Intensification of landfalling typhoons over the northwest Pacific since the late 1970s

Wei Mei1,2* and Shang-Ping Xie1

Intensity changes in landfalling typhoons are of great concern to East and Southeast Asian countries1. Regional changes in typhoon intensity, however, are poorly known owing to inconsistencies among different data sets2–8. Here, we apply cluster analysis to bias-corrected data and show that, over the past 37 years, typhoons that strike East and Southeast Asia have intensified by 12–15%, with the proportion of storms of categories 4 and 5 having doubled or even tripled. In contrast, typhoons that stay over the open ocean have experienced only modest changes. These regional changes are consistent between operational data sets. To identify the physical mechanisms, we decompose intensity changes into contributions from intensification rate and intensification duration. We find that the increased intensity of landfalling typhoons is due to strengthened intensification rates, which in turn are tied to locally enhanced ocean surface warming on the rim of East and Southeast Asia. The projected ocean surface warming pattern under increasing greenhouse gas forcing suggests that typhoons striking eastern mainland China, Taiwan, Korea and Japan will intensify further. Given disproportionate damages by intense typhoons1, this represents a heightened threat to people and properties in the region.

Tropical cyclones (TCs) cause devastating losses of life and property, and have major social and economic impacts around the world1. Given that nearly all the damage is associated with TC landfalls, and that the population of coastal areas is growing and sea level is rising, detection, attribution and prediction of regional changes in TC activity (especially intensity and frequency) are among the top priorities of TC research11,15. For the northwest Pacific, where TCs are most active and threaten a large population of East and Southeast Asia, progress in studying regional changes in TC intensity has been hindered by a lack of consensus on intensity changes among different TC data sets2–8. Particularly, under debate are historical changes in the annual counts of category 4–5 typhoons: the Joint Typhoon Warming Center (JTWC) and the Japan Meteorological Agency (JMA) TC data—the two most widely used data sets in typhoon research—show contradictory trends for the period starting from 19772,8,17.

The discrepancies in the TC intensity estimated independently by the two operational agencies can be reconciled by considering changes in the JMA methodology (see Methods). The adjusted JMA and JTWC data sets consistently show that the annual number of category 4–5 typhoons has increased by more than two over the past 38 years (from less than five per year to around seven per year), and the correlation coefficient between the two time series rises from 0.09 to 0.87 after the adjustment (Fig. 1a). Strikingly, the proportion of these intense typhoons to all typhoons has more than doubled, and the annual mean typhoon lifetime peak intensity has increased by 14% (∼7 m s−1)—a nearly 50% increase in instantaneous destructiveness11—during 1977–2014 (Fig. 1b,c), suggesting a substantial shift to higher typhoon intensity8,11–14. This is corroborated by the results from a coupled downscaling model (Supplementary Fig. 1). It remains to be determined whether the 38-year trend we identified here is part of low-frequency oscillations or secular climate change.

Around 50% of typhoons make landfall (Supplementary Table 1), and an increase in landfalling typhoon intensity would be of great concern for society. While previous studies have focused on basin-integrated intensity metrics2–8,11,12,14–16, here we investigate regional characteristics of typhoon intensity change. We use cluster analysis to divide typhoons into four distinct regional groups, a method that proves successful in identifying patterns of northwest Pacific TC tracks17,18. To obtain robust features, we apply the cluster analysis jointly to both JTWC and adjusted JMA data sets (see Methods). Our results reveal that typhoon groups with the largest landfall rates show pronounced intensification, whereas changes in open-ocean typhoons are modest in comparison.

We find that four clusters are optimal to distinguish typhoons of different characteristics (for example, geographic locations of genesis and tracks) while retaining a large sample size in each cluster to study interannual and longer variations. Typhoon statistics in each group are given in Supplementary Table 1. Clusters 1 and 2 include more than 60% of typhoons over the entire basin with a high landfall rate (∼85%). As detailed below, typhoons of these two clusters show the most pronounced increasing trends in intensity and intensification rate.

Figure 2 shows the tracks and temporal evolution of different intensity metrics of typhoons in Cluster 1, which constitute around 34% of the northwest Pacific typhoons (Supplementary Table 1). After forming east of the Philippines, typhoons in this group travel northwards-to-northwestwards, and roughly 75% of them make landfall over East Asia (north of ∼22°N; including eastern mainland China, Taiwan, Korean and Japan). The annual mean values of their lifetime peak intensity have risen by ∼8 m s−1 (∼15%) during 1977–2013 (Fig. 2b), the largest increase among the four groups. Consistently, category 4–5 typhoons have increased by nearly four times in number (from less than one per year in the late 1970s to more than four per year in recent years; Supplementary Fig. 2a; see a discussion in Methods) and nearly tripled as a percentage of total typhoon counts (from ∼20% to ∼60%; Supplementary Fig. 3a).

Figure 3 shows the results for typhoons in Cluster 2, which make up nearly 30% of the typhoons basin wide (Supplementary Table 1). They form slightly westward relative to those in Cluster 1 and over the South China Sea, and move more directly towards the west-to-northwest, with 97% of them striking Southeast Asia (including the Philippines and Vietnam) and/or South China.

1Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive MC 0206, La Jolla, California 92093-0206, USA.
2Department of Marine Sciences, University of North Carolina at Chapel Hill, 3202 Venable and Murray Halls, CB 3300, Chapel Hill, North Carolina 27599-3300, USA. e-mail: wmei@email.unc.edu
Typhoons in this group on average have intensified by $\sim 5 \text{ m s}^{-1}$ ($\sim 12\%$) throughout the 37-year period (Fig. 3b). Category 4–5 typhoons have approximately doubled both in number (from slightly more than 0.5 per year to more than 1 per year; Supplementary Fig. 2b) and in proportion (from more than 10% to nearly 30%; Supplementary Fig. 3b).

Typhoons in Clusters 3 and 4 are generated farther east than those in the first two groups, and generally stay over the open ocean during their lifetime, with a much smaller chance of making landfall (Supplementary Figs 4 and 5 and Supplementary Table 1). They have also experienced some increases in their lifetime peak intensity and in the proportion reaching category 4–5 intensity over the study period, particularly for Cluster 4 (Supplementary Fig. 3c,d).

But the very small sample size after year 2005 precludes a robust quantification (Supplementary Fig. 6c,d). It is worth noting that a decrease in the number of Cluster 4 typhoons and an increase in the number of Cluster 1 typhoons may have contributed to the observed poleward shift in the average latitude where typhoons reach their peak intensity19.

To understand the cause of intensity change, we decompose the peak intensity into intensification rate and intensification duration, two metrics governed by distinct physical processes. While intensification duration variability is related to the El Niño–Southern Oscillation and the Pacific Decadal Oscillation4,15,16,18,20, intensification rate change is tied to the sea surface temperature (SST) warming pattern (to be shown later). The intensification rate of Cluster 1 and 2 typhoons has increased by 1.5 m s$^{-1}$ per 6 h—a more than 60% increase—during 1977–2013 (Figs 2b and 3b). Such a pronounced increase in intensification rate accounts for nearly all the strong increase in typhoon intensity in these two groups.
and incorporated into the operational data sets. The exact cause of these biases is beyond the scope of this study.

The above analyses based on the operational data sets suggest that changes in typhoon intensification rate display a marked spatial pattern: the changes are large and robust off East and Southeast Asia, whereas the changes are modest over the open ocean. To determine the physical factors for the spatial inhomogeneity in changes of typhoon intensification rate, we calculate the linear trend over the study period in various atmospheric and oceanic variables that affect typhoon development.

Figure 4a and Supplementary Fig. 9 show the results for potential intensity (a theoretical maximum intensity a TC can achieve for a given SST and atmospheric thermodynamic profile)\(^{22,23}\), upper-ocean thermal stratification, vertical wind shear, and low-level vorticity. The most striking feature is the enhanced increase in potential intensity along the continental rim of East and Southeast Asia compared to the open ocean (Fig. 4a). This spatial pattern bears a strong resemblance to that of changes in typhoon intensification rate (see Supplementary Fig. 8 for the intensification region for each individual typhoon group), suggesting that potential intensity exerts a strong control on typhoon intensification, with higher potential intensity permitting more vigorous deep convection in favour of typhoon development\(^24\).

Reduced upper-ocean thermal stratification (that is, temperature difference between sea surface and subsurface) over 20°–30° N, 120°–135° E and over the northern South China Sea (Supplementary Fig. 9a) may also contribute to an increasing typhoon intensification rate over these regions, by diminishing the negative feedback from typhoon-induced upper-ocean mixing\(^{22,23}\). The positive effect of weakened stratification over the tropical open ocean east of 130° E appears to be relatively minor in affecting local typhoon development; see Methods for a discussion of possible reasons. As for atmospheric dynamic variables (for example, vertical wind shear and low-level vorticity), their changes over the typhoon intensification regions are either modest or spatially sporadic, and do not represent robust contributions to typhoon intensification modulation (Supplementary Fig. 9b,c), except the possible effect of low-level vorticity noted in Methods.

The changes in potential intensity resemble the SST change pattern (Fig. 4a,b)\(^22,23\), suggesting that local SST changes control typhoon intensification rate. To verify this SST effect, we further compute the correlation coefficient between interannual variations in the SST and the typhoon intensification rate of each individual group (Supplementary Fig. 11). Despite the small sample size and associated low signal-to-noise ratio, significant positive correlations exist between typhoon intensification rate and local SSTs for each cluster (Supplementary Fig. 11). (Calculations with global or Pacific tropical mean SST warming removed give consistent results with smaller values.) This suggests that the SST effect on typhoon intensification rate is present not only in the long-term trend but also in interannual variations. In addition, a rough estimate suggests that during the study period (that is, 1977–2013) the SST effect is twice as large as the stratification effect (see Methods); together they contribute to around 75% of the intensification rate increase. While SSTs have been suggested to regulate basin-integrated TC activity and the SST change pattern has been linked to TC frequency change\(^{21,12,14,16,18,28–32}\), our results here indicate that the SST change pattern is an important predictor for regional typhoon intensity change. The SST change pattern itself may be related to changes in ocean currents and surface winds\(^33\). The observed SST change (including the spatial pattern) includes both natural and anthropogenic components\(^33,34\). Rigorous attribution of the observed change in typhoon intensification remains challenging, owing to a lack of long-term reliable data. Experiments with realistic high-resolution models may help separate anthropogenic trends from natural variability.

Figure 3 | Tracks and intensity evolution of typhoons in Cluster 2. a. Tracks of typhoons from the JTWC data (the JMA data show similar results). The colours show the intensity of tropical depression (grey), tropical storm (green), categories 1 and 2 (orange), and categories 3 to 5 (red). b. Annual mean typhoon lifetime peak intensity and annual mean typhoon intensification rate as a function of time from the JTWC (black curve) and adjusted JMA (red curve) data. Thick dashed lines show linear trends during 1977–2013.

(Figs 2b and 3b), with intensification duration contributing mainly to interannual-to-decadal variations (Supplementary Fig. 7a,b). By contrast, the intensification rate of Cluster 3 and 4 typhoons has experienced modest changes (Supplementary Figs 4b and 5b).

We have also examined an experimental data set obtained based on simplified analysis of satellite infrared images\(^23\) (see Methods). In the experimental data set, Cluster 1 typhoons show a similar increasing trend of smaller magnitude in both lifetime peak intensity and intensification rate, but Cluster 2 typhoons exhibit no intensification trends. The reason for the discrepancies is unclear at this stage, but we note that operational best track data consider additional observations, including in situ measurements. While using similar data sources, JTWC and JMA conduct the Dvorak analysis independently. The agreement between the two operational data sets gives confidence in both. The experimental data set, on the other hand, shows systematic biases in the annual mean and probability density function of lifetime peak intensity during 1981–1987, when aircraft reconnaissance data were still available...
In summary, our analyses of TC data sets from independent operational agencies show that typhoons that make landfall have significantly intensified since the late 1970s owing to strengthened intensification rate. The increase in intensification rate is in turn due to enhanced SST warming in a band off the coast of East and Southeast Asia. Our results hence reveal the critical role of local SSTs in typhoon intensification, and suggest the importance of the SST change pattern for regional changes in typhoon intensity in a warming climate.

Climate models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) simulate the observed intensification of SST warming and increase of potential intensity on the continental rim of East and Southeast Asia, although the horizontal gradient is underestimated (Fig. 4c and Supplementary Fig. 12b). While quantitative attribution of the historical change awaits further studies, CMIP5 models project faster warming rates north of ∼20°N under both representative concentration pathways (RCP) 4.5 and 8.5 scenarios (Fig. 4d and Supplementary Fig. 12a). This SST change pattern acts to strengthen potential intensity over the subtropical ocean (Supplementary Fig. 12c,d; see also ref. 35). This favours the intensification of Cluster 1 and 3 typhoons, heightening risks of typhoon damage to eastern mainland China, Taiwan, Korea, and Japan.

Methods

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.

Received 26 April 2016; accepted 21 July 2016; published online 5 September 2016

References

Methods

Operational JTWC and JMA data sets. The tropical cyclone (TC) data over the northwest Pacific are from the Joint Typhoon Warning Center (JTWC) best track data set and the Japan Meteorological Agency (JMA) best track data set. Both of which provide TC location and intensity (measured by maximum sustained surface wind speed) at 6-h intervals. JTWC and JMA estimate the tracks and intensity of TCs independently, although they may use similar data sources (for example, satellite images) and techniques (for example, the Dvorak technique). Because JMA has provided wind speed measurements since 1977, we focus our study over the period of 1977–2014. Because the TC data for year 2014 were not available from JTWC at the time of analysis, the joint analysis of TC tracks covers only the period of 1977–2013. But analyses of basin-wide metrics (such as TC counts and lifetime peak intensity; Fig. 1) include year 2014, with the data of this year for JTWC being supplemented with the data from Unisys Weather (http://weather.unisys.com/hurricane/w_pacific/2014/index.php). We focus on TCs that reach typhoon intensity (∼33 m s\(^{-1}\)) because of their dramatic influence in many aspects. In total, there are nearly 600 typhoons used in this study.

Adjusted JMA data set. JTWC and JMA provide maximum sustained wind speeds averaged over different time periods: 1 min for JTWC and 10 min for JMA. Here to be consistent with the JTWC data and to follow the Saffir–Simpson hurricane wind scale, we convert the JMA data from 10-min mean values to 1-min mean values. The conversion differs for the periods before and after the late 1980s, because JMA employs different methodologies in estimating 1-min wind data and the speed\(^{-1}\). Before 1987, JMA estimated 1-min sustained wind speeds first and then converted them to 10-min values based on a linear relationship. After 1987, JMA estimated 10-min sustained wind speed directly using the Koba table\(^{11}\).

Accordingly, our conversion of the JMA data to 1-min mean values differs before and after 1987: the data before 1987 are divided by 0.88 (ref. 41), whereas the data after are first converted back to Dvorak current intensity number using the Koba table, which is then used to calculate 1-min mean values using the Dvorak table\(^{11}\). It is worth mentioning that the conversion used in previous studies appears not to have considered the changes in methodologies by JMA and that the JMA data are divided by a constant (for example, 0.88) over the entire period, producing results very different from those based on the new conversion (for example, see the green curve in Fig. 1a). We refer to the 1-min wind data obtained using the conversion in previous studies as the adjusted JMA data obtained using the new conversion in this study as the adjusted JMA 1-min wind data.

Because wind estimates in the adjusted JMA data are generally smaller than those in the JTWC data, particularly for intense typhoons (the mean lifetime peak intensity of category 4–5 typhoons is 67.95 and 64.88 m s\(^{-1}\) for the JTWC and adjusted JMA data, respectively), we reduce the threshold value of category 4 intensity slightly for the adjusted JMA data from 58.5 to 56 m s\(^{-1}\), although keeping the value of 58.5 m s\(^{-1}\) produces similar results. The definition of typhoons is the same for the JTWC and adjusted JMA data. Despite the subjective nature of satellite imagery analyses and differences in how in situ measurements are incorporated into intensity estimates between agencies, the JTWC and adjusted JMA data show consistent trends in both basin and regional typhoon intensity metrics (for example, see the plots in Figs 1b–c). This suggests the robustness of our results. We further examined the simulations of a coupled downscaling TC model developed by Emanuel\(^{42–44}\), and found a positive trend of similar magnitude in the annual mean typhoon lifetime peak intensity (∼1.8 m s\(^{-1}\) per decade; Supplementary Fig. 1). In addition, we note that the positive trend in typhoon intensity in both the JTWC and JMA data is also consistent trends in both basin and regional typhoon intensity metrics (for example, see the plots in Figs 1b–c). This suggests the robustness of our results. We further examined the simulations of a coupled downscaling TC model developed by Emanuel\(^{42–44}\), and found a positive trend of similar magnitude in the annual mean typhoon lifetime peak intensity (∼1.8 m s\(^{-1}\) per decade; Supplementary Fig. 1). In addition, we note that the positive trend in typhoon intensity in both the JTWC and JMA data is also consistent. Because the tracks from the best track data sets by different agencies differ (though not that much), even for a specific storm (that is, having a same name around the same time)\(^{28}\), we apply the cluster technique to tracks from both the JTWC and JMA data sets simultaneously to obtain robust conclusions (that is, inclusion of the tracks from both the JTWC and JMA data in the same analysis). We note that the clustering method is more objective than a method in which typhoons are first divided into different groups based on whether they make landfall, although the latter method produces similar results.

A note on changes in typhoon number in Cluster 1. Part of the increase in the absolute number of typhoons and category 4–5 typhoons may be due to a geographical shift in the number of typhoons between Cluster 1 and Cluster 4.
nsequent weak influence on typhoon development. TC-induced SST cooling is expected to be small (Supplementary Fig. 10b) with a

Possible reasons for the minor effect of weakened stratification over tropical open ocean east of 130° E on local typhoon development. First, in this area the climatological stratification is relatively weak (Supplementary Fig. 10a) and typhoons are moving relatively fast (Supplementary Table 1). Accordingly, TC-induced SST cooling is expected to be small (Supplementary Fig. 10b) with a consequent weak influence on typhoon development. This, together with the nonlinear dependence of TC intensification rate on SST cooling, leads to a weak sensitivity of typhoon intensification to changes in stratification. Second, reduced low-level vorticity east of the Philippines (Supplementary Fig. 9c) may have cancelled the weak positive effect of reduced upper-ocean thermal stratification.

A rough estimate of the SST and ocean thermal stratification effect on typhoon intensification rate. Over the intensification regions of Cluster 1 and 2 typhoons, the SST warming rate is around 0.2 °C per decade and the weakening rate of ocean thermal stratification is around 0.1 °C per decade. Their respective effect on typhoon intensification rate is approximately +0.2 and +0.1 m s⁻¹ per 6 h per decade, which is ~50% and 25% of the observed increasing rate of typhoon intensification rate (0.4 m s⁻¹ per 6 h per decade or 1.5 m s⁻¹ per 6 h between 1977 and 2013).

Code availability. The code and scripts used to analyse the data and to generate the plots in this paper are available from the corresponding author on request.

References
38. Kishimoto, K. JMA Best Track Data Presentation (NOAA’s National Climatic Data Center, 2011); http://eclipse.ncdc.noaa.gov/san1/ibtracs/workshop/SecondWorkshop/12-Tuesday/April-12-1340-JMA%20best%20track-Kishimoto.pptx