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ABSTRACT

Bradley C. Saul : APPLICATIONS OF AND TOOLS FOR CAUSAL INFERENCE
(Under the direction of Michael Hudgens)

Various topics related to causal inference with application to infectious disease and

ecology are studied and software tools for such applications developed. The causal g-

methods of Robins and colleagues – the parametric g-formula, marginal structural models,

and structural nested models – are applied to a causal assessment of impaired water quality in

North Carolina’s Cape Fear River. The application demonstrates how a potential outcomes’

causal analysis can be done with routine stream monitoring data. Under certain conditions,

each of the g-methods can be cast in an estimating equation framework. Causal models often

‘stack’ estimating equations from multiple models, which can be a source of programming

errors and bottlenecks. An R package for obtaining point and variance estimates from

any arbitrary set of estimating equations is presented. The context of infectious diseases

stimulated many advances in causal inference methods in the past 15 years. These methods

and important contributions to the science of infectious diseases are reviewed.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

In this dissertation, I study causal inference applied to infectious disease and ecology

and develop software for such applications. Chapter 2 causally assesses a significant water

quality problem in North Carolina’s Cape Fear River. The suite of g-methods developed

by Robins (Robins, 1997; Robins and Hernán, 2009) are used to adjust for space- and

time-varying confounding and demonstrate how causal effects of nutrient pollution can be

estimated from stream surveillance data.

When parameterized appropriately, M-estimation (Stefanski and Boos, 2002) can be

used to estimate causal effects from the g-methods. Once a set of estimating equations are

defined, M-estimation theory provides the machinery for computing point estimates and

asymptotically Normal variance-covariance estimates (Huber and Ronchetti, 2009). Chapter

3 presents an R package that translates the mathematical machinery of M-estimators into

an application program interface (API) with which analysts can estimate parameters and

covariance matrices from any set of estimating equations. The package also provides an API

for finite sample variance corrections.

Theory and application of causal inference, especially in the realm of infectious disease

studies, have received much attention in the past 10-15 years. Chapter 4 reviews causal

inference methods applicable to studies of infectious diseases and reflects on how the

infectious disease context stimulated many advances in causal inference. The review

includes discussion of interference, principle stratification, test-negative study design, causal

surrogates, and other topics.

The next sections provide background for each of these topics, after first introducing

causal inference.
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1.1 Causal inference versus statistical inference

Statistical inference, broadly speaking, is about quantifying properties of a population’s

distribution from a sample. Scientists often want to understand more than mere associations

within a population’s joint probability distribution. The scientist wants to know how a

distribution changes when acted upon: does X cause Y ? Understanding causal relationships

requires more than just examining a probability distribution. Causal inference cannot be

done by the statistician alone with his bag of probability tricks. Pearl (2010a) clarifies

my point: “An associational concept is any relationship that can be defined in terms of a

joint distribution of observed variables, and a causal concept is any relationship that cannot

be defined from the distribution alone.” Additional non-data assumptions must be made.

Fortunately, such assumptions can be notated mathematically. As Rubin (2005) notes, “. . .

notation explicitly representing . . . potential outcomes is an exceptional contribution to

causal inference.”

1.1.1 Notation of potential outcomes

Early in the history of modern statistics, Neyman introduced the concept of potential

outcomes (Splawa-Neyman et al., 1990), applying the idea to yields under different varieties

of seed spread on agricultural plots. A potential outcome is simply the outcome a unit of

the population would have had if, possibly contrary to fact, it had been subject to a certain

exposure in a particular way. Rubin (1978) is often attributed for propelling the use of

potential outcomes in the late 20th century, but many have contributed to advancing potential

outcomes.

Throughout, I use the following generic notation. Let the random variable Ai be an

exposure or intervention of interest for unit i = 1, . . . n in a study, and ai be fixed, realized

values of the exposure. I use the terms intervention, treatment, and exposure interchangeably.

Observed (random) outcomes are denoted Yi and potential outcomes denoted Yi(a). Other

2



measured covariates are labeled Li and unmeasured covariates Ui. I will generally drop the

i index notation except when it may not be clear. Boldface indicates vectors or matrices as

appropriate. For example, A = {A1, . . . , An}.

1.1.2 Primacy of the causal estimand

“Before anything else, the right question needs to be framed.” (Freedman, 2005)

Causal inference demands careful attention to the target of inference. More so than in

traditional statistical literature, causal inference emphasizes the estimand. Rubin (2005) even

labels the estimand as “The Science”. Entire papers are written on causal estimands and their

identifiability assumptions (e.g., Robins and Greenland, 1992; Ogburn and VanderWeele,

2014). Rubin (2005) urges practitioners to establish their estimand before concerning

themselves with statistical technicalities.

An estimand, in Rubin’s formulation, includes all of the units’ potential outcomes. But

unit-level effects are generally not identified due to the fundamental problem of causal

inference (Holland, 1986). The fundamental problem says that an individual may have many

potential outcomes each depending on a particular treatment assignment. But in a given

study, only one vector of treatment is assigned, hence the fundamental problem that only one

potential outcome can be observed for each subject. The causal consistency theorem (Pearl,

2010b) links observed outcomes to potential outcomes: when A is set to a, the potential

outcome equals the observed outcome, Y (a) = Y .

The fundamental problem is not completely stifling. Population-level summaries of

unit-level potential outcomes can often be identified and estimated. Indeed, the population-

level summary is the part of the estimand generally of most interest. But specifications of

unit-level potential outcomes are just as important, particularly when relaxing the standard

stable unit treatment value assumption (SUTVA).

SUTVA (Rubin, 1986) restricts an individual’s set of potential outcomes in order to

facilitate identification. SUTVA bundles two assumptions: no hidden forms of treatment and

3



no interference. The assumption of no hidden forms of treatment (well-defined treatments

or treatment variation irrelevance (VanderWeele, 2009)) is best illustrated with a medical

study example. The assumption says that no matter how a subject takes a medication, the

treatment effect on a given individual is the same. If taking the drug with a meal or without

a meal caused two different effects, the assumption would be violated.

1.1.3 Assumption of no interference

SUTVA’s second assumption of no interference has received significant attention in

recent years (Hudgens and Halloran, 2008; Sobel, 2006). No interference limits the number

of potential outcomes to those determined only by the unit’s possible treatment settings. The

treatment of other individuals cannot affect the outcome of individual i; i.e., Y (a) = Y (ai).

For a binary treatment, this means a subject has two potential outcomes — one under

treatment, one under control. For many research problems, and the applications in this

dissertation, this assumption is too strict. Nutrient pollution at an upstream location in a

stream is likely to affect stream productivity at downstream locations. Vaccination of some

individuals against a highly contagious disease is likely to affect whether others will become

infected.

1.1.4 Identifiability assumptions

Identification of an estimand relies on two primary assumptions. First, potential

outcomes must be independent of the intervention, possibly conditional on covariates:

Y (a) ⊥ A|L = l. This assumption goes by many names: no unmeasured confounding

(NUC), ignorability, and exchangeability. The strong version claims ignorability for all

levels of a, whereas the weak version claims ignorability for certain levels of a. For most

estimation methods, the strong version is needed for identifiability, but there are cases where

the weak version suffices (Vansteelandt and Joffe, 2014). The second assumption, known

as positivity or the experimental treatment value assumption, says that each level of the
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intervention has some non-zero probability of occurring for all levels of the confounding

covariates: Pr(A = a|L = l) > 0.

Together, exchangeability and positivity form the basis for most identifiability problems

in causal inference. In terms of positivity, if some level of exposure structurally has zero

probability of occurrence, then clearly we have zero chance of learning how that level of

exposure affects the outcome. Some applied problems run into practical positivity problems.

While positivity holds in the population, the observed probability for a certain level may be

zero or near zero in a particular sample.

A randomized trial elucidates exchangeability. When treatment is randomized, a sub-

ject’s potential outcomes are independent of the treatment assignment. The subject’s

potential outcomes did not depend on the treatment assignment, thus treatment assignment

is ignorable. When the randomized assignment works correctly, the treated and control

groups are similar in every aspect except receiving the treatment.

The above are the essential theoretical assumptions necessary to claim causality from

association, given data for the entire population. Generally we don’t have data on the entire

population and work from sample data. Often, due to the curse of dimensionality, parametric

or semiparametric models are components of a causal model. In order for conditional

exchangeability to hold, the component models must be correctly specified. In practice,

particularly in observational studies, the component models are almost surely never specified

precisely, but the hope is that the models are reasonably accurate.

1.1.5 Causal graphs

Directed acyclic graphs, or DAGs, are a well-studied and useful tool for reasoning

about confounding (Pearl, 2010a; Joffe et al., 2012). A longstanding barrier for translating

between the notation of DAGs and potential outcomes is that DAGs do not encode potential

outcomes. Richardson and Robins (2013) introduced the Single World Intervention Graph

(SWIG) as a tool to unite the graphical and potential outcomes approaches.
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Figure 1.1: A directed acyclic graph (DAG) is transformed into single world intervention

graphs (SWIGs) by splitting intervention nodes. Each SWIG represents one level of a. In

this case, the SWIGs are the same for both levels.

A Y(0)0

L

A Y

L

A Y(1)1

L

DAG

SWIGs

transformed by node spliting into

As seen in Figure 1.1, the obvious distinction between a DAG and a SWIG is the

split node. The node-splitting operation of the SWIG splits the intervention nodes into

the random part and the fixed (intervened upon) part. This action makes conditional

independence relations between the intervention and the potential outcome more easily seen.

Throughout this dissertation, I use SWIGs to represent causal problems. More specifi-

cally, I use Single World Intervention Templates (SWITs). A SWIG technically represents

the graph for a single world; that is, a unique level of the intervention. With a SWIT, the

same graph is assumed to hold for all levels of the intervention that the SWIT represents

(Figure 1.2).
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Figure 1.2: When the SWIGs for all levels of a are isomorphic, a single world intervention

template (SWIT) summarizes SWIGs into a single graph.
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1.2 Motivating problems

1.2.1 Algae on the Cape Fear

North Carolina’s Cape Fear watershed extends from the source of the Deep and Haw

rivers near Greensboro to the river’s mouth in Wilmington. Beginning in 2009, toxic algal

blooms, sometimes reaching up to 70 miles in length, occurred in the middle portion of

the river – downstream from Fayetteville into the coastal plain (Isaacs et al., 2014; Cape

Fear River Partnership, 2013). These blooms impacted water quality and threatened fisheries

during the summer months of 2009 to 2012. While low flows and high temperatures during

those years certainly contributed to igniting algal production, it is unknown how nutrient

pollution specifically contributed to the blooms and which upstream regions of the river

contributed most substantially.

When measuring causal effects from multiple upstream locations simultaneously, space-

varying confounding may be present. For example, consider three locations, ordered from

upstream to downstream. The exposure at site 1 could be confounded by a covariate at
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Figure 1.3: Time-varying exposures with two time points shows three properties: L1 (1) is

associated with the potential outcome, (2) is affected by A0, and (3) affects A1(a0).

A0 a0

L0

A (  )1 a1a0

Y(  ,  )a0 a1

L (  )a01

site 1 which in turn affects both the exposure at site 2 as well as the outcome at site 3.

This upstream to downstream structure, though played out over space, is analogous to

time-varying confounding. Figure 1.3 illustrates this type of confounding.

Since his seminal paper in 1986, James Robins along with several colleagues developed

the g-methods for estimating causal effects in the presence of time-varying confounding:

the G-computation algorithm of the g-formula, inverse probability weighting of marginal

structural models, and G-estimation of structural nested models. These methods may prove

valuable for ecological causal assessments as in the Cape Fear River nutrient pollution

problem.

1.2.2 g-methods

The g-methods were designed to consistently estimate joint exposure effects in the

presence of time-varying confounding. All three methods have slightly different assumptions

and different estimation techniques. The methods are described briefly (and perhaps loosely)

here, but are further developed in Chapter 2.

The g-formula is a general decomposition of counterfactual outcomes, E[Y (a)] =∫
l
E[Y |A = a, L = l]dFl, where V t denotes the history of a generic random variable V up

to time t. Estimating the right hand side of the g-formula may be challenging. Generally,

simple parametric models (e.g., linear or logistic regression) are fit for E[Y |A = a, L = l]

and dFl. When L is multivariate, this may mean fitting many models. The G-computation
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algorithm uses these models to simulate pseudo-populations from which counterfactual

values can be estimated.

Marginal structural models (MSMs) posit a model for the counterfactual mean as a

function of the exposure history, E[Y (a)] = h(β; a) = (e.g.)β0 + β1
∑T

t=1 at. To adjust

for confounding, weights are used to create a pseudo-population in which confounding is

absent.

An MSM may include baseline effect modifiers in its parameterization, but the effect

of a is presumed homogeneous across levels of L. Structural Nested Models (SNMs) do

not suffer this limitation, which, according to Vansteelandt and Joffe (2014) are a “partially

realized promise.”

Unlike the g-formula or MSMs, SNMs directly models a causal contrast – generally that

of removing treatment: E[Y (a)− Y (0)|L] = ψ(A,L; β). Software is not readily available

for SNMs, and parameterizing the models requires careful attention. In many cases, SNMs

may be more challenging to fit, requiring a p-dimensional grid search where p is the number

of causal parameters. But in some cases, SNMs can be cast in an estimating equation

framework and estimation can proceed in the M-estimation framework.

1.2.3 Programming causal estimators is a leading cause of headaches among gradu-

ate students

Causal models, especially those based on the g-methods, are often composed of one or

more component models. As an example, a logistic regression model with parameters α

may be used to estimate propensity scores, Pr(A|L;α). The fitted propensity scores p̂ =

Pr(A|L; α̂) are then a component in the causal estimators. The α parameters are solutions to

the score equations,
∑

i ψ(Oi;α) = 0, whereOi represents the data for unit i. In many cases,

a target causal estimand, say µ, may be the solution to
∑

i ψ(Oi;µ) =
∑

iCEi(p̂)− µ = 0,

where CE stands for some generic causal estimator of µ. When parameters can be written

as solutions to a set of estimating equations, M-estimation theory (Huber and Ronchetti,
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2009; Stefanski and Boos, 2002) provides the mathematics which will obtain consistent and

asymptotically Normal estimators under weak regularity conditions. The popular method

of generalized estimating equations (GEE) (Liang and Zeger, 1986) for fitting marginal

models is a variant of M-estimation. But as Stefanski and Boos (2002) discuss in their

primer, M-estimation is more broadly applicable.

In the example of the previous paragraph, the estimating equation functions for both

sets of parameters can be ‘stacked’ so that estimates can be simultaneously obtained for

all parameters. That is, ψ(Oi; θ) = (ψi,α(Oi;α), ψi,µ(Oi;µ))ᵀ can be used to obtain point

and variance estimates for the entire set of parameters, θ = {α, µ}. Often estimators for the

component model parameters are common regression estimators, and off-the-shelf statistical

software can be used. The target parameter estimator in many cases has a closed form,

making programming of the estimator relatively straightforward.

M-estimation of the variance-covariance matrix has the form A−1m Bm{A−1m }T , where

Am =
∑m

i=1Ai and Bm =
∑m

i=1Bi, and so only requires two quantities from the estimating

equations, Ai = (∂ψ(Oi; θ)/∂θ) and Bi = ψ(Oi; θ)ψ(Oi; θ)
T . An estimate of Bi is simply

the outer product of the estimating equations with θ̂ plugged in. Ai is the matrix of partial

derivatives of the ψ functions with respect to θ. In simple cases, these derivatives may

be expressed analytically, but often many elements of Ai do not have a closed form, thus

requiring numerical approximations.

In my experience, and in observing others program variance estimators, variance M-

estimators are challenging to translate into software. With multiple component models, there

are many places to make programming errors. Robins et al. (2000) suggest practitioners

can avoid this issue by treating the parameters from the component models as known. This

approach is unnecessarily conservative as it is well known that estimating the component

parameters in the variance estimation improves standard error estimates.

Many software packages have programmed specific cases of M-estimators. R packages

such as geepack (Halekoh et al., 2006), gee (Carey, 2015), and geeM (McDaniel et al.,
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2013) implement GEE, and others solve variants of GEE methods. The package sandwich

(Zeileis, 2006) obtains the M-estimation (a.k.a “sandwich”) variance estimates from various

model types, but only from one model at a time. To date, no package offers a generic,

flexible framework for M-estimation.

As a functional programming language, R is suited for abstracting mathematical specifi-

cation into software. In R, functions can return functions (Wickham, 2014). I propose to use

this simple concept for an M-estimation package. The user provides a function that takes in

data, maps the relationship between data and parameters, and returns a function that takes in

parameters. This last function is then used for the computations of M-estimation: finding

the root(s) of the estimating equations and Jacobian matrix (Ai) of the equations evaluated

at the root(s). In this way, the poor graduate student only needs to program one function,

ψ(Oi; θ), in order to do M-estimation.

1.2.4 Causal inference in infectious disease

Infectious diseases complicate textbook causal inference. For example, basic causal

inference assumes an individual’s potential outcomes do not depend on the intervention

status of other individuals. But infectious diseases, by definition, depend on interaction

among hosts, resulting in such effects as “herd immunity.” This greatly increases the number

of potential outcomes an individual may have. With a binary intervention, a subject could

have as many potential outcomes as possible treatment assignments in the study, or 2n.

Dating back to the origins of modern statistics in agricultural experiments, many

recognized between-plot interference as a nuisance. In the causal world, Rubin’s single unit

treatment value assumption (SUTVA) (Rubin, 1980) essentially nullifies interference effects.

In infectious disease, interference is not a nuisance, but a process of interest (Halloran and

Struchiner, 1995).

The problem of interference in infectious diseases has motivated much recent causal

inference research. In chapter 4, I will review how the context of infectious diseases
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stimulated many advances in causal inference, beyond just interference. I will also study how

the science of infectious diseases has benefited from a rigorous causal inference framework.

The chapter will include time-varying confounding, test negative studies, negative controls,

regression discontinuity, principal surrogates, interference, and contagion effects.

1.3 Outline

In Chapter 2, I use the causal g-methods developed by Robins and colleagues to assess

causal effects of a significant water quality impairment in North Carolina’s Cape Fear River.

The methods – g-formula, marginal structural models, and structural nested models – are

modified to handle the space and time interference structure of stream ecosystems. Results

from these models will be compared.

In Chapter 3, I introduce an R software package for estimating parameters and covari-

ances from a set of estimating equations. While several packages exist that implement

specific uses of estimating equations, in particular the GLM-like Generalized Estimating

Equations of Liang and Zeger (1986) ( gee, geepack, etc), none allow the user to define

a custom set of estimating equations. My package geex will allow the analyst to estimate

parameters and covariance from any set of estimating equations they can dream up from

standard M-estimation theory (Stefanski and Boos, 2002).

In Chapter 4, I review and discuss methods of causal inference related to infectious

disease interventions.
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CHAPTER 2: UPSTREAM CAUSES OF DOWNSTREAM EFFECTS

2.1 Introduction

Nutrient pollution of U.S. streams costs billions of dollars each year (Dodds et al.,

2009). The EPA calls reducing nutrient pollution in U.S. waterways a “high priority” (EPA,

2015) and acknowledges that Nitrogen-Phosphorous (NP) pollution is a causal factor in algal

blooms. However, the EPA’s 2015 report also notes that since many factors may contribute

to a harmful algal bloom (HAB), “it is often difficult or impossible to say how much more

likely an HAB is because of nutrient pollution.” Lack of experimental manipulation and

small sample sizes are among many potential pitfalls in making causal inferences using

stream surveillance data (Norton et al., 2014). The EPA’s Causal Analysis/Diagnosis Deci-

sion Information System (CADDIS) outlines a reasoned, methodical process for assessing

causality in stream ecosystems (Norton et al., 2009). Suter et al. (2002), among the primary

developers of CADDIS, state that data analysis methods in causal assessments “should be

selected to best illuminate the association given the amounts and types of data available.”

In this chapter, a potential outcome (or counterfactual) approach is considered for drawing

inference about the causal effects of nutrient pollution on stream ecosystems.

Data on North Carolina’s Cape Fear River is analyzed as a case study. This is a

large Piedmont-Coastal Plain system that is representative of many riverine systems from

Virginia south through North Florida (Dame et al., 2000). Formerly considered a moderately

productive river (Kennedy and Whalen, 2007), in 2009 it began experiencing harmful algal

blooms consisting of the cyanobacterium (blue-green alga) Microcystis aeruginosa near

Lock and Dam 1 (LD1) that reappeared periodically through 2012 (Isaacs et al., 2014).

Freshwater algal blooms are often stimulated by phosphorus (P) loading (Howarth and
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Marino, 2006), but in Coastal Plain rivers and streams, algal blooms are largely stimulated

by nitrogen (N) loading (Mallin et al., 2004; Dubbs and Whalen, 2008). In North Carolina

(NCDENR, 2005) as well as many states and provinces, regulatory agencies regularly

monitor concentration of the algal pigment chlorophyll a as a proxy for algal bloom strength.

Long-term monitoring of this river by state-certified coalitions, including the Lower Cape

Fear River Program and Middle Cape Fear Coalition, has provided a data set of nutrients,

chlorophyll a, and other water quality parameters for the middle and lower river, where the

blooms are concentrated.

This chapter shows that causal effects of upstream nutrient concentrations on down-

stream chlorophyll a can be estimated from observational water quality data. Correlation

analyses or regression techniques, while invaluable for exploring associations within an

ecosystem, do not typically estimate causal effects. With publicly available watershed

monitoring data, we assess causal effects of nutrient concentrations measured upstream

of LD1 on chlorophyll a levels at LD1 by adapting the causal g-methods (Robins and

Hernán, 2009; Hernán and Robins, 2017). Originally developed for assessing the effect of

a time-varying exposure, here the g-methods are extended to the setting where exposure

varies in both time and space. In particular, the causal models allow for spatial interference

(Verbitsky-Savitz and Raudenbush, 2012; Di Gennaro and Pellegrini, 2016) in the sense that

exposure (nutrient concentration) at one location may affect the outcome (chlorophyll a) at

another location. Inference about parameters of marginal structural models, the parametric

g-formula, and structural nested models which accommodate the spacetime interference

structure of a stream ecosystem is considered using estimating equation theory (Stefanski

and Boos, 2002), with small sample adjustments (Fay and Graubard, 2001) to account for

limited independent replicates.

The chapter is organized as follows. Section 2.2 motivates the analysis and describes

the available data on the Cape Fear River. Section 2.3 introduces potential outcomes, key

assumptions, and the target estimand. A graphical representation of the model assumptions
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using a Single World Intervention Template (Richardson and Robins, 2013) is also presented.

The g-methods are presented in Section 2.4 along with small sample variance corrections.

The simulation study in Section 2.5 validates and compares statistical properties of the

g-methods. The Cape Fear River data are analyzed in Section 2.6. We discuss our findings

and their limitations in Section 2.7. Sections 2.8, 2.9, 2.10, and 2.11 contain additional

mathematical derivations and stability analyses.

2.2 Motivation, materials, and notation

2.2.1 Cape Fear River nutrient pollution and algal blooms

During the summers of 2009-2012, algal blooms unprecedented in scale and composi-

tion occurred near LD1 near Kelly, NC. Isaacs et al. (2014) reported that samples collected

from these blooms in 2009 and 2012 consisted predominantly of toxic Microcystis aerugi-

nosa cyanobacteria. The multi-stakeholder watershed action plan for the Cape Fear River

identifies blue-green algae, M. aeruginosa in particular, as a significant threat to the river

ecosystem (Cape Fear River Partnership, 2013). Over 2 million people rely on drinking

water from the Cape Fear watershed, and algal blooms have impacted taste and odor from

some water treatment plants (Ahuja, 2013). Brunswick County, in southeastern North

Carolina, obtains some of its drinking water directly from the river near LD1. Taste and odor

problems arising from the cyanobacterial blooms forced the water utility to increase its level

of water treatment, at significant cost, to produce acceptable drinking water. Thus, causes of

the recent degradation in Cape Fear River water quality are key management concerns.

The 9000 square mile Cape Fear watershed is contained entirely within the political

boundaries of North Carolina, extends from Greensboro to Wilmington, and includes parts

of Durham and Chapel Hill. The Cape Fear River forms at the confluence of the Haw

and Deep Rivers and once supported rich fisheries of anadromous fish (Cape Fear River

Partnership, 2013). Figure 2.4 shows the extent of the Cape Fear watershed and the area of

interest for this study, the section of river from Fayetteville to LD1.
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Figure 2.4: The map shows the extent of the Cape Fear watershed within the political

boundaries of North Carolina, as well as the region of interest for this study. The algal blooms

generally occurred near LD1. This study examines causal relationship between nutrient

concentration measured at upstream sampling locations (open triangles) on chlorophyll a at

LD1.
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The Nature Conservancy of North Carolina obtained coalition-produced, state-certified

data consisting of monthly measurements from locations throughout the Cape Fear basin

from July 1996 through June 2013. Prior to 1999, chlorophyll a was not consistently

measured at LD1. Since large blooms at LD1 were reported mainly during summer months,

we focused our analysis on observations from June, July, August, and September of 1999

to 2012 from the main stem of the Cape Fear River upstream of LD1. The data include

concentration measurements of four NP compounds (all in mg/L): nitrate (NO3), ammonia

(NH3), total Kjeldahl nitrogen (TKN), and phosphorous (P).

2.2.2 Associations of nutrients and LD1 chlorophyll

A simple correlation analysis shows generally positive associations between upstream

nutrients and chlorophyll a levels at LD1. Figure 2.5 plots Spearman’s correlation coeffi-

cients between nutrient concentrations at sampling locations within the study region and

LD1 chlorophyll a. Each nutrient has a slightly different trajectory over the course of
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Figure 2.5: Spearman’s correlation coefficients between nutrient levels at upstream sampling

locations and LD1 chlorophyll a, using observations from June-September of 1999-2012.
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the river, but with the exception of TKN, the correlation peaks between 65 and 95 river

kilometers upstream of LD1. These associations suggest a relationship between upstream

nutrient levels and LD1 chlorophyll. Our goal in this chapter is to adjust for confounding to

determine to what degree the upstream nutrients cause changes in LD1 chlorophyll a.

2.2.3 A mathematical description

Let i = 1, . . . ,m index independent replicates; for the Cape Fear data, m = 14

corresponding to the years 1999 to 2012. We assume that clusters of summer months are

sufficiently far enough apart in time to be considered independent. That is, observations

from June to September of year i are independent of the same set of observations in year

i′ 6= i, but observations within a year may be correlated. LetW be a generic variable indexed

as Wist, where i indicates year, s = 1, . . . , S indicates the sampling locations, ordered from

upstream to downstream, and t = 1, . . . , T indicates the month (e.g., t = 1 = June). In the

sequel, the i notation is dropped where convenient.

Observed values of chlorophyll a (µg/L) are log2 transformed and denoted as Yst. To

avoid confusion with notation, chlorophyll a is referred to as chlorophyll in the sequel. The

effect of each nutrient is considered separately in our analysis, and nutrient exposure is

generically denoted as Ast. Other covariates measured concurrently with nutrient concen-
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trations include the date and time of measurements, temperature (◦C), dissolved oxygen,

pH, and turbidity. In addition to covariates recorded in the water quality data set, daily

mean discharge data from stream gauges located at the William O’Huske Lock and Dam

(LD3) and LD1 were downloaded from USGS and converted to m3/s. Discharge values

were linearly interpolated based on river distance for sampling locations between the gauges.

For each location, the average of the mean daily discharge from the same date as the water

quality measurements plus the two prior days was used in the analysis. Let Lkst denote

the kth (k = 1, . . . , p) covariate measured at location s in month t, where the vector Lst of

length p collects all covariates for a particular location and time. Let Ost = {Yst, Ast, Lst}

denote the observed random variables at location s in month t. For any variable Wst, let the

s× t matrix W st denote the variable’s history for all locations upstream to and including

location s, plus all time points prior to and including time point t.

2.3 Causal inference from upstream to downstream

Let Ys?t(ast) be the potential value of log2 chlorophyll at location s? in month t had the

exposure history been ast, for s < s?. By causal consistency (Pearl, 2010a), Ys?t(ast) = Ys?t

when Ast = ast. Define the average potential outcomes for a location of interest s? over

months t = 1, . . . , T as E{[Ys?1(as1), Ys?2(as2), . . . , Ys?T (asT )]ᵀ} = E[Ys?(as)]. In the

analysis, s? = 3 corresponds with LD1.

2.3.1 Effects of interest

Policymakers’ or scientists’ effects of interest, or estimands, can be stated in terms of

functions of average potential outcomes. For example, what difference would be expected,

on average, in LD1 chlorophyll levels if NH3 exposure at the upstream points LD3 and

LD2 was set to be above, rather than below, a certain threshold during the month of June

(t = 1)? Letting s1 correspond to LD3 and s2 correspond to LD2, this estimand is, in the

notation defined above, E[Y31((a11, a21)
ᵀ) − Y31((a′11, a′21)ᵀ)], where a11 and a21 indicate
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NH3 exposure at LD3 and LD2 above the NH3 threshold and a′11 and a′21 indicate NH3 levels

below the threshold.

Consider the estimand which measures the effect of setting nutrient concentrations at

two upstream locations, s1 and s2, on LD1 chlorophyll averaged across T months, i.e.,

µ =
1

T

T∑
t=1

E [Y3t([0t−1, at])− Y3t(0t)] , (2.1)

where 0t is a 2 × t matrix of zeros defined as the empty set when t = 0, at = (a1t, a2t)
ᵀ,

and [U, V ] indicates the concatenation of matrices U and V . As written, µ is defined for any

exposure setting a. In the Cape Fear River analysis, exposure is defined as a binary variable

being above (a = 1) or below (a = 0) cutpoints specified in Section 2.6.

The estimand (2.1) characterizes the average effect on LD1 chlorophyll when interven-

ing at two upstream locations simultaneously. This parameter is of interest to the community

of scientists working on the Cape Fear River who want to understand the effects of nutrient

concentrations from different upstream locations on LD1 chlorophyll during the summer

when the toxic algal blooms generally occurred. Including exposures from two upstream

locations allows demonstration of how to handle covariates that affect the exposure and vary

between upstream locations as well as the potential for bias when such covariates are not

accounted for correctly.

2.3.2 Single world intervention graph

Richardson and Robins (2013) introduced single world intervention graphs (SWIGs)

to unify the graphical approach to causal inference (e.g., see Pearl, 2009) and the more

algebraic potential outcomes framework (e.g., see Rubin, 2005). An important difference

between the approaches is the representation of potential outcomes. Algebraic notation

can easily distinguish between potential and observed outcomes (Y (a) versus Y ). Directed

acyclic graphs (DAGs) do not explicitly encode potential outcomes. SWIGs do.
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Figure 2.6: This single world intervention template conceptualizes the upstream to down-

stream process. Ast is an exposure of interest, and ast are fixed values of the exposure.

L22t are space-varying confounding covariates which (i) are associated with the potential

outcome, Y3t(a), (ii) affect A2t, and (iii) are affected by A1t.
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Reading a SWIG is similar to reading a DAG. Nodes represent variables and edges

suggest causal relationships between nodes (Figure 2.6). In a SWIG, however, intervention

nodes are transformed by a node-splitting operation. Instead of a single A11 node as in a

DAG, the A11 semicircle represents the random variable for exposure at location 1 at time 1.

The a11 semicircle represents the fixed setting of the exposure (possibly contrary to fact)

at the same spacetime point. Figure 2.6 is technically a single world intervention template

(SWIT), not a SWIG. SWITs are a graphical template for a set of exposure levels, whereas

SWIGs represent the graph for a single exposure level. We assume the SWIGs have the

same form for all exposures and all their levels, hence a single SWIT describes the SWIGs

for all exposure levels.

2.4 Estimation of causal effects

It is well known that time-varying confounding may introduce bias if not accounted

for in estimation. Robins and Hernán (2009) describe three g-methods for estimating
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counterfactuals from observational data in the presence of time-varying confounding: the

parametric g-formula, fitting marginal structural models (MSMs) using inverse probability

weighting, and g-estimation of structural nested models (SNMs). This section describes

extensions of these g-methods to the spacetime setting.

2.4.1 Causal assumptions

The causal effect µ can be identified by the distribution of the observable random

variables by considering the structure of a stream (represented by Figure 2.6) as a sequentially

and conditionally randomized experiment. Given (i) covariate values up to and including

location s and month t and (ii) values of the past exposure(s) prior to location s and month

t, Ast is assumed to be independent of the potential outcomes. The covariates in Lst

must block all back-door paths between Ast and Ys?t(ast) (Pearl, 2009), which implies

conditional independence, commonly referred to as the strong ignorability or no unmeasured

confounding assumption:

Ys?t(ast) ⊥ Ast|Lst, A
◦
st, (2.A1)

where A
◦
st = Ast \ {Ast}.

Let fw = f(w) be the probability density or mass function for a random variable W .

For the g-formula and MSMs, identification of causal effects also depends on a positivity

assumption f(ast|O
◦
st = o◦st) > 0 for all o◦st such that f(O

◦
st) > 0 where O

◦
st = Ost \ {Ast}.

That is, each level of exposure must have some non-zero probability of occurring at all

spacetime points for all possible covariate and exposure histories.

These assumptions are needed to identify causal effects nonparametrically. In many

applications, as in ours, common finite-dimensional parametric models such as linear or

logistic regression are employed to model aspects of the distribution of observable random

variables. These models must be correctly specified in order for the resulting inferences to

be valid.
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2.4.2 Parametric g-formula

The g-formula is a mathematical identity which relates the distribution of counterfactuals

to the distribution of the observable random variables (Robins and Hernán, 2009). For

example, using the g-formula, the counterfactual mean can be expressed as:

E[Ys?t(ast)] =

∫
lst

E[Ys?t|Ast = ast, Lst = lst]flst . (2.2)

where flst =
∏s

j=1

∏t
k=1 fljk|lj−1,k−1,aj−1,k−1

. In practice, the mean model E[Ys?t|Ast =

ast, Lst = lst] and conditional densities fljk|lj−1,k−1,aj−1,k−1
are not known, and estimated

values Ê[Ys?t|Ast = ast, Lst = lst] and f̂lst are plugged into (2.2) to estimate E[Ys?t(ast)].

Though these quantities may be estimated nonparametrically for a single spacetime point, a

parametric approach may be necessary to estimate more complicated quantities such as µ.

In both the analysis and simulations presented below, the mean model was parameterized as

a linear model with main effects only for A2t, A1t, and L2t, with corresponding parameters

βg1 , βg2 , and βg4 , respectively. Let γg3 be the parameter corresponding to A1t in a simple linear

model for the density of L2t. When the exposure settings are binary where ast = 1 and

a′st = 0 for all t, then

µ =
1

T

T∑
t=1

{βg1 + (βg2 + βg4γ
g
3)} = βg1 + βg2 + βg4γ

g
3 .

Section 2.9 contains the algebraic details. Maximum likelihood is used to estimate the model

coefficients. The coefficient estimates are then plugged into (2.2) to obtain the estimator of

E[Ys?t(ast)].

2.4.3 Marginal structural model

Marginal structural models posit a parametric relationship between an exposure history

and a counterfactual outcome. Consider the following MSM:
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E[Ys?t(ast)] = βm0t + βm1 ast + βm2 as−1,t. (2.3)

Each month may have a distinct intercept βm0t , but the counterfactual mean depends only

on exposure at two upstream locations during the same month. From (2.3), µ = βm1 + βm2 .

Parameters in MSMs can be estimated consistently using inverse probability weighting

methods (Hernán et al., 2000). We use the stabilized inverse probability weight where each

observed outcome is weighted by:

SWst =
s∏
j=1

t∏
k=1

f(ajk|A
◦
jk = a◦jk)

f(ajk|O
◦
jk = o◦jk)

. (2.4)

The product is taken across the dimensions of space s and time t as opposed to a single

dimension as in Robins et al. (2000). Logistic regression is used to estimate f(ast|A
◦
st = a◦st)

and f(ast|O
◦
st = o◦st). Weighting observed outcomes by (2.4), generalized estimating

equations (GEE) (Liang and Zeger, 1986) with an independence working correlation matrix

are used to estimate βm.

2.4.4 Structural nested (mean) model

Instead of modeling counterfactual means from which causal contrasts are then derived,

structural nested models directly model a causal effect. In general, SNMs model the effect

of removing treatment within strata l, E[Y (a) − Y (0)|L = l]. Vansteelandt and Joffe

(2014) describe several advantages of SNMs over MSMs. For one, target parameters in

SNMs are identified with weak ignorability rather than strong ignorability and without the

positivity assumption. Strong ignorability assumes (2.A1) holds for all ast, whereas weak

ignorability assumes (2.A1) holds only for ast = 0st. Also, the asymptotic variance of IPW

estimators tend to be highly sensitive to misspecification of the exposure model(s), to which

G-estimators of SNM parameters tend to be less sensitive (Vansteelandt and Joffe, 2014).

The Cape Fear River analysis uses the following structural nested mean model:
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E



...

Y3t

 0t
a1t

a2t

− Y3t
 0t

a1t

0

 |L2t = l2t

Y3t

 0t
a1t

0

− Y3t
 0t

0

0

 |L1t = l1t

...


=



...

ψ1t(at, l2t; β
s)

ψ2t(at, l1t; β
s)

...


=



...

βs1a2t

βs2a1t
...


.

(2.5)

For T = 4, (2.5) has dimension 8× 1, as each t has two ψ functions for each month. The ψ

function corresponds to a “blip down” process (Vansteelandt and Joffe, 2014), removing

the effect of treatment one spatial location at a time. The first ψ1t “blips out” and quantifies

the effect of a2t, and ψ2t quantifies the effect of a1t. This SNM assumes that ψ does not

depend on l; that is, the causal contrast does not include interactions between exposure and

covariates. Thus, βs1 + βs2 = µ.

To estimate βs, a vector Ut(βs) is constructed whose mean value, given Lst and Ast,

equals the mean outcome that would have been observed had treatment been removed:

Ut(β
s) =

U1t(β
s)

U2t(β
s)

 =

 Y3t − βs1A2t

Y3t − (βs1A2t + βs2A2,t−1)

 .

Using a modified version of equation (33) in Vansteelandt and Joffe (2014), the solution to

the following estimating equations is a consistent estimator for βs:

∑
i

S∑
s=1

T∑
t=1

[
ds(List, Aist)− E{ds(List, Aist)|List, Aist}

]
[
Uist(β

s)− E{Uist(βs)|List, Aist}
]

= 0 (2.6)
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where d is some arbitrary distance function. Per the suggestion of Vansteelandt and Joffe

(2014), we let ds = E
{
∂Ust(β)/∂β|Lst, Ast

}
. The solution to (2.6) is called a G-estimator

and has the advantage of double robustness. That is, the estimator is consistent when either

the model for the transformed outcome E[Ust(β)|Lst, Ast] or the exposure model (which

is a component of E[ds(Lst, Ast)|Lst, Ast]) are correctly specified. Parametric regression

models were used to model both the outcome and exposure (linear and logistic regression,

respectively). In some cases, solving (2.6) yields a closed form solution for β̂s as shown in

Section 2.10.

2.4.5 Estimating equation inference

In each of the previous three sections, the g-formula (2.2), MSM (2.3), and SNM (2.5)

were specified such that parameter estimates may be obtained by solving a set of unbiased

estimating equations. Therefore, under certain regularity conditions, the estimators will be

consistent and asymptotically normal, and the empirical sandwich variance estimator can

be used to consistently estimate the asymptotic covariance matrix of the model parameter

estimators. In the case of the g-formula, the target estimand µ is a function of βg1 , βg2 ,

βg4 , and γg3 , so the estimated variance of µ̂ can be obtained using the delta method. For

MSMs, observed outcomes for each time point are weighted by estimated values of (2.4),

and weighted generalized estimating equations are used to obtain β̂m. Variance estimates

for MSMs can be obtained by stacking the score equations for the parametric models used

to estimate the weights plus the estimating equations corresponding to (2.3) weighted by

(2.4). Point estimates in the SNM were obtained from the closed form of β̂s, while variance

estimates were obtained by stacking the score equations of both the outcome and exposure

models along with estimating equation (2.6).

For all three methods, consistent variance estimators follow from estimating equations

(i.e., M-estimation) theory (Stefanski and Boos, 2002). Let θ̂ be estimators that are solutions

to a set of p equations
∑m

i=1 ψ(Oi, θ̂) = 0, where ψ is a vector of functions of length p cor-
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responding to the number of parameters in θ. From our causals models, θ contains the target

parameters β plus any nuisance parameters present in estimating the IP weights, outcome

model, or exposure model. The asymptotic covariance for θ̂ is Σ = A−1B{A−1}ᵀ/m, where

Ai = ∂ψ(Oi, θ)/∂θ, A = E[Ai], Bi = ψ(Oi, θ)ψ(Oi, θ)
ᵀ, and B = E[Bi]. The empirical

sandwich variance estimator replaces the expectations with their empirical counterparts and

θ with θ̂; e.g., Â = m−1
∑m

i=1 ∂ψ(Oi, θ)/∂θ|θ=θ̂.

The empirical sandwich variance estimator is asymptotically consistent but tends to

underestimate the true variance in small samples (Fay and Graubard, 2001; Li and Redden,

2015). We examine the bias corrected estimator of Fay and Graubard (2001) in simulations.

The bias corrected variance estimator replaces Bi with Bbc
i (b) = Hi(b)BiHi(b)

ᵀ to form

Σbc = A−1Bbc(b){A−1}ᵀ, where Hi(b) = {1−min(b, {AiA}jj)}−1/2 and {AiA}jj denotes

the jjth element of AiA. The constant b is less than 1 and chosen by the analyst intended to

prevent extreme corrections when AiA is close to 1. Fay and Graubard (2001) “arbitrarily”

set b = 0.75. To explore the sensitivity of our variance estimates we used b = 0.1, 0.3, and

0.75. Variance estimates were used to construct Wald confidence intervals based on either a

normal distribution or a t distribution with m degrees of freedom.

2.5 Simulation study

Based on the SWIT in Figure 2.6, we used the simcausal R package (Sofrygin et al.,

2016) to simulate data for m = 10, 15, 20, 25, and 30 years. For each m, 24,000 data sets

were generated according to the parametrization provided in Section 2.8. For each simulated

data set, estimates and 90% confidence intervals of µ were computed using the causal

g-methods, plus a naive GEE approach that ignores space- and time-varying confounding.

Code for the simulations is available upon request.

Figure 2.7 shows the absolute bias of the four estimators and empirical coverage of

the corresponding confidence intervals for each set of simulations. The horizontal shading

highlights bias < 0.01, and the vertical shading highlights coverage within 1% of the
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nominal 90% coverage. Each facet in the figure shows a different correction to the variance

estimator and distribution used in constructing the Wald confidence intervals. For all three

causal methods, the absolute bias shrinks and the coverage improves as sample size (i.e.,

number of years) increases. The bias for the MSM and g-formula (GFM) methods is smaller

compared to the SNM for all m analyzed in Figure 2.7. The SNM still has an average

absolute bias of about 0.01 even when m = 30. In a secondary simulation of 1000 data

sets where m = 150 (not shown), the SNM bias shrunk to the same order of magnitude as

the MSM and g-formula methods. The naive GEE estimator is always biased, empirically

illustrating why methods that account for time- and/or space-varying confounding should be

used when such effects are present. For small m, the unadjusted variance estimator performs

poorly, covering in the 75 - 85% range for all the methods. As m increases, the unadjusted

coverage based on a normal distribution improves. The bias correction tends to overcorrect

and have coverages greater than 90% for all settings of b.
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Figure 2.7: Simulation results show absolute bias |µ̂− µ| on the y-axis. Each line shows

results for a method from m = 10 (triangle) to m = 30 (square). The proportion of

simulations where the 90% confidence interval included the true value is shown on the

x-axis. Each box shows results for the different methods of forming confidence intervals,

with the columns defining the distribution and the row defining the form of the variance

estimator. The bias is unaffected by corrections to the confidence intervals, hence the

y-coordinates do not change across the boxes.
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2.6 Cape Fear River analysis

Beginning with the sampling location 132 km upstream near I-95 in Fayetteville, we

estimate µ for a given NP species at that site (s = 2) and the site just upstream (s = 1).

That is, the causal effect was estimated for setting an exposure at location A and location B,

then the effect of location B and location C, then the effect of location C and D, and so on

downstream until the last sampling location upstream of LD1.

The methods described above treat exposures as binary, but the species of NP are

measured on a continuous scale. For each species and set of upstream locations, the

exposures were discretized using three cutpoints (1st, 2nd and 3rd quartiles) at the two

upstream locations during April to October of 1999. The distribution for each NP species

varied over the course of the river, so a single river-wide cutpoint would not be meaningful.

At some locations, for example, all the observed concentrations could be below a river-wide

cutpoint. For each nutrient, five space-varying confounding covariates were considered:

each of the other three nutrients, dissolved oxygen, or pH.

In summary, 600 causal effects were estimated (4 NP species × 10 sets of s2 and

s1 upstream locations × 3 exposure cutpoints × 5 space-varying confounding covariates)

using each of the four different analysis methods (g-formula, MSM, SNM, and GEE).

Wald confidence intervals and p-values were computed using the eight combinations of

distribution and variance estimator as in Figure 2.7. For each analysis method, the outcome

and exposure models were parameterized similarly to the simulations, with the exception that

L1st was not a single covariate and instead both temperature and discharge were included

in the models. As a sensitivity analysis, causal effects were also estimated using different

parameterizations for the outcome and exposure models.

For the observations considered in our analysis, at most 5% of the data were missing

for any given covariate. LD1 chlorophyll values were missing for May 2000 and July 2004.

These two missing values were replaced by taking the average from the month prior and post.
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Of the 770 observations for the 11 upstream locations during May to September of 1999

to 2012, 5 NH3, 5 NO3, 22 TKN, 38 P, and 16 temperature values were missing. No NH3

or NO3 were missing for June to September. Where possible, missing covariate values at a

location-month were singly imputed in the following sequential manner. First, we attempted

to average the values immediately upstream and immediately downstream during the same

month. If either value immediately upstream or immediately downstream was missing, then

we averaged values from the next site upstream and next site downstream during the same

month. If neither of these approaches imputed a value, then we averaged the prior month and

next month from the same location. This approach imputed missing values for all nutrient

covariates except P, which had missing values for all summer months at all of our upstream

locations in 2009. We excluded 2009 in analyses involving P.

Figure 2.8 shows causal effects with point-wise 90% confidence intervals for the four

nutrient species. This figure shows results using the median cutpoint (as described above).

GEE and g-formula results were largely similar, so we only show g-formula results. The

space-varying covariate is P for the nitrogen species, and it is NH3 for P. In this set of

analyses, a non-target model failed to converge when estimating the MSM in four cases

(three for NO3 and one TKN). These are indicated by open points, which were interpolated

from the other values, unless the model failed for the location just upstream of LD1.

Confidence intervals are based on the bias corrected standard errors (b = 0.3) and a t-

distribution with m degrees of freedom. Thick bars with stars above indicate statistically

significant estimates at the α = 0.1 level.
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Figure 2.8: Results of causal analysis of Cape Fear River data from June-September of

1999-2012 for each of the four measured nutrients. Points are estimates of µ. Vertical lines

are 90% confidence intervals with thicker lines highlighting intervals that do not cross zero.

The intervals used in this plot use method I7 of Figure 2.7. Open points are where the model

fitting algorithm failed to converge.
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The point estimates of the three causal methods tend to have similar results. Standard

errors were also of similar magnitude, with the exception of estimates when s2 is LD2 where

the standard errors for the SNM tended to be uninformative. All three methods agree on

statistical significance for the effect of NO3 when s2 is the LD3 sampling location, 109

kilometers upstream of LD1. The point estimates at this location for NO3 were 1.12 for

the g-formula and 1.67 for the MSM and SNM, implying a 2- to 3-fold increase in LD1

chlorophyll when NO3 is above 0.38 mg/L at both the location 109km upstream (LD3) and

the location 132km upstream (near Cross Creek waste water treatment plant). Causal effects

of NH3, P and TKN consistently hover near zero with two exceptions. The effect of NH3

appears to decrease after 109km upstream, and the effect of TKN appears to increase after

49km upstream.

Section 2.11 includes summaries of results for all cutpoints, space-varying confounding

covariates, test statistic distribution settings, as well as multiple outcome and exposure model

specifications. Point estimates varied modestly depending on the cutpoint, space-varying

confounding covariate, and how the exposure/outcome models were specified. All of the

point estimates for NO3 were greater than zero for locations 109 and 95 kilometers upstream.

Statistical significance was sensitive to the choice of Wald test statistic distribution but

generally accords with the shifts in significance seen in the simulation results.

2.7 Discussion

Our results corroborate existing evidence that the much more abundant nitrate form

of N is a major driver of downstream chlorophyll production in the middle section of the

Cape Fear River. Among dissolved inorganic N species, cyanobacteria prefer to assimilate

N in the form of ammonium and then switch to nitrate uptake when ammonium is depleted

(Burkholder, 2002). In this section of the Cape Fear River, ammonium is typically at low

concentrations while nitrate concentrations are an order of magnitude higher (Mallin et al.,

2006; Kennedy and Whalen, 2007). Experimental additions of inorganic and organic N
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have stimulated algae growth in the Cape Fear River (Dubbs and Whalen, 2008) and its

two major tributaries, the Black and Northeast Cape Fear Rivers (Mallin et al., 2004). As

cyanobacteria are a primary harmful algal taxa group of concern in this system, it is notable

that N stimulates growth of this group (Burkholder, 2002) as well as growth of Microcystis

specifically (Paerl, 1987; Siegel et al., 2011; Yuan et al., 2014).

Both point and nonpoint sources such as agricultural runoff contribute to nutrient

concentrations in the Cape Fear River (Rajbhandari et al., 2015). Our data cannot distinguish

between sources of pollution. While the data also cannot precisely pinpoint locations of

nutrient inputs into the river, our analysis does indicate areas for further investigation. Across

our choices of cutpoints and various exposure and outcome models (see Section 2.11 for

details), significant effects of NO3 tended to occur between 86 and 109km upstream of

LD1. Notably, four major National Pollutant Discharge Elimination System permits are

located in this reach of the river: the Tarheel Plant (NC0078344), Dupont Fayetteville

Works (NC0003573), Cedar Creek Site (NC0003719), and the Rockville Creek Waste Water

Treatment plant (NC0050105).

We have shown how “what if” questions on water quality of scientific and policy interest

can be mathematically framed as estimands. When the estimand involves space- and/or

time-varying confounding, this must be accounted for in estimation, else biased estimates

will result. Our application is one of the first to use the g-methods (Robins and Hernán, 2009)

as part of an ecological causal assessment. In fact, despite their general utility, structural

nested models have rarely been applied in practice (Vansteelandt and Joffe, 2014). We

demonstrate how they can be implemented and give details for deriving a closed form

estimator in Section 2.10.

Results from observational studies can always be skeptically reviewed, but the potential

outcomes framework forms a basis for constructive critique. The causal assumptions

described in Section 2.4.1 must be thoroughly vetted. Has all confounding been accounted

for? Are the parametric forms of our models correctly specified, or reasonably so? As
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with any research, the causal effects estimated from a single analysis should not be the sole

source of evidence. The approach in this chapter can be used to augment weight-of-evidence

approaches such as the EPA’s CADDIS. The potential outcomes framework is well suited

to aid policymakers in development of permit standards and surface water standards. Yuan

(2010), for example, estimated effects of nutrient pollution on stream invertebrates using

propensity score methods.

Lastly, while GEE methods are available in several R packages (Halekoh et al., 2006;

Carey, 2015), generic M-estimation is not straightforward with current statistical software.

The causal models implemented in this chapter involve combining estimating equations

from several models. The R package geex was developed in conjunction with this research

to streamline a programmer’s work in implementing estimating equation theory. The

Supplementary Material includes the code to replicate our analyses, and examples of geex

for causal models may be found therein.

2.8 Simulation details

The nodes in the simulated study system were parameterized and generated according

to the following distributions:
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t = 0



L110 ∼ N(21.5, 2.5)

L220 ∼ N(−2.8, 0.7)

As0 ∼ Bern(0.1)for s = 1, 2

Y30 ∼ N(2.25, 1.25)

t = 1, 2, 3



L11t ∼ N(23 + 0.2L11,t−1, 2)

A1t ∼ Bern(logit−1(−2.5 + 0.09L11t + 0.025A1,t−1))

L12t ∼ N(6.75 + 0.75L11,t−1, 1)

L22t ∼ N(2− 0.04L12t + 0.04L22,t−1 + 0.3A1t, 0.25)

A2t ∼ Bern(logit−1(−2.5 + 0.09L12t + 0.1L22t + 0.05A1t + 0.025A2,t−1))

Y3t ∼ N(−5 + 1As−1,t + 0.5As−2,t + 0.025L1,s−1,t+

0.5L2,s−1,t + 0.35Y3,t−1, 1)

Code for the simulations can be found in the updown R package available upon request.

2.9 Parametric g-formula formulation

In all of the analyses, the outcome model was parameterized within the g-formula as a

linear model:

E
[
Y3t|At = [0t−1, at], Ot = ot

]
= h(A,O, β) (2.G1)

For example, the correctly specified h for the simulations is

βg0 + βg1a2t + βg2a1t + βg3 l12t + βg4 l22t + βg5y3,t−1.
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The sensitivity analyses varied which L covariates were included in h, but the parameteriza-

tion of the treatment terms (a2t and a1t) was not modified.

The average potential outcome E [Y3t([0t−1, at])] can be linked to observed data in the

following manner:

E [Y3t([0t−1, at])] (2.G2)

= E
{
E
[
Y3t([0t−1, at])|A2t = [0t−1, at], Lt = lt

]}
(no unmeasured confounders)

= E
{
E
[
Y3t|At = [0t−1, at], Lt = lt

]}
(causal consistency)

According to the parametric g-formula, models for each flpjk = flpjk|lj−1,k−1,aj−1,k−1

must be fit. However, as will be clear below, the parameters corresponding to non-space-

or time-varying covariates cancel in a causal contrast. Hence, we only fit a model for fl22t ,

for which we used a standard linear model with expectation γg0 + γg1 l12t + γg2 l22,t−1 + γg3a1t.

By causal consistency, E[L22t(a1t)] = γg0 + γg1 l12t + γg2 l22,t−1 + γg3a1t. Under this assumed

parameterization, E[L22t(a1t)− L22t(0)] = γg3 .

Putting (2.G2) together with the model for fl22t obtains:

E [Y3t([0t−1, at])− Y3t(0t)]

= E

{
E [Y3t([0t−1, at])− Y3t(0t)]

∣∣∣∣A1t = 0, A2t = [0t−1, at], L2t

}
= E {βg1a2t + βg2a1t + βg4 [L22t(a1t)− L22t(0)]} (plugging in h)

= βg1a2t + βg2a1t + βg4E {E[L22t(a1t)− L22t(0)|A11 = a11, L12t, L22,t−1]}

= βg1a2t + βg2a1t + βg4γ
g
3 .
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When at = (1, 1)′ for all t, µg = 1
T

∑T
t=1E [Y3t([0t−1, at])− Y3t(0t)] = 1

T

∑T
t=1[β

g
1 + βg2 +

βg4γ
g
3 ].

2.10 Closed form estimator for SNM parameters

Vansteelandt and Joffe (2014) show that a consistent estimator of βs can found by

solving estimating equations (eq. 33):

∑
i

∑
t

∑
s

{dst(List, Aist)− E[dst(List, Aist)|List, Ai,s−1,t−1]}

{Uist(βs)− E[Uist(β
s)|List, Ai,s−1,t−1]}

where dst(List, Aist) is chosen to be E[∂Ust(β
s)/∂βs|List, Aist]. This formulation is slightly

different from Vansteelandt and Joffe in that we added an additional dimension s. Since our

endogenous covariate is space-varying rather than time-varying, the blip process is indexed

by s rather than t.

Let ρist = E[dst(List, Aist)|List, Ai,s−1,t−1] and λist = E[Uist(β
s)|List, Ai,s−1,t−1],

then:
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∑
i

∑
t

{
[d1t(Li1t, Ai1t)− ρi1t](Ui1t(βs)− λi1t)+

[d2t(Li2t, Ai2t)− ρi2t](Ui2t(βs)− λi2t)
}

=
∑
i

∑
t



Ai2t

0

− ρi2t
 (Ui1t(β

s)− λi1t +


A2t

A2t

− ρi2t
 (Ui2t(β

s)− λi2t)


=
∑
i

∑
t



Ai2t

0

− ρi2t
 (Yi3t − βs1Ai2t − λi1t)

+


Ai2t
Ai2t

− ρi2t
 (Yi3t − βs1Ai2t − βs2Ai1t − λi2t)


=
∑
i

∑
t


B0

2t(ri3t − βs1A2t) +B1
2t(r

0
i − βs1A2t − βs2A1t)

B1
1t(r

1
i − βs1A2t − βs2A1t)


 .

In the last line, we let Bist = A2t − ρkist. Let rist = Yi3t − λkist.

Let Ci =
∑

t r
0
i (B

0
i2t + B1

i2t), Di =
∑

t(B
0
i2tAi2t + B1

i2tAi2t), Ei =
∑

tB
1
i2tAi1t,

Fi =
∑

tB
1
1tr

1
i , Gi = B1

i1tAi2t, and Hi =
∑

tB
1
i1tAi1t. Then βs is the solution to:

∑
i

Ci − βs1Di − βs2Ei

Fi − βs1Gi − βs2Hi


which yields,

β̂s1 =

∑
iEi

∑
i Fi −

∑
iCi

∑
iHi∑

iEi
∑

iGi −
∑

iDi

∑
iHi

and β̂s2 =

∑
iDi

∑
i Fi −

∑
iCi

∑
iGi∑

iDi

∑
iHi −

∑
iEi

∑
iGi
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where

∑
i

Ei
∑
i

Gi 6=
∑
i

Di

∑
i

Hi,
∑
i

Ei 6= 0.

2.11 Stability analyses

In addition to estimating the target parameters using all possible combinations of settings

of the cutpoint and space-varying confounding variables, we also modified the exposure

and treatment models to include a temperature by flow interaction term in both outcome

and exposure models. This resulted in a total of 1200 point estimates per method. If some

component model failed to converge for a method, then the estimate attempt was considered

a failure. Across all 3600 attempts, model fitting failed 272 times for the MSMs, 70 times

for the SNMs, and zero times for the g-formula.

Figure 2.9 shows all the point estimates within (-6, 6) across all the model options.

In two cases, estimates from an SNM were outside this range. The results in Figure 2.9

conform to the general patterns described in the main text.
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Figure 2.9: This figure shows the 3258 point estimates obtained across settings of the

cutpoint, space-varying confounding variables, and exposure and outcome models. Point

estimates for NO3 between 86 and 109 km upstream are positive across all settings and have

the most consistently strong effects. TKN estimates for the two locations just upstream of

LD1 are all positive, while the P estimates from the same locations are all negative.
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Figure 2.10 show all the point estimates along with the p-values using different test

statistic distributions. In each panel, the point estimates are the same, but the significance

clearly depends on the test statistic distribution.

Figure 2.10: Volcano plot of estimates of the Cape Fear analysis showing significance and

estimates for all analysis methods and models. The point estimates are same in all the panels.

Significance levels vary depending on the distribution used for the test statistic.
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CHAPTER 3: THE CALCULUS OF M-ESTIMATION USING GEEX

3.1 Introduction

M-estimation, or estimating equation, methods are a simple but general class of sta-

tistical procedures for carrying out point estimation and asymptotic inference (Boos and

Stefanski, 2013). Originally developed in the context of studying the large sample properties

of robust statistics (Huber and Ronchetti, 2009), M-estimation is applicable in a broad

range of settings. The general result from M-estimation theory states that if an estimator

can be expressed as the solution to an unbiased estimating equation, then under suitable

regularity conditions the estimator is asymptotically Normal and the asymptotic variance of

the estimator can be consistently estimated using the empirical sandwich estimator. Many

estimators can be expressed as solutions to unbiased estimating equations, thus M-estimation

has extensive applicability. The primer by Stefanski and Boos (2002) demonstrates how

a wide array of statistics can be expressed as M-estimators, including the popular method

of generalized estimating equations (GEE) (Liang and Zeger, 1986) for longitudinal data

analysis.

Despite the broad applicability of M-estimation, existing statistical software packages

implement M-estimators for particular forms of estimating equations. This paper introduces

the R (R Core Team, 2016) package geex, a general M-estimation programming framework

that can obtain point and variance estimates from any set of unbiased estimating equations.

The analyst defines a function that takes unit-level data and returns a function in terms

of parameters. From this single function, geex then uses numerical routines to compute

parameter point and variance estimates.
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Below, Section 3.2 reviews M-estimation theory and outlines how geex translates

mathematical expressions of estimating functions into code. Section 3.3 implements three

examples from Stefanski and Boos (2002) (hereafter SB) using geex plus an example

of GEE. All of the SB examples and several more are available at the package website

(https://bsaul.github.io/geex/). Section 3.4 compares geex to existing R

packages. Section 3.5 demonstrates the finite sample correction feature of geex, and

Section 3.6 concludes with a brief discussion of the software’s didactic utility and pragmatic

applications.

3.2 From M-estimation math to code

In the basic set-up, M-estimation applies to estimators of the p× 1 parameter θ which

can be obtained as solutions to an equation of the form

m∑
i=1

ψ(Oi, θ) = 0, (3.7)

where O1, . . . , Om are m independent and identically distributed (iid) random variables,

and the function ψ returns a vector of length p and does not depend on i or m. See

Stefanski and Boos (2002) for the case where the Oi are independent but not necessarily

identically distributed. The roots of (1) are referred to as M-estimators and denoted by

θ̂. M-estimators can be solved for analytically in some cases or computed numerically

in general. Under certain regularity conditions, the asymptotic properties of θ̂ can be

derived from Taylor series approximations, the law of large numbers, and the central

limit theorem (Boos and Stefanski, 2013, sec. 7.2). In brief, let θ0 be the true parameter

value defined by
∫
ψ(o, θ0)dF (o) = 0, where F is the distribution function of O. Let

ψ̇(o, θ) = ∂ψ(Oi, θ)/∂θ
ᵀ, A(θ0) = E[−ψ̇(O1, θ0)], and B(θ0) = E[ψ(O1, θ0)ψ(O1, θ)

ᵀ].

Then under suitable regularity assumptions, θ̂ is consistent and asymptotically Normal, i.e.,
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√
m(θ̂ − θ0)

d→ N(0, V (θ0)) as m→∞,

where V (θ0) = A(θ0)
−1B(θ0){A(θ0)

−1}ᵀ. The sandwich form of V (θ0) suggests several

possible large sample variance estimators. For some problems, the analytic form of V (θ0)

can be derived and estimators of θ0 and other unknowns simply plugged into V (θ0). Alter-

natively, V (θ0) can be consistently estimated by the empirical sandiwch variance estimator,

where the expectations in A(θ) and B(θ) are replaced with their empirical counterparts. Let

Ai = −ψ̇(Oi, θ)|θ=θ̂, Am =
∑m

i=1Ai/m, Bi = ψ(Oi, θ̂)ψ(Oi, θ̂)
ᵀ, and Bm =

∑m
i=1Bi/m.

The empirical sandwich estimator of the variance of θ̂ is:

Σ̂ = A−1m Bm{A−1m }ᵀ/m. (3.8)

The geex package provides an application programming interface (API) for carrying

out M-estimation. The analyst provides a function, denoted estFUN, corresponding to

ψ(Oi, θ) that maps data Oi to a function of θ. Numerical derivatives approximate ψ̇ so that

evaluating Σ̂ is entirely a computational exercise. No analytic derivations are required from

the user.

Consider estimating the population mean θ = E[Yi] using the sample mean θ̂ =

m−1
∑m

i=1 Yi of m iid random variables Y1, . . . , Ym. The estimator θ̂ can be expressed as

the solution to the following estimating equation:

m∑
i=1

(Yi − θ) = 0.

which is equivalent to solving (3.7) where that Oi = Yi and ψ(Oi, θ) = Yi− θ. An estFUN

is a translation of ψ into a function whose first argument is data and returns a function

whose first argument is theta. An estFUN corresponding to the estimating equation for

the sample mean of Y is:
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meanFUN <- function(data){ function(theta){ data$Y - theta } } .

The geex package exploits R as functional programming language: functions can

return and modify other functions (Wickham, 2014, ch. 10). If an estimator fits into the

above framework, then the user need only correctly specify estFUN. No other programming

is required to obtain point and variance estimates. The remaining sections provide examples

of translating ψ into an estFUN.

3.3 Calculus of M-estimation Examples

The package can be installed from CRAN with install.packages("geex").

The first three examples of M-estimation from SB are presented here for demonstration.

For these examples, the data are Oi = {Y1i, Y2i} where Y1 ∼ N(5, 16) and Y2 ∼ N(2, 1)

for m = 100 and are included in the geexex dataset. The last example in this section

demonstrates a GEE application, which is elaborated on in Section 3.5 to demonstrate finite

sample corrections.

3.3.1 Example 1: Sample moments

The first example estimates the population mean (θ1) and variance (θ2) of Y1. Figure

3.11 shows the estimating equations and corresponding estFUN code. The solution to the

estimating equations in Figure 3.11 are θ̂1 = m−1
∑m

i=1 Y1i and θ̂2 = m−1
∑m

i=1(Y1i − θ̂1)2,

i.e., the sample mean and variance.

Figure 3.11: Estimating equations and estFUN for example 1

ψ(Y1i, θ) =

 Y1i − θ1

(Y1i − θ1)2 − θ2


SB1_estfun <- function(data){

Y1 <- data$Y1
function(theta){

c(Y1 - theta[1],
(Y1 - theta[1])ˆ2 - theta[2])

}
}
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The function m estimate can compute both θ̂ and Σ̂. Two inputs are required for

m estimate: estFUN (the ψ function), data (the analysis data frame containing Oi

for i = 1, . . . ,m). The package defaults to rootSolve::multiroot (Soetaert and

Herman, 2009; Soetaert, 2009) for estimating roots of (3.7), though the solver algorithm can

be specified in the root control argument. Starting values for multiroot are passed

via the root control argument.

library(geex)
results <- m_estimate(

estFUN = SB1_estfun,
data = geexex,
root_control = setup_root_control(start = c(1,1)))

Table 3.1: Results obtained from geex and closed form estimators

geex Closed form

θ̂ 5.045 10.041 5.045 10.041

Σ̂
0.100 0.037 0.100 0.037

0.037 2.492 0.037 2.492

The m estimate function returns an object of the S4 class geex, which contains an

estimates slot and vcov slot for θ̂ and Σ̂, respectively. These slots can be accessed by

the functions coef (or roots) and vcov. The point estimates obtained for θ1 and θ2 are

analogous to the base R functions mean and var (after multiplying by m− 1/m). SB gave

a closed form for A(θ0) (an identity matrix) and B(θ0) (not shown) and suggest plugging in

sample moments to compute B(θ̂). The point and variance estimates using both geex and

the analytic solutions are shown in Table 3.1. The maximum absolute difference between

either the point or variance estimates is 4.3e-11, thus demonstrating excellent agreement

between the numerical results obtained from geex and the closed form solutions for this

set of estimating equations and data.
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3.3.2 Example 2: Ratio estimator

This example calculates a ratio estimator (Figure 3.12) and illustrates the delta method

via M-estimation. The estimating equations target the means of Y1 and Y2, labelled θ1 and

θ2, as well as the estimand θ3 = θ1/θ2.

Figure 3.12: Estimating equations and estFUN for example 2

ψ(Oi, θ) =


Y1i − θ1

Y2i − θ2

θ1 − θ3θ2



SB2_estfun <- function(data){
Y1 <- data$Y1; Y2 <- data$Y2
function(theta){

c(Y1 - theta[1],
Y2 - theta[2],
theta[1] - (theta[3]*theta[2])

)
}

}

The solution to (3.7) for this ψ function yields θ̂3 = Ȳ1/Ȳ2, where Ȳj denotes the sample

mean of Yj1, . . . , Yjm for j = 1, 2.

SB gave closed form expressions forA(θ0) andB(θ0), into which we plug in appropriate

estimates for the matrix components and compare to the results from geex. The point

estimates again show excellent agreement (maximum absolute difference = 4.4e-16), while

the covariance estimates differ by the fourth decimal (maximum absolute difference =

1e-03).

3.3.3 Example 3: Delta method continued

This example extends Example 1 to again illustrate the delta method. The estimating

equations target not only the mean (θ1) and variance (θ2) of Y1, but also the standard

deviation (θ3) and the log of the variance (θ4) of Y1.
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Figure 3.13: Estimating equations and estFUN for example 3

ψ(Y1i, θ) =



Y1i − θ1

(Y1i − θ1)2 − θ2
√
θ2 − θ3

log(θ2)− θ4



SB3_estfun <- function(data){
Y1 <- data$Y1
function(theta){

c(Y1 - theta[1],
(Y1 - theta[1])ˆ2 - theta[2],
sqrt(theta[2]) - theta[3],
log(theta[2]) - theta[4])

}
}

SB again provided a closed form for V (θ0), which we compare to the geex results.

Three of the point estimates are identical up to machine epsilon, while the θ̂4 estimates are

equivalent up to the 15th decimal. The covariance estimates have a maximum absolute

difference of 3.8e-11.

3.3.4 Example 4: Generalized Estimating Equations

In their seminal paper, Liang and Zeger (1986) introduced the following class of

estimating equations for the analysis of longitudinal or clustered data:

m∑
i=1

ψ(Oi, β) =
m∑
i=1

Dᵀ
iV
−1
i [Yi − µ(Xi; β)] = 0 (3.9)

where Oi = {Yi,Xi} and Di = ∂µ/∂β. The sample size m is the number of independent

clusters and each cluster has size ni, so that Yi is a ni × 1 vector and Xi is a ni × p

matrix. The covariance matrix is modeled by Vi = φA0.5
i R(α)A0.5

i . The matrix R(α) is

the “working” correlation matrix. The example uses an exchangeable correlation structure

with off-diagonal elements α. The matrix Ai is a matrix with diagonal elements containing

the variance functions of µ. The equations in (3.9) can be translated into an estFUN as:

gee_estfun <- function(data, formula, family){
X <- model.matrix(object = formula, data = data)
Y <- model.response(model.frame(formula = formula, data = data))
n <- nrow(X)
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function(theta, alpha, psi){
mu <- family$linkinv(X %*% theta)
Dt <- t(X) %*% diag(as.numeric(mu), nrow = n)
A <- diag(as.numeric(family$variance(mu)), nrow = n)
R <- matrix(alpha, nrow = n, ncol = n)
diag(R) <- 1
V <- psi * (sqrt(A) %*% R %*% sqrt(A))
Dt %*% solve(V) %*% (Y - mu)

}
}

This estFUN treats the correlation parameter α and scale parameter φ as fixed, though

some estimation algorithms use an iterative procedure that alternates between estimating

β and these parameters. By customizing the root finding function, such an algorithm

can be implemented using geex [see vignette("v03 root solvers") for more

information].

We use this example to compare covariance estimates obtained from the gee function

(Carey, 2015), so root finding computations of geex are turned off. To compute only the

sandwich variance estimator, set compute roots = FALSE and pass estimates of θ0 via

the roots argument (see the example in Section 3.5). The gee β estimates are used for this

example. Estimates for α and φ are also extracted from the gee results in m estimate.

This example shows that an estFUN can accept additional arguments to be passed to

either the outer (data) function or the inner (theta) function. Unlike previous examples, the

independent units are clusters (types of wool), which is specified in m estimate by the

units argument. This argument defaults to NULL, in which case m equals the number of

rows in the data frame.

g <- gee::gee(breaks˜tension, id=wool, data=warpbreaks,
corstr="exchangeable")

results <- m_estimate(
estFUN = gee_estfun,
data = warpbreaks,
units = "wool",
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roots = coef(g),
compute_roots = FALSE,
outer_args = list(formula = breaks ˜ tension,

family = gaussian()),
inner_args = list(alpha = g$working.correlation[1,2],

psi = g$scale))

The maximum absolute difference between the estimated covariances computed by gee

and geex is 1.3e-09.

3.4 Comparison to existing software

The above examples demonstrate the basic utility of the geex package and the power

of R’s functional programming capability. To our knowledge, geex is the first R package

to create an extensible API for any estimator that satisfies (3.7). Existing R packages such

as gee (Carey, 2015), geepack (Halekoh et al., 2006), and geeM (McDaniel et al., 2013)

solve for parameters in a GEE framework. Other packages such as fastM (Duembgen

et al., 2014) and smoothmest (Hennig, 2012) implement M-estimators for specific use

cases.

For computing a sandwich variance estimator, geex is similar to the popular sandwich

package (Zeileis, 2004, 2006), which computes the empirical sandwich variance estimator

from modelling methods such as lm, glm, gam, survreg, and others. For comparison

to the exposition herein, the infrastructure of sandwich is explained in Zeileis (2006).

Advantages of geex compared to sandwich include: (i) for custom applications, a user

only needs to specify a single estFUN function as opposed to both the bread and estfun

functions; (ii) as demonstrated in the examples above, the syntax of an estFUN may closely

resemble the mathematical expression of the corresponding estimating function; (iii) esti-

mating functions from multiple models are easily stacked; and (iv) point estimates can be

obtained. The precision and computational speed of point and variance estimation in geex,

however, depends on numerical approximations rather than analytic expressions.
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An example compares sandwich and geex in the goal of estimating Σ̂ from a simple

linear model. Consider estimating Σ̂ for the β parameters in the following model contained

in the geexex data: Y4 = β0 + β1X1 + β2X2 + ε, where ε ∼ N(0, 1). The estimating

equation for this model can be expressed in an estFUN as:

lm_estfun <- function(data){
X <- cbind(1, data$X1, data$X2)
Y <- data$Y4
function(theta){

t(X) %*% (Y - X %*% theta)
}

}

Then β̂ and Σ̂ can be computed in geex:

results <- m_estimate(
estFUN = lm_estfun,
data = geexex,
root_control = setup_root_control(start = c(0, 0, 0)))

or from the lm and sandwich functions:

fm <- lm(Y4 ˜ X1 + X2, data = geexex)
sand_vcov <- sandwich::sandwich(fm)

The results are virtually identical numerically (maximum absolute difference: 1.4e-12.

The lm/sandwich option is faster computationally, but this difference can be reduced

by, for example, changing the options of the derivative function via deriv control or

computing Σ̂ using the parameter estimates from lm. The important difference is that geex

lays bare the estimating function used, which is both a powerful didactic tool as well as a

programming advantage when developing custom estimating functions.

3.5 Finite sample corrections

The empirical sandwich variance estimator is known to underestimate V (θ0) in small

samples (Fay and Graubard, 2001). Particularly in the context of GEE, many authors (e.g.,
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see Kauermann and Carroll, 2001; Mancl and DeRouen, 2001; Lu et al., 2007; Teerenstra

et al., 2010; Paul and Zhang, 2014; Li and Redden, 2015) have proposed corrections that

modify components of Σ̂ and/or by assuming θ̂ follows a t (or F), as opposed to Normal,

distribution with some estimated degrees of freedom. Many of the proposed corrections

somehow modify a combination of the Ai, Am, Bi, or Bm matrices.

Users may specify functions that utilize these matrices to form corrections within

geex. A finite sample correction function at a minimum takes the argument components,

which is an S4 object with slots for A (=
∑

iAi) matrix, A i (a list of all m Ai matri-

ces), B (=
∑

iBi) matrix, and B i (a list of all m Bi matrices). Additional arguments

may also be specified, as shown in the example. The geex package includes the bias

correction and degrees of freedom corrections proposed by Fay and Graubard (2001) in

the fay bias correction and fay df correction functions respectively. The

following demonstrates the construction and use of the bias correction. Fay and Graubard

(2001) proposed the modified variance estimator Σ̂bc(b) = A−1m Bbc
m(b){A−1m }ᵀ/m, where:

Bbc
m(b) =

m∑
i=1

Hi(b)BiHi(b)
ᵀ,

Hi(b) = {1−min(b, {AiAm}jj)}−1/2,

andWjj denotes the jj element of a matrixW . When {AiA}jj is close to 1, the adjustment to

Σ̂bc(b) may be extreme, and the constant b is chosen by the analyst to limit over adjustments.

The bias corrected estimator Σ̂bc(b) can be implemented in geex by the following function:

bias_correction <- function(components, b){
A <- grab_bread(components)
A_i <- grab_bread_list(components)
B_i <- grab_meat_list(components)
Ainv <- solve(A)

H_i <- lapply(A_i, function(m){
diag( (1 - pmin(b, diag(m %*% Ainv) ) )ˆ(-0.5) )
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})

Bbc_i <- lapply(seq_along(B_i), function(i){
H_i[[i]] %*% B_i[[i]] %*% H_i[[i]]

})
Bbc <- apply(simplify2array(Bbc_i), 1:2, sum)

compute_sigma(A = A, B = Bbc)
}

The compute sigma function simply computes A−1B{A−1}ᵀ. Note that geex

computes Am and Bm as the sums of Ai and Bi rather than the means, hence the ap-

propriate function in the apply call is sum and not mean. To use this bias correction,

the m estimate function accepts a named list of corrections to perform. Each element

of the list is a correct control S4 object that can be created with the helper func-

tion correction, which accepts the argument FUN (the correction function) plus any

arguments passed to FUN besides components.

results <- m_estimate(
estFUN = gee_estfun, data = warpbreaks,
units = 'wool', roots = coef(g), compute_roots = FALSE,
outer_args = list(formula = breaks ˜ tension,

family = gaussian()),
inner_args = list(alpha = g$working.correlation[1,2],

psi = g$scale),
corrections = list(
bias_correction_.1 = correction(FUN =bias_correction, b = .1),
bias_correction_.3 = correction(FUN =bias_correction, b = .3)))

In the geex output, the slot corrections contains a list of the results of computing

each item in the corrections, which can be accessed with the get corrections

function. The corrections of Fay and Graubard (2001) are also implemented in the saws

package (Fay and Graubard, 2001). Comparing the geex results to the results of the

saws::geeUOmega function, the maximum absolute difference for any of the corrected

estimated covariance matrices is 1.8e-09.
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3.6 Summary

This chapter demonstrates how M-estimators and finite sample corrections can be trans-

parently implemented in geex. Additional examples on the package website (https:

//bsaul.github.io/geex/) showcase the broad applicability of M-estimation in-

cluding instrumental variables, sample quantiles, robust regression, generalized linear mod-

els, and more. A valuable feature of M-estimators is that estimating functions corresponding

to multiple models may be combined, or “stacked,” in a single set of estimating functions.

The geex package makes it easy to stack estimating functions for the target parameters

with estimating functions from each of the component models, as shown in the package

vignette v06 causal example. Indeed, the software was motivated by causal inference

problems (Saul et al., 2017) where target causal parameters are functions of parameters in

multiple models.

The theory of M-estimation is a broadly applicable statistical framework, yet existing R

packages only implement particular classes of M-estimators. With its functional program-

ming capabilities, R routines can be more general. The geex framework epitomizes the

extensible nature of M-estimators and explicitly translates the estimating function ψ into a

corresponding estFUN. In this way, geex should be useful for practitioners developing

M-estimators, as well as students learning estimating equation theory.

3.7 Vignettes

As mentioned above, the package website contains several vignettes (tutorials) and

additional articles about using geex. The vignette which demonstrates examples 4-10 of

SB is included here as an example.
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3.7.1 Example 4: Instrumental variables

Example 4 calculates an instumental variable estimator. The variables (Y3,W1, Z1) are

observed according to:

Y3i = α + βX1i + σεε1,i

W1i = βX1i + σUε2,i

and

Z1i = γ + δX1i + στ ε3,i.

Y3 is a linear function of a latent variable X1, whose coefficient β is of interest. W1

is a measurement of the unobserved X1, and Z1 is an instrumental variable for X1. The

instrumental variable estimator is β̂IV is the ratio of least squares regression slopes of Y3

on Z1 and Y3 and W1. The ψ function below includes this estimator as θ̂4 = β̂IV . In the

example data, 100 observations are generated where X1 ∼ Γ(shape = 5, rate = 1), α = 2,

β = 3, γ = 2, δ = 1.5, σε = στ = 1, σU = .25, and ε·,i ∼ N(0, 1).

ψ(Y3i, Z1i,W1i, θ) =



θ1 − Z1i

θ2 −W1i

(Y3i − θ3W1i)(θ2 −W1i)

(Y3i − θ4W1i)(θ1 − Z1i)



SB4_estFUN <- function(data){
Z1 <- data$Z1; W1 <- data$W1; Y3 <- data$Y3
function(theta){

c(theta[1] - Z1,
theta[2] - W1,
(Y3 - (theta[3] * W1)) * (theta[2] - W1),
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(Y3 - (theta[4] * W1)) * (theta[1] - Z1)
)

}
}

estimates <- m_estimate(
estFUN = SB4_estFUN,
data = geexex,
root_control = setup_root_control(start = c(1, 1, 1, 1)))

The R packages AER and ivpack can compute the IV estimator and sandwich variance

estimators respectively, which is done below for comparison.

ivfit <- AER::ivreg(Y3 ˜ W1 | Z1, data = geexex)
iv_se <- ivpack::cluster.robust.se(ivfit,

clusterid = 1:nrow(geexex))

coef(ivfit)[2]

## W1
## 3.041264

coef(estimates)[4]

## [1] 3.041264

iv_se[2, 'Std. Error']

## [1] 0.01049669

sqrt(vcov(estimates)[4, 4])

## [1] 0.01039119
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3.7.2 Example 5: Hodges-Lehmann estimator

This example shows the link between the influence curves and the Hodges-Lehman

estimator.

ψ(Y2i, θ) =

(
ICθ̂HL

(Y2; θ0)− (θ1 − θ0)
)

The functions used in SB5 estFUN are defined below:

F0 <- function(y, theta0, distrFUN = pnorm){
distrFUN(y - theta0, mean = 0)

}

f0 <- function(y, densFUN){
densFUN(y, mean = 0)

}

integrand <- function(y, densFUN = dnorm){
f0(y, densFUN = densFUN)ˆ2

}

IC_denom <- integrate(integrand, lower = -Inf, upper = Inf)$value

SB5_estFUN <- function(data){
Yi <- data[['Y2']]
function(theta){

(1/IC_denom) * (F0(Yi, theta[1]) - 0.5)
}

}

estimates <- m_estimate(
estFUN = SB5_estFUN,
data = geexex,
root_control = setup_root_control(start = 2))

The hc.loc of the ICSNP package computes the Hodges-Lehman estimator and SB

gave closed form estimators for the variance.
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theta_cls <- ICSNP::hl.loc(geexex$Y2)
Sigma_cls <- 1/(12 * IC_denomˆ2) / nrow(geexex)

## $geex
## $geex$parameters
## [1] 2.026376
##
## $geex$vcov
## [,1]
## [1,] 0.01040586
##
##
## $cls
## $cls$parameters
## [1] 2.024129
##
## $cls$vcov
## [1] 0.01047198

3.7.3 Example 6: Huber center of symmetry estimator

This example illustrates estimation with nonsmooth ψ function for computing the Huber

(1964) estimator of the center of symmetric distributions.

ψk(Y1i, θ) =


(Y1i − θ) when |(Y1i − θ)| ≤ k

k ∗ sgn(Y1i − θ) when |(Y1i − θ)| > k

SB6_estFUN <- function(data, k = 1.5){
Y1 <- data$Y1
function(theta){

x <- Y1 - theta[1]
if(abs(x) <= k) x else sign(x) * k

}
}

estimates <- m_estimate(
estFUN = SB6_estFUN,
data = geexex,
root_control = setup_root_control(start = 3))
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The point estimate from geex is compared to the estimate obtained from the huber

function in the MASS package. The variance estimate is compared to an estimator suggested

by SB: Am =
∑

i[−ψ′(Yi− θ̂)]/m and Bm =
∑

i ψ
2
k(Yi− θ̂)/m, where ψ′k is the derivative

of ψ where is exists.

theta_cls <- MASS::huber(geexex$Y1, k = 1.5, tol = 1e-10)$mu

psi_k <- function(x, k = 1.5){
if(abs(x) <= k) x else sign(x) * k

}

A <- mean(unlist(lapply(geexex$Y1, function(y){
x <- y - theta_cls
-numDeriv::grad(psi_k, x = x)

})))

B <- mean(unlist(lapply(geexex$Y1, function(y){
x <- y - theta_cls
psi_k(x = x)ˆ2

})))

## closed form covariance
Sigma_cls <- matrix(1/A * B * 1/A / nrow(geexex))

## $geex
## $geex$parameters
## [1] 4.82061
##
## $geex$vcov
## [,1]
## [1,] 0.08356179
##
##
## $cls
## $cls$parameters
## [1] 4.999386
##
## $cls$vcov
## [,1]
## [1,] 0.0928935
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3.7.4 Example 7: Sample quantiles (approximation of ψ)

Approximation of ψ with geex is EXPERIMENTAL. Example 7 illustrates calculation of

sample quantiles using M-estimation and approximation of the ψ function.

ψ(Y1i, θ) =

(
0.5− I(Y1i ≤ θ1)

)

SB7_estFUN <- function(data){
Y1 <- data$Y1
function(theta){

0.5 - (Y1 <= theta[1])
}

}

Note that ψ is not differentiable; however, geex includes the ability to approximate the

ψ function via an approx control object. The FUN in an approx control must be

a function that takes in the ψ function, modifies it, and returns a function of theta. For

this example, I approximate ψ with a spline function. The eval theta argument is used

to modify the basis of the spline.

spline_approx <- function(psi, eval_theta){
y <- Vectorize(psi)(eval_theta)
f <- splinefun(x = eval_theta, y = y)
function(theta) f(theta)

}

estimates <- m_estimate(
estFUN = SB7_estFUN,
data = geexex,
root_control = setup_root_control(start = 4.7),
approx_control = setup_approx_control(

FUN = spline_approx,
eval_theta = seq(3, 6, by = .05)))

A comparison of the variance is not obvious, so no comparison is made.
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## $geex
## $geex$parameters
## [1] 4.7
##
## $geex$vcov
## [,1]
## [1,] 0.1773569
##
##
## $cls
## $cls$parameters
## [1] 4.708489
##
## $cls$vcov
## [1] NA

3.7.5 Example 8: Robust regression

Example 8 demonstrates robust regression for estimating β from 100 observations

generated from Y4 = 0.1 + 0.1X1i + 0.5X2i + εi, where εi ∼ N(0, 1), X1 is defined as

above, and the first half of the observation have X2i = 1 and the others have X2i = 0.

ψk(Y4i, θ) =

(
ψk(Y4i − xTi β)xi

)

psi_k <- function(x, k = 1.345){
if(abs(x) <= k) x else sign(x) * k

}

SB8_estFUN <- function(data){
Yi <- data$Y4
xi <- model.matrix(Y4 ˜ X1 + X2, data = data)
function(theta){

r <- Yi - xi %*% theta
c(psi_k(r) %*% xi)

}
}

estimates <- m_estimate(
estFUN = SB8_estFUN,
data = geexex,
root_control = setup_root_control(start = c(0, 0, 0)))
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m <- MASS::rlm(Y4 ˜ X1 + X2, data = geexex, method = 'M')
theta_cls <- coef(m)
Sigma_cls <- vcov(m)

## $geex
## $geex$parameters
## [1] -0.04050369 0.14530196 0.30181589
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.05871932 -0.0101399730 -0.0133230841
## [2,] -0.01013997 0.0021854268 0.0003386202
## [3,] -0.01332308 0.0003386202 0.0447117633
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -0.0377206 0.1441181 0.2988842
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.07309914 -0.0103060747 -0.0241724792
## X1 -0.01030607 0.0020579145 0.0005364106
## X2 -0.02417248 0.0005364106 0.0431120686

3.7.6 Example 9: Generalized linear models

Example 9 illustrates estimation of a generalized linear model.

ψ(Yi, θ) =

(
Di(β)Yi−µi(β)

Vi(β)τ

)

SB9_estFUN <- function(data){
Y <- data$Y5
X <- model.matrix(Y5 ˜ X1 + X2, data = data, drop = FALSE)
function(theta){

lp <- X %*% theta
mu <- plogis(lp)
D <- t(X) %*% dlogis(lp)
V <- mu * (1 - mu)
D %*% solve(V) %*% (Y - mu)

}
}
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estimates <- m_estimate(
estFUN = SB9_estFUN,
data = geexex,
root_control = setup_root_control(start = c(.1, .1, .5)))

Compare point estimates to glm coefficients and covariance matrix to sandwich.

m9 <- glm(Y5 ˜ X1 + X2, data = geexex,
family = binomial(link = 'logit'))

theta_cls <- coef(m9)
Sigma_cls <- sandwich::sandwich(m9)

## $geex
## $geex$parameters
## [1] -1.1256071 0.3410619 -0.1148368
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.35202094 -0.058906883 -0.101528787
## [2,] -0.05890688 0.012842435 0.004357355
## [3,] -0.10152879 0.004357355 0.185455144
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -1.1256070 0.3410619 -0.1148368
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.35201039 -0.058903546 -0.101534539
## X1 -0.05890355 0.012841392 0.004358926
## X2 -0.10153454 0.004358926 0.185456314

3.7.7 Example 10: Testing equality of success probabilities

Example 10 illustrates testing equality of success probablities.

ψ(Yi, ni, θ) =

 (Yi−niθ2)
2

niθ2(1−θ2) − θ1

Yi − niθ2


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SB10_estFUN <- function(data){
Y <- data$ft_made
n <- data$ft_attp
function(theta){

p <- theta[2]
c(((Y - (n * p))ˆ2)/(n * p * (1 - p)) - theta[1],

Y - n * p)
}

}

estimates <- m_estimate(
estFUN = SB10_estFUN,
data = shaq,
units = 'game',
root_control = setup_root_control(start = c(.5, .5)))

V11 <- function(p) {
k <- nrow(shaq)
sumn <- sum(shaq$ft_attp)
sumn_inv <- sum(1/shaq$ft_attp)
term2_n <- 1 - (6 * p) + (6 * pˆ2)
term2_d <- p * (1 - p)
term2 <- term2_n/term2_d
term3 <- ((1 - (2 * p))ˆ2) / ((sumn/k) * p * (1 - p))
2 + (term2 * (1/k) * sumn_inv) - term3

}

p_tilde <- sum(shaq$ft_made)/sum(shaq$ft_attp)
V11_hat <- V11(p_tilde)/23

# Compare variance estimates
V11_hat

## [1] 0.0783097

vcov(estimates)[1, 1]

## [1] 0.1929791

# Note the differences in the p-values
pnorm(35.51/23, mean = 1, sd = sqrt(V11_hat), lower.tail = FALSE)
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## [1] 0.02596785

pnorm(coef(estimates)[1],
mean = 1,
sd = sqrt(vcov(estimates)[1, 1]),
lower.tail = FALSE)

## [1] 0.1078138

This example shows that the empircal sandwich variance estimator may be different

from other sandwich variance estimators that make assumptions about the structure of the A

and B matrices.
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CHAPTER 4: CAUSAL INFERENCE IN THE STUDY OF INFECTIOUS DISEASE

4.1 Introduction

The study of infectious disease and of causal inference have had a reciprocating influence

over the past quarter century. The nature of infectious diseases motivated several important

advances in causal inference theory and methods, from which the science of infectious

disease has gained practical analytical tools. In studies of HIV treatments, for example,

prescription and dosing of a drug may (i) depend on past treatments and biomarker values

and (ii) in turn affect subsequent biomarker values. Without accounting for this dynamic

evolution of a subject’s treatment history, estimates of treatment efficacy may be biased.

This motivated Robins and colleagues (Robins and Hernán, 2009) to develop the g-methods

for estimating causal effects in the presence of time-varying confounding. Likewise, the

importance of identifying immune surrogates of protection in vaccine trials led Gilbert and

colleagues (Gilbert and Hudgens, 2008; Gilbert et al., 2014) to develop causal methods for

evaluating potential surrogate biomarkers. Within the vaccine context, the need to quantify

herd immunity effects led Halloran and collaborators (Halloran et al., 1991; Halloran and

Struchiner, 1995; Hudgens and Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012)

to develop causal methods in the presence of interference.

In this chapter, we review how the potential outcomes approach to causal inference has

contributed to the study of treatments and prevention of infectious diseases, as well as how

infectious diseases accelerated causal inference research. Many of the methods presented

here have been effective in answering important medical and public health questions about
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infectious disease. A motivation, a brief description, and applications are presented for each

topic.

This chapter is organized as follows. After a review of elementary foundations and

causal assumptions, a hypothetical, single-time point study introduces basic concepts fun-

damental to more complicated analyses. A more thorough introduction may be found in

books such as Hernán and Robins (2017) or Morgan and Winship (2014). We then define

time-varying confounding and present the g-methods as tools for handling such confounding.

Next, three specific approaches are presented that address the crucial underlying assumption

of no unmeasured confounding in different ways: test negative studies, negative controls,

and regression discontinuity. We then introduce principal stratification and its application

in vaccine studies. In all of those sections, the methods assume that the treatment of one

individual does not affect outcomes of other individuals, a phenomenon known as no interfer-

ence (Cox, 1958). Due to the interdependent nature of many infectious diseases, interference

has been the subject of much causal inference research in the past ten years. In the last

section, some advances in causal inference in the presence of interference are discussed.

Throughout, the following general notation is used. Let Yi be an outcome of interest,

such as infection status or CD4 count, for individual i = 1, . . . , n in a study. Let Ai be an

exposure, treatment, or intervention of interest, such as vaccination, drug treatment, or hand

washing. Observed values are denoted in lower case, e.g., yi, ai. Except where explicit, Ai

is considered binary, so that subjects are either exposed (1) or unexposed (0). Boldface

represents vectors (or matrices where appropriate) of variables. For example, A is the vector

of all subjects’ exposures, i.e., A = (A1, A2, . . . , An). Measured covariates, denoted Li,

may influence both the assignment to intervention as well as the outcome. This notation is

modified as needed.

Many philosophies and frameworks exist for assessing causality. This chapter and the

methods presented herein are couched in the potential outcomes framework, dating back to

1923 in the statistics literature (Splawa-Neyman et al., 1990).
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4.2 Causal assumptions

Causal inference using potential outcomes (hereafter causal inference) begins with the

causal estimand. The estimand makes explicit how potential outcomes may vary depending

on a treatment assignment. Many causal applications invoke the stable unit treatment value

assumption (SUTVA) (Rubin, 2005), which includes an assumption of no interference. The

assumption supposes that a subject’s potential outcomes do not depend on the treatment

of other subjects. When treatment is binary, SUTVA implies that subjects have only

two potential outcomes, denoted by Y (0) and Y (1). The fundamental problem of causal

inference (Holland, 1986) is that typically only one potential outcome for a subject can

be observed in a study; thus individual-level effects cannot be identified. Population-level

estimands, though, may be identified under certain assumptions, and this summary of

individual-level potential outcomes is chosen as the target of inference based on the research

question(s). The average causal effect (E[Y (1)−Y (0)]), for example, is a common estimand

in randomized controlled trials.

Many of the approaches we introduce below are illustrated using causal graphs, which

can help in establishing the assumptions necessary for identification of an estimand. Graph-

ical tools such as directed acyclic graphs (DAGs) (Pearl, 2010a) are useful in visualizing

and mapping relationships between the covariates, intervention(s), and outcomes. DAGs are

well-developed tools for reasoning about causal relationships (Pearl, 2009; Joffe et al., 2012).

In a causal DAG, nodes represent variables and edges represent causal relations between

variables. DAGs, however, typically do not make potential outcomes explicit. Richardson

and Robins (2013) unify the potential outcomes and graphical approaches to causal inference

through single world intervention graphs (SWIGs) and single world intervention templates

(SWITs). Constructing a SWIG or SWIT from a DAG entails splitting treatment nodes

into a random part A and a fixed part a, and then replacing descendants of the treatment
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Figure 4.14: A denotes random treatment assignment, a denotes the treatment of interest,

and Y (a) denotes the potential outcome corresponding to a.

A Y(a)a

nodes with potential outcomes for treatment a. We use SWITs to clarify the methods in this

chapter.

Consider a simple experiment in which all individuals (or units) are randomized to

receive treatment or not with equal probability such that Y (a) ⊥ A for all a where ⊥

indicates independence. Figure 4.14 illustrates this simple experiment in a SWIT. There

are no arrows from A to Y (a), hence the treatment variable is independent of the potential

outcome. In a similar way, if randomization is conditional on measured covariates, one may

assume conditional exchangeability, i.e.,

Y (a) ⊥ A|L = l for all a and l. (4.A1)

Consider a randomized experiment with two strata defined by a single covariate. Sub-

jects in one stratum are randomized to treatment with probability p, and subjects in the

other stratum are randomized with probability p′ 6= p. If stratum membership is associated

with the potential outcomes, then unconditional exchangeability Y (a) ⊥ A will not hold in

general. On the other hand, conditional exchangeability (4.A1) will be satisfied in such a

randomized experiment. Conditional exchangeability is also known as ignorability or the no

unmeasured confounding assumption (Hernán and Robins, 2017; Pearl, 2009; Richardson

and Robins, 2013).

A defining characteristic of observational studies is that the assignment (or selection)

mechanism is not known. Hence, assumptions are often made about the assignment mecha-

nism in order to draw causal inferences in the observational setting. A typical assumption
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Figure 4.15: The covariate(s) L confounds the relationship between A and Y (a). When L

contains all variables that block the paths between A and Y (a), conditional exchangeability

holds.

A Y(a)a

L

asserts that given certain baseline covariates L, conditional exchangeability holds. The

assumption must be based on scientific knowledge in an observational setting. Figure 4.15

presents a SWIT for both the conditionally randomized experiment and an observational

study under assumption (4.A1). When (4.A1) holds, the only path from Y (a) toA is through

L.

If all units receive treatment by design, the study data contain no information about

the control group. Clearly, any treatment versus control causal effects cannot be identified

from such a study. The assumption of positivity formalizes this notion. To identify causal

effects pertaining to a certain level of a, there must be some probability of receiving a.

In observational studies where conditional exchangeability is assumed, identifiability also

requires:

Pr(A = a|L = l) > 0 for all l where Pr(L = l) 6= 0. (4.A2)

Assumptions (4.A1) and (4.A2) are generally the basis for identification of causal

effects of a point exposure. For further details, Hernán and Robins (2006) and Hernán and

Robins (2017, ch. 3) provide excellent introductions on the fundamental assumptions of

causal inference.
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4.3 Causal inference for single and multiple point exposures

The crux of identifying and estimating causal effects is expressing potential outcomes as

functions of observable random variables. For example, a population mean potential outcome

is often a target estimand, for which standardization or inverse probability weighting (IPW)

are typical estimation methods (Hernán and Robins, 2006). Standardization averages across

the population strata of L. In particular, for discrete L under assumptions (4.A1) and (4.A2),

it follows that

E[Y (a)] =
∑
l

E[Y |A = a, L = l] Pr(L = l), (4.10)

where the summation is over all levels of l. The right hand side of this equation is a function

of observable random variables only and thus is composed of identifiable parameters.

Similarly, under (4.A1) and (4.A2), it follows that

E[Y (a)] = E[I(A = a)Y/Pr(A|L)] (4.11)

where the right side of (4.11) is also identifiable. Expressions (4.10) and (4.11) suggest

two estimators of E[Y (a)] by replacing identifiable parameters with consistent or unbiased

estimators. In cases where L is discrete and low-dimensional, non-parametric estimators

may be used, in which case, the IPW and standardization estimators are equal. In more

complicated situations, when L contains multiple variables for example, parsimonious

low-dimensional models are often assumed to deal with the curse of dimensionality (Hernán

and Robins, 2017, ch. 10). In this case, the standardization and IPW estimators will not

necessarily be equal.
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4.3.1 Time-varying exposures and the g-methods

Infectious disease interventions may involve treatments at multiple points in time.

Hernán et al. (2002) estimate a causal effect of the drug zidovudine on HIV patients’ CD4

count. Over 16 visits, a patient’s treatment history was recorded as A = [A(1), . . . , A(16)],

where A(t) = 1 indicates a subject was taking zidovudine at time (visit) t. Similarly,

L records a patient’s covariate history. Let at be a fixed treatment history up to time t.

An important policy question is which treatment regimes maximize potential CD4 counts.

To answer this, Hernán et al. (2002) target the estimand, E[Yt+1(at) − Yt+1(0t)], which

is the average difference in potential outcomes at visit t + 1 under treatment regime at

versus no treatment at any point (0t). Inference about this estimand in observational studies

is challenging, especially if certain time-varying covariates L(t), such as viral load, are

affected by prior treatment and affect subsequent treatment and the outcome.

Marginal structural models, the g-formula, and structural nested models were developed

by Robins and others (Robins, 1989; Robins and Rotnitzky, 1992; Robins, 1993) to account

for confounding by variables affected by the exposure itself as shown in Figure 4.16. In

this graph, the covariate(s) L has three features: (1) it is associated with Y (a), (2) it is

affected by exposure A0, and (3) it predicts exposure A1 (Vansteelandt and Joffe, 2014).

Without accounting for this structure, estimates of the effect of (A0, A1) on Y may be

biased. Robins (1997; see also Robins and Hernán, 2009) details the sequential ignorability

assumptions and methods for estimating parameters from these models: inverse probability

weighted estimators for marginal structural models, G-computation for the g-formula, and

G-estimation for structural nested models. We begin with marginal structural models, which

have become popular, partly due to ease of implementation.

4.3.1.1 Marginal structural models

A marginal structural model (MSM) entails modeling some aspect of the distribution of

Y (a), typically the mean, as a function of the exposure. For example, one parameterization
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Figure 4.16: Example of time-varying confounder (L1) affected by prior treatment.

A0 a0

L0

A (  )1 a1a0

Y(  ,  )a0 a1

L (  )a01

for the MSM for the graph in Figure 4.16 is E[Y (a)] = β0 + β1a0 + β2a1 + β3a0a1. The

choice of the MSM is driven by the scientific or policy questions. Inverse probability

of treatment weighted (IPTW) estimators are used to estimate parameters from an MSM.

Details on estimating parameters from MSMs can be found in Robins et al. (2000).

Sterne et al. (2005) used marginal structural Cox models to estimate the effect of highly

active antiretroviral therapy (HAART) from a large observational cohort study of HIV

positive individuals. Their results suggest a simple Cox model that does not account for

time-dependent confounding underestimates the positive effect of HAART. The hazard

ratios based on the MSM showed HAART therapy has a statistically significant effect, while

methods that do not account for the time-dependent confounding did not. This highlights

the need to account for time-varying confounding appropriately.

4.3.1.2 Parametric g-formula

The g-formula generalizes the notion of standardization where the expectation of the

outcome given treatment and covariates is weighted across the conditional distribution(s) of

the confounding covariates:

E[Y (a)] =

∫
l

E[Y |A = a, L = l]
T∏
t=1

dF (lt|At−1 = at−1, Lt−1) (4.12)

where dF (lt|At−1 = at, Lt−1) denotes the conditional distribution of Lt given the exposure

and covariate histories, up to time t− 1. In longitudinal observational studies with multiple
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confounders, the form ofE[Y |A = a, L = l] and dFlt|At−1,Lt−1
are unknown. The parametric

g-formula plugs in parametric models for the conditional mean outcome (E[Y |A = a, L =

l]) and conditional distribution of the covariates (dFlt|At−1,Lt−1
). Multiple time points

and multiple covariates in L compound the analyst’s work. A model is specified for

covariates at each time point conditional on past exposure and past covariates in addition to

a mean outcome model. Importantly, certain parameterizations of E[Y |A = a, L = l] and

dF (lt|At−1 = at, Lt−1) result in the g-null paradox (Robins and Hernán, 2009), wherein

the sharp null hypothesis of no treatment effect will be falsely rejected in large samples

regardless of the data. When the conditional mean of Y given A and L and the conditional

distribution of Lt given At−1 and Lt−1 are estimated nonparametrically, the g-formula does

not suffer from the g-null paradox.

Westreich et al. (2012) and Schomaker et al. (2013) both use G-computation of the

parametric g-formula to study HIV antiretroviral therapy in different cohorts. Their papers

provide detailed step-by-step instructions for implementing the G-computation algorithm,

which uses Monte Carlo simulations to approximate the integral in (4.12). Briefly, the steps

involve fitting models for the outcome and covariates followed by a process of simulating

data from these models for each treatment regime of interest, estimating treatment effects

from the simulated data, and bootstrapping to obtain confidence intervals.

4.3.1.3 Structural nested models

G-estimation of structural nested models (SNMs) is perhaps the least used of the three

models, partly owing to lack of standard software for fitting these models. But they also

have certain advantages (Vansteelandt and Joffe, 2014). For a point treatment, a structural

mean model directly models a causal effect, generally the effect of removing treatment:

h(E[Y (a)|L = l, A = a])− h(E[Y (0)|L = l, A = a]) = ψ(a, l; β), where h is some link

function such as the identity, log, or logit. The function ψ(a, l; β) parameterizes the causal

contrast such that ψ(0, l; β) = 0 for all l and β. For instance, with h as the identity function,
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an additive SNM is ψ(a, l; β) = (β0 +β1l)a. The causal parameters β can be identified from

this model with a weaker version of (4.A1). One only needs to assume that Y (0) ⊥ A|L.

The “nested” in SNM refers to the process by which the effect of treatment is removed

one time point at a time. Vansteelandt and Joffe (2014) give an overview of the scope and

application of SNMs for estimating joint exposure effects from multiple time points. MSMs

have some disadvantages compared to SNMs (Robins and Hernán, 2009). For example,

IPW estimators of MSM parameters can be highly variable, leading to imprecise inferences.

SNMs allow direct modeling of effect modification by time-dependent covariates and can

also be used to estimate causal effect when treatment is confounded but an instrumental

variable is available. Sensitivity analysis models for SNMs tend to be less restrictive and

more useful than those for MSMs.

Garn et al. (2016) fit a SNM using G-estimation to draw inference about the effect of

school water and sanitation improvements on student health outcomes, particularly diarrhea

and helminth infections. Previous studies had estimated intent-to-treat effects of the public

health interventions from a cluster-randomized trial of 185 schools in Kenya. Garn et al.

(2016) used the randomization assignment as an instrumental variable and then accounted

for actual adherence of the schools to the interventions using SNMs.

4.4 Alternative approaches to address confounding

The methods presented above describe causal inference de rigueur with either point or

longitudinal exposures. This section presents alternative approaches to address confounding

in observational studies motivated by particular applications in infectious disease. Test

negative studies, whose theoretical causal properties were only recently examined, are a cost-

effective design for measuring vaccine effectiveness from routine surveillance data. Negative

controls can, in some cases, provide a tool for assessing the no unmeasured confounding

assumption (4.A1). Lastly, regression discontinuity is a means to perform causal inference

when treatment decisions are made based on a threshold on a continuous variable.
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4.4.1 Test negative design

Influenza vaccine effectiveness (VE) varies from year to year due to the frequent

antigenic changes in influenza viruses. A popular study design for measuring VE in such

a dynamic environment is the test negative design (Jackson and Nelson, 2013). Patients

presenting to health clinics with influenza-like symptoms are tested for influenza viruses.

Patient vaccination history and other covariate histories are also recorded. Those who test

positive are classified as cases, and those who test negative are non-cases. The odds ratio

comparing the odds of being a case in vaccinated versus unvaccinated subjects from logistic

regression provides an estimate for VE, after controlling for confounding. This study design

is relatively inexpensive and easy to implement.

The test negative design is meant to reduce confounding bias from health-seeking behav-

ior and case misclassification. Sullivan et al. (2016) use causal diagrams to explain possible

biases that may arise from the design. Two sources of confounding in influenza vaccine

studies they considered are prior exposure/vaccination history and health-seeking behavior.

Prior exposure history could be an important source of confounding in influenza vaccine

studies (Figure 4.17), but the degree to which this confounding can be addressed depends

on whether prior exposures are measured and appropriately controlled for. Furthermore, test

negative designs do not inherently remove bias due to health-seeking behavior. In including

subjects tested for influenza, the test negative design may induce selection bias as influenza

testing is affected both by infection and health-seeking behavior. Sullivan et al. (2016)

conclude that the design, as in any observational study, may reduce but cannot eliminate

confounding or selection bias.

Schwartz et al. (2017) compared rotavirus VE estimates from a test-negative design to

VE estimates from two randomized controlled trials. They found, as others have found for

influenza (De Serres et al., 2013), the estimates to be nearly equal.
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Figure 4.17: Graph representing a test negative design. Vt and It represent vaccination

status and infectious status, respectively, at time t. Prior infection status may confound the

relationship between current year vaccination and infection status.

V1 v1
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V (  )2 v2v1  I(  ,  )v1 v2I(  )v1
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4.4.2 Negative controls

Lipsitch et al. (2010) describe the use of negative controls – common in experimental

bench science – for epidemiology. Negative control outcomes or negative control exposures

may detect residual confounding. Lipsitch et al. (2010) give several examples including

Jackson et al. (2006) who found that influenza VE in seniors had been overestimated.

Because an influenza vaccine can only reduce influenza-related morbidity or mortality by

preventing influenza, they argue that a causal protective effect would be strongest during

influenza season. They used pneumonia/influenza hospitalization after vaccination but before

influenza season as the negative control. If a vaccination effect is observed after vaccination

season (fall) but before the influenza season (winter), they reasoned, the vaccine’s apparent

effect may be due to confounding. In their analysis, Jackson et al. (2006) estimated that the

protective effect was greatest before the influenza season, and thus concluded that residual

confounding accounts for a portion of the vaccine’s estimated effect among seniors.

Another example presented by Lipsitch et al. (2010) with application to infectious

diseases reveals the utility of negative controls in detecting recall bias. Zaadstra et al. (2008)
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Figure 4.18: N meets the criteria to serve as a negative control outcome to check for residual

confounding. Y (a) and N share all the same parents except a. An association between A

and N , given L, suggests residual confounding may be present.

A Y(a)a
L

N

U

studied whether particular childhood infections are associated with multiple sclerosis (MS).

MS cases and controls were asked about childhood infections. Because MS cases may

have greater and more specific recall, study participants were also asked negative control

exposure questions about childhood medical events not plausibly linked to MS.

Lipsitch et al. (2010) graphically represent the ideal negative control outcome or negative

control exposure. A negative control outcome N should satisfy the criterion that N and

Y (a) share all the same incoming arrows from measured confounders L and unmeasured

confounders U except for a (Figure 4.18). A non-null association between A and N suggests

uncontrolled confounding. But the magnitude and form of the bias cannot be determined

from this finding.

Weisskopf et al. (2016) consider whether an imperfect negative control, where an

association exists between a negative control exposure, B, and Y , could affect results. They

conclude that, under certain assumptions, negative control exposures can still be useful for

detecting residual confounding even if one is unsure of a causal relation between B and

Y . Fisher (2016) studied the untestable assumptions necessary to apply negative controls.

Using the approach of Richardson et al. (2015) to adjust standardized mortality ratios for

uncontrolled confounding, she showed that the choice of the negative control outcome can

influence results. In some cases, adjusting for the negative control outcome can increase
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bias due to residual confounding rather than decrease it. Thus presenting both adjusted and

unadjusted estimates is recommended in practice.

4.4.3 Regression Discontinuity

When a binary treatment is assigned based on a threshold rule on an underlying con-

tinuous variable, the methods of regression discontinuity may be applicable. Heuristically,

regression discontinuity methods rely on the idea that in the region around the treatment

threshold, say t, of the continuous (or “running”) variable Z, the treatment assignment

can be considered as if approximately random (Bor et al., 2014; Cattaneo et al., 2015).

Regression discontinuity has origins in econometrics, but Bor et al. (2014) describe how

the method may have broad utility in epidemiology. Bor et al. (2014) give the example of

prescribing antiretroviral therapy to HIV infected individuals based on a CD4 threshold

value. CD4 counts are used to determine eligibility for antiretroviral therapy. If a cutoff of,

say, 200 cells/µL of blood was used by doctors to assign therapy, a regression discontinuity

design could be appropriate.

The threshold mechanism may not be deterministic or “strict.” “Fuzzy” regression

discontinuity designs account for a probabilistic mechanism where the intervention is

assigned based on the threshold t plus other factors such as clinical judgment (Bor et al.,

2014). For example, a physician may prescribe antiretroviral therapy to a patient with CD4

count greater than 200 based on other considerations, such as the patient’s viral load. Bor

et al. (2015) consider three levels of assumptions regarding how conditional regression

discontinuity estimands, E[Y (a)|Z], vary over Z. The most restrictive approach makes a

strong assumption about the functional form of E[Y (a)|Z] and allows for extrapolation

across the range of Z. If the assumed functional form is wrong, estimates may be severely

biased. Another approach makes a continuity assumption at the cutoff and allows for

extrapolation in the region of the cutoff. The third approach assumes that patients with Z
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values close to the cutoff are truly randomly assigned to A and the data essentially represent

a randomized trial in the region of the cutoff.

4.5 Principal stratification

Principal stratification was originally motivated by treatment comparisons that re-

quire adjusting for or conditioning on post-treatment variables, such as adjusting for non-

compliance in clinical trials (Frangakis and Rubin, 2002). Using this approach, units are

grouped into basic principal strata defined by the joint potential values of the post-treatment

variable(s) under each of the treatments being compared. Then, principal strata are formed

by unions of the basic principal strata. Causal estimands are defined by comparing potential

outcomes within a principal stratum. The key property of principal strata is they are not af-

fected by treatment assignment and therefore conditioning on a principal strata is not subject

to selection bias. For discussion of the strengths and drawbacks of principal stratification,

see Pearl (2011), Gilbert et al. (2011), Joffe (2011), and VanderWeele (2011).

Two important applications of principal stratification arise in vaccine trials. First, in

vaccine studies it may be of interest to assess the effect of vaccination on disease or other

post-infection outcomes among the subset of individuals who become infected with the

pathogen of interest during the study. For example, in HIV vaccine trials, it is of interest to

compare viral load among individuals who become infected during the trial (Gilbert et al.,

2003). In this case, infection status plays the role of the post-treatment (i.e., post-vaccination)

variable. Second, determining an immunological surrogate of protection is an important

component of HIV vaccine research. Here the post-treatment variable of interest is the

immune response measured after vaccination. Below we consider the utility of the principal

stratification framework in these two applications.
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4.5.1 Post-infection selection

To assess the effect of vaccination on post-infection outcomes, it is natural to compare

the distribution of the outcome between vaccinated individuals who become infected and un-

vaccinated individuals who become infected. Unfortunately, conditioning on infection may

create selection bias. In particular, comparisons between vaccinated and unvaccinated indi-

viduals after conditioning on infection do not necessarily have causal interpretations without

the strong assumption that vaccinated persons who become infected are exchangeable with

unvaccinated persons who become infected.

Hudgens and Halloran (2006) give the example of a vaccine that protects individuals

with strong immune systems, hence those who are vaccinated but become infected have

weaker immune systems on average compared to infected controls. A naive comparison

of infected vaccinated individuals and infected controls may lead to the incorrect conclu-

sion that vaccination results in worse post-infection outcomes for the vaccinated. Using a

principal stratification approach, Hudgens and Halloran (2006) develop estimands, identifia-

bility assumptions, and maximum likelihood estimators for post-infection effects on binary

outcomes of vaccinations (see also Gilbert et al., 2003; Hudgens et al., 2003).

Consider a hypothetical vaccination trial where subjects are randomly assigned to

placebo A = 0 or vaccine A = 1. Let S(a) = 1 indicate post-vaccination infection

and S(a) = 0 indicate no post-vaccination infection if an individual receives treatment

a. Similarly, let Y (a) denote a binary post-infection potential outcome for treatment a.

Because S is measured after randomization, a comparison of the observed distributions

Pr(Y = y|S = s, A = 0) and Pr(Y = y|S = s, A = 1) does not necessarily have a causal

interpretation because the set of individuals who would have S = s when A = 0 will not in

general be equal to the set of individuals who would have S = s when A = 1.

A basic principal stratification P0 is a partition of the units into strata that have the

same {S(0), S(1)} vector. In this example, these strata are subjects who (i) would be

uninfected with both vaccine and placebo {S(0) = 0, S(1) = 0}, (ii) would be uninfected
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after receiving placebo but infected with vaccination {0, 1}, (iii) would be infected after

receiving placebo but uninfected with vaccination {1, 0}, and (iv) would be infected with

either placebo or vaccine {1, 1}. A principal stratification P is the union of any of the sets in

P0. The vaccine’s effect on the post-infection outcome Y is then defined by some contrast in

distribution of Y (0) and Y (1) within the {1, 1} principle strata. Such estimands quantify the

vaccine effect on Y among individuals who will become infected regardless of whether they

are vaccinated. In general, effects within principal strata are only partially identifiable, such

that bounds or sensitivity analyses may be employed to draw inference (e.g., see Gilbert

et al., 2003; Hudgens and Halloran, 2006). A harder problem is to estimate effects across

principal strata, as the case with principal surrogates.

4.5.2 Principal Surrogates

Use of surrogate biomarkers can facilitate vaccine development and inform vaccine

policy. A careful distinction must be made between a statistical surrogate and a principal

surrogate, where the latter retains a causal interpretation. A principal surrogate is defined in

terms of potential outcomes. Following Frangakis and Rubin (2002), Gilbert and Hudgens

(2008) define S to be a principal surrogate for Y if A has an effect on S if and only if A

has an effect on Y . Thus they require that Pr{Y (0)|S(1) = S(0) = s} = Pr{Y (1)|S(1) =

S(0) = s} for all s, and that Pr{Y (0)|S(1) = s1, S(0) = s0} 6= Pr{Y (1)|S(1) =

s1, S(0) = s0} for s1 6= s0.

Gilbert and colleagues have developed methods for evaluating whether immune re-

sponses induced by vaccination are valid surrogates for a vaccine’s effect on infection or

disease (e.g., see Gilbert et al., 2014, 2016). Gilbert et al. (2014) used this approach to

demonstrate that fold rise in antibody titers as measured by a certain assay is a principal

surrogate of the effect of live, attenuated zoster vaccination on the incidence of herpes zoster.

Gilbert et al. (2016) discuss use of the principal surrogates framework in the design of

upcoming HIV vaccine trials.
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4.6 Interference

The causal estimands and associated inferential methods described thus far all assume no

interference. This assumption presumes each subject’s potential outcomes are not affected

by the treatment of other subjects. The contagious nature of some infectious diseases

invalidates this assumption. Halloran and Struchiner (1995) recognized this problem in

infectious disease studies. Much progress has been made in the intervening years; see

Halloran and Hudgens (2016) for a recent review.

Consider a study of n = 3 subjects and suppose we allow for the possibility there

is interference between individuals. Then in the case of a binary treatment, each sub-

ject will have eight potential outcomes Y (a1, a2, a3) for each possible treatment vector

{(0, 0, 0), (1, 0, 0), . . . , (1, 1, 1)}. As n increases, the number of potential outcomes in-

creases exponentially, making inference challenging. To reduce the number of potential

outcomes, the partial interference assumption (Hudgens and Halloran, 2008; Sobel, 2006)

is often used, where it is assumed that subjects can be partitioned into groups such that

interference may occur within a group but not between groups.

Hudgens and Halloran (2008) defined four estimands under partial interference. The

direct, or unit-level, effect measures the average effect of treatment on a subject while

holding the treatment coverage (the proportion of others within the group who receive

treatment) fixed. The indirect, or spillover, effect measures the difference in potential

outcomes for different levels of treatment coverage among the untreated. Spillover effects

can also be defined in treated individuals. The total effect is the sum of direct and indirect

effects. The overall effect compares average potential outcomes under different treatment

coverages. Hudgens and Halloran (2008) also proposed unbiased estimators for these

four estimands for two-stage randomized trials. In the context of observational studies,

Tchetgen Tchetgen and VanderWeele (2012) consider inference about these effects under a

modification of the conditional exchangeability assumption (4.A1); namely, they assume
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Figure 4.19: Each row represents a subject. Arrows crossing from the treatment level into

the other subject’s potential outcome denote interference.

1 A Y(a ,a )aL 1 1 1 2

2 A Y(a ,a )aL 2 2 2 1

an individual’s potential outcomes are conditionally independent of the group’s treatment

vector, Yij(ai) ⊥ Ai|Li, where i now indexes groups and j indexes individuals within a

group.

The Centre for Diarrhoeal Disease Research conducted a cholera vaccine trial in the

area of Matlab, Bangladesh (Ali et al., 2005). Ali et al. (2005) reported a non-causal analysis

finding an association between the incidence of cholera in unvaccinated individuals and

the level of vaccine coverage in their neighborhood, suggesting a herd immunity effect for

the vaccine. Using estimators for observational data developed by Tchetgen Tchetgen and

VanderWeele (2012), Perez-Heydrich et al. (2014) analyzed the same data and corroborated

Ali et al. (2005) with a causal analysis.

Ogburn and VanderWeele (2014) considered causal graphs illustrating interference

between subjects. Figure 4.19 shows one such graph for groups of two subjects with single

point treatment. As the number of subjects and points in time increase, depicting the many

types of interference becomes increasingly challenging.

Recent work has focused on relaxing the partial interference assumption and estimating

causal effects in networks or groups of networks. For example, van der Laan (2014)

considered semi-parametric inference about causal effects on a single network of individuals.

Drawing inference based on a single realization of a network is challenging because standard

large sample frequentist approaches generally require independent replicates. Athey et al.
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(2016) considered an alternative perspective, deriving randomization-based tests of causal

effects based on a single network of connected units.

A vaccine may have two types of indirect effects from vaccinated individuals. Contagion

effects describe the effect of a vaccine preventing a subject from acquiring the target pathogen

and thus transmitting it. Infectiousness effects describe the effect of vaccine in reducing

a person’s capacity to spread an infection, thus decreasing the transmission probability

(VanderWeele et al., 2012). Ogburn and VanderWeele (2017) considered estimands and

causal assumptions for contagiousness and infectiousness effects from social network data.

They propose using modified generalized linear models to estimate these effects.

4.7 Summary

We reviewed several study designs and causal analysis methods targeted for application

in the study of infectious diseases, such as the g-methods, regression discontinuity, negative

controls, and test negative study design. We discussed how certain infectious disease

problems motivated new developments in causal inference, such as principal stratification

and relaxing the no interference assumption.
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