -- -- 

3 Network efficiency -0.01 -0.02 -- -- -- -- -- -- -- -- -- -- -- -- 
4 Network strength -0.07 0.18 -0.85*** -- -- -- -- -- -- -- -- -- -- -- 
5 R. FP to L. FP -0.01 0.12 0.16 -0.02 -- -- -- -- -- -- -- -- -- -- 
6 R. IFG to L. IFG 0.02 0.31* 0.33* -0.14 0.04 -- -- -- -- -- -- -- -- -- 
7 R. PREC to R. IPL 0.04 0.36* -0.07 0.22 -0.16 0.16 -- -- -- -- -- -- -- -- 
8 L. IPL to R. IPL -0.07 0.11 -0.31* 0.39** -0.04 0.17 -0.11 -- -- -- -- -- -- -- 
9 R. INS to R. IFG -0.32* 0.32* 0.07 0.08 0.06 0.04 0.06 -0.05 -- -- -- -- -- -- 
10 R. FP to R. IFG -0.12 0.13 0.15 -0.08 -0.33* 0.15 0.11 0.23 0.05 -- -- -- -- -- 
11 R. MFG to R. IFG -0.05 -0.08 0.21 -0.14 0.21 0.30* -0.03 -0.05 -0.05 0.03 -- -- -- -- 
12 L. MFG to L. IPL -0.13 0.28 0.19 0.05 0.26 0.20 0.18 0.20 0.07 0.20 0.23 -- -- -- 
13 R. MFG to L. MFG -0.02 -0.01 -0.16 0.23 -0.05 -0.18 0.05 0.15 -0.02 -0.16 -0.17 -0.04 -- -- 
14 R. IPL to R. MFG 0.02 -0.01 0.32* -0.15 -0.06 0.06 0.37* -0.15 0.02 0.15 0.34* -0.01 0.05 -- 

Note: *p<.05; **p<.01; ***p<.001 
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APPENDIX 2: FIGURES 

 
 

Figure 1. Conceptual models for Aims 1 and 2. 
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Figure 2. Consort diagram. 
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Figure 3. Timeline of study visit for all participants. Note: *,** = counterbalanced tasks. 
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Figure 4. N-Back task. 
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Figure 5. Go/No-Go task. 
 
 

  



 

 56

 

Figure 6. Mediation models 1 and 2 for Aim 1.  
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Figure 7. Mediation models 1 and 2 for Aim 2. 
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Figure 8. Significant clusters in response to working memory load [(2-back)-(1-back)] for the 
contrast of cocaine users < healthy controls. Clusters determined by Z>3.0 and a (corrected) 
cluster significance threshold of p=0.05. 
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