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SUMMARY

Papillary thyroid carcinoma (PTC) is the most com-

Previous genetic studies report a high frequency (70%) of acti-

vating somatic alterations of genes encoding effectors in the

mitogen-activated protein kinase (MAPK) signaling pathway,
mon type of thyroid cancer. Here, we describe the
genomic landscape of 496 PTCs. We observed a
low frequency of somatic alterations (relative to other
carcinomas) and extended the set of known PTC
driver alterations to include EIF1AX, PPM1D, and
CHEK2 and diverse gene fusions. These discoveries
reduced the fraction of PTC cases with unknown
oncogenic driver from 25% to 3.5%. Combined
analyses of genomic variants, gene expression, and
methylation demonstrated that different driver
groups lead to different pathologies with distinct
signaling and differentiation characteristics. Simi-
larly, we identified distinct molecular subgroups
of BRAF-mutant tumors, and multidimensional ana-
lyses highlighted a potential involvement of onco-
miRs in less-differentiated subgroups. Our results
propose a reclassification of thyroid cancers into
molecular subtypes that better reflect their underly-
ing signaling and differentiation properties, which
has the potential to improve their pathological classi-
fication and better inform the management of the
disease.

INTRODUCTION

The incidence of thyroid cancer has increased 3-fold over the

past 30 years (Chen et al., 2009) and the prevalence of different

histologies and genetic profiles has changed over time (Jung

et al., 2014). All thyroid cancers, except medullary carcinoma,

are derived from follicular cells that comprise the simple unicel-

lular epithelium of normal thyroid. Eighty percent of all thyroid

cancers are papillary thyroid carcinomas (PTCs), named for their

papillary histological architecture. In addition, PTCs encompass

several subtypes, including the follicular variant (FV), character-

ized by a predominantly follicular growth pattern. PTCs are usu-

ally curable with 5-year survival of over 95% (Hay et al., 2002);

however, occasionally they dedifferentiate into more aggressive

and lethal thyroid cancers. Current treatment involves surgery,

thyroid hormone, and radioactive iodine (RAI) therapy (which ex-

ploits thyroid follicular cells’ avidity for iodine).

676 Cell 159, 676–690, October 23, 2014 ª2014 The Authors
including point mutations of BRAF and the RAS genes (Cohen

et al., 2003; Kimura et al., 2003; Lemoine et al., 1988; Suárez

et al., 1988), as well as fusions involving the RET (Grieco et al.,

1990) and NTRK1 tyrosine kinases (Pierotti et al., 1995). These

mutations are almost always mutually exclusive (Soares et al.,

2003), suggesting similar or redundant downstream effects.

The various MAPK pathway alterations are strongly associated

with distinct clinicopathological characteristics (Adeniran et al.,

2006), and gene expression (Giordano et al., 2005) and DNA

methylation profiles (Ellis et al., 2014). Mutations in members of

the phosphoinositide 3-kinase (PI3K) pathway, such as PTEN,

PIK3CA, and AKT1, have also been reported at low frequencies

(Xing, 2013).

We present The Cancer Genome Atlas (TCGA) project results

from a comprehensive multiplatform analysis of 496 PTCs, the

largest cohort studied to date. Clinically aggressive thyroid can-

cers (poorly and undifferentiated carcinomas) were excluded to

maximally develop the compendium of tumor-initiating alter-

ations. While excluding histological types of aggressive tumors

limited some aspects of the study, the homogeneous PTC cohort

allowed robust correlative analyses of multidimensional molecu-

lar data. The relatively quiet PTC genome allowed us to assess

the signaling and differentiation consequences of the common

drivers. Furthermore, the cohort allowed us to define integrated

molecular subtypes that correspond to histology, signaling,

differentiation state, and risk assessment. We put forth that our

results will lead to improved clinicopathologic classification

and management of patients.

RESULTS

Samples, Clinical Data, and Analytical Approach
Tumor samples and matched germline DNA from blood or

normal thyroid from 496 patients included 324 (69.4%) clas-

sical-type (CT), 99 (21.2%) follicular-variant (FV), 35 (7.5%) tall

cell variant (TCV), 9 (2.0%) uncommon PTC variants, and 29

without histological annotation, primarily from nonirradiated

patients (Table S1A available online). We estimated risk of

tumor recurrence based on the 2009 American Thyroid Asso-

ciation guidelines (American Thyroid Association Guidelines

Taskforce on Thyroid Nodules and Differentiated Thyroid

Cancer et al., 2009), and assessed mortality risk using MACIS
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scores (Hay et al., 1993) (see Supplemental Information). We

generated comprehensive and high-quality molecular data at

TCGA genome sequencing and characterization centers with

one proteomic and six genomic platforms (Table S1B) and

(Roberts et al., 2013) (Mann-Whitney p = 4 3 10�5), similar to

bladder cancer (Cancer Genome Atlas Research Network,

2014).

The relatively large number of patients in this study and the low
analyzed the data at multiple genomic data analysis centers

(Table S1C). Although 496 primary tumors were studied, the

number of informative cases varied across platforms, mostly

for technical reasons, and 390 tumors were analyzed on all major

platforms (SNP arrays, exomes, RNA-seq, miRNA-seq, and DNA

methylation).

Our analysis strategy consisted of three parts, each based on

integrating several molecular data sets. First, we identified

somatic mutations that included single nucleotide variants, small

insertions and deletions, gene fusions, and copy-number alter-

ations in order to characterize the genomic landscape of PTC

and identify driver events in cases without any previously known

driver (i.e., the so-called ‘‘dark matter’’ of the PTC genome).

Next, we focused on the consequences of the driver mutations.

We developed a gene expression signature of samples with

these mutations and characterized tumors based on this signa-

ture. We then determined the differential signaling conse-

quences of BRAFV600E and RAS mutations, the most common

pathogenic mutations in the cohort, using protein and mRNA

expression data. Finally, we used the molecular data to derive

molecular classifications of PTC and integrated these classifi-

cations with data related to genotype, signaling, differentiation,

and risk.

Somatic Single Nucleotide Variants and Insertions
and Deletions
Whole exome DNA sequencing of 402 (of 496) tumor/normal

pairs (average depth-of-coverage; 97.03 for tumors, 94.93 for

normals) showed a low somatic mutation density (0.41 nonsy-

nonymous mutations per Mb, on average) (Figures 1A and

S1A; Table S3) relative to other cancers (Lawrence et al., 2014;

Lawrence et al., 2013). Mutation density correlated with age

(Pearson correlation p = 5.2 3 10�18, Figure S1B), risk of recur-

rence (Kruskal-Wallis test p = 3.4 3 10�4), and MACIS score

(Pearson correlation p = 43 10�15, Figure S1C). To compensate

for the confounding effect of age at diagnosis, we regressed the

effect of age from mutation density and found that the asso-

ciation of risk with age-corrected mutation density remained

(Kruskal-Wallis test p = 9.7 3 10�3); MACIS scores did not (p =

0.19, Figure S1C). This association was maintained for the CT

cohort (p = 0.0044), but not for other variants (Figure S1D). The

correlation between mutation density and age suggests age

should be used as a continuous variable in risk stratification

(Bischoff et al., 2013), instead of a threshold of 45 years used

in many staging systems.

Mutation densities were not associated with other variables,

like genotype or radiation exposure (Mann-Whitney p = 0.579

and p = 0.173, respectively; Figure S1E). TCVs had the highest

mutation density (Figure S1F), consistent with their known

aggressive behavior. Five BRAFV600E mutant tumors with

aggressive histologic features had higher mutation densities

(Figures S1E and S1G).

Ten tumors with the highest mutation densities (>1/Mb) were

enriched for mutations associated with the APOBEC process
background mutation density provides the statistical power to

detect significantly mutated genes (SMGs) in as low as 3% of

cases (>90% power for 90% of genes) (Lawrence et al., 2014).

MutSig (Lawrence et al., 2013) detected seven SMGs (q < 0.1)

(Figure 1C and Table S2) with four of the seven in < 3% of

patients. SMGs included the MAPK-related genes, BRAF,

NRAS,HRAS, andKRAS, whichwere virtually mutually exclusive

(Figure 1C, Fisher’s exact test p = 1.1 3 10�5, MEMo [Ciriello

et al., 2012] corrected p < 0.01, Table S4A) in 300/402 (74.6%)

patients. The 248 (61.7%) BRAF mutations were mostly V600E

substitutions (Figures 1C and S2A and Table S3C). Somatic sin-

gle nucleotide variants (SSNVs) were identified in 52 patients

(12.9%) within codons 12 and 61 of RAS genes (Figures 1C

and S2B and Table S3D). We observed strong associations

between BRAF and RAS mutation status and histology, with

BRAFV600E characterizing CT and TCV and RAS mutations

characterizing FV (Figures 1B and 1C and Table S3E). These

observations confirm the critical role of MAPK pathway alter-

ations in PTC and illustrate that having more than one mutation

confers no clonal advantage.

MutSig also identified EIF1AX (eukaryotic translation initiation

factor 1A, X-linked) as significantly mutated (q = 5.33 10�8; Fig-

ure 1C and Table S3B). EIF1AX encodes a protein that mediates

transfer of Met-tRNAf to 40S ribosomal subunits to form the 40S

preinitiation complex for protein translation. Six (1.5%) muta-

tions (Figure S2C) were identified in tumors lacking other known

driver mutations (Fisher’s exact test of EIF1AX versus RAS/

BRAF, p = 0.013) with one exception: one case with three driver

mutations in KRAS, BRAF, and EIF1AX; here the KRASmutation

was clonal (cancer cell fraction estimated at 100% with 95%

CI [56%–100%]), while EIF1AX and BRAF were subclonal at

76% (38%–100%) and 53% (22%–94%) cancer cell fractions,

respectively (see Supplemental Information). The near-mutual

exclusivity of EIF1AX alterations with MAPK pathway mutations

(Figure 1C), together with recurrent mutations in other tumors

(Forbes et al., 2011; Martin et al., 2013), suggests that EIF1AX

is a novel cancer gene in PTC.

The two remaining SMGs (PPM1D, CHEK2, Figures S2D

and S2E) encode interacting proteins related to DNA repair

(Oliva-Trastoy et al., 2007) and occurred concomitant with

MAPK-pathway driver mutations (Figure 1C). Germline PPM1D

mutations are associated with breast and ovarian cancer predis-

position and may impair p53 function (Kleiblova et al., 2013).

Although not statistically significant, there were 8 additional

DNA repair-related mutations in 26 (6.5%) tumors, all mutually

exclusive (Figure S3A, MEMo corrected p = 0.24). Tumors car-

rying these mutations had a significantly higher median mutation

density (Table S5A, Mann Whitney p = 0.022), although not after

age-adjustment (p = 0.111), and were enriched with high-risk

patients (Fisher’s exact test p = 0.018). These observations,

together with our finding of a mutated network of FANCA-asso-

ciated genes (see ‘‘Integrated Analysis of Somatic Alterations’’

section), suggest that acquisition of a defect in DNA repair

represents a mechanism for development of aggressive PTC.
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We also observed alterations in other cancer genes, pathways

and functional groups (chromatin remodeling, PI3K, WNT and

tumor suppressor genes). Although not statistically significant,

they are known to play a role in thyroid cancer pathogenesis

2013). Mutations of tumor suppressor genes (TP53, RB1, NF1/

2, MEN1, and PTEN) were identified in 15/402 (3.7%) tumors

(Figure S3C). In addition, two genes that may be tumor suppres-

sors were near significance: (1) ZFHX3, a zinc finger homeobox
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Figure 1. Landscape of Genomic Alterations in 402 Papillary Thyroid Carcinomas

(A) Mutation density (mutations/Mb) across the cohort.

(B) Tumor purity, patient age, gender, history of radiation exposure, risk of recurrence, MACIS score, histological type, and BRS score.

(C) Number and frequency of recurrent mutations in genes (left) ranked by MutSig significance (right), gene-sample matrix of mutations (middle) with TERT

promoter mutations (bottom).

(D) Number and frequency of fusion events (left), gene-sample matrix of fusions across the cohort (middle).

(E) Number and frequency of SCNAs (left), chromosome-sample matrix of SCNAs across the cohort (middle) with focal deletions in BRAF and PTEN (bottom),

GISTIC2 significance (right).

(F) Driving variant types across the cohort. Samples were sorted by driving variant type with dark matter on the left.

See also Figures S1, S2, S3, S4 and Tables S1, S2, S3, S4A, S5A, S5B, and S5E.
and progression (Xing, 2013). We identified 93 mutations within

57 epigenetic regulatory genes in 80/402 (20.0%) tumors, 9 of

which possessed more than one mutation (Figure S3D). Muta-

tions in MLL (1.7%), ARID1B (1.0%), and MLL3 (1%) were

most frequent (Figures 1C and S3D). In the PI3K and PPARg

pathways, we observed 20 nearly mutually exclusive mutations

in PTEN, AKT1/2, and PAX8/PPARG (Figure S3E), representing

4.5% (18/402) of cases. Mutations of five WNT pathway-related

genes were found in 6/402 (1.5%) tumors (Figure S3B), a lower

frequency than reported for aggressive tumor types (Xing,
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transcription factor (Minamiya et al., 2012), in 7/402 (1.7%) tu-

mors (q = 0.79); and (2) BDP1,which may regulate AKT signaling

(Woiwode et al., 2008), in 5/402 (1.2%) tumors (q = 0.58). Finally,

mutations in thyroid-related genes were infrequent: 11/402

(2.7%) mutations in thyroglobulin, 2/402 (0.5%) mutations in

thyroid-stimulating hormone receptor (TSHR). No mutations in

thyroid hormone receptor genes (TRHA and TRHB) were found.

We identified TERT promoter mutations in 36 (9.4%) of 384

informative tumors, with 27 (7.0%) C228T, 1 (0.3%) C228A,

and 8 (2.1%)C250T substitutions. Thesemutationswere present



in PTCs of all histological types. TERT promoter mutations had

modest association with mutation drivers (Fisher’s exact test

p = 0.029) and arm-level somatic copy-number alterations (p =

0.023), but not BRAF mutations or gene fusions. They showed

TERT promoter mutations occurred in less-differentiated PTCs

(lower TDS values, see ‘‘Signaling and Differentiation’’ section)

(Kruskal-Wallis test p = 4.2 3 10�5, Figure 2C). These associa-

tions are consistent with published results (Melo et al., 2014;
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Figure 2. TERT Promoter Mutations and Clonality Assessment of

Driver Mutations

(A–C) Association of TERT promoter mutations with (A) risk of recurrence, (B)

MACIS score, and (C) thyroid differentiation score (TDS). See also Table S2.

(D) Mutation cancer cell fraction distribution. The majority of all mutations,

including driver mutations BRAF, NRAS, HRAS, KRAS, and EIF1AX, have a

calculated cancer cell fraction close to 1.0, indicating their presence all tumor

cells.
strong associations with older age, MACIS scores (Kruskal-

Wallis test p = 2.6 3 10�9, and p = 1.3 3 10�11, Figure 2B,

respectively), and high risk of recurrence (Fisher’s exact test

p = 7 3 10�8, Figure 2A), within the entire cohort, and these

associations remained within the BRAFV600E tumors. Finally,
Xing et al., 2014) and suggest that molecular diagnostic assess-

ment of TERT promoter mutations may be used to identify high

risk patients.

A recent report suggested that BRAFV600E mutations in PTC

are often present only in a small subset of the cancer cells

(Guerra et al., 2012), information relevant to therapeutic appli-

cation of BRAF inhibitors. To address this issue, we used the

ABSOLUTE package (Carter et al., 2012) to estimate the cancer

cell fraction (CCF) of mutations in BRAF, NRAS, HRAS, KRAS,

and EIF1AX (see Supplemental Information). In our study, all of

these driver mutations were present in the majority of tumor

cells (Figure 2D), i.e., they are largely clonal. Our results instead

confirm other studies showing homogeneous cancer cell immu-

nohistochemical staining with BRAFV600E-specific antibodies

(Ghossein et al., 2013).

We performed targeted sequencing validation experiments

on a subset of 318 tumors at 333 mutated sites. Two hundred

sixty-four of 265 (99.6%) of mutations in driver genes were

confirmed. We also carried out targeted validation on a random

set of 54 mutations, of which 49 (91%) were confirmed, for an

overall validation rate of 96%.

Gene Fusions
Chromosomal rearrangements and translocations contribute to

PTC pathogenesis (Xing, 2013). We identified both known and

novel fusions, including new partners of previously described

fusions, in 74 (15.3%) of 484 informative cases, based on multi-

ple platforms (Figure 3). Fusions were mutually exclusive with

each other and with BRAF, RAS, and EIF1AXmutations (Fisher’s

exact test p = 4.9 3 10�43; Figures 1C, 1D and S3F). Fusion-

positive tumors were associated with younger age of diagnosis

(Wilcoxon rank-sum test p = 0.005), but not with risk of recur-

rence (Fisher’s exact test p = 0.55) or age-corrected mutation

density (rank-sum test p = 0.341, Table S5A).

RET fusions were most frequent (33/484, 6.8%) (Table S5B

and Figure S3F); however, less frequent than previously reported

in sporadic or radiation-associated PTC (Ricarte-Filho et al.,

2013). We identified four novel unique RET fusions that pre-

served the kinase domain (Figure 3A and Table S5B).

Fusions involving BRAF have been identified in PTC (Ciampi

et al., 2005) and other cancers. Inmelanoma, these events define

a molecular subclass with distinct response to MEK inhibition

(Hutchinson et al., 2013). In our cohort, we identified 13/484

(2.7%) BRAF fusions with diverse gene partners (Figure 3A and

Table S5B); three tumors exhibited the SND1/BRAF gene fusion

seen in a gastric cancer cell line (Lee et al., 2012). Some fusions

supported BRAF signaling with expression and conservation

of its kinase domain (MKRN1/BRAF), while others suggested

an alternative activating mechanism. Six of nine BRAF fusions

were validated by independent PCR experiments, while PCR

evidence for the other three was inconclusive. These diverse

fusions, together with the BRAF point mutations and indels

described above, illustrate the various possible mechanisms of

activating BRAF and highlight its oncogenic importance in PTC.
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We identified PAX8/PPARG fusions in 4/484 (0.8%) tumors.

Originally found in follicular carcinomas (Kroll et al., 2000),

PAX8/PPARG translocations have been reported with low fre-

quency in PTC, especially FV. ETV6/NTRK3 and RBPMS/

Figure 3. Candidate ‘‘Driver’’ Gene Fusions

in Papillary Thyroid Carcinoma

(A) RNA expression fusion plots for representative

novel candidate genes involving RET, BRAF, ALK,

NTRK3, and LTK fusions. Each gene in the fusion

plot is drawn 50 to 30, exon specific relative

expression data are represented with low (blue)

and high expression (red), and the kinase domain

is mapped with a green box. The pairs of numbers

across the links indicate the number of split reads

and paired-end supporting reads from RNA-seq.

(B) Circos plots (http://circos.ca) of RET, BRAF,

and NTRK3 fusions. Red links represent recurrent

fusions, black nonrecurrent.

See also Figures S3F and Table S5B.

evidence for a close relationship between

FV and follicular neoplasms in which

SCNAs are more common (Wreesmann

et al., 2004a).

tations, with 4 cases

The SCNA-22q-del c

riched for FV (p < 0

that loss of CHEK2 an
NTRK3 fusions were uncovered in 6/484 (1.2%) tumors. These

fusions are more prevalent in radiation-induced thyroid cancers

but have lower prevalence in sporadic PTC (Ricarte-Filho et al.,

2013). THADA fusions were identified in 6/484 (1.2%) tumors.

Fusions involving ALK presented in 4/484 (0.8%) tumors,

including EML4/ALK (Figure 3A), which is observed in lung

adenocarcinomas and rare thyroid cancers (Kelly et al., 2014),

suggesting opportunities for targeted inhibition of ALK. In

addition, two cases had FGFR2 fusions and two cases had

nonrecurrent fusions of MET and LTK (Table S4B).

Somatic Copy-Number Alterations
Somatic copy-number alterations (SCNAs) were identified in

135 (27.2%) of 495 informative tumors. These 135 cases

were significantly enriched in cases with no driver mutation or

fusion (Fisher’s exact test p = 4.4 3 10�4; Figures 1C, 1D, and

1E), suggesting that SCNAs may also drive PTC. Arm-level

alterations occurred significantly more frequently in FV than in

CT subtypes (Figure S4A) (FDR < 0.1, p < 0.008), providing
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Unsupervised clustering of chromo-

somal arm-level alterations defined four

distinct classes (Figure S4B). The largest

class (72.9%) lacked significant gains

or losses (SCNA-quiet), reflecting the

highly differentiated nature of PTC; this

group was not enriched for any partic-

ular genotype or histologic type. A sec-

ond class (9.9%) was characterized by

an isolated loss of 22q (SCNA-22q-del),

a region that includes NF2 and CHEK2

and reported to be lost with significant

frequency in PTC (Kjellman et al.,

2001). Seventy tumors had 22q loss

and five tumors possessed CHEK2 mu-

containing both mutations (p = 0.0035).

ohort contained few TCV and was en-

.05) (Figure S4C). This result suggests

d/or the NF2 tumor suppressor may be

ticularly in the FV subtype. A third class
important in PTC, par

(14.8%) was characterized by a few SCNA events and gain of

1q (SCNA-low-1q-amp), was enriched for TCV (p < 0.0001)

and BRAF mutations (p < 0.05) (Figure S4C), and was asso-

ciated with significantly higher MACIS scores (p < 0.0001)

(Figure S4D), risk profiles (Figure S4E), and tumor stage

(Figure S4F), consistent with reports of 1q gains in aggressive

PTC (Wreesmann et al., 2004b). The final and smallest class

(2.4%) was defined by a higher frequency of focal gains and

losses (SCNA-high).

We found few significantly recurring focal alterations using

GISTIC2 (Mermel et al., 2011). In 5/13 tumors withBRAF fusions,

we detected by SNP array the resulting focal alterations at 7q34.

Five tumors with 10q23.31 deletions lacked PTEN expression

(Figure S4G). We also found single case amplifications contain-

ing oncogenic driver genes (e.g., FGFR3). Together, these

results, in the context of SSNVs and fusions, suggest that

SCNAs may represent both tumor-initiating and progression-

related events in PTC.

http://circos.ca


Integrated Analyses of Somatic Alterations
Next, we sought to identify additional genes that may harbor

driver mutations (point mutations, fusions or copy-number

changes) that did not meet significance, by searching within

tions, so-called ‘‘dark matter’’ samples, for the presence of novel

potential driver alterations. SSNVs involving drivers accounted

for 299 (73.6%) cases. Mutually exclusive fusions increased

the number of cases with drivers to 358 (89.0%). Three mutually
protein-protein interaction networks for subnetworks enriched

with frequently mutated genes. To this end, we applied the

HotNet2 algorithm (M.D.M. Leiserson, F. Vandin, H.T. Wu,

J.R. Dobson, J.V. Eldridge, J.L. Thomas, A. Papoutsaki, Y. Kim,

B. Niu, M. McLellan, M.S. Lawrence, A.G. Perez, D. Tamborero,

Y. Cheng, G.A. Ryslik, N. Lopez-Bigas, G. Getz, L. Ding, and

B.J. Raphael, unpublished data) and identified 17 significantly

mutated subnetworks (p < 0.004, Table S5C and Figure S5A).

As expected, the largest subnetwork (16 genes) included four

knownmembersof theMAPKsignalingpathway (BRAFand three

RAS genes) and 12 additional genes (Figure S5B). Some of these

additional genes (e.g., RAP1GAP) displayed mutations that were

mutually exclusive with BRAF (SSNVs, indels and fusions) and

RAS, andmay represent additionalMAPKdrivers. Othermutated

genes in this subnetwork (e.g., PIK3CA) overlapped with

BRAFV600E and may alter the biology of these cancers by acti-

vating PI3K signaling, a hypothesis that requires validation.

Other HotNet2 subnetworks significantly overlapped with

knownpathways (TableS5CandFiguresS5C–S5E). Identification

of the ECM-receptor interactions pathway is consistent with the

role of ECM microenvironment in PTC (Nucera et al., 2011). The

finding of a FANCA-associated protein complex subnetwork pro-

vides additional evidence for DNA repair playing a role in PTC.

We used network-based stratification (NBS) (Hofree et al.,

2013) to discover three somatic mutation-based PTC subtypes

(NBS1-3, Figures S6A–S6C). As expected, a strong association

with histologic subtype was found, with a significant association

between NBS1 and FV histology (Figure S6B, b, Fisher’s exact

test p < 2 3 10�16). The subtypes were also significantly asso-

ciated with lymph node status, extrathyroidal extension, stage

and risk of recurrence (Figure S6B, a, c–e, Fisher’s exact test

p = 4.43 10�4, 3.13 10�7, 3.83 10�3, 8.23 10�6, respectively),

as well as other molecular characteristics (Figure S6C). In order

to identify somatic events that characterize each subnetwork,

we applied the HotNet algorithm to each NBS subtype (Fig-

ure S6D and Table S5D). Subtype NBS1 was associated with

perturbations in RAS, PTEN, PPARG, and TSHR. Subtype

NBS2 was associated with alterations in RET and related genes

such as NTRK3. Subtype NBS3 appears to be predominantly

BRAFV600E-associated. These results confirm three broad clas-

ses of PTC determined by the common drivers.

We also looked for the presence of viral pathogens in PTC

using two independent methods to assess the RNA-seq data:

PathSeq (Kostic et al., 2011) and BioBloom Tools (Chu et al.,

2014). We identified two tumors with hepatitis B virus (HBV)

and one tumor with human papillomavirus 45 (HPV45) at relative

frequencies exceeding 0.1 viral reads per million human reads

(RPM) for PathSeq and 0.2 RPM for BBT (see Supplemental

Information and Tables S4G–S4I), indicating that viral pathogens

are unlikely significant contributors to PTC pathogenesis.

‘‘Dark Matter’’ Summary
Starting with 402 cases with informative exome DNA sequence

data, we examined tumors that lacked apparent driver muta-
exclusive focal deletions (2 PTEN and 1 BRAF) brought the num-

ber of cases to 361 (89.8%). Mutually exclusive arm-level SCNAs

were present in 27 additional cases, which were mostly FV.

Although we cannot pinpoint the driving genes, if we assume

that some of these SCNAs indeed act as drivers, the total num-

ber of cases with apparent drivers increased to 96.5%, leaving

14 (3.5%) as ‘‘dark matter’’ cases. By reviewing events in these

cases, we observed additional potential drivers such as APC,

ATM,NF1, and SPOP,mutations of chromatin remodeling genes

(e.g., MLL) and potential gene fusions (Table S5E). Including

these events and considering arm-level SCNAs as drivers, we

have identified putative cancer drivers in 397/402 PTCs (98.8%).

Signaling and Differentiation
PTC is a MAPK-driven cancer that has two mutually exclusive

drivers with distinct signaling consequences: BRAFV600E and

mutated RAS. Tumors driven by BRAFV600E do not respond to

the negative feedback from ERK to RAF (since it signals as a

monomer), resulting in high MAPK-signaling (Pratilas et al.,

2009). Conversely, tumors driven by RAS and RTK fusions

signal via RAF dimers that respond to ERK feedback, resulting

in lower MAPK-signaling. This differential signaling results in

profound phenotypic differences. For example, expression of

genes responsible for iodine uptake and metabolism are greatly

reduced in BRAFV600E tumors, in contrast to the ‘‘RAF-dimer’’

tumors in which expression of these genes is largely preserved

(Durante et al., 2007). These observations, together with the

relatively low number of other genomic alterations, allow for a

clear view of the signaling and transcriptional outputs of these

two primary drivers. The distinct profile of expression of genes

involved in thyroid hormone biosynthesis that we observed

between BRAFV600E and RAS-driven tumors is recapitulated

closely in mouse PTC models induced by knock-in mutations

of BrafV600E or HrasG12V (Charles et al., 2011; Franco et al.,

2011), suggesting that these arise as a consequence of the

constitutive activation of these drivers.

To explore these relationships across our cohort, we devel-

oped a BRAFV600E-RAS score (BRS) to quantify the extent to

which the gene expression profile of a given tumor resembles

either the BRAFV600E or RASmutant profiles. Using 391 samples

with both exome and RNA sequencing data, we compared

BRAFV600E-mutated and RAS-mutated tumors to derive a 71-

gene signature. Correlations with this signature were used to

derive a continuous measure (�1 to +1) with BRAFV600E-like

(BVL) PTCs being negative and RAS-like (RL) PTCs positive

(see Supplemental Information). As expected, this signature

showed strong separation of the BRAFV600E and RAS mutant

tumors (Figures S7A and S7B).

We then used the BRS as a reference continuous scale from

most BVL to most RL to interrogate the signaling consequences

of the other, less common, mutations (Figures 4A and 4B). All

BRAF mutations other than BRAFV600E exhibited RL behavior,

including oneBRAFK601E, a splice-site mutation and three indels.

This is consistent with previous observations that BRAFK601E
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occurs in FV tumors that are mostly RL-PTCs (Park et al., 2013).

All of the BRAF fusions were BVL. Four of the six EIF1AX muta-

tions were RL, one neutral, and one weakly BVL. All of the PAX8/

PPARG fusions were RL, consistent with their prevalence in

with TDS across all tumors and within the BRAFV600E cohort.

We discovered that the TDS was associated with global expres-

sion changes, significantly correlated and anticorrelated with

thousands of genes in both cohorts (Figures S7F and S7G). We

Figure 4. The BRAFV600E-RAS Score

(A–E) Thyroid samples (A) (n = 391) were ranked byBRAFV600E-RAS score (BRS), withBRAFV600E-like andRAS-like samples having negative (�1 to 0) and positive

scores (0 to 1), respectively. The BRS is strongly associated with: (B) driver mutation status; (C) thyroid differentiation score (TDS); (D) single data-type clusters;

and (E) histology and follicular fraction. The RAS-like samples (normalized score > 0, in red on the top bar) consistently emerged as a distinct subgroup char-

acterized by a higher TDS. See also Figures S6, S7A, and S7B and Tables S2 and S4B.
follicular-patterned tumors. Nearly all of the RET fusions were

weakly BVL, and the NTRK1/3 and ALK fusions were largely

neutral.

Next, we focused on thyroid differentiation, which plays a cen-

tral role in thyroid cancer. We summarized the expression levels

of 16 thyroid metabolism and function genes (Table S5F), which

were highly correlated across our cohort, and produced a single

metric, designated the Thyroid differentiation score (TDS). The

TDS and BRSmeasures were highly correlated across all tumors

(Spearman = 0.78, p = 3.1 3 10�80), despite being derived

from different gene sets. This correlation was mainly driven by

RL-PTCs having relatively high TDS values. The BRAFV600E

PTC cohort, considered a homogeneous group in numerous

studies, showed a wide range of TDS values (Figure 5), and

maintained the TDS and BRS correlation, albeit to a lesser de-

gree (Spearman = 0.38, p = 3.0 3 10�9, Figures 4, 5, and S7C–

S7E). To gain insights regarding the observed TDS variation,

we identified other genes whose expression levels correlated
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obtained similar observations using previously reported DNA

microarray data (Giordano et al., 2005) (Figure S7H). Next, to

test whether differences in the TDS within the BRAFV600E mutant

cohort were associated with subtle architectural changes, we

histologically graded the tumors (Figure S7I) and showed

that TDS was indeed correlated with grade (Kruskal-Wallis

test p = 4 3 10�6, Figure S7J). TDS also correlated with risk

(p = 2 3 10�5) and MACIS (Spearman correlation p = 1.3 3

10�6) but only weakly with tumor purity (p = 1.5 3 10�3) (Fig-

ure S7J), indicating that the observed differences in TDS and

global expression levels were not strongly influenced by varia-

tions in levels of tumor stroma or lymphocyte infiltration. These

results support the validity of the TDS and BRS and illustrate

that, while independently derived, these measures reflect

similar biological properties that are profoundly reflected by

gene expression in PTC.

Although the TDS was correlated with many genes, among

the most correlated were several genes with cancer relevance



(TFF3, KIT, PVRL4, and FHL1, q = 8.02 3 10�30, 5.62 3 10�29,

4.08 3 10�13, and 7.52 3 10�115, respectively, Figures 5, S7F,

and S7G). Among miRs with cancer relevance, miR-21, miR-

146b, andmiR-204were highly correlatedwith the TDS (Figure 5,

An integrated view of our TDS analysis (Figure 5) summarizes

how RL-PTCs result in highly differentiated tumors enriched

for follicular histology with distinct gene expression and DNA

methylation patterns. Conversely, BVL-PTCs result in predomi-

Figure 5. Role of Thyroid Differentiation in Papillary Thyroid Carcinomas

Thyroid differentiation score (TDS) across the cohort with tumors sorted by driver mutation and TDS. Below TDS are the BRAFV600E-RAS score (BRS), ERK

signature, histological type, MACIS score, risk of recurrence, driver mutations, and gene expression data for nine thyroid genes used to derive the TDS (TG, TPO,

SLC26A4 [pendrin], SLC5A5 [Na/I symporter], SLC5A8 [apical iodide transporter], DIO1, DIO2, DUOX1, and DUOX2), four selected mRNAs correlated to TDS,

and three selectedmiRs correlated to TDS. FeaturedmRNA (except for 16 thyroid genes) andmiRNA genes were selected based on Spearman correlation to TDS

in the BRAFV600E cohort (*) and the full cohort (**) (see Supplemental Information). See also Figures S7C–S7J and Table S5F.
S7F, and S7G), withmiR-21 being themost negatively correlated

miR in both the entire and BRAFV600E cohorts. miR-21 and

miR-146b are oncogenic miRs in several tumor types (Di Leva

et al., 2014) and miR-204 is downregulated in several tumors

types and may be a tumor suppressor (Imam et al., 2012). We

subsequently identified variable expression of these miRs in

distinct miR clusters with different TDS and BRS values (see

‘‘Molecular Classification’’ section).

Our data demonstrate significant gene expression variation

across the BRAFV600E cohort, which may account for the range

of differentiation observed and may explain the uncertainty

regarding the prognostic and predictive power of BRAFV600E

mutation (Xing et al., 2013). Dedifferentiation likely plays a role

in dampening responses to RAI therapy and is consistent with

observations that RAI-refractory metastases are enriched for

BRAFV600E mutants (Sabra et al., 2013). Although other factors

are likely involved, our results support the view that potent

constitutive activation of the MAPK transcriptional output by

oncogenic BRAFV600E downregulates the expression of genes

involved in iodine metabolism (Chakravarty et al., 2011; Franco

et al., 2011). Of note, the loss of differentiation within the

BRAFV600E cohort is likely smaller than that observed in histo-

logically aggressive thyroid cancers.
nantly less-differentiated tumors enriched for classical and tall

cell histology, with distinct gene expression and DNA methyl-

ation patterns. Further assessment of BRS and TDS might be

useful in the setting of a clinical trial and even pathology practice

using immunohistochemistry.

To better understand the downstream signaling effects of

the main driver events (BRAFV600E, RAS), we examined mRNA

expression and protein and phosphoprotein levels of various

signaling pathways. We used a 52-gene signature derived by

inhibiting MEK in a BRAFV600E melanoma cell line (Pratilas

et al., 2009) to assess the ERK (and MAPK) activation level.

BRS was highly correlated to ERK activation level (i.e., ERK

score, see Supplemental Information); BVL-PTCs showed over-

activation of the pathway (Figure S8A) and increased expression

of DUSP genes (Figure 6). Note that, although the two scores are

highly correlated, they were derived independently and have no

genes in common. In wild-type cells, ERK induces a negative

feedback on effectors upstream in the pathway, resulting in

impairment of RAF dimerization. Because BRAFV600E signals

as a monomer, it is insensitive to feedback leading to ERK

overactivation (Poulikakos et al., 2010).

RET fusions consistently had BVL phenotype, high MAPK

activity and were associated with low pS338-CRAF and

Cell 159, 676–690, October 23, 2014 ª2014 The Authors 683



pS299-ARAF (Figure S8B), consistent with preferential signaling

via BRAF homodimers (Mitsutake et al., 2006). RL-PTCs had

concurrent activation of PI3K/AKT andMAPK signaling, the latter

mostly through c-RAF phosphorylation (Figure 6). Despite having

refine the classification of PTC into molecular subtypes and

associate them with clinically relevant parameters. To this end,

we leveraged the BRS and TDS measures to inform the relation-

ships between tumor cluster, histology, genotype, signaling, and

A B

Figure 6. Downstream Signaling of BVL and RL PTCs

(A) MAPK and PI3K pathways are differentially activated in the BVL and RL PTCs.

(B)BRAFV600E-mutated cases show robust activation of MAPK signaling resulting in higher output of the ERK transcriptional program, represented in particular by

DUSP (DUSP4, 5 and 6)mRNAs. Thismay be due to insensitivity of BRAFV600E to ERK inhibitory feedback. By contrast,RAS-like tumors activated bothMAPK and

PI3K/AKT signaling, as shown by higher pAKT levels in these tumors. The mechanism by which RAS-like tumors activated MAPK signaling was distinct from that

ofBRAFV600E tumors, as they had higher CRAF phosphorylation, consistent with engagement of RAF dimers. Paradoxically, RL-PTCs had higher phosphorylation

of the ERK substrate p90RSK, which was associated with mTOR activation, likely through phosphorylation and consequent inhibition of TSC2. RL-PTCs also

showed activation of an antiapoptotic program, characterized by S112-BAD phosphorylation (a target of P90RSK) andBCL2 overexpression. See also Figures S8

and Tables S4B and S4F.
lower MAPK activity than BVL-PTCs, RL-PTCs showed sig-

nificantly higher phosphorylation of p90RSK, a direct ERK

substrate. Activation of p90RSK was associated with robust

inhibition of TSC2, a distinguishing hallmark of the two functional

classes, and likely to induce mTOR. Elevated p90RSK in the

RL-PTCs was also associated with phosphorylation of its sub-

strate BAD, and with concurrent BCL2 overexpression, leading

to antiapoptotic signaling (Figure 6 and Table S4B). Finally, we

used TieDIE (Paull et al., 2013) to assess differential pathway

activation between BVL-PTC and RL-PTC (see Supplemental

Information). This approach identified the small GTPase RHEB,

a known regulator of mTOR activity (Groenewoud and Zwartk-

ruis, 2013), as a contributing factor to the differences observed

between BVL-PTC and RL-PTC (Figure S8C, Table S4F and

Data S1). These findings confirm many of the known signaling

changes induced by BRAFV600E and RAS mutations in PTC,

provide a framework for MAPK downstream activity in tumors

with other driver alterations, and importantly shed new light on

the role of p90RSK as a crucial crossroad for MAPK, mTOR,

and BCL2 signaling in RAS-driven tumors.

Molecular Classification
The comprehensive and multiplatform molecular data and large

sample size in this study provide an opportunity to derive and
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differentiation.

Applying unsupervised clustering methods to four genomic

data sets yielded a different number of subtypes for each data

set: five for mRNA expression, six for miR expression, four

for DNA methylation, and four for protein expression (Figures

S9A–S9D). All clustering results were consistent with two

meta-clusters that separated the BRAFV600E-driven tumors

(BVL-PTCs) from ones with RASmutations (RL-PTCs), recapitu-

lating the BRS-partitioning and association with histological sub-

types (Figures 4 and S9A). We used StratomeX (Streit et al.,

2014) to visually highlight these relationships (see THCA publi-

cation page, https://tcga-data.nci.nih.gov/docs/publications/

thca_2014/); in particular, the significant distinction between

BVL-PTCs and RL-PTCs that is evident in each of the molecular

data sets (Table S5G). We also applied SuperCluster (see

Supplemental Information) to the four genomic data sets, which

supported the overarching separation of BVL-PTCs and RL-

PTCs (Figure S9E).

Next, we focused on the internal structure reported by

different data types for these two meta-clusters. The RL-PTC

group was associated with a single cluster in all data sets except

DNA methylation (described below). Overall, this group was

characterized by FV histology, relatively low risk of recurrence,

distinct mRNA expression profiles with lower expression of

https://tcga-data.nci.nih.gov/docs/publications/thca_2014/
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immune response genes, higher expression of miR-182-5p and

miR-183-5p, low levels of fibronectin, VHL, and CHK2 proteins,

and high expression of claudin-7, TIGAR, and BRCA2 proteins

(Figures 7, S9B and S9D). RL tumors were highly differentiated

Figure 7. Unsupervised Clusters for

miRNA-seq Data

Heatmap showing discriminatory miRs (5p or 3p

mature strands) with the largest 6% of metagene

matrix scores (see Supplemental Information), as

well as miR-204-5p, 221-3p, and 222-3p, which

were highlighted in correlations to BRS and TDS

scores (see Figure S10D). The scalebar shows log2
normalized (reads-per-million, RPM), median-

centered miR abundance. miR names in red are

discussed in the text. Gray vertical lines in the

clinical information tracks mark samples without

clinical data, and in the mutation tracks gray lines

identify samples without sequence data. See

also Figures S9, S10, and Tables S4C, S4D, S4E,

S5G, and S6.

fusions, mutational densities, histological

and risk profiles, age, and BRS and TDS

values (Table S5G). The most striking

relationship between subtypes was that

mRNA and miR cluste

THCA publication pag

fied by SuperCluster (
and associated with younger patients. The DNA methylation

data partitioned these tumors into two clusters: the larger,

termed Meth-follicular, showed few methylation changes com-

pared to normal thyroid, while the other, termed the Meth-CpG

Island cluster, was characterized by hypermethylation of a large

number of CpG sites in islands and shores (Figure S9C). The sig-

nificance of this distinction is unclear, although the Meth-CpG

Island cluster tended to have high tumor purity with less lympho-

cyte infiltration and stromal cells (Figure S9C, d).

The different data sets partitioned the BVL-PTC group into

different numbers of subtypes (from two based on DNA methyl-

ation data to five based on miR data), which did not overlap with

each other such as to form a fully consistent lower level partition-

ing of BVL-PTCs (Figures 4 and S9). Regardless of which data

set was used, the clusters were significantly different based on

parameters like proportions of driver mutations and gene
mRNA-cluster 5 was nearly fully

embedded within miR-cluster 6 (86/106

mRNA-cluster 5 tumors were part of the

144 tumors in miR-cluster 6; Fisher’s

exact test p = 1.3 3 10�36). This mRNA

cluster, which we termed tall cell-like,

contained most of the TCV tumors

(74%), had the highest frequency of

BRAFV600E mutations (78%), and the

lowest BRS and TDS values (i.e., the

strongest BVL phenotype and least differ-

entiated). Since the tall cell-like cluster

was associated with more advanced

stage (see THCA publication page) and

higher risk (Table S5G), this may be clini-

cally relevant. We again used StratomeX

to highlight the relationships between

rs with recurrence risk and histology (see

e). The tall cell-like cluster was also identi-

Figure S9E).

ysis
Integrated miR Anal
Given the increased role of miRs in determining cancer pheno-

type, we further examined the association between miR expres-

sion, molecular subtypes, and clinical parameters. In addition

to miR-182 and miR-183 in the RL-PTC group, several other

cancer-relevant miRs were relatively abundant in other miR clus-

ters (Figures 7 and S9B). These included oncomiRs (miR-21 and

miR-146b) and tumor suppressor miRs (let-7 family, miR-204,

and miR-375). OncomiRs miR-221 and miR-222 were reported

to play a role in PTC aggressiveness (Mardente et al., 2012)

and, in our data, were associated with less-differentiated tumors

(Figures 7 and S10D, b).

We focused integrative analysis on miR-21, miR-146b, and

miR-204 because they were epigenetically regulated, correlated

with BRS and TDS, and/or differentially expressed between

PTCs and normal thyroid, as well as between clusters derived
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from miRNA-seq data (Figures S9B, S10A, S10B, and S10F).

miR-21 expression correlated with highly variable DNA methyl-

ation (Figure S10C), defined the tall cell-like mRNA and DNA

methylation Meth-classical-1 clusters and was highly correlated

PTC somatic genetic landscape has the potential to even further

enhance the care of these patients. This study also offers conclu-

sive evidence that mutated BRAF and other driving mutations

are clonal events present in the majority of cells within tumors
with low BRS and TDS values (Figures 7 and S10D). miR-21 is a

regulator of several cancer-related genes (Di Leva et al., 2014).

In our data, using Regulome Explorer’s pairwise associations,

its expression was anticorrelated with expression of cancer-

promoting genes and regulators of apoptosis (e.g., PDCD4) (Fig-

ure S10E). PDCD4 is a miR-21 target gene reported to function

as a tumor suppressor in diverse tumors (Zhu et al., 2008). These

observations raise the possibility that increased miR-21 expres-

sion via epigenetic dysregulation may contribute to the clinically

aggressive nature of this BVL-PTC subcluster and may partly

explain the aggressive nature of TCV.

miR-146b expression exhibited similar patterns of differential

expression and correlations to DNA methylation, BRS, and

TDS (Figures 7, S10C, and S10D), and likely influenced expres-

sion of, for example, IRAK1,KIT and TRAF6 (Figure S10E). These

results are consistent with observations that miR-146b is asso-

ciated with risk of recurrence and promotes cell migration and

invasion (Chou et al., 2013).

miR-204 expression, while less influenced by DNA methyl-

ation, was preferentially lost in miR clusters 5 and 6, the two

BVL-PTC subclusters with the lowest BRS and TDS values (Fig-

ures 7 and S9B). This is consistent with data from other tumors,

i.e., miR-204 functions as a tumor suppressor and high levels

suppress cell migration, invasion, and EMT (Qiu et al., 2013).

These results suggest that loss of miR-204 may also contribute

to aggressive PTCs with BRAFV600E mutations. Collectively,

our results are consistent with prior studies and suggest that

miRs may regulate fundamental aspects of the PTC phenotype,

i.e., signaling, differentiation, invasion and metastasis, by fine-

tuning gene expression.

DISCUSSION

This study illustrates the dominant role and mutually exclusive

nature of driving somatic genetic alterations, be they SSNVs,

indels, or fusions, in the MAPK and PI3K pathways in PTC. The

relative low overall density of somatic mutations may be the

biological basis for the indolent clinical behavior of PTC. We

discovered new driver mutations in PTC, either entirely novel in

this cancer (EIF1AX) or novel alterations of known drivers (RET,

BRAF and ALK fusions). As a result of these discoveries, the

‘‘dark matter’’ of the PTC genome has been reduced substan-

tially from �25% to less than 4%, which should have profound

consequences for preoperative cancer diagnosis in thyroid nod-

ules. Molecular testing of mutation hotspots, rearrangements,

and gene expression using fine-needle aspiration specimens

has become an effective diagnostic tool to more precisely select

patients for thyroid surgery (Alexander et al., 2012; Nikiforov

et al., 2011), thereby reducing the number of thyroidectomies

done for benign nodules and tumors (Nikiforov et al., 2013),

and determining the extent of initial thyroid surgery (i.e., lobec-

tomy versus total thyroidectomy) (Yip et al., 2014). Through these

advances, molecular diagnostics has improved the care of

patients with thyroid nodules and cancer. Our expansion of the
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and identified novel fusion partners of oncogenes (e.g., RET,

BRAF, and ALK), expanding the biological basis for targeted

therapy.

Beyond the driver mutations, we discovered individual genes

(CHEK2, ATM, and TERT) and sets of functionally related genes

(chromatin remodeling) with alterations or expression patterns

(miR-21 andmiR-146b) that define clinically-relevant subclasses

and may contribute to loss of differentiation and tumor progres-

sion. Specifically, increased expression of miR-21 was associ-

ated with a known aggressive form of PTC (tall cell variant) and

may be a critical event in its pathogenesis. Similarly, TERT pro-

moter mutations identified a subset of aggressive, less-differen-

tiated PTCs, consistent with recent reports (Melo et al., 2014;

Xing et al., 2014). Our study also indicates that BRAFV600E PTC

represents a diverse group of tumors, consisting of at least four

molecular subtypes, with variable degrees of thyroid differentia-

tion. Collectively, our results suggest thatBRAFV600E PTC should

not be considered a homogeneous group in clinical studies and

that future studies should include molecular components de-

signed to capture the breadth of genetic diversity among PTCs.

We demonstrate striking signaling differences in RAS- and

BRAFV600E-driven PTCs. In particular, BVL-PTCs signal pre-

ferentially through MAPK while RL-PTCs signal through both

MAPK and PI3K. The relative simplicity of the PTC genome,

with dominant mutually exclusive driving events, together with

the large cohort and comprehensive data analyzed in this study

enabled us to clearly dissect these signaling differences.

Our overarching conclusion is that RL-PTCs and BVL-PTCs

are fundamentally different in their genomic, epigenomic, and

proteomic profiles. This is consistent with their known histo-

logical differences and the published literature. However, the

breadth and depth of our integrative findings have wide implica-

tions for basic pathobiology, tumor classification schemes, and

traditional and targeted therapies. This view is supported by

recent data suggesting differential response to a MEK inhibitor

related to thyroid cancer genotype (Ho et al., 2013). We feel,

based on the strength of our multidimensional genomic findings,

that a pathologic reclassification of follicular-patterned thyroid

lesions is justified. There was a time when follicular-patterned

PTCs (i.e., RL-PTCs) were classified as follicular carcinomas.

Perhaps the time has come to revise the classification of thyroid

cancer to reunite the FV of PTC with follicular carcinomas.

Moreover, a refined classification scheme that more accurately

reflects the genotypic and phenotypic differences between and

within RL and BVL PTCs would lead to more precise surgical

andmedical therapy, especially as thyroid cancer therapy enters

the realm of precision medicine.

EXPERIMENTAL PROCEDURES

Tumor and normal thyroid samples were obtained from patients with approval

from local institutional review boards. DNA, RNA, and protein were purified

and distributed throughout the TCGA network. In total, 496 primary tumors

and 8 metastatic tumors with associated clinicopathologic data were assayed

on at least one molecular profiling platform. Platforms included exome



and whole genome DNA sequencing, RNA sequencing, miRNA sequencing,

SNP arrays, DNA methylation arrays, and reverse phase protein arrays.

Integrated multiplatform analyses were performed. The data and analysis re-

sults can be explored through the Broad Institute GDAC portal (http://dx.doi.

org/10.7908/C17P8WZG) and FireBrowse portal (http://firebrowse.org/?

Prins, Alexei Protopopov, Suresh S. Ramalingam, Nilsa C. Ramirez, Ricardo

Ramirez, Benjamin J. Raphael, W. Kimryn Rathmell, Xiaojia Ren, Sheila M.

Reynolds, Esther Rheinbay, MatthewD. Ringel, Michael Rivera, Jeffrey Roach,

A. Gordon Robertson, MaraW. Rosenberg, MatthewRosenthal, Sara Sadeghi,

Gordon Saksena, Chris Sander, Netty Santoso, Jacqueline E. Schein, Nikolaus
cohort=THCA), Memorial Sloan Kettering Cancer Center cBioPortal (http://

www.cbioportal.org/public-portal/study.do?cancer_study_id=thca_tcga),

TieDIE (http://sysbiowiki.soe.ucsc.edu/tiedie), MBatch batch effects assessor

(http://bioinformatics.mdanderson.org/tcgambatch/), Regulome Explorer

(http://explorer.cancerregulome.org/) and Next-Generation Clustered Heat

Maps (http://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/). See also

Supplemental Information and the THCA publication page (https://tcga-data.

nci.nih.gov/docs/publications/thca_2014/).

Data Access

The primary and processed data used to generate the analyses presented here

can be downloaded by registered users from The Cancer Genome Atlas at

https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp. The primary sequence

files are deposited in CGHub (https://cghub.ucsc.edu/) and all other mole-

cular, clinical and pathological data are deposited at the Data Coordinating

Center (DCC) for public access (http://cancergenome.nih.gov/, https://

cghub.ucsc.edu/ and https://tcga-data.nci.nih.gov/docs/publications/thca_

2014/) and the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/).
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