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ABSTRACT 

Kathleen Lawlor: Impacts of Poverty Reduction Programs in Remote Rural Landscapes: 
Evidence from Cash Transfers in Zambia 

(Under the direction of Sudhanshu Handa) 

This dissertation, composed of three studies, examines the potential for unconditional 

cash transfers to reduce poverty in rural Africa and considers the serious challenges posed by 

weak market access, natural resource dependence, and climate shocks that threaten food 

supplies. To investigate these questions we harness the randomized roll-out of Zambia’s Child 

Grant Program, which extends – unconditionally – payments of 60 kwacha (about $12) per 

month to households with a child under the age of five. 

We find that these relatively small cash payments are transformative for rural Zambian 

households in numerous ways. First, cash transfers empower poor, rural households facing 

weather and other negative income shocks to employ coping strategies typically used by the non-

poor, such as spending savings. The transfers also enable households to substantially increase 

their food consumption and overall food security over time, despite widespread drought and 

flooding. Second, cash transfers allow households to expand their farms. Third, the income 

effects of cash are powerful enough to shift livelihood strategies and convert subsistence farmers 

into small-scale farmers that sell some fraction of their crops in markets, purchase agricultural 

inputs, and own non-farm businesses.  

However, there is significant impact heterogeneity moderated by households’ market 

access. We find that while cash is more transformative than bicycle ownership (which can 

facilitate market access) in terms of converting subsistence farmers into small-scale sellers,
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bicycles can empower households already engaged in agricultural markets to increase their crop 

sales over time – even in the context of declining crop revenues. We also find that cash has a 

greater impact on farm expansion for households living far from markets, while households 

living close to markets are more likely to use the transfer to start non-farm businesses and 

consume charcoal.  

These three studies provide evidence that unconditional cash transfers facilitate rural 

households’ autonomous adaptation and development decisions and these decisions are helping 

households escape poverty, despite challenges posed by climate change and remoteness. 

However, the productive impacts of cash transfers in rural areas could be enhanced by 

complementary initiatives that improve market access and promote sustainable use of natural 

resources. 
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CHAPTER 1: 
 BACKGROUND AND OVERVIEW 

1.1. Introduction 

Over the past decade, numerous econometric studies have investigated the effectiveness 

of cash transfer programs in reducing poverty in developing countries. This large and growing 

body of evidence reveals that cash transfers are highly effective in reducing poverty in various 

countries across the world (Journal of Development Effectiveness, 2010). Cash transfer 

programs, which extend regular cash grants to poor households, are designed to relieve the 

immediate acute effects of extreme poverty and break the intergenerational transmission of 

poverty to children. Many of the most studied and well-known cash transfer programs, such as 

Mexico’s Progresa (now known as Oportunidades) and Brazil’s Bolsa Familia, make the 

extension of payments conditional on children’s health clinic visits as well as school enrollment 

and attendance.  

The main goal of cash transfer programs is social protection, with a specific focus on 

improving children’s welfare and well-being. Blank et al. (2010) review several definitions of 

social protection and note that most definitions emphasize the reduction of households’ 

vulnerability to economic shocks, which enables them to “protect” their consumption and 

achieve a minimum standard of living, above that of extreme poverty. The general theory of 

change motivating conditional cash transfer programs is that parents require a pecuniary 

incentive to vaccinate their children or enroll them in school and the payments provide 

households with cash they can use to buy more nutritious food for themselves and their children.
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Taken together, the cash plus conditions should lead to an improvement in children’s human 

capital and ability to escape poverty over the long-term.  

Economic theory suggests that conditions attached to transfers change the relative prices 

of goods and thus introduce substitution effects that affect behavior. This behavior may be 

economically efficient, if cash encourages households to consume more of a good that is socially 

beneficial (i.e., has positive externalities), such as childhood vaccinations, than they would have 

in the absence of this incentive. However, economic theory also suggests that conditionalities 

may be inefficient for multiple reasons. Because compliance with conditions imposes transaction 

and opportunity costs on households, there is risk of adverse selection, where only those who 

would have taken the obliged actions anyways opt-in to the program (because their costs of 

compliance are minimal). Additionally, there are real programmatic costs associated with 

monitoring compliance with conditions and these program expenditures could instead be spent 

on increasing the size of the transfer or enrolling more beneficiaries. For these reasons and 

others, cash transfer programs in Africa tend to be unconditional, though the focus remains on 

social protection for children.1 

Beyond protecting households’ consumption and children’s human capital, cash transfer 

programs also have significant potential to contribute to poverty reduction more broadly. For 

example, if households use the cash grants to increase agricultural production and sell their 

production and labor in markets, cash transfers could push households onto self-propelled 

growth trajectories that allow them to escape poverty. Particularly in Africa, where the depth of 

                                                
1While some studies find that conditional programs produce better outcomes for children’s health and schooling 
(e.g., Baird et al., 2011, Attanasio et al., 2015), others question the methodological rigor of these studies (e.g., Kidd 
and Calder, 2012) and many of the first generation evaluations of unconditional cash transfers in Africa are 
identifying positive impacts on children’s health and schooling (UNICEF Office of Research-Innocenti, 2014) as 
well as reductions in risky sexual behavior amongst youth (Handa et al., 2014(a)).  
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poverty is especially severe2 and there are few employment opportunities, these small infusions 

of cash have the potential to be transformative.  

Historically, poverty reduction programs in low-income countries have focused on 

targeted sector interventions, including in-kind transfers of livestock, agricultural inputs, 

improved cookstoves, or other assets; training in agricultural techniques, health practices, or 

small-business development; supply-side interventions to increase the quantity and quality of 

educational and health care facilities; and the extension of microcredit. However, as Blattman 

and Niehaus (2014) observe, evidence is accumulating that many of these targeted sector 

interventions have seriously underperformed.3 When put in this larger historical context, cash 

transfers – conditional or not – clearly represent a revolutionary approach to fighting poverty.   

All of these approaches are based on certain assumptions – explicitly or implicitly – 

about what works to reduce poverty. Implicitly, traditional development interventions that give 

in-kind transfers rather than cash are suggesting that donors/governments/NGOs know what the 

poor need to get out of poverty – and they know better than the poor themselves. Supply-side 

interventions assume there is existing demand for education and health services that is not being 

met due to lack of infrastructure, whereas educational training programs assume demand is 

lacking and technological adoption and agricultural output low due to a lack of information. And 

while the explicit assumption guiding microcredit approaches is obviously that the poor are 

credit-constrained, the implicit assumption – given the way microcredit lending operates – is that 

                                                
2Nearly half of Sub-Saharan Africa’s population lives in extreme poverty (measured as living on less than 
$1.25/day) (World Bank (2013(a)). Rural poverty remains particularly severe on the continent; in some African 
countries 90% of those living below the poverty line reside in rural areas (Chen and Ravallion, 2007). 
 
3For example, recent evidence from six randomized evaluations of microcredit programs implemented across the 
developing world reveals that microcredit does not increase household consumption or income (see Banerjee et al., 
2015). 
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poverty is perpetuated by a lack of credit for profit-making endeavors, rather than a lack of credit 

and finance for basic needs.  

In contrast, an unconditional cash transfer approach might assume that the poor 

themselves are best placed to decide how small amounts of development finance should be spent 

in order to improve their lives; that demand for health care, education, and improved 

technologies is low due to income constraints; and that an inability to satisfy basic needs – rather 

than start a small business – is the major force perpetuating poverty, with food consumption and 

agricultural production constrained by a lack of income, credit, and savings.  

Cash transfers could potentially be more effective in reducing poverty than targeted 

sector interventions for several reasons. First, it may be that the primary constraint on household 

agricultural production, market engagement, and savings is income, rather than information. 

Second, because cash transfers enable the poor themselves to decide what changes to make to 

their livelihood strategies, this could allow those who are more entrepreneurial to diversify their 

livelihoods beyond farming, while also allowing those more skilled at agriculture to expand their 

farms. From an economic standpoint, such self-selection could lead to efficiency gains as well as 

avoid saturation of agricultural markets by enabling diversification of livelihoods at the local 

level. Finally, because cash transfers respect individual’s autonomy and agency and empower the 

poor to make their own decisions, transfers could be more effective than traditional sector 

approaches at tackling multiple dimensions of poverty, including capability deprivation and lack 

of voice, choice, and action (per Sen, 1999). 

However, questions remain about the effectiveness of cash transfers in achieving 

development impacts beyond protection of children’s human capital. Unconditional cash 

transfers, in particular, face skepticism; some worry that the poor won’t use the money to protect 
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children’s human capital or that the transfers won’t be put towards productive uses and will 

instead foster dependency and idleness (Blattman and Niehaus, 2014). Additionally, cash transfer 

programs’ emphasis on the demand side might cause these programs to overlook important 

supply-side constraints that hinder households’ ability to convert cash transfers into health visits, 

education, or purchases. Supply-side constraints could also cause cash transfers to induce 

localized inflation if, for example, a rising demand for food cannot be met by increased 

agricultural production. In rural Africa, supply-side constraints may be particularly problematic. 

Experience with cash transfers in remote rural areas of Africa is still being tested (Davis 

et al., 2012). As the “last frontier” of global poverty eradication (World Bank, 2013(a)), these 

settings face unique challenges given weak market access (Barrett et al., 2001) and the complex 

poverty-environment relationships that characterize agricultural communities living on less-

favored lands (Barbier, 2010). Moreover, these challenges facing rural Africa will only be 

compounded in coming years by the erratic weather patterns induced by climate change, which 

are predicted to take devastating tolls on rain-fed agriculture and food security in Africa (IPCC, 

2014).  

All of these characteristics of rural Africa suggest strong potential for poverty traps – the 

self-reinforcing conditions that cause poverty to persist (Dasgupta, 1997). For example, 

subsistence farmers coping with drought and a failed harvest may have no other choice but to 

reduce food consumption, given a lack of savings, liquidity, and credit (Zimmerman and Carter, 

2003; World Bank, 2013(b)). Such short-term coping strategies can lead to malnutrition and the 

degradation of human capital, especially children’s, weakening their ability to escape poverty 

over the long-run.4 Similarly, poor communities dependent on natural resources for farming and 

                                                
4Grantham-McGregor et al. (2007) estimate that early childhood malnutrition in developing countries reduces 
individuals’ lifetime earnings by 22 percent. 
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livelihoods may degrade their natural capital in an effort to improve their situation, thereby 

pushing themselves farther into poverty (Barbier, 2010). Finally, weak infrastructure and limited 

market access in rural areas pose significant supply-side constraints on the rural poor’s ability to 

escape poverty, suggesting the existence of “fractal poverty traps” (Barrett and Swallow, 2005). 

In this context of multiple poverty traps, many of which repeat and reinforce themselves at 

multiple scales (from the household to the community to the region), can cash transfers be an 

effective development tool? 

The many unconditional cash transfer programs currently being implemented in rural 

Africa offer fertile ground for investigating the impacts of cash transfers beyond protection of 

children’s health and education to include examination of impacts on household agricultural 

production, market participation, and income generation. These programs also provide an 

opportunity to critically assess whether cash transfers can work to reduce poverty in the context 

of potential poverty traps posed by weak market access, natural resource dependence, and 

climate shocks that threaten food supplies.  

This dissertation, composed of three studies, investigates these questions using data from 

the randomized roll-out of an unconditional cash transfer program currently being implemented 

in Zambia, the Zambia Child Grant Program.  

1.2. Randomized impact evaluation of the Zambia Child Grant Program   

The Zambian Child Grant Program is an unconditional cash transfer program being 

implemented by Zambia’s Ministry of Community Development, Mother and Child Health. The 

goals of the program are to reduce extreme poverty and the intergenerational transmission of 

poverty to children. To be eligible for the program, households must have a child under the age 

of five. Enrolled households receive the equivalent of about $12 per month, which is estimated to 
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be the cost of purchasing one meal per day for an average-sized household for a month. The 

Ministry of Community Development, Mother and Child Health began implementing the 

program in 2010, in three districts with the highest rates of child mortality and malnutrition in 

Zambia: Kalabo, Kaputa, and Shongombo. These districts are extremely remote, situated more 

than two days car travel from the country’s capital, Lusaka.  

Zambia’s Child Grant Program is being rolled out in phases, enabling the program to first 

conduct a rigorous evaluation of the pilot phase before scaling up. The evaluation employs a 

multi-site, clustered randomized design. Thirty communities from each of three districts were 

first randomly assigned to either treatment or control status. All eligible households within 

treatment communities were then enrolled in the program. Next, 28 households from each 

control and treatment community were randomly selected to participate in the study. Baseline 

surveys were administered prior to randomly assigning communities to treatment or control 

status and the start of the program. In sum, in 2010, baseline data were collected from 2,515 

households living in 90 communities (45 control, 45 treatment) across Kaputa, Kalabo, and 

Shangombo. A second round of data was collected in 2012.  

In addition to collecting detailed information on children’s health and schooling, 

households were asked about their consumption, income, assets, agricultural production, and 

other livelihood activities. Households were also surveyed about their exposure to a long list of 

potential negative income shocks as well as their specific coping strategies. Households in the 

sample are quite poor, with 92% living below the poverty line5 and 90% ranking as severely food 

insecure. The vast majority are subsistence farmers, farming, on average, less than 1 hectare of 

land. At baseline, only 22% of households sold crops and only 13% purchased agricultural inputs 
                                                
5Households with total expenditures less than 93.37 kwacha per person per month in 2010 are considered to be 
severely poor. 
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(i.e., seeds, fertilizer, or pesticides). On average, households live 19 km from food markets, 

though there is considerable variation in the study sample.  

1.3. Results 

1.3.1. Cash transfers and weather shocks   

The first chapter of this dissertation situates cash transfers in the specific context of 

climate change in Africa and the severe risks it poses for development. Climate models predict 

dramatic disruptions to rainfall patterns in Sub-Saharan Africa, with disastrous consequences for 

agricultural yields and food security and a potential reversal of gains made in the region’s fight 

against poverty (IPCC, 2014). How the international community chooses to address climate 

mitigation and adaptation has significant implications for global inequality and intergenerational 

equity. While crop insurance and “ecosystem-based adaptation” are often cited as important 

climate adaptation strategies for rural Africa, little attention has been paid to the potential role of 

unconditional cash transfers. This study is the first to provide econometric evidence of how cash 

transfers could help households in rural Africa cope with extreme weather events affecting 

agricultural production.  

Between the first and second rounds of data collection for this study, 81% of the sample 

experienced droughts and floods as well as sharp fluctuations in food and crop prices. A common 

shock-coping strategy employed by poor, rural households is to simply reduce food 

consumption, given lack of savings, credit, or other options. Avoiding detrimental coping 

strategies that degrade households’ capabilities, and thus ability to escape poverty, is essential 

for building resilience to climate change. We find that in the face of shocks, cash empowers 

poor, rural households to employ coping strategies typically used by the non-poor, such as 

spending savings, and also enables them to substantially increase their food consumption and 
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overall food security. We also find some evidence that this positive impact of cash on shock-

coping is greatest when transfers are received prior to shock exposure, rather than ex-post. This 

evidence demonstrates that extending relatively small cash payments unconditionally and 

regularly to the rural poor is a powerful policy option for fostering climate-resilient development. 

1.3.2. Cash transfers, natural resource use, and market access 

The second chapter of this dissertation considers how cash transfers affect the 

environment and examines whether variation in market access is associated with heterogeneous 

impacts on natural resource use. The theoretical and empirical ambiguity characterizing poverty-

environment relationships motivates this study. Some suggest that reducing poverty could 

decrease rural households’ pressure on natural resources, while others argue poverty reduction 

increases such pressure by enhancing the poor’s ability to clear land and harvest resources. 

Recent literature, however, suggests this ambiguity may be clarified by more attention to market 

access when investigating poverty-environment relationships. This is because non-farm 

livelihood opportunities as well as resource quality and quantity likely vary depending on market 

access. For example, land resources may be less available and more degraded close to market 

centers due to the lower transaction costs of bringing agricultural and forest goods to market.  

This study is the first to examine the environmental impacts of a cash transfer program in 

Africa. We look at households’ use of fuelwood, charcoal, bushmeat, and land for farming as 

well as their ownership of non-farm businesses. Based on graphical analysis, we first find that 

impacts of the cash transfer on natural resources bifurcate around the distance of 10 km to 

market. We find that households living close to markets are more likely to use the cash transfer 

to start non-farm businesses as well as consume and/or produce charcoal. Households living far 
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from markets, on the other hand, are more likely to use cash transfers to enter farming or expand 

their already-existing farms.  

1.3.3. Cash transfers, bicycles, and market participation 

To date there has been little examination of how cash transfers’ effectiveness in remote 

rural areas may be hindered by supply-side constraints. That is, in areas far from markets 

dominated by subsistence farming, how will households be able to convert cash transfers into 

increased consumption and production? We consider this issue of market access and investigate 

whether bicycle ownership increases the effectiveness of the cash transfers. While there is little 

in the academic literature regarding the role of bikes in development, there is widespread belief 

amongst the numerous bicycle initiatives currently being implemented across Africa that bikes 

can increase poor households’ consumption, income, and use of social services (see, for 

example, the work of World Bicycle Relief, which has a large presence in Zambia).  

We examine impacts of the cash transfer as well as bicycle ownership on households’ 

participation in agricultural markets and ownership of non-farm businesses and test for both the 

independent and multiplicative effects of bikes and cash. While we do not find any evidence of 

multiplicative effects of bikes and cash (i.e., that impacts are greater for those with bikes 

amongst the cash transfer beneficiaries), we do find that bikes and cash, separately, have very 

distinct effects on livelihood strategies. While cash increases the likelihood of selling crops and 

purchasing agricultural inputs, it has no impact on the volume of crop sales or agricultural input 

purchases. Bicycle ownership, on the other hand, enables those households already selling crops 

to increase their crop sales over time and is also associated with an increase in the likelihood of 

purchasing agricultural inputs (equivalent to the effect size of cash). 
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1.3.4. Can cash transfers be transformative for household livelihoods? 

Taken together, these studies provide evidence that relatively small cash transfers can be 

transformative for rural African households in numerous ways. First, cash transfers offer a 

powerful, yet simple, approach for empowering the rural poor to manage the risks climate 

change poses to their well-being and livelihoods. Second, cash transfers enable households to 

increase their agricultural production. Households invest the cash grants in their farms and this 

effect is particularly strong amongst households living far from markets. Third, cash transfers 

facilitate households’ participation in markets. The income effects of cash transfers are powerful 

enough to shift livelihood strategies. Cash converts subsistence farmers into small-scale farmers 

that sell some of their production and purchase inputs. Cash also encourages entrepreneurial 

farmers, particularly those living close to markets, to diversify into non-farm enterprises.  

However, there are important nuances in these findings that offer lessons for programs 

targeting development in rural areas. Development impacts and trajectories will be greatly 

influenced by market access. And market access is determined not just by absolute distance, but 

by households’ ownership of key assets, such as bicycles, which facilitate market participation. 

For example, we find that while cash is more transformative than bikes in terms of converting 

subsistence farmers into small-scale sellers, bicycle ownership can empower households already 

engaged in agricultural markets to increase their crop sales over time – even in the context of 

declining crop revenues. This suggests bikes may be an important asset for maintaining growth 

trajectories in the context of repeated negative shocks that risk trapping households in poverty. 

The importance of market access in facilitating productive impacts of cash transfers also 

underscores the need for large-scale development initiatives to improve infrastructure. 
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Additionally, the impacts of cash transfers on natural resources will vary according to 

market distance and this heterogeneity has important implications for sustainable development. 

For example, our study suggests that, in this region, households receiving cash living close to 

markets will increase their consumption and/or production of charcoal (the number one driver of 

forest degradation in Zambia) and those living far from markets will enter farming or expand 

their existing farms. Can cash transfers truly be transformational for development in this context, 

given the potential for poverty-environment traps? These findings suggest areas for future 

research as well as the need to pair traditional sector interventions with cash transfer programs. 

For example, cash transfer programs in ex-urban areas could consider facilitating households’ 

adoption of alternative fuels through market mechanisms. In more remote areas, cash transfers 

could explore opportunities for expanding agricultural extension services to encourage land-

intensive practices as well as the safe handling of pesticides and fertilizers.   

In conclusion, these three studies provide evidence that unconditional cash transfers 

facilitate households’ autonomous adaptation and development decisions. For example, 

households may use cash transfers to expand their farms or to diversify into non-farm businesses, 

depending on their market distance and personal inclinations. Study households also use these 

transfers to positively cope with climate shocks that threaten food security. These responses 

indicate that cash transfers may be preferable to certain traditional development approaches on 

economic efficiency grounds. By allowing a diversity of livelihood approaches, cash transfers do 

not risk picking the wrong strategy or flooding markets with one good or service. And because 

unconditional cash transfers are congruent with both human rights frameworks recognizing the 

importance of agency as well as adaptation and development approaches emphasizing locally-

based solutions, there are strong normative arguments to be made for these transfers as well.  
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However, cash transfers are likely not an adequate replacement for many traditional 

development approaches. There are important supply-side constraints on rural households’ 

ability to convert cash transfers into consumption and production, which can only be tackled by 

large-scale initiatives to improve infrastructure. Bicycle initiatives can also help improve market 

access, but their efficaciousness in remote communities will likely be limited by absolute 

distance to market. Traditional development approaches that offer farmers information about 

safe, sustainable, and improved agricultural techniques as well as alternative cooking technology 

also have a role to play. Pairing demand-side approaches that increase household incomes via 

cash transfers and offer information regarding agriculture and other technologies with supply-

side approaches that facilitate market access could generate substantial welfare gains for rural 

communities. Future programming and research should explore these potential synergies 

between cash transfers and traditional development approaches.
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CHAPTER 2: 
 CASH TRANSFERS ENABLE HOUSEHOLDS TO COPE WITH WEATHER SHOCKS 

AND AVOID POVERTY TRAPS: EVIDENCE FROM ZAMBIA 
 
2.1. Introduction 

Climate change is projected to dramatically disrupt rainfall patterns and agricultural 

yields in Sub-Saharan Africa (IPCC, 2014). Given the large share of Africa’s population living in 

rural areas (World Bank, 2013(a)) and these communities’ dependence on rain-fed agriculture, 

climate change has the potential to stall and even reverse gains that have been made in the 

region’s fight against poverty (Shepherd et al., 2013). Frequent exposure to failed harvests and 

other negative income shocks is a reality of life for the world’s rural poor and many of these 

communities have developed strategies for coping with such shocks (Baez et al., 2013). 

However, some of these coping strategies can lead to poverty traps – the self-reinforcing 

conditions that cause poverty to persist. For example, coping with shocks by reducing food 

consumption, pulling children out of school, selling off productive assets, and adopting risk-

averse livelihood strategies that discourage growth can negatively affect human capital formation 

and prospects for escaping poverty in the long run (Dasgupta, 1997; Carter and Barrett, 2006; 

Wood, 2011). The likelihood of households employing coping strategies that can lead to poverty 

traps may be greater in the face of weather shocks, given their potential impact on food supplies 

and livelihoods. Additionally, weather shocks’ covariance across a community weakens informal 

safety nets, such as borrowing, further increasing household vulnerability (Skoufias, 2003; Baez 

et al., 2013; Boone et al., 2013). Avoiding detrimental coping strategies that degrade households’ 
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capabilities  (per Sen, 1999), and thus ability to escape poverty, is essential for building 

resilience to climate change (Barrett and Constas, 2014).  

This study investigates whether cash transfers enable households facing weather and 

other negative income shocks to avoid adverse coping strategies that can lead to poverty traps. 

To test this hypothesis, we harness data from the impact evaluation of Zambia’s Child Grant 

Program. The Child Grant Program is one of the Government of Zambia’s largest social 

protection programs. The program provides unconditional cash transfers of 60 kwacha (U.S. 

$12) per month to poor households with children under five years old. A randomized control trial 

was implemented with 2,515 households to investigate the impact of the program on a range of 

protective and productive outcomes between 2010 and 2012, with the baseline data collected just 

prior to program implementation. In addition to containing extensive information on both 

treatment and control households’ consumption, income, assets, and schooling decisions, the 

study also records the specific types of shocks experienced by respondents as well as their stated 

coping strategies.  

Weather shocks (droughts, floods, and storms) were the most commonly reported 

negative shock in both survey rounds. These weather shocks increased substantially between 

rounds, from 42% of the sample reporting such shocks in 2010 to 71% in 2012. Illness and 

changes in food prices were other commonly experienced shocks (22% and 35% in 2012, 

respectively), in addition to a multitude of other low-frequency shocks reported by households. 

Many households experienced multiple shocks and due to the increase in weather shocks over 

time, only 15% of households reported having completely avoided negative shocks in 2012. We 

investigate whether the cash transfer program fostered household resilience in the face of these 

myriad shocks and examine the impacts of cash on both stated and revealed (i.e., behavioral) 
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coping strategies. We also consider how the covariance of shocks across a community affects 

coping strategies.  

Given the preponderance of shocks these households experienced and the knock-on 

effects of weather shocks in agricultural economies, we first develop a new framework for 

classifying negative shocks. Because weather shocks can affect not only households’ production 

of agricultural goods for both home consumption and market sales, but also the price of these 

goods (due to increased scarcity or increased demand), we group together those shocks affecting 

agricultural production and prices. Next, we group together all other negative shocks affecting 

households’ assets, labor supply, and other sources of income. In addition to its basis in 

economic theory, this framework also has the nice property of separating those shocks more 

likely to be covariate and exogenous to the household (the agricultural production and price 

shocks) from those more likely to be idiosyncratic and the result of endogenous household 

choices (the asset, labor, and other income shocks). 

We find that amongst households facing agricultural production and price shocks, cash 

reduces the likelihood of reducing food consumption and increases the likelihood of employing 

more resilient coping strategies, such as spending savings. This analysis of stated coping 

strategies is supported by the behavioral data, which show that receiving cash enables 

households to smooth food consumption in the face of both covariate shocks affecting 

agricultural production and prices as well as other idiosyncratic shocks affecting households’ 

labor, assets, and income. We also find that amongst those households facing repeated shocks, 

the covariance of shocks across a community increases the likelihood of being food insecure – 

but the cash transfer still works to dramatically decrease food insecurity. 
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However, our analysis suggests that the timing of the transfer may matter. Our data allow 

us to disentangle the effects of cash on shock coping amongst those (1) shocked only at baseline, 

prior to program implementation; (2) shocked only after the program began; (3) repeatedly 

shocked; and (4) never shocked. The effect of cash on group (1) is akin to receiving cash as ex-

post disaster aid, while the effect of cash on group (2) [and somewhat group (3)] is akin to 

receiving cash ex-ante as part of a proactive, climate-resilient development program. We find 

that cash has strong, positive impacts on food security when the transfer is received prior to 

shock exposure, but some evidence that its impact may be weakened when received ex-post. But 

differential out-migration between treatment and control households experiencing weather 

shocks at baseline limits our ability to make strong causal statements regarding the timing of the 

cash transfer.  

Taken together, these results have significant implications for the design of climate 

change adaptation programs. While cash transfers are not routinely considered in the policy 

discourse concerning climate adaptation programming, because ex-ante transfers enable 

households to avoid negative coping strategies and even increase food consumption in the face of 

covariate weather shocks, cash transfers offer a sound approach for building climate-resilience 

amongst the world’s most vulnerable and facilitating their “autonomous adaptation” to a 

changing environment (as suggested by Wood, 2011). And because cash also enables households 

to productively cope with the many other idiosyncratic shocks the rural poor routinely face, cash 

transfers offer a “no-regrets” approach for climate adaptation programs.  

2.2. Poverty traps, shock coping, and cash transfers: Theory and evidence  

Evidence shows that the rich are likely to use savings, obtain credit, or work more in 

response to negative shocks, whereas the poor are more likely to sell off productive assets or 
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reduce consumption (World Bank, 2013(b)). On average, households tend to respond to negative 

income shocks by employing strategies that allow them to maintain their typical level of 

consumption (World Bank, 2013(b)). However, poor households often lack access to 

mechanisms such as insurance and credit that facilitate consumption smoothing – causing the 

poor to employ a different set of coping strategies than wealthier households (Morduch, 1995; 

Zimmerman and Carter, 2003; Carter et al., 2007; World Bank, 2013(b)). Moving children from 

school to the labor force is another coping strategy commonly employed by the poor (Beegle et 

al., 2004; de Janvry et al., 2006(a) and 2006(b)). The poor may also resort to increased 

harvesting of common-pool resources (e.g., firewood, bushmeat, etc.) to satisfy consumption and 

income needs in the face of shocks (Pattanayak and Sills, 2001).  

All of these coping strategies commonly used by the poor can weaken their potential for 

escaping poverty in this generation or the next by reducing household production, hindering the 

cognitive development of young children via malnutrition, limiting household members’ future 

schooling and work possibilities, or degrading the productivity of natural assets. This theory of 

‘poverty traps’ is articulated most eloquently by Dasgupta (1997) and supported by numerous 

studies analyzing long-run poverty dynamics (e.g., Glewwe et al., 2000; Carter et al., 2007; 

Hoddinott et al., 2008; and as summarized by Barrett et al., 2007 and World Bank 2013(b)). 

Classical theories of macroeconomic growth – unconditional and conditional 

convergence – are often applied at the microeconomic level for understanding household welfare 

trajectories (Carter and Barrett, 2006). These theories posit that all nations/individuals can grow 

economically along an exponential growth function. However, Barrett and Swallow (2005) and 

Carter and Barrett (2006) note that an economic growth function may include multiple dynamic 
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equilibria and argue that the concept of poverty traps therefore contradicts classical theories of 

economic growth. Figure 1 depicts their description of poverty trap dynamics.  

In the space of future well-being mapped onto current well-being, welfare dynamics 

create an S-shaped curve with three equilibrium points as shown. In this figure, WPL marks the 

poverty line. Those at the middle equilibrium point (WC) can easily be pushed down into the 

low-level (poor) equilibrium (WL) by negative income or asset shocks or easily pushed up to the 

high-level (non-poor) equilibrium (WH) by positive shocks. Once households find themselves at 

either the low- or high-level equilibrium they will tend to converge back to this point, despite 

small positive or negative income shocks that temporarily knock them off. Those at the low-level 

equilibrium are thus in a poverty trap; those that move above the middle equilibrium are moving 

along a self-propelled growth trajectory. This implies that those at the middle equilibrium are at a 

highly unstable point, which marks an important threshold.  

Cash transfer programs aim to help households escape poverty traps by providing cash 

that can be used to increase consumption of food, schooling, and health services, thereby 

increasing adults’ capacity for work and preventing the intergenerational transmission of poverty 

to children. Cash transfers should also foster resilience in the face of shocks and enable 

households to avoid coping strategies that lead to poverty traps (Blank et al., 2010) -- but the 

relationship between transfers and shock responses has gone relatively unexamined, despite 

numerous impact evaluations of cash transfer programs (Wood, 2011). Among the studies that 

have investigated this topic, the focus has been on households’ use of child labor as a shock 

response and impacts on schooling [see studies of cash transfer programs in Mexico by de Janvry 

et al. (2006(a)) and in Nicaragua by Gitter and Barham (2009) and Maluccio (2005)]. These 

studies also examine cases in Latin America, with evidence from African countries largely 
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missing. Given greater dependence on subsistence farming, weaker infrastructure and social 

services, and more severe poverty in Sub-Saharan Africa, results from Latin America are likely 

not generalizable to the African context. 

More research is currently needed to identify interventions that can help poor households 

avoid coping strategies associated with poverty traps in the face of shocks. Following the theory 

and evidence it might seem the obvious answer is to make poor households non-poor via cash 

transfer programs. However, identifying the thresholds that define poverty traps remains a 

difficult task (Carter and Barrett, 2006; Dercon, 2007) and Carter and Barrett (2006) argue these 

thresholds may best be identified by measuring assets rather than consumption or income levels, 

which are the targets of cash transfer programs. This implies that cash transfers may not 

necessarily help households avoid poverty traps even if the transfer is predicted to push 

households above a consumption-based poverty line.  

The weather-related risks posed by climate change, which will disproportionately affect 

the poor in developing countries (IPCC, 2014), increase the importance of identifying 

interventions that can help households living in remote rural areas respond to negative shocks. 

2.3. Conceptual framework 

We examine whether receiving cash transfers effects households’ shock coping and 

consider the wide range of possible strategies suggested in the literature to be commonly used by 

the poor. Because we are primarily interested in the relationship between cash transfers and 

poverty traps, we distinguish between (1) coping strategies hypothesized in the literature to lead 

to poverty traps, including reducing food consumption, selling assets, sending children away or 

to work, and doing casual labor for others6; and (2) other coping strategies, many of which are 

                                                
6Casual labor for others (“piece work”) is often considered a negative coping strategy in this region. Boone et al. 
(2013) note that in Malawi such casual labor (“ganyu”) is often a coping strategy of last resort that can lead to 
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generally considered to be positive, such as starting a business, spending savings, and reducing 

non-food consumption. Borrowing from the valuation literature on stated and revealed 

preferences, we examine both households’ stated coping strategies as well as their revealed 

coping strategies (i.e., behavioral responses measured in the data). For the revealed coping 

strategies, we focus on food consumption, given the centrality of this outcome to avoiding 

poverty traps and building human capital. We use two measures of this outcome: per capita 

monthly food consumption and whether a household ranks as severely food insecure, based on 

their response to a series of questions commonly used to measure food security.7  

Following Dercon (2002), Carter and Maluccio (2003), Takasaki et al. (2004), and 

Debela et al. (2012), we distinguish between covariate and idiosyncratic shocks in our analysis, 

as the available strategy sets for dealing with each type of shock should differ, with covariate 

shocks posing greater risk of poverty trap coping (Skoufias, 2003). However, such a distinction 

is not necessarily easy to make. While, extreme weather events and price changes should be 

covariate shocks; and other negative shocks, such as job loss or illness tend to be idiosyncratic, 

this does not hold in all cases. For example, in the case of communicable disease, illness can 

affect a large portion of a community at once and where shocks are self-reported (as they are in 

our study), some might perceive a weather event as a negative shock while others take no notice 

of it.8 The literature reflects various strategies for distinguishing between covariate and 

idiosyncratic shocks: (1) use of the household-specific community mean (e.g., Debela et al., 

                                                                                                                                                       
poverty traps. This is because the labor on others’ farms is very low-wage and typically results in farmers delaying 
planting time on their own fields, which reduces yields. They argue farmers engage in such a sub-optimal allocation 
of off-farm labor because farmers in subsistence economies are severely cash-constrained. 
 
7Based on the FANTA food security scoring system. 

8This latter point of course highlights the potential for endogeneity bias with self-reported shock data. We discuss 
how our estimation strategy addresses potential endogeneity concerns in Section 2.5.2. 
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2012); (2) use of the general community mean (e.g., de Janvry et al., 2006(a)); or (3) establishing 

a (somewhat arbitrary) cutoff for what constitutes “covariate” (e.g., Carter and Maluccio, 2003).   

A second conceptual challenge for shock coping studies concerns how to identify the 

impact of a specific shock (such as a weather shock) when households experience multiple 

shocks at once (e.g., a weather shock, illness, and job loss in the same year). Some choose to 

only examine one type of shock (e.g., Beegle et al., 2006; Jack and Suri, 2014) or examine 

shocks separately (e.g., de Janvry et al., 2006), even though households might have experienced 

multiple shocks. How to classify and group together the numerous specific shocks households 

experience is another challenge, with no one framework consistently used in the literature. For 

example, Carter and Maluccio (2003) group together all reported shocks, including illness, job 

loss, crop failure, and theft, by converting them into monetary values of loss; while Debela et al. 

(2012) distinguish between labor and non-labor shocks. 

We employ the common strategy of using the household-specific community mean, 

which is the percent of the sample community that experienced a shock, exclusive of the 

household. This community mean measure is useful for investigating how a marginal increase in 

shock covariance across a community affects shock coping. But because we are particularly 

interested in weather shock coping, we also develop a new framework for categorizing shocks 

that allows us to distinguish the weather-related (and generally more covariate and plausibly 

exogenous) shocks from the non-weather (and generally more idiosyncratic, possibly 

endogenous) shocks. Agricultural households in rural developing economies tend to be both 

sellers and consumers of their own production. Weather shocks can therefore impact not only 

households’ production of agricultural goods for both home consumption and market sales, but 

also the price of agricultural goods that might be purchased or sold by affecting their supply and 
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demand. Additionally, weather shocks can increase crops’ susceptibility to disease and pests, as 

well as damage crop storage facilities. For these reasons, we group together all shocks affecting 

agricultural production and prices. We then group together all other negative shocks affecting 

households’ assets, labor supply, and non-farm income. And because our unique dataset contains 

households’ account of how they coped with each specific shock, we can use this information to 

investigate the differences between how households cope with the largely covariate agricultural 

production and price shocks versus the more idiosyncratic asset, labor, and other non-farm 

income shocks. 

We also compare the impacts two policy design options: (1) extension of the cash transfer 

prior to experiencing a negative income shock and (2) extension of the transfer in the wake of the 

shock. This allows us to estimate the difference between what an ex-post disaster aid cash 

transfer program might be able to accomplish with one that is focused on building households’ 

climate resilience ex-ante. 

2.4. Data and descriptive statistics 

There were 221 households that migrated out of the study area after the collection of 

baseline data (see Table 1). Handa et al. (2014) examine the effect this attrition had on the 

sample and find no differential attrition between the control and treatment groups in terms of 

rates or their observable household characteristics. These authors also investigate whether out-

migration led to overall attrition bias (i.e., whether those that remain in the sample are, on 

average, different from the overall baseline sample). They find that the sample stays generally 

the same over time, in terms of observable household characteristics, with the principal 

difference being that those who remained in the sample were less likely to experience a weather 

shock at baseline. This follows from the observation that 72% of the households that left the 
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study lived in Kaputa district at baseline, where a lake important for fishing and farming 

livelihoods is drying up, causing mass migration out of the area. While this out-migration due to 

weather shocks does not bias our results, it does have implications for external validity.  

There was a sharp increase in the percent of households experiencing negative weather 

shocks (droughts, floods, or storms) between the survey waves – from 42% in 2010 to 71% in 

2012 (Table 2). When the shocks to crop production and prices, which are likely knock-on 

effects of the weather shocks, are factored in, a total of 81% of the sample experienced 

agricultural production and price shocks in 2012. Shocks to households’ assets, labor, and non-

farm income show much lower frequency in the sample (experienced by 36% of the sample in 

2012) and their prevalence did not increase as sharply over time. Drought (47%), food price 

change (35%), floods (30%), illness (22%), livestock disease (11%), and crop disease/pests 

(11%) were the most commonly reported shocks (see Table 3).9  

We investigate the covariance of each specific shock within communities by calculating 

the percent of the sample that experienced the shock for each community. Table 4 shows the 

average of these percentages for each shock. The average covariance levels for communities do 

not differ much from the averages for the overall sample (Table 3) and indicate that the 

agricultural production and price shocks are indeed much more covariate than the asset, labor, 

and other income shocks.  

Households employed a wide range of coping strategies for dealing with these shocks. 

We asked households about their primary as well as secondary coping strategy for each shock 

they reported. We combine the primary and secondary strategies to compute the tallies in Table 

5. All of the principal coping strategies identified in the literature as leading to poverty traps are 

                                                
9In the survey households were asked about 21 specific shocks. If they said they experienced the shock, they were 
then asked whether the effect was positive or negative. We limit our analysis to those shocks reported by households 
to have a negative effect.    
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represented in our dataset. We also classify “doing nothing” as a poverty trap coping strategy 

based on empirical analysis of household characteristics at baseline, which shows that 

households who “did nothing” in the wake of a shock had significantly lower food consumption 

than those who reported a different coping strategy, although they were similar along all other 

observable characteristics. Reducing food consumption (including “doing nothing”) and doing 

piece work for others are the dominant poverty trap coping strategies in our dataset.         

2.5. Estimation strategy 

2.5.1. Testing assumptions of the impact estimates’ econometric models 

Due to random assignment of the program, treatment status should not be correlated with 

observed or unobserved characteristics of participating households or communities. We confirm 

whether randomization yielded similar observable characteristics between treatment and control 

households by testing for their equivalence at baseline. We test for equivalence at baseline in 

terms of basic characteristics of the recipient/respondent and household, self-reported shocks, 

and our key outcomes of interest (stated and revealed coping strategies) and report these results 

in Tables 6 and 7. We restrict our analysis to just the panel of households that remained in the 

survey for both rounds and cluster robust standard errors at the community-level (and do so for 

all subsequent models). We examine equivalence at baseline for all variations of the sample used 

in subsequent impact estimates: the full panel as well as the four shock sub-groups.  

For the full panel, we find that randomization succeeded in producing balanced treatment 

and control groups. We find no significant differences between treatment and control households 

along observable characteristics, general shock exposure, and our key outcomes of interest – per 

capita food consumption and overall food security. Households in treatment communities, 
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however, were 7 percentage points less likely to report an agricultural production or price shock 

at baseline (see Table 7). 

We also find some interesting differences between control and treatment households at 

baseline in terms of stated coping strategies (Table 7). Prior to receiving cash, households in 

treatment communities were more likely to increase household production or reduce non-food 

expenses in the wake of agricultural production and price shocks than those residing in control 

communities. In the face of asset, labor, and other negative income shocks, treatment households 

were more likely to do piece work for others or participate in a work program and less likely to 

obtain loans/gifts or “do nothing”. These differences in stated shock coping strategies at baseline 

need to be considered when examining our impact estimates, and draw our focus to examination 

of just those stated coping strategies balanced at baseline.  

Our analysis of revealed coping strategies (food consumption and food security score) 

breaks the full panel down into four shock sub-groups, based on the temporal trends of shock 

experience. We therefore test for equivalence at baseline for these four sub-groups as well and 

find that they are generally balanced in terms of observable characteristics and our key outcomes 

of interest. This equivalence at baseline allows us to attribute any estimated differences in 

revealed coping strategies to the cash transfer program. However, for those shocked at round 1 

only, the control group has significantly lower per capita food consumption. This suggests that in 

response to shocks amongst households in the control group, it was the better off households 

who migrated out of the area and the poorer households who stayed. This lack of equivalence at 

baseline prevents us from examining the impact of cash on food consumption amongst those 

shocked only at baseline. 
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Next, we examine whether treatment and control households are experiencing the same 

time trend with respect to shock exposure. The time trend could be different due to either (1) 

differential weather patterns between treatment and control communities over time or (2) actual 

impacts of cash on the likelihood of experiencing or perceiving a shock (i.e., cash might reduce 

the likelihood of falling ill by improving nutrition or it might cause one to not notice a change in 

prices that other perceive as significant). To test for differential time trends, we run a difference-

in-difference model, specified in Equation (1) as follows:  

(1) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5 Zg + Wg +Eigt  

where Yigt measures whether a shock was reported by household i in district g in period t, Postigt 

is a dummy variable equal to 1 if the observation is in 2012, Cashig is a dummy variable equal to 

1 if the household is in the treatment group, Xig represents a vector of household and recipient 

characteristics measured at baseline, Zg, is a vector of baseline prices for food and other 

important consumption goods, Wg is a district fixed effect, and Eigt is the error term. We include 

controls for baseline characteristics and prices and district fixed effects to increase the precision 

of our estimates. The coefficient of interest in this model is B3, which captures the effect of being 

in a treatment community on self-reported shocks.  

The interaction variable (Cash*Post) representing the effect of cash on self-reported 

negative shocks is not significant for any of the three models presented in Table 8. Control and 

treatment households therefore appear to be experiencing the same time trends with respect to 

shock exposure.  

 

 

 



 30 

2.5.2. Identification strategy for impact estimates 

To understand the impact of cash on households’ stated coping strategies, we run a series of first 

difference models using the 2012 survey data and restricted to those who reported a negative 

shock. This model can be written as: 

(2) Yigt = B0 + B1Cashig + B2Xig + B3Zg + Wg +Eigt  |  Shock2012=1 

where all terms are defined as they were in Equation (1), but now Yigt is a dummy variable coded 

as 1 if a household reported using the specific coping strategy in question. The identifying 

assumption for this model is that both the treatment and control groups would have had, on 

average, similar, shock coping strategies in 2012, had the treatment group not received cash. 

However, our equivalence at baseline tests shows that this assumption does not hold for certain 

shock coping strategies. Therefore, we focus our discussion of results on those stated coping 

strategies balanced at baseline.  

To further probe household coping strategies, we use both rounds of data and examine 

whether cash may have affected households’ food consumption and overall food security score. 

Like Equation (2), these models are conditional on households’ shock experience. We run four 

sets of models, as specified below: 

(3) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5Zg +  
         Wgt +(eigt + µit + vi)  |  Shock2010=1 & Shock 2012=1 

 
(4) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5Zg +  

         Wgt +(eigt + µit + vi)  | Shock2010=0 & Shock 2012=0 
 
(5) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5Zg +  

         Wgt +(eigt + µit + vi)  |  Shock2010=1 & Shock 2012=0 
 
(6) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5Zg +  

         Wgt +(eigt + µit + vi)  |  Shock2010=0 & Shock 2012=1 
 

{Shocked both rounds} 

{Never shocked} 

{Shocked round 1 only} 

{Shocked round 2 only} 
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where terms reflect their definitions as described for Equations (1) and (2), though here Yigt is, 

depending upon the series of models, monthly per capita food consumption or a dummy variable 

coded as 1 if the household ranks as severely food insecure. For the purposes of transparency, we 

also decompose the error term here into its various components, with eigt  representing truly 

random error and µit representing unobserved household characteristics that vary over time and vi 

those that are time-invariant. Time-invariant characteristics at the level of the treatment group 

(i.e., on average) are removed in the differencing. And while, econometrically, unobserved time-

varying characteristics at the level of the treatment group remain in the error (as well as µit and 

vi), the randomized research design provides strong assurance that there are no systematic 

differences between the treatment and control groups along either observed or unobserved 

characteristics. Therefore, there is little reason to believe that our estimates reported in Tables 11 

and 12 are biased by unobserved heterogeneity.  

An alternative estimation strategy would be to run triple difference models on the full 

sample (where Cash is interacted with both Shock and Post) with household fixed effects (to 

control for unobserved time-invariant characteristics) to identify the effect of both receiving 

Cash and being shocked on food security. Jack and Suri (2014) take such an approach in their 

analysis of how Kenya’s mobile money system enables households to cope with illness shocks. 

However, the challenge with these models is that they use only those who switch shock status 

between rounds to estimate the parameters of interest (i.e., treatment effects). In our dataset, such 

an analytical approach does not make sense given that many experienced shocks both rounds and 

amongst those that changed status over time, some went from no shock in 2010 to a shock in 

2012, while others experienced the opposite time trend – so any effects of cash would be 

confounded by these two sub-populations’ experiences. From an econometric standpoint, given 
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the shock frequencies in our data and our randomized research design, we believe our sets of 

difference-in-difference models are more appropriate (and more transparent). Moreover, by 

disaggregating the analysis according to the temporal experience of shocks, we are able to have a 

higher degree of external validity and answer an important policy design question: Does it matter 

whether cash is extended before or after a household experiences a negative shock?  

2.6. Results 

We find that cash reduces the likelihood of employing negative coping strategies 

associated with poverty traps and increases the likelihood of employing positive coping 

strategies. Tables 9 and 10 present the impacts of cash on stated coping. We run two sets of 

models for each coping strategy: The first restricted to those who experienced agricultural 

production or price shocks in 2012; the second restricted to those who experienced an asset, 

labor, or other negative income shock in 2012. We find that amongst those that experienced an 

agricultural production or price shock, cash reduces the likelihood of reducing food consumption 

(“doing nothing”) by 14 percentage points and increases the likelihood of spending savings by 6 

percentage points. Cash also increases the likelihood of using social services (visiting the clinic 

or seeking help from the government or an NGO) by 2 percentage points in the case of 

agriculture and price shocks and by 12 percentage points for other shocks. Importantly, all of 

these stated coping strategies were balanced at baseline, implying that we can confidently 

attribute the observed differences reported here to the cash transfer program. 

These impacts of cash on stated coping strategies are supported by our analysis of the 

behavioral data, which shows that the program has positive impacts on food consumption and 



 33 

overall food security (Tables 11 and 12).10 We find that cash increases monthly per capita food 

expenditures by 31% for those never shocked, by 35% for those shocked only after program 

implementation (round 2), and by 29% for those shocked both prior to and during the program. 

[Because food consumption amongst those shocked only prior to the start of the program (round 

1) was not balanced at baseline, we can not estimate the impact of cash for this sub-group.]. We 

see a similar trend with the food security scores. Cash decreases the probability of being severely 

food insecure by 24 percentage points amongst those never shocked, by 25 percentage points 

amongst those shocked round 2 only, and by 25 percentage points amongst those shocked both 

rounds. For those shocked at round 1 only, we do not find evidence that cash has any effect on 

food security. 

We then add a variable measuring shock prevalence in each of the 90 sample 

communities to our difference-in-difference models to understand the effect of shock covariance 

on the impact of cash (see Tables 13 and 14). This variable is the percent in each community 

sample reporting a shock, exclusive of the household. When this variable is added to the 

difference-in-difference models, the effects of cash on food consumption and food security 

remain relatively unchanged from the original estimates presented in Tables 11 and 12 – even 

though a one percentage point increase in community shock prevalence increases the likelihood 

of being food insecure by 14 percentage points for those shocked both rounds. For these two 

shock groups we also see that a one percentage point increase in community shock prevalence 

increases their food consumption by 30 and 33 percent, respectively. This suggests that the 

                                                
10For these difference-in-difference models, we group together agricultural production and price shocks with asset, 
labor, and other income shocks, since many households experienced both types of shocks and it is not possible to 
disentangle their effects in the revealed data measuring food consumption and food security.  
 



 34 

mechanism by which cash increases food security in the face of covariate shocks is by enabling 

households to increase food production and/or purchases. 

2.7. Conclusions and policy implications 

We find that cash transfers enable households to cope with negative shocks in ways that 

do not increase the likelihood of falling into a poverty trap. Cash empowers the poor, rural 

households in our study to employ shock-coping strategies commonly used by the non-poor, 

such as spending savings. The cash transfers provided by Zambia’s Child Grant Program are able 

to increase both food consumption and food security even while the covariance of shocks within 

a community increases the likelihood of being severely food insecure.  

The most recent report from the Intergovernmental Panel on Climate Change (IPCC) states that  

“Throughout the 21st century, climate-change impacts are projected to slow down 
economic growth, make poverty reduction more difficult, further erode food security, and 
prolong existing and create new poverty traps (p. 20) …”                                                                            

 
Our study provides evidence of a program -- unconditional cash transfers – that can work to help 

households avoid the poverty traps that climate change threatens to create and entrench. 

Moreover, we show that a specific program design feature – extending cash to households before 

severe shocks to agricultural production and prices occur – achieves strong, positive impacts on 

food consumption and food security.  

 The international community concerned with climate change has become increasingly 

focused on developing adaptation strategies in recent years. Crop insurance (Barrett et al., 2007; 

Baez et al., 2013) and “ecosystem-based adaptation” (FAO and UNEP, 2013) are two potential 

adaptation strategies that have received a great deal of attention -- and for Africa in particular. 

However, the concept of using ex-ante cash transfer programs (i.e., as opposed to ex-post cash or 

in-kind disaster relief) as an adaptation strategy for rural Africa has received little attention. This 
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may be due to limited interaction between the environmental policy community and the social 

protection community. There is clearly a need to link these two policy communities and their 

attendant literatures. 

While Wood (2011) argues that cash transfers should be given a greater role in climate 

adaptation and the recent World Development Report (World Bank, 2013(b)) also highlights the 

value of cash transfers for risk management and shock-coping in the context of climate change, 

to date there have been no published evaluations of cash transfer programs that focus on climate 

and adaptation questions.11 This study therefore fills an important gap in the literature and offers 

policy-relevant evidence that should inform the design of climate adaptation programs.  

One advantage cash transfers offer over other potential adaptation interventions is their 

unique ability to address the context of climate change, which is characterized by “deep 

uncertainty.” In their discussion of the economics of risk and uncertainty in the 2014 World 

Development Report, The World Bank describes problems of deep uncertainty as those where 

“…experts cannot agree on which models to use…; on the probability distributions of key 

uncertain parameters…; or on the values of alternative outcomes” (2013(b), p. 93). Climate 

change is one such problem, because while models converge on predictions of disrupted rainfall 

patterns in Africa, at the local level models diverge – some predict decreases in rainfall and 

droughts, others predict increased rainfall and floods. Given that cash transfers have already been 

demonstrated by numerous studies (Fiszbein and Schady, 2009) to reduce both short-term 

poverty and its long-term determinants, they therefore offer a “no regrets” (Woods, 2011) 

strategy for climate-resilient development policy. Further, as also argued by Woods (2011) cash 

                                                
11Asfaw et al. (2011), however, report they are currently studying the impact of Lesotho’s cash transfer program on 
farmers’ adaptation strategies, with a particular focus on changes in a series of specific farming practices. The 2014 
World Development Report also reports advance results from evaluations of how cash transfer programs in Ethiopia 
and El Salvador have helped households cope with droughts and natural disasters (World Bank, 2013(b), p. 104-
105). 
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transfers facilitate individuals’ autonomous adaptation and development decisions, making them 

both congruent with a human rights framework that recognizes the importance of agency as well 

as adaptation frameworks that embrace locally-based and diverse solutions.
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CHAPTER 3: 
 POVERTY-ENVIRONMENT RELATIONSHIPS UNDER MARKET 

HETEROGENEITY: CASH TRANSFERS AND PRODUCER-CONSUMERS IN 
ZAMBIA 

 
3.1. Introduction 

Poverty alleviation programs in developing countries are typically not concerned with 

their environmental impacts. Conservation programs in these settings, however, often seek to 

achieve ‘wins-wins’ for environment and development, believing these twin goals to be 

inextricably linked (Wunder, 2001; Angelsen and Atmadja, 2008). Yet poverty-environment 

relationships in remote rural areas are complex and theoretically ambiguous (Reardon and Vosti, 

1995; Scherr, 2000; Wunder, 2001). For example, numerous studies indicate that the poor often 

cope with income and consumption shocks by increasing their use of natural resources (e.g., 

Pattanayak and Sills, 2001; Takasaki et al., 2004; McSweeney, 2005; Debela et al., 2012) and 

there is some limited evidence that positive income shocks can reduce such reliance (Fisher and 

Shively, 2005). But reducing poverty may not benefit biodiversity conservation in all cases – it 

likely depends on whether environmental products, such as wild foods, are inferior or normal 

goods in particular communities. Similarly, impacts on land use may also be variable: reducing 

poverty may increase households’ ability to expand their farms -- thereby increasing pressure on 

ecosystems -- or it may expand households’ ability to participate in markets for off-farm labor, 

decreasing such pressure. 
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Poverty-environment relationships should also differ depending on whether one takes a 

short-run or long-run view, though the directional change over time is not clear. On the one 

hand, Environmental Kuznets Curve theory posits that societies exploit natural resources to 

escape poverty and at a certain inflection point of wealth then begin demanding environmental 

amenities that flow from conserved resources (Koop and Tole, 1999). On the other hand, the 

environmental impacts of reducing poverty can have important feedback effects for poverty 

itself: Barbier (2010) argues that the drive to raise incomes through agriculture and resource 

exploitation can lead to ‘poverty-environment traps’ if markets for land, off-farm labor, and 

credit are incomplete. And if reducing poverty increases consumption of wild game, over-

exploitation can lead to the collapse of populations that may be an important source of protein 

for the (future) rural poor.  

This theoretical ambiguity may be clarified by more nuanced consideration of 

heterogeneous access to markets when examining poverty-environment relationships. Research 

by Ferraro et al. (2011) has shown that the ability of conservation programs to achieve poverty 

and environment ‘win-wins’ is moderated by market access, though Alix-Garcia et al. (2013) 

also note that we are of course only able to observe the full environmental impacts of human 

behavior where poor transportation networks effectively localize them.     

This study explores these themes by examining the short-run impacts of a poverty 

alleviation program that extends unconditional cash transfers to households in rural Zambia. We 

investigate impacts on households’ consumption of fuelwood, charcoal, and bushmeat, as well as 

their use of land for farming. We also examine an element of the causal chain hypothesized by 

Barbier (2010) to be important for avoiding poverty-environment traps: program impacts on off-

farm business enterprises. Particular attention is paid to investigating whether impacts vary 
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according to market access. We hypothesize that distance to market significantly affects 

household decision-making regarding conversion of the transfer into consumption and 

production.  

3.2. Cash transfers, transaction costs, and impact heterogeneity: Theory and evidence  

Agricultural households in subsistence economies clearly live in a world characterized by 

multiple market imperfections. Lack of cash and opportunities for wage labor and loans create 

liquidity and credit constraints, limiting purchase of productive agricultural inputs. High 

transaction costs associated with selling crops also hinders specialization and commercial 

activity -- as does the high uncertainty regarding the purchase price of food, which further 

encourages self-sufficiency in food production rather than commercial agriculture. All of these 

points and the importance of considering non-separability when examining cash transfer 

programs in rural areas have been raised by Handa et al. (2010) and Boone et al. (2013).  

But the focus thus far has been on considering agricultural households’ shadow value of 

time (e.g., Handa et al. (2010)) and how cash transfers can help increase agricultural production 

by relaxing farmers’ liquidity and credit constraints (e.g., Boone et al., 2013). 

And while the concepts of non-separability and price bands created by transaction costs 

are generally accepted in the literature, examination of how variable transaction costs moderate 

households’ production and consumption decisions is not routine. And yet, as Lofgren and 

Robinson (1999) note: 

“The existence of such non-separability indicates the presence of market imperfections or 
failures that may have important policy implications. For example, depending on the 
nature of the market imperfections, there may be “threshold” effects whereby policy 
changes have no effect on household behavior until the change is “large” in some 
measure. In this environment, policy analysis assuming the existence of perfect markets 
may badly misstate the impact of policy changes on producer behavior and household 
welfare” (p. 1). 
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de Janvry and Sadoulet (2003) also call for more examination of how transaction costs affect 

rural household behavior. Consideration of how distance to markets affects households’ 

production decisions is receiving increasing attention in the conservation planning and 

evaluation literature (e.g., Ferraro et al., 2011; Joppa and Pfaff, 2009), but attention to this topic 

has received comparatively less attention in the development economics and cash transfer 

literatures. One exception is a study by Alix-Garcia et al. (2013), which examines the ecological 

impacts of Mexico’s Oportunidades program. 

In addition to commenting on the importance of understanding market linkages when 

implementing poverty alleviation programs in rural areas, this study aims to contribute evidence 

on the heterogeneous impacts of cash transfer programs. Few studies have explored impact 

heterogeneity in the context of cash transfers and those that do focus on cases from Latin 

America and health and schooling outcomes. For example, Handa et al. (2010) test for 

heterogeneous impacts of Progresa in Mexico and whether use of schooling and health services 

differs between agricultural and non-agricultural households. Dammert (2009) examines 

heterogeneous impacts of Nicaragua’s Red de Proteccion Social program and finds that impacts 

on schooling and child labor differ according to the age and gender of the child, gender of the 

household head, and degree of poverty in the community. Galiani and McEwan (2013) look at 

variation in impacts of the Honduran Programa de Asignacion Familiar (PRAF) and find that the 

program’s positive impacts on children’s schooling and labor activity are much larger for the 

poorest of the poor.  

 In order to improve the design and success of public policies we often need to understand 

more than just their average impacts and compare impacts for different sub-populations. For 

example, if the impacts of cash transfers’ are more muted in remote communities, then 
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policymakers should consider how to simultaneously address both supply-side and demand-side 

factors driving poverty (or perhaps just focus on supply-side factors). As noted by Handa and 

Davis (2006), cash transfers implicitly assume that the poor consume less schooling and health 

services due to constraints on their demand – and not that issues of access and quality might pose 

constraints on the supply-side. Similarly, in remote rural areas, supply-side factors may also 

constrain basic consumption of food and non-food items as well as agricultural production. 

Rawlings and Rubio (2005) and Handa and Davis (2006) argue that uncovering heterogeneous 

impacts and any supply-side constraints are some of the most pressing questions facing the next 

phase of cash transfer research.  

The salience of the question is also reflected in the findings of a recent evaluation by 

Chetty et al. (2013) of one of the United State’s flagship anti-poverty programs (which is 

essentially a cash transfer program) – the Earned Income Tax Credit (EITC). While the study 

provides correlational evidence that the EITC has helped children move out of poverty, it also 

finds that much of the variation in a child’s prospects for escaping poverty is explained by 

community-level variables such as rates of segregation, marriage, religiosity, and inequality. 

Accompanying qualitative reports hint at the role transactions costs associated with paid work 

may play as well (see Leonhardt, 2013).  

3.3. Conceptual Framework 

Following Singh et al. (1986), Sills et al. (2003), and Barbier (2010), we use household 

production theory to present a model adapted to the specific characteristics of the agricultural 

household in rural developing economies. In such models, time is the primary input to 

production and the household consumes most of their own production. From this household 

production framework we derive equations for estimating household consumption and 
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production. We assume households maximize Utility, which depends on consumption of three 

goods: those purchased in the market (X), those produced at home (H), and leisure (L). 

Households consume these goods, conditioned on their preferences ( ), subject to four 

constraints: an agricultural and environmental goods production function (the technological 

constraint), the time constraint, an earned income constraint, and a cash constraint.  

The objective function and constraints are defined as follows: 

Max U(X, H, L; ) 

A = f(TA, XA; FA)    [Tech Constraint] 

T = L + TA + TM      [Time Constraint] 

E = w*TM              [Earned Income Constraint] 

Px*X + PxA*XA  pA(A-H) + w*TM + C     [Cash Constraint] 

Own production of agricultural and environmental goods (A) is a function of time inputs 

(TA), purchased inputs (XA), and the quality of natural resources, including plot fertility (FA), 

which is exogenously fixed. Time (T) is composed of leisure time, time in production of 

agricultural and environmental goods (TA), and time spent in the market on wage labor (TM). 

Earned income (E) is the multiple of any market time and the wage (w). The cash constraint 

dictates that expenditures on market goods and agricultural inputs must be less than or equal to 

the sum of the marketed surplus from home production [pA(A-H)], earned income, and 

exogenous sources of income (C), such as the cash transfer. 

The time, earned income, and cash constraints can be combined into a full income 

constraint such that the Lagrangian can be written as: 

 = U(X,H,L; ) + 1[f(TA, XA; FA)] + 2[wT + C + pA(A-H) – (pXX + pXAXA + wL + wTA)]  
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The choice variables are consumption of market goods (X), consumption of own produced goods 

(H), leisure time (L), time in own production (TA), time in market TM, own production (A), and 

agricultural inputs (XA).  

Solving this constrained optimization problem yields first order conditions that reveal 

households equate marginal costs with marginal benefits when making consumption and 

production decisions. The shadow values measuring how binding the technological ( 1) and full 

income constraints ( 2) are play key roles in the household’s choice of optimal bundles. These 

shadow values are specific to each household and, like the six choice variables identified in the 

Lagrangian, are thus endogenous and a function of all exogenous variables in the system.  

Where the shadow price for a consumption-production good (functions of the constraint’s 

shadow value and the good’s marginal utility) equals the market price for the good, household 

decisions can be viewed as separable (Lofgren and Robinson, 1999). The household first 

maximizes producer profits and then maximizes their consumption utility according to this 

income. In such cases markets can be viewed as complete and prices and income are key 

determinants of household production and consumption in line with standard theory (Sills et al., 

2003). But where the shadow and market prices differ, household production and consumption 

decisions are said to be non-separable. As Lofgren and Robinson (1999) state, this non-

separability exists “…whenever the household shadow price of at least one producer-consumer 

good is not given exogenously by the market but instead is determined endogenously by the 

interaction between household demand and supply” (p.2).  

Non-separability arises whenever markets are incomplete (Sills et al., 2003). Lofgren and 

Robinson (1999) note that farm households in developing economies typically face these market 

imperfections due to the following circumstances: (1) the market purchased good is not a perfect 
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€ 
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substitute for the home produced good, (2) the household is not a price-taker, and (3) there are 

gaps between the sales price and purchase price of a good. Sills et al. (2003) describe how these 

“price bands” for goods are caused by variable transaction costs facing households, which are 

influenced both by exogenous sources of market integration (e.g., distance) and endogenous 

sources, such as connections to traders. These variable transaction costs imply that markets for 

consumption and production goods may be complete for some but incomplete for others. These 

insights motivate our adoption of a conceptual framework that explicitly tests how constraints on 

household’s market participation affect their consumption and production decisions.12 

3.4. Data and descriptive statistics 

In-depth information was collected from households’ regarding their use of natural 

resources and establishment of non-farm business enterprises. In the case of fuel and food, we 

asked households the amounts of resources consumed within the previous four weeks (charcoal 

and fuelwood) or two weeks (bushmeat); specifically, the amounts purchased at market, received 

as gifts, and produced/collected themselves. Households reported the price of these amounts (or 

what the price would have been had it been purchased) and we aggregate these values into one 

consumption value (expressed in kwacha) for each resource. Additionally, households were 

surveyed about their agricultural production in the previous season (between October 2011 and 

September 2012), including the area of land used. In 2012, households also reported whether 

they owned a non-farm business.  

Households in the sample are quite poor, with 92% living below the poverty line and 

90% severely food insecure (Table 15). On average, households live between 16 and 22 km from 

a market. At baseline, roughly 90% of households consumed fuelwood, 5% charcoal, and only 

                                                
12The conceptual model could suggest that there is also a “transaction costs/market participation constraint” that is a 
function of distance, road quality, etc. as well as endogenous market regime. 
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2% bushmeat. Households with bushmeat consumption tend to have higher food consumption 

and be less food insecure than the panel average. We also see that both charcoal and bushmeat 

consumers are more likely to live in Kaputa. Bushmeat consumption is driven by purchases 

(87%) whereas fuelwood and charcoal consumption are driven by household’s own production 

(98% and 73%, respectively). 

To investigate whether there are heterogeneous impacts of the cash transfer due to a 

household’s distance to market, we split the full panel into two sub-samples using 10 km as a 

cutoff point. We first explored the data graphically using Lowess-smoothed plots to see if there 

appear to be differential effects of cash that vary according to market distance (see Figures 2-

11).13 These graphs clearly show that, for the treatment group, impacts bifurcate around the 

10km mark for all of our outcomes of interest. Intuitively, the 10km point makes sense when one 

considers that humans walk, on average, 5 km an hour, and so a one day round-trip to a market 

more than 10 km away implies more than 4 hours of walking in one day. Households farther 

from markets may make different consumption and production decisions because they have less 

access to markets goods; their economic behavior may also differ because the quantity (e.g., 

fuelwood, bushmeat) or quality (e.g., soil fertility) of natural resources may be greater farther 

from markets.  

Because the graphs show a clear bifurcation around the 10km mark, this indicates that 

there are threshold effects, which may not be picked up by measuring the effect of distance in a 

pooled (no market split) triple-difference model using a continuous measure of distance. 

Additionally, if the effects of market distance and cash are working in opposite directions, trying 

                                                
13We plot Lowess-smoothed graphs to explore whether there are differential impacts of cash that vary according to 
market distance. To create these graphs we first run triple-difference regressions (and difference-in-difference in the 
case of non-farm businesses) that interact market distance (logged) with cash, time, and both cash and time. We then 
plot the predicted results of these regressions for households in 2012. We restrict these graphs to those living within 
20 km or less of markets (74% of households). 
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to capture the interactive effects of cash and distance in a triple-difference model using a binary 

measure of distance could also miss important threshold effects. For these reasons, we use the 10 

km cutoff to split the sample into two sub-groups. 

The 10km cutoff splits the sample into 1201 households living more than 10km from a 

market and 1097 living within 10km from a market. For those living far from markets, average 

distances range from 20 to 39 km across the natural resource/control-treatment sub-groups. For 

the sub-groups living close to markets, average distances range from only 2-4 km. Comparing 

the two market distance sub-samples, we see that the recipient and demographic characteristics 

tend to be similar. However, somewhat surprisingly, households living closer to markets tend to 

be poorer, with higher food insecurity and lower food consumption – though they have higher 

wealth scores (i.e., more assets). 

The vast majority of households in the sample – 89% – farmed land in 2012 (Table 18). 

[We lack baseline data on agricultural production and non-farm businesses and therefore report 

descriptive statistics for the 2012 data.] Maize, cassava, and rice are the most common crops in 

the sample, followed by millet, groundpeas, and sorghum. These small-holders farmed, on 

average, less than one hectare (ha) each. The largest plots measure between 10 and 12 hectares.  

Households were asked to name up to three non-farm businesses that they own (Table 

19). Of the 885 households (39% of the sample) that own a non-farm business, 73 (8%) own 

more than one business. We examine whether or not these businesses are based on exploitation 

of natural resources, which in this sample includes fishing, charcoal production, and haying. 

Thirteen percent of households own a business based on natural resources, 27% own other types 

of businesses. The most important non-farm businesses represented in the sample are fishing 
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(12% of households), home brewery (10%), and petty trader (6%). Only 2% of households 

produce and sell charcoal.    

3.5. Estimation strategy 

Because non-separable models of household consumption and production decisions are 

functions of exogenous household preferences and characteristics they can be estimated using a 

reduced form approach (de Janvry and Sadoulet, 2003). To estimate the impacts of cash on 

natural resource use we run a series of difference-in-difference models, which compare the 

temporal change in the treatment group with the temporal change in the control group. This nets 

out the effect of any general time trend not associated with the cash transfer on natural resource 

use in the Kaputa, Kalabo, and Shang’ombo districts.  

The key assumptions of our difference-in-difference models are that (1) natural resource 

use is balanced between the control and treatment groups at baseline and (2) the control and 

treatment groups would experience the same general time trend with respect to natural resource 

use in the absence of the cash transfer program. We test that the first assumption holds and while 

the second assumption is fundamentally unknowable, our research design provides strong 

assurance that it holds as well. Because the cash transfer program was randomly assigned within 

and across three districts, treatment status should not be systematically correlated with observed 

or unobserved characteristics of participating households or communities that vary over time or 

are time-invariant. 

We lack baseline data on land use and non-farm business enterprises and therefore run a 

series of first-difference models to examine the impact of cash on these outcomes. These models 

measure the difference between the control and treatment groups in 2012, and therefore assume 

baseline equivalence between these groups regarding land use and business enterprises.  
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We consider two measures of natural resource use: whether households used fuelwood, 

charcoal, bushmeat, or farmland at all; and the amount of the given resource used amongst 

households consuming it at baseline. Examination of these two trends separately allows us to 

explore whether the cash transfer is having strong income effects that induce changes in 

households’ livelihood strategies (i.e., moving into or out of farming), dietary patterns, or 

encourage fuel-switching. It also provides a means of dealing with the high frequency of zeros 

(i.e., non-users) in the fuelwood, charcoal, and bushmeat data when examining the transfer’s 

impact on overall amounts used. 

3.5.1. Testing assumptions of the impact estimates’ econometric models 

We confirm that randomization yielded similar observable characteristics between 

treatment and control households by testing for their equivalence at baseline. We test for 

equivalence at baseline in terms of basic characteristics of the recipient and household and our 

key outcomes of interest (natural resource use) and report these results in Tables 15-17 & Tables 

20-22. We restrict our analysis to just the panel of households that remained in the survey for 

both rounds and cluster robust standard errors at the community-level (and do so for all 

subsequent models). Equivalence at baseline tests are run for all variations of the sample used in 

our impact estimates presented in Section 3.6. 

We find charcoal, fuelwood, and bushmeat use to be well balanced between the control 

and treatment groups at baseline. This equivalence holds for all panel households (Table 20), 

amongst those living more than 10 km from a market (Table 21), and those within 10 km from a 

market (Table 22). On average, amongst consumers, fuelwood consumption is roughly 

equivalent to 14% the value of their food consumption. For charcoal it is about 12%. Bushmeat 

accounts for roughly 12% of bushmeat consumers’ monthly food budget. Similar frequencies 
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and amounts of natural resource use at baseline across the sub-samples suggest remoteness is not 

associated with different fuelwood, charcoal, or bushmeat consumption patterns in these regions 

of Zambia.  

Control and treatment households are generally equivalent along their observable 

characteristics at baseline, though there are important differences amongst those with baseline 

charcoal consumption (n=124) and baseline bushmeat consumption (n=46) (see Table 15). For 

charcoal users, control households are farther from markets and a greater percentage live below 

the poverty line while a higher percentage live in Shang’ombo. Amongst bushmeat consumers, 

the treatment group has a significantly higher percentage living below the poverty line as well as 

slightly different household size and demographic composition. However, when the 10km cutoff 

is used to divide the full panel into two sub-samples, any significant differences between the 

control and treatment groups at baseline disappear (see Tables 16 and 17). 

3.5.2. Identification strategy for impact estimates 

The difference-in-difference model we use to identify the impacts of cash on natural 

resource use can be specified as follows: 

(7) Yigt = B0 + B1Postigt + B2Cashig + B3(Postigt*Cashig) + B4Xig + B5 Zg + Wg +Eigt  

where Yigt measures whether a household i in district g in period t used the natural resource in 

question or the per capita amount used, Postigt is a dummy variable equal to 1 if the observation 

is in 2012, Cashig is a dummy variable equal to 1 if the household is in the treatment group, Xig 

represents a vector of household and recipient characteristics measured at baseline, Zg, is a vector 

of baseline prices for food and other important consumption goods, Wg is a district fixed effect, 

and Eigt is the error term. We include controls for baseline characteristics and prices and district 
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fixed effects to increase the precision of our estimates. The coefficient of interest in this model is 

B3, which captures the effect of being in a treatment community on natural resource use.  

Because we lack baseline data on land use and non-farm businesses, we run a series of 

first difference models using the 2012 data to test for the impact of cash. This model is similar to 

Equation (7) and is written as: 

(8) Yigt = B0 + B1Cashig + B2Xig + B3 Zg + Wg +Eigt  

Here, the treatment effect is captured by B1. 

3.6. Results 

We do not find evidence that the cash transfer program significantly affects consumption 

of fuelwood or bushmeat. Cash does, however, significantly increase both the decision to use 

charcoal and the amount used amongst those consuming it at baseline. However, these average 

impacts obscure the heterogeneous effects of distance to market and district. While cash 

increases the probability of using charcoal by 8 percentage points, on average (Table 23), it has 

no impact on the decision to use charcoal amongst those more than 10km from a market (Table 

28), while increasing this likelihood by 11 percentage points for households within 10km of a 

market (Table 26). Given that between 68% and 73% of charcoal users (at baseline) live in 

Kaputa (Table 15) and 25 of the 36 charcoal businesses are located there, we also investigate the 

impacts of cash on charcoal use in Kaputa district. We find that cash increases the likelihood of 

charcoal use in Kaputa by 24 percentage points (Table 24).    

We also find that impacts of cash on both the decision to farm and the total area of land 

used vary according to market access. While we do not detect an impact of cash on the decision 

to farm amongst the full panel (Table 23) or those living within 10km of a market (Table 26), 

cash significantly increases the likelihood of farming by six percentage points amongst those 
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living more than 10km from markets (Table 28). In terms of land area used, cash increases the 

area farmed by 21% amongst those within 10km of a market (Table 27) and by 28% for those 

living more than 10km from a market.     

Cash significantly increases the likelihood of owning a non-farm business and these 

impacts are most pronounced for those living close to markets. For these households, cash 

increases the likelihood of owning any non-farm business by 23 percentage points; a charcoal, 

fish, or hay business by 10 percentage points; and all other businesses by 14 percentage points 

(Table 32). But for households living more than 10km from a market, cash has no impact on 

natural-resource based businesses and increases the probability of owning a non-farm business in 

general by only 11 percentage points (Table 31).  

We also investigate if cash has differential impacts on land use amongst those with a non-

farm business. While we don’t find evidence that cash affects the decision to farm for those 

owning a business, we do find that cash increases the area farmed for these households – though, 

again, impacts are heterogeneous according to market access. Amongst those close to markets, 

cash does not appear to affect the area farmed. However, amongst business-owners living far 

from markets, cash increases the area farmed by 20%.  

3.7. Discussion and conclusions 

Our findings provide further evidence of the complexity of poverty-environment 

relationships. We find that, on average, cash increases the likelihood of using charcoal and 

owning a non-farm business as well as the land area used for farming. Even amongst households 

owning a non-farm business, cash, on average, increases the area farmed. However, these 

average impacts mask substantial heterogeneity in resource use, moderated by households’ 

distance to market. For charcoal, we see that cash only increases use amongst those households 
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living within 10km of a market. On the decision to farm, cash only has an impact for those 

households living far from markets. And the impacts of cash on land area farmed are greater for 

households more than 10km from a food market. We also see that cash has a higher likelihood of 

increasing the ownership of non-farm businesses amongst those living closer to markets and has 

no impact on natural resource-based businesses for those living far from markets. It also appears 

that non-farm business owners living close to markets do not use the cash to increase the area of 

their farms, while those living far from markets do.  

Taken together, these results show that in this particular region of Zambia, the biggest 

impacts of a cash transfer program on natural resources – in the short-run – come from charcoal 

and small-holder farming. Our findings also demonstrate that rural households living close to 

markets are more likely to use the transfer to diversify their livelihood strategies, which may 

indicate a transition out of farming to non-farm enterprises.  

What are the implications of these findings for policy and programming targeting rural 

environment and development issues? First, extending cash transfers to households living close 

to markets may help farmers inclined towards non-farm entrepreneurship to transition out of 

farming. Second, cash transfers may also cause these same households to increase their 

consumption and/or production of charcoal. Given that charcoal is the number one driver of 

deforestation in Zambia (Day et al., 2014) and many other regions of Africa, development 

programs should consider pairing cash transfers with alternative fuel programs and heightened 

attention to charcoal supply chains. Third, because households living far from markets will likely 

use cash to expand their farms, cash transfer programs may wish to consider increasing 

agricultural extension services in these areas to encourage land-intensive practices and safe use 

of fertilizers and pesticides.
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CHAPTER 4: 
CYCLING OUT OF POVERTY?  

THE IMPACTS OF CASH TRANSFERS AND BICYCLES ON MARKET ACTIVITY IN 
RURAL ZAMBIA 

4.1. Introduction 

Numerous studies demonstrate the effectiveness of cash transfers in increasing poor 

households’ food consumption, production (agricultural and otherwise), and investments in 

human capital (e.g., children’s schooling, vaccinations, and use of health services). While these 

general findings hold in both rural and urban areas, there has been little examination of whether 

the magnitude of results varies according to degree of remoteness and market access. Barrett and 

Swallow (2005) argue that the poor living in many developing economies’ rural areas find 

themselves in “fractal poverty traps,” where the self-reinforcing conditions that cause poverty to 

persist repeat and reinforce each other at micro (household), meso (community), and macro 

(nation-state) scales. Such fractal poverty traps are especially hard to break out of because they 

require simultaneous action at all of these scales. For example, we might expect that in remote 

rural areas the ability of households to convert cash transfers into consumption, production, and 

investment is constrained by their limited access to markets, schools, and health clinics. If so, 

then cash transfer programs operating in remote rural areas should consider whether it is possible 

to couple payments with complementary steps to increase households’ access to markets and 

public services.  

Undertaking major infrastructure projects and expanding transportation networks in rural 

areas requires significant time and money. Are there other strategies policymakers can adopt in 
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the short-term to increase the rural poor’s access to markets? One strategy being promoted by 

numerous NGOs and social enterprises across Africa and other parts of the developing world is 

the disbursement and marketing of bicycles (see work of World Bicycle Relief, Bicycle Aid for 

Africa, and the Village Bicycle Project, among many others). These programs are motivated by 

the belief that owning a bike enables rural households to send their children to school, make 

greater use of health clinics, and increase their sales of agricultural products. For example, World 

Bicycle Relief, which has distributed or sold at least 125,000 bikes and trained more than 800 

mechanics across eleven countries in East and Southern Africa, states that their programs in 

Zambia aim to increase school attendance rates by decreasing travel time and increasing the 

safety of students (especially girls) while in transit; improve students’ test scores by decreasing 

their time spent traveling, allowing more time for studying; and raise farmers’ incomes by 

decreasing travel time to market, thereby increasing the volume of unspoiled agricultural 

products they are able to sell (World Bicycle Relief, 2010a and 2010b).    

In this study we investigate the third causal pathway – the effect of bikes on participation 

in agricultural markets in Zambia. We examine households’ purchase of agricultural inputs and 

their sale of agricultural products and the roles of bike ownership and cash transfers in increasing 

these agricultural inputs and outputs. Building on this investigation of market activity, we also 

look for impacts of bike and cash on ownership of non-farm businesses. Using a panel dataset 

from a randomized evaluation of a cash transfer program in Zambia, we test for both independent 

and multiplicative effects of bikes and cash on our outcomes of interest. 

Despite a proliferation of bicycle initiatives across Africa, there have been no academic 

studies evaluating the impacts of such programs or bicycle ownership itself on African 

households. This study aims to fill this gap in applied development economics. This paper also 
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seeks to identify options for increasing the effectiveness of cash transfer programs in remote 

rural areas by investigating whether the impacts of the transfer vary according to bike ownership.  

4.2. Cash transfers, supply-side constraints, and poverty traps 

Handa and Davis (2006) note there are contradictions in the aim and design of cash 

transfer programs. On the one hand, these programs often claim they aim to reduce poverty in 

both the short-term and the long-term. However, the focus of these programs tends to be on 

human capital accumulation for children – as evidenced by the facts that many transfer programs 

make payment conditional on children’s schooling and health visits and many of the 

unconditional cash transfer programs target families with young children (as in the Zambia Child 

Grant program). This emphasis on children may be neglecting opportunities to reduce poverty 

and foster economic growth in the current generation. 

Another contradiction relates to the importance of distinguishing between transitional 

poverty and chronic poverty and the different strategies that might reduce the incidence of each. 

Cash transfer programs are often described as “safety-net” programs that can help households 

cope with negative shocks. But these programs typically use measures of structural poverty to 

identify beneficiaries and beneficiary communities. This results in programs targeting the 

chronically poor -- and in ignoring the near-poor, who may be at risk of falling into poverty 

(either temporarily or permanently) due to a negative shock. Such targeting methods imply that 

cash transfer programs are trying to lift people out of poverty traps, rather than provide a safety-

net for the near-poor and transitional poor. This raises the question: are small, regular cash 

payments the best policy approach for lifting households above the threshold that characterizes a 

poverty trap?    
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The theory of poverty traps suggests that once households fall below some critical 

threshold of well-being, self-reinforcing conditions will prevent households from escaping 

poverty. Figure 1 presents poverty trap dynamics, as described and depicted by Barrett and 

Swallow (2005). In the space of future well-being mapped onto current well-being, welfare 

dynamics create an S-shaped curve with three equilibrium points as shown in the figure below. 

In this figure, WPL marks the poverty line. Those at the middle equilibrium point (WC) can easily 

be pushed down into the low-level (poor) equilibrium (WL) by negative income or asset shocks 

or pushed up to the high-level (non-poor) equilibrium (WH) by positive shocks. Once households 

find themselves at either the low- or high-level equilibrium they will tend to converge back to 

this point, despite small positive or negative income shocks that temporarily knock them off. 

Those at the low-level equilibrium are thus in a poverty trap; those that move above the middle 

equilibrium are moving along a self-propelled growth trajectory. This implies that those at the 

middle equilibrium are at a highly unstable point, which marks an important threshold.  

Carter and Barrett (2006) argue that in order to identify poverty trap thresholds we need 

to examine households’ assets, rather than just their consumption levels (the standard approach 

for measuring welfare and establishing poverty lines). If, they contend, households are above the 

poverty trap threshold, they can temporarily reduce their consumption or sell off some assets to 

cope with negative income shocks and then use their (remaining) productive assets to build 

themselves back up. However, if their assets fall below this threshold, they will lack the means to 

pull themselves out of poverty and be trapped. These arguments imply that modestly-sized cash 

transfers may not be enough to push households above the critical threshold – unless they enable 

households to obtain the right combination or value of assets. 
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However, as argued by Dercon (2007), measuring such an asset threshold is a nearly 

impossible task since, empirically, it necessitates collapsing a complex array of assets into a one-

dimensional measure – either the value of all assets or the number of a particular type of assets 

(e.g., livestock, land) held by the household. Moreover, the concept of an asset threshold, he 

argues, is predicated on the idea that the key constraint households face is a lack of credit 

markets, which prevents use of intertemporal exchange as a shock-coping strategy. However, 

financial constraints might not be the defining feature of poverty traps. The threshold may 

instead be defined by remoteness and limited access to markets. As Dercon (2007) notes: 

“Maybe what we need to do is to make asset thresholds matter less to escape poverty, by 
making capital accumulation less relevant for escaping poverty. Recent history has taught 
us that this is how large numbers of the poor have escaped their deep deprivation: by 
moving out of agriculture and informal activities, where they need capital to move 
forward, to activities that only involve selling their labour in a context of labour-intensive 
economic growth” (p. 41-42).   
       
Dercon’s argument is in fact congruent with another theory put forward by those arguing 

the notion of asset-based poverty traps. Barrett and Swallow (2005) theorize the existence of 

‘fractal poverty traps’, which they define as self-reinforcing conditions that cause poverty to 

persist that repeat and reinforce each other at micro (household), meso (community), and macro 

(nation-state) scales. Such fractal poverty traps are especially hard to break out of and require, 

they argue, simultaneous action at multiple scales. The idea can be illustrated with the idea of 

financial markets, which they argue are often the principal constraint facing households mired in 

poverty traps. Poor households often lack access to credit and loans because they are poor. At the 

meso-level, communities in rural areas often lack micro-credit institutions due to weak 

infrastructure and institutions. At the macro-level, nations’ ability to borrow may be hindered by 

debts owed on existing loans and the fact they are poor. The constraints thus reinforce each other 

at every level of the poverty trap and these individuals, communities, and countries find 
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themselves in a fractal poverty trap. Rural households may also find themselves in fractal 

poverty traps because they lack markets for land and non-farm labor and face high transaction 

costs for getting goods to market due to a lack of infrastructure. Both Dercon’s argument and the 

concept of fractal poverty traps are also consistent with questions that have been raised in the 

cash transfer literature by Rawlings and Rubio (2005) and Handa and Davis (2006) about the 

need to investigate whether supply-side constraints are blocking households’ ability to escape 

poverty.  

These debates in the literature regarding poverty, assets, and supply-side constraints in 

remote rural areas motivate our examination of whether bicycle ownership increases the 

effectiveness of cash transfers. Clearly, bikes are both an asset and a means of increasing one’s 

market access. While we do not explicitly test for the existence of poverty traps defined by a 

specific asset threshold,14 our investigation of heterogeneous impacts due to bike ownership may 

be able to provide support for the validity of this concept. Carter and Barrett (2007) argue that 

the asset threshold may be identified by either (a) seeing if households’ accumulation of assets 

bifurcates around a specific total value or (b) finding an asset value around which households’ 

behavior bifurcates in response to negative shocks. In this paper, we test if behavior bifurcates 

around an asset threshold (bike ownership) in response to a positive shock. In essence, we are 

testing if the infusion of cash plus a particular asset is able to move households onto a self-

propelled growth trajectory in the context of supply-side constraints.  

4.3. Conceptual framework 

To investigate whether bicycle ownership yields differential impacts of the cash transfer 

on participation in agricultural markets and non-farm businesses, we first develop a theory of 

                                                
14As noted by Carter and Barrett (2006), empirical tests for such dynamic asset thresholds require at least three 
periods of panel data. Qualitative research may also be able to provide evidence for the existence of such thresholds. 
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change that identifies the various ways bikes could affect the transfer’s impacts (see Figure 12). 

Bikes could moderate impacts of the transfer if their ownership is associated with heterogeneous 

impacts. Bikes could operate as a moderator and be exogenous to cash, if their ownership is not 

affected by participation in the cash transfer program; the decision to own a bike could also be 

endogenous to cash if receiving the transfer causes households to purchase bikes. [Note that 

regardless of whether bicycle ownership is exogenous or endogenous to cash, owning a bike is 

still a choice, possibly reflective of other unobserved characteristics, and still needs to be treated 

as a potential source of endogeneity bias.] For example, bikes sold by the World Bicycle 

Program in Zambia cost 680 kwacha ($136 in US Dollars), which is roughly equivalent to 11 

months of the Child Grant Program’s transfers of 60 kwacha per month. Bikes may also mediate 

the impacts of the cash transfer; that is, much of the effect of the transfer on market activity 

could be due to households’ ownership of bikes.   

4.4. Data and descriptive statistics 

The Child Grant Program impact evaluation study collected detailed information about 

households’ consumption, income, assets, and livelihood activities. Households were asked 

about their purchase of agricultural inputs, including seeds, fertilizer, and pesticides, as well as 

their crop sales during the previous agricultural season (spanning 12 months). They were also 

asked about the location for these sales and purchases. Households also reported whether or not 

they owned non-farm businesses. Data on households’ ownership of bikes was collected along 

with ownership information for a long list of assets used to construct household wealth indices. 

Overall, bike ownership more than doubled over the two years of the study from 7% in 

2010 to 15% in 2012 (Table 35). While bike ownership was balanced at baseline between the 
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cash and control group and the increases over time for both groups are substantial, the increase is 

sharper for those participating in the cash transfer program.  

While randomization of the cash transfer succeeded in creating treatment and control 

groups that are nearly identical along observable characteristics, bike owners differ from non-

owners (as well as the general sample) in numerous ways (see Table 36). Bike owners are more 

likely to have attended school, be married, have larger households, and live closer to markets. 

They also have higher food consumption as well as overall consumption. Sixty-eight percent of 

bike owners live in Kaputa District. 

Study households are extremely poor (see Table 36) and most participate in agriculture 

for subsistence only, with little market activity. The vast majority of households in the sample 

produce crops (about 80% at baseline) (Handa et al., 2014), but, in 2010, only 22% of 

households sold crops and only 13% purchased seeds, fertilizer, or pesticides (Table 37). While 

the value of crop sales was balanced between the cash and control group at baseline (for those 

with any crop sales), the cash group had significantly higher spending on agricultural inputs in 

2010.  

Bike owners are more likely to be engaged in agricultural market activity than both non-

owners and the overall study sample (Table 38). Twenty percent of bike owners purchased 

agricultural inputs and 35% sold crops in 2010. However, amongst those with crop sales at 

baseline, the value of sales is not statistically different between the bike owners and non-bike 

owners and is similar to the cash group’s sales value. While spending on agricultural inputs 

amongst those with such spending is not statistically significant between bike owners and non-

bike owners, bike owners’ spending does appear to be much higher and the lack of significance 
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is likely attributable to the small number of those both owning a bike and purchasing agricultural 

inputs in 2010 (only 84 households).   

4.5. Estimation strategy 

There is potential endogeneity bias that needs to be thought about carefully when 

attempting to identify the impact of bikes on economic activity. Because the decision to own a 

bicycle is a choice, it is possibly reflective of other unobservable characteristics of the owner that 

might influence our outcomes of interest. For example, bike owners might be more motivated or 

less risk-averse than non-owners, and thus more likely to own a non-farm business or increase 

their purchase of agricultural inputs or sale of agricultural outputs over time. This potential 

endogeneity of bike ownership therefore needs to be explicitly considered in our impact 

estimates. We address this potential source of bias by including household fixed effects in our 

econometric models, which sweep out the effect of any time-invariant unobservables.15 

We consider the following outcomes of interest in our regressions: (1) whether or not 

households sold any crops, (2) whether or not households purchased agricultural inputs, (3) the 

value of crops sold amongst those with such sales at baseline, (4) the value of agricultural inputs 

purchased amongst those with such purchases at baseline, and (5) whether or not households 

own a non-farm business. We also run series of models that impose no baseline-selling 

restrictions for the value of crop sales and agricultural input purchases. However, our preferred 

sets of models distinguish between the decision to engage in market activity and the volumes 

sold/purchased amongst those already participating in markets. As we will show and discuss in 

                                                
15We also explored the possibility of using an instrumental variables approach in this paper. Instrumenting for bike 
would address two potential sources of endogeneity bias posed by the bike variable (unobserved time-invariant 
heterogeneity as well as unobserved time-variant heterogeneity). However, because we have panel data and are 
testing for the multiplicative effects of bikes and cash, our models include multiple bike interactions. Models with 
multiple potentially endogenous regressors are beyond the reach of two-stage least squares instrumental variables 
approaches, which allow for only one endogenous regressor. 
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Sections 4.6.2 and 4.7, applying this distinction in our models allows for a more nuanced 

understanding of how cash and bikes impact livelihoods.  

4.5.1. Mediation  

Testing for mediation helps us unpack the ‘black box’ of impact estimates and uncover the 

causal chain linking programs to outcomes. If a variable mediates program impacts, this implies 

that part of any identified program impact is actually due to the mediating variable. For example, 

if cash causes households to purchase bikes, and part of any identified impact of cash on 

increased market activity is actually due to the ownership of bikes, then we would conclude that 

bikes are a mediator and that part of the success of cash transfers is due to their effect on bike 

purchases. 

To test whether bikes mediate impacts of the cash transfer, we first run a series of 

difference-in-difference models to examine whether cash in fact is associated with an increase in 

bike ownership over time. Next, we apply similar models to test for the effect of cash – by itself 

– on our outcomes of interest. The final step is to then add the bike variable to those models 

identifying a significant impact of cash and examine whether adding the bike variable reduces 

the size of the coefficient measuring the impact of cash; if it does, this indicates that bikes 

mediate the effects of cash. To address the potential bias posed by the endogenous choice to own 

a bike, our bike measure for these models excludes those who owned a bike at baseline. Another 

way of addressing this potential bias is to use household fixed-effects models. Therefore, as a 

further robustness check on our pooled difference-in-difference models, which difference out the 

average effect for the control group, we also test for mediation using household fixed-effects, 

which essentially allows each household to serve as a control for itself, giving each it’s own 

intercept and regression line (though all with the same slope). 
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4.5.2. Moderation 

We also investigate whether bikes moderate impacts of the cash transfer; i.e., cause 

heterogeneous treatment effects. To test for moderation, we run triple-difference models, as 

specified in Equation (9) below:  

(9) Yigt = B0 + B1Timeigt + B2Cashig + B3(Timeigt*Cashig) + B4Bikeig(t) + B5(Timeigt*Bikeig(t)) 
+  B6(Cashig*Bikeig(t)) + B7(Cashig*Bikeig(t)*Timeigt) + B8Xig + B9 Zg + Wg +Eigt  

 
where Yigt measures whether household  i  in district  g  in period  t  purchased/sold agricultural 

inputs/outputs or the value of the amount purchased/sold, Timeigt is a dummy variable equal to 1 

if the observation is in 2012, Cashig is equal to 1 if the household is in the treatment group, and 

Bikeig(t) is equal to 1 if the household owns a bike. The coefficients of interest in this model are 

B3, which captures the effect of cash, B5, which captures the effect of bicycle ownership, and B7, 

which measures the multiplicative effect of cash and bike. To increase the precision of our 

estimates we include controls for baseline characteristics, baseline prices of food and other 

important consumption goods, and district fixed effects. Equation (9) represents these time-

invariant controls with Xig, Zg, and Wg, respectively; Eigt represents the error term.  

We consider two alternative measures of bike ownership: that measured at baseline and 

that which varies over time. Baseline bike ownership is a “pure” measure of moderation, if we 

are concerned that cash is affecting bicycle ownership over time. However, the weakness of this 

measure is that it misses the large increase in bike ownership over the course of the study. The 

time-varying bike measure assumes that there is not meaningful multicollinearity between bike 

and cash. That is, it assumes that even if regression estimates identify an “effect” of cash on bike 

ownership, it assumes any such effect is due to correlation and not causation. For example, bike 

ownership could have increased in cash villages due to a contemporaneous (and coincidental) 

expansion of bicycle sales points in these communities. 
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We run several other specifications of the general model described in Equation (9) as 

further robustness checks. We examine the effect of bike amongst just the control group and then 

just the treatment group and then the triple-difference model for just those living in Kaputa 

(home to 68% of bike owners). We also consider the variation of our outcome variables 

previously mentioned, which looks at the amounts of agricultural inputs/outputs bought/sold for 

everyone, with no restrictions for market activity at baseline. Finally, we run all of these model 

iterations using household fixed effects as well.  

4.6. Results 

4.6.1. Do bikes mediate the effects of cash? 

We first run a series of models to test the hypothesis that bikes mediate impacts of the 

cash transfer. We begin by investigating whether cash “affects” bicycle ownership and do not 

find strong evidence that is does. While being in the cash treatment group is associated with a 5 

percentage point increase in the likelihood of owning a bike (significant at the 90% level) in the 

pooled difference-in-difference models, this result is not robust to the inclusion of household 

fixed-effects. And, as Table 35 highlights, bicycle ownership dramatically increased in the 

control group between 2010 and 2012 as well.  

We next proceed to estimate the impact of cash by itself and then test whether the 

inclusion of the bike variable in these equations reduces any identified impacts of cash. We find 

that cash increases the likelihood of purchasing agricultural inputs and selling crops, each by 11 

percentage points and each significant at the 99% level. Cash also increases the likelihood of 

owning a non-farm business by 16 percentage points (significant at 99% level). Inclusion of the 

bike variable has little impact on these estimates, indicating that bikes do not mediate cash.  This 
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pattern of pooled difference-in-difference models results is robust to the inclusion of household 

fixed effects.16 

4.6.2. Do bikes moderate the effects of cash? 

We estimate several different versions of the model presented in Equation (9) to test for 

heterogeneous treatment effects, as described in Section 4.5.2. The pattern of results is similar 

for all model specifications (Kaputa only, control group only, treatment group only, inclusion of 

household fixed-effects) and provides evidence that while cash increases the likelihood of 

purchasing agricultural inputs, selling crops, and owning a non-farm business, it does not 

increase the volumes of inputs purchased or crops sold for those with such market activity at 

baseline. However, for those with crop sales at baseline, bicycle ownership significantly and 

substantially increases the value of crops sold. We do not find any evidence of multiplicative 

effects for bikes and cash combined and therefore cannot reject the null hypothesis that there are 

no differential effects of cash on market activity for bike owners. 

We present here results from our preferred set of models: the pooled triple-difference 

models (difference-in-difference models in the case of non-farm business outcomes, for which 

we lack baseline data). The pooled models allow us to explicitly note the various time trends for 

each group (cash, bike, control) and are thus preferred over the fixed-effects models for 

exposition purposes. We include results for both measures of bike ownership (ownership at 

baseline and ownership that varies over time). Regardless of which bike measure is used, cash 

increases the likelihood of selling crops by 12 percentage points, of purchasing agricultural 

                                                
16We also test for mediation when there is no baseline restriction on crop sales or agricultural input purchases. Here 
we do find some weak evidence of mediation. Including the bike variable reduces the effect size of cash by about 9 
kwacha for crop sales and by less than 1 kwacha for agricultural input purchases. However, these models obscure 
the fact that while cash is causing more people to engage in market activity, market sales and purchases in fact go 
down, in general, over time. Therefore, our preferred models estimate effects on values sold and purchased 
conditional on baseline market activity. 
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inputs by 11-12 percentage points, and of owning a non-farm business by 14-15 percentage 

points (Table 39). When the time-varying measure of bikes is used, bikes increase the likelihood 

of purchasing agricultural inputs by a similar amount (though the effect is less significant than it 

is for cash). For those with agricultural input purchases at baseline, neither cash nor bikes has a 

significant effect on the values purchased (Table 40). However, when we apply the time-varying 

measure of bicycle ownership, we see that bikes significantly increase the value of crops sold for 

those with crop sales at baseline by 331 kwacha (Table 40). This amount is equivalent to nearly 

six months of Child Grant Payments or 60% of monthly consumption for a household of average 

size (6 members) living below the poverty line of 93.37 kwacha per person per month. All of 

these results are robust to the inclusion of household fixed-effects.  

The impact of bikes on crop sale values is perhaps one of the more interesting results in 

this paper and we examine it in more detail in Table 41. In Table 41 we see that crop sales were 

balanced at baseline between the cash and control group, between the bike and control group, 

and between those with bikes in the cash group and those with bikes in the control group. We see 

that for those in the control group, crop sales significantly decreased over time by 148 kwacha. 

In the cash treatment group, sales also went down over time, but the decline is not significantly 

different from that experienced by the control group. Households owning bikes, however, were 

able to significantly increase their crop sales over time despite the downward trend.  

As further robustness checks on the above results, we ran several different model 

specifications. When we analyze the effects of cash and bikes on crop sales without the condition 

of baseline market activity using the time-varying measure of bicycle ownership, we find that 

both bikes and cash (independently) increase the value of sales, though the impact of bikes is 

nearly triple that of cash. And when we include household fixed-effects, the impact of cash on 
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crop sale volumes is no longer significant, though the positive impact of bikes remains. These 

results are consistent with the findings from our models that analyze the effect of bikes 

separately for the control and cash treatment groups. Again using the time-varying measure of 

bikes, we find that bike ownership increases crop sales by 321.93 kwacha (significant at the 90% 

level) amongst the control group but has no effect amongst the cash treatment group. This pooled 

model result is robust to the inclusion of household fixed-effects. 

4.6.3. Causal mechanisms 

We next considered variations in households’ distance to markets and investigated 

whether there might be heterogeneous effects of bikes according to market distance (i.e., perhaps 

bikes are more important for market activity for those living farther from markets). We explored 

this question graphically to test for both marginal and threshold effects but found no graphical 

indication that market distance moderates the effect of bicycle ownership on any of our outcomes 

of interest.  

Finally, we tried to investigate why it might be that bikes have an impact on crop sale 

volumes. One likely causal mechanism is that bikes reduce the time to market and therefore 

allow more market trips and/or access to markets that are farther away and might offer higher 

prices. In the 2012 survey, households were asked where they purchased agricultural inputs and 

sold crops (Table 42). Using these data we ran difference-in-difference models to see if bicycle 

ownership affected whether households sold crops or purchased inputs in their village or in a 

neighboring village/closest town. We did not find any evidence that bikes affected the location of 

agricultural market activity. This suggests that bikes may be facilitating higher crop sales 

because they are allowing for multiple market trips, rather than facilitating access to more distant 

markets. 
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4.7. Discussion and conclusions 

While we do not find support for our hypothesis that bikes enable households receiving 

cash transfers to make more productive uses of the transfer by facilitating their market access, we 

do find evidence that cash and bikes are differentially effective in helping rural households 

increase their market activity. We find consistent evidence that the income effects of cash 

transfers are powerful enough to shift livelihood strategies. Cash allows households to diversify 

their livelihood strategies by increasing the ownership of non-farm businesses. Cash transfers 

can also convert subsistence farmers into small-scale farmers able to sell some of their 

agricultural production at markets and purchase seeds, fertilizers, and pesticides to enhance farm 

productivity. These changes to livelihood strategies have important implications for households’ 

ability to avoid and escape poverty traps, especially in the context of climate change. For 

example, a recent study of various “climate-smart agricultural practices” in Zambia finds that 

“Timely access to fertilizer is the most robust determinant of yields and resilience [to weather 

shocks]” (Arslan et al., 2015, p. v).  

We also find consistent evidence that bikes enable those already engaged in agricultural 

markets to increase their crop sales over time, even in the context of declining crop revenues. 

This finding provides suggestive evidence that bikes may be an important asset for helping 

households maintain self-propelled growth trajectories in the context of repeated negative shocks 

that risk trapping households in poverty. Further research could test this hypothesis more 

explicitly by using at least three time periods of data and testing whether bicycle ownership 

marks a critical threshold for how households respond to shocks, in both consumption and 

production. 

Our analysis also leads us to make a methodological conclusion. Our study shows that it 
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is important to distinguish between agricultural market activity, in and of itself, and changes in 

volumes traded in markets when analyzing the effect of programs in economies dominated by 

subsistence farming. The transition from growing crops for pure subsistence to growing crops for 

both consumption and income marks an important shift in the development of rural agricultural 

economies. This impact of programs can be missed if market participation is not analyzed 

independently. Additionally, examining just changes in volumes of agricultural goods traded can 

mask the differential effects of programs on (a) enabling participation in agricultural markets 

versus (b) increasing trade amongst those already engaged in markets. For example, in our study, 

agricultural sales went down, in general, over time, but because the cash transfer program 

increased household’s ability to sell crops, analyzing just the effect of cash on the value of sales 

would fail to identify these two different dynamics and lead to the conclusion that the program 

increased crop sales (when in fact it just increased the number of sellers).  

Finally, it should be noted that this study was powered to test the effects of cash – not the 

effects of bikes. The number of households owning bikes in our sample is quite small and the 

inability to detect significant impacts of bikes on outcomes other than crop sales – or 

multiplicative effects of bikes and cash – can not be taken as definitive.  
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APPENDIX 1: FIGURES 

 
Figure 1. Welfare dynamics under the poverty trap hypothesis 

 
From Barrett and Swallow (2005), p. 4 
 
 
Figure 2. Heterogeneous impacts of cash on decision to use fuelwood by market distance in 
2012  
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Figure 3. Heterogeneous impacts of cash on per capita fuelwood consumption by market 
distance in 2012  

 
 
 
Figure 4. Heterogeneous impacts of cash on decision to use charcoal by market distance in 
2012  
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Figure 5. Heterogeneous impacts of cash on per capita charcoal consumption by market 
distance in 2012  

 
 
 
Figure 6. Heterogeneous impacts of cash on decision to consume bushmeat by market 
distance in 2012 
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Figure 7. Heterogeneous impacts of cash on per capita bushmeat consumption by market 
distance in 2012 

 
 
 
Figure 8. Heterogeneous impacts of cash on decision to farm by market distance in 2012 
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Figure 9. Heterogeneous impacts of cash on per capita area farmed by market distance in 
2012 

 
 
 

Figure 10. Heterogeneous impacts of cash on per capita area farmed by market distance 
for non-farm business owners in 2012 
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Figure 11. Heterogeneous impacts of cash on ownership of non-farm businesses by market 
distance in 2012 

 
 
 
Figure 12. Theory of change: Potential role of bikes in both mediating and moderating 
impacts of the cash transfer on market activity 
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APPENDIX 2: TABLES 
 

Table 1. Study sample sizes1                                             
 Treatment Control Total 
2010 1,259 1,260 2,519 
2012 1,145 1,153 2,298 
    
Total 2,404 2,413 4,817 

1 221 households migrated out of the sample 
 
 
Table 2. Shocks experienced during 12 months prior to collection of baseline data in 2010 
and round 2 in 2012 

  2010   2012  
 Full sample 

(n=2,519) 
Treatment 
(n=1,260) 

Control 
(n=1,259) 

Full sample 
(n=2,298) 

Treatment 
(n=1,153) 

Control 
(n=1,145) 

       
No shock 922 

(37)% 
476 

(38)% 
446 

(35%) 
341 

(15%) 
169 

(15%) 
172 

(15%) 
       
Any shock 1,597 

(63%) 
784 

(62%) 
813 

(65%) 
1,957 
(85%) 

984 
(85%) 

973 
(85%) 

       
   Agricultural   
   production and 
   price shocks 

1319 
(52%) 

614 
(49%) 

705 
(56%) 

1852 
(81%) 

939 
(81%) 

913 
(80%) 

       
        Weather   
        shocks 

1058 
(42%) 

484 
(38%) 

574 
(46%) 

1632 
(71%) 

828 
(72%) 

804 
(70%) 

       
       Crop and   
       price shocks 

740 
(29%) 

352 
(28%) 

388 
(31%) 

1404 
(61%) 

681 
(59%) 

723 
(63%) 

       
   Asset, labor,   
   and other   
   income shocks 

694 
(28%) 

357 
(28%) 

337 
(27%) 

822 
(36%) 

380 
(33%) 

442 
(39%) 
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Table 3. Specific shocks experienced 

 
 
 
 
 
 
 
 

 2010 2012 
 
Negative Shocks 

Full sample 
(n=2,519) 

Treatment 
(n=1,260) 

Control 
(n=1,259) 

Full sample 
(n=2,298) 

Treatment 
(n=1,153) 

Control 
(n=1,145) 

       
Agricultural production and price shocks 
Flood 851 

(34%) 
375 

(30%) 
476 

(38%) 
690 

 (30%) 
382 

 (33%) 
308 

 (27%) 
Food price change 368 

(15%) 
180 

(14%) 
188 

(15%) 
813 

 (35%) 
401 

 (35%) 
412 

 (36%) 
Drought 318 

(13%) 
160 

(13%) 
158 

(13%) 
 1080 
(47%) 

536 
 (46%) 

544 
 (48%) 

Crop disease/pests 172 
(7%) 

88 
(7%) 

84 
(7%) 

244  
(11%) 

115 
 (10%) 

129 
 (11%) 

Storms 95 
(4%) 

43 
(3%) 

52 
(4%) 

63 
 (3%) 

17  
(1%) 

46 
 (4%) 

Crop price change 78 
(3%) 

25 
(2%) 

53 
(4%) 

174 
 (8%) 

80 
 (7%) 

94 
 (8%) 

Crops damaged in storage 62 
(2%) 

30 
(2%) 

32 
(3%) 

59 
 (3%) 

27 
 (2%) 

32 
 (3%) 

Input price change 60 
(2%) 

29 
(2%) 

31 
(2%) 

114 
 (5%) 

58 
 (5%) 

56 
 (5%) 

       
Asset, labor, and other income shocks 
Illness 468 

(19%) 
243 

(19%) 
225 

(18%) 
504 

(22%) 
210 

 (18%) 
294 

 (26%) 
Business collapse 97 

(4%) 
50 

(4%) 
47 

(4%) 
37 

(2%) 
22 

 (2%) 
15 

 (1%) 
Death other member 74 

(3%) 
36 

(3%) 
38 

(3%) 
107 

(5%) 
55 

 (5%) 
52 

 (5%) 
Death household head 65 

(3%) 
30 

(2%) 
35 

(3%) 
30 

(1%) 
15 

 (1%) 
15 

 (1%) 
Livestock disease 51 

(2%) 
23 

(2%) 
28 

(2%) 
250 

(11%) 
119 

 (10%) 
131 

 (11%) 
Person joined household 39 

(2%) 
21 

(2%) 
18 

(1%) 
50 

(2%) 
24 

 (2%) 
26 

 (2%) 
Injury 37 

(1%) 
20 

(2%) 
17 

(1%) 
13 

(1%) 
6 

 (1%) 
7 

 (1%) 
Inability to pay back loan 19 

(1%) 
10 

(1%) 
9 

(1%) 
4 

(<1%) 
3 

 (<1%) 
1 

 (<1%) 
Less loans/gifts 11 

(<1%) 
6 

(<1%) 
5 

(<1%) 
9 

(<1%) 
4 

 (<1%) 
5 

 (<1%) 
Job loss 9 

(<1%) 
6 

(<1%) 
3 

(<1%) 
11 

(<1%) 
6 

 (1%) 
5 

 (<1%) 
Conflict 8 

(<1%) 
1 

(<1%) 
7 

(1%) 
18 

(1%) 
12  

(1%) 
6 

 (1%) 
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Table 4. Covariance of shocks: Average percent reporting the shock within a community 
cluster, averaged across communities 

  2010   2012  
 
Negative shocks 

Full sample 
(n=90) 

Treatment 
(n=45) 

Control 
(n=45) 

Full sample 
(n=90) 

Treatment 
(n=45) 

Control 
(n=45) 

       
Any shock 63% 62% 65% 85% 85% 85% 
       
Agricultural production and price shocks 
Flood 34% 30% 38% 29% 32% 26% 
Food price change 15% 14% 15% 36% 35% 36% 
Drought 13% 13% 13% 47% 47% 47% 
Crop disease/pests 7% 7% 7% 10% 10% 11% 
Storms 4% 3% 4% 3% 2% 4% 
Crop price change 3% 2% 4% 8% 7% 8% 
Crops damaged in storage 2% 2% 3% 3% 2% 3% 
Input price change 2% 2% 2% 5% 5% 5% 
       
Asset, labor, and other income shocks 
Illness 19% 20% 18% 22% 18% 26% 
Business collapse 4% 4% 4% 2% 2% 1% 
Death other member 3% 3% 3% 5% 5% 5% 
Death household head 3% 2% 3% 1% 1% 1% 
Livestock disease 2% 2% 2% 11% 11% 12% 
Person joined household 2% 2% 1% 2% 2% 3% 
Injury 1% 2% 1% 1% 1% 1% 
Inability to pay back loan 1% 1% 1% <1% <1% <1% 
Less loans/gifts <1% <1% <1% <1% <1% <1% 
Job loss <1% <1% <1% <1% 1% <1% 
Conflict <1% <1% <1% <1% <1% <1% 
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Table 5. Coping strategies employed by households experiencing negative shocks 

 
 

 
Coping strategy 

 
Full sample 
(n=1,597) 

2010 
Treatment 
(n=784) 

 
Control 
(n=813) 

 
Full sample 
(n=1,957) 

2012 
Treatment 
(n=984) 

 
Control 
(n=973) 

       
Coping strategies associated 
with poverty traps 
Did nothing 664 

(42%) 
288 

(37%) 
376 

(46%) 
988 

 (62%) 
457 

 (46%) 
531 

 (55%) 
 

Piece work for others (farm 
or non-farm) 

642  
(40%) 

313 
(40%) 

329  
(40%) 

645 
(33%) 

314 
(32%) 

331 
(34%) 

 
Reduced food consumption 228 

(14%) 
 

113 
(14%) 

115 
(14%) 

223 
(11%) 

 

93 
(9%) 

130 
(13%) 

 
Sold assets 40 

(3%) 
20 

(3%) 
20 

(2%) 
64 

 (3%) 
26 

 (3%) 
38 

 (4%) 
 

Sent kids to 
relatives/friends 

26 
(2%) 

14 
(2%) 

12 
(1%) 

18 
 (1%) 

9 
 (1%) 

9 
 (1%) 

 
Sent kids to work/sell 5 

(<1%) 
2 

(<1%) 
3 

(<1%) 
 

0 
 

 
0 
 

 
0 
 

Other coping strategies 
Loans/gifts from family, 
friends, or lender 

394 
(25%) 

174 
(22%) 

220 
(27%) 

274 
 (14%) 

131 
 (13%) 

143 
 (15%) 

 
Worked more hours, 
grew/sold more crops, or 
started a business 
 

325  
(20%) 

175  
(22%) 

150  
(18%) 

371  
(19%) 

208  
(21%) 

163  
(17%) 

 

Sought help from 
government, NGO, or 
clinic 

244  
(15%) 

129  
(16%) 

115  
(14%) 

235 
(12%) 

95 
(10%) 

140 
(14%) 

 
Spent savings 185 

(12%) 
83 

(11%) 
102 

(13%) 
275 

 (14%) 
169 

 (17%) 
105 

 (11%) 
 

Work-for-food or Work-
for-assets program 

140 
(9%) 

64 
(8%) 

76 
(9%) 

72 
 (4%) 

40 
 (4%) 

32 
 (3%) 

 
Reduced non-food 
expenses 

136 
(9%) 

74 
(10%) 

62 
(8%) 

291 
 (15%) 

160 
 (16%) 

131 
 (13%) 

 
Migrated for work or 
moved house/field 

47  
(3%) 

16  
(2%) 

31  
(4%) 

16 
(1%) 

10 
(1%) 

6 
(1%) 

 
Used cash transfer  

0 
 

0 
 

0 
 

0 
25 

(3%) 
 

0 
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Table 6. Mean characteristics and equivalence at baseline tests for full panel as well as four shock sub-group panels in 20101 

 Full 
Panel 

No shock 
either round 

Shock 
round 1 only 

Shock 
round 2 only 

Shocked 
both rounds 

 
Sample size 

Treatment 
(1,153) 

Control 
(1,145) 

Treatment 
(55) 

Control 
(67) 

Treatment 
(114) 

Control 
(105) 

Treatment 
(373) 

Control 
(337) 

Treatment 
(611) 

Control 
(636) 

Recipient characteristics          
Age  30 30 28 30 31 30 30 29 30 30 
Attended school  73% 70% 78%* 62%* 72% 76% 71% 66% 75% 72% 
Married  74% 71% 71% 64% 74% 66% 79% 75% 71% 71% 
Male 1.2% 0.5% 0% 0% 3%* 0%* 1%* 0%* 1% 1% 
           
Household characteristics          
Wealth index 0.002 -0.04 -0.12 -0.04 0.08 -0.06 0.05 -0.06 -0.03 -0.02 
Below 2010 poverty line  92% 92% 93% 96% 85% 89% 94% 94% 92% 91% 
Household size 6 6 6 5 6 6 6 6 6 6 
Members age 0-5 2 2 2 2 2 2 2 2 2 2 
Members age 6-12 1 1 1 1 1 1 1 1 1 1 
Members age 13-18 1 1 1 0 1 1 1 1 1 1 
Members age 19-35 1 1 1 1 1 1 1 1 1 1 
Members age 36-55 1 1 0 0 1 1 1 1 1 1 
Members age 56-79 0 0 0 0 0 0 0 0 0 0 
Members 70+ 0 0 0 0 0 0 0 0 0 0 
Kilometers to food 
market  

16 22 23 34 20 30 14* 23* 16 19 

           
Percent from each 
district 

          

Kaputa 30% 29% 33% 48% 24% 38% 39% 39% 25% 21% 
Kalabo  35% 35% 29% 36% 50% 44% 23% 25% 41% 39% 
Shang’ombo 35% 35% 38% 16% 26% 18% 39% 36% 34% 40% 
           
Revealed coping strategies          
Monthly per capita food 
consumption (kwacha) 

30.16 28.50 24.03 24.89 40.73*** 32.57*** 26.61 26.58 31.71 29.60 

Severely food insecure 90% 90% 96% 88% 87% 92% 91% 90% 89% 90% 
1All samples restricted to those who remain in the panel survey in 2012. Means and tests for significant difference are regression-adjusted to account for clustered 
randomized design. Revealed coping strategy regressions include controls for recipient characteristics (age, education, marital status), household characteristics 
(wealth, household size and demographic composition, distance to food market), district fixed effects and a vector of baselines prices (maize/grain, rice, beans, 
fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significantly different from control group at the 99% level, ** at the 95% level, and * at the 90% level 
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Table 7. Equivalence at baseline tests for full panel’s exposure to shocks and stated coping 
strategies in 20101,2 

 Significantly different for treatment households 
Shocks  
Agricultural production or price shock 7 percentage points less likely* 
Asset, labor, and other income shock  
Any shock  
  
Stated coping strategies associated with poverty 
traps 

 

Did nothing 9 percentage points less likely** (Other Shocks) 
Piece work for others (farm or non-farm) 9 percentage points more likely* (Other Shocks) 
Reduced food consumption  
  
Other stated coping strategies  
Loans/gifts from family, friends, or lender 10 percentage points less likely** (Other Shocks) 
Worked more hours, grew/sold more crops, or 
started a business 

5 percentage points more likely* (Ag/Price Shocks) 

Sought help from government, NGO, or clinic  
Spent savings  
Work-for-food or Work-for-assets program 3 percentage points more likely* (Other Shocks) 
Reduced non-food expenses 3 percentage points more likely* (Ag/Price Shocks) 

 
1Sample restricted to those who remain in the panel survey in 2012. Regressions include controls for recipient 
characteristics (age, education, marital status), household characteristics (wealth, household size and demographic 
composition, distance to food market), district fixed effects and a vector of baselines prices (maize/grain, rice, beans, 
fish, oil, sugar, salt, hand soap, liquid soap).  Robust standard errors are clustered at the community level to account 
for the clustered randomized design. *** indicates significant differences at the 99% level, ** at the 95% level, and 
* at the 90% level. 
2Analysis restricted to those coping strategies employed by 5% or more of households in at least one of the four 
time/treat sub-groups (i.e., 2010 control group that experienced shock, 2010 treatment group that experienced shock, 
etc.). 
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Table 8. Equivalent time trends between treatment and control households with respect to 
shock exposure1  

  
Dependent variables (1/0 – Linear probability models) 

 Agricultural production 
or price shock 

Asset, labor, and 
other income shock Any shock 

Constant 0.54*** 
(0.13) 

0.12 
(0.12) 

0.57*** 
(0.12) 

Time 0.24*** 
(0.04) 

0.12*** 
(0.05) 

0.20*** 
(0.03) 

Treatment 
household 

-0.08** 
(0.04) 

0.002 
(0.03) 

-0.04 
(0.04) 

Treatment 
household * Time 

0.08 
(0.05) 

-0.07 
(0.06) 

-0.02 
(0.05) 

    
Recipient characteristics   
Age  0.001 

(0.001) 
0.002* 
(0.001) 

0.002 
(0.001) 

Attended school  0.05*** 
(0.02) 

0.03 
(0.02) 

0.05*** 
(0.01) 

Married  0.03 
(0.02) 

-0.02 
(0.02) 

0.001 
(0.02) 

    
Household characteristics   
Wealth index -0.01 

(0.01) 
0.03*** 
(0.01) 

0.003 
(0.01) 

Household size 0.002 
(0.02) 

-0.03 
(0.02) 

0.003 
(0.02) 

Members age 0-5 0.0002 
(0.02) 

0.03 
(0.02) 

-0.003 
(0.02) 

Members age 6-12 -0.01 
(0.02) 

0.05** 
(0.02) 

-0.002 
(0.02) 

Members age 13-18 -0.01 
(0.02) 

0.02 
(0.03) 

-0.02 
(0.02) 

Members age 19-35 -0.01 
(0.02) 

0.01 
(0.02) 

-0.005 
(0.02) 

Members age 36-55 0.02 
(0.02) 

0.005 
(0.02) 

0.02 
(0.02) 

Kilometers to food 
market (logged) 

-0.02* 
(0.01) 

-0.03** 
(0.01) 

-0.02** 
(0.01) 

    
Regional characteristics   
Kaputa District -0.22*** 

(0.04) 
-0.01 
(0.04) 

-0.16*** 
(0.04) 

Shangombo District -0.03 
(0.04) 

0.05 
(0.05) 

0.005 
(0.04) 

    
N 4518 4518 4518 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level. 
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Table 9. The impact of cash on coping strategies associated with poverty traps amongst 
households experiencing negative income shocks in the 12 months prior to collection of 
round 2 data in 20121,2 

Dependent variable: coping strategy employed (1) – Linear probability model 
    
 Did Nothing Piece work for 

others 
Reduced food 
consumption 

 Ag/Price Ag/Price Ag/Price 
Constant 0.87*** 

(0.18) 
0.19 

(0.14) 
0.03 

(0.15) 
Cash -0.14*** 

(0.04) 
0.01 

(0.03) 
-0.03 
(0.03) 

Recipient characteristics 
Age -0.001 

(0.002) 
-0.001 
(0.001) 

0.002 
(0.001) 

Attended school 0.01 
(0.02) 

-0.04* 
(0.02) 

0.007 
(0.02) 

Married -0.02 
(0.03) 

0.02 
(0.02) 

0.02 
(0.02) 

Household characteristics 
Wealth index -0.01 

(0.01) 
-0.02* 
(0.01) 

-0.01* 
(0.01) 

Household size -0.04 
(0.04) 

0.04 
(0.03) 

-0.03 
(0.02) 

Members age 0-5 0.05 
(0.04) 

-0.05 
(0.03) 

0.04 
(0.02) 

Members age 6-12 0.05 
(0.04) 

-0.03 
(0.03) 

0.03 
(0.02) 

Members age 13-18 0.04 
(0.04) 

-0.04 
(0.03) 

0.04 
(0.03) 

Members age 19-35 0.05 
(0.04) 

-0.04 
(0.03) 

0.03 
(0.03) 

Members age 36-55 0.05 
(0.04) 

-0.04 
(0.04) 

0.02 
(0.03) 

Kilometers to food market (logged) 0.004 
(0.01) 

-0.001 
(0.01) 

0.02** 
(0.01) 

Regional characteristics 
Kaputa 0.15** 

(0.06) 
-0.11*** 

(0.03) 
-0.10* 
(0.05) 

Shangombo -0.49*** 
(0.06) 

0.45*** 
(0.05) 

0.02 
(0.05) 

    
N 1823 1823 1823 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level. 
2Analysis restricted to those coping strategies (1) employed by 5% or more of households in at least one of the four 
time/treat sub-groups (i.e., 2010 control group that experienced shock, 2010 treatment group that experienced shock, 
etc.) and (2) balanced at baseline. No coping strategies associated with poverty traps met these criteria in the case of 
non-agricultural/price shocks.
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Table 10. The impact of cash on coping strategies not associated with poverty traps amongst households experiencing negative 
income shocks in the 12 months prior to collection of round 2 data in 20121,2 

Dependent variable: coping strategy employed (1) – Linear probability model 
 
 Loans or 

gifts 
Grew/sold 

additional crops, 
worked more, 

started business 

Sought help from 
 government or NGO 

Spent 
 savings 

Work-for-food/ 
Work-for-assets 

 Ag/Price Other Ag/Price Other Ag/Price Other Ag/Price 
Constant 0.005 

(0.10) 
-0.04 
(0.12) 

0.02 
(0.02) 

0.15 
(0.21) 

-0.02 
(0.09) 

0.04 
(0.17) 

-0.03 
(0.08) 

Cash 0.002 
(0.02) 

0.03 
(0.03) 

0.02** 
(0.01) 

0.12** 
(0.06) 

0.06*** 
(0.02) 

0.04 
(0.04) 

0.0004 
(0.01) 

Recipient characteristics        
Age 0.002** 

(0.001) 
0.002 

(0.002) 
0.003 

(0.0003) 
0.0002 
(0.002) 

0.0001 
(0.001) 

0.0003 
(0.002) 

-0.001 
(0.001) 

Attended school 0.02 
(0.02) 

0.03 
(0.02) 

0.004 
(0.007) 

-0.07** 
(0.03) 

-0.003 
(0.02) 

-0.03 
(0.03) 

0.01 
(0.01) 

Married -0.01 
(0.02) 

-0.08*** 
(0.03) 

-0.003 
(0.01) 

0.06 
(0.04) 

-0.001 
(0.01) 

0.04 
(0.04) 

-0.01 
(0.01) 

Household characteristics        
Wealth index 0.0002 

(0.005) 
0.0003 
(0.01) 

-0.002 
(0.001) 

-0.02 
(0.02) 

0.03*** 
(0.01) 

0.02* 
(0.01) 

-0.01* 
(0.003) 

Household size -0.03 
(0.02) 

-0.02 
(0.03) 

-0.01* 
(0.004) 

-0.07** 
(0.03) 

-0.002 
(0.03) 

0.001 
(0.03) 

0.01 
(0.01) 

Members age 0-5 0.03 
(0.02) 

-0.002 
(0.03) 

0.004 
(0.004) 

0.08** 
(0.03) 

-0.01 
(0.03) 

-0.01 
(0.04) 

-0.004 
(0.01) 

Members age 6-12 0.02 
(0.02) 

0.03 
(0.03) 

0.006* 
(0.003) 

0.08** 
(0.04) 

0.01 
(0.03) 

0.0002 
(0.04) 

-0.02 
(0.01) 

Members age 13-18 0.03 
(0.02) 

0.03 
(0.04) 

0.01 
(0.005) 

0.08** 
(0.03) 

-0.001 
(0.03) 

0.002 
(0.04) 

-0.01 
(0.01) 

Members age 19-35 0.02 
(0.02) 

0.04 
(0.04) 

0.01* 
(0.01) 

0.04 
(0.03) 

-0.01 
(0.03) 

0.01 
(0.04) 

-0.01 
(0.02) 

Members age 36-55 0.01 
(0.02) 

0.04 
(0.04) 

0.01* 
(0.004) 

0.0001 
(0.03) 

-0.01 
(0.03) 

-0.004 
(0.04) 

-0.0002 
(0.01) 

Kilometers to food market (logged) -0.01 
(0.01) 

0.01 
(0.01) 

0.003 
(0.002) 

-0.03 
(0.02) 

0.02*** 
(0.01) 

-0.01 
(0.02) 

0.002 
(0.004) 

Regional characteristics        
Kaputa -0.05* 

(0.03) 
-0.04 
(0.04) 

-0.003 
(0.005) 

-0.20*** 
(0.07) 

-0.01 
(0.03) 

-0.06 
(0.06) 

-0.001 
(0.01) 
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Shangombo -0.01 
(0.04) 

0.14** 
(0.06) 

0.01 
(0.01) 

0.09 
(0.08) 

0.02 
(0.03) 

-0.10* 
(0.06) 

0.08*** 
(0.02) 

        
N 1823 809 1823 809 1823 809 1823 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the community level to account for the clustered 
randomized design and included in parentheses below coefficients. Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, 
salt, hand soap, liquid soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% 
level. 
2Analysis restricted to those coping strategies (1) employed by 5% or more of households in at least one of the four time/treat sub-groups (i.e., 2010 control 
group that experienced shock, 2010 treatment group that experienced shock, etc.) and (2) balanced at baseline. 
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Table 11. The impact of cash on food consumption amongst households experiencing and 
avoiding negative income shocks1,2 

Dependent variable: Per capita food consumption (logged) 
    
 No shock 

either round 
Shock 

round 2 only 
Shock 

both rounds 
Constant 10.5*** 

(0.49) 
10.4*** 
(0.25) 

10.7*** 
(0.22) 

Time 0.39*** 
(0.09) 

0.26*** 
(0.08) 

0.10 
(0.06) 

Cash 0.07 
(0.17) 

-0.03 
(0.06) 

0.04 
(0.06) 

Cash*Time 0.31* 
(0.17) 

0.35*** 
(0.10) 

0.29*** 
(0.09) 

Recipient characteristics    
Age 0.01 

(0.01) 
0.005* 
(0.002) 

0.0004 
(0.002) 

Attended school 0.06 
(0.11) 

0.08** 
(0.04) 

0.11*** 
(0.04) 

Married -0.10 
(0.09) 

-0.01 
(0.05) 

0.05 
(0.04) 

Household characteristics   
Wealth index 0.11 

(0.07) 
0.15*** 
(0.02) 

0.16*** 
(0.02) 

Household size -0.12 
(0.12) 

-0.01 
(0.05) 

-0.05 
(0.04) 

Members age 0-5 -0.08 
(0.12) 

-0.11* 
(0.06) 

-0.10** 
(0.05) 

Members age 6-12 -0.05 
(0.12) 

-0.11* 
(0.06) 

-0.08* 
(0.04) 

Members age 13-18 0.04 
(0.14) 

-0.01 
(0.06) 

-0.05 
(0.05) 

Members age 19-35 0.18 
(0.13) 

-0.03 
(0.06) 

-0.06 
(0.05) 

Members age 36-55 0.15 
(0.11) 

-0.03 
(0.06) 

-0.01 
(0.05) 

Kilometers to food market 
(logged) 

-0.02 
(0.04) 

0.02 
(0.02) 

0.03* 
(0.02) 

    
Regional characteristics   
Kaputa -0.38** 

(0.16) 
-0.22*** 

(0.08) 
-0.20*** 

(0.07) 
Shangombo -0.45*** 

(0.12) 
-0.31*** 

(0.06) 
-0.24*** 

(0.07) 
    
N 240 1393 2455 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level. 
2Analysis restricted to those shock groups balanced at baseline along per capita food consumption. 
 
 
 



 95 

Table 12. The impact of cash on food security amongst households experiencing and 
avoiding negative income shocks1 

Dependent variable: Severely food insecure (1) – Linear Probability Model 
     
 No shock 

either round 
Shock 

round 1 only 
Shock 

round 2 only 
Shock 

both rounds 
Constant 1.40*** 

(0.25) 
1.0*** 
(0.18) 

0.94*** 
(0.10) 

1.17*** 
(0.11) 

Time -0.05 
(0.08) 

-0.08 
(0.05) 

-0.04 
(0.03) 

-0.07** 
(0.03) 

Cash 0.05 
(0.07) 

-0.01 
(0.05) 

0.03 
(0.03) 

0.01 
(0.04) 

Cash*Time -0.24** 
(0.11) 

-0.0004 
(0.07) 

-0.25*** 
(0.04) 

-0.20*** 
(0.04) 

Recipient characteristics    
Age -0.004 

(0.004) 
0.002 

(0.002) 
0.004*** 
(0.001) 

0.0005 
(0.001) 

Attended school 0.05 
(0.07) 

-0.01 
(0.04) 

-0.001 
(0.02) 

-0.05** 
(0.02) 

Married -0.03 
(0.05) 

0.004 
(0.05) 

-0.05* 
(0.03) 

-0.03* 
(0.02) 

Household characteristics    
Wealth index -0.04 

(0.02) 
-0.04** 
(0.02) 

-0.03*** 
(0.01) 

-0.04*** 
(0.01) 

Household size 0.05 
(0.09) 

0.05 
(0.04) 

-0.01 
(0.04) 

-0.01 
(0.03) 

Members age 0-5 -0.12 
(0.09) 

-0.02 
(0.04) 

0.04 
(0.04) 

0.06** 
(0.03) 

Members age 6-12 -0.03 
(0.09) 

-0.02 
(0.05) 

0.02 
(0.03) 

0.02 
(0.03) 

Members age 13-18 -0.09 
(0.11) 

-0.07 
(0.05) 

0.01 
(0.04) 

0.04 
(0.03) 

Members age 19-35 -0.05 
(0.10) 

-0.07 
(0.05) 

0.04 
(0.04) 

-0.003 
(0.03) 

Members age 36-55 -0.03 
(0.08) 

-0.05 
(0.04) 

0.004 
(0.04) 

-0.02 
(0.03) 

Kilometers to food 
market (logged) 

-0.04* 
(0.02) 

-0.003 
(0.02) 

-0.001 
(0.01) 

-0.01 
(0.01) 

     
Community characteristics    
Kaputa 0.09 

(0.10) 
0.01 

(0.06) 
0.01 

(0.04) 
-0.01 
(0.04) 

Shangombo -0.04 
(0.09) 

-0.15* 
(0.09) 

-0.02 
(0.06) 

-0.13*** 
(0.04) 

     
N 240 428 1385 2445 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level. 
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Table 13. The impact of cash on food consumption amongst households experiencing and 
avoiding negative income shocks, controlling for the effect of shock covariance1,2 

Dependent variable: Per capita food consumption (logged) 
 No shock 

either round 
Shock 

round 2 only  
Shock 

both rounds 
Constant 10.3*** 

(0.50) 
10.2*** 
(0.27) 

10.5*** 
(0.22) 

Time 0.35*** 
(0.09) 

0.16** 
(0.08) 

0.05 
(0.06) 

Cash 0.06 
(0.16) 

-0.03 
(0.06) 

0.06 
(0.06) 

Cash*Time 0.31* 
(0.17) 

0.34*** 
(0.10) 

0.28*** 
(0.08) 

Community shock covariance 
(fraction excluding household) 

0.25 
(0.24) 

0.34** 
(0.14) 

0.29** 
(0.14) 

   
Recipient characteristics   
Age 0.01 

(0.01) 
0.005* 
(0.002) 

0.0002 
(0.002) 

Attended school 0.06 
(0.11) 

0.08** 
(0.04) 

0.11*** 
(0.04) 

Married -0.10 
(0.09) 

-0.01 
(0.05) 

0.05 
(0.04) 

Household characteristics   
Wealth index 0.10 

(0.07) 
0.15*** 
(0.02) 

0.16*** 
(0.02) 

Household size -0.11 
(0.12) 

-0.01 
(0.05) 

-0.04 
(0.04) 

Members age 0-5 -0.09 
(0.12) 

-0.11* 
(0.06) 

-0.10** 
(0.05) 

Members age 6-12 -0.06 
(0.12) 

-0.11* 
(0.06) 

-0.08* 
(0.04) 

Members age 13-18 0.03 
(0.14) 

-0.01 
(0.06) 

-0.05 
(0.05) 

Members age 19-35 0.17 
(0.13) 

-0.02 
(0.06) 

-0.06 
(0.05) 

Members age 36-55 0.14 
(0.11) 

-0.03 
(0.06) 

-0.01 
(0.05) 

Kilometers to food market (logged) -0.02 
(0.04) 

0.02 
(0.02) 

0.04** 
(0.02) 

Regional characteristics   
Kaputa -0.33* 

(0.18) 
-0.19** 
(0.08) 

-0.16** 
(0.07) 

Shangombo -0.45*** 
(0.12) 

-0.34*** 
(0.07) 

-0.22*** 
(0.07) 

    
N 240 1393 2455 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level. 
2Analysis restricted to those shock groups balanced at baseline along per capita food consumption. 
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Table 14. The impact of cash on food security amongst households experiencing and 
avoiding negative income shocks, controlling for the effect of shock covariance1 

Dependent variable: Severely food insecure (1) – Linear Probability Model 
 No shock 

either round  
Shock 

round 1 only 
Shock 

round 2 only 
Shock 

both rounds  
Constant 1.30*** 

(0.28) 
1.23*** 
(0.18) 

0.85*** 
(0.13) 

1.08*** 
(0.13) 

Time -0.08 
(0.08) 

-0.05 
(0.04) 

-0.08** 
(0.04) 

-0.10*** 
(0.03) 

Cash 0.04 
(0.07) 

-0.01 
(0.05) 

0.03 
(0.03) 

0.01 
(0.04) 

Cash*Time -0.24** 
(0.10) 

-0.01 
(0.06) 

-0.26*** 
(0.04) 

-0.20*** 
(0.04) 

Community shock covariance 
(fraction excluding household) 

0.21 
(0.20) 

-0.33*** 
(0.11) 

0.15 
(0.09) 

0.14* 
(0.07) 

    
Recipient characteristics    
Age -0.004 

(0.004) 
0.002 

(0.002) 
0.004*** 
(0.001) 

0.0004 
(0.001) 

Attended school 0.05 
(0.07) 

-0.002 
(0.04) 

-0.004 
(0.02) 

-0.05** 
(0.02) 

Married -0.03 
(0.05) 

0.01 
(0.05) 

-0.05** 
(0.03) 

-0.03* 
(0.02) 

Household characteristics    
Wealth index -0.04* 

(0.03) 
-0.04* 
(0.02) 

-0.04*** 
(0.01) 

-0.04*** 
(0.01) 

Household size 0.06 
(0.09) 

0.06 
(0.04) 

-0.01 
(0.04) 

-0.01 
(0.03) 

Members age 0-5 -0.12 
(0.09) 

-0.04 
(0.04) 

0.04 
(0.04) 

0.06** 
(0.03) 

Members age 6-12 -0.04 
(0.09) 

-0.04 
(0.05) 

0.02 
(0.03) 

0.02 
(0.03) 

Members age 13-18 -0.09 
(0.11) 

-0.09* 
(0.05) 

0.02 
(0.04) 

0.04 
(0.03) 

Members age 19-35 -0.06 
(0.09) 

-0.08 
(0.06) 

0.04 
(0.04) 

-0.01 
(0.03) 

Members age 36-55 -0.04 
(0.08) 

-0.05 
(0.05) 

0.004 
(0.04) 

-0.02 
(0.03) 

Kilometers to food market 
(logged) 

-0.04 
(0.02) 

-0.01 
(0.02) 

0.002 
(0.01) 

-0.01 
(0.01) 

Community characteristics    
Kaputa 0.14 

(0.11) 
-0.03 
(0.07) 

0.03 
(0.04) 

0.01 
(0.04) 

Shangombo -0.04 
(0.10) 

-0.15* 
(0.08) 

-0.03 
(0.05) 

-0.12*** 
(0.04) 

     
N 240 428 1385 2445 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. Kalabo district omitted. *** indicates significant differences at the 99% level, ** at the 95% level, 
and * at the 90% level.
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Table 15. Mean characteristics and tests for equivalence between control and treatment groups at 2010 baseline1  

 Panel households, 
all 

Panel households, 2010 
fuelwood >0 

Panel households, 
2010 charcoal >0 

Panel households, 2010 
bushmeat >0 

 Treatment 
(n=1,153) 

Control 
(n=1,145) 

Treatment 
(n=1,044) 

Control 
(n=1,033) 

Treatment 
(n=76) 

Control 
(n=48) 

Treatment 
(n=24) 

Control 
(n=22) 

Recipient characteristics 
Age 30 30 30 29 32 31 29 28 
Attended school 73% 70% 73% 69% 91% 81% 88% 77% 
Married 74% 71% 74% 71% 70% 73% 83% 82% 
Male 1.2% <1% <1% <1% <1% <1% <1% <1% 
         
Household characteristics 
Wealth index 0.002 -0.04 -0.08 -0.07 1.20 0.67 0.47 -0.04 
Below 2010 poverty line 92% 92% 92% 91% 89%** 100%** 92%** 68%** 
Monthly per capita food consumption 
(kwacha) 30.16 28.50 35.91 34.48 38.96 28.76 53.82 64.42 

Severely food insecure 90% 90% 89% 89% 93% 94% 65% 77% 
Household size 6 6 6 6 7 6 6** 5** 
Members age 0-5 2 2 2 2 2 2 2 2 
Members age 6-12 1 1 1 1 2 2 1** 1** 
Members age 13-18 1 1 1 1 1 1 1 0 
Members age 19-35 1 1 1 1 1 1 1 1 
Members age 36-55 1 1 1 1 1 1 1 0 
Members age 56-69 0 0 0 0 0 0 0 0 
Members 70+ 0 0 0 0 0 0 0 0 
Kilometers to market 16 22 17 21 8* 22* 16 24 

         
Percent from each district 
Kaputa 30% 30% 26% 25% 73% 68% 50% 50% 
Kalabo 35% 35% 38% 37% 1% 17% 4% 23% 
Shang’ombo 35% 35% 36% 38% 26%* 15%* 46% 27% 

1All samples restricted to those who remain in the panel survey in 2012. Means and tests for significant difference are regression-adjusted to account for clustered 
randomized design. Monthly per capita food consumption and food security regressions include controls for recipient characteristics (age, education, marital 
status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, 
rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and control groups at the 99% level, ** at the 
95% level, and * at the 90% level. 
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Table 16. Mean characteristics and tests for equivalence between control and treatment groups at 2010 baseline amongst 
households more than 10km from a market1  

 Panel households, 
 all 

Panel households, 
2010 fuelwood >0 

Panel households, 
2010 charcoal >0 

 Treatment 
(n=578) 

Control 
(n=623) 

Treatment 
(n=523) 

Control 
(n=562) 

Treatment 
(n=27) 

Control 
(n=25) 

Recipient characteristics 
Age  29 30 29 30 33 29 
Attended school  75% 70% 74% 70% 96% 76% 
Married  77% 68% 76% 67% 78% 80% 
Male <1% <1% <1% <1% 4% <1% 
       
Household characteristics 
Wealth index -0.18 -0.17 -0.26 -0.20 0.84 0.35 
Below 2010 poverty line  90% 90% 90% 89% 93% 100% 
Monthly per capita food consumption (kwacha) 40.46 38.69 40.60 38.74 38.62 31.31 
Severely food insecure 87% 87% 86% 86% 92% 96% 
Household size 6 5 6 5 7 6 
Members age 0-5 2 2 2 2 2 2 
Members age 6-12 1 1 1 1 1 1 
Members age 13-18 1* 0* 1 0 1 1 
Members age 19-35 1* 1* 1 1 1 1 
Members age 36-55 1 1 1 1 1 1 
Members age 56-69 0 0 0 0 0 0 
Members 70+ 0 0 0 0 0 0 
Kilometers to food market  29 37 30 36 20 39 
       
Percent from each district 
Kaputa 20% 29% 15% 25% 74% 60% 
Kalabo  44% 46% 46% 49% 26% 24% 
Shang’ombo 36% 25% 39% 26% <1% 16% 

1All samples restricted to those who remain in the panel survey in 2012. Means and tests for significant difference are regression-adjusted to account for clustered 
randomized design. Monthly per capita food consumption and food security regressions include controls for recipient characteristics (age, education, marital 
status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, 
rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and control groups at the 99% level, ** at the 
95% level, and * at the 90% level. 
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Table 17. Mean characteristics and tests for equivalence between control and treatment groups at 2010 baseline amongst 
households within 10km of a market 1 

 Panel households, 
 all 

Panel households, 
 2010 fuelwood >0 

Panel households, 
 2010 charcoal >0 

 Treatment 
(n=575) 

Control 
(n=522) 

Treatment 
(n=521) 

Control 
(n=471) 

Treatment 
(n=49) 

Control 
(n=23) 

Recipient characteristics 
Age  30 29 30 29 32 32 
Attended school  72% 70% 72% 69% 88% 87% 
Married  71% 74% 72% 76% 65% 65% 
Male <1% <1% <1% <1% 6% <1% 
       
Household characteristics 
Wealth index 0.19 0.12 0.09 0.09 1.39 1.02 
Below 2010 poverty line  93% 94% 93% 94% 88% 100% 
Monthly per capita food consumption (kwacha) 32.34 29.54 31.54 29.51 40.95 28.28 
Severely food insecure 93% 93% 93% 93% 94% 91% 
Household size 6 6 6 6 7 7 
Members age 0-5 2 2 2 2 2 2 
Members age 6-12 1 1 1 1 2 2 
Members age 13-18 1 1 1 1 1 1 
Members age 19-35 1 1 1 1 1 1 
Members age 36-55 1 1 1 1 1 0 
Members age 56-69 0 0 0 0 0 0 
Members 70+ 0 0 0 0 0 0 
Kilometers to food market  3 4 3 4 2 4 
       
Percent from each district 
Kaputa 39% 30% 36% 27% 71% 78% 
Kalabo  27% 23% 27% 22% 27% 4% 
Shang’ombo 34% 48% 36% 51% 2% 17% 

1All samples restricted to those who remain in the panel survey in 2012. Means and tests for significant difference are regression-adjusted to account for clustered 
randomized design. Monthly per capita food consumption and food security regressions include controls for recipient characteristics (age, education, marital 
status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, 
rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and control groups at the 99% level, ** at the 
95% level, and * at the 90% level. 
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Table 18. The decision to farm and land area used in 2012 
 Treatment 

(n=1,153) 
Control 

(n=1,145) 
   

Used land for farming 1,042 
(90%) 

995 
(87%) 

   
Total area farmed (ha)   
   Mean 0.85 0.63 
   Maximum 10.4 11.5 
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Table 19. Types of non-farm businesses owned in 2012 
 Treatment 

(n=1,153) 
Control 

(n=1,145) 
   

Own a non-farm business 541 
(47%) 

344 
(30%) 

   

Own a natural resource-based business 189 
(16%) 

119 
(10%) 

   Fishing  167 
(14%) 

102 
(9%) 

   Charcoal 23 
(2%) 

13 
(1%) 

   Hay  4 
(<1%) 

4 
(<1%) 

   

Own a business not based on natural resources 377 
(33%) 

233 
(20%) 

   Home brewery 135 
(12%) 

95 
(8%) 

   Petty trader 83 
(7%) 

49 
(4%) 

   Food preparation 27 
(2%) 

14 
(1%) 

   Crafts 19 
(2%) 

21 
(2%) 

   Grocery store 11 
(<1%) 

3 
(<1%) 

   Carpentry 7 
(<1%) 

6 
(1%) 

   Other 121 
(10%) 

57 
(5%) 
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Table 20. Natural resource use at 2010 baseline: Means and tests for equivalence between control and treatment groups1 

 Panel households, 
all 

Fuelwood 
consumption >0 

Charcoal 
consumption >0 

Bushmeat consumption 
>0 

 Treatment 
(n=1,135) 

Control 
(n=1,124) 

Treatment 
(n=1,031) 

Control 
(n=1,014) 

Treatment 
(n=73) 

Control 
(n=48) 

Treatment 
(n=23) 

Control 
(n=22) 

Fuelwood 
Percent consuming 91% 90% - - - - - - 
         
Monthly per capita 
consumption 
(kwacha) 

- - 5.36 5.12 - - - - 

         
Charcoal 
Percent consuming 6% 4% - - - - - - 
         
Monthly per capita 
consumption 
(kwacha) 

- - - - 3.59 3.50 - - 

         
Bushmeat 
Percent consuming 2% 2% - - - - - - 
         
2 weeks per capita 
consumption 
(kwacha) 

- - - - - - 2.81 4.67 

1Means and tests for significant difference are regression-adjusted to account for clustered randomized design. Regressions include controls for recipient 
characteristics (age, education, marital status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a 
vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and 
control groups at the 99% level, ** at the 95% level, and * at the 90% level. 
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Table 21. Natural resource use at 2010 baseline: Means and tests for equivalence between control and treatment groups 
amongst households more than 10km from a market1 

 Panel households, 
all 

Fuelwood 
consumption >0 

Charcoal 
consumption >0 

 Treatment 
(n=566) 

Control 
(n=613) 

Treatment 
(n=513) 

Control 
(n=552) 

Treatment 
(n=25) 

Control 
(n=25) 

Fuelwood 
Percent consuming 91% 90% - - - - 
       
Monthly per capita consumption 
(kwacha) - - 5.13 5.00 - - 

       
Charcoal 
Percent consuming 4% 4% - - - - 
       
Monthly per capita consumption 
(kwacha) - - - - 3.98 3.89 

1Means and tests for significant difference are regression-adjusted to account for clustered randomized design. Regressions include controls for recipient 
characteristics (age, education, marital status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a 
vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and 
control groups at the 99% level, ** at the 95% level, and * at the 90% level. 
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Table 22. Natural resource use at 2010 baseline: Means and tests for equivalence between control and treatment groups 
amongst households within 10km of a market1 

 Panel households, 
all 

Fuelwood 
 consumption >0 

Charcoal 
consumption >0 

 Treatment 
(n=569) 

Control 
(n=511) 

Treatment 
(n=518) 

Control 
(n=462) 

Treatment 
(n=48) 

Control 
(n=23) 

Fuelwood 
Percent consuming 91% 90% - - - - 
       
Monthly per capita consumption 
(kwacha) - - 5.61 5.31 - - 

       
Charcoal 
Percent consuming 8% 5% - - - - 
       
Monthly per capita consumption 
(kwacha) - - - - 3.61 3.55 

1Means and tests for significant difference are regression-adjusted to account for clustered randomized design. Regressions include controls for recipient 
characteristics (age, education, marital status), household characteristics (wealth, household size, and demographic composition), district fixed effects, and a 
vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and 
control groups at the 99% level, ** at the 95% level, and * at the 90% level. 
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Table 23. The impact of cash on use of fuelwood, charcoal, bushmeat and land for 
farming1,2  

Dependent variable: Consumed resource (1) – Linear Probability Model  
     
 Used fuelwood Used charcoal Used bushmeat Used land for farming 
Constant 1.08*** 

(0.08) 
-0.14* 
(0.08) 

-0.16*** 
(0.05) 

0.59*** 
(0.09) 

Time -0.01 
(0.02) 

0.07*** 
(0.02) 

0.05*** 
(0.01) -- 

Cash 0.01 
(0.02) 

0.01 
(0.02) 

-0.005 
(0.01) 

0.03 
(0.02) 

Cash*Time -0.04 
(0.02) 

0.08* 
(0.04) 

0.02 
(0.02) -- 

     
Recipient characteristics     
Age -0.001 

(0.001) 
-0.0001 
(0.0006) 

0.0002 
(0.0004) 

0.003*** 
(0.001) 

Attended school 0.01 
(0.01) 

-0.01 
(0.01) 

2.01 
(0.01) 

0.02 
(0.01) 

Married 0.04 
(0.02) 

-0.02** 
(0.01) 

0.018 
(0.01) 

0.04** 
(0.02) 

    
Household characteristics    
Wealth index -0.03*** 

(0.01) 
0.05*** 
(0.01) 

0.01 
(0.004) 

-0.02** 
(0.01)   

Household size -0.001 
(0.01) 

-0.01 
(0.01) 

0.003 
(0.01) 

-0.04 
(0.02)   

Members age 0-5 0.01 
(0.01) 

-0.005 
(0.01) 

0.001 
(0.01) 

0.05** 
(0.02) 

Members age 6-12 0.01 
(0.01) 

0.01 
(0.01) 

-0.01 
(0.01) 

0.04* 
(0.02) 

Members age 13-18 0.01 
(0.02) 

0.01 
(0.01) 

0.004 
(0.01) 

0.05* 
(0.03) 

Members age 19-35 -0.01 
(0.01) 

0.02* 
(0.01) 

-0.01 
(0.01) 

0.04* 
(0.03) 

Members age 36-55 -0.003 
(0.01) 

0.02 
(0.01) 

-0.01 
(0.01) 

0.04* 
(0.02) 

     
Community characteristics    
Kaputa -0.14*** 

(0.03) 
0.22*** 
(0.03) 

0.01 
(0.02) 

0.002 
(0.04) 

Shangombo 0.03* 
(0.02) 

-0.01 
(0.02) 

0.05 
(0.02) 

0.08*** 
(0.03) 

     
N 4518 4518 4518 2259 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 24. The impact of cash on charcoal and bushmeat consumption in Kaputa district1,2 

Dependent variable: Consumed resource (1) – Linear Probability Model 
   
 Used charcoal Used bushmeat 
Constant 0.01 

(0.20) 
-0.20* 
(0.10) 

Time 0.22*** 
(.05) 

0.01 
(0.01) 

Cash 0.01 
(0.05) 

-0.01 
(0.03) 

Cash*Time 0.24*** 
(0.08) 

0.02 
(0.04) 

   
Recipient characteristics   
Age -0.001 

(0.002) 
0.00002 
(0.001) 

Attended school -0.02 
(0.04) 

0.03*** 
(0.01) 

Married -0.03 
(0.03) 

0.02 
(0.01) 

  
Household characteristics  
Wealth index 0.10*** 

(0.02) 
0.0002 
(0.01) 

Household size 0.01 
(0.04) 

0.01 
(0.02) 

Members age 0-5 -0.04 
(0.04) 

0.001 
(0.02) 

Members age 6-12 0.002 
(0.04) 

-0.02 
(0.02) 

Members age 13-18 -0.01 
(0.04) 

-0.01 
(0.02) 

Members age 19-35 0.01 
(0.04) 

-0.02 
(0.02) 

Members age 36-55 0.02 
(0.03) 

-0.02 
(0.02) 

   
N 1314 1314 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Sub-samples balanced at baseline (regression results not shown). 
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Table 25. The impact of cash on consumption of fuelwood, charcoal, and land amongst 
households with consumption at baseline (fuelwood, charcoal) or in 2012 (land)1,2 

Dependent variable: Per capita consumption (logged)  
    
 Fuelwood, 

monthly 
(kwacha) 

Charcoal, 
monthly 

(kwacha) 

Land used for farming 
(hectares) 

Constant 9.59*** 
(0.61) 

2.40 
(2.97) 

-2.76*** 
(0.35) 

Time -1.10*** 
(0.22) 

-7.94*** 
(1.32) 

 
- 

Cash 0.00003 
(0.12) 

-0.68 
(0.95) 

0.27*** 
(0.08) 

Cash*Time -0.35 
(0.30) 

2.02 
(1.67) 

- 
 

    
Recipient characteristics    
Age -0.01 

(0.008) 
0.005 
(0.04) 

0.01** 
(0.003) 

Attended school 0.05 
(0.11) 

0.39 
(0.68) 

0.18*** 
(0.05) 

Married 0.15 
(0.15) 

-0.18 
(0.69) 

0.09* 
(0.05) 

   
Household characteristics   
Wealth index -0.13* 

(0.06) 
0.43** 
(0.17) 

-0.01 
(0.03) 

Household size -0.09 
(0.19) 

-0.003 
(0.90) 

-0.08 
(0.07) 

Members age 0-5 -0.02 
(0.19) 

-0.28 
(0.84) 

0.002 
(0.08) 

Members age 6-12 -0.09 
(.19) 

-0.003 
(0.84) 

0.01 
(0.08) 

Members age 13-18 -0.001 
(0.20) 

0.17 
(0.91) 

0.06 
(0.08) 

Members age 19-35 -0.12 
(0.19) 

0.47 
(1.08) 

-0.01 
(0.08) 

Members age 36-55 0.06 
(0.18) 

-0.06 
(0.98) 

0.05 
(0.07) 

    
Community characteristics   
Kaputa -1.07*** 

(0.29) 
0.66 

(1.10)   
0.06 

(0.13) 
Shangombo 0.04 

(0.17) 
-1.05 
(1.08) 

0.57*** 
(0.10) 

    
N 4076 240 2259 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 26. The impact of cash on use of fuelwood, charcoal, and land within 10km of a 
market1,2  

Dependent variable: Consumed resource (1) – Linear Probability Model  
    
 Used fuelwood Used charcoal Used land for farming 
Constant 0.99*** 

(0.13) 
-0.19 
(0.11) 

0.47***  
(0.14) 

Time -0.01 
(0.02) 

0.10*** 
0.04 -- 

Cash 0.01 
(0.03) 

(0.01) 
0.04 

0.001 
(0.03) 

Cash*Time -0.05 
(0.03) 

0.11* 
(0.07) -- 

    
Recipient characteristics    
Age -0.001 

(0.001) 
-0.0004 
(0.001) 

0.002 
(0.001) 

Attended school 0.01 
(0.01) 

0.01 
(0.02) 

0.05** 
(0.02) 

Married 0.05** 
(0.02) 

-0.02 
(0.01) 

-0.001 
(0.03) 

   
Household characteristics   
Wealth index -0.04*** 

(0.01) 
0.05*** 
(0.01) 

-0.02* 
(0.01) 

Household size 0.002 
(0.02) 

0.001 
(0.02) 

-0.03 
(0.03) 

Members age 0-5 -0.02 
(0.02) 

-0.02 
(0.02) 

0.05 
(0.03) 

Members age 6-12 -0.004 
(0.02) 

0.01 
(0.02) 

0.04 
(0.03) 

Members age 13-18 -0.003 
(0.02) 

-0.01 
(0.02)   

0.04 
(0.04) 

Members age 19-35 -0.01 
(0.02) 

0.02 
(0.02) 

0.04 
(0.04) 

Members age 36-55 0.01 
(0.02) 

0.001 
(0.02) 

0.05 
(0.03) 

    
Community characteristics   
Kaputa -0.08** 

(0.04) 
0.23*** 
(0.04) 

0.03 
(0.05) 

Shangombo 0.06* 
(0.03) 

-0.01 
(0.03) 

0.11** 
(0.05) 

    
N 2160 2160 1080 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 27. The impact of cash on consumption of fuelwood and land amongst households 
with consumption at baseline (fuelwood) or 2012 (land) within 10km of a market1,2  

Dependent variable: Per capita consumption (logged) 
   
 Fuelwood, monthly 

(kwacha) 
Land used for farming 

(hectares) 
Constant 8.98*** 

(1.11) 
-2.03*** 

(0.41) 
Time -1.07*** 

(0.29) -- 

Cash 0.15 
(0.14) 

0.21*** 
(0.07) 

Cash*Time -0.63 
(0.39) -- 

   
Recipient characteristics   
Age -0.01 

(0.01) 
0.0004 
(0.003) 

Attended school 0.06 
(0.16) 

0.17*** 
(0.05) 

Married 0.17 
(0.22) 

-0.02 
(0.05) 

  
Household characteristics  
Wealth index -0.20** 

(0.08) 
0.07*** 
(0.03) 

Household size -0.02 
(0.28) 

0.01 
(0.08) 

Members age 0-5 -0.21 
(0.29) 

-0.17* 
(0.09) 

Members age 6-12 -0.24 
(0.28) 

-0.09 
(0.09) 

Members age 13-18 -0.14 
(0.30) 

-0.06 
(0.09) 

Members age 19-35 -0.25 
(0.28) 

-0.14 
(0.09) 

Members age 36-55 0.18 
(0.25) 

-0.09 
(0.09) 

   
Community characteristics  
Kaputa -0.80** 

(0.32) 
0.18  

(0.12) 
Shangombo 0.20 

(0.28) 
0.48*** 
(0.11) 

   
N 1953 925 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 28. The impact of cash on use of fuelwood, charcoal, and land more than 10km from 
a market1,2  

Dependent variable: Consumed resource (1) – Linear Probability Model  
    
 Used fuelwood Used charcoal Used land for farming 
Constant 1.16*** 

(0.11) 
-0.19* 
(0.10) 

0.72*** 
(0.11) 

Time -.011 
(0.03) 

0.05** 
(0.03) -- 

Cash 0.002 
(0.03) 

0.01 
(0.02) 

0.06*** 
(0.02) 

Cash*Time -0.03 
(0.03) 

0.04 
(0.05) -- 

    
Recipient characteristics    
Age -0.0002 

(0.001) 
0.001 

(0.001) 
0.003*** 
(0.001) 

Attended school -0.001 
(0.01) 

-0.01 
(0.01) 

-0.01 
(0.02) 

Married 0.02 
(0.02) 

-0.01 
(0.01) 

0.06*** 
(0.02) 

   
Household characteristics   
Wealth index -0.02 

(0.01) 
0.03*** 
(0.01) 

-0.01 
(0.01) 

Household size -0.01 
(0.02) 

-0.02 
(0.01) 

-0.03 
(0.03) 

Members age 0-5 0.03 
(0.02) 

0.01 
(0.01) 

0.03 
(0.03) 

Members age 6-12 0.01 
(0.02) 

0.02 
(0.01) 

0.03 
(0.03) 

Members age 13-18 0.01 
(0.02) 

0.03** 
(0.01) 

0.04 
(0.03) 

Members age 19-35 -0.01 
(0.02) 

0.03** 
(0.01) 

0.03 
(0.03) 

Members age 36-55 -0.02 
(0.02) 

0.04** 
(0.02) 

0.02 
(0.03) 

    
Community characteristics   
Kaputa -0.21*** 

(0.05) 
0.22*** 
(0.03) 

0.01 
(0.03) 

Shangombo 0.004 
(0.02) 

-0.01 
(0.02) 

0.10*** 
(0.02) 

    
N 2358 2358 1179 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 29. The impact of cash on consumption of fuelwood and land amongst households 
with consumption at baseline (fuelwood) or 2012 (land) more than 10km from a market1,2  

Dependent variable: Per capita consumption (logged) 
   
 Fuelwood, monthly 

(kwacha) 
Land used for farming 

(hectares) 
Constant 9.98*** 

(0.86) 
-1.32*** 

(0.31) 
Time -1.12*** 

(0.28) -- 

Cash -0.03 
(0.18) 

0.28*** 
(0.08) 

Cash*Time -0.07 
(0.43) -- 

   
Recipient characteristics   
Age -0.002 

(0.01) 
0.001 

(0.002) 
Attended school -0.02 

(0.16) 
0.09* 
(0.05) 

Married 0.11 
(0.15) 

-0.04 
(0.06) 

  
Household characteristics  
Wealth index 0.10 

(0.08) 
0.08* 
(0.04) 

Household size -0.16 
(0.21) 

-0.02 
(0.06) 

Members age 0-5 0.15 
(0.21) 

-0.07 
(0.06) 

Members age 6-12 0.02 
(0.22) 

-0.08 
(0.06) 

Members age 13-18 0.14 
(0.21) 

-0.03 
(0.06) 

Members age 19-35 0.04 
(0.23) 

-0.09 
(0.07) 

Members age 36-55 -0.04 
(0.24) 

-0.02 
(0.06) 

   
Community characteristics  
Kaputa -1.44*** 

(0.40) 
-0.01 
(0.09) 

Shangombo -0.17 
(0.19) 

0.44*** 
(0.12) 

   
N 2123 1078 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level 
2Baseline data for land use not available; first difference regressions using just 2012 data assume equivalence at 
baseline. 
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Table 30. The impact of cash on household ownership of non-farm businesses1,2 
Dependent variable: Own business (1) – Linear Probability Model  
    
 Any non-farm 

business 
Charcoal, fish, or 

hay business 
All other 

businesses 
Constant 0.77*** 

(0.13) 
0.18* 
(0.10) 

0.64*** 
(0.10) 

Cash 0.17*** 
(0.03) 

0.05** 
(0.02) 

0.13*** 
(0.03) 

    
Recipient characteristics    
Age -0.004*** 

(0.001) 
-0.0003 
(0.001) 

-0.004*** 
(0.001) 

Attended school 0.065** 
(0.023) 

0.04*** 
(0.02) 

0.03 
(0.03) 

Married -0.03 
(0.03) 

0.02 
(0.02) 

-0.04* 
(0.03) 

   
Household characteristics   
Wealth index 0.03*** 

(0.01) 
-0.01 
(0.01) 

0.04*** 
(0.01) 

Household size -0.03 
(0.03) 

-0.01 
(0.02) 

-0.01 
(0.03) 

Members age 0-5 0.06* 
(0.03) 

0.03 
(0.02) 

0.02 
(0.03) 

Members age 6-12 0.05 
(0.03) 

0.03 
(0.02) 

0.01 
(0.03) 

Members age 13-18 0.04 
(0.03) 

0.003 
(0.02) 

0.03 
(0.03) 

Members age 19-35 0.03 
(0.04) 

.01 
(0.02) 

0.01 
(0.04) 

Members age 36-55 0.03 
(0.04) 

.01 
(0.02) 

0.02 
(0.03) 

    
Community characteristics   
Kaputa -0.04 

(0.04) 
0.06 

(0.04) 
-0.11*** 

(0.04) 
Shangombo -0.19*** 

(0.04) 
-0.12*** 

(0.04) 
-0.08** 
(0.03) 

    
N 2252 2252 2252 

1Sample restricted to 2012 data; robust standard errors are clustered at the community level to account for the 
clustered randomized design and included in parentheses below coefficients. Parameter estimates for vector of 
baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap) not shown. *** indicates 
significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline business enterprise data not available; first difference regressions using just 2012 data assume equivalence 
at baseline. 
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Table 31. The impact of cash on ownership of non-farm businesses more than 10km from a 
market 

Dependent variable: Own business (1) – Linear Probability Model  
    
 Any non-farm 

business 
Charcoal, fish, or 

hay business 
All other 

businesses 
Constant 0.81*** 

(0.14) 
0.16 

(0.12) 
0.69*** 
(0.12) 

Cash 0.11*** 
(0.03) 

0.02 
(0.02) 

0.11*** 
(0.03) 

    
Recipient characteristics    
Age -0.004** 

(0.002) 
0.00004 
(0.002) 

-0.004** 
(0.002) 

Attended school 0.02 
(0.03) 

0.05*** 
(0.02) 

-0.02 
(0.03) 

Married -0.03 
(0.04) 

0.03 
(0.02) 

-0.06 
(0.04) 

   
Household characteristics   
Wealth index 0.03 

(0.02) 
0.02 

(0.01) 
0.03 

(0.02) 
Household size -0.04 

(0.05) 
-0.03 
(0.03) 

0.01 
(0.05) 

Members age 0-5 0.06 
(0.05) 

0.05 
(0.04) 

-0.01 
(0.05) 

Members age 6-12 0.06 
(0.05) 

0.04 
(0.03) 

0.003 
(0.05) 

Members age 13-18 0.05 
(0.05) 

0.02 
(0.03) 

0.01 
(0.05) 

Members age 19-35 0.02 
(0.05) 

0.01 
(0.03) 

-0.01 
(0.05) 

Members age 36-55 0.02 
(0.05) 

0.01 
(0.03) 

0.005 
(0.05) 

    
Community characteristics   
Kaputa -0.12** 

(0.05) 
0.005 
(0.04) 

-0.16*** 
(0.04) 

Shangombo -0.25*** 
(0.04) 

-0.14*** 
(0.03) 

-0.14*** 
(0.04) 

    
N 1175 1175 1175 

1Sample restricted to 2012 data; robust standard errors are clustered at the community level to account for the 
clustered randomized design and included in parentheses below coefficients. Parameter estimates for vector of 
baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap) not shown. *** indicates 
significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline business enterprise data not available; first difference regressions using just 2012 data assume equivalence 
at baseline. 
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Table 32. The impact of cash on ownership of non-farm businesses within 10km of a 
market1,2 

Dependent variable: Own business (1) – Linear Probability Model  
    
 Any non-farm 

business 
Charcoal, fish, or 

hay business 
All other 

businesses 
Constant 0.62** 

(0.24) 
0.27 

(0.19) 
0.43** 
(0.20) 

Cash 0.23*** 
(0.05) 

0.10** 
(0.04) 

0.14*** 
(0.04) 

    
Recipient characteristics    
Age -0.004** 

(0.002) 
-0.001 
(0.002) 

-0.003** 
(0.002) 

Attended school 0.11*** 
(0.04) 

0.04 
(0.02) 

0.08** 
(0.04) 

Married -0.03 
(0.03) 

0.02 
(0.03) 

-0.01 
(0.03) 

   
Household characteristics   
Wealth index 0.03*** 

(0.01) 
-0.02** 
(0.01) 

0.05*** 
(0.01) 

Household size -0.02 
(0.05) 

0.01 
(0.03) 

-0.03 
(0.04) 

Members age 0-5 0.05 
(0.05) 

0.01 
(0.03) 

0.04 
(0.04) 

Members age 6-12 0.03 
(0.05) 

0.01 
(0.03) 

0.02 
(0.04) 

Members age 13-18 0.03 
(0.05) 

-0.02 
(0.04) 

0.04 
(0.05) 

Members age 19-35 0.03 
(0.05) 

0.001 
(0.03) 

0.03 
(0.05) 

Members age 36-55 0.04 
(0.06) 

0.01 
(0.03) 

0.03 
(0.05) 

    
Community characteristics   
Kaputa 0.03 

(0.07) 
0.11** 
(0.05) 

-0.09 
(0.07) 

Shangombo -0.11 
(0.08) 

-0.10 
(0.06) 

-0.03 
(0.07) 

    
N 1077 1077 1077 

1Sample restricted to 2012 data; robust standard errors are clustered at the community level to account for the 
clustered randomized design and included in parentheses below coefficients. Parameter estimates for vector of 
baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap) not shown. *** indicates 
significant differences at the 99% level, ** at the 95% level, and * at the 90% level.  
2Baseline business enterprise data not available; first difference regressions using just 2012 data assume equivalence 
at baseline. 
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Table 33. The impact of cash on the decision to farm, amongst households with a non-farm 
business1,2 

Dependent variable: Used land for farming (1) – Linear Probability Model 
    
 All 2012 

households 
Households more than 
10km from a market 

Households within 
10km of a market 

Constant 0.50*** 
(0.17) 

0.74*** 
(0.19) 

0.30 
(0.31) 

Cash 0.03 
(0.04) 

0.03 
(0.04) 

0.05 
(0.05) 

    
Recipient characteristics 
Age 0.0003 

(0.002) 
0.002 

(0.003) 
-0.001 
(0.003) 

Attended school -0.02 
(0.03) 

-0.04 
(0.03) 

-0.0003 
(0.06) 

Married 0.06* 
(0.03) 

0.03 
(0.04) 

0.08 
(0.05) 

    
Household characteristics 
Wealth index -0.01 

(0.01) 
0.003 
(0.02) 

0.01 
(0.02) 

Household size -0.02 
(0.04) 

-0.02 
(0.04) 

0.01 
(0.07) 

Members age 0-5 0.04 
(0.04) 

0.01 
(0.05) 

0.08 
(0.05) 

Members age 6-12 0.02 
(0.04) 

0.01 
(0.04) 

0.005 
(0.07) 

Members age 13-18 0.02 
(0.05) 

0.02 
(0.06) 

-0.01 
(0.08) 

Members age 19-35 0.03 
(0.04) 

0.03 
(0.05) 

-0.002 
(0.07) 

Members age 36-55 0.04 
(0.05) 

0.04 
(0.06) 

0.04 
(0.07) 

    
Community characteristics 
Kaputa 0.01 

(0.05) 
-0.01 
(0.06) 

0.05 
(0.07) 

Shangombo 0.03 
(0.05) 

0.06 
(0.05) 

0.08 
(0.09) 

    
N 870 413 457 

1Sample restricted to 2012 data; robust standard errors are clustered at the community level to account for the 
clustered randomized design and included in parentheses below coefficients. Parameter estimates for vector of 
baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid soap) not shown. *** indicates 
significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline business enterprise data not available; first difference regressions using just 2012 data assume equivalence 
at baseline. 
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Table 34. The impact of cash on the area farmed, amongst farming households with a non-
farm business1,2 

Dependent variable: Hectares farmed (Logged, per capita)  
    
 All 2012 

households 
Households more than 
10km from a market 

Households within 
10km of a market 

Constant -1.73*** 
(0.30) 

-1.62*** 
(0.43) 

-1.85*** 
(0.60) 

Cash 0.13* 
(0.07) 

0.20* 
(0.12) 

0.04 
(0.09) 

    
Recipient characteristics 
Age -0.005 

(0.004) 
-0.004 
(0.01) 

-0.01 
(0.005) 

Attended school 0.03 
(0.06) 

0.004 
(0.08) 

0.03 
(0.09) 

Married 0.01 
(0.06) 

0.05 
(0.10) 

-0.05 
(0.08) 

    
Household characteristics 
Wealth index 0.03 

(0.03) 
0.04 

(0.05) 
0.04 

(0.03) 
Household size 0.14 

(0.13) 
0.16 

(0.20) 
0.16 

(0.15) 
Members age 0-5 -0.23* 

(0.12) 
-0.31* 
(0.18) 

-0.19 
(0.14) 

Members age 6-12 -0.26** 
(0.12) 

-0.26 
(0.16) 

-0.31* 
(0.16) 

Members age 13-18 -0.16 
(0.13) 

-0.16 
(0.19) 

-0.21 
(0.17) 

Members age 19-35 -0.28** 
(0.12) 

-0.33* 
(0.17) 

-0.30** 
(0.15) 

Members age 36-55 -0.19* 
(0.11) 

-0.30* 
(0.17) 

-0.14 
(0.14) 

    
Community characteristics 
Kaputa 0.08 

(0.12) 
-0.13 
(0.13) 

0.33** 
(0.14) 

Shangombo 0.53*** 
(0.11) 

0.48*** 
(0.15) 

0.71*** 
(0.16) 

    
N 721 366 355 

1Sample restricted to 2012 households with farmed area greater than zero; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline business enterprise data not available; first difference regressions using just 2012 data assume equivalence 
at baseline. 
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                             Table 35. Bike ownership trends1 

 Cash 
(n=1,153) 

Control 
(n=1,145) 

 
2010 80 

(7%) 
87 

(8%) 
 

2012 195 
(17%) 

144 
(13%) 

     1 Restricted to households that remain in the panel 
 

 
 
Table 36. Mean characteristics and tests for equivalence at 2010 baseline between (a) those 
ever owning a bike and those never owning a bike and (b) the cash transfer group and the 
control group1,2 

 Cash vs. Control Bike ever vs. Bike never 

 Cash 
(n=1,153) 

Control 
(n=1,145) 

Bike ever 
(n=430) 

Bike never 
(n=1868) 

Recipient characteristics  
Age 30 30 31**          30**            
Attended school 73% 70% 84%*** 69%***            
Married 74% 71% 86%**          69%**            
Male 1.2% <1% <1%**          2%**            
     
Household characteristics  
Monthly per capita 
consumption (kwacha) 48.11 46.09 49.38*** 46.57***     

Monthly per capita food 
consumption (kwacha) 30.16 28.50 36.30**   35.13**     

Below 2010 poverty line 92% 92% 90%            92%            
Severely food insecure 90% 90% 89%     90%     
Household size 6 6 7***         5***            
Members age 0-5 2 2 2*** 2***            
Members age 6-12 1 1 2***         1***            
Members age 13-18 1 1 1***         1***            
Members age 19-35 1 1 1*           *1            
Members age 36-55 1 1 1***         0***            
Members age 56-69 0 0 0            0            
Members 70+ 0 0 0            0 
Kilometers to market 16 22 14**          20**            

     
Percent from each district  
Kaputa 30% 30% 68%***         21%***            
Kalabo 35% 35% 19%***         40%***            
Shang’ombo 35% 35% 13%***         39%***            

1All samples restricted to those who remain in the panel survey in 2012. Means and tests for significant difference 
are regression-adjusted to account for clustered randomized design. Consumption and food security regressions 
include controls for recipient characteristics (age, education, marital status), household characteristics (household 
size and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, rice, beans, 
fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment and control 
groups at the 99% level, ** at the 95% level, and * at the 90% level. 
2Monthly per capita consumption does not include spending on agricultural inputs. 
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Table 37. Agricultural market activity at 2010 baseline: Means and tests for equivalence 
between the cash and control group1,2 

 Panel households, 
all 

Agricultural input 
spending > 0 

Crop Sales > 0 

 Cash 
(n=1,153) 

Control 
(n=1,145) 

Cash 
(n=157) 

Control 
(n=150) 

Cash 
(n=227) 

Control 
(n=275) 

Agricultural inputs   
Percent 
consuming 14%     13% - - - - 

       
Spending 
during prior 
agricultural 
season/year 
(kwacha) 

- - 53.06* 49.19* - - 

       
Crop sales   
Percent 
selling 20% 24% - - - - 

       
Value of sales 
during prior 
agricultural 
season/year 
(kwacha) 

- - - - 326.04 271.03 

       
1Means and tests for significant difference are regression-adjusted to account for clustered randomized design. 
Regressions include controls for recipient characteristics (age, education, marital status), household characteristics   
(household size and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, 
rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment 
and control groups at the 99% level, ** at the 95% level, and * at the 90% level. 
2Agricultural inputs include seeds, fertilizer, and pesticides. 
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Table 38. Agricultural market activity at 2010 baseline: Means and tests for equivalence 
between those ever owning bikes and those never owning bikes1,2 

 Panel households, 
all 

Agricultural input 
spending > 0 

Crop Sales > 0 

 Bike ever 
(n=430) 

Bike never 
(n=1,868) 

Bike ever 
(n=84) 

Bike never 
(n=223) 

Bike ever 
(n=149) 

Bike never 
(n=353) 

Agricultural inputs   
Percent 
consuming 20%* 12%* - - - - 

       
Spending 
during prior 
agricultural 
season/year 
(kwacha) 

- - 70.89 44.01 - - 

       
Crop sales   
Percent  
selling 35%** 19%** - - - - 

       
Value of sales 
during prior 
agricultural 
season/year 
(kwacha) 

- - - - 327.48 282.93 

       
1Means and tests for significant difference are regression-adjusted to account for clustered randomized design. 
Regressions include controls for recipient characteristics (age, education, marital status), household characteristics   
(household size and demographic composition), district fixed effects, and a vector of baselines prices (maize/grain, 
rice, beans, fish, oil, sugar, salt, hand soap, liquid soap). *** indicates significant differences between the treatment 
and control groups at the 99% level, ** at the 95% level, and * at the 90% level. 
2Agricultural inputs include seeds, fertilizer, and pesticides.
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Table 39. The impact of cash and bikes on engagement in agricultural markets and non-farm business1,2 

Dependent variable: Engaged in market activity (1) – Linear Probability Model  
       
 Sold crops Purchased agricultural inputs Owned non-farm business 

 Baseline 
bike 

Time-varying 
bike 

Baseline 
bike 

Time-varying 
bike 

Baseline 
bike 

Time-varying 
bike 

Constant 0.13 
(0.11)      

0.13 
(0.11)      

0.24***   
(0.08)      

0.24***   
(0.08)      

0.82***   
(0.12)      

0.82***    
(0.12)      

Time -0.01   
(0.03)     

-0.01 
(0.03)     

0.06**   
(0.03)      

0.04* 
(0.02)     

- - 

Cash -0.03   
(0.03)     

-0.03 
(0.03)     

0.01 
(0.02)      

0.01    
(0.02) 

0.15***   
(0.03)      

0.14***    
(0.03)      

Cash*Time 0.12***   
(0.04)      

0.12***   
(0.04)      

0.11***   
(0.04)      

0.12***   
(0.04)      

- - 

Bike 0.14**   
(0.06)      

0.14**   
(0.06)      

0.02 
(0.04)      

0.02    
(0.04)      

-0.05   
(0.05)     

-0.02    
(0.05)    

Bike*Time 0.01 
(0.07)      

-0.01 
(0.06)     

0.02 
(0.06)      

0.12*    
(0.07)      

- - 

Bike*Cash -0.06    
(0.08)     

-0.06 
(0.08)     

-0.03   
(0.06)     

-0.03    
(0.06)     

0.11 
(0.08)     

0.09    
(0.07)      

Bike*Cash*Time -0.10   
(0.11)     

-0.02 
(0.08)     

0.05 
(0.09)      

-0.05     
(0.09)    

- - 

       
Recipient characteristics       
Age 0.001   

(0.001)      
0.001   

(0.001)      
0.0002   
(0.001)      

0.0003  
(0.001)      

-0.004***   
(0.001)     

0.06*    
(0.03)      

Attended school 0.08***   
(0.02)      

0.08***   
(0.02)     

0.02* 
(0.01)      

0.02    
(0.01)      

0.06**   
(0.03)      

0.06**    
(0.03)      

Married 0.04**   
(0.02)      

0.04**   
(0.02)      

0.06***   
(0.02)      

0.05***   
(0.02)      

-0.02   
(0.03)     

-0.03    
(0.02)    

       
Household characteristics       
Household size 0.02 

(0.02)      
0.01 

(0.02)      
-0.03   
(0.02)     

-0.03*    
(0.02)     

-0.03   
(0.03)     

-0.03    
(0.03)     

Members age 0-5 -0.01   
(0.03)     

-0.01    
(0.03)     

0.02 
(0.02)      

0.03    
(0.02)      

0.06*   
(0.03)     

0.06*    
(0.03)      

Members age 6-12 -0.02   
(0.02)     

-0.016   
(0.02)     

0.03 
(0.02)      

0.03    
(0.02)      

0.04 
(0.03)     

0.04    
(0.03)     

Members age 13-18 -0.002   
(0.03)     

-0.001   
(0.03)     

0.04**   
(0.02)      

0.05**    
(0.02)      

0.04 
(0.03)     

0.04    
(0.03)     
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Members age 19-35 -0.02   
(0.02)     

-0.01    
(0.02)     

0.03 
(0.02)     

0.04*    
(0.02)      

0.03 
 (0.04)      

0.03    
(0.04)      

Members age 36-55 -0.02   
(0.02)     

-0.02    
(0.02)     

0.05**   
(0.02)      

0.05**    
(0.02)      

0.03 
(0.04)      

0.03    
(0.04)      

Kilometers to market (logged) 0.03**   
(0.01)      

0.03**   
(0.01)      

0.01 
(0.01)      

0.01    
(0.01)      

-0.03*   
(0.01)    

-0.02*     
(0.01)     

       
Community characteristics       
Kaputa 0.04 

(0.03)      
0.03    

(0.03)      
0.02 

(0.03)      
0.01    

(0.03)      
-0.03   
(0.04)    

-0.04    
(0.04)     

Shangombo -0.07**   
(0.03)     

-0.07**   
(0.03)     

-0.06**   
(0.03)     

-0.06**   
(0.03)     

-0.21***   
(0.04)     

-0.21***   
(0.04)    

       
N 4584 4584 4584 4584 2284 2284 

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the community level to account for the clustered 
randomized design and included in parentheses below coefficients. Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, 
salt, hand soap, liquid soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
2Baseline data for non-farm business not available; first difference regressions using just 2012 data assume equivalence at baseline.
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Table 40. The impact of cash and bikes on crop sales and agricultural input purchases, 
amongst those with such activity at baseline1 

Dependent variable: Value sold/purchased during prior agricultural season/year (kwacha) 
     
 Value of crops sold, 

amongst those with sales 
at baseline 

Value of agricultural inputs 
purchased, amongst those with 

spending at baseline 
 Baseline 

 bike 
Time-varying 

bike 
Baseline 

 bike 
Time-varying 

bike 
Constant 141.09    

(120.23)     
137.89   

(122.17)      
46.58    

(35.53)      
41.19     

(35.64)      
Time -105.1**   

(440.94)     
-147.41***   

(35.13)     
-27.64***   

(8.42)     
-30.96***    

(8.31)     
Cash 313.20    

(85.71)      
32.20    

(85.61)      
-9.14    
(7.78)     

-9.34    
(7.67)     

Cash*Time 31.19    
(97.34)      

18.41    
(79.90)      

19.17    
(12.18)      

11.38    
(10.34)      

Bike 55.64    
(106.34)      

69.17   
(108.84)      

2.65    
(16.59)      

5.90    
(16.63)      

Bike*Time 251.86     
(159.45)      

331.26**   
(164.32)      

17.69    
(29.59)      

25.14    
(31.72)      

Bike*Cash 62.11 
   (212.89)      

69.41   
(209.09)      

77.11*   
(42.73)      

76.31*    
(41.91)      

Bike*Cash*Time -127.78    
(248.11)     

-146.53   
(309.47)     

-50.30   
(52.66)    

-43.43    
(53.92)     

     
Recipient characteristics     
Age  -20.72    

(76.64)     
-1.78     
(2.40)     

-0.093    
(0.41)     

14.51    
(0.42)      

Attended school 113.04**   
(44.25)      

99.36**   
(41.02)      

16.52*    
(9.67)      

14.88*    
(8.76)      

Married 73.40       
(67.47)      

61.08    
(69.93)      

2572    
(9.64)      

2.34    
(9.46)      

     
Household characteristics     
Household size 44.73    

(76.01)      
36.39    

(70.73)      
17.94    

(20.15)      
18.15    

(19.97)      
Members age 0-5 -20.72    

(76.64)     
-10.73   
(71.19)     

-15.02   
(21.03)     

-13.22    
(20.66)     

Members age 6-12 4.21    
(84.97)      

5.08    
(80.58)      

-17.44   
(20.77)     

-17.42    
(20.51)     

Members age 13-18   20.52    
(75.71)      

24.13    
(70.61)      

-12.23   
(22.07)     

-14.20    
(21.63)     

Members age 19-35 3.619    
(67.64)      

14.46     
(68.59)      

-16.34    
(21.20)     

-17.70    
(21.27)     

Members age 36-55 33.730    
(63.12)      

40.20    
(63.18)      

-11.42   
(19.66)     

-13.25    
(19.78)     

Kilometers to market (logged) -10.35    
(159.12)     

-2.44    
(17.14) 

-1.77    
(2.96)     

-1.13    
(3.04)     

     
Community characteristics     
Kaputa -78.89    

(72.28)     
-110.84   
(70.87)     

19.74    
(14.33)      

10.84    
(13.04)      

Shangombo -16.66    
(126.26)     

-10.44    
(126.95)     

6.17    
(9.64)      

5.07    
(9.27)      
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N 1000 1000 612 612 
     

1Sample restricted to those who remain in the panel survey in 2012; robust standard errors are clustered at the 
community level to account for the clustered randomized design and included in parentheses below coefficients. 
Parameter estimates for vector of baselines prices (maize/grain, rice, beans, fish, oil, sugar, salt, hand soap, liquid 
soap) not shown. *** indicates significant differences at the 99% level, ** at the 95% level, and * at the 90% level. 
 
 
Table 41. Impact of bikes and cash on crop sales (kwacha): triple-difference model using 
time-varying measure of bike ownership1 

 2010 
(n=500) 

2012 
(n=500) 

1st difference 
(2012-2010) 

Cash 
(n=226 in 2010; 
 226 in 2012) 

 
(B0 + Cash) 

170.09 
(169.69) 

 
(B0 + Cash + Time + CashTime) 

41.10 
(127.77) 

 
(Time + CashTime) 

-128.10* 
(71.63) 

Bike 
(n=63 in 2010; 
 117 in 2012) 

 
(B0 + Bike) 
207.06 

(155.57) 

 
(B0 + Bike + Time + BikeTime) 

390.91* 
(199.87) 

 
(Time + BikeTime) 

183.85 
(168.96) 

Control 
(no cash, no bike) 
(n=237 in 2010; 
 216 in 2012) 

 
(B0) 

137.89 
(122.17) 

 
(B0 + Time) 

-9.52 
(124.24) 

 
(Time) 

-147.41*** 
(35.13) 

1st difference 
(cash-control) 

 
DIFFERENCES AT BASELINE 

(Cash) 
32.20 

(85.61) 

 
(Cash + CashTime) 

50.62 
(44.29) 

 
EFFECT OF CASH 

(CashTime) 
18.41 

(79.90) 
1st difference 
(bike-control) 

 
DIFFERENCES AT BASELINE 

(Bike) 
69.17 

(108.84) 

 
(Bike + BikeTime) 

400.43** 
(164.45) 

 
EFFECT OF BIKE 

(BikeTime) 
331.26** 
(164.32) 

Triple difference 
(bike & cash – 
control) 

 
DIFFERENCES AT BASELINE 

(BikeCash) 
69.41 

(209.09) 

 
(BikeCash + BikeCashTime) 

-77.12 
(219.10) 

 
MULTIPLICATIVE EFFECT 

OF CASH AND BIKE 
(BikeCashTime) 

-146.53 
(309.47) 

1Clustered robust standard errors in parentheses below coefficients. *** indicates significant differences at the 99% 
level, ** at the 95% level, and * at the 90% level. 
 
 
 
 
 
 
 
 
 
 
 
 



 125 

Table 42. Location of agricultural market activity in 2012 
 Cash Control Bike No bike 
Location of crop sales     
Village of residence 217 

(64%) 
166 

(68%) 
79 

(60%) 
304 

(68%) 
Neighboring village or closest town 121 

(36%) 
77 

(32%) 
52 

(40%) 
146 

(32%) 
   Total 338 243 131 450 
     
Location of agricultural input purchases     
Village of residence 182 

(54%) 
124 

(57%) 
68 

(54%) 
238 

(56%) 
Neighboring village or closest town 154  

(46%) 
93  

(43%) 
58  

(46%) 
189  

(44%) 
   Total 336 217 126 427 

 


