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Bubbles can form in thebody during or after decompression frompressure exposures such as those undergone by
scuba divers, astronauts, caisson and tunnel workers. Bubble growth and detachment physics then becomes
significant in predicting and controlling the probability of these bubbles causing mechanical problems by
blocking vessels, displacing tissues, or inducing an inflammatory cascade if they persist for too long in the
body before being dissolved. By contrast to decompression induced bubbles whose site of initial formation and
exact composition are debated, there are other instances of bubbles in the bloodstream which are well-defined.
Gas emboli unwillingly introduced during surgical procedures and ultrasound microbubbles injected for use as
contrast or drug delivery agents are therefore also discussed. After presenting the different ways that bubbles
can end up in the human bloodstream, the general mathematical formalism related to the physics of bubble
growth and detachment from decompression is reviewed. Bubble behavior in the bloodstream is then discussed,
including bubble dissolution in blood, bubble rheology andbiological interactions for the different cases of bubble
and blood composition considered.
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1. Introduction: aim and scope

The physics of bubble growth and detachment is routinely discussed
with respect to engineering applications, for example to design optimal
pipes for oil transport, propeller design, flotation devices etc. [1,4].
There are however also instanceswhere bubbles form or are introduced
in vivo. In these cases the bubbles can be found in the bloodstream or in
tissues. Bubble growth anddetachment physics then becomes significant
in predicting and controlling the probability of these bubbles causing
mechanical problems by blocking vessels, displacing tissues, or inducing
an inflammatory cascade if they persist for too long in the body before
being dissolved.

These bubbles in the bloodstream may result in ischemic problems
from direct vessel occlusion, which can be fatal in the arterial side of the
circulation. Bubbles in the vasculature can obstruct blood flow, activate
inflammatory pathways and cause clotting [5]. The interaction of the bub-
bleswith the components of the blood is complex. It has been shown for
instance that an adhesion force causing bubbles to lodge in the vascula-
ture is created by the interaction between the macromolecules in the
blood and the bubble which pushes it towards the endothelium [6].

This review presents the mathematical formalism related to the
physics of bubble growth from decompression and attempts to discuss
it in the context of bubbles in the human bloodstream. The nucleation
process from hyperbaric decompression has been the primary focus of
a previous publication [7] and will therefore only be briefly mentioned
here, concentrating instead on the growth phase. Modeling bubble
growth in the circulation can help determine the probability of them
blocking the circulation directly in a given region. In addition, it is impor-
tant for the determination of their persistence and rheology in the circu-
lation, also related to the inflammation cascade, by modeling the
introduced microbubble flow rate in the mixed venous blood from for-
mation sites.

Most work in the field of decompression induced bubble growth has
not been done in the in vivo context of interest here (human blood-
stream), but primarily in the fields of geology (volcanic eruptions,
magmas, etc.) and industrial applications (multiphase dynamics, bubbly
flows in pipes, etc.) [8,12]. In addition the exact composition of the
bubbles that form in vivo due to hyperbaric decompression and
initial site of formation of those bubbles remain somewhat open
questions [7].
Table 1
Comparison overview between circulatory bubble types found in the bloodstream.

Approx. diameter (μm) Gas content

Decompression bubble Debated. The detectable VGE size
using linear B-mode ultrasound is
above20–30 μm[13,14]. Theoretical
predictions calculate bubbles of
more than 5–10 μm [15]. Animal
studies have observed 19–700 μm
[16].

Inert gas breathedmain
usually)

Gas emboli from surgery
[17,19]

Highly variable, 15–100 μm, slug
form often observed

Ambient air of surgery
anesthetic gas used

Contrast agents for ultrasound
and drug delivery bubbles
[20]

1–7 μm Usually heavy gas such
perfluorocarbon
By contrast to decompression induced bubbles whose site of initial
formation and exact composition are debated, there are other instances
of bubbles in the bloodstream which are well-defined. These are gas
emboli unwillingly introduced during surgical procedures and ultra-
soundmicrobubbles injected for use as contrast or drug delivery agents.
We will therefore present the general bubble growth formalism and its
inertially controlled growth case in particular, before classifying the
analytical or for the most part numerical solutions of the key equations
with respect to the different simplificationsused. Blood is then discussed
as a flowing liquidwhere bubbles grow anddetach.We finish by looking
into what we can learn from the behavior of bubbles in the human
bloodstream, specifically bubble dissolution, rheology and biological
interactions for the different cases of bubble and blood composition
considered.

2. Background: how can bubbles end up in the bloodstream?

Bubbles introduced in the circulation can have iatrogenic causes:
either as a side effect of vascular and heart surgery, injections and skin
transplants or on purpose in the case of embolotherapy or ultrasound
contrast agents where bubbles are used to respectively deliver drugs
to targeted sites or image the vasculature. Furthermore endogenous
bubbles can also form in the body due to mechanical heart valves or
during or after decompression from pressure exposures such as those
undergone by scuba divers and astronauts and are therefore an occupa-
tional hazard for caisson and tunnel workers as well. Table 1 presents a
brief summary of the characteristics of these different bubbles.

2.1. Bubbles introduced in the bloodstream on purpose

Ultrasound imaging has the advantage of being a non-invasive, non-
ionizing and low-cost imaging modality. It uses sound waves (typically
between 1 and 15 MHz high-frequency pressure waves) to visualize
organs and blood flow. However compared to other imagingmodalities
such as MRI or CT, the images produced are sometimes of lower quality
due to excessive attenuation (absorption, scattering and reflection) and
distortion from the reflectivity of tissue boundaries. In addition, red
blood cells scatter ultrasound poorly due to their relative acoustic
impedance mismatch to plasma [21] resulting in the blood appearing
dark on B-mode images [22]. Many approaches and new techniques
Shell properties Persistence in the bloodstream

ly (nitrogen Unknown, would depend on
formation site

Observed circulating for up to 3 h
post-dive using ultrasound imaging
(supersaturated tissues state) [7]

room or Unencapsulated Depends on severity

as Encapsulated (lipid or protein). Can
have functionalized shell to attach
to particular sites or carry drugs/
DNA

Microbubbles remain for several
minutes in the bloodstream
enhancing contrast, but bubbles
can remain in the body longer
(accumulate in spleen and liver
over 30 min)



Fig. 1. Ultrasound imaging of a human liver with microbubble contrast agents: non-linear mode preferentially showing bubbles (left) and standard linear B-mode image (right).
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are being developed to overcome some of the challenges related to
ultrasound imaging, one of the most important being the development
of stabilized gas microbubbles injected intravenously for enhancing the
echogenicity from within the blood (contrast agent) [23]. These
microbubbles of diameter less than 10 μm oscillate radially when hit
by the pressure waves from ultrasound imaging and scatter those in
all directions, thus increasing the contrast of the image drastically by
effectively acting as secondary “point” sources of sound themselves
(Fig. 1). Their scattering power is very big due to the large impedance
difference between their gas core and the surrounding liquid and they
can be driven at their resonant frequency for big radial amplitude oscil-
lations. Thesemicrobubbles are encapsulated to last longer in the blood
circulation, as free bubbles dissolve quickly [23], and so that they do not
coalesce (e.g. PEGs on the shell). Acoustic signals from ultrasound
contrast agents can be separated from those of tissue due to the fact
that bubbles' non-linear response is much higher than that of soft
tissues [24], making perfusion imaging possible.

The encapsulating layer of themicrobubbles (protein or lipid) can be
bound to molecules that attach to specific target sites in the body, for
instance antibody, receptor or ligand of a cancer cell type or inflamed
endothelium, etc. (Fig. 2). By functionalizing their shell, microbubbles
can therefore be used for molecular imaging. In addition, microbubbles
can be loadedwith therapeutic agents or with DNA and act respectively
as drug or gene delivery agents to specific target sites [25]. Primary and
Fig. 2. Diagram of targeted micr
secondary ultrasound radiation forces, due to the incident pressure field
and scattering by resonating bubbles respectively, can be used to push
injected microbubbles towards their target sites and increase their
chances of binding. It has also been demonstrated that the oscillation
of bubbles next to cells under focused ultrasound field can open up cell
membranes for delivery of therapeutic agents [26].

2.2. Unwanted bubbles in the bloodstream

Bubbles can form from micronuclei as a result of ultrasonic cavita-
tion at high exposures [27]. Bubbles have also been shown to be created
by cavitation where prosthetic heart valves move by disturbance of the
normal flow at closure [28,29], with instances of up to 620 embolic
events over 30 min recorded in patients [18]. Another iatrogenic cause
of gas embolism is from surgery, where air is introduced in the vascula-
ture during injections, catheter placing, etc. These bubbles can then be
associated with all the serious clinical complications related to gas em-
bolism, including ischemia, stroke and cardiac failure. Iatrogenic gas
embolism is estimated to occur in only 2.65 per 100 000 hospitaliza-
tions, but with high long-termmortality andmorbidity [30]. Gas embo-
lism as a result of cardiopulmonary bypass for instance is estimated to
result in cognitive decline consistentwith cerebrovascular embolization
restricting blood flow into localized areas of the brain for 25% of patients
[31,33]. Seventy to eighty percent of strokes, the second leading cause of
obubble shell composition.

image of Fig.�2


Fig. 4. Schematic of bubbles from decompression in the circulation.
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death worldwide [34], are ischemic in origin, resulting directly from
cerebral thrombosis or embolism blocking an artery in the brain or in
the neck [35].

In addition, microbubbles can grow in the body due to changes in
ambient pressure (scuba diving, extravehicular excursions for astro-
nauts, etc.). The precise formation mechanism and site of these bubbles
are still debated and the subject of a previous publication [7]: Potential
stabilizing mechanisms for micronuclei from which bubbles can grow
are hydrophobicity of surfaces and tissue elasticity, with formation
sites in facilitating regions with surfactants, hydrophobic surfaces or
crevices, such as caveolae or between endothelial cells. Intravascular
bubbles post pressure-excursions are routinely observed with Doppler
and B-mode ultrasound imaging. Human blood and tissue contain
dissolved inert gases from respiration and cell metabolism, the molar
concentrations of which are proportional to the gas partial pressure
(Henry's law). The partial pressure of inert gases breathed is increased
during a scuba diving descent, where the diver is supplied with air at
ambient pressure throughout the dive (the ambient pressure at depth
increases by roughly 1 atm for every 10 meter depth). This results in
inert gases, not utilized by the body, being absorbed by tissues and
blood during the descent phase of the dive. Metabolic gases, oxygen
bound for the most part by hemoglobin, and carbon dioxide, do not
cause problems as they are directly used by the body and recycled
through breathing. Bubbles can grow during or after the decompression
phase of the dive (ascent), when the inert gas (nitrogen and/or helium
usually) that has been dissolved in the tissues during the compression
phase (descent), is released in the circulation (Fig. 3). The tissues are
then supersaturated and release inert gases in the form of in situ tissue
bubbles or bubbles that form in, or enter, the bloodstream. Circulating
bubbles are normally filtered out by the lungs (expiration) [36] and do
not pass into the arterial side of the circulation, provided that they are
big enough to be trapped and dissolved but small enough not to ob-
struct any vessels upstream of the lungs, and that their number does
not impair the lung capability to filter themout. Failure to ascend slowly
enough (following decompression stops where the diver waits at
certain depths before resuming his ascent) to control the number and
size of those bubbles can result in potentially fatal decompression sick-
ness. In addition, the presence of venous-arterial shunts (cardiac PFO
[37,38], lung shunts [39], …) can provide paradoxical entry for these
bubbles into the arterial side of the circulation [37]. This effectively
results in arterial gas embolism with the added complication of the
body beingmore saturated in inert gas,whichhinders bubble dissolution.
Fig. 3. Ultrasound imaging of the heart 1 h post scuba dive. Venous gas emboli (VGE) are
circulating in the right heart chambers (delimited inwhite, image reversed). The lungs are
effectively filtering these VGE and they do not appear in the left heart chambers.
2.3. Life cycle of a bubble in blood

Once a bubble has entered the bloodstream, let's assume on the
venous side, if its size is small enough not to directly occlude a vessel
it will be transported by the blood and follow the normal circulation
into the right heart and then the lungs. The bubble will travel at the
velocity of blood provided it is small compared to the vessel cross-
sectional area, with velocities from 0.03 cm/s in the capillaries to 40
cm/s in the aorta and 15 cm/s in the vena cavae [40]. Microbubbles ar-
riving in the lung capillaries are normally trapped if big enough, then
dissolved during expiration [36].

In addition to a direct entry into the arterial side of the circulation,
bubbles originally from the venous side can gain paradoxical entry into
the arterial circulation in the presence of cardiac or pulmonary shunts
(Fig. 4). A patent foramen ovale or PFO is one such venous-arterial
shunt located in the atrial septum of the heart, with estimated preva-
lence in the population of 25–33% [37,38]. Another is intrapulmonary
arterial-venous anastamoses (IPAVA) which allow blood to bypass the
pulmonary microcirculation [39]. Both of these shunting mechanisms
have been shown to be exacerbated by exercise [39] and provoking
mechanisms that increase the intra-thoracic pressure [37,38].

Finally, bubbles can also enter the arterial circulation if the lung does
not act as an efficient filter. It was shown in dog experiments that this
can happen if the bubbles are too small to get trapped (less than 22
μm [36]) or if there are toomany bubbles causing a deformation or rup-
ture of the lung capillaries (administration of single bolus over 20 ml of
gas [36] or 0.15 ml/kg·min for over 30min [41]). Once a bubble is in the
arterial side of the circulation the probability of it blocking the circula-
tion increases as, conversely to the venous side of the circulation, the
blood is transported into progressively smaller vessels and capillaries.
This is especially the case if the bubbles continue to grow by merging
into one another or due to the continued ascent and degassing in
scuba diving.

Depending on the saturation dynamics of the rest of the blood and
tissues, the bubble may dissolve or expand accordingly during trans-
port. In any case the inflammation cascade initiates as the bubble per-
sists in the circulation and gets in contact with other blood cells
suspended in plasma or brushes against endothelial cells [42]. There is
also evidence of macrophages internalizing bubbles and bubbles accu-
mulating in the liver and spleen before the gas eventually diffuses out
[43]. This is described in more detail in Biological interactions
(Section 4.4).

image of Fig.�3
image of Fig.�4
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3. Bubble growth and detachment from decompression

Notwithstanding chemical interactions, a supersaturated state can
be reached in a liquid solvent containing dissolved gas as a result of a
reduction in ambient pressure or rise in liquid temperature. Above a
respective critical supersaturation level, gas bubbles will nucleate
heterogeneously or homogenously. The rate of gas desorption from
the liquid therefore is associated with both the nucleation and the sub-
sequent growth rates of those bubbles once formed, as well as their
detachment rate. While bubble growth is primarily linked to gas mass
transfer from the bulk liquid to a gas nucleus, bubble detachment is
dictated by buoyancy and/or flow induced shear forces which both act
to destabilize the bubble contact with the solid surface beneath and
drag it away from its nucleation site [44].

In the absence of pre-existing small bubbles or gas cavities
(micronuclei), homogeneous bubble nucleation requires very high levels
of supersaturation [7,45]. Heterogeneous nucleation is therefore most
likely at play, facilitated by either cavities and different materials in the
liquid or pre-existing gas cavities triggered to growth [7]. Accounting
for the stability of these pre-existing nuclei is reviewed in a previous
publication [7]. Here we are focusing on the description for their subse-
quent growth and detachment in the bloodstream.

Bubble growth in the bloodstream can be induced by different
mechanisms related to heat and/or pressure. These range from the
flow conditions in the circulation to the oscillations induced by ultra-
sound imaging of bubbles (changing pressure and heat of contrast
agent bubbles). In the case of interest here we consider the ambient
pressure changes as themain driving force of growth: a rapid or gradual,
staged or continuous, pressure decrease (decompression) in solutions
with dissolved gas as an analog to the case of the bubbles observed in
blood in scuba divers for instance.

3.1. General formalism: heat and mass transfer

A small gas bubble which has nucleated on a solid surface in con-
tact with a liquid containing this dissolved gas can grow and finally
detach from it [46]. The description of the growth rate of the bubble
requires the coupling of the equations of motion, continuity, conser-
vation of diffusing species and heat transfer, and must account for
convection, viscous and surface tension forces, as well as other flow
conditions [44,45,47].

In the simple case with no flow (basin degassing) at constant tem-
perature, after the initial growth phase, the growth of the bubble will
be theoretically governed bymolecular diffusionwith a scaling relation-
ship of the form R ~ ta, where R is the bubble radius, t the time of growth
and a the scaling factor [48,49]. However the range of scaling factors a
was obtained experimentally and values differ not only between classes
of problems, but also for the same type of experiments [44,45,48]. The
difficulty comes from devising experiments to test the theoretical pre-
dictions, as it is very difficult to decouple heat and mass transfer in ex-
periments, for instance to get a decompression driven bubble growth
at constant temperature.

In general bubble growth can be separated into two categories
depending on the driving force [50]: bubble growth that is primarily
controlled either thermally [47,51,52] or inertially (mass transfer) [53]
such as in the decompression case.

We reviewbelow thebasic considerations for the heat diffusion case,
before treating inmore detail the bubble growth resulting from decom-
pression of a liquid containing dissolved gas in Section 3.2.

3.2. Thermal degassing (heat transfer controlled)

Scriven [52] derived the influence of radial convection on bubble
growth frommolecular diffusion of the gasmolecules through the liquid
and the liquid–gas interface. The outward convective movement of the
growing bubble front is shown to result in an effective highermolecular
diffusion and thus an increase in growth rate than that expected from
diffusion considerations alone:

R ¼ 2b
ffiffiffiffiffi
kt

p
; ð1Þ

where R is the bubble radius, t growth time, b a dimensionless growth
constant and k a diffusion term. In the case of heat conduction governed
growth, k is the thermal diffusivity, and for growth governed my
molecular diffusion k is the diffusivity. Eq. (1) shows that the radius is
proportional to the square root of time for a negligible Laplace pressure.
The bubble growth constantβwas also explicitly related to the densities
and concentrations of gas and liquid through a dimensionless superheat
or supersaturation parameter

φ ¼ φ ε; bf g ¼ ρL C0−Csatð Þ
ρG ρL−Csatð Þ ; ð2Þ

with

ε ¼ 1−ρG

ρL
; ð3Þ

where ρG and ρL are the densities of the gas and liquid respectively, and
C0 and Csat the mass based concentrations of the bulk and equilibrium
concentrations of the gas in the liquid.

The above 1D analysis has been extended to include temperature
dependent transport properties of the liquid and the gas as well as a
2D description of bubble growth and motion on a non-flat surface
[44,48].

3.3. Decompression degassing (mass transfer controlled)

3.3.1. Pool degassing (diffusion controlled)
The desorption or release of the dissolved gas in a fluid brought to

supersaturation can be done either solely by diffusion through the liquid
contact area to the air for instance or in a nucleating fashion, in other
words through the formation of bubbles. In the latter case, desorption
is not simply the analog of the absorption kinetics and the diffusive
mass transfer equations are significantly altered by the hydrodynamic
conditions in the liquid.

Desorption without bubble creation has been examined [54,55],
however the case of desorption with bubble formation has rarely been
considered [56]. For these, a first factormust be the availability of nucle-
ation sites for the bubbles to formdue to small pressure ratio reductions.
For quiescent solutions (no flow), the conditions under which the
bubbling degassingmechanism dominates over normal diffusivemech-
anisms were first investigated by Schweitzer et al. [57] and Burrows
et al. [58], showing that bubbles could be prevented if the pressure
reduction rate was slow enough for total pressure reduction ratios of
up to 3.75. It is, of course, expected that if the ambient pressure is
below the sum of partial pressures of the solute and solvent, then
under isothermal conditions at constant volume the system will tend
to reinstate pressure equalities by gas and vapor evolution [55].

Isothermal bubble growth from capillary effects, inertia, viscosity
and mass diffusion of a solute gas from a liquid was investigated
theoretically by Langlois [59]. Neglecting the inertia of the liquid, the
radius of the bubble was shown to satisfy

4μL

R
dR
dt

þ 2σ L

R
¼ ACsat þ

pg0R
3
0

R3 −Pamb; ð4Þ

where R is the bubble radius, R0 the initial bubble radius, μL the viscosity
of the liquid, σL the surface tension of the liquid, Pamb the ambient pres-
sure, pg0 the initial partial pressure and Csat the concentration of solute
gas related by Boyle's law to its partial pressure such that pg = ACsat
with A being a constant.
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Once formed, the general growth and dissolution of microbubbles in
a solution from diffusion considerations was derived by Epstein and
Plesset [60]:

dR
dT

¼ DGBT=MG C0−Csatð Þ
Pamb þ 4σB=3R

1
R
þ 1ffiffiffiffiffiffiffiffiffiffiffi

πDgt
q

0
B@

1
CA ð5� EPÞ

where R is the radius of the bubble, t time, DG the gasmass diffusivity in
the fluid, B the universal gas constant, MG the molecular weight of the
gas, C0 the bulk dissolved gas concentration, Csat the saturated concen-
tration of the dissolved gas, Pamb the ambient pressure, σB the surface
tension of the bubble and T the temperature. Eq. (5-EP) predicts that
the bubble will dissolve for saturated solutions (C0 = Csat) if its surface
tension σB ≠ 0.

Eq. (5-EP) predicts a dissolution time for a perfectly spherical air
bubble in pure water of 1 s for a 1 μm radius bubble, 1–6 s for a 10 μm
bubble and 11–70 days for a 1 mm bubble [61]. However bubbles can
take a cylindrical form in vivo, in which case the dissolution time for a
bubble of same total volume is multiplied by a factor of at least 2 [61].

The Epstein–Plesset model was most comprehensively tested for
the effects of surface tension and undersaturation recently using a
new micromanipulation (micropipette) technique [62]. Surface ten-
sion was studied using single and double-chain surfactants and
undersaturation coating the microbubble with a wax monolayer from
solid distearoylphosphocholine lipid to effectively achieve a zero surface
tension. The model was shown to underpredict the resolution time of
microbubbles due to surface tension in the range of 72–25 nN/m by an
average of 8.6% and overpredict this time due to undersaturation by
8.2% in the range of gas saturation from 70 to 100%.

3.3.2. Flow degassing (inertia controlled)
Fluid mechanics also play a role in the conditions for maintaining

bubbling and we can consider either a basin/pool degassing scenario
as treated above or a flowing liquid degassing for which calculations
of desorption rates by mass transfer are even more limited [63].

The rate of gas desorption with bubble formation from agitated
liquids was investigated using a stirred cell apparatus from CO2 super-
saturated aqueous solutions [55]. Itwas found that in aflow systemcon-
siderable bubbling does not start until the partial pressure of the
dissolved gas alone is greater than the ambient pressure, and only a
minimal amount of bubble evolution occurs when the sum of partial
pressures of the components of the liquid exceed the total pressure.

The same flat gas–liquid interface systemwas then studied in a con-
tinuously baffled agitated vessel and the rates of desorption of carbon
dioxide and nitrogen from supersaturated water solutions measured
at different temperatures to extract volumetric mass transfer coeffi-
cients for desorption and correlate those to the relative supersaturation
of the solution and its Reynolds number [64].

In a more recent study, the volumetric mass transfer coefficients for
the bubbling desorption of CO2 from DMEPEG solutions were correlated
by a power relationship to supersaturation, Reynolds and Weber num-
bers [63]. It therefore appears that the viscosity and surface tension of
thefluidwith respect to its inertia can be important quantities in addition
to the degree of supersaturation.

3.4. Bubble detachment

3.4.1. In stagnant liquid
Let us consider the forces acting upon a bubble growing on a surface

in a liquid. The forces that contribute to its adhesion to the surface are
the surface tension FS and drag produced by the bubble growth FD,
whereas the forces which pull it to detach are buoyancy FB, pressure
FP and liquid inertial FI forces [45]. So the force balance equation is
given by:

FS þ FD ¼ FB þ FP þ FI; ð6Þ

which, for slow growth rates, simplifies to

FS ¼ FB þ FP : ð7Þ

The time of detachment is a function of the contact angle of the bub-
ble with the surface, the surface geometry itself, as well as the flow con-
ditions. For bubbles growing from conical cavities, where the contact
angle of the growing bubble is θ, at detachment the surface adhesion
force is just balanced by the pressure and buoyancy forces, such that

2πRdσ sinθ ¼ 2γ
R′

−ΔρgH
� �

πR2
d þ ΔρσV ; ð8Þ

where Rd is the radius of the bubble at detachment,H the bubble height,
R′ the radius of curvature of the bubble at its highest point, g the accel-
eration due to gravity, Δρ the mass density difference between the gas
of the bubble and the fluid (Δρ ≡ ρG − ρL), σ the interfacial tension
between the fluid and the gas, and V the bubble volume.

Chappell et al. investigated the effect of the cavity geometry on
growth rate and detachment [65,66], showing that once the bubble
has emerged from the cavity its behavior is determined by the size of
the opening. The flow conditions, not considered explicitly in this cavity
geometry effect modeling, are expected to dictate the behavior for
detachment much more than the cavity geometry after the initial
bubble growth phase [61].

3.4.2. In flowing liquid
The ensemble of forces pulling the bubble upwards or lift force

experienced by a bubble moving in the liquid flow can be much more
complicated. For example in a non-symmetrical flow, the bubble expe-
riences a lift force perpendicular to its plane ofmotion andmany ad hoc
expressions of the lift force are used in bubbly flows to reconcile the
experimental observations [67]. Experiments in microgravity showed
that bubbles tend to migrate towards the center of the pipe [68].

The bubble detachment criterion of a bubble growing at thewall of a
linear shear viscous flow can be obtained from a force balance equation
derived by Duhar et al. [69,70]:

Fc þ FCP þ FB−∫
SB

PL−PLZ0ð Þn dSþ ∫
SB
τLn dS ¼ 0; ð9Þ

with the capillary force FC such that [71]

FC ¼ 1:25� 2rCσL
π a−βð Þ

π2− a−βð Þ2 sin aþ sin βð ÞeX

− 2rCσL
π

a−βð Þ cos β− cos að ÞeZ ;

ð10Þ

the contact pressure FCP

FCP ¼ 2σ L

R
−ρLgH

� �
πr2CeZ ; ð11Þ

and the buoyancy force FB encompassing both gravity and Archimedes
forces

FB ¼ ρG−ρLð Þ4
3
πR3g ð12Þ

where SB is the surface of the bubble, n the unit vector normal to the
bubble surface, g the gravitational acceleration,ρG the bubble gas density,
ρL the density of the liquid, PL the pressure of the surrounding liquid, PLZ0
the reference pressure in the liquid at the wall (at Z=0with respect to
Fig. 5), R the bubble radius, σL the surface tension of the liquid, rC the



Fig. 5. Geometrical definitions of parameters for the velocities and force balance equations (figure from [66]).
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orifice radius of the conical cavity from which the bubble grows, H the
bubble height, a the advancing contact angle, β the receding contact
angle, eX the unit vector parallel to the wall, eZ the unit vector perpen-
dicular to the wall and τL the deviatoric stress tensor due to viscous
effects.

The first 3 terms of Eq. (9) are the static forces and the last 2 terms
the hydrodynamic forces encompassing the drag, migration and
unsteady forces. The contact angles (Fig. 5)were shown to continuously
evolve during growth and detachment occurs for maximum capillary
force value of the advancing contact angle, 70° for a quiescent liquid
and 90° in a shear flow. In addition, Duhar et al. [37] derived simplified
departure radius equations (less than 5% error) for both the quiescent
liquid and shear flow cases.

It remains however to be determined to which extent the above
formulations apply to the case of bubbles in the bloodstream. The lack
of information in this regard is no doubt due to the practical difficulty
of observing bubble detachment from vessels in vivo, which would in
addition require creating these bubbles and predicting their nucleation
site. A first step in this direction was the recent demonstration ex-vivo
of bubble formation on the surface of hydrophobic vessels [72]. We
have also developed a set-up that permits the real-time observation of
bubble growth rates and densities over surface area fromhyperbaric de-
compression on ex-vivo tissues with an optical resolution of 1.75 μm
[73].

Chappell et al. [74]modeled bubble detachment in blood for bubbles
growing in cavities of the vessels' walls during decompression from a
saturation dive. The detachment process was separated into two dis-
tinct phases: bubble deformation with the bubble growing deflected
sideways in the direction of the flow but still attached to the cavity
mouth and assumed approximately spherical, then detachment once
the bubble separated from the cavity. The detachment happens when
the drag force experienced by the bubble due to the blood flow exceeds
the capillary force. Assuming that the flow around the spherical bubble
is laminar (Reynolds number ~0.001) and that the variationψ of contact
angles a and β is symmetrical a force balance between the drag and cap-
illary forces gives

ψ ¼ 6μL

σL

R′

rC

 !2

; ð13Þ

where μL is the blood viscosity,σL the surface tension, rC the radius of the
crevicemouth and R′ the radius of curvature of the bubble. The limiting
value of deformation angle ψcrit is then used to get the non-dimensional
radius of the bubble at the end of the deformation phase, R'crit/R, by
rearranging Eq. (13) to get R′crit.
4. Bubble behavior in the bloodstream

4.1. Bubble dissolution in blood

In the case of decompression bubbles growing in tissue or blood,
assumed liquid for simplicity, the nucleation and subsequent growth
of decompression bubbles is dependent on the dissolved gas content
(concentration and diffusivity). The solubility and mass diffusivity of
different inert gases (commonly nitrogen and helium in scuba diving)
are not identical and influence bubble dynamics. Experimental values
for diffusion and solubility coefficients for gases in biological tissues
and fluids are scarce and reviewed in [75]. It is estimated [75] that diffu-
sion coefficients in tissues are 25% to 50% lower than for water and that
the solubility coefficients for water can be used as an approximation
(less than 20% error) for most tissues apart from fat tissues which
have higher coefficients.

Once formed a gas nuclei (bubble of at least the critical radius size to
avoid dissolution due to surface tension effects etc.) will tend to equili-
brate the differences between thedissolved gas tension in the liquid and
the bubble gas pressure at its interface.

The Epstein–Plesset Eq. (5-EP) presented in Section 3.3.1 was
adapted for multi-component bubbles without encapsulation in blood
by Kabalnov et al. [76]:

dR
dt

¼ −DGLG
pexc þ 2σB=R
Pamb þ 4σB=3R

1
R
þ 1ffiffiffiffiffiffiffiffiffiffiffi

πDGt
p

 !
: ð14Þ

Where DG is the gas diffusivity, LG the partition coefficient of the gas
between the liquid phase and the bubble and pexc the excess pressure
(sum of excess systemic blood pressure with excess partial pressure of
the dissolved gases from the atmosphere to the bloodstream).

The evolution of bubbles in supersaturated tissue is particularly
relevant to DCS and was investigated theoretically by Srinivasan et al.
[77,78] using a modification of the Epstein and Plesset model with
three regions (bubble inside tissue mass but separated from it by an
unstirred boundary layer of constant thickness).

Thedetachmentmodel developedbyChappell et al. [74] calculated the
possibility of a gas plug directly occluding the capillary in which the bub-
ble forms after the dive from the distance traveled by the bubble laterally,
assuming the bubble travels at the same speed as blood flow velocity. The
gas concentration in the fluid (blood) was assumed to change much
slower than the gas transfers into the bubble, with a boundary layer of
finite thickness and varying gas concentration around the bubble. It was
shown that a bubble growing after a dive could theoretically create a gas
plug directly in the capillarywhere it originated, although vessel deforma-
tion and interaction of the bubblewith theflowfieldwere not considered.

image of Fig.�5
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The physiological concept of the oxygen window, or inherent
unsaturation due to oxygen metabolism [79], was used by Van Liew
and Burkard [80] to explain how stabilized microbubbles can persist
in the bloodstream. This was done simply by equating the pressure on
the bubble surface to the sum of the partial pressures of gases inside
the bubble. They also suggested that gases inside the bubble can be at
diffusion equilibrium if the bubble is able to support some degree of
negative pressure mechanically.

Looking at bubble dissolution, the extravascular bubble model by
Van Liew [81] was applied to the circulating bubble [82]. The supersat-
uration state of the mixed venous blood during decompression means
that the bubbles will dissolve slower or even expand, potentially
resulting in a lung filter overload.

A mathematical model to account for the cylindrical geometry of
bubbles observed in vivo was also developed [83], showing that the
absorption time observed corresponded better to the predictions of the
model. Once the length of the cylindrical bubble has shrunk, it reduces
to a spherical geometry and any subsequent shrinkage will decrease its
diameter. This geometry results in longer absorption times than expect-
ed for spherical bubbles, as observed with gas emboli in vivo [83,84]. A
similar model using this in vivo bubble geometry in vessels was devel-
oped for use in hyperbaric oxygen treatment, to determine the most ef-
fective treatment protocols for cerebral gas embolism [85].

Finally, the intravascular exogenous surfactant concentration was
not found to influence initial bubble conformation, but increased bubble
breakup and the rate of bubble reabsorption [86]. In an in vivo ratmodel
of cerebrovascular arterial gas embolism, intravenously injecting them
with a surfactant prior to inducing cerebral gas embolism showed a pro-
phylactic effect: strokes were undetectable on brain MRI scans and post
embolic cognitive and sensorimotor deficits were significantly reduced
[87].

4.2. Bubble dynamics in an ultrasound field

The equations for microbubbles in an ultrasound field are mostly
modifications of the Rayleigh–Plesset equation [88,89] describing
the dynamics of a free perfectly spherical bubble surrounded by an
unbounded viscous incompressible liquid in the far-field P∞(t) at
constant liquid temperature and uniform pressure in the bubble PB (R):

ρL R
d2R
dt2

þ 3
2

dR
dt

� �2
" #

þ 4μL

R
dR
dt

þ 2σB

R
¼ PB Rð Þ−P∞ tð Þ; ð15Þ

where μL and ρL are respectively the viscosity and density of the liquid
and σB the surface tension of the bubble of radius R.

Assuming that the vapor pressure in the bubble and non-linear
terms are negligible and that the pressure field far from the bubble
changes sinusoidally [89],

PB Rð Þ ¼ PG Rð Þ ¼ PGeq
R0

R

� �3γ
; PGeq ¼ Peq þ

2σB

R0
;

P∞ tð Þ ¼ Peq−PA sin Ωtð Þ;

ð16Þ

the radial oscillatory behavior of the bubbles can be derived by approx-
imating a first-order solution to this equation as

R ≈ R1 tð Þ ¼ A1r Ωð Þ
2

PA exp iΩtð Þ; ð17Þ

where the subscript eq refers to the quantity at equilibrium, PA is
the pressure amplitude and A1r(Ω) the linear amplitude–frequency
response of the bubble which depends on the liquid density and viscos-
ity, the gas pressure (or sum of partial pressures of gases) in the bubble
PG, the adiabatic exponent γ (ratio of the heat capacity at constant pres-
sure to heat capacity at constant volume for the gas mixture) and the
angular transmitted frequency Ω = 2πf with f the frequency of bubble
oscillation. The full derivation and explicit equations for the linear
amplitude–frequency of the bubble response A1r(Ω) can be found in
[90,91].

Some of the effects that are not taken into account in Eq. (15) are
the heat conduction and gas diffusion through the bubble wall, the
blood compositionmaking compressibility of the fluid and viscoelas-
ticity effects potentially important, the shell effect, as well as the in-
teractions between the bubbles and the blood cells and endothelial
boundaries.

For small radial oscillations, corrections to Eq. (15) have been devel-
oped to this effect [92,93], which led to the de Jong models assuming
that the shell of the bubbles dominates their response [94,95]. However
Sboros et al. [96] showed that the behavior of those bubbles is not com-
patible with the theoretical predictions of the viscoelastic ball model of
de Jong. Another theoretical model for an encapsulated bubblewas sug-
gested by Church [97] who considered a finite thickness for the shell,
separating the interface of the bubble into two layers of different surface
tension to reflect the different boundaries with gas and liquid respec-
tively. In addition, a complicating factor of the modeling is the fact
that oscillating bubbles do not always remain spherical in shape [19]
and are clearly asymmetric near the vessel walls [98].

An important consequence of Eq. (15) is that over time the oscillating
bubble near resonance can be growing due to rectified diffusion [99].
The diffusion rate of gas into the bubble is indeed proportional to its
surface area and therefore the net effect of oscillations will be to grow
the bubble over each oscillation cycle. It has been shown that the effect
of rectified diffusion is accelerated in the presence of surfactants at the
bubble-liquid boundary [17].

4.3. Rheology of microbubbles in the bloodstream

4.3.1. Brief overview of blood rheology
Blood plasma can be approximated to a Newtonian liquid [100] in

the case of studies involving microbubbles in arteries or in vitro condi-
tions in an ultrasound field. This is because viscoelastic effects (due to
blood cell deformation and vessel walls) can be ignored if the bubble
is growing more than 25 bubble radii away from the vessel walls
[101]. However for bubbles in small veins and capillaries, as well as
those growing in tissue, this is not the case and those cannot bemodeled
as simple Newtonian fluids [102].

Blood is a mixture of suspended red blood cells, white blood cells
and platelets in plasma. Plasma contains mainly water and proteins
and lipids, and is a Newtonian fluid, i.e. its shear stress is linear with
the strain rate [103]. The non-Newtonian rheology exhibited by blood
is down to the cellular components. When these are small compared
to the diameter of the vessel, this effect can be ignored and blood is
approximated to a continuum. For an incompressible Newtonian fluid,
the conservation of fluid mass and that of linear momentum yield the
following equations respectively [104]:

∇ � u ¼ 0; ð18Þ

and

ρL
∂u
∂t þ u �∇ð Þu

� �
¼ −∇P þ μL∇

2uþ ρLg; ð19Þ

where ρL is the fluid density, g the acceleration due to gravity, u the
velocity vector, P the pressure, and μL the fluid viscosity. For non-
Newtonian fluids, the shear stress term in Eq. (19) is changed to reflect
the shear-stress relationship for that fluid.

Over a range of shear stresses which depend on its hematocrit
content, blood is a shear thinning fluid, i.e. its viscosity decreases with
an increasing strain rate. Below a critical yield stress value of shear stress
[103], blood does not behave like a viscoelastic fluid anymore, but like a
solid. A constant effective fluid viscosity can be implemented, or the
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non-Newtonian properties of blood can be approximated by the Casson
model [103]. For blood flow in the capillaries, the diameter of the red
blood cells is similar to that of the vessel and they have to deform and
go through one at a time in a file, so the continuum approximation is
not valid [105,107].

Eqs. (18) and (19) are subject to boundary conditions to account for
the circulation of blood fromone region offlow to the other (continuum)
and also for the wall condition (elasticity etc.). Blood flow in the arteries
is generally pulsatile, whereas it is nearly steady in capillaries and veins
[108,109].

It is therefore clear from the brief overview above that different
forces resulting from these flow conditions can act upon the bubbles,
thus giving different bubble behavior.

4.3.2. Interfacial tension and surfactants
The interfacial tension, or force per unit length along the interface

between the gas phase present due to bubbles and the fluid that is
blood, has to be considered [104]. The Young–Laplace law relates the
pressure discontinuity ΔP across the interface assumed static, to the
mean interfacial curvature κ, and interfacial tension σ [110]:

ΔP ¼ 2σκ : ð20Þ

For a dynamic interface, this equation is replaced by:

Δf ¼ σκnþ∇Sσ ; ð21Þ

where∇S is the surface gradient operator, n the normal unit vector and
f the traction at the boundary such that f = σ · n with σ the stress
tensor [110]. For a Newtonian fluid, the normal stress discontinuity is
balanced by the interfacial curvature term and the tangential stress
discontinuity by the interfacial tension gradient. Due to boundary con-
ditions, interface position Y follows

∂Y
∂x � n ¼ u � n ð22Þ

meaning that the interface moves at the velocity of the normal compo-
nent of the fluid at the interface. As the bubble starts to move and
deform with the flow, the interface position becomes part of a moving
boundary problem since the dynamics of the interface and fluid are
coupled. The interfacial tension σ is typically constant for a clean inter-
face with no temperature differences, but depends on the interfacial
surfactant concentration when surfactants are present. If there is a
gradient in surfactant concentration on the boundary, then this results
in a shear stress gradient along the boundary, inducing Marangoni
flows [104]. Surfactants or surface active species can therefore affect
the dynamics of cardiovascular bubbles [111]. In blood there are many
lipids and proteins that are surface active which are soluble in blood
and transported by convection and diffusion [112,113].

4.4. Biological interactions

Bubbles which are formed in vivo or introduced in the organism
interact with living cells. In addition to the purely mechanical implica-
tions, there induce a variety of biochemical responses. Interaction
between bubbles and blood [114,115], endothelial damage, and micro-
circulatory impairment [116] have all been shown.

Nevertheless studying this phenomenon precisely is difficult. Studies
in vitro and ex-vivo, although insightful, are difficult to extrapolate to liv-
ing cells in their complex environment. The main limitation of animal
studies, on the other hand, is the higher complexity level that humans
exhibit and the inability to isolate phenomena for study. There are also
practical difficulties in finding adequate transparent tissue for intravital
microscopy of microbubbles in blood vessels [117]. Computational and
analytical studies can fill the gap between these methodologies to a
certain extent; however the inflammation cascade caused by bubbles is
an additional important problem to consider.

Not considering the disruption that bubbles may cause to get into
the circulation in certain cases, once the bubbles have detached and
are flowing in the vasculature their effect on endothelial function has
to be questioned. It was found in the case of microbubbles injected in
excised rat vessels for instance that their adhesion to the endothelium
is significantly lowered in the presence of surfactants [118]. This could
be due to surfactants acting as drag-reducing agents [119,120] and
reducing shear forces so that themechanical stress upon the endothelial
surface is reduced. Adhesion of microbubbles to endothelial cells, as
well as damage to these, may trigger an inflammatory response and
obstruct blood flow, causing ischemic injuries [121]. The properties of
the bubble boundary layer are clearly relevant to characterize adhesion
properties.

It has been shown for instance that some circulating molecules or
dissolved substances in blood can adsorb on interfacial area of the bub-
ble altering their dynamic behavior [122,124]. Proteins adhering to the
bubble interface can affect the adhesion interaction to endothelial cells
[6,83,125]. In addition, they can play a role in signaling clot formation
[112]. The adhesion of gas emboli to the endothelial surface was thus
shown to result from the blood-borne macromolecules attached to the
bubble surface [6]. These considerations are important for the therapy
of gas embolism, as it has been suggested that adding surfactants to
the perfusate can reduce bubble adhesion force [126].

Nitrogen bubbles have also been observed to induce an inflammatory
response. Platelets and leucocytes have been shown to aggregate with
the presence of bubbles [127,128], denature lipoproteins and activate
complement, bradykinin and coagulation systems [42]. These in turn
induce capillary leakiness and hemoconcentration [129,130], which
contributes to the difficulty of treating decompression sickness by
means of recompression only once this inflammatory process is under
way.

Ultrasound contrast agents can also be internalized by cells. For
instance various contrast agent types have been shown to be phagocy-
tosed by Kupffer cells (liver-specific macrophages) in vitro [131]. The
fact that some bubbles therefore end up accumulating in the liver or
spleen can be used for delayed phase imaging [43].
5. Conclusion

Bubble growth from desorption of a liquid containing dissolved gas
is generally dependent on both heat and mass transfer. The case of
decompression driven growth primarily dependent on mass transfer
was presented for the bubbles growing endogenously in the body of
scubadivers during and after their ascent fromadive. This decompression
degassingwas separated into the diffusion and inertia controlled bubble
growth from a pool or flowing liquid respectively. The detachment
equations for a bubble growing on a solid surface in a liquid were
then presented with and without flow. The behavior of bubbles in the
bloodstreamwas considered, looking in particular at their time to disso-
lution under different saturation conditions and geometries, rheology
and biological interactions.

Defining the exact cut-off point between the presence of bubbles in
the circulation and the observation of clinical symptoms is yet unclear,
in both the endogenously formed bubble case from decompression
[34] or mechanical heart valves [132] and the iatrogenically introduced
bubbles [5]. The persistence of bubbles in the bloodstream is crucial in
these inflammatory processes and gas composition of the bubbles com-
pared to the dissolved gases in the body affects the elimination time,
therefore the solubility and diffusion coefficients of these gases in the
given tissues are of interest [75]. As such, physicalmodeling and imaging
techniques that can offer estimates of numbers and sizes of bubbles, as
well as shell properties information, are clearly needed. Indeed the
rheological behavior and interaction of bubbles with the different
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components of blood and vascular wall determine the inflammatory
response triggered and ultimately the clinical presentation.
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