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ABSTRACT 

 

Michael August Tycon: 

The Development and Implementation of Microscopy Strategies for 

 Investigating Protein Diffusion and Chromatin Binding 

(Supervised by Dr. Christopher J. Fecko) 

 

 

Nearly all cellular processes, notably transcription, translation, and genomic repair, are 

enacted by multiprotein complexes that coalesce into functional assemblies in response to 

constantly fluctuating cellular demands.  A complex interplay of endogenous and exogenous 

cellular cues regulates the assembly and activity of these complexes by both active and passive 

mechanisms, with a current fundamental dilemma in the field of molecular biology being the 

elucidation of the mechanisms governing the assembly of these supramolecular complexes.  

Such complexes arise through two processes, the nucleation of macromolecular assemblies and 

target binding site recognition.  Collectively, this phenomenon is anthropomorphized 

as“protein recruitment”, yet this term conceals the underlying physical interactions that govern 

the spatiotemporal formation of such assemblies, turning protein activity into a series of “black 

boxes” with prescribed functions.  In response to this overarching question, microscopy 

technologies were tailored to investigate the mechanisms of these two inextricable facets of 

protein recruitment.  Thus, during my tenure in the Fecko Laboratory, I have been concerned 

with the big picture while simultaneously looking at the very small. 
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Methods were developed enabling the observation of model systems of complex 

recruitment dynamics and have been used to illustrate paradigms of biological function.  An 

initial effort was focused on designing optical systems for observation of DNA repair protein 

diffusion.  The ability to generate user-defined DNA photolesions in real time, a highly 

characterized binding site of many classes of DNA repair proteins, creates opportunities for 

optical imaging experiments in which protein behavior before and after a biological 

perturbation can be observed.  To this end a two-photon DNA damage method was developed, 

which enabled the production of UV-type DNA photolesions by blue light and is highly 

compatible with conventional laser-scanning optical microscopy configurations.  This visible 

light damage method was compared to alternative damage induction processes, and the 

advantages of the two-photon method enumerated. 

Continuing towards an integrated system for observing protein diffusion, a popular 

single-molecule imaging DNA immobilization and visualization technique was characterized.  In 

this work, the extent of optically-induced DNA binding site artifacts was established with a 

unique pairing of a widefield microscopy based single-molecule and gel electrophoresis based 

ensemble biochemical DNA damage assays.  The results indicated that many commonly used 

DNA visualization practices, from imaging parameters through fluorescent intercalaters, lead to 

extensive photodamage and can perturb native DNA-protein interactions. 

Later work shifted away from single molecule investigations and towards studying the 

diffusion dynamics of large macromolecular complexes in vivo.  A unique two-photon FRAP 

microscopy and image processing technique was developed and used to characterize the 
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diffusion of RNA Polymerase II subunits in live cell nuclei.  The findings substantiate a hybrid 

model of macromolecular assembly in which a broad distribution of macromolecular species 

allow for mechanistic flexibility in the assembly of transcription complexes.  This provides 

evidence for further speculation on mechanisms controlling gene expression.   

.
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CHAPTER 1 

 
INTRODUCTION 

WHAT IS PROTEIN RECRUITMENT AND HOW DO WE STUDY IT? 

“You can observe a lot just by watching” 

-Yogi Berra 

 

Differing Systems to Study Protein Recruitment 

The cellular interior is a crowded environment, containing a high density of dissolved 

biological solids and bearing little resemblance to typical in vitro reconstitutions4.Through this 

viscous and obstacle laden matrix, proteins must migrate the cytoplasmic and nuclear environs, 

interact with binding partners, and recognize target binding sites. Protein recruitment is the 

broad term used to describe this process in which multiple binding partners assemble in the 

cellular environment to conduct a particular metabolic function.  While the specifics such as 

interaction order, location of nucleation, and sub-assembly intermediates will have inevitable 

differences depending on the specific metabolic function under consideration5, two elements 

are constant- assembly and target site recognition of macromolecular complexes.  Details of 

each of these processes are marked by uncertainty; even the interplay of these processes is 

often not well understood.The questions behind protein assembly concern the timing, duration, 

and location of the interaction events that lead to the formation of an active complex.  Distinct 

but complimentary, target site recognition chiefly concerns the molecular mechanisms by 
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which an active complex, either partially or fully assembled, locate a unique binding site, often 

a miniscule genomic element in comparison to the entire nuclear material6.  For protein 

complexes involved in genome metabolism, it has recently been shown that a sharp delineation 

between these processes is not possible (Chapter 4).   

Underlying all aspects of protein recruitment are the transport mechanisms, active or 

passive, by which proteins traverse the cellular interior7, 8.  It is through interrogating these 

transport mechanisms and identifying their signaturesthat we can hope to gain insights into the 

mechanistic details of recruitment.  Given the dynamic nature of protein transport and 

simultaneous requirements of capturing spatial and temporal details of the processes, optical 

microscopy has emerged at the forefront of tools uniquely suited for such investigations.  In 

addition to passive imaging techniques that enable high resolution visual observations, 

powerful perturbation methods and spectroscopies such as Fluorescence Recovery after 

Photobleaching (FRAP), Fluorescence Loss in Photobleaching (FLIP), and Fluorescence 

Correlation Spectroscopy (FCS), have evolved allowing in vivo measurements of transport 

dynamics9, 10.  Further, recent instrumentation advances have opened up the field of single 

molecule imaging (SMI); giving experimenters the ability to track and manipulate individual 

biomolecules in both artificially enhancedbiological and syntheticin vitro systems11, 12.  

The following research will initially focus on a unique pairing of optical and physical DNA 

manipulation techniques, joined together in creating a flexiblein vitroSMIplatform with the 

possibility of interrogating the mechanisms of DNA-protein binding site recognition in a DNA 

repair context.  Novel techniques to damage DNA in a user controlled and quantitative manner 
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are discussed, along with important implications for evaluating the results of many optical 

imaging experiments.  Later, variants onhigh time resolution FRAP methods will be discussed 

and applied to the investigation of the spatiotemporal formation of large protein complexes in 

the context of DNA transcription.  Given the possible mechanistic universality of the underlying 

chemical and physical interactions of protein recruitment, two highly conserved pathways will 

be considered.  Initially, the most ubiquitous DNA repair pathway, Nucleotide Excision Repair 

(NER)13, is used as a model system to drive the development of the optical platform to study 

protein recruitment in vitro.  Next, arguably one of the most crucial genome metabolic 

processes, transcription by RNA Polymerase II14, will be considered as a paradigm of in vivo 

supramolecular assembly.  

Strategies to Investigate Protein-Target Binding Site Recognition 

1. Protypical DNA Damage Repair Pathway 

The chemical stability of DNA and simplistic elegance of its replication often obscures 

the myriad ways in which damage can be incurred, through the action of endogenous cellular 

factors (typically radical oxygen species) or exogenous mutagenic agents, particularly ultra-

violet (UV) or ionizing radiation15.These agents can cause structural changes as significant as 

strand breaks or dimer formation between adjacent bases.  These various forms of damage, 

collectively termed mutations, lead to loss of genomic fidelity and resulting disease states.    

In response to these general chemical and structural insults, complex biochemical 

pathways evolved to address these damaging effects.  Three major classes of DNA repair have 

been thus far identified, each uniquely suited to correct a particular type of damage.  All three 
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classes are highly conserved in both prokaryotes and eukaryotes13, underscoring the common 

mechanistic universality.  The least specific repair pathway, nucleotide excision repair (NER), is 

responsible for correcting damage that results in structural alterations to DNA13, operating 

through excision of oligonucleotides flanking the damage site.   

Common to all three pathways of DNA repair is the concerted action of multiprotein 

complexes which must be sequentially recruited to the site of damage amidst the vast majority 

of highly dynamic chromatin16, 17.While several models of NER action have been proposed, most 

feature 3-dimensional, diffusion mediated nuclear transport to enable rapid surveillance of the 

nuclear volume coupled with occasional 1-dimensional sliding diffusion along the DNA 

backbone.  NER is best understood in the model system Escherichia coli, where the Uvr A, B, 

and C endonuclease system demonstrate concerted action to identify and remove damage 

sites.  Thus DNA repair pathways offer an excellent opportunity to observe site-specific protein 

recruitment.  Once coupled with strategies to induce DNA damage in real-time that initiate the 

recruitment process, the entire process can be tracked.   

2. Optically Manipulating DNA 

The most commonly considered DNA damage, or lesion,targeted by NER repair systems 

arepyrimidine dimers (termed cylcobutane pyrimidine dimers, or CPDs) formed upon exposure 

to UV radiation.  Such lesions occur in the presence of approximately 260 nm light due to the 

large DNA extinction coefficient at this wavelength and are the result of relaxation of π→π* 

transitions of neighboring thymine bases18.As a critical first step in studying the localization of 

repair proteins to the damage sites they bind, it is necessary to develop a method to enable the 
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real-time generation of CPDs with high spatial resolution.  These lesions function as user 

controlled binding sites, triggering the switch from scanning to binding of damaged DNA.  While 

photolesions are usually formed by exposure to 260 nm emission from UV light sources, this 

results in a random spatial distribution of lesions throughout the sample19.Advances using 

polycarbonate masks with 3-5 μm holes to restrict UV exposure have reduced the 2D regions of 

lesion formation to smaller than a cell nucleus20, 21.  However, such spatial control is still very 

poor in comparison to the resolution offered by modern microscopic techniques and worse still 

in comparison to the biological length scales needed to discern differences in diffusion 

modality.  Further, no spatial control is possible in the third dimension.  Since the poor 

transmission of light below 350 nm restricts the pairing of UV light sources with a microscopy-

based apparatus, two-photonirradiation has been harnessed as a means to deliver UV energy 

with conventional optics. 

Two photon absorption (TPA) induced DNA damage has the advantage of generating 

photolesions in a three-dimensionally pre-defined region of space using visible light and is 

therefore compatible with standard microscopy optics.  Nonresonant multiphoton absorption is 

the process in which two or more photons interact with a molecule simultaneously (within     

10-18 s) to generate an excited state equivalent in energy to the summation of the absorbed 

photons22.  Thus, instead of requiring UVC photons to initiate photophysical DNA damage, the 

same photoreactions can be triggered by the multiphoton absorption of visible light23-27.  Since 

the probability of TPA depends quadratically on the intensity of the incident light, a large 

photon flux is required for simultaneous absorption, usually limited to the focal waist of an 

objective lens 28-31.  This property is exploited to achieve sub-micron depth discrimination in 
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two-photon microscopy and photodamage production.  Depth discrimination is then paired 

with equatorial control provided by the raster scanning of laser-scanning microscopy, allowing 

for the precise irradiation of microscale spatial volumes. 

3. Designing a Platform for the In Vitro Study of Repair Pathways 

In contrast to previous decades in which traditional biochemical techniques were employed to 

study bulk systems 13, 32, researchers now prefer SMI methods that offer the spatiotemporal 

resolution required to decipher protein dynamics on a biologically relevant timescale and to 

observe biological variability in nanoscopic systems. The implementation of single molecule 

detection is primarily based on the application of optical fluorescence microscopy due to the 

high contrast acquired by the use of bright fluorophores against dark backgrounds, even in 

biologically relevant aqueous environments.  All such implementations require reducing the 

sample size under investigation to a sub-100 fl volumes33.  Currently, the principle techniques 

to restrict the sample volume are total-internal reflection fluorescence microscopy (TIRFM) and 

laser scanning methods such as confocal or multiphoton microscopy.  In the former, the sample 

volume investigated is limited by the effective field of illumination created by the very shallow 

evanescent field that results from reflection off an interface causing total-internal reflection 

(TIR) 34.   

To achieve sample immobilization and provide a restricted imaging volume, schemes for 

the immobilization of DNA molecules tethered to a glass substrate and elongated by 

hydrodynamic flow have been independently developed by several groups 11, 35, 36.  Thisrestricts 

DNA molecules near the surface of a microscope-slide based flow cell while supporting the 
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molecules above a biologically inert surface11, 37.  This provides a method to couple 

multiphotonphotolesion formation with a TIRF based imaging apparatus.   

The direct imaging of fluorescently labeled Uvr protein components engaged in a search 

complex35, 38, pre and post lesion induction, provides the most direct means to ascertain the 

mechanism by which target search occurs.To this end,pairingSMI methods with a novel, TPA 

real-time induction of protein recruitmentwould further elucidate the intricacies of NER in the 

highly characterized biological systems system.   

4. Sensitized Methods of Photochemical DNA Damage Induction 

Modern high-resolution optical microscopy is premised upon the use of the fluorescent 

marker species for the identification and tracking of intracellular or purified biological 

components.  In the case of biological tissue imaging, fluorophores can be endogenously 

expressed XFP variants or exogenously incorporated molecules, either actively or passively 

uptaken from the environment.  Markers have been engineered that are specific for cellular 

substructures, targeting incorporation into lipophilic domains for membrane studies or that 

exhibit high binding affinities to DNA to mark nuclear locations or track genomic processes.  

Further extending the utility of microscopy to probe highly dynamic biological processes, high-

quantum efficiency fluorophores coupled with advancements in optical image collection have 

resulted in the bourgeoning field of single molecule microscopy for both in vitro and in 

vivoapplications.  Given the high signal-to-noise requirements of such experiments, these 

studies have led to the use of increasingly high optical intensities compared to conventional 

widefield imaging.   
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Paramount among the assumptions made in the use of fluorescent reporter molecules is 

that they do not perturb the system under observation.  Unfortunately, this assumption is not 

always valid.  The optical excitation of light-emitting molecules (fluorophores) often results in 

photodamage arising from chemical reactions of the fluorophore in its lowest energy electronic 

excited state, leading to photochemical damage.  The most probable pathway for energy 

relaxation from this excited state is photon emission, but there exist other possible excitation-

relaxation pathways that can produce reactive intermediates.  These pathways can lead to 

fluorophore photobleaching, a permanent chemical rearrangement of the fluorophore where  

fluorescence is no longer the primary relaxation pathway.  Most fluorophores undergo 105 – 

106 excitation cycles before photobleaching; entry into this non-emissive state may indicate the 

production of reactive species 39, 40.  The production of these damaging species may be 

cryptically occurring even without a visible loss of fluorescence from the sample.  In either case, 

photochemical damage is typically cumulative as it relies upon the net number of excitation 

events only and not the rate at which the excitation events occur. 

Excited fluorophores can occasionally interact with their solvent environment creating 

short-lived, damaging radical species capable of destabilizing or destroying neighboring 

biomolecules.  The process begins when molecular fluorophores are promoted to a singlet 

excited state by visible light.  One mode for the energetic relaxation of these species is to emit a 

photon; however, the high cycling rate induced by high light intensities used in confocal or 

MPM increases the population of triplet state species (the triplet state quantum yield can be as 

high as 5% for some molecular fluorophores).  Molecular oxygen, which exists in a triplet 

ground state configuration, can readily interact with this excited state fluorophore.  Energy 
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transfer between molecular oxygen and the excited fluorophore results in the formation of 

singlet oxygenand  electron transfer between the two speciescreates a super-oxide and a 

fluorophore radical.  All of these species, termed radical oxygen species (ROS) are highly 

reactive and are generated by the favorable downhill energetics of electron transfer to ground 

state oxygen, coupled with the rapid diffusion of molecular oxygen and therefore frequent 

interactions 40.  These highly unstable species are rapidly quenched in aqueous environments 

leading to the formation of hydroxyl radicals.  The short-lived hydroxyl radical is the prime 

damage mediating species, resulting in radical induced damage to proximal biomolecules 41.      

ROS are frequently generated when imaging nucleic acids stained with intercalating 

dyes, in both in vitro and in vivo applications.  This can lead to widespread genomic damage, 

the effect of which must be carefully considered when using DNA stains 42.  The formation of 

damaging hydroxyl radicals proximal to the site of fluorophore incorporation results in species 

that can attack DNA to produce various forms of oxidative radical photodamage 43, notably 

single strand breaks 44, 45.  Individual damage events typically cleave only one strand of the DNA 

sugar-phosphate backbone 46, 47; the accumulation of many single-strand breaks leads to 

double-strand cleavage 18.  Since many proteins involved in DNA replication and repair bind to 

single-stranded DNA 6, 15, 48, the presence of single strand breaks induced by photo-excitation of 

intercalating dyes could strongly bias protein-DNA interactions.  Additionally, wide-spread 

genomic damage can induce apoptotic pathways resulting in cell death.  This is likely to induce 

artifacts in experiments probing native biological function.   
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Although the generation of damage mediating radicals is detrimental for most 

experiments, it can offer a degree of spatiotemporal user control in instances when initiating 

cellular damage is desirable 42, 45.  The common DNA intercalating dyes used for imaging 

application, such as Hoechst and DAPI (in vivo use) or YOYO-1, TOTO-1, Picogreen, and related 

dye monomers (in vitro staining), are all capable of selectively targeting DNA for 

fragmentation49.  The incorporation of these intercalating dyes enables DNA fragmentation to 

be initiated at particular wavelengths in a dose-dependent manner.  This is useful for studies of 

DNA damage and repair mechanisms, where localized photochemical damage can be used to 

elucidate repair pathways.  It has been shown that careful selection of the type of dye and DNA 

binding mode can be applied to tune the DNA backbone cleavage, biasing damage towards 

double strand cleavage or single strand breaks 50.  

Strategies for Investigating the Assembly of Macromolecular Complexes 

1. Models of Macromolecular Protein Assembly Dynamics in Cell Nuclei 

The second facet of protein recruitment that we have targeted for investigation 

concerns the spatiotemporal formation of the macromolecular complexes responsible for most 

cellular processes, in particular genome metabolism.  The post-processing of nascent RNA 

transcripts by the spliceosome and transcription of DNA by RNA Polymerase II (RNAP II) 

represent the epitome of supramolecular complexes essential for genome metabolism5, in 

which function is well resolved but assembly is poorly understood1, 8, 51.   Elucidating the 

mechanisms of multi-protein complex formation is imperative not only since these interactions 

underlie the initiation of cellular metabolic processes, but address the fundamental concerns of 

genomic functionality52.   
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Currently, two competing models of macromolecular assembly, categorized as either 

top-down53 or bottom-up54, are jockeying for acceptance, with a large body of literature 

supporting both propositions.  In top-down assembly, the constituents of the final complex are 

hypothesized to bind one another prior to DNA interactions and form a stable macromolecular 

machine termed a “factory”53, 55.  Such factories likely persist for a long duration in the cellular 

environment, stabilized by the numerous binding interactions of the many subunits, and 

represent the most efficient initiation of a metabolic function.  This approach is supported by 

the well-documented observation of large, multi-mega Dalton RNAP complexes that have been 

identified by optical and electron microscopy, as well as mass spectrometry56-59.  These 

factories have been found to persist in vivoand in vitro for long durations, even when 

transcription halts60.  It remains unclear how the factory initially assembles, either in a 

concerted, step-wise manner, or through uncorrelated, stochastic interactions. 

In contrast, bottom-up assembly hypothesizes de novo formation of the full complex 

each time a metabolic process is initiated, with subunits binding to the target site as the crucial 

first step of assembly.  Such an approach would lead to highly inefficient initiation of metabolic 

processes14, but is well supported by the large body of work documenting the dynamic and 

transient binding interactions of many nuclear proteins54.  Detailed FRAP studies of RNAP I and 

RNAP II indicate that individual subunits and associated transcription factors do not remain 

stably incorporated into active complexes, but rather exchange with a nucleoplasmic pool of 

unengaged proteins.  Further, in some systems, transcription initiation has been documented to 

be initiated with low efficiency, but following RNAP II complex formation, to proceed with high 

efficiency, which supports de novo assembly3, 14.  Again, it is unclear whether the assembly 
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proceeds through a step-wise process, or through stochastic binding interactions of the 

component subunits at their genomic site of action.  In the latter variant, assembly would be 

particularly inefficient since most stochastic interactions would likely be out of sequence and 

lead to an aborted intermediate.  While FRET evidence has accumulated that indicates 

spliceosome subunits do form partially assembled intermediates, their role in the final 

assembly is not yet understood5. 

2. Mechanism Evaluation: Choosing the Right Time and Place 

The difficulty in resolving the mechanisms of protein assembly stem in part from the 

large body of evidence in support of both opposing models.  The top-down assembly model 

relies heavily on structural observations in which molecular factories can be visualized; 

however, these observations are handicapped by a lack of simultaneous spatial and temporal 

resolution.  Optical methods have often been able to reproducibly observe punctate nuclear 

structures corresponding to active protein assemblies1, 256, 61, yet the spatial resolution is lacking 

to determine the true size of the complexes 57(though the recent development of live cell 

super-resolution optical microscopy may provide such insights) .  While complimentary 

observations have been made through electron microscopy57, such techniques lack the 

temporal resolution to confirm the long time duration over which these protein complexes 

must remain intact to qualify as factories.  Additionally, bulk biochemical studies that have 

demonstrated the activity and stability of purified complexes62, 63 can perturb function due to 

the non-native solvent environment.  The bottom-up assembly model is predicated largely on 

optical microscopy work that has conclusively confirmed the dynamic exchange of most 

complexed nuclear proteins. However, such findings do not rule out the formation of stable 
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factories following macromolecular assembly.  Further, biochemical studies that have 

suggested step-wise or stochastic assembly mechanisms again suffer from a lack of cellular 

context, in which molecular crowding or subunit confinement could drastically alter protein 

interactions64. 

 In general, all studies of macromolecular assembly have been complicated by the 

confounding presence of chromatin, which provides varying degrees of molecular confinement 

and presents nucleation sites for complex formation3, 3, 14, 65, 66.  In fact, both assembly models 

posit cellular molecular crowding and the resulting reduced diffusional mobility as favorable 

evidence.  Bottom-up assembly is viewed as benefiting from the reduced diffusional mobility of 

complex subunits, which would lengthen interaction times and promote more frequent 

collisions, thereby promoting macromolecular assembly from stochastic collision events.  In 

contrast, proponents of the top-down assembly mechanism cite the crowded nuclear 

environment as favorable for maintaining the stability of an assembled complex, yet the 

inability of a large factory to effectively diffuse throughout the nuclear volume is often 

overlooked.  Only by observing protein behavior with high spatiotemporal resolution in a model 

system where the effects of chromatin can be eliminated, can the initial stages of 

macromolecular assembly be discerned.  

In practice, optical microscopies coupled with cell types with known architectures can 

be exploited to achieve these requirements.  Our research group has made extensive use of 

high resolution FRAP microscopy, along with polytene cell lines, to capture protein diffusion in 

vivo and distinguish between the influences of chromatin and molecular crowding.  
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Importantly, recent work completed by our group has indicated that a hybrid mechanism likely 

mediates complex formation.  We have found that large macromolecular assemblies exhibit 

remarkable stability both in vivo and in vitro, yet likely form through the stochastic assembly of 

partially assembled intermediates with or without the assistance of chromatin nucleation sites.      

Research Aims and Scope 

Through my graduate research, methodologies have been developed for gaining insights 

into the multifaceted phenomenon of protein recruitment.   As detailed in Chapter 2, my initial 

projects focused on the development of single molecule imaging techniques, and confirm two-

photon DNA photodamage with visible light.  Damage cross sections were determined for 

biologically relevant DNA samples at different visible wavelengths.  This work was later 

extended for in vivouse by my lab mate, providing a powerful tool to initiate DNA damage and 

enzymatic repair in a user controlled setting.  Subsequently, in a project stemming from an 

effort to couple the two-photon damage assay with a DNA manipulation platform, the rate of 

DNA photodamage mediated by commonly used DNA intercalating dyes was quantified.  As 

described in Chapter 3, these results were confirmedapplicable for a wide range of imaging 

conditions enabling fellow researchers to evaluate how their optical imaging configurations 

perturb biological samples.  Finally, Chapter 4 covers my transition to in vivo systems and 

investigation of the macromolecular assembly mechanisms of RNAP II.  This fruitful work 

resulted in a new understanding of multiprotein nucleation processes and allows us to 

speculate as to a modular control mechanism over gene expression.  
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CHAPTER 2 

 
GENERATION OF DNA PHOTOLESIONS BY TWO-PHOTON ABSORPTION OF A FREQUENCY-

DOUBLED TI:SAPPHIRE LASER 
 

"The microscope with its accessories is by far the least understood, the most 
inefficiently operated, and the most abused of all laboratory instruments" 

 
-Charles Shillaber 

 

Overview: 

The formation of spatially localized regions of DNA damage by multiphoton absorption 

of light is an attractive tool for investigating DNA repair.  Although this method has been 

applied in cells, little information is available about the formation of lesions by multiphoton 

absorption in the absence of exogenous or endogenous sensitizing agents.  Therefore, we have 

investigated DNA damage induced in vitro by direct two-photon absorption of frequency-

doubled femtosecond pulses from a Ti:sapphire laser.  We first developed a quantitative 

polymerase chain reaction assay to measure DNA damage, and determined that the quantum 

yield of lesions formed by one-photon absorption of 254 nm light is 7.86 x 10-4.  We then 

measured the yield of lesions resulting from exposure to the visible femtosecond laser pulses, 

which exhibited a quadratic intensity dependence.  The two-photon absorption cross section of 

DNA has a value (per nucleotide) of 2.6 GM at 425 nm, 2.4 GM at 450 nm, and 1.9 GM at 475 

nm.  A comparison of these in vitro results to several in vivo studies of multiphoton 
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photodamage indicates that the onset of DNA damage occurs at lower intensities in vivo; we 

suggest possible explanations for this discrepancy. 

Introduction 

Irradiation by ultraviolet (UV) light is one of the most extensively used methods for 

exploring the biological consequences of DNA damage and repair.  Nucleic acids exhibit an 

absorption maximum near 260 nm, but efficiently absorb light with wavelengths between 200-

300 nm 1, 2.  The most common method of photolesion formation is by exposure to 254 nm 

radiation from low pressure mercury lamps.  Although simple to implement, this method 

creates photolesions with a random spatial distribution; it is often desirable to generate 

photolesions in a well-defined location to study protein dynamics in response to DNA damage.  

Due to the extremely poor UVB and UVC transmission of common glasses and mirrors, light in 

this range is difficult to manipulate via a microscopy-based apparatus.  This prohibits the easy 

pairing of short-wave UV lasers with conventional microscopy optics 3. More recently, other 

methods to generate localized photolesions have been applied to observe the response of 

fluorescently-tagged repair proteins in live cells 4.  One technique introduces UVC light through 

3-5 µm pores in a polycarbonate filter 5-8. When applied to cultured mammalian cells, the DNA 

damage is localized to a region that is smaller than the nucleus, but still immense in comparison 

to molecular length scales. Another method to introduce DNA damage involves laser-based 

irradiation of pre-sensitized cells in the 300-405 nm range 9-16. While generating photolesions 

that are localized to smaller 2D regions, it suffers from the potentially serious drawback that 

the sensitizing agent could perturb the natural response of the biological system to damage.  
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Ultimately, while these methods can localize the extent of DNA damage in two dimensions, 

they do not offer confinement in the third dimension.  

As an alternative, we explored the use of multiphoton absorption of DNA as a means to 

produce photolesions with conventional optics.  Nonresonantmultiphoton absorption is the 

process in which two or more photons interact with a molecule simultaneously to generate an 

excited state equivalent in energy to the summation of the absorbed photons 17. Since 

simultaneous absorption requires a large photon flux, the probability of two-photon absorption 

depends quadratically on the intensity of the incident light. This property is exploited to achieve 

depth discrimination in two-photon microscopy since absorption can only occur at the focal 

point of an objective lens as it is the region of highest intensity 18, 19.  Similarly, two-photon 

absorption-induced DNA damage has the advantage of generating photolesions in a three-

dimensionally pre-defined region of space, which is superior to the spatially random and 

widespread regions of damage induced by widefield UV illumination. Additionally, it does not 

require the introduction of an exogenous sensitizer that could perturb normal cellular 

functions.   

In our work, blue femtosecond pulses of light produced by frequency-doubling the 

output of a Ti:sapphire laser are focused on homogenous solutions of DNA in vitro.  Although 

blue light is relatively harmless to most biomolecules, absorption of multiple blue photons in 

the focused region can excite transitions similar to those caused by exposure to UV light, thus 

generating localized DNA photolesions.  While multiphoton irradiation has previously been used 

to generate DNA photodamage in vivo20-22, the potential role of sensitizing agents (both 
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naturally occurring and intentionally added) as mediators of energy transfer have not been fully 

considered.  More information is needed about the amount of direct multiphoton absorption of 

DNA, so that this phenomenon can be applied in conjunction with ultrasensitive microscopy-

based methods to study DNA repair protein dynamics 23, 24. 

It is challenging to assay DNA photolesions produced by two-photon absorption because 

of the inherently microscopic conditions in which they are produced.  DNA damage assays 

premised on techniques as varied as gel electrophoresis 25, HPLC 26, and radiolabeling 27 require 

significantly more sample than is that contained in the ~femtoliter focal volume of an objective 

lens.  To compensate, we have adopted the approach of irradiating 10 μL droplets by 

repeatedly raster scanning a focused laser beam through the sample in different axial planes 

using a laser scanning system.  We have also developed a highly sensitive quantitative 

polymerase chain reaction (QPCR) to detect DNA damage.  By combining these techniques, we 

have observed two-photon absorption-induced DNA damage, and determined the relevant 

absorption cross sections at 425, 450, and 475 nm.  A comparison of our results to previously 

published in vivo studies indicates that the generation of photodamage by two-photon 

absorption in vitro requires higher intensities than expected based on the in vivo experiments. 

Materials and Methods 

1. Materials 

High-purity grade chemicals were purchased from Fisher Scientific or Sigma-Aldrich.  

pBR322, EcoRI, Nb.BsmI, bovine serum albumin (BSA) and dNTPs were obtained from New 

England Biolabs.  The rTth DNA polymerase PCR system and accompanying reagents were 
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purchased as the GeneAmp XL PCR kit from Applied Biosystems, and custom primers were 

synthesized by Integrated DNA Technologies.  A QIAquick PCR Purfication kit was obtained from 

Qiagen and the Quant-iTTMPicoGreendsDNAreagent was obtained from Invitrogen.  PCR was 

performed in an EppendorfMastercycler, absorption measurements were made on a NanoDrop 

1000 Spectrophotometer and the PicoGreen fluorescence assay was read on a BMG PheraStar 

plate reader.  UV-induced DNA damage was generated with a SpectrolineCrosslinker containing 

254 nm tubes (the crosslinker was operated with only half of the maximum number of bulbs to 

reduce the photon flux).  The laser setup is described in detail below. 

2. DNA sample preparation 

The PCR amplification efficiency of supercoiled DNA is poor 28, so the samples used to 

develop the QPCR assay and for subsequent irradiation studies were prepared from linearized 

pBR322 DNA.  Additionally, concerns that commercial products may contain trace amounts of 

photosensitizers motivated us to use DNA samples generated in-house by PCR.   

We linearized supercoiled pBR322 with EcoRI (5 units/mg plasmid, recommended by 

New England BioLabs), confirmed the product by 1% agarose gel electrophoresis, and then 

amplified it using the GeneAmp XL PCR kit.  The initial PCR reaction mixture was composed of 

sterile water, 5 pg/μL linearized pBR322, 1X rTth buffer, 200 μMdNTPs, 1.2 μMMg(OAc)2, 0.1 

mg/mL BSA, and 0.4 μM of each primer.  The rTth polymerase was diluted in 1X rTth buffer and 

1 unit was added to each amplification reaction.  The primers sequences, which amplify a 4.3 kb 

fragment of pBR322,  are28: 

pBR102F (5’-CAGGCACCGTGTATGAAATCTA-3’)  
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pBR399R (5’- TGGATCTCAACAGCGGTAAGA-3’)                   

The dNTPs and primer solutions were stored as aliquots to avoid excessive freeze thaw 

cycles.  The DNA was amplified using a three-step temperature program: initial denaturation at 

94oC for 1 min, then 28 cycles of denaturation at 94oC (15s), annealing at 62oC (30s), and 

elongation at 66oC (240s) in the EppendorfMastercycler.  The PCR product from several tubes 

was consolidated and purified with a PCR cleanup kit.  The DNA concentration was measured by 

absorption at 260 nm (typical concentrations after PRC ~180 ng/uL) and stored as single-use 

aliquots at -80° C for use as a DNA template in subsequent experiments. 

As a control for the QPCR assay, a portion of the PCR-generated linearized pBR322 was 

enzymatically nicked with Nb.BSmI, which cleaves only one strand of the double-stranded DNA 

substrate.  The enzyme was heat inactivated and removed using the PCR cleanup kit.  The DNA 

concentration was measured by absorption at 260 nm and stored as single-use aliquots at -80° 

C for subsequent experiments. 

3. QPCR assay of DNA damage 

The QPCR assay was used to amplify DNA templates that have been diluted with 

Millipore water to a working concentration of 0.05ng/μL.  The initial PCR reaction mixture is 

identical to the aforementioned mixture used to generate template.  Each QPCR assay run 

includes four mandatory controls: an undamaged pBR322, a serial dilution at half the 

concentration of the undamaged pBR322 to ensure the assay is functioning properly, the 0.5 

lesion/strand nicked pBR322 used to monitor sample amplification, and a blank sample 

prepared without template.  The QPCR assay was run for 14 cycles at the three-step 
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temperature program described above.  This number of PCR cycles used was determined 

empirically with the goal of maintaining a two-fold increase in amplification between control 

samples.   Samples were run in duplicate or triplicate. 

Following the PCR amplification, the PCR products were quantified using the PicoGreen 

DNA quantification assay.  The samples were prepared in a 96 well plate to be processed by the 

PheraStar plate reader, with filters corresponding to the 488/520 nm excitation/emission 

spectrum of PicoGreen.  In addition to the PCR products, a set of pBR322 standards made by 

serial dilution was run to calculate the final concentration of the amplified products and to 

calculate the true starting concentrations of the template stocks.  The dilution series always 

included a blank sample (water) to correct the fluorescence measurements. The PCR products 

were diluted with TE buffer (10mM Tris-EDTA, pH 8.3, adjusted with dilute NaOH and HCl) and 

mixed with diluted PicoGreen solution as per the manufacturer’s instructions.       

4. UV irradiation 

In order to determine the quantum yield of photolesions in response to 254nm UV light, 

linearized pBR322 (0.05 ng/μL) was irradiated in a UV oven with an emission peak at 254 nm.  

Sample aliquots (20μL) and a KI/KIO3 chemical actinometer (20μL) 29, 30 were simultaneously 

irradiated on a glass slide for varying exposure times, generating damage at a range of UV 

dosages 29, 30.  The number of incident photons was determined by the actinometer.  

5. Femtosecond laser irradiation 
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In order to investigate photolesion formation that results from two-photon absorption, 

homogenous DNA samples were irradiated by focused 400-500 nm ultrashort pulses using the 

apparatus diagrammed in Figure 2.1.  Our setup used tunable near-infrared, ~140 fs pulses 

produced at 80 MHz by a Coherent Chameleon Ultra II Ti:sapphire oscillator.  An electro-optic 

modulator and polarizer placed directly after the laser controlled the intensity used for each 

experiment.  We generated the second harmonic frequency of the pulses by focusing the beam 

into a 2 mm path length β-barium borate crystal cut for type-I phase matching.  The focal length 

of the lens, and thus doubling efficiency, was somewhat limited by the requirement that the 

visible beam be relatively symmetric and free of astigmatism.  The residual near-infrared light 

was rejected with a contrast ratio of at least 100:1 by reflecting the beam off of two dichroic 

mirrors.  The visible femtosecond pulses were introduced into a home-built laser-scanning 

microscope based on an Olympus IX81 inverted microscope.  Mirrors mounted on computer-

controlled galvanometers determined the angle with which the laser beam enters the objective 

lens.  To irradiate a large field of view but maintain sufficiently high peak intensities, a 10X, 

0.30NA objective lens was used to focus the beam within the sample.  The back aperture of the 

lens was slightly underfilled to maximize transmission while maintaining a tight focus.  The 

beam was raster scanned in a sinusoidal pattern through each axial plane of the sample.  The 

focal plane was adjusted by translating the objective lens in the axial dimension using the 

motorized nosepiece of the microscope.  

To determine the intensity dependence of photolesion formation, identical samples 

were held in separate wells of a 384-well microplate and irradiated by subsequent scans at 

various powers.  Samples were separated by a sufficient number of wells to avoid 
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Figure 2.1-Schematic diagram of the irradiation apparatus.Femtosecond pulses from a tunable 

Ti:sapphire laser are attenuated by a Pockels cell/polarizer and subsequently focused into a β-

barium borate (BBO) crystal that doubles their frequency.  After removing the residual 

fundamental light with dichroic mirrors, the second-harmonic beam is focused into the sample 

using a 10X 0.3NA objective lens.  It is raster scanned through each axial plane of the sample 

using galvanometer-mounted mirrors. 
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crosstalk.  A metal guide and micrometer were used to position different wells reproducibly 

with respect to the objective lens.  The sample in each well was irradiated by raster scanning a 

focused beam through the sample using the galvanometer-mounted mirrors, and then 

repeating for each axial plane.  The number of axial scans performed was determined by the 

height of the liquid column in the well, and it was confirmed that over-scanning the height of 

the well did not cause additional photodamage.  The axial plane spacing was approximately 

equal to the full-width at half-maximum of the calculated point spread function, and the 

number of laser pulses incident on each point in the sample was estimated from the calculated 

point spread function and average velocity.  The irradiation intensity was adjusted for each 

sample by varying the incident laser power using the aforementioned electro-optic modulator 

without adjusting the beam focusing, and the incident laser power measured at the objection 

prior to irradiation.  The point spread function was measured at 450 nm by imaging 100 nm 

fluorescent beads immobilized on a glass surface.  For each wavelength, 10 μL of linearized 

pBR322 samples (0.05 ng/μL) was irradiated at a series of incident powers.  Each sample was 

removed from the microwell plates and the amount of DNA damage was evaluated using the 

PCR-based assay described above.  Care was taken to ensure that the control samples were 

treated identically to irradiated samples, with the exception of exposure to the laser. 

Results and Discussion 

This work proceeded in three phases: the development of a QPCR assay to quantify the 

formation of DNA photolesions, measurement of the damage induced by exposure to a UV light 

source, and quantification of the damage induced by multiphoton absorption. 
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1. Development of a QPCR assay of DNA damage 

The assay used to quantify the formation of photolesions after irradiation was based on 

a method developed by Van Houtenand co-workers31-33.  The method is premised on a 

reduction in DNA polymerase transcription efficiency by strand breaks or by bulky forms of 

damage, such as thymine dimers, which block the progress of polymerases not containing 

exonuclease activity34.  In the first round of PCR amplification, a single lesion removes a 

damaged strand from future replication, as the truncated transcription product will not be able 

to anneal with the primers required to initiate the next round.  Thus damaged sample 

populations are not amplified as quickly due to the reduction in the number of strands available 

for transcription, and will manifest damage relative to an undamaged control sample (Fig. 2.2-

a).  The sensitivity of this assay is related to the length of the PCR target, since a single lesion in 

a long template causes a larger reduction in the quantity of DNA produced than a single lesion 

in a shorter template.  The use of long DNA templates and the ability of PCR to amplify sub-

nanogram quantities of starting template makes this assay ideal for measuring low damage 

rates of microscale samples33.  

The number of photolesions or damage sites is determined by measuring the ratio of 

the amplification of the damaged DNA samples to an undamaged control sample, as described 

below.  The degree of amplification (total DNA synthesized) after the samples are subjected to 

the PCR reaction is determined by fluorescence measurements made on a multiwell plate 

reader after addition of the DNA binding fluorophore PicoGreen.  A tenet of this assay to 

produce quantitative results is that a change in the sample input concentration produces a 

linear change in the amplification.  Therefore, implementation of the assay required 
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optimization of a quantitative PCR protocol for the DNA template under investigation followed 

by validation that amplification linearity was reliable. 

a. Conditions for quantitative PCR 

PCR reactions proceed through three phases: early exponential growth, reduced 

efficiency “leveling off” as reagents become limiting, and finally saturation or plateau33.  In 

order to maintain the linear relationship between sample input and output concentrations, the 

QPCR reaction must be kept in the exponential phase, where a semilog analysis yields a linear 

plot.  For a quantitative assay, the cycle number chosen is a compromise between saturation 

and signal to noise limits.  The cycle used should be low enough for undamaged samples to 

remain in the exponential phase while amplifying, but high enough to yield a large degree of 

amplification of the control relative to damaged samples to achieve a good signal to noise ratio 

when measuring the amount of PCR product. 

We determined the optimal quantitative amplification conditions by generating PCR 

growth curves of a linearized pBR322 DNA template at 0.05 and 0.025 ng/μL concentrations 

and selecting the cycle number that best corresponded to a two-fold amplification, in our case 

cycle 14 (Fig. 2.2-b).  It should be noted that the actual template concentration used in each 

experiment was measured using the PicoGreen assay, and kept dilute enough to avoid high 

amplification nearing PCR saturation. 

After establishing the number of PCR cycles required to achieve a linear dependence, 

the dynamic range of the assay was determined by amplifying a serial dilution of  pBR322 and 

observing the range over which a linear response was maintained (Fig. 2.2-c).  Samples were 
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analyzed in triplicate and a relative standard deviation (RSD) of less than 5% was typical.  A 

linear dynamic range of approximately 50:1 was established.  The upper end of this range is set 

by the need to remain in the exponential PCR region and the lower end is limited by variability 

in the background fluorescence in the PicoGreen assay (which is the source of the small y-

intercept in the fit of Fig. 2.2-c).  This range set the boundaries for output amplifications still 

considered reliable, and contributed to the determination that a pBR322 input concentration 

for PCR of 0.05 ng/μL provided the desired sensitivity.     

After optimizing the assay, two controls were included in all subsequent PCR 

amplifications to ensure quantitative results each time samples were analyzed.  The first control 

measured the PCR amplification efficiency of the undamaged template by including a “half-

template” sample made by two-fold serial dilution.  This sample was expected to show a 1:2 

amplification compared to the undamaged template, and deviations from this value indicate a 

problem with assay.  The second control was a PCR-generated linearized pBR322 template that 

has been nicked on one strand by the enzyme Nb.BSmI, and used at the same concentration as 

the undamaged template.  This sample also acted as a reference for the amplification by 

mimicking damage to one strand of each duplex (this “damage” is the result of a deterministic 

cleavage as opposed to the statistically random process of photodamage described below).  A 

significant deviation from the expected 50% amplification value for either control sample 

indicates a problem with the undamaged template or PCR conditions; in this event, the assay 

results were discarded. 
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Figure 2.2-Detection of DNA photolesions using quantitative PCR.(a)The presence of a bulky 

photolesion (x) in the irradiated sample causes a reduction in PCR amplification. (b) Depiction 

of the exponential, linear, and plateau phase of the PCR reaction.  The exponential phase cycle 

resulting in a two-fold increase in amplification was chosen, cycle 14 for our samples.  (c) A 

dilution series of the input amount of DNA was used to determine the range over which 

amplification remained linear.  A minor fluorescence background in the PicoGreen assay causes 

small deviations from linearity at the lowest concentrations, limiting the dynamic range of the 

assay to ~50:1. 
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b. Statistical treatment of randomly distributed DNA photolesions 

Since the number of damage sites on a single strand is not detected directly, the amount 

of damage must be treated statically.  This results from an inability to distinguish the reduction 

in amplification from multiple lesions on the same strand from the reduction in amplification 

from a single lesion (Fig. 2.3).  The formation of photolesions is a random process governed by 

the Poisson distribution 35, which is applicable to situations involving occurrences that happen 

at a well-defined average rate but that are independent of previous events.  The probability P 

that a specific strand has exactly n lesions if the average number of lesions per strand is µ is 

given by: 

 𝑷(𝒏) =
µ𝒏𝒆−µ

𝒏!
 (1) 

The average number of lesions formed per strand can be determined from the probability of 

detecting a strand that is devoid of lesions, known as the zero class probability (n = 0). 

The QPCR assay only amplifies undamaged strands, so its output is directly proportional 

to the zero class probability 32.  Therefore, the average number of lesions formed on each 

strand is calculated from the measurable ratio of the amount of DNA produced in the PCR 

reaction of the irradiated DNA to the amount produced from unirradiated DNA: 

 µ =  − ln (
DNA produced from irradiated template

DNA produced from unirradiated template
) (2) 

This ratio is determined from the fluorescent intensities of the final PCR reaction mixtures in a 

PicoGreen assay.
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Figure 2.3- Poisson statistics are required to determine the number of DNA lesions from the 

quantitative PCR assay(a) Undamaged duplex DNA gives rise to four daughter strands are one 

round of PCR. (b) A single photolesions (x) prevents one strand from being replicated, resulting 

in a two-fold reduction in amplification. (c) Additional photolesions on the same strand do not 

cause a further reduction in amplification.  Thus the process must be treated statistically using 

the Poisson distribution.  The measurable variable is the amplification ratio of irradiated DNA to 

unirradiated DNA, which is equivalent to the probability of no lesions occurring.   
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2. UV-induced DNA photodamage 

We evaluated the ability of the QPCR assay to detect photolesions by investigating the 

damage resulting from DNA exposure to well defined dosages of 254 nm UV radiation.  The 

exposures were conducted in a Spectroline UV oven and the amount of radiation was measured 

by means of a chemical actinometer.  This method enabled the accurate determination of the 

number of photons incident on the sample by means of measuring the formation of UV 

sensitive product with a spectrophotometer.  The amount of lesions produced by the UV light 

was quantified using the QPCR assay.    

The rate of lesions formation dependence exhibited a well defined linear response up to 

a threshold exposure nearing 3 x 10-12einsteins followed by a plateau of ~4 lesions/strand (Fig. 

2.4).  Typical error estimates on the assay lesion measurements were around 10% RSD for these 

exposures.  The linear region is consistent with a one photon excitation process in 

whichabsorption is directly proportional to incident intensity.  The plateau region has two 

explanations.  It could represent the equilibrium point of lesion formation where further 

exposure photo-excites the reverse reaction.  This type of behavior has been witnessed before 

in irradiations of E. coli plasmids where it was attributed to photosteady state 27.   Alternatively, 

it could be due to the dynamic range of the PCR assay, corresponding to extensive damage that 

resulting in amplification values to close to the minimum detection limit.  Based on a dynamic 

range of 50:1, it would not be surprising for the assay to exhibit saturation behavior around a 

value of –ln(1/50) ~ 3.9 lesions/strand. 
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The initial linear region of the damage curve was used to determine the quantum yield 

of lesion formation.  A linear regression was performed to obtain the slope (Fig. 2.4), which was 

used in conjunction with the pBR322 concentration to obtain the QY of lesion formation.  We 

have defined ΦD here as moles photolesions/moles photons absorbed, which does not account 

for thymine proximity or abundance.  This represents a value indicative of the damage rates 

that could be realized with genomic DNA.   The calculation of the UV dosage absorbed 

accounted for the differential absorption of 254 nm light by DNA as compared to the absorbing 

actinometer species 29 by the ratio of their photon absorptions using Beer’s Law.  These values 

were estimated from the optical density of the actinometer as reported by Rahn et al. (OD=200 

at 254nm) and the optical density of double stranded nucleic acid (OD=1 at 260 nm for 50 

ng/µL).  The pathlength of irradiation was the radius (0.21216 cm) of the 20 µL hemisphere to 

which the sample was assumed to conform.  These corrections yielded a value for the ΦD of 

7.86 (± 0.73) x 10-4.   

Our experimentally determined  quantum yield is considerably smaller than often cited 

ΦD of 0.02 36 (determined for E. coli samples) but similar in magnitude to the more recent value 

of 1.8 x 10-3  determined for pBR322 by Gut et. al36.This discrepancy between our reported 

value and previous investigations could be the result of the selectivity of our assay, since abasic 

sites that contribute to the lesions detected in enzyme based assays are not detected by QPCR 

37, or due to the nature of the nucleic acids under investigation.  Many previous investigations 

have employed free nucleotides in solution 36 or homo-oligmers of thymine as model systems 

for dimer formation 1.  These systems have the potential to overestimate the ΦD by placing 

neighboring thymines in configurations that may optimize 
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Figure 2.4- UV dose dependent lesion formation.Samples exposed to well-defined amounts of 

254 nm light were analyzed with the quantitative PCR reaction.  Damage produced at low 

dosages fit to a linear function to determine the quantum yield of lesion formation (black 

squared); saturation behavior was observed at higher dosages (red squares). 
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dimerization 25.  More native configurations of genomic DNA could reduce the possibility of 

dimer formation through a low abundance of thymine bases compared to chain length, spatial 

separation of adjacent pyrimidines along the chain, and reduction in the occurrence of 

favorable thymine-thymine configurations due to secondary structure formation 38, 39.     

As a further comparison, if the photon absorption is scaled by the number of adjacent 

thymine bases (as is the case with the often cited value of 0.2) , which accounts for the number 

of absorption events that can lead to dimer formation, then ΦD is revised to 0.0133, in close 

agreement with previous determinations.  These two approaches imply different models of 

energy transfer along the DNA chain length following an absorption event.  Assuming each 

nucleotide has a similar absorption cross section, the latter model (in which the quantum yield 

is scaled for the number of adjacent thymines) corresponds to a mechanism in which all 

absorption events generate an exciton that propagates along the DNA chain until neighboring 

thymines are encountered (thymines exhibit the highest probability for dimerization of the four 

nucleotides).  Thus energy transfer is efficient and can potentially occur over long distances.  

The former calculation, in which the cross section is unscaled by neighboring thymine 

abundance, implies that energy transfer is very limited, with dimerization only occurring if the 

absorption event occurs in close proximity to neighboring thymine bases.  Comparisons to work 

conducted with poly-thymine, which indicated a QY much higher than the value we 

determined, tend to suggest the latter model in which excitons can travel large distances over 

DNA before arriving at a thymine-thymine energy trap 1. 

3. Two-photon absorption-induced DNA photodamage 
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Based on the two-photon absorption cross section data of fluorescent molecules, it is 

possible to achieve two-photon absorption in the wavelength region corresponding to twice the 

one-photon absorption spectrum for many species, but the two-photon absorption maximum 

can be blue-shifted relative to twice the one-photon absorption maximum 19.  This line of 

reasoning predicts that DNA could exhibit two-photon absorption of visible light between 400-

600 nm, with a maximum at or below 520 nm.  The near-infrared pulses produced by a 

femtosecond Ti:sapphire laser can be frequency-doubled to produce visible pulses in this 

wavelength range with peak intensities sufficiently high to achieve two-photon absorption in 

molecules with a reasonable cross section.  Therefore, we decided to irradiate DNA with 

focused femtosecond visible pulses and employ the QPCR assay to quantify the extent of two-

photon absorption-induced damage.  To produce a realistically detectable amount of damaged 

DNA, we employed our multiphoton microscope setup to scan the focused beam through a 

small volume of DNA solution.  We chose a 10X 0.3NA objective lens to maximize the scan area, 

with the realization that the beam waist is larger than is typically used for high-resolution 

imaging.  This required us to irradiate samples with higher average laser powers than are used 

in multiphoton microscopy. 

We used irradiation wavelengths of 425 nm, 450 nm, and 475 nm.  These wavelengths 

were chosen to maximize power available after frequency-doubling our Ti:sapphire laser 

output, since we determined that the incident power needed to be greater than 100 mW in 

order to obtain detectable amounts of damage.  Within experimental error, the rate of lesion 

formation had a quadratic dependence on the incident power (Fig. 2.5), a defining 

characteristic of two-photon absorption.  The RSD on the control samples of the PCR process 
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was found to be less than 8%, with the absolute error ± 0.62 Lesions/Strand.  The most 

parsimonious model to describe the power dependent damage curves was determined using 

the F-test.  This allowed the effect of higher order regression models to be distinguished, which 

confirmed the data was best modeled by a quadratic expression. 

After confirming that two-photon absorption can lead to damage, we calculated the two-

photon absorption cross section of DNA from our data.  Our method for calculating this 

quantity was derived from a basic definition of the two-photon cross section, in which the 

number of photons absorbed per nucleotide per second, NA2, is proportional to the product of 

the two-photon cross section of lesion formation and the square of the intensity.  Our 

experimental observables are related to the time-averaged quantities: 

〈𝑁𝐴2〉 = 𝜎2〈𝐼2〉                                                      (3) 

The value of NA2 can be calculated from the observed number of lesions per strand by:  

〈𝑁𝐴2〉 =
𝐿𝑒𝑠𝑖𝑜𝑛𝑠

𝑆𝑡𝑟𝑎𝑛𝑑⁄

𝛷𝐷∗𝑇∗𝑛
                                                 (4) 

WhereΦD is the quantum yield of lesion formation (assumed to be the same for both a 

one or two photon process), T is the interaction time of the absorber and the incident light, and 

n is the number of nucleotides per strand of pBR322.  The value of T was estimated by dividing 

the diameter of the beam (2*ω), where ω is the beam radius, by the scan rate of the raster 

laser beam, s. 
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Given the important dependence of the peak laser power and two-photon cross 

sections on the beam profile, we measured the point spread function of the beam at 450 nm by 
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Figure 2.5- Power-dependent damage produced by irradiation of DNA samples with focused 

femtosecond pulses at 425 nm, 450 nm and 475 nm.The data were fit to a quadratic function 

of power to determine the two-photon absorption cross-section, as described in the text. 

 



 

43 
 

imaging fluorescent beads.  The beam FWHM was found to be 1.77±0.27 µm.  This value is 

larger than the minimum (diffraction-limited) beam profile because we chose to slightly 

underfill the objective lens back aperture (to achieve maximal laser power at the sample) and 

because of a slight beam asymmetry introduced by the frequency doubling crystal.  The beam 

radius at 450 nm was determined to be 1063 nm, and the ratio of the theoretical to measured 

beam radius at 450 nm was used to estimate the 425 nm and 475 nm beam radii to be 1004 nm 

and 1122 nm respectively. 

The relationship between 〈𝐼2〉 for a pulsed laser source and the average power is given 

by 19: 

 〈𝐼2〉 =
𝑔𝑝〈𝐼〉2

𝑅∗𝜏𝑝
=

𝑔𝑝〈𝑃〉2

𝑅∗𝜏𝑝(𝜋∗𝜔2)2 (5) 

Where gp is the temporal laser pulse shape (assumed to be Gaussian-Lorentzian, for which gp = 

0.66), R is the laser repetition rate, and τp is the pulse duration.  Equation 3 can be rewritten by 

combining Equations 4 and 5 to yield: 

 
𝐿𝑒𝑠𝑖𝑜𝑛𝑠

𝑆𝑡𝑟𝑎𝑛𝑑
= 𝜎2 (

2∗𝑔𝑝∗𝛷𝐷∗𝑛

𝜋2∗𝑅∗𝜏𝑝∗𝜔3∗𝑠
) 〈𝑃〉2 (6) 

 (This expression includes a conversion from power expressed in watts to photons/s.)  The two-

photon absorption cross section can thus be determined by equating the quadratic coefficient 

in Equation 6 to the coefficients from the quadratic fits of the data.   

The two-photon cross section of DNA per nucleotide extracted from our data is 2.58 (± 

0.47) GM at 425 nm, 2.36 (± 0.46) GM at 450 nm, and 1.86 (± 0.48) GM at 475 nm (where 1 GM 

= 10-50 cm4 s photon-1).  Our measured values are an order of magnitude larger than the 
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previously reported two-photon absorption cross section of pBR322 at the longer wavelength 

of 532 nm, which was 0.06 GM 25.  The discrepancy could be due to the increased sensitivity of 

our assay in comparison to the previous study.  Regardless, these data indicate a trend of 

increasing two-photon absorption as the incident wavelength is blue shifted away from twice 

the 260 nm one-photon absorption maximum of DNA, which may be consistent with the blue 

shift noticed in the absorption spectra of many fluorphores under two-photon excitation.  

Alternately, it may indicate that the transitions excited by two-photon absorption in this 

wavelength region are similar to those excited by far-UV light.  Overall this value is low for small 

aromatic compounds.  As a common reference, rhodamine 6G has a maximal two-photon cross 

section of ~150 GM, while our two-photon cross section was only ~2 GM 41. 

It is important to note that our experiments used a low NA objective to irradiate the 

largest area possible, thus requiring high average laser powers.  This would not be the case in a 

typical high resolution imaging experiment. Given that the maximum average power output of 

our laser system was 300 mW, and using the measured beam profile at 450 nm, our peak 

irradiance used to induce two-photon photodamage was approximately 0.704 TW/cm2.  In 

contrast, a typical cell imaging system would employ a higher NA objective lens for maximum 

resolution, which would generate similar peak irradiances at 4-5 mW (assuming 1.2NA).   

Having characterized the two-photon damage at several wavelengths, it is useful to 

illustrate the differences that exist between our in vitro system and a more typical in vivo 

system.  We consider our experiments to be a measure of direct two-photon damage, as our 

system is free of potential energy-transferring DNA sensitizers – both endogenous ond 
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exogenous.  Using high peak irradiance levels (~ 0.7 TW/cm2), we achieved only minimal DNA 

damage, while previous groups conducting in vivo experiments using three-photon irradiation 

to generate DNA damage have reported saturating amounts of damage at lower irradiation 

levels.  In a study conducted by Meldrum et al., three-photon irradiation of cells at 750 nm lead 

to saturation of photolesions formation at approximately 0.2 TW/cm221.  Another three-photon 

absorption study performed by Trautleinet al.22, in which cells were irradiated at 750 nm and 

1050 nm, found saturation of photolesion formation at 0.3 TW/cm2 and 0.9 TW/cm2 

respectively.  Finally, work by Dinantet al.20, found that similar CPD damage was created when 

cells were irradiated under three-photon conditions at an average power of 80 mW (estimated 

intensity ~ 3.5 TW/cm2) as when cells sensitized with Hoechst dye were irradiated under single 

photon conditions at 405 nm at 18 mW.  Since the cited studies used three-photon absorption, 

much greater photon intensities should have been required than the two-photon experiments 

we conducted.   Given the intensity levels they required to induce maximal damage in vivo, we 

suspect that the cellular environment can contain endogenous sensitizers that mediate energy 

transfer to DNA, promoting lesion formation.  Significantly, some of these studies employed 

cells that express GFP fusion proteins, which, given the high near-UV absorption cross section 

of GFP, may act as an exogenous sensitizing agent.  This possible mechanism of damage 

sensitization could be analogous to the chromophore-assisted laser inactivation (CALI) method 

used to abolish protein function in vivo.  This would be especially relevant if the fluorescently 

tagged proteins were often in close association with DNA 42, thus placing the DNA within the 

~60 Å damage radius of the reactive oxygen species generated during GFP-excitation 43.  Thus, it 

is important to consider the presence of possible absorbing species, since cells can be naturally 
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sensitized by endogenous chromophores or deliberately sensitized through the incorporation of 

light absorbing species or intercalating dyes.  Additionally, the in vivo studies detected 

photolesions through immunostaining methods 20, 22, which presumably require much higher 

levels of DNA damage to be detected than our QPCR assay; this further highlights the difference 

in damage levels obtained between our methods. 

Finally, it is important to note that at high laser intensities, DNA damage can be induced 

indirectly by radical species generated through optical breakdown of the aqueous solvent, as 

opposed to the direct formation of photoproducts by two-photon absorption.  However, we do 

not believe this mechanism is a likely explanation for the photodamage we observed 

experimentally.  Most often, the optical breakdown of water is reached by multiphoton 

absorption of ~4.6 eV UVB (266 nm) photons at ~TW/cm2 intensity levels.  In an investigation by 

Fan et al., the optical ionization threshold for water has been estimated to lie between 6.5-10 

eV44, and is thus readily reached through a two-photon process involving UV light.  In our 

experiments, the highest energy wavelength used was 425 nm, corresponding to 2.9 eV, which 

is below the ionization threshold if two-photon absorption is to be considered.  While higher 

order multiphoton absorption of 425 nm light could lead to optical breakdown, this should 

manifest itself as a tertiary or higher order power dependence of DNA lesion formation with 

respect to power, a trend that was not observed in the course of our experiments.  Further, in 

the same study 44, the ability to reach optical breakdown in water was determined for a similar 

irradiation system, a 580 nm laser operating with a pulse duration of 100 fs.  They found that 

the minimum laser intensities to achieve ionization is 11.1 TW/cm2.  This system closely models 
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our apparatus (with a pulse duration of 140 fs) and indicated that our maximum laser intensity 

of ~ 0.7 TW/cm2 is insufficient to produce solvated electrons in the visible. 

Conclusion 

We developed a sensitive PCR assay for DNA damage, and determined the quantum 

yield for one-photon DNA photodamage at 254 nm.  Irradiation of DNA with focused, ultra-

short visible pulses yielded a second order dependence of photolesion formation on incident 

light intensity, confirming the ability of two-photon absorption to cause UV-like photochemical 

damage.  The two-photon absorption cross section of DNA was determined to vary from 2.6 – 

1.9 GM in the range of 425 – 475 nm.  Further research that extends the range of irradiation 

wavelengths will be required to determine the full multiphoton absorption spectrum of DNA. 
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CHAPTER 3 

 
QUANTIFICATION OF DYE-MEDIATED PHOTODAMAGE DURING SINGLE-MOLECULE DNA 

IMAGING 
 

“Bad times have scientific value.  These are occasions a good learner would 
not miss” 

-Ralph Waldo Emerson 

 

Overview: 

Single-molecule fluorescence imaging of DNA-binding proteins has enabled detailed 

investigations of their interactions.  However, the intercalating dyes used to visually locate DNA 

molecules have the undesirable effect of photochemically damaging the DNA through radical 

intermediaries.  Unfortunately, this damage occurs as single-strand breaks (SSBs), which are 

visually undetectable but can heavily influence protein behavior.  We investigated the 

formation of SSBs on DNA molecules by the dye YOYO-1 using complementary single-molecule 

imaging and gel electrophoresis based damage assays.  The single-molecule assay imaged 

hydrodynamically elongated lambda DNA, enabling the real-time detection of double-strand 

breaks (DSBs).  The gel assay, which used supercoiled plasmid DNA, was sensitive to both SSBs 

and DSBs.  This enabled the quantification of SSBs that precede DSB formation.  Using the 

parameters determined from the gel-damage assay, we applied a model of stochastic DNA 

damage to the time-resolved DNA breakage data, extracting the rates of single-strand breakage 
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at two dye staining ratios and measuring the damage reduction from the radical scavengers 

ascorbic acid and β-mercaptoethanol.  These results enable the estimation of the number of 

SSBs that occur during imaging and are scalable over a wide range of laser intensities used in 

fluorescence microscopy.                    

Introduction 

Investigations of DNA-binding proteins and their substrate interactions have benefited 

greatly from the level of detail afforded by single molecule imaging (SMI) techniques.  It has 

recently become possible to interrogate nonspecific protein-DNA interactions, which are 

difficult to study with bulk experiments, by directly observing the interaction of individual 

proteins with immobilized strands of DNA using high resolution optical microscopy 1.  In the 

majority of such experiments, the proteins of interest are fluorescently labeled and tracked 

relative to a DNA substrate that is located by the use of intercalating dyes.  Paramount among 

the assumptions made in such experiments is that the protein-DNA interaction under 

consideration is not perturbed by the presence of the intercalating dye 2.  While in some cases 

this can be verified experimentally 3, the photochemical effect of the dye on the nucleic acid 

substrate is often neglected. 

Once excited, fluorescent dyes may undergo intersystem crossing and interact with 

ground state oxygen molecules, generating highly reactive singlet oxygen and fluorophore 

radicals 4.  These damaging species can attack DNA to produce various forms of oxidative 

radical photodamage, including strand breaks 5, 6.  Individual damage events typically cleave 

only one strand of the DNA sugar-phosphate backbone 7, 8; the accumulation of many single-
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strand breaks (SSBs) leads to double-strand cleavage 9.  Since many proteins involved in DNA 

replication and repair bind to single-stranded DNA 10-12, the presence of SSBs induced by 

photoexcitation of intercalating dyes could strongly bias protein-DNA interactions.  

Unfortunately, SSBs cannot be visualized directly in SMI experiments, so their impact on the 

observed protein dynamics is often assumed to be minor in the absence of significant double-

strand cleavage. 

In light of the deleterious effect SSBs may have on protein-DNA interactions, we have 

investigated the rate of single-strand photocleavage in SMI experiments.  Since it is not possible 

to detect this form of damage using SMI, we conducted parallel SMI and ensemble experiments 

under similar conditions to fully assess photoexcited dye-induced DNA cleavage.  The single-

molecule experiments employed a fluorescent microscope to image the double-strand 

photocleavage of flow-stretched DNA substrates tethered on a passivated glass slide in a 

microfluidic flow cell.  The ensemble experiments used a traditional gel electrophoresis assay to 

quantify both single-strand and double-strand photocleavage of a plasmid DNA sample that had 

been irradiated by an unfocused laser beam.  In both sets of experiments, the DNA was labeled 

with the intercalater YOYO-1, a cyanine dye with extremely high DNA affinity 13, and was 

irradiated by the same 488 nm laser.  Additionally, the ability of two radical scavenging systems 

to protect DNA from photodamage was investigated. 

The SMI and ensemble experiments both quantified the rate of double strand cleavage, 

allowing us to establish that the rate of damage measured by the ensemble assay could be 

extrapolated to the SMI experiments by adjusting for the excitation light flux.  However, the 
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ensemble gel electrophoresis assay was required to monitor the formation of SSBs since this 

quantity is undetectable in the SMI experiments.  We fit the results of both experiments using a 

kinetic model that assumes SSBs are distributed randomly along the DNA strand and double-

strand cleavage occurs only when two SSBs are sufficiently close.  Based on the cleavage rates 

extracted from the fits, we are now able to estimate the number of SSBs that may arise from 

typical SMI irradiation conditions.  We conclude that these conditions produce a significant 

amount of DNA photodamage, which has been largely neglected but should be considered to 

properly interpret the outcome of these experiments.  This conclusion is particularly important 

for research concerning DNA repair enzymes, in which damage sites are hypothesized to act as 

surface energy minima, trapping enzymes until the next step in the repair pathway. 

Materials & Methods 

All chemicals and materials are Fisher Brand unless otherwise noted. 

1. Observing double-strand photocleavage using flow-stretched DNA 

a. Surface functionalization, microfluidic chamber fabrication, and DNA substrate 

preparation 

The procedure to passivate and functionalize the coverslip for DNA attachment was 

based on a previously reported method 14.  Coverslips were ethanol rinsed, sonicated in 

chloroform for 5-minutes, ethanol rinsed again, dried, and soaked in Piranha solution (1/3 20% 

hydrogen peroxide, 2/3 sulfuric acid) for a minimum of 30-min.  Following drying for 1-hr at 

150°C to remove physisorbed water, the glass was submerged in aminopropyltriethoxysilane 

solution (10% APTES/90% anyhydrous acetone) for 10-minutes with agitation.  After heating to 
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110°C to cure the surface, the coverslips were coated with a solution containing methoxy 

poly(ethylene glycol) succinimidyl-valerate (mPEG-SVA) and biotin-PEG-SVA (Laysan Bio.) 

dissolved in coupling buffer (NaHCO3, 100 mM, pH 8.2).  The solution composition was biotin-

PEG (2 mg)/mPEG (150 mg) in coupling buffer (1 mL), with 100 µL deposited on each coverslip.  

This solution was incubated on the coverslips for 5-7 hours to allow adequate time to couple 

the PEG-SVA to the APTES layer. 

For microfluidic chamber fabrication, quartz microscope slides (Finkenbeiner Glass Inc.) 

were drilled and Nanoport tubing connectors (Upchurch Scientific) affixed to the slide with 

quick-dry epoxy.  Double-stick tape (3M) was used as spacer between the slide and PEGylated 

coverslip surface, with sealant (rapid-dry nail polish) applied to the edges of the coverslip to 

prevent leaks. 

The DNA substrates were prepared from 48 kbp-lambda DNA (Promega) by sticky-end 

filling with biotinylated-dUTP using the Klenow fragment of DNA polymerase I (3’→5’ exo-, New 

England BioLabs), following a protocol from Smith et al. 15.  Lambda DNA stock was diluted in 

polymerase buffer (0.17 µg/µL, 115 µL total volume) and heated to 65°C for 10 minutes to melt 

the sticky ends.  The dNTP solutions were added (6.4 µL each, 10 µM) followed by the addition 

of the Klenow fragment (10 Units).  The sample was heated to 37°C for 30 minutes, followed by 

heat inactivation at 75°C for 20 min.  The DNA was purified by dialysis in TE buffer (pH 8) for 24 

hr. 
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b. DNA staining and injection for SMI 

Prior to DNA injection into the flow cell, the sample was stained by mixing YOYO-1 dye 

(Invitrogen) with the biotinylated lambda at a specific dye to nucleotide molar ratio of 1:4 or 

1:10.  The DNA was used at a concentration of 10 pM.  At all times, solutions containing the 

DNA substrates were handled with wide-bore pipette tips to reduce the incidence of shearing.  

These experiments used dye to nucleotide ratios of 1:4 and 1:10, and three working buffer 

systems adjusted within pH 7.7±0.2: TE (10 mM Tris, 1 mM EDTA), TE/β-mercaptoethanol (5% 

v/v) , and TE/ascorbic acid (10 mM).   

After conditioning a flow cell chamber with blocking buffer (4 mM Tris-HCl, 0.1 mM 

EDTA, 0.2 mg/mL BSA) 300 μL of the DNA solution was injected into the flow cell at a rate of 25 

μL/min using a KD Systems Syringe pump.  Solutions entered the flow cell by withdrawal from a 

reservoir sealed to one of the Nanoports (a large pipette tip glued to the Nanoport).  Unbound 

DNA was removed from the chamber by flushing with soaking buffer (10 mM Tris-HCl, 1 mM 

EDTA, 10 mM NaCl) at a rate of 40 μL/min for 5 mins.  Generally, the DNA sample concentration 

was sufficient to bind between 10-50 spatially resolved DNA strands per field of view (136 x 136 

µm).  At this point buffer flow was terminated and imaging experiments could begin. 

c. Single-molecule imaging 

All experiments were carried out on a homebuilt inverted microscope.  Samples were 

excited by a 488 nm diode Coherent sapphire laser, the output of which was focused onto the 

back aperture of an Olympus 60X/1.2NA water immersion objective lens configured for wide-

field imaging.  The laser power was controlled by neutral density filters.  The fluence at the 
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objective was determined by restricting the illumination field with an iris, measuring the field 

diameter with a Ronchi ruling slide (Edmund Optics), and measuring the laser power with a 

calibrated power meter.  The iris was opened for imaging all DNA samples.  The emission from 

the YOYO-1 was filtered with a 575/150 nm bandpass filter (Chroma) before detection by an 

EMCCD camera (Hamamatsu ImageEM, model C9100-13). 

For each experiment, the buffer flow was terminated, the tethered DNA substrates were 

brought into focus, the beam blocked to prevent photodamage prior to observation, and a 

nearby location selected at random to begin imaging.  Imaging of the selected region was 

continued until the majority of the elongated strands in the field of view had been cleaved.  The 

image collection frame rate was varied to match the timescale of the cleavage events, typically 

between 30-2 Hz for collections between 10 to 300 secs.  For each buffer-sample condition two 

replicate flow cells were tested, with 6-11 replicate regions imaged at each laser intensity. 

d. Radical scavenger buffer preparation 

For each radical scavenger tested, the scavenger was added to the working buffer and 

pH-adjusted.  Ascorbic acid was used at 10 mM, while β-mercaptoethanol (BME, sealed 

ampoules) was used at 5 % (v/v) immediately before irradiation.  The same scavenger 

concentrations were used for the ensemble studies. 

2. Single-molecule image processing 

MATLAB programs (Appendix B) were written in-house to determine the number of 

intact DNA molecules in each frame of the SMI experiments.  The first frame (t = 0 seconds) of 
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each image sequence was used to identify the regions that initially contain extended DNA 

strands.  The initial image was blurred with an asymmetric Gaussian filter and subtracted from 

itself.  After performing this background subtraction the image was slightly smoothed using an 

asymmetric Gaussian filter extended along the direction of flow.  The image was then 

thresholded and skeletonized, a morphological process that reduces objects to a single 

connected line of pixels, thus rendering the elongated DNA strands as lines.  The result was 

then overlaid in false color with the image so that the user could manually select which features 

corresponded to DNA strands.  All well-spaced DNA strands were selected and subsequent 

image processing steps were automated.  The skeletons of selected features were dialyzed to 

create a binary mask, which was applied to every subsequent frame before thresholding.  The 

number of objects longer than 12 μm was recorded for each thresholded frame to produce 

breakage curves.  

3. Ensemble DNA damage assay 

a. Bulk DNA sample preparation 

The plasmid pBR322 DNA (New England BioLabs) was diluted in TE working buffer (10 

mM  Tris-HCl, 1 mM EDTA, pH 7.5) to a concentration of 20 ng/µL.  The dye YOYO-1 (Invitrogen) 

was added to the diluted plasmid to a final concentration of 3.14 or 1.26 µM.  The YOYO-1 

molar concentrations correspond to dye to nucleotide ratios of 1:4 or 1:10.  For experiments 

using YO-PRO1 dye, the concentration of the dye was doubled to maintain equivalent molar 

ratios of fluorophores (YO-PRO1 to nucleotide molar ratios were therefore 1:2 and 1:5). 
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b. Bulk sample irradiation 

Irradiations were performed by placing a 60 µL sample on a coverslip and illuminating it 

from above by a 488-nm diode laser beam.  The laser power was measured prior to each trial 

with a calibrated power meter.  The beam was expanded to 2 cm in diameter to fully 

encompass the sample with a uniform intensity of 4.7x10-3 W/cm2.  To ensure that the sample 

drop did not absorb enough light intensity to provide a protective effect to the lower fluid layer, 

the absorbance through the drop was estimated.  Given the extinction coefficient of YOYO-1 

dye (98,900 M-1cm-1 as reported by Invitrogen) and an approximated sample drop thickness of 

0.306 cm (assuming a hemispherical drop of 60 µL), the minimum laser light transmittance 

would be approximately 80% , sufficiently low to ensure the drop thickness was uniformly 

irradiated.  Irradiations ranged from 0.5 to 30.0 mins, with a new sample drop irradiated for 

each time point.  Three control samples were included for every set of conditions tested- native 

plasmid, plasmid that was stained with dye but not irradiated, and plasmid that was irradiated 

but not stained with dye.   

c. Gel electrophoresis 

All samples were run in triplicate on a 1.2% agarose gel in 1x TAE buffer at 3.5 V/cm for 

5 hours.  To ensure consistent quantification of samples illuminated for various times, a YOYO-1 

destain step was performed after electrophoresis 16, 17.  This dye was removed by washing  the 

gel in 1 L of destain buffer (0.1 M NaCl, 10 mM SDS) for 5 hours, followed by 2 L of 1x TAE for 16 

hours to remove SDS.  The gel was then stained with ethidium bromide and imaged. 

4. Ensemble damage assay: Ascorbic acid mediated DNA degradation 
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The potential of ascorbic acid solutions to mediate strand breakage of DNA was 

investigated with pBR322 DNA(1 μL, 1μg/mL) diluted in TE/ascorbic acid buffer (50 μL, 10 mM, 

pH 7.5).  The dilutions were performed at 10-minute intervals for 120 minutes before 

separation by gel electrophoresis, to determine the time-dependence of breakage.  No dye was 

used in this study. 

5. Gel quantification 

Analysis of the gel images to quantify the relative fraction of supercoiled, nicked and 

linear DNA in each lane was performed using MATLAB scripts written in-house (Appendix A).  

One-dimensional Gaussian functions were locally fit to each peak from the pixel intensities of 

line scans of each lane.  A linearly slopping baseline was included to account for non-

uniformities in the background.  The relative fraction of each component was determined from 

the area of the Gaussian fits; the area of the nicked and linear forms was multiplied by a 

correction factor of 0.8 18 to correct for the preferential affinity of ethidium bromide for relaxed 

DNA. 

Results 

1. Double-strand photocleavage of individual DNA molecules 

We applied SMI to observe double-strand photocleavage of individual dye-labeled DNA 

molecules over time.  Lambda DNA molecules were end-labeled with biotin, stained with YOYO-

1 intercalating dye, and injected into a microfluidic flow cell whose surfaces had been 

functionalized with a PEG/biotin-PEG layer.  The PEG coating minimizes nonspecific 

electrostatic interactions between the DNA and the glass, while the relatively small 
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subpopulation of biotin-terminated PEG provides binding sites for the DNA termini through 

biotin-streptavidin-biotin linkages.  The hydrodynamic flow during injection elongates DNA 

molecules that are initially bound to the surface at only one end, causing them to become 

double-tethered in an extended configuration.  This arrangement allows us to image the 

photocleavage of each molecule by applying laser-based widefield microscopy in the absence of 

buffer flow, eliminating potential complications caused by hydrodynamic tension.  Fig. 3.1-a 

displays images recorded at several times during the course of a typical dataset, with the time 

resolution determined by the image capture rate.  The initial image consists of vertical lines that 

correspond to double-tethered DNA strands and smaller spots that are DNA strands which have 

been mechanically sheared during handling.  Individual DNA molecules accumulate SSBs as a 

result of irradiation, but this form of damage is not visually perceptible in the images.  However, 

the accumulation of at least two single photocleavage events that break opposite DNA strands 

in sufficiently close proximity leads to double-strand cleavage, which transforms a vertical line 

into two points in subsequent frames, as seen in Fig. 3.1-d.  We analyzed each image sequence 

using an automated MATLAB script that counts the number of extended DNA strands in each 

frame, resulting in time-dependent breakage curves that describes the dataset (Fig. 3.1-b).  The 

breakage curves were then fit with a kinetic damage model to determine the rate of single 

strand breakage, vide infra (Fig. 3.1-b, solid lines).   

We applied this SMI procedure to characterize double-strand DNA photocleavage under 

a variety of conditions, including two dye-staining ratios and several buffer compositions.  A 

qualitative inspection of the breakage curves (Fig. 3.1-b) indicates that SSBs accumulate rapidly, 
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as shown by the early onset of double-strand cleavage in the tethered samples, and the rate of 

DNA photodamage is strongly dependent on incident laser intensity and intercalater 
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Figure 3.1- SMI strand cleavage assay and damage quantification for flow-stretched, YOYO-

stained lambda DNA at a dye to nucleotide ratio of 1:4.(a) Movie stills depicting time resolved 

strand breakage.  The sample was irradiated continuously with a 488 nm laser at an intensity of 

15.0 W/cm2.  The DNA had been deposited as described in the text by flow in the vertical 

direction, but there was no flow while imaging.  Bright spots at t=0 are mechanically cleaved 
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strands damaged during injection into the flow cell.  Scale bar = 10 µm (upper right corner) (b) 

The quantification of the intact strands over time is displayed for three different irradiation 

intensities.  The breakage curves have similar profiles and all display the early plateau region of 

SSB induction, but note that the time axes are different.  The three different regions all had 

similar DNA strand density.  The solid lines are fits to the stochastic DNA damage model, as 

outlined in the text.  (c) The linear regression of the single strand breakage rates (n) as a 

function of laser flux provides a characteristic slope describing each breakage condition and can 

be used to estimate the breakage rate at any flux.  (d) Time resolved breakage and recoiling of a 

single strand from panel A, confirming that strands are only tethered by their endpoints. 
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concentration.  These trends are quantified below, after presenting results of related ensemble 

experiments and introducing the model used to extract cleavage rates by fitting the breakage  

2. Ensemble study of single and double-strand photocleavage 

Because the SMI experiments cannot detect SSBs directly, we also employed a bulk, 

electrophoresis-based assay to quantify the accumulation of SSBs preceding the formation of a 

double-strand cleavage.  Supercoiled plasmids were used for the ensemble measurements 

because the structural forms that result from strand breaks can be separated by 

electrophoresis: the presence of one or more SSBs constitutes a plasmid form termed “nicked” 

that has a reduction in both the degree of supercoiling and the electrophoretic mobility, while 

the linear form that results from double-strand cleavage has an intermediate mobility.  The 

buffers and staining ratios that we investigated using this ensemble assay were similar to those 

used in the SMI experiments to facilitate comparisons of the results.  However, the irradiation 

conditions required to produce a sufficient amount of damaged DNA for detection in an 

ensemble assay were quite different than the SMI experiments.  The ensemble assay requires 

several orders of magnitude more sample than the SMI assay, so a larger amount of solution 

must be irradiated with a defocused laser beam.   

We therefore labeled supercoiled pBR322 plasmid DNA with YOYO-1 or YO-PRO1 at 

specific nucleotide:dye ratios and irradiated 60 μL drops of this solution with an unfocused laser 

beam.  Aliquots of samples irradiated for various amounts of time were analyzed by 

electrophoresis (Fig. 3.2) and the resulting gel images were quantified using MATLAB (Fig. 3.2-
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b).  To confirm that the observed DNA damage resulted from a photosensitizing process and 

not from 
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Figure 3.2- Ensemble breakage assay and damage quantification.(a) Gel image of YOYO-

stained plasmid DNA samples (dye staining ratio of 1:10) that had been irradiated by an 

unfocused 488 nm laser for the times indicated.  (b) Quantification of each DNA population 

over time, determined by fitting the intensity of each band in the gel to a Gaussian profile.  
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dye intercalation, we tested two control samples: one stained by the intercalating dye but not 

exposed to laser irradiation and one exposed to laser irradiation but not dye stained.  These 

samples did not show any resulting damage compared to native plasmid, which has been 

observed to consistently be greater than 85% intact to start.  As expected, short-duration 

irradiations resulted in a partitioning of the DNA between the intact supercoiled form and a 

growing damaged population comprised of plasmids containing one or more single strand 

breakage sites (collectively referred to as nicked).  At longer time intervals, the supercoiled 

form was completely depleted as the nicked population dominated, to be eventually consumed 

as sufficiently numerous single strand breaks were accumulated to cause double-strand breaks, 

generating linearized plasmids (Fig. 3.2-a).  The time-dependent partitioning of the various DNA 

forms for each sample-buffer condition was fit by the same model used for the SMI 

experiments, as discussed below. 

3. Kinetic modeling of DNA strand cleavage 

a. Modeling for DNA cleavage 

To extract more meaningful information about DNA photocleavage and determine the 

relationship between single and double strand breaks from the SMI and gel data, we applied a 

complex model for DNA damage developed by Cowan et al. 19.  The model was originally 

intended to describe the action of a DNA nicking enzyme that creates SSBs in random locations 

on a supercoiled DNA plasmid, relaxing the supercoil.  Double-strand cleavage linearizes the 

plasmid only when two nicks on opposite strands are sufficiently close (Fig 3.3-a). This process 
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is statistically equivalent to the mechanism of dye-mediated radical photocleavage, and it can 

be 
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Figure 3.3- Stochastic DNA damage model and fitting of the ensemble data.(a) Illustration of 

the process in which a DNA strand suffers many single-strand breaks before cleaving.  The rate 

of single strand breakage (n) is constant, and many breaks may occur (shown by x on the 

strand) before two are proximal enough to allow melting of the DNA strand between these 

breaks.  This separation distance is defined as b.  The b-value could only be determined for the 
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plasmid samples, because only the gel assay enabled quantification of the nicked population.  

(b) Fitting of the plasmid populations at the two dye to nucleotide ratios to the stochastic 

damage model.  As expected, the higher staining ratio caused more rapid photodamage.  The 

solid line corresponds to the model applied to the 1:4 dye ratio, while the dashed line 

corresponds to the 1:10 dye ratio.  All three DNA populations were fit simultaneously to 

optimize the n and b values, but the single strand breakage rate (n, SSB/s) is determined 

primarily from the transition of the supercoiled to nicked populations, while the intra-strand 

breakage separation (b) distance is determined primarily from the rise of the linear population.    
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used to model single- and double-strand cleavage of either plasmid or linear DNA.  After 

outlining the assumptions of the model and presenting the resulting equations derived 

byCowan et al. for the time-dependent population of each fraction, we use this model to fit the 

experimental data. 

The DNA damage model is premised on the stochastic formation of single strand breaks: 

the number of single-strand nicks generated during each time period are statistically 

independent and follow a Poisson distribution.  The key assumption of the model is that the 

damaging agent does not discriminate between sites along a DNA molecule and the formation 

of one SSB does not influence the formation of another.  Furthermore, there is a characteristic 

distance between SSBs below which the attractive force exerted by the intervening hydrogen 

bonds is overcome by the entropic coiling force of the DNA polymer, leading to the formation 

of a double-stand cleavage.  These assumptions are sufficient to derive the probability that a 

molecule can accumulate a certain number of SSBs without double-strand cleavage, leading to 

expressions for the time-dependent population of undamaged (U), nicked (N) and broken (B) 

fragments.  These expressions are quoted below, but the reader is referred to 19 for a full 

derivation. 

As the initial transition from a supercoiled to nicked plasmid obeys first order kinetics, 

the loss of the undamaged form is described by an exponential decay in time (t): 

 𝑈(𝑡) = 𝑒−𝑛𝑡 (1) 
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Where n is the single-strand breakage rate.  The nicked population conforms to a Poisson 

distribution of SSBs.  The fraction that does not have SSBs close enough to form a DSB is given 

by: 

 𝑁(𝑡) = 2𝑒−
𝑛𝑡

2 − 2𝑒−𝑛𝑡 + (𝑛𝑡) ∗ 𝑋 (2) 

 𝑋 = ∑ 𝑒−(𝜆𝑡)(1+𝑚𝑏)/2[(𝜆𝑡)(1 − 𝑚𝑏)+/2]2𝑚−1/2𝑚!∞
𝑚=1  (3)  

Whereb is the spacing between SSBs that leads to a double-strand cleavage, expressed as a 

fractional length of the DNA molecule.  The subscript + following the difference (1-mb) indicates 

that if the quantity becomes less than unity, use the value zero; this truncates the summation 

at m=1/b.  Finally, the broken population (due to double-strand cleavage) can be approximated: 

 𝐵(𝑡) ≈ 𝑏−1 (𝑒
𝑛𝑡𝑏

2⁄ − 1) (𝑛𝑡𝑋 − 𝑌 + 𝑒
−𝑛𝑡

2⁄ − 𝑒−𝑛𝑡) (4) 

where 

 𝑌 = ∑ 𝑒−
(𝑛𝑡)(1+𝑚𝑏)

2∞
𝑚=1 [

(𝑛𝑡)(1−𝑚𝑏)+

2
]

2𝑚−1

[2𝑚 +
(𝑛𝑡)(1−𝑚𝑏)

2
] /(2𝑚!) (5) 

The broken population includes strands that have undergone only one double-strand 

cleavage event.  It is not possible to derive an analytic expression for this population, but 

Cowan et al.19derive lower and upper bounds, and recommend the use of Eq. 4 as a good 

approximation.  Their full model accounts for further fragmentation of the broken population, 

but due to experimental limitations, these fragmented strands are not readily detectable in 

either SMI or gel studies.  We account for this discrepancy by normalizing U, N and B by their 

sum at each time point. 



 

74 
 

b. Fitting ensemble data 

Applying the model, we determined the SSB rates and characteristic break separation 

distances for each sample in the ensemble studies by varying the n and b parameters to fit the 

time-dependent fractions of supercoiled, nicked and linearized fragments (Fig. 3.3-b).  We note 

that optimization of these two parameters is somewhat uncorrelated since the n value is 

primarily determined by the decay of the supercoiled species while the b value is determined 

primarily by the growth of the linear species; this does not apply for the SMI data because the 

undamaged and nicked populations are indistinguishable.  Therefore, the value of the b-

parameter determined by fitting the gel data is applied in fits of the SMI data under the same 

conditions.  

Fig. 3.4-a compares the SSB rates measured for the two dye ratios and different solvent 

conditions.  The damage rates measured in the ensemble assay are not proportional to the dye 

staining ratio. This may reflect the transition in dye binding modes between the two 

intercalater ratios, with the externally bound dye capable of mediating greater damage, 

possibly the result of an increased access to sensitize dissolved oxygen 16. 

Table 1 presents the characteristic distances that produce double-strand cleavage from 

SSBs.  To facilitate application to other DNA segments, they are listed as separation in base 

pairs by multiplying the fractional value of b obtained from fits by the length of the DNA 

plasmid.  These base pair separation distances are assumed to apply to all genomic DNA 

molecules.   The values obtained for YOYO-stained DNA are over 100 bp, which might seem 

somewhat surprising because single-strand fragments of this length should remain stably 
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bound for long times at room temperature.  However, these values do not represent true 

separation distances because they do not explicitly account for the dye spacing.   

We suspected that the use of a bis-intercalating dye biases the formation of closely-

spaced strand breaks by linking two damage-causing fluorescent moieties close together along 
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Figure 3.4- Comparison of the single-strand breakage rates (n) obtained by fitting results of 

the ensemble (A) or the SMI (B) damage assays to the stochastic DNA damage model. 
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the DNA chain.  Therefore, we tested if the b-values determined were being inflated through 

the use of a bis-intercalater by determining the breakage rates and interstrand spacing using 

the dye monomer YO-PRO1.  To account for the total number of potentially intercalated 

fluorophores, the concentration of YO-PRO1 dye was doubled to match that of YOYO-1 at each 

staining ratio.  We reasoned that by decoupling the damaging agents, which are free to 

intercalate randomly along the chain, the observed b-values would decrease.  This was 

confirmed, as the monomeric dye exhibits more physically realistic values of 15 and 27 bp for 

samples with higher and lower dye concentrations respectively.  Unexpectedly, the monomeric 

dye induces a 3-fold greater single strand damage rate than the YOYO dimer at the same 

fluorophore concentration, potentially reflecting their relative photostability 20, 21. 

c. Fitting double-strand photocleavage of flow-stretched DNA 

Having determined the critical b-vales, the same model was then used to quantify the 

rate of single strand breakage in the SMI studies by fitting the breakage curves for each 

condition tested (fits overlaid with data in Fig. 3.1-b).  Since the SMI experiments only reveal 

double-strand cleavage events, Eq. 4 and 5 were applied.  As opposed to the gel assay, these 

experiments are only sensitive to double-strand cleavage, making it difficult to determine the b-

value independently from the single-strand cleavage rate.  Therefore, the values of b obtained 

in the ensemble studies were applied to their respective SMI conditions; only the single-stand 

cleavage rate, n (SSB/s), was varied in the SMI data fitting procedure.  The breakage rates were 

found to be very reproducible at all conditions tested (Fig. 3.4), including replicate 

measurements performed in different flow cells, and the data showed good agreement with 

the model (most datasets exhibiting a R2-value > 0.90).
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Table 3.1- Characteristic parameters describing the single strand breakage rates by imaging 

condition 

Staining Ratio b-value (bp) Ensemble n  
(SSB/s)x10-3 

SMI Power Dependant n  
(SSB*cm2/W*s) 

1:4 YOYO 144±104 11±3 2.47±0.08 
1:2 YO-PRO1* 15±13 32±13 - 
1:4 YOYO + BME 114±75 4±1 1.15±0.04 
1:4 YOYO + Ascorbic Acid 65±71 3±1 0.696±0.024 
    
1:10 YOYO 118±111 3±1 1.02±0.05 
1:5 YO-PRO1* 32±31 7±3 - 
1:10 YOYO + BME 59±1800 0.6±0.2 0.798±0.038 
1:10 YOYO + Ascorbic 
Acid 

91±632 1.3±0.5 0.299±0.016 

* The monomeric dye concentration was doubled relative to the bis-intercalater to maintain an 

equivalent number of fluorophores   
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We applied this SMI assay to characterize double-strand DNA breakage under a variety 

of conditions, including two dye-staining ratios and several buffer compositions.  For each 

condition, we measured breakage curves as a function of several laser intensities.  The 

breakage rate at each laser flux was then fit with a linear regression to extract a characteristic 

slope of the SSB rate versus laser intensity (Fig. 3.1-c).  The regressions were performed over all 

the data points (not the averages at each irradiance) and forced through the origin (fits had an 

average R2-value of 0.93).  These slope quantities permit comparisons between different 

conditions and more importantly enable determination of the breakage rate at any flux.  As 

opposed to the ensemble study, the rate of damage was observed to be proportional to the dye 

concentration, with a 2.5-fold increase in dye staining resulting in ~2.5 increase in the damage 

rate. 

d. Effect of scavengers 

The mitigating effects on DNA photodamage of the DNA protectants BME (5% v/v), and 

ascorbic acid (10 mM) were investigated by incorporation into the DNA buffers.  We tested the 

primary scavenging systems in both the SMI and ensemble assays.  From the ensemble damage 

assay, ascorbic acid and BME show damage rate reduction by 2.9-fold and 2.0-fold for the 1:4 

and 1:10 dye to nucleotide ratio samples respectively (Fig. 3.4).  Similar reductions were 

observed for the SMI studies, with ascorbic acid providing a slightly greater protective effect 

than BME. 
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e.   Extrapolation between SMI conditions and ensemble studies 

To validate using the results determined from the ensemble studies being applied to fit 

the SMI data, we extrapolated the damage rates measured for the SMI conditions to those 

measured in the gel studies by scaling for the incident laser flux (Fig. 3.5).  The linear 

regressions were performed only on the SMI results.  The regression was then extrapolated 

over two orders of magnitude to lower laser intensities, providing a comparison to the gel 

results.  We found the estimated damage rates match very closely to the experimentally 

measured rate and most are within the 95% confidence intervals of the linear regressions.  This 

indicates the relationship between laser flux and breakage rate holds over four orders of 

magnitude. 

4. Degradation of DNA by ascorbic acid 

Although beneficial in reducing photodamage, we also noted that addition of ascorbic 

acid to the sample buffer can have a deleterious effect on DNA substrates.  We found that 

incubation of DNA plasmids in solutions containing ascorbic acid introduced enough SSBs to 

convert 60% of the plasmids to their nicked form in a 2-hr period at room temperature (Fig. 

3.6).  This was not observed for the TE or BME containing buffers.  Thus, while able to impart a 

protective effect on DNA and reduce strand breaks in the presence of radical species, the 

scavenger itself is capable of inflicting significant damage on the DNA.  This finding was only 

possible due to the use of the bulk assay which is sensitive to all three forms of the DNA 

plasmid, as the SMI work cannot resolve the single strand breaks. 
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We confirmed that this phenomenon is a dye independent process and is accelerated at 

elevated temperatures.  Further, ascorbic acid samples from two leading suppliers- Fischer and 

Roche, were both confirmed to produce the same result.  While the method by which this 

damage occurs is uncertain, two explanations are likely.  The first is that ascorbic acid is 
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Figure 3.5- Extrapolation of the intensity-dependent SMI single-strand breakage rates to the 

laser intensity used for the ensemble measurements. The single strand breakage rates for the 

1:4 (open circles) and 1:10 (closed circles) YOYO dye staining ratios are shown on a logarithmic 

scale with corresponding linear regressions.  The linear regressions were performed only on the 

SMI data.  Each data point represents an average value of 10-17 sample regions; error bars are 

too small to be discerned at this scale.  The R2-values shown apply to regressions performed 

over the entirety of the SMI data set (47 points for the 1:4 set and 46 points for the 1:10 set).  

The ensemble single strand breakage rates are plotted on the same scale and fall near the best-

fit line, indicating that the linear regression fits to the SMI assay maintain linearity over 4-orders 

of magnitude in laser intensity.  This confirms the applicability of extending values determined 

in the ensemble assay to the modeling of the SMI data.  
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participating in a Fenton reaction, reducing transition metal ions that have participated in 

generating hydroxyl radicals from a 3+ →2+ state.  This activity, previously reported in vitro, 

regenerates the 2+ transition metal ion, typically Fe or Cu, enabling them to catalytically 

generate hydroxyl radicals in the water and singlet oxygen 22, 23.  While the ion chelator EDTA 

was included in the buffer preparation, reports have indicated some metals, particularly iron, 

retain redox activity despite chelation 24.  An inductively-coupled plasma mass spectrometry 

analysis of the ascorbic acid and buffer systems used indicated the presence of Fe (II) at 2.5 ppb 

and Cu(II) at 0.1 ppb.  The second explanation is that the natural oxidation of ascorbic acid by 

dissolved oxygen leads to the formation of damaging radical species.   

Discussion 

The purpose of our study is to quantify single-strand photocleavage during SMI 

experiments because this form of damage is not readily apparent.  We do note that the SMI 

DNA breakage curves all share the common feature of an initial plateau before decaying (Fig. 

3.1-b).  This plateau corresponds to the induction period during which single strand breaks are 

accumulating but are insufficient in frequency to cause double-strand cleavage.  The stochastic 

DNA damage model used to fit the data captures this feature (which corresponds to the lag 

time of the growth of the linear species in Fig. 3b).  While an initial plateau also results from a 

more simplistic model based on two consecutive first-order reactions that assumes only two 

single-strand cleavage events are required to produce a double-strand break, the duration of 

the induction period with this model was not sufficient to fit the data.  This simple model was 

also unable to fit the gel data.
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Figure 3.6- Ascorbic acid mediated DNA Damage.Quantification and fitting (solid lines) of the 

strand breakage caused by incubation of DNA plasmids in the absence of dye or irradiation with 

buffer containing ascorbic acid (10 mM) at 20°C.  Over 20% of the plasmids accumulate single-

strand breaks in a 2-hour time-span.  Control experiments performed with TE and TE/BME but 

without ascorbic acid do not exhibit strand breaks on the same time scale. 
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From the observed cleavage of elongated molecules coupled with the basepair 

separation values determined using the ensemble damage assay, we determined the rate of 

single strand breakage at each laser power and dye ratio.  Using the data in Table 1 along with 

the Equations 1-5, it is possible to estimate the number of SSBs in an intact DNA molecule 

observed using SMI.  The measured breakage rates indicate that in all cases, a large number of 

undetectable single-strand damage sites are formed before the observable double-strand 

cleavage occurs.  For example, we estimate that the intact strands in the Fig. 1a that have been 

imaged for only 0.73 secs have an average of 22 SSBs, and 75 SSBs by the 2.41 secs time point.   

Our results highlight the utility of the stochastic DNA damage model to predict the 

accumulation of SSBs before double strand cleavage occurs, but application of this model to 

DNA stained with dimeric fluorophores is not perfect.  The optimized values obtained for the b-

parameter from fits to the YOYO-stained ensemble data were larger than 100 basepairs, which 

may sound surprising if the b-value is interpreted as the actual separation distance (bp) 

between SSBs that cause double-strand cleavage.  A simplistic treatment of typical 

oligonucleotide melting temperatures indicates room temperature melting should occur for 

single strand breaks approximately 10 basepairs apart (applying the Wallace Rule, Tm≈3°C*(bp) 

25).  This discrepancy is rationalized however, by considering how the incorporation of bis-

intercalating damage agents violate the assumption of randomly positioned damage, as 

compared to a mono-intercalating damage agent.  In the case of the mono-intercalater, 

damage is caused at intervals approximately equal to the spacing of the intercalater.  Thus 

many damage events are required to cause two in close proximity.  However, by tethering the 

damage agents, single strand breaks are accumulated in much closer proximity than would be 
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expected if the damage agents were randomly spaced along the DNA backbone.  This causes 

double strand breaks to occur at a greater frequency than expected for the same number of 

SSBs.  Since the same number of single strand breaks have occurred but resulted in more 

double strand cleavages, it seems as if the interstrand break spacing required to produce a 

double-strand break is quite large.  In actuality, a small basepair separation is still required to 

melt the double helix, but application of the stochastic model to dimeric dyes manifests itself as 

a inflated b-value. 

Our experiments used dye to nucleotide ratios of 1:10 and 1:4.  Previous studies have 

indicated that the former (lower) dye ratio, fully intercalates into the double helix, while the 

latter (high) dye ratio saturates the intercalation sites and additionally binds though nonspecific 

electrostatic interactions along the DNA backbone 20.  These staining ratios are well above the 

threshold required to visualize the full contour of extended lambda 26, but they mimic the 

staining action of incorporating dye directly into the working buffer used during an experiment 

17.  Of greater importance, the use of high staining ratios was necessary to ensure we were able 

to observe double strand breaks.  Consider a very low staining ratio, in excess of 100 

nucleotides: 1 dye molecule.  In this situation it becomes likely that the damage agents will be 

spaced further apart than the distance required for two single strand breaks to cause a double 

strand cleavage.  This would result in the extensive formation of single strand breaks along the 

DNA molecules without ever being detectable as a rupture of the molecule.  This possibility is 

highlighted by the findings for the YO-PRO1 mono-intercalater.  This dye was found to have a 

greater rate of single strand breakage than its dimeric counterpart.  Yet the small interaction 

distance between single strand breaks means it becomes easy to stain at a ratio that spaces 
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these dyes further apart than the minimum distance to cause a double strand cleavage.  In 

effect this dye biases damage towards single strand breaks and enables a distinction between 

the single strand breakage rate and the double strand breakage rate.  In many ways this 

represents the worst case scenario for an experiment in which single strand breaks can disturb 

protein interactions.  Therefore, dimeric dyes at moderate concentrations are optimal for SMI 

experiments on protein-DNA interactions that could be perturbed by the presence of SSBs.    

Conclusion 

This work was undertaken to quantify the damage mediated by common fluorescent 

DNA intercalaters on DNA substrates during imaging experiments.  While we tested YOYO-1, 

these findings are applicable to any DNA intercalater, including those used to image nucleic 

acids in live cells.  We determined the breakage rates of DNA using a gel based assay, gaining 

information about the separation of strand breaks required to linearized the molecule and 

ability of radical scavengers to reduce damage rates.  These findings were applied to the study 

of flow stretched lambda DNA, and this is the first work to report breakage rates both with and 

without radical scavenging systems.  These breakage rates can be used to estimate the 

prevalence of single strand nicks occurring on a DNA molecule over the course of a typical 

optical imaging experiment, which are undetectable by optical methods.  Such information is 

vitally important in the consideration of data obtained concerning DNA-repair protein 

interactions as many proteins recognize strand breaks as binding sites 10, 27.  In such 

circumstances, the unintentional formation of protein trap sites could strongly bias the 

movement and interaction times of DNA-protein complexes.  Further, we observed that 
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ascorbic acid mediates DNA degradation in the absence of dye, which should be considered 

before using it as a radical scavenger.
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CHAPTER 4 

 
RNA POLYMERASE II SUBUNITS EXHIBIT A BROAD DISTRIBUTION OF MACROMOLECULAR 

ASSEMBLY STATES IN THE INTERCHROMATIN SPACE OF CELL NUCLEI 
 

“Science is like sex: sometimes something useful comes out, but that is not the 
reason we are doing it” 

-Richard P. Feynman 

 

Overview: 

Nearly all cellular processes are enacted by multi-subunit protein complexes, yet the 

assembly mechanism of most complexes is not well understood.  The anthropomorphism 

“protein recruitment” that is used to describe the concerted binding of proteins to accomplish a 

specific function conceals significant uncertainty about the underlying physical phenomena and 

chemical interactions governing the formation of macromolecular complexes.   We address this 

deficiency by investigating the diffusion dynamics of two RNA Polymerase II subunits, Rpb3 and 

Rpb9, in regions of live cell nuclei that are devoid of chromatin binding sites.  We demonstrate 

that both unengaged subunits are incorporated into a broad distribution of complexes, with 

sizes ranging from free (unincorporated) proteins to those that have been predicted for fully 

assembled gene transcription units.  In live cells, Rpb3 exhibits regions of stability at both size 

extremes connected by a continuous distribution of complexes.  Corresponding measurements 

on cellular extracts reveal a distribution that retains peaks at the extremes but not in between, 
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suggesting that partially assembled complexes are less stable.  We propose that the broad 

distribution of macromolecular species allows for mechanistic flexibility in the assembly of 

transcription complexes. 

Introduction 

A central question in modern molecular biology is the mechanism by which large, multi-

subunit protein complexes assemble inside a cell.  Essential cellular processes such as 

transcription 1, splicing 1, 2, and genome repair 3 are undertaken by massive assemblies involving 

many distinct molecular modules that efficiently carry out specific tasks.  While “protein 

recruitment” is cavalierly viewed as the initial step in assembly, molecular-level details about 

how this process is initiated and through what intermediates such complexes form remain 

ambiguous 4.  Two primary models have emerged to explain how cellular machinery assembles 

to handle the dynamic demands they must meet 5.  One proposal is a top-down approach, in 

which the components of a macromolecular assembly bind one another prior to receiving an 

activation signal, forming a stable supra-assembly that is often called a molecular factory.  Such 

a factory would be poised for efficient handling of cellular tasks but would be slow to traverse 

the cellular interior and poorly suited to respond to changing external stimuli.  On the other 

extreme is a bottom-up approach, in which each component of the final molecular assembly 

diffuses through the cellular interior individually and stochastically encounters binding partners 

at the active site until the entire complex is amassed.  This stochastic model would enable rapid 

movement of the smaller molecular modules within the cell, but the binding steps to form a full 

complex from individual components may limit the overall activation rate.  Interestingly, 

proponents of both models invoke the crowded nuclear milieu as corroborating evidence, 
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either in support of factory domains or restrictive nuclear architecture 6, 7.  In an effort to 

distinguish between these paradigms, we decided to investigate the incorporation of individual 

components of the RNA Polymerase II (RNAPII) transcription complex in regions of live cell 

nuclei devoid of chromatin binding sites.    

The present study specifically investigates RNAPII since it is responsible for mRNA 

production and occupies a critical position in the central dogma.   While extensive in vitro 

molecular biology research has elucidated the mechanical intricacies of how the RNAPII 

complex transcribes template DNA, the advent of in vivo fluorescent labeling and the 

widespread use of fluorescent microscopy have enabled detailed observations of RNAPII 

complex interactions with chromatin in the native cellular environment 8-11.  Much work has 

been conducted to characterize RNAPII behavior in bacterial, insect, and mammalian systems; 

however, the majority focuses specifically on subunit assembly and interactions on chromatin, 

typically in the vicinity of DNA binding sequences.  In studies using both RNAPI and RNAPII, 

polymerase subunits and transcription factors have been found to have distinct dynamics, 

arguing against preassembled complexes 8, 9, 12, though these results contradict some earlier 

work 13,14, 15.  Thus, it remains unresolved whether the assembly is stochastic 9 or stepwise 8, 16, 

with implications for a generalized framework of multi-component protein assemblies 17. 

No previous investigations have characterized RNAPII component diffusion dynamics 

preceding chromatin interactions in cells and most studies have completely neglected the 

importance of diffusion.  We postulated that measuring the diffusion dynamics of RNAPII 

components prior to chromatin binding could yield insights into the mode of assembly.  We 
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sought to better understand the process of RNAPII complex assembly and nuclear mobility by 

investigating the dynamics of the Rpb3 and Rpb9 subunits in the interchromatin space 

(nucleoplasm devoid of chromatin) of cell nuclei using fluorescence recovery after 

photobleaching (FRAP).   

We express fusions of Rpb3 and Rpb9, two subunits exclusive to RNAPII , with enhanced 

green fluorescent protein (GFP) in the polytene cells of Drosophila melanogaster larvae 18.  

These polytene cells contain many copies of the genomic DNA that form large chromosomal 

bundles during interphase (Fig 4.1-a,b).  By expressing RNAPII subunit-GFP fusions and H2B-

mRFP tagged histones in polytene cells, we are able to optically resolve nuclear regions 

containing chromatin and restrict our analysis exclusively to the interchromatin space (Fig 4.1).  

This region is devoid of chromatin and therefore lacks DNA binding sites.  We find the diffusion 

of both RNAPII subunits was non-Brownian and the recovery dynamics of the two subunits are 

different.   

While non-Brownian diffusive behavior is often termed anomalous and attributed to 

molecular crowding 19, we propose a fundamentally different interpretation.  Through a 

comparison to the mobility of unconjugated GFP (lacking a localization sequence) 20, which does 

exhibit Brownian diffusion, we determine that molecular crowding is not responsible for the 

observed diffusive behavior.  Rather, both RNAPII subunits must participate in heterogeneous 

distributions of complexes with a broad range of sizes, from isolated subunits to fully 

assembled transcription complexes.  We term this type of diffusive behavior apparent 
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Figure 4.1- Image Collection and Automated Processing Methodology “Shotgun ptFRAP”.The 

primary limitation of the ptFRAP method is the low SNR, requiring averaging over hundreds of 

individual bleach and control points.  Collecting sufficient data necessitated an automated 

collection method in which an image of the sample is collected followed by the collection of 

ptFRAP curves at evenly spaced grid points in the sample.  Only the subset of ptFRAP curves 

collected at grid points that meet the image selection criteria are used for subsequent analysis. 

(a,g) An initial image of both color channels is captured and used in subsequent thresholding 

operations.  The GFP channel corresponds to the protein of interest, the RFP channel to the 

labeled polytene chromosomes. (b) A grid with 20 µm spacing is applied to the entire field of 

view.  These grid points define the positions where FRAP data is collected.  This is several times 

larger than the 300 nm PSF of the laser beam.   A coarse threshold is applied to the GFP 

channel; only grid points contained within the thresholded region are collected (magenta 

boxes).  Alternating points of the grid correspond to bleach and control datapoints.  Post-

processing steps are performed using MATLAB scripts developed in-house.  (c,h) After data 

collection, a median filter is applied to both images to remove noise.  (d,i) Threshold values are 

carefully selected for each image to capture the contours of the nuclear features.  (e,f)  In the 

GFP channel, the largest object in the field of view, corresponding to the nucleus, is retained.  

This eliminates any contributions from cytoplasmic signal.  The binary mask is processed to 

remove sharp edge features then eroded 500 nm from every periphery to eliminate grid points 

in the vicinity of cellular membranes.  (j)  The polytene binary mask is dilated 300 nm to remove 

any grid points nearby the chromatin.  (k)  The mask (red can be seen overlaid with the image) 

confirms the entire region containing the polytenes will be excluded from analysis.  (l,m)  The 
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RFP channel mask is subtracted from the GFP channel mask; the resulting region corresponds to 

the interchromatin space.  The open squares (green=control power, magenta=bleach power) 

indicate all grid points at which FRAP data is collected during the experiment, while squares 

enclosing dots indicate the grid points retained for analysis.  The distribution of the retained 

grid points are inspected visually to verify the selection criteria have been met. 
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anomalous diffusion, in which non-Brownian behavior is observed by simultaneously probing 

many states of pre-formed complexes with different diffusion coefficients.     

Materials and Methods 

All chemicals are Fisher brand unless noted.   

1. Fly Strains 

Drosophila lines that express Rpb3-GFP, Rpb9-GFP or H2B-mRFP using the GAL4/UAS 

system have been described previously 22,21.  Fly lines containing transgenes for unconjugated 

GFP and Gal4-C147 were obtained from the Bloomington Drosophila Stock Center (lines #5430 

and #6979 respectively).  All GFP samples are enhanced green fluorescent protein.  To 

simultaneously express H2B-mRFP with GFP or GFP fusions for dual color imaging, the 

homozygous line Gal4-C140; H2B-mRFP was first generated and then crossed to the 

appropriate GFP fusion transgenic line.  Flies were raised using a standard cornmeal medium at 

room temperature; larvae were collected after 8-9 days.  To prepare samples for imaging, 

wandering third-instar larvae were dissected in Grace’s Insect Medium and intact salivary 

glands were used for imaging polytene cells.  All imaging experiments were completed within 

one hour of dissection to maintain cell viability. 

2. Salivary Gland Extract Preparation 

To prepare polytene cellular extract samples of GFP and EGFP-Rpb3, 80 larvae were 

dissected and the glands placed on ice cold Tris-buffer (50 mM, pH 7.4).  The glands were mini-

centrifuged for 60 secs, the supernatant removed, and the glands re-suspended in ice cold lysis 

buffer (50 µL), followed by vortexing for 45 s and sonication for 30 mins to rupture the glands.  
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The lysis buffer consisted of Tris-HCl (50 mM, pH 7.4), NaCl (150 mM), NP-40 detergent (0.5% 

w/v), Pefabloc SC (1 mM in Tris buffer), leupeptin (2 µg/mL, in methanol), and pepstatin 

(2µg/mL, in methanol).  After sonication in ice cold lysisbuffer, the sample was mini-centrifuged 

for 4 mins.  The supernatant was used immediately for FRAP experiments.   

3. Two-photon microscopy configuration and FRAP Procedures 

Imaging and FRAP were done as described in our previous paper 20.  In brief, polytene 

cells were imaged with a 1.2NA/60x Olympus objective using a home-built laser scanning two-

photon microscope.  GFP and RFP were excited at 950 nm by a Chameleon Ultra II Ti:sapphire 

pulsed laser with a 140 fs pulse duration; the fluorophore emissions separated with a 570 short 

pass dichroic mirror.  The GFP emission was collected with a 510/30 bandpass filter while RFP 

emission was collected with a 630/100 dichroic mirror.  Quantitative bleaching studies were 

performed with a point-bleaching method (ptFRAP) developed previously in our laboratory, 

featuring an online image thresholding and data acquisition procedure followed by offline 

image analysis and data modeling.  For all conditions studied, between 20-40 cells were 

analyzed; the number of datapoints collected and averaged are indicated in Figures 2 and 4.  

Data collection consists of two phases- recording bleach and control datapoints.  Bleach points 

are established by photobleaching a diffraction limited volume ( spot size of 300 nm diameter 

and 1 µm axial length)  at a high laser power (bleach power) followed by recording the intensity 

of the spot during the diffusive recovery at a lower laser power (read power).  Control points 

are established in the same manner but with the read power used in place of the bleaching 

power.  A bleach depth of between 40-60% of the initial fluorescent intensity was achieved 

using a bleach power of 71.5 mW, while control measurements were taken at a read power of 
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11.5 mW (both values measured at the microscope objective using a calibrated power meter).  

For all proteins studied, FRAP recovery data was collected for 50 ms and data fitting was 

applied to datapoints collected starting at 80 µs post-bleach.  The data was fit with a model for 

anomalous subdiffusion 20, which indicates the degree of anomlity and the diffusion coefficient 

(for normally diffusing species) or the transport coefficient of the diffusing species.  The 

anomlity factor ranges between 1 and 0, with unity indicating Brownian diffusion.  For detailed 

information on the microscope configuration, FRAP timing sequence, and fitting recovery data 

to an anomalous subdiffusion model with a photophysics correction for observational 

photobleaching, (Daddysman and Fecko20). 

Results 

1. Automated “shotgun ptFRAP” data collection 

 We chose to study the transport properties of the RNAPII subunits Rpb3 and Rpb9 in 

the absence of chromatin binding sites or membrane perturbations by restricting the region of 

FRAP investigation to the interchromatin space of cell nuclei.  We used a point-FRAP (ptFRAP) 

method to probe diffusion, which is an implementation where optical diffraction-limited spots 

are photobleached and the fluorescent recovery tracked in time with sub-millisecond resolution 

20.  In contrast to the more common area-FRAP in which micron-sized features are 

photobleached22, ptFRAP probes smaller sample regions and enables several orders of 

magnitude higher time resolution.  To restrict the analysis of photobleaching recovery to the 

interchromatin space of polytene nuclei (avoiding both cellular membranes and chromatin 

regions) and prevent datapoints from overlapping in space during collection, we implemented 

an automated datapoint collection method termed “shotgun ptFRAP” (Fig. 4.1).  The method 
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consists of a data collection program in which evenly spaced datapoints are collected across the 

entire cell nuclei (ie. the entire cell is “hit” Fig. 4.1-b), followed by a post-experiment screening 

step that retains only datapoints in regions of interest that match our selection criteria (Fig. 4.1-

l,m).  Thus all regions of the nuclei are probed over the course of the experiment and individual 

regions can be analyzed afterwards.  This procedure enables over a thousand datapoints to be 

collected, without user bias, and are averaged into a single FRAP dataset.   

2. Different recovery dynamics observed for RNAPII subunits 

 Rpb3 is the third largest RNAPII subunit, having a native mass of 35 kDa; the GFP- fusion 

construct has a mass of 62 kDa.  Native Rpb9 is less massive at 14 kDa; the fusion construct has 

a mass of 41 kDa.  Both tagged subunits are incorporated into active transcription complexes 

23and the subunits have high binding affinities for most of the ten remaining RNAPII subunits 24.   

Additionally, RNAPII has strong affinities for transcription factors and promoter proteins, giving 

rise to a large distribution of complexes in which Rpb3 and Rpb9 may participate.  Using the 

ptFRAP method, we compared the recovery dynamics of both subunits in the interchromatin 

space of polytene nuclei, which were then compared to the recovery of unconjugated GFP 

under the same conditions.  The GFP acts as an inert protein with no binding partners in the 

nucleus and is only subject to molecular crowding (Fig. 4.2). We have previously shown that 

unconjugated GFP obeys Brownian diffusion in the interchromatin space 20 exhibiting a reduced 

diffusion coefficient due to nuclear viscosity.  For this study, GFP serves as an approximate molecular 

mass standard to account for the effects of nuclear crowding as a reduction in the translational diffusion 

coefficient 25.  However, it is apparent that differences in the FRAP curves between the RNAPII subunits 

and GFP (Fig. 4.2-c) indicate that the transport of these former species is not well described by Brownian 
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:

 

Figure 4.2- Comparison of in vivo subunit recovery dynamics.(a) The FRAP curves for the 

unconjugated GFP (green), the Rpb3-GFP (black), and Rpb9-GFP (blue) are shown.  Data are 

plotted as closed squares, the best-fits to an anomalous diffusion model are shown as black 

lines, best-fits to the distribution model are shown are white circles.  The data was collected 

with an intermittent collection technique that minimizes photobleaching while enabling long-

duration interrogation.  Numerous FRAP curves were averaged for each sample (GFP-1505 pts, 
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Rpb3-1694 pts, Rpb9-833 pts) to achieve a high SNR.  All displayed data has been treated to a 

10-point rolling average smooth to aid clarity but all fitting was performed on the un-treated 

datasets starting at the 80 µs time-point.  (b) Evident from the immediate post-bleach 

datapoint, each protein exhibits a different bleach depth.  This reflects a sample-specific protein 

expression level effect that significantly influences the bleach depth.  To enable qualitative 

comparison of the FRAP recovery curves, we normalized the FRAP bleach depth for each 

sample to zero.  The rescaled FRAP curves clearly indicate differences between the recovery 

profiles of GFP, Rpb3, and Rpb9.  The recovery differences are striking given the similar 

molecular masses and identical nuclear environment.  (c)  For better comparison of short-time 

data, the rescaled recovery curves are displayed on a logarithmic time axis.  Here, the 

differences in the slopes of recovery curves can be visualized: the flatter the slope, the greater 

the apparent anomlity factor.     
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diffusion.  This result is striking given the similar masses of the three proteins and the weak dependence 

of diffusional mobility with molecular mass predicted by the Stokes-Einstein Equation.   

Given the large differences between the recovery of GFP and the RNAPII subunits, we 

chose to initially fit the Rpb3 and Rpb9 FRAP curves with a model that allows for anomalous 

subdiffusion.  Anomalous subdiffusion equations are often invoked to describe mass transport 

in which the mean squared displacement of each particle is sublinear with time, which can 

result from heterogeneity in the molecular environment 

 
〈∆𝑟2〉 = 6

𝛤

𝛼
𝑡𝛼 (1)   

The particle displacement is Δr, Γ is the transport coefficient, t is the time interval, and α 

is the anomlity value.  The principle parameter describing anomalous diffusion is the anomlity 

value, bound between zero and unity, which indicates the magnitude of the deviation from 

Brownian behavior.  An anomlity factor of unity corresponds to Brownian behavior (for which 

the transport coefficient is the diffusion coefficient); smaller values indicate progressively larger 

deviations.  Such hindered molecular motion is often attributed to intracellular factors that 

retard the motion of a particle, such as binding to immobile traps, participation in viscoelastic 

complexes, and physical obstruction through labyrinthine corralling 26.   

The ptFRAP model previously developed by our group 20  accounts for both anomalous 

diffusion27 and a reversible photobleaching correction due to dark-state transitions of GFP 

during data collection.  The FRAP signal is: 
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 (2)   

Here, F0 is the pre-bleach fluorescence intensity, β is a factor related to the bleach 

depth, δ and tlaser are the reversible bleaching magnitude and timescale, and ωr and ωz are the 

size of the focused Gaussian beam in the radial and axial dimensions respectively.  All of our 

data exhibited a near complete recovery on the 50 ms timescale indicating no immobile 

fractions.  We fit the averaged FRAP curves according to Eq.2 (Fig. 4.2, black lines, see 

Supplementary Table 1 for fit parameters from individual datasets); the best fit parameters are 

compared (Fig. 4.3).  

We found that both RNAPII subunit recoveries were well fit by the anomalous 

subdiffusion model.  This is in contrast to the GFP recovery dynamics which were well fit by 

Brownian diffusion20.  Since our GFP experiments have revealed that molecular crowding is not 

a source of anomalous diffusion and these experiments restricted the analysis to an identical 

nuclear environment devoid of RNAPII binding sites or membrane induced labyrinthine regions, 

we can infer that the observed subunit recovery is not true anomalous diffusion. 

As another possible source of observed anomalous behavior, we considered that the 

simultaneous measurement of multiple diffusing species (a distribution) undergoing Brownian 

motion can produce an identical FRAP recovery profile to a single species undergoing 

anomalous diffusion 28.  We term this phenomenon apparent anomalous diffusion.  Thus, we 

strongly believe that the subunits must be in a heterogeneous distribution of complexes 

resulting in the observation of apparent anomalous diffusion, as described in section 4.  
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Figure 4.3- Summary of the best-fit apparent anomalous modeling parameters.The alpha 

value varies between zero and unity and is a measure of deviation from Brownian diffusion.  

The transport coefficient is measure of translational diffusion speed, the effective diffusion 

coefficient (Deff) represents the diffusion coefficient if the particle obeyed Brownian diffusion.  

Error bars are shown at the 95% confidence interval.  The GFP expressing line was found to 

diffuse normally with a diffusion coefficient of 32±6 µm2/s.  The RNAPII subunits showed 

apparent anomalous diffusion, with each exhibiting different diffusive kinetics.  Rpb3 exhibited 

an apparent anomlity value of 0.62±0.03 while Rpb9 exhibited an anomlity value of 0.76±0.02.  

This reveals that the subunits are not bound in identical complexes.  To the right of the dotted 
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line are the parameters for the in vitro lysate experiments.  Within experimental error, the 

diffusion of GFP is found to be Brownian and of the same magnitude as GFP in dilute buffer.  

The Rpb3 lysate continues to indicate apparent anomalous diffusion.     

 



 

108 
 

 

3. Confirming the distribution of heterogeneous RNAPII subunit complexation states 

We reasoned if the apparent non-Brownian transport persisted in dilute solution then 

the deviations from Brownian diffusion must be attributed to a distribution of complexes.  To 

completely eliminate macromolecular crowding as a possible source of anomalous diffusion, we 

performed FRAP experiments on cellular lysates of the salivary gland polytene cells expressing 

either GFP or Rpb3 (Fig. 4.4).  The cell lysates are whole cell preparations made by sonicating 

the salivary glands in a lysis buffer and extracting the soluble proteins.  The cell contents were 

centrifuged and the supernatant used for FRAP experiments.  A comparison of the fluorescent 

intensity between the lysates and the intact polytene cells revealed up to a 30-fold decrease 

insignal.  We were unable to collect data on lysates made from Rpb9 due to extremely low 

sample signal.     

The GFP lysate FRAP recovery indicated a normally diffusing species (Fig. 4.4).  Further, 

the diffusion coefficient determined by the FRAP model described in Eq.2 of 79.1±30.0 µm2/s, is 

in excellent agreement with the diffusion of free GFP (purified from bacteria) in solution, 

measured on our set-up as 84±6 µm2/s  20.  Thus our lysate preparation recapitulated a dilute 

solute environment by eliminating macromolecular crowding.  We note that the GFP lysate 

yielded a slightly non-Brownian anomlity parameter (Fig. 4.3), which is the result of the very 

rapid 
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Figure 4.4- Comparison of in vitro subunit recovery dynamics.The FRAP curves for the GFP 

expressing control line and the Rpb3 subunit lysate experiments are shown.  Numerous FRAP 

curves were averaged for each sample due to low signal intensity of the lysates (GFP- 6090 pts, 

Rpb3- 17420 pts)  (a,b,c) Data are plotted as closed squares, the best-fits to an anomalous 

diffusion model are shown as black lines; best-fits to the Distribution Model are shown are 

white circles.  (c)  The flattened slope and slower recovery of the Rpb3 lysate is a clear 

indication that the sample is not undergoing Brownian diffusion. 
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recovery of the species coupled with low signal strength.  Both of these factors reduce the 

accuracy and precision of the fitting algorithm.     

Despite the highly dilute solvent environment, the Rpb3 lysate FRAP recovery reveals 

very different behavior (Fig. 4.4), displaying apparent anomalous diffusion (Fig. 4.3).  Due to the 

lower viscosity of the lysate solvent, both the transport and effective diffusion coefficients, 

determined by Eq.1, are increased compared to Rpb3 diffusion in vivo.  Further, the lysate 

recovery indicated a reduction in the measured anomlity value (Fig. 4.3).  This reduction could 

stem from very large complexes no longer experiencing crowding effects 25 and reveals the 

degree of apparent anomlity resulting solely from the distribution of species in the absence of 

crowding effects.  Alternatively, this could indicate the disintegration of complexes that 

coalesce in vivo but destabilize in the absence of molecular crowding.   

4. Distribution modeling: decomposing apparently anomalous recovery curves into 

components exhibiting Brownian diffusion 

In any FRAP measurement the observed signal is the sum of the signals from each 

species present in the sample.  In a many component system, if the species have diffusion 

coefficients that are sufficiently different, it may be possible to distinguish distinct timescales in 

the recovery.  More often, the observed signal takes a form that can appear as anomalous 

diffusion 29, 30.  In our experimental systems, we observed that GFP exhibits Brownian diffusion 

in the interchromatin space, but Rpb3 and Rpb9 do not.  There is little reason to suggest that 

individual proteins similar in size to GFP would exhibit true anomalous diffusion.  Therefore, we 

investigated the possibility that each protein species is incorporated into a heterogeneous size-
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distribution of macromolecular complexes by applying a multi-component fit to the FRAP 

recovery that we term the distribution model.   

The distribution model was implemented as 29: 

 
ℱ(𝑡) = ∑ 𝑐𝑖𝐹(𝐷𝑖 , 𝑡, 𝛼 = 1)

𝑚

𝑖=1

 (3)  

The recorded FRAP recovery, ℱ(t) is a linear combination of Brownian diffusion basis 

functions, F(D,t,α=1) that are given by Eq.2 with α=1 and a range of individual diffusion 

coefficients.  The coefficient c of each species is allowed to float and the resulting output 

defines a distribution of species with various diffusion coefficients (the robustness of the 

distribution model is detailed in Appendix D).   

The distribution model was first tested by fitting the in vivo FRAP recovery of 

unconjugated GFP for an underlying distribution (Fig. 4.5a, green).  In agreement with the 

aforementioned fits to the anomalous diffusion model that indicated a single Brownian 

diffusing component, fits to the distribution model output collapsed to a Delta function, 

yielding a single diffusion coefficient of 27 µm2/s (peak 1).  This is within 15% of our previously 

determined in vivo GFP diffusion coefficient 20.  Having validated the Distribution model 

(Appendix D), we applied it to the cellular FRAP recoveries of Rpb3 and Rpb9, along with the 

GFP and Rpb3 lysate data.  In general, the breadth of the distribution for each sample 

qualitatively agrees with its degree of apparent anomalous diffusion.   For example, the protein 

exhibiting less apparent anomlity, Rpb9, exhibits a distribution of species that have Brownian 

diffusion coefficients in a peak from about 10 through 30 µm2/s (Fig. 4.5-a, red), while the Rpb3
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Figure 4.5- Brownian diffusion coefficient distributions.The distribution model (Eq. 4) was 

applied to in vivo (a) and (b) in vitro FRAP recovery curves.  To implement the model, we 

defined 100 species with logarithmically spaced diffusion coefficients ranging from 0.20 to 1000 

µm2/s.  This range of diffusion coefficients corresponds to a massive size range of species.  

Components with diffusion coefficients slower than 0.29 µm2/ are below the limit of the 
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recovery threshold of our FRAP method.  (a) The distribution of unconjugated GFP (green) 

collapses to a delta function with a diffusion coefficient of 27 µm2/s.  The observation of a 

single diffusing species demonstrates good agreement with the apparent anomalous diffusion 

model.   The distributions for Rpb3 (black) and Rpb9 (blue) exhibit major peaks at 17 and 18 

µm2/s respectively, corresponding at Stokes-Einstein predicted masses of 130±50 and 100±40 

kDa respectively.  These values are in good agreement with the predicted GFP-fusion construct 

masses.  The Rpb3 distribution is bimodal, with the slower peak indicating a diffusion 

coefficient of 2 µm2/s, mapping to a mass of 50±20 MDa.  This peak indicates the presence of 

fully formed transcription factories.  (b)  The in vitro distribution for unconjugated GFP is 

narrow and indicates a diffusion coefficient of 92 µm2/s, in good agreement with 

measurements of GFP in dilute buffer.  The Rpb3 lysate distribution again reveals two well 

resolved peaks, corresponding to masses of 74±20 MDa and 82±24 kDa, similar to the peaks in 

the in vivo measurements.   
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exhibits a distribution that is even broader and more structured.  However, much more 

information is contained in the shape of the distributions than is available from the anomlity 

parameter, as discussed below.  Another notable observation about the distributions is that 

none contains diffusion components faster than unconjugated GFP. 

The Stokes-Einstein Equation, which predicts the diffusion coefficient of a particle 

undergoing Brownian diffusion, can be re-arranged to estimate the relative diffusion 

coefficients of the proteins (assuming globular structures and the same viscosity) based on their 

molecular masses:   

 𝐷1

𝐷2
= (

𝑀2

𝑀1
)

1
3⁄

 (4)   

Here, D is the protein diffusion coefficient and M is the protein molecular mass.  Using 

the molar mass of GFP and measured diffusion coefficient as a standard, the approximate mass 

corresponding to each diffusion component in the subunit distributions can be estimated using 

Eq. 4.  The peak of the Rpb9 distribution (Fig. 4.5-a, peak 2) corresponds to a mass of 100±40 

kDa, reasonable given the 41 kDa mass of the fusion construct (we confirmed that this is 

independent of protein expression level, Appendix D).  The width of the distribution maps to 

species ranging in molecular mass from 27 kDa through 108 kDa.  While the enormous upper 

limit on molecular mass should be viewed with incredulity, these results indicate that species 

are present ranging from unconjugated GFP through aggregates of multiprotein complexes.  

The upper mass limit defined by the distribution is unrealistically large and likely reflects 

components sufficiently large to be influenced by molecular crowding that undergo true 

anomalous diffusion. 



 

115 
 

In contrast to Rpb9, the Rpb3 subunit exhibited a wider and more structured 

distribution (Fig. 4.5-a, black).  Interestingly, the distribution is bimodal, with two well-resolved 

peaks bridged by components of lower amplitude.  As expected, the fastest components are 

bound by an upper limit of diffusion coefficients similar to unconjugated GFP.  Assuming 

Stokes-Einstein, the “faster” peak (Fig. 4.5-a, peak 3) corresponds to a molecular mass of 

130±50kDa, in good agreement with mass of the Rpb3-GFP fusion construct.  The second, 

“slower” peak (Fig. 4.5-a, peak 4) corresponds to a mass of 50±20 MDa.  The mass of a 

complete transcription complex 31 consisting of RNAPII and associated transcription factors has 

been estimated to be ~3 MDa; the mass of full transcription factories (aggregates of full 

transcription complexes and associated promoters) has been estimated up to ~38 MDa1, 32.  

Thus, the second major peak in the Rpb3 distribution is very close to the size of fully assembled 

gene transcription units 1, 31, 32.  Its presence indicates that these transcription units are present 

in the interchromatin space, in the absence of chromatin.  We also note that the Rpb9 

distribution exhibits a pronounced shoulder in the same range as the 50 MDa peak in the Rpb3 

distribution. 

The Rpb3 distribution also contains lower frequency components.  Our FRAP method is 

insensitive to species slower than 0.29 µm2/s (Appendix D).  These species are likely 

contributions to the distribution but the true amplitudes are uncertain.   Importantly, the fit 

residuals are better than those produced by the anomalous diffusion model.  The quality of the 

fits can be compared in Figure 4.2 and Figure 4.4, where the white circles indicate the 

distribution model fits, in comparison to the anomalous diffusion model fits in black.  
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As a comparison to the in vivo distributions obtained for GFP and Rpb3, we applied the 

Distribution model to the results of the lysate FRAP experiments, keeping the same number of 

components and the same bounds on diffusion coefficients (Fig. 4.5-b).  By eliminating the 

stabilizing effects of macromolecular crowding, this analysis examines how the distribution of 

complexes is altered by a dilute solvent.  The distribution for the GFP lysate (Fig. 4.5-b, green) 

indicates a narrow range of diffusion coefficients, with the major peak indicating a diffusion 

coefficient of 92 µm2/s.  This is within a 10% error of the previously determined diffusion 

coefficient of GFP in buffer solution (84±6 um2/s) 20, confirming that the lysate provides a dilute 

environment that eliminates macromolecular crowding.   

The results for the Rpb3 lysate (Fig. 4.5-b, black) are very similar to the distribution 

found in vivo, except shifted towards faster components due to the reduced solution viscosity.  

The lysate distribution indicates two major peaks, the “faster” peak at 65 µm2/s and the 

“slower” peak at 6.7 µm2/s.  These correspond to masses of 82±24 kDa and 74±20 MDa.  

Notably, the major peaks detected map to the same molecular masses as the in vivo fitting 

results, providing independent confirmation of the bimodal distribution.  However, the lysate 

distribution differs from the in vivo distribution in two important locations.  First, the middle 

range of diffusing components (inter-modal), between the two peaks is absent in the lysate 

distribution.  This indicates that these protein complexes that are present in the crowded 

nuclear environment destabilize in the dilute solvent.  These species, intermediate between 

complete and incomplete transcription factories have implications for the pre-assembly of 

transcription complexes.  Their presence suggests that the formation of large protein 

assemblies proceeds through partially-assembled intermediates whose formation is favored in 
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the crowded nuclear environment.  Second, the very slow components that are technically 

below our FRAP resolution limit are largely absent in the lysate distribution.  This supports the 

suspicion that those components in vivo represent complexes sufficiently large to experience 

macromolecular crowding and truly exhibit anomalous diffusion. 

Discussion 

1. A new perspective for in vivo diffusion: apparent anomalous diffusion 

Our experiments with RNAPII subunits sought to directly probe the nucleoplasm, devoid 

of chromatin, for evidence of the holoenzyme or larger transcription complexes.  We 

determined that RNAPII subunits exhibit complex transport dynamics even in the absence of 

chromatin, that can be attributed to a staggeringly large distribution of assembly states, ranging 

from fully assembled transcription factories to unengaged subunits.  The existence of such 

nuclear assemblies concerns one of the current fundamental dilemmas in modern biology- 

determining how large DNA-binding protein complexes assemble and subsequently find their 

binding sites.  Recent studies have supported the theory that many DNA binding complexes 

encounter and bind to chromatin through a stochastic diffusion-mediated process, but little 

evidence exists to explain what governs the assembly of these multi-component complexes 

away from binding sites.  Given the centrality of RNAP to transcription and possible mechanistic 

universality with regards to other large nuclear-localized complexes 33, this multi-subunit 

complex has been the subject of great scrutiny over the past decade. 

Information about the assembly and interactions of large protein complexes can be 

obtained by investigating transport properties of individual components, since protein mobility 
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not in accordance with Brownian diffusion can indicate the presence of binding interactions or 

molecular hindrance 22, 34, 35.  Two types of passive transport are typically identified in vivo- 

Brownian motion and anomalous subdiffusion 28, 36, 37.  Given the widespread implementation 

of FRAP and FCS, it is interesting to note that with very few exceptions 28, the preponderance of 

eukaryotic proteins studied in vivo have been found to exhibit anomalous subdiffusion, while 

similar sized molecules studied in aqueous or viscous solvents typically have been found to 

obey Brownian motion 25, 28, 38, 39 

We compared the transport dynamics of the RNAPII subunits Rpb3 and Rpb9 to 

unconjugated GFP.  Suspecting that the chromatin organization of typical eukaryotic cells could 

pose a potential interference to diffusion mobility, we avoided confounding structures present 

in the nuclear environment by choosing the polytene salivary glands of Drosophila 

melanogaster larvae as our model system.  Our FRAP experiments performed with 

unconjugated GFP revealed that this inert protein is subject to Brownian diffusion.  Nuclear 

molecular crowding was experienced as a change in viscosity resulting in a reduction of the 

diffusion coefficient of GFP from 84± 6 µm2/s in dilute solvent to 32±6 µm2/s in Drosophila cells.  

In contrast to GFP, we observed apparent anomalous diffusion for both RNAPII subunits.  This is 

very surprising as the approximately two-fold increase in molecular mass of the fusion proteins 

relative to GFP would be expected to yield a very minor 1.2-fold change in diffusion coefficient 

based on Stokes-Einstein estimations (Eq. 4).  This is hardly a large enough increase in size to 

make either subunit susceptible to extreme molecular crowding.  Having eliminated all other 

contributions to anomalous diffusion, we have shown that molecular crowding is not a cause of 

anomalous diffusion for proteins in this size range.  Therefore, we reason that the subunits are 
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actually engaged in distributions of complexes displaying an extremely large range of diffusion 

coefficients and therefore molecular sizes.  We term this phenomenon apparent anomalous 

diffusion.    

Apparent anomalous diffusion was suggested in the 1990s and experimentally 

confirmed to affect FRAP curves by using simple two component systems with inert solutes 29, 

30, 40.  These previous groups demonstrated that multicomponent FRAP recovery curves of 

Brownian diffusing species can be represented by an anomalous fit, but this was not confirmed 

in a living system until now.  Our experiments simultaneously probe the diffusion of assemblies 

with vastly different mobilities, from isolated subunits to possible aggregates of fully formed 

transcription units.  Observed differences in the recovery dynamics of the two subunits (Fig. 

4.2) indicates that they participate in different distributions of complexes (Fig. 4.5).  This 

reflects differential affinities for the other RNAPII subunits and associated transcription factors, 

as well as suggesting that distribution width and subunit incorporation sequence are entwined. 

We further explored the cellular transport behavior by performing FRAP experiments on 

in vitro lysates prepared from the GFP and Rpb3 polytene samples (Fig. 4.4).  The diluted 

solvent abolished macromolecular crowding and ensured that the proteins did not experience 

crowding effects or find binding partners.  This left only a distribution of diffusing species as the 

remaining source of perceived anomalous diffusion 37.  The results indicate that many of the 

Rpb3 complexes remained intact during the lysate preparation, since it still exhibited apparent 

anomalous diffusion (Fig 4.3).       
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It has been reported previously that the extent of anomalous diffusion can be used as a 

measure for environmental heterogeneity 19.  We argue that having shown that interchromatin 

space represents a homogenous diffusive environment, the degree of anomlity can instead be a 

proxy for the width of the distribution in which the tagged protein participates.   This makes 

intuitive sense- if an anomlity factor of unity represents normal diffusion and therefore a single 

diffusing component, any departure from unity is describing an increasingly heterogeneous 

mixture.  We found the Rpb3 subunit was associated with the highest degree of apparent 

anomalous diffusion (Fig. 3) indicating it participates in the widest size range of complexes (Fig. 

4.5).  The Rpb9 subunit was found to exhibit less apparent anomlity (Fig. 4.3), corresponding to 

a more narrow distribution (Fig. 4.5), while GFP, which does not interact with any other species, 

was found to show normal diffusion.   

We applied a multi-component model to extract the underlying distributions of nuclear 

Rpb3 and Rpb9 to determine their participation in pre-assembled RNAPII complexes.  The 

distribution model is advantageous as no a priori assumptions about the underlying distribution 

are made, thus protein complex sub-populations can be resolved.  In reality, this model faces 

three limitations.  The model assumes all component species obey Brownian diffusion- it is 

unable to resolve simultaneous diffusion of Brownian and anomalous species.  Secondly, the 

application of the model is affected by the quality of the data.  As reported by others 29, 30 the 

SNR of the data impacts the ability of the model to accurately resolve separate species, even in 

well resolved binary systems.  Our implementation is sufficient to reliably predict two 

components at our experimental SNR, yet the potential complexity of the protein distributions 

means that discerning fine structure of sub-populations is difficult.  Finally, our FRAP 
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implementation poses a resolution limit on how slowly diffusing a species we can accurately 

measure. 

As anticipated, the comparison of the Rpb3 and Rpb9 distributions confirm that the 

greater the degree of apparent anomalous diffusion (Fig. 4.3), the wider the predicted 

distribution (Fig. 4.5-a).  We can immediately detect that the Rpb3 subunit is involved in a wider 

array of complexes than Rpb9, with more of them involving very large molecular weight 

assemblies.  The distribution modeling of the Rpb3 lysate reveals essentially the same structure, 

though shifted to faster diffusion components due to the reduced solvent viscosity.  This 

provides two different experimental samples that confirm that same finding.  Significantly, the 

more massive population is identical between both samples and corresponds to overlapping 

molecular mass ranges of 50±20 MDa in vivo and 70±20 MDa in vitro.  Given the several mega-

Dalton mass of a complete transcription complex 31  and the much larger mass of transcription 

factories 1, 32, this population represents a fully assembled transcription factory.  Such 

complexes likely arise given the affinities between transcription complex subunits and the 

crowded cellular environment in which they dwell, meshing well with reports that transcription 

factories remain even in the absence of transcription 41.   

 While the envelope shape of Rpb3 associated complexes is preserved in the lysate 

preparation (Fig. 5), it is noteworthy that the majority of the in vivo distribution components 

lying between the major peaks are eliminated in the lysate distribution.  These represent 

dynamic complexes that are stabilized in the crowded nuclear environment, where dissociation 

and re-binding is rapid due to partner proximity.  In the dilute lysate solvent, once a complex of 
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low stability dissociates, rebinding is inhibited by the low concentration of binding partner.  

Further, the width of both peaks is similar to the width of the GFP peak.  This indicates the 

remaining species show less dispersion.  Finally, the lysate data does not exhibit the same 

structures at very slow diffusion coefficients (mapping to greater than a GDa), possibly an 

indication that Brownian diffusion was restored for very large complexes affected by 

macromolecular crowding. 

2. RNAPII distributions indicate an intermediate assembly mechanism 

Previous work has established the dynamic turnover of RNAPI and RNAPII associated 

proteins during transcription.  It has been shown that four subunits of RNAPI as well as several 

preinitiation factors all exhibit unique diffusion properties even in the vicinity of chromatin and 

do not diffuse as an ensemble.  Further, engaged RNAPII has been found to continuously 

exchange with nucleoplasmic RNAPII in transcriptionally active chromatin regions 8, 9, 16, 42, 43.  

These findings have led to the developing consensus that complexes assemble at a promoter 

site through stochastic interactions.  However, the continued evidence for the formation and 

stability of fully assembled transcription factories even in the absence of transcription throws 

uncertainty on the spatiotemporal formation of such assemblies 7, 9, 13, 21, 44.  Unfortunately, 

previous studies could not track the dynamics of the RNAP subunits prior to recruitment or 

localization.   

Using our method which is sensitive to the diffusion, and therefore mass of a complex, 

but not to the activity state, our experiments have probed the dynamics of multiple subunits 

within the same binding complex, enabling us to observe the degree of pre-assembly.  This is 
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significant as our analysis was restricted to the interchromatin space, representing a cellular 

location that we found to precede incorporation of all subunits into higher order assemblies but 

that follows subunit mRNA translation.  Our work has shown that two subunits of RNAPII, 

including the central binding subunit Rpb3, exhibit different diffusion dynamics (Fig. 4.2).  This 

casts doubt on complete pre-assembly of all RNAPII substituents prior to chromatin binding 6-13.  

For both subunits, we detect a subpopulation of molecular complexes approaching a limit of a 

hundred mega-Daltons (Fig. 4.5), which corresponds to aggregates of fully assembled 

transcription factories.  This indicates that transcription complex subunits have high affinities 

that experience enhanced stability conferred by the crowded cellular environment in which 

they dwell.   

These distributions indicate that the formation of large protein complexes is driven by 

stabilizing interactions even in the absence of chromatin, yet this subpopulation does not 

account for all of the RNAPII subunits present within the interchromatin space.  This has 

implications for large multi-complex assembly pathways, as stochastic protein-chromatin 

interactions can be reframed in terms of sampling interactions between complexes in various 

states of completeness.  Such a model is at odds with the more static, top-down view of factory 

formation.  While our results clearly indicate that large macromolecular complexes, such as 

transcription factories, are stable in vivo, the unanswered question is for how long they remain 

assembled.  Most studies documenting transcription factories have relied on the appearance of 

punctate structures observed in fixed cells or on the purification of stable transcription 

complexes in vitro4, 14.  Additionally, electron microscopy measurements that document the size 

of these complexes place an upper limit of <200 nm in diameter, still too small to accurately 



 

124 
 

resolve with optical microscopy on living cells 32.  These complicating factors, combined with 

our findings of the stability of large protein complexes in vitro, make it difficult to determine 

the longevity of these species. 

As investigations into the dynamics of polymerase components and associated 

transcription factors reveal a conserved intrinsic turnover and universally accepted inefficiency 

of transcription initiation, the previously posited model of stochastic gene expression has 

gained traction 7, 44.  Mounting evidence indicates that RNAPII is not always recruited as a 

holoenzyme, though our findings clearly indicate that full transcription factories do form prior 

to RNAPII recruitment 44.  RNAPII is currently seen as assembling at a promoter through a multi-

step process marked by efficient chromatin capture rates of up to 50% 9 but highly inefficient 

transcription initiation (<1%)10, leading to an overall transient promoter interaction prior to 

elongation (which is unlikely if full transcription factories migrated throughout nucleus).   

We believe our findings of RNAPII subunits existing in complex distributions lend validity 

to both models.  Our essential finding is that transcription subunits form large, stable, and 

mobile complexes, indicating the true assembly behavior lies mid-way on a spectrum of pre-

assembly.  We measured diffusion coefficients for transcription factories in line with those 

determined for other proteins involved in nuclear macromolecular assemblies 42.  This suggests 

that large complexes are mobile (but slow) and can diffuse to binding sites, in contrast to static 

factory models in which chromatin must migrate to stationary factories.    This integrates well 

with current observations, but helps to redefine the nature of assembly.  Our results provide 

experimental evidence to considerations proffered by Phair and Misteli that protein complexes 
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can form stochastically, distal to their site of action, enabling rapid recruitment and dynamic 

responses to changes in binding partner availability 7, 42-44.  However, the large population of 

individual subunits and partially-formed complexes also allows for de novo assembly at gene 

loci.   

As opposed to a hit-and-run model of polymerase factors encountering a chromatin 

binding site, our findings show that transcription complexes assemble to varying levels of 

completion in the interchromatin space removed from and prior to encountering chromatin.  

These partially formed assemblies, through diffusion, experience stochastic encounters with 

potential binding sites; the duration of the encounter depending on the completeness of the 

polymerase assembly.  More complete RNAPII complexes, having a greater compliment of 

binding partners, form more stable chromatin interactions than less well developed sub-

assemblies.  As our distribution modeling shows, the majority of the subunits exist as 

incomplete assemblies, therefore the majority of chromatin interactions are likely aborted, 

leading to the inefficiency of transcription initiation.  Our observation of a bias towards larger 

complexes exhibited by the more massive RNAPII Rpb3 (Fig. 4.5) subunit may reveal a measure 

of stepwise assembly.  In this scenario, the larger subunits complex first, leading to stable 

chromatin-binding assemblies, forming nucleation sites for smaller subunit assemblies.  Such a 

model ensures maximum flexibility in gene expression for different chromatin regions.  The two 

assembly regimes we observe mean that fully formed transcription complexes, in the presence 

of open chromatin regions are likely to remain stably assembled and engage in high throughput 

transcription.  These large structures experience slow diffusion and would remain relatively 

stationary, in alignment with transcription factory theory.  Conversely, the smaller sub-
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assembled modules, which account for a large fraction of the assembly states, are capable of 

rapid diffusion and permit protein recruitment to congested chromatin regions that experience 

lower basal transcription levels.  The partial pre-assembly of the transcription complex 

enhances the efficiency of full complex assembly and is complimented by greater nuclear 

mobility than near-immobile transcription factories.  Thus through a partially modular assembly 

mechanism the cell is endowed with a flexible response to changing transcription demands.     

Additionally, while not the focus of this work, we have previously observed true 

anomalous diffusion due to confinement in the vicinity of the chromatin lattice even for small 

proteins 20.  Coupled with the findings of other researchers concerning the role of molecular 

crowding in gene expression 45,46,47, it stands to reason that large, partially assembled 

complexes, once in the vicinity of a promoter, sample increasingly frequent binding events due 

to molecular confinement and reduced mobility.          

Conclusion 

By applying FRAP in the polytene salivary glands of Drosophila melanogaster as a model 

system, showing for the first time that RNAPII exists in a large distribution of partially 

assembled complexes in the interchromatin space, including fully assembled transcription 

factories.  By determining that the Rpb3 and Rpb9 subunits exhibit different diffusion 

properties, we confirm that RNAPII is a dynamic complex, though we detect a population of 

complete pre-assembled transcription factories prior to chromatin binding.  Using GFP as an 

inert internal control protein, we have shown in vivo that the diffusion of the subunit 

distributions display apparent anomalous diffusion.  This arises from the simultaneous 
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interrogation of multiple diffusing species using an ensemble measurement method.  When 

considered individually, these complexes move primarily by Brownian diffusion throughout the 

crowded interchromatin space, experiencing a reduction in mobility due to the high viscosity 

but not experiencing molecular confinement.  We confirmed the existence of these subunit 

assembly distributions through the use of cell lysates, in which apparent anomalous diffusion 

persisted in the absence of macromolecular crowding.  The discovery of these partially 

assembled RNAPII complexes helps integrate current contradictory observations regarding the 

mode of transcription complex assembly.  Our findings are consistent with the simultaneous 

action of a top-down and bottom-up assembly.  While the exact nature of the species that 

initiate transcription cannot yet be determined, for the first time our data shows evidence for a 

distribution of pre-assembled complexes.  Finally, the distribution of assembly states suggests 

that a partially modular mechanism of macromolecular assembly enables a flexible response to 

gene transcription.  
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CHAPTER 5 

 

DETERMINING THE UNDERLYING DISTRIBUTIONS OF MULTIPLE SIMULTANEOUS DIFFUSING 
SPECIES FROM FRAP SIMULATIONS 

 

“There is something fascinating about science. One gets such wholesale 
returns of conjecture out of such a trifling investment of fact.” 

-Mark Twain  

 

Overview: 

All recorded Fluorescence Recovery after Photobleaching (FRAP) signals are summations 

of the diffusive recovery profiles of all species in solution with the same fluorescent tag.  

Oftentimes FRAP recoveries are assumed to correspond to a single tagged species, and for 

many artificial systems this is a valid assumption.  However, when considering biological 

systems, this assumption may break down, as fluorescently tagged proteins may form homo- or 

hetero-complexes in vivo.  In such cases, the recorded FRAP profiles no longer correspond to 

the protein of interest directly, but encode information about the binding states of all possible 

complexes formed.  The following work considers FRAP profiles for several biologically relevant 

distributions of complexes, and reports the accuracy of predicting the underlying distributions.   

Introduction 

FRAP microscopy is a powerful perturbative optical technique useful in interrogating the 

diffusive properties of biological systems1.  In a typical FRAP experiment, a small region of 
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fluorescent intensity is abolished by a strong laser pulse, and the recovery of fluorescent 

intensity in the region due to the influx of unbleached fluorophores is monitored over time2.  

Fluorescently tagged proteins of interest can be introduced into a cell by exogenous uptake 

followed by a coupling reaction, or through endogenous genetic encoding.  Thus it is currently 

possible to isolate any protein for investigation with application of a fluorescent tag3.  FRAP 

experiments are generally nondestructive to the biological sample under consideration, can be 

performed in any region of the cellular interior, and can provide sophisticated insight into the 

kinetic properties of the protein under study4.  In quantitative FRAP implementation, when the 

shape of the laser bleach pulse is well characterized, diffusion and binding models can be 

applied, enabling extraction of detailed information, such as the diffusion coefficient, type of 

diffusive process, and duration of binding events5, 6.  Such experiments have been performed 

extensively in the nuclei and cytoplasm of many cellular samples, and are largely responsible for 

the current models of dynamic transcription factor binding and transient assembly of gene 

metabolism complexes7-9.  

A common assumption in nearly all FRAP experiments is that a single fluorescently 

tagged protein is bleached during the experiment and the recorded recovery profile 

corresponds exclusively to the diffusion of that species.  However, most proteins in biological 

systems do not exist in isolation, rather they dynamically participate in macromolecular 

assemblies, sampling a variety of binding configurations.  In such cases, FRAP experiments 

record the summation of the recovery profiles of all the species containing the tagged protein 

of interest10.  By decomposing such FRAP profiles into the underlying distribution of complexes, 

detailed biological information about the complexation states of the protein can be extracted11.  
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Previous work by the Fecko lab implemented a distribution model capable of decomposing an 

experimental FRAP curve into an underlying distribution (Chapter 4).  This work established that 

the subunits of RNA Polymerase II exists in a broad distribution, but also indicated that the 

accuracy of the model is subject to signal to noise restrictions.  Here we explore the accuracy of 

this  distribution model to predict underlying, biologically relevant distributions from simulated 

FRAP data corresponding to several experimental conditions.  In particular, the reduction in 

accuracy with varying single to noise levels as well as capturing an incomplete FRAP recovery 

time course are considered.  Both conditions are paired with simulated FRAP data representing 

a simple binary mixture and a gamma distribution of diffusing species.   

Computations 

1. The Distribution Model: 

The distribution model assumes that the recorded FRAP recovery is composed of linear 

combinations of an underlying basis set of Brownian diffusing species.  The contribution to the 

recorded signal by each species is scaled by the concentration of that species.  The distribution 

model was implemented as10: 

 
ℱ(𝑡) = ∑ 𝑐𝑖𝐹(𝐷𝑖 , 𝑡, 𝛼 = 1)

𝑚

𝑖=1

 (1) 

The recorded FRAP recovery, ℱ(t) is a summation of Brownian diffusion basis functions5, 

F(D,t,α=1) and a range of individual diffusion coefficients.  The coefficient c of each species is 

allowed to float and the resulting output defines a distribution of species with various diffusion 

coefficients.  In this implementation, a basis set of 100 Brownian species with logarithmically 
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spaced diffusion coefficients from 0.01 to 100 µm2/s was generated.  This provides for 

consideration of a wide range of diffusive components while limiting the computational burden.  

Further, the bleach depth of all components is assumed to be identical.  The MatLab function 

lsqnonlin is used to establish a best-fit distribution to a simulated input FRAP curve.   

2. Distributions of Diffusing Species: 

The distribution model was used on two underlying distributions- a binary mixture and a 

continuous distribution defined by a gamma function.  For the binary mixture, FRAP recovery 

profiles for two components of equal concentration with diffusion coefficients of 30 and 3 

µm2/s were simulated.  For these two profiles, three signal-to-noise levels were simulated, by 

adding 15, 35, or 50 dB white Gaussian noise using the MatLab awgn function (Fig. 5.1, top 

panels).  The FRAP profiles were scaled by their relative concentrations (50%) and added 

together, resulting in simulated experimental FRAP curves that each encode two diffusing 

species.  

To test a complex, biologically relevant distribution a gamma function (Eq. 2, below) was 

used to define the amplitudes of the components in the underlying distribution.  The gamma 

function is asymmetric with a steep rise at large values of x (rapidly diffusing components) and 

a long, monotonically decreasing tail to small values of x (very slow diffusing components).  This 

is well suited to model a biological distribution in which a single tagged protein is represented 

by the large x-value cutoff, while complexes of increasingly large size, with correspondingly 

lower diffusion coefficient, are represented by the tail to small values of x.  The gamma function 

is defined as12:   
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𝐹(𝑥, 𝑘, 𝜃) =

𝑥𝑘=1𝑒
−𝑥
𝜃

𝜃𝑘Γ(𝑘)
; x>0, k,θ>0 (2) 

Where x is the dependent variable, k is the shape parameter and defines the width of 

the function, θ is the scale parameter defining the magnitude of the function, and Γ is the 

gamma function.  Using this function, a distribution was created that defined the amplitudes of 

the 100 log-spaced input diffusion coefficients.  The amplitude of each component in the 

distribution was used as the scaling value for each of the FRAP recovery profiles in the basis set; 

the summation of the basis set yielded a simulation of an experimental FRAP curve comprised 

of 100 individual species.  Again, three single to nosie ratios (SNR) were considered.  The entire 

basis set was modulated with either 15, 35, or 50 dB white Gaussian noise prior to scaling and 

summation.  The result was three different experimental FRAP curves representing the same 

underlying distribution, but with different SNRs (Fig. 5.2, top panels). 

For both simulated distributions, 100 FRAP curves were simulated for each SNR condition, and 

fit by the distribution model (Eq.1).   

3. Incomplete FRAP Recovery Simulations 

 For both qualitative and quantitative FRAP implementations, it is important to 

capture the full extent of the FRAP recovery.  Incomplete FRAP recoveries are typically 

designated as immobile fractions, and are thought to represent a portion of the protein 

population that does not diffuse and is immobile on the timescale of the experiment7, 13, 14.  

Unfortunately, inclusion of an immobile fraction in a quantitative FRAP analysis complicates 

data fitting.  It is nearly impossible to distinguish between a Brownian recovery with an 

immobile fraction and an anomalous diffusive component
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Figure 5.1- Extracting a binary mixture from a simulated FRAP curve at different SNR.(a,c,e) 

The top panels show simulated FRAP data with overlays of 100 different simulations for each 

condition.  The best-fit lines resulting for each predicted distribution are overlaid, gray lines are 

failed distributions and red lines are passing distributions.  (b,d,f) The bottom panels show the 

resulting distributions from fitting the simulated FRAP curves in the top panels.  In each panel, 

black lines indicate the true diffusion coefficients of the input species (30 and 3 µm2/s), gray 

lines the failing distributions, and red lines the passing distributions.  The pass rate is indicated 

by the Fidelity number, F.  The 50 dB SNR data can reliably be decomposed into the binary 

components.  The 35 dB SNR data does not accurately predict both the amplitude and diffusion 
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coefficient, but always detected the bimodal structural of the input distribution.  The 15 dB SNR 

data is not useful for analysis.      
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recovery of a more constrained (slow moving) species.  Both results have vastly different 

biological interpretations, yet cannot be well resolved by data fitting14, 15.  While an ideal 

experiment would have sufficient time resolution and duration to capture the full extent of the 

FRAP recovery, even for slow moving species, this is not always experimentally feasible.   

To study such experimental realities, the FRAP recoveries generated from the two 

differing underlying distributions were truncated at either 90%, 85%, or 80% of the full 

recovery.  These truncations represent an experimentally observed immobile fraction of 10%, 

15%, or 20%, yet are artifacts resulting from the incomplete time course of the simulation 

(Fig.5.3, Fig. 5.4, Fig.5.5, and Fig.5.6, top panels).  Notice that the truncations contain fewer 

datapoints as the immobile fraction increases.  For both the underlying binary and gamma 

distributions that comprise the FRAP curves, data was simulated with the addition of 35 dB and 

50 dB white Gaussian noise SNR.  Again, 100 FRAP simulations were generated for each 

distribution at each SNR, and fit with the distribution model.      

Results and Discussion 

The distribution model was tested on FRAP curves corresponding to three different SNR, three 

different extents of recovery, and two different underlying distributions.   The output distributions were 

judged on how accurately they represented the underlying distributions.  For the binary mixtures, an 

accurate distribution was required to predict exactly two componentsand estimate the true diffusion 

coefficients and relative amplitudes to within a 20% error.  For the gamma distributions, the output 

distributions were required to estimate both the scale and shape parameters (k and θ) to within 20% 

error.  Fidelity scores were 
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Figure 5.2-Extracting a gamma distribution from a simulated FRAP curve at different SNR.  The 

top panels indicate the simulated FRAP data.The bottom panels indicate the passing (red) and 

failing (grey)distributions resulting from the data fitting.  The input Gamma distribution is show 

are a black line.  The 50 dB SNR data can be accurately decomposed into the underlying gamma 

distribution.  Both of the lower SNR datasets pose fitting challenges, and middle-range 

components are over-selected.  The 35 dB datasets indicates the width of the true distribution, 

but does not represent the amplitudes of the components properly.   
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Figure 5.3- Inclusion of an artificial immobile fraction impairs fitting by the distribution model 

on datasets with 50 dB SNR.(a,c,e) The top panels depict the FRAP curves simulated from the 

binary mixture with diffusion? components at 30 and 3 µm2/s, each at different recovery 

extent.  By truncating the recovery, fewer datapoints were included.  Excluding even a modest 

extent of the recovery (a)(10%) widens the output distributions and impairs datafitting.  Missing 

15% of the recovery (c) still preserves the overall bimodal structurel, but abolishes any accuracy 

in the amplitude determination.  Once 20% of the recovery is missed (e), the output is 

unreliable, as indicated by the lack of passing (red) distributions (f) and low diffusion 

components are present in the output that do not exist in the input distribution.            
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Figure 5.4- Inclusion of an artificial immobile fraction impairs fitting by the distribution model 

on datasets with 35 dB SNR.(a,c,e) The top panels depict the FRAP curves simulated from the 

binary mixture with components at 30 and 3 µm2/s, each at different recovery extent.  (b) 

Excluding even a modest extent of the recovery (10%) (a) destroys the accuracy of the 

predicted distributions.  (d) Once 15% of the recovery is missed (c), slow diffusion components 

are present in the output that do not exist in the input distribution.  (f)The low (slow?) diffusion 

components are apparent in the most truncated dataset, and completely distort any biological 

interpretation.             
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Figure 5.5-  Results of extracting the underlying distribution from a gamma function input 

with the inclusion of an artificial immobile fraction at 50 dB SNR.  (a,c,e) The top panels depict 

the FRAP curves simulated from the gamma distribution, each at different recovery extent as 

explained in 5.1.  (b,d,f) The predicted outputs always retain the structure of a gamma 

distribution, but systematically under-estimate the width of the distribution.  These outputs 

could be confused for a single component fit generated from data with a low SNR.  
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Figure 5.6- Results of extracting the underlying distribution from a gamma function input with 

the inclusion of an artificial immobile fraction at 35 dB SNR.(a,c,e) The top panels depict the 

FRAP curves simulated from the gamma distribution, each at different recovery extent.(b,d,f) 

The predicted outputs barely retain the structure of a gamma distribution, and systematically 

under-estimate the width of the distribution.  
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assigned to each simulated condition and represent the percent of predicted distributions that 

pass out of the 100 simulations.   

1. Accuracy of Predicting a Binary Mixture 

Prior work has established that our distribution model accurately determines the 

diffusion coefficient of a single component Brownian diffusing species at reasonable 

experimental SNR (Chapter 4).  The next simplest condition is extracting the diffusion 

coefficients and amplitudes of a binary mixture.  It was found that the SNR of the underlying 

FRAP data has a strong impact on the fidelity of the predicted distribution (Fig. 5.2, bottom 

panels).  A moderate SNR of at least 35 dB is required to accurately predict the binary 

components 62% of the time, while near noiseless data at a SNR of 50 dB accurately predict the 

components 90% of the time.  Interestingly, the 35 dB FRAP curve always predicts two 

components whereas the noisy 15 dB data did not, but the accuracy of the diffusion coefficient 

or relative amplitude is impacted by the noise.  In contrast, data with a greater SNR tightens up 

the width of the predicted distributions.  Thus, even at the mid-noise condition of 35 dB, the 

distribution model is able to provide a useful description of the structure of the underlying 

distribution.          

2. Accuracy of Predicting a Biologically Relevant Distribution 

Having demonstrated that data collected at a mid-level SNR can be accurately 

decomposed into an underlying binary mixture, a more complex, biologically relevant 

distribution was considered.  In this case, a gamma distribution was created that features a 

sharp decrease in component amplitudes starting at the diffusion coefficient of unconjugated 
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GFP in a cell nuclei5.  In a cellular system with a protein tagged by GFP, the fastest possible 

diffusing species would correspond to a GFP molecule cleaved from the tagged protein.  The 

distribution tails off to slower components, which likely correspond to very large simulated 

complexes (greater than 1GDa in mass).   

Again, the results indicate a strong dependence on distribution accuracy with regards to 

the SNR of the data (Fig.5.2, bottom panels).  The output distributions are systematically too 

narrow, and the accuracy of determination falls off much more rapidly with decreasing SNR 

than for the less complex binary mixtures.  The 15 dB predicted distributions are not reliable, 

while the 35 dB predicted distributions reflect the overall shape, but not the amplitudes, of the 

true distribution.  Thus the distributions on mid-noise conditions can give an approximation of 

the width of the distribution but not the true shapebut, 50 dB  is required to provide accurate 

outputs.. 

3. Accuracy of Predicting a Binary Mixture with an Artificial Immobile Fraction 

 The ability to accurately predict the composition of a binary mixture with an artificial 

immobile fraction was tested at a 35 dB (Fig. 5.4) and 50 dB SNR (Fig. 5.3).  To maintain a 

constant comparison to the previous simulation, in this implementation, the FRAP curve was 

truncated at increasingly early timepoints to limit the extent of recovery.  This is analogous to 

recording the FRAP recovery of a slow-moving species that does not demonstrate a full 

recovery on the experimental timescale.  As a baseline, the ability to extract information from 

“noiseless” simulations was investigated (Fig. 5.7).  These simulations are constructed from the 

basis set, but exclude Gaussian noise.  As indicated, both 90% and 85% recovery still accurately 
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represent the structure of the underlying distribution, but accuracy of the predicted values 

rapidly decreases. 

At the highest SNR tested, the ability to extract two species from the underlying 

distribution remains high, though the accuracy is poor for both input distributions (Fig. 5.3, 

bottom panels).  Both recovery extents indicate two primary species, with the 90% recovery 

indicating true baseline resolution between the peaks.  Thus the structure of the distribution 

can be trusted, but the true values rapidly become inaccurate.  When only 80% of the recovery 

is captured, the predicted distribution displays only artifacts, and aliases in monotontically 

decreasing components towards low diffusion coefficients not present in the initial distribution.  

At the mid-level SNR simulations, the predicted distributions rapidly lose informational 

content (Fig. 5.4, bottom panels).  The outputs are significantly broadened, and interestingly, 

when only 80% of the recovery extent is captured, a minor peak can be detected in the majority 

of the distributions at very slow diffusion coefficients.  Again, this indicates that slowly diffusing 

components are aliased into the distribution, likely to suppress the final value of the predicted 

FRAP curves.   

4. Accuracy of Predicting a Gamma Distribution with an Artificial Immobile Fraction 

A similar analysis was then performed for FRAP curves simulated from a distribution 

defined by a gamma function.  Again, a “noiseless” baseline analysis (Fig. 5.8) indicated that the 

accuracy of the distribution rapidly decreased with decreasing extent of recovery.  The width of 

the predictions contains all the underlying components, but the predicted amplitudes are far 

from an accurate representation.  For both SNR simulations (Fig. 5.5 and Fig. 5.6), the predicted 
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outputs are not accurate representations of the input distributions.  The predictions are 

systematically more narrow and emphasize mid-range components to a greater extent than the 
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Figure 5.7- Effect of including an artificial immobile fraction on distribution fitting to a binary 

mixture without noise.  Noiseless simulations were fit with the distribution model to determine 

the extent that missing part of the recovery would have on the output distribution.  All the 

outputs are significantly wider than the true distribution, and false components are rapidly 

included in the output as the recovery extent decreases.   
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Figure 5.8- Effect of including an artificial immobile fraction on distribution fitting to a gamma 

distribution without noise.  As information content about the recovery extent is lost, the 

distributions become more peaked and narrow.   
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true distribution.  This indicates that for a distribution of any significant complexity, the entirety 

of the recovery is needed to accurately extract underlying components.   

Conclusions 

This analysis was conducted to investigate how robustly the distribution model could 

handle poor quality or incomplete datasets representative of “real-world” data.  It was 

observed that data quality strongly impacts the accuracy of the model, and 35 dB or better SNR 

must be maintained for extraction of an underlying distribution.  While relatively poor quality 

data could still encode the structure of the underlying distribution, for information regarding 

the true envelope of compound, a SNR of 35 dB or better is required.  Further, it is essential to 

capture the full extent of the FRAP recovery.  Inclusion of a possible immobile fraction will 

strongly interfere with determining the accurate distribution, and often aliases incorrect 

components into the final output.   

This work should be strengthen by quantitatively determining how the distributions 

change in shape with respect to altered input conditions.  Trends in features such peak 

resolution, peak width, and envelope structure can thenbe used to better assign a confidence 

rating to a predicted distribution.  Additionally, the inclusion of non-Brownian components at 

the slow end of the distribution should be considered, as these likely occur in a cellular 

environment.  
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APPENDIX A 
 

QUANTIFICATION OF GEL ELECTROPHORESIS DATA USING FOUR GAUSSIAN PEAKS TO 
OVERCOME BACKGROUND HETEROGENEITIES 

 

 This section will detail the MATLAB code written to analyze the gel electrophoresis data 

presented in Chapter 3.  After irradiating stained plasmid samples, gel electrophoresis was used 

to separate out the three different forms of DNA- undamaged supercoiled plasmid, nicked 

plasmid, and linearized plasmid.  A minor fraction of multiple fragments was not usually 

considered.  The relative amount of each species was quantified ratiometrically from the signal 

intensity of saved images of each gel, and a correction factor applied to account for the 

differential staining affinity of the different plasmid states.  While a simplistic gel analysis can 

be performed using ImageJ, to obtain the best quantifications possible, three common 

complications were addressed with the following scripts.  First, gel images often had non-

uniform background intensities, which confounded the determination of each species within a 

gel lane.  Second, the supercoiled and linear species often exhibited poor separation.  Third, for 

closely resolved species, determining the lateral extent of the band intensity was often 

subjective.  In response, each lane was fit as the sum of four Gaussian functions.  Three 

Gaussian peaks corresponded to the three plasmid species, and the fourth was used to account 

for the background signal and enabled a correction to be applied, even if the background 

intensity was not uniform.  To analyze each gel, three programs were written: gel_load2, 

lane_analysis2, and gel_analysis2b_MT  

The analysis began by loading the gel image using gel_load2: 

%loads gel and plots the intensity of each lane. 
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%change name and the lane positions (xstart01, ystart01, etc). 
 

clear all 

 
%file name (wihout .tif) 
name='nc20 yo frame average'; 

 
%lane positions 
xstart01=210; 
xstart02=450; 
xsize=180; 

 
ystart01=433; 
ysize01=7; 
ydelta01=-19.2; 

 
ystart02=430; 
ysize02=7; 
ydelta02=-19.2; 

 
%nothing should need to be modified below this point 

 
gel=imread([name '.tif']); 

 
%first set of lanes 
ystart1=ystart01; 
ystart2=ystart01+round(ydelta01); 
ystart3=ystart01+round(2*ydelta01); 
ystart4=ystart01+round(3*ydelta01); 
ystart5=ystart01+round(4*ydelta01); 
ystart6=ystart01+round(5*ydelta01); 
ystart7=ystart01+round(6*ydelta01); 
ystart8=ystart01+round(7*ydelta01); 
ystart9=ystart01+round(8*ydelta01); 
ystart10=ystart01+round(9*ydelta01); 
ystart11=ystart01+round(10*ydelta01); 
ystart12=ystart01+round(11*ydelta01); 
ystart13=ystart01+round(12*ydelta01); 
ystart14=ystart01+round(13*ydelta01); 
ystart15=ystart01+round(14*ydelta01); 
ystart16=ystart01+round(15*ydelta01); 
ystart17=ystart01+round(16*ydelta01); 
ystart18=ystart01+round(17*ydelta01); 
ystart19=ystart01+round(18*ydelta01); 
ystart20=ystart01+round(19*ydelta01); 
%second set of lanes 

ystart21=ystart02+round(0*ydelta02); 
ystart22=ystart02+round(1*ydelta02); 
ystart23=ystart02+round(2*ydelta02); 
ystart24=ystart02+round(3*ydelta02); 
ystart25=ystart02+round(4*ydelta02); 
ystart26=ystart02+round(5*ydelta02); 
ystart27=ystart02+round(6*ydelta02); 
ystart28=ystart02+round(7*ydelta02); 
ystart29=ystart02+round(8*ydelta02); 
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ystart30=ystart02+round(9*ydelta02); 
ystart31=ystart02+round(10*ydelta02); 
ystart32=ystart02+round(11*ydelta02); 
ystart33=ystart02+round(12*ydelta02); 
ystart34=ystart02+round(13*ydelta02); 
ystart35=ystart02+round(14*ydelta02); 
ystart36=ystart02+round(15*ydelta02); 
ystart37=ystart02+round(16*ydelta02); 
ystart38=ystart02+round(17*ydelta02); 
ystart39=ystart02+round(18*ydelta02); 
ystart40=ystart02+round(19*ydelta02); 

 
C=gel(:,:,:); 
high=2^16-1; 

 
%box1 
C(ystart1-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart1+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart1-1:ystart1+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart1-1:ystart1+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box1=sum(gel(ystart1:ystart1+ysize01,xstart01:xstart01+xsize),1); 

 
%box2 
C(ystart2-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart2+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart2-1:ystart2+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart2-1:ystart2+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box2=sum(gel(ystart2:ystart2+ysize01,xstart01:xstart01+xsize),1); 

 
%box3 
C(ystart3-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart3+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart3-1:ystart3+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart3-1:ystart3+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box3=sum(gel(ystart3:ystart3+ysize01,xstart01:xstart01+xsize),1); 

 
%box4 
C(ystart4-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart4+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart4-1:ystart4+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart4-1:ystart4+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box4=sum(gel(ystart4:ystart4+ysize01,xstart01:xstart01+xsize),1); 

 
%box5 
C(ystart5-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart5+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart5-1:ystart5+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart5-1:ystart5+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box5=sum(gel(ystart5:ystart5+ysize01,xstart01:xstart01+xsize),1); 

 
%box6 
C(ystart6-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart6+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart6-1:ystart6+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart6-1:ystart6+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
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box6=sum(gel(ystart6:ystart6+ysize01,xstart01:xstart01+xsize),1); 

 
%box7 
C(ystart7-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart7+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart7-1:ystart7+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart7-1:ystart7+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box7=sum(gel(ystart7:ystart7+ysize01,xstart01:xstart01+xsize),1); 

 
%box8 
C(ystart8-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart8+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart8-1:ystart8+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart8-1:ystart8+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box8=sum(gel(ystart8:ystart8+ysize01,xstart01:xstart01+xsize),1); 

 
%box9 
C(ystart9-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart9+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart9-1:ystart9+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart9-1:ystart9+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box9=sum(gel(ystart9:ystart9+ysize01,xstart01:xstart01+xsize),1); 

 
%box10 
C(ystart10-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart10+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart10-1:ystart10+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart10-1:ystart10+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box10=sum(gel(ystart10:ystart10+ysize01,xstart01:xstart01+xsize),1); 

 
%box11 
C(ystart11-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart11+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart11-1:ystart11+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart11-1:ystart11+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box11=sum(gel(ystart11:ystart11+ysize01,xstart01:xstart01+xsize),1); 

 
%box12 
C(ystart12-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart12+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart12-1:ystart12+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart12-1:ystart12+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box12=sum(gel(ystart12:ystart12+ysize01,xstart01:xstart01+xsize),1); 

 
%box13 
C(ystart13-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart13+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart13-1:ystart13+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart13-1:ystart13+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box13=sum(gel(ystart13:ystart13+ysize01,xstart01:xstart01+xsize),1); 

 
%box14 
C(ystart14-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart14+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart14-1:ystart14+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
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C(ystart14-1:ystart14+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box14=sum(gel(ystart14:ystart14+ysize01,xstart01:xstart01+xsize),1); 

 
%box15 
C(ystart15-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart15+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart15-1:ystart15+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart15-1:ystart15+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box15=sum(gel(ystart15:ystart15+ysize01,xstart01:xstart01+xsize),1); 

 
%box16 
C(ystart16-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart16+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart16-1:ystart16+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart16-1:ystart16+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box16=sum(gel(ystart16:ystart16+ysize01,xstart01:xstart01+xsize),1); 

 
%box17 
C(ystart17-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart17+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart17-1:ystart17+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart17-1:ystart17+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box17=sum(gel(ystart17:ystart17+ysize01,xstart01:xstart01+xsize),1); 

 
%box18 
C(ystart18-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart18+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart18-1:ystart18+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart18-1:ystart18+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box18=sum(gel(ystart18:ystart18+ysize01,xstart01:xstart01+xsize),1); 

 
%box19 
C(ystart19-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart19+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart19-1:ystart19+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart19-1:ystart19+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box19=sum(gel(ystart19:ystart19+ysize01,xstart01:xstart01+xsize),1); 

 
%box20 
C(ystart20-1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart20+ysize01+1,xstart01-1:xstart01+xsize+1)=high*ones(1,xsize+3); 
C(ystart20-1:ystart20+ysize01+1,xstart01-1)=high*ones(ysize01+3,1); 
C(ystart20-1:ystart20+ysize01+1,xstart01+xsize+1)=high*ones(ysize01+3,1); 
box20=sum(gel(ystart20:ystart20+ysize01,xstart01:xstart01+xsize),1); 

 
%box21 
C(ystart21-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart21+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart21-1:ystart21+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart21-1:ystart21+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box21=sum(gel(ystart21:ystart21+ysize02,xstart02:xstart02+xsize),1); 

 
%box22 
C(ystart22-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart22+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
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C(ystart22-1:ystart22+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart22-1:ystart22+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box22=sum(gel(ystart22:ystart22+ysize02,xstart02:xstart02+xsize),1); 

 
%box23 
C(ystart23-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart23+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart23-1:ystart23+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart23-1:ystart23+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box23=sum(gel(ystart23:ystart23+ysize02,xstart02:xstart02+xsize),1); 

 
%box24 
C(ystart24-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart24+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart24-1:ystart24+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart24-1:ystart24+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box24=sum(gel(ystart24:ystart24+ysize02,xstart02:xstart02+xsize),1); 

 
%box25 
C(ystart25-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart25+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart25-1:ystart25+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart25-1:ystart25+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box25=sum(gel(ystart25:ystart25+ysize02,xstart02:xstart02+xsize),1); 

 
%box26 
C(ystart26-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart26+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart26-1:ystart26+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart26-1:ystart26+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box26=sum(gel(ystart26:ystart26+ysize02,xstart02:xstart02+xsize),1); 

 
%box27 
C(ystart27-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart27+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart27-1:ystart27+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart27-1:ystart27+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box27=sum(gel(ystart27:ystart27+ysize02,xstart02:xstart02+xsize),1); 

 
%box28 
C(ystart28-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart28+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart28-1:ystart28+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart28-1:ystart28+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box28=sum(gel(ystart28:ystart28+ysize02,xstart02:xstart02+xsize),1); 

 
%box29 
C(ystart29-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart29+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart29-1:ystart29+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart29-1:ystart29+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box29=sum(gel(ystart29:ystart29+ysize02,xstart02:xstart02+xsize),1); 

 
%box30 
C(ystart30-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
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C(ystart30+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart30-1:ystart30+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart30-1:ystart30+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box30=sum(gel(ystart30:ystart30+ysize02,xstart02:xstart02+xsize),1); 

 
%box31 
C(ystart31-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart31+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart31-1:ystart31+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart31-1:ystart31+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box31=sum(gel(ystart31:ystart31+ysize02,xstart02:xstart02+xsize),1); 

 
%box32 
C(ystart32-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart32+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart32-1:ystart32+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart32-1:ystart32+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box32=sum(gel(ystart32:ystart32+ysize02,xstart02:xstart02+xsize),1); 

 
%box33 
C(ystart33-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart33+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart33-1:ystart33+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart33-1:ystart33+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box33=sum(gel(ystart33:ystart33+ysize02,xstart02:xstart02+xsize),1); 

 
%box34 
C(ystart34-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart34+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart34-1:ystart34+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart34-1:ystart34+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box34=sum(gel(ystart34:ystart34+ysize02,xstart02:xstart02+xsize),1); 

 
%box35 
C(ystart35-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart35+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart35-1:ystart35+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart35-1:ystart35+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box35=sum(gel(ystart35:ystart35+ysize02,xstart02:xstart02+xsize),1); 

 
%box36 
C(ystart36-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart36+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart36-1:ystart36+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart36-1:ystart36+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box36=sum(gel(ystart36:ystart36+ysize02,xstart02:xstart02+xsize),1); 
%box37 
C(ystart37-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart37+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart37-1:ystart37+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart37-1:ystart37+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box37=sum(gel(ystart37:ystart37+ysize02,xstart02:xstart02+xsize),1); 

 
%box38 
C(ystart38-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
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C(ystart38+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart38-1:ystart38+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart38-1:ystart38+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box38=sum(gel(ystart38:ystart38+ysize02,xstart02:xstart02+xsize),1); 

 
%box39 
C(ystart39-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart39+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart39-1:ystart39+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart39-1:ystart39+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box39=sum(gel(ystart39:ystart39+ysize02,xstart02:xstart02+xsize),1); 

 
%box40 
C(ystart40-1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart40+ysize02+1,xstart02-1:xstart02+xsize+1)=high*ones(1,xsize+3); 
C(ystart40-1:ystart40+ysize02+1,xstart02-1)=high*ones(ysize02+3,1); 
C(ystart40-1:ystart40+ysize02+1,xstart02+xsize+1)=high*ones(ysize02+3,1); 
box40=sum(gel(ystart40:ystart40+ysize02,xstart02:xstart02+xsize),1); 

 
figure(1) 
imshow(high/max(max(double(gel)))*C) 

 
nolanes=40; 
pix=1:(xsize+1); 
options=optimset('MaxFunEvals',1e4,'MaxIter',1e4); 

 
figure(2), clf 
figure(3), clf 

 
for j=1:nolanes 
    eval(['data=box' int2str(j) ';']) 
    figure(2) 
    subplot(5,8,j) 
    plot(pix,data) 
    axis tight 
    title(num2str(j)) 
end 

 
clear jxstart*xsize*ystart*ysize*ydelta* 
save(name) 

 

The program assumes a 40-lane gel (two rows of 20 lanes), and applies a mask of 40 pre-

spaced lanes to the entire gel (data was run in triplicate).  User input is required to help align 

the mask.  The signal from each lane is the summation of image intensity in the y-axis for the 

length of the lane (thus the intensity of each lane is recorded as a single line).  
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Figure A.1- Output of gel_analysis2, indicating the region of interest for each lane.Two sets of 

20 boxes are superimposed over the gel image.  The user modifies the initial starting position of 

each bank of boxes in both the x and y direction to best center the boxes over each lane.  It is 

important to try and avoid as much of the low mobility smearing near each well as possible, lest 

that signal get confused for a broad peak.  Once the boxes are positioned over each lane, the 

intensity is summed in the y-axis, and the intensity across the entire lane represented by a line.   
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Following the determination of the intensity in each lane, the lane_analysis2 script is 

run: 

%fits the intensity profile of a given lane, defined by "j", to the sum of 
%four Gaussian functions (supercoiled, relaxed, linear and background). 

 
%change the file name, j and center positions; it may sometimes be 
%necessary to change the peaksize, fitsize and maxpeakwidth 

 
clear all 

 
%file name (wihout .tif) 
name='nc20 yo frame average'; 

 
j=35; 

 
center1=94; 
center2=28; 
center3=60; 
center4=130; 

 
peaksize=16; %defines the distance over wich data is "fit" on either side of 

the center value 
fitsize=4; %defines the maximum variation of the Gaussian center from its 

initial value 
maxpeakwidth=18; %defines the upper limit on the Gaussian function width 

 
%nothing should need to be modified below this point 

 
load(name) 
fid=fopen([name ' fits.mat']); 
if fid>-1 
    load([name ' fits.mat']) 
end 

 
eval(['data=box' int2str(j) ';']) 
offset=mean(data(1:10)); 
offsetEND=mean(data((end-10):end)); 
data2=colfilt(data,[1,30],'sliding',@median); 
data2(end)=data2(end-1); 
x0=[offset 0 (offsetEND-offset) 60 5]; 
lb=[-1 -1e4 0 0 0]; ub=[2*offset+1 1e4 1e5 180 10]; 
x=lsqcurvefit('baseline2',x0,pix,data2,lb,ub); 
fit=baseline2(x,pix); 
data3=data-fit; 

 
cent=center1; 
xx0=[(max(data3)-offsetEND) cent 4 offsetEND]; 
lbb=[0 cent-fitsize 1]; ubb=[2*max(data3) cent+fitsize maxpeakwidth]; 
xx=lsqcurvefit('gauss_off2',xx0,pix,data3,lbb,ubb,options); 
data4=data((cent-peaksize):(cent+peaksize)); 
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pix4=pix((cent-peaksize):(cent+peaksize)); 
xx0=[xx(1) cent 4 offset 0]; 

x1=lsqcurvefit('gauss_off_baseline2',xx0,pix4,data4,lbb,ubb,options); 
fit1=gauss_off_baseline2(x1,pix); 

 
cent=center2; 
xx0=[(max(data3)-offsetEND) cent 4 offsetEND]; 
lbb=[0 cent-fitsize 1]; ubb=[2*max(data3) cent+fitsize maxpeakwidth]; 
xx=lsqcurvefit('gauss_off2',xx0,pix,data3,lbb,ubb,options);data4=data((cent-

peaksize):(cent+peaksize)); 
pix4=pix((cent-peaksize):(cent+peaksize)); 
xx0=[xx(1) cent 4 offset 0]; 
x2=lsqcurvefit('gauss_off_baseline2',xx0,pix4,data4,lbb,ubb,options); 
fit2=gauss_off_baseline2(x2,pix); 

 
cent=center3; 
xx0=[(max(data3)-offsetEND) cent 4 offsetEND]; 
lbb=[0 cent-fitsize 1]; ubb=[2*max(data3) cent+fitsize maxpeakwidth]; 
xx=lsqcurvefit('gauss_off2',xx0,pix,data3,lbb,ubb,options);data4=data((cent-

peaksize):(cent+peaksize)); 
pix4=pix((cent-peaksize):(cent+peaksize)); 
xx0=[xx(1) cent 4 offset 0]; 
x3=lsqcurvefit('gauss_off_baseline2',xx0,pix4,data4,lbb,ubb,options); 
cent3=cent; 
fit3=gauss_off_baseline2(x3,pix); 

 
cent=center4; 
xx0=[(max(data3)-offsetEND) cent 4 offsetEND]; 
lbb=[0 cent-fitsize 1]; ubb=[2*max(data3) cent+fitsize maxpeakwidth]; 
xx=lsqcurvefit('gauss_off2',xx0,pix,data3,lbb,ubb,options);data4=data((cent-

peaksize):(cent+peaksize)); 
pix4=pix((cent-peaksize):(cent+peaksize)); 
xx0=[xx(1) cent 4 offset 0]; 
x4=lsqcurvefit('gauss_off_baseline2',xx0,pix4,data4,lbb,ubb,options); 
fit4=gauss_off_baseline2(x4,pix); 

 
figure(13) 
plot(pix,data,pix,fit1,pix,fit2,pix,fit3,pix,fit4) 
axis tight 
ylim([min(data) max(data)]) 
title(num2str(j)) 

 
area1(j)=x1(1).*x1(3); 
area2(j)=x2(1).*x2(3); 
area3(j)=x3(1).*x3(3); 
area4(j)=x4(1).*x4(3); 
fitmat1(j,:)=fit1; 
fitmat2(j,:)=fit2; 
fitmat3(j,:)=fit3; 
fitmat4(j,:)=fit4; 
centervec1(j)=center1; 
centervec2(j)=center2; 
centervec3(j)=center3; 
centervec4(j)=center4; 
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save([name ' 

fits'],'area1','area2','area3','area4','fitmat1','fitmat2','fitmat3','fitmat4

','centervec1','centervec2','centervec3','centervec4') 

User input is required to provide estimated starting positions for the centers of the 

three band intensities- center1, center2, center3 and center4.  Further, the peaksize, fitsize, and 

maxpeakwidth need to be altered by the user to obtain the best fit possible for each lane.  

These parameters often remain stable for each side of the gel.  The quality of the Gaussian 

fitting is checked by eye, and the fit parameters adjusted until the peak-fits are optimized.  This 

program is run for each lane that requires analysis.    
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Figure A.2- Representative output of a single lane analysis.The lane intensity quantified from 

the gel is shown in blue.  The green peak is a fit to the supercoiled species, the red peak a fit to 

the nicked species, and the magenta slope a fit to the baseline.  As can be seen, the baseline of 

the quantification is not uniform across the entire lane.  Further, only two peaks are present, 

therefore no linear band was detected.  Accordingly, the cyan curve conforms to the baseline 

region were the linear species would be located.  The fit parameters are adjusted until the fits 

are visually optimized; the procedure is then repeated for each lane. 
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 Finally, the script gel_analysis2b_MT is used to compile the quantifications of the band 

intensities and perform the background subtractions.  Typically, each gel had samples run in 

triplicate, thus three lanes are averaged together for the final result.  If a lane failed or was very 

poorly quantified, the user must manually exclude it from the analysis.   The correction factor 

for differential dye staining affinity is performed during the data fitting.  No user input is 

required other than specifying the filename.     

%processeses and plots all of the data from the lane_analysis programs (run 
%this after running lane_analysis for all lanes). 

 
%6/23/11 modified to include data without baseline background subtraction 

 
%only need to change the name 

 
clear all 

 
%file name (wihout .tif) 
name='nc20 yo frame average'; 

 
%nothing should need to be modified below this point 

 
load(name) 
load([name ' fits.mat']) 

 
len=size(fitmat1,2); 
fitmat1(41,:)=zeros(1,len); 
fitmat2(41,:)=zeros(1,len); 
fitmat3(41,:)=zeros(1,len); 
fitmat4(41,:)=zeros(1,len); 

 
figure(3), clf 

 
for j=1:nolanes 

 
    eval(['data=box' int2str(j) ';']) 
    fit1=fitmat1(j,:); 
    fit2=fitmat2(j,:); 
    fit3=fitmat3(j,:); 
    fit4=fitmat4(j,:); 

 
    figure(3) 
    subplot(5,8,j) 
    plot(pix,data,pix,fit1,pix,fit2,pix,fit3,pix,fit4) 
    axis tight 
    ylim([min(data) max(data)]) 
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    title(num2str(j)) 

end 

 
%baseline background subtracted 
p1=(area1-area4)./(area1+area2+area3-3*area4); 
p2=(area2-area4)./(area1+area2+area3-3*area4); 
p3=(area3-area4)./(area1+area2+area3-3*area4); 
pmat=[p1;p2;p3]; 
%t0 
d1=12; 
d2=25; 
d3=36; 
av(1:3,1)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,1)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t0.5 
d1=11; 
d2=24; 
d3=35; 
av(1:3,2)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,2)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t1 
d1=10; 
d2=23; 
d3=34; 
av(1:3,3)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,3)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t2 
d1=9; 
d2=22; 
d3=33; 
av(1:3,4)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,4)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t3 
d1=8; 
d2=19; 
d3=32; 
av(1:3,5)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,5)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t4 
d1=7; 
d2=18; 
d3=31; 
av(1:3,6)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,6)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t5 
d1=6; 
d2=17; 
d3=30; 
av(1:3,7)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,7)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t10 
d1=5; 
d2=16; 
d3=29; 
av(1:3,8)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,8)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
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%t15 
d1=4; 
d2=15; 
d3=28; 
av(1:3,9)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,9)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t20 
d1=3; 
d2=14; 
d3=27; 
av(1:3,10)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,10)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t30 
d1=2; 
d2=13; 
d3=26; 
av(1:3,11)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,11)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 

 
av1=av(1,:); av1b=av1; 
av2=av(2,:); av2b=av2; 
av3=av(3,:); av3b=av3; 
sd1=sd(1,:); sd1b=sd1; 
sd2=sd(2,:); sd2b=sd2; 
sd3=sd(3,:); sd3b=sd3; 

 
figure(4) 
subplot(2,1,1) 
time=[0 0.5 1 2 3 4 5 10 15 20 30]; 
plot(time,av1,time,av2,time,av3) 
axis tight 
ylim([-0.1 1.1]) 
title([name ' (background subtracted)']) 

 
%baseline background NOT subtracted 
p1=(area1)./(area1+area2+area3); 
p2=(area2)./(area1+area2+area3); 
p3=(area3)./(area1+area2+area3); 
pmat=[p1;p2;p3]; 
%t0 
d1=12; 
d2=25; 
d3=36; 
av(1:3,1)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,1)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t0.5 
d1=11; 
d2=24; 
d3=35; 
av(1:3,2)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,2)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t1 
d1=10; 
d2=23; 
d3=34; 
av(1:3,3)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
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sd(1:3,3)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t2 
d1=9; 
d2=22; 
d3=33; 
av(1:3,4)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,4)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t3 
d1=8; 
d2=19; 
d3=32; 
av(1:3,5)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,5)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t4 
d1=7; 
d2=18; 
d3=31; 
av(1:3,6)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,6)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t5 
d1=6; 
d2=17; 
d3=30; 
av(1:3,7)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,7)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t10 
d1=5; 
d2=16; 
d3=29; 
av(1:3,8)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,8)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t15 
d1=4; 
d2=15; 
d3=28; 
av(1:3,9)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,9)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t20 
d1=3; 
d2=14; 
d3=27; 
av(1:3,10)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,10)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 
%t30 
d1=2; 
d2=13; 
d3=26; 
av(1:3,11)=mean([pmat(:,d1) pmat(:,d2) pmat(:,d3)],2); 
sd(1:3,11)=std([pmat(:,d1) pmat(:,d2) pmat(:,d3)],[],2); 

 
av1=av(1,:); 
av2=av(2,:); 
av3=av(3,:); 
sd1=sd(1,:); 
sd2=sd(2,:); 
sd3=sd(3,:); 



 

169 
 

 
figure(4) 
subplot(2,1,2) 
time=[0 0.5 1 2 3 4 5 10 15 20 30]; 
plot(time,av1,time,av2,time,av3) 
axis tight 
ylim([-0.1 1.1]) 
title([name ' (background not subtracted)']) 
matout=zeros(11,15); 
matout(:,1)=time; 
matout(:,3)=av1; 
matout(:,4)=sd1; 
matout(:,5)=av2; 
matout(:,6)=sd2; 
matout(:,7)=av3; 
matout(:,8)=sd3; 
matout(:,10)=av1b; 
matout(:,11)=sd1b; 
matout(:,12)=av2b; 
matout(:,13)=sd2b; 
matout(:,14)=av3b; 
matout(:,15)=sd3b; 

 
save([name '.dat'], 'matout', '-ASCII') 

 

The script outputs a visual confirmation of the fit for each lane, and well as the averaged 

quantification of each plasmid species.   
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Figure A.3- Output of the Gaussian fits to each DNA band for every lane. This enables a rapid 

confirmation that each lane was properly fit.  Aberrant fits or lanes that should be discarded are 

identified at this step and manually excluded from further analysis.  Lanes 1,20,21, and 40, all 

correspond to empty lanes that are excluded from analysis.   
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Figure A.4- Quantification of the three plasmid forms from the initial gel image.The blue curve 

is the supercoiled species, the green curve the nicked species, and the red curve the linear 

species.  Each timepoint results from a triplicate analysis.  The data is displayed with and 

without background correction.  In many cases, the effect of the background subtraction is 

minimal.    



 
 

APPENDIX B 
 

AUTOMATED QUANTIFICATION OF DNA MOLECULE STRAND CLEAVAGE 
 

The following details the data processing scripts used to analyze the SMI experiments 

presented in Chapter 3.  In these experiments, DNA molecules were hydrodynamically 

elongated in a microfluidic flow cell and observed at different irradiation powers.To measure 

the cleavage rates of hydrodynamically elongated DNA molecules, time lapse videos were taken 

that recorded the state of the DNA strands in the microscope field of view.As the DNA strands 

accumulated single strand breakages, the DNA molecules would cleave and retract to the 

anchor points.  This was visually manifested as a transition from a linear structure optically 

resolved against a dark background to a pair of bright points, located at the termini of the 

elongated molecule.  A single field of view could contain tens or hundreds of elongated 

molecules, and videos would be collected for several hundred frames.  It would be particularly 

onerous to attempt to quantify the intact molecules in each frame by hand, as well as prone to 

human error or bias towards the brightest strands.  The challenge then became to automate 

the process of counting how many intact DNA molecules persisted at each time point (video 

frame). 

In response, a two-step process was developed, using scripts termed DNAid1 and 

DNAid2stack.  The first script used the initial video frame, when all molecules were still intact, 

to generate a binary mask of the DNA molecules that qualified for further analysis.  This script 

required the user to view the image and manually select which strands would be used in the 

analysis.  In the second step, this mask was subsequently applied to every frame thus selecting 
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the regions in each video frame that corresponded to the location of the DNA molecules 

initially selected.  At each frame in which a selected DNA molecules ruptured, the initial number 

of recorded DNA molecules was incremented down.  Thus a running count of the remaining 

DNA molecules could be automatically generated.   

Since the data consisted of a large number of sequential images, the video was saved as 

a .tif image stack using ImageJ.  Early frames before irradiation was initiated were truncated at 

this point.   

Using DNAid1, the first image frame was selected and entered by the user as the name variable:    

%DNAid1 

clear all 

 
sigma=1; 
blur=30; 

 
%read in file 
name='od 0-74'; 
im_raw=imread([name '.tif']); 

 
%Create filter and apply to background and image 
H=fspecial('gaussian',60,30); 
bkg=imfilter(im_raw,H,'replicate','conv'); 

 
H2=fspecial('gaussian',10,1); 
im_av=imfilter(im_raw,H2,'replicate','conv'); 
im_bkg=im_av-bkg; 
stdev=std2(im_bkg); 

 
im_blur=medfilt2(im_raw,[blur,3]); 
im_blur_bkg=im_blur-bkg; 

 
im_bw=(im_blur_bkg>(sigma.*stdev)); 
im_skel=bwmorph(im_bw,'skel',inf); 

 
im_plot=uint16(zeros([size(im_av),3])); 
im_plot(:,:,1)=uint16(2^16*im_skel); 
im_plot(:,:,2)=im_av; 
% figure(1) 
% subplot(1,2,1), imshow(im_av) 
% subplot(1,2,2), imshow(im_plot) 
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se=strel('rectangle',[5,5]); 
im_mask=imdilate(im_skel,se); 
im_plot2=uint16(zeros([size(im_av),3])); 
im_plot2(:,:,1)=uint16(2^15*im_skel); 
im_plot2(:,:,2)=4*im_bkg; 
im_plot2(:,:,3)=uint16(2^15*im_mask); 

 
figure(1), imshow(im_av) 
figure(2), imshow(im_plot2) 
figure(3), imshow(im_mask) 
M=bwselect; 

 
L=bwlabel(M); 
objects=max(max(L)); 

 
figure(4) 
im_plot3=uint16(zeros([size(im_av),3])); 
im_plot3(:,:,1)=uint16(2^16*im_skel); 
im_plot3(:,:,2)=4*im_bkg; 
im_plot3(:,:,3)=uint16(2^15*M); 

subplot(1,2,1), imshow(im_av) 
subplot(1,2,2), imshow(im_plot3) 

 
save([name ' mask'],'M', 'H', 'H2') 

 

The image was smoothed with a coarse and fine median filter, the former to obtain the 

background intensity and the latter to remove noise. The image was then background 

subtracted to heighten the contrast and then thresholded to convert to a binary 

representation.  Since the features of interest, the elongated molecules, were essentially wavy 

lines, the entire image was skeletonized.  This is a morphological image processing function that 

reduces a feature to the minimum number of connected pixels, and had the effect of 

transforming the DNA molecules into single-pixel wide lines.  The resulting image was then 

dilated significantly, expanding the width of the lines to several pixels wide.  The MATLAB 

function bwselect was employed to enable the user to manually select which of the remaining 

features present would be retained in the final mask.  A series of overlaid false-color images 

were presented at this step to assist in selecting the correct features, thus generating the final 

analysis mask.   
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Figure B.1- Compiling datafiles into an image stack. The original data recording the time 

dependent cleavage of the DNA molecules is saved as a video file.  Software included with the 

EMCCD camera system are used to export the video files as a collection of .tif images, with each 

video frame as a separate image.  For data handling in MATLAB, ImageJ is used to compile the 

images into a stack.  At this point, undesirable initial frames, before laser illumination begins, 

can be discarded.    
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Figure B.2- Initial frame of a time-lapse movie recording the cleavage of elongated DNA 

molecules.The bright features against the dark background as dye-stained DNA molecules 

tethered to a passivated glass surface.  Not all molecules of extended to the same extent or are 

poorly resolved from neighboring strands.     
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Figure B.3- False-color output used to guide user selection of intact DNA molecules.The initial 

recorded image, post filtering, is shown in green.  The DNA skeletons are shown in magenta, 

while the dilated DNA skeletons are shown in blue.  Overlaid images such as this are useful to 

visually associate each dilated skeleton with the original DNA feature, as some information, 

such as overlapping molecules or DNA fragments, can be obscured in the binary skeletonized 

image.   
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Figure B.4- DNAid1 output enabling user selection.This is the resulting output after the initial 

image was median filtered, background subtracted, converted to a binary image, and 

skeletonized.  The white features on the black background correspond to the regions of the 

image containing DNA molecules.  Using the MATLAB function bwselect, the user can select 

each binary feature with a single mouse click.  All pixels corresponding to the binary feature are 

then saved, and later used to apply a mask to all frame of the cleavage video. 
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Figure B.5- Final output and resulting mask.This is the last output presented to the user, 

indicating the selected features of the final mask.  The blue features are the dilated skeletons 

that will be retained in the subsequent analysis.  The red features are the original skeletonized 

DNA molecules, notice that only a subset are selected for analysis.  The original image is again 

presented in green, enabling the user to verify that overlapping or problematic molecules are 

excluded.  While some intact molecules maybe missed by the user in the initial selection, since 
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the retained molecules are accurately tracked throughout, the effect is negated.  If the mask is 

deemed defective, the script would be run again.     
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Following creation of the image mask, the script DNAid2stack is used.  This program 

loads the image mask and the image stack.  The mask is used to isolate the regions of interest in 

every frame of the stack.  Each region of interest contains a skeletonized DNA image; the length 

of skeletons in subsequent frames are compared.  If a skeleton length decreases by more than 

the value of the standard deviation of the intensity along the length of the skeleton, it is 

counted as a rupture.  These rupture events are recorded for each object identified in the initial 

mask, thus the program is iterating over the number of objects in the mask and the number of 

frames: 

%modified 5/2/11 to correct for when object projections into "lengths" 
% are under the threshold.  This caused a condition of not initializing the 
% lengths vector, cuasing an error when the max of that vector was asked 
% for. 
clear all 

 
b=2;% for chopping off blank slides 
delay=0.03053;%for converting slide nubmer to time 
%scale factor for length threshold 
scale=0.25; 

 
%read in file 
name='MT stack'; 
info=imfinfo([name '.tif']); 
number=numel(info); 
for j=1:number 
    A(:,:,j)=imread([name '.tif'],j); 
end 
image=0:(number-1); 

 
load('od 0-74 mask') 
L=bwlabel(M); 
objects=max(max(L)); 

 
for k=1:number 

 
    im_raw=A(:,:,k); 

 
    bkg=imfilter(im_raw,H,'replicate','conv'); 
    im_av=imfilter(im_raw,H2,'replicate','conv'); 
    im_bkg=im_av-bkg; 
    stdev=std2(im_bkg); 
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for idx=1:objects 
        mask=uint16(L==idx); 
        obj_n=im_bkg.*mask; 
        proj_m=sum(mask,2); 
        len1=find(proj_m>0,1); 
        len2=find(proj_m>0,1,'last'); 
        y=(0:(len2-len1))'; 
        proj_n=sum(obj_n,2)./sum(mask,2); 
        projection=proj_n(len1:len2); 

 
        projection_bw=(projection>(scale*stdev)); 
        l=bwlabel(projection_bw); 
if max(l)>0 
            lengths=zeros(1,max(l)); 
for j=1:max(l) 
                obj=(l==j); 
                lengths(j)=sum(obj); 
end 
            length(k,idx)=max(lengths); 
else 
            length(k,idx)=0; 
end 

 
end 

 
end 

 
%ADDED BY Michael Tycon to count lengths>30. 
%coding by lengths chops off blank slides in length: 
longs=sum(length(b:size(length,1),:)>30,2); 
time=(b:size(length,1))-b; 
%converts slide number into exposure duration 
time=time*delay; 
figure 
plot(time,longs,'o'); 
xlabel('Time (sec)');ylabel('Number of Intact Strands'); 
save('breakagecurve','time', 'longs', 'length', 'idx', 'objects') 

 

 To use DNAid2stack, the user must enter five parameters.  The name of the image stack 

(name) and mask (entered a string next to the load function) are required.  Additionally, the 

number of early slides to be excluded (b), the video frame rate (delay), and a scaling factor used 

to distinguish the skeletons above the background (scale), need to be provided.  The script 

saves the results and outputs a plot of the number of intact molecules versus time. 
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Figure B.6- Output of the DNAidstack2 program.Here, the initial user defined mask identified 

16 unique DNA molecules to track over 300 image frames.  Only 10 seconds of video were 

required to capture the breakage of nearly all of the selected molecules.  Due to background 

noise, determining the cleavage of all the molecules is difficult, thus a slight offset sometimes 

remains.  Additionally, frame to frame image brightness fluctuations can complicate the 

analysis.  These complications result from the accumulation of un-intercalated dye on the flow 

cell surface, which increases the background brightness relative to the stained molecules.  This 

can be seen as the oscillation in the remaining molecule count at long times.  If the program 
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functioned flawlessly, the count would decrease monotonically.  The slight “jitter” that results is 

minor and does not affect the downstream analysis.     



 
 

APPENDIX C 
 

AUTOMATED “SHOTGUN PTFRAP” IMAGING PROCESSING PROGRAMS 
 

This section supports Chapter 4, and details the image processing program used to 

automate the selection of FRAP datapoints collected in lab with the desired physical region for 

data analysis.  During data collection, for each cell investigated, FRAP datapoints were collected 

across the entire nucleus using a coarse thresholding criteria.  After data collection, FRAP points 

corresponding to particular nuclear sub-regions, specifically interchromatin space devoid of 

chromatin signal, were selected and retained for further analysis.  While detailed in Chapter 4, 

the general process was to use the images collected of both color channels as the basis of 

binary masks.  These binary masks were then used to identify regions matching a strict criterion 

of distance away from interfering structures.  The datapoint positions that met the criteria were 

then matched with the datapoint positions collected during the experiment, and only the FRAP 

recovery data from these position used in downstream analysis.  Thus, by modifying the 

masking programs, all datapoints collected during the initial experiments can be segregated 

without the need for additional experiments.   

Below is the masking program, called ptFRAP_autoptselect_imageanalysis_v2:          

%Process each image set seperately, save an array of selected points per 
%zone 
clear all 
filename = 'Rpb9_set2_interzone'; 
zone=26; 
%Value to thicken and erode for the particle size thresholding: 
number=8; 
Cyel1=imread([filename num2str(zone) '_yel_z0_r0.tif']); 
Cgre1=imread([filename num2str(zone) '_gre_z0_r0.tif']); 
%Apply a median filter to image to reduce noise: 
Cyel=medfilt2(Cyel1, [5 5]); 
Cgre=medfilt2(Cgre1, [5 5]); 
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%Threshold image to get Binary Output: 
[lv1,mask1yel] = thresh_tool(Cyel); 
[lv2,mask1gre] = thresh_tool(Cgre); 

 
%Blurr and process images to make masks: 
%Yellow:shrink nucleus outline to avoid periphery 
%Apply Particle Size Thresholding to Nucleus (Yellow Channel): 
objs=bwconncomp(mask1yel); 
numPixs = cellfun(@numel,objs.PixelIdxList); 
maxnum=find(numPixs==max(numPixs)); 
tmask=logical(zeros(512,512)); 
tmask(objs.PixelIdxList{maxnum})=1; 

 
%se=strel('disk',number1); 
se=strel('diamond',number); 
tmaskM=imerode(tmask,se); 

 
tmaskM2=bwmorph(tmaskM,'thicken',number); 
%imshow(tmaskM2) 

 
objs2=bwconncomp(tmaskM2); 
numPixs2 = cellfun(@numel,objs2.PixelIdxList); 
maxnum2=find(numPixs2==max(numPixs2)); 
tmaskM2L=logical(zeros(512,512)); 
tmaskM2L(objs2.PixelIdxList{maxnum2})=1; 

 
comp=uint8(zeros(512,512,3)); 
comp(:,:,1)=uint8(255*tmask); 
%comp(:,:,2)=uint8(255*tmaskM); 
comp(:,:,3)=uint8(255*tmaskM2L); 

 
%This figure shows the selected largest region: 
% figure(1) 
% imshow(comp) 

 
mask1yel3=bwmorph(tmaskM2L,'erode',5); 

 
%Green: block out polytenes to avoid banded regions 
mask1gre3=bwmorph(mask1gre,'dilate',3); 

 
%Some of these plots are not useful: 
% figure (2) 
% subplot(2,3,1) 
% imshow(Cyel) 
% subplot(2,3,2) 
% imshow(mask1yel3) 
% subplot(2,3,3) 
O=cat(3,100*mask1yel3,Cyel,zeros(512,512)); 
% imshow(O) 
% subplot(2,3,4) 
% imshow(Cgre) 
% subplot(2,3,5) 
% imshow(mask1gre3) 
% subplot(2,3,6) 
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N=cat(3,100*mask1gre3,3*Cgre,zeros(512,512)); 
% imshow(N) 
 %Find intersection of both masks: 
mask1gre3=-(mask1gre3); 
mask=mask1yel3+mask1gre3; 

 
%Apply Grid to determine possible Bleach and Control Pt Locations 
%Control region bleaches: 
gridvect2=zeros(512,1); 
for i=0:25 
gridvect2(20*i+10)=1; 
end 
[A2,B2]=meshgrid(gridvect2,gridvect2); 
grid2=A2.*B2; 
%apply mask to grid and get corrdinates:  Pass to laser the bleach points 
mask_grid2=mask.*grid2; 
[cy2,cx2]=find(mask_grid2==1); 
bleachpts2=length(cx2);%pass this value as the number of control pts taken 

 
%Bleach region: must have same number of pts as control region 
gridvect=zeros(512,1); 
for i=0:25 
gridvect(20*i+1)=1; 
end 
[A,B]=meshgrid(gridvect,gridvect); 
grid=A.*B; 
%apply mask to grid and get corrdinates:  Pass to laser to bleach points 
mask_grid=mask.*grid; 
[cy,cx]=find(mask_grid==1); 
bleachpts=length(cx);%pass this value as the number of bleach pts taken 

 
%Ensures equal number of control and bleach points 
if bleachpts2==bleachpts 
   cx=cx; 
   cy=cy; 
   cx2=cx2; 
   cy2=cy2; 
end 

 
if bleachpts2<bleachpts 
    cx=cx(1:bleachpts2); 
    cy=cy(1:bleachpts2); 
end 
if bleachpts2>bleachpts 
    cx2=cx2(1:bleachpts); 
    cy2=cy2(1:bleachpts); 
end 

 

 
figure (3) 
subplot(1,2,1) 
imshow(O) 
xlabel('Green Channel Mask') 
subplot(1,2,2) 
imshow(N) 
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xlabel('H2B-RFP Mask') 

 
ptFRAP_postcollection_dataselection%contains figure 4 

 The program needs to be run for each z-section in which data was collected.  The user 

must supply the information identifying the image corresponding to the two color channels, 

designated by the variables filename and zone.  A core functionality of this script is the 

thresh_tool, a program freely available from http://www.mathworks.com/matlabcentral/.  

Additionally, the MATLAB function bwconncomp, is used to automatically select the nucleus 

from the surrounding signal, bypassing the need for the user to manually select the largest 

feature in the field of view.    

 
 
 
 
 
 
 
 
 
 

http://www.mathworks.com/matlabcentral/


 
 

APPENDIX D 
 

SUPPORTING INFORMATION FOR THE CHAPTER 4 
 

1. High expression levels of fusion proteins are not responsible for the observed anomalous 

diffusion 

The Rpb3-GFP and Rpb9-GFP fusion proteins are exogenous insertions expressed under 

the control of the GAL4 driver system and believed to be functional due to recruitment to HSP 

promoter sites 1.  As a result they are highly over-expressed compared to the native, untagged 

RNAPII subunits.  To test if the over-expression was creating a population of unincorporated 

subunit that was being manifest as apparent anomalous diffusion, we crossed our Rpb9-GFP 

with a GAL4 driver under the control of a heat shock induced promoter (Bloomington Stock 

Center #1799).(d)  The expression level of this cross, Rpb9-GFPx1799, can be lowered by raising 

the fly larvae at 18°C (red bars) and was determined to reduce expression levels by up to 50% 

compared to the Rpb9-GFPxH2B-mRFP line raised at 22°C (black bars).  The mean expression 

levels of these two populations were found to be statistically different (p<0.001).  While this 

construct did not have the chromatin labeled by the H2B-mRFP histone protein, the Rpb9-GFP 

showed strong exclusion from chromatin regions (determined previously) still enabling us to 

restrict the FRAP analysis to the interchromatin space.  (a)  The FRAP recoveries and (b) 

normalized recoveries for the high (black) and low (red) Rpb9-GFP expression levels flies are 

shown. (c)  Within experimental error, the effective diffusion coefficient and anomlity value of 

the reduced expression line matched the results found using the Rpb9-GFPxH2B-mRFP line.  

Thus we are confident that the over expression is not responsible for the anomalous diffusion.  
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This could not be repeated for the Rpb3-GFP construct since it is expressed by a GAL4 driver 

sequence previously bred into the fly line.   
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Figure D.1- High expression levels of fusion proteins are not responsible for the observed 

anomalous diffusion 
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2. Determining the resolution of the Point FRAP method 

For slow moving species, determining the diffusion coefficient is difficult if the FRAP 

curve does not fully recovery to the pre-bleach level on the time course of the measurement.  

Despite the rapid time resolution of our data collection method, we are limited in how slow a 

diffusion component we can accurately measure by the 50 ms time duration of our recovery 

collection.  If Brownian diffusion is assumed, our fitting algorithm estimates the final recovery 

extent based on the slope of the FRAP curve once it begins to level off.  Further, the estimation 

of the recovery extent will strongly affect the estimated diffusion coefficient.  For very slow 

moving species, the recovery will be very shallow and the algorithm is unable to accurately 

estimate the diffusion coefficient.  This became a significant concern when applying the 

distribution model 2 as a threshold for reliable determination of diffusion coefficients needed to 

be established.  We chose to empirically evaluate which diffusion coefficients were reliable by 

applying our fitting algorithm to simulated data and determining where the estimated diffusion 

coefficients began to deviate from the input value.  (a)  FRAP recovery curves were simulated 

that correspond to diffusion coefficients from 0.01 to 1000 µm2/s.  As can be seen, the majority 

of the curves exhibit a significant recovery, but the slow moving components are nearly flat on 

the 50 ms timescale of the simulation.  (b)  The fitting algorithm was applied to each curve and 

the estimated diffusion coefficient was plotted against the initial input value.  We determined 

the diffusion coefficient estimation was accurate with as little as 10.3% recovery (a-horizontal 

black line), corresponding to a diffusion coefficient of 0.04 um2/s (b-vertical black line). (c)  

Next, white noise was added to the FRAP curves resulting in simulated data with a signal to 

noise ratio (SNR) of 35 dB.  This SNR corresponds well our experimental FRAP data.  Again, we 
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applied the fitting algorithm to the noisy data and compared the estimated diffusion 

coefficients to the input values.  At this SNR, the estimations begin to deviate once the recovery 

is less than 47.6% complete (c-horizontal black line), corresponding to a diffusion coefficient of 

0.29 um2/s (d-vertical black line).  Thus we can see the accuracy of the fitting depends on the 

SNR of the data.  Erring on the side of caution, we rejected any diffusion components that 

showed less than a 50% recovery.  This method outlines a framework for evaluating the 

robustness of a FRAP fitting method as long as the SNR of the data can accurately be estimated.      
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Figure D.2- Determining the Resolution of the Point FRAP Method  
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3. Establishing the robustness of the Distribution model on experimental data 

As presented in the Results and Discussion, the Rpb3 datasets indicate a bimodal 

distribution.  We wanted to ensure the robustness of the Distribution model to predict bimodal 

distributions without a bias predicated on the initial component amplitudes.  To achieve this, 

we tested the output of the Distribution model in response to different initial amplitude 

profiles, as well as different fitting protocols.  Four sets of initial conditions were tested: (1,2-

Gaussian) shaped the initial amplitudes in a Gaussian envelope with 35 or 15 dB noise added,  

(3,4-Flat) provided 35 or 15 dB Gaussian white noise as the input.  To test for reproducibility, 

each input condition was tested three times.  In the first, unbiased implementation (panels 

b,e,h,k,n), the input profile amplitudes were floated to achieve a best-fit to the FRAP data.  The 

output distribution was then smoothed with a median filter.  This process was repeated five 

times until the fit residuals no longer improved.  The last step omitted smoothing to prevent 

distorting the output.  All the outputs are overlaid indicating the similarity regardless of input 

profile.  Next, the effect of biasing the distribution to a single component by implementing a 

Gaussian smoothing step was tested.  A five-step procedure was used, but in contrast to the 

previous method, between the third and fourth smoothing steps the output was fit to a 

Gaussian envelope.  The final fit output was not forced to a Gaussian to reveal the most stable 

output.  The fitting outputs from all twelve input distributions are shown (panels c,f,l,n); again 

the outputs are (1) very similar and (2) show the same structure as the un-biased fitting 

method.  The results of the twelve outputs for both fitting methods were averaged and 

compared (panels a,d,g,j,m), indicating nearly identical distributions.  This indicates that 

random noise on the input does not affect the output and the distribution fit find the most 
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stable output.  This test was significant for the Rpb3 distribution results.  If biasing the output to 

one component altered the final output away from a bimodal fit, then the distribution model 

algorithm could not be considered robust.  However, since even when the fit was forced to 

conform to a single peak it still “stepped away” to a bimodal fit on the next iteration, the fitting 

method was considered stable.     
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Figure D.3- Establishing the Robustness of the Distribution Model on Experimental Data  
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4. Slow Diffusion Components under the FRAP resolution method are not required for an 

accurate fit 

After confirming that the Distribution modeling can robustly determine the number of 

components that comprise a FRAP curve and having established the FRAP resolution limit, we 

chose to investigate how accurately the retained components recapitulated the original data.  

The output distributions (panels b,d,f,h,j, black lines) were truncated at 0.30 µm2/s (red lines), 

and renormalized so the total distribution summed to unity.  This slightly increased the 

amplitudes of the retained components.  These truncated distributions were used to establish a 

fit to the data (panels a,c,e,g,I, fit to all components black line, fit to truncated distribution red 

line).  For the Rpb3 in vivo data, the retained components do alter the recovery dynamics, 

shifting the curve to a faster recovery.  For all other samples, the fits are unchanged.      

  



 

199 
 

 

Figure D.4- Fit quality excluding diffusion components under FRAP resolution  
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5. FRAP fitting results for each dataset 

For each experiment, several datasets were collected and the resulting raw data 

averaged together to yield finalized data with a high SNR.  The finalized data was fit with the 

apparent anomalous diffusion and distribution models.  To ensure that the averaging of several 

datasets did not distort the final results, each individual dataset was fit with the apparent 

anomalous diffusion model.  The results are compiled below.  Typically, the subset of the 

finalized data shows nearly the same anomlity and effective diffusion coefficient, but the 95% 

confidence error intervals are larger than if the datasets are compiled.  As shown, averaging the 

fit outputs of the subsets is not identical to fitting the averaged data.  This method is in line 

with how the data was analyzed in Daddysman et al. 2011.   
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Table D.1-FRAP diffusion fitting results for individuals datasets and ensemble averages 

  
Conditions Sample Set Gamma 

(um2/sa) 
D(um2/s) Alpha 

  I - 32.7±16.1 0.99±0.08 
 GFP II - 36.2±20.1 1.00±0.09 
  III - 27.5±20.1 1.00±0.12 

  Ensemble* - 32.0±6.0 1.00 

      
  I 70.8±11.7 21.0±4.5 0.78±0.06 
  II 37.3±15.9 6.2±3.9 0.73±0.07 

In vivo  III 54.1±33.3 4.4±5.0 0.64±0.10 
(live polytenes) Rpb3 IV 105.6±37.3 7.4±5.1 0.58±0.06 

  V 271.9±130.0 9.2±13.6 0.43±0.08 
  VI 90.3±23.5 5.0±2.5 0.57±0.05 

  Ensemble* 69.1±10.5 5.5±1.4 0.62±0.03 

      
  I 45.7±7.2 7.9±1.7 0.73±0.03 
  II 38.9±14.3 9.70±4.8 0.78±0.06 
 Rpb9 III 30.7±8.9 7.6±2.9 0.78±0.05 
  IV 46.8±7.3 12.8±2.6 0.78±0.02 

  Ensemble* 44.4±5.0 10.0±1.5 0.76±0.02 

      
  I 98.0±50.0 79.8±43.0 0.96±0.07 
 GFP II 75.1±33.8 71.1±32.5 0.99±0.07 

  Ensemble* 112.2±37.5 79.1±29.0 0.92±0.05 

In vitro      
(cell lysate)  I 69.4±11.3 43.8±7.85 0.91±0.05 

  II 246±136.7 41.2±40.1 0.65±0.08 
 Rpb3 III 85.4±37.4 30.6±17.2 0.81±0.07 
  IV 115.4±45.9 23.2±13.7 0.72±0.06 

  Ensemble* 150±36.4 33.0±11.7 0.72±0.04 

      
In vivo  I 83.9±12.2 12.3±2.65 0.70±0.02 

Low Expression 
Level 

Rpb9 II 118.3±21.9 10.7±3.3 0.65±0.03 

  Ensemble* 97.3±12.1 11.7±2.2 0.67±0.02 

*Parameters resulting from fitting the average of all the listed datasets.  This procedure 

improves the fitting results by increasing the SNR of the data.   
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