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Abstract 
Ingrid P. Fricks 

Molecular Pharmacology and Function of the P2Y14 Receptor 
(Under the direction of T. Kendall Harden, Ph.D.) 

 
 P2Y receptors are a family of seven transmembrane spanning G protein-coupled 

receptors that are activated by nucleotides and nucleotide-sugars.  The P2Y14-R is 

activated by nucleotide sugars, although little is known about the physiological role(s) of 

this receptor.  With a view toward generating pharmacological reagents for studies of 

P2Y14-R, one goal of this dissertation was to apply a rational structure-activity 

relationship approach to develop novel ligands for the P2Y14-R.  Guided by molecular 

modeling studies of the P2Y14-R, iterative design of synthetic ligands produced a 

multitude of compounds which were assessed for agonist activity at the P2Y14-R.  From 

these studies, several novel agonists were identified for the P2Y14-R, including 2-thio-

UDP-Glc, which exhibited greater than six-fold higher potency than UDP-Glc.  Other 

novel agonists identified included several UDP-sugars.  Using a COS-7 cell system in 

which recombinant P2Y14-R were co-expressed with the chimeric G protein, Gαq/i, UDP 

was identified as a competitive antagonist at the P2Y14-R.  In contrast, in studies 

comparing the pharmacological selectivity of the rat P2Y14-R to that of the human P2Y14-

R in the same cell system, UDP was found to be an agonist at the rat P2Y14-R.  Another 

goal of this work was to examine the signal transduction pathways downstream of P2Y14-

R activation, and for these studies, stable cell lines expressing P2Y14-R in HEK293 and in 

C6 glioma cells were developed.  This approach allowed study of P2Y14-R coupled to 

native G proteins, and P2Y14-R-dependent inhibition of adenylyl cyclase was observed.  
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P2Y14-R activation also promoted pertussis toxin-sensitive phosphorylation of ERK1/2.  

Moreover, native P2Y14-R were detected in differentiated HL-60 cells by RT-PCR, and in 

these cells, UDP-Glc promoted pertussis toxin-sensitive activation of ERK1/2.  The work 

presented here provides a foundation for future development of pharmacological agents 

for the P2Y14 receptor.  Furthermore, this work establishes that the P2Y14-R couples to Gi 

and the MAP kinase signaling pathway, and provides robust cell model systems for future 

studies of P2Y14-R function.   
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Chapter I.  Introduction 

Nucleotides are important extracellular signaling molecules that activate cell surface 

receptors to regulate many physiological processes such as neurotransmission, 

vasoconstriction/ dilation, cell differentiation, platelet aggregation, and also ion transport in 

epithelial cells.  Previous to Burnstock’s observations in the 1970’s, ATP was generally 

accepted to function only in intracellular processes where it acts as the energy source for the 

cell.  Burnstock originally hypothesized that ATP was released from cells and could act on 

cell surface receptors to contribute to second messenger signaling, based on evidence that 

ATP mediated responses to nerve stimulation independently from cholinergic or adrenergic 

nerve responses (Burnstock, 1972).  We now know that ATP produces autocrine/ paracrine 

signaling in non-excitatory cells as well as functions as an important neurotransmitter, 

involved in a broad range of cellular and organ functions.  Currently, ATP and ADP, as well 

as UTP, UDP, and UDP-glucose are well accepted as extracellular signaling molecules that 

act on a diverse family of nucleotide binding receptors, and extracellular concentrations of 

nucleotides are precisely regulated by cellular release and metabolism by ectoenzymes.   

The following pages will overview the source of extracellular nucleotides and their 

metabolism by ectoenzymes.  Subsequent to discussion of nucleotides present in the 

extracellular space, a general introduction to purinergic receptors will be presented.  A more 

detailed description of members of the P2Y receptor family will follow, with an expanded 

focus on the P2Y14-R, the topic of this dissertation.  
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Cellular release of nucleotides 

Regulated release of ATP through exocytosis from excitatory cells is a phenomenon 

that has been known to occur for many decades.  More recently, nucleotide release from non-

excitatory cells has been established, and evidence for the release of other nucleotides 

including UTP and UDP-glucose has been reported.  Sources for extracellular nucleotides 

include constitutive release from resting cells, release after hormone stimulation or 

mechanical stress, and cell lysis.  Elucidating the mechanism(s) of release is currently the 

topic of investigation in many labs.   

Assays for quantification of ATP have been developed using a luciferase assay, 

allowing spatiotemporal resolution of ATP release and hydrolysis in the medium on cultured 

cells (Dubyak and el-Moatassim, 1993; Taylor et al., 1998; Beigi et al., 1999).  Luciferin is a 

substrate for luciferase, and the catalytic reaction produces luminescence in the presence of 

ATP.  These assays are very sensitive methods for quantification of ATP in the bulk medium 

and have even been adapted to measure cell surface concentrations of ATP with a luciferase 

engineered to be anchored at the plasma membrane (Beigi et al., 1999).  Sensitive assays 

detecting released uridine nucleotides and nucleotide-sugars from cultured cells have been 

developed by Lazarowski and colleagues (Lazarowski et al., 1997a; Lazarowski and Harden, 

1999; Lazarowski et al., 2003).  Such detection assays have informed us about circumstances 

of nucleotide release and also about relative rates of release versus degradation of 

nucleotides.   

Differences in measurements of ATP with soluble luciferase compared with plasma 

membrane-associated luciferase suggest that measurements from the bulk medium are likely 
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to grossly underestimate the concentration at the receptor level (Beigi et al., 1999).  One 

possible explanation for this may be that the microenvironment at the cell surface has a 

higher concentration of nucleotide than is measured in the bulk medium.  That is, higher 

concentrations of nucleotides are retained at the surface of cells in close proximity to cell 

surface receptors, whereas the bulk medium contains a diffused, lower concentration of 

nucleotide due to ectonucleotidase activity.  This may occur because the rates of release and 

accumulation of nucleotide at the cell surface is more rapid than the rate of diffusion 

throughout the bulk medium, or it is possible that hydrolyzing enzymes are localized on the 

cell surface or as soluble enzymes in the medium in an orientation that allows degradation of 

nucleotides away from the site of release and receptor expression, allowing receptors to 

interact with nucleotides immediately upon release before degradation of the nucleotide 

occurs.    

Cellular release of ATP, UTP, or UDP-glucose after mechanical stimulation of cells 

has been well established (Gordon, 1986; Lazarowski et al., 1997a).  Levels of ATP and UTP 

measured in the bulk medium on several types of cultured cells rise sharply within five 

minutes of stimulation.  In contrast to the rapid rise in extracellular concentrations of other 

nucleotides on mechanically stimulated cells, UDP-Glc increases little.  However, UDP-

glucose in the medium on 1321N1 human astrocytoma cells was observed to gradually 

increase to a maximal concentration at 1 h after stimulation of the cells and remain at that 

level for a subsequent 2 h (Lazarowski et al., 2003).  Extracellular UDP-glucose is apparently 

metabolized at a slower rate than ATP in several cell lines and furthermore, the concentration 

reported for UDP-glucose on resting cells was 2-6 fold higher than the ATP concentration, 
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suggesting that UDP-glucose is released constitutively from cells as well as upon mechanical 

stimulation. 

In addition to constitutive release of nucleotides and after mechanical stimulation of 

cells, multiple reports have established that nucleotide release also occurs as a result of 

hormone activation of some GPCRs.  Thrombin treatment of many cell types promotes ATP 

release (Pearson and Gordon, 1979; Joseph et al., 2003), relevant to the work described in 

this dissertation, thrombin promotes UDP-Glc release from astrocytoma cells (Kreda et al., 

2008).  Bradykinin, acetylcholine, and serotonin have all been shown to induce release of 

ATP from several types of cells (Yang et al., 1994; Ostrom et al., 2000; Buxton et al., 2001).  

Hormone activation of cells leads to nucleotide release, and multiple signaling pathways may 

be activated in a cascade from hormone activation and subsequent activation by nucleotides. 

Cell lysis due to tissue damage is another source for extracellular nucleotides.  After 

insults such as ischemia in the brain or heart, nucleotides are released from damaged cells 

and are present at concentrations sufficient to activate P2 receptors (Cook and McCleskey, 

2002; Melani et al., 2005).  Induced ischemia in pig artery increased plasma levels of ATP 

and UTP, and also correlated with vasodilation (Erlinge et al., 2005).  Patients with coronary 

heart disease were found to have higher than normal plasma levels of UTP (Wihlborg et al., 

2006).  Intracellular nucleotides that are released as a course of cell lysis from tissue damage 

are likely to activate nearby P2 receptors.  

The mechanisms for regulated release of nucleotides have not been established.  The 

proposed mechanisms for nucleotide release from epithelial cells are exocytosis of ATP-

containing vesicles, release through ATP-permeable channels, or some combination of these 

two processes.  Observations of ATP-containing vesicles in pancreatic cells support the 
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hypothesis that exocytosis is a mechanism for ATP release (Sorensen and Novak, 2001).  

Additionally, findings from several groups support exocytotic release of ATP as a result of 

cell swelling, and implicate the involvement of phosphatidylinositol-3-kinase (PI3K) (Merlin 

et al., 1996; Feranchak et al., 1999; Gatof et al., 2004).  Several anion channels have been 

reported to be permeable to ATP under certain experimental conditions, although a selective 

ATP channel has not been identified (Wang et al., 1996; Roman et al., 1997; Bell et al., 

2003; Okada et al., 2004).    

Interest in connexin and pannexin hemichannels as potential release mechanisms is 

growing.  Connexins and pannexins have four transmembrane domains with the amino and 

carboxyl termini on the intracellular side of the plasma membrane.  Six subunits (connexons) 

assemble to form hemichannels (Shestopalov and Panchin, 2008).  Connexin hemichannels 

are important components of gap junctions, which allow the flow of ions between cells and 

have even been shown to be permeable to ATP (Penuela et al., 2007).  Pannexins, however, 

do not form gap junctions and furthermore, while they form channels that are permeable to 

ATP, their function has been reported to be inhibited by extracellular ATP (reviewed in 

Dubyak, 2009).  While the exact mechanisms for cellular release of nucleotides remain to be 

elucidated, it seems likely that some combination of vesicular release and channel-regulated 

release are involved in nucleotide release from cells. 

Clearly, metabolism of extracellular nucleotides regulates purinergic receptor 

function.  The specifics of how P2 receptors and ectonucleotidases coordinate physiological 

functions remain largely undefined.  Precise regulation of nucleotide action is likely specific 

to the tissue or cell type and stage of cell development.  Spatiotemporal resolution of 

ectonucleotidase and receptor expression together with accurate measurements of nucleotide 
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concentrations will bring us closer to understanding the biological processes dependent on 

nucleotide signaling. 

Ectonucleotidases 

In addition to release of nucleotides from cells, extracellular concentrations of ATP, 

UTP, ADP, UDP, and UDP-glucose are precisely controlled by cell surface enzymes 

catalyzing nucleotide hydrolysis and phosphorylation (Fig. 1).  Ectoenzymes remove 

nucleotide agonists from the cell surface, contributing an important mechanism for 

terminating P2Y-R signal transduction.  Along with cell surface receptors, most cell types 

also express ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and other 

enzymes that metabolize nucleotides or interconvert nucleotides.  In addition to 

ectoNTPDases, this cadre of enzymes includes ecto-nucleotide pyrophosphatase 

phosphodiesterase (E-NPP), alkaline phosphatase, adenylate kinase, and nucleoside 

diphosphate kinase (Zimmermann, 2000; Robson et al., 2006) (Fig. 2).  Although some ecto-

enzymes degrade nucleosides in addition to nucleotides, other enzymes that metabolize only 

nucleosides also are expressed on the cell surface, and these include adenosine deaminase, 

purine nucleoside phosphorylase (PNP), and 5’-nucleotidase, which exists as a dimer and is 

anchored to the cell surface through a glycophosphatidylinositol (GPI)-linkage, hydrolyzing 

AMP → Ado + Pi. 

NTPDases  

Of the eight members of the NTPDase family, only NTPDase 1, 2, 3, and 8 are 

expressed at the cell surface, exhibiting an extracellular catalytic site and two transmembrane 

domains.  These four enzymes catalyze nucleotides with a KM in the micromolar range, and 

require divalent cations for their catalytic activity (Kukulski et al., 2005).   
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NTPDase 1/ CD39 hydrolyzes both di- and triphosphate nucleotides to 

monophosphate nucleotides.  Studies investigating the relationship between NTPDase1 and 

P2Y1-R used an engineered fusion protein that expressed NTPDase1 with the P2Y1-R as a 

single construct on CHO cells (Alvarado-Castillo et al., 2002).  The expression of the 

NTPDase in tandem with the receptor caused a shift to the right in the ADP concentration 

effect curve, indicating that ectoenzymes can regulate concentrations of nucleotides with 

physiological consequences.  In previous studies with the P2Y1-R, receptor activation in the 

absence of added agonist was observed.  Basal levels of activation of the P2Y1-R was not 

observed with the fusion protein, suggesting cellular release of nucleotide was autocrinely 

activating receptor.   

While NTPDase1 is expressed mainly in vascular smooth muscle and endothelial 

cells (Enjyoji et al., 1999), it has also been detected in the promyeloid cell line HL-60 and 

increases expression with differentiation of the myeloid leukocyte (Clifford et al., 1997).  

Studies of the NTPDase1/ CD39-/- knockout mouse first implicated this enzyme as an 

important component of platelet biology (Enjyoji et al., 1999), and more recently of other 

physiological processes as well.  Although the knockout mice did not exhibit any gross 

defects in development or viability as compared with wild-type mice, a host of disorders 

have been reported.  Bleeding times in the NTPDase1-/- mice were prolonged (Enjyoji et al., 

1999), suggestive of a deficiency in platelet activation.  This bleeding disorder phenotype 

was rescued following injection of knockout mice with the soluble potato-derived ATPDase 

apyrase.  Likewise, platelets isolated from NTPDase1-/- mice were deficient in their ability to 

aggregate in response to ADP, however the NTPDase1-/- platelets could be activated by ADP 

plus serotonin, suggesting that a Gq-coupled, ADP-activated receptor was desensitized in 
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platelets lacking NTPDase1.  Furthermore, when platelets were treated with apyrase, platelet 

activation in response to ADP was restored, indicating that the P2Y1-R was desensitized with 

chronic agonist stimulation, and NTPDase was necessary for removal of agonist.  Additional 

disorders reported for the NTPDase1-/- mice include impaired neutrophil chemotaxtis 

(Corriden et al., 2008), decreased insulin sensitivity (Enjyoji et al., 2008), and deficiencies in 

microglial migration (Farber et al., 2008), among others.  The broad impact of NTPDase1 

loss in mice indicated that nucleotide/nucleoside signaling has critical roles in many 

biological functions. 

NTPDase2 is expressed on vascular smooth muscle cells as well as on stromal cells 

(Zimmermann, 1999).  NTPDase 2 has a much higher affinity for nucleotide triphosphates 

over diphosphates (Fig. 2).  Studies with NTPDase1 and NTPDase2 highlighted the effects of 

ectoenzyme isotype expression on the observed pharmacological activity of the P2Y1-R 

(Alvarado-Castillo et al., 2005).  When P2Y1-R and NTPDase2 were co-expressed, the EC50 

of ADP was similar to that of P2Y1-R alone.  However, when NTPDase1 was coexpressed 

with the receptor, the ADP curve shifted to the right, likely as a function of ADP hydrolysis 

reducing the available agonist.  In addition to illustrating how ectoenzymes may regulate 

extracellular nucleotide concentrations and thus altering the potency of agonist at a P2Y-R, 

this work also proposed the notion that ectoenzyme expression may indirectly regulate 

receptor expression levels, for example, by inhibiting desensitization of P2Y-R when 

ectoenzymes hydrolyze constitutively-released nucleotides.   

NTPDases 3 and 8 prefer nucleotide triphosphates to diphosphates (Fausther et al., 

2007).  In contrast to the membrane-bound NTPDases (1, 2, 3, and 8), NTPDase5 and 

NTPDase6 are expressed in golgi of monocytes and cardiocytes, respectively, and were 
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observed to be secreted from the cell upon heterologous expression.  Both enzymes 

hydrolyze UDP and GDP (Chadwick and Frischauf, 1998; Ivanenkov et al., 2003).  NTPDase 

formation of homo-oligomers has been reported, although it is unclear how oligomerization 

may affect catalytic activity (Grinthal and Guidotti, 2002).   

E-NPPs       

The E-NPP family of enzymes bear a single transmembrane domain with an 

extracellular C-terminus.  The catalytic domain lies in the C-terminal portion of the protein, a 

region that also harbors an EF-hand sequence likely responsible for binding divalent cations 

that are necessary for catalytic activity.  While there exist seven E-NPP enzymes, only three 

isoenzymes in this family hydrolyze nucleotides and dinucleotides.  E-NPPs generally 

recognize a broad array of substrates, including nucleic acids, NAD, lysophospholipids, and 

cAMP.  Furthermore, they can hydrolyze pyrophosphate bonds of nucleotide sugars 

(Zimmermann, 2000).  E-NPP family members are also called PC-1 (E-NPP1), PDNP, and 

autotoxin (E-NPP2).  E-NPP1 can undergo proteolysis causing the C-terminal portion of the 

enzyme to become soluble, a state in which it retains catalytic activity (Belli et al., 1993; 

Clair et al., 1997).  The knockout mouse lacking the E-NPP1 gene develops bone 

abnormalities, indicating that E-NPP1 functions in bone formation biology.  E-NPP2 does 

not have a transmembrane domain, but is secreted from the cell.  E-NPP2 knockout mice are 

embryonic lethal (Yegutkin, 2008), suggesting a critical role in developmental processes.  KM 

values for ENPPs at ATP are in the 50 µM range, similar to that of NTPDases 

(Zimmermann, 2000). 
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Phosphatases and Kinases 

 Other enzymes that are expressed on the cell surface also use nucleotides as 

substrates.  Alkaline phosphatase hydrolyzes tri-, di-, and monophosphate adenine 

nucleotides through cleavage of the terminal phosphate, ultimately yielding nucleoside plus 

inorganic phosphate.  Alkaline phosphatase also cleaves the phosphate group from other 

molecules, such as glucose-phosphate and pyrophosphate (Yegutkin, 2008).  The KM of 

alkaline phosphatase for nucleotides is in the millimolar range.  Alkaline phosphatases can be 

soluble or plasma membrane-associated through a glycophosphatidylinositol (GPI)-linkage 

(Low and Saltiel, 1988; Zimmermann, 2000).  Additionally, nucleoside diphosphokinase 

(NDPK) was identified as a transphosphorylating enzyme that uses ATP to phosphorylate 

UDP or GDP in a reversible reaction, and reciprocally, UTP as substrate will yield ATP + 

UDP (Harden et al., 1997; Lazarowski et al., 1997b; Grobben et al., 1999; Lazarowski et al., 

2000).  The gamma phosphate of the nucleotide triphosphate is cleaved, and subsequently 

used to phosphorylate a nucleotide diphosphate.  Another kinase, adenylyl kinase, converts 

ATP + AMP into 2 ADP molecules (Yegutkin et al., 2002; Picher and Boucher, 2003).    

 Nucleotide concentrations on the extracellular space are a dynamic function of 

cellular release and nucleotide metabolism, which includes degradation, phosphorylation, and 

interconversion.  One could imagine that the differential signaling effects regulated by 

nucleosides and nucleotides are dependent on the nucleotidase isotype expressed on the cell 

surface in addition to the P2Y-R expression.  For example, distinct signal transduction 

pathways are activated by ATP versus ADP versus adenosine, and perhaps the relative ratios 

of nucleotides on the cells are just as critical to physiological homeostasis as is which P2Y-R 

may be expressed on a particular tissue type.    
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Purinergic Receptors 

Purinergic signaling encompasses responses initiated by nucleosides and nucleotides.  

P1 receptors define the family of G protein coupled receptors that are activated by adenosine, 

and include the subtypes A1, A2A, A2B, and A3.  P2 receptors are a class of nucleotide-

activated cell surface receptors and are categorized into two families of receptors: P2X 

receptors and P2Y receptors.   

P2X receptors are ligand-gated ion channels, and all are activated by ATP.  The seven 

receptors in the P2X family are: P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, and P2X7.  P2X 

receptors are comprised of three subunits and can exist as homomeric or heteromeric receptor 

assemblies.  When ATP binds, the channel opens, allowing cations to pass through to the 

intracellular space.  P2X1-5,7 are permeable to Na+, K+, and Ca2+ ions.  P2X6 cannot form a 

homomeric receptor, but can form a functional heteromeric receptor with other P2X subunits 

(Ralevic and Burnstock, 1998; Abbracchio et al., 2006).      

 P2Y receptors are metabotropic receptors that couple to heterotrimeric G-proteins.  

There are eight identified P2Y receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and 

P2Y14.  The nomenclature assigned includes numbers up to fourteen, reflecting a repeated 

problem in the field of P2Y receptor research.  The missing P2Y receptor numbers are due to 

receptors that were mistakenly included in this family of receptors.  The receptors that were 

erroneously assigned P2Y numbers have since been re-classified as either non-mammalian 

P2Y orthologs, or belonging to other receptor families, including leukotriene receptors and 

lysophosphatidic acid (LPA) receptors (Yokomizo et al., 1997; Li et al., 1998; Noguchi et al., 

2003). 
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G Protein Signal Transduction 

 P2Y receptors, like other G protein-coupled receptors, couple to heterotrimeric G 

proteins comprised of α, β, and γ subunits.  When agonist binds the cell-surface receptor, 

conformational changes in the receptor coordinate subsequent conformational 

rearrangements in the G protein.  Guanosine 5’-triphosphate (GTP) then replaces guanosine 

5’-diphosphate (GDP) on the Gα subunit and the result is disengagement of the βγ dimer 

from the α subunit.  The GTP-bound Gα is the activated form, and so initiates downstream 

signaling events.  The Gβγ dimer also activates downstream signaling targets such as 

phospholipases, adenylyl cyclases, phosphatidylinositol-3-kinase γ, and ion channels.  

Additional proteins and pathways may also be regulated by Gβγ-dependent signaling, as 

evidenced by the number of Gβγ-binding proteins that have been identified (Smrcka 2008).  

G protein-induced signaling ceases when the intrinsic GTPase activity of the Gα subunit 

causes hydrolysis of GTP to GDP, and the heterotrimeric G protein reassembles.   

The main signaling pathways activated by GPCRs are represented by at least four 

families of heterotrimeric G proteins: Gq, Gs, Gi, and G12.  The Gq family of G proteins 

includes Gαq, Gα11, Gα15, and Gα16, and these subunits activate phospholipase C-β, which 

hydrolyzes phosphatidylinositol 4, 5-bisphosphate (PIP2) into inositol 1, 4, 5-triphosphate 

(IP3) and diacylglycerol (DAG).  IP3 acts on receptors at the endoplasmic reticulum to release 

from its intracellular calcium stores.  DAG activates protein kinase C (PKC).  Gq also has 

been shown to bind to the regulator of G protein signaling (RGS) domain of G protein 

receptor kinase-2 (GRK2) (Carman et al., 1999), and evidence shows that GRK2 is an 

important hub of signaling for the Gq signal transduction pathway, as it binds a number of 

elements in the cascade (Tesmer et al., 2005).  Additionally, guanine nucleotide exchange 
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factors (GEFs) for Rho family proteins interact with Gq.  Rho family proteins are small G 

protein GTPases that control myriad cellular functions such as contraction, motility, and 

proliferation.  At least three Rho GEFs, p63-RhoGEF, Trio, and PDZ-RhoGEF, are known to 

interact with GTP-bound Gq and lead to RhoA activation (Lutz et al., 2005; Rojas et al., 

2007), establishing a link between heterotrimeric G protein signaling and Rho signaling 

pathways. 

The Gs family includes Gαs and the related olfactory system expressed Gαolf.  Gs 

family proteins activate adenylyl cyclase, which generates cyclic adenosine 5’-

monophosphate (cAMP) from ATP.  Protein kinase A (PKA) is downstream of adenylyl 

cyclase and is activated by intracellular cAMP.  Conversely, Gi proteins inhibit some 

isoforms of adenylyl cyclase (I, III, V, VI, and VIII) and also regulate ion channels (Gilman, 

1987; Birnbaumer, 1992; Clapham and Neer, 1997), which appears to be through released 

Gβγ subunits.  The Gi family is comprised of Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαz, and Gαgust.  

Tissue-specific expression was established for Gαt in the retina, Gαgust in the gustatory 

system, and Gαz in platelets and brain.   

G12 family proteins (Gα12, Gα13) are ubiquitously expressed.  G12 proteins activate 

guanine nucleotide exchange factors (GEFs) for RhoA family members such as PDZ-

RhoGEF, p115RhoGEF, and leukemia-associated RhoGEF (LARG) (Kozasa et al., 1998; 

Suzuki et al., 2003).  G12 G proteins may also interact with other signaling molecules such 

as cadherins, protein phosphatases, and non-receptor tyrosine kinases to modulate other 

signaling pathways.  Studies of mouse models suggest that the functions of Gα12 and Gα13 are 

distinct.  Gα13
-/- mice do not survive more than a few days, while Gα12

-/- mice survive into 



 14

adulthood, suggesting differential roles for G12 proteins in developmental processes 

(Offermanns et al., 1997).   

Termination of agonist-promoted GPCR signaling occurs when G protein receptor 

kinases (GRK) phosphorylate residues on intracellular domains of the receptor.  This acts as 

a signal for β-arrestin recruitment to the plasma membrane, where it uncouples GPCR from 

G proteins.  Arrestins also mediate internalization of some GPCRs, acting as a scaffold for 

the receptor with endocytosis machinery.  Endocytosed receptors may be either recycled to 

the plasma membrane, or degraded via the lysosome (Krupnick and Benovic, 1998).     

P2Y Receptors 

P2Y receptors are grouped into two categories based on amino acid sequence 

homology and proposed G-protein coupling selectivity (Fig. 3).  The P2Y1-R subgroup 

includes P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11, all of which couple to Gαq and lead to 

activation of PLC.  The P2Y11 receptor also couples to Gαs to increase intracellular cAMP.  

The P2Y12-R subgroup is comprised of P2Y12, P2Y13, and P2Y14, all of which are proposed 

to couple to Gαi to inhibit formation of cAMP (Abbracchio et al., 2006).  GPR87, an orphan 

receptor, exhibits high amino acid sequence homology to the P2Y14-R, (Schoneberg et al., 

2007), suggesting that GPR87 likely shares a common ancestor with the P2Y12-like P2Y-R.  

However, GPR87 was recently reported to be activated by lysophosphatidic acid (LPA) 

(Tabata et al., 2007).   

The P2Y1 receptor is activated by ADP.  The P2Y2 receptor is activated by UTP and 

ATP, while the human P2Y4 receptor is activated only by UTP.  The only receptor known to 

be activated by UDP is the P2Y6 receptor.  The P2Y11 receptor is activated by ATP.  In the 
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P2Y12-R subgroup, both P2Y12 and P2Y13 receptors are activated by ADP, and the P2Y14 

receptor is activated by UDP-glucose and other nucleotide-sugars. 

While the lack of selective, high affinity antagonists has impeded research on P2Y 

receptors, several labs have ongoing studies to identify competitive antagonists at each of the 

P2Y receptors, and progress has been greatest for the P2Y1-R and P2Y12-R.  In fact, a 

prodrug, clopidogrel, that metabolizes into a P2Y12-R antagonist, is used therapeutically to 

prevent thrombosis (Foster et al., 2001; Hollopeter et al., 2001).  Antagonists for the P2Y2, 

P2Y6, P2Y11, and P2Y13 receptors have been described and can be used as templates for the 

development of high affinity compounds that will be useful for pharmacological studies of 

P2Y receptors (Jacobson et al., 2008).  Although ATP is an antagonist at the human P2Y4-R 

(Herold et al., 2004), no selective antagonists have been identified for the P2Y4 and P2Y14 

receptors.  Several non-selective acting antagonists for P2Y receptors have been identified.  

These include PPADS, suramin, and reactive blue 2 (Ralevic and Burnstock, 1998; Brown 

and Brown, 2002).  

P2Y1-like Receptors 

P2Y1-R 

 The P2Y1 and P2Y12 receptors have a well established function in platelet biology 

(Dubyak et al., 1993; Savi et al., 1998; Hechler et al., 1998a; Leon et al., 1999; Fabre et al., 

1999).  The role of ADP in platelet aggregation involves both the Gq-activating P2Y1-R as 

well as the Gi-activating P2Y12-R.  Knockout mice for P2Y1-R exhibited increased bleeding 

time after tail amputation as compared with wild-type mice.  Platelets from these mice lost 

the ability to undergo shape change in response to ADP.  However, platelets treated with 

ADP retained the capacity to inhibit adenylyl cyclase (Fabre et al., 1999).  Although the 
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P2Y1-R is one element of the platelet clotting response to injury, the P2Y12-R governs the 

aggregation component of platelet activation only after Gq-dependent shape change has 

occurred (Enjyoji et al., 1999; Bourdon et al., 2006). Pharmacological studies using P2Y1-R-

selective ligands in human platelets revealed that the P2Y1-R undergoes rapid desensitization 

upon activation (Bourdon et al., 2006).   

P2Y2-R 

 The P2Y2-R has been reported to have an important role in ion secretion and 

absorption in airway epithelial cells.  Upon activation of P2Y2-R by UTP or ATP, Cl- 

secretion increases and Na+ absorption is inhibited.  Improvement of mucociliary clearance 

in cystic fibrosis patients was demonstrated after treatment with inhaled P2Y2 receptor 

agonists (Kellerman et al., 2002).  In the P2Y2-R knockout mouse, the effect of UTP on 

inositol phosphate levels and calcium mobilization in tracheal and nasal epithelial cells was 

abrogated.  Likewise, UTP- and ATP-dependent Cl- transport was disrupted in trachea from 

the P2Y2-R-/- mouse (Cressman et al., 1999; Homolya et al., 1999). Additionally, multiple 

studies have identified P2Y2-R mRNA in immune cells, where ATP and UTP effects have 

been reported (Chen et al., 2006; Myrtek and Idzko, 2007).  Moreover, the P2Y2-R is 

implicated in atherosclerosis (Seye et al., 2002), suggesting that P2Y2-R may have a role in 

inflammation processes.  In rats overexpressing the P2Y2-R, lesions were observed on their 

lacrimal glands, which regulate fluid secretion to the eyes, and also on the kidney by 3 

months of age (Agca et al, 2008), supporting the notion that P2Y2-R also regulates fluid 

secretion in the eye and kidney. 
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P2Y4-R 

The P2Y4-R is activated by UTP.  ATP acts as an antagonist at the human P2Y4-R, 

and it was determined also to be an agonist at the rat ortholog receptor (Kennedy et al., 

2000).  In humans, P2Y4-R are expressed in brain, intestine, lung, liver, and placenta 

(Communi et al., 1995).  Chloride secretion in the epithelium of the small and large intestines 

is dependent on P2Y4-R activation, as determined by studies with P2Y4-R knockout mice 

(Robaye et al., 2003; Ghanem et al., 2005).  Just as the P2Y2-R is important for chloride 

secretion in lung, the P2Y4-R is likely the primary P2Y-R involved in chloride secretion in 

intestine. 

P2Y6-R 

 UDP-activated P2Y6-R are expressed throughout the body, specifically in heart, lung, 

spleen, and intestine, as well as in monocyte-derived immune cells (Communi et al., 1996).  

Recently, cooperative signal transduction of the P2Y6-R with the cysteinyl leukotriene 

receptor CysLT1R was reported in human mast cells, such that when one receptor was 

inhibited via shRNA technology or with the use of a selective antagonist, the other receptor 

also lost its function (Jiang et al., 2009).  Although the relevance of such an effect is 

unknown, the overlapping receptor expression distribution and the possibility that the two 

signal transduction pathways are linked suggest that the P2Y6-R may have an important role 

in innate immune responses.  While the physiological function of P2Y6-R is unknown, 

reports of UDP-dependent phagocytosis in rat microglia and upregulation of P2Y6-R mRNA 

72 h after neuronal damage suggest an immunoprotective role for P2Y6-R (Koizumi et al., 

2007).  A recently developed knockout mouse for the P2Y6-R strongly supports the role of 

P2Y6-R in immune responses (Bar et al., 2008).  While no obvious abnormalities were 
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observed on the P2Y6-R-/- mouse, macrophages isolated from the mouse lacked UDP-

promoted signal transduction and cytokine production.  Additional studies with the P2Y6-R 

knockout mouse suggested that P2Y6-R may regulate vasoconstriction in aorta in response to 

UDP treatment.  The P2Y6-R was recently reported to be involved in the induction of cardiac 

fibrosis through G12/13 signaling to Rho in mice (Nishida et al., 2008), prompting further 

investigation of the P2Y6-R as a potential therapeutic target for heart disease.  

P2Y11-R 

P2Y11-R mRNA has been detected in placenta, brain, and lymphocytes (Communi et 

al., 1997; Moore et al., 2001).  Unique among the P2Y receptors, the P2Y11-R gene has 

several introns (Communi et al., 2001b).  Another distinctive characteristic of the P2Y11-R is 

that it couples to both Gq to activate PLC as well as to Gs to activate adenylyl cyclase (Qi et 

al., 2001).  Additionally, species-specific pharmacological differences have been identified 

for the P2Y11-R.  While ADP may be a weak partial agonist at the human P2Y11-R, ADP acts 

as a potent full agonist at the canine P2Y11-R (Qi et al., 2001).  ATP was reported to induce 

differentiation of HL-60 cells into neutrophil-like cells, and conventional inducers of 

differentiation such as DMSO and dibutyryl-cAMP increased the mRNA expression of 

P2Y11-R.  The P2Y11-R has been implicated for involvement in maturation and migration of 

dendritic cells (Wilkin et al., 2001; Marteau et al., 2004; Idzko et al., 2007).  Taken together, 

it appears that the P2Y11-R may be involved in hematopoiesis. 

P2Y12-like receptors  

The three P2Y receptors in the P2Y12-R subgroup share amino acid sequence 

homology of approximately 44%.  The P2Y12-like receptor genes are clustered on 

chromosome 3, at 3q24-25 (Nomura et al., 1994).  Evolution of the P2Y12-R family has been 
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fairly conserved across species.  The P2Y12-like receptors are found in almost all vertebrate 

classes, and have not been identified in non-vertebrates (Schoneberg et al., 2007).  In some 

fishes and amphibians, orthologous receptors share close homology to two receptors from the 

P2Y12-like subgroup.  For example, one ortholog is related to P2Y12/13 and another is related 

to P2Y14/GPR87, suggesting a point of evolutionary distinction for these receptors. 

P2Y12-R 

The P2Y12-R is the most investigated of the subgroup due to its clinical relevance in 

anti-blood clotting therapeutics.  Evidence for a critical physiological role of the P2Y12-R in 

aggregation of platelets is well-accepted.  Knockout mice lacking the P2Y12-R exhibited 

prolonged bleeding times (Foster et al, 2001).  Platelets from P2Y12-R-/- mice responded to 

ADP with shape change as did the platelets from wild-type mice.  However, platelets lacking 

P2Y12-R did not aggregate and further analysis revealed they did not inhibit adenylyl cyclase 

in response to ADP.  Studies with the knockout mouse underscore the role of the P2Y12-R as 

a critical component in platelet biology.  Antithrombotic therapeutics successfully interrupt 

platelet aggregation in response to P2Y-R signaling, as evidenced by the widely-prescribed 

drug clopidogrel, an active metabolite of which acts as an irrevesible P2Y12-R antagonist 

(Quinn and Fitzgerald, 1999; Gachet, 2005; Savi and Herbert, 2005).   

In addition to platelets, P2Y12-R are expressed throughout brain and in smooth 

muscle cells (Burnstock and Knight, 2004).  The importance of the P2Y12-R in microglial 

response to tissue injury was highlighted by a study comparing wild-type mice to P2Y12-R-/- 

mice (Haynes et al., 2006).  The P2Y12-R was detected at the protein and RNA levels 

expressed on microglia.  Wild-type microglial cultures, but not those from P2Y12-R-/- mice, 

responded to ADP with lamelipodial extensions.  Furthermore, chemotaxis of P2Y12-R-
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expressing cells toward an ADP gradient was demonstrated with microglial cultures, and 

process extension and migration of microglia were observed in response to laser-induced 

tissue damage in living mice, but were significantly delayed in P2Y12-R-/- mice.  This study 

and others define the P2Y12-R as a crucial element in microglial development and response to 

injury (Davalos et al., 2005).  

P2Y13-R 

  The P2Y13-R is similar to the P2Y12-R in amino acid sequence, in G protein coupling, 

and in agonist profile.  The P2Y13-R also couples to ERK1/2 activation in CHO-K1 cells.  In 

contrast to the P2Y12-R, expression of the P2Y13-R is reported in spleen, small intestine, 

liver, kidney, brain, and on peripheral immune cells (Communi et al., 2001a; Fumagalli et al., 

2004; Wang et al., 2004), but the physiological significance of the P2Y13-R has not yet been 

examined.  An analogue of PPADS, MRS2211, recently has been described as a selective, 

competitive antagonist at the P2Y13-R (Wirkner et al., 2004; Kim et al., 2005).    

P2Y14-R 

 The P2Y14-R is the eighth member of the P2Y receptor family.  It shares 44% amino 

acid sequence homology to the P2Y12-R and P2Y13-R, compared to only 22% with the P2Y1-

R; it is accordingly grouped into the P2Y12-like receptor sub-family.  The intronless P2Y14-R 

gene encodes 338 amino acids (Fig. 5).  While the P2Y14-R was first cloned from the human 

myeloid cell line KG-1 (Nomura et al., 1994) and relatively high levels of P2Y14-R mRNA 

have been detected in neutrophils, expression of the P2Y14-R has also been reported in the 

brain, lung, stomach, heart, placenta, and adipose tissue (Moore et al., 2003).  Although a 

functional role for the P2Y14-R has not yet been identified, evidence suggests that one 

function of the receptor may be contributing to immune system homeostasis.    
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P2Y14-R Tissue Distribution 

There have been several antibodies generated to recognize the P2Y14-R, although 

none has been fully characterized.  For example, a commercially available antibody is 

reported to recognize the second extracellular loop of the receptor, a region that is conserved 

in mouse and rat sequences (Alomone, Jerusalem, Israel).  This antibody was used to detect 

expression of glycosylated P2Y14-R in glioma C6 cells (Krzeminski et al., 2008), and the 

authors reported that non-glycosylated receptor became predominantly expressed upon serum 

starvation of the cells.  However, results discussed in Chapter 4 of this dissertation 

contradicts the expression of P2Y14-R in C6 glioma cells.  Another P2Y14-R antibody was 

generated against the first extracellular loop of the receptor (Lee et al., 2003) and was used to 

detect expression of the P2Y14-R on human fetal bone marrow cells.  Additionally, an 

antibody against the C-terminus of the P2Y14-R was generated for immunohistochemical 

studies in which  P2Y14-R expression was reported throughout the brain, but only in sub-

populations of glial cells (Moore et al., 2003).  The specificity of these antibodies is 

unknown because results for recognition of other P2Y-R or of non-specific immunoreactivity 

in each experimental system were not reported.  Until the usefulness of these antibodies has 

been validated, we still lack reliable means for detecting P2Y14-R directly. 

 In their report of glial P2Y14-R expression, Moore and colleagues also used RT-PCR 

to demonstrate the presence of P2Y14-R transcripts in neutrophils, lymphocytes, and also in 

the leukocyte cell lines M-07e and UT7-Epo, as well as in HEK293 cells (Moore et al., 

2003).  The P2Y14-R message has been detected in platelets (Moore et al., 2003; Dovlatova et 

al., 2008).  However, the receptor has not been shown to be functional in such cells.  Other 

reports of tissue distribution based on RT-PCR studies include highest levels in placental and 
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adipose tissue, and also in stomach, intestine, lung, and heart (Chambers et al., 2000).  

Reports of P2Y14-R mRNA upregulation in mouse uterus after estradiol treatment for seven 

days (Crabtree et al., 2006; Crabtree et al., 2008) suggest that P2Y14-R expression may be 

regulated by circulating hormone levels.  

 Other reports of P2Y14-R expression include microglia and astrocytes (Charlton et al., 

1997), non-neuronal spinal cord cells (Kobayashi et al., 2006), and synoviocytes from human 

patients suffering from rheumatoid arthritis (Caporali et al., 2008), which together may 

indicate a neuroprotective role for the P2Y14-R. 

Regulation of the P2Y14-R 

Expression and function of GPCRs are dynamically regulated through several 

mechanisms, from post-translational modifications, cellular localization and cell-stage-

dependent expression to signaling events and internalization regulated by motifs and domains 

harbored within the receptor’s sequence.  Although little is known about the regulation of the 

P2Y14-R, we can surmise that it has many potential mechanisms for regulation based on what 

is known of other GPCRs and shared sequence characteristics of the P2Y14-R. 

Like other GPCRs, the P2Y14-R exhibits several distinctive amino acid sequence 

characteristics.  At the intracellular region of transmembrane 3, the sequence includes the 

residues aspartate-arginine-tyrosine.  This “DRY motif” is highly conserved among seven 

transmembrane GPCRs.  In other GPCRs, these residues are suspected to interact with acidic 

residues in the third intracellular loop and such interactions are thought to regulate receptor 

activation (Ballesteros et al., 2001).  However, the P2Y14-R does not have any acidic residues 

in the third intracellular loop, and 30% of seven transmembrane GPCRs, including all of the 

known chemokine receptors, do not exhibit an acidic residue at the expected point of 
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interaction.  In fact, the P2Y14-R sequence in the third intracellular loop is rich in positively 

charged residues, so the significance of the DRY motif in this receptor may be different from 

other GPCRs.  Additionally, GPCRs are known to exhibit two conserved cysteine residues in 

the extracellular domains that form disulfide bonds for stabilizing the receptor’s tertiary 

structure.  Indeed, the P2Y14-R has a cysteine residue in each of the four extracellular 

domains.  The P2Y14-R also exhibits potential consensus sequences for phosphorylation by 

protein kinase A (PKA) and protein kinase C (PKC) in its third intracellular loop, but there is 

no evidence available that either of these protein kinases interact with this receptor. 

Similar to all other P2Y-R, potential N-glycosylation sites occur on extracellular 

domains of the P2Y14-R.  Glycosylation of the receptor was reported to modulate its function 

(Krzeminski et al., 2008).  Indeed, the glycosylation state of the P2Y12-R has also been 

reported to bear functional consequences (Zhong et al., 2004).  While glycosylation of 

GPCRs is thought to be important for insertion into the lipid bilayer, it is possible that the 

glycosylation state has an impact on receptor expression or otherwise promotes a 

conformational orientation of the receptor that compromises ligand binding or G-protein 

coupling or activation.  However, it remains to be determined whether glycosylation is an 

important mechanism for regulating the P2Y14-R.   

Cellular localization of the receptor may also be an important means for regulating 

receptor function.  Confocal microscopy studies of HA-epitope tagged P2Y14-R suggest that 

the receptor localizes to the basolateral membrane of polarized epithelial cells (Wolff et al., 

2005).  In light of the reported P2Y14-R expression in lung and and in immune cells, it is 

possible that the P2Y14-R has a specific function related to its basolateral localization in cells.  

The P2Y2-R, for example, exhibits apical localization in lung epithelial cell lines (Qi et al., 
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2005; Wolff et al., 2005), and has been demonstrated to be important in mucociliary 

clearance (Cressman et al., 1999; Donaldson et al., 2000). 

Desensitization is an important mechanism for GPCRs to terminate receptor signaling 

in the presence of chronic agonist exposure.  Because it has been demonstrated that UDP-Glc 

is released from cells constitutively as well as after mechanical and pharmacological 

stimulation, it is likely that UDP-Glc is constantly present in the extracellular space.  

Therefore, the question arises whether the P2Y14-R desensitizes and how this may impact 

UDP-Glc-dependent signal transduction.  Other P2Y-R are regulated by desensitization, and 

exhibit various rates of desensitization upon agonist stimulation.  The P2Y6-R, for example is 

reported to desensitize after prolonged agonist stimulation (Brinson and Harden, 2001), while 

the P2Y1-R and P2Y12-R desensitize quickly in platelets after agonist activation leads to 

shape change and aggregation (Hardy et al., 2005; Bourdon et al., 2006).  Future studies will 

determine whether desensitization plays a role in P2Y14-R-dependent processes.         

 As we gain insight into the functional role of the P2Y14-R, we will undoubtedly learn 

more about how this receptor is regulated.  Myriad mechanisms have been demonstrated for 

regulation of other P2Y receptor functions, and the significance of amino acid sequence 

signals, post-translational modifications and desensitization on P2Y14-R function will await 

further investigation. 

Pharmacology and Signal Transduction 

UDP-Glc has long been known as a compound that is concentrated in the ER/Golgi 

apparatus and is a component of the protein synthesis quality control machinery (Parodi, 

2000).  With the discovery that the P2Y14-R is activated by UDP-Glc and three other UDP-

sugars (Fig. 5), the notion of nucleotide-sugars as extracellular signaling molecules was 
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introduced.  The rank order of potency of P2Y14-R agonists has been reported as follows:  

UDP-glucose ≥ UDP-galactose ≥ UDP-glucuronic acid > UDP-N-acetylglucosamine 

(Chambers et al., 2000).  While UDP-Glc is considered the endogenous agonist, the other 

UDP-sugars have been reported to have varying degrees of efficacy at the P2Y14 receptor.  

There have not been any reports of antagonists for this receptor.    

UDP-Glc promoted GTPγS binding on HEK293 membranes expressing recombinant 

P2Y14-R.  Additionally, UDP-Glc promoted calcium mobilization when the P2Y14-R was co-

expressed with the promiscuous Gα16 (Chambers et al., 2000).  The P2Y14-R also couples to 

the chimeric Gαq/i (Lazarowski et al., 2003; Moore et al., 2003).  This chimeric G protein is a 

Gq that has been engineered to couple Gi-coupled receptors to PLC (Coward et al., 1999).  

The P2Y14-R is expected to couple to Gαi leading to inhibition of adenylyl cyclase, but this 

has yet to be shown. 

In some experimental systems, investigators have observed UDP-Glc-dependent Ca2+ 

mobilization, indicating that the P2Y14-R may couple to PLCβ isoforms, likely through 

release of Gβγ upon activation of Gi.  UDP-glucose- and UDP-galactose-dependent increases 

in Ca2+ in rat cortical astrocytes were reported (Fumagalli et al., 2003).  UDP-Glc-dependent 

increases in Ca2+ were also observed in human immature dendritic cells (Skelton et al., 

2003).       

Physiological Significance 

  While the physiological role of the P2Y14-R remains unclear, the reportedly high 

expression levels in leukocytes in conjunction with several reports of UDP-Glc-dependent 

activity in immune response assays suggests that there may be a potential role for the P2Y14-

R in immune system homeostasis.  P2Y14-R mRNA was demonstrated to be upregulated in 
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rat brain after immunologic challenge with lipopolysaccharide (Moore et al., 2003), 

suggesting that the P2Y14-R may be involved in immune responses to bacterial insult, as LPS 

treatment has been shown to modulate release of cytokines and upregulate expression of 

chemokine receptors (Palin et al., 2001; Banisadr et al., 2002).  P2Y14-R mRNA has also 

been detected in immature human dendritic cells, which are immune cells that mature and 

migrate to a site of inflammation in response to insult or injury (Skelton et al., 2003).  UDP-

Glc affected a calcium response in immature dendritic cells, suggesting that the P2Y14-R may 

have a role in induction of maturation of dendritic cells in response to high concentrations of 

ligand released from injured tissues.  Furthermore, Scrivens and Dickenson (2005, 2006) 

reported P2Y14-R expression in T-lymphocytes from mice and in human neutrophils, and 

reported UDP-Glc-, but not other UDP-sugar-dependent inhibition of adenylyl cyclase 

stimulation in both cell types (Scrivens and Dickenson, 2005; Scrivens and Dickenson, 

2006).  In T-lymphocytes, the authors reported that all four UDP-sugar agonists partially 

inhibited IL-2- and anti-CD3-induced cell proliferation, suggesting that perhaps the P2Y14-R 

is involved in T-lymphocyte biology.  The authors observed no P2Y14-R-dependent effect on 

elastase release, which is an assay for neutrophil degranulation.  While it seems likely there 

will be a role for the P2Y14-R in immune response physiology, it is too early to speculate on 

details related to which cell processes may be modulated by P2Y14-R function. 

Aims of this dissertation 

The work presented in the following pages addresses specific aims of research 

regarding molecular pharmacology and signal transduction of the P2Y14-R.  In Chapter 2, 

studies to develop novel ligands for the P2Y14-R will be discussed.  Rhodopsin-based 

homology modeling was used to simulate theoretical interactions of known P2Y14-R agonists 
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with the receptor.  Analyses revealed the putative involvement of several residues interacting 

with the hexose moiety, suggesting that the glucose structure may be an important part of the 

molecule for receptor activation.  For these studies, a cellular assay system was developed 

that employs the chimera Gαq/i and over-expressed P2Y14-R in COS-7 cells.  Novel, selective 

ligands for the P2Y14-R have been developed based on structure-activity relationships, and 

we are continuing in this endeavor to identify high affinity agonists and antagonists that can 

be used as templates to propel the development of pharmacological research tools for the 

P2Y14-R.  A specifically acting ligand will augment the currently available methods for 

studying the P2Y14-R and distinguishing its individual physiological role relative to other 

P2Y receptors.   

In Chapter 3, the identification of a competitive antagonist for the P2Y14-R in a 

heterologous system is reported.  Few selective antagonists are available for any of the P2Y 

receptors, causing difficulties in conclusive establishment of a physiological role for 

individual receptor subtypes.  The lack of selective antagonists for the P2Y14-R has impeded 

investigation into the signaling properties and tissue distribution of this receptor.  The 

identification of UDP as an antagonist at the P2Y14-R contributes to our knowledge of P2Y14-

R pharmacology and will further our work toward developing a high affinity, non-

hydrolyzable competitive antagonist for the receptor. 

An additional element of Chapter 3 includes an investigation into the molecular 

pharmacology of the rat ortholog of the P2Y14-R, and a comparison of known ligands to 

determine whether the rat P2Y14-R functions similarly to the human receptor.  Precedence for 

divergent pharmacological activation profiles among species orthologs has been reported for 

the P2Y4-R and for the P2Y11-R.  The studies presented in Chapter 3 reveal differences in the 
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pharmacological profile between the human and rat P2Y14-R and will be necessary criteria 

for assessing studies of the P2Y14-R in murine model systems.  

Chapter 4 details the findings that the P2Y14-R couples to inhibition of adenylyl 

cyclase and activates ERK1/2.  One goal of these studies was to generate stable cell lines for 

examining P2Y14-R signal transduction through its natively coupling G protein.  Studies 

performed in HEK293 epithelial cells and in C6 rat glioma cells have established that the 

P2Y14-R couples to the Gi family of G proteins.  Furthermore, the identification of a 

functional P2Y14-R endogenously expressed in differentiated HL-60 cells provides a system 

for examining this receptor at expression levels and with signal transduction pathways that 

are likely to be similar to its native physiological activity.  While P2Y14-R expression has 

been reported in various tissues and brain regions, we are still far from understanding the 

physiological role of this receptor, and have barely begun to uncover the signaling networks 

downstream of receptor activation.  With no explicit pathophysiologies in mouse or man to 

hint at potential functions for this receptor, model cell systems will be critical for furthering 

our knowledge of signal transduction and biological responses from P2Y14-R activation. 



 29

Figure 1.  Nucleotides are released from cells and are metabolized by ectoenzymes.  
ATP, UTP, and UDP-Glc undergo regulated release from cells via an unknown mechanism.  
Extracellular nucleotides and nucleotide-sugars are metabolized by plasma membrane-
anchored enzymes such as E-NPPs and NTPDases.  Nucleotide triphosphates are degraded 
into nucleotide diphosphates, and subsequently into nucleotide monophosphates.  UDP-Glc is 
metabolized by E-NPP family of ectoenzymes, resulting in UMP and glucose-1-P. 
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Figure 3.  P2Y-R agonists and G protein coupling schematic.  The metabotropic P2Y 
receptor family is comprised of eight members and is divided into two subfamilies, P2Y1-
like and P2Y12-like, based on amino acid sequence homology and proposed G-protein 
coupling.  P2Y1-R, P2Y2-R, P2Y4-R, P2Y6-R, and P2Y11-R activate Gq, and P2Y11-R also 
activates Gs.  P2Y12-R, P2Y13-R, and P2Y14-R activate Gi.  P2Y-R are activated by 
nucleotides and nucleotide sugars. 
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Figure 4.  P2Y14-R serpentine model.  The P2Y14-R has 338 amino acids with seven 
predicted transmembrane domains.  The P2Y14-R exhibits protein sequence features common 
to other P2Y-R, such as potential N-glycosylation sites at the amino-terminal region, four 
extracellular cysteine residues that are predicted to form 2 disulfide bridges, and 
aspartate118-arginine119-tyrosine120 form a “DRY motif” at the intracellular cusp of 
transmembrane 3.    
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Figure 5.  The P2Y14-R is activated by UDP-sugars.  Four agonists possessing similar 
chemical structures have been identified.  Compared with UDP-glucose, UDP-galactose  
has an inverted chirality of the hydroxyl group at position 4 of the hexose ring.   
UDP-glucuronic acid has a carboxylic acid substituted for the hydroxyl group in  
UDP-glucose at position 6 of the hexose ring.  UDP-N-acetylglucosamine exhibits a  
bulky acetamide group at position 2 of the hexose ring in comparison with the  
hydroxyl group of UDP-glucose.  



 34

References 

Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight 
GE, Fumagalli M, Gachet C, Jacobson KA and Weisman GA (2006) International 
Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide 
receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol 
Rev 58:281-341. 

 
Alvarado-Castillo C, Harden TK and Boyer JL (2005) Regulation of P2Y1 receptor-mediated 

signaling by the ectonucleoside triphosphate diphosphohydrolase isozymes 
NTPDase1 and NTPDase2. Mol Pharmacol 67:114-122. 

 
Alvarado-Castillo C, Lozano-Zarain P, Mateo J, Harden TK and Boyer JL (2002) A fusion 

protein of the human P2Y1 receptor and NTPDase1 exhibits functional activities of 
the native receptor and ectoenzyme and reduced signaling responses to endogenously 
released nucleotides. Mol Pharmacol 62:521-528. 

 
Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SG, Shi L, Gether U and Javitch JA 

(2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic 
lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 
276:29171-29177. 

 
Banisadr G, Queraud-Lesaux F, Boutterin MC, Pelaprat D, Zalc B, Rostene W, Haour F and 

Parsadaniantz SM (2002) Distribution, cellular localization and functional role of 
CCR2 chemokine receptors in adult rat brain. J Neurochem 81:257-269. 

 
Bar I, Guns PJ, Metallo J, Cammarata D, Wilkin F, Boeynams JM, Bult H and Robaye B 

(2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial 
cells, and vascular smooth muscle cells. Mol Pharmacol 74:777-784. 

 
Beigi R, Kobatake E, Aizawa M and Dubyak GR (1999) Detection of local ATP release from 

activated platelets using cell surface-attached firefly luciferase. Am J Physiol 
276:C267-278. 

 
Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G and Okada 

Y (2003) Macula densa cell signaling involves ATP release through a maxi anion 
channel. Proc Natl Acad Sci U S A 100:4322-4327. 

 
Belli SI, van Driel IR and Goding JW (1993) Identification and characterization of a soluble 

form of the plasma cell membrane glycoprotein PC-1 (5'-nucleotide 
phosphodiesterase). Eur J Biochem 217:421-428. 

 
Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for beta 

gamma dimers as well as alpha subunits. Cell 71:1069-1072. 
 



 35

Bourdon DM, Mahanty SK, Jacobson KA, Boyer JL and Harden TK (2006) (N)-
methanocarba-2MeSADP (MRS2365) is a subtype-specific agonist that induces rapid 
desensitization of the P2Y1 receptor of human platelets. J Thromb Haemost 4:861-
868. 

 
Brinson AE and Harden TK (2001) Differential regulation of the uridine nucleotide-activated 

P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are 
involved in agonist-dependent phosphorylation desensitization and internalization of 
the P2Y4 receptor. J Biol Chem 276:11939-11948. 

 
Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509-581. 
 
Burnstock G and Knight GE (2004) Cellular distribution and functions of P2 receptor 

subtypes in different systems. Int Rev Cytol 240:31-304. 
 
Buxton IL, Kaiser RA, Oxhorn BC and Cheek DJ (2001) Evidence supporting the Nucleotide 

Axis Hypothesis: ATP release and metabolism by coronary endothelium. Am J 
Physiol Heart Circ Physiol 281:H1657-1666. 

 
Caporali F, Capecchi PL, Gamberucci A, Lazzerini PE, Pompella G, Natale M, Lorenzini S, 

Selvi E, Galeazzi M and Laghi Pasini F (2008) Human rheumatoid synoviocytes 
express functional P2X7 receptors. J Mol Med 86:937-949. 

 
Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, Gilman AG, 

Benovic JL and Kozasa T (1999) Selective regulation of Galpha(q/11) by an RGS 
domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem 274:34483-
34492. 

 
Chadwick BP and Frischauf AM (1998) The CD39-like gene family: identification of three 

new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, 
and a member of the gene family from Drosophila melanogaster. Genomics 50:357-
367. 

 
Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, 

McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, 
Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic 
E, Klein C, Bergsma DJ, Wilson S and Livi GP (2000) A G protein-coupled receptor 
for UDP-glucose. J Biol Chem 275:10767-10771. 

 
Charlton ME, Williams AS, Fogliano M, Sweetnam PM and Duman RS (1997) The isolation 

and characterization of a novel G protein-coupled receptor regulated by immunologic 
challenge. Brain Res 764:141-148. 

 
Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA and 

Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 
receptors. Science 314:1792-1795. 



 36

 
Clair T, Lee HY, Liotta LA and Stracke ML (1997) Autotaxin is an exoenzyme possessing 

5'-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol 
Chem 272:996-1001. 

 
Clapham DE and Neer EJ (1997) G protein beta gamma subunits. Annu Rev Pharmacol 

Toxicol 37:167-203. 
 
Clifford EE, Martin KA, Dalal P, Thomas R and Dubyak GR (1997) Stage-specific 

expression of P2Y receptors, ecto-apyrase, and ecto-5'-nucleotidase in myeloid 
leukocytes. Am J Physiol 273:C973-987. 

 
Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M and 

Boeynaems JM (2001a) Identification of a novel human ADP receptor coupled to Gi. 
J Biol Chem 276:41479-41485. 

 
Communi D, Govaerts C, Parmentier M and Boeynaems JM (1997) Cloning of a human 

purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol 
Chem 272:31969-31973. 

 
Communi D, Parmentier M and Boeynaems JM (1996) Cloning, functional expression and 

tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 
222:303-308. 

 
Communi D, Pirotton S, Parmentier M and Boeynaems JM (1995) Cloning and functional 

expression of a human uridine nucleotide receptor. J Biol Chem 270:30849-30852. 
 
Communi D, Suarez-Huerta N, Dussossoy D, Savi P and Boeynaems JM (2001b) 

Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol 
Chem 276:16561-16566. 

 
Cook SP and McCleskey EW (2002) Cell damage excites nociceptors through release of 

cytosolic ATP. Pain 95:41-47. 
 
Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, and Junger WG (2008) Ecto-

nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates 
neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 
283:28480-6. 

 
Coward P, Chan SD, Wada HG, Humphries GM and Conklin BR (1999) Chimeric G 

proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal 
Biochem 270:242-248. 

 
Crabtree JS, Peano BJ, Zhang X, Komm BS, Winneker RC and Harris HA (2008) Activity of 

three selective estrogen receptor modulators on hormone-dependent responses in the 
mouse uterus and mammary gland. Mol Cell Endocrinol 287:40-46. 



 37

 
Crabtree JS, Zhang X, Peano BJ, Zhang Z, Winneker RC and Harris HA (2006) 

Development of a mouse model of mammary gland versus uterus tissue selectivity 
using estrogen- and progesterone-regulated gene markers. J Steroid Biochem Mol 
Biol 101:11-21. 

 
Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH and Grubb BR (1999) 

Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine 
epithelial Cl- transport. J Biol Chem 274:26461-26468. 

 
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML and 

Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. 
Nat Neurosci 8:752-758. 

 
Donaldson SH, Lazarowski ER, Picher M, Knowles MR, Stutts MJ and Boucher RC (2000) 

Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis 
airways. Mol Med 6:969-982. 

 
Dovlatova N, Wijeyeratne YD, Fox SC, Manolopoulos P, Johnson AJ, White AE, Latif ML, 

Ralevic V and Heptinstall S (2008) Detection of P2Y(14) protein in platelets and 
investigation of the role of P2Y(14) in platelet function in comparison with the EP(3) 
receptor. Thromb Haemost 100:261-270. 

 
Dubyak GR (2009) Both sides now: multiple interactions of ATP with pannexin-1 

hemichannels. Focus on "A permeant regulating its permeation pore: inhibition of 
pannexin 1 channels by ATP". Am J Physiol Cell Physiol 296:C235-241. 

 
Dubyak GR and el-Moatassim C (1993) Signal transduction via P2-purinergic receptors for 

extracellular ATP and other nucleotides. Am J Physiol 265:C577-606. 
 
Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS, 2nd, Imai M, Edelberg JM, 

Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC and 
Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results 
in disordered hemostasis and thromboregulation. Nat Med 5:1010-1017. 

 
Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia 

E, Bleibel W, Kahn BB, and Robson SC (2008) Deletion of cd39/entpd1 results in 
hepatic insulin resistance Diabetes 57:2311-20. 

 
Erlinge D, Harnek J, van Heusden C, Olivecrona G, Jern S and Lazarowski E (2005) Uridine 

triphosphate (UTP) is released during cardiac ischemia. Int J Cardiol 100:427-433. 
 
Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM and Koller BH (1999) 

Decreased platelet aggregation, increased bleeding time and resistance to 
thromboembolism in P2Y1-deficient mice. Nat Med 5:1199-1202. 

 



 38

Färber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, 
Bechmann I, Enjyoji K, Robson SC, and Kettenmann H (2008) The ectonucleotidase 
cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56:331-
41. 

 
Fausther M, Lecka J, Kukulski F, Levesque SA, Pelletier J, Zimmermann H, Dranoff JA and  

Sevigny J (2007) Cloning, purification, and identification of the liver canalicular 
ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:G785-795. 

 
Feranchak AP, Roman RM, Doctor RB, Salter KD, Toker A and Fitz JG (1999) The lipid 

products of phosphoinositide 3-kinase contribute to regulation of cholangiocyte ATP 
and chloride transport. J Biol Chem 274:30979-30986. 

 
Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson 

E, Monsma FJ, Jr., Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA 
and Chintala MS (2001) Molecular identification and characterization of the platelet 
ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 
107:1591-1598. 

 
Fumagalli M, Brambilla R, D'Ambrosi N, Volonte C, Matteoli M, Verderio C and 

Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical 
astrocytes: Role of P2X and P2Y receptors. Glia 43:218-203. 

 
Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P and Abbracchio MP (2004) 

Cloning, pharmacological characterisation and distribution of the rat G-protein-
coupled P2Y(13) receptor. Biochem Pharmacol 68:113-124. 

 
Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet 

drugs. Pharmacol Ther. 
 
Gatof D, Kilic G and Fitz JG (2004) Vesicular exocytosis contributes to volume-sensitive 

ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 286:G538-546. 
 
Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R and Boeynaems 

JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of 
intestinal chloride secretion. Br J Pharmacol 146:364-369. 

 
Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 

56:615-649. 
 
Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309-319. 
 
Grinthal A and Guidotti G (2002) Transmembrane domains confer different substrate 

specificities and adenosine diphosphate hydrolysis mechanisms on CD39, CD39L1, 
and chimeras. Biochemistry 41:1947-1956. 

 



 39

Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL and Slegers H (1999) 
An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the 
extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826-834. 

 
Harden TK, Lazarowski ER and Boucher RC (1997) Release, metabolism and 

interconversion of adenine and uridine nucleotides: implications for G protein-
coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 18:43-46. 

 
Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW and Mundell SJ (2005) P2Y1 and 

P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. 
Blood 105:3552-3560. 

 
Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB and Julius D (2006) The 

P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat 
Neurosci 9:1512-1519. 

 
Herold CL, Qi AD, Harden TK and Nicholas RA (2004) Agonist versus antagonist action of 

ATP at the P2Y4 receptor is determined by the second extracellular loop. J Biol Chem 
279:11456-11464. 

 
Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden 

P, Nurden A, Julius D and Conley PB (2001) Identification of the platelet ADP 
receptor targeted by antithrombotic drugs. Nature 409:202-207. 

 
Homolya L, Watt WC, Lazarowski ER, Koller BH and Boucher RC (1999) Nucleotide-

regulated calcium signaling in lung fibroblasts and epithelial cells from normal and 
P2Y(2) receptor (-/-) mice. J Biol Chem 274:26454-26460. 

 
Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, 

Luttmann W, Ferrari D, Di Virgilio F, Virchow JC, Jr. and Lambrecht BN (2007) 
Extracellular ATP triggers and maintains asthmatic airway inflammation by 
activating dendritic cells. Nat Med 13:913-919. 

 
Ivanenkov VV, Murphy-Piedmonte DM and Kirley TL (2003) Bacterial expression, 

characterization, and disulfide bond determination of soluble human NTPDase6 
(CD39L2) nucleotidase: implications for structure and function. Biochemistry 
42:11726-11735. 

 
Jacobson KA, Ivanov AA, de Castro S, Harden TK and Ko H (2008) Development of 

selective agonists and antagonists of P2Y receptors. Purinergic Signal. 
 
Jiang Y, Borrelli L, Bacskai BJ, Kanaoka Y and Boyce JA (2009) P2Y6 receptors require an 

intact cysteinyl leukotriene synthetic and signaling system to induce survival and 
activation of mast cells. J Immunol 182:1129-1137. 

 



 40

Joseph SM, Buchakjian MR and Dubyak GR (2003) Colocalization of ATP release sites and 
ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 
278:23331-23342. 

 
Kellerman D, Evans R, Mathews D and Shaffer C (2002) Inhaled P2Y2 receptor agonists as 

a treatment for patients with Cystic Fibrosis lung disease. Adv Drug Deliv Rev 
54:1463-1474. 

 
Kennedy C, Qi AD, Herold CL, Harden TK and Nicholas RA (2000) ATP, an agonist at the 

rat P2Y4 receptor, is an antagonist at the human P2Y4 receptor. Mol Pharmacol 
57:926-931. 

 
Kim YC, Lee JS, Sak K, Marteau F, Mamedova L, Boeynaems JM and Jacobson KA (2005) 

Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 
receptor. Biochem Pharmacol 70:266-274. 

 
Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A and Noguchi K (2006) 

Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal 
root ganglion and spinal cord. J Comp Neurol 498:443-454. 

 
Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi 

BV, Jacobson KA, Kohsaka S and Inoue K (2007) UDP acting at P2Y6 receptors is a 
mediator of microglial phagocytosis. Nature 446:1091-1095. 

 
Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G and 

Sternweis PC (1998) p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. 
Science 280:2109-2111. 

 
Kreda SM, Seminario-Vidal L, Heusden C and Lazarowski ER (2008) Thrombin-promoted 

release of UDP-glucose from human astrocytoma cells. Br J Pharmacol 153:1528-
1537. 

 
Krupnick JG and Benovic JL (1998) The role of receptor kinases and arrestins in G protein-

coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289-319. 
 
Krzeminski P, Pomorski P and Baranska J (2008) The P2Y14 receptor activity in glioma C6 

cells. Eur J Pharmacol 594:49-54. 
 
Kukulski F, Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson SC, 

Kirley TL and Sevigny J (2005) Comparative hydrolysis of P2 receptor agonists by 
NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193-204. 

 
Lazarowski E, Boucher RC and Harden TK (2000) Constitutive release of ATP and evidence 

for major contribution of ecto-nucleotide pyrophosphatase and nucleoside 
diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061-
31068. 



 41

 
Lazarowski ER and Harden TK (1999) Quantitation of extracellular UTP using a sensitive 

enzymatic assay. Br J Pharmacol 127:1272-1278. 
 
Lazarowski ER, Homolya L, Boucher RC and Harden TK (1997a) Direct demonstration of 

mechanically induced release of cellular UTP and its implication for uridine 
nucleotide receptor activation. J Biol Chem 272:24348-24354. 

 
Lazarowski ER, Homolya L, Boucher RC and Harden TK (1997b) Identification of an ecto-

nucleoside diphosphokinase and its contribution to interconversion of P2 receptor 
agonists. J Biol Chem 272:20402-20407. 

 
Lazarowski ER, Shea DA, Boucher RC and Harden TK (2003) Release of cellular UDP-

glucose as a potential extracellular signaling molecule. Mol Pharmacol 63:1190-
1197. 

 
Lee BC, Cheng T, Adams GB, Attar EC, Miura N, Lee SB, Saito Y, Olszak I, Dombkowski 

D, Olson DP, Hancock J, Choi PS, Haber DA, Luster AD and Scadden DT (2003) 
P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-
marrow hematopoietic stem cells. Genes Dev 17:1592-1604. 

 
Li Q, Olesky M, Palmer RK, Harden TK and Nicholas RA (1998) Evidence that the p2y3 

receptor is the avian homologue of the mammalian P2Y6 receptor. Mol Pharmacol 
54:541-546. 

 
Low MG and Saltiel AR (1988) Structural and functional roles of glycosyl-

phosphatidylinositol in membranes. Science 239:268-275. 
 
Lutz S, Freichel-Blomquist A, Yang Y, Rumenapp U, Jakobs KH, Schmidt M and Wieland T 

(2005) The guanine nucleotide exchange factor p63RhoGEF, a specific link between 
Gq/11-coupled receptor signaling and RhoA. J Biol Chem 280:11134-11139. 

 
Marteau F, Communi D, Boeynaems JM and Suarez Gonzalez N (2004) Involvement of 

multiple P2Y receptors and signaling pathways in the action of adenine nucleotides 
diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796-803. 

 
Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M and Pedata F (2005) ATP 

extracellular concentrations are increased in the rat striatum during in vivo ischemia. 
Neurochem Int 47:442-448. 

 
Merlin D, Guo X, Martin K, Laboisse C, Landis D, Dubyak G and Hopfer U (1996) 

Recruitment of purinergically stimulated Cl- channels from granule membrane to 
plasma membrane. Am J Physiol 271:C612-619. 

 
Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC and 

Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a 



 42

quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys 
Acta 1521:107-119. 

 
Moore DJ, Murdock PR, Watson JM, Faull RL, Waldvogel HJ, Szekeres PG, Wilson S, 

Freeman KB and Emson PC (2003) GPR105, a novel Gi/o-coupled UDP-glucose 
receptor expressed on brain glia and peripheral immune cells, is regulated by 
immunologic challenge: possible role in neuroimmune function. Brain Res Mol Brain 
Res 118:10-23. 

 
Myrtek D and Idzko M (2007) Chemotactic activity of extracellular nucleotideson human 

immune cells. Purinergic Signal 3:5-11. 
 
Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, 

Inoue K, Nagao T and Kurose H (2008) P2Y6 receptor-Galpha12/13 signalling in 
cardiomyocytes triggers pressure overload-induced cardiac fibrosis. Embo J 27:3104-
3115. 

 
Noguchi K, Ishii S and Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-

coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J 
Biol Chem 278:25600-25606. 

 
Nomura N, Miyajima N, Sazuka T, Tanaka A, Kawarabayasi Y, Sato S, Nagase T, Seki N, 

Ishikawa K and Tabata S (1994) Prediction of the coding sequences of unidentified 
human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) 
deduced by analysis of randomly sampled cDNA clones from human immature 
myeloid cell line KG-1. DNA Res 1:27-35. 

 
Offermanns S, Mancino V, Revel JP and Simon MI (1997) Vascular system defects and 

impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275:533-536. 
 
Okada SF, O'Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER 

and Boucher RC (2004) Voltage-dependent anion channel-1 (VDAC-1) contributes to 
ATP release and cell volume regulation in murine cells. J Gen Physiol 124:513-526. 

 
Ostrom RS, Gregorian C and Insel PA (2000) Cellular release of and response to ATP as key 

determinants of the set-point of signal transduction pathways. J Biol Chem 
275:11735-11739. 

 
Palin K, Pousset F, Verrier D, Dantzer R, Kelley K, Parnet P and Lestage J (2001) 

Characterization of interleukin-1 receptor antagonist isoform expression in the brain 
of lipopolysaccharide-treated rats. Neuroscience 103:161-169. 

 
Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 

69:69-93. 
 



 43

Pearson JD and Gordon JL (1979) Vascular endothelial and smooth muscle cells in culture 
selelctively release adenine nucleotides. Nature 281:384-386. 

 
Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q and Laird 

DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct 
characteristics from the connexin family of gap junction proteins. J Cell Sci 
120:3772-3783. 

 
Picher M and Boucher RC (2003) Human airway ecto-adenylate kinase. A mechanism to 

propagate ATP signaling on airway surfaces. J Biol Chem 278:11256-11264. 
 
Qi AD, Kennedy C, Harden TK and Nicholas RA (2001) Differential coupling of the human 

P2Y11 receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318-
326. 

 
Qi AD, Wolff SC and Nicholas RA (2005) The apical targeting signal of the P2Y2 receptor 

is located in its first extracellular loop. J Biol Chem 280:29169-29175. 
 
Quinn MJ and Fitzgerald DJ (1999) Ticlopidine and clopidogrel. Circulation 100:1667-1672. 
 
Ralevic V and Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 

50:413-492. 
 
Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, Boeynaems JM 

and Beauwens R (2003) Loss of nucleotide regulation of epithelial chloride transport 
in the jejunum of P2Y4-null mice. Mol Pharmacol 63:777-783. 

 
Robson SC, Sevigny J and Zimmermann H (2006) The E-NTPDase family of 

ectonucleotidases: Structure function relationships and pathophysiological 
significance. Purinergic Signal 2:409-430. 

 
Rojas RJ, Yohe ME, Gershburg S, Kawano T, Kozasa T and Sondek J (2007) Galphaq 

directly activates p63RhoGEF and Trio via a conserved extension of the Dbl 
homology-associated pleckstrin homology domain. J Biol Chem 282:29201-29210. 

 
Roman RM, Wang Y, Lidofsky SD, Feranchak AP, Lomri N, Scharschmidt BF and Fitz JG 

(1997) Hepatocellular ATP-binding cassette protein expression enhances ATP release 
and autocrine regulation of cell volume. J Biol Chem 272:21970-21976. 

 
Savi P and Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-

receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 
31:174-183. 

 
Schoneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Rompler 

H and Schulz A (2007) Structural and functional evolution of the P2Y(12)-like 
receptor group. Purinergic Signal 3:255-268. 



 44

 
Scrivens M and Dickenson JM (2005) Functional expression of the P2Y14 receptor in murine 

T-lymphocytes. Br J Pharmacol 146:435-444. 
 
Scrivens M and Dickenson JM (2006) Functional expression of the P2Y14 receptor in human 

neutrophils. Eur J Pharmacol 543:166-173. 
 
Seye CI, Kong Q, Erb L, Garrad RC, Krugh B, Wang M, Turner JT, Sturek M, Gonzalez FA 

and Weisman GA (2002) Functional P2Y2 nucleotide receptors mediate uridine 5'-
triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. 
Circulation 106:2720-2726. 

 
Shestopalov VI and Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol 

Life Sci 65:376-394. 
 
Skelton L, Cooper M, Murphy M and Platt A (2003) Human immature monocyte-derived 

dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) 
and increase intracellular calcium in response to its agonist, uridine 
diphosphoglucose. J Immunol 171:1941-1949. 

 
Sorensen CE and Novak I (2001) Visualization of ATP release in pancreatic acini in response 

to cholinergic stimulus. Use of fluorescent probes and confocal microscopy. J Biol 
Chem 276:32925-32932. 

 
Suzuki N, Nakamura S, Mano H and Kozasa T (2003) Gα 12 activates Rho GTPase through 

tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci U S A 
100:733-738. 

 
Tabata K, Baba K, Shiraishi A, Ito M and Fujita N (2007) The orphan GPCR GPR87 was 

deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res 
Commun 363:861-866. 

 
Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB and Schwiebert EM (1998) 

Bioluminescence detection of ATP release mechanisms in epithelia. Am J Physiol 
275:C1391-1406. 

 
Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T and Tesmer JJ (2005) Snapshot of 

activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science 
310:1686-1690. 

 
Wang L, Jacobsen SE, Bengtsson A and Erlinge D (2004) P2 receptor mRNA expression 

profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. 
BMC Immunol 5:16. 

 



 45

Wang Y, Roman R, Lidofsky SD and Fitz JG (1996) Autocrine signaling through ATP 
release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci 
U S A 93:12020-12025. 

 
Wihlborg AK, Balogh J, Wang L, Borna C, Dou Y, Joshi BV, Lazarowski E, Jacobson KA, 

Arner A and Erlinge D (2006) Positive inotropic effects by uridine triphosphate 
(UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on 
cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 
98:970-976. 

 
Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM and Robaye B (2001) The 

P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived 
dendritic cells. J Immunol 166:7172-7177. 

 
Wirkner K, Schweigel J, Gerevich Z, Franke H, Allgaier C, Barsoumian EL, Draheim H and 

Illes P (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via 
G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 
receptor-type. Br J Pharmacol 141:141-151. 

 
Wolff SC, Qi AD, Harden TK and Nicholas RA (2005) Polarized expression of human P2Y 

receptors in epithelial cells from kidney, lung, and colon. Am J Physiol Cell Physiol 
288:C624-632. 

 
Yang S, Cheek DJ, Westfall DP and Buxton IL (1994) Purinergic axis in cardiac blood 

vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 
74:401-407. 

 
Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important 

modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673-694. 
 
Yegutkin GG, Henttinen T, Samburski SS, Spychala J and Jalkanen S (2002) The evidence 

for two opposite, ATP-generating and ATP-consuming, extracellular pathways on 
endothelial and lymphoid cells. Biochem J 367:121-128. 

 
Yokomizo T, Izumi T, Chang K, Takuwa Y and Shimizu T (1997) A G-protein-coupled 

receptor for leukotriene B4 that mediates chemotaxis. Nature 387:620-624. 
 
Zhong X, Kriz R, Seehra J and Kumar R (2004) N-linked glycosylation of platelet P2Y12 

ADP receptor is essential for signal transduction but not for ligand binding or cell 
surface expression. FEBS Lett 562:111-117. 

 
Zimmermann H (1999) Two novel families of ectonucleotidases: molecular structures, 

catalytic properties and a search for function. Trends Pharmacol Sci 20:231-236. 
 
Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn 

Schmiedebergs Arch Pharmacol 362:299-309. 



 
 

Chapter II.  Identification of P2Y14-R ligands using structure-activity 

relationships and molecular modeling 

Introduction 

The diverse family of P2Y-R are widely distributed and have emerged as therapeutic 

targets for several pathophysiologies (Volonte et al., 2006).  The P2Y1-R and P2Y12-R play a 

vital role in platelet activation, and a metabolite of the drug clopidogrel, clinically used as an 

antithrombotic, is an irreversible antagonist at the P2Y12-R (Foster et al., 2001; Hollopeter et 

al., 2001).  Also, the P2Y2-R is an essential regulator of chloride transport in lung and other 

tissues.  In cystic fibrosis patients, the P2Y2-R is a therapeutic target for improvement of 

mucociliary clearance (Kellerman et al., 2002).  Although evidence for P2Y-R involvement 

in a number of physiological processes is robust, research on this receptor family has been 

impeded by the lack of selectively acting pharmacological agents.  Further complicated by 

cellular release of nucleotides and the metabolism of extracellular nucleotides, 

characterization of P2Y-R has relied primarily on studies of recombinant receptors and 

detection of receptor mRNA in tissues.    

Detection of P2Y receptors has been primarily based on quantification of mRNA due 

to the lack of reliable radioligand binding assays.  Because levels of mRNA expression do 

not always equate to levels of expressed protein, studies attributing receptor function to 

presence of mRNA must be interpreted cautiously.  Additionally, reports of species-specific 

pharmacological profiles for P2Y-R underscore the necessity to validate findings from 
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animal models in human tissues as well.  For example, ATP was demonstrated to be an 

antagonist at the human P2Y4-R and an agonist at the rat P2Y4-R (Kennedy et al., 2000).     

Ectonucleotidases are expressed on the cell surface, and they metabolize agonist for 

some P2Y-R subtypes even while generating agonist for another.  Extracellular nucleotide 

concentrations are dependent on expression of ectonucleotidases, thus impacting the potency 

for a particular nucleotide at a given receptor.  The expression of different types of 

ectoenzymes on the cell surface may selectively permit the activation of a subset of P2Y-R 

due to the availability of each nucleotide.  Another inherent challenge to studies of P2Y 

receptors is that nucleotides are released from cells upon mechanical stimulation, with 

changes in the pH of cell growth medium, after hormone stimulation of cells, and upon cell 

lysis (Fitz, 2007).   

Commercial preparations of nucleotides with a high level of purity are sometimes 

difficult to obtain.  ATP that is contaminated with UTP, for example, would produce 

confounding results in studies of multiple P2Y receptors.  When uridine nucleotide receptors 

were first cloned, the selectivities of the agonists were only clarified when contaminating 

UTP was converted to UDP with the use of hexokinase (Nicholas et al., 1996).  Likewise, 

ATP that has degraded into ADP would complicate studies of receptors targeted by ATP, or 

mislead the investigator to believe that ATP has an effect at ADP-activated receptors.  A 

study investigating P2Y14-R function in N9 microglial cells describes different effects of 

UDP-Glc depending on the source of the material, underscoring potential technical 

complications that may occur due to contaminated compounds purchased commercially 

(Brautigam et al., 2008).      
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 Novel P2Y receptor ligands exhibiting high affinity and receptor selectivity have 

been developed with the use of high throughput screens, receptor mutagenesis studies, 

structure-activity relationships (SAR), and molecular modeling (Jacobson et al., 2008).  High 

throughput screening has been limited in its usefulness for identifying P2Y receptor ligands, 

but in contrast, molecular modeling has recently become an effective method in conjunction 

with activity studies to guide development of new structural compounds. 

 Ligand development studies have identified novel agonists and antagonists for the 

P2Y2-R, P2Y6-R, and the P2Y12-R. Greatest progress has been realized, however, with ligand 

development for the P2Y1-R.  The finding that the adenosine bisphosphate molecules 

(A3P5PS) and (A3P5P) are competitive antagonists at the P2Y1-R was the impetus for 

launching a series of studies to develop high affinity antagonists for the P2Y1-R (Boyer et al., 

1996).  These compounds were used in studies to delineate the role of the P2Y1-R in platelet 

biology and also to distinguish the effects of the P2Y12-R from those of the P2Y1-R in signal 

transduction leading to platelet activation (Hechler et al., 1998; Jin et al., 1998).  These 

bisphosphate molecules were not ideal P2Y-R ligands because of their low affinity for the 

P2Y1-R and their structure was easily metabolized by ectoenzymes, so molecular modeling 

of the P2Y1-R in conjunction with SAR studies produced synthetic ligands with more 

desirable properties, using A3P5P as a template.  A selective and higher affinity antagonist, 

N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (N6MABP), also known as MRS2179, was 

developed subsequently, although it also was vulnerable to hydrolysis (Boyer et al., 1998).  

MRS2179 was widely used in studies characterizing the P2Y1-R in platelets and in 

astrocytes.  [33P]MRS2179 was used for quantifying P2Y1-R in platelets, verifying P2Y1-R 



 49

function in platelets, and MRS2179 also was assessed for its effects on platelet aggregation 

when systemically administered to mice (Baurand et al., 2001). 

 Following success with MRS2179, ligand development studies for the P2Y1-R 

became focused on non-hydrolyzable ligands that retained selectivity and high affinity at the 

receptor.  A constrained bicyclo-hexane ring moiety was introduced in place of the ribose, 

and through molecular modeling studies, the Northern (N) conformation of the ring was 

found to be tolerated at the P2Y1-R.  One of the molecules that emerged from these studies, 

2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bis-phosphate, also called 

MRS2279, was the first non-nucleotide competitive antagonist at the P2Y1-R that was widely 

used for characterization of the P2Y1-R without agonist degradation (Boyer et al., 2002).  

[3H]MRS2279 was used in radioligand binding assays to quantify P2Y1-R expression on 

various types of cells (Waldo et al., 2002).  An analogous molecule with a 2-iodo 

substitution, MRS2500, exhibited an affinity at the P2Y1-R of 1 nM, ten-fold higher than that 

of MRS2279 (Kim et al., 2003).  With the development of [32P]MRS2500, distribution of the 

P2Y1-R was quantified in rat tissues and also in human platelets (Houston et al., 2006). 

 In addition to the development of high affinity competitive antagonists, development 

of high affinity selective agonists for the P2Y1-R has also met with success.  Upon 

determination of the high affinity and hydrolysis-resistant properties conferred by the (N)-

methanocarba modification in antagonists, (N)-methanocarba-2-methylthio-ADP (MRS2365) 

was developed as a high affinity non-nucleotide agonist for the P2Y1-R that was inactive at 

the ADP-activated P2Y12-R and P2Y13-R (Chhatriwala et al., 2004).  These newest synthetic 

ligands for the P2Y1-R will prove useful in further studies of P2Y1-R function not only in 

platelets, but also in other tissues expressing functional P2Y1-R.   
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 Propelled by successes with ligand development for the P2Y1-R, we have applied a 

similar rational SAR approach to discovery of high affinity ligands for the P2Y14-R.  

Characterization of the P2Y14-R has been primarily based on RNA-level receptor expression 

and also with studies reporting biological consequences of extracellular UDP-Glc treatment 

on cultured cells, but has been impaired by the lack of high affinity agonists and competitive 

antagonists.  What we know of P2Y14-R function and tissue expression in native tissues is 

limited, and could benefit from the development of non-hydrolyzable, selective, high affinity 

ligands.   

The P2Y14-R was first described as a UDP-glucose receptor after the receptor was 

cloned and expressed in a heterologous cell system, and screened against multiple potential 

agonists (Chambers et al., 2000).  In addition to UDP-glucose, three other UDP-sugars were 

identified as agonists at the P2Y14-R: UDP-galactose, UDP-glucuronic acid, and UDP-N-

acetylglucosamine.  This initial discovery provided the framework for a series of studies in a 

collaboration between our lab and the lab of Dr. Kenneth A. Jacobson at the National 

Institutes of Health.  The goal of this work is to develop selective, high affinity agonists and 

antagonists for the P2Y14-R.  Molecular modeling studies have guided syntheses of UDP-Glc 

analogues examined for agonist action at the P2Y14-R.  These studies have been published 

(Ivanov et al., 2007; Ko et al., 2007; Ko et al., 2009), and will be reviewed herein. 

Methods 

Cell Culture.  COS-7 cells were grown on 12-well culture dishes and maintained in DMEM 

supplemented with 10% FBS and 4 mM L-glutamine at 37°C in a 10% CO2 environment.  

Cells were transfected 48 h prior to assay with pcDNA3.1 expression vectors encoding the 

human P2Y14 receptor.  Transfections also included a pcDNA3.1-Gαq/i, a vector that directs 
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expression of a chimera of Gq containing the last five amino acids of Gi.  This chimeric G 

protein promotes activation of phospholipase C through Gi-coupled receptors (Coward et al., 

1999).  The levels of basal inositol phosphates increase markedly in COS-7 cells upon 

expression of human P2Y14-R and Gαq/i.  Since we have previously shown that this activity is 

dependent on release of cellular UDP-sugars (Lazarowski et al., 2003), in some experiments 

pcDNA3.1 expressing ectonucleotide pyrophosphatase/ phosphodiesterase-1 (ENPP1) was 

co-transfected with the goal of lowering basal inositol phosphate signaling and therefore 

increasing fold response to the agonist.  FuGENE 6 (Roche Applied Science, Indianapolis, 

IN) was used as the transfection reagent following the manufacturer’s protocol. 

Inositol Phosphate Accumulation Assay.  Cells were labeled 18 h prior to assay with 1 µCi/ 

well [3H]-myo-inositol (American Radiolabeled Chemicals, St. Louis, MO) in inositol-free 

and serum-free DMEM.  The assay was started with the addition of 10 mM LiCl with or 

without drugs and cells were incubated for 45 min at 37°C.  The reaction was stopped by 

aspiration of medium and addition of ice-cold 50 mM formic acid.  After neutralization with 

150 mM ammonium hydroxide, [3H]inositol phosphates were isolated by Dowex column 

chromatography as described previously (Nakahata and Harden, 1987).   

Summary of Results 

The P2Y14-R was subjected to rhodopsin-based homology modeling to estimate an 

overall structure for the receptor, and UDP-Glc was modeled into the putative binding pocket 

of the P2Y14-R to predict points of contact in the ligand-receptor complex.  From these 

studies, extrapolations regarding regions of the pharmacophore that would tolerate 

modifications as well as enhance potency at the receptor were made.  Structural analogs of 

UDP-Glc were synthesized and pharmacologically assessed at recombinant P2Y14-R.  The 
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receptor was co-expressed with a chimeric Gq/i in COS-7 cells.  Gq/i is an engineered 

chimeric construct that replaces the five carboxyl terminal residues of Gq with those of Gi 

(Coward et al., 1999).  Thus, P2Y14-R were artificially coupled to PLC activation, and 

measurement of P2Y14-R function was accomplished by quantifying accumulated 

[3H]inositol phosphates. 

Structure of the P2Y14-R by molecular modeling 

When all of the P2Y receptors were modeled to rhodopsin, general interpretations 

were made regarding similarities and differences among P2Y receptors.  All of the P2Y 

receptors, including P2Y14-R have intermolecular hydrogen bonds among the transmembrane 

regions that help to stabilize the protein: TM1 – TM7; TM3 – TM6, TM7; TM2 – TM4.  

Specific differences in the binding sites between P2Y1-like and P2Y12-like receptors were 

also identified (Costanzi et al., 2004). 

The initial modeling study of the P2Y-R used rhodopsin as a template and built a 

homology model of the P2Y14-R (Costanzi et al., 2004).  Homology modeling is a useful tool 

to estimate the three dimensional orientation of a protein, and can provide information about 

intermolecular interactions and putative ligand binding sites.  The modeling study of the 

P2Y14-R was refined by molecular dynamics simulation, and furthermore, UDP-Glc was 

used in studies to identify the ligand binding site on the P2Y14-R by automatic molecular 

docking to the P2Y14-R model and then Monte Carlo Multiple Minimum (MCMM) analyses 

were performed (Ivanov et al., 2007; Ko et al., 2007).     

   The molecular dynamic simulation revealed that the first extracellular loop and the 

third intracellular loop exhibited the greatest flexibility in the molecule, while the second 

extracellular loop exhibited virtually no movement.  The constrained nature of the second 
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extracellular loop was verified with the identification of multiple interactions among residues 

in that region of the protein.  Hydrogen bonds can form between Arg165 and Glu166, and 

also between Arg165 and Lys176.  Arg165 is also in proximity to Glu12 in the N-terminal 

region, suggesting a potential interaction between these two residues.  Other potential 

interactions between EL2 residues and other regions of the receptor include hydrogen bonds 

between Glu174 and Arg253, and also between Glu166 and Lys277. 

When UDP-Glc was docked into the putative binding site of the P2Y14-R model, 

multiple potential points of interaction between ligand and receptor were identified (Fig. 6).  

The two possible conformations of the ribose ring (Northern versus Southern) of UDP-Glc 

were compared to determine which may be favored.  In modeling studies of other P2Y-R-

ligand complexes, the Northern (N) conformation of the ribose ring was preferred, with the 

exception of the P2Y6-R (Kim et al., 2002).  The 3’-hydroxyl group of the ribose ring of 

UDP-Glc did not form hydrogen bonds with the receptor in either (N)-UDP-Glc or (S)-UDP-

Glc.  The 2’-hydroxyl group, however, formed hydrogen bonds with different residues in 

each of the conformations.  With (N)-UDP-Glc, the 2’-hydroxyl group formed a hydrogen 

bond with Asn104.  In contrast, the 2’-hydroxyl group of (S)-UDP-Glc formed a hydrogen 

bond with Asn287.  The modeling studies indicated that either of the conformations of UDP-

Glc may be tolerated, and this hypothesis was probed experimentally with UDP-Glc 

containing a carbocyclic analogue of the ribose, a methanocarba ring, and results of which 

will be discussed below.  

The uracil ring of UDP-Glc was in close proximity to several residues, suggesting 

potential interactions between ligand and receptor at these points (Fig. 6).  Tyr29 is a highly 

conserved residue among P2Y receptors, and has been identified as a residue that may 
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interact with the uracil moiety in other P2Y-R (Costanzi et al., 2004).  Likewise, it may also 

be important in ligand binding at the P2Y14-R, as the oxygen atom at position 4 of the uracil 

ring in UDP-Glc was close to Tyr29 in the P2Y14-R model.  Additional interactions are 

predicted to occur between the oxygen atom at position 2 of the uracil ring with Asn287 

and/or Val288.  Other potentially important interactions for receptor binding to the uracil 

moiety may be between the 3-NH group of uracil and Val32 and Val288. 

The phosphate groups of UDP-Glc were also analyzed for potential interactions with 

the P2Y14-R (Fig. 6).  The α-phosphate of UDP-Glc associated with the hydroxyl groups of 

Ser284 and with residue Thr280, which is highly conserved among P2Y-R.  Another 

proposed receptor interaction with the phosphate chain of UDP-Glc is with Lys171, which is 

located in the second extracellular loop of the P2Y14-R.  Other P2Y12-like receptors also have 

been proposed to interact with the ligand phosphate chain at an EL2 lysine.  However, other 

proposed interactions between the phosphate chain and residues in TM6 and TM7 in the 

P2Y12-like receptors do not appear to be critical for phosphate group interactions with the 

P2Y14-R.  The hexose moiety of UDP-Glc is predicted to form many hydrogen bonds with 

residues in the P2Y14-R, most of which are located in the second extracellular loop and 

transmembrane regions (Fig. 6).  Hydroxyl groups on the hexose ring likely form hydrogen 

bonds with one or more of the following residues when the P2Y14-R binds UDP-Glc:  

Arg253 (TM6), Lys277 (TM7), Lys171 (EL2), Glu174 (EL2), and Glu166 (EL2).      

Other UDP-sugars that are known agonists were used in modeling studies of the 

P2Y14-R (Ko et al., 2009).  UDP-galactose, UDP-glucuronic acid, and UDP-N-

acetylglucosamine are all similar in structure to UDP-glucose except at the sugar moiety 

(Table 1).  UDP-galactose has a hydroxyl group at position 4 of the hexose ring like UDP-
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glucose, but the hydroxyl group has an inverted chirality.  UDP-glucuronic acid is like UDP-

glucose except that there is a carboxylic acid group at position 6 of the hexose, while UDP-

glucose has only a hydroxyl group at that position.  UDP-N-acetylglucosamine is the least 

like the other UDP-sugars.  At the 2 position of the hexose ring, UDP-Glc has a hydroxyl 

group, but UDP-N-acetylglucosamine has a bulky acetamide group.  UDP-N-

acetylglucosamine has been observed to exhibit the least potency of the four UDP-sugars at 

the P2Y14-R (Table 1), and molecular modeling may give us an idea as to why that may be 

true.  When each of the UDP-sugars was docked into the P2Y14-R model, they all assumed a 

relatively similar position to UDP-Glc in the putative binding site and were proposed to 

maintain most of the hydrogen bonds observed for UDP-Glc.  However, in the case of UDP-

N-acetylglucosamine, the bulky acetamide group did not appear to form any interactions with 

the receptor and caused a slight shift in the orientation of the receptor in that region.  While it 

is not clear whether an altered receptor orientation is responsible for the lower potency of 

UDP-N-acetylglucosamine at the P2Y14-R, it is likely that the acetamide group at position 2 

of the hexose ring is responsible for steric occlusion of the receptor binding site.  Further 

docking studies substituted other sugar moieties for glucose in an attempt to guide design of 

novel agonists at the P2Y14-R.   

 Molecular modeling studies of the P2Y14-R were informative with regard to 

identifying the putative ligand binding site of the receptor and assisted in predictions of 

receptor conformation within the lipid bilayer and potential intermolecular interactions.  

These studies revealed that the hexose moiety of UDP-Glc appears to be the most flexible 

region of the molecule for purposes of synthesizing novel ligands for the P2Y14-R, and this 

prediction is well supported by results from biological assays as described below.    
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Structure-Activity Relationships of UDP-glucose analogs at the P2Y14-R 

a. Uracil and Ribose Modifications 

Most of the modifications made to UDP-glucose on the uracil or ribose rings yielded an 

inactive molecule at the P2Y14-R (Table 2).  Specifically, substitution of the uracil moiety 

with the other bases cytidine, guanine, or adenine produced a compound with no effect.  

Modifications at the 5-position of the uracil ring (iodo-, azido-, amino-) of UDP-Glc 

abolished agonist activity.  Two uracil modifications were tolerated.  A 4-thio substitution on 

the uracil ring retained agonist activity and 4-thio-UDP-Glc was equipotent to UDP-Glc (Fig. 

7A).  A methylated thio group at the same position was not tolerated, resulting in a 

compound with no effect.  A thio substitution at the 2 position, 2-thio-UDP-Glc, resulted in a 

compound that exhibited at least six-fold greater potency than UDP-Glc (Fig. 7B). 

 More than a dozen ribose-modified compounds were synthesized.  These modifications 

included 2’- and 3’-deoxy compounds, substitutions at varying positions on the ring, and 

replacement of the ribose with a rigid methanocarba moiety, in either the Southern or 

Northern conformation.  All of the ribose modified compounds had no effect at the P2Y14-R 

(Table 2), indicating that this part of the molecule is important for maintaining stability of the 

ligand-receptor complex.  Additionally, UMP, UDP, UTP, and several dinucleotides were 

tested for agonist activity, and no effect of any of these compounds was observed.  From 

these results we have determined that modifications to the ribose moiety of UDP-Glc are not 

tolerated, and while more permissive, few modifications to the uracil ring are tolerated that 

retain agonist activity at the P2Y14-R.  This restrictive SAR of the P2Y14-R is in sharp 

contrast to that of other P2Y receptors, since modifications to the base or ribose moieties 

were mostly tolerated and retained efficacy, although not necessarily potency.      
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b. Hexose Modifications 

Informed by molecular modeling studies of the P2Y14-R in complex with various 

potential ligands, compounds with substitutions at the glucose ring were synthesized and 

tested as novel ligands.  Generally, substitutions of other sugars for glucose were well 

tolerated (Table 3).  UDP-fructose, UDP-mannose, and UDP-inositol were identified as novel 

agonists at the P2Y14-R with potencies similar to that of UDP-Glc.  Additional sugar 

substitutions were made to synthesize UDP-arabinose, UDP-fucose, and UDP-ribose, which 

all retained activity at the P2Y14-R.  Thus, it appears that most simple sugar substitutions are 

tolerated in place of the hexose position and exhibit agonist action at the P2Y14-R. 

It is clear that chirality of the hydroxyl groups on the hexose ring is critical in ligand 

recognition.  UDP-galactose is structurally similar to UDP-Glc.  However, the inverted 

chirality of the hydroxyl group at position 4 slightly reduces the potency of UDP-galactose at 

the P2Y14-R (Table 1).  Similarly, while a chiral inversion at position 1 of the hexose ring, 

UDP-β-glucose, decreased the potency of UDP-Glc at the P2Y14-R only two-fold, an inverted 

chirality of the hydroxyl group at position 2 resulted in UDP-mannose, a compound with 

three-fold lower potency than UDP-Glc (Table 3).       

More in depth studies were undertaken to probe the pharmacophore with particular 

consideration to the hexose moiety.  Fluoro-substitutions for the hydroxyl moieties at each of 

the hexose ring positions revealed reduced potencies upon fluoro substitution at the 2’ and 6’ 

positions, likely destablilizing the receptor-ligand complex due to the loss of a hydrogen 

bond.  The importance of the hydrogen bond at the 2’ position was further demonstrated by 

the observations that inversion of the 2’-hydroxyl chirality reduced the potency of UDP-Glc 

at the P2Y14-R, and 2’-deoxy-UDP-Glc exhibited greatly reduced efficacy (Table 3).  
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To explore the possibility of attaching a bulky chain onto a P2Y14-R ligand, a functional 

congener approach was employed (Li et al., 1999).  An amide-linked chain was attached to 

the carboxylic acid moiety of UDP-glucuronic acid.  As was predicted from modeling 

studies, these UDP-glucuronic acid analogues exhibited agonist activity at the P2Y14-R with 

similar potencies compared to UDP-glucuronic acid (Table 3).  We concluded that position 6 

of the hexose moiety is a tractable portion of the pharmacophore, and thus, it may be possible 

to conjugate large molecules to a P2Y14-R agonist through a carefully-placed functional 

group without losing affinity for the receptor. These findings provide an opportunity to 

synthesize new P2Y14-R ligands with bulky chemical groups, compounds which may be 

utilized in pharmacological studies.  Fluorophore-conjugated ligands that are selective for the 

P2Y14-R would be useful in characterizing receptor expression in tissues and cells.  Likewise, 

attachment of probes that increase affinity or selectivity for the receptor would provide a 

useful tool for quantifying and further characterizing the P2Y14-R in various tissues. 

Conclusions  

 Molecular modeling functions as a rational starting point to guide objectives of ligand 

structure-activity relationship studies for the purpose of developing novel ligands for the 

P2Y14-R.  Molecular modeling has predicted UDP-Glc contact sites at the uracil, phosphate, 

and hexose moieties.  The SAR studies, however, expanded our understanding of the nature 

of those interactions with regard to the role of each putative contact point in stabilizing the 

receptor-ligand complex.  Furthermore, studies of UDP-Glc analogues informed us about 

how modifications at each part of the molecule impacts potency at the receptor.  The second 

extracellular loop of the P2Y14-R appears to play an important role in stabilizing the hexose 
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moiety of the UDP-Glc molecule, and transmembrane domains three, six, and seven also 

harbor contact points for the phosphate and uracil moieties. 

 Agonist binding pockets of other P2Y receptors have also been predicted to form 

among residues in the TM3, TM6, TM7, and the EL2 (Costanzi et al., 2004), although 

different orientations of agonist in each receptor’s binding pocket dictates the particular 

residues that are important for agonist binding for each receptor.  Evidence from comparisons 

modeling ADP in the binding sites of the P2Y1-R or the P2Y12-R suggests that the same 

agonist uses non-correlative residues in each of the distinctive binding pockets.  While 44% 

shared sequence homology between the P2Y14-R and the P2Y12-R may ostensibly indicate 

closely aligned binding sites, differences in ligand selectivity undoubtedly make differences 

in binding modes necessary.  Comparisons to previous modeling studies with the P2Y12-R 

and P2Y13-R suggest that the P2Y14-R uses some analogous residues – an arginine in TM6, a 

lysine in TM7, and another lysine in EL2 - in forming a binding pocket.  These studies are 

ongoing, and as we learn more about the structure of the P2Y14-R and its ligand selectivity, 

we can pursue further the development of high affinity ligands for use in characterizing 

P2Y14-R function and expression.    
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Table 1. P2Y14-R agonists.  Table of P2Y14-R agonists previously identified with 
corresponding EC50 values measured by phosphatidylinositol hydrolysis assays in COS-7 
cells.  Left, structure of UDP-sugars, and R denotes the sugar substitution shown in the table. 
 

 

 

 HO2C 

OH 

O

N

H O

OP

O

O H

H N

O

O

O H

OP

O

O H

R

0.370 ± 0.070 UDP-glucuronic 
acid 

4.38 ± 1.05 UDP-N-Ac-
glucosamine 

0.670 ± 0.090 UDP-galactose

0.261 ± 0.053 UDP-glucose

O O

OHHO
OH

OH

O O

HO
OH

O O

OHHO
OH

OH

O O

NHCOCH3HO
OH

OH

Agonist  R         EC50, µM ± SE 
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Table 2. Ribose and uracil modifications on UDP-Glc are largely inactive at the P2Y14-
R.  Compounds assessed for agonist activity at the P2Y14-R include ribose-modified, base-
modified, ribose- and base-modified UDP-Glc analogues, and also dinucleotides.  EC50 
values reported are derived from phosphatidylinositol hydrolysis assays in COS-7 cells 
transiently expressing the P2Y14-R and Gq/i as described in Methods. (NE= no effect at 10 
μM) 
 

Modification EC50 at  
hP2Y14 receptor, µM ± SE 

Ribose modified 

2′-deoxy 
 

NE 

2′-deoxy-2′-azido 
 

NE 

2′-deoxy-2′-amino 
 

NE 

cyclic-2′- 
deoxy-2′-aminocarbonyl-3′-O 

 

NE 

3′-deoxy 
 

NE 

2′,3′-dideoxy-2′-methoxy-carbonyl 
 

NE 

2′-fluoro-2′-deoxyara NE 
(S)-methanocarba NE 

(N)-methanocarba NE 

(S)-mc-2′-deoxy 
 

NE 

carbocyclic NE 

Base-modified 
4-thio 

 
0.29 ± 0.16 

4-methylthio 
 

>10 

2-thio 
 

0.049 ± 0.02 

5-iodo 
 

NE 

5-azido 
 

NE 

5-amino NE 
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Base = C 

 
NE 

Base = A 
 

NE 

Base = G 
 

NE 

N4-methoxy-CDP-glucose <50% max at 10 µM 

Ribose- and Base-modified 

2′-deoxy-C 
 

NE 

2′-deoxy-T 
 

NE 

2′-deoxy- 
5-F-U 

 

NE 

Dinucleotides   

Up2U 
 

NE 

Cp2C 
 

NE 
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Table 3. Modifications at the hexose moiety of UDP-Glc are largely tolerated as agonists 
at the P2Y14-R. All of the simple sugars substituted for the glucose moiety retain agonist 
activity at the P2Y14-R, most with similar potency as UDP-Glc.  EC50 values were 
determined from phosphatidylinositol assays in COS-7 cells transiently expressing the 
P2Y14-R.  2’-Substitutions or deletion of the hydroxyl group reduce potency or efficacy.  
Functional congener substitutions are the last two compounds in the table.   Inset, structure of 
UDP-sugar, and R denotes the hexose substitution shown in the table. 

 

 

 

Modification Structure 

R = 

EC50 at  

hP2Y14 receptor, µM ± SE 

UDP-β-[1]glucose 

 

0.588 ± 0.130 

UDP-[1]mannose 
O O

OHHO
OH

OH

 

0.910 ± 0.150 
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0.562 ± 0.173 
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OH

OH
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UDP-2΄-F-[1]glucose 

 

2.5 ± 0.9 

UDP-3΄-F-[1]glucose 
O O

OHHO
F

OH

 

0.361 ± 0.094 

UDP-4΄-F-[1]glucose 

 

0.567 ± 0.156 

UDP-6΄-F-[1]glucose 

 

0.905 ± 0.429 

UDP-[6]glucose 

 

0.373 ± 0.073 

UDP-[6]mannose 

 

0.658 ± 0.022 

UDP-[6]2΄-deoxyglucose 

 

<50% max at 10 µM 

UDP-[5]ribose 
 

0.238 ± 0.084 

UDP-[5]arabinose 
 

0.460 ± 0.057 

OHO

HO OH
OH

O

OHO

HO OH
OH

O

OHO

OH
OH

O

O

OH

O

HO

HO

O

OH

O

HO

HO
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UDP-[1]fructose 
 

0.880 ± 0.210 

UDP-[6]fructose 
 

0.323 ± 0.069 

UDP-inositol 

 

 

1.88 ± 1.10 

UDP-[2-(acetylamino)-2-deoxy α-D-
glucopyranosyl] methyl phosphonyl 

uridine 5΄yl phosphate 

 

<50% max at 10 µM  

UDP-glucuronyl-ED-Ac  0.496 ± 0.067 

UDP-glucuronyl-ED-Boc  0.951 ± 0.277 
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Figure 6.  Potential points of interaction between UDP-Glc and the P2Y14-R.  Diagram of 
putative binding site for UDP-Glc depicting amino acid side chains that may form bonds with 
various atoms on the UDP-Glc molecule.  Tyr29 and Val32 lie in the amino terminal end; Asn104 
is in TM3; Arg253 is in TM6; Thr280, Ser284, Asn287, and Val288 are in TM7; Glu166, Lys171 
and Glu174 are in EL2; Lys277 is in EL3. 
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References 

 

Figure 7.  UDP-Glc analogues with 4’- and 2’-uracil ring modifications are novel 
agonists at the P2Y14-R.  COS-7 cells expressing P2Y14-R and Gq/i were radiolabeled with 
[3H]inositol, and incubated with varying concentrations of indicated compound for 45 min.  
A, 4-thio-UDP-Glc is equipotent to UDP-Glc.  B, 2-thio-UDP-Glc is >6X more potent than 
UDP-Glc at the P2Y14-R. 
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Chapter III.  UDP is a competitive antagonist at the 

human P2Y14 receptor 

Abstract 

G-protein coupled P2Y receptors (P2Y-R) are activated by adenine and uridine 

nucleotides.  The P2Y14 receptor (P2Y14-R) is activated by at least four naturally occurring 

UDP-sugars, with UDP-glucose (UDP-Glc) being the most potent agonist.  With the goal of 

identifying a competitive antagonist for the P2Y14-R, UDP was examined for antagonist 

activity in COS-7 cells transiently expressing the human P2Y14-R and a chimeric G protein 

that couples Gi-coupled receptors to stimulation of phosphoinositide hydrolysis.  UDP 

antagonized the agonist action of UDP-Glc, and Schild analysis confirmed the antagonism 

was competitive (pKB= 7.28).  UDPβS also antagonized the hP2Y14-R with an apparent 

affinity similar to that of UDP.  In contrast, no antagonist activity was observed with ADP, 

CDP, or GDP, and other uracil analogues also failed to exhibit antagonist activity.  

Antagonist activity of UDP was not observed at other human P2Y receptors.  In contrast to 

its antagonist action at the human P2Y14-R, UDP was a potent agonist (EC50 = 0.35 µM) at 

the rat P2Y14-R.  These results identify the first competitive antagonist of the P2Y14-R and 

demonstrate pharmacological differences between receptor orthologs. 

Introduction 

P2Y receptors are members of the superfamily of G-protein coupled receptors and are 

activated by adenine and uridine nucleotides and nucleotide-sugars.  At least eight receptors 

comprise the P2Y-R family.  P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Gq and 
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activate phospholipase C, while P2Y12, P2Y13, and P2Y14 receptors couple to Gi, leading to 

the inhibition of adenylyl cyclase and activation of ion channels (Burnstock, 2006).  The 

P2Y11-R uniquely couples both to Gq to activate phospholipase C and to Gs to stimulate 

adenylyl cyclase (Communi et al., 1997; Qi et al., 2001). 

The human P2Y14-R was identified as the eighth legitimate member of the P2Y 

receptor family (Chambers et al., 2000).  UDP-glucose (UDP-Glc) was proposed to be the 

endogenous agonist for the P2Y14-R, with UDP-galactose, UDP-glucuronic acid, and UDP-

N-acetylglucosamine acting as less potent P2Y14-R agonists.  P2Y14-R mRNA was detected 

in a broad range of human tissues including placenta, stomach, intestine, adipose, brain, lung, 

spleen and heart, and also in specialized cells such as circulating neutrophils (Chambers et 

al., 2000; Scrivens and Dickenson, 2006).  The rat and mouse P2Y14-R exhibit 80% and 83% 

amino acid identity to the human receptor, and both rodent orthologs are activated by known 

agonists with a similar profile to that of the human P2Y14-R (Freeman et al., 2001).     

Cellular UDP-Glc is released in a constitutive manner into the medium of a broad 

range of cell types.  While most extracellular nucleotides are metabolized quickly, UDP-Glc 

accumulates in the medium of several cell lines (Lazarowski et al., 2003).  The mechanisms 

of UDP-Glc release and extracellular metabolism remain unclear.  Observations of UDP-Glc-

promoted signaling were reported in multiple types of immune cells (Fumagalli et al., 2003; 

Skelton et al., 2003; Scrivens and Dickenson, 2005; Muller et al., 2005), suggesting that the 

P2Y14-R may have a yet to be defined role in the regulation of immune system homeostasis.       

Characterization of the P2Y14-R has been slowed by the lack of a selective 

competitive antagonist.  We have identified and developed novel, selective ligands for 

several P2Y receptors that have proven useful for pharmacological resolution of molecularly 
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defined P2Y-R in cells and tissues (Boyer et al., 1996; Jacobson et al., 2006; Houston et al., 

2006; Houston et al., 2007).  Accordingly, we are interested in identifying a selective 

antagonist for the P2Y14-R.   

Ault and Broach (2006) recently used a yeast model system in which various 

nucleotides and nucleotide-sugars were examined for their ability to stimulate growth of 

mutant P2Y14-R-expressing yeast cells in studies focused on identification of mutant P2Y14 

receptors with differential agonist sensitivities.  Studies performed using one of these mutant 

receptors revealed that UDP antagonized UDP-Glc-promoted receptor activation in a 

concentration-dependent manner (Ault and Broach, 2006).  We hypothesized that UDP acts 

as a competitive antagonist at the wild-type P2Y14-R, and therefore, used a transfected COS-

7 cell system to investigate UDP activity at the human and rat P2Y14-R.  Here we show that 

UDP is a selective and competitive antagonist of the human P2Y14-R.  Thus, signals 

emanating from extracellular UDP apparently occur as a consequence of activation of the 

P2Y6-R as well as through antagonism of the P2Y14-R.  Surprisingly, UDP is a potent full 

agonist at the rat P2Y14-R. 

Methods 

Materials  

UDP-Glc, UDP, ADP, CDP, GDP, and 2-methyl-thio-ADP were purchased from 

SigmaAldrich (St. Louis, MO).  UP3U was synthesized according to Methods detailed in 

Pendergast et al (2001).  The source of UP4U was as previously reported (Ivanov et al 2007).  

ATP and UTP were purchased from GE Healthcare (Piscataway, NJ).  [32P]PPi was 

synthesized as described previously (Lazarowski et al., 2003).  UDPβS as well as a 
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mammalian expression vector for ENPP1 were generous gifts from Dr. José Boyer of Inspire 

Pharmaceuticals, Durham, NC. 

Cell Culture and Transfection 

COS-7 cells were grown on 12-well culture dishes and maintained in DMEM supplemented 

with 10% FBS and 4 mM L-glutamine at 37°C in a 10% CO2 environment.  Cells were 

transfected 48 h prior to assay with pcDNA3.1 expression vectors encoding either the human 

or rat P2Y14 receptor with an N-terminal Hemaglutinin epitope.  The expression vector for 

the hP2Y14-R was obtained as previously reported (Lazarowski et al 2003).  Transfections 

also included pcDNA3.1-Gαq/i, a vector that directs expression of a chimera of Gαq 

containing the last five amino acids of Gαi.  This chimeric G protein promotes activation of 

phospholipase C through Gαi-coupled receptors (Coward et al., 1999).  The levels of basal 

inositol phosphates increased markedly in COS-7 cells upon expression of human or rat 

P2Y14-R and Gαq/i.  Since we previously illustrated that UDP-sugars are basally released by 

various cell types (Lazarowski et al., 2003), in some experiments pcDNA3.1 expressing 

ENPP1 was co-transfected with the goal of hydrolyzing extracellular nucleotide sugars and 

potentially decreasing inositol phosphate accumulation in the absence of added P2Y14-R 

agonists.  FuGENE 6 (Roche Applied Science, Indianapolis, IN) was used as the transfection 

reagent following the manufacturer’s protocol. 

Inositol Phosphate Accumulation Assay 

Cells were labeled 8-18 h prior to assay with 0.5-3 µCi/ well [3H]-myo-inositol (American 

Radiolabeled Chemicals, St. Louis, MO) in inositol-free and serum-free DMEM.  Assays 

were initiated with the addition of 10 mM LiCl with or without drugs, and incubations 

continued for 45 min at 37°C.  Reactions were stopped by aspiration of medium and addition 
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of ice-cold 50 mM formic acid.  After neutralization with 150 mM ammonium hydroxide, 

[3H]inositol phosphates were isolated by Dowex column chromatography as described 

previously (Nakahata and Harden, 1987).  Stable cell lines for P2Y1, P2Y2, P2Y4, P2Y6, or 

P2Y11 receptors were generated in 1321N1 human astrocytoma cells as previously described 

(Nicholas et al., 1996; Kennedy et al., 2000).  Experiments testing the potential activity of 

UDP at the P2Y2-R and P2Y4-R included hexokinase to eliminate contaminating UTP as 

described previously in Nicholas et al. (1996).  Briefly, UDP was treated with 10 U/mL 

hexokinase in the presence of 22 mM glucose for 1 h at 37ºC, and 1 U/mL hexokinase was 

included in the assay buffer for the duration of the incubation.  Variability in cpm of 

[3H]inositol phosphate accumulation across experiments occurred due to differences in the 

amount of [3H]inositol utilized for labeling and/or the duration of the prelabeling period.   

Measurement of UDP-Glc in the cell medium 

Quantification of UDP-Glc was performed as previously described (Lazarowski et al. 2003).  

Briefly, incubations were in a final volume of 150 µl containing known or unknown amounts 

of UDP-glucose, 25 mM HEPES, pH 7.4, and 0.5 U/ml UDP-glucose pyrophosphorylase 

from baker's yeast (Sigma), and 100 nM [32P]PPi (200,000 cpm). Incubations were 

terminated by addition of 0.3 mM PPi and immediate heating of samples for 2 min at 95°C, 

and formation of [32P]UTP was quantified by high performance liquid chromatography as 

described (Lazarowski et al. 2003).   

Quantification of P2Y14-R expression 
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Cells were seeded in 12-well plates at 5 x 104 cells/well 3 days prior to assay and transfected 

with mammalian expression vectors as described above.  Cells were fixed with 0.4 ml of 4% 

paraformaldehyde for 30 min at room temperature, washed twice with 1 ml of HBSS plus 

Ca2+/Mg2+, and incubated for 30 min at room temperature with 0.4 ml of DMEM plus 50 mM 

HEPES, pH 7.1, and 10% fetal bovine serum. Cells were incubated with mouse HA.11 

monoclonal antibody at a 1:1000 dilution in 0.4 ml of medium for 1 h at room temperature. 

Following two washes with 1 ml of HBSS plus Ca2+/Mg2+, cells were incubated with 

[125I]rabbit anti-mouse IgG antibody diluted to 1:500 in 0.4 ml of medium for 2 h at room 

temperature. Following another series of washing steps, cells were solubilized in 0.4 ml of 1 

M NaOH overnight and transferred to glass tubes for quantification of radioactivity in a 

gamma counter.  

Rat P2Y14-R subcloning 

The rat homolog of the P2Y14-R (rP2Y14-R) was amplified from rat genomic DNA using Pfu 

polymerase with the following primers: (5’-

GAGACGCGTCCGACAACACAACAACCACAGAAC-3’) and (5’-

AGACTCGAGTTACAAAGTATCTGTGCTTTCC-3’).  The primers contained either a 

MluI (upstream primer) or a XhoI (downstream primer) restriction site, respectively (sites are 

underlined) to facilitate cloning.  The amplification conditions were 94°C for 5 min; 

35 cycles of 94°C for 45 s, 55°C for 45 s, 72°C for 90 s; and a final extension for 4 min at 

72°C.  The amplified rP2Y14-R fragment was digested with MluI and XhoI, purified, and 

ligated into a similarly digested, modified pcDNA3 expression vector, which fuses an HA-

epitope to Asp-2 at the N-terminus of the receptor.  An individual clone encoding the 
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receptor was sequenced and found to be identical to the published sequence (Freeman et al., 

2001).   

Data Analyses 

The results from each experiment are expressed as mean ± S.E. from triplicate samples, and 

were analyzed using GraphPad Prism 4.0 software. All experiments were repeated at least 

three times with similar results.  Schild analysis was performed using EC50 values from the 

concentration effect curves for UDP-Glc generated in the absence and presence of increasing 

concentrations of UDP.  The pKB was calculated using the equation: log ([A’]/[A] – 1) = log 

[B] – log pKB (Arunlakshana and Schild, 1959), where [A’] is the concentration of UDP-Glc 

necessary to produce fifty percent of the maximal effect in the presence of antagonist [B] and 

[A] is the concentration of agonist necessary to produce fifty percent of the maximal effect in 

the absence of antagonist.  Drug response data presented in Figs 3A, 5A-D, and 7B are 

normalized as a percentage of the response observed with a maximally effective 

concentration (usually 10 uM) of UDP-Glc.  Statistics were carried out using Student’s t test.  

Results 

Agonist activity of UDP-Glc at the hP2Y14-R. 

To assay the functional activity of the hP2Y14-R, we utilized COS-7 cells transiently 

co-expressing the hP2Y14-R and a Gαq/i chimera.  The Gαq/i chimera is a Gαq protein in 

which the last five amino acids at the carboxyl terminus have been substituted with those of 

Gαi.  This chimeric Gα subunit is activated by GPCRs that couple to the Gαi family of G-

proteins and signal through downstream Gαq effectors such as phospholipase C (Coward et 

al., 1999).  Expression of the hP2Y14-R or the Gαq/i chimera alone in COS-7 cells resulted in 

levels of [3H]inositol phosphate accumulation similar to that observed in cells expressing 
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empty vector alone.  [3H]Inositol phosphate accumulation was not changed by the addition of 

100 µM UDP-Glc to cells expressing empty vector, the hP2Y14-R, or Gαq/i (Fig. 1).  Co-

expression of the hP2Y14-R and Gαq/i resulted in increased [3H]inositol phosphate 

accumulation in the presence of buffer alone as we previously reported (Lazarowski et al., 

2003).  Addition of 100 µM UDP-Glc to cells co-expressing the hP2Y14-R and Gαq/i resulted 

in a two-fold increase in inositol phosphate accumulation, consistent with agonist-promoted 

activation of phospholipase C (Fig. 8). 

To investigate the nature of the hP2Y14-R-dependent [3H]inositol phosphate 

accumulation in the absence of added agonist, we co-expressed ENPP1 with the hP2Y14-R 

and Gαq/i in COS-7 cells with the goal of removing any released nucleotide/nucleotide-sugar 

potentially present in the medium.  UDP-Glc levels (3.6 ± 1.9 nM) in the bulk medium from 

COS-7 cells expressing hP2Y14-R and Gαq/i were similar to that of control cells (3.3 ± 0.3 

nM).  In contrast, co-expression of ENPP1 in cells also expressing hP2Y14-R and Gαq/i 

resulted in an approximately 78 % reduction in UDP-Glc levels (0.8 ± 0.5 nM) compared to 

control.  Although expression of ENPP1 alone had no effect on basal [3H]inositol phosphate 

accumulation, expression of ENPP1 with hP2Y14-R and Gαq/i resulted in an approximately 

40% decrease (p < 0.01) in basal [3H]inositol phosphate levels compared to cells expressing 

receptor and G protein alone (Fig. 9A).  Expression of ENPP1 had no effect on surface 

expression of the hP2Y14-R as quantified with an immunoassay (data not shown; see 

Methods), and did not notably change the concentration effect curve for added UDP-Glc 

(Fig. 9B).  Thus, we conclude that the hP2Y14-R-dependent elevation of [3H]inositol 

phosphate levels in the absence of added agonist occurs largely because of 

autocrine/paracrine release of P2Y14-R agonist.  However, these results do not entirely rule 



 79

out the possibility that the overexpressed P2Y14-R exhibits constitutive activity in this test 

system.     

Antagonist Effect of UDP at the hP2Y14-R. 

Four UDP-sugars were identified as agonists at the hP2Y14-R, and neither UTP nor 

UDP exhibited agonist activity (Chambers et al., 2000).  To determine whether UDP is an 

antagonist at the wild-type hP2Y14-R, we generated a series of concentration-effect curves 

for UDP-Glc-promoted stimulation of phospholipase C in the presence of increasing 

concentrations of UDP (Fig. 10A).  UDP caused a parallel rightward shift of the UDP-Glc 

concentration-effect curve, and Schild analysis (Fig. 10B) confirmed that the antagonism 

produced by UDP was competitive (slope = 1.15 ± 0.06, n = 3).  The pKB of UDP for 

antagonism of the hP2Y14-R was 7.28 ± 0.04.   

We also assessed whether UDP exhibited antagonist activity at other P2Y-R stably 

expressed in 1321N1 human astrocytoma cells.  P2Y1-R was maximally activated by 1 µM 

2MeSADP (Fig. 11A), P2Y2-R and P2Y4-R were each activated by 3 µM UTP (Fig. 11B, C), 

and P2Y11-R was activated by 100 µM ATP (Fig. 11D).  Although 10 µM UDP completely 

blocked a near-maximal concentration of UDP-Glc at the hP2Y14-R (Fig. 10), UDP had no 

effect at any other P2Y receptors tested.  Thus, we conclude that UDP is a selective 

antagonist at the hP2Y14-R.   

To determine whether the antagonist effect of UDP at the hP2Y14-R is specific to the 

uracil structure, we also tested other nucleotides and nucleotide derivatives as antagonists at 

the hP2Y14-R.  In contrast to the action of UDP, other nucleoside diphosphates including 

ADP, CDP, and GDP, at concentrations of 10 µM or 100 µM did not inhibit UDP-Glc (3 

µM)-promoted [3H]inositol phosphate formation (Fig. 12).  We also tested whether other 
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uridine-based molecules would antagonize activation of the hP2Y14-R by UDP-Glc.  Neither 

UTP, UP3U, nor UP4U inhibited UDP-Glc activation of the receptor, although each of these 

nucleotides, when tested alone, produced a stimulatory effect in untransfected COS-7 cells 

(data not shown).  The discovery of antagonist activity of UDP at the hP2Y14-R was also 

supported by the observation that the UDP analogue, UDPβS, inhibited activation of this 

receptor by UDP-Glc (Fig. 13).  The IC50 value observed for UDPβS was similar to that 

determined for UDP under the same assay conditions.  From these results, we conclude that 

UDP appears to be unique among naturally-occurring nucleotides in its capacity to inhibit 

UDP-Glc-dependent activation of the hP2Y14-R.       

Effects of UDP at the rP2Y14-R. 

Since pharmacological studies often are carried out with rat or mouse tissues, it is 

important to assess whether receptor orthologs exhibit pharmacological selectivity similar to 

those of human P2Y-R.  Based on the precedent that ATP acts as an antagonist at the human 

P2Y4-R but is an agonist at the rat P2Y4-R (Bogdanov et al. 1998; Kennedy et al. 2000), we 

compared the action of UDP at the rP2Y14-R with its action at the hP2Y14-R.  The rat P2Y14-

R, which exhibits approximately 80% amino acid sequence identity to the hP2Y14-R, and 

almost 90% identity in the transmembrane regions alone, was reported to display a similar 

UDP-sugar selectivity to that of the hP2Y14-R (Freeman et al., 2001), but the actions of other 

uridine nucleotides on the rP2Y14-R have not been reported.   

Expression of either the rP2Y14-R or Gαq/i in COS-7 cells had no effect on 

[3H]inositol phosphate accumulation as compared to untransfected cells, but co-expression of 

receptor and Gαq/i resulted in markedly increased basal accumulation (Fig. 14A).  Consistent 

with other reports (Freeman et al., 2001), UDP-Glc was a potent agonist at the rP2Y14-R 
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(Fig. 14B).  Whereas UDP had no effect on inositol phosphate accumulation in wild-type 

COS-7 cells, in cells expressing Gαq/i alone, or in cells expressing the rP2Y14-R alone (data 

not shown), concentration of UDP-dependent increases in formation of [3H]inositol 

phosphates occurred in COS-7 cells co-expressing the rat P2Y14-R with Gαq/i (Fig 14B).  The 

maximal stimulatory effect observed with UDP was similar to that observed with UDP-Glc 

as were the EC50 values of UDP (0.35 µM ± 0.17) and UDP-Glc (EC50 = 0.28 µM ± 0.05).  

No additivity was observed between UDP and UDP-Glc on rP2Y14-R-promoted [3H]inositol 

phosphate formation (Fig. 14C).   

Discussion 

In this study, we show that UDP is a competitive antagonist at the human P2Y14-R, 

and this action is receptor-selective since UDP does not inhibit agonist-promoted activation 

of other hP2Y receptors.  Moreover, the activity of UDP at the P2Y14-R is species-dependent 

since we observed that UDP is a potent, and apparently full, agonist at the rat P2Y14-R. 

Chambers et al. (2000) reported in their initial study of the hP2Y14-R that UDP has no 

agonist activity, and we observed similar results in the studies reported here.  Using a 

reporter system in yeast, Ault and Broach (2006) generated a mutant hP2Y14-R displaying a 

mutation in intracellular loop 1 and various mutations in several of the transmembrane 

regions.  This mutant, selected for its ability to support growth of yeast at lower 

concentrations of UDP-Glc than the wild-type receptor, exhibited an enhanced UDP-Glc-

stimulated response that was inhibited by UDP, and a KB in the micromolar range was 

reported.  The >20-fold higher potency of UDP observed in our studies likely reflects large 

differences in the assay systems employed.  For example, whereas incubations with 

nucleotide were for minutes in the current study they were for hours in assays measuring 
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P2Y14-R mediated regulation of growth of yeast.  Our results illustrate that UDP is a potent 

competitive antagonist of the wild-type hP2Y14-R.    

Demonstration of antagonist action at the hP2Y14-R suggests that UDP may have 

broader physiological importance as an extracellular signaling molecule than has been 

previously appreciated.  Both UDP and UDP-glucose are known to be released from cells, 

although the mechanisms of their release remain unclear.  UDP is the most potent and 

selective agonist of the hP2Y6-R (Lazarowski and Harden, 1994; Communi et al., 1996), and 

physiological responses attributed to UDP-initiated P2Y6-R-promoted signaling include 

modulation of IL-8 production in monocytes (Warny et al., 2001) and human mature 

dendritic cells (Idzko et al., 2004).  Additionally, UDP was observed to induce a positive 

inotropic effect in mouse cardiomyocytes (Wihlborg et al. 2006) and to promote ion transport 

in human placental cytotrophoblast cells (Roberts et al., 2006).  Our data indicate that 

potential contributions of the P2Y14-R to responses associated with UDP must be considered.  

While reported distribution of P2Y6-R mRNA overlaps with that of P2Y14-R mRNA in many 

cells and tissues, such as lung, heart, placenta, and neutrophils (Communi et al., 1996; Moore 

et al., 2001), it remains unclear whether the two receptor types are co-expressed in the same 

cells or in different cells that share the same extracellular space.     

The actions of extracellular neurotransmitters and hormones are highly regulated by 

their release, metabolism, and reuptake.  The possibility that direct antagonism of GPCR 

activation occurs by extracellular signaling molecules has been suggested by observations 

that ATP is a competitive antagonist of the hP2Y12-R (Cusack and Hourani, 1982; Bodor et 

al., 2003) and of the hP2Y4-R (Bogdanov et al., 1998; Kennedy et al., 2000).  The 

physiological relevance of UDP antagonism at the hP2Y14-R will be important to investigate, 
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as will the idea that UDP simultaneously activates the hP2Y6-R while inhibiting the hP2Y14-

R. 

Our finding that UDP has agonist activity at the rP2Y14-R was surprising.  Study of 

the rat and human receptors under identical conditions rules out trivial explanations of this 

observation.  These data do not unambiguously rule out the possibility that UDP is a partial 

agonist at the human receptor under some conditions.  However, the agonist versus 

antagonist action of the nucleotide at the rat versus human P2Y14-R has been observed over a 

broad range of expression levels of these two receptors.  Our activity data suggest that the 

binding affinity of UDP for the human and rat receptors in fact are quite similar, but 

development of a radioligand binding assay will be necessary to fully assess this assertion. 

The fact that the maximal agonist activity of UDP was similar to that of UDP-Glc over a 

broad range of P2Y14-R expression levels (data not shown) suggests that the intrinsic efficacy 

of UDP at the rat P2Y14-R is similar to that of UDP-Glc.      

The differential activity of UDP observed between the rat and human orthologs of the 

P2Y14-R shares similarities to the actions of ATP at the P2Y4-R.  Kennedy et al. (2000) 

compared the ligand selectivities of the rat and human P2Y4 receptors under conditions that 

minimize effects of released nucleotides and of extracellular bioconversion of nucleotides 

and observed that ATP is an agonist at the rat P2Y4-R and a competitive antagonist at the 

human P2Y4-R.  Residues in the second extracellular loop of the P2Y4 receptor are the 

primary determinants for the agonist versus antagonist activity of ATP between the two 

species orthologs (Herold et al., 2004).  Like the P2Y4-R, the P2Y14-R shares approximately 

80% amino acid sequence identity between the rat and human orthologs, with 90% identity 

when analysis is restricted to transmembrane regions only.  Recent work by Ko et al. (2007) 
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defines the human P2Y14 receptor through structure-activity studies in conjunction with 

molecular modeling studies.  Residues in the second extracellular loop of the hP2Y14-R are 

predicted to interact with the diphosphate moiety and hydroxyl groups on the hexose ring of 

UDP-Glc.  Comparative modeling of the rat P2Y14-R and receptor mutagenesis directed from 

these predictions may identify key domains responsible for agonist efficacy at the hP2Y14-R. 

The mouse P2Y14-R has been cloned and is reported to be activated by the same 

UDP-sugar agonists as the human and rat receptors (Freeman et al., 2001).  The rat and 

mouse P2Y14-R share 89% overall amino acid sequence identity and are essentially identical 

in their transmembrane spanning domains and the second extracellular loop.  Thus, we 

anticipate that the agonist action of UDP observed with the rat receptor will be similarly 

observed at the mouse P2Y14-R. 

The finding that UDP acts as a competitive antagonist at the hP2Y14-R provides an 

excellent template for rational synthesis of antagonist analogues that exhibit high affinity at 

the hP2Y14-R.  Our structure-activity studies of UDP analogues at the hP2Y6-R (Besada et 

al., 2006) also provide potential avenues for development of P2Y14-R antagonists that do not 

act as ligands for the P2Y6-R.  Synthesis of a hydrolysis-resistant competitive antagonist for 

the P2Y14-R is an obvious goal, as is a high affinity radiolabeled antagonist. 

UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine 

previously were identified as full or partial agonists at human and rodent P2Y14-R (Chambers 

et al., 2000; Freeman et al., 2001).  The pharmacological selectivity for the P2Y14-R is now 

broadened with the finding that UDP also acts at this receptor.    The identification of UDP as 

a competitive antagonist for the hP2Y14-R provides new insight into the physiological 
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regulation of this receptor, and should be of pharmacological importance in delineating the 

functional roles subserved by this signaling protein. 
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Figure 8.  hP2Y14-R- and Gαq/i-dependent increases in [3H]inositol phosphate 
accumulation.  COS-7 cells were transfected with empty vector or expression vectors for 
hP2Y14-R and/or Gαq/i as described in Methods.  Cells were labeled with [3H]inositol for 18 h 
prior to assay.  LiCl (10 mM) buffer was added to the cells to inhibit inositol 
monophosphatase, and the cells were simultaneously incubated in the absence or presence of 
10 µM UDP-Glc for 45 min.  [3H]Inositol phosphates were isolated as described in Methods.  
Data shown are means ± S.E. calculated from triplicate samples and are representative of 
results obtained in three independent experiments. 
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Figure 9.  Co-expression of ENPP1 reduces the basal activation of the hP2Y14-R.  COS-7 
cells were co-transfected with expression vectors for hP2Y14-R and Gαq/i with (+) or without 
(-) an expression vector for ENPP1.  A) [3H]Inositol-labeled cells were incubated with 10 
mM LiCl in the absence or presence of UDP-Glc.  * p<0.01  B) [3H]Inositol-labeled cells 
were incubated with 10 mM LiCl in the absence or presence of UDP-Glc at the indicated 
concentrations.  Data shown are means ± S.E. calculated from triplicate determinations. 
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Figure 10.  UDP is a competitive antagonist at the hP2Y14-R.  A)  [3H]Inositol-labeled 
COS-7 cells co-expressing hP2Y14-R and Gαq/i were incubated with LiCl (10 mM) and 
increasing concentrations of UDP-glucose in the absence or presence of the indicated 
concentrations of UDP:  ■, Buffer; ▲, 0.1 µM; ▼, 0.3 µM; ♦, 1 µM; ●, 3 µM; □, 30 µM;   , 
100 µM.  Data shown are means ± S.E. calculated from triplicate samples and are 
representative of results obtained in three independent experiments.  B)  EC50 values from 
the concentration-effect curves in (A) were used for Schild regression analysis.  The data 
shown are results from a representative experiment repeated three times to yield a mean pKB 
of 7.28 ± 0.04 and a slope of 1.15 ± 0.06. 
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Figure 11.  UDP is a selective antagonist at the hP2Y14-R.  [3H]Inositol-labeled 1321N1 
human astrocytoma cells stably expressing either the A) human P2Y1-R, B) human P2Y2-R, 
C) human P2Y4-R, or D) human P2Y11-R were incubated for 30 min with 10 mM LiCl with 
the cognate agonist (indicated), or 10 µM UDP, or both agonist and UDP, and inositol 
phosphate accumulation was quantified as described in Methods.  Data shown are means ± 
S.E. calculated from triplicate samples and are representative results obtained in three or 
more independent experiments.   
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Figure 12.  UDP is unique among nucleotide diphosphates for its antagonist effect at the 
hP2Y14-R.  A) CDP, B) ADP, C) GDP, or D) UDP (10 µM or 100 µM) and LiCl (10 mM) 
were applied simultaneously with 3 µM UDP-Glc to [3H]inositol-labeled COS-7 cells 
transiently expressing hP2Y14-R and Gαq/i.  Data were normalized to values from maximal 
activation of hP2Y14-R by UDP-Glc alone, and the LiCl alone value was subtracted from 
each data point.  The data shown in (A), (C), and (D) are results from a representative 
experiment repeated three times.  The data shown in (B) is the average of results from four 
experiments. 
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Figure 13.  Antagonist effect of UDPβS at the hP2Y14-R.  [3H]inositol-labeled COS-7 cells 
transiently expressing hP2Y14-R and Gαq/i were incubated with 10 mM LiCl in the absence 
(○) or presence (●) of 1 µM UDP-Glc in the presence of the indicated concentrations of 
UDPβS for 30 min.  The data shown are means ± S.E. of triplicate determinations, and the 
results are representative of those obtained in three experiments. 
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Figure 14.  Agonist effect of UDP-Glc and UDP at the rP2Y14-R.  A) COS-7 cells 
transfected with an expression vector for Gαq/i and with empty vector and/ or rP2Y14-R were 
[3H]inositol-labeled and incubated with 10 mM LiCl in the absence or presence of 10 µM 
UDP-Glc.  B) [3H]Inositol-labeled COS-7 cells transiently expressing the rP2Y14-R and Gαq/i 
were incubated with 10 mM LiCl and UDP-Glc or UDP at the indicated concentrations, and 
[3H]inositol phosphate accumulation was quantified as described in Methods.  Data shown 
are means ± S.E. calculated from triplicate samples and are results from a representative 
experiment repeated three times, yielding an EC50 of 0.28 µM ± 0.05 for UDP-Glc, and 0.35 
µM ± 0.17 for UDP.  Data were normalized to the maximal activation of rP2Y14-R by UDP-
Glc.  C) Cells incubated with UDP-Glc (10 µM) + UDP (100 µM) exhibited no difference in 
[3H]inositol phosphate accumulation compared to accumulation in the presence of either 
agonist alone.  Data shown are means ± S.E. calculated from triplicate samples and are 
representative of results obtained in three independent experiments. 
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Chapter IV.  Gi-dependent cell signaling responses of the 
human P2Y14-receptor in model cell systems 

Abstract 

 Eight G protein-coupled receptors comprise the P2Y receptor family of cell signaling 

proteins.  The goal of the current study was to define native cell signaling pathways regulated 

by the uridine nucleotide sugar-activated P2Y14 receptor (P2Y14-R).  The P2Y14-R was stably 

expressed in HEK293 and C6 rat glioma cells by retroviral infection.  Nucleotide sugar-

dependent P2Y14-R activation was examined by measuring inhibition of forskolin-stimulated 

cyclic AMP accumulation.  The effect of P2Y14-R activation on mitogen activated protein 

kinase (MAPK) signaling also was studied in P2Y14-R-HEK293 cells and in differentiated 

HL-60 human myeloid leukemia cells.  UDP-glucose, UDP-galactose, UDP-glucuronic acid 

and UDP-N-acetylglucosamine promoted inhibition of forskolin-stimulated cyclic AMP 

accumulation in P2Y14-R-HEK293 and P2Y14-R-C6 cells, and this signaling effect was 

abolished by pretreatment of cells with pertussis toxin.  Inhibition of cyclic AMP formation 

by nucleotide sugars also was observed in direct assays of adenylyl cyclase activity in 

membranes prepared from P2Y14-R-C6 cells.  UDP-glucose promoted concentration-

dependent and pertussis toxin-sensitive extracellular regulated kinase (ERK) 1/2 

phosphorylation in P2Y14-R-HEK293 cells.  P2Y14-R mRNA was not observed in wild type 

HL-60 cells, but was readily detected in DMSO-differentiated cells.  Consistent with this 

observation, no effect of UDP-glucose was observed in wild type HL-60 cells, but UDP-

glucose-promoted pertussis-sensitive activation of ERK1/2 occurred after differentiation.  

These results illustrate that the human P2Y14-R signals through Gi to inhibit adenylyl 
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cyclase, and P2Y14-R activation also leads to ERK1/2 activation.  This work also identifies 

two stable P2Y14-R-expressing cell lines and differentiated HL-60 cells as model systems for 

the study of P2Y14-R-dependent signal transduction. 

Introduction 

The P2Y14-R is a seven-transmembrane-spanning G-protein coupled receptor that is 

activated by UDP-glucose (UDP-Glc) and other UDP-sugars (Chambers et al., 2000).  

P2Y14-R mRNA is expressed in stomach, intestine, placental and adipose tissues, lung, heart, 

and throughout the brain, as well as in many types of immune cells (Lee et al., 2003; Moore 

et al., 2003; Skelton et al., 2003; Scrivens and Dickenson, 2006).  Consistent with its 

prominent immune cell expression, the P2Y14-R has been implicated in several immune cell 

functions.  Moore and colleagues (2003) reported that P2Y14-R mRNA is upregulated in 

several brain regions after immunological challenge of mice with lipopolysaccharide.  

Additionally, UDP-Glc was reported to promote chemotaxis of bone marrow-derived 

hematopoietic stem cells (Lee et al., 2003). 

The P2Y14-R is a member of a subgroup of P2Y receptors, which includes the P2Y12 

and P2Y13 receptors thought primarily to activate heterotrimeric G proteins of the Gi family, 

but a comprehensive understanding of the signal transduction pathways activated by the 

P2Y14-R is not available.  Nonetheless, several reports are consistent with the idea that the 

P2Y14-R couples to Gi.  For example, Chambers and his colleagues illustrated in their initial 

study of the cloned human P2Y14-R that UDP-glucose promotes pertussis toxin-sensitive 

binding of radiolabeled GTPγS to membranes prepared from HEK293 cells expressing this 

receptor.  Modest UDP-glucose-promoted inhibition of cyclic AMP accumulation also has 

been reported for murine T-lymphocytes (Scrivens and Dickenson, 2005), human neutrophils 
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(Scrivens and Dickenson, 2006), and C6 glioma cells (Krzeminski et al., 2008), although the 

effects were not shown unambiguously to involve the P2Y14-R.  Other pharmacological 

studies of the P2Y14-R have relied on coexpression with the promiscuous G protein, Gα16 

(Chambers et al., 2000), or with a chimeric Gq (Moore et al., 2003; Fricks et al., 2008) 

engineered to couple Gi-activating receptors to activation of phosphoinositide hydrolysis and 

Ca2+ mobilization (Coward et al., 1999). 

Studies of the P2Y14-R have been limited by inability to detect and quantify receptor 

expression directly through the use of antibodies or radioligand binding assays, and also by 

the absence of high affinity, non-hydrolyzable, selective agonists and competitive antagonists 

to verify receptor-specific signal transduction.  It is critical that we understand the cell 

signaling processes engaged in response to P2Y14-R activation, and with this goal in mind, 

we generated two different cell lines that stably express the human P2Y14-R.  Robust P2Y14-

R-dependent inhibition of adenylyl cyclase was observed in both cell lines, and P2Y14-R-

dependent MAP kinase signaling was studied in P2Y14-R-HEK293 cells.  We also discovered 

that expression of native P2Y14-R is induced during differentiation of HL-60 myeloid 

leukemia cells, and that UDP-glucose promotes activation of MAP kinase signaling in these 

cells.  The model cell systems reported here should provide useful platforms for investigation 

of the P2Y14-R at the cellular and biochemical level. 

Methods 

Cell Culture   

HEK293 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) at 37ºC in a 10% CO2 environment.  C6 rat glioma cells 

were cultured in DMEM supplemented with 5% FBS in a 5% CO2 environment.  HL-60 cells 
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were maintained in Iscove’s medium supplemented with 10% FBS.  Differentiation of HL-60 

cells was achieved by inclusion of 1.3% DMSO in the culture medium for 5 days (Servant et 

al., 2000).   

P2Y14-R Expression   

Human P2Y14-R cDNA was amplified and ligated into the retroviral expression vector 

pLXSN as described previously (Wolff et al., 2005).  Retrovirus encoding the P2Y14-R was 

produced in PA317 cells according to the method of Johnson and colleagues (Johnson et al., 

1998) and was used to infect HEK293 cells or C6 glioma cells.  Geneticin-resistant cells 

were selected for two weeks in medium containing 0.4 mg/ml G418.  Clonal HEK293 cells 

stably expressing the hP2Y14-R were obtained by performing serial dilutions of cells in 96-

well plates, and growing clonal populations from a single cell under selection medium.  

Membrane Preparation 

Membranes were prepared as described previously (Smith and Harden, 1985).  Briefly, 

P2Y14-R-C6 rat glioma cells were grown on 150 mm dishes until confluent.  Cells were 

washed gently with PBS and then lysed with ice-cold 1 mM Tris, pH 7.4.  Cells were 

harvested by scraping dishes and homogenized with a glass homogenizer for ten strokes.  

Lysates were centrifuged at 40,000 x g for 10 min.  Membranes were resuspended in 10 mM 

Tris, pH 7.4, containing 1 mM EDTA and centrifuged again at 40,000 x g for 10 min.  

Washed membranes were resuspended in assay buffer (25 mM HEPES, pH 7.4, 5 mM MgCl, 

150 mM NaCl, 1 mM EDTA) and used immediately. 

Cyclic AMP Accumulation 

Cells were grown in 24-well plates and incubated with 1 µCi [3H]adenine/well in serum-free 

DMEM for 2 h prior to assay.  Assays were initiated by the addition of HEPES-buffered, 
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serum-free DMEM containing 500 µM 3-isobutyl-1-methyl-xanthine (IBMX), with or 

without drugs, and incubation continued for 12 min at 37ºC.  Incubations were terminated by 

aspiration of medium and addition of 450 µL ice-cold 5% trichloroacetic acid.  [3H]Cyclic 

AMP was isolated by sequential Dowex and alumina chromatography (Salomon et al., 1974) 

and quantified by liquid scintillation counting. 

Adenylyl Cyclase Activity 

Quantification of adenylyl cyclase activity was carried out according to the procedure 

described previously (Harden et al., 1982).  Briefly, assay tubes on ice contained drug or 

vehicle and a reaction mix of assay buffer containing, at final assay concentrations, 0.01 mM 

[α-32P]ATP (10-15 cpm/pmol), 0.5 mM [3H]cyclic AMP (10,000 cpm/assay), 8 mM creatine 

phosphate, creatine phosphokinase (6 U/assay), 0.01 mM GTP, 0.5 mM IBMX, 25 mM 

HEPES (pH 7.5), 5 mM MgSO4, 2 mM EDTA, and 150 mM NaCl.  Assays were initiated by 

the addition of 100 µg of membrane protein, and the incubations were carried out for 12 min 

at 30ºC.  The reaction was terminated with addition of 0.85 mL of ice-cold 5% trichloroacetic 

acid.  [32P]Cyclic AMP was isolated by sequential Dowex and alumina chromatography and 

quantified by liquid scintillation counting.  Recovery of [3H]cyclic AMP over columns 

averaged 50-60 %.     

 MAP Kinase Activation Assays 

HEK293 cells were grown on 12-well plates until 70-90% confluent.  Cells were serum-

starved 24 h prior to assay.  Drugs were added to cells for the indicated times, and the assay 

was terminated by aspiration of medium.  The cells were washed once with PBS, and 

Laemmli buffer containing 60 µM dithiothreitol (DTT) was added to each well.  The 

resultant cell lysates were passed through a 27G needle ten times, heated to 95ºC for five 
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min, and proteins resolved by electrophoresis on a 12.5% polyacrylamide gel.  Proteins were 

transferred to a nitrocellulose membrane, blocked with 5% BSA, washed with TBST (20 mM 

Tris, pH 7.4, 120 mM NaCl, 0.1% Tween20), and then incubated with antibody for phospho-

ERK1/2, phospho-p38, or phospho-JNK, according to the manufacturer’s directions.  After 

washing with TBST, membranes were incubated with horseradish peroxidase-conjugated 

goat-anti-mouse (phospho-ERK1/2, phospho-JNK) or goat-anti-rabbit (phospho-p38) 

antibody, membranes were washed, then incubated with chemiluminescent substrate (Pico 

West system, Thermo Fisher Scientific, Waltham, MA) and exposed to film.  Membranes 

were stripped with 200 mM glycine, pH 2.6, for 1 h at 25ºC, then re-probed with a primary 

antibody against total MAP kinase to verify equal loading of lanes.  HL-60 cells were serum-

starved 24 h prior to the assay, and resuspended in Hanks Buffered Salt Solution for the 

assay at a density of 5x106 cells/mL, 0.2 mL/assay.  Drugs were added for the indicated 

times, and the cells were lysed by adding one volume of Laemmli buffer containing 60 µM 

DTT to the cells.  Lysates were analyzed as described above.   

Data Analysis 

EC50 values were determined using Prism software (GraphPad, San Diego, CA) and are 

presented as mean ± SE.  Statistical significance was determined by Analysis of Variance 

(ANOVA), and p < 0.02 was considered statistically significant.  All experiments were 

repeated at least three times. 

Materials 

IBMX, creatine phosphate, creatine phosphokinase, forskolin, formyl-Met-Leu-Phe (fMLP), 

and GTP were purchased from SigmaAldrich (St. Louis, MO).  UDP-glucose, UDP-

galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine were all from FLUKA, 
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purchased through SigmaAldrich.  HPLC analysis of the UDP-Glc used in the current 

experiments revealed >98% purity.  ATP was purchased from GE Healthcare (Piscataway, 

NJ).  Pertussis toxin was purchased from List Biologicals (Campbell, CA).  [3H]Adenine and 

[3H]cyclic AMP were purchased from American Radiolabeled Chemicals (St. Louis, MO).  

[α-32P]ATP was purchased from PerkinElmer (Waltham, MA).  Antibodies for P-ERK1/2, 

ERK1/2, P-p38, p38, P-JNK, and JNK were purchased from Cell Signaling Technologies 

(Beverly, MA).  All cell culture medium and serum was from Gibco (Invitrogen, Carlsbad, 

CA).  PAR agonist peptide SLIGKV was a generous gift from Dr. Joann Trejo.  Anisomysin 

and sorbitol were kind gifts from Dr. Gary Johnson. 

Results 

UDP-sugars promote inhibition of forskolin-stimulated cyclic AMP formation in cells stably 

expressing the human P2Y14-R 

To examine potential regulation of adenylyl cyclase activity downstream of the 

human P2Y14-R, we stably expressed this receptor in HEK293 cells.  UDP-Glc promoted 

concentration-dependent inhibition of forskolin-stimulated accumulation of cyclic AMP in 

P2Y14-R-expressing HEK293 cells.  An EC50 value of 82 ± 11 nM (n = 3) was observed for 

UDP-Glc, and the maximal inhibition of forskolin-stimulated cyclic AMP accumulation 

ranged from 60-80% (Fig. 15).  In contrast, no effect of UDP-Glc was observed on basal or 

forskolin-stimulated cyclic AMP accumulation in HEK293 cells infected with vector alone.  

Pre-incubation of P2Y14-HEK293 cells with pertussis toxin resulted in complete loss of 

UDP-Glc-dependent inhibition of cyclic AMP accumulation, indicating that the P2Y14-R 

signals through Gα-subunits of the Gi family.   
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While UDP-Glc is reported to be a full agonist at the P2Y14-R, several studies of the 

P2Y14-R have reported variable effects of other nucleotide-sugars (Chambers et al., 2000; 

Scrivens and Dickenson, 2006).  Therefore, we tested the capacity of UDP-sugars to activate 

the P2Y14-R in P2Y14-HEK293 cells.  UDP-galactose, UDP-glucuronic acid, and UDP-N-

acetylglucosamine all promoted inhibition of cyclic AMP accumulation and the maximal 

inhibition observed was similar to that of UDP-Glc.  The potencies of UDP-galactose and 

UDP-glucuronic acid were similar to that of UDP-Glc, while UDP-N-acetylglucosamine 

exhibited an approximately 10-fold higher EC50 value (Fig. 16 and Table 4).   

We concluded it important to stably express the P2Y14-R in several cell backgrounds.  

Previous studies by our and other labs revealed robust inhibition of adenylyl cyclase in C6 rat 

glioma cells expressing several different G protein-coupled receptors (Schachter et al., 1997; 

Thomas et al., 2000; Castillo et al., 2007).  Therefore, we also infected C6 cells with 

recombinant pLXSN virus harboring the hP2Y14-R coding sequence.  Again, whereas UDP-

Glc had no effect on cyclic AMP accumulation in C6 cells expressing empty vector alone, 

robust inhibitory effects were observed with UDP-Glc in P2Y14-R-expressing C6 cells.  An 

EC50 value of 107 ± 68 nM was determined and up to 90% inhibition of forskolin-stimulated 

accumulation of cyclic AMP occurred in the presence of a maximally effective concentration 

of UDP-Glc.  The action of UDP-Glc in P2Y14-R-C6 cells was completely blocked by pre-

treatment of the cells with pertussis toxin (Fig. 17).  The concentration-dependent inhibition 

of cyclic AMP formation with other UDP-sugars also was established, and the EC50 values 

are reported in Table 4.   

Effects of UDP-sugars on adenylyl cyclase activity in membranes from P2Y14-R-expressing 

C6 cells 
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Based on the robust P2Y14-R-dependent inhibition of cyclic AMP accumulation 

observed in C6 glioma cells, we also isolated plasma membrane-enriched fractions to 

determine whether UDP-Glc- and P2Y14-R-dependent inhibition of adenylyl cyclase activity 

could be observed in a cell-free system.  While no effect of UDP-Glc was observed in 

membranes from control cells, approximately 50% inhibition of forskolin-stimulated 

adenylyl cyclase activity was observed in the presence of 10 μM UDP-Glc in membranes 

isolated from P2Y14-R-C6 glioma cells (Fig. 18).  This UDP-Glc-promoted response did not 

occur in membranes from P2Y14-R-C6 cells pretreated with pertussis toxin.           

MAP kinase activation by UDP-glucose in P2Y14-R-HEK293 cells 

Many important biological processes are regulated by MAP kinase signaling 

pathways.  To assess the capacity of the P2Y14-R to activate MAP kinase signaling cascades, 

P2Y14-R-HEK293 cells were treated with UDP-Glc and cell lysates were analyzed for 

phosphorylated ERK1/2 by Western blotting.  Whereas no effect was observed in mock-

infected cells, UDP-Glc-dependent ERK1/2 phosphorylation occurred in P2Y14-R-HEK293 

cells (Fig. 19A). 

The time course for UDP-Glc activation of ERK1/2 was compared to that occurring 

as a consequence of activation of the protease activated receptor-2 (PAR2), which is natively 

expressed in HEK293 cells (Amadesi et al., 2004; Dai et al., 2007).  Incubation of cells with 

the PAR2 agonist peptide SLIGKV (100 µM) resulted in marked phosphorylation of ERK1/2 

within 5 min, but phosphorylation quickly diminished thereafter.  In contrast, UDP-Glc-

dependent activation of ERK1/2 was not maximal until at least 15 min of incubation and was 

retained for at least 30 min.  The effects of UDP-Glc on ERK1/2 phosphorylation were 

concentration-dependent, and the EC50 (30 nM) observed was similar to that obtained in 
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studies of inhibition of cyclic AMP accumulation in these cells (Fig 19C).  As was observed 

in the studies of adenylyl cyclase activity, P2Y14-R-regulated ERK1/2 phosphorylation was 

not observed in cells preincubated with pertussis toxin (Fig. 19B).   

The capacity of the P2Y14-R to activate p38 and Jun-N terminal kinase (JNK) also 

was examined.  Although p38 was phosphorylated with a peak response observed within 5 

min after treatment of cells with sorbitol, no UDP-Glc-dependent activation of p38 was 

observed at any time point up to 60 min (Fig 19D).  In contrast to a robust activation 

observed in the presence of anisomycin, we also observed no effects of UDP-Glc on JNK 

phosphorylation (Fig. 19D). 

Functional P2Y14-R are endogenously expressed in differentiated HL-60 cells  

With the goal of identifying a cell line that natively expresses the P2Y14-R, we tested 

by RT-PCR several candidate cell lines previously reported to express P2Y14-R mRNA, as 

well as other cell lines derived from tissues reported to express this receptor (Chambers et 

al., 2000; Moore et al., 2003; Skelton et al., 2003).  Although no P2Y14-R mRNA was 

detected in undifferentiated HL-60 cells, differentiation of these cells with 1.3% DMSO to a 

neutrophil-like cell resulted in a marked increase in expression of P2Y14-R mRNA (data not 

shown). 

We also investigated the cell signaling responses discussed above to determine 

whether functional P2Y14-R could be observed in differentiated HL-60 cells.  In multiple 

experiments, 100 µM UDP-Glc exhibited no effect on cyclic AMP accumulation promoted 

by either forskolin, amthamine, an agonist for the Gs-coupled H2 histamine receptor, or 

forskolin + amthamine (data not shown).  Although a formyl peptide receptor (FPR) is 
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natively expressed by HL-60 cells (Boulay et al., 1990; Klinker et al., 1996), we also failed 

to observe effects of 1 µM fMLP on cyclic AMP accumulation in these cells. 

Potential activation of the MAP kinase signaling pathway also was studied in HL-60 

cells.  Whereas no effect of UDP-Glc was observed in wild type cells, time-dependent 

activation of ERK1/2 by UDP-Glc was observed after differentiation of the cells.  This effect 

was apparent within 5 min and peaked within 30 min (Fig. 20A).  In contrast to the time 

course of the phosphorylation response to UDP-Glc, cells treated with 1 µM fMLP exhibited 

a robust ERK1/2 activation at 5 min that quickly diminished thereafter (Fig. 20B).  Neither 

UDP-Glc- nor fMLP-dependent ERK1/2 activation was observed in cells pre-incubated with 

pertussis toxin (Fig 20C), consistent with the notion that the UDP-Glc-promoted ERK1/2 

activation in differentiated HL-60 cells occurs through a mechanism involving Gi in 

differentiated HL-60 cells. 

Discussion  

In this report, we demonstrate that the human P2Y14-R couples to inhibition of 

adenylyl cyclase in a pertussis toxin-sensitive manner in HEK293 and C6 cells stably 

expressing this receptor.  This work provides the first unequivocal demonstration of P2Y14-

R-dependent inhibition of adenylyl cyclase in a membrane preparation.  Robust stimulation 

of MAP kinase signaling also occurs with activation of the P2Y14-R.  This was the 

predominant activity observed with native P2Y14-R in differentiated HL-60 human myeloid 

leukemia cells. 

UDP-Glc is released from many cell types.  This phenomenon was initially 

demonstrated by Lazarowski and colleagues who illustrated both basal and mechanically-

induced release of UDP-Glc from multiple mammalian cell types (Lazarowski et al., 2003).  
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Constitutive release of UDP-Glc also occurs in yeast (Esther et al., 2008).  Although the 

mechanism(s) underlying UDP-Glc release is not well-established, calcium-dependent 

release of UDP-Glc was demonstrated in Calu-3 cells (Kreda et al., 2007), and UDP-Glc 

release occurred downstream of thrombin receptor-promoted signaling pathways in human 

astrocytoma 1321N1 cells (Kreda et al., 2008). 

UDP-sugars in addition to UDP-Glc are predictably present in the extracellular space.  

UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine all were 

previously reported as potent agonists of the P2Y14-R in test systems that involved 

coexpression of the receptor with a phospholipase C-activating G protein (Chambers et al., 

2000; Freeman et al., 2001). Our results measuring responses of a native signaling pathway 

also indicate that these four UDP-sugars are full agonists and exhibit relatively similar 

potencies.   It remains to be elucidated which one or more of these molecules is the 

endogenous agonist(s) for the receptor.  Indeed, it is likely that multiple UDP-sugars are 

physiological agonists for the P2Y14-R, such that the activating ligand may differ according 

to tissue or cell type. 

Our findings that neither UDP-Glc nor fMLP had an effect on stimulated cyclic AMP 

accumulation in differentiated HL-60 cells indicates that activated Gi does not couple to 

inhibition of adenylyl cyclase in these cells.  Perhaps the isoforms of adenylyl cyclase 

expressed in these cells are not subject to inhibition by Gi.  HL-60 cells gain a neutrophil 

phenotype upon differentiation, and therefore are likely to reflect receptor-promoted 

signaling responses that are characteristic of neutrophils.  Receptor-promoted inhibition of 

adenylyl cyclase has not been unequivocally demonstrated in neutrophils, and we are 

unaware of studies clearly defining the signaling pathways downstream of Gi-coupled 
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receptors in this tissue.  A small inhibition of cyclic AMP accumulation was reported to 

occur upon incubation of neutrophils with UDP-Glc (Scrivens and Dickenson, 2006).  

However, since none of the other P2Y14-R agonists inhibited forskolin-promoted cyclic AMP 

formation in neutrophils, it is unclear whether this effect was in fact dependent on either 

UDP-Glc or the P2Y14-R. 

Gi-coupled GPCR predictably activate MAP kinase signaling, and we illustrate here 

that UDP-Glc-dependent activation of ERK1/2 occurs in P2Y14-R-HEK293 cells.  Although 

P2Y14-R were not detected in undifferentiated HL-60 cells, message for the P2Y14-R was 

observed upon differentiation of HL-60 cells, and occurrence of UDP-Glc-promoted MAP 

kinase signaling indicated the presence of functional P2Y14-R.  HL-60 cells have been used 

as a model of neutrophil-like cells that undergo differentiation-associated morphological and 

functional changes including up-regulation of chemoattractant receptors and the capacity to 

chemotax (Hauert et al., 2002).  Differentiated HL-60 cells exhibit capacities to generate 

superoxide, ingest particles, and degranulate with efficiencies similar to that of neutrophils 

(Newburger et al., 1979).  In addition, they have distinct technical advantages over primary 

cells, such as viability and transfectability.  Differentiated HL-60 cells also have been used as 

a model system for studies of FPR, and consistent with previous observations (Rane et al., 

1997; Christophe et al., 2002; Paruch et al., 2006), we observed fMLP-promoted ERK1/2 

activation in differentiated HL-60 cells.  These findings establish differentiated HL-60 cells 

as a model system for investigation of biological functions of the P2Y14-R. 

The duration of P2Y14-R-promoted ERK1/2 phosphorylation in HEK293 cells and 

HL-60 cells was prolonged compared with that of other G protein coupled receptors.  PAR2, 

which promoted very transient ERK1/2 activation in HEK293 cells, is known to couple to Gi, 
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as well as to G12/13 and Gq (Fyfe et al., 2005).  The fMLP receptor, FPR, has been reported 

to couple to Gi, but the mechanism linking FPR to ERK1/2 phosphorylation is not clear 

(Selvatici et al., 2006; Huet et al., 2007; Kam et al., 2007).  Therefore, it is possible that the 

signaling pathway(s) responsible for P2Y14-R-promoted MAP kinase signaling differs from 

that engaged by PAR2 or FPR.  We speculate that pertussis toxin-sensitive Gα-subunits are 

necessary but not sufficient and additional pathways or regulatory mechanisms are involved 

in the MAP kinase response downstream of one or more of these receptors.  Observation of 

receptor-specific differences in the time course of stimulation of ERK1/2 phosphorylation 

has led to the suggestion that short term (e.g. 5 min) versus long-term receptor-dependent 

activation (e.g. 30-60 min) may promote distinct cellular functions.  For example, short-term 

ERK1/2 activation may be important for cell migration whereas sustained ERK1/2 activation 

may play a more critical role in cell proliferation (Luttrell, 2005; May and Hill, 2008).  Our 

studies do not rule out the possibility that the P2Y14-R desensitizes at a slower rate than 

PAR2 in HEK293 cells or FPR in HL-60 cells.  Additional studies will be necessary to 

address questions about the mechanism of P2Y14-R-dependent activation of MAP kinase, but 

its pertussis toxin sensitivity clearly indicates that Gi is an important signaling component in 

the pathway. 

In summary, this work unequivocally demonstrates that the human P2Y14-R promotes 

inhibition of adenylyl cyclase and activation of MAP kinase signaling pathways.  Our work 

also provides several model cell lines for study of P2Y14-R signaling as well as its potential 

role in neutrophil biology. 
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Table 4.  EC50 values for P2Y14-R agonists in P2Y14-HEK293 and P2Y14-C6 cells. 
[3H]Adenine-labeled cells were treated with IBMX (200 µM), forskolin (30 µM), and 
varying concentrations of either UDP-glucose, UDP-galactose, UDP-glucuronic acid, or 
UDP-N-acetylglucosamine for 15 min.  [3H]Cyclic AMP was quantified as described in 
Methods.  EC50 values were determined with GraphPad Prism software and are presented as 
mean ± SE of results from three experiments. 
 

Agonist 
P2Y14-HEK293 

EC50 ± SE, nM 

P2Y14-C6 

EC50 ± SE, nM 

UDP-glucose 82 ± 11 92 ± 51 

UDP-galactose 96 ± 29 240 ± 53 

UDP-glucuronic acid 60 ± 7 108 ± 66 

UDP-N-acetylglucosamine 919 ± 205 225 ± 68 
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Figure 15.  Concentration-dependent and pertussis toxin-sensitive inhibition of cyclic AMP 
accumulation promoted by UDP-Glc in P2Y14-HEK293 cells.  Empty vector-infected (left 
panel) or P2Y14-R-expressing (middle panel) cells were labeled with [3H]adenine 18 h prior to 
assay.  Cells were incubated with 200 µM IBMX  in the absence (□) or presence of 30 µM 
forskolin  and the indicated concentrations of UDP-Glc (■) for 12 min prior to quantification of 
[3H]cyclic AMP accumulation.  P2Y14-R-expressing (right panel) cells were preincubated with 
100 ng/mL pertussis toxin for 4 h,and [3H]cyclic AMP accumulation was measured in the 
presence of 200 µM IBMX alone (open bars), 200 µM IBMX + 30 µM forskolin (filled bars), or 
200 µM IBMX + 30 µM forskolin + 10 µM UDP-Glc (hatched bars). The data shown are 
presented as mean ± SE and are representative of results from three independent experiments. 
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Figure 16.  UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine inhibit 
accumulation of cyclic AMP in P2Y14-HEK293 cells.  [3H]Adenine-labeled P2Y14-HEK293 
cells were incubated with 200 µM IBMX alone (□) or IBMX with 30 µM forskolin and varying 
concentrations of UDP-glucose (■), UDP-galactose (♦), UDP-glucuronic acid (▲), or UDP-N-
acetylglucosamine (▼).  Data shown are mean ± SE and are representative of results of three 
independent experiments. 
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Figure 17.  UDP-Glc promotes pertussis toxin-sensitive inhibition of cyclic AMP 
accumulation in P2Y14-C6 cells.  Empty vector-infected (left panel) C6 rat glioma cells were 
prelabeled with [3H]adenine and then incubated in the presence of 200 µM IBMX alone (open 
bar), 200 µM IBMX + 30 µM forskolin (filled bar), or 200 µM IBMX + 30 µM forskolin +  
10 µM UDP-Glc (striped bar).  P2Y14-C6 cells (right panel) were incubated in the absence or 
presence of 100 ng/mL pertussis toxin prior to quantification of [3H]cyclic AMP 
accumulation in the presence of 200 µM IBMX alone (open bars), 200 µM IBMX + 30 µM 
forskolin (filled bars), or 200 µM IBMX + 30 µM forskolin +  10 µM UDP-Glc (striped bars).  
Data shown are presented as mean ± SE and are representative of results from three 
independent experiments. 
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Figure 18.  UDP-Glc-dependent inhibition of adenylyl cyclase by UDP-Glc in membranes 
from P2Y14-C6 cells.    Membranes were isolated from P2Y14-C6 cells or from cells pretreated 
with 100 ng/mL pertussis toxin overnight.  Membranes were incubated with 200 µM IBMX in 
the absence (open bars) or presence (filled bars) of 30 µM forskolin, or with 200 µM IBMX + 
30 µM forskolin + 10 µM UDP-Glc as described in Methods.  [32P]Cyclic AMP was isolated by 
sequential Dowex-alumina chromatography.  Data shown are the mean ± SE of three 
independent experiments, plotted as a percentage of maximal forskolin-stimulated enzyme 
activity.  
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Figure 19.  UDP-Glc-promoted activation of MAP kinase signaling in P2Y14-HEK293 
cells.  A)  Empty vector or P2Y14-R-expressing HEK293 cells were serum-starved for 18 h 
and then incubated with 100 µM UDP-Glc or 100 µM SLIGKV for the times indicated.  
Samples were probed for phospho-ERK1/2 and ERK1/2 as described in Methods.  B)  Cells 
were pretreated in the absence (-PTX) or presence (+PTX) of 100 ng/mL pertussis toxin 
overnight, then treated with UDP-Glc for 15 min.  C)  Cells were incubated with varying 
concentrations of UDP-Glc for 15 min.  Phospho-ERK1/2 and ERK1/2 were quantified 
using Scion Image software (Frederick, MD) and graphed using GraphPad Prism software 
(San Diego, CA).  Each phospho-ERK1/2 lane was normalized to the corresponding 
ERK1/2 control and plotted as fold stimulation over control.  Data shown are the average ± 
SE of four independent experiments.  D)  P2Y14-HEK293 cells were treated with either 0.2 
M sorbitol, 0.01 mg/mL anisomycin, or 100 µM UDP-Glc for the indicated times.  
Phospho-p38, phospho-JNK, total p38, and total JNK were determined as described in 
Methods.      
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Figure 20.  UDP-Glc-promoted activation of MAP kinase activation in differentiated 
HL-60 cells.  A)  Wild-type or differentiated (see Methods) HL-60 cells were serum-
starved for 18 h prior to addition of 100 µM UDP-Glc and incubation continued for the 
indicated times.  Western blots for phospho-ERK1/2 and ERK1/2 were generated as 
described in Methods.  Phospho-ERK1/2 was quantified using Scion Image software 
(Frederick, MD) and graphed using GraphPad Prism software (San Diego, CA).  Each 
phospho-ERK1/2 lane was normalized to the corresponding ERK1/2 control and plotted 
as fold stimulation over control.  Data shown are the mean ± SE of six independent 
experiments (*p < 0.02).  B)  Serum-starved, differentiated HL-60 cells were incubated 
with 1 µM formyl-Met-Leu-Phe for the indicated times, and lysates were analyzed as 
described in Methods.  C)  Differentiated HL-60 cells were treated in the absence (-PTX) 
or presence (+PTX) of 200 ng/mL pertussis toxin for 4 h prior to assay.  Cells were 
incubated for the indicated times with 100 µM UDP-Glc and phospho-ERK1/2 and total 
ERK1/2 was quantified as described in Methods.   
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Chapter V.  Conclusions 

Ligand development studies have met with considerable success for the P2Y1-R and 

P2Y12-R, and we have applied a structure-activity relationship approach to develop 

ligands for the P2Y14-R.  Additionally, molecular modeling studies have been useful in 

guiding these studies.  Our studies on the P2Y14-R are focused on developing high 

affinity, selective, and non-hydrolyzable agonists and antagonists.  These studies, 

reviewed in Chapter 2, have yielded several novel agonists at the P2Y14-R, including 2-

thio-UDP-Glc, an agonist that exhibits six-fold greater potency than UDP-Glc (Ko et al., 

2007).  Molecular modeling studies have aided our conceptualization of the P2Y14-R 

tertiary structure (Ivanov et al., 2007), and guided a methodical analysis of the parameters 

of the ligand pharmacophore.  Identification of the hexose moiety of UDP-Glc as a fertile 

region for modification leads to a newly focused approach for future development of 

ligands.  Ongoing studies are aimed toward producing pharmacological tools that will be 

useful in further characterization of the P2Y14-R.  A high affinity, selective radioligand 

would be useful for binding assays, while a fluorophore-conjugated ligand could be 

useful for monitoring receptor expression and localization with microscopy.   

As a result of our ligand development studies, it is clear that most UDP-sugars 

activate the P2Y14-R (Ko et al., 2009).  Release of UDP-Glc from cells has been 

established (Lazarowski et al., 2003; Kreda et al., 2007; Kreda et al., 2008) and it is likely 

that other UDP-sugars are released from cells as well.  Our finding that other UDP-

sugars, in addition to the originally identified four, are agonists at the P2Y14-R 
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necessitates our re-thinking the profile of cognate agonists for the P2Y14-R and 

specifically, we must consider the possibility that the P2Y14-R has many cognate 

agonists.  Most UDP-sugars are equipotent at the P2Y14-R and so could theoretically 

activate the receptor in place of UDP-Glc.  Depending on the extracellular environment at 

the site of P2Y14-R expression, one or more UDP-sugars may activate the P2Y14-R 

endogenously.     

The P2Y14-R was classified as a P2Y12-like receptor based on sequence homology, 

and has been suspected to couple to the Gi family of G proteins, as does the P2Y12-R.  

With the work presented in Chapter 4, we unambiguously established that the P2Y14-R 

couples to inhibition of adenylyl cyclase stimulation, and to ERK1/2 phosphorylation, in 

an agonist-dependent and pertussis toxin-sensitive manner (Fricks et al., submitted).  

While the inhibition of adenylyl cyclase activity is likely to occur through Gi activation, 

the signaling from Gi-coupled receptors to activate MAPK is not well delineated, 

although previous evidence suggests that it may be dependent on Gβγ.  Both Gαi subunits 

and Gβγ dimers released from activated Gi have been reported to activate ERK1/2 

through several distinct mechanisms, however the mechanism by which P2Y14-R couples 

to ERK1/2 phosphorylation is unknown.   

Two mechanisms for Gi-dependent activation of ERK1/2 have been proposed.  Gαi2 

was reported to interact directly with Rap-1-GAP, suggesting that activated Gαi2 would 

lead to inactive Rap-1 (Pace et al., 1995; Mochizuki et al., 1999).  Because active Rap-1 

sequesters C-Raf away from Ras, alleviation of the Rap/Raf interaction would allow Raf 

to interact with Ras and consequently activate MAPK signaling downstream.  Another 

model of Gi stimulation of ERK1/2 implicates signaling downstream of adenylyl cyclase.  
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Upon inhibition of adenylyl cyclase, PKA activation concomitantly decreases, resulting 

in alleviation of PKA inhibition of C-Raf (Tang and Gilman, 1992; Radhika and 

Dhanasekaran, 2001).  Raf is then free to interact with Ras and activate the MAPK 

cascade. 

Evidence for Gβγ-dependent activation of MAPK has been reported for multiple Gi-

coupled GPCRs, including the M2 muscarinic receptor (Lopez-Ilasaca et al., 1997).  The 

β1-adrenergic receptor also is reported to activate MAPK through a Gβγ-dependent 

mechanism that is partially sensitive to pertussis toxin (Galandrin et al., 2008).  Each of 

the proposed signaling pathways converges on Ras, although the intermediates appear to 

be different depending on the receptor.  Recombinant α2A-adrenergic receptors in 

HEK293 cells and COS-7 cells have been suggested to use a pathway involving PLCβ 

and the intracellular calcium-activated Pyk2 kinase, which would activate Src, bringing 

together the Ras-activating complex Shc and SOS (Della Rocca et al., 1997).  A second, 

distinct pathway involving phosphatidyl-inositol-3-kinase (PI3K) is implicated in 

activation of ERK1/2 by LPA and thrombin receptors.  This model predicts that PI3K 

activates a not yet identified tyrosine kinase, which would, in turn, promote formation of 

the Ras-activating complex dynamin II/ Grb2/ SOS (Kranenburg et al., 1997; Kranenburg 

et al., 1999; Wunderlich et al., 1999).  The potential for the P2Y14-R to use one or more 

of these signaling pathways to activate ERK1/2 could be explored with the use of the 

Gβγ-sequestering carboxyl tail of β-adrenergic receptor kinase (β-ARK) (Inglese et al., 

1994) to determine whether the βγ dimer is necessary for MAPK signaling.  Further 

studies could utilize pharmacological inhibitors of protein intermediates to identify which 

proteins are involved in the P2Y14-R-dependent activation of MAPK. 
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Alternatively to signals downstream of the G protein, the involvement of β-arrestins 

in agonist-dependent transduction to MAPK cascades has been reported for some 

GPCRs.  In addition to their role in mediating endocytosis of ligand-bound receptor, β-

arrestins also act as scaffolding proteins that link some GPCRs, such as the β2-adrenergic 

receptor, to MAPK cascades (Luttrell et al., 1999).  In the proposed model, β-arrestin 

scaffolds the ligand-bound receptor in a complex with the tyrosine kinase Src, 

subsequently activating Ras-mediated MAPK cascades.  The β-arrestins have also been 

proposed to act as a scaffold protein for the complex associating Raf, MEK1, and ERK 

(DeFea et al., 2000; Luttrell et al., 2001).  While the β-arrestin mechanism of GPCR-

induced MAPK signaling has been described for few GPCRs, the array of possible 

pathways to determine the mechanism of P2Y14-R-dependent MAPK activation will 

require extensive investigation.         

In addition to the tissue specific Gαt, Gαz, and Gαgust, the Gi family of proteins 

includes Gαi1, Gαi2, Gαi3, and Gαo.  Which Gi proteins may be preferred by the P2Y14-R 

will be a topic of future study.  Indeed which Gi isoform couples to P2Y14-R may be 

dependent on the cell or tissue type, and relative expression of each of the Gi proteins.  

Functional studies in cells lacking each of the Gα subunits, such as with siRNA or from 

knockout mouse-derived cells, may provide some insight as to which of the Gi proteins 

the P2Y14-R may couple.    

The possibility that the P2Y14-R couples to other Gi or Gβγ signaling pathways such 

as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases is a viable 

hypothesis, and awaits further investigation.  There are many proteins reported to interact 
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with Gβγ, and the potential for P2Y14-R to activate signaling pathways through Gβγ has 

not been explored.   

Another observation reported in Chapter 4 was that the natively expressed P2Y14-R 

does not couple to inhibition of adenylyl cyclase in differentiated HL-60 cells.  

Differentiated HL-60 cells are a cell model system frequently used to study neutrophil 

biology, and inhibition of adenylyl cyclase by GPCRs has not been unequivocally 

demonstrated in neutrophils nor in HL-60 cells, despite the abundant expression of Gi in 

both cell types.  Moreover, the Gi-coupled chemoattractant receptor FPR coupled to 

activation of adenylyl cyclase in neutrophils (Mahadeo et al., 2007).  Adenylyl cyclases I, 

V, and VI are the primary isoforms capable of inhibition by Gi (Watts and Neve, 2005).  

Neutrophils have been reported to express only adenylyl cyclases III, IV, VII and IX 

(Mahadeo et al., 2007), and therefore one would not expect to observe inhibition of 

adenylyl cyclase in neutrophils.  It is likely that Gi-coupled receptors such as the P2Y14-R 

have a unique signaling profile in this specialized cell type, and while we have 

established that the P2Y14-R couples to ERK1/2 phosphorylation in differentiated HL-60 

cells, it is possible that other signaling processes also are activated by the P2Y14-R.  More 

detailed signal transduction studies using differentiated HL-60 cells will delineate the 

signaling pathways activated by the P2Y14-R, and may reflect a potential function for the 

P2Y14-R in neutrophils. 

In addition to studies of signal transduction, the HL-60 cell model also will be a 

useful means for studies of P2Y14-R-regulated biology.  Expression of P2Y14-R mRNA 

has been demonstrated in neutrophils, but HL-60 cells have technical advantages over 

neutrophils.  Many of the GPCRs that are expressed on neutrophils are Gi-coupled 
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chemokine receptors that regulate immune responses such as chemotaxis.  Studies of 

UDP-Glc-dependent cellular processes in differentiated HL-60 cells may lead to 

elucidation of a P2Y14-R function in immune cells.  

The cell models developed for studies of the P2Y14-R will circumvent problems with 

the previously used cell system in which the P2Y14-R was coupled to the chimeric Gq/i.  

In previous studies, receptor-dependent signaling was observed in the absence of agonist.  

This phenomenon appeared to be somewhat dependent on agonist in the medium on the 

cultured cells because treatment of the cells with UDP-sugar hydrolyzing enzymes, such 

as E-NPP or UDP-Glc pyrophosphorylase reduced such activity.  However, a residual 

component of the activation in the absence of agonist could not be explained by the 

presence of agonist in the medium. In the cell lines stably expressing the P2Y14-R, there 

is no evidence of receptor activity in the absence of added agonist.  Upon measuring 

accumulation of cAMP, treatment of the cells with pertussis toxin would be expected to 

significantly increase the forskolin-stimulated level of cAMP if the receptor were 

constitutively active, because pertussis toxin would prevent Gi activation.  Results from 

such experiments indicate that the level of forskolin stimulation is similar in cells treated 

with pertussis toxin to those without.   

Another fallacy of the system using Gq/i became clear with recent studies of UDP.  In 

Chapter 3, I described the identification of UDP as a competitive antagonist at the P2Y14-

R (Fricks et al., 2008), and additional investigations in which the basal activity of the 

P2Y14-R was reduced with co-expression of E-NPP1 revealed that UDP is in fact, a 

partial agonist in this experimental system.  With the development of a robust cellular 

assay for assessing P2Y14-R signaling through its cognate G protein, Gi, as described in 
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Chapter 4, we have begun to characterize P2Y14-R function via its native signaling 

processes.  In contrast to the results in COS-7 cells in which the P2Y14-R and Gq/i were 

co-expressed, when UDP was studied in a cellular system in which the P2Y14-R coupled 

to its native G protein, UDP exhibited the efficacy of a full agonist, indicating that the 

Gq/i chimera may not be the ideal system for characterizing native P2Y14-R function. 

In multiple types of mammalian cells stably expressing the P2Y14-R, UDP exhibited 

agonist activity in assays measuring inhibition of forskolin-stimulated adenylyl cyclase.  

This was a surprising finding given that no other lab has reported agonist action of UDP 

at the P2Y14-R despite screens of nucleotides for agonism in many different experimental 

systems.  Results showing that the effect of UDP is P2Y14-R-dependent and pertussis 

toxin-sensitive will be detailed in a paper soon to be submitted for publication (Carter, 

Fricks, et al.). 

The reason for the seemingly differential action of UDP at the P2Y14-R in the two 

experimental systems is not immediately clear.  The simplest explanation is that the 

activation state of the receptor is slightly perturbed when coupled to Gq/i, such that it is 

capable of binding UDP.  However, activation of the G protein is not maximal.  Indeed 

UDP appears to have some partial agonist activity in the transfected system, but it also 

acts to block binding of UDP-Glc, and so appears to be a competitive antagonist.   

Interestingly, in parallel studies of the rat P2Y14-R coexpressed with Gq/i in COS-7 

cells, UDP was a full agonist.  The rat and human P2Y14-R share 80% amino acid 

sequence homology, and by extrapolation, also would be expected to have similar 

structural features.  Despite their similarities, the prospect of the rat P2Y14-R coupling to 
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Gq/i with a different orientation than the human P2Y14-R, and thus, permitting activation 

by UDP, is a distinct possibility.  

Studies of the β1 Adrenergic receptor suggest that different ligands can promote 

different conformation states of the receptor and in so doing, engage distinct signaling 

pathways (Galandrin et al., 2008).  In effect, it is likely that for some GPCRs, the 

receptor conformation attained with a particular ligand dictates the receptor’s G protein 

selectivity, or possibly alters the efficiencies of receptor coupling to various G proteins.  

Juxtaposed with the idea of ligand-induced receptor conformations, the availability of 

particular G proteins as the determining factor for relative agonist selectivity of a receptor 

is an alternative explanation for the differential action of UDP on the P2Y14-R in separate 

cellular systems. 

While the Gq/i chimera has been used in studies of many Gi-coupled GPCR, the 

structure of the P2Y14-R may not be amenable to signaling through this engineered 

protein.  It is possible that the P2Y14-R is in a partially activated state when co-expressed 

with Gq/i, and the activation not attributable to agonist in the medium is due to receptor 

that is in a partially active conformation.  An inverse agonist for the P2Y14-R would 

allow us to examine this possibility experimentally, but currently none is available. 

An altered receptor conformation would also explain the differences observed in UDP 

activity between the Gq/i system and the stable cell lines.  If the agonist binding pocket 

were oriented in such a way in the Gq/i system that UDP-Glc was accommodated but 

UDP was not, then it is easy to understand how UDP may appear as a partial 

agonist/antagonist.  When the P2Y14-R coupled to its native G protein, the receptor 
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binding pocket was potentially in a conformation that would permit UDP binding as an 

agonist and subsequently, UDP activation at the P2Y14-R.   

An alternative explanation implicates receptor expression as responsible for the 

dichotomous action of UDP in different cellular systems.  When increasing amounts of 

expression plasmid encoding the P2Y14-R are co-transfected with Gq/i, the apparent 

efficacy of UDP also increases to a level indicative of a partial agonist.  While we would 

expect that retroviral infection of cells would express receptor at levels close to that of an 

endogenous receptor, overexpression that introduced receptor reserve into the stable cell 

system would explain UDP’s action as an apparent full agonist.  Without a radioligand 

binding assay, however, we do not have the ability to quantify receptor in order to 

investigate such possibilities.        

With the finding that UDP is a P2Y14-R agonist, the relationship of P2Y14-R to the 

P2Y6-R must be addressed.  Just as the P2Y1-R and the P2Y12-R are co-expressed on 

platelets and have a cooperative function when activated by their shared agonist, ADP, to 

activate two distinct cellular signaling pathways, it is possible that the P2Y6-R and the 

P2Y14-R have a similarly important physiological role when co-expressed.  Selectively 

acting antagonists for each of these receptors may provide clues as to whether the P2Y6-R 

and P2Y14-R are functionally linked to any pathophysiological processes.  In cellular 

systems, the two receptors are commonly found expressed together.  Assays of UDP-

dependent activity in cells in which one of the receptors was knocked down by siRNA 

would aid our understanding of P2Y14-R versus P2Y6-R signaling.  Although the Gq and 

Gi pathways appear to be distinct, it is becoming more apparent that signaling networks 

cooperate to regulate some biological functions, and therapeutic development will be 
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forced to acknowledge the multiple regulatory mechanisms involved with treating any 

one disorder.  Just as with the P2Y1-R and P2Y12-R, we may find that the P2Y6-R and 

P2Y14-R signaling pathways converge to modulate some critical aspect of physiology. 

 Although much focus has been on the P2Y14-R as a potential immune cell modulator, 

the P2Y14-R likely has multiple specialized functions depending on the tissue type.  Just 

as the P2Y12-R is both a modulator of platelet aggregation and is involved in microglial 

migration (Haynes et al., 2006), so too may the P2Y14-R have distinct roles in the various 

tissues in which it is expressed.  In addition to immune cells, high expression levels for 

P2Y14-R mRNA have been reported in adipose tissue, placenta, brain and stomach. 

Recently, an effect of UDP-Glc on smooth muscle contractility was observed in the 

forestomach of mouse (Bassil et al., 2009).  In the same study, a knockout mouse in 

which the P2Y14-R gene was deleted was generated.  Adult P2Y14-R-/- mice were 

compared to wild type mice and UDP-Glc did not induce contractions in the stomachs of 

P2Y14-R KO mice, suggesting that the effect of UDP-Glc was P2Y14-R-dependent.  Thus, 

P2Y14-R expressed in stomach may have a role in gastric motility.   

While a normal phenotype was reported for the knockout mouse, no investigation of 

immune system physiology was described.  It would seem from this report of the 

knockout mouse that the P2Y14-R does not have a critical role in development or viability 

of mice, and may either have a redundant function in mouse, or function as part of a 

response mechanism, which will only be revealed after some primary insult such as 

bacterial infection or tissue damage.  Demonstration of P2Y14-R mRNA upregulation in 

rat brain after immunologic challenge (Moore et al., 2003) supports the notion that the 

P2Y14-R may be important in an organism’s response to injury or disease state.    
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The physiological relevance of the P2Y14-R remains elusive, but the work presented 

here advances us toward the common goal of understanding the function of the P2Y14-R.  

The coupling of the P2Y14-R to two signal transduction pathways, inhibition of adenylyl 

cyclase and activation of ERK1/2, was established.  Progress was made toward 

developing pharmacological tools that will advance our understanding of P2Y14-R 

function.  The cell models that were developed will be crucial for investigations of signal 

transduction and cell biological functions attributable to the P2Y14-R.  As we have no 

hint of a physiological function for the P2Y14-R from the knockout mouse, we will 

continue our progress toward characterization of the P2Y14-R even as we continue to 

develop better tools to make such efforts more accurate, efficient, and relevant. 
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