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ABSTRACT 
 

JOHN R. RIDPATH:  Detecting DNA Damage: The Synthesis of New Aldehyde Reactive 
Probes for the Quantitation of Apurinic/Apyrimidinic Sites 

(Under the direction of Dr. Louise M. Ball and Dr. Avram Gold) 
 

     Apurinic/apyrimidinic (abasic) sites are some of the most common lesions found in 

DNA.  They are postulated to be intermediates of mutagenicity and carcinogenicity.  Each 

human genome can have as many as 104 abasic sites per day.  It is therefore important to be 

able to quantitate the number of these sites.  Abasic sites are quantitated by an aldehyde 

reactive probe (ARP) assay highly specific for the aldehyde group of the ring-opened d-

ribose.  This assay is based on formation of a Schiff base adduct of a hydroxylamine on the 

probe end of the aldehyde.  

     The purpose of this project is to synthesize new ARPs that enhance reactivity without loss 

of specificity.  A two-step synthetic scheme was devised to give a compound which replaces 

the hydroxylamine group with a hydrazino group expected to be more reactive.  A long-chain 

ARP containing a polyethylene glycol moiety was also synthesized. 
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I Introduction 
 

    The DNA code contains all of the information necessary to direct each cell of an organism 

to grow, perform its function as it relates to the organism, and reproduce itself.  The code is 

manifested as a string of four chemical bases - adenine, cytosine, guanine, and thymine, 

which ultimately direct the production of proteins responsible for catalyzing most of the 

reactions within the cell.  Any alteration (mutation) of the strict order of these DNA bases 

creates the risk that the protein coded for in that region will be changed in such a way so as to 

lose its functionality or have that functionality reduced to some degree.  It is also possible 

that the protein could obtain a change in its function and become oncogenic.   This loss or 

change of function can cause cell death (apoptosis), cause the inability of the cell to perform 

its proper function, or cause the cell to lose its normal reproductive controls and become 

tumorigenic or carcinogenic.  Therefore, it is of utmost importance that mutations or any 

other damage to DNA be kept to a minimum so that stability of the genome can be 

maintained. 

    Due to its chemical nature, DNA is susceptible to damage by both exogenous and 

endogenous chemicals and ionizing radiation. There are an estimated 104 – 106 DNA lesions 

per human cell per day (Sukhanova, et al., 2004.).  The damage may take the form of 

chemically altered bases or sugars, chemically adducted bases, bases that are removed 

forming abasic sites (also known as apurinic/apyrimidinic, or AP sites), and single (SSB) and 

double strand breaks (Demple and Harrison, 1994).   AP sites are a prevalent type of DNA 



lesion.  They arise from the cleavage of the glycosidic bond (between the DNA base and its 

corresponding deoxyribose), by the action of a DNA glycosylase (during base excision 

repair), by spontaneous depurination/depyrimidination of labile DNA adducts, by chemically 

induced depurination/depyrimidination or even by unmodified bases (Nakamura, 1998). 

    DNA repair mechanisms have evolved to remove damaged sites and restore the proper 

sequence while other mechanisms can bypass unrepaired lesions.  Repair mechanisms 

include direct damage reversal, base excision repair (BER), nucleotide excision repair, 

various types of strand break repair such as nonhomologous end joining and homologous 

recombination, and mismatch repair (Paz-Elizur, et al., 2005).     

    BER is an essential repair mechanism of prokaryotic cells that acts continuously to mend 

single site lesions that are  spontaneously occurring and also induced by hydrolysis, oxygen 

free radicals and alkylating agents (Wood, 1996).  While BER is thought to repair damage 

caused mainly by endogenous pathways there is a long list of environmental agents that can 

cause the same type of damage (Nilson, et al., 2001).  The initial event in BER is the removal 

from the deoxyribose-phosphate backbone of the damaged base by hydrolysis of the N-

glycosidic bond utilizing one of many DNA glycosylases (Lindahl, 1993).  This produces an 

AP site which can be mutagenic itself if the repair process is not continued with rapidity.  

Imbalances due to alterations to the enzymes in BER are known to cause mutations such as 

insertion of an incorrect base opposite an AP site.  The next step in BER is the action of the 

enzyme, AP endonuclease, which creates a 5' nick or SSB in the DNA strand at the AP site. 

This is followed by the removal of the 5'-deoxyribose-phosphate completing the excision of 

the DNA repair intermediate. The repair is completed by Polymerase β (Pol β) and then  
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Ligase III (Lig III) that add the correct nucleotide and seal the resulting 3' nick respectively 

(Lindahl, 1993). 

    It has been shown that depurination to form AP sites is about 100 to 500 times greater than 

depyrimidination (Loeb and Preston, 1986).  Although rare, it has also been shown that 

translesion synthesis of DNA can occur and that purines, especially adenine, are 

preferentially inserted opposite an AP site which leads to G:C to T:A and A:T to T:A 

transversion mutations (Schaaper, et al., 1983).     

    Since AP sites have been determined to be the most common lesion in DNA and therefore 

an important route to mutagenesis and carcinogenesis, researchers have found it beneficial to 

be able to quantitate them (Ide, et al., 1993).  To this end many different assays have been 

developed over the last few decades.  Most of these methods have not been proven to be 

wholly satisfactory as they are labor intensive, involve the use of radioactive materials or are 

not sensitive enough to detect low levels of AP sites.  In 1992, Kubo, et al., developed an 

assay which makes use of a novel aldehyde reactive probe (ARP) which reacts with the 

aldehyde formed on the abasic deoxyribose.  This biotinylated compound allows AP sites to 

be quantitated colorimetrically by an ELISA-like procedure using an avidin/biotin complex 

conjugated to horseradish peroxidase as an indicator system.  This method is much simpler 

than previously described assays and Kubo reported comparable sensitivity.  Ide, et al. 

(1993), characterized the ARP further and reported excellent specificity for the aldehyde on 

the deoxyribose.  Five years later an improved method using ARP combined with a slot-blot 

assay was reported by Nakamura, et al. (1998).   

    A known problem with any AP site assay is that due to incubations at elevated temperature 

artifactual AP sites may be formed which will result in over-estimates of the lesions. This 
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research reports on the synthesis of novel ARPs in an attempt to increase reactivity and 

possibly sensitivity without losing specificity.  If the reaction rate can be increased the 

reaction time can be reduced producing fewer artifacts.  Three new ARP reagents have been 

synthesized; one which is similar to the original ARP but makes use of imino biotin rather 

than standard biotin (previously prepared in this laboratory), another which alters the 

aldehyde reactive end of the molecule from a hydroxylamine group to a hydrazino and a third 

reagent which uses a polyethylene glycol (PEG) chain to link the hydroxylamine to the biotin 

moiety.
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II Literature Review 
 
AP Site Formation 
 
    Once it was found that DNA contains all of the genetic information necessary to direct all 

of the activities of the cell – from growth to reproduction to even its death – it was assumed 

that the DNA molecule must be extremely stable in order to maintain the fidelity needed for a 

master blueprint.  It thus was a surprise to learn that the DNA structure is actually dynamic 

and subject to constant change (damage and mutation) (Friedberg, 1995).   The sources of 

damage to DNA can be exogenous (environmental) as well as endogenous (spontaneous).  

The damage may take the form of chemically altered bases or sugars, chemically adducted 

bases, bases that are removed forming AP sites, SSBs and double strand breaks (Demple and 

Harrison, 1994). 

    AP sites, some of the most prevalent lesions in DNA, are derived from the hydrolytic 

cleavage of the glycosidic bond either spontaneously or by one of many DNA glycosylases 

involved in DNA repair (Nakamura and Swenberg, 1999).  AP sites can also be produced by 

chemical modification of bases by carcinogens and alkylating agents that destabilize the 

glycosidic bond and by ionizing radiation (Ide, et al., 1993).  The formation of these sites is 

enhanced by the fact that the glycosidic bond is made more labile by the lack of the 2'-OH 

group in deoxyribose (which, however, greatly increases resistance of the phosphodiester 

bond) (Lindahl, 1993).  It has been estimated that 10,000 AP sites occur in each human cell 



per day (Lindahl and Nyberg, 1972).  If these sites are not accurately and rapidly repaired 

they can lead to cell death or mutation of the DNA (Kunkel, 1983; Loeb and Preston, 1986). 

Spontaneous Damage 

    Spontaneous damage to DNA is by definition the result of endogenous cellular processes.  

Spontaneous alterations and damage to DNA are caused by: mispairing of bases during 

replication, or mismatches; tautomeric shifts within bases; deamination of bases; loss of 

bases (depurination/depyrimidination); alkylation; and, attack by reactive oxygen species 

(Friedman, 1995).  All appear to be able to cause AP site formation.  

Tautomeric Shifts   

    All DNA bases can exist in relatively rare tautomeric forms (Langer and Doltsinis, 2003) 

(Figure II-1). A base tautomer occurs when one of the hydrogen atoms changes location such 

as when the N6 amino group of adenine tautomerizes to the imino form or the N6 keto group 

of guanine tautomerizes to the enol (Berg, et al., 2002).  Tautomers are capable of mispairing 

as when the enol form of guanine pairs with the normal keto form of thymine or when the 

imino form of adenine pairs with the normal amino form of cytosine.  The latter, for instance, 

can result in an A-T to G-C transition mutation upon replication.   

Base Deamination 

    Of the four bases normally present in DNA, three have exocyclic amino groups.  

Deamination of these groups occurs spontaneously in certain conditions of  pH and 

temperature and results in the conversion of cytosine, adenine, guanine and 5-methylcytosine 

to uracil, hypoxanthine, xanthine and thymine respectively (Anders and Dekant, 1994).  

Since some of these deamination products are miscoding lesions during DNA synthesis they 

can give rise to altered base pairs and mutations.  For instance, if the cytosine to uracil 
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alteration were to be left unrepaired, it would result in a G-C to A-T base pair transition upon 

semiconservative DNA synthesis.  The repair mechanism to remove uracil from DNA 

utilizes a repair enzyme, uracil glycosylase that removes the incorrect base, once again 

leaving an AP site (Figure II-2). 

Loss of Bases 

    In a landmark study by Lindahl and Nyberg (1972) it was found that small but detectable 

amounts of  purine bases are continuously released from DNA at elevated temperatures and 

physiological pH of 7.4.  As it was difficult to directly determine the low rate of depurination 

at 37 oC and pH 7.4 with their methodology they extrapolated from data obtained at higher 

temperatures and estimated cells undergo 3 x 10-11 depurinations/nucleotide/second.  This 

estimate was confirmed using DNA synthesized in vitro with labeled purines, as well as 

spectroscopically with unlabeled DNA (Loeb and Preston, 1986).  

Oxidative Damage to DNA 

    Oxidative stress, or attack by reactive oxygen species (ROS) is a major source of  

spontaneous damage to DNA (as well as to proteins and lipids) (Pitot and Dragan, 1996).  

ROS appear as both oxygen radicals and nonradical oxygen derivatives.  Examples of oxygen 

radicals are, the superoxide ion, the hydroxyl radical, the peroxyl radical, the alkoxyl radical 

and nitric oxide.  Some nonradical oxygen derivatives are hydrogen peroxide, hypochlorous 

acid, ozone and peroxynitrite (Kohen and Nyska, 2002).  Sources of ROS are both exogenous 

and endogenous.  Exogenous sources include γ irradiation, UV radiation, food, drugs, 

pollutants, xenobiotics and toxins.   Endogenous sources are cells (e.g., neutrophils), direct-

producing ROS enzymes (e.g., NO synthase), indirect-producing ROS enzymes (e.g., 

xanthine oxidase), metabolism (e.g., mitochondria) and diseases (Kohen and Nyska, 2002).  
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The major intracellular source of oxygen radicals is most likely as byproducts of aerobic 

metabolism as the oxygen is being reduced to water during mitochondrial respiration (Riley, 

1994).  Most of the damage caused by ROS to DNA is attributable to the hydroxyl radical 

(Ward, 1988), a strong oxidizing agent that reacts with most organic and inorganic molecules 

in the cell (Kohen and Nyska, 2002).  Cells have developed numerous defense mechanisms 

to protect against damage from reactive oxidative metabolites.  Some of these include 

antioxidant defense (e.g., various enzymes, scavengers, chelating agents), physical defenses 

(e.g., stabilization of biological sites, steric interference) and, once again, DNA repair 

mechanisms which can produce AP sites (Kohen and Nyska, 2002) 

Environmental Damage 

     Environmental, or exogenous, causes of AP site formation are due to either ionizing 

radiation or chemical induction. 

Ionizing Radiation 

    Since the beginning of the evolution of life there has been exposure to and damage caused 

by ionizing radiation. Humans are exposed to low doses of radiation during air travel, from 

radon in homes, or in areas of low-level contamination including former sites of nuclear 

weapons production and can encounter much higher radiation doses in contaminated areas 

such as sites of nuclear accidents or radiotherapy (Sutherland, 2000).  Ionizing radiation 

produces effects on DNA both through free radicals (indirectly) and direct action which 

include; SSBs, DSBs, damage to or loss of bases and cross-linking of DNA to itself or 

proteins (Montelone, 1998).   

    The radiolysis of water and generation of hydroxyl radicals along a track of ionizing 

radiation can yield clustered sites of base damage in both strands, and attempts to correct 
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such damage by standard BER can result in a DNA double-strand break (Lindahl, 1999).  

The high water content in cells suggests that the species formed from the radiolysis of water 

are the major source of indirect DNA damage.  It has been estimated that more than 80% of 

the energy of ionizing radiation deposited in cells results from the abstraction of an electron 

from water which then leads to several other species (Friedman, 1995), including the most 

harmful hydroxyl radical. 

    Direct base damage is also caused by ionizing radiation in a way similar to the damage 

caused by the hydroxyl radical.  It has been suggested that the direct action of ionizing 

radiation may lead to the ejection of an electron from the unsaturated C-5 or C-6 position (as 

in thymine) and the resulting cation radical may further react with a hydroxyl ion (Ward, 

1988).  Also, damage to DNA bases such as ring saturation can result in destabilization of the 

glycosidic bond and the formation of abasic deoxyribose residues (Teoule, 1987).  Some of 

the bases damaged either indirectly or directly by ionizing radiation (such as 8-Hydroxy-

guanine) are recognized and removed by glycosylases which are active in the BER pathway 

and thus form AP sites (Demple, 1991). 

Chemical Agents 

    The earliest studies of the interactions of chemicals with DNA may have been in regard to 

how injurious and lethal chemical warfare agents act on the molecule (Brookes, 1990).  

Further advancement came from cancer chemotherapy which is based on the idea that 

damage to DNA can interfere with normal replication and can lead to the arrest of rapidly 

proliferating cell populations such as cancer cells (Friedberg, 1995).  More recently, there has 

been a rapidly growing awareness of the effects of environmental genotoxic agents as 

evidenced by the tremendous amount of literature devoted to the biological actions of these 
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chemicals.  The basic instability of the N-glycosydic bond can be enhanced by any chemical 

modification that changes the base into a better leaving group which would increase the rate 

of AP site formation (Loeb and Preston, 1986). DNA damaging chemicals come in many 

forms such as, alkylating agents, cross-linking agents, psoralens and chemicals that are 

metabolized to electrophilic reactants.  Specifically, alkylating agents and metabolites of 

xenobiotics can cause AP sites. 

    Alkylating (methylating and ethylating) agents are electrophilic compounds with affinity 

for the nucleophilic centers in DNA (Friedberg, 1995).  Many of these chemicals are proven 

or suspected mutagens.  There are numerous reaction sites located on the DNA bases that 

could potentially be alkylated:  in adenine, N1, N3, N6, and N7; in guanine, N1, N2, N3, N7, 

and O6; in cytosine, N3, N4, and O2; and in thymine, N3, O2, and O4 (Roberts, 1978).  Of 

these, the N7 position of guanine and the N3 position of adenine are the most reactive and 

alkylation at these sites causes the formation of an unstable quaternary ammonium ion 

intermediate that can be stabilized via resonance and glycosidic bond cleavage (Roberts, 

1978).  For instance, the formation of N-7-methylguanine is known to result in spontaneous 

depurination and AP site formation (Pieper, 1998.) Base modification by alkylation can 

increase the rate of depurination/depyrimidination  by as much as six orders of magnitude 

(Wilson and Barsky, 2001). 

    All cells are continuously exposed to foreign chemicals (xenobiotics) which are both 

anthropogenic and naturally occurring and include drugs, pesticides, pollutants, pyrolysis 

products in cooked foods, alkaloids, secondary plant metabolites, and toxins produced by 

molds, plants and animals (Parkinson, 1996.).  The cell reacts to the introduction of many 

hydrophobic xenobiotics by metabolizing these compounds to more polar forms that are 
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water-soluble (a process known as biotransformation) and thus easier to excrete.  Many of 

these metabolized compounds are more reactive and, as in the case of alkylating agents, can 

interact with the nucleophilic centers in DNA bases (Anders and Dekant 1994.), eventually 

producing AP sites. 

DNA Glycosylases 

    Although some types of DNA base damage can be repaired directly, most damage is 

repaired by removal of the damaged base or nucleotide.  A repair mechanism known as base 

excision repair (BER) begins by the removal of the damaged or inappropriate base by making 

use of one of many glycosylases (Lindahl, 1976).  These enzymes catalyze the hydrolysis of 

the glycosidic bond that links the base to its deoxyribose creating a free base and an AP site.  

An example of such catalysis is the removal of the inappropriate base, uracil, by uracil-N-

glycosylase.  BER, being a coordinated multistep process, then requires the action of several 

more repair enzymes, the first of which is an AP endonuclease 1 (APE1) that cleaves the 

DNA backbone on the 5' side of the AP site (Paz-Elizur, et al., 2005).  Ape1 then recruits a 

DNA polymerase, POL β which releases the 5' remnant deoxyribose-phosphate and inserts 

the proper nucleotide.   POL β then recruits a protein complex (XRCC1/LIG3) that seals the 

remaining nick in the DNA strand, completing the repair (Lindahl and Wood, 1999).  

 

The Chemistry of AP Sites 

    An AP site exists as an equilibrium between three chemical species; an open-chain 

aldehyde, an open-chain hydrate and cyclic hemiacetals (α and β) (Wilde, et al., 1988)  
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Figure II-3).  Manoharan,   et al., (1988) characterized abasic sites to show that the two 

hemiacetal anomers are found in equal amounts and constitute the majority of species with 

open-chain aldehydes making up only about 1% (Wilde, et al., 1989).  The aldehydic species 

is, however, predominant in terms of reactivity (Doetsch and Cunningham, 1990). 

    AP sites are susceptible to several different chemical attacks.  A β-elimination reaction 

catalyzed by a nucleophile results in phosphodiester bond cleavage adjacent to the AP site 

creating an α,β-unsaturated aldehyde at the 3'-terminus of the nick and a C-5 phosphorylated 

deoxyribose at the 5'-terminus (Doetsch and Cunningham, 1990) (Figure II-4).  The α,β-

unsaturated aldehyde can then rearrange in alkaline conditions to form a 3'-2-oxocyclopent-

1-enyl terminus (Jones, et al., 1968) or undergo a δ-elimination to yield a one-nucleotide gap 

with 3'-phosphoryl and 5'-phosphoryl DNA termini and a free 4-hydroxy-pent-2,4-dienal. 

    The α,β-unsaturated aldehyde remaining after a β-elimination is very reactive and 

nucleophiles can add to it readily (Doetsch and Cunningham, 1990).  Manoharan, et al. 

(1988), reported the reaction of thiols with the aldehyde, and it has been shown that 

hydroxylamines will likewise react (Ide, et al., 1993), an interaction taken advantage of in the 

aldehyde reactive probe assay for AP sites to be discussed later. The  

reaction of thiols can compete with the δ-elimination reaction previously mentioned (Bailly 

and Verly, 1988).   

    Enzymatically, AP sites are cleaved on the 5' side by APE1, which leaves a deoxyribose 

5'-phosphate and 3' hydroxyl residue that primes DNA repair synthesis (Wood, 1996).  APE1 

contains a conserved Asp-His pair that deprotonates a water molecule for nucleophilic attack 

on the DNA phosphate 5' of the abasic site (Mol, et al., 1999). The resulting hydroxide ion 

attacks the phosphate to form a pentacovalent intermediate after which the P-O-3' bond is 
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broken (Figure II-5).  The putative mechanism involved in the cleavage 3' to the AP site by 

AP lyase begins with a nucleophilic attack on the aldehyde carbonyl by the amine of a lysine 

residue eventually forming an iminium ion product (Schiff base) (Figure II-6).  This charged 

imine is susceptible to nucleophilic attack and a base-catalyzed proton abstraction at the α-

carbon initiates a β-elimination resulting in the 5' cleavage.  Hydrolysis then liberates the 

protein leaving the 4-hydroxy-2-pentenal at the 3' terminus (Doetsch and Cunningham, 

1990). 

Biological Consequences of AP Sites 

    AP sites are non-coding lesions and, as such, are both cytotoxic and mutagenic.  They 

threaten the viability and integrity of the cell.  

Cytotoxicity of AP Sites 

    Cytotoxicity due to AP sites may be caused by DNA polymerases pausing and dissociating 

on encountering the lesions. During replication this would lead to chromosomal strand breaks 

or, if during transcription, non-production of  a viable protein product.  If these events occur 

at high enough frequency the cell would be dysfunctional or not be able to survive (Wilson 

and Barsky, 2001).  An AP sites’ cytotoxicity may also be due to its ability to promote or 

inhibit the DNA cleavage activity of topoisomerases (Kingma and Osheroff, 1998).  

Mutagenicity of AP Sites 

    All mutations consist of heritable changes in the sequence of bases in DNA, and may be 

spontaneous or induced by mutagens (Lewin, 2004).  A point mutation changes a single base 

pair and can be caused by chemical alteration of a base or by an error during replication.  The 

base pair change can be a transition where one purine is replaced by the other purine or when 

a pyrimidine is replaced by the other (G:C to A:T or vice-versa) or a transversion where a 
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purine is swapped for a pyrimidine or vice-versa (such as; G:C to T:A, et al.).  Other types of 

mutation include insertions or deletions (frameshift mutations) of one or more base pairs and 

repeats, mainly of triplets (three base pair sequences that may repeat up to hundreds of 

times). 

    Mutations can have several different effects on the gene product.  The effects can be either 

deleterious when they cause cancer or other genetic diseases or advantageous when they 

provide for genetic diversity.  A null mutation completely eliminates the gene function and if 

that function is fundamental the mutation  is lethal.  A loss-of-function mutation inactivates a 

gene and is recessive.  A gain-of-function mutation causes the gene product to take on a new 

function and is dominant.  A leaky mutation can reduce the function of the protein but 

enough activity remains so that there is no phenotypic effect.  A mutation can also be silent 

and have no effect whatsoever.  This would occur if the amino acid is not changed or, if 

changed, has no effect on the protein function (Lewin, 2004). 

    By far the majority of AP sites are successfully repaired by the BER system.  Mutagenesis 

can occur as a result of AP sites when BER is either overwhelmed by massive damage or 

there is an imbalance in BER activity.  A recently reported example of such an  imbalance in  

BER is in response to folate deficiency (Cabelof, et al., 2004).  Uracil has been shown to 

accumulate in DNA in response to folate deficiency (Blount, et al., 1997). This inappropriate 

base (for DNA) is normally removed by BER.  Cabelof, et al. (2004), found that while uracil 

glycosylase is up-regulated during folate deficiency (creating AP sites as uracil is removed), 

the rate-limiting enzyme in the BER process, Pol β, is not up-regulated.  This results in the 

accumulation of AP sites which are not repaired or, at least, not repaired on a timely basis. 
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    It has also been shown that DNA and RNA polymerases, when able to bypass an AP site, 

preferentially place an adenine opposite the site (the so-called ‘A-Rule’) (Boiteux and Laval, 

1982) which may result in a transition or transversion mutation. Human DNA translesion 

synthesis polymerases Pol η, Pol κ and POLQ also preferentially incorporate adenine 

opposite AP sites in vitro, although inefficiently (Masutani, et al., 2000; Zhang, et al., 2000; 

Seki, et al., 2004).   DNA polymerases can also bypass an abasic site resulting in a deletion 

(Wilson and Barsky, 2001).  Lyons-Darden and Topal (1999) demonstrated that abasic sites 

can induce triplet repeat expansions which are associated with Fragile X syndrome and 

myotonic dystrophy.  Johnson, et al. (2000), found that Pol ι and Pol ζ act sequentially with 

Pol ι inserting either guanine or thymine opposite on abasic site so that Pol ζ can bypass the 

damage. 

Quantitation of AP Sites  

    AP sites are common and powerful cytotoxic and mutagenic lesions of DNA and therefore 

the ability to quantitate them is not only interesting but important.  It is the best known case 

of a non-informational modification to DNA and, as such, is a benchmark against which 

other lesions can be measured (Lawrence, et al., 1990).  It would be very valuable to be able 

to determine the base-line level of abasic sites so that further determinations of increases in 

the level due to toxicants or mutagens could be made.  To this end much work on several 

types of assay has taken place in the last fifteen to twenty years. 

    Sometimes one needs to break something to study it.  Car makers do this when they slam 

their vehicles into barriers to test for crash worthiness.  In similar manner molecular 

biologists, geneticists, etc., search for or purposely generate mutations in genes involved in 

processes they wish to study.  If that process happens to be one of the most important DNA 
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repair mechanisms like base excision repair, where AP sites are an intermediate, then the 

ability to quantitate the sites becomes essential.  The folate deficiency study discussed above 

is an example of the use of AP site quantitation to aid in the determination of the deficiency's 

deleterious effect on BER and hence its influence on carcinogenesis. 

    Assays for detection of AP sites after first isolating the DNA can be fraught with 

inaccuracies as a result of several factors: (1) artifactual AP sites resulting from base loss and 

formation of AP sites in DNA by high temperature at neutral pH; (2) AP sites can be lost and 

levels may be underestimated as they are susceptible to β-elimination followed by δ-

elimination at high temperatures, primary amines in histones, polyamines and thiols 

(Atamna, et al., 1999). 

Alkali Treatment  

    The number of AP sites can be measured by subjecting the DNA to alkaline hydrolysis 

(Lindahl, 1981).   Brent, et al. (1978), described such a method whereby  the AP sites are 

converted into single strand breaks by incubation with NaOH.  The number of strand breaks 

is then estimated by the proportion of nicked DNA by alkaline-CsCl sedimentation analysis 

(Teebor and Duker, 1975).  A problem with this method is that it only detects intact AP sites.  

Any sites that were previously nicked will not be counted by this assay. 

Chemical Modification 

    Another assay takes advantage of the fact that the aldehyde group present on the 

deoxyribose of an abasic site will react with (14C)methoxyamine (Talpaert-Borle’ and Liuzzi, 

1983).  The unreacted methoxyamine is removed by acid treatment leaving the acid-insoluble 

14C-labeled DNA.  The radioactivity is then measured in a scintillation spectrometer to 

determine the number of AP sites. 
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    Another chemical modification method has been reported much more recently in which  

Roberts, et al. (2006), describe a method in which AP site quantitation has been performed 

by prelabeling the sites with O-4-nitrobenzylhydroxylamine (NBHA) combined with a mass 

spectrometry technique.  Once labeled with NBHA the DNA is enzymatically digested to 

monomeric subunits which are then isolated and detected with high-performance liquid 

chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-

MS/MS).  The limit of detection for this assay is reported as 3 AP sites per 107 bases. 

32P-Postlabeling Assay for AP Sites 

    Weinberg, et al. (1990), have described a postlabeling method for measuring AP sites.  In 

the beginning AP sites are reacted with methoxyamine to stabilize them for ensuing steps that 

entail long incubations at elevated temperature.  This is done to prevent generation of AP 

sites during the incubations.  The DNA is then digested to dinucleosides (designated d-NpM) 

and those with AP sites are separated.  To generate labeled markers the dinucleotides are 

incubated with 32P-labeled ATP using bacteriophage T4 polynucleotide kinase to get d-

pNpM.  Aliquots of each of the four d-pNpM markers are mixed and applied to a 

polyacrylamide/urea gel. The gel is run and an autoradiogram taken and the gel containing 

radioactive material is excised.  The radioactive material is extracted from the gel and its 

activity counted and further resolved by HPLC.  Advantages of this method are that it does 

not require pre-labeled DNA and it needs a very small amount of DNA for the assay.  

Disadvantages are that the method requires the use of radioactive materials and it is very 

labor intensive and time consuming compared to some of the other methods. 

 

 

 17



Aldehyde Reactive Probe Method 

    The aldehyde reactive probe (ARP) method was first described by Kubo, et al. (1992) and 

further improved by Ide, et al, (1993).  The probe is a biotinylated reagent designed to react 

with the aldehydic carboxyl of the d-ribose in the AP site (Figure II-7).  The reagent makes a 

nucleophilic attack by using a hydroxylamine group to form a stable Schiff base with the 

aldehyde (Figure II-8).  The biotin group on the ARP-tagged AP sites is then reacted  with 

avidin, a protein that has both strong affinity and high specificity for biotin.  The 

avidin/biotin complex is conjugated to horseradish peroxidase.  The number of AP sites is 

then determined colorimetrically in an ELISA-like assay using the avidin/biotin-horseradish 

peroxidase complex as an indicator.  Kubo reported sensitivity (one AP site per 104 

nucleotides) comparable to other methods.  The ARP method has several advantages over 

others that have been reported.  It requires no radioactive labeled DNA as in the alkali elution 

and DNA unwinding methods and is less cumbersome to set up than either.  The 32P-labeled 

method has no need for pre-labeled DNA, but is more difficult to set up than an ELISA.  The 

monoclonal antibody assay to determine O-(nitrobenzyl)hydroxylamine tagged AP sites is 

comparable to the ARP method in terms of simplicity and sensitivity but the latter obviates 

the need for primary and secondary antibodies. 

    More recently, Nakamura, et al. (1998), developed an alternative assay, also making use of 

ARP, but combined with a slot-blot technique (ARP slot-blot assay, ASB).  In this method 

the ARP-tagged DNA is immobilized on a BAS-85 NC membrane.  The membrane is then 

incubated with strepavidin conjugated horseradish peroxidase.  After incubation the 

membrane is rinsed and enzymatic activity is visualized with ECL reagents.  The NC 

membrane  was then photographed and analyzed using a densitometer.  Quantitation was 
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performed by comparison with an AP site standard.  The ASB method was determined to 

have an AP site  detection limit of 0.24 AP sites/106 nucleotides – an improvement over the 

previous method of one to two orders of magnitude. 

    In 1999 Atamna, et al., described a method for detecting abasic sites in living cells using 

the ARP.  It was found that the ARP penetrates the plasma membrane and reacts with AP 

sites to form a stable ARP-DNA adduct.  The DNA is then isolated and treated with avidin-

horseradish peroxidase (HRP) forming a DNA-HRP complex at each AP site.  The free HRP 

is then separated by selective precipitation with a DNA precipitating dye (DAPER).  The 

number of AP sites can then be estimated by HRP activity toward chromogenic substrate in 

an ELISA. 
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Figure II-1 a.) Examples of DNA base tautomerization.  b.) Example of abnormal base 
pairing due to tautomerization.  
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Figure II-2  Formation of an AP site in DNA by enzymatic removal of uracil.  
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Figure II-3 Cleavage of the N-glycosidic bond results in the aldehydic form in equilibrium 
with several closed-ring forms of the 2’-deoxyribose.  
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Figure II-4 AP site chemical reactions. 
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Figure II-5  5' cleavage of AP site by AP endonuclease 1 (adapted from Doetsch and 
Cunningham, 1990)
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Figure II-6 Hydrolysis of an abasic site by β− and δ− elimination. 
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Figure II-8 Reaction of ARP with d-ribose of an AP site to form a stable ARP-DNA adduct. 
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III Materials and Methods 

 
Materials 
 
     All chemicals were purchased from Sigma-Aldrich Chemical Company (Milwaukee, WI) 

and used as received unless otherwise noted.  Solvents were from Mallinckrodt Baker, Inc. 

(Phillipsburg, NJ) and Fisher Scientific (Fair Lawn, NJ). Acetonitrile and 

dimethylformamide were dried by distillation from phosphorous pentoxide as required.  

Analytical thin layer chromatography (TLC) plates (Analtech Company; Newark, DE) were 

5 x 10 cm with a gel thickness of 0.2 mm on aluminum backing.  Preparative TLC was 

performed on 20 x 20 cm glass plates (Analtech) with silica gel GF of thickness 200, 500 or 

1000 microns.  For column chromatography, Sigma-Aldrich, Merck, grade 9385, 230-400 

mesh, 60 Å silica gel was used.  1H NMR solvents were from Aldrich except for CDCl3 (99.8 

% D) which was from Cambridge Isotope (Andover, MD).  NMR solvents were generally 

99.9 atom % D except for 1H NMR spectra of final products when 100.0 atom % D was used. 

Instrumentation 

     1H NMR spectra were obtained on a Varian (Palo Alto, CA) Inova 500 spectrometer 

operated at 500 MHz.  Chemical shifts were recorded in ppm relative to tetramethylsilane.  

NMR spectra were analyzed using MestRe-C, Mestrelab Research (Santiago de Compostela, 

A Coruña, Spain) NMR spectral software for Windows.  The latest version used being 4.8.6.  

Full scan and tandem mass spectra were acquired on a Finnigan (Woburn, MA)



 LCQDECA ion trap mass spectrometer in the electrospray ionization mode by direct loop 

injection. The spectrometer was operated in either positive or negative mode as needed. The 

mobile phase was typically 1% acetic acid in acetonitrile:water (1:1) with a flow rate of 100 

µL/min. 

 

Synthesis of Hydrazino ARP 

Bromoacetyl biotin hydrazide (1) 

     Biotin hydrazide (1.940g, 7.51 mmol) was dissolved in 100 mL dry acetonitrile with 

stirring at room temperature.  Bromoacetic acid (1.085 g, 7.81 mmol) was dissolved in 10 

mL distilled acetonitrile and added to the biotin hydrazide solution.  1,3-

Dicyclohexylcarbodiimide (DCC) (1.564 g, 7.58 mmol) was dissolved in 10mL dry 

acetonitrile and added to the reaction vessel.  The reaction was allowed to stir at room 

temperature for 42 hours after which a white solid (dicyclohexylurea) was filtered and the 

filtrate was dried under vacuum to give a solid.  The solid from the filtrate was dissolved in 

50% v/v MeOH:CHCl3 and was filtered off to remove remaining dicyclohexylurea.  The 

product was then dried and redissolved in 5% HCl and filtered to remove unreacted biotin 

hydrazide. The reaction yielded 1.20 g (52%) of bromoacetyl biotin hydrazide (1) (Figure 

III-1). 

1H NMR (DMSO-d6)  δ ppm 1.23-1.67 (m, 6H, C9H2, C10H2, C11H2); 2.13(t, 2H, J11-12 = 

7.38 Hz, C12H2); 2.57(d, 1H, J7a-7b = 12.4 Hz, C7H7a);  2.82(dd, 1H, J7a-7b = 12.4 Hz, J7b-8 = 

5.09 Hz, C7H7b);  3.10(m, 1H, C5H);  3.90(s, 2H, C17H2);  4.13(m, 1H, C4H); 4.30(m, 1H, 

C8H);  6.35(s, 1H, N1H or N3H);  6.41(s, 1H, N3H or N1H);  9.96(m, 1H, N14H or N15H);  

10.27(m, 1H, N14H or N15H)  (Figure III-2).  ESI-MS: m/z 379, 381 (MH+).  (Figure III-3).  
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Hydrazino ARP (2) 

100mg (0.269 mmol) bromoacetyl biotin hydrazide was dissolved in 7.5 mL dry DMF.  The 

solution was added drop-wise to 450 mL hydrazine with stirring.  The reaction was stirred for 

45 minutes at room temperature and then dried under argon and further by oil pump vacuum 

to obtain a sticky clear residue.  The residue was dissolved in CH2Cl2 and dried by oil pump 

again to remove remaining DMF.  A white powder was obtained which was dissolved in 

MeOH with 25 mg NaHCO3.  This solution was filtered to remove H2NNH3
+Cl- salt and then 

dried to obtain 58 mg (65%) hydrazino ARP (2). 

1H NMR (DMSO-d6)  δ ppm 1.23-1.66 (m, 6H, C9H2, C10H2, C11H2); 2.13(t, 2H, J11-12 = 

7.35 Hz, C12H2); 2.57(d, 1H, J7a-7b = 12.4 Hz, C7H7a);  2.81(dd, 1H, J7a-7b = 12.4 Hz, J7b-8 = 

5.07 Hz, C7H7b);  3.09(m, 1H, C5H);  3.49(s, 2H, C17H2);  4.16(m, 1H, C4H); 4.30(m, 1H, 

C8H);  6.37(s, 1H, N1H or N3H);  6.40(s, 1H, N3H or N1H);  9.8(br s, 2H, N14H, N15H). 

(Figure III-4).  FAB HRMS: calcd for C12 H22 O3 N6 S Na 353.1372, found 353.1370.  ESI-

MS: m/z,  353 (M+Na)+, 331 (M+H)+, 259 (biotin hydrazide + H)+, 227 (biotin)+ (Figure 

III-5). 

 

Synthesis of Iminobiotin ARP 

N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine (3) 

O-(carboxymethyl)hydroxylamine hemihydrochloride (2.36 g, 21.6 mmol) was dissolved in 

15 mL DI water and 4.13 mL triethylamine.  Di-tert-butyl dicarbonate (5.9 g, 27 mmol) was 

dissolved in 15 mL dioxane and added to the above solution.  The reaction was allowed to 

stir at ambient temperature for 48 hours and then 50 mL DI water was added.  The solution 

was washed with 70 mL ethyl acetate three times.  The aqueous phase was cooled to 0 oC and 
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the pH adjusted to 2 using 5 M HCl.  The aqueous phase was extracted with ethyl acetate (3 x 

50 mL).  The ethyl acetate phases were combined and washed with pre-cooled 5% HCl (3 x 

40 mL) and then with brine (3 x 50 mL).  The ethyl acetate fraction was filtered through 

sodium sulfate and evaporated to dryness, to yield white crystals.  Recrystallization in ethyl 

acetate/hexane gave 3.19 g (77%) of white crystals (3) (Figure III-6). 

1H NMR (DMSO-d6):  δ  ppm 1.40(s, 9H, t-BOC methyl); 4.26(s, 2H, CH2); 10.10(br s, 1H, 

NH)  (Figure III-7) 

N-hydroxysuccinimide ester of  N-(tert-butoxycarbonyl)-O- 

     (carboxymethyl)hydroxylamine (4) 

N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine (3) (2.7 g, 14 mmol) and N-

hydroxysuccinimide (1.9 g, 17 mmol) were dissolved in 25 mL dried acetonitrile.  DCC (3.51 

g, 17 mmol) was dissolved in 10 mL dried acetonitrile and added to the above solution with 

stirring at room temperature. The reaction was stirred for 24 hours and then filtered to 

remove dicyclohexylurea and evaporated to dryness.  The residue was boiled in 150 mL CCl4 

and filtered hot.  Recrystallization from CCl4 yielded 0.47 g (12%) of white crystals (4). 

1H NMR (DMSO-d6):  δ ppm 1.42(s, 9H, t-BOC methyl); 2.84(s, 4H, succinyl CH2CH2); 

4.82(s, 2H, acetyl CH2); 10.36(s, 1H, NH)  (Figure III-8) 

2-Iminobiotin hydrazide-N-(tert-butoxycarbonyl)-O-(carboxymethyl) 

     hydroxylamine conjugate (5) 

Iminobiotin hydrazide hydrochloride (0.245 g, 0.85 mmol) was dissolved in 50 mL dry 

DMF.  The solution was sonicated for one hour to aid dissolution.  (4) (0.250 g, 0.85 mmol) 

was added with stirring at ambient temperature.  The reaction stirred for four days and then 

evaporated to dryness on a rotary evaporator. The residue was extracted with boiling 
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isopropanol.  After crystals formed the solution was centrifuged and the mother liquor was 

drawn off and reduced to one half volume for a second crop of crystals.  The remaining 

mother liquor was dried and applied to silica gel preparative TLC plates for further 

purification.  The product (5) was a fine gel and a total of 0.143 g (39%) was obtained. 

1H NMR (DMSO-d6)  δ ppm 1.4-1.7(m, 6H, C9H2, C10H2, C11H2); 1.41(m, 9H, t-BOC 

methyls); 2.15(t, 2H, J11-12 = 7.27 Hz, C12H2); 2.82(d, 1H, J7a-7b = 12.9 Hz, C7H7a);  2.92(dd, 

1H, J7a-7b = 12.9 Hz, J7b-8 = 4.87 Hz, C7H7b);  3.25(m, 1H, C5H);  4.27(s, 2H, C17H2);  

4.47(m, 1H, C4H); 4.64(m, 1H, C8H);  7.72(s, 2H, N1H and N3H) (Figure III-9). 

Iminobiotin ARP (6) 

5 mL of pre-cooled trifluoroacetic acid (TFA) was added to (5) at 0 oC with stirring and 

stirred for an additional 25 minutes.  The reaction was then allowed to stir at room 

temperature for 30 minutes.  The TFA was evaporated under N2 gas and dissolved in 15 mL 

DI water.  Dowex 1x-4 resin (converted to OH- form by washing with 5% aqueous NaOH 

three times) was added to pH 5.  The resin was filtered and rinsed 2x with DI water. The 

water was removed by lyophilyzation and 0.023 g (30%) of white powder (6) was obtained. 

 1H NMR (D2O):  δ ppm 1.5-1.9(m, 6H, C9H2, C10H2, C11H2); 2.42(t, 2H, J11-12 = 7.37 Hz, 

C12H2); 2.96(d, 1H, J7a-7b = 13.4 Hz, C7H7a);  3.12(dd, 1H, J7a-7b = 13.4 Hz, J7b-8 = 4.89 Hz, 

C7H7b);  3.49(m, 1H, C5H);  4.38(s, 2H, C17H2);  4.71(m, 1H, C4H); 4.87(m, 1H, C8H)  

(Figure III-10). 
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Synthesis of Biotinylated Long-chain ARP 

Biotin-PEG4-hydrazide-acetylhydroxylamine-t-BOC (7) 

115 mg (0.40 mmol) 4 was dissolved in 5 mL doubly distilled DMF.  200 mg (0.40 mmol) 

Biotin-dPEG4-hydrazide (BPH) (Quanta BioDesign, Ltd., Powell, OH) was added with 

stirring at room temperature.  The solution was sonicated 5 minutes until all BPH was 

dissolved.  The reaction was stirred for 3 days at room temperature under argon.  Product was 

purified by preparative thin layer chromatography (mobile phase; 20:80, MeOH:CHCl3) to 

give 32 mg of an oil (7) (Figure III-11). 

1H NMR (DMSO-d6)  δ ppm 1.2-1.6(m, 6H, C9H2, C10H2, C11H2); 1.40(m, 9H, t-BOC 

methyl); 2.06(t, 2H, J11-12 = 7.4 Hz, C12H2); 2.37(t, 2H, C15H2); 2.57(d, 1H, J7a-7b = 12.4 Hz, 

C7H7a);  2.81(dd, 1H, J7a-7b = 12.4 Hz, J7b-8 = 5.0 Hz, C7H7b);  3.09(m, 1H, C5H); 3.2(m, 4H, 

C16H2, C27H2); 3.40(t, 2H, C28H2); 3.50(m, 12H, C18-C25H12); 3.61(s, 2H, C33H2); 

4.13(m, 1H, C4H); 4.30(t, 1H, C8H); 6.35(s, 1H, N1H or N3H); 6.41(s, 1H, N3H or N1H); 

7.84(m, 1H, NH); 7.93(s, 1H, NH); 8.3(s, 1H, NH)  (Figure III-12).  ESI-MS: m/z,  701 

(M+Na)+   (Figure III-13). 

Biotin-PEG4-hydrazide-acetylhydroxylamine (8) 

22 mg (0.032 mmol) of  7 was pre-cooled to -10 oC and to this was added 2 mL TFA (also 

pre-cooled to -10 oC) with stirring.  The reaction was stirred for 20 minutes at -10 oC and 

another 30 minutes at room temperature.  The TFA was evaporated under argon and the 

resulting material was dissolved in 3 mL DI water.  Dowex 1x4 Cl- ion exchange beads 

(Sigma-Aldrich) were prepared by washing three times in 5% aqueous NaOH to convert the 

beads to the OH- form.  The Dowex beads were then added to the product solution until the 

pH reached 7.  The beads were then filtered and washed in DI water.  The beads were then 
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stirred in 5mL DI water for 3 hours and filtered again.  The filtrates were collected and 

lyophilyzed to obtain 20 mg of a clear oil (8). 

1H NMR (CD3OD)  δ ppm 1.4-1.4(m, 6H, C9H2, C10H2, C11H2); 2.22(t, 2H, J11-12 = 7.4 Hz, 

C12H2); 2.52(t, 2H, C15H2); 2.70(d, 1H, J7a-7b = 12.5 Hz, C7H7a);  2.92(dd, 1H, J7a-7b = 12.5 

Hz, J7b-8 = 5.0 Hz, C7H7b);  3.20(m, 1H, C5H); 3.36(m, 2H, C16H2); 3.54(m, 2H, C27H2); 

3.62(m, 14H, C18-C25H12, C28H2); 3.76(m, 2H, C33H2); 4.30(m, 1H, C4H); 4.48(m, 1H, 

C8H) (Figure III-14).  ESI-MS: m/z,  601 (M+Na)+  (Figure III-15). 

 

Synthesis of PEG5 bis-hydroxylamine  ARP 

(Bis-[acetylhydroxylamino-tBOC])-1,19-diamino-4,7,10,13,16- 

     pentaoxanonadecane (9) 

1,19-Diamino-4,7,10,13,16-pentaoxanonadecane (Berry and Associates, Ann Arbor, MI.) 

(123 mg, 0.4 mmol) was dissolved in 3 mL DMF.   4 (300 mg, 1.04 mmol) was added with 

stirring at room temperature.  The reaction was stirred at  room temperature for five days at 

which time the DMF was evaporated under argon followed by oil pump.  The product was 

separated by preparative thin layer chromatography (mobile phase: 85:15; CHCl3:MeOH) 

and 203 mg (78%) of  9, a clear oil, was obtained  (Figure III-16). 

1H NMR (DMSO-d6)  δ ppm1.41(s, 18H, t-BOC methyl x2); 1.65(ψ−quintet, 4H, J = 6.6 Hz, 

CH2CH2CH2, x2); 3.17(m, 4H, CH2, x2); 3.40(m, 4H, CH2, x2);  3.5(m, 16H, CH2CH2, x4); 

4.13(s, 4H, CH2, x2); 7.98(br s, 2H, NH x2)  (Figure III-17). 
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(Bis-[acetylhydroxylamino])-1,19-diamino-4,7,10,13,16- 

     pentaoxanonadecane (10) 

152 mg (0.23 mmol) of  9 was pre-cooled to -10 oC and to this was added 2 mL TFA (also 

pre-cooled to -10 oC) with stirring.  The reaction was stirred for 20 minutes at -10 oC and 

another 30 minutes at room temperature.  The TFA was then evaporated under argon and the 

resulting oil was dissolved in 5 mL DI water.  Dowex 1x4 Cl- ion exchange beads (Sigma-

Aldrich) were prepared by washing three times in 5% NaOH to convert the beads to the OH- 

form.  The Dowex beads were then added to the product solution until the pH reached  7.  

The beads were then filtered and immersed in DI water overnight and filtered again.  The 

filtrates were collected and lyophilyzed to obtain 133 mg of a clear oil (10). 

1H NMR (DMSO-d6)  δ ppm1.80(ψ−quintet, 4H, J = 6.31 Hz, CH2CH2CH2, x2); 3.35(t, 4H, 

J = 6.61 Hz, CH2, x2); 3.56(t, 4H, J = 5.97 Hz, CH2, x2); 3.6(m, 4H, CH2, x2); 3.63(m, 16H, 

CH2CH2, x4); 4.06(s, 4H, CH2, x2)  (Figure III-18) 
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 Figure III-1 Synthesis of  hydrazino ARP. 
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 Figure III-2 1H NMR spectrum of bromoacetyl biotin hydrazide (1).
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 Figure III-3 Mass spectrum of bromoacetyl biotin hydrazide (1). 
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Figure III-4  1H NMR spectrum of hydrazino ARP (2).
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 Figure III-7  1H NMR spectrum of N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine (3).
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Figure III-8  1H NMR spectrum of N-hydroxysuccinimide ester of  N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine (4).
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Figure III-9  1H NMR spectrum of  N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine ester of iminobiotin (5).
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Figure III-10  1H NMR spectrum of iminobiotin ARP (6).



NH
NH

S
NH

O
O

O
O NH

O

O O

NH2
+ N

O

O

O
O

NH

O O

O
CH3

CH3CH3

DCC

O
NH

O O

O
CH3

CH3
CH3

NH
NH

S
NH

O
O

O
O NH

O

O O

NH

TFA

O
NH2

O

NH
NH

S
NH

O
O

O
O NH

O

O O

NH

4

7

8
 

46 

 

 

Figure III-11  Synthesis of biotin-PEG4-hydrazide-acetylhydroxylamine (8) (LC-ARP).
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Figure III-12  1H NMR spectrum of biotin-PEG4-hydrazide-acetylhydroxylamine-t-BOC (7).
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Figure III-13  Mass spectrum of biotin-PEG4-hydrazide-acetylhydroxylamine-t-BOC (7). 
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   Figure III-14   1H NMR spectrum of biotin-PEG4-hydrazide-acetylhydroxylamine (8) (LC-ARP). 
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 Figure III-15  Mass spectrum of biotin-PEG4-hydrazide-acetylhydroxylamine (8) (LC-ARP). 
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Figure III-16  Synthesis of  (Bis-[acetylhydroxylamino]-1,19-Diamino-4,7,10,13,16-pentaoxanonadecane (10) (DE-ARP).
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Figure III-17  1H NMR of  (Bis-[acetylhydroxylamino-t-BOC]-1,19-Diamino-4,7,10,13,16-pentaoxanonadecane (9). 
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 Figure III-18  1H NMR spectrum of DE-ARP (10). 
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IV Discussion 
 
    The purpose of this project was to synthesize new aldehyde reactive probes for use in the 

slot-blot analysis for quantitation of abasic sites in DNA.  It was suspected the probe then 

being used, while having excellent specificity, might not be as reactive as possible and an 

underestimation of the number of AP sites could result.  Alternatively, a less reactive probe 

necessitates a longer incubation period at elevated temperature during which more artifactual 

AP sites may be created resulting in an overestimation.  In an attempt to improve upon this 

situation two new probes were synthesized; one that substitutes a hydrazino group for the 

hydroxylamine at the aldehyde reactive end of the molecule, and another that inserts a 

polyethylene glycol (PEG) into the molecule to create a long tether while retaining the 

hydroxylamine as the reactive moiety.  The rationale for the substitution of the hydrazino 

group for the hydroxylamine was that the hydrazino group would be more basic and therefore 

more nucleophilic.  If the compound is more reactive due to the increased nucleophilicity it is 

hoped that the ARP site assay incubation temperature could be reduced or the incubation 

time shortened, either of which should lessen the number of artifactual AP sites.  The long-

chain ARP may have two possible advantages: 1) it may be better able to react with double-

stranded DNA, especially in vivo where the nucleosomal DNA is difficult to access; and, 2) 

after it has joined with the abasic site it may sterically hinder repair better than the shorter 

ARP.



    During the course of the project it was discovered that another molecule, which is the 

result of a byproduct of an attempted long-chain ARP synthesis, may be of use, although not 

as a replacement probe for AP site quantitation.  The compound is composed of a medium 

length PEG adducted at each end by a hydroxylamine group. This compound would be 

expected to create intra- and intermolecular cross-links between AP sites in DNA.  Such 

cross-links could interfere with the action of RNA and DNA polymerases and thus prevent 

protein production and DNA replication resulting in cell death.  Although it has been 

reported that as many as 10,000 AP sites may occur per mammalian genome per day, these 

sites are rapidly repaired and the toxicity of the compound to normal cells may be found to 

be low.  If, however, such a compound were to be  administered to cells immediately after or 

during irradiation (such as during cancer treatment) when AP site levels would be expected 

to be very high, toxicity of the compound may be expected to be commensurately high and 

increase lethality in these cells making the treatment more effective. 

     While the road to the final synthesis of the hydrazino ARP was relatively arduous, the 

successful synthesis was a simple two-step procedure.  It should be noted that it was 

considered important to retain the acetyl methylene group to provide separation of the 

hydrazino group from the adjacent carbonyl since the carbonyl, being electron-withdrawing, 

would lessen the reactivity of the hydrazino group.  Fortuitously, the methylene also provides 

an excellent marker for NMR characterization of the intermediate, as well as the final, 

product.   

     In the beginning a synthetic process similar to the one used by Ide, et al. (1993), for the 

hydroxylamine ARP was attempted (Figure IV-1).  Standard DCC condensation chemistry 

was used to add N-hydroxysuccinimide to bromoacetic acid after which the bromine was 
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substituted with tert-butyl carbazate, the tert-butyl carbazate providing the terminal 

hydrazino group for the final product along with protection of the hydrazino group via the 

tert-butoxycarbonyl (t-BOC) group.  The next step was to have been to react biotin hydrazide 

with the N-hydroxysuccinimidyl activated carbonyl to form the amide.  A problem arose in 

the synthesis in which it appeared that, rather than acting as a leaving group, the succinimide 

ring opened and then inserted itself into the molecule.  Although this result was not fully 

characterized, the mass spectrometry result indicated the correct mass for such a molecule. It 

was determined that the extra length caused by the open succinimide ring was acceptable and 

possibly even beneficial so the synthesis was continued with this compound.  Standard 

deprotection of the t-BOC group using trifluoroacetic acid was attempted, but the result was 

not the desired product for an undetermined reason.   

     At this time it was decided to attempt an alternative synthetic path which involved first 

adding the bromoacetyl group to the biotin hydrazide followed by forming the terminal 

hydrazino group by substituting for the bromine by reaction with hydrazine (Figure IV-2).  

Bromoacetyl chloride was to have been reacted directly with biotin hydrazide in the first step 

of the pathway.  However, even freshly synthesized bromoacetyl chloride proved to be too 

unstable under the conditions and this method was also abandoned. 

     The successful synthesis of hydrazino ARP once again depended on the substitution of the 

bromine on bromoacetic acid with hydrazine (see Figure III-I).  In this case, DCC 

condensation was successfully used to react bromoacetic acid with biotin hydrazide.  It 

should be noted here that biotin hydrazide has great difficulty dissolving in either 

dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), the only two solvents which will 

dissolve the compound.  DMF was chosen due to the difficulty of removing DMSO, but even 
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with DMF extended heating at 50 – 60 oC with stirring was necessary to dissolve the biotin 

hydrazide.  A better alternative seemed to be to dissolve as much biotin hydrazide as possible 

without heating and start the reaction depending on the law of mass action to dissolve it 

further as it was consumed in the reaction.  Also, since this is a condensation reaction, much 

care must be taken to exclude water from all reaction materials, including fresh distillation of 

the solvent.  Since dicyclohexylurea (DCU) began to precipitate almost at once after addition 

of the DCC it was not possible to know when the biotin hydrazide was fully dissolved so the 

reaction was allowed to stir at room temperature for approximately two days when it was 

removed from stirring and the precipitate was filtered off and the filtrate dried.  Based on 

NMR results and the weight of the filtered DCU it was determined that some DCU remained 

in the filtrate.  The DCU was removed by dissolving the solid obtained from the filtrate in 

50% MeOH:CHCl3 which dissolves DCU but not the product.  Also, if any excess biotin 

hydrazide was found to remain in the product it was removed with 5% HCl.  The reaction 

gave a fair yield of 52% for the bromoacetyl conjugated biotin hydrazide. 

     The hydrazino ARP final product was synthesized by addition of the bromoacetyl 

conjugated biotin hydrazide to hydrazine monohydrate.  In order to reduce the suspected 

possibility of producing the bis-adduct of the conjugated biotin hydrazide, the conjugate was 

introduced drop-wise slowly into excess hydrazine.  Although a small amount of the bis-

adduct was apparent from mass spectrometry results of the crude product, it appeared to be 

removed after the work-up to remove the hydrobromide salt by-product of the reaction.  The 

yield for this reaction was good at 65%. 

     At this time only very preliminary results have been obtained as to the comparison of 

reactivity to AP sites of the hydroxylamine ARP to the hydrazino ARP.  The result of the 
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single slot-blot assay performed indicated a stronger reaction with the hydroxylamine ARP.  

However, the slot-blot assay has been performed only at pH 7 and it is believed that the 

hydrazino group may be protonated (-NHNH3
+) at pH 7 making it unavailable to react with 

the aldehyde.  To obtain a true evaluation of the comparative reactivities of the two ARPs the 

hydrazino ARP will need to be used in a slot-blot assay performed at pH 8 or higher. 

     Several strategies were attempted for the synthesis of the long-chain (long-tether) ARP 

(LC-ARP) before finding a successful method.  In all cases, PEGs with either 5 or 6 ethyl 

ethers were used to extend the length of the molecule.  Both dihydroxy and diamino PEGs 

were used.  All of the methods involved attaching various protection and activating groups to 

the ends of the PEG.  N-hydroxyphthalimide was generally used as the protection group for 

one end of the PEG while several different synthetic methods were used to react biotin 

moieties to the other.  These attempts all proved unsuccessful. The successful synthesis was 

performed after discovering a commercially available biotinylated PEG carboxyhydrazide 

that resembles very closely biotin hydrazide in terms of reactivity, hence by simply following 

the synthetic path described by Ide, et al., the desired LC-ARP could be obtained.  To date, 

this synthesis has been performed successfully up to the penultimate product which still 

remains to be deprotected from the t-BOC. 

     During the attempted synthesis of the LC-ARP from PEG it was realized that what was a 

troublesome by-product may have value if further work was done with it.  In some cases 

these syntheses were attempts to react with just one end of a symmetrical molecule and it is 

inevitable that some bis-adduct by-product will be made.  This was taken advantage of by 

producing a PEG with hydroxylamine at both ends.  In the attempted LC-ARP synthesis 

1,19-diamino-4,7,10,13,16-pentaoxanonadecane was reacted with the N-hydroxysuccinimide 
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ester of N-(tert-butoxycarbonyl)-O-(carboxymethyl)hydroxylamine with the proper 

stoichiometry to react with just one end of the molecule.  The bis-adduct by-product from 

this reaction was then deprotected with TFA to give the PEG with hydroxylamines at both 

ends (given the name “double-ended” or DE-ARP).  Once this scheme was successful it was 

a simple matter to adjust the synthetic pathway to make this compound by adding two 

equivalents of the succinimidyl ester to the diamino PEG in the initial reaction followed by 

the deprotection.  In the initial reaction of this scheme the crude product was worked up by 

separation on preparatory thin layer chromatography plates and it should be noted that the 

desired product was visible only after exposure to iodine vapor.  

     During the course of this project another ARP was synthesized.  This compound, which 

had been previously synthesized in this laboratory, is identical to the original ARP but made 

use of iminobiotin hydrazide rather than biotin hydrazide.  This compound was synthesized 

using the method described by Ide, et al., (1993).   
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Figure IV-1 First attempted synthesis of hydrazino ARP. 
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V. Conclusion 

This project has resulted in the synthesis of two new aldehyde reactive probes that 

hopefully will contribute to the improvement of detection and quantitation of 

apurinic/apyrimidinic sites in DNA.  A third compound has also been synthesized that may 

be more toxic to transformed cells than to normal ones. 

While only one slot-blot assay has been performed with the new hydrazino ARP and that 

assay showed a lower reactivity than the original ARP, more work needs to be done with the 

new probe.  A repeat of the assay should be performed at pH 7 (the normal pH for the assay) 

and, as it is probable that the hydrazino group is protonated at pH 7, the test should also be 

done at higher pH’s in a systematic way.  Synthesis of the hydrazino ARP uses inexpensive 

chemicals which are easily obtainable and is relatively easy. 

The long-chain ARP also makes use of a straightforward synthetic pathway.  However, 

the method, chosen for its expediency, makes use of a purchased starting material, the biotin 

PEG4 hydrazide that is relatively expensive.  Upon reflection, I believe this compound could 

be synthesized locally using low cost materials and possibly save some cost in the overall 

synthesis.  Also, more work needs to be done to substantially increase the yield of the final 

product.  This compound has not been tested in the slot-blot assay and, of course, this should 

be done to prove its efficacy in the test before work on improvements to the synthesis is 

contemplated. 

The third new compound, the “double-ended” ARP, may be, after all, the most exciting.  

The synthesis is not difficult and inexpensive materials are used.  As with the LC ARP, more



work should be done to improve yield.  Preliminary in vivo tests done elsewhere show that 

the molecule has about the same toxicity as methoxyamine in normal cells.  While this shows 

that the molecule survives and enters the cell, it will be interesting to see if it is making its 

way to the nucleus and reacting with abasic sites or if the toxicity is caused by some other 

reaction. 
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