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Abstract

Multiple factors introduce uncertainty into projections of species distributions under climate

change. The uncertainty introduced by the choice of baseline climate information used to

calibrate a species distribution model and to downscale global climate model (GCM) simula-

tions to a finer spatial resolution is a particular concern for mountainous regions, as the spa-

tial resolution of climate observing networks is often insufficient to detect the steep climatic

gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework

together with occurrence data on 21 understory bamboo species distributed across the

mountainous geographic range of the Giant Panda, we examined the differences in pro-

jected species distributions obtained from two contrasting sources of baseline climate infor-

mation, one derived from spatial interpolation of coarse-scale station observations and the

other derived from fine-spatial resolution satellite measurements. For each bamboo spe-

cies, the MaxEnt model was calibrated separately for the two datasets and applied to 17

GCM simulations downscaled using the delta method. Greater differences in the projected

spatial distributions of the bamboo species were observed for the models calibrated using

the different baseline datasets than between the different downscaled GCM simulations for

the same calibration. In terms of the projected future climatically-suitable area by species,

quantification using a multi-factor analysis of variance suggested that the sum of the vari-

ance explained by the baseline climate dataset used for model calibration and the interac-

tion between the baseline climate data and the GCM simulation via downscaling accounted

for, on average, 40% of the total variation among the future projections. Our analyses illus-

trate that the combined use of gridded datasets developed from station observations and

satellite measurements can help estimate the uncertainty introduced by the choice of base-

line climate information to the projected changes in species distribution.
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Introduction

Uncertainty is an important consideration for all climate change assessments. Ignoring or

minimizing the importance of uncertainty can negatively affect the usefulness of assessment

outcomes for decision making and planning [1]. Uncertainty is a particular concern for cli-

mate change assessments of future species distributions, as sensitivity analyses have identified

multiple sources of uncertainty that can substantially impact assessment findings. These

include the availability and quality of species information (e.g., [2–3]), methodologies used to

develop species distribution models (e.g., [4–8]), selection of predictor variables that capture

environmental influences on species distributions (e.g., [9–11]), thresholds used to convert

likelihood of occurrence to binary predictions of species presence (e.g., [12–13]), parameteri-

zations and tuning of model settings (e.g., [14]), and choice of future climate simulations (e.g.,

[15–17]). Although few assessments explicitly consider all these uncertainty sources, often due

to resource constraints, their importance when interpreting and applying the assessment find-

ings for conservation planning is well established in the literature.

A less well understood uncertainty source is the choice of baseline climate information. As

pointed out by Perdinan and Winkler [18], climate observations are the “backbone” of any cli-

mate change assessment. Baseline climate information is used in ecological assessments to cali-

brate species distribution models and, for many assessments, to downscale simulations from

climate models to a finer spatial resolution [19]. A challenge is that the spatial resolution of cli-

mate observing networks, ranging from tens of kilometers in developed regions to hundreds

of kilometers in remote areas or at high elevations [20–21], may be insufficient to capture the

local and regional climatic gradients that influence the distribution of a particular species [22].

Because of the limitations of climate observing networks, gridded baseline climate layers

that have been generated at a fine resolution through spatial interpolation of station observa-

tions are frequently used in climate change assessments of future species distributions.

Gridded climate datasets differ in terms of their spatial resolution (a few meters to tens of kilo-

meters), temporal resolution (from sub-daily to long-term means), spatial extent (regional to

global), and the complexity of the spatial interpolation technique [23]. No “best” gridded data-

set for ecological assessments exists [24], and users need be aware of the strengths and weak-

nesses of the available climate datasets. Moreover, a recent sensitivity analysis found that the

uncertainty introduced into projected future distributions of African bird species by the differ-

ences among several popular gridded climate datasets in their depiction of regional to sub-

continental climatic gradients was often larger than the uncertainty introduced by the choice

of future climate projection [19].

The potential contribution of the choice of baseline climate information to assessment uncer-

tainty is arguably larger for climate change assessments in mountainous regions, where complex

local and regional climate gradients arise from climatic controls such as elevation, aspect, rain

shadows, and cold air drainage [25]. Datasets developed from coarse-resolution climate net-

works are unlikely to capture these fine-scale climatic gradients [26–27]. For most mountainous

regions, especially in more remote locations, high-density climate networks are unavailable, and

those climate stations that do exist are primarily located at lower elevations where population

densities are higher [28]. Furthermore, time-dependent biases in the observational record of a

climate station, introduced by changes in location, instrumentation, time of observation, and

the surrounding environment [29], can have a large influence on gridded climate datasets when

the number of stations is small relative to the scale of important climatic gradients. Conse-

quently, the uncertainty introduced by baseline climate information to assessments of future

species distributions, and its relative contribution compared to other uncertainty sources, is
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largely unknown for mountainous regions. Yet mountainous regions are home to rich biodiver-

sity and account for approximately a quarter of the global land area [30].

We propose that the joint application of conventional and remotely-sensed gridded climate

datasets can provide needed insights into the relative magnitude of the uncertainty contributed

by the choice of baseline climate information to future projections of species distributions in

mountainous regions. Remotely-sensed measurements are estimates of climate parameters

obtained from radiative fluxes at various electromagnetic wavelengths [31] or by blending

remotely-sensed estimates with observations from climate observing networks [32]. Compared

to conventional observations, remotely-sensed datasets have a more uniform spatial coverage

and finer native spatial resolutions ranging from a few meters to a few kilometers. These data-

sets have their own limitations, though, such as atmospheric interference (e.g., clouds), accu-

racy deviations of the on-orbit sensor calibrations, and limitations of the algorithms used to

estimate climate parameters from the radiation measurements, among others [33]. In addition,

remotely-sensed datasets usually have shorter record lengths than climate station observations.

Therefore, remotely-sensed datasets are not a replacement for conventional datasets but poten-

tially a complementary source of baseline climate information.

Below we use two sources of gridded climate data to evaluate the relative contribution of

the choice of baseline climate information to the uncertainty of future species distributions in

a mountainous environment. The first source is the popular WorldClim dataset (hereafter

referred to as “WC”) [34] derived from spatial interpolation of conventional climate station

observations. The second source is a newly compiled dataset of remotely-sensed measure-

ments of temperature and precipitation (hereafter referred to as “RS”) [35]. Specifically, we

investigate: 1) the variance structure of the alternative sources of baseline climate information;

2) the influence of the baseline climate layers on the calibration and interpretation of species

distribution models; 3) spatial variations in the projected future probabilities of species pres-

ence obtained from the alternative baseline datasets; and 4) the relative magnitude of the

uncertainty introduced by the choice of baseline climate information into projections of future

climatically-suitable area including the interaction with other sources of uncertainty.

The example study region is the current geographic range of the Giant Panda (Ailuropoda
melanoleuca) which covers six mountain regions (i.e., the Qinling, Minshan, Qionglaishan,

Daxiangling, Xiaoxiangling and Liangshan Mountains) (Fig 1) in southwest China [36].

Twenty-one understory bamboo species consumed by the Giant Panda serve as the focal spe-

cies. The Giant Panda is a global icon of biodiversity conservation and has been the subject of

extensive conservation efforts [37–38]. Future changes in the distribution of understory bam-

boo species due to climate change are anticipated to impact the extent and degree of fragmen-

tation of panda habitat and the connectivity among panda subpopulations [39–40]. However,

the uncertainty introduced by the choice of baseline climate information on future projections

of bamboo or panda distributions has not been considered. Earlier studies employed only a

single source of baseline climate information, usually the WC dataset [41–46]. Therefore, a

better understanding of the relative contribution of the choice of baseline climate information

to the overall uncertainty of future projections of bamboo distribution is essential for Giant

Panda conservation efforts.

Methods

Data sources and preparation

Species occurrence data. Occurrence data for 21 bamboo species (S1 Table) consumed

by the Giant Panda were obtained from the Fourth National Survey on Giant Pandas [38]

for more than 11,900 field survey locations. The Fourth Panda Census covered an area of
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43,583 km2, and was conducted along 20,513 transects located within Sichuan, Shanxi, and

Gansu Provinces [38, 47].

Baseline climate data. The WC dataset consists of gridded climate layers for the 1960–

1990 period at a resolution of 30 arc-seconds (about 1 km). The gridded layers were produced

by applying a thin-plate smoothing spline algorithm to station observations of monthly precip-

itation and mean, minimum, and maximum temperature using latitude, longitude, and eleva-

tion as independent variables [34]. The observation stations within the study region that were

used in the WC interpolation are shown in Fig 1 in relation to the regional topography.

Gridded fields of 19 commonly used bioclimatic variables (bio1-bio19, S2 Table) were down-

loaded from http://www.worldclim.org/version1, along with long-term averages of monthly

maximum, minimum, and mean temperature and monthly total precipitation. The variables

were interpolated and resampled to a 1 km2 resolution using bilinear interpolation to adjust

for sampling bias and to ensure equal area cells [48].

The RS estimates of temperature and precipitation, available at a 0.05 degree (about 6 km)

resolution, were compiled by Deblauwe et al. [35] for the period 2001–2013 for temperature

and 1981–2013 for precipitation. The temperature estimates were obtained from monthly

maximum, minimum, and mean land surface temperatures acquired by the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) onboard the National Aeronautics and Space

Administration Terra satellite (MOD11C3 v. 6.0 product). Precipitation estimates were

obtained from the Climate Hazards Group InfraRed Precipitation with Station version 2

Fig 1. Location and elevation of the study region showing the names of the main mountain ranges. The red dots indicate the locations of climate

observation stations used by WorldClim (WC).

https://doi.org/10.1371/journal.pone.0189496.g001
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(CHIRPS v. 2.0) dataset, which blends satellite imagery with in-situ (i.e., station) precipitation

observations. Average monthly values were used to derive the same 19 bioclimatic variables

available for WC. The bioclimatic variables were downloaded from https://vdeblauwe.

wordpress.com, and re-projected using bilinear interpolation a 1 km2 spatial resolution.

Future climate projections. WC provides future projections for 2061–2080 of average

monthly temperature and precipitation and of the 19 bioclimatic variables. These projections

were downscaled by the WorldClim developers from simulations for 17 GCMs in the Coupled

Model Intercomparison Project Phase 5 (CMIP5) archive [49] to a 30 arc-second resolution

using the popular “delta” method [50]. The 17 GCMs are: ACCESS1-0, BCC-CSM1-1, CCSM4,

CNRM-CM5, GFDL-CM3, GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES,

INMCM4, IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, MPI-ESM-LR,

MRI-CGCM3, and NorESM1-M. The downscaled projections for the Representative Concen-

tration Pathway (RCP) 8.5 forcing scenario were used in this study.

The delta downscaling method was also used to derive similar projections for the RS

dataset. We first subtracted the WC layers of average maximum, minimum, and mean temp-

erature for the 1960–1990 observed period (what the WC developers refer to as the “current”

climate) from the future projections of average monthly maximum, minimum, and mean tem-

perature for each of the 17 GCMs available from the WC website (http://www.worldclim.org/

CMIP5v1). The differences at each grid point are the delta values that the WC developers used

to derive the projected future (2061–2080) values of maximum, minimum, and mean tempera-

ture from the WC baseline climate data. For precipitation, the relative differences (i.e., ratio)

between the WC future mean monthly precipitation projections and the WC baseline mean

monthly precipitation fields were calculated. The deltas (i.e., change factors) for the tempera-

ture and precipitation variables were then applied to the RS baseline temperature and precipi-

tation layers that had previously been re-projected to the WC grid to obtain future projections

for the RS dataset. The 19 bioclimatic variables were generated from the RS future projections

of temperature and precipitation using the R package “dismo” [51]. (See S1 Appendix for a

more detailed explanation of the downscaling procedure.) Thus, the future projections for the

RS dataset differ from those for the WC dataset only in terms of the fine resolution baseline cli-

mate layers used to downscale the GCM simulations. Pairwise spatial correlation coefficients

and principal component analysis (PCA) were used to compare the WC and RS baseline and

projected future climate fields.

Habitat suitability modeling

We employed the popular MaxEnt model (version 3.3.3k) [52] for the species distribution

modeling. MaxEnt is a presence-only, machine learning algorithm based on maximum

entropy theory for determining the niche of a species based on the environmental conditions

(e.g., bioclimatic variables) of the areas where the species occurs [52]. Although the choice of

modeling algorithm has been shown to also introduce uncertainty into species distribution

modeling outcomes (e.g., [53–54]), we opted to focus only on the MaxEnt model for this analy-

sis because of its wide use [55]. An understanding of the impact of baseline climate data on

MaxEnt calibration is helpful for further interpreting the many ecological assessments that

have used this model.

The climatic predictor variables used in this study were selected using PCA applied sepa-

rately to the WC and RS baseline bioclimatic layers. The resulting components were first inter-

preted in terms of the climate variables with the highest loadings on a particular component

(described below), and the variable that best captured each component’s interpretation was

selected. The use of a single bioclimatic variable per component avoids high correlation
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among the input variables. An advantage of using PCA to select variables for the MaxEnt anal-

ysis, is that, unlike simple correlation between pairs of variables, it explicitly considers the

shared and unique variance of the different bioclimatic variables. During the model training

process, we treated the grid cells that coincide with at least one of the field survey locations as

background and selected 10000 random cells from the background. We thinned the species

occurrence data using the default option in MaxEnt that removes duplicate occurrence records

in a grid (see S1 Table for the number of presence locations for each species after removing the

duplicate locations), and adopted the k-fold cross-validation method. Ten replications were

performed for each model calibration and, for the future period, each combination of model

calibration and downscaled GCM projection. The mean results of the 10 replications are pre-

sented below. Model performance for the baseline climate conditions was evaluated using area

under the receiver operating characteristic curve (AUC) [56], the true skill statistic (TSS) [57],

and partial AUC [58].

Uncertainty assessment

We initially focused on the logistic outputs from the MaxEnt model, which are typically inter-

preted as the probability of species presence [55, 59]. Differences in the probabilities between the

future and historical periods were calculated following Guillera-Arroita et al. [59]. PCA analyses

were performed to explore the similarities and dissimilarities in the spatial patterns of the projec-

tions obtained from the different data sources and various GCMs. In addition, future changes in

the climatically-suitable area of each bamboo species were assessed. For this analysis, the eleven

conversion thresholds provided by MaxEnt (i.e. “fixed cumulative value 1”, “fixed cumulative

value 5”, “fixed cumulative value 10”, “minimum training presence”, “10 percentile training pres-

ence”, “equal training sensitivity and specificity”, “maximum training sensitivity plus specificity”,

“equal test sensitivity and specificity”, “maximum test sensitivity plus specificity”, “balance training

omission predicted area and threshold”, “equate entropy of thresholded and original distribu-

tions”) were used to convert the projected probabilities for the baseline and future climate condi-

tions to species presence. The inclusion of this uncertainty source in the analysis was motived by

the finding of Nenzén and Araújo [60] that threshold selection can have a large effect on estimates

of future suitable conditions. The relative contribution of the three uncertainty sources (baseline

climate dataset, GCM, and conversion threshold) to the change in the climatically-suitable area

was analyzed for all 21 species using a three-way analysis of variance (ANOVA).

Results

Spatial patterns of the bioclimatic variables

Visual inspection of the spatial patterns of the bioclimatic variables for the WC (S1 Fig) and

RS (S2 Fig) datasets along with plots of the deviations between the two datasets (Fig 2) reveals

substantial differences in climatic gradients. In general, the RS dataset depicts steeper and

more complex thermal gradients than does the WC dataset. This is especially evident for

mean diurnal (bio2) and annual (bio7) temperature range. For WC, mean diurnal temperature

range increases by approximately 1.5˚C from the eastern and southeastern edges of the study

region (i.e., the western Chengdu Plain) and the lower-elevation foothills to the mountainous

western area (see Fig 1 for a detailed depiction of the topography and location of major moun-

tain ranges). In contrast, a steeper gradient is observed over the eastern foothills of the Daxian-

gling, Qionglai, and Minshan Mountains for RS, and the largest diurnal temperature ranges of

over 2.0˚C are located west of the Minshan Mountains. For WC, the spatial pattern of annual

temperature range is generally similar to that for diurnal temperature range, but larger devia-

tions between these two variables are seen for RS. In particular, strong gradients in annual
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temperature range are evident west of the southern mountain ranges with temperature range

decreasing with elevation, and over the northwestern portion of the study region where the larg-

est annual temperature ranges are found west of the Minshan Mountains. Spatial gradients for

isothermality (bio3), defined as the ratio of diurnal to annual temperature range, are consider-

ably steeper for RS than WC. Similarly, the spatial distribution of temperature seasonality (bio4)

is more complex for RS, whereas a broad north-to-south gradient is evident for WC. During the

cold season, mean temperatures (bio6, bio9, bio11) for RS are colder than those for WC in the

foothills and lower elevation mountainous regions but warmer in the higher elevation western

portion of the study region, again contributing to a steeper thermal gradient for RS. The fine

detail structure of annual (bio1), warm season (bio5, bio8, bio10), and cold season (bio6, bio9,

bio11) mean temperature for WC closely corresponds with elevation with the coldest tempera-

tures found at high elevations and warmer temperatures at lower elevations. For example,

Fig 2. Difference between the remotely-sensed (RS) and WorldClim (WC) datasets for 19 bioclimatic variables generated from

temperature (units of ˚C * 10) and precipitation (units of mm). Positive differences indicate higher values for the RS dataset, and negative

differences indicate higher values for the WC dataset. The outlines on each panel are the boundaries of the different mountain ranges and are

provided for reference. The bioclimatic variables are long-term averages of annual mean temperature (bio1); mean diurnal range (bio2);

isothermality (bio3); temperature seasonality (bio4); maximum temperature of the warmest month (bio5); minimum temperature of the coldest

month (bio6); annual temperature range (bio7); mean temperature of the wettest (bio8), driest (bio9), warmest (bio10), and coldest (bio11)

quarter; annual precipitation (bio12); precipitation of the wettest (bio13) and driest (bio14) month; precipitation seasonality (bio15); and

precipitation of the wettest (bio16), driest (bio17), warmest (bio18) and coldest (bio19) quarter.

https://doi.org/10.1371/journal.pone.0189496.g002
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warmer temperatures in mountain valleys are clearly evident in the maps of WC mean tempera-

ture. Greater between-season differences are seen for RS. In the warm season, relatively steep

temperature gradients are observed west of the Xiaoxiangling Mountains, in the northwestern

Qionglai Mountains and along the foothills of the Minshan Mountains. Also, warmer tempera-

tures are observed west of the Minshan Mountains compared to surrounding higher elevation

locations. These gradients are either weaker or not present during the cold season.

The two datasets depict a precipitation maximum, evident in both the warm (bio13, bio16,

bio18) and cold (bio14, bio17, bio19) seasons, along the western edge of the Chengdu Plain

and the foothills of the Xiaoxiangling and Daxiangling Mountains, although this maximum

covers a larger area for RS compared to WC. Mean precipitation during the warm, wet season

is generally larger, and precipitation gradients weaker, for RS compared to WC. During the

cold, dry season, mean precipitation is smaller for RS compared to WC except for a narrow

band along the western edge of the Chengdu Plain. Precipitation seasonality (bio15) suggests

larger intra-annual variations in precipitation for RS than WC, with the greatest seasonality

found in the eastern foothills of the mountain ranges. In sum, the two datasets differ substan-

tially in their fine detail spatial structure and their depiction of local and regional temperature

and precipitation gradients.

Variance structure of the WC and RS datasets

To further examine the similarities and differences between the two datasets, Pearson’s pair-

wise correlation and a varimax-rotated PCA were performed. The correlation analysis sup-

ports the visual interpretation of the spatial patterns of the bioclimatic variables presented

above. The high (>0.8) correlations between WC and RS for most of the bioclimatic variables

(Fig 3, main diagonal) indicate that both datasets have similar broad-scale spatial patterns. The

weaker correlations for annual temperature range (bio7) and precipitation seasonality (bio15)

of 0.6 and 0.7, respectively, indicate greater differences between the two datasets in the spatial

patterns of these variables. In general, the within-dataset correlations between the different

bioclimatic variables (upper-right portion of Fig 3 for WC, lower-left for RC) are larger (indi-

cated by the larger and darker “circles”) for WC compared to RC, although the overall pattern

of the correlations is similar for the two datasets (i.e., higher correlations among temperature

variables compared to among precipitation variables). In terms of correlation with elevation,

temperature-related bioclimatic variables generally have a higher correlation with elevation in

WC compared to RS. For both datasets, the correlation between elevation and the precipita-

tion-related bioclimatic variables is weaker than that for temperature.

PCA was also performed since, unlike simple correlation coefficients, it considers the

shared variance among variables (Table 1). A varimax rotation was used to facilitate the inter-

pretation of the major dimensions of the two datasets. A scree plot (S3 Fig) suggests that a

larger number of components are needed to summarize the variance in RS compared to WC

(i.e., five rather than four components with eigenvalues >1). For WC, the first two rotated

components explain 78% of the variance in the dataset with the first component broadly repre-

senting mean temperature (bio1, bio2, bio5, bio6, bio8, bio9, bio10, bio11) and the second

component representing mean precipitation (bio12, bio13, bio14, bio16, bio17, bio18, bio19).

In contrast, three components are needed to explain a similar portion of the variance for RS,

and the temperature variables, which loaded highly on a single component for WC, are distrib-

uted over the second and third components for RS, which loosely can be interpreted as warm

season mean temperature and cold season mean temperature. This is in agreement with the

larger differences observed above in the spatial patterns of mean temperature between the

warm and cold seasons for RS than for WC. On the other hand, the first component for RS

Future species distributions in mountainous regions

PLOS ONE | https://doi.org/10.1371/journal.pone.0189496 January 10, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0189496


represents precipitation, and the variables loading highly on this component are identical to

those on the WC precipitation component. For both datasets, precipitation seasonality repre-

sents a unique dimension (the third component for WC and fifth component for RS), whereas

temperature seasonality is a unique dimension only for WC and temperature range (diurnal

and annual) represents a unique dimension only for RS.

Variable selection and interpretation

MaxEnt model calibrations were performed under three sets of climate predictors chosen

based on the correlation and PCA analyses. For the first calibration (WC4), one bioclimatic
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Fig 3. Pearson pairwise correlation matrix between the bioclimatic variables for the WorldClim (WC) dataset (upper-right

matrix) and for the remotely-sensed (RS) dataset (lower-left matrix) shown in colored circles, and the correlation between

the RS and WC datasets for the same bioclimatic variables (diagonal values from upper-left to lower-right). The numbers

from 1 to 19 stand for the 19 bioclimatic variables, while “E” stands for elevation. Blue colors indicate positive correlations and red

colors indicate negative correlations as indicated in the figure legend. Both the size and the color of the circles represent the

magnitude of the correlation. The bioclimatic variables are long-term averages of annual mean temperature (bio1); mean diurnal

range (bio2); isothermality (bio3); temperature seasonality (bio4); maximum temperature of the warmest month (bio5); minimum

temperature of the coldest month (bio6); annual temperature range (bio7); mean temperature of the wettest (bio8), driest (bio9),

warmest (bio10), and coldest (bio11) quarter; annual precipitation (bio12); precipitation of the wettest (bio13) and driest (bio14)

month; precipitation seasonality (bio15); and precipitation of the wettest (bio16), driest (bio17), warmest (bio18) and coldest (bio19)

quarter.

https://doi.org/10.1371/journal.pone.0189496.g003
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variable was selected to represent each of the four rotated principal components of the WC

dataset. The variables chosen were: annual mean temperature (bio1); temperature seasonality

(bio4); annual precipitation (bio12); and precipitation seasonality (bio15). For the second cali-

bration (RS4), the same four predictors but from the RS dataset were used to compare with the

WC4 calibration. A third calibration (RS5) employed five predictors (adding bio7, temperature

annual range) from the RS dataset. This resulted in 63 model combinations (21 bamboo spe-

cies x 3 calibrations) for the baseline climate conditions times 10 replications for a total of 630

simulations. The AUC values ranged from 0.83 to 0.99 for all three calibrations, indicating a

high predictive power of the models under the baseline climate conditions, which was con-

firmed by the values of TSS and partial AUC (S3 Table and S4 Table).

A comparison of the outputs from the different calibrations highlights that the choice of

baseline climate data can influence the interpretation of the relative importance of the environ-

mental variables to the distribution of the species under consideration. Regardless of calibra-

tion, only two variables contributed substantially (> 20%) to the MaxEnt model for most of

the bamboo species, although some exceptions are evident (Fig 4). For the WC4 and RS4 cali-

brations, the order of the leading two variables is in agreement for only three of the bamboo

species (Fargesia ferax, Fargesia scabrida, Yushania maculate). The estimated contribution is

largest for temperature seasonality (bio4), followed by annual precipitation (bio12), for these

species. For another eight bamboo species (Bashania faberi, Bashania fargessi, Bashania spa-
nostachya, Fargesia dracocephala, Fargesia qinlingensis, Yushania ailuropodina, Yushania brevi-
paniculata, Yushania glauca), the WC4 and RS4 calibrations agree on the primary variable

in the MaxEnt model, but differ on the variable with the second largest contribution. The lead-

ing variable is temperature seasonality for six of the species, but for the other two annual

Table 1. The varimax-rotated principal component loadings for the WorldClim (WC) and remotely-sensed (RS) datasets. “RC” refers to rotated prin-

cipal components with eigenvalues > 1. Four principal components were extracted for the WC dataset and five for the RS dataset. The variables shown in bold

were used in the calibration of the species distribution models.

WC RS

RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4 RC5

bio1 -0.97 -0.20 -0.03 0.01 0.31 0.6 -0.73 0.08 0.02

bio2 0.80 0.45 -0.11 -0.09 -0.14 -0.6 0.24 -0.74 0.08

bio3 0.77 0.26 -0.23 -0.45 -0.02 -0.91 0.24 -0.31 0.11

bio4 -0.44 0.26 0.30 0.80 -0.09 0.94 -0.15 -0.26 -0.11

bio5 -0.96 -0.07 0.07 0.20 0.17 0.63 -0.7 -0.27 0.01

bio6 -0.94 -0.32 -0.01 -0.08 0.36 0.34 -0.68 0.53 0.01

bio7 0.44 0.62 0.16 0.55 -0.25 0.26 0.07 -0.93 0.00

bio8 -0.97 -0.16 0.03 0.13 0.25 0.74 -0.62 -0.01 -0.02

bio9 -0.94 -0.27 -0.08 -0.15 0.43 0.24 -0.84 0.23 0.08

bio10 -0.97 -0.14 0.05 0.17 0.21 0.75 -0.62 0.01 -0.02

bio11 -0.94 -0.27 -0.08 -0.16 0.44 0.25 -0.83 0.23 0.07

bio12 -0.19 -0.94 -0.10 -0.17 0.91 -0.1 -0.2 0.27 0.05

bio13 -0.23 -0.86 -0.43 -0.13 0.9 -0.05 -0.19 0.17 0.31

bio14 -0.31 -0.91 0.18 0.03 0.85 0.32 -0.32 -0.03 -0.08

bio15 0.09 -0.08 -0.96 -0.18 0.15 -0.13 -0.05 -0.04 0.97

bio16 -0.21 -0.88 -0.38 -0.15 0.89 -0.09 -0.22 0.25 0.26

bio17 -0.24 -0.94 0.18 0.05 0.9 0.2 -0.31 0.02 -0.14

bio18 -0.10 -0.85 -0.45 -0.25 0.92 0.12 -0.05 0.12 0.16

bio19 -0.24 -0.94 0.18 0.05 0.91 0.14 -0.31 -0.01 -0.12

Variance Explained 0.44 0.36 0.09 0.08 0.34 0.23 0.22 0.12 0.06

https://doi.org/10.1371/journal.pone.0189496.t001
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precipitation is the primary contributor. For the remaining 10 species, the WC4 and RC4 cali-

brations disagree on which of the bioclimatic variables contribute the most to the MaxEnt

model, and hence provide substantially different interpretations of the relative influence of the

bioclimatic variables on the distribution of these bamboo species. The contribution of the lead-

ing two variables is almost identical for RS4 and RS5 with two exceptions. For Bashania spa-
nostachya and Yushania maculata, the contribution of the leading variable for RS5 is smaller

than that for RS4, with the other variables contributing more to model calibration.

Future probability of species presence

The species distribution models were employed to project the future (2061–2080) probabilities

of species presence using the downscaled bioclimatic variables from 17 GCMs. A total of

10,710 simulations was performed (21 bamboo species x 3 calibrations x 17 GCM projections

x 10 replications), and the outputs of the 10 replications were averaged for each bamboo-cali-

bration-GCM combination. Changes in probability were found for each bamboo species by

subtracting the probabilities between the future and baseline periods. To help summarize the

differences in the spatial patterns, an un-rotated PCA was performed separately for each
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https://doi.org/10.1371/journal.pone.0189496.g004
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bamboo species on the 51 (3 calibrations x 17 GCMs) spatial arrays of the projected probability

changes, and a biplot showing the structure of the first and second components of the PCA

analysis for all parallel probability projections was generated for each species (Fig 5). In an un-

rotated PCA analysis, the first component accounts for the highest variance among all compo-

nents and represents the direction of the highest agreement among the projections for each

species, and the second component, which is orthogonal to the first component, accounts for

the largest amount of the remaining variance. On the biplot, each projection is represented by

a vector, and the similarity between the different projections is shown by the angle between

the vectors (small angle indicates high similarity).

The striking feature of Fig 5 is the large angles between the projections obtained from the

WC4 calibration (red arrows) and those obtained from the RS4 (green arrows) and RS5 (blue

arrows) calibrations. In contrast, the arrows of the same color are closer together, indicating

that the angles between the projections from the different GCMs but same calibration are rela-

tively small. Thus, the choice of baseline climate data source has a larger influence on the spa-

tial patterns of the projected change in species probability than the choice of GCM. Also, for

almost all bamboo species, the projections obtained from the RS4 and RS5 calibrations display

a high similarity, which suggests that the inclusion of one additional predictor in the RS5 cali-

bration does not have as large an influence on the projections as the initial source of the base-

line climate information. Some deviations from these generalizations are evident, however.

The angles between the projections obtained from the WC4 calibration and those from the

RS4 and RS5 calibrations are smaller, with even some “intermingling” of the vectors, for

Bashania spanostachya, Fargesia ferax, and Fargesia robusta. Also, a wider spread among the

RS4 and RS5 projections is seen for six of the bamboo species (Chimonobambusa szechuanen-
sis, Fargesia dracocephala, Fargesia qinlingensis, Yushania ailuropodina, Yushania glauca, and

Yushania maculata), although the angle between the WC4- and RS-based projections remains

large. For the remainder of the bamboo species, though, two distinct vector clusters are evi-

dent, one representing the projections obtained from the WC4 calibration and the other clus-

ter composed of the projections obtained from the RS4 and RS5 calibrations.

Fig 6 (and S4 Fig) illustrates the substantial spatial variations between the different calibra-

tions in the projected changes in species presence probability for Fargesia denudata. Such dif-

ferences were observed for many of the other bamboo species evaluated. Almost all of the

projections obtained from the WC4 calibration, regardless of the GCM simulation to which

the species distribution model was applied, indicate a decreased probability in the current

range (the northeastern Minshan Mountains) of Fargesia denudata but an increase in the

northwest portion of the study region. In contrast, almost all of the projections obtained from

the RS4 and RS5 calibrations suggest a decreased probability in the current range of Fargesia
denudata and for locations northwest of the current range.

Projected changes in climatically-suitable area

The projected change in the climatically suitable area was estimated by applying eleven conver-

sion thresholds to the 51 (3 calibrations x 17 GCMs) species presence probabilities for each of

the bamboo species and to the probabilities obtained for the baseline climate conditions from

the three model calibrations (Fig 7). Substantial differences in future climatically-suitable area

are observed between the three calibrations. For three of the bamboo species (Fargesia obliqua,

Qiongzhuea opienensis, and Yushania ailuropodine), the direction of the median projected

change varies by calibration. For another seven species (Bashania spanostachya, Chimonobam-
busa szchuanensis, Fargesia dracocephala, Fargesia qinlingensis, Fargesia robusta, Yushania bre-
vipaniculata, and Yushania lineolata), the median value for at least one of the calibrations
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suggests a marked future change, either an increase or decrease in climatically-suitable area,

whereas the median values for one or both of the other calibrations point to a considerably

smaller change. On the other hand, the median projected change for all three calibrations

agree that climatically suitable area will increase for six species (Bashania fargesii, Fargesia
ferax, Phyllostachys nidularia, Qiongzhuea tumidinoda, Yushania glauca, and Yushania macu-
lata) and decrease for another five species (Bashania faberi, Fargesia denudata, Fargesia nitida,

Fargesia rufa, and Fargesia scabrida), although for some of these species (Qiongzhuea tumidi-
noda and Yushania glauca) the magnitude of the projected changes varies substantially. In

most cases, the magnitude of the median projected changes is more similar for the RS4 and

RS5 calibrations than for the WC4 calibration.

A three-way ANOVA was performed on the WC4 and RS4 projections (374 total projec-

tions for each species; 2 calibrations x 17 GCMs x 11 thresholds) in R software to further

Fig 5. Biplots for the 21 bamboo species of the change in the likelihood of occurrence obtained from the three model calibrations expressed

as the difference between the future (2061–2080) and baseline climate conditions under RCP 8.5 for 17 downscaled GCMs. “WC4” indicates the

model calibration using the WorldClim baseline climate information and four bioclimatic variables; “RS4” refers to the model calibration using the

remotely-sensed baseline climate information and four bioclimatic variables; and “RS5” refers to the model calibration using the remotely-sensed

baseline climate information and five bioclimatic variables.

https://doi.org/10.1371/journal.pone.0189496.g005
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Fig 6. Projected differences in the relative likelihood of occurrence between future (2061–2080) and baseline climate conditions for

Fargesia denudata, as estimated by model simulations calibrated from the WorldClim (top) and remotely-sensed (bottom) datasets

using four bioclimatic variables as predictors (abbreviated as WC4 and RS4). The results shown here used the “clamping” option in MaxEnt

where variables outside the training range are treated as though they are at the limit of the training range. For each calibration, the individual

panels represent the outcomes obtained from downscaled climate projections for 17 global climate models (GCMs), and the abbreviated model

names are provided to facilitate comparison between the WC4 and RS4 calibrations. The 17 GCMs are: ACCESS1-0 (ac), BCC-CSM1-1 (bc),

CCSM4 (cc), CNRM-CM5 (cn), GFDL-CM3 (gf), GISS-E2-R (gs), HadGEM2-AO (hd), HadGEM2-CC (hg), HadGEM2-ES (he), INMCM4 (in),

IPSL-CM5A-LR (ip), MIROC-ESM-CHEM (mi), MIROC-ESM (mr), MIROC5 (mc), MPI-ESM-LR (mp), MRI-CGCM3 (mg), and NorESM1-M (no).

https://doi.org/10.1371/journal.pone.0189496.g006
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explore the influence of the different uncertainty sources on the projected changes in climati-

cally-suitable area. The contributions of the uncertainty sources vary substantially by bamboo

species (Fig 8). For example, the variance among the projections for Fargesia scabrida is pri-

marily explained by the different GCM simulations, whereas for Fargesia qinlingensis and

Yushania ailuropodina it is mostly explained by the baseline climate data used in the calibra-

tion. The interaction between the baseline climate data and the GCMs is most notable for Far-
gesia dracocephala. With the exception of Fargesia nitida, contributions of the conversion

threshold and its interaction terms are relatively small for the different bamboo species. When

summarized across all the bamboo species, the choice of GCM is the single largest contributor

to the total variance in the projected future climatically-suitable area, although the sum of the

variance explained by the baseline climate data through its effect on species model calibration

and the interaction of the baseline climate data and GCM simulation via downscaling is also

large. The mean contribution of the GCM to the explained variance is about 38%, and the sum

of the mean contribution of the data source and the interaction between data source and GCM

accounts for approximately 40% of the total variance. All other factors have a mean contribu-

tion below 8%.

Discussion

We evaluated the potential contribution of the choice of baseline climate dataset to the uncer-

tainty of projected future changes in the probability of species presence and climatically-
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https://doi.org/10.1371/journal.pone.0189496.g007
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suitable area, using 21 understory bamboo species occurring within the mountainous geo-

graphic range of the Giant Panda in southwest China as examples. We found that variations in

local and regional gradients of temperature and precipitation between the WC and RS datasets

led to differing interpretations of the relationships among 19 bioclimatic variables commonly

used in species distribution modeling. For all but three of the 21 bamboo species, the MaxEnt

model ranked the bioclimatic variables differently when calibrated using the two climate data-

sets, and thus interpretation of the climatic determinants of the distribution of the bamboo spe-

cies varied by dataset. Moreover, greater differences in the spatial patterns of the projected

changes in the probability of species presence were observed between projections obtained from

the species distribution models calibrated using the different baseline datasets than between the

different downscaled GCMs simulations for the same calibration. Also, a multi-factor ANOVA

revealed that a substantial portion of the variance among the future projections of climatically-

suitable area can be explained by the main effect and interactive terms involving the source of

baseline climate data. The main effect term represents the influence of the baseline climate data-

set on the calibration of the MaxEnt model. We interpret the interaction term as primarily
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https://doi.org/10.1371/journal.pone.0189496.g008
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reflecting the influence of the baseline climate dataset in the downscaling of the GCM simula-

tions. However, the interaction term may also capture the interaction between model calibra-

tions and differences among GCMs in the projected changes of the bioclimatic variables.

One simplification of our evaluation is the use of the same change factors (i.e., deltas) for

both the WC and RS datasets. Such simplification is perhaps more problematic for the tempera-

ture-derived bioclimatic variables, since they constitute measurements of air temperature in WC

while estimates of land temperature in RS. We used this approach to focus the analysis on the

impact of the different baseline climate datasets. The use of the same delta values for both data-

sets assumes that air and land temperatures will change by similar amounts in the future, and

that the satellite-derived precipitation measurements constitute suitable representations of

observed precipitation. Although a similar assumption was made by [61] when developing fine-

resolution climate projections for Africa, the change factors for future assessments ideally should

be calculated from GCM or RCM simulations of variables more similar to those acquired

remotely by spaceborne sensors, such as land surface temperature. Also, our study included only

future climate projections forced by RCP 8.5 in the uncertainty analysis. However, we anticipate

that the relative contribution of the baseline climate information to the overall uncertainty will

be larger for the less extreme RCPs, especially as differences in the projected future changes in

temperature and precipitation among the 17 GCMs will be smaller reducing the magnitude of

this uncertainty source. Thus, the use of RCP 8.5 represents a harsher test of the contribution of

the choice of baseline climate data to the overall uncertainty.

The comparison of the spatial patterns for the bioclimatic variables obtained from the WC

and RS datasets presented here emphasizes Daly’s [25] concern regarding the tendency to

equate resolution with realism, and, furthermore, that the fine resolution of gridded datasets

may give an appearance of realism that is not consistent with the spatial resolution of the initial

observations used to generate them. While the WC dataset has a resolution of ~1 km com-

pared to the coarser ~6 km resolution of the RS dataset, the native resolution of the measure-

ments from which the datasets are derived is much coarser for WC (tens to hundreds of km)

compared to RS (30 m to 6 km, depending on the sensor system). Hence, the scale at which the

gridded climate layers are provided is closer to the native resolution of RS than of WC, while

the finer resolution of the WC dataset is primarily introduced via the resolution of the eleva-

tion layer used in the spatial interpolation.

Our analyses also support the findings of Baker et al. [19] that the contribution of the base-

line climate dataset to the uncertainty surrounding estimates of future climatic suitability can

rival that introduced by future climate projections. Of particular note is that their assessment

of climatically-suitable area for avian species in sub-Saharan Africa considered climate datasets

interpolated to only 0.44˚ (~ 50 km), compared to the ~1 km focus of our study, and thus

emphasized regional to sub-continental climatic gradients rather than the local to regional gra-

dients of the mountainous panda habitat. The similar conclusions of the two studies imply that

the choice of baseline dataset is a concern for assessments conducted at a range of spatial scales

and in a variety of environments. This interpretation does not appear to depend on the source

of future climate projections. In our analysis, we employed downscaled future projections

obtained from one realization of 17 different GCMs, focusing on the structural and parameter-

ization differences among GCMs. In contrast, Baker et al. [19] used downscaled projections

from five realizations of a single GCM where the initial conditions were modified to evaluate

natural variability. In fact, their findings suggest that uncertainty introduced via natural cli-

mate variability [62] should be explicitly included in future climate change assessments in

addition to that introduced by the choice of GCM. Both studies also found that the relative

contributions of the different uncertainty sources varied by species, likely a function of differ-

ences in the complexity of the climatic environment in which individual species reside.

Future species distributions in mountainous regions

PLOS ONE | https://doi.org/10.1371/journal.pone.0189496 January 10, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0189496


An interesting finding of our analysis is that the choice of conversion thresholds to convert

probabilities to species presence contributed to only a small portion of variance in the future

projections. Nenzén and Araújo [60] found that the conversion threshold can induce a 1.7 to

9.9-fold difference in the proportions of species projected to become threatened by climate

change. Our results instead suggest that the choice of baseline climate dataset and GCM intro-

duces more uncertainty to the climate change assessment than the choice of conversion thresh-

old, although the differences between the two studies need to be interpreted cautiously as

Nenzén and Araújo [60] considered an overlapping, but not duplicative, set of potential uncer-

tainty sources. In particular, they used a wider range of threshold-setting methods and, addi-

tionally, several approaches to bioclimatic modeling were used rather than the single modeling

framework (i.e., MaxEnt) used here. Also, a single baseline climate dataset was employed for

all their modeling efforts, compared to the two contrasting datasets included in our analysis.

Thus, the relative magnitude of an individual uncertainty source may vary depending on the

other uncertainty factors included in the analysis.

Conclusions

The uncertainty associated with climate change assessment findings must be carefully consid-

ered. Neglecting this uncertainty can lead to misinformed research agendas, policies, and deci-

sions. Our findings highlight the importance of routinely considering the sensitivity of future

projections of species distribution to the choice of baseline climate information, especially in

mountainous environments with complex climatic gradients. This uncertainty source is a par-

ticular concern as, for many climate change assessments, the baseline climate dataset is used

both to calibrate species distribution models and to downscale coarse-scale projections of the

future climate to local/regional scales.

Future studies that consider a more complete set of uncertainty factors than those used in

the past will advance our understanding of the effects of climate change on species distribu-

tions, and the assessment findings will better guide mitigation and adaptation policies and

conservation practices for reducing the threats posed by climate change on biodiversity.
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