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ABSTRACT 
 

Elizabeth Showalter Bucher:  Methods and Applications for Fast-Scan Cyclic Voltammetric 
Detection of In Vivo Catecholamine Dynamics  

(Under the direction of R. Mark Wightman) 
 

Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes provides the 

spatial, temporal and chemical resolution required to study rapid catecholamine dynamics in 

the brain. It is most well-known for its use in dopamine studies, where it has contributed 

much to our knowledge regarding the presynaptic regulation of dopamine as well as its role 

reward learning and addiction.  Only recently has FSCV been applied to the detection of 

norepinephrine, the other major catecholamine neurotransmitter in the central nervous 

system. This is largely due to issues of selectivity; the electrochemistry of dopamine and 

norepinephrine is indistinguishable with FSCV. For dopamine selectivity is not as much of 

an issue as there are large regions of the brain innervated by dopamine neurons that lack 

major noradrenergic input. For norepinephrine, however, there are only a few noradrenergic 

terminal regions that receive little dopamine innervation and the small size of these regions 

(typically ~ 0.5 mm3) make them difficult, but not impossible, to target.  

Five years ago, it was demonstrated through electrochemical, chemical, anatomical 

and pharmacological assays that norepinephrine could be monitored selectively with FSCV 

in ventral subregion of the bed nucleus of the stria terminalis (vBNST), a limbic structure that 

integrates cognitive and sensory information to initiate the physiological and behavioral 

responses to stress, including glucocorticoid secretion via the HPA axis. Norepinephrine 

signaling within the BNST is thought to potentiate these processes, and its dysregulation is 

widely implicated in anxiety-related conditions such as post-traumatic stress disorder 

(PTSD). Initial recordings within the vBNST have revealed that norepinephrine can release 
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can be evoked by electrical stimulation of the dorsal and ventral noradrenergic axon 

pathways, that it is regulated by the norepinephrine autoreceptor and transporter,  and have 

confirmed that, like dopamine, it is modulated by stimulation frequency and pulse number. 

Additional work has established that BNST norepinephrine dynamics can be recorded in 

awake, freely-moving rats and that it oppositely responds to administration of aversive and 

appetitive tastants.  

The studies presented in this volume are an extension of this preliminary work and 

explore several facets of norepinephrine signaling within the BNST with FSCV in 

anesthetized and behaving animals.  Chapter 2 investigates the neural pathways by which 

electrical stimulation evokes norepinephrine release within the BNST. Chapters 3 and 4 

compares the responses of norepinephrine in the BNST and dopamine the NAc, a related 

limbic structure, during an aversive sensory stimulation and during reward learning and 

extinction. Chapter 5 employs combined iontophoresis and FSCV to probe the local 

mechanisms by which BNST norepinephrine regulates hemodynamic function during 

neuronal activity. Finally, Chapter 6 and 7 describe and assess new experimental tools for 

FSCV data collection and analysis. Together the results of these studies demonstrate the 

utility of FSCV in the detection of rapid norepinephrine signaling in vivo and provide new 

information regarding the dual role of BNST norepinephrine as a neuro- and vaso-modulator.        
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CHAPTER 1: ELECTROCHEMICAL ANALYSIS OF NEUROTRANSMI TTERS 

 

Introduction 
 
 In the brain neuronal communication primarily occurs through the exocytotic release 

of neurotransmitters into synaptic junctions and the surrounding extracellular fluid. These 

chemical signaling molecules modulate post-synaptic cell activity in various ways dependent 

on the identity of the neurotransmitter and the receptors that are recruited. The downstream 

effects of neurotransmission underlie a wide range of physiological and behavioral 

processes and its dysregulation can lead to a number of debilitating disorders as broad as 

Parkinson’s disease, Alzheimer’s disease, depression and drug addiction (Weinshenker, 

2008; Jacobsen et al., 2012; Janezic et al., 2013; Koob, 2013).   

 Before the 1970’s, there was no available technique with the requisite sensitivity 

other than radioimmunoassays to detect the small chemical concentrations produced by 

neurotransmission (Adams, 1976). During the latter part of the 1960’s, however, Ralph 

Adams and his colleagues had studied the electrochemistry of a number of easily oxidizable 

biogenic amines, and quickly realized the potential applications of their knowledge to the 

field of neurochemistry. Shortly thereafter, Adams implanted a carbon-paste electrode into 

the brain of an anesthetized rat and, quite boldly, demonstrated that traditional voltammetric 

techniques could be applied with success to biological tissues (Kissinger et al., 1973). While 

the signal recorded was likely ascorbic acid and not dopamine as had been hoped, this work 

importantly suggested that neurotransmitters could escape the confined space of the 

synaptic cleft and diffuse to the electrode surface—without which in vivo electrochemical 

measurements would be impossible.   
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The early days of in vivo electrochemistry were fraught with issues of selectivity, 

mainly due to interference from catecholamine metabolites and ascorbic acid (Justice, 1987). 

However, over the last four decades numerous methods have been developed to increase 

not only the selectivity of these measurements, but to apply them at a subsecond time scale.  

As Adams envisioned, in vivo electrochemistry now encompasses a matured set of 

techniques employed by countless neuroscience and psychology laboratories to study the 

release, uptake and signaling dynamics of rapid neurotransmission.  Electrochemical 

techniques have found use in a wide variety of applications, from resolving single exocytotic 

events from single cells to monitoring neurochemical fluctuations in awake, behaving 

animals.  

 It is impossible to cover the entire scope of electrochemical detection of 

neurotransmitters in a single review. This review, therefore, has two goals. First, we provide 

a general understanding of common electrochemical techniques used for neurotransmitter 

detection. Second we highlight several new applications defining the next generation of in 

vivo electrochemical research.  

 

Detection of Neurotransmitters with Electrochemical  Techniques    

Several different electrochemical techniques have been applied to monitor 

neurotransmitter fluctuations in living tissues, including amperometry, various potential pulse 

methods, and cyclic voltammetry (Justice, 1987; Kawagoe et al., 1992; Robinson et al., 

2008). In general, these methods detect target neurotransmitters through their oxidation or 

reduction at a solid electrode. The currents generated provide a quantitative measure of 

dynamic chemical fluctuations that can be correlated to pharmacology, behavior and 

disease pathology. Target molecules are limited to those that are electroactive within the 

potential window of the interstitial fluid, which include the biogenic amines (dopamine, 
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norepinephrine and serotonin), their metabolites, and ascorbic acid.  Here we briefly 

overview the most common techniques in current use.   

 

Constant-potential amperometry 

In constant-potential amperometry, often referred to simply as amperometry, the 

electrode is held at a potential sufficient to oxidize or reduce an analyte of interest so that 

the currents generated are mass transport limited. As the potential is constant throughout 

the duration of the experiment, no charging currents are generated and direct integration of 

the currents detected provides the amount of analyte electrolyzed according to Faraday’s 

law (Q = nNF). Moreover, the time resolution of the experiments is only limited by the data 

acquisition rate. However, these measurements provide very little chemical information as 

any molecule that is electroactive at a given potential will be detected and should only be 

applied to samples of known content. For example, ex situ analyses typically preprocess 

samples through separation methods, such as liquid chromatography. Indeed, liquid 

chromatography with amperometric detection was one of the first viable methods for brain 

tissue content analysis (Adams, 1976) and is still in common use today.   

Cell cultures are typically relatively homogenous in their chemical composition and 

their contents can be predetermined by other analyses, making them suitable for 

amperometric analysis (Mosharov & Sulzer, 2005). Intracellular communication occurs 

through exocytosis, by which a neurotransmitter-filled vesicle docks and fuses to the cell 

membrane and releases its contents into the extracellular space. The high temporal 

resolution of amperometry has proven highly useful for the study of exocytosis of 

monoamines from single cells and cell cultures. In such experiments, a small beveled disk 

electrode is placed near the cell membrane. Chemical stimulation of the cell is used to 

evoke neurochemical release. Single exocytosis events are resolved as millisecond-wide 

spikes in oxidative current. While integration of the current response gives the moles of 
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neurotransmitters release, a number of other quantitative and qualitative information can be 

determined from the shape of the spike. The rise time (10% - 90%) of the peak correlates to 

the opening kinetics of fusion pore between the cell membrane and the neurotransmitter-

filled vesicle. The half-width of the spike indicates the duration of the release event. Of 

recent discovery, the presence of post spike plateau currents is indicative of partial-fusion, 

or “kiss and run,” events (Mellander et al., 2012). Amperometric measurements have been 

applied to a variety of cell types including adrenal chromaffin cells (Petrovic et al., 2010), 

pheochromocytoma (PC12) cells (Westerink & Ewing, 2008), mast cells (Manning et al., 

2012), and neurons (Pothos, 2002; Borisovska et al., 2013) to probe the pharmacology and 

biophysics of vesicular release events.   

 

Fast-scan cyclic voltammetry  

 In fast-scan cyclic voltammetry (FSCV), a triangular waveform is applied to a 

microelectrode at a high scan rate (>100 V/s) to rapidly oxidize and reduce electroactive 

species at the electrode surface. Various performance aspects (i.e. sensitivity, selectivity, 

and temporal resolution) can be optimized by altering the potential limits, scan-rate and 

application frequency of the waveform.   For instance, a commonly used dopamine 

waveform scans from -0.4 V to +1.3 V at 400 V/s, repeated at 100 ms intervals. The rapid 

scan generates a large background current that arises mainly from the charging of the 

electrical double layer and is proportional to the capacitance of the electrode. Thus, to 

resolve the smaller faradaic currents the background current is subtracted, usually by digital 

means.  In the resulting cyclic voltammogram, the peak potentials provide a chemical 

signature to identify the species detected.  Peak currents are usually converted into 

concentrations using calibration factors obtained from standards of known concentration.  

 Given its chemical selectivity, FSCV has been widely employed in vitro and in vivo to 

detect a number of electroactive species including but not limited to dopamine, 
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norepinephrine, serotonin, O2, and pH changes (Bunin et al., 1998; Venton et al., 2003; Park 

et al., 2011). Many FSCV studies use electrical stimulation to elicit monoamine release in 

terminal regions. The rising phase of these responses is determined by release (modified by 

its autoinhibition) and uptake mechanisms, while the falling phase is principally governed by 

uptake. Both phases are convoluted with diffusion from the site of release to the electrode.  

Measurement of these parameters therefore can be used to assay the function of these 

regulatory mechanisms (Wightman et al., 1988; Wightman & Zimmerman, 1990; McElligott 

et al., 2013).  

Of the biogenic amines, dopamine is the most common target of FSCV 

measurements. Studies in brain slices and anesthetized animals have proven particularly 

useful in delineating the regulatory mechanisms controlling dopamine release and uptake in 

subregions of the striatum and how these processes are disturbed in disease states 

(Bergstrom et al., 2011; Hashemi et al., 2012; Riday et al., 2012; Calipari et al., 2014). A 

major accomplishment has been the use of voltammetry in freely-moving animals that has 

contributed much to our understanding of the central dopamine system and how it drives 

motivated behaviors during reward-based learning (Carelli, 2004; Owesson-White et al., 

2008) and drug addiction (Owesson-White et al., 2009; Addy et al., 2010; Ehrich et al., 

2014). In contrast, application of FSCV to the detection of norepinephrine and serotonin in 

vivo has only recently been possible due to issues of selectivity and electrode fouling, 

respectively. Several effective strategies have been identified to overcome these 

challenges, involving anatomical positioning for norepinephrine and waveform/electrode 

modifications for serotonin. Subsequent work has successfully investigated the regulation of 

norepinephrine overflow in the bed nucleus of the stria terminalis (Park et al., 2009; Park et 

al., 2013) and serotonin overflow in the substantia nigra pars reticulata (Hashemi et al., 

2009; Dankoski et al., 2014).   
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Electrochemical Detection of New Neuromodulators  

 A number of endeavors have been made to extend the high temporospatial 

resolution of in vivo electrochemical detection to target molecules that are more difficult to 

electrolyze.  These efforts have principally used two approaches.  In one approach, the 

electrode is modified with an enzyme selective for the molecule of interest.  Alternatively, the 

parameters of the applied voltage sweep have been adjusted. These strategies are 

discussed in more detail below.   

 

Enzyme-modified electrodes  

Enzyme-modified electrodes provide the ability to detect a range of non-electroactive 

species in biological tissue. In such measurements an enzyme with specific activity for an 

analyte of interest is immobilized to the electrode surface covalently or through film coating. 

The activity, stability and selectivity of the enzyme in its immobilized form are crucial aspects 

of sensor performance (Wilson & Johnson, 2008).  Analyte detection is accomplished 

through the formation of an electroactive product, often H2O2 formed by an oxidase.  For 

instance the detection of glutamate can be achieved with glutamate oxidase, which coverts 

glutamate into α-ketoglutarate and H2O2 (Kiyatkin et al., 2013). Often a secondary enzyme-

free electrode is required to account for non-specific currents (Kiyatkin & Lenoir, 2012). As 

the kinetics of the enzyme can slow the temporal resolution of such measurements, 

enzyme-based sensors are usually coupled to amperometry. Amperometric enzyme sensors 

have been developed for many non-electroactive neurotransmitters, including glutamate 

(Oldenziel & Westerink, 2005; Kiyatkin et al., 2013), acetylcholine (Sarter et al., 2009), its 

precursor choline (Parikh et al., 2004) and adenosine (Schmitt et al., 2012).  

The chemical information provided by FSCV can alleviate many of the selectivity 

issues experienced with enzyme-based amperometric sensors. In the past, the use of 

enzyme-based detection schemes with FSCV at carbon-fiber microelectrodes has largely 



7 

 

been limited by the slow electron-transfer kinetics of H2O2. However, Sandford et al. recently 

demonstrated that over-oxidizing the carbon-fiber surface with an extended +1.4 V anodic 

scan facilitates the oxidation of H2O2 with FSCV (Sanford et al., 2010). As the over-oxidation 

process occurs near the anodic switching potential with this extended waveform, the 

oxidation peak for H2O2 appears at +1.2 V on the reverse scan. To detect glucose with this 

waveform, carbon-fiber microelectrodes were coated by electrodeposition of glucose-

oxidase in chitosan, a non-toxic polysaccharide (Lugo-Morales et al., 2013). This sensor 

was shown to have a 13 µM limit of detection for glucose, stable performance over a 4 hr 

period, and the ability to discriminate against interferents such as dopamine, ascorbic acid 

and pH. This work establishes the utility of enzyme-based FSCV sensors for the detection of 

non-electroactive species.            

  

Waveform modification strategies 

There are a number of molecules in the brain that are electroactive but are not 

oxidized by the voltammetric sweep employed for dopamine measurements (-0.4 V to +1.3 

V, 400 V/s). Several of these molecules can be detected by modifying the anodic limits of 

the potential scan to promote electrode-transfer. Adenosine is one such example. Formed 

from the degradation of ATP, adenosine is a purine signaling molecule that regulates 

cerebral blood flow, metabolism, and the activity of different neurotransmitters (Cunha, 

2001). Detection of adenosine is accomplished by increasing the anodic limits of the 

traditional dopamine waveform to +1.5 V (Swamy & Venton, 2007b). This generates an 

initial oxidation peak at the anodic switching potential and a second oxidation peak at +1.0 V 

on the forward scan. The second oxidation peak arises from sequential oxidation of the 

initial electroformed product. Both of these oxidation processes are irreversible; hence no 

reduction peaks are generated. Since the development of this modified waveform, it has 

been used to monitor adenosine dynamics in preparations as varied as the murine spinal 
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lamina (Street et al., 2011; Street et al., 2013), brain slices (Pajski & Venton, 2010; 2013), 

and the striatum of anesthetized rats (Cechova & Venton, 2008). Initial results have found 

that adenosine release is evoked by mechanical stimulation (Ross et al., 2014) and 

correlates to local O2 fluctuations in intact tissue (Cechova & Venton, 2008). More recently, 

a ‘sawhorse’ shaped waveform has been developed, which holds at 1.35 V for 1 ms during 

the anodic scan (Ross & Venton, 2014). The sawhorse waveform provides discrimination 

between adenosine and two major interferents that oxidize at similar potentials, H2O2 and 

ATP, and may prove useful for in vivo experiments. In parallel studies, Dale and coworkers 

have used an enzyme modified electrode to probe the dynamics of adenosine and its 

precursors (Schmitt et al., 2012).   

Waveform strategies have also been incorporated to target various peptide 

neurotransmitters. Glanowska et al. detected gonadotropin-releasing hormone (GnRH) 

release in mouse brain slices (Glanowska et al., 2012) where it plays a major role in fertility 

(Belchetz et al., 1978) and is also believed to act as a neuromodulator (Chen & Moenter, 

2009). GnRH was detectable as it contains the electroactive amino acid tryptophan. 

Although the oxidation of tryptophan can foul the electrode, stable oxidation currents were 

obtained for GnRH using a triangular waveform scanning from 0.5 V to 1.45 V at 400 V/s. 

With this waveform the oxidation peak for GnRH occurs at ~1.25 V, and could be 

distinguished from tryptophan and another tryptophan-containing peptide, kisspeptin-10. 

Measurements in brain slices revealed that GnRH release could be chemically evoked in the 

median eminence and the preoptic area. No signal was detected from mice genetically 

modified to lack GnRH supporting its detection in wild-type animals.  

FSCV has also been applied to the detection of the small opioid peptide, methionine-

enkephalin (M-ENK) (Schmidt et al., 2014). M-ENK and other opioid peptides are involved 

with many physiological and behavioral processes, including reward-processing, drug 

addiction and pain perception (Bodnar, 2013). The electroactive moiety in M-ENK is 
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tyrosine, which, similar to tryptophan, can cause electrode fouling. Schmidt et al. 

demonstrated that M-ENK could be detected reproducibly and selectively with a variant of 

the sawhorse waveform that varied the scan rate on the anodic sweep. The optimized 

waveform scanned from -0.2 to +0.6 V at 100 V/s, then to +1.2 V at 400 V/s. This anodic 

limit was held for 3 ms before scanning back to the -0.2 V holding potential at 100 V/s. The 

oxidation peak for M-ENK occurs at +1.0 V on this waveform, which exhibited selectivity 

against other tyrosine-containing peptides. As the oxidation peaks for catecholamines occur 

at more negative potentials, it was possible to use this waveform to monitor simultaneous 

norepinephrine and M-ENK release from tissue extracted from the rat adrenal gland.  

   

Microsensor Developments  

The need for a miniaturized working electrode compatible with tissue implantation 

was recognized soon after the advent of in vivo electrochemistry (Adams, 1976). Smaller 

electrodes allow for minimal tissue damage, higher spatial resolution to probe discrete brain 

regions, and faster sampling rates given their reduced RC properties. Carbon was the 

intuitive choice for electrode material given its low cost, good electrochemical properties and 

biological compatibility; however, the conventional carbon-paste electrodes of the 1970’s 

were not amenable to miniaturization (Stamford, 1989). In the late 70’s, the field of in vivo 

electrochemistry took a leap forward with the introduction of the carbon-fiber microelectrode 

by Gonon and coworkers (Ponchon et al., 1979). These electrodes are fabricated by sealing 

the carbon fiber (5 – 35 µm diameters) in glass and either cutting the protruding fiber to form 

a cylindrical electrode or treating the seal with epoxy and polishing the tip to form an 

elliptical surface.  Given the ease and reproducibility of their fabrication, carbon-fiber 

microelectrodes are routinely used in most in vivo electrochemical studies today (Huffman & 

Venton, 2009).   
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Over the last several decades, there have been a number of efforts to improve the 

performance of in vivo electrochemical sensors through a number of methods. For instance, 

effort has been spent investigating surface modification techniques to enhance the 

selectivity, sensitivity, and kinetic properties of carbon-fiber microelectrodes. Broadly 

speaking, these have included electrochemical (Heien et al., 2003) and chemical 

pretreatments (Hermans et al., 2006) as well as film coating. Application of the 

perfluorinated cation-exchange polymer Nafion through electro-deposition or dip-coating has 

proven particularly effective in repelling negatively-charged interferents during in vivo 

measurements (Hashemi et al., 2009). Here we highlight several more recent developments 

in in vivo electrochemical sensor technology.  

 

Carbon-nanotube based microelectrodes  

Carbon-nanotubes (CNTs) are a subject of interest for various electrochemical 

applications, given their mechanical strength, high aspect ratios, and good electrical 

conductivities (Jacobs et al., 2010; Putzbach & Ronkainen, 2013). Research exploring 

modification of carbon-fiber microelectrodes with CNTs for neurotransmitter measurements 

has shown increased electron-transfer kinetics and sensitivity for adsorption-controlled 

species such as dopamine. Such electrodes are also less susceptible to common biofouling 

agents, such as 5-HIAA. Immobilization of CNTs onto carbon-fiber microelectrodes was first 

achieved by dip-coating the fibers in a CNT-Nafion suspension (Swamy & Venton, 2007a). 

However, this method was found to suffer from poor reproducibility and the orientation of the 

CNTs restricted access to electroactive sites at the ends of the tubes. Further work identified 

chemical self-assembly of single-walled CNTs to be an effective method to form uniformly 

aligned CNT layers on carbon-fiber disk electrodes (Xiao & Venton, 2012). Application of 

these CNT-modified electrodes in vivo and in vitro demonstrated a 36-fold increase in 
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sensitivity for dopamine without decreasing response time, a problem that often occurs with 

other pretreatment methods. 

Continuous fibers, or ‘yarns’, can be formed from carbon-nanotubes through liquid-

state and dry-state spinning methods (Zhao et al., 2010; De Volder et al., 2013). By 

adjusting the size of the nanotubes and the spinning angle, yarns with diameters on the 

micrometer scale can be prepared. Disk microelectrodes (5 – 30 µm diameters) fabricated 

from multi-walled CNT yarns exhibit a number of interesting electrochemical properties 

including lower background currents and faster apparent electron-transfer kinetics, which 

allows enhanced chemical discrimination (Schmidt et al., 2013; Jacobs et al., 2014). While 

the time spent at negative holding potentials is a critical factor determining the sensitivity to 

dopamine at bare electrodes, the dopamine response at yarn microelectrodes is 

independent of waveform application frequency—believed to be due to slower desorption 

kinetics for dopamine-o-quinone. Jacobs et al. demonstrated that dopamine could be 

detected at a 2 ms timescale while maintaining sensitivity, simply by increasing the scan-

rate and application frequency of the waveform. Other work found that sensitivity for 

dopamine is enhanced even further when the yarns are made in polyethyleneimine, instead 

of poly(vinyl alcohol) (Zestos et al., 2014). Together CNT-based microelectrodes present the 

opportunity for sensitive, selective FSCV measurements at unprecedented speeds. 

However, it is not yet clear whether these advantages of CNT-microelectrodes are of great 

enough significance to result in their widespread use.        

 

Fused-silica carbon-fiber microelectrodes  

 Traditionally, carbon-fiber microelectrodes are insulated within borosilicate glass 

capillaries. While easy to fabricate, glass-sealed microelectrodes are fragile and often break 

during routine experimental procedures. For a more robust electrode construction several 

groups have investigated use of fused-silica capillaries (Plotsky, 1987; Swiergiel et al., 1997; 
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Gerhardt et al., 1999). Fused-silica offers good insulating properties and increased flexibility 

at low cost. During fabrication, a seal is formed at the carbon fiber by an epoxy droplet.  As 

fused-silica is less prone to breakage smaller diameter (100 vs 600 µm) electrodes are 

possible, which allows for less tissue damage during implantation.  

 Several years ago, Phillips and coworkers found that naturally-evoked dopamine 

release could be measured at polyamide-coated fused-silica electrodes several months after 

in vivo implantation (Clark et al., 2010). Incredibly, measurements were obtainable for up to 

25 successive days without any apparent loss in sensitivity—though there was a noted loss 

in temporal response. Given the heterogeneity of brain microenvironments, the ability to 

conduct FSCV measure from the same terminal population over multiple days is an exciting 

prospect for studies of disease and behavioral learning. Indeed, others have attempted to 

develop such a sensor (Duff & O'Neill, 1994; Kruk et al., 1998), albeit with little success. The 

performance of the fused-silica electrode design is attributed to its size, which is believed to 

be small enough to bypass the immune response.  

 There is still question as to how these sensors can be used. While post-calibration of 

the sensors revealed no changes in electrode sensitivity after chronic implantation, it is 

unclear whether the performance of the sensor remains stable after several days of in vivo 

use. Unforeseen issues such as new tissue damage or degradation of the carbon-fiber could 

change the electrode’s response with continued use. In such cases, it would be impossible 

to determine whether a signal decrease is a biologically relevant change or merely a change 

in electrode sensitivity. These concerns are the subject of ongoing studies.   

 

Microelectrode arrays  

The release of neurotransmitters has been found to vary not only within discrete 

substructures of the brain (Wightman et al., 2007)  but across individual cells (Schroeder et 

al., 1994). This in turn has spurred the development of microelectrode arrays (MEAs) 
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compatible with neurochemical measurements for a variety of in vitro and in vivo purposes. 

Consolidation of multiple sensing elements onto a single device opens not only the potential 

for spatially-resolved profiling of neurochemical dynamics but for the simultaneous detection 

of different analytes by optimizing the potentials applied to each electrode.  

To capture exocytotic variation on a subcellular level, the MEA size and electrode 

spacing must be smaller than the cell itself (~10-20 µm for a neuron). For single cell 

measurements, carbon-disk MEAs have been fabricated from carbon-fibers inserted into 

multibarrel glass and from the deposition of carbon through pyrolysis onto a fused assembly 

of quartz capillaries to form up to 7 and 15 electrodes respectively (Zhang et al., 2011; Lin et 

al., 2012). In addition, a variety of microfabrication approaches have been employed to 

create MEA devices with increased electrode number for single cell and cell cluster 

applications (Cui et al., 2006; Berberian et al., 2009; Carabelli et al., 2010). Recently, Ewing 

and coworkers have developed platinum MEA platforms that are modified with collagen IV 

coatings to promote cell adhesion and growth (Wang et al., 2013; Wang et al., 2014). The 

newest version of their design confines 36 microelectrodes within a 40 µm x 40 µm 

microwell to position a cultured PC12 cell directly above the sensor surface.  

The majority of MEAs developed for in vivo neurochemical applications have been 

carbon-based given its compatibility with FSCV. These have been used to probe 

neurotransmitter heterogeneity across multiple brain regions and within brain 

microenvironments. It is possible to achieve multielectrode recordings in vivo by simply 

implanting several individual carbon-fiber microelectrodes (Clark et al., 2010; Zachek et al., 

2010b). However, such methodologies can suffer from irreproducibility and are difficult to 

implement when targeting a single brain structure. Hence, recent efforts have focused on 

the microfabrication of carbon-based MEAs. Successful devices containing 4 and 16 band 

microelectrodes have been created from pyrolized photoresist (PPF), which is amenable to 

photolithography and has properties similar to glassy-carbon (Zachek et al., 2010a). 
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Strategies to construct MEAs from grown carbon nanofibers are also under investigation, 

but the viability of such devices in vivo has yet to be demonstrated (Zhang et al., 2013).   

 

Novel Applications  

Challenging the conventions of neurochemical measurements  

 Microdialysis and FSCV are the two most common in vivo neurochemical techniques 

in use today. Though initially viewed as rival methods early in their development, 

microdialysis and FSCV are now recognized to provide complementary information. The 

millisecond temporal resolution of FSCV has made it superior for fast neurochemical 

measurement of electroactive molecules; however, the need for background-subtract limits 

detection to rapid concentration changes. With microdialysis, neurotransmitters and other 

small biomolecules in the brain extracellular fluid are extracted into dialysate driven slowly 

through a tubular semi-permeable membrane.  As the dialysate is collected and analyzed 

externally, microdialysis affords the ability to detect a wider range of molecules with better 

chemical selectivity. However, sampling times are typically on the order of minutes, the time 

required to collect sufficient dialysate for analysis. Here we describe several novel strategies 

that are currently being developed to redefine the current conventions of FSCV and 

microdialysis measurements.    

  

Basal level measurements with FSCV 

Given its relevance to disorders such as Parkinson’s disease, determining the basal 

level of dopamine has been a goal of microdialysis and FSCV alike. As FSCV is a 

differential technique, it has required indirect approaches to approximate local extracellular 

concentrations. For instance, studies have employed pharmacological methods to silence 

rapidly dopamine signaling in the striatum (Kulagina et al., 2001; Borland & Michael, 2004; 

Owesson-White et al., 2012). The subsequent decrease in extracellular dopamine detected 
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at the electrode is assumed to represent the original baseline concentration. Others have 

used kinetic and diffusion modeling to extrapolate the basal level from the transient 

dopamine responses elicited by electrical stimulation (Kawagoe et al., 1992; Chen & 

Budygin, 2007). While many of these studies predict the basal concentration of dopamine to 

be in the lower nanomolar range others have reported values over a micromolar. Therefore 

the results of these experiments remain the subject of debate.    

 Other measurement strategies have taken advantage of the predisposition of 

dopamine to adsorb to carbon-fiber surfaces via electrostatic and pi-pi stacking interactions 

(Bath et al., 2000; Heien et al., 2003). These techniques use the signals generated after 

preconcentration of dopamine at the sensors as a measure of extracellular concentrations, 

similar to methods employed during anodic stripping voltammetry. One such approach 

involves a collector-generator-like system on a microfabricated platform (Dengler & McCarty, 

2013).  When operated, the potential of the outer-generator electrodes are held at ≤ 0 V to 

promote the adsorption of dopamine, and are then pulsed to a positive potential to desorb 

the accumulated dopamine at the surface. This repulsion creates a transient wave of 

dopamine that is detected at the inner-collector electrode with FSCV, and is used to 

determine the concentration of dopamine surrounding the device. Though detection of 200 

nM dopamine was the lowest concentration demonstrated, the spacing of electrodes in 

future generations can decreased for improved capture efficiency.   

A similar approach has been developed for use with a single carbon-fiber 

microelectrode (Atcherley et al., 2013). In this technique, termed fast-scan controlled 

adsorption voltammetry or ‘FSCAV,’ the holding time between voltammetric scans is altered 

to promote the adsorption of dopamine in a controlled manner. There are three steps to this 

process. First a high-speed (1200 V/s) version of the dopamine waveform is applied at 100 

Hz to reduce the amount of dopamine adsorbed to the electrode. This is followed by a 

defined holding period where the potential of the electrode remains constant (typically at -
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0.4 V) to allow for new dopamine adsorption to occur. The waveform is then reapplied to 

oxidize the dopamine accumulated on the surface. Non-faradaic current generated during 

this step is removed through deconvolution techniques using an electrode response function 

determined in a buffer solution. Subsequent integration of peak oxidation currents is used to 

calculate the concentration of dopamine in the solution. Initial characterization reported 

limits of detection under 10 nM for dopamine, well within the expected in vivo concentration 

range. While performance of this sensor in the complex extracellular environment of the 

brain has yet to be demonstrated, this strategy has the potential benefit of altering between 

normal FSCV and FSCAV modes to measure rapid and slow dopamine changes at a single 

microelectrode.   

 

‘Ultrafast’ microdialysis  

 Recent work by the Kennedy group has led to the realization of the first ‘ultrafast’ 

microdialysis techniques. The temporal resolution of microdialysis is largely determined by 

the mass limits of the detection method, with high limits requiring a larger volume of 

dialysate to be collected for analysis and, in turn, longer sampling times. Therefore, coupling 

microdialysis to analysis techniques with high mass sensitivity, such as capillary 

electrophoresis with laser-induced fluorescence detection, greatly increases the sampling 

speed (Hogan et al., 1994; Lada et al., 1997; Thompson et al., 1999). Further improvements 

in temporal resolution are limited by band broadening of the sample by Taylor dispersion 

during transport. Kennedy and coworkers have demonstrated that a segmented flow system 

can significantly reduce the effects of Taylor dispersion (Wang et al., 2008). In their setup, 

segmented flow is accomplished on an integrated PDMS chip positioned at the probe outlet, 

which mixes the dialysate with fluorogenic reagents for derivatization and introduces 

immiscible oil droplet to partition the dialysate into discrete nanoliter fractions. This 

partitioning prevents the fractions from mixing thereby preserving temporal information, even 
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when samples are stored for offline analysis. Online analysis with a microfluidic capillary 

electrophoresis chip demonstrated that this system can provide a temporal resolution of 2 s 

and that it is suitable for in vivo amino acid measurements (Wang et al., 2010).   

 The segmented flow strategy has also been couple to low-flow push-pull perfusion to 

provide fast neurochemical sampling with higher spatial resolution as sampling occurs only 

at the tips of two adjoined capillaries  (Slaney et al., 2011). During sampling physiological 

buffer is infused through one capillary (“push”) while fluid is withdrawn through the second 

capillary (“pull”) at an equal flow rate. Given the low-flow rates (~50 nL/min), which are used 

to prevent tissue damage, the sampling of this technique is typically very slow. However, 

endeavors to couple push-pull perfusion to the segmented flow system have produced 

results suggesting that sub-second time resolution may be possible. Application of this 

device in the rat striatum established that this sampling technique could follow glutamate 

changes with 7 s time resolution and with an 80 fold increase in spatial resolution over 

conventional microdialysis probes.  

 

Multimodal measurements 

Millar and colleagues realized soon after the introduction of in vivo electrochemical 

techniques that a complete understanding of neuronal communication requires knowledge 

of neurochemical release dynamics and the resulting post-synaptic cell responses. In turn 

they developed a method where catecholamine release and the firing rates of single 

neurons or “units” could be monitored at a carbon-fiber microelectrode by floating the 

potential of the electrode between FSCV scans to detect changes in the extracellular 

potential caused by cell firing (Armstrong-James et al., 1981; Millar & Barnett, 1988; 

Stamford et al., 1993).   

When the combined electrochemical/electrophysiological (echem/ephys) method is 

coupled to iontophoresis, it is possible to identify the receptors linking pre- and post-synaptic 
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activity through pharmacological manipulation (Belle et al., 2013). Iontophoresis is a classic 

drug delivery tool where an applied current induces the flow of solution through a pulled 

glass capillary via electrophoretic and electroosmotic forces (Herr & Wightman, 2013). 

During echem/ephys measurements the carbon-fiber microelectrode is housed in one 

capillary of a pulled multi-barrel glass assembly. The other barrels contain drug solutions 

whose dispersion are controlled by a constant-current source. Iontophoresis of electroactive 

species, such as dopamine, is voltammetrically detected at the carbon-fiber to determine the 

ejected concentration. Iontophoresis of non-electroactive drugs is indirectly monitored 

through the addition of a biologically-inert, electroactive marker (Herr et al., 2008).  To 

obtain an approximation of the drug introduced, the relative transport of the drug to the 

marker is determined by capillary electrophoresis.  

 While this powerful set of tools was first employed over 30 years ago, it has only 

recently been miniaturized for application in awake animals (Takmakov et al., 2011).  On the 

miniaturized headstage a surface mounted dual operational amplifier chip provides voltage-

follower (electrophysiological) and current transducer (electrochemical) modes, which are 

controlled by a CMOS switch. During combined echem/ephys experiments, a triangular 

waveform scanning between -0.4 V and +1.3 V at 400 V/s is used to detect dopamine 

changes. This waveform is applied at 5 Hz, half the normal frequency, to provide ~180 ms of 

electrophysiological recording between scans.  Digital time stamps are used to align these 

measurements with behavioral and iontophoretic events during data analysis. Detailed 

descriptions of the hardware and software components of the combined technique have 

been published elsewhere (Takmakov et al., 2011; Bucher et al., 2013).  

Recent work with this setup has provided new insight into the role of dopamine 

signaling in the nucleus accumbens (NAc), a brain region mediating motivated behaviors.  

Operant paradigms such as self-administration and intracranial self-stimulation (ICSS) are 

used to investigate the physiological and psychological mechanisms guiding reward-seeking 
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behaviors. During such paradigms the animal learns to complete a task such as pressing a 

lever to receive a reinforcer (i.e. a reward). In the case of self-administration the reinforcer is 

a drug of abuse. In ICSS the animal receives a rewarding electrical stimulation of its brain, 

typically targeting dopaminergic processes. Dopamine is widely implicated in the reinforcing 

components of psychostimulants and ICSS, but extent of its neuromodulatory role during 

such behaviors has been debated (Murray & Shizgal, 1994; Wise, 1996; Hernandez et al., 

2006; Sunsay & Rebec, 2014).   

 With the combined echem/ephys technique it was found that the medium spiny 

neurons (MSNs) of the NAc show patterned responses to reward prediction and 

presentation during ICSS and cocaine self-administration (Cheer et al., 2007; Owesson-

White et al., 2009). The magnitude of these phasic firing activities tracked with the amount 

of dopamine release detected, whereas locations with unresponsive cells exhibited no 

measurable dopamine release.  While this data provided strong correlation between reward-

evoked dopamine and unit responsivity, initial pharmacological investigations conducted 

systemically found that dopamine receptor activation played little part in generating the MSN 

firing responses observed during ICSS (Cheer et al., 2005). In a subsequent study 

dopamine receptors were blocked by drug application directly into the NAc through 

microinfusion and iontophoresis (Cheer et al., 2007). The dopamine D1 receptor antagonist 

SCH23390 was found to block lever-pressing during ICSS with both methods of drug 

delivery. However, unlike microinfusion the smaller drug volumes introduced by 

iontophoresis (Kirkpatrick et al., 2014) did not affect the animals’ performance during the 

task, thereby allowing the neurochemical basis of the behavior to be investigated without 

influencing the behavior itself.    

A more recent study found intriguing differences in the immediate and long term 

effects of dopamine receptor modulation in conscious animals at rest (Belle et al., 2013). 

Dopamine D1 (SCH 23390) and D2 (raclopride) receptor inhibitors were introduced into the 
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NAc as 15 s ejections, during which only a small number of MSNs were found to be effected. 

In contrast, long term analysis found that the baseline firing rates of most cells were either 

inhibited by D1 or excited by D2 antagonism, consistent with previous literature findings 

from brain slices. Interestingly, dopamine itself could evoke immediate cell responses during 

electrical stimulation, where non-electroactive species such as glutamate are also released.  

This highlights the role of dopamine as a neuromodulator as opposed to a classical 

neurotransmitter. While not directly inhibitory or excitatory itself, dopamine can have various 

effects on the overall excitability of MSNs in the NAc and can regulate the immediate actions 

of glutamate in a receptor-dependent manner.  

 The use of the combined echem/ephys technique in awake animals is only in its 

infancy; however, these early results clearly demonstrate the utility of such measurements in 

delineating the post-synaptic consequences of rapid neurotransmission. The addition of 

iontophoresis to this setup in future experiments will provide the unique opportunity to probe 

the receptor-based underpinnings of behavior at a local circuit level.  

 

Neurotransmitter detection in non-rodent models  

The majority of in vivo electrochemical studies have been conducted in rats, mice 

and, to a lesser extent, guinea pigs. Though this work has provided a great deal of our 

current knowledge regarding dopamine regulation in the striatum, the translatability of this 

information to other species, importantly humans, is unfortunately tentative. This limitation 

has spurred attempts to expand electrochemical techniques to non-rodent species. However, 

these endeavors have had varying degrees of success due to several technological and 

anatomical challenges. Here we discuss efforts to apply electrochemical neurotransmitter 

detection in the fly nervous system and in the primate brain.   
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Drosophila (Fruit Flies) 

Drosophila melanogaster, more commonly known as the fruit fly, is a valuable model 

organism given its short life span, rapid reproduction cycle, and the ease of its genetic 

manipulability (Sang, 2001 ). These characteristics provide the ability to produce and screen 

genetic mutations in a matter of months, whereas similar manipulations would requires 

years in the rat. Although the nervous system of Drosophila is only composed of 100,000 

neurons (Ito et al.), it exhibits a notable degree of genetic homology to vertebrates and 

supports learning and memory (Sokolowski, 2001). Additionally, Drosophila employs many 

of the same monoamine neurotransmitters as vertebrates, including dopamine and 

serotonin (Monastirioti, 1999).  Together its simplicity and genetic flexibility make Drosophila 

an ideal platform to investigate genetic foundations of neurotransmission. 

The study of neurotransmitter release in Drosophila has largely been hindered by the 

size of its central nervous system (~100 µM across), which is smaller than conventional 

microdialysis probes. As a result most neurotransmitter work has involved content analysis 

of homogenized tissue preparations.  Although microelectrodes are well-suited to probe 

biological microenvironments, voltammetric detection of neurotransmission in Drosophila 

presented additional challenges. First, the size of the tissue provides very little opportunity to 

target discrete structures containing only a single, known electroactive neurotransmitter, as 

is possible in the rat brain. A larger question was how to elicit selective neurotransmitter 

release when the Drosophila nervous system is smaller than commercially available 

stimulating electrodes.  

Due to such issues, many FSCV measurements conducted in Drosophila have 

involved the application of exogenous dopamine to study the function of the dopamine 

transporter (Makos et al., 2009; Makos et al., 2010; Berglund et al., 2013). In these 

experiments a live fly is immobilized in physiological buffer and dissected to expose the 

central nervous system. Electrode placement is subsequently guided by the fluorescent 
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signals produced by GFP-transfected dopamine neurons.  Dopamine is then introduced by 

pressure ejection through a capillary positioned next the microelectrode, and the decay of 

the signal is related the rate of removal by the dopamine transporter. This work has 

demonstrated that uptake of dopamine from the extracellular space is regulated by similar 

mechanisms in Drosophila and mammalian species and moreover, described an initial 

protocol for electrochemical measurements in fly preparations.  

Study of endogenous monoamine release in Drosophila has been accomplished 

through optogenetic stimulation strategies. Venton and coworkers transfected selected 

groups of monoamine neurons in Drosophila to express Channelrhodopsin-2 (ChR2), a 

blue-light sensitive ion channel. The ion fluxes generated by blue light exposure cause 

electrical excitation only in ChR2-expressing cells and therefore can be used as a means of 

selective neuronal activation. Preliminary FSCV studies have proven that blue light 

stimulation of ChR2-expressing serotonin and dopamine neurons can elicit measurable 

release in the ventral nerve cord of Drosophila larva and that these monoamine systems 

have comparable regulatory and frequency-response characteristics to those of the rat brain 

(Borue et al., 2009; Vickrey et al., 2009; Vickrey & Venton, 2011; Xiao et al., 2014).  

 

Non-human primates 

Non-human primates are the most clinically relevant animal models given their 

genetic semblance to humans and sophisticated cognitive abilities. Though most rodent 

studies are conducted to gain insight into human behavior and disease, there is substantial 

reason to believe that the complexities of primate neurochemistry cannot be fully 

appreciated through such work. For instance, only in primates is the striatum, a dopamine-

dense brain region, anatomically separated into the caudate and putamen by the internal 

capsule. Along with this distinction, primates are more susceptible than rodents to 
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Parkinsonian-like disorders (Johannessen et al., 1985; Schober, 2004), which is mediated in 

part by dopamine signaling in striatal regions (Cragg et al., 2000).  

Given these anatomical and physiological differences, it is not surprising that FSCV 

recordings in primate brain slices have discovered greater complexity in dopamine release 

and regulation (Cragg et al., 2000; 2002; Cragg, 2003). Using marmoset striatal slices, 

Cragg and coworkers observed that dopamine overflow and tissue content was 2-3 fold 

larger than the concentrations found in rodents, which was attributed a differences in 

innervation density. Moreover, the magnitude of dopamine release and the rate of its uptake 

were found to vary significantly among striatal subregions, a characteristic that is not 

apparent the striatum of rodents. Interestingly, the rate of dopamine uptake was highest in 

the dorsal lateral putamen, the area of the striatum most affected by Parkinson’s disease. 

The uptake rate in this region was also 2 times faster than reported for rodents, suggesting 

that the dopamine transporter may contribute to the susceptibility of primates to Parkinson’s 

disease.    

In contrast to the success of brain slice experiments, the application of 

electrochemical techniques to the brains of intact primates has progressed slowly since the 

first attempt in 1981 (Lindsay et al., 1981). A handful of studies using amperometric 

measurements have recorded increased oxidation signals in the monkey striatum with local 

chemical stimulation, electrical stimulation of dopamine axons, natural reward and reward 

prediction (Lindsay et al., 1981; Gerhardt et al., 1996; Yoshimi et al., 2011). These data are 

in accordance with recorded dopamine responses in the rodent brain during such stimuli. 

However, as amperometry provides very little chemical information none of studies were 

able to verify that the signal was dopaminergic in origin.  

The first study clearly demonstrating electrochemical detection of dopamine release 

in the primate striatum was an anesthetized experiment conducted by Earl and coworkers in 

1998 (Earl et al., 1998). Using FSCV at a conventional carbon-fiber microelectrode they 
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were able to measure electrically stimulated dopamine release in the striatum of untreated 

and MPTP-treated marmosets. MPTP is a neurotoxin that generates Parkinsonian-like 

degeneration of dopamine neurons. This study demonstrated that, as in rodents, dopamine 

release in the monkey striatum is dependent on stimulation frequency and is regulated by its 

autoreceptor and transporter. Moreover, they found that dopamine release in MPTP 

marmosets did not respond to transporter inhibition, consistent with the later work of Cragg 

proposing its involvement in Parkinson’s disease.  

However, the marmoset is among the smallest primates used in research, only 

weighing 400 g at adulthood similar to the rat (Hearn, 1983). Thus, endeavors to employ 

FSCV in the rhesus monkey, which reaches over 5000 g at adulthood (Grand, 1977), are 

more relevant to the human brain.  To probe the rhesus striatum the electrode must be long 

enough to hit target regions centimeters, rather than millimeters beneath the skull. This 

generates issues regarding not only electrode durability but fiber resistance, and requires 

that the conducting wire form a connection to the carbon fiber near the tip of the electrode. 

Another set of concerns arises from the more diffuse distribution of dopamine cells, 

projections and terminals in larger animals. Positioning the microelectrode near striatal 

dopamine terminals therefore becomes much more of a challenge.  

Accordingly, a FSCV study by our group in collaboration with the lab of Wolfram 

Schultz detected little dopamine release during recordings in the brain of an awake rhesus 

monkey (Ariansen et al., 2012). The animals were trained in a Pavlovian task where a visual 

cue predicted the availability of a sweetened liquid, a behavior that involves dopamine 

neurotransmission. During the behavior extracellular oxygen and pH fluctuations, which are 

hemodynamic and metabolic markers of neuronal activity (Heales, 1999; Venton et al., 

2003), were detected electrochemically. Dopamine-like cyclic voltammograms were also 

detected at some recording locations, but they were difficult to resolve from the larger 

oxygen and pH signals. 
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A more recent FSCV study by Schluter and coworkers, explored the use of electrical 

stimulation to evoke dopamine release in the rhesus striatum (Schluter et al., 2014). 

Electrical stimulation of midbrain dopamine neurons in the substantia nigra/ventral 

tegmental area (SN/VTA) is widely used in rodent studies to aid in electrode positioning and 

to study the regulation of dopamine overflow. However, electrical stimulation of the SN/VTA 

was not found to be an effective means to evoke dopamine release in the rhesus striatum, 

as the area activated by conventionally sized stimulating electrodes comprises only a small 

portion of SN/VTA neurons. Increasing the current in attempt to recruit a larger population of 

neurons resulted in undesirable motor responses that interfered with the recordings. 

However, local terminal stimulation, a technique regularly used in brain slice studies, elicited 

dopamine release in 10 out of 14 attempts, and aided in recording dopamine release during 

an unexpected juice reward. Thus, in agreement with our published work in monkeys, they 

concluded that dopamine release is more difficult to detect in the primate brain than in 

rodents. 

 

Humans 

To date, endeavors to apply FSCV to the human brain have been made in parallel to 

deep brain stimulation (DBS) treatment, a type of functional brain surgery that can 

ameliorate the symptoms of Parkinson’s and other neurological diseases (Stefurak et al., 

2003; Laxpati et al., 2014; Sachdev et al., 2014). The neuronal mechanisms underlying the 

efficacy of DBS are still largely unknown, though a range of neurotransmitters, including 

dopamine, serotonin and adenosine, have been implicated in producing its effects (van Dijk 

et al., 2012; Figee et al., 2014). Thus, electrochemical detection of these species during 

DBS surgery may provide valuable information in the development of new and more 

effective therapeutics.  
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Voltammetric recordings from the human brain have employed single fused-silica 

based microelectrode assemblies  (Kishida et al., 2011), housing both the reference and 

working electrodes to confine the damage incurred during implantation. In practice, these 

probes are positioned near the target of DBS stimulation to eliminate the need for additional 

surgery.  The first recording from a human was accomplished in 2011 with a microelectrode 

assembly positioned within the striatum. During the procedure, the patient was asked to 

perform a decision-making task involving monetary investment during which dopamine 

fluctuations were successfully recorded with FSCV. Thereafter, separate efforts at the Mayo 

Clinic have created an electrochemical telemetry system called WINCS (Wireless 

Instantaneous Neurotransmitter Concentration Sensing) that is compatible with FSCV or 

amperometric measurements in humans (Kasasbeh et al., 2013). With the WINCS system 

cyclic voltammograms consistent with adenosine release have been recorded in the human 

thalamus during a treatment for essential tremor (Chang et al., 2012). Notably, the both of 

these reports found no adverse effects in the health of the patients or the efficacy of DBS 

treatment. The demonstrated safety of electrochemical recordings is a crucial precedent for 

future clinical studies.               

 

Conclusions 

Since Adams’ pioneering work of over forty years ago, the field of in vivo 

electrochemistry has undergone a great deal of development and standardization. Today 

electrochemical techniques are used routinely for high-speed, spatially-resolved 

neurochemical measurements in a number of biological preparations. While current 

methods are robust, versatile, and suitable for use by nonelectrochemists, ongoing 

innovations in sensor design and experimental methodology present exciting new avenues 

for electrochemical measurements in neuroscience.  Future research may provide 

unprecedented insight into the neurochemical basis of behavior and disease.   
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CHAPTER 2: ELECTRICAL STIMULATION OF THE DORSAL NOR ADRENERGIC 
BUNDLE EVOKES NOREPINEPHRINE OVERFLOW IN THE BED NU CLEUS OF THE 

STRIA TERMINALIS THROUGH A NON-COERULEAN PATHWAY 
 

Introduction 

The central noradrenergic system, composed of seven cell populations seated in the 

pons and medulla oblongata, broadly innervates most cerebral structures to influence 

processes as diverse as arousal, nociception, and addiction (Berridge & Waterhouse, 2003; 

Weinshenker & Schroeder, 2007; Pertovaara, 2013).  In general the projections of this 

system terminate as diffuse varicosities (Szabadi, 2013), making the study of noradrenergic 

neurotransmission analytically challenging.  However, there are several structures that 

receive dense noradrenergic input, one of these being the bed nucleus of the stria terminalis 

(BNST), a limbic region that mediates behavioral and physiological responses to stress 

(Forray & Gysling, 2004; Crestani et al., 2013). This innervation is most concentrated in the 

ventral (v) portion of this structure, which notably contains the highest norepinephrine 

terminal density within the entire brain (Kilts & Anderson, 1986; Phelix et al., 1992).   

Noradrenergic innervation of the brain is provided via two anatomically and 

functionally distinct ascending pathways, the dorsal noradrenergic bundle (DNB) and the 

ventral noradrenergic bundle (VNB) (Szabadi, 2013). The BNST is primarily targeted by 

medullary neurons coursing through the VNB (Terenzi & Ingram, 1995; Forray et al., 2000), 

though a small norepinephrine contribution does arise from the locus coeruleus (LC, A6) 

(Lindvall & Stenevi, 1978; Moore, 1978; Phelix et al., 1992), the source of  the DNB. In past 

work, we targeted these pathways by electrical stimulation to study vBNST norepinephrine 

dynamics with fast-scan cyclic voltammetry (FSCV) (Park et al., 2009). At the coordinates
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employed, the ~ 2 mm dorsal-ventral spacing of the DNB and VNB allowed each to be 

targeted independently with stimulation (Ungerstedt, 1971). Accordingly, norepinephrine 

release in the vBNST was found to peak at stimulation depths consistent with anatomical 

reports for the DNB and VNB. In the anteroventral thalamus (AV), a region receiving heavy 

input from the LC, norepinephrine release could be evoked by stimulation at the depth of the 

DNB but not the VNB, further supporting discrete activation of these pathways.   

More notably, we found that DNB and VNB stimulation produced similar 

norepinephrine overflow in the vBNST despite the difference between their respective 

inputs—suggesting the DNB may play a larger role in BNST noradrenergic transmission 

than originally thought. The possibility of a significant DNB-BNST connection was further 

substantiated by LC stimulation, which also induced norepinephrine release in this terminal 

region.  However, electrical stimulation is a relatively non-selective means of neuronal 

activation and can simultaneously depolarize cell bodies, afferent terminals, and fibers of 

passage—such as the DNB—within the vicinity of the electrode (Ranck, 1975; McIntyre & 

Grill, 2002; Histed et al., 2009).  It is therefore possible that norepinephrine release in the 

vBNST is caused by stimulation of surrounding neuronal elements or even by antidromic 

activation of the DNB (Pinault, 1995; Waters et al., 2005).  

Here we employ FSCV and selective lesioning strategies to investigate the origins of 

DNB-stimulated norepinephrine release within the vBNST.  DSP-4, which causes 

degradation of DNB axons, was administered to assess whether release could be evoked in 

the BNST when the LC norepinephrine system was compromised. In a separate set of 

animals, the excitotoxic agent ibotenic acid was applied at the stimulation coordinates to 

ascertain the contribution of local cell body activation. These treatments were repeated for 

norepinephrine measurements in the AV as a control. Electrochemical results are 

considered in the context of behavioral observations to suggest potential pathways by which 

BNST norepinephrine release occurs with electrical stimulation of the DNB.        
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Experimental 

Drugs and reagents 

All drugs and reagents were used as received from Sigma-Aldrich (St Louis, MO, 

USA), unless otherwise noted. 

 

Animals  

Sprague-Dawley rats (300 – 400g, Charles River, Wilmington, MA, USA) were pair-

housed in a 12-h light cycle, temperature- and humidity-controlled environment with food 

and water available ad libitum. Care was taken to minimize the number of animals used in 

this study (47 total) and their suffering. All procedures were conducted according to the NIH 

Guide for Care and Use of Laboratory Animals and were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina at Chapel Hill. 

 

Surgeries 

For non-recovery experiments, rats were anesthetized with urethane (1.5 mg/kg) and 

immobilized in a stereotaxic frame (Kopf, Tujunga, CA, USA). The skull was exposed, and 

holes were drilled for electrode placements based on coordinates referenced from bregma 

(Paxinos & Watson, 2007). In each animal a carbon-fiber microelectrode (75–100 µm 

exposed tip length, 5 µm diameter, T-650; Amoco, Greenville, SC, USA) (Cahill et al., 1996) 

was lowered into the vBNST (anterior-posterior (AP) +0.0 mm, medial-lateral (ML) +1.2 mm, 

dorsal-ventral (DV) -7.2 to -7.8 mm) or the AV (AP -2.1, ML +1.4, and DV 5.0 to -6.0 mm). In 

the contralateral hemisphere, a Ag/AgCl reference electrode was implanted and secured to 

the skull with a jeweler’s screw.   

Ipsilaterally to the carbon-fiber microelectrode, a stainless steel, bipolar stimulating 

electrode (Plastics One, West Lafayette, IN, USA) was positioned within a dorsal-ventral 

tract (AP -5.2 mm, ML +1.2 mm) targeting the DNB (DV -5.5 to -6.5 mm) and the VNB (DV -
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8.0 to -8.5 mm). In select animals, a stimulating electrode was also implanted into the LC 

(AP -9.8 mm, ML +1.4 mm, DV -6.5 to -7.5 mm). The prongs of the stimulating electrodes 

were positioned 1.0 mm apart and were insulated to the tips. Electrical stimulations 

(±300 µA, 60 biphasic pulses, 2 ms per pulse, 60 Hz) were generated through a pair of 

commercial stimulators (NL 800 A, Neurolog, Digitimer, Hertfordshire, UK) optically isolated 

from the electrochemical system. 

Recovery surgeries followed a similar protocol. Rats were maintained under 

anesthesia with constant flow of isoflurane (1.5–2.0%) during surgical procedures, where a 

single stimulating electrode was implanted into the DNB (DV -6.0 mm). The stimulating 

electrode was secured in place with screws and dental cement. Post-operation rats were 

provided Tylenol (15 mg/kg) and closely monitored. Animals were allowed a 3 day recovery 

period before behavioral experiments commenced.     

 

Voltammetric measurements  

Fast-scan cyclic voltammetry was computer controlled using HDCV (UNC-Chapel 

Hill, NC, USA)(Bucher et al., 2013) a data acquisition program based in LabVIEW (National 

Instruments, Austin, TX, USA), and the electrochemical signals were transduced with a 

locally constructed UEI potentiostat (UNC Department of Chemistry Electronics Design 

Facility. Norepinephrine detection was performed using a triangular waveform scanning 

between -0.4 V to 1.3 V at 400 V/s. The carbon-fiber microelectrode was preconditioned 

with the waveform (15 min at 60 Hz followed by 15 min at 10 Hz) before recordings were 

made at a 10 Hz application frequency.  

The waveform used in this study cannot distinguish norepinephrine from dopamine, 

another catecholamine prevalent in the brain (Park et al., 2011). To confirm that the 

recorded signal was not due to dopamine, animals were given raclopride (2 mg/kg, i.p., 

dopamine D2 autoreceptor antagonist), and, if not already administered, idazoxan (5 mg/kg, 
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i.p., α2 autoreceptor antagonist) at the end of each experiment. In animals where the signal 

was abolished with ibotenic acid, the stimulating electrode was repositioned within the VNB 

to obtain a new baseline for release before this pharmacological procedure commenced. 

Only data from locations that selectively increased to idazoxan were included in this study.  

 

DSP-4  

Juvenile rats (150 – 200 g) were administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-

bromobenzylamine) in two doses (0.5 mL, 50 mg/kg, i.p.) provided 3 days apart (Bucher et 

al., 2014). As DSP-4 is unstable in solution (Ross et al., 1973) it was dissolved in sterile 

saline immediately before its use. Voltammetric and tissue content experiments were 

conducted 10 to 15 days after the last dose.    

 

Ibotenic acid infusion 

Electrical stimulation of the DNB was repeated every 3 min over a 1 h period to 

establish a baseline for norepinephrine release. Thereafter the stimulating electrode was 

removed and the tip of a 2 µL Hamilton syringe containing sterile saline was positioned 500 

µm dorsal to the original stimulation depth. The saline was infused manually with a 

microinjection unit (Model 500, Kopf, Tujunga, CA, USA) over a 20 min period and the 

syringe was removed for reinsertion of the stimulating electrode. Stimulations commenced 

for another 1 h period before the infusion procedure was repeated with 2 µL ibotenic acid 

(130 mM in 2% Chicago Sky Blue prepared in sterile saline, Abcam, Cambridge, MA, USA). 

The last 15 min of data collected for baseline, post-saline and post-IBA were used in 

analysis.   

 

Histology                                                                                                                                 

At the end of voltammetric experiments, recording locations were lesioned by  
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applying a DC voltage (10 V, 30 s) to the carbon-fiber microelectrodes. Animals were then 

euthanized with an overdose of urethane and decapitated. Brains were quickly removed and 

stored in a 10% formalin solution for at least 3 days before sectioned into 50 µm slices with 

a cryostat (Leica, Wetzlar, Germany). To locate the lesions slices were mounted onto glass 

slides and viewed under a light microscope.  

 

Tissue content analysis  

Urethane (1.5 mg/kg) anesthetized rats separate from those used in the voltammetry 

experiments were decapitated and their brains were rapidly removed and placed on ice.  

Coronal sections (300 µm thick) containing the BNST or AV were collected with a VF-200 

Compresstome (Precisionary Instruments Greenville, NC) in ice cold artificial cerebral spinal 

fluid (aCSF).  The aCSF contained (in mM) 126 NaCl, 25 NaHCO3, 2.45 KCl, 12 NaH2PO4, 

1.2 MgCl2, 2.4 CaCl2, 20 HEPES, and 11 glucose, and was adjusted to pH 7.4 and saturated 

with 95% O2 /5% CO2.  Tissue containing the vBNST or AV was excised bilaterally with a 1 

mm punch, and collected into pre-weighed tubes. The samples were mixed with 200 µL of 

0.1 N HClO4 containing 1 µM hydroquinone, the internal standard, and subsequently 

homogenized using a sonic dismembrator (Fisher Scientific, Model 60, Pittsburgh, PA, USA).  

The homogenate was spun down at 6000 rpm for 10 minutes, and the supernatant was 

removed and filtered using a 0.2 µm syringe filter.  High performance liquid chromatography 

was performed using the methods of Mefford and Lähdesmäki et al (Mefford, 1981; 

Lahdesmaki et al., 2002).  Briefly, 20 µL injections were made onto a revered-phase column 

(5 µm, 4.6 x 5 mm, Waters Atlantis, Milford, MA, USA).  The mobile phase consisted of 0.1 

M citric acid, 1 mM sodium hexylsulfate, 0.1 mM EDTA (pH = 3), and 10% methanol organic 

modifier at a flow rate of  1.0 mL/min.  Norepinephrine and dopamine were detected with a 

thin layer radial electrochemical cell (BASi, West Lafayette, IN, USA) at a potential of +800 

mV vs Ag/AgCl.  Data were collected at 60 Hz using a LabVIEW stripchart recorder program 
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(Jorgenson Lab, UNC) and homebuilt electronics.  Concentration was determined by a ratio 

of analyte peak area to internal standard peak area, and normalized to wet tissue weight.    

 

Behavioral assessment  

Behavioral tests were conducted in a 43 x 43 x 43 cm Plexiglas chamber housed in a 

sound-attenuated cubicle (Med Associates, St. Albans, Vermont). During testing, a house 

light mounted 48 cm above the floor was used to illuminate the box for video recording 

during all trails. After an initial habituation period (15 min), calibration of the stimulation 

intensity was performed for each rat by increasing the stimulation current (60 Hz, 40 

biphasic pulses, 2 ms per pulse) until robust escape behaviors (i.e. scurrying and/or 

jumping) were elicited by the stimulation. Next, analogous to the generation of ‘response 

rate-frequency’ functions in intracranial self-stimulation paradigms, the frequency of the 

stimulation was varied over a range of values (3, 9, 15, 30, 45, 60 Hz) in order of increasing 

frequency (Gallistel & Freyd, 1987; Carlezon & Chartoff, 2007). The number of pulses 

delivered was adjusted to maintain the same total duration of stimulation for all frequencies 

studied. Trials did not begin until the rat was exhibiting or had resumed exploratory behavior. 

During the trials, ultrasonic vocalizations were recorded using an omnidirectional electret 

microphone (Challenge Electronics, Deer Park, NY) and homebuilt electronics. Vocalization 

data were collected at 100 kHz using HDCV and were analyzed using LabView. Behavioral 

responses to the stimulation were classified as scurrying, jumping, or neither. Behavioral 

scoring for the two minutes following stimulation was performed using a time-sampling 

approach, where the rat was scored for freezing or scanning behavior during 5 second bins 

for their entirety (‘whole interval sampling’)(Tyler, 1979). The results from the individual bins 

were then aggregated to provide an overall ‘one-zero’ score for the entire two-minute period, 

with the presence of the behavior during any individual bin being counted as a positive result.  
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Data analysis 

Electrochemical data were processed with the companion HDCV data analysis 

program.  Each data set was digitally filtered (4th order low pass Bessel, 2 KHz cutoff) and 

background subtracted from baseline currents. Principal component regression, a 

multivariate chemometric algorithm (Heien et al., 2004; Keithley & Wightman, 2011), was 

used to determine concentrations based on averaged post-calibration factors obtained in a 

flow injection analysis system. Cyclic voltammograms for a range of norepinephrine and pH 

concentrations were obtained at the end of each experiment by pharmacological 

manipulation (IDA or DMI) and by varying the strength of the stimulation (10-120 p). Training 

sets were generated from at least 5 cyclic voltammograms for each analyte, and their 

statistical soundness was assessed by tools provided in HDCV data analysis (Keithley & 

Wightman, 2011; Bucher et al., 2013). 

Peak amplitude and half-life (t1/2) were calculated using Clampfit 10.2, a component 

of the pCLAMP 10.2 software package (Axon Instruments, Foster City, CA, USA). Results 

are presented as mean ± SEM with ‘n’ values indicating the number of animals unless 

otherwise noted. Statistical significances were determined in GraphPad Prism 4.0 

(GraphPad Software, San Diego, CA, USA) using 2-way analysis of variance (ANOVA) with 

post-hoc Bonferroni tests and unpaired student’s t-tests.  Differences were considered 

significant when P < 0.05. Behavioral data were analyzed in R using a Firth’s biased-

reduced logistic regression. 

 

Results 

Measurement of norepinephrine in target regions 

In this study norepinephrine release and uptake were measured in the anteroventral 

thalamus (AV) and the ventral bed nucleus of the stria terminalis (vBNST), brain regions 

receiving significant input from coerulean and medullary noradrenergic cell groups 
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respectively. The left panels in Figure 2.1 provide histological images of the areas probed in 

these two terminal structures, where electrical stimulation of the DNB elicits a transient 

increase in extracellular norepinephrine that is measurable with FSCV (Park et al., 2009).   

Example recordings capturing these rapid release events are shown in the right panels of 

Figure 2.1. Color plots are used to map voltammetric data over time, with the voltage scan 

plotted on the y-axis, the time of acquisition on the x-axis, and currents in false color. Shortly 

after electrical stimulation, current features appear at 0.65 V and -0.2 V due to the oxidation 

of norepinephrine and the subsequent reduction of its o-quinone form. Cyclic 

voltammograms representing these redox processes are provided as insets for the times of 

peak release. Additional current features are also apparent after the electrical stimulation in 

Figure 2.1B. These arise from an alkaline pH shift believed to occur from increased local 

perfusion (Venton et al., 2003; Bucher et al., 2014). To remove pH contributions, all 

norepinephrine concentration changes were determined with principal component 

regression (see Methods). The extracted concentration traces above the color plots show a 

quick rise and decay in extracellular norepinephrine after the electrical stimulations. The 

rising phase is controlled by release/uptake dynamics and the falling phase principally by 

uptake (Wightman et al., 1988; Wightman & Zimmerman, 1990; Park et al., 2009). As uptake 

is mediated by the norepinephrine transporter, clearance half-life (t1/2), defined as the time it 

take for peak norepinephrine levels to fall to 50%, is a measure of transporter function 

(Yorgason et al., 2011).  With DNB stimulation the average peak release recorded in the 

vBNST was 0.276 ± 0.014 µM with an average t1/2 of 2.4 ± 0.3 s (n=10). Release in the AV 

(n=5) was on average smaller (0.216 ± 0.035 µM) and cleared faster (t1/2 = 1.7 ± 0.5 s) than 

in the BNST (n=10), but not to a significant extent (unpaired student’s t-test, [NE]max: 

t(13)=0.609, P=5530;  t1/2:  t(13)=1.566, P=0.141). DSP-4 is a neurotoxin that selectively 

degrades the noradrenergic fibers coursing from the LC via the DNB (Fritschy & Grzanna, 

1989; Wolfman et al., 1994; Toussay et al., 2013).  



 

 

Figure 2.1.  Measurement of norepinephrine in the AV and the vBNST. Left panels: histology of the 
vBNST (A) and the AV (B). Electrode lesions are indicated by black arrows, and the areas sampled
for tissue content analysis are marked by the white dashed circles. Right panels: examples of 
voltammetric data obtained for norepinephrine release in the vBNST (A) and the AV (B) with electrical 
stimulation of the DNB. Timing of electrical stimulation is
The potential for norepinephrine oxidation is indicated by the white
Features due to shifts in pH are indicated by the solid white lines. Norepinephrine concentrations over 
time and cyclic voltammograms extracted from the time of peak release are shown above the color 
plots. Abbreviations: AC, anterior commissure; HPC, hippocampus. 
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Measurement of norepinephrine in the AV and the vBNST. Left panels: histology of the 
vBNST (A) and the AV (B). Electrode lesions are indicated by black arrows, and the areas sampled
for tissue content analysis are marked by the white dashed circles. Right panels: examples of 
voltammetric data obtained for norepinephrine release in the vBNST (A) and the AV (B) with electrical 
stimulation of the DNB. Timing of electrical stimulation is denoted by the red bars on the time axes. 
The potential for norepinephrine oxidation is indicated by the white-dashed lines in the color plots. 
Features due to shifts in pH are indicated by the solid white lines. Norepinephrine concentrations over 

d cyclic voltammograms extracted from the time of peak release are shown above the color 
plots. Abbreviations: AC, anterior commissure; HPC, hippocampus.  

Measurement of norepinephrine in the AV and the vBNST. Left panels: histology of the 
vBNST (A) and the AV (B). Electrode lesions are indicated by black arrows, and the areas sampled 
for tissue content analysis are marked by the white dashed circles. Right panels: examples of 
voltammetric data obtained for norepinephrine release in the vBNST (A) and the AV (B) with electrical 

denoted by the red bars on the time axes. 
dashed lines in the color plots. 

Features due to shifts in pH are indicated by the solid white lines. Norepinephrine concentrations over 
d cyclic voltammograms extracted from the time of peak release are shown above the color 
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Effects of DSP-4 on catecholamine tissue content in the vBNST and AV  

To assess the regional effects of DSP-4 neurotoxicity, tissue content analysis was 

performed by HPLC to determine the amounts of norepinephrine and its metabolic precursor, 

dopamine, present in the vBNST and the AV (Table 1).  Tissue was excised, as 

demonstrated in Figure 2.1 (left panels), from freshly dissected brains taken from untreated 

rats and rats treated with DSP-4. Control values for the vBNST and the AV are similar to 

those previously reported from our lab (Park et al., 2009; McElligott et al., 2013) and others 

(Oke et al., 1983; Kilts & Anderson, 1986). DSP-4 treatment significantly reduced 

norepinephrine and dopamine in the AV (unpaired student’s t-test, NE: t(9)=3.579, P=0.006; 

DA: t(9)=2.586, P=0.029), but did not exhibit an effect on the catecholamine content of the 

vBNST (NE: t(9)=0.959, P=0.363; DA: t(9)=0.371, P=0.719).   

 

Electrically-stimulated norepinephrine release in the AV after DSP-4 

The effects of DSP-4 lesioning on norepinephrine overflow in the AV were assayed with 

FSCV (Figure 2.2).  In these experiments, the depths of the carbon-fiber and stimulating 

electrodes were adjusted to maximize the amount of norepinephrine release observed with 

electrical stimulation of the DNB. Once electrode positions were optimized, stimulations 

were repeated every 3 min to record a baseline for release. This was followed by 

administration of the norepinephrine α2 autoreceptor antagonist, idazoxan, and the 

norepinephrine transporter (NET) blocker, desipramine (injected 30 min later). In control 

animals, the respective actions of these drugs increase the amount and duration of 

electrically-stimulated release (Figure 2.2A).  

With DSP-4-treatment, baseline norepinephrine release was significantly attenuated 

([NE]max= 0.095 ± 0.038 µM, unpaired student’s t-test, t(8)=2.363, P=0.046, n=5 for each 

group) compared to control (Figure 2.2B). When comparing the effects of the norepinephrine 

drugs on maximal release in untreated and DSP-4 treated rats, there was a main effect of  



 

 

 

 

 

 

 

 

Table 2.1. Catecholamine tissue content in the AV and the vBNST for untreated and DSP
animals. Values are shown as mean ± SEM. *P < 0.05, **P < 0.01, compared to untreated values. 
Abbreviations: NE, norepinephrine; DA, dopamine.

 

 

 

 

 

 

 

 

 

 

 

 

50 

tissue content in the AV and the vBNST for untreated and DSP
animals. Values are shown as mean ± SEM. *P < 0.05, **P < 0.01, compared to untreated values. 
Abbreviations: NE, norepinephrine; DA, dopamine. 

 

tissue content in the AV and the vBNST for untreated and DSP-4-treated 
animals. Values are shown as mean ± SEM. *P < 0.05, **P < 0.01, compared to untreated values. 



 

 

 

 

Figure 2.2. Effects of DSP-4 on electrically
Representative norepinephrine release profiles before and after administration of norepinephrine 
autoreceptor (IDA, idaxozan, 5 mg/kg, i.p.) and uptake inhibitors (DMI, desipramine, 15 
Stimulation timing is denoted by the bars along the time axes. n = 4 trials, error bars provided as SEM. 
(B) Maximum release in control and DSP
administration of noradrenergic drugs. 
drugs. (B-D) n = 5 for control and DSP
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4 on electrically-stimulated norepinephrine release in the AV. (A) 
Representative norepinephrine release profiles before and after administration of norepinephrine 
autoreceptor (IDA, idaxozan, 5 mg/kg, i.p.) and uptake inhibitors (DMI, desipramine, 15 
Stimulation timing is denoted by the bars along the time axes. n = 4 trials, error bars provided as SEM. 
(B) Maximum release in control and DSP-4-treated animals. (C) Change in release amplitudes after 
administration of noradrenergic drugs. (D) Clearance half-life after administration of noradrenergic 

D) n = 5 for control and DSP-4 groups. *P < 0.05, ** P < 0.01, ***P < 0.001.

stimulated norepinephrine release in the AV. (A) 
Representative norepinephrine release profiles before and after administration of norepinephrine 
autoreceptor (IDA, idaxozan, 5 mg/kg, i.p.) and uptake inhibitors (DMI, desipramine, 15 mg/kg, i.p.).  
Stimulation timing is denoted by the bars along the time axes. n = 4 trials, error bars provided as SEM. 

treated animals. (C) Change in release amplitudes after 
life after administration of noradrenergic 

4 groups. *P < 0.05, ** P < 0.01, ***P < 0.001. 
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DSP-4 (2-way ANOVA, F1,16=17.80, P=0.0007) but no effect of drug (F1,16=0.939, P=0.763) 

or interaction (F1,16=0.514, P=0.484). Post-hoc analysis revealed significant differences 

between untreated and DSP-4 treated animals in maximal release amplitudes with idazoxan 

(203 ± 29% vs 115 ± 13%, n=5 respectively, P<0.05) and idazoxan/desipramine (229 ± 37% 

vs 104 ± 14%, n=5 respectively, P<0.01) on board. There were also significant differences in 

the effects of the drugs on clearance half-life in untreated and DSP-4 treated animals (2-way 

ANOVA). Main effects were found for the drugs administered (F2,24=13.44, P=0.0001) and 

for DSP-4-treatment (F2,24=11.78, P=0.002), and these were found to have a significant 

interaction (F2,24=6.962, P=0.004). In post-hoc analysis, no significant differences were found 

in clearance half-life in pre-drug (1.7 ± 0.4 s vs 1.5 ± 0.6 s, n=5 respectively, P>0.05) or 

post-idazoxan values (2.2 ± 0.3 s vs 1.5 ± 0.6 s, n=5 respectively, P>0.05), but a significant 

difference was found after administration of both idazoxan and desipramine (7.5 ± 1.1 s vs 

2.4 ± 1.2 s, n=5 respectively, P<0.001).            

 

Electrically-stimulated norepinephrine release in the vBNST after DSP-4 

The effects of DSP-4 lesioning on norepinephrine overflow in the vBNST were also 

investigated with FSCV (Figure 2.3). In this set of experiments, the depth of the carbon-fiber 

microelectrode was optimized with the stimulating electrode positioned in the VNB. As in 

past work (Park et al., 2009), maximum norepinephrine released was observed when the 

carbon-fiber was positioned just under the anterior commissure (Figure 2.1A). Thereafter,  

the position of the carbon-fiber microelectrode was kept constant as the placement of the 

stimulating electrode was adjusted dorsally to determine the maximum amount of 

norepinephrine release elicited by stimulation of the DNB (Figure 2.3A). In some animals the 

stimulating electrode was then removed and lowered into the LC, the origin of DNB fibers, to 

find the maximum amount of release evoked by direct cell body stimulation. 

 In untreated and DSP-4 treated animals, maximal norepinephrine concentrations 



 

 

 

 

Figure 2.3. Effects of DSP-4 on electrically
Representative norepinephrine release profiles for a single recording locati
electrode placed within the VNB, DNB or the LC. Stimulation timing is denoted by the bars along the 
time axes. n = 4 trials, error bars provided as SEM. (B) Maximum release in control and DSP
treated animals for different stimulat
treated animals for different stimulation placements. (B
control/DSP-4, n = 10 for DNB control/DSP
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4 on electrically-stimulated norepinephrine release in the vBNST. (A) 
Representative norepinephrine release profiles for a single recording location with the stimulating 
electrode placed within the VNB, DNB or the LC. Stimulation timing is denoted by the bars along the 
time axes. n = 4 trials, error bars provided as SEM. (B) Maximum release in control and DSP
treated animals for different stimulation placements.  (C) Clearance half-life in control and DSP
treated animals for different stimulation placements. (B-D) n = 9 and 10 respectively for VNB 

4, n = 10 for DNB control/DSP-4, n=5 and 6 respectively for LC control/DSP

stimulated norepinephrine release in the vBNST. (A) 
on with the stimulating 

electrode placed within the VNB, DNB or the LC. Stimulation timing is denoted by the bars along the 
time axes. n = 4 trials, error bars provided as SEM. (B) Maximum release in control and DSP-4-

life in control and DSP-4-
D) n = 9 and 10 respectively for VNB 

4, n=5 and 6 respectively for LC control/DSP-4.  
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were similar with VNB (0.329 ± 0.105 µM vs 0.458 ± 0.117 µM, n=9 and 11 respectively) and 

DNB (0.380 ±0.133 µM vs 0.322 ±0.083 µM, n=11 and 10 respectively) stimulation, while 

release with LC stimulation was slightly lower on average (0.144 ± 0.040 µM vs 0.249 ± 

0.058 µM, n=5 and 6, respectively).  However, comparison of release amplitudes with these 

stimulations in these treatment groups found no significant effect for stimulation placement 

(2-way ANOVA, F2,44=2.00, P=0.147) and DSP-4 treatment (F1,44=1.46, P=0.233), nor a 

significant interaction between these two factors (F2,44=0.13, P=0.880). The half-lives of 

norepinephrine clearance between untreated and DSP-4 treated animals were also similar 

for stimulation of the VNB (1.9 ± 0.2 s vs 2.7 ± 0.4 s, n=8 and 10 respectively), DNB (2.4 ± 

0.3 s vs 2.7 ± 0.4 s, n=10 respectively), and LC (2.0 ± 0.6 s vs 1.6 ± 0.3 s, n=5 and 4 

respectively). Similar to the results obtained for release amplitudes, comparison of t1/2 values 

by 2-way ANOVA found no effect for stimulation placement (F2,41=1.60, P=0.214) and DSP-4 

treatment (F1,41=0.61, P=0.439), nor a significant interaction between these two factors 

(F2,41=0.94, P=0.400).     

 

Electrically-stimulated norepinephrine release after ibotenic acid infusion into the DNB 

 At the coordinates used in this study, the DNB courses by several midbrain 

structures, including the reticular formation, superior colliculus, periaqueductal gray, and 

pretectal nucleus. To explore the possibility that activation of these cells contributed to 

norepinephrine release in the vBNST, the area of DNB stimulation was lesioned with 

ibotenic acid (Figure 2.4). Ibotenic acid is a glutamate analog that selectively kills cell bodies 

while leaving other neuronal elements, such as fibers of passage, intact (Jarrard, 1989). The 

effects of this neurotoxin are long lasting and can be seen within an hour of infusion 

(Randich et al., 1990; Zhuang et al., 2008; Liu et al., 2012).  

In these experiments, the stimulating electrode was positioned in the DNB to evoke 

release in the vBNST and AV. Baseline amplitudes were then compared to release after 
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infusion of saline or ibotenic acid into the area targeted by the stimulation (Figure 2.4A). 

Both saline and ibotenic acid decreased the amount of norepinephrine release observed 

with stimulation of the DNB (Figure 2.4B). Analysis of these results by 2-way ANOVA 

revealed main effects of brain region (F1,17=7.89, P=0.012) and of ibotenic acid treatment 

(F1,17=15.37, P=0.001), which exhibited a significant interaction (F1,17=18.93, P=0.004). Post-

hoc analysis found a significant difference in the degree of attenuation seen for BNST 

release after infusion of saline and ibotenic acid (78.0 ± 3.3% vs 23.6 ± 6.6 %, n=5 and 6 

respectively, P<0.001), but no significant difference was found for AV release (68.0 ± 4.3% 

vs 73 ± 12%, n=5 respectively, P>0.05).   

 Post-experiment, histology was conducted to locate lesioned areas (Figure 2.4C). 

Damage along the tracts of the infusion cannulas was readily visible in fixed tissue 

preparations (Figure 2.4C, left). The tissues penetrated by ibotenic acid are stained by 

Chicago Sky Blue, which was co-infused during lesioning. The spread of this staining varied 

between 0.5 – 2 mm in diameter, covering an area similar to the spacing between the 

prongs of the stimulating electrodes. Representative examples of lesion placements are 

shown schematically in Figure 2.4C.    

 

Behavioral responses elicited by electrical stimulation at the depth of the DNB 

To determine the effects of stimulation at the coordinates of the DNB in freely-moving 

animals, behavioral testing was conducted (Figure 2.5). To investigate a defined neuronal 

population across the experiment, the stimulation current was first calibrated for each rat 

until a robust escape behavior was seen (108 ± 33 µA), and this current was then held 

constant while the frequency and pulse number were varied (Carlezon & Chartoff, 2007).  

Each stimulation during testing was only applied after the rat had resumed exploratory 



 

Figure 2.4.  Effects of IBA infusion into the DNB on electrically
Representative norepinephrine release profiles in vBNST and AV after infusion of IBA. n = 5 trials, 
error bars provided as SEM. (B) Change in release amplitudes in
animals for AV and BNST, ***P < 0.001. (C) Representative histology of IBA lesioned areas (right, 
solid black dots) marked by Chicago Sky Blue (left, dashed oval). Abbreviations: APT, anterior 
pretectal nucleus; SC, superior colliculus; Rt, reticular formation; PAG, periaqueductal gray; SNR, 
substantia nigra pars reticulata.    
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Effects of IBA infusion into the DNB on electrically-stimulated norepinephrine release. (A) 
Representative norepinephrine release profiles in vBNST and AV after infusion of IBA. n = 5 trials, 
error bars provided as SEM. (B) Change in release amplitudes in target regions after IBA. n = 5 
animals for AV and BNST, ***P < 0.001. (C) Representative histology of IBA lesioned areas (right, 
solid black dots) marked by Chicago Sky Blue (left, dashed oval). Abbreviations: APT, anterior 

r colliculus; Rt, reticular formation; PAG, periaqueductal gray; SNR, 
substantia nigra pars reticulata.     

stimulated norepinephrine release. (A) 
Representative norepinephrine release profiles in vBNST and AV after infusion of IBA. n = 5 trials, 

target regions after IBA. n = 5 
animals for AV and BNST, ***P < 0.001. (C) Representative histology of IBA lesioned areas (right, 
solid black dots) marked by Chicago Sky Blue (left, dashed oval). Abbreviations: APT, anterior 

r colliculus; Rt, reticular formation; PAG, periaqueductal gray; SNR, 



57 

 

 

 

 

 

Figure 2.5.  Incidence of behavioral responses to DNB stimulation (stim). Values are shown as the 
percentage of animals (n=6) exhibiting each behavioral reaction. The number of current pulses 
applied was adjusted to maintain constant stimulation duration as follows: 60 Hz, 40 pulses; 45 Hz, 
30 pulses; 30 Hz, 30 pulses; 15 Hz, 10 pulses; 9 Hz, 6 pulses; 3 Hz, 2 pulses.       
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behavior in order to maintain independence between trials. Additionally, the stimulations 

were applied in order of increasing frequency, as long-duration responses were typically 

seen at higher frequencies.  

 Stimulation at the coordinates of the DNB elicited the expression of aversive 

behaviors in all rats tested (n=6). Scurrying was the most common escape behavior elicited 

directly by the stimulation (5 out of 6 rats), while stationary scanning was the dominant 

aversive behavior exhibited in the post-stimulation period, with 76 ± 19% of time bins 

marked positive for its expression at the highest stimulation frequency (60 Hz, 40 pulses). 

Out of the measured indices of aversion, there was a significant dependence on stimulation 

frequency for the expression of scanning, vocalization, and active escape behaviors 

(P<0.001 for each); however, freezing behavior showed no clear frequency dependence and 

was seen in no more than two animals at any given stimulation frequency.  Of note, in three 

out of six animals, the stimulation directly provoked an unnatural motor response, typically 

involving the head and forward limbs, prior to or during the expression of any aversive 

behaviors. 

 

Discussion  

The DNB and VNB, the ascending pathways of the central noradrenergic system, are 

distinct in their connectivity and in the processes in which they modulate (Rinaman, 2011; 

Szabadi, 2013). Indeed the nuclei forming these projections are differentially activated  

during physiological challenge (Lightman et al., 1984; Soulier et al., 1992; Pertovaara, 2006),  

drug exposure (Mitchell et al., 1990; Delfs et al., 2000; Beveridge et al., 2005; Buffalari & 

Rinaman, 2014) and affective state (Cole & Robbins, 1987; Cryan et al., 2002; Itoi & 

Sugimoto, 2010; Ku et al., 2012). Medullary cell populations, including the nucleus of the 

solitary tract (A2) as well as the A1, A5 and A7 groups, produce the projections of the VNB 

(Ungerstedt, 1971; Johnston et al., 1987). These cells are positioned to intercept visceral 
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sensory inputs and terminate in the hypothalamus and basal forebrain regions. Neurons of 

the DNB arise primarily from the LC (A6) and the A4 pontine nucleus, and project to cortical, 

hippocampal, and thalamic areas (Foote et al., 1983; Szabadi, 2013).  

FSCV is a useful technique to monitor norepinephrine release dynamics in the 

terminal regions of these pathways (Herr et al., 2012; McElligott et al., 2013; Park et al., 

2013), though selective measurements are limited to areas with low dopamine innervation 

(Park et al., 2009). The vBNST, a key modulator of the central stress response, and the AV, 

a nucleus involved in spatial learning and memory (Warburton et al., 2000; van Groen et al., 

2002; Wolff et al., 2008), are two such areas. Here we specifically employed FSCV to 

consider the relative capacities of VNB and DNB electrical stimulation to evoke 

norepinephrine overflow in the vBNST. This was accomplished with selective lesioning 

agents targeting the LC and the cell populations proximal to the location of stimulation. The 

effects of these treatments were compared for DNB-stimulated norepinephrine release in 

the vBNST and the AV, a major target of DNB projections. Our results provide evidence to 

suggest that the DNB is activated with the electrical stimulation, but that norepinephrine 

release in the vBNST occurs at least in part from concurrent activation of a non-coerulean 

pathway.  

 

LC lesioning attenuates norepinephrine release in the AV but not in the vBNST 

In our first set of experiments, DNB fibers were damaged with DSP-4 to evaluate the 

extent of its role in producing norepinephrine overflow in the vBNST during electrical 

stimulation. DSP-4 is a neurotoxin that has been widely used to study the behavioral and 

physiological consequences of compromised LC activity (Ross & Stenfors, 2014). Within a 

week of administration DSP-4 causes decreased norepinephrine tissue content (Grzanna et 

al., 1989; Kudo et al., 2010; Szot et al., 2010), terminal density (Fritschy & Grzanna, 1989; 

Toussay et al., 2013; Bucher et al., 2014), and receptor expression (Johnson et al., 1987; 



60 

 

Heal et al., 1993; Wolfman et al., 1994) in areas innervated by the LC, but not in areas 

innervated by the medullary cell populations. It is unclear why only norepinephrine neurons 

of the LC are targeted; however, uptake of DSP-4 is believed to be mediated by the 

norepinephrine transporter (Landa et al., 1984; Zaczek et al., 1990), causing first fiber 

degradation and then cell death at later times (Fritschy & Grzanna, 1991; 1992).  These 

effects are dose-dependent, and the 50 mg/kg treatment we employed has been shown to 

reproducibility induce widespread LC toxicity (Kudo et al., 2010; Ross & Stenfors, 2014).  

In this study, measurements were made in the AV, a major terminal region of the 

DNB, to assess the efficacy of DSP-4 treatment. Consistent with a loss of noradrenergic 

terminals, both norepinephrine and dopamine, its metabolic precursor, were significantly 

reduced in this region in DSP-4 treated animals. In evoked release experiments 

norepinephrine release in the AV was also found to be attenuated with DSP-4. Moreover, 

administration of α2 autoreceptor and NET inhibitors exhibited blunted responses, revealing 

that presynaptic regulatory mechanisms were significantly compromised. Overall the 

reduction in AV norepinephrine content and release confirmed that DSP-4 treatment 

effectively damaged fibers of the DNB.  

In contrast to the AV, no significant changes in vBNST catecholamine content were 

found with DSP-4 treatment. While this is consistent with previous observations, it is 

somewhat surprising that loss of DNB innervation—which is reported to account for as much 

as 30% of its noradrenergic input in this region (Phelix et al., 1992; Myers et al., 2005)—did 

not lead to a measurable attenuation of catecholamine levels. It is quite possible that VNB 

terminals surviving DSP-4 treatment in the vBNST compensate for DNB denervation. Indeed, 

compensatory effects including increased extracellular concentrations and turnover have 

been reported in forebrain regions with attenuated norepinephrine content (Hallman & 

Jonsson, 1984; Logue et al., 1985; Hughes & Stanford, 1998).  Given that the majority of 

terminals in the BNST are resilient to DSP-4 they may be able to better account for the loss 
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of LC input.  Supporting this possibility, a separate study reported a net increase in BNST 

norepinephrine with DSP-4 (Szot et al., 2010), though we did not observe this effect in our 

work.  

Regardless of whether or not VNB transmission was enhanced as a result of DSP-4 

treatment, recordings in the AV supported that DNB functionality was damaged.  

Surprisingly however, DSP-4 did not did not alter the capacity of VNB, DNB, or even LC 

stimulation to elicit norepinephrine release in the vBNST. In fact, the norepinephrine release 

with each of these stimulations was on average higher in treated animals—though not to a 

significant extent. These results suggest that electrical stimulation at the coordinates of LC 

cell bodies and axons depolarizes fibers of the VNB, which then give rise to the 

norepinephrine release observed in the vBNST. There are a number of reciprocal 

connections coursing between the regions of the medullar and pontine norepinephrine cell 

groups (Van Bockstaele & Aston-Jones, 1992; Van Bockstaele et al., 1999; Mello-Carpes & 

Izquierdo, 2013); however, antidromic signaling along such a pathway would likely be 

reduced with DNB damage. As DSP-4 did not attenuate BNST norepinephrine release with 

DNB stimulation, it is more likely that VNB activation is mediated by some other neuronal 

substrate.  

 

Midbrain cell body activation supports norepinephrine release in the vBNST but not in the 

AV  

 The DNB courses through the midbrain reticular formation, a diffuse network of 

neurons forming the core of the brainstem (Ungerstedt, 1971; ten Donkelaar, 2011). 

Surrounding the reticular formation at our coordinates of stimulation are the periaqueductal 

gray (PAG), superior colliculus, and anterior pretectal nucleus (Paxinos & Watson, 2007), 

areas important to visual processing, motor-control, nociception, respiration, and arousal 

(Rees & Roberts, 1993; Johansen et al., 2010; Krauzlis et al., 2013). Of these structures 
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only those in the midbrain tectum, which include the superior colliculus and the PAG, 

receive significant noradrenergic input (Swanson & Hartman, 1975). Noradrenergic 

innervation of the superior colliculus and the dorsal PAG is primarily coerulean (Morrison & 

Foote, 1986), whereas the lateral and ventral portions of the PAG receive input from the 

nucleus of the solitary tract, A1 and A5 groups (Byrum & Guyenet, 1987; Herbert & Saper, 

1992; Clement et al., 1998). 

 Despite the differences between their afferent input, each of these midbrain nuclei 

produce descending efferent projections terminating within or near medullary areas housing 

noradrenergic cells (Bandler & Tork, 1987; Chiang et al., 1992; Yasui et al., 1994; ten 

Donkelaar, 2011), and therefore may be able to modulate norepinephrine overflow in the 

vBNST. We tested this theory with ibotenic acid, an excitotoxic agent that causes cell loss 

within an area closely confined to the locus of its injection. In the protocol employed in this 

study, ibotenic acid was infused at the depth of DNB stimulation and changes in stimulated 

norepinephrine release were observed for the AV and the vBNST. Ibotenic acid does not 

target afferent terminals or fibers of passage (Jarrard, 1989); therefore its neurotoxicity is not 

expected to have impacted the axons of the DNB. Interestingly, this treatment did not 

significantly alter norepinephrine release in the AV—supporting that NE release in this 

region is mediated by direct activation of the DNB at the stimulation coordinates. Conversely, 

DNB-stimulated norepinephrine release in the vBNST was significantly reduced after 

ibotenic acid. This confirms a role for midbrain cells in producing vBNST norepinephrine 

release with electrical stimulation of the DNB.  It is important to note that is not possible to 

assess the degree in which these cells contribute to norepinephrine release as there is likely 

some variability between lesions and the areas of stimulation. 

 Histology confirmed that many of the lesions covered portions of the superior 

colliculus and the PAG, areas crucial to producing behavioral and autonomic responses to 

threatening stimuli. Chemical and electrical activation of this region produces characteristic 
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defense reactions that are dependent on stimulation intensity (Schenberg et al., 1993; 

Brandao et al., 1999; Schenberg et al., 2005). When DNB stimulation was administered to 

awake animals, similar intensity-dependent aversive responses were observed, including 

scanning, freezing, 20 KHz ultrasonic vocalizations, and escape behaviors. It is therefore 

likely that stimulation of the DNB recruited the neurons of the superior colliculus and the 

PAG during anesthetized experiments.   

Of the two tectum structures, there is strong anatomical evidence to believe that the 

PAG could facilitate norepinephrine transmission in the BNST. Descending projections from 

the PAG terminate within the norepinephrine-containing homeostatic fields of the brainstem 

to generate cardiorespiratory responses during stress (Sessle et al., 1981; van der Plas et 

al., 1995; Huang et al., 2000; Boscan & Paton, 2005). Though many of these reported 

connections are not noradrenergic, a smaller number of studies have argued that the PAG 

can indirectly and directly signal to the neurons of the VNB noradrenergic system (Bajic & 

Proudfit, 1999; Bajic et al., 2012), and the lesioning effects observed in our study support 

this claim.  As the BNST and the PAG are both major components of the central stress 

system, regulation of the VNB by the PAG could be important to the pathology of stress-

associated illnesses such as anxiety and panic disorders (Graeff et al., 1993; Walker et al., 

2003; McElligott et al., 2013).    

 

Conclusions         

The results of this study demonstrate that vBNST norepinephrine overflow is 

mediated by activation of midbrain structures surrounding the path of the DNB, possibly 

including the periaqueductal gray. As DSP-4 did not exert an effect on vBNST 

norepinephrine dynamics, the off-target effects of DNB stimulation likely causes release 

from VNB fibers terminating in the vBNST. This provides an explanation for the discrepancy 

between reported inputs to the vBNST and the similarities between norepinephrine release 
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elicited by DNB and VNB stimulation. Importantly, our data does not preclude the possibility 

of LC-mediated release in the vBNST. Rather, it suggests that the contribution of the LC to 

vBNST norepinephrine overflow is much smaller than that of the off-target activations 

induced by electrical stimulation of its processes.  
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CHAPTER 3: NOREPINEPHRINE AND DOPAMINE TRANSMISSION  IN TWO LIMBIC 
REGIONS DIFFERENTIALLY RESPOND TO ACUTE NOXIOUS STI MULATION 

 
 
Introduction 
 

The motivational, hedonic and associative aspects of pain are encoded by the brain’s 

limbic system, a heterogeneous collection of structures positioned at the interface of the 

hindbrain and cortex. Limbic function is supported by catecholamine innervation from the 

dopaminergic cells of the ventral tegmental area (VTA) and periaqueductal gray (PAG) 

(Swanson, 1982; Hasue & Shammah-Lagnado, 2002), as well as the noradrenergic cells of 

the locus coeruleus (LC), nucleus of the solitary tract (NST, A2) and A1 group (Forray et al., 

2000; Park et al., 2009).  Indeed, a number of animal studies have demonstrated that these 

cells respond to noxious stimuli (Grant et al., 1988; Ungless et al., 2004; Brischoux et al., 

2009). The modulatory actions of catecholamine neurotransmission are moreover implicated 

in the physiological and behavioral reactions to pain (Altier & Stewart, 1999; Pertovaara, 

2006), and are associated with disorders often comorbid with pain dysregulation such as 

drug addiction and depression (Delgado, 2004; Zhang et al., 2008; Elman et al., 2013).   

 Measuring the neurochemical changes induced by acute pain is challenging due to 

the temporo-spatial dynamics of rapid neurotransmitter release. Unsurprisingly, past studies 

have produced controversial results (Abercrombie et al., 1989; Pei et al., 1990; Kalivas & 

Duffy, 1995; Amato et al., 2011).  In vivo fast-scan cyclic voltammetry (FSCV) at carbon-

fiber microelectrodes can capture real-time changes in extracellular catecholamines within 

the substructures of the brain (Robinson et al., 2008; Park et al., 2012).  Recently we 

employed this methodology in anesthetized animals to observe striatal dopamine responses 

during a noxious 3 s tail-pinch (Budygin et al., 2011).  We found that tail-pinch elevated 
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extracellular dopamine throughout the nucleus accumbens (NAc), a VTA-innervated limbic 

structure involved in motivational salience and reward processing.  The temporal aspects of 

this response, however, were subregion-dependent. Dopamine increased during the 

stimulation in the NAc core but only at the stimulus termination in the NAc shell, 

demonstrating that accumbal dopamine release differentially encodes information regarding 

the presence and cessation of a noxious stimulus. 

Interestingly, we failed to identify a striatal region where dopamine activity decreased 

with tail-pinch. This is unexpected as electrophysiological recordings have identified a 

subset of VTA dopamine neurons that are inhibited by pain (Ungless et al., 2004; Brischoux 

et al., 2009; Zweifel et al., 2011). The absence of this response pattern in our previous data 

prompted this reinvestigation of the NAc shell, where no discernable dopamine change was 

observed during the tail-pinch. We furthermore extend our study to consider norepinephrine 

responses in the ventral bed nucleus of the stria terminalis (vBNST), a spatially contiguous 

limbic structure.  Norepinephrine release in this region, arising primarily from NST and A1 

cell groups, is involved in the affective component of pain and facilitates stress responses 

through upregulation of HPA axis activity (Forray et al., 2000; Forray & Gysling, 2004; 

Deyama et al., 2009). 

Using pharmacological agents to enhance catecholamine signaling, we found that 

tail-pinch has diverse effects on dopamine concentrations in the NAc shell and that, in most 

locations, dopamine release is inhibited during the noxious stimulus.  In the vBNST 

norepinephrine release increased with tail-pinch but, unlike dopamine responses in the NAc 

shell, did not respond to the termination of the stimulus in a time-locked manner.  These 

results demonstrate that dopamine in the NAc shell and norepinephrine in the vBNST 

process noxious stimulation via disparate, and in the case of dopamine in the NAc shell non-

uniform, signaling patterns. The integration of these responses may act to initiate survival 

behaviors.   
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Experimental  

Animals 

Male Sprague-Dawley rats (300 – 400 g, Charles River Laboratories, Wilmington, 

MA) were used for these studies.  Animals were housed in a controlled humidity and 

temperature environment with a 12:12 hour light:dark cycle.  Food and water were available 

ad libitum.  Experiments were conducted between 9:00 am and 5:00 pm.  All procedures for 

handling and caring for the laboratory animals were in accordance with the NIH Guide for 

Care and Use of Laboratory Animals and were approved by the Institutional Animal Care 

and Use Committee of the University of North Carolina and Wake Forest University.   

 

Surgery 

Rats were anesthetized with urethane (1.5 g/kg, i.p.), immobilized in a stereotaxic 

frame (David Kopf Instruments, Tujunga, CA) and maintained at a body temperature of 37oC 

with a heating pad (Harvard Apparatus, Holliston, MA). Holes on the skull were drilled for the 

stimulating and carbon-fiber working electrodes using coordinates relative to bregma from 

the atlas of Paxinos and Watson (Paxinos & Watson, 2007). A Ag/AgCl reference electrode 

was implanted in the contralateral hemisphere and secured to the skull with a jeweler’s 

screw.  

In each experiment a carbon-fiber microelectrode was lowered into the NAc shell 

(anteroposterior [AP] +1.8 mm, mediolateral [ML] +0.8 mm) or vBNST (AP 0.0 mm, ML +1.2 

mm). Electrical stimulation (24-60 biphasic pulses, 300 µA, 2 ms/phase, 60 Hz) was applied 

through a pair of optically-isolated stimulators (NL 800A, Neurolog, Digitimer Ltd, 

Hertfordshire, UK) to a bipolar, stainless-steel electrode (0.2 mm in diameter, Plastics One, 

Roanoke, VA) placed into the VTA/ventral noradrenergic bundle (VNB, AP -5.2 mm, ML 

+1.2 mm, dorsoventral [DV] -8.0 to -9.0 mm).  The VNB is the axon pathway formed mainly 
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by the noradrenergic neurons of the NST and A1 cell group, and passes directly through the 

VTA region. 

Noxious stimulation 

As described in our previous study (Budygin et al., 2011) tail pinch was conducted 

with soft rubber gloves to avoid tissue damage and electrical noise artifacts.  During each 

stimulus, the tail of the rat was pressed between the thumb and the index finger for 3 s with 

maximal pressure (P) of 3.12 ± 0.62 MPa.  P was calculated by measuring the contact area 

between the fingers and the tail of the rat and by a measurement of the applied force using 

a Pasco CI-6537 Force Sensor (Roseville, CA).  The stimulus was repeated at least three 

times at each recording location in the NAc shell or vBNST with rest interval of 2–3 min.  

Reactions such as ear or whisker twitches to the tail pinch were tested to ensure the 

animals were fully anesthetized before this procedure commenced. 

 

Voltammetric procedures 

A fresh, glass-sealed carbon-fiber microelectrode (75−100 µm exposed tip length, 7 

µm diameter, T-650; Amoco, Greenville, SC) (Cahill et al., 1996) was lowered into the NAc 

shell (DV -5.8 to -7.4 mm) or the vBNST (DV -7.2 to -7.7 mm).  Fast-scan cyclic voltammetry 

was computer-controlled as described in detail previously (Heien et al., 2003).  A triangular 

scan (-0.4 to +1.3 V, 400V/s) was repeated every 100 ms to electrochemically detect 

catecholamine changes.  Background-subtracted cyclic voltammograms were obtained by 

digitally-subtracting voltammograms collected during stimulation from those collected during 

baseline recording.  Voltammetric responses were viewed as color plots with the abscissa 

as voltage, the ordinate as acquisition time, and the current encoded in color (Michael et al., 

1998). At the end of experiments the carbon-fiber was electrolyzed to create a lesion (see 

below). Currents were converted to concentration based on averaged in vitro calibration 
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factors (6.9 ± 0.3 pA/(µM·µm2) for dopamine, 4.5 ± 0.2 pA/(µM·µm2) for norepinephrine) 

obtained from a separate set of electrodes previously used in vivo.   

 

Histology 

At the end of the experiment, rats were euthanized with an overdose of urethane (2.0 

g/kg) and electrode placements were verified by electrolytic lesions made by applying 

constant current (20 µA for 10 s) to the carbon-fiber microelectrodes (Park et al., 2009). 

Brains were removed and stored in 10 % formalin solution for at least a week before being 

coronally sectioned into 50 µm thick slices on a cryostat. The sections were then mounted 

on slides and examined under a light microscope to verify carbon-fiber placements within 

the NAc shell or vBNST.   

 

Chemical and drugs 

All chemicals and drugs were obtained from Sigma-Aldrich (St. Louis, MO, USA) and 

were used without further purification.  Calibration of the carbon-fiber microelectrodes with 

pH, dopamine, and norepinephrine were made after in vivo recordings in a buffer (pH 7.4 

containing 15 mM Tris, 140 mM NaCl, 3.25 mM KCl, 1.2 mM CaCl2, 1.25 mM NaH2PO4, 1.2 

mM MgCl2, and 2.0 mM Na2SO4 in double distilled water (Mega Pure System, Corning 

Glasswork, Corning, NY).  Desipramine-HCl, raclopride-HCl, and idazoxan-HCl were 

dissolved in sterile saline.  GBR 12909 was dissolved in water and diluted in saline. Injected 

volumes were ~ 0.6 mL and were given intraperitoneally (i.p.).   

 

Data analysis 

Catecholamine concentration changes in response to tail pinch were quantified using 

a locally-written principal component regression algorithm (Keithley & Wightman, 2011).  A 

residual analysis procedure was used to validate the predicted concentrations, and any trials 
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containing uncharacteristic variance larger than 95% of the noise of the training set were 

discarded. Data from each trial were background subtracted from the time point of lowest 

concentration. Significant changes of catecholamine concentration in response to tail pinch 

were evaluated using average baseline (-5.0 to 0 s) before the noxious stimuli.  Mean values 

were compared by using the two-tailed Student’s t-test to calculate the level of significance.  

Statistical analysis employed GraphPad Software version 4.0 (San Diego, CA, USA).  P < 

0.05 was regarded as statistically significant.  Data are represented as mean ± S.E.M. and 

‘n’ values indicating the number of rats.  

 

Results 

Rapid extracellular dopamine changes in the NAc shell elicited by tail pinch 

A fresh carbon-fiber microelectrode was lowered into the NAc shell by 0.2-0.3 mm 

increments beginning at -5.7 mm from the skull to evaluate changes in extracellular 

dopamine concentration in response to the noxious stimuli (tail pinch).  Figure 3.1A (left 

panel) shows the coronal plane in which measurements were made (AP ~ +2.0 mm) in the 

NAc shell with the approximate electrode track marked by the solid line.  Our previous study 

showed that maximal dopamine release is not observed until the electrode is positioned 

within the depths of the NAc shell (- 6.0 mm to - 7.0 mm below the skull) (Park et al., 2010).  

Recording location was verified by electrolytic lesion at the end of the experiment (Fig. 3.1A, 

dashed white circle). Only dopamine signals recorded in the NAc shell were used in this 

study.  To characterize the distribution of dopamine release sites in the NAc shell, dopamine 

release evoked by a bipolar electrical stimulation (60Hz, 24 pulses, 300 µA) of the VTA and 

the VNB was measured at different depths with fast-scan cyclic voltammetry.   

Once the electrode was positioned in the NAc shell, changes in extracellular 

dopamine concentration in response to tail pinch were measured at multiple recording 

depths (Fig. 3.1B, single animal data).  The time course of dopamine concentration changes  



 

Figure 3.1.  Anatomical mapping of tail pinch induced and electrically evoked dopamine responses in 
the NAc shell.  (A) Solid line in the schematic diagram illustrates the approximate pat
fiber microelectrodes in the NAc shell (left).  The coronal section was modified from the atlas of 
Paxinos and Watson [43].  The placement of the carbon
dashed white circle, which provides histol
shell (right).  AP, anterior-posterior; AC, anterior commissure.  (B) Average dopamine concentration 
changes to tail-pinch as a function of recording depth (n = 3 trials each). The time of tail p
indicated by the red bar.  The dashed lines represent error as S.E.M.
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Figure 3.2.   Dopamine signaling in the NAc shell in response to tail pinch.  (A) Example dopamine 
responses to tail-pinch for two separate animals. Single trial electrochemical
white dashed lines in the color plots indicate the potential of dopamine oxidation (~0.65 V). Current 
features at this potential become apparent with the administration of the tail
denoted by red bars) and are conv
traces above the color plots. Representative cyclic voltammograms are provided for the times marked 
by the arrows. Negative oxidation currents at + 0.65 V are representative of a decrease i
concentrations. (B)  Average dopamine concentration changes for the same animals and same 
recording locations (n = 6 trials each). The time of tail pinch is indicated by the red bars. Error bars 
are S.E.M. (C) Peak dopamine changes by trial for 
response to tail pinch.  The vertical lines through the data points indicate the noise levels (3
dopamine oxidation potential for each trial.
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pinch for two separate animals. Single trial electrochemical data is shown.  The 
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features at this potential become apparent with the administration of the tail-pinch stimulus (time 
denoted by red bars) and are converted to concentration by a post-calibration factor to produce the 
traces above the color plots. Representative cyclic voltammograms are provided for the times marked 
by the arrows. Negative oxidation currents at + 0.65 V are representative of a decrease i
concentrations. (B)  Average dopamine concentration changes for the same animals and same 
recording locations (n = 6 trials each). The time of tail pinch is indicated by the red bars. Error bars 
are S.E.M. (C) Peak dopamine changes by trial for the same animals and same recording locations in 
response to tail pinch.  The vertical lines through the data points indicate the noise levels (3
dopamine oxidation potential for each trial. 

opamine signaling in the NAc shell in response to tail pinch.  (A) Example dopamine 
data is shown.  The 

white dashed lines in the color plots indicate the potential of dopamine oxidation (~0.65 V). Current 
pinch stimulus (time 

calibration factor to produce the 
traces above the color plots. Representative cyclic voltammograms are provided for the times marked 
by the arrows. Negative oxidation currents at + 0.65 V are representative of a decrease in dopamine 
concentrations. (B)  Average dopamine concentration changes for the same animals and same 
recording locations (n = 6 trials each). The time of tail pinch is indicated by the red bars. Error bars 

the same animals and same recording locations in 
response to tail pinch.  The vertical lines through the data points indicate the noise levels (3σ) at the 
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was obtained from the oxidation peak of the voltammograms (~ +0.65 V).  The dopamine 

responses to tail-pinch were much smaller than the concentration changes that occurred 

with electrical stimulation. At each recording depth tail pinch (at t = 0, 3 s duration, denoted 

as red bar) was repeated at least 3 times.  In the example animal extracellular dopamine 

levels rapidly decreased on average during the tail pinch (t = 0 to 3 s). Once the stimulus 

ceased dopamine concentrations returned or, in some locations, spiked above pre-stimulus 

basal levels (t = 3 s).  Apparent variation in the initial time of a dopamine response is most 

likely due to human error as the tail pinch was administered manually. At the end of each 

experiment electrical stimulation of the VTA was used to confirm dopamine release in each 

location. Tail pinch data are only presented for depths that exhibited dopamine release with 

electrical stimulation.       

Three dopamine response types were observed with tail pinch among locations in 

the NAc shell, and these changes were observable even in individual trials (Fig. 3.2).  

During the tail pinch dopamine levels remained constant in some locations while decreased 

in others. At the offset of the stimulus dopamine levels either returned to baseline or 

transiently increased. Figure 3.2A provides example individual trial data for a monophasic 

decrease and a biphasic decrease-increase dopamine response to the stimulus. The 

dopamine response pattern was clearer when data was averaged for a recording location 

(Fig. 3.2B) as not all components of a response were observable (S/N ≥ 3) in individual trials 

(Fig. 3.2C). It is important to note that many recording sites in the NAc shell exhibited no 

measurable dopamine response to tail pinch even though release could be evoked by 

electrical stimulation, which is likely due in part to the sedative effects of urethane 

anesthesia. Of 53 recording locations (n=7 animals), 12 sites exhibited a monophasic 

dopamine decrease during the tail pinch, 10 sites exhibited a monophasic dopamine 

increase to the cessation of the pinch, and 5 sites responded with the biphasic dopamine 
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decrease-increase pattern.  No response was discernable in the other 26 recording 

locations.   

 

Effects of dopamine autoreceptor and transporter inhibition on tail-pinch induced responses 
in the NAc shell  

Effects of the selective dopamine uptake inhibitor GBR 12909 (GBR, 15 mg/kg), and 

the D2 autoreceptor antagonist raclopride (Rac, 2 mg/kg), on dopamine signaling in 

response to the tail pinch were investigated.  Figure 3.3 shows dopamine responses to tail 

pinch before (control) and after drug administration (Rac+GBR) for different recording 

locations in the NAc shell.  Under each dopamine concentration profile, voltammetric data is 

shown in a false-color plot.  The oxidation and reduction potentials for dopamine are 

indicated by dashed and solid white lines, respectively.  The time course of dopamine 

concentration changes was obtained from the oxidation peak (~ +0.65 V) of the 

voltammograms.   

Consistent with previous studies in the NAc shell of anesthetized animals, combined 

administration (5 min apart) of Rac and GBR enhanced dopamine overflow dynamics and 

induced spontaneous dopamine transients  (Park et al., 2010; Park et al., 2011). These 

transients are clearly visible in Figure 3.3A, where tail-pinch did not induce measurable 

dopamine changes (S/N < 3) even after Rac and GBR.  However, many initially 

unresponsive recording depths exhibited measurable tail-pinch induced dopamine 

responses after pharmacological manipulation (Fig 3.3B). When dopamine responses were 

observed in any animal, they were always time-locked to the duration of the stimulus even 

when its timing was extended (Fig 3.3B).  Of 21 sites that showed no dopamine response 

pre-drug, only 6 remained unresponsive after administration of Rac and GBR.  



 

Figure 3.3.   Dopamine signaling in the NAc shell in 
autoreceptor inhibition. Changes in extracellular dopamine were more clearly observed after 
administration of the selective dopamine drugs, raclopride (Rac, 2 mg/kg) and GBR 12909 (GBR, 15 
mg/kg).  (A and B) Tail-pinch induced dopamine responses for a single animal at two recording 
depths before (left) and after (right) pharmacological manipulation. Electrochemical data is provided 
in the color plots where the potential of dopamine oxidation (~0.65 V) is indicate
lined.  Dopamine concentration changes over time are provided above the color plots. The time of tail 
pinch (10 s duration) is indicated by the red bars. (C and D) Tail
for a separate animal at two rec
manipulation. The time of tail pinch (3 s duration) is indicated by the red bars.
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In the second of the two animals shown, changes in dopamine concentration during 

tail pinch were small, but measurable before drug administration (Fig 3.3C and D, left 

panels).  In this animal, extracellular dopamine levels monophasically decreased to the 

stimulus at one location (Fig. 3.3C) and changed in a biphasic manner at another (Fig. 3.3D).  

Once dopamine transients were induced through autoreceptor and transporter inhibition, 

these dopamine responses became pronounced (Fig. 3.3C and D, right panels).  Overall 

pre-drug dopamine responses to tail pinch (∆[DA] = - 46.9 ± 3.9 nM during stimulus; ∆[DA] = 

63.1 ± 7.0 nM post stimulus, n = 7) were significantly enhanced after dopamine drug 

administration (Rac + GBR: ∆[DA] = - 89.4 ± 12.9 nM during stimulus, P < 0.05 ; ∆[DA] = 

630 ± 145 nM, P < 0.01 post-stimulus, n = 7).   

 

Rapid extracellular norepinephrine changes in the vBNST elicited by tail pinch 

A second set of experiments was conducted to investigate extracellular 

norepinephrine concentration changes in the vBNST in response to noxious stimulation.  

Figure 3.4A displays the electrode tract (left) for norepinephrine measurements in vBNST 

(shaded red), and a histological image of the vBNST (right) with the recording site marked 

by electrolytic lesion indicated by the dashed white circle.  Only signals that were verified by 

histology to be recorded in the vBNST were used in this study (n = 7).  Within the vBNST 

(DV ~ 7.3 mm – 7.7 mm from the skull) electrically-stimulated norepinephrine release 

reached a maximum at a depth of ~7.5 mm as described previously (Park et al., 2009; Herr 

et al., 2012).  Figure 3.4B displays norepinephrine release evoked by electrical stimulation 

and tail pinch (left and right panels respectively, denoted by red bar) at different depths in 

the vBNST. As norepinephrine release is confined to a narrow range of depths in the vBNST 

(Park et al., 2009; Park et al., 2012), data from only one recording depth was obtained for 

each animal. 



 

 

Figure 3.4.   Anatomical mapping of tail pinch induced and electrically evoked norepinephrine 
responses in the vBNST.  (A) Solid line in the schematic diagram illustrates the approximate path of 
the carbon-fiber microelectrodes in the vBNST (shaded red, left).  The coronal section was taken from 
the atlas of Paxinos and Watson [43].  The placement of the carbon
indicated by the dotted white circle, which provides histological evidence that the electrode was 
positioned in the vBNST (right).  AP, anterior
putamen; vBNST, ventral bed nucleus of th
Hz, 60 pulses, ±300 µA) norepinephrine release in the vBNST recorded at the depth indicated.  The 
red bars under the current trace show the electrical stimulation time.  (C) Average norepinephrine
concentration changes to tail-pinch at the recording depth indicated (n = 3 trials each). The time of tail 
pinch is indicated by the red bar.  
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Figure 3.5.   Norepinephrine signaling in the vBNST in response to 
responses to tail-pinch for two separate animals. Single trial electrochemical data is shown.  The 
white dashed lines in the color plots indicate the potential of norepinephrine oxidation (~0.7 V). 
Current features at this potential become apparent with the administration of the tail
(time denoted by red bars) and are converted to concentration by a post
the traces above the color plots. Representative cyclic voltammograms are pr
marked by the arrows. (B)  Average norepinephrine concentration changes for the same animals and 
same recording locations (n = 6 trials each). The time of tail pinch is indicated by the red bars. Error 
bars are S.E.M. (C) Peak norepine
locations in response to tail pinch.  The vertical lines through the data points indicate the noise levels 
(3σ) at the norepinephrine oxidation potential for each trial.
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In contrast to dopamine trials in the NAc shell, norepinephrine concentrations in the 

vBNST consistently increased during tail pinch and remained elevated briefly even after the 

stimulus ended (Fig. 3.4C).  Again, apparent variation in the initial time of norepinephrine 

response is due to the fact that the tail pinch was administered manually.  Similar to 

dopamine in the NAc shell, the norepinephrine changes observed during tail pinch were 

smaller than that elicited by the electrical stimulation (Fig. 3.4B and C), but were still 

detectable in single trial data (Fig 3.5). Clear norepinephrine responses were found after 

data was averaged for multiple trials at a single location (Fig. 3.5B). The magnitude of 

individual responses did not significantly change after multiple noxious stimulations (Fig. 

3.5C). 

 

Effects of norepinephrine autoreceptor and transporter inhibition on tail-pinch induced 
responses in the vBNST 

 As in dopamine experiments, the effects of the selective norepinephrine uptake 

inhibitor, desipramine (15 mg/kg), and α2 receptor antagonist, idazoxan (5 mg/kg), on 

norepinephrine transmission in response to tail pinch were investigated.  Pre- and post-drug 

norepinephrine concentration changes are shown for two animals in Figure 3.6.  Under each 

norepinephrine concentration profile, data is shown in a false-color plot of voltammetric 

current.  The time course of norepinephrine concentration changes was obtained from 

oxidation potential of norepinephrine denoted on the color plots by the dashed white lines.  

For some anesthetized animals prominent pH shifts coincided with changes in 

norepinephrine concentration in the vBNST (Fig. 3.6B, pH features indicated by yellow 

dashed lines) (Takmakov et al., 2010).  Concentration data for such trials were obtained 

through the use of principle component analysis (see, Data Analysis ).   

 



 

Figure 3.6.   Norepinephrine signaling in the vBNST in response to tail pinch after transporter and 
autoreceptor inhibition. Norepinephrine signaling patterns were more clearly observed after 
administration of the selective norepinephrine drugs, idazoxan (IDA, 5 mg/kg) and desipramine (DMI, 
15 mg/kg).  (A and B) Tail-pinch induced norepinephrine responses two separate animals before (left) 
and after (right) pharmacological manipulation. Electrochemical data is pro
where the potential of norepinephrine oxidation (~0.65 V) is indicated by the white dashed lined.  
Norepinephrine concentration changes over time are provided above the color plots. The time of tail 
pinch (3 s duration) is indicated by the red bars.
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Unlike dopamine, the combined effects of autoreceptor/transporter inhibition do not 

induce transient norepinephrine release  (Park et al., 2011), but did significantly increase the 

magnitude and duration of extracellular norepinephrine elevation with tail pinch in this study.  

Norepinephrine transmission continued to display the same response pattern to the tail 

pinch even after norepinephrine drug administration (Predrug ∆[NE] = 47.1 ± 3.8 nM, n = 7), 

Post IDA +DMI ∆[NE] = 119.8 ± 17 nM, P < 0.01, n = 7).   

 

Discussion 

Tail pinch is a classic noxious stimulus, which may result in pain depending on its 

intensity [20]. In rodents this mild stressor generates a state of arousal that can facilitate 

motivated behaviors as varied as feeding, copulation and maternal behaviors (Antelman & 

Szechtman, 1975; Szechtman et al., 1977; Leyton & Stewart, 1996). In anesthetized 

animals where affective and cognitive aspects of pain are dampened, noxious sensory input 

can still evoke measurable alterations in the neurons underling these behaviors, including 

those of the central catecholamine systems (Grant et al., 1988; Brischoux et al., 2009).  

Here we investigated the effects of a brief tail-pinch on catecholamine 

neurotransmission in two limbic terminal regions of the anesthetized rat brain, the NAc shell 

and the vBNST. Using FSCV and pharmacological agents to enhance release dynamics, we 

report new features in dopamine transmission for the NAc shell during tail pinch and, 

moreover, find that norepinephrine transmission in the BNST is oppositely regulated by 

noxious stimulation. While some intertrial variation was apparent at each recording site, 

neither dopamine nor norepinephrine responses showed sensitization over repeated 

stimulations.   
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Tail-pinch induced dopamine transmission in the NAc shell  

As an important limbic-motor interface, the NAc has received considerable attention 

regarding its role during  appetitive behaviors, where dopamine overflow increases during 

the presentation, seeking and anticipation of food reward, drugs of abuse, and intracranial 

self-stimulation (Phillips et al., 2003; Roitman et al., 2008; Park et al., 2013a). While not as 

extensively characterized, accumbal dopamine also responds to various states of aversion 

(Roitman et al., 2008; Badrinarayan et al., 2012; Park et al., 2012; Oleson & Cheer, 2013), 

and can inhibit pain (Altier & Stewart, 1999; Taylor et al., 2003; Wood, 2006). However, in 

contrast to the general excitation of dopamine neurons by reward, electrophysiological 

recordings have established that the effects of noxious stimuli on VTA dopamine neurons 

are variable. Subpopulations of VTA dopamine neurons are excited, inhibited or unaffected 

by noxious stimuli such as electrical foot-shock and tail-pinch (Mantz et al., 1989; Ungless et 

al., 2004; Brischoux et al., 2009; Zweifel et al., 2011). Moreover, an additional subset of 

dopamine neurons exhibits a transient surge of activity at the offset of aversive stimuli 

(Brischoux et al., 2009; Wang & Tsien, 2011).  

These diverse firing patterns are thought to be due to a functional separation of VTA 

dopamine neurons into populations that encode motivational salience versus motivational 

value (Matsumoto & Hikosaka, 2009; Bromberg-Martin et al., 2010). Dopamine neurons 

associated with motivational salience increase firing to signify the relative importance of a 

stimulus. In contrast, the activity of dopamine neurons relaying motivational value directly 

correlates to the hedonic aspects of a stimulus. Though it is often difficult to discriminate 

between these two signaling modalities during reward—where salience and value are highly 

correlated—aversive stimuli are both salient and of negative valence, and therefore affect 

the activities of these neuronal populations inversely.      

This dichotomy in motivational processing is maintained in the NAc, where the NAc 

core is more associated with salience and attentional-orientation while the NAc shell 
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mediates valuation of external stimuli to drive approach-avoidance behaviors (Bromberg-

Martin et al., 2010; Saddoris et al., 2013).  Supporting this idea, we previously found 

regional differences in accumbal dopamine transmission to acute tail pinch (Budygin et al., 

2011). During the tail pinch, a salient noxious event, dopamine increased in the NAc core. At 

the cessation of the tail pinch, which unarguably has rewarding attributes (Tanimoto et al., 

2004), dopamine transiently increased in the NAc shell.  

Oddly, we did not observe a response during the tail-pinch in the NAc shell, where 

one would expect the aversiveness of the stimulus to be signaled by decreased dopamine 

release. Here we proposed that the absence of this dopamine response in our past study 

was due an insufficient limit of detection. To increase signal strength, we pharmacologically 

blocked the D2 autoreceptor and the dopamine transporter (DAT) respectively with 

raclopride and GBR12909. These drugs act to increase the amount and duration of 

dopamine release that occurs with neuronal activation, and, when administered in 

combination, cause high-frequency dopamine transients within the NAc of anesthetized 

animals (Venton & Wightman, 2007; Park et al., 2010). These dopamine transients are of 

measurable amplitude and provide background activity by which to clearly resolve 

decreases in release.  

With pharmacological enhancement, we confirmed that tail pinch does suppress 

dopamine transmission in the shell, but not at all locations. Instead, we observed that tail-

pinch induced dopamine signaling varies within the shell, which was not evident in our 

previous study as data was averaged for each animal. Within this accumbal region, 

dopamine either decreased at the onset of the noxious stimulus or increased at the stimulus 

offset, and, at some lcoations, exhibited both of these responses.  Other locations, however, 

showed no discernible dopamine change to tail-pinch even after pharmacological 

manipulation. The type of response observed was unlikely due to differences in synaptic 
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proximity as all of the locations reported here exhibited similar electrically-stimulated 

dopamine release and drug-induced transient activity. 

Together three distinct release patterns were identified, corresponding to the 

activities reported for VTA dopamine neurons during noxious stimulation (Ungless et al., 

2004; Brischoux et al., 2009). Our data suggests that the NAc shell is innervated by VTA 

dopamine neurons that differentially encode noxious input, in contrast to the NAc core 

where dopamine uniformly increased during tail pinch. Variation in dopamine signaling is not 

unexpected for this region given that appetitive and aversive processing are believed to be 

confined to subdomains of the NAc shell (Reynolds & Berridge, 2002). The temporo-spatial 

aspects of these responses may underlie the controversial results observed in past studies.  

 

Tail-pinch induced norepinephrine transmission in the vBNST  

 The BNST, a major limbic target of the central norepinephrine system, integrates 

descending cortico-limbic and ascending sensory information to modulate HPA axis activity 

and, in turn, glucocorticoid secretion in response to stress (Dumont, 2009).  In general 

norepinephrine transmission in the brain is considered a major component of the central 

stress response, where it acts to heighten arousal and behavioral responsivity (Aston-Jones 

& Cohen, 2005; Morilak et al., 2005). Norepinephrine in the BNST, which is densely 

concentrated in the ventral region, specifically acts to facilitate HPA axis output during 

negative emotional states (Forray & Gysling, 2004).  

The noradrenergic innervation of the BNST originates principally from the NST and 

A1 cell groups, though a small contribution does arise from the LC through the dorsal 

noradrenergic bundle (Lindvall & Stenevi, 1978; Forray et al., 2000). The medullar (NST and 

A1) populations are positioned to relay sensory, visceral, cardiorespiratory and, though not 

as extensively characterized, nociceptive information between the peripheral and central 

nervous systems (Pertovaara, 2006; Rinaman, 2011) . Studies have found a role for the 
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NST in the baroreflex to noxious thermal stimulation (Gau et al., 2009) and in the tonic 

control of nociceptive thresholds (Marques-Lopes et al., 2012). Furthermore, catecholamine 

neurons in this area are activated by visceral pain (Gallas et al., 2011).  The LC, a dense 

population of norepinephrine neurons located in the hindbrain, is also excited by a wide-

range of sensory stimuli including those that present physical or psychological threat 

including nociception (Svensson, 1987; Chapman & Nakamura, 1999), and in the case of 

persistent pain provides feedback inhibition (Pertovaara, 2006).  

Consistent with electrophysiological work, norepinephrine release within the BNST is 

enhanced by a variety of stressors such as restraint, bitter taste, reward-omission and 

morphine withdraw (Pacak et al., 1995; Van Bockstaele et al., 2008; Park et al., 2012; Park 

et al., 2013a). Pain can of course be a particularly potent form of stress and, accordingly, 

somatic and visceral nociception also stimulates BNST norepinephrine release (Deyama et 

al., 2009; Deyama et al., 2011). Functionally, increased BNST norepinephrine transmission 

through β adrenergic receptors is associated with the negative affective component of pain 

and is required for pain-induced conditioned-place aversion (Deyama et al., 2008) . 

Together these reports describe a positive correlation between noradrenergic cell 

activity and states of aversion. Congruently, we found extracellular norepinephrine 

concentration in the vBNST transiently increased to acute tail-pinch (Fig. 3.5). Though it was 

not possible to map different recording depths within the vBNST due to its size, similar 

norepinephrine responses were observed across all animals. Unlike for dopamine in the 

NAc, no new features in vBNST norepinephrine responses were revealed after 

pharmacological enhancement of norepinephrine release with administration of the α2 

autoreceptor antagonist idazoxan and the NET inhibitor desipramine.  

 Interestingly, extracellular norepinephrine remained elevated briefly after the 

noxious stimulation ceased, and the duration of the response became further extended after 

transporter blockade. While few non-voltammetric studies have considered extracellular 
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norepinephrine responses to a single, brief noxious stimulation as we have done here, 

microdialysis measurements have recorded basal changes in BNST norepinephrine in 

awake animals lasting minutes to hours beyond the presentation of a stressor (Morilak et al., 

2005). This may suggest that BNST norepinephrine plays a limited role in transmitting 

information regarding the temporal aspects of external stimuli, and rather promotes a 

general change in affective state to generate the appropriate coping response to 

environmental challenge.   

 

Conclusions 

In summary, we demonstrated that tail pinch, an acute noxious stimulus, triggers 

transient changes in extracellular catecholamine levels in the NAc shell and the vBNST of 

anesthetized rats. Throughout the NAc shell, a region associated with value-driven 

motivational behavior, dopamine transmission was overall attenuated by the stimulation and 

increased by its cessation. In the BNST, a key upstream regulator of adrenal stress 

hormone secretion, tail pinch caused an extended increase in extracellular norepinephrine 

levels. The opposing effects of tail pinch we observed align with the respective roles of 

accumbal dopamine and BNST norepinephrine as reward and stress neurotransmitters. 

Moreover, the temporal differences between their responses are in agreement with the 

respective involvement of these two limbic structures in motor versus hormonal aspects of 

pain processing. Together these data demonstrate that limbic catecholamine systems are 

divergently recruited during a physically threatening stimulation, and may be crucial in the 

expression of pain-related responses.  
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CHAPTER 4: OPPOSING CATECHOLAMINE CHANGES IN THE BE D NUCLEUS OF 
THE STRIA TERMINALIS DURING INTRACRANIAL SELF-STIMU LATION AND ITS 

EXTINCTION 
 
 
Introduction 
 

Intracranial self-stimulation (ICSS) is an operant behavior in which animals are 

conditioned to press a lever to deliver an electrical stimulation to specific brain regions (Olds 

& Milner, 1954; Wise, 1996; Wise, 2002).  Early research suggested that norepinephrine 

was a critical neurotransmitter involved in ICSS (reviewed in (Weinshenker & Schroeder, 

2007)).  Anatomical sites that supported ICSS were found near norepinephrine processes 

(Ritter & Stein, 1974), and radioactive norepinephrine and its metabolites were released 

during ICSS (Stein & Wise, 1969).  However, subsequent research found evidence to the 

contrary (Roll, 1970; Clavier et al., 1976; Corbett et al., 1977; Corbett & Wise, 1979), and 

supported a more important role for dopamine in ICSS reward (Fibiger, 1978).  

Norepinephrine has also been suggested to be involved in the extinction of reward based 

behaviors, although this role has also been disputed (Mason, 1979; Tombaugh et al., 1983; 

Lucki & Frazer, 1985).   

ICSS studies have shown that mesolimbic dopamine neurons projecting from the 

ventral tegmental area (VTA) are important in the neural circuitry mediating reward 

(Hernandez & Shizgal, 2009).  Indeed, dopamine has been viewed as the primary 

neurotransmitter involved in the rewarding aspects of ICSS (Wise, 1996).  Our previous 

studies demonstrated that reward learning can be investigated by quantifying dopamine 

changes in the nucleus accumbens (NAc) with carbon-fiber microelectrodes using fast-scan  
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cyclic voltammetry (Owesson-White et al., 2008).  Transient surges of extracellular 

dopamine become time-locked to cues that predict ICSS reward and coincide with cues 
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associated with cocaine or food reward (Phillips et al., 2003b; Day et al., 2007).  Since 

dopamine transients are a direct result of burst firing of dopaminergic neurons (Sombers et 

al., 2009), these results concur with electrophysiological recordings that demonstrated that 

the firing rate of dopamine neurons encode for a reward prediction error (Schultz et al., 1997; 

Pan et al., 2005). 

 In this work we measure the roles of dopamine and norepinephrine during ICSS in 

the bed nucleus of the stria terminalis (BNST) and compare them to dopamine responses in 

the NAc.  The BNST is part of the extended amygdala and serves as a relay center between 

limbic brain regions and the hypothalamic paraventricular nucleus (Cullinan et al., 1993).  

The anterior portion of the BNST receives both dopaminergic and noradrenergic inputs, but 

they are differentially distributed (Park et al., 2012).  The ventral (v) BNST has the highest 

noradrenergic innervation in the brain (Kilts & Anderson, 1986) but has little dopamine 

content (Delfs et al., 2000; Park et al., 2009a).  In contrast, the dorsolateral (dl) BNST 

receives dopaminergic innervation from the VTA and periaqueductal gray but contains 

negligible norepinephrine (Phelix et al., 1992; 1994; Carboni et al., 2000; Meloni et al., 2006; 

McElligott & Winder, 2009).  The research reported here provides three new insights into the 

role of catecholamines in ICSS.  First, dopaminergic responses in the dlBNST were found to 

resemble dopaminergic responses in the NAc.  Second, unlike dopamine, norepinephrine in 

the vBNST was not released in response to cues that predicted lever availability.  Third, 

during extinction, norepinephrine release occurred at the time of the anticipated electrical 

stimulation whereas there was a suppression of extracellular dopamine.   

 

Experimental 

Animals 

Male Sprague-Dawley rats (n = 24, Charles River, NC), aged 90-120 d and weighing 

280-380 g, were used.  They were individually housed in a controlled temperature 
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environment with a 12:12 light:dark cycle.  Food and water were available ad libitum.  All 

procedures were approved by the Institutional Animal Care and Use Committee of the 

University of North Carolina. 

 

Surgery 

Rats were anesthetized with ketamine hydrochloride (100 mg/kg) and xylazine 

hydrochloride (20 mg/kg) administered intraperitoneally and placed in a stereotaxic frame.  

A guide cannula (Bioanalytical Systems, West Lafayette, IL) was positioned above the 

dlBNST (anteroposterior (AP) -0.1 mm, mediolateral (ML) +1.6 mm), the vBNST (AP 0.0 

mm, ML +1.2 mm), or the NAc (AP 1.7 mm, ML 0.8 mm).  Coordinates were from a 

stereotaxic atlas (Paxinos & Watson, 2007).  An Ag/AgCl reference electrode was implanted 

contralateral to the guide cannula in the left forebrain.  A bipolar stimulating electrode was 

implanted in the VTA/substantia nigra (VTA/SN) (AP -5.2 mm, ML +1.2 mm, dorsoventral 

(DV) -8.0 to -9.0 mm).  Stimulation at these coordinates also activates the ventral 

noradrenergic bundle (VNB) (Park et al., 2009a).  Stainless steel skull screws and dental 

cement secured all items. 

 

Intracranial self-stimulation (ICSS) training 

After each animal recovered to their presurgery weight, ICSS training commenced as 

previously described (Owesson-White et al., 2008).  During recording sessions, an 

audiovisual cue was followed 2 s later by lever extension.  Depression of the lever by the rat 

delivered an electrical stimulation to the animal.   

On the day of recording, some animals also underwent ICSS extinction where the 

lever-press did not deliver the electrical stimulation.  When the cue no longer elicited lever-

press behavior, ICSS was reinstated with 1-2 operator-delivered stimulations. 
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Fast-scan cyclic voltammetry 

Following successful training, a fresh, glass-sealed carbon-fiber microelectrode 

(75−100 µm exposed tip length, 7 µm diameter, T-650; Amoco, Greenville, SC (Cahill & 

Wightman, 1995; Phillips et al., 2003a)) was lowered into the brain with a micromanipulator 

inserted into the guide cannula.  The microelectrode was lowered to the dlBNST (DV -6.0 to 

-7.0 mm), the vBNST (DV -7.2 to -7.7 mm) or the NAc shell (DV -6.4 to -7.4 mm (Owesson-

White et al., 2008)).  The carbon-fiber and Ag/AgCl reference electrodes were connected to 

a head-mounted amplifier attached to a commutator (Med-Associates, St. Albans, VT).  

Fast-scan cyclic voltammetry was computer-controlled (Heien et al., 2003).  A triangular 

scan (-0.4 to +1.3 V, 400 V/s) was repeated every 100 ms.  Data were digitized and stored 

on a computer using software written in LABVIEW (National Instruments).   

 

Histology 

At the end of the experiment, electrode placements were verified by electrolytic 

lesions made with the carbon-fiber microelectrodes (Fig. 4.1) (Park et al., 2009a).  Rats 

were euthanized with an overdose of urethane (2.0 g/kg) and a lesion was made at the 

recording site by applying constant current (20 µA for 10 s).  Brains were removed and 

stored in 10 % formalin solution for a week before being sectioned into 40 µm coronal slices. 

The sections were mounted on slides and viewed with an optical microscope.   

 

Chemicals and drugs 

Chemicals and drugs were reagent-quality and used without further purification.  Drugs were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  Calibration of the carbon-fiber 

microelectrodes with standards for pH, dopamine, and norepinephrine were made in a buffer 

(pH 7.4 containing 15 mM Tris, 140 mM NaCl, 3.25 mM KCl, 1.2 mM CaCl2, 1.25 mM 

NaH2PO4, 1.2 mM MgCl2, and 2.0 mM Na2SO4).    
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Figure 4.1.   Representative histological verification of recording sites in the NAc and the vBNST. 
Electrolytic lesions confirmed that recording sites ( ) were within the subregions of the BNST.  The 
locations of the carbon-fiber microelectrode tips in (A) the dlBNST and (B) the vBNST were visualized 
by the electrolytic lesion.  The coronal sections are adapted from the atlas of Paxinos and Watson 
(Paxinos and Watson, 2007).  The numbers on individual sections indicate distance, in millimeters, 
anterior to posterior from bregma.    
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At least one pharmacological agent selective for each catecholamine was 

administered intraperitoneally (i.p.) at the end of every experiment (0.6 mL volume) to verify 

the identity of the electrochemical signal (Park et al., 2009a). Cyclic voltammetry cannot be 

used to distinguish dopamine from norepinephrine and thus the pharmacological distinction 

is required (Park et al., 2011).  Desipramine-HCl (DMI, 15 mg/kg), raclopride-HCl (Rac, 2 

mg/kg), and idazoxan-HCl (IDA, 5 mg/kg) were dissolved in saline.  GBR 12909 (GBR, 15 

mg/kg) was dissolved in water and diluted in saline.  For sites reported in the dlBNST 

positive responses were obtained to dopaminergic drugs (GBR, Rac) but not noradrenergic 

drugs (DMI, IDA) whereas the opposite was true in the vBNST (Fig. 4.2) as described in a 

previous study (Park et al., 2012).   The limited chemical selectivity of cyclic voltammetry 

precludes its use in brain regions that employ both catecholamines as neurotransmitters.   

 

Data analysis 

Catecholamine concentration changes were quantified using principal component 

regression (Heien et al., 2005; Keithley et al., 2010). The post-calibration factors were from 

the average responses obtained with multiple electrodes in our previous studies (Park et al., 

2010; Park et al., 2012) (6.9 ± 0.3 pA/(µM·µm2) for dopamine, and 4.5 ± 0.2 pA/(µM·µm2) for 

norepinephrine).  A residual analysis procedure was used to verify that the cyclic 

voltammograms of the trials being predicted were consistent with the cyclic voltammograms 

used for calibration (Keithley et al., 2009).   

Clampfit 8.1 (Axon Instruments, Foster City, CA, USA) was used to analyze maximal 

catecholamine concentration evoked by the cue or lever-press.  The half-life (t1/2) for 

catecholamine clearance was taken as the time to descend from its maximum to half of that 

value (Park et al., 2007).  Only catecholamine concentrations with signal to noise (S/N) > 3 

were considered as cue- or lever-press evoked catecholamine release.  Concentration 

changes were evaluated by subtracting the average baseline (-2.0 to 0 s relative to cue or 



 

 

 

 

 

Figure 4.2.  Effects of selective autoreceptor and uptake inhibitors on electrically
catecholamine release and clearance in subregions of the BNST. Abbreviations: [CA], maximal 
catecholamine release; t1/2, clearance half
Rac, raclopride (2 mg/kg); GBR
significantly different from control values (
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Effects of selective autoreceptor and uptake inhibitors on electrically-evoked 
catecholamine release and clearance in subregions of the BNST. Abbreviations: [CA], maximal 

clearance half-life; IDA, idazoxan (5 mg/kg); DMI, desipramine (15 mg/kg); 
GBR, GBR 12909 (15 mg/kg); dl, dorsal lateral; v, ventral.  

significantly different from control values (P < 0.05). 

evoked 
catecholamine release and clearance in subregions of the BNST. Abbreviations: [CA], maximal 

(5 mg/kg); DMI, desipramine (15 mg/kg); 
, ventral.  * Indicates 
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lever-press) from events after the cue (0.1-2.0 s) or lever-press (2-15 s).  Mean values were 

compared with the two-tailed Student’s t-test to calculate the level of significance.  The 

coefficient of variation (CV, the ratio of the standard deviation of the mean) was used to 

characterize the catecholamine maximum concentrations.  Statistical analysis employed 

GraphPad Software version 4.0 (San Diego, CA, USA).  Data are represented as mean ± 

S.E.M. and ‘n’ values indicate the number of rats.   

 

Results  

Cue-evoked dopamine concentration changes in the dlBNST during ICSS 

Following ICSS training, catecholamine release was measured in the dlBNST.  

During training, the animal learned that a tone and house light were followed 2 s later by 

lever extension, and that a lever-press delivered ICSS stimulation to its brain (timing 

diagram in Fig. 4.3A).  As shown for a single trial (Fig. 4.3B), dopamine release occurs both 

following the cues and the lever-press.  The color plot shows the cyclic voltammograms 

recorded with the applied voltage as the ordinate and the abscissa as the acquisition time of 

the cyclic voltammogram.  The current is encoded in color.  The trace above the color plot is 

the dopamine concentration extracted from these data by principal component regression.  

The low residual confirms that the training set used to extract the dopamine concentrations 

describes the data appropriately (Fig. 4.3C).   

were allowed multiple ICSS trials.  As shown in this animal, the cue-evoked maximal 

dopamine concentration ([DA]cue) was similar with each trial ([DA]cue = 36.7 ± 2.6 nM from 

the first 30 trials and 30.9 ± 1.8 nM from the last 30 trials, t29 = 1.87, P > 0.05, Fig. 4.3D).  In 

contrast, lever-press-evoked dopamine ([DA]stim.) decreased significantly over trials and fit to 

a parabolic curve (r2 = 0.81, [DA]stim. = 278 ± 11 nM from the first 30 trials and 182 ± 3 nM 

from the last 30 trials, t29 = 9.87, P < 0.0001, Fig. 4.3D).  In both respects, the responses of 
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Figure 4.3.  Dopamine changes in the dlBNST during maintenance-delay ICSS. (A) Temporal 
sequence of task. (B) Upper; a representative temporal dopamine concentration trace from a single 
trial during maintenance-delay ICSS.  Principal component regression was used to extract the time 
course of the dopamine concentration transients.  Dopamine release occurs immediately following the 
cue (t = 0, red dotted line) and again after the lever-press (lever out at 2 s, black dotted line).  Red bar 
shows the stimulus duration.  Lower: two-dimensional color plot representation of the background 
subtracted cyclic voltammograms collected 2 s before cue and 6 s after the lever extension.  
Catecholamine concentration changes are apparent in color plots at the potential for its oxidation (~ 
0.65 V, white dashed line) and its reduction (~ -0.2 V).  (C) Residual from principal component 
analysis.  (D) Cue- and lever-press-evoked dopamine release across trials.  (E) Latency to press the 
lever across trials.  Stimulus parameters: 60 Hz, 40 biphasic pulses, 2 ms pulse width.   
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dopamine were similar to our findings in the NAc (Owesson-White et al., 2008).  The latency 

to press after lever extension was essentially constant indicating that the animal had learned 

the behavior (Fig. 4.3E).  Similar results were obtained in the dlBNST in 6 animals 

undergoing identical ICSS training.  The average value of [DA]cue was 27.8 ± 5.3 nM and for 

[DA]stim. was 216 ± 51 nM.   

 

Pharmacological effects on dopamine in the dlBNST 

For some animals, dopamine release during ICSS was also monitored following 

administration of inhibitors of dopamine uptake (GBR 12909) and norepinephrine uptake 

(DMI) (n = 5 animals).  When examined 20 minutes after GBR (n = 2), both cue- and lever-

press-evoked dopamine concentrations significantly increased ([DA]cue = 34.8 ± 1.1 nM 

before and 63.3 ± 2.0 nM after GBR, t49 = 8.85, P < 0.0001; [DA]stim. = 118 ± 7 nM before 

and 427 ± 6 nM after GBR, t49 = 78.05, P < 0.0001, Fig. 4.4, data recorded when both 

responses had stabilized in amplitude).  Interestingly, the maximal cue evoked dopamine 

shows greater relative variation than do the stimulus-evoked changes.  The CV was found to 

be 0.281 for cue-evoked dopamine release and 0.109 during electrically-stimulated 

dopamine release.  The latency to lever-press decreased (but not significantly) after 

administration of GBR (predrug = 0.64 ± 0.07 s, after GBR = 0.47 ± 0.05 s, t49 = 1.98, P > 

0.05).   

In contrast, DMI (n = 3) did not significantly change cue-evoked dopamine 

concentration in the dlBNST ([DA]cue = 45.1 ± 2.5 nM before and 41.6 ± 2.0 after DMI, t49 = 

0.98, P > 0.05, representative example in Fig. 4.5A). There was also no significant change 

in stimulated dopamine release ([DA]stim. = 299 ± 4 nM predrug and [DA]stim. = 303 ± 8 nM 

after DMI, t49 = 0.583, P > 0.05, Fig. 4.5B).  DMI did significantly increase the latency to 

lever-press (0.47 ± 0.05 s before and 0.76 ± 0.06 s after DMI, t49 = 3.736, P < 0.001).   

Following DMI, this animal was administered GBR.  As with GBR alone, cue and  
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Figure 4.4.   Dopamine increase in the dlBNST during maintenance-delay ICSS after administration of 
GBR.  (A) Average dopamine concentration traces with a representative ± S.E.M. and two-
dimensional color plots from 50 trials before drug session (predrug, left) and 20 min after the 
administration of GBR (15 mg/kg, i.p., right).  Principal component regression was used to extract 
time course of the dopamine concentration traces.  The red bars under the current traces denote the 
average onset and duration of electrical stimulation.  (B) Cue- and (C) lever-press-evoked dopamine 
concentration changes across trials.   
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Figure 4.5.  Dopamine concentration changes in the dlBNST and latency to lever-press during 
maintenance-delay ICSS before and after administration of DMI.  Responses are only shown for 50 
trials after the initial decay in stimulated release had occurred.  Maximum dopamine concentrations 
following (A) the cue and (B) the lever-press as a function of trial number.   
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lever-press-evoked dopamine concentrations were increased ([DA]cue = 99.4 ± 4.8 nM, t49 

=10.52, P < 0.0001 and [DA]stim. = 1226 ± 64 nM, t49 = 14.55, P < 0.0001) and the latency to 

lever-press was restored to its original value (0.49 ± 0.06 s).   

 

Norepinephrine responses during maintenance-delay trials  

In a different group of animals, measurements were made in the vBNST to evaluate 

changes in extracellular norepinephrine concentration during an identical ICSS task.  There 

was no response to the cue but norepinephrine increased during the electrical stimulation 

(Fig. 4.6A) that followed the lever-press.  The residual (Fig. 4.6B) was below that predicted 

for 95 % of the noise from the training set.  In this animal, maximum lever-press-evoked 

norepinephrine concentration ([NE]stim.) decreased with subsequent trials ([NE]stim. = 288 ± 8 

nM from the first 30 trials and 213 ± 4 nM from the last 30 trials, t29 = 8.160, P < 0.0001, Fig. 

4.6C), although the latency to lever-press did not significantly change with trials (Fig. 4.6D).  

Similar results were obtained in 6 other animals.  The average value across all trials of 

[NE]stim was 135 ± 25 nM.  The average latency to lever-press from these animals over 100 

trials was 1.25 ± 0.27 s.  Norepinephrine release in response to the cue was never observed, 

even with extended training (Fig. 4.7).   

 

Pharmacological effects on norepinephrine in the vBNST 

In some animals norepinephrine changes during ICSS were evaluated after uptake 

inhibitors (n = 3 for GBR and n = 4 for DMI, example in Figure 4.8).  DMI significantly 

increased stimulated release following the lever-press (from [NE]stim = 213 ± 3 nM to [NE]stim 

= 269 ± 8 nM after DMI, t49 = 6.57, P < 0.0001, 50 trials) and the evoked signal gradually 

declined to predrug levels (Fig. 4.8A and B).  Even following DMI, cue-evoked 

norepinephrine did not occur.  The latency to lever-press following DMI increased 

significantly (latency was 0.97 ± 0.16 s before drug and 1.96 ± 0.42 s after drug, t49 = 2.609, 
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Figure 4.6.  Norepinephrine changes in the vBNST during maintenance-delay ICSS. (A) Upper; a 
representative temporal norepinephrine concentration trace from a single trial during the task.  
Principal component regression was used to extract time course of the norepinephrine concentration 
transients.  Norepinephrine was evoked after the lever-press (lever out at 2 s, black dotted line) but 
not after the cue (t = 0, red dotted line).  Red bar shows the stimulus duration.  Lower; Two-
dimensional color plot representation of the background subtracted cyclic voltammograms collected 2 
s before cue and 6 s after the lever extension.  Catecholamine concentration changes are apparent in 
color plots at the potential for its oxidation (~ 0.65 V) and its reduction (~ -0.23 V).  (B) Residual from 
principal component regression.  The dashed line shows the level where 95% of the noise is 
anticipated.  (C) Norepinephrine concentration changes evoked by self-delivered stimulation in 
consecutive trials.  (D) Latency to press the lever in consecutive trials.   

 



 

 

 

 

 

 

Figure 4.7.  Average norepinephrine concentration traces in the 
2nd day and (B) 5th day of training.  
by the red and black dotted lines respectively. 
average onset and duration of the 
the VTA/SN and VNB. Stimulus parameters: 60
component regression was used to extract time course of the catecholamine concentration traces. 
Data is shown as mean + S.E.M.
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Average norepinephrine concentration traces in the vBNST during phase 2 
day of training.  The onset of the audiovisual cue and lever extension are indicated 

by the red and black dotted lines respectively. Red bars under the concentration traces denote
the stimulation. Lever-press was rewarded with electrical st

the VTA/SN and VNB. Stimulus parameters: 60 Hz, 40 pulses, 2 ms pulse width.  Principal
component regression was used to extract time course of the catecholamine concentration traces. 
Data is shown as mean + S.E.M. 

BNST during phase 2 of ICSS at (A) 
The onset of the audiovisual cue and lever extension are indicated 

Red bars under the concentration traces denote the 
press was rewarded with electrical stimulation of 

Principal 
component regression was used to extract time course of the catecholamine concentration traces. 
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Figure 4.8.   Norepinephrine increase in the vBNST during maintenance-delay ICSS after 
administration of DMI. (A) Average norepinephrine concentration traces with a representative ± S.E.M. 
from ~ 50 trials before drug session (predrug, left) and 20 min after the administration of DMI (DMI, 15 
mg/kg, i.p., right).  The red bars under the current traces denote the average onset and duration of 
electrical stimulation.  Principal component regression was used to extract the time course of the 
norepinephrine concentration traces.  (B) Lever-press-evoked norepinephrine concentration change 
and (C) the latency of lever-press across trials.   
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P < 0.05, Fig. 4.5C).  In a single animal that was administered GBR following DMI, the 

latency to lever-press was restored to its original value (0.85 ± 0.02 s).  Administration of 

GBR alone had a slight effect on the norepinephrine responses to stimulation ([NE]stim = 105 

± 3 nM predrug and [NE]stim = 99 ± 2 nM after GBR, t37 = 2.044, P < 0.05, Fig. 4.9A and B), 

however it did shorten the latency to lever-press (1.74 ± 0.26 s before and 0.86 ± 0.19 s 

after GBR, t37 = 2.801, P < 0.01, Fig 4.9C). 

 

Extracellular changes of dopamine and norepinephrine during extinction of ICSS 

During extinction, the sequence of cues and lever extension was unchanged; 

however, depression of the lever had no consequence.  Previous studies have 

demonstrated that cue-evoked dopamine release in the NAc decreased across extinction 

trials and this was accompanied by a decline in goal-directed behavior (Owesson-White et 

al., 2008).  In addition we found that dopamine in the NAc decreased during extinction at the 

time where the stimulation should have occurred by 18.3 ± 1.4 nM (n = 5, individual example 

in Figure 4.10A, lever press indicated by dashed red line).  Identical behavior was observed 

in the dlBNST in one animal (Figure 4.10B).  However, due to the low success rate of 

dlBNST experiments, we primarily compare the behavior of norepinephrine in the vBNST 

with that of dopamine in the NAc shell (implantation success was approximately 17 % in the 

dlBNST versus 80 % in the NAc).   

During extinction, norepinephrine was still unresponsive to the cue but it increased following 

the unrewarded lever-presses (example after the lever-press in one animal is shown in Fig. 

4.10C).  Data that was averaged and analyzed by principal component regression reveal an 

increase in norepinephrine concentration (n = 5 rats, 32.3 ± 3.5 nM) following the lever-

press during extinction trials.  In two animals, norepinephrine changes during extinction 

were examined after administration of DMI.  The norepinephrine response to extinction 

following the lever-press was significantly enhanced 
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Figure 4.9.   Norepinephrine concentration change in the vBNST and latency of the lever-press during 
maintenance-delay ICSS after administration of GBR.  (A) Average norepinephrine concentration 
traces with a representative ± S.E.M. and from ~ 50 trials 20 min after the administration GBR (15 
mg/kg, i.p.).  The red bars under the current traces denote the average onset and duration of 
electrical stimulation.  Principal component regression was used to extract time course of the 
norepinephrine concentration traces.  (B) Lever press-evoked norepinephrine concentration change 
and (C) the latency of lever-press across trials.   
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Figure 4.10.   Catecholamine responses in the NAc (A), dlBNST (B) and vBNST (C) during ICSS 
extinction. Each data set is averaged from a single animal. The concentration profiles (displayed as 
mean and S.E.M.) above the 2D color plots were extracted using principal component analysis. Time 
of lever-press is indicated by the red dotted line. In extinction trials lever-press was not rewarded with 
electrical stimulation.   
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(from 38.0 ± 3.6 to 85.6 ± 13.1 nM following DMI, t5 = 4.01, P < 0.01, example in Fig. 4.11), 

but there was still no change to the cue.  Electrically evoked norepinephrine and ICSS 

behavior were restored during subsequent reinstatement trials.     

 

Discussion 

Here we found that dopamine release in the dlBNST in response to cues that predict 

lever availability closely resembles dopamine changes in the NAc (Owesson-White et al., 

2008; Beyene et al., 2010).  In contrast, norepinephrine in the vBNST does not respond to 

the cue, even after prolonged training.  However, both catecholamines are released after the 

lever-press as a consequence of the VNB and VTA/SN electrical stimulation.  During ICSS 

extinction, cue-evoked dopamine disappears in the dlBNST just as in the NAc shell 

(Owesson-White et al., 2008).  As shown here, extracellular dopamine actually decreases at 

the time of the lever-press when electrical stimulation is expected but not delivered.  

Remarkably, during extinction, norepinephrine increases at the expected time of electrical 

stimulation.  The opposite responses of these two catecholamines in the extended 

amygdala are in accord with a proposed role of this system in distinct aspects of the 

addiction cycle that includes both positive and negative reinforcement mechanisms 

(Solomon & Corbit, 1974; Koob & Volkow, 2010).  Dopamine relays information concerning 

positive hedonic states whereas the negative hedonic responses are mediated by 

norepinephrine (Park et al., 2012).  

 

Different roles for each catecholamine in subregions of the BNST during ICSS 

Since the BNST is involved in the regulation of stress, homeostasis, and reward (Delfs et al., 

2000; Erb et al., 2000; Cecchi et al., 2002; Sullivan et al., 2004; Fendt et al., 2005; 

McElligott & Winder, 2009), activated catecholamine neurotransmission in this region during 

ICSS was anticipated. Indeed, previous experiments have demonstrated that dopamine 



 

 

 

 

Figure 4.11.  Norepinephrine concentration changes during ICSS extinction before (A) and after (B) 
the administration of the norepinephrine uptake 
representative single trial responses from one animal. Principal
extract time course of the concentration traces. 
which did not elicit the rewarding stimulation during the extinction trials. 
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Norepinephrine concentration changes during ICSS extinction before (A) and after (B) 
the administration of the norepinephrine uptake inhibitor DMI (15 mg/kg). Data shown are 
representative single trial responses from one animal. Principal component regression was used to 
extract time course of the concentration traces. The red dotted line indicates the time of lever

elicit the rewarding stimulation during the extinction trials.  

 

Norepinephrine concentration changes during ICSS extinction before (A) and after (B) 
inhibitor DMI (15 mg/kg). Data shown are 

component regression was used to 
The red dotted line indicates the time of lever-press, 
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neurotransmission is promoted in the dlBNST during reward-based behaviors (Epping-

Jordan et al., 1998; Eiler et al., 2003), including ICSS (Jonkman & Markou, 2006).  The 

temporal resolution provided by fast-scan cyclic voltammetry allowed us to distinguish 

catecholamine changes associated with the cues from those associated with the electrical 

stimulation.  In the dlBNST dopamine was found to increase both in response to the cues 

that predict lever availability and during the self-administered (electrical) stimulation.  The 

cue-evoked responses are similar to those observed in other dopaminergic regions during 

reward-based operant behaviors (Stuber et al., 2005; Day et al., 2007; Day et al., 2010; 

Jones et al., 2010).  The greater variability of cue-induced dopamine transients when 

compared to stimulated release has been reported before (Owesson-White et al., 2008).  

While the stimulation activates a uniform population of terminals on each trial, cue-induced 

dopamine appears to arise from a more variable activation of terminals. 

This is the first time rapid recordings have been applied to norepinephrine during 

ICSS, and it has allowed us to reinvestigate the decades-old question of the role of 

norepinephrine in ICSS and extinction.  Early studies suggested that the norepinephrine 

release was associated with reward function (Stein & Wise, 1969; Ritter & Stein, 1974).  

Although our work confirms that norepinephrine release is evoked by a site that supports 

ICSS, it is not evoked by the predictive cue.  Thus it clearly plays a different role than 

dopamine during ICSS.   

When an animal acquires cue-reward associations, burst firing of midbrain 

dopaminergic neurons occurs at the onset of the cue (Schultz et al., 1997; Pan et al., 2005).  

Previously, we have shown that time-locked dopamine concentration transients also occur in 

terminal regions at such times (Cheer et al., 2007; Owesson-White et al., 2008).  Thus, 

dopamine release at the cue is one of the neurochemical responses that immediately elicits 

a goal-directed behavior (Wise, 2004; Weinshenker & Schroeder, 2007).  In contrast, cue-

evoked norepinephrine was not observed in the vBNST.  This is unlikely to be a 
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consequence of norepinephrine transmission restricted to a synaptic compartment because 

considerable evidence indicates that it communicates extrasynaptically in the BNST (Phelix 

et al., 1992; Miles et al., 2002).  Indeed, electrophysiological studies have shown that 

noradrenergic neurons in the LC respond to novelty but lack a sustained response to stimuli 

(Sara et al., 1994; Bouret & Sara, 2004).   

 To investigate whether selective uptake inhibitors affect ICSS, latency to press 

following DMI (NET inhibitor) or GBR 12909 (DAT inhibitor) was examined.  In the absence 

of drug, the latency to lever-press was quite short because the animals were well trained.  

Overall, DMI significantly increased the latency to lever-press (Fig. 4.8C), consistent with the 

finding that acute DMI causes a decrement in ICSS reward (Hall et al., 1990).  Following 

GBR administration, the latency to lever-press decreased but not significantly (P > 0.05, n = 

5 animals), presumably because of a ceiling effect.  Supporting this assumption, in rats with 

an average latency to press of more than 1.0 s (example in Fig. 4.9) or who had previously 

received DMI, the latency was significantly decreased after GBR.  Consistent with this 

finding, GBR has been shown to increase responding for ICSS reward (Maldonado-Irizarry 

et al., 1994). 

 

Opposing catecholamine changes during extinction of ICSS 

Since identical dopamine responses were obtained during ICSS in the dlBNST as 

previously obtained in the NAc (Owesson-White et al., 2008), we compared our previous 

dopamine results to those for norepinephrine in the vBNST.  During ICSS extinction, the 

decrease in lever-pressing was accompanied by a significant decrease in cue-evoked 

phasic dopamine in the NAc shell across trials (Owesson-White et al., 2008), similar to that 

seen during extinction of cocaine self-administration (Stuber et al., 2005).  In addition, 

extracellular dopamine decreased at the time when the electrical stimulation should have 
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occurred, consistent with electrophysiological data demonstrating reward prediction error 

(Mirenowicz & Schultz, 1996; Ungless et al., 2004).  

A role for norepinephrine in the behavior observed during extinction of ICSS has long 

been suspected.  During extinction of ICSS, animals with lesions of the locus coeruleus 

pressed the lever with more vigor and over a prolonged period compared to intact animals 

(Mason & Iversen, 1979).  This response was attributed to a failure of locus coeruleus-

lesioned rats to pay attention to relevant cues.  Subsequent research employing lesioned 

animals have provided support for this hypothesis (Selden et al., 1990), consistent with the 

view from electrophysiological studies in intact animals that norepinephrine neuronal 

systems are important in paying attention to the surrounding environment (Aston-Jones & 

Cohen, 2005).  Further, norepinephrine acting at central β-adrenergic receptors has been 

suggested to be important in the retrieval of drug-associated memories following extinction 

(Fricks-Gleason & Marshall, 2008; Otis & Mueller, 2011). Regardless, our data supports a 

role for norepinephrine during extinction.  During ICSS, the 2 s cue predicts impending 

reward availability and results in a dopamine concentration transient without a change in 

norepinephrine.  However, during extinction animals now learn that the 2 s cue predicts the 

absence of reward following a lever-press.  This is associated with a norepinephrine surge.  

It is unlikely that this surge acts as a cue-associated signal since it occurs after the 2 s cue 

and any cues associated with the press itself (e.g., lever depression, click of the lever etc).  

A signal at the lever press is critical so that it can trigger a decline in goal-directed behavior; 

this requires new learning concerning the prediction of non-reward, a process that has been 

linked to norepinephrine (Mason, 1983; Janak & Corbit, 2011).   

Alternative hypotheses must also be considered.  For example, the vBNST receives 

noradrenergic input from the nucleus of the solitary tract as well as the locus coeruleus 

(Park et al., 2009b).  These two nuclei have been shown to have quite different responses 

during aversive events such as opiate withdrawal (Delfs et al., 2000), and, in the present 
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experiments, we cannot distinguish which nuclei is the primary contributor to the measured 

norepinephrine release.  In addition to its role in attention, norepinephrine release has also 

been associated with aversive stimuli.  Using the same measurement approach, we 

previously showed that norepinephrine release was evoked by intraoral quinine infusion, an 

aversive tastant (Park et al., 2012).  Because the omission of reward can be considered 

aversive, this may also be the origin of the norepinephrine surge during ICSS extinction.  In 

the prefrontal cortex, extracellular norepinephrine increases following both aversive and 

rewarding stimuli (Ventura et al., 2007).  However, those changes last for longer than an 

hour and it is unclear whether the rapid changes we report here have a similar origin.   

 

Conclusions 

Subsecond recordings of catecholamines in subregions of the BNST during ICSS 

reveal that time-locked catecholamine changes occur during this reward-seeking behavior.  

In a manner quite similar to events in the NAc shell, phasic dopamine release in the dlBNST 

was evoked by a cue that had become associated with ICSS.  In contrast, there was no 

evidence of cue-evoked, phasic norepinephrine in the vBNST during ICSS.  Both 

catecholamines were released by the stimulation as a consequence of the positioning of the 

stimulating electrode in the VTA/SN/VNB.  During extinction, the activity of both 

catecholamines was dramatically altered.  Dopamine release to the cue diminished during 

ICSS extinction and the dopamine concentration actually decreased following the lever-

press.  At this time, when the cue no longer predicts impending ICSS availability and there is 

new learning about the consequence of the lever-press, extracellular norepinephrine 

increased.  These data support the hypothesis that norepinephrine plays a central role in 

responses to extinction.  Furthermore, the data demonstrate that catecholamine neurons in 

subregions of the BNST encode opposite aspects of learning during goal-directed behavior.   
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CHAPTER 5: MEDULLARY NOREPINEPHRINE NEURONS MODULAT E LOCAL 
OXYGEN CONCENTRATIONS IN THE BED NUCLEUS OF THE STR IA TERMINALIS 

 

Introduction 

The neurovascular unit, composed of neuronal, glial, and vascular elements, serves 

to support brain function by matching O2-rich blood flow with the metabolic demands of 

regional activity. It is understood that the products of local neurotransmission trigger this 

response, known as functional hyperemia; however, much remains to be learned regarding 

the actions and mechanisms of the chemical messengers involved (Cauli & Hamel, 2010). 

This information is crucial to understanding disease pathologies that involve dysregulation of 

cerebral blood flow (CBF)—including cerebral ischemia (Baker et al., 2013) and many forms 

of dementia (Bell & Zlokovic, 2009)—as well as to interpreting data from brain imaging 

techniques such as blood O2 level dependent (BOLD) fMRI.    

The catecholamine norepinephrine is one major neurotransmitter implicated in this 

hemodynamic process.  Its neurons lie in several nuclei, designated A1-7, scattered along 

the hindbrain and brainstem. These cell populations diffusely project throughout the brain 

and terminate primarily as non-junctional varicosities (Latsari et al., 2002), allowing their 

activity to exert a broad field of influence.  The noradrenergic neurons of the locus coeruleus 

(LC, A6) are typically associated with the neurovascular unit. These neurons provide the 

majority of cortical noradrenergic input, and they terminate proximal to both astrocytes and 

microvessels (Cohen et al., 1997; Aoki et al., 1998).  The presence of adrenoceptors on 

these neurovascular targets (Hertz et al., 2010), which are sensitive to LC denervation 

(Kalaria et al., 1989; Cohen et al., 1997), provides further evidence that the LC 

norepinephrine system is positioned to influence their activities.  Indeed, studies have
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established that noradrenergic signaling can influence energy metabolism (Obel et al., 2012), 

vascular permeability (Raichle et al., 1975), ionic fluctuations in astrocytes (Muyderman et 

al., 1997), as well as glutamate signaling by modulation of its synthesis (Gibbs et al., 2008) 

and uptake (Alexander et al., 1997).  Other reports have demonstrated that CBF responses 

coincide with altered LC activity (Raichle et al., 1975; Goadsby & Duckworth, 1989; Toussay 

et al., 2013).    

Here we consider the vasoactivity of norepinephrine in a region weakly innervated by 

the LC: the ventral bed nucleus of the stria terminalis (vBNST). The vBNST is a structure of 

the extended amygdala involved in the autonomic and behavioral responses to stress 

(Drolet, 2009). We targeted this deep brain region as it receives the densest norepinephrine 

input in the brain (Kilts & Anderson, 1986). Its noradrenergic innervation arises primarily 

from the nucleus of the solitary tract (NST, A2) and the A1 cell group through the ventral 

noradrenergic bundle (Forray & Gysling, 2004). These cell groups are located in the medulla 

oblongata, and receive cardiovascular, respiratory, gastrointestinal and other visceral 

information from peripheral afferents. Though these norepinephrine populations have not 

been formally associated with cerebral hemodynamic function, their terminals are associated 

with the perivascular space in regions such as the paraventricular nucleus (Swanson et al., 

1977). In addition, non-specific chemical stimulation of NST neurons attenuates CBF, and 

this effect is believed to be neurogenic in origin (Maeda et al., 1998).   

In this study, norepinephrine concentrations were transiently increased within the 

vBNST by electrical stimulation of the ventral noradrenergic bundle (VNB) and by local 

application through iontophoresis. Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber 

microelectrode was employed to simultaneously detect norepinephrine transients and 

changes in extracellular O2 with subsecond and micrometer resolution.  Extracellular O2 is a 

function of ongoing metabolism and local blood flow.  We found that surges of 

norepinephrine in the vBNST are accompanied by an increase in O2 that is followed by a 
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transient decrease below baseline levels. This response is due to the local actions of 

norepinephrine at its receptors and does not depend on LC functionality.  In a brain slice 

that lacks CBF, iontophoresis of norepinephrine had no effect on measured O2 

concentrations whereas electrical stimulation caused O2 concentration to decrease, 

supporting a role for functional hyperemia as the origin of our in vivo results.         

 

Experimental  

Chemicals and drugs   

All chemicals and drugs were used as received from Sigma Aldrich (St. Louis, MO, 

USA), unless otherwise noted.   

 

Electrode fabrication  

Two electrode types were employed in this study. Experiments without iontophoresis 

used single barrel carbon-fiber microelectrodes (Cahill et al., 1996). Each electrode was cut 

under a light microscope to an exposed length of 100 µm.  For iontophoresis experiments, 

voltammetric recordings were made with four-barrel probes (Herr et al., 2008). One barrel 

housed a carbon-fiber electrode while the other three barrels contained the desired solutions.  

 

Fast-scan cyclic voltammetry   

FSCV was computer-controlled using a data acquisition program (HDCV, UNC-

Chapel Hill, NC)(Bucher et al., 2013) programmed in LabVIEW (National Instruments, Austin, 

TX).  A single PCIe-6363 card (National Instruments, Austin, TX) generated the 

voltammetric and stimulation waveforms and simultaneously collected cyclic 

voltammograms. The voltammetric waveform was applied to the carbon-fiber microelectrode 

and its current response transduced through a locally-constructed UEI potentiostat (UNC 

Department of Chemistry Electronics Design Facility).   
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Voltammetric recordings employed two waveforms.  For electrode placement, 

iontophoresis barrel priming, and post-experiment signal verification, a triangular waveform 

designed specifically for catecholamine detection was used. This waveform scanned 

between -0.4 V and 1.3 V at 400 V/s (Heien et al., 2003).  For combined measurements of 

O2 and norepinephrine the voltage ramp scanned at 400 V/S between 0.8 V and -1.4 V with 

a holding potential of 0 V (Venton et al., 2003). Before use of either waveform the electrode 

was conditioned with the voltage ramp for 15 min at 60 Hz and 15 min at 10 Hz. Recordings 

were made at a 10 Hz application frequency.   

 

Calibrations 

Electrode responses to norepinephrine, O2, and 4-methylcatecholamine were 

determined through an air-impermeable flow-injection analysis system with glass syringes 

and PEEKTM tubing. All standards were prepared in TRIS buffer (15 mM TRIS, 

126 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 2.4 mM CaCl2, 1.2 mM NaH2PO4, 

1.2 mM MgCl2, 2.0 mM Na2SO4 ) adjusted to pH 7.4 with NaOH. O2 calibrations employed a 

N2-purged solution, an air-saturated solution, and an O2-saturated solution. Peak reduction 

currents were taken for O2 calibrations, while peak oxidation currents were used for the 

catecholamines. The average calibration factors were as follows: 16.4 nA/ µM 

norepinephrine (+1.3 V waveform), -0.3 nA/ µM O2 and 8.9 nA/ µM 4-methylcatechol (O2-

sensitive waveform).    

 

Voltammetric data presentation and analysis  

FSCV data were processed through the HDCV analysis program. Each file was 

digitally-filtered (4th order low pass Bessel, 2 KHz cutoff) and background-subtracted from 

baseline currents. Data are presented as color plots, with the waveform plotted along the 

ordinate and the acquisition time shown along the abscissa. Currents are mapped in false-
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color in a 3: -2 ratio. Principal component regression, a multivariate chemometric algorithm, 

was used to determine concentrations for data collected on the -0.4 V/ +1.3 V waveform 

(Keithley et al., 2009).  

Unless otherwise indicated data are shown as mean ± standard error. All n values 

represent number of animals.  Data were considered statistically significant when P < 0.05.   

 

Surgery  

 All animal procedures were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill in accordance with the Public 

Health Service (PHS) policy on Humane Care and Use of Laboratory Animals and the 

Amended Animal Welfare Act of 1985. Care was taken to minimize the number of animals 

used in this study and their suffering. Adult male Sprague-Dawley rats (300 – 400 g) were 

purchased from Charles River (Wilmington, MA).  Animals were anesthetized with urethane 

(1.5 g/kg) and placed in a stereotaxic frame (Kopf, Tujunga, CA). Surgical procedures were 

as described previously (Park et al., 2009) with anterior-posterior (AP), medial-lateral (ML), 

and dorsal-ventral (DV) coordinates referenced from bregma according to Paxinos and 

Watson (2007). A fresh carbon-fiber microelectrode was lowered into the ventral bed 

nucleus of the stria terminalis (vBNST, AP +0.0 mm, ML +1.2 mm, DV -7.0 to -7.8 mm), and 

a Ag/AgCl reference was implanted in the contralateral hemisphere. A bipolar stimulating 

electrode (Plastics One, West Lafayette, IN) was placed in the VNB (AP -5.2 mm, ML +1.2 

mm, DV -8.0 to 8.6 mm) ipsilaterally to the recording electrode.  Electrical stimulations (10 - 

80 biphasic pulses, 60 Hz, ±300 µA, 2 ms per pulse) were delivered via an optically isolated 

stimulator (NL 800A, Neurolog, Digitimer Ltd, Hertfordshire, UK). The depths of the carbon 

fiber and stimulating electrodes were adjusted to achieve maximal measured norepinephrine 

release.  
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In vitro procedure 

 Brain slices containing the vBNST were prepared from Sprague-Dawley rats (300 – 

400 g) anesthetized with urethane (1.5 g/kg). Brains were quickly removed after decapitation 

and submerged in  ice-cold, oxygenated (95% O2/5%CO2) bicarbonate buffer solution (87 

mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 25 mM NaHCO3, 7 mM MgCl2, 0.5 mM CaCl2, 75 

mM Sucrose) adjusted to pH 7.4. A Vibroslice NVSL (World Precision Instruments, Sarasota, 

FL) was used to cut 300 µm coronal sections. BNST slices were transferred to a perfusion 

chamber (RC-22, Warner Instruments, Hamden, CT) fitted with a microscope (Nikon Fn-, 

Gibraltar Stage) and maintained under a flow (2 ml/min) of oxygenated bicarbonate buffer 

(126 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 26 mM NaHCO3, 1.2 mM MgCl2, 2.4 mM 

CaCl2, 11 mM Glucose) heated to 37ºC. For electrochemical recordings a carbon fiber 

electrode was lowered 75 µm into the tissue underneath the anterior commissure. A 

tungsten bipolar stimulating electrode (Frederick Haer Co., Bowdoinham, ME) was placed 

on the surface of the slice proximal to the recording electrode.      

 

Pharmacological investigations 

In the first set of experiments pharmacological agents were introduced systemically 

by intraperitoneal (i.p.) injection. First, a 30 min baseline was established by repeating a 60 

pulse electrical stimulus every 5 min. Next, sterile saline (1 mL) was administered as a 

vehicle control, followed by a selective norepinephrine drug. These included idazoxan (α2 

antagonist, 5 mg/kg), desipramine HCl (transporter inhibitor, 15 mg/kg), propranolol HCl 

(non-selective β antagonist, 20 mg/kg), and terazosin (α1 antagonist, 5 mg/kg, Tocris 

Bioscience, Bristol, UK). Doses were chosen to identify receptor contributions, not to 

quantitatively assess their relative effects.  All drugs were dissolved in 0.5 mL saline, except 

for terazosin, which was dissolved in 1.0 mL saline with gentle heat.  Data were collected for 

at least 45 min following drug administration to allow maximum effects.          
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A second set of experiments used iontophoresis to introduce the adrenoceptor 

antagonists as well as N-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase 

inhibitor) and 1-aminobenzotriazole (ABT, cytochrome P450 inhibitor, Tocris Bioscience, 

Bristol, UK) directly at the recording electrode.  Iontophoresis solutions were prepared as 5 

mM drug, 5 mM 4-methylcatechol and 5 mM NaCl, adjusted to pH 5.6. 4-Methylcatechol 

provided an electroactive marker  to monitor ejections with FSCV (Herr et al., 2008). Drug 

concentrations were calculated from the relative mobility of each pharmacological agent 

relative to 4-methylcatechol.  Ejections were induced by positive current (5 – 400 nA) 

generated by a constant-current source (Neurophore, Harvard Apparatus, Holliston, MA). 

Each iontophoresis barrel was primed at a depth dorsal to the vBNST (-5 mm  – -6 mm) to 

ensure reproducible ejection profiles,  and a negative retaining current (-1 –  -10 nA) was 

applied to any leaking barrels.  After baseline measurements were taken as described for 

the I.P. protocol, drugs were applied through a 30 s ejection. Ejection of 4-methylcatechol 

did not evoke O2 changes (vide infra) and so it served as a control.  Ejected drug 

concentrations were between 5 – 35 µM at the carbon fiber. Measured ejections currents 

were allowed to return to baseline before stimulation data were collected.   

A third type of pharmacological manipulation involved local introduction of 

norepinephrine-selective agonists through iontophoresis.  Drugs were prepared as 

described for the antagonist ejections. Methoxamine (α1 agonist) and clonidine (a2 agonist) 

solutions contained 4-methylcatechol to monitor their ejections electrochemically. 

Norepinephrine and isoproterenol (non-selective β agonist) were prepared without 4-

methylcatechol as both are electroactive.  Each was ejected in the vBNST for 1 s (3 – 5 min 

apart) to reproduce the duration of the electrical stimulation used in other portions of this 

study. Based on the capabilities of the iontophoresis barrel, a range of concentrations 

(between 1 – 20 µM) was tested for each agonist.   For some experiments antagonists were 

loaded into the remaining iontophoresis barrels. In these experiments baseline 
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norepinephrine responses were recorded for 30 min before an antagonist was administered 

following the protocol of the electrical stimulation experiments.   

 

Signal verification  

The placement of the stimulating electrode also activates the dopaminergic neurons 

of the ventral tegmental area (Park et al., 2011). To ensure that the voltammetric 

catecholamine signal was due to norepinephrine, and not structurally-similar dopamine, 

each experiment ended with i.p. administration of raclopride (dopamine D2 autoreceptor 

antagonist) followed by either idazoxan (α2 autoreceptor antagonist) or desipramine 

(norepinephrine transporter inhibitor). Only locations that selectively responded to the 

norepinephrine drugs were used in this study (Park et al., 2011).     

 

Histology  

 At the end of data collection a constant potential (10 V, 30 s) was applied to the 

carbon-fiber to lesion the recording site. Animals were then sacrificed with an overdose of 

urethane. Brains were promptly removed and fixed with 10% formalin and post-fixed for at 

least 3 days before coronal slices (40 – 50 µm) were prepared on a freezing microtome 

(Leica, Germany), mounted on a glass slide, coverslipped, and viewed under a light 

microscope.      

 

LC lesioning with DSP-4  

 The LC-selective neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) 

(Fritschy & Grzanna, 1989) was administered to rats (n = 5, 150 – 200 g) in two doses (0.5 

mL, 50 mg/kg, I.P.) three days apart. DSP-4 was dissolved in saline immediately before use. 

Measurements commenced 9 days after the last dose to allow peripheral effects to diminish. 

Untreated rats were used as a control in both experiments.    
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Immunohistochemistry  

Rats were anaesthetized with urethane and transcardially perfused with 0.1M 

phosphate buffered saline (PBS) at pH 7.4, followed by 4% paraformaldehyde in PBS. 

Brains were removed, post-fixed for >24 hours, then cryoprotected in 30% sucrose for >48 

hours. Sections (40 µm) were cut with a freezing microtome (Leica, Germany) and collected 

in 0.1 M PBS. 

Immunofluorescence procedures were adapted from elsewhere (Hartig et al., 2009). 

Briefly, sections were washed in 0.1 M Tris-buffered saline, pH 7.4 (TBS), then blocked with 

5% normal donkey serum in TBS with 0.3% Triton-X-100 (NDS-TBS-T) for 1 hr. Tissue was 

incubated overnight at 4 ºC in primary cocktail prepared in NDS-TBS-T, which contained 

mouse-anti-GFAP (1:300, Sigma), rabbit-anti-DBH (1:500, Immunostar), and biotinylated 

solanum tuberosum lectin (20 µg/mL, Vector). After 3 rinses in TBS-T, sections were 

incubated in secondary cocktail for 2 hr at room temperature. Secondary cocktail was 

prepared in TBS with 2% bovine serum albumin and contained AlexaFlour 488-conjugated 

goat-anti-rabbit IgG (1:500, Life Technologies), Alex Fluor 633-conjugated goat-anti-mouse 

IgG (1:500, Life Technologies), and streptavidin-DyLight 405 (20 µg/mL, Fisher).  Sections 

were rinsed extensively in TBS, mounted and coverslipped with Fluoromount (Sigma) before 

visualization on a confocal microscope. 

Sections were analyzed with a FV1000 microscope (Olympus) equipped with a diode 

laser, argon laser, and helium-neon laser for the excitations of DyLight 405, AlexaFluor 488, 

and Alexa Fluor 633, respectively. Images are based on a single optical section of <1µm 

thickness, and captured using FV1000ASW software (Olympus). DBH quantification 

employed constant acquisition parameters and three sections (-0.05 mm to +0.05 mm AP 

from bregma) were analyzed for each animal. Mean pixel intensity was analyzed using 

image J software in a 9000 square pixel area. For the vBNST, a rectangle of 450 by 200 
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pixels was drawn directly beneath the anterior commissure, and cortical sections were 

analyzed in a 300 by 300 pixel square.   

 

Cardiorespiratory measurements  

The cardiorespiratory effects of anesthesia and systemic adrenergic antagonism 

were determined in a separate group of rats (300 – 400g). A MouseOx pulse oximeter 

system equipped with a collar sensor (Starr Life Sciences, Oakmont, PA) was used to 

monitor heart rate (beats per min) and respiratory rate (breaths per min). Pre-urethane 

measurements were taken with the animal at rest. Anesthetized data were collected 3 hr 

after administration of urethane (1.5 g/kg). Thereafter, one of four adrenergic antagonists 

(terazosin, idazoxan, propranolol or desipramine) was delivered (i.p.) at the dose listed 

under Pharmacological Investigations. Post-drug cardiorespiratory values were recorded 35 

min after injection.      

 

Results 

Immunohistochemistry of recording environment  

Immunohistochemistry was employed to provide an overview of the neurovascular 

environment of the vBNST on the spatial scale of our recording electrode. Three major 

neurovascular components were targeted: microvessels (STL), glial cells (GFAP), and 

norepinephrine terminals (DBH). Their distribution is shown in Figure 5.1.  At these 

coordinates, the ventral portion of the BNST is located underneath the anterior commissure 

(AC).  A range of vessel sizes (~3 to 15 µm) were found within the vBNST confirming the 

presence of both arterioles and capillaries. Astrocytes were highly associated with the larger 

microvessels as well as with the myelinated axon fibers composing the AC. 

Consistent with our previous work (Park et al., 2009) the densest region of 

noradrenergic innervation was located within the vBNST.  At higher magnifications these 
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Figure 5.1 . Confocal laser scanning images of triple-fluorescence labeling in the rat vBNST. (A) 
Lectin staining of vasculature and microglia with biotinylated Solanum tuberosum agglutinin (STL) 
and DyLight-405 conjugated streptavidin, color coded in green (ac= anterior commissure). 
Simultaneously labeled astroglia are shown in (B) with mouse anti-glial fibrillary acidic protein (GFAP) 
and Alexa Fluor-633 tagged goat anti-mouse IgG, color-coded in red. Concomitantly revealed 
norepinephrine terminals were color coded in blue, and visualized in (C) using rabbit anti-dopamine 
beta hydroxylase (DβH) and Alexa Fluor-488 goat anti-rabbit IgG. (D) A merge of A, B, and C. An 
example of glial-vessel colocalization is indicated by an asterisk and appears yellow. Terminal-glial 
colocalization is seen in pink. Scale bar = 200 um. Insets demonstrate the triangle labeled features at 
higher magnification. Scale bar= 50um. (E) Further magnification in a different slice revealed the 
diverse architecture of blood vessels (arrow), microglia (open triangle), astrocytes (chevron), and 
norepinephrine terminals (blue) within the vBNST. Sites where norepinephrine terminals interact with 
vessels and/or astroglia are indicated by closed triangles. An electronmicrograph of a 100 µm long 
carbon-fiber microelectrode is superimposed to demonstrate the electrochemical sampling 
environment. Scale bar = 20 um. 
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terminals appeared scattered within the perivascular space in proximity to both microvessels 

and astrocytes, as has been reported for cortical regions. Within the areas of highest 

terminal density, spanning only ~1 mm along the medial-lateral plane, vascular 

heterogeneity is apparent. The dimensions of the carbon-fiber microelectrode (100 µm 

length, 5 µm diameter, superimposed in Fig 5.1E) are  

small enough to probe these microenvironments. In these experiments the placement of the 

carbon-fiber electrode was optimized for the detection of norepinephrine, not for the 

detection of O2 changes. Therefore, the immediate neurovascular landscape likely varied 

between recording locations.  

 

O2 response with electrical stimulation  

To investigate whether norepinephrine release in the vBNST coincides with O2 

changes, electrical stimulation of the ventral noradrenergic bundle (VNB) was used to 

induce norepinephrine overflow while extracellular O2 and norepinephrine changes were 

monitored simultaneously.  Norepinephrine has a peak-oxidation potential of 0.75 V and a 

peak for reduction of its electroformed o-quinone at -0.2 V on the negative going scan. O2 is 

reduced at -1.35 V on the negative going scan (Fig 5.2). We found that O2 changes 

accompanied VNB stimulation and that the responses were variable between animals (Fig 

5.3). Minor adjustment of the recording and stimulating electrode depths did not have a 

significant effect on the measured O2 signal (Fig 5.4). This suggests signal variability may be 

a result of anterior-posterior/medial-lateral positioning.     

One stimulated O2 response predominated in our studies (~65% of locations) and 

thus was chosen for pharmacological characterization. In this response, O2 levels rose after 

the stimulation and reached a maximum (6.98 ± 0.93 µM) on average 1.9 ± 0.1 s after 

stimulation onset. This increase was subsequently followed by a transient dip below 



 

Figure 5.2.  Simultaneous detection of 250 µM O
flow injection system. Redox currents are displayed in a color plot with the time of injection indicated 
by the red bar.  The oxidation of norepinephrine and the reduction of its 
at +0.75 V (anodic scan) and -0.2 V (cathodic scan) respectively. The reduction of molecular O
generates currents which peak at the 
in a cyclic voltammogram exacted from the time of sample injec
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Simultaneous detection of 250 µM O2 and 8 µM norepinephrine in an air
flow injection system. Redox currents are displayed in a color plot with the time of injection indicated 
by the red bar.  The oxidation of norepinephrine and the reduction of its o-quinone produce currents 

0.2 V (cathodic scan) respectively. The reduction of molecular O
generates currents which peak at the -1.4 V switching potential. These features are readily apparent 
in a cyclic voltammogram exacted from the time of sample injection.  

 

and 8 µM norepinephrine in an air-impermeable 
flow injection system. Redox currents are displayed in a color plot with the time of injection indicated 

quinone produce currents 
0.2 V (cathodic scan) respectively. The reduction of molecular O2 

1.4 V switching potential. These features are readily apparent 



 

 

Figure 5.3. Variability of the O2 

indicated by the red and gray-dashed bars. Approximately 65% of recording locations exhibited an 
increase in O2 followed by a transient decr
decrease in O2 was followed by a second prolonged increase in extracellular levels (B). In other 
recording locations (~ 30%) O2 
(C). In a small number of animals (~ 5%) the stimulation resulted in a monophasic O
Only responses that resembled (A) and (B) were characterized for the purposes of this study. 
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 response to electrical stimulation of the VNB. Stimulation times are 

dashed bars. Approximately 65% of recording locations exhibited an 
followed by a transient decrease below baseline (A). In many of these locations the 
was followed by a second prolonged increase in extracellular levels (B). In other 

 concentrations biphasically increased with the electrical stimulation 
). In a small number of animals (~ 5%) the stimulation resulted in a monophasic O

Only responses that resembled (A) and (B) were characterized for the purposes of this study. 

response to electrical stimulation of the VNB. Stimulation times are 

dashed bars. Approximately 65% of recording locations exhibited an 
ease below baseline (A). In many of these locations the 

was followed by a second prolonged increase in extracellular levels (B). In other 
concentrations biphasically increased with the electrical stimulation 

). In a small number of animals (~ 5%) the stimulation resulted in a monophasic O2 decrease (D). 
Only responses that resembled (A) and (B) were characterized for the purposes of this study.  



 

 

Figure 5.4. Effect of stimulating and working electrode 
Representative histological verification of the recording sites in the ventral bed nucleus of the stria 

terminalis (vBNST). Coronal diagrams are adapted from the atlas of Paxinos and Watson. Placement 
of the carbon-fiber microelectrode was determined by electrolytic lesion (left). (B 
response did not vary with the depth of the recording and stimulating electrodes. Example dorsal
ventral profiles are shown for the increase
exhibiting a biphasic O2 increase (B

baseline concentrations (-3.98 ± 0.74 

termed the initial O2 increase as event 1 and the subsequent decrease as event 2. In many 

animals a second, prolonged increase in extracellular O

response long after clearance of norepinephrine, similar to our previous recordings in the 
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Effect of stimulating and working electrode placements on the recorded O
Representative histological verification of the recording sites in the ventral bed nucleus of the stria 

terminalis (vBNST). Coronal diagrams are adapted from the atlas of Paxinos and Watson. Placement 
fiber microelectrode was determined by electrolytic lesion (left). (B - C) The O

response did not vary with the depth of the recording and stimulating electrodes. Example dorsal
ventral profiles are shown for the increase-decrease oxygen response type (B-C, left) and for animals 

increase (B-C, right).  

3.98 ± 0.74 µM), peaking 9.6 ± 0.2 s after the stimulation. We 

increase as event 1 and the subsequent decrease as event 2. In many 

animals a second, prolonged increase in extracellular O2 was measured after the initial 

response long after clearance of norepinephrine, similar to our previous recordings in the 

placements on the recorded O2 response. (A) 
Representative histological verification of the recording sites in the ventral bed nucleus of the stria 

terminalis (vBNST). Coronal diagrams are adapted from the atlas of Paxinos and Watson. Placement 
C) The O2 

response did not vary with the depth of the recording and stimulating electrodes. Example dorsal-
C, left) and for animals 

M), peaking 9.6 ± 0.2 s after the stimulation. We 

increase as event 1 and the subsequent decrease as event 2. In many 

was measured after the initial 

response long after clearance of norepinephrine, similar to our previous recordings in the 
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striatum (Venton et al., 2003).  The second O2 increase was unaffected by local 

adrenoceptor pharmacology (Fig 5.5). Thus, our discussion focuses on events 1 and 2.  

Example data averaged over multiple trials from a single animal are provided in 

Figure 5.6A. Multiple chemical fluctuations are visible in the color plot. Immediately after the 

stimulation norepinephrine release is apparent as positive current at its oxidation potential.  

Concurrent O2 fluctuations appear at -1.35 V on the forward voltage scan. As O2 is detected 

through its reduction, negative currents correspond to increases in concentration, while 

positive currents indicate decreases. These O2 events are accompanied by pH changes 

(Venton et al., 2003) that overlap with the oxidation potential of norepinephrine at later times 

in the recording.  A positive current feature occurs after the -1.4 V switching potential during 

the stimulation.  It is due to adsorption of ions such as Ca2+ (Takmakov et al., 2010). 

The amplitude of each O2 event was compared with the amount of released norepinephrine 

evoked by the electrical stimulation. While both responses correlated with peak 

norepinephrine concentration across animals, Event 2 exhibited a better linear fit (r2 = 0.61) 

in comparison to Event 1 (r2 = 0.27). To vary the amount of norepinephrine released in one 

location the duration of the electrical stimulation was varied (0.17 – 1.33 s) by changing the 

number of electrical pulses applied. Norepinephrine release and the O2 changes increased 

linearly with pulse number within this range. The response of event 1 to stimulation duration 

was significantly different from that of norepinephrine (P < 0.01) and of event 2 (P < 0.05). 

The pulse dependence of event 2, however, closely resembled the norepinephrine response 

(P > 0.05).   

We also examined the effects of electrically stimulated norepinephrine release in a 



 

Figure 5.5.  Characterization of the second O
(A) The second O2 increase, denoted as event 3, is observable in an extended time view of the 
electrically-stimulation response. (B)  The
concentration of norepinephrine released by stimulation (n = 23, r
amplitudes for norepinephrine and event 3 as a function of stimulation pulse number (n = 5, 10 to 80 
pulses). Each data set is normalized to the 60 pulse response.  Event 3 increased linearly within this 
pulse range (r2 = 0.31). The slope of 
norepinephrine. (D) Pharmacology of event 3. Systemic drug administration (solid) was performed 
through i.p. injection. Local drug administration (crosshatch) was accomplished through iontophoretic 
ejection. Saline (n = 21), 4-methylcatechol (4
idazoxan (IDA, n = 5 systemic, n = 4 local), propranolol (PROP, n = 4 systemic, n = 5 local), local 
desipramine (DMI, n=4), L-NAME (LN, n=4) and ABT (n 
Systemic desipramine (DMI) significantly decreased the amplitude this event (P < 0.05, n
Significance was determined by a one
its vehicle control (saline or 4-MC).
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Characterization of the second O2 increase induced by electrical-stimulation of the VNB.  
increase, denoted as event 3, is observable in an extended time view of the 

stimulation response. (B)  The magnitude of the event 3 is poorly correlated with the 
concentration of norepinephrine released by stimulation (n = 23, r2 = 0.01). (C) Average peak 
amplitudes for norepinephrine and event 3 as a function of stimulation pulse number (n = 5, 10 to 80 
pulses). Each data set is normalized to the 60 pulse response.  Event 3 increased linearly within this 

= 0.31). The slope of its response was not significantly different than that of 
norepinephrine. (D) Pharmacology of event 3. Systemic drug administration (solid) was performed 

injection. Local drug administration (crosshatch) was accomplished through iontophoretic 
methylcatechol (4-MC, n = 4), terazosin (TZ, n = 5 systemic, n = 4 local), 

idazoxan (IDA, n = 5 systemic, n = 4 local), propranolol (PROP, n = 4 systemic, n = 5 local), local 
NAME (LN, n=4) and ABT (n = 3) did not statistically affect event 3. 

Systemic desipramine (DMI) significantly decreased the amplitude this event (P < 0.05, n
Significance was determined by a one-way ANOVA with a Bonferroni post hoc test comparing drug to 

MC). 

stimulation of the VNB.  
increase, denoted as event 3, is observable in an extended time view of the 

magnitude of the event 3 is poorly correlated with the 
Average peak 

amplitudes for norepinephrine and event 3 as a function of stimulation pulse number (n = 5, 10 to 80 
pulses). Each data set is normalized to the 60 pulse response.  Event 3 increased linearly within this 

its response was not significantly different than that of 
norepinephrine. (D) Pharmacology of event 3. Systemic drug administration (solid) was performed 

injection. Local drug administration (crosshatch) was accomplished through iontophoretic 
5 systemic, n = 4 local), 

idazoxan (IDA, n = 5 systemic, n = 4 local), propranolol (PROP, n = 4 systemic, n = 5 local), local 
= 3) did not statistically affect event 3. 

Systemic desipramine (DMI) significantly decreased the amplitude this event (P < 0.05, n = 4). 
way ANOVA with a Bonferroni post hoc test comparing drug to 
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coronal brain slice that contained the vBNST.  The stimulation (60 pulses, 60 Hz) was 

evoked with a bipolar electrode placed 100 - 200 µm from the carbon-fiber electrode.  

Following the stimulation, O2 decreased by 36.1 ± 6.2 µM in a monotonic fashion, reaching a 

minima 17.9 ± 3.1 s after the stimulation (n = 3 animals, 2 slices from each animal).   

 

Effect of DSP-4 on electrically-stimulated O2 response 

To ascertain whether the stimulated O2 changes were dependent on LC activity a 

subset of animals in this study was treated with the neurotoxin DSP-4. DSP-4 causes 

selective degradation of LC norepinephrine axons, leaving the norepinephrine neurons of 

the brainstem nuclei intact (Fritschy & Grzanna, 1989).  DSP-4 significantly reduced 

norepinephrine terminal density in the cortical region above the BNST (P < 0.001, n =  5), 

which receives its innervation solely from LC neurons (Fritschy & Grzanna, 1989). DSP-4 

did not, however, exert a significant effect on the terminal density within vBNST (Fig 5.7). 

Responses to VNB stimulation also remained intact after DSP-4. In treated animals, no 

significant differences in peak times and magnitudes were found for norepinephrine release 

and the O2 response (Table 1).   

 

O2 response with adrenoceptor blockade 

While electrical stimulation is an effective means to depolarize proximal neurons its 

effects are relatively non-selective, causing release of other neuromodulators. We therefore 

employed selective antagonists to determine the involvement of noradrenergic receptors in 

the electrically-stimulated O2 response. Drugs were introduced both systemically (i.p. 

injection) and locally at the recording site (iontophoresis ejection). Because systemic 

administration of adrenergic drugs and anesthesia can influence cardiorespiratory function 

we also monitored heart rate and breathing rate after their systemic application (Fig 5.8).   



 

 

 
Figure 5.6 . Predominant O2 response recorded in the vBNST with electrical stimulation of the VNB.  
(A) Representative data averaged from 10 consecutive stimulations in a single animal. Current at all 
applied potentials is visualized in a false
red bar. Extracellular O2 is monitored at its reduction potential (
potential reveals a biphasic O2 response following electrical stimulation. Norepinephrine release is 
simultaneously measured at its oxidation potential (+0.75 V, II) and is visible shortly after the 
stimulation onset.  Changes in extracellular pH also generate current at this potential later in the 
recording (asterisks). Dashed lines indicate the standard error of the mean for
(B) Magnitude of the O2 response compared to stimulated norepinephrine release across multiple 
animals (n=25). Both O2 events showed linear responses to the concentration of evoked 
norepinephrine (Event 1: 11.46 ± 3.90 µM O
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response recorded in the vBNST with electrical stimulation of the VNB.  
(A) Representative data averaged from 10 consecutive stimulations in a single animal. Current at all 
applied potentials is visualized in a false-color display (left) with the stimulation time denoted by the 

is monitored at its reduction potential (-1.35 V, I).  Current extracted from this 
response following electrical stimulation. Norepinephrine release is 

d at its oxidation potential (+0.75 V, II) and is visible shortly after the 
stimulation onset.  Changes in extracellular pH also generate current at this potential later in the 
recording (asterisks). Dashed lines indicate the standard error of the mean for these measurements.  

response compared to stimulated norepinephrine release across multiple 
events showed linear responses to the concentration of evoked 

norepinephrine (Event 1: 11.46 ± 3.90 µM O2/µM NE, r2 = 0.27; Event 2: -14.20 ± 2.37 µM O

response recorded in the vBNST with electrical stimulation of the VNB.  
(A) Representative data averaged from 10 consecutive stimulations in a single animal. Current at all 

ion time denoted by the 
1.35 V, I).  Current extracted from this 

response following electrical stimulation. Norepinephrine release is 
d at its oxidation potential (+0.75 V, II) and is visible shortly after the 

stimulation onset.  Changes in extracellular pH also generate current at this potential later in the 
these measurements.  

response compared to stimulated norepinephrine release across multiple 
events showed linear responses to the concentration of evoked 

14.20 ± 2.37 µM O2/µM NE, 



 

r2 = 0.61). (C) Average peak amplitudes for norepinephrine and O
number (n = 5, 10 to 80 pulses). Each data set is normalized to the 60 pulse response.  Responses 
for O2 (Event 1: r2 = 0.849; Event 2: r
pulse range.   
 

 

 

 
 
 

 
 
Figure 5.7.  The effect of DSP-4 lesioning on DBH immunoreactivity. (A) Locations in the cortex (solid 
box) and the ventral bed nucleus of
data in B - D. Diagram adapted from the atlas of Paxinos and Watson. (C) Identical acquisition 
parameters were employed to detect changes in DBH immunoreactivity between control and DSP
treated animals. Significant changes were noted in cortical but not vBNST sections. Intensity is in 
arbitrary units, and represents a ratio of Alexa Fluor
emission in treated compared to untreated animals. Repres
and vBNST (D) sections. Scale bar = 100µm, 35 
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= 0.61). (C) Average peak amplitudes for norepinephrine and O2 as a function of stimulation pulse 
number (n = 5, 10 to 80 pulses). Each data set is normalized to the 60 pulse response.  Responses 

= 0.849; Event 2: r2 = 0.895) and norepinephrine (r2 = 0.997) were linear within this 

4 lesioning on DBH immunoreactivity. (A) Locations in the cortex (solid 
box) and the ventral bed nucleus of the stria terminalis (dashed box) used to obtain the fluorescence 

D. Diagram adapted from the atlas of Paxinos and Watson. (C) Identical acquisition 
parameters were employed to detect changes in DBH immunoreactivity between control and DSP
reated animals. Significant changes were noted in cortical but not vBNST sections. Intensity is in 
arbitrary units, and represents a ratio of Alexa Fluor-488 conjugated goat anti-rabbit fluorescence 
emission in treated compared to untreated animals. Representative images are shown for cortical (B) 
and vBNST (D) sections. Scale bar = 100µm, 35 µm for inset images. 

as a function of stimulation pulse 
number (n = 5, 10 to 80 pulses). Each data set is normalized to the 60 pulse response.  Responses 

= 0.997) were linear within this 

4 lesioning on DBH immunoreactivity. (A) Locations in the cortex (solid 
the stria terminalis (dashed box) used to obtain the fluorescence 

D. Diagram adapted from the atlas of Paxinos and Watson. (C) Identical acquisition 
parameters were employed to detect changes in DBH immunoreactivity between control and DSP-4 
reated animals. Significant changes were noted in cortical but not vBNST sections. Intensity is in 

rabbit fluorescence 
entative images are shown for cortical (B) 
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 Norepinephrine  Event 1  Event 2  

Group  [NE]
max

 (µM) t
max

 (s) [O
2
]
max

 (µM) t
max

 (s) [O
2
]
max

 (µM) t
max

 (s) 

Control 0.22 ± 0.04 1.9 ± 0.1 6.98 ± 0.93 2.7 ± 0.1 -3.98 ± 0.74 9.6 ± 0.2 

DSP-4  0.24 ± 0.10 2.0 ± 0.1 6.50 ± 1.95 3.2 ± 0.5 -5.59 ± 1.27 10.6 ± 1.3 

 

Table 5.1. Average norepinephrine and O2 responses to VNB stimulation. No statistical difference 
between control and DSP-4 treated animals, t-test with Welch’s correction for unequal variance.   
Control n=25, DSP-4 treatment n=5.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 
 
 
 
 
 
 

 
Figure 5.8.  Cardiorespiratory responses to anesthesia and adrenoceptor 
1.5 g/kg urethane on heart and breathing rate. At this dose, there was a significant reduction in heart 
rate (n=16, P<0.001, two-tailed paired student’s t
breathing rate. (B) Heart and breathing rates after i.p. administration of terazosin (TZ), idazoxan (IDA), 
propranolol (PROP) and desipramine (DMI). Significance determine by a Dunnet’s post hoc test 
following a one-way ANOVA, n=4 for each. *P<0.05, **P<0.01, ***P<0.001. BPM: be
BRPM: breaths per minute 
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Cardiorespiratory responses to anesthesia and adrenoceptor antagonists.
urethane on heart and breathing rate. At this dose, there was a significant reduction in heart 

tailed paired student’s t-test), but no change in breathing rate.  effect on 
rt and breathing rates after i.p. administration of terazosin (TZ), idazoxan (IDA), 

propranolol (PROP) and desipramine (DMI). Significance determine by a Dunnet’s post hoc test 
way ANOVA, n=4 for each. *P<0.05, **P<0.01, ***P<0.001. BPM: be

antagonists. (A) Effect of 
urethane on heart and breathing rate. At this dose, there was a significant reduction in heart 

test), but no change in breathing rate.  effect on 
rt and breathing rates after i.p. administration of terazosin (TZ), idazoxan (IDA), 

propranolol (PROP) and desipramine (DMI). Significance determine by a Dunnet’s post hoc test 
way ANOVA, n=4 for each. *P<0.05, **P<0.01, ***P<0.001. BPM: beats per minute, 
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Urethane had no effect on breathing rate but did suppress heart rate.  The adrenergic drugs 

exerted minor effects on these parameters.    

Pharmacology of the VNB-stimulated O2 changes is summarized in Figure 5.9. The 

average baseline peak amplitudes of event 1 and 2 were taken as 100% and compared to 

post-drug values. Vehicle treatments (local or systemic) did not affect either event. Event 1 

was only affected by systemic administration of terazosin, an α1 antagonist, and local 

administration of L-NAME, a nitric oxide synthesis inhibitor. Event 2 was attenuated by local 

administration of ABT, a cytochrome P450/20-HETE synthesis inhibitor. Interestingly, event 

2 was also sensitive to local blockade of all adrenoceptor types, decreasing with 

administration of terazosin, idazoxan (α2 antagonist), propranolol (β antagonist). Systemic 

administration of the adrenergic drugs produced matching results except for terazosin, 

probably due to its competing effect on event 1. To assess the effect of increasing 

stimulated norepinephrine release without influencing presynaptic α2 activity, which controls 

autoinhibition of release, the norepinephrine transporter blocker desipramine was 

administered. Desipramine increased the magnitude of event 2, though the effect was only 

significant with systemic administration.  As this result opposes the effects of α2 inhibition, 

the effect of idazoxan on the O2 response is most likely due to post-synaptic actions, not 

increased norepinephrine overflow.    

    

Local iontophoresis of norepinephrine 

To preclude the confounding effects of corelease with electrical stimulation, we used 

iontophoresis to directly apply norepinephrine at the site of the recording electrode within the 

vBNST (Fig 5.10). Iontophoresis of 4-methylcatechol, the electroactive marker for the drug 

solutions, did not produce current changes at the reduction potential for O2 (Fig 5.10B), 
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confirming the absence of vehicle effects. Administration of norepinephrine (1 s ejections), 

however, induced O2 fluctuations that mimicked those following VNB stimulation (Fig 5.10C). 

 

Figure 5.9. Pharmacology of the VNB-stimulated O2 response recorded in the vBNST. The substrate 
inhibited is indicated underneath the data columns. Systemic drug administration (solid) was 



 

performed through i.p. injection. Local drug administration (crosshatch) was accomplished through 
iontophoretic ejection.  n = 5 for all groups except saline (n = 25). Data are reported as a percentage 
of baseline. Significance was determined by a one
comparing drug to its vehicle control (saline or 4
Abbreviations: 4-MC, 4-methylcatechol; TZ, terazosin; IDA, idazoxan; PROP, propranolol; DMI,
desipramine; NET, norepinephrine transporter; LN, L
aminobenzotriazole; CYP, cytochrome P450.   
Figure 5.10. O2 changes induced by direct delivery of norepinephrine with iontophoresis. (A
Example responses from a single recording location. Introduction of 4 µM norepinephrine 
evokes a biphasic O2 response that is not an artifact of natural activity (A

µM 4-methylcatechol). Iontophoresis of similar norepinephrine concentrations in the vBNST in a brain 
slice do not induce O2 changes (D, 4 µM ejection). The recording potential for O
whited dashed lines. Ejection times (1 s in duration) are denoted by the red and gray dashed bars. (E) 
Magnitude of O2 changes compared to the concentration of norepinephrine measured at the 
electrode. Data collected from the same recording location (average of 6 to 10 stimulat
coded by point color and shape.  (F) Effect of iontophoresed adrenoceptor antagonists terazosin (TZ, 
n = 3), idazoxan (IDA, n =4) and propranolol (PROP, n = 5)) on the O
determined by a Dunnett's post hoc test followin
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injection. Local drug administration (crosshatch) was accomplished through 
iontophoretic ejection.  n = 5 for all groups except saline (n = 25). Data are reported as a percentage 

nce was determined by a one-way ANOVA with a Bonferroni post hoc test 
comparing drug to its vehicle control (saline or 4-MC). *P < 0.05, **P < 0.01, ***P < 0.001.  

methylcatechol; TZ, terazosin; IDA, idazoxan; PROP, propranolol; DMI,
desipramine; NET, norepinephrine transporter; LN, L-NAME; NOS, nitric oxide synthase; ABT, 1
aminobenzotriazole; CYP, cytochrome P450.    

changes induced by direct delivery of norepinephrine with iontophoresis. (A
Example responses from a single recording location. Introduction of 4 µM norepinephrine 

response that is not an artifact of natural activity (A) or vehicle (B, ejection of 4 

methylcatechol). Iontophoresis of similar norepinephrine concentrations in the vBNST in a brain 
changes (D, 4 µM ejection). The recording potential for O2 is indicated by the 
jection times (1 s in duration) are denoted by the red and gray dashed bars. (E) 

changes compared to the concentration of norepinephrine measured at the 
electrode. Data collected from the same recording location (average of 6 to 10 stimulat
coded by point color and shape.  (F) Effect of iontophoresed adrenoceptor antagonists terazosin (TZ, 
n = 3), idazoxan (IDA, n =4) and propranolol (PROP, n = 5)) on the O2 response. Significance was 
determined by a Dunnett's post hoc test following a one-way ANOVA. *P < 0.05, **P < 0.01.  

injection. Local drug administration (crosshatch) was accomplished through 
iontophoretic ejection.  n = 5 for all groups except saline (n = 25). Data are reported as a percentage 

way ANOVA with a Bonferroni post hoc test 
< 0.05, **P < 0.01, ***P < 0.001.  

methylcatechol; TZ, terazosin; IDA, idazoxan; PROP, propranolol; DMI, 
NAME; NOS, nitric oxide synthase; ABT, 1-

changes induced by direct delivery of norepinephrine with iontophoresis. (A-D) 
Example responses from a single recording location. Introduction of 4 µM norepinephrine in vivo (C) 

) or vehicle (B, ejection of 4 

methylcatechol). Iontophoresis of similar norepinephrine concentrations in the vBNST in a brain 
is indicated by the 

jection times (1 s in duration) are denoted by the red and gray dashed bars. (E) 
changes compared to the concentration of norepinephrine measured at the 

electrode. Data collected from the same recording location (average of 6 to 10 stimulations) are 
coded by point color and shape.  (F) Effect of iontophoresed adrenoceptor antagonists terazosin (TZ, 

response. Significance was 
< 0.05, **P < 0.01.   
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When this experiment was repeated in brain slice preparations, no O2 response was 

observed with iontophoresis of norepinephrine (Fig 5.10D, n = 4 animals, 2 slices from each 

animal).     

Using the carbon-fiber microelectrode to monitor iontophoretic ejections, a range of 

norepinephrine concentrations (1 s ejections) were delivered at each recording location. 

Both the increase (event 1) and decrease (event 2) phases of the O2 response showed 

dose-dependence to the amount of norepinephrine ejected (Fig 5.10E). Neither event 

saturated within the range of norepinephrine concentrations assayed (50 nM - 15 µM). The 

absolute ratio of event 1 to event 2 (0.81 ± 0.07, n = 12 animals, 27 concentrations) was 

lower than for electrical stimulation (4.87 ± 1.52, n = 25 animals). As with electrical 

stimulation the peak time of event 1 closely tracked the ejection, while the peak time of 

event 2 was more delayed with increased norepinephrine output (tp = 11.2 - 23.2 s after 

ejection, Fig 5.11). There was some variability in the O2 response between animals. In a few 

locations (16.7%) only event 1 was evoked, while in others (16.7%) only event 2 was 

produced.    

Local response pharmacology was investigated by using the remaining iontophoresis 

barrels to apply norepinephrine receptor antagonists. Event 1 was sensitive to β receptor 

antagonism by propranolol (P < 0.05, n =5). Similar to the VNB-stimulated response, Event 

2 could be attenuated by inhibition of all receptor types (P < 0.01 for terazosin, n = 3, 

idazoxan, n = 4, and propranolol, n =5, Fig 5.10F).       

Local iontophoresis of selective adrenoceptor agoni sts     

Methoxamine (α1 agonist), clonidine (α2 agonist) and isoproterenol (β agonist) were 

delivered iontophoretically (1s ejections, 1 - 15 µM) to assess whether any portion of the O2 

response could be triggered by activation of a single adrenoceptor type. Example responses 

are provided in Figure 5.12. Agonism of α1 and α2 receptors induced transient O2 decreases 

(Fig 5.12A-B). The timing and number of these decreases varied from trial-to-trial and  



 

 

 

 

 
Figure 5.11. Effect of norepinephrine concentration applied by iontophoresis (NE
(tp) for the second O2 event. The minima for event 2 became more delayed with greater 
norepinephrine concentrations (n =5, slope = 0.50 ± 0.10 s/ µM norepinephrine, r
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Effect of norepinephrine concentration applied by iontophoresis (NEapp

event. The minima for event 2 became more delayed with greater 
norepinephrine concentrations (n =5, slope = 0.50 ± 0.10 s/ µM norepinephrine, r2 = 0.54).   

app) on the peak time 
event. The minima for event 2 became more delayed with greater 

= 0.54).    



 

 
Figure 5.12. O2 changes induced by local delivery of adrenoceptor agonists with iontophoresis. 
Example responses to methoxamine (
isoproterenol (non-selective β agonist, panel C) are shown for different recording 
recording potential for O2 is indicated by the whited dashed lines. Ejection times (1 s in duration) are 
denoted by the gray dashed bars and the red bars.
 

across animals.  

In some animals no response was apparent while in others the respon

oscillatory in nature. In contrast, the 

increase in extracellular O2, which reached a maximum slightly after the ejection. This 

response was found in all vBNST locations assayed (Fig 

the O2 increase was again followed by a transient decrease event (Fig 1

Compared to the responses observed after iontophoresis of norepinephrine, the absolute 
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changes induced by local delivery of adrenoceptor agonists with iontophoresis. 
Example responses to methoxamine (α1 agonist, panel A), clonidine (α2 agonist, panel B), and 

β agonist, panel C) are shown for different recording locations.  The 
is indicated by the whited dashed lines. Ejection times (1 s in duration) are 

denoted by the gray dashed bars and the red bars. 

In some animals no response was apparent while in others the respon

oscillatory in nature. In contrast, the β agonist isoproterenol produced a time

, which reached a maximum slightly after the ejection. This 

response was found in all vBNST locations assayed (Fig 5.12C).  In many animals (63.6%) 

increase was again followed by a transient decrease event (Fig 15.2C, right).  

Compared to the responses observed after iontophoresis of norepinephrine, the absolute 

changes induced by local delivery of adrenoceptor agonists with iontophoresis. 
agonist, panel B), and 

locations.  The 
is indicated by the whited dashed lines. Ejection times (1 s in duration) are 

In some animals no response was apparent while in others the response was 

 agonist isoproterenol produced a time-locked 

, which reached a maximum slightly after the ejection. This 

animals (63.6%) 

2C, right).  

Compared to the responses observed after iontophoresis of norepinephrine, the absolute 
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ratio of event 1 to event 2 was much larger for isoproterenol (5.40 ± 0.87, n = 11 animals, 22 

concentrations).   

 

Discussion 

A vast collection of literature supports a role for noradrenergic neurotransmission in 

functional hyperemia (Raichle et al., 1975; Bekar et al., 2012). The simultaneous detection 

of norepinephrine and O2 with high temporal resolution permitted us to directly probe local 

noradrenergic mechanisms. Moreover, the micrometer dimensions of the carbon-fiber 

electrode allowed us to target the vBNST, a deep brain region innervated by non-coerulean 

norepinephrine neurons. We found both electrically evoked and iontophoretically applied 

norepinephrine induced similar O2 responses in this region.  Norepinephrine was found to 

play opposing roles in these responses.  The initial O2 increase involved a β component, but 

principally originated from release of other substances including NO. At later times 

synergistic activation of α and β adrenoceptors induced an O2 decrease. These results  

reveal the complex control of O2 levels by norepinephrine in the vBNST that originates from 

the multicellular locations of its receptors and their modulation of other chemical 

messengers (Fig. 5.13).  In a slice preparation, where blood flow is absent but metabolic 

activity can be evoked thereby increasing O2 consumption, electrical stimulation caused 

prolonged O2 decreases.  O2 changes were not detectable after iontophoresis of  



 

Figure 5.13. Proposed mechanism underlying the O
of the VNB. Temporal (upper) and spatial (lower) models are provided. Stimulation of the VNB 
induces norepinephrine release from noradrenergic cells originating in the NS

Non-noradrenergic cell populations coursing near the coordinates of the stimulating electrode are 
also excited, leading to simultaneous release of other neurotransmitters within the vBNST. This 
overflow of norepinephrine and other vas
microvessels and a subsequent influx of O
mediated through activation of β
directly, by relaxation of vascular smooth muscle. Local O
after the stimulation ceases. Thereafter, a signaling cascade initiated by the synergistic activation of 
adrenoceptors on astrocytes results in the release of sec
These messengers act upon vessels to cause their constriction, and in turn, provide an active 
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Proposed mechanism underlying the O2 responses recorded after electrical stimulation 
of the VNB. Temporal (upper) and spatial (lower) models are provided. Stimulation of the VNB 
induces norepinephrine release from noradrenergic cells originating in the NST and A1 cell groups. 
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The vasoactions of central norepinephrine are usually attributed to LC neurons 

(Raichle et al., 1975; Kalaria et al., 1989; Cohen et al., 1997; Bekar et al., 2012; Toussay et 

al., 2013). In our preparation, the placement of the stimulating electrode activates other 

noradrenergic neurons, including the NST and A1 cell groups. However, electrical 

stimulations are non-specific, and may result in off-target depolarizations. Since the vBNST 

receives a small percentage of its noradrenergic innervation from the LC (McNaughton & 

Mason, 1980), and electrical stimulation of the LC elicits release (Park et al., 2009), we 

needed to assess coerulean influence on O2 dynamics in the vBNST. To achieve this, we 

lesioned LC fibers with a selective neurotoxin. Electrically evoked O2 responses were 

unchanged after LC lesioning, suggesting the noradrenergic contribution arose from the 

NST and A1 innervation, and not indirect LC stimulation. As DSP-4 does affect 

hemodynamics in cortical regions (Bekar et al., 2012; Toussay et al., 2013), it is unlikely that 

our results are skewed by compensatory mechanisms that evolved between administration 

of the neurotoxin and the recordings.   To our knowledge, this data is the first to implicate 

norepinephrine release from these medullary cell populations in functional hyperemia. 

Variation in O2 fluctuations was witnessed across animals, which was likely due in 

part to the ability of our sensor to capture neurovascular heterogeneity that exists at sub-

millimeter scales within the vBNST. However, in the majority of animals, electrical 

stimulation evoked an O2 increase, which closely resembled the temporal dynamics of  

 
norepinephrine release and uptake, followed by an O2 decrease.  We observed similar 

effects following iontophoretic application of norepinephrine, affirming that norepinephrine’s 

effects were mediated in the local terminal field and not by activity in other brain regions. In 

both stimulation and iontophoresis paradigms the magnitude of each O2 event increased 

with the norepinephrine output, but did not saturate within the concentration ranges assayed. 
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Taken together these data support the notion that norepinephrine release affects a vascular 

area proportional to presynaptic activity, consistent with restricted volume neurotransmission.  

Adrenoceptors are expressed in neurons, astrocytes, endothelial cells, pericytes and 

smooth muscle (Elfont et al., 1989; Hertz et al., 2010)—the major constituents of the 

neurovascular system.  Indeed, 8% of noradrenergic terminals in the cortex are located in 

the perivascular space, and are not proximal to neuronal targets (Cohen et al., 1997). 

Through receptor activation, norepinephrine likely influences the concerted actions of these 

components to support metabolic needs. The data here demonstrate that each event of the 

O2 response had distinct signaling pathways.  In the vBNST we found event 1 to be partially 

dependent on local β receptor activity. When evoked by direct application of norepinephrine, 

event 1 could be blocked by the non-selective β antagonist, propranolol, and was 

reproduced by the β agonist, isoproterenol. This pharmacology is consistent with the well-

documented dilatory effect of β receptors on vascular smooth muscle. As β receptors are 

expressed on rat cerebral microvessels (Kobayashi et al., 1981), a transient surge of 

norepinephrine in the vBNST may directly induce local vasodilation, thereby increasing the 

inflow of O2-rich blood and giving rise to event 1. Indirect mechanisms cannot be discounted, 

however. Stimulation of β receptors in this region may influence local cell activity and, in turn, 

the release of vasodilators dependent on this activity.  A study by Winder and coworkers 

found β pharmacology to have no effect on glutamatergic transmission in the vBNST (Egli et 

al., 2004). Therefore, if event 1 is produced by an indirect noradrenergic mechanism it is 

unlikely due to the alteration of glutamatergic activity.  

In apparent contradiction, electrically evoked O2 changes only responded to 

peripheral blockade of α1 receptors. Adrenergic α1 receptors are known to constrict 

superficial cerebral arteries and arterioles in the rat (Bekar et al., 2012), and their dilation 

may blunt the redirection of blood flow to the BNST. Consistent with a remote location of α1 

modulation, Event 1 was not produced or inhibited by local application of α1 pharmacology.    
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While iontophoresis of the β agonist produced an O2 increase, its contribution to Event 1 

appears to be masked when evoked through electrical stimulation. This is likely due to the 

actions of co-released neuromodulators initiated by non-selective neuronal activation.  VNB 

stimulation also depolarizes neurons in the ventral tegmental area/ substantia nigra that 

could release vasodilators such as acetylcholine (Venton et al., 2003), which cannot be 

detected by our technique.  Consistent with this view, we found that event 1 could be 

attenuated by inhibiting the synthesis of NO locally in the vBNST.   

During the second O2 event, concentrations transiently decreased below baseline 

levels. This observed decrease required local activation of both α and β adrenoceptors. 

Though it is not possible to comment on their relative contributions, inhibition of each 

adrenoceptor attenuated the decrease. Interestingly when selective agonists were applied, 

only activation of β receptors with isoproterenol produced a time-locked response that 

resembled event 2. In contrast, iontophoresis of the α agonists methoxamine and clonidine 

was followed by O2 decrease events. It is possible that α1 and α2 receptors, which have 

higher affinity than β types, are partially occupied by tonic concentrations within the 

norepinephrine-rich vBNST. Baseline α activity therefore may be enough to permit the O2 

response when low affinity β receptors are stimulated. As expected in this scenario, the ratio 

of event 1 to 2 is much larger for isoproterenol in comparison to norepinephrine, which binds 

to both α and β receptor types. 

 Though reported less frequently, cerebral O2 decreases have been cited in the 

literature (Wade, 2002). For a healthy organism, it is unlikely that these occurrences are due 

to an imbalance of metabolic demand. More accepted are the theories that O2 decreases 

arise from reduced blood flow due to either ‘vascular steal’ from other activated brain 

regions or local neuronal inactivation. The timing and pharmacology of event 2 in our study 

supports the possibility of a constriction-mediated termination of the initial O2 increase, a 

function that has been associated with noradrenergic signaling in the somatosensory cortex 
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(Bekar et al., 2012). Norepinephrine-mediated constrictions are canonically produced by 

vascular α adrenoceptor activation. However, the β sensitivity of event 2 and the temporal 

delay of its onset following norepinephrine clearance indicate that the O2 decrease arises 

from noradrenergic activation of other chemical messengers that subsequently act at the 

vascular wall.   

Astrocytes present a potential intermediary. These glial cells express all 

adrenoceptor types and are well-documented to respond to norepinephrine (Stone & Ariano, 

1989; Hertz et al., 2010). Of its many effects, noradrenergic stimulation is reported to induce 

intracellular Ca2+ waves, which can propagate over entire astrocyte populations. One study 

demonstrated that norepinephrine-evoked Ca2+ events are followed by constriction of nearby 

vessels, theorized to be due to generation of 20-HETE (Mulligan & MacVicar, 2004). In 

agreement with their observations, the magnitude of event 2 was reduced with ABT, which 

blocks formation of 20-HETE through inhibition of cytochrome P450.  Additionally, we 

observed transient decreases in O2 with α adrenoceptor activation that were often oscillatory 

in nature, much like astrocyte Ca2+ fluctuations. Supporting the additional involvement of β 

signaling in event 2, both α and β receptors can stimulate astrocyte Ca2+ responses in vivo 

(Bekar et al., 2008) (Ding et al., 2013), and synergistic activation of these receptors 

potentiates Ca2+ responses in vitro (Espallergues et al., 2007).  While it is not possible to 

dismiss indirect vascular effects through altered neuronal activity (Egli et al., 2004),  the 

reported effects of norepinephrine on astrocytes are overall consistent with the temporal and 

pharmacological characteristics of event 2.  

 

Conclusions 

 In summary, we have established a role for brainstem norepinephrine neurons in the 

control of extracellular O2 in a terminal region. When activated, these cells increased 

norepinephrine overflow in the vBNST, locally triggering a biphasic O2 response.  This 
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response was absent in a preparation that lacked CBF and had distinct receptor 

mechanisms. The initial increase involved a small β receptor component and was also due 

to NO formation. The subsequent decrease was induced by the synergistic actions of α and 

β receptor types. The delayed temporal characteristics of this decrease indicate that 

adrenergic activation induced a chemical cascade resulting in the formation of 20-HETE, a 

known vasoconstrictor. Oscillatory O2 responses to selective agonists suggest astrocytes 

may mediate this cascade. These data support the view that norepinephrine is one of many 

substances that can match energy demands and supply in the brain.    
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CHAPTER 6: FLEXIBLE SOFTWARE PLATFORM FOR FAST-SCAN  CYCLIC 
VOLTAMMETRY DATA ACQUISITION AND ANALYSIS 

 

Introduction  

 Electrochemistry is widely employed for the detection of neurotransmitters at single 

biological cells, in brain slices, and in vivo (Robinson et al., 2008).  The original impetus for 

the development of in vivo measurements of neurotransmitters was the detection of 

dopamine (Adams, 1976; Millar et al., 1985).  Today, however, this approach is used not 

only for the detection of catecholamines but also for compounds as diverse as adenosine 

(Swamy & Venton, 2007), oxygen (Venton et al., 2003), histamine, and 5-hydroxytryptamine 

(Hashemi et al., 2011).  Although several voltammetric techniques have been evaluated for 

in vivo use, fast-scan cyclic voltammetry (FSCV) is particularly useful because it combines 

high sensitivity (nanomolar range) with sufficient features to identify the substances detected.  

To follow the rapid concentration fluctuations of neurotransmitters, cyclic voltammograms 

are generated at high scan rates (>100 V/s), allowing data collection on the millisecond time 

scale.   At these high rates, very large background currents are generated. This charging 

current can be removed by analog or digital background subtraction, yielding cyclic 

voltammograms of the analytes of interest (Hermans et al., 2008). 

 The rapid scan rates and the large number of data points that are collected both 

require a computer for waveform generation and data acquisition.  Typically, at least 10 

cyclic voltammograms (CVs) are recorded per second with each containing 1000 scanned 

potentials within the voltammetric sweep.   Furthermore, multiple electrodes can also be 
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used, and the electrochemical experiments may be combined with other electrical 

measurements (ionselective electrodes, amperometry, electrophysiology, etc.) (Armstrong-

James et al., 1980; Venton et al., 2003; Zachek et al., 2009).  Multifunctional data 

acquisition systems from several vendors that include analog and digital inputs and outputs 

and clocks are readily available and allow such measurements.  Thus, electrochemical 

instrumentation has advanced considerably from 1983 when one of the first commercially 

available computer controlled potentiostats, the BAS 100, was introduced (He et al., 1982).  

Our own lab (Michael et al., 1999), as well as others (Yorgason et al., 2011), have 

generated a series of programs for neurotransmitter measurements as documented 

elsewhere (Michael & Wightman, 1999).   

 Here we describe some of the features of our HDCV (‘High Definition Cyclic 

Voltammetry’), our latest software package for high speed acquisition and analysis of 

electrochemical data.  HDCV serves as an upgrade and replacement for TarHeelCV, the 

previous program distributed by our group for FSCV data acquisition and analysis (Robinson 

& Wightman, 2007).  These new programs incorporate features that were not previously 

present.  The data acquisition program  enables simultaneous collection from up to 16 

electrodes, allowing use with arrays (Zachek et al., 2010).  Multiple waveforms, optimized for 

each analyte, can be used simultaneously, and the waveforms can have any shape.  Data is 

digitally background subtracted and displayed in real time as it is collected.  The program 

allows concurrent electrochemical and electrophysiological recording at a single electrode.  

In the electrophysiological recordings, the firing of individual neurons is measured in the 

form of single units.  Importantly, it allows continuous data collection for several hours. 

Moreover, the program is compatible with behavioral experiments in which items such as 

levers, tone generators, or other binary output devices, can be connected to digital input 

signal lines and user-mapped into the data flow.  All of the analog and digital data are 

clocked in lockstep with a common hardware clock.  The data analysis program streamlines 
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the analysis of large amounts of data, facilitates signal-averaging of events marked by the 

digital signals, performs current artifact removal, and provides digital filtering.  Principal 

component regression is incorporated to extract signals of specific analytes.  In this 

manuscript we illustrate several of these capabilities with examples from ongoing 

experiments. 

 

Experimental  

Hardware 

All events configured through HDCV employ a single PCIe-6363 X-series data 

acquisition card (National Instruments, Austin, TX) rather than the three required with 

TarheelCV.  (It is expected that future versions of HDCV will allow the use of USB-

connected DAQ hardware.)  A custom-built breakout box (UNC Department of Chemistry 

Electronics Design Facility) provides access to 4 analog outputs, 16 differential analog 

inputs, and 40 digital I/O lines. For single electrode experiments, the maximum sampling 

rate is 2 MHz. For multiple electrodes, the acquisition card’s single instrumentation amplifier 

limits the maximum sampling rate to 1 MHz divided by the number of channels.  Another 

digital line (Port2/Line 0) gates output signals through the breakout box.  This line is held 

high when HDCV is initialized.  Signal routing is otherwise fully configurable through the 

acquisition program.  

 

Software 

The HDCV electrochemical software suite was written in LabVIEW (National 

Instruments, Austin, TX).  HDCV consists of two independent executable programs for data 

acquisition and analysis.  
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HDCV data acquisition  

HDCV Data Acquisition controls the hardware, while also collecting and displaying 

data in real-time.  Low-level hardware control is achieved through an interface that allows 

the selection of a device and the assignment of its analog and digital lines to specific 

functions in the software. The interface allows the user to customize analog and digital 

input/output (I/O) parameters, adjust analog input gain settings, and assign names to the I/O 

lines. Analog and digital lines are synchronized via a signal generated by the DAQ hardware 

clock. The timing of this clocking signal is defined by the CV frequency. 

Analog outputs can be assigned to one of three functions: waveform generation, 

electrical stimulation, or analog background subtraction. For waveform generation, the 

shape of the applied voltage can be designed from preset options (triangle, sine, square and 

sawtooth), designed arbitrarily by piecewise mathematical construction, or loaded from a 

text file. Additional inputs provide control over the voltage limits, scan-rate, application 

frequency and sampling rate.  Stimulation trains are defined by pulse duration, polarity 

(mono and biphasic), frequency, and number. The stimulus onset is delayed from the 

beginning of the voltage waveform by a user-defined time to prevent overlap. These trains 

can be triggered internally at a user-defined time or externally by a digital input.  For analog 

background subtraction, an inverted voltage proportional to the electrode charging current is 

output. In a manner similar to noise-cancelling headphones, this signal is applied to the 

inverting input of the headstage amplifier decreasing the amount of background recorded. 

This prevents saturation of the headstage amplifier and allows the data acquisition card 

voltage range to be reduced to decrease quantization noise (Hermans et al., 2008).   

Bidirectional digital lines are used to control and monitor binary output external 

devices. Two digital lines are reserved to output the CV frequency signal and the timing 

signal for electrochemistry/electrophysiology experiments so that other instruments can be 

synchronized with HDCV. Other digital outputs can be set to change state once per file or 
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once per waveform application.  Other ports can be specified as digital inputs, which the 

program will record.  

Data are collected and saved as files in single run, multiple run, or continuous modes. 

Single run mode is designed for short duration (seconds to several minutes) collection 

periods.  Multiple run mode allows automatic collection of multiple experiments (separated 

by a specified rest time) that are saved in one file. Continuous mode allows for minutes to 

hours of data acquisition and is designed for recordings during behavioral experiments.   

Acquired data are stored in two files. The main file, with a .hdcv extension, contains 

a header with the operating parameters and the current values for each cyclic 

voltammogram.  The transition times of digital input lines are recorded in a companion text 

file with a .dig extension. 

 

HDCV analysis  

HDCV Analysis is used for post-processing data (including files generated by 

TarheelCV).  Data are displayed in a color plot with currents at all potentials shown as a 

function of acquisition time (Michael et al., 1998).  Current at each potential is background 

subtracted from a user-defined time point and is visualized in false color.  At a user-selected 

time and potential, two supporting plots display current versus time and its corresponding 

cyclic voltammogram. These representations are controlled by the main cursor placement 

within the color plot. An additional display maps the timing of digital input signals. (For 

backward compatibility with TarheelCV, the electrochemical and digital data files are 

concatenated into HDCV format using the Data Converter program included in the 

executable package).      

HDCV analysis offers several digital filtering and smoothing options including a two 

dimensional Fast Fourier Transform (FFT) algorithm. On-screen deglitching tools allow for  
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easy removal of undesired electrical artifacts (glitches). If digital inputs are recorded, they 

serve as time points to clip periods of data into time bins.  Such changes are saved in an 

analysis work file, preserving the original data.   

Concentration information can be extracted from files in one of two ways. If the data 

represent the response of a single analyte, the user may input a calibration factor to convert 

currents into concentrations. Principal component regression (PCR) is used for more 

complex in vivo experiments (Keithley et al., 2009; 2010).  HDCV performs PCR analysis on 

data based on a user-built training set of CV standards. Concentrations determined by either 

of these methods can be averaged across multiple files, runs, or time bins.   

 

Experimental setup 

 Four major components are required for combined 

electrochemical/electrophysiological (echem/ephys) experiments during behavior (Fig 6.1). 

These include two computer stations for separate acquisition of echem/ephys data, a 

custom-built headstage amplifier that interfaces with a universal electrochemical instrument 

(UEI) mainframe  (UNC Department of Chemistry Electronics Shop), and a commercially 

available operant conditioning system (Med. Associates, Inc., St. Albans, VT).  HDCV 

software controls the voltammetric acquisition parameters, collects current responses, and 

synchronizes experimental timing through the PCIe-6363 in the electrochemistry computer. 

The output waveform is reduced to one third to utilize the full DAC bit depth and low-pass 

filtered to reduce quantization noise before application via a swivel commutator (Med. 

Associates, Inc.) to the headstage amplifier.  Stimulation waveforms are configured within 

HDCV, converted to current by a pair of optically isolated stimulators (Digitimer Ltd., 

Letchworth, U.K.) and routed to the headstage. The Med Associates operant conditioning 

system generates digital time stamps indicating behavioral events such as a lever press. 

These are delivered to the PCIe-6363 via an 8 bit interface, synchronizing the echem/ephys  



 

 

 

 

 

 

 

 

Figure 6.1. Block diagram of hardware for combined electrochemical/electrophysiological 
(echem/ephys) recordings during behavior. During these experiments an animal in a behavioral 
chamber responds to the presentation of visual/auditory stimuli and electrical stimulation via an 
implanted electrode. Signals from the implanted carbon
signals are routed to the headstage through a custom breakout box and control instrumentation (UEI). 
The echem computer controls the voltammetry parameters, records digital signals generated by the 
Med Associates Operant Conditioning System, and t
digital relay signal. Stimulation waveforms are converted to current by an optically isolated device. 
The ephys computer (Plexon) records cell firing. The firing due to cell activity is transduced into an 
audio signal via an external speaker. DIO: digital input
voltage converter; Stim In: port for electrical stimulation signal. 
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Block diagram of hardware for combined electrochemical/electrophysiological 
gs during behavior. During these experiments an animal in a behavioral 

chamber responds to the presentation of visual/auditory stimuli and electrical stimulation via an 
implanted electrode. Signals from the implanted carbon-fiber electrode are recorded. El
signals are routed to the headstage through a custom breakout box and control instrumentation (UEI). 
The echem computer controls the voltammetry parameters, records digital signals generated by the 
Med Associates Operant Conditioning System, and times the switch between recording modes via a 
digital relay signal. Stimulation waveforms are converted to current by an optically isolated device. 
The ephys computer (Plexon) records cell firing. The firing due to cell activity is transduced into an 

signal via an external speaker. DIO: digital input-output port; I/E port: output of current to 
voltage converter; Stim In: port for electrical stimulation signal.  

Block diagram of hardware for combined electrochemical/electrophysiological 
gs during behavior. During these experiments an animal in a behavioral 

chamber responds to the presentation of visual/auditory stimuli and electrical stimulation via an 
fiber electrode are recorded. Electrical 

signals are routed to the headstage through a custom breakout box and control instrumentation (UEI). 
The echem computer controls the voltammetry parameters, records digital signals generated by the 

imes the switch between recording modes via a 
digital relay signal. Stimulation waveforms are converted to current by an optically isolated device. 
The ephys computer (Plexon) records cell firing. The firing due to cell activity is transduced into an 

output port; I/E port: output of current to 
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measurements with behavioral events. In combined echem/ephys experiments, the 

voltage of the electrode floats between voltammetric recordings to allow recording of 

electrical activity from nearby cells. This is controlled by a digital output that triggers a 

CMOS analog switch on a modified headstage (UNC Department of Chemistry Electronics 

Design Facility) that alternates between a current-to-voltage amplifier for FSCV, and a 

voltage-follower for single unit recordings, circuitry described previously (Takmakov et al., 

2011). Electrophysiology is collected on a computer with Plexon Neurosurgery Workstation 

software (Plexon Inc., Dallas, TX). 

 

Experimental procedures 

Experiments shown here are used to illustrate the features of HDCV.  The 

experimental details have been described in detail elsewhere (Owesson-White et al., 2008; 

Park et al., 2009).   

 

Results and Discussion 

Programming techniques  

LabVIEW is a programming language optimized for data acquisition and processing.  

The data acquisition program of HDCV, in particular, involves several interesting coding 

techniques.  The main program is written as four loops operating in parallel. The data 

acquisition loop has the highest priority, and runs once per CV. The data collected are fed 

through queues to two separate processing loops that run at lower priority so data 

acquisition is not delayed. The analog data loop trims away unwanted data points (the 

interval between voltammograms), maintains real-time graphs, and stores the data to a file. 

The digital data loop runs only once per transition on any digital input line, and likewise 
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maintains graphs and stores the data to a second file. The fourth loop, the event loop, 

handles user interactions. 

 

Timing control 

Traditional LabVIEW programming provides a way for an input task to clock an 

output task so that the two proceed in lockstep, data point by data point. This technique was 

extended to maintain four tasks in parallel: analog input (the master) clocking analog output, 

digital input, and digital output. This provides far higher temporal resolution for the digital 

input lines than TarHeelCV, which sampled them only once per CV scan.  It also provided a 

useful organizing principle for the entire program. 

 

Active/passive configuration routines 

HDCV has extensive configuration screens, because numerous parameters for 

experiment control are provided to the user. Each of these is implemented as a LabVIEW VI 

(virtual instrument), an interaction screen with associated code.  The full process entails: 

read a configuration file, display its parameters, allow the user to change them, post-process 

the parameters into a form more useful for program operation, and update the configuration 

file. In some cases postprocessing reveals errors that could only have been revealed by 

configuring the hardware. Reading the configuration file and postprocessing its contents 

needs to be done on every startup whether or not the user intends to make any changes. 

To implement this scheme, we used an approach we term Active/Passive routines in 

which each configuration VI can be called in either mode. In active mode, it opens and waits 

for the user to change and confirm the settings. In passive mode, it invisibly loads and 

postprocesses the configuration file. When encountering certain errors that would prevent 

meaningful operation, it can become active, displaying a message and waiting for the user 
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to resolve the problem. These VIs are called in active mode when the program is first run, or 

upon user request. 

 

Setup control structure 

The experiment setup VI, in particular, presented interesting problems.  It uses an 

interface with nine tabs, many of which lead to complex, full-screen pages that display many 

parameters and graphs.  Several of these pages have internal states (useful for maintaining 

graphs) that need to be "unpacked" from the raw parameters when the page is presented, 

and "packed away" when the page is closed.  A natural program structure would be to have 

a Case structure with a separate case for each page in the user interface, and within each, 

an Event structure to handle events relevant to that page (an Event structure is a Case-like 

control structure that waits for a user interface event and then executes the appropriate case 

when an event takes place).  

In HDCV the program structure was designed in the following way.    A single Event 

structure in a loop fields all events for the entire VI. It translates each event type into a 

textual code. Each event is passed via queue to the main operating loop. The main 

operating loop consists of a primary Case structure, with a case for each page in the user 

interface. Within each case is an inner Case structure, with a case for each event relevant to 

that page. The Event structure takes special action when the user switches tabs, and 

generates two event codes. The first, "Leaving", is directed to the page that has been open, 

and allows its code to pack away any data for that page as needed. The second, "Entering", 

is directed to the page that is being opened, and allows its code to make preparations. This 

last feature alone was so powerful as to make the entire technique worthwhile. The code 

organization that resulted from allowing each page to "own" a case in the primary Case 

structure has proved vastly useful for the understanding and readability of the code. 
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Data storage 

HDCV uses the binary data file format provided by LabVIEW. Data are organized 

into "chunks", one per run of a Multiple run experiment, one per experiment otherwise. Each 

chunk is stored as a three-dimensional array, indexed by CV, channel (for multichannel data 

collection experiments), and data point.  Writing the 3-D array after data collection is 

vulnerable to data loss in case of system failure during long experiments.  To avoid this 

problem, the 3-D array is written into the file piecemeal, one "slice" per CV, as it is collected. 

Each slice can be viewed as a two-dimensional array, indexed by channel and data point. At 

the end of the experiment, the number of CVs is plugged into the 3-D array header, 

completing the file. 

The same technique is used when reading the data for long experiments. No portion 

of the analysis process could handle all the data for a multiple hour experiment at once 

without exceeding available memory. The user specifies the time region of interest (up to 5 

minutes long), and analysis reads the data only for that time region. 

 

Real-time data analysis and acquisition 

The HDCV acquisition program has several live data displays that provide immediate 

user feedback. These include oscilloscopes for the analog and digital signals, a current-time 

chart, and a live color chart.  These run continuously during waveform application and are 

active even when data storage is not occurring.    

The live color chart is particularly useful since the entire experiment can be viewed 

with the voltage scan mapped along the ordinate, and the time of CV acquisition shown 

along the abscissa. Oxidation and reduction currents are shown in a 3: -2 false color scale 

to enhance peak contrast.(Michael et al., 1998) Hence, the color chart provides both 

qualitative and quantitative data assessment. The flux of multiple analytes, potential- 

dependent noise, and electrode stability can be monitored continuously.  This type of 
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Figure 6.2. Results from in vivo recordings with a carbon-fiber electrode implanted in the nucleus 
accumbens of an anesthetized rat using a waveform designed for simultaneous detection of O2 and 
dopamine.  (A) Voltage waveform and data points used to produce the voltammograms.  This scan is 
applied at 400 V/s every 100 ms. (B, C, D) Screen shots of the live, active color chart taken in three 

consecutive time intervals.  Waveform data point number appears on the ordinate and time (s) is 
shown on the abscissa. Digital background subtraction has been set just before the present view. (B) 
Oxygen decreases are visible around data point 750. (C) An electrical stimulation evokes dopamine 
release (data points 160 and 450) and increases in oxygen.  The oxygen change continues into the 
next 20 s time window (D).   

 

 

immediate feedback assists with trouble-shooting and experimental optimization.  

 To illustrate this feature, Figure 6.2 shows data obtained during acquisition with a 

carbon-fiber electrode in the nucleus accumbens of an anesthetized rat.  FSCV studies 

employ various waveforms optimized for different target analytes. This particular waveform 

(Fig. 6.2A) allowed simultaneous dopamine and oxygen measurements (Venton et al., 2003).  
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During the experiment, the color chart scrolls to the left as each CV is collected.  Controls 

allow the user to choose an input channel, select the most recent CV as the basis for 

background subtraction, and adjust the color scale.  Figure 6.2B-D display screen shots 

captured during three sequential 20 s periods. In Figure 6.2B (where the waveform is 

applied but data storage was not initiated) transient decreases in oxygen resulting from 

natural activity appear as positive currents centered on -1.4 V (data point 750). In the next 

interval, file collection was initiated and an electrical stimulation occurs (Fig 6.2C). 

Stimulated dopamine release is evidenced by positive peaks (oxidation) at 0.6 V (data point 

160) and negative peaks (reduction) at -0.2 V (data point 450). Uncharacterized extracellular 

changes induced by the stimulation result in a positive, non-faradaic current artifact at the 

cathodic switching potential.  A biphasic increase in oxygen follows generating negative 

(reduction) current fluctuations at -1.4 V, which peak at 124 s (Fig 6.2C) and 144 s (Fig 

6.2D). In Figure 6.2D, features at 0.2 V (data point 50) and 0 V (data point 400) show a 

prolonged alkaline pH shift accompanying the oxygen fluctuations.  These data enable 

evaluation of neurotransmitters in the regulation of cerebral blood flow (Venton et al., 2003). 

 

Simultaneous detection of neurotransmitter release and single unit activity 

Neuronal communication involves electrical impulses and chemical messengers. The 

combined echem/ephys technique provides a unique opportunity to study these 

interdependent processes simultaneously with high spatial and temporal resolution. The 

combined echem/ephys technique has seen significant advancement since Millar and 

coworkers initiated its development over thirty years ago (Millar et al., 1981).  In the last 

decade, a miniaturized switching headstage enabled experiments in freely-moving animals 

(Takmakov et al., 2011), allowing combined echem/ephys measurements for delineating the 

neuronal circuitry involved in behavior (Cheer et al., 2005; Owesson-White et al., 2009; 

Cacciapaglia et al., 2011).  This technique has been paired to iontophoretic drug delivery 
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(Armstrong-James et al., 1980) to identify the receptors that locally gate dopamine 

neurotransmission (Belle et al., 2013).  

As described in the Experimental Section, combined echem/ephys experiments are 

complex and require coordination between several instruments (Fig 6.1). During combined 

measurements, a digital relay output from the PCIe-6363 triggers a solid-state switch in the 

headstage that controls acquisition modes. The timing scheme during an experiment with 

behavioral DIOs is shown in Figure 6.3A. When the digital output from HDCV goes low, the 

headstage current-to-voltage amplifier circuit connects to the carbon-fiber electrode and the 

waveform is applied. When the digital output goes high, the current-to-voltage amplifier 

disconnects and a voltage-follower amplifier connects to the carbon-fiber electrode to 

measure the spiking activity of proximal neurons. Typically these modes alternate at 5 Hz to 

allow adequate time to detect single unit activity.  HDCV concurrently records any digital 

inputs, and these time stamps can be used to align data to the appropriate behavioral event.  

Figure 6.3B shows an example of simultaneous echem/ephys data collected during 

intracranial self-stimulation (ICSS) with the waveform scanning from -0.4 V to +1.3 V at 400 

V/s for the detection of dopamine (Phillips et al., 2003). ICSS is a paradigm in which an 

animal depresses a lever to deliver an electrical stimulation to its own brain.  With the 

stimulating electrode implanted in select brain regions, animals find this rewarding.  In our 

design, lever extension into the behavioral chamber is preceded by a tone and light cue  

Undesirable current artifacts can occur during the transitions between free-floating 

and applied potentials. Although the headstage amplifier uses a state-of-the-art CMOS 

\ 
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Figure 6.3. Simultaneous electrochemistry/electrophysiology (echem/ephys) measurements. (A) 
Basic timing diagram during behavioral experiments. The state of the digital relay timing line controls 
when the potential of the electrodes floats (Eapp dotted) and the waveform is applied (Eapp solid). 
Behavioral events are recorded as digital transitions. (B) Example average (n = 30 trials) of dopamine 
concentration (grey trace) and average single unit firing rate (histogram) during ICSS recorded in the 
nucleus accumbens of an awake rat. The stimulating electrode in this study was implanted in the 
dopaminergic neurons of the ventral tegmental area. Data are aligned to the audiovisual cue. (C) 
Current response during waveform application. Voltage is applied to the electrode when the relay 
state is low while the recording window, defined by the CV application frequency, is denoted by the 
grey dashed lines. When the relay is in sync with the CV frequency clock (uncorrected, left) current 
spikes occur at the beginning and end of the voltage ramp.  The CV frequency clock also triggers the 
relay in TarheelCV (middle), but the recording window is increased to add holding time before the 
voltage sweep. In HDCV (right) a line distinct from the CV frequency clock is configured to hold low 5 
ms before and after the recording window.    
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(Owesson-White et al., 2008).  The data here are aligned to the onset of this cue and reveal 

that extracellular dopamine and cell firing increase in this location following the cue.  

switch between the voltage and current amplifiers, a small amount of charge injection 

and input capacitance occurs when switching, and artifacts appear in the data (Fig 6.3C, 

right). In older approaches, this was minimized by adding extra data points preceding the 

voltage ramp that produced a buffer for current stabilization. Extra data points were then 

removed during post-collection analysis. In HDCV the change of state of the digital relay line 

does not 

have to be synchronized to the CV frequency clock.  This allows for a wider voltage 

application window without changing the time frame of echem collection. The current artifact 

occurs at a set time before and after voltammetry acquisition, and no post collection 

correction is needed during analysis.   

 

Two dimensional data filtering  

FSCV is useful for the detection of rapid chemical fluctuations of nanomolar concentrations 

(Wightman et al., 2007). To resolve these small signals, digital filtering strategies are 

employed to remove high-frequency noise.  Previously, TarheelCV filtered each cyclic 

voltammogram with a 4th order low-pass Bessel filter (cutoff frequency of 2 kHz for a 400 

V/s scan rate) (Wiedemann et al., 1991), an option that is also available in HDCV.  For 

further noise removal, users previously employed an 8-point nearest neighbor smoothing 

kernel.  This filter generates a two-dimensional moving-point average that smooths 

differences within the CV domain and across consecutive CV scans and can be repeated 

multiple times.  The disadvantages of this nearest-neighbor smoothing kernel are that it 

executes slowly and that the frequency effects are not intuitive.  In contrast, HDCV offers a 

more rational two-dimensional Fast-Fourier transform (2D-FFT) filter for noise reduction. 

With a 2D-FFT filter the color plot is transformed into the frequency domain before a filtering 
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Figure 6.4.  Use of the 2D FFT filter in HDCV. (A) Transformed view of the original and filtered 
(clipped) data. Signal intensity at each frequency is shown for the CV domain (ordinate) and the time 
domain (abscissa). Both axes are centered at 0 Hz and extend from –fs/2 to fs/2, where fs is the 
sampling frequency. The -3 dB and -50 dB cutoffs are shown by the orange and black ellipses 
respectively. A Bessel roll-off is applied to smooth the transition between the -3 dB point and -50 dB 
point.  Cutoff frequencies (time domain: 1.35 Hz, CV domain: 2 kHz) were chosen to resemble 
application of a 2 kHz low pass Bessel filter and an 8 point nearest neighbor smoothing kernel. (B) 
Comparison of filtering methodologies on data taken during in vivo norepinephrine release in the bed 
nucleus of the stria terminalis of an anesthetized rat. Release was evoked by electrical stimulation of 
the ventral noradrenergic bundle. The original unfiltered data is shown to the right. Stimulation onset 
is denoted at time 0. Norepinephrine concentration extracted by PCR is shown as a trace above the 
color plot. The CV below is taken from the time point indicated by the white dotted line. The middle 
panel shows this data after filtering with the 2 KHz low pass Bessel filter and smoothing kernel. The 
right panel shows the data after the 2D FFT filter with the parameters shown in part (A).    
 

mask is applied. The retained frequencies are then transformed back into the spatial domain 

by the inverse Fourier transform. The effects of a low-pass 2D-FFT filter are analogous to a 

smoothing kernel, removing high frequency-noise components in the CV and time 
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dimensions. However, the 2D-FFT approach is preferred because it is rapidly calculated 

while maintaining the temporal resolution in the CV and the CV frequency domains.    

In the 2D-FFT filtering menu, the transformed signal and noise components of the data are 

viewed (Fig 6.4A). Cutoff frequencies are defined by an ellipse representing the -3dB point 

across both domains (inner orange ellipse). The outer ellipse (shown in black) indicates the -

50 dB boundaries where increased signal attenuation occurs.  The clipped transform 

displays the intensities of the retained frequencies.     

Figure 6.4B shows the results of different filtering methods on data collected during 

electrically stimulated norepinephrine release in an anesthetized rat.(Park et al., 2009)  The 

original unfiltered data are shown on the left. The oxidation of norepinephrine is visible in the 

color plot at 0.6 V on the forward scan. An alkaline shift in pH produces the features around 

-0.2 V on the forward and backward scans.  The trace above the color plot represents 

norepinephrine concentration extracted with PCR and the dotted line in the color plot 

represents the time of the CV shown below. The middle panels show these data after 

filtering with a 2 kHz Bessel function in the cyclic voltammetry domain and an 8-point 

smoothing kernel.  Noise is significantly reduced but the oxidation peak potential for 

norepinephrine is offset by 100 mV. The right panes illustrate the same data after use of the 

2D-FFT filter in HDCV.  The 2D-FFT filter removes noise similarly, while retaining the peak 

position of the CV.  

 

Analysis of continuous data  

FSCV is well suited to capture subsecond changes in neurotransmitter 

concentrations that naturally occur.  However, FSCV also has the ability to measure slower 

concentration changes, although this feature has been less frequently used (Heien et al., 

2005; Hermans et al., 2008). Traditional approaches collected data in 15, 30, or 60 second 

epochs so the data could be easily read.  Data sets were then reorganized after the 
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experiment into several more files that were time-locked around specific behavioral events.  

This approach was both tedious and created redundancies.  

HDCV facilitates the collection and analysis of large amounts of data.  Unlike 

TarheelCV, ‘continuous’ data ranging from minutes to hours can be stored within an HDCV 

file.  Experimental progress is viewed with live displays while the file is written.  Afterwards, 

the file can be reviewed in the analysis program. Memory limitations are avoided by recalling 

a portion of the binary file at a time.  CVs used for digital background subtraction can be 

taken from any point in the file, while zoom and pan controls allow the user to navigate 

through time in the file.   

The utility of HDCV’s extended time views was demonstrated while analyzing dopamine 

release following intravenous drug administration (Owesson-White et al., 2012). Here we 

show a prolonged dopamine response triggered by presentation of audio noise to an awake 

rat. Figure 6.5 shows data from a multi-minute experiment, where data were collected in 

separate 30 s files using TarheelCV.  Noise begins shortly into the first file and continues for 

the remaining time.  When viewing this data in TarheelCV, each 30 s period must be 

individually background subtracted (Fig 6.5A, background at yellow line).  This can lead to 

discontinuous data sets (Keithley & Wightman, 2011). A concatenated version of the data 

viewed in HDCV is shown below (Fig 6.5B). One set of CVs from the beginning of the file is 

used for background subtraction.  Both representations of the data reveal a decrease in 

dopamine (negative current at 0.6 V) when the white noise begins.  A CV captured at 75 s in 

Panel 4A shows little change because of the background subtraction method.  However, a 

CV taken at the same time point in the continuous version of the data reveals continuation of 

the negative dopamine transition (Fig 6.5C).  
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Figure 6.5. Continuous data analysis in HDCV. (A) Electrochemical recording of dopamine with the 
carbon-fiber electrode implanted in the nucleus accumbens of a freely-moving animal. Data is shown 
in 30 s file segments, as originally collected with the TarheelCV acquisition program. White audio 
noise begins at the bar above the color plots. Each file is background subtracted at the time indicated 
by the yellow dotted line. (B) Data from part (A) concatenated into a continuous HDCV file through a 
data convertor program.  Unlike TarheelCV, HDCV reads only the requested portion of the data file at 
a single time permitting long periods of data to be analyzed with a single background subtraction time 
point (yellow dotted line). (C) Background-subtracted CVs taken from the 30 s and continuous files at 
the same time point (white dotted lines in A and B). (D) PCR of the continuous data reveals a 
decrease in dopamine concentration over time. Based on the residual analysis (inset) the 
concentrations in the shaded box are statistically unreliable.     
Continuous analysis of FSCV experiments is limited by the signal-to-drift ratio, with the drift 

arising from the background current.  Principal component regression (PCR) is one method 

of assessing this limitation. In Figure 6.5D, the dopamine concentrations from the 

continuous file were extracted with PCR utilizing dopamine and pH training sets.  In this 

example analysis, an extraordinary large decrease in extracellular dopamine is apparent 
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after the onset of the noise.  Positive concentration spikes at the end of the trace are due to 

electrical stimulations. However, the residual, which represents signals not accounted for by 

PCR analysis, surpasses the expected noise levels (shown as Qa, Fig 6.5D inset) at 135 s.  

This indicates that the components of the training set do not accurately describe all 

significant sources contributing to the current signal, most likely due to drift in this example. 

Therefore, concentrations determined by PCR past this time point are statistically unreliable 

(Keithley et al., 2009; 2010). If the unknown current source is identified and added as a 

component of the training set even longer analysis is possible (Hermans et al., 2008). 

 

Time bin generation and signal averaging  

The application of FSCV in behavioral neuroscience has provided a greater 

understanding of dopamine in reward, learning and addiction (Phillips et al., 2003; Robinson 

et al., 2003; Day et al., 2007; Owesson-White et al., 2009; Park et al., 2011).  Behavioral 

paradigms often involve a series of events that are repeated at random intervals. In these 

experiments data are continuously recorded while events of interest, such as a cue or lever 

press, are marked by digital transitions produced by an operant conditioning system. Both 

electrochemical and digital data can be viewed simultaneously in HDCV Analysis (Fig 6.6A).  

The analysis of such data requires breakdown into smaller time bins, usually aligned to a 

given digital event.  Each time bin is separately viewed, electrical artifacts are removed, and 

concentrations of different analytes are extracted with PCR. Finally, signal-to-noise is 

improved by averaging multiple time bins from similar events. The analysis routine in 

TarheelCV was disjointed and time-consuming, requiring an individual file per time bin, and 

externally generated training sets for PCR.  Now, HDCV streamlines this analysis by 

incorporating the entire process and providing a greater degree of feedback. After opening a 

continuous file, the user indicates the digital line of interest, the direction of the transition 

and the time frame surrounding the event. HDCV allows visualization of each time bin.  An 
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option on the main screen allows removal of electrical artifacts by replacing them with an 

average of CVs taken before and after the artifact.  All of this work can be saved in a file that 

is separate from the original data, which avoids storage of redundant information.  

An example time bin recorded during an ICSS experiment is shown in Figure 6.6B.  

The data in Figure 6.6A was recorded during multiple ICSS trials, each one beginning with 

the audiovisual cue (digital line 4).  The time bin shown in Figure 6.6B was aligned to this 

cue.  The user can select the set of voltammograms for digital background subtraction for 

each time bin.  

HDCV supports each step of PCR by making it easy to capture and save standards 

from many files. Tools that aid in the construction of a valid training set include a principal 

component score plot used to evaluate linearity of training set cyclic voltammograms, a K-

matrix plot which evaluates the predictive ability of the calibration model for each analyte, 

and a Cook’s Distance calculation which is used to identify improper training set samples.  

All of these approaches are described elsewhere (Keithley & Wightman, 2011).  HDCV 

integrates these tools into the user interface, whereas before users were forced to use 

multiple programs for calculations including Microsoft Excel and MATLAB. The user-

constructed training set is then applied to a data file or set of time bins. A new window 

displays concentration and residual information for each time bin, and the user can further 

refine which time bins to keep for averaging. Figure 6.6D shows results obtained from this 

process. The dopamine concentration for the time bin aligned to the ICSS cue 
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Figure 6.6. Time bin analysis procedure in HDCV. (A) A five minute view of continuous data collected 
during ICSS. HDCV displays both electrochemical (color plot) and digital input data simultaneously on 
its main screen. (B) A time bin extracted from the data in (A). The time bin is aligned to the falling 
edge of line four, which indicates the presentation of an audiovisual cue. Digital transitions 
corresponding to lever out, lever press and stimulation events also occur within this time frame.  (C) 

Progression plot showing dopamine concentration (µM) versus time for 40 consecutive ICSS trials 
aligned to the cue. (D) Single and average (n = 40 trials) time bin data extracted with the training set 
shown in (C). Dopamine concentration is shown as a trace above each color plot. The identity and 
timing of the alignment event is indicated by the dotted vertical lines.  
shown in 5D is displayed on the left.  An initial increase in dopamine concentration is seen in 

response to the cue at time 0. A second increase appears approximately 3 s later when the 

animal receives an electrical stimulation for pressing the extended lever.  The central panel 

in Figure 6.6D shows the average from 40 similar time bins revealing the same features but 

with an increased signal-to-noise ratio.  



 

196 

 

Proper time bin alignment is crucial when interpreting data from such paradigms. In 

the averaged data (Fig 6.6D, middle), the alignment provides an attenuated view of the 

stimulation response because the animal pressed the lever at variable times after the cue. 

Averaged time bins are easily realigned to another digital line in HDCV, a process that  

required reanalysis of the entire data set in TarheelCV. In Figure 6.6D (right) the same time 

bins are averaged to the stimulus onset to provide an accurate response profile.  All of these 

analysis features reduce the amount of time required to analyze the results of such 

experiments (from days to hours). 

 

Conclusions  

 HDCV is a reliable, established program for FSCV.  It has multiple features that 

enable flexible data acquisition and facilitate data analysis.  The program retains features of 

previous programs while adding improvements in signal processing, data interpretation, and 

alignment with external events.  The program was designed to enable future experiments 

that enhance the information obtained concerning neuronal processing during behavioral 

activities.  The software is freely available for non-profit use on the website of the UNC 

Chemistry Electronics Facility.  
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CHAPTER 7: EVALUATION OF FUSED-SILICA INSULATED CAR BON-FIBER 
MICROELECTRODES FOR LONGITUDINAL NEUROCHEMICAL STUD IES 

 

Introduction 

Dopamine signaling in the basal ganglia has a critical role in motor-coordination and 

motivational behavior (Carelli, 2004; Schultz, 2013; Calabresi et al., 2014). Among existing 

analytical techniques, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes 

has proven particularly valuable in the study of rapid dopamine release in anesthetized and 

behaving rodents (Robinson et al., 2008; Willuhn et al., 2010). Indeed, FSCV measurements 

have provided insight into how this catecholamine neurotransmitter modulates learned 

behaviors and how its dysregulation contributes to the pathology of disorders as varied as 

drug addiction (Aragona et al., 2008; Wheeler et al., 2011; Ehrich et al., 2014) and 

Parkinson’s disease (Cragg et al., 2000; Janezic et al., 2013; Lohr et al., 2014).  

 As our knowledge of the midbrain dopamine system has grown it has become 

increasing apparent that it is a complex, dynamic neuronal network that is capable of 

adaption (Robinson et al., 2011; Ferris et al., 2013; Park et al., 2013; Crowley et al., 2014) 

and spatially heterogeneous on a micrometer scale (Garris et al., 1994; Wightman et al., 

2007; Park et al., 2010). With this in mind, the ability to conduct FSCV measurements over 

multiple days or months would provide valuable information on how dopamine signaling 

changes during learning and disease progression. Traditionally such studies are carried out 

in one of two ways, either by sacrificing animals at different time points of the experiment 

(Addy et al., 2010; McElligott et al., 2013) or by implanting a fresh carbon-fiber 

microelectrode on each day of testing via a microdrive attached to the skull 
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(Garris et al., 1997). Both of these strategies notably fail to maintain the exact same 

neurochemical environment between sampling points. 

Chronic sensor implantation, however, would allow longitudinal data to be collected   

from the same dopamine terminal population. While early attempts at chronic 

electrochemical measurements found little success (Duff & O'Neill, 1994; Kruk et al., 1998), 

Phillips and coworkers recently reported of a new type of carbon-fiber microelectrode that 

can function after several months of implantation (Clark et al., 2010). Their initial work 

demonstrated that this chronic FSCV sensor can measure naturally-evoked dopamine 

transients up to four-months after implantation and over a period of 25 days. Overall, the 

survival and performance of Phillips’ chronic electrode has been attributed to its size; in 

contrast to the conventional 0.6 mm borosilicate glass that is used to insulate conventional 

FSCV electrodes, the carbon-fiber of the chronic electrode is housed in 90 µm diameter 

fused-silica tubing. This results in little tissue damage during implantation and, in turn, little 

immune reactivity even after several months of implantation.  

Although this chronic carbon-fiber microelectrode presents the first viable sensor for 

long-term measurement of rapid dopamine neurotransmission, there is still question as to 

how they can be used. For instance, comparison of measurements over multiple days 

requires a stable electrode response and, while implantation itself does not deteriorate the 

sensitivity of the sensor for dopamine, no one has considered the potential effects of 

extended waveform application. Previous work by our lab has demonstrated that the carbon 

fiber is altered by the voltammetric scan through an oxidative etching process, which 

continuously cleans the surface while enhancing dopamine sensitivity through increased 

adsorption (Heien et al., 2003; Takmakov et al., 2010; Keithley et al., 2011). In the short 

term this process is stable; however, at longer times this etching process could result in 

significant loss of electrode area or even degradation of the seal. 
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In attempt to address such concerns, our lab has initiated a number of experiments 

to more clearly define the limitations of chronic FSCV measurements. This chapter 

describes construction of the chronic probes and the results of our preliminary investigations.   

 

Experimental 

Chronic electrode construction  

Chronic electrode fabrication was a four day process, consisting of the following steps.   

(1) Threading: 

Polyimide-fused silica tubing (90 µm o.d., 20 µm i.d., Polymicrotechnologies, 

Phoenix, AZ) was cut into 10 mm pieces using a fresh scalpel blade so that the 

edges were free from perforation. Single carbon fibers (~ 2 in length, 5 µm diameter, 

T-650 type, Amoco, Greenville, SC) were then guided through the cut capillaries in a 

bath of ethanol, using cotton applicators and a stereoscope (Wild M3Z, Leica, Buffalo 

Grove, IL). The carbon fibers were positioned so that approximately half extended 

from each end of the capillaries. Filled capillaries were set aside to dry overnight.  

(2) Forming the seal: 

Once dry, the filled capillaries were suspended 1-2 mm over a cut piece of paper 

using an arched strip (⅛ x 1 in) of label tape. Each piece of paper was secured to a 

petri dish using additional tape. Next, quick setting epoxy (Part No. TQS-2, Super 

Glue Corp., Rancho Cucamonga, CA) was applied to one end of each carbon fiber in 

a dabbing motion with a small gauge need tip under the stereoscope.  The epoxy 

was then drawn through the capillaries by pulling the opposite end of the carbon 

fibers with a finger. This process was repeated until the epoxy had wicked several 

millimeters into the capillaries and formed hemispheric seals. The applied epoxy was 

allowed to dry overnight.   
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(3) Trimming the fiber and adding a connection pin: 

After the epoxy had 24 h to harden, the carbon fibers at the end of the seals were cut 

with a pair of Vannas scissors (3 mm blades, 0.1 mm tips) to an exposed length of 

~150 µm. Following this step, silver epoxy (Part No. 8331-14G, MG Chemicals, 

Surrey, B.C., Canada) was applied to rectangular areas (~3 x 1 mm) of Parafilm®. 

The uncut side of each fused-silica electrode was placed into a silver epoxy deposit 

using forceps. Connector pins (Part No. 0667-0-15-01-30-27-10-0, Mill Max Mfg. 

Corp., Oyster Bay, NY) were positioned on top of the silver-epoxy submerged fibers 

and allowed to dry overnight.        

(4) Insulating the connection: 

The electrodes were secured onto a handheld mount via the connection pin. Quick 

setting epoxy was applied around the carbon-fiber-pin area and a portion of the 

capillary to secure the connection and to provide a degree of electrical insulation.  

The epoxy insulation was allowed to dry overnight before the electrodes were used. 

A schematic diagram of the assembled components is shown in Figure 7.1. 

 

Acute electrode construction 

Carbon-fibers(~ 2 in length, 5 µm diameter, T-650 type, Amoco, Greenville, SC) were 

aspirated into borosilicate capillaries (0.6 mm x 0.4 mm diameter, 4 in length) using a 

vacuum pump. Each capillary was then pulled into two separate electrodes sealed to a fine 

tip using a micropipette puller (Narishige, East Meadow, NY). The exposed carbon fibers 

were cut to a 150 µm length with a surgical scalpel under a light microscope. Electrical 

connections were made to wires with gold pin connectors by silver paint. The wires were 

secured to the capillaries with shrink wrap. Comparison of the acute and chronic electrode 

types is provided in Figures 7.2 and 7.3.       



 

Figure 7.1.  Schematic of the chronic type microelectrode. (A) Components at th
Components at the sensor connection.
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Schematic of the chronic type microelectrode. (A) Components at the sensor tip. (B) 
Components at the sensor connection. 

 

e sensor tip. (B) 



 

 

 

 

 

Figure 7.2 Size comparison between acute and chronic microelectrode types
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Size comparison between acute and chronic microelectrode typesSize comparison between acute and chronic microelectrode types 



 

 

 

 

 

 

Figure 7.3. Electron micrographs of acute and chronic carbon
microelectrode. The fused silica capillary, epoxy seal and carbon
chronic electrode shown in panel A. (C) The seal of an acute microelectrode. The arrow indicates a 
hairline fracture along the glass seal.
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Electron micrographs of acute and chronic carbon-fiber microelectrodes. (A) A chronic 
microelectrode. The fused silica capillary, epoxy seal and carbon-fiber are visible. (B) The seal of the 
chronic electrode shown in panel A. (C) The seal of an acute microelectrode. The arrow indicates a 
hairline fracture along the glass seal.  

fiber microelectrodes. (A) A chronic 
fiber are visible. (B) The seal of the 

chronic electrode shown in panel A. (C) The seal of an acute microelectrode. The arrow indicates a 
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Electrochemical measurements 

FSCV was performed with TarheelCV, a program written in LabVIEW (National 

Instruments, Austin, TX), and a locally-constructed macro head-stage amplifier (UNC 

Electronics Facility, Chapel Hill, NC). Reference electrodes were Ag/AgCl. Measurements 

were made using a triangular sweep scanning from -0.4 V to 1.3 V at rate of 400 V/s. The 

waveform was applied at 10 Hz with a -0.4 V holding potential.  Carbon-fiber electrodes 

were preconditioned with the waveform for 30 min (15 min at 60 Hz, 15 min at 10 Hz) before 

each use. 

   

Flow injection analysis  

The sensitivity, temporal response, and limit of detection for each electrode were 

determined using a submerged flow injection analysis system fitted with a 6-port rotary valve 

controlled by a pneumatic actuator. Dopamine solutions were prepared in Tris buffer 

(15 mM Tris, 126 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 2.4 mM CaCl2, 1.2 mM 

NaH2PO4, 1.2 mM MgCl2, 2.0 mM Na2SO4 ) adjusted to pH 7.4 with NaOH. All standards 

were introduced as 5 s injections at a flow rate of 2 mL/min.  

Peak currents, noise levels and response times were determined for flow injection 

data using the data analysis component of TarheelCV (Figure 7.4). All data were filtered 

using a low-pass Bessel filter with a 2 KHz cutoff frequency. Peak oxidation currents were 

used to generate dopamine calibration curves. Response time was measured as the amount 

of time necessary for the peak current to rise from 10% to 90% of its maximum value. Limit 

of detection was calculated as three times the standard deviation of the noise at the 

potential of dopamine oxidation during the 5 s before each injection. Statistical analysis was 

accomplished using GraphPad Prism software. P values less than 0.05 were considered 

statistically significant.   

 



 

 

 

 

 

Figure 7.4. Example data collected during a flow injection analysis experiment. Voltammetric data is 
displayed as a color plot with the voltage applied mapped along the ordinate, the time of 
voltammogram acquisition along the abscissa and current in false color. Features corresponding to 
the oxidation (+0.6 V, dashed white line) and reduction (
after the time of injection (denoted by the red bar). The trace above t
current at the dopamine oxidation potential during data collection. Peak current, response time and 
noise levels were determined from the indicated areas on the current
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Example data collected during a flow injection analysis experiment. Voltammetric data is 
displayed as a color plot with the voltage applied mapped along the ordinate, the time of 

acquisition along the abscissa and current in false color. Features corresponding to 
the oxidation (+0.6 V, dashed white line) and reduction (-0.4 V) of dopamine (2 µM) appear slightly 
after the time of injection (denoted by the red bar). The trace above the color plot represents the 
current at the dopamine oxidation potential during data collection. Peak current, response time and 
noise levels were determined from the indicated areas on the current 

Example data collected during a flow injection analysis experiment. Voltammetric data is 
displayed as a color plot with the voltage applied mapped along the ordinate, the time of 

acquisition along the abscissa and current in false color. Features corresponding to 
µM) appear slightly 

he color plot represents the 
current at the dopamine oxidation potential during data collection. Peak current, response time and 
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In vivo measurements  

All animal procedures were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill. Male Sprague-Dawley rats 

(250 – 350 g, Charles Rivers, Wilmington, MA) were paired-houses in a 12:12 h light-dark 

cycle temperature and humidity controlled environment with food and water available ad 

libitum. On the day of electrode implantation, animals were anesthetized with isoflurane 

(1.5–2.0%) and mounted in a stereotaxic frame. The dorsal skull was exposed and holes 

were drilled for placement of a chronic type carbon-fiber microelectrode, a stainless steel 

bipolar stimulating electrode, an acutely implantable reference and support screws. Anterior-

posterior (AP), medial-lateral (ML) and dorsal-ventral (DV) coordinates were reference from 

bregma based on the atlas of Paxinos and Watson.  

The hole for the carbon-fiber microelectrode targeted the dorsal striatum (AP +1.2 

mm, ML +2.0 mm, DV -4.0 – -5.5 mm). A guide cannula for implantation of a Ag/AgCl 

reference was positioned above a hole at similar anterior-posterior coordinates in the 

contralateral hemisphere and secured with dental cement. During the surgery a stimulating 

electrode was lowered into the ventral tegmental area (AP -5.2 mm, ML +1.2 mm, DV -8.0 – 

-9.0 mm).  Stimulation of these coordinates (± 300 µA, 60 biphasic pulses, 2 ms/pulse, 60 

Hz, NL 800 A, Neurolog, Digitimer, Hertfordshire, UK) was used with voltammetric 

measurements to guide placement of the carbon-fiber microelectrode during the surgery.  

Once the carbon-fiber electrode was placed at a depth with optimal stimulated 

catecholamine release it was secured to the skull with dental cement. The stimulating 

electrode was then completely removed and the skin was sutured with Vet Bond Adhesive 

to seal the remaining exposed portion of the skull.  Animals were closely monitored closely 

after surgical procedures and allowed to recover on a heating pad. Once animals awoke 

they were administered Children’s Tylenol (0.4 mL, 12.8 mg acetaminophen) and 

maintained for 6-8 weeks post op before voltammetric experiments were conducted.  
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On the day of recording, the animals were anesthetized with urethane (1.5 mg/kg) 

and placed in a stereotaxic frame. The posterior portion of the skull was re-exposed with a 

scalpel. A drill was used to removed bone growth over the ventral tegmental area hole so 

that a new stimulating electrode could be implanted. A fresh Ag/AgCl reference electrode 

was inserted through the guide cannula and the depth of stimulation was adjusted to 

maximize the amount of dopamine release recorded at the carbon-fiber microelectrode.    

 

Results 

Comparison of acute and chronic type electrode performance 

Acute (borosilicate) and chronic (fused-silica) electrode types were characterized 

using flow injection analysis. The effect of prolonged use was examined using the chronic 

electrodes types by recalibrating each electrode after several periods of waveform 

application. During each period the waveform was applied at 60 Hz for 2 h to mimic 12 h of 

recording at the conventional 10 Hz frequency.   

Results are summarized in Figure 7.5 and Table 7.1. Acute electrodes had a higher 

sensitivity and a lower limit of detection for dopamine than chronic electrodes (unpaired 

student’s t-test, P<0.001). No differences were found between their time responses.  

During prolonged waveform application experiments, the calibration factor of the 

chronic electrodes was different for every time interval assayed.  Through the first two 

periods of waveform application (equivalent to 24 h of use) the sensitivity of the electrodes 

increased to 160% of its initial value. The sensitivity of the electrodes then fell to 79% of this 

peak value over the two periods of waveform application (between 24 h to 48 h of equivalent 

use). Analysis of this data by one-way ANOVA with a Bonferoni post-hoc test revealed 

significant differences in sensitivity and limit of detection after each period of cycling 

(P<0.001), except between the second (12 h) and fourth (36 h) time points. No significant 

differences were found between time responses.             



 

Figure 7.5. Dopamine calibration curves for 150 
standard deviation for the number of electrodes indicated in Table 1. (A) Comparison of acute and 
chronic electrode responses. (B) Effect of prolonged waveform application on chronic electrode 
responses 
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Dopamine calibration curves for 150 µm carbon fiber microelectrodes. Error is 
standard deviation for the number of electrodes indicated in Table 1. (A) Comparison of acute and 
chronic electrode responses. (B) Effect of prolonged waveform application on chronic electrode 

m carbon fiber microelectrodes. Error is shown as 
standard deviation for the number of electrodes indicated in Table 1. (A) Comparison of acute and 
chronic electrode responses. (B) Effect of prolonged waveform application on chronic electrode 
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Electrode 
Type  n  Cycle Time 

(h) 
Sensitivity 

(nA/µM) LOD (nM) Temporal 
Response (s)  

Acute  15 0 14.2 ± 0.4 11.2 ± 0.5 1.1 ± 0.3 

Chronic  

22 0 11.3 ± 0.4
§ 14.2 ± 0.8

§ 1.0 ± 0.3 

14 12 16.2 ± 0.7* 11.6 ± 1.2* 0.9 ± 0.5 

12 24 18.0 ± 0.6* 19.8 ± 3.2* 0.8 ± 0.4 

12 36 15.6 ± 0.7* 9.9 ± 0.3* 0.9 ± 0.4 

12 48 14.3 ± 0.7* 17.9 ±2.2* 0.9 ± 0.2 
 

Table 7.1.  Chronic and acute electrode responses to dopamine with flow injection analysis. Cycle 
time indicates the length of waveform application (at a 10 Hz recording frequency) before the 
calibration was obtained. LOD, limit of detection; n, number of electrodes. §Significantly different from 
acute electrodes as determined by student’s t-test, P < 0.001. *Significantly different from chronic 
electrodes with 0 h of waveform application as determined by student’s t-test, P < 0.001 
 

 

 

 

 

 

 

 

 



 

 

Figure 7.6 In vivo performance of chronically implanted carbon
stimulated dopamine release at the same location in the dorsal striatum immediately after the 
electrode was secured with dental cement (Day 0) and after chronic implantation (Day 35). The 
second peak in the Day 0 trace is due to 60 Hz noise as measurements on the day of the surgery 
were made outside of a Faraday cage. The time of stimulation is denoted by 
detailed view of voltammetric data shown in A. Oxidation potential for dopamine is indicated by the 
white dashed lines in the color plots. Inset cyclic voltammograms are taken at the times of peak 
dopamine current.       
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performance of chronically implanted carbon-fiber microelectrode. (A) Electrically
stimulated dopamine release at the same location in the dorsal striatum immediately after the 

e was secured with dental cement (Day 0) and after chronic implantation (Day 35). The 
second peak in the Day 0 trace is due to 60 Hz noise as measurements on the day of the surgery 
were made outside of a Faraday cage. The time of stimulation is denoted by the red bar. (B) More 
detailed view of voltammetric data shown in A. Oxidation potential for dopamine is indicated by the 
white dashed lines in the color plots. Inset cyclic voltammograms are taken at the times of peak 

fiber microelectrode. (A) Electrically-
stimulated dopamine release at the same location in the dorsal striatum immediately after the 

e was secured with dental cement (Day 0) and after chronic implantation (Day 35). The 
second peak in the Day 0 trace is due to 60 Hz noise as measurements on the day of the surgery 

the red bar. (B) More 
detailed view of voltammetric data shown in A. Oxidation potential for dopamine is indicated by the 
white dashed lines in the color plots. Inset cyclic voltammograms are taken at the times of peak 
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Carbon-fiber electrode performance after chronic implantation  

Only one electrode (of 3 attempted surgeries) survived chronic implantation (Figure 

6). However, for this single electrode the peak dopamine signal had diminished to 4% of its 

original value between the day of surgery and the day of the experiment (a 35 day period).  

In addition, the temporal aspects of the stimulated dopamine response appeared to be 

slower than observed on the day of implantation.  

 

Discussion 

There are several notable points of discussion in this initial work. First, we found that 

the acute electrodes were more sensitive to dopamine than the chronic electrodes. This was 

surprising as both types were made using the same stock of T-650 carbon fibers, and 

therefore should exhibit the same adsorption and electron-transfer kinetics. There are 

however other factors that could influence sensitivity such as in mass transport and surface 

area. Though most of the voltammetric signal for dopamine is due to its adsorption between 

scans (Bath et al., 2000), it is possible that  the geometry of the chronic electrode could 

hinder mass transport to the carbon fiber near the seal (Figure 3B). Furthermore, 

environmental scanning electrode microscopy revealed hairline cracks in the seals of many 

of the acute electrodes (Figure 3C). Taking this into consideration, it is reasonable to 

assume that the exposed carbon-fiber area was underestimated for the acute electrodes. 

This would in turn lead to a higher apparent sensitivity.   

Of particular relevance to longitudinal studies, we found that the electrochemical 

response to physiological concentrations of dopamine changed with prolonged use. These 

changes were consistent with the oxidative etching process reported to occur with this 

waveform, (Heien et al., 2003; Takmakov et al., 2010) which is the predominant waveform 

used in behavioral dopamine studies. Over the first two periods of waveform cycling the 

sensitivity to dopamine increased, probably due to continued generation of adsorption-
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mediating oxides. This was followed by a decrease in sensitivity over the last two periods of 

cycling, where the effects of surface etching likely overcame those of surface oxidation. 

Regardless of the actual mechanisms mediating these changes, these data clearly 

demonstrate that the sensitivity of the electrode is time dependent and changes at an 

inconstant rate.  

In our single successful animal experiment, we found that dopamine release was 

attenuated and temporally distorted after 35 days of electrode implantation. While the work 

of Phillips and coworkers also observed a loss in temporal response—which can 

theoretically be accounted for by deconvolution techniques (Venton et al., 2002)—they did 

not report any differences in electrode sensitivity after chronic implantation (Clark et al., 

2010). Therefore, the large attenuation of dopamine release in our experiment suggests that 

the position of the electrode shifted from the day of surgery or that significant tissue damage 

had occurred around the carbon-fiber. This is at odds with the previous report, which found 

little glial reactivity or terminal degradation at the site of implantation. 

 

Conclusions 

Together these preliminary results suggest that caution is needed in the use of 

chronically implanted electrodes. Importantly, our observations from flow injection analysis 

experiments warn against data interpretations that are based on signal amplitude 

comparison across multiple days. Future work is needed and will continue to explore the 

performance of the chronic FSCV sensors in vivo.   
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