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ABSTRACT 

 
Elizabeth A. Walz: The Effect of Estrogen on Inflammatory Markers Following 

Prolonged Aerobic Exercise in Eumenorrheic Women 

(Under the direction of Anthony C. Hackney) 

 

The study purpose was to determine if estrogen (E2) concentrations attenuate 

inflammation after exercise-induced muscle damage. Blood responses of pro-

inflammatory cytokine biomarker TNF-, and pro- and anti-inflammatory cytokine 

biomarker IL-6 were measured. Ten, eumenorrheic, endurance-trained women 

(Mean±SD; 21±1 years, 24.1±2.8 body fat%) were studied. They completed a 60 minute 

running protocol at ~60-65% of their oxygen uptake (VO2peak 53.5±4.7ml/kg/min) during 

two hormonal conditions (low E2 and high E2). Inflammation was assessed at rest, 

immediately post exercise, 30 minutes post exercise, and 24 hours post exercise. There 

was not a significant interaction effect for TNF- (p=0.60). There was a significant 

interaction effect for IL-6 (p=0.001).  The response at 30 minutes post exercise was 

significantly elevated from rest and significantly reduced in high E2. Results suggest high 

E2 conditions attenuate the IL-6 response.  Due to the pro- and anti-inflammatory 

influence of IL-6, it is unclear whether this attenuation is positive or negative.    
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CHAPTER I 

 INTRODUCTION 

 

Basis For Study: 

 There has been debate surrounding the influence of 17-estradiol (E2) on skeletal 

muscle, and whether E2 has a protective influence on skeletal muscle damage, 

inflammation, and repair after prolonged aerobic exercise. This area of research is limited.  

There are multiple studies indicating that high levels of E2 attenuate circulating cytokines, 

and as a result attenuate inflammation during non-exercise induced inflammatory 

responses (Pfeilschifter et al., 2002; Pottratz et al., 1994; Puder et al., 2001; Schwarz et 

al., 2000).  This indicates that there may be a similar phenomenon occurring during 

exercise induced inflammatory responses. A clear relationship between E2 and 

inflammation after exercise induced muscle damage, in women, is not well defined in 

existing literature. Some studies suggest there is an estrogenic effect on circulating 

cytokines, while other do not (Dieli-Conwright et al., 2009; Ives et al., 2011; Timmons et 

al., 2005; Timmons et al., 2006).  These conflicting results may be due to study 

limitations, such as small sample sizes, lack of a treatment condition, or inadequate 

exercise stimuli (Ives et al., 2011).  The intent of the current study was to overcome these 

limitations, with sufficient power, a treatment condition, and adequate exercise stimulus.  

Unfortunately, due to the difficulty of recruiting subjects, the study was underpowered 

for TNF- (β= 0.65).  Evaluating the influence of E2 fluctuations across the menstrual 

cycle, and how this impacts skeletal muscle, will add to this body of knowledge, and is an 
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important consideration for women designing training programs to improve performance 

and minimize risk. 

E2 is a steroid hormone-molecule that plays an important role in maintaining and 

regulating sexual and reproductive function in females.  Additionally, E2 exerts an 

influence on other physiological systems in females, such as the cardiovascular, 

musculoskeletal, immune and central nervous systems.  The form of E2 that has the 

largest effect on these systems is 17β-estradiol (Enns & Tiidus, 2010). There are three 

mechanisms by which E2 might exert a protective effect on skeletal muscle damage, 

inflammation, and repair. E2 may act as an antioxidant, membrane stabilizer, and gene 

regulator (Perskey et al., 1999).  Similar to other antioxidants with similar structures, it 

has been suggested that the phenolic hydroxyl group on E2 donates a hydrogen atom 

which disrupts free radical damaging cascades, minimizes lipid peroxidation and thus 

limits cell membrane damage (Perksy et al., 1999; Sugioka et al., 1987).  E2 may also 

stabilize membranes by intercalating with membrane phospholipids, similar to cholesterol 

(Perksy et al., 1999).  Finally E2 may also exert protective effects through gene regulation, 

affecting cytokine and cell-adhesion activity, as well as activation of satellite cells (Smith 

et al., 2000; Enns et al., 2008; Enns & Tiidus, 2008).  With these protective properties, E2 

may attenuate exercise-induced muscle damage, and inflammation while also facilitating 

repair in skeletal muscle.   

While exercise-induced oxidative stress and membrane damage are important 

signals for the skeletal muscle tissue to adapt, there are potential negative side-effects, 

such as reduced muscle strength, muscle soreness, and increased creatine kinase, as well 

as increased β-glucoronidase activity and histologic damage of the cell (Clarkson et al., 
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2001; Komulainen et al., 1999).  E2 may play a role in decreasing the severity of these 

side-effects during high intensity exercise (Bar et al., 1988; Roth et al., 2000, 

Komulainen et al., 1999).  After exercise induced muscle damage, inflammatory 

processes are activated to clear and repair the damaged cell.  These processes include an 

infiltration of fluid, plasma proteins and circulating leukocytes, which is mediated by a 

variety of cytokines (St. Pierre Schneider et al. 1999; Tiidus et al. 2001).  The cytokines 

of interest in this study are tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6).  

TNF-α is considered to be a pro-inflammatory cytokine, produced to recruit more 

leukocytes to the inflamed tissues.  IL-6 has been shown to be both a pro- and anti-

inflammatory cytokine.  Until recently, researchers considered IL-6 to be a pro-

inflammatory cytokine.  For example, MacIntyre et al. (2001) reported that neutrophil 

and IL-6 increased up to 6 h post-exercise, and there was a significant relationship 

between IL-6 and DOMS, suggesting that IL-6 is a pro-inflammatory cytokine that 

initiates inflammation. It is thought that anti-inflammatory IL-6 may be released locally 

in the muscle after strenuous exercise and the amount released is dependent on the type 

of physical activity, as well as the duration of exercise (Hamer & Karageorghis 2007).  

Currently, the literature is unclear as to the exact role this cytokine plays in the 

inflammatory response (Pedersen et al., 2004; Smith et al., 2000).   

Some researchers have suggested that E2 may positively influence inflammation 

by attenuating pro-inflammatory cytokine TNF-α, reducing leukocyte activity and 

collateral damage to healthy cells, as well as initiating satellite cell activity (Tiidus et al., 

2001).  Satellite cells activation initiates cell growth and repair.  An estrogenic effect on 

satellite cell activation was shown by Roth et al. (2001) where resistance trained women 
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displayed a greater increase in satellite cell number when compared to men.  Additionally, 

Enns et al. (2008) demonstrated that satellite cell activity increased in E2 supplemented, 

exercised rats compared to other controls.  The Enns study also suggests that E2 may 

increase satellite cell activation through receptor-mediated mechanisms (Enns et al., 

2008).   As evidenced here, there are strong reasons to believe that E2 exerts a protective 

effect on exercise induced muscle damage, inflammation, and repair. 

The present study focused on inflammatory mechanisms after exercise induced 

skeletal muscle damage; specifically the effect of E2 on inflammatory markers, TNF-α 

and IL-6. Since IL-6 has been shown to have both anti- and pro-inflammatory properties, 

it is not primary variable of interest.  It was included to add to investigations previously 

produced from this research group.  This particular study focused on the effect of E2 on 

TNF-α during the inflammatory response after an exercise induced muscle damage bout.  

Ostrowski et al. (1999) reported that strenuous exercise increased concentrations of TNF-

α.  Chao et al. (1995) found that TNF-α fluctuated with changes in estrogen 

concentrations.  Additionally Schwarz et al. (2000) found that the release of TNF-α was 

diminished in pre-menopausal women during the luteal phase of the menstrual cycle, 

when compared to the follicular phase, which suggests an anti-inflammatory response.  

This author also found that TNF-α and IL-6 were inhibited in females, compared to male 

controls.   These studies provide evidence that there may be a relationship between E2 

and inflammatory markers.  Thus with this in mind, a key goal of the present study was to 

clarify the role of E2 on TNF-α after exercise induced muscle damage.  In this study, the 

primary outcome variable of interest was TNF-α, and the secondary variable of interest 
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was IL-6; each was assessed at four time points (at rest, immediately post-exercise, 30 

minutes post-exercise, and 24 hours post exercise).   

Purpose 

The purpose of this study was to determine if E2 levels influence pro-

inflammatory marker TNF-α following a moderate intensity exercise protocol in 

eumenorrheic women.   

A secondary purpose of this study was to determine if E2 levels influence pro- or 

anti-inflammatory cytokine IL-6 following a moderate intensity exercise protocol in 

eumenorrheic women.   

Research Hypothesis 

 If E2 is related to pro-inflammatory cytokine TNF-α, then higher E2 levels in 

eumenorrheic women will attenuate TNF-α concentrations after a moderate intensity 

exercise protocol.   

 A secondary research hypothesis is if E2 is related to pro- or anti-inflammatory 

cytokine IL-6, then higher E2 levels in eumenorrheic women will attenuate IL-6 

concentrations after a moderate intensity exercise protocol.   

Definition of terms 

Cytokines 

 Cytokines are released in response to stress, infection, illness and inflammation, 

as part of the innate immune response of the human body.  Cytokines mediate immune 

responses activated in order to repair and clear damaged cells.  Cytokines can be pro- or 

anti-inflammatory (Corwin 2002; Pederson et al., 1998; Pederson et al., 2004).  
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Delayed Onset Muscle Soreness (DOMS) 

 
Following high intensity exercise, muscle injury can cause myofiber damage, 

including sarcolemma disturbances, swelling or disturbances of the contractile proteins, 

cytoskeletal and extracellular matrix damage and disturbance (Kendall & Eston, 2002). 

Estrogen (E2) 

 

18-carbon steroid molecule-hormone, secreted by the ovaries in women and (to a 

much lesser extent) in the testes in men.  E2 is important in the maintenance of normal 

sexual and reproductive function in females, but also plays a role in many cardiovascular, 

musculoskeletal, immune and central nervous system functions.  E2 exists in several 

forms, the most prominent is estradiol -17, and is known to fluctuate across the 

menstrual cycle (Ruggerio & Likis 2002; Enns & Tiidus 2010). 

Eumenorrhea 

 Normal menstrual cycle, typically seen in women ages 18-30 years, in which 

cycles establish an early follicular phase increase in follicle-stimulating hormone, a pre-

ovulatory luteinizing hormone peak, a luteal phase of at least 11 days, and a progesterone 

peak greater than 10ng/mL (Sherman & Korenman, 1975).  A typical menstrual cycle 

lasts 28 days.  

Moderate intensity prolonged exercise bout 

 Exercise performed on a treadmill at 0% grade with a speed equal to ~60-65% of 

VO2max for 60 minutes.  Previous investigations from the same research group indicate 

this exercise to be a high enough intensity to elicit muscle damage (Hackney et al., 2012).  
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Inflammatory Response 

 
The inflammation process and satellite cell activation and proliferation is initiated 

by local and systemic signals, such as cytokines, growth factors and leukocytes, released 

by the injured muscle tissues (Hamer & Karageorghis, 2007).   

Leukocytes 

 During the inflammatory process after muscle damage leukocytes, such as 

neutrophils and macrophages, accomplish three tasks: breakdown damaged muscle tissue, 

remove the damaged muscle tissues, and restore function of muscle tissues (Kendall & 

Eston, 2002). 

Delimitations 

1. Participants were healthy females between the ages of 18-30 years. 

2. Participants were eumenorrheic and not currently taking oral contraceptives or other 

hormone therapy six months prior to participation in this study. 

3. Had not sustained an injury within the last six months that limited the ability to 

exercise or have a doctor’s clearance. 

4. Had not been taking anti-inflammatory medicines, such as ibuprofen, naproxen, or 

aspirin six months prior to participation in this study. 

5. Were not pregnant or become pregnant during the study. 

6. Become ill with an immune responding condition, such as a cold or respiratory 

infection during the study. 

7. Had a current minimum training volume of 3-5 days a week, 45-120 minutes per 

session of aerobic activity, and a maximal oxygen consumption (VO2 max) of at least 

45 ml/kg/min. 
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8. Abstained from strenuous physical activity and maintained a diet similar in calories 

and carbohydrate content 24 hours prior to experimental protocol. 

Limitations 

1. Results may not be applicable to men and some women (amenorrheic, 

oligomenorrheic, or post-menopausal).  

2. Subjects may not comply with specific pre-test instructions. 

3. Cytokine concentrations will be measured in blood, there will not be another method 

to verify local cytokine changes (such as muscle messenger RNA [mRNA]). 

Significance of study 

 Understanding the influence of E2 on the inflammatory response following muscle 

damage is an important consideration for both women and researchers.  Women who 

experience amenorrhea or are post-menopause may be missing the potential protective 

influence of E2 related to muscle damage, inflammation, and repair. Additionally women 

who are eumenorrheic would benefit from knowing the potential protective properties of 

estrogen.  This information could be used to design training programs that optimize 

performance and minimize risk, such as periodization of training based on hormonal 

condition.  While there are many important training considerations for understanding 

estrogenic influence, it is especially crucial to account for estrogenic influence when it 

comes to designing research studies involving women. Failing to account for hormonal 

fluctuations throughout the menstrual cycle may affect the results of these studies.  Lastly, 

research in this area is limited and results are contradictory.  More research needs to be 

done in this area to clarify the role of E2 on the inflammatory response after exercise-

induced muscle damage. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

In this review, the influence of E2 on skeletal muscle damage, inflammation, and 

repair will be examined.  There are three potential mechanisms by which E2 exerts a 

protective effect on skeletal muscle. E2 may act as an antioxidant, membrane stabilizer, 

and gene regulator (Kendall & Eston, 2002; Enns and Tiidus, 2010).  It is a well-

documented phenomenon that muscle damage occurs after strenuous, unaccustomed 

exercise (Clarkson et al., 2001).  Following exercise-induced skeletal muscle damage, 

pro- and anti-inflammatory cytokines and other chemo-attractants facilitate inflammation 

and repair.   This response involves the recruitment of leukocytes, such as neutrophils and 

macrophages, and the activation and proliferation of satellite cells (Belcastro et al., 1998).   

This review will discuss how E2 exerts protective mechanisms on skeletal muscle, the 

effect of E2 on pro-inflammatory cytokine TNF-, and the pro- or anti-inflammatory 

cytokine IL-6 after exercise-induced muscle damage. 

 

Antioxidant, membrane stabilizing and gene regulating properties of E2: 

Antioxidant properties of E2 

 

It is well known that during strenuous exercise oxygen consumption increases to 

meet metabolic demand.  With this increase in oxygen consumption, there is a similar 

increase in free radical production.  It is estimated that with every 25 oxygen molecules 
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reduced by oxidative metabolism, there is one free radical produced (Kanter 1998).  Thus 

oxygen free radicals may rapidly accumulate during strenuous exercise and result in 

oxidative damage, production of reactive oxygen species (ROS), and lipid peroxidation, 

all of which alter membrane fluidity and cell membrane stability (Sen 1995).  In addition 

to free radicals produced during oxidative metabolism, free radicals can be produced as a 

result of enzyme activity with the recruitment of neutrophils in the inflammatory 

response (Fantone et al., 1982).   There is a link between excess free radicals, due to 

either over-production or a decrease in the effectiveness of antioxidants, and developing 

diseases, such as cancer, atherosclerosis, and Alzheimer’s (Persky et al., 1999). 

Endogenous production of antioxidants, such as E2, serves to protect skeletal cell 

membranes from free radical damage.  More specifically, the phenolic hydroxyl group on 

estrogen donates a hydrogen atom to disrupt free radical damaging cascades, minimize 

lipid peroxidation and thus limit cell membrane damage (Perksy et al., 1999; Sugioka et 

al., 1987).  Both E2 status in females and intensity of exercise affect lipid peroxidation.  

Ayers et al (1998) evaluated the difference between eumenorrheic (measured during high 

E2) and amenorrheic athletes’ responses to exercise-induced oxidative stress.  These 

authors found that there was a greater potential for lipid peroxidation after 15 minutes of 

maximal treadmill exercise for amenorrheic athletes when compared to eumenorrheic 

athletes.  Additionally, Feng et al. (2004) found that physiological levels of E2 could 

increase membrane stability, reduce consumption of glutathione (GSH) and Vitamin E 

(both of which are antioxidants), and maintain overall antioxidant capability of the 

strained muscles in female rats.  Additionally the results showed that there was decreased 

muscle injury and increased muscle regeneration after an acute strain injury in female rats.  



 11 

These studies highlight how skeletal muscle cells might be susceptible to free radical 

damage and how E2 may exert protective effects through direct antioxidant actions.   

Membrane stabilizing properties of E2 

 

E2 may also be able to exert protective effects through membrane stabilizing 

mechanisms.  The ability of fat-soluble E2 to interact with phospholipids also contributes 

to the membrane stabilizing properties of E2, similar to cholesterol (Whiting et al., 2000).  

Whiting et al. (2000) studied the effect of testosterone, progesterone, and E2 on various 

liposomes, plasma membranes, and sarcoplasmic reticulum membranes.  This group 

suggests that E2 has the ability to intercalate with phospholipids, alter the fluidity of 

phospholipids, and increase protein mobility in membrane bilayers, all of which may 

affect protein function.  Although the authors in this study found E2 to increase 

membrane fluidity, they demonstrated a mechanism by which steroid hormones influence 

these actions.  Multiple researchers have suggested the opposite, that E2 decreases 

membrane fluidity and stabilizes membrane phospholipids due to its structure and 

antioxidant ability (Kendall & Eston 2002; Persky et al., 1999).  Nonetheless, E2 may 

play an important role in the stabilization of skeletal cell membranes and the conflicting 

findings show the need for further research in this area.   

Gene regulating properties of E2 

 

Lastly, E2 may potentially exert protective effects on skeletal muscle through gene 

regulation.  Gene regulation by E2 may affect cytokine and cell adhesion activity, as well 

as the activation of satellite cells.   Research involving another known antioxidant, 

tocopherol, has shown that tocopherol regulates nuclear factor kappa B, which is a 

regulator of cytokines and cell adhesion molecules.  Yoshikawa and Yoshida (2000) 
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suggested that tocopherol prevents signal transduction of leukocyte-endothelial cell 

adhesion. Cytokine production and leukocyte-endothelial cell adhesion are important 

factors regulating leukocyte infiltration.  In another study Enns et al. (2008) demonstrated 

that E2 may increase muscle satellite cell numbers through E2 receptor mediated 

mechanisms, indicating upstream gene regulation of satellite cell activation.  Furthermore 

these authors suggested that the attenuation of exercise-induced muscle damage and 

leukocyte infiltration via estrogenic effects was not mediated by E2 receptor mechanisms 

(Enns et al., 2008; Enns & Tiidus, 2008).  This supports the findings by Yoshikawa and 

Yoshida, who suggested that the attenuation of exercise-induced muscle damage and 

leukocyte infiltration may be attenuated via estrogenic regulation of endothelial cell 

adhesion and leukocyte infiltration.  The ability of E2 to decrease leukocyte infiltration 

and increase satellite cell activation may be due to the gene regulating properties of E2. 

 

Estrogenic effect on exercise-induced skeletal muscle damage, inflammation and 

repair  

Skeletal muscle damage 

 

Skeletal muscle damage caused by strenuous, unaccustomed exercise can be 

measured directly or indirectly.  It can be directly measured via muscle biopsies, or 

indirectly measured through muscle strength loss, muscle soreness, and increased muscle 

proteins, such as creatine kinase (Clarkson et al., 2001).  Additionally, the protein β-

glucoronidase activity can reflect the histopathological state of the cell, which indicates if 

muscle damage results from the inflammatory response (Komulainen et al., 1999). 
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As previously mentioned, E2 may have the ability to attenuate skeletal muscle 

damage by acting as an antioxidant and membrane stabilizer.  As a result of exercise 

induced oxidative stress and membrane damage, more creatine kinase is able to permeate 

the membrane and elicit a larger inflammatory response (Bar et al., 198; Sewright, 2008, 

Roth et al., 2000).   Bar et al. (1988) suggested that E2 may have a protective effect on 

skeletal muscle damage by showing reduced creatine kinase values after exercise induced 

stress.  In a more recent study, Sewright (2008) hypothesized that there would be similar 

responses between men and women regarding indirect skeletal muscle damage markers, 

but there would be sex differences in the variability and distribution of indirect skeletal 

muscle damage markers. These authors found that women experienced greater immediate 

strength loss, while men showed greater creatine kinase activity.  These results indicate 

sex differences in fatigue and muscle damage after intense exercise.  Sex differences in 

fatigue may be due to metabolism, blood flow or intracellular calcium, while sex 

differences in muscle damage may be due to estrogenic protective mechanisms.   

Additionally, Roth et al. (2000) suggests that E2 levels in women influences the degree of 

muscle damage after heavy-resistance strength training three times a week for nine weeks.  

Muscle damage increased significantly in older women, from 5 to 17% of muscle fibers 

damaged, compared to younger women, from 2 to 5% of muscle fibers damaged.   

Taking a different approach to evaluating skeletal muscle damage differences 

between males and females, Komulainen et al. (1999) evaluated β-glucoronidase activity, 

histological assessment of muscle samples for inflammation, and immunohistochemistry 

of structural proteins of muscle fibers, such as actin, desmin, and dystrophin, and 

extracellular matrix proteins, such as fibronectin, in rats after eccentrically biased 
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downhill running exercise.  β-glucoronidase activity was smaller and histological changes 

were slower and less prominent in female rats compared to male rats.  Additionally, 

immunohistochemical changes in structural and extracellular matrix proteins were 

unchanged in female rats when compared to male rats.   

Both rodent and human studies suggest that the skeletal muscle cell membranes in 

females compared to males, are stronger and better able to resist exercise-induced 

skeletal cell membrane damage. This may be due to a protective estrogenic effect on 

skeletal muscle cells following damaging exercise.    

Acute inflammatory response  

 

To clear and repair skeletal muscle tissue after an acute bout of high intensity 

exercise there is an acute inflammatory response in which there is an increase in fluid, 

plasma proteins and circulating leukocytes.  Vascular endothelial cells, tissue-resident 

leukocytes, and circulating leukocytes produce a variety of cytokines that mediate the 

inflammatory response. For example, the up-regulation of pro-inflammatory TNF-α is 

associated with resident macrophages in the damaged muscle tissue (Smith et al., 2000).  

Interestingly IL-6 can be either pro- or anti-inflammatory, depending on how much of it 

is released or what is being released along with it.  Thus pro-inflammatory IL-6 may be 

associated with resident macrophages, while anti-inflammatory IL-6 may be associated 

with the exercising muscle tissue, specifically substrate mobilization (Pederson et al., 

2004).  There are multiple families of cytokines that play a role in regulating the acute 

inflammatory response, including; interleukins (IL), tumor necrosis factors (TNF), 

interferons, growth factors, colony stimulating factors (CSFs), and cell adhesion 

molecules (CAM) (Smith et al., 2000). While TNF-α and IL-6 are the main cytokines of 
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interest in this study, it is important to understand there are many cytokines that play a 

crucial role in inflammation.   

The infiltration of leukocytes, primarily neutrophils and macrophages, remove 

damaged muscle tissues and stimulate repair processes.  St. Pierre Schneider et al. (1999) 

induced skeletal muscle injury using an in vivo lengthening contraction model in 50 

sexually mature mice.  Leukocyte infiltration was assessed after 1, 3, 5, and 7 days of 

recovery.  While leukocytes invaded muscle fibers in both sexes after 1 day, there were 

differences in the subsets of leukocytes between the sexes.  The authors concluded that 

leukocyte activity associated with the inflammation may be prevented or delayed in 

female mice after exercise induced injury.  Both neutrophils and macrophages play a 

crucial role in removing and repairing damaged muscle tissues.  While this activity is 

necessary, excessive infiltration of leukocytes can cause an increase in muscle membrane 

and oxidative damage.  It is still unknown whether E2 enhances or hinders the 

inflammation process. E2 may positively influence inflammation by reducing leukocyte 

activity, and thus reducing oxidative damage and collateral damage to healthy cells. 

However, estrogenic influence that reduces inflammation may result in a diminished 

ability to repair damaged muscle tissue (Tiidus et al., 1999, Tiidus et al., 2001).     

With exercise induced muscle damage there are disruptions to the sarcomere Z 

line and sarcoplasmic reticulum, resulting in changes in calcium concentrations and the 

rate of protein degradation.  Calpain is a non-lysosomal cysteine protease that degrades 

the damaged cytoskeletal and myofibrillar proteins.  Protein degradation, induced by 

Calpain activity, produces peptide fragments that act as chemo-attractants to neutrophils 

(Belcastro et al., 1998).  E2 may reduce neutrophil infiltration, acting as an antioxidant 



 16 

and membrane stabilizer, by reducing sarcomere disruption, and calcium disturbances 

(Tiidus et al., 2001).  Neutrophil activity contributes to further oxidative damage in 

muscle tissues via the production of ROS from NADPH oxidase and the production of 

hypochlorous acid from hydrogen peroxidase from the myeloperioxidase (MPO) reaction 

(Suzuki et al., 1999; Tiidus et al., 1999).  MPO activity is known as an indicator of 

neutrophil activity in damaged muscle tissue.  Tiidus et al., 1999 found there were 

significant elevations in muscle MPO activity 24 hours post exercise in male rats 

compared to female rats and estrogen supplemented male rats.  The authors suggest that 

while MPO represents neutrophil activity, infiltration of macrophages at 24 hours post 

exercise may have begun, thus MPO activity at 24 hours post exercise is indicative of 

overall leukocyte activity and inflammation.  Increasing MPO activity plays an important 

role in clearing damaged muscle tissue, but can be damaging to healthy muscle tissue.  

Further clarification in the literature will be needed in order to elucidate whether an E2 

mediated reduction in inflammation is advantageous or not. 

Skeletal muscle repair and regeneration 

 

After skeletal muscle cell damage, satellite cells are activated to proliferate and 

provide the necessary materials to initiate muscle growth and repair.  There may be an 

estrogenic effect on the activation and proliferation of satellite cells.  For example,   

resistance trained women displayed a greater increase in satellite cells when compared to 

men (Roth et al., 2001).  In another study, histochemical analysis was used to show that 

the greatest number of muscle fibers containing total, activated and proliferating satellite 

cells were in the exercised, E2 supplemented group of female rats (Enns et al., 2007), 

compared to unexercised and no estrogen rats, unexercised and E2 supplemented rats, and 
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finally exercised and no E2 rats.  E2 might increase satellite cell activation through 

receptor-mediated mechanisms.  For example, when E2 receptors are blocked or there is 

an E2 receptor antagonist, exercise and E2-mediated increases in satellite cells are 

inhibited (Enns et al., 2008).  

Another important promoter of satellite cell propagation might be the infiltration 

of leukocytes.  Even though it is hypothesized that E2 decreases the leukocyte response 

following muscle damage, new research proposes that E2 increases IL-6 levels and nitric 

oxide, which are known activators of satellite cells.  This means that E2 can both increase 

satellite cell production and proliferation and still attenuate the leukocyte response (Enns 

& Tiidus, 2010, Tiidus 2003).  The effect of E2 on the inflammatory response requires 

further research, in order to clarify E2’s role in activation of satellite cells and leukocyte 

recruitment.  As IL-6 is an important player in these mechanisms, the effect of E2 on IL-6 

levels is an important step in identifying these mechanisms.  

Interaction of E2 and progesterone 

 

 There has been limited research investigating the effects of progesterone and E2 

on exercise induced damage, inflammation and repair.  Studies involving female 

ovariectomized rats treated with E2 showed less neutrophil and macrophage infiltration in 

skeletal muscle following eccentric exercise, compared to rats not treated with E2 (Enns 

et al., 2008; Iqbal et al., 2008) The reduced inflammatory response in rats treated with E2 

may be related to reduced muscle damage as shown by reduced skeletal muscle damage 

markers, such as β-glucuronidase and creatine kinase (Enns et al., 2008).  Reduced 

skeletal muscle damage may be a result of the estrogenic muscle membrane stabilizing 

properties (Tiidus et al., 2001).  In most tissues there are both E2 receptors and 
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progesterone receptors present and there is the possibility that there are interactive effects 

in response to exercise induced muscle damage (Iqbal et al., 2008).  To investigate these 

interactive effects between E2 and progesterone, Iqbal et al., (2008), compared the 

concentrations of each hormone at 24 hours post exercise.  The female rats were divided 

into 4 exercise and 4 control groups (sham, E2, progesterone, and a combination of E2 

plus progesterone) following 8 days of hormone replacement.  They confirmed that E2 

attenuated leukocyte infiltration following exercise induced muscle damage.   They also 

found that progesterone also attenuated leukocyte infiltration, but to a smaller extent than 

E2.  In rats supplemented with both progesterone and E2, leukocyte infiltration was not 

significantly different from the E2 only group, suggesting that progesterone does not 

affect estrogenic influence.   

 

Role of E2 and cytokines in exercise induced muscle damage, inflammation and 

repair 

The acute inflammatory response and satellite cell activation and proliferation are 

initiated by local and systemic signals, such as cytokines, growth factors and leukocytes, 

released by the injured muscle tissues. In response to moderate to high intensity exercise, 

pro-inflammatory cytokines TNF-α and anti-inflammatory cytokine IL-6 are produced.  

Pro-inflammatory cytokines up-regulate leukocytes, calpains, and nitric oxide in order to 

initiate the inflammatory response at the site of tissue damage.  Anti-inflammatory 

cytokines are thought to limit the inflammatory response to exercise and inhibit pro-

inflammatory cytokines (Pedersen et al., 2003). In the inflammatory response, anti-

inflammatory IL-6 is one of the first cytokines present after high intensity exercise, and it 
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is the produced in large amounts.   As muscle damage occurs, resident leukocytes 

produce pro-inflammatory cytokine TNF-α to initiate inflammation and repair 

mechanisms.  While the inflammatory response is critical to muscle damage repair and 

regeneration, the large response affects both damaged and healthy tissues, resulting in 

more inflammation than might be needed to repair the tissue.  It is hypothesized that if E2 

plays a role in limiting the inflammatory response, less muscle damage will occur 

(Kendall & Eston, 2002).  TNF-α and IL-6 are major inflammatory markers during 

exercise induced muscle damage, inflammation and repair.  If these inflammatory 

markers are attenuated as a result of E2 in the human body, then it could be inferred that 

E2 has a protective role in limiting muscle damage and inflammation.  

 The cytokine TNF-α plays a major role in regulating the influx of leukocytes in 

clearing damaged muscle tissue and stimulating repair.  Ostrowski et al., (1999) reported 

that strenuous exercise resulted in increases in pro-inflammatory cytokine TNF-α.  In 

addition this group suggested that anti-inflammatory cytokines, such as IL-6, may restrict 

the potency and duration of the inflammatory response after exercise.  E2 has been shown 

to alter the concentration of TNF-α.  For example Chao et al., (1995) found that TNF-α 

fluctuates with changes in the E2 and progesterone.  While this is an endotoxin model, not 

an exercise model, these results suggest a relationship between E2 and TNF-α.   In 

another endotoxin model, E2 was shown to attenuate TNF-α and IL-6 in post-menopausal 

women receiving E2 replacement.  Bacterial endotoxin studies can serve as a model to 

study TNF-α and other cytokines in the acute phase response because endotoxin 

stimulates the production of cytokines and leukocytes, similar to the response seen during 

exercise induced muscle damage (Puder et al., 2001).   
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IL-6 is an interesting cytokine because it has been shown to have both anti- and 

pro-inflammatory properties.  It is thought that anti-inflammatory IL-6 is released locally 

in the muscle after strenuous exercise and the amount released is dependent on the type 

of physical activity, as well as the duration of exercise (Hamer & Karageorghis, 2007).  

After strenuous exercise, IL-6 is markedly increased more so than any other cytokine.  

Pederson et al., (2004) suggests that IL-6 is produced first and plays an important role in 

the inflammatory response.  Previous studies suggest that muscle damage was related to 

IL-6 production, while later studies showed that high intensity training elevated creatine 

kinase levels, but failed to increase IL-6 levels (Pederson et al., 2004). This suggests that 

IL-6 response may be independent of muscle damage; Although, this view is not held by 

all immunology researchers.  Furthermore a different study, comparing the levels of IL-6 

production in the hind legs of rodents, found that there was no difference in IL-6 

production in concentric and eccentric contractions (Jonsdottier et al., 2000).  While 

muscle damage may not be directly dependent on IL-6 levels, it has been shown that IL-6 

produced locally from the exercising muscles exerts an anti-inflammatory effect on the 

immune response.  Until recently, researchers considered IL-6 to be a pro-inflammatory 

cytokine.  For example, MacIntyre et al., (2001) reported that neutrophil and IL-6 

increased up to 6 h post-exercise, and there was a significant relationship between IL-6 

and DOMS, suggesting that IL-6 as a pro-inflammatory cytokine initiates inflammation.   

Further research needs to be completed in order to clarify the roles of pro- and anti-

inflammatory IL-6.  Due to the uncertainty of the role of IL-6, it is not the primary 

variable of interest in this study.   
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In the present study, the effects of E2 and TNF-α on muscle damage, 

inflammation and repair are being evaluated.  IL-6 is included as a secondary variable in 

this study to investigate how IL-6 affects TNF-α and if there is a relationship between E2, 

IL-6 and inflammation.  Schwarz et al (2000) found that the release of TNF-α was 

diminished in pre-menopausal females during the luteal phase of the menstrual cycle 

when compared to the follicular phase of the menstrual cycle, as well as the inhibited 

release of both TNF-α and IL-6 in females during the luteal phase when compared to 

male controls.  In a study by Pottratz et al (1994), E2 was shown to inhibit the expression 

of the IL-6 gene through an E2 receptor mediated effect on the transcription of the gene’s 

promoter region.  Due to the unclear pro- or anti-inflammatory cytokine properties, IL-6 

is hard cytokine to measure and accurately describe its effect on physiological systems 

related to muscle damage and inflammation.  Thus TNF-α is the primary inflammatory 

marker measured in this study, because it is a known pro-inflammatory cytokine marker 

and its effect on physiological systems related to exercise induced skeletal muscle 

damage, inflammation and repair can be accurately described.  
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Figure 1: Theoretical model illustrating the potential protective role of estrogen in 

skeletal muscle damage, inflammation, and repair. 
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In summary, clarifying the role of E2 during exercise induced muscle damage, 

inflammation, and repair is beneficial towards expanding this area of the research 

literature, as well as providing women with more information that may be potentially 

useful when designing training programs.  As demonstrated in this review, E2 plays a role 

in many physiological systems in addition to sexual and reproductive function.  

Understanding E2’s role in these systems, especially these systems involving exercise 

induced muscle damage, inflammation, and repair is especially important.  It has been 

suggested in this review that E2 may attenuate the inflammatory response, so that after 

exercise induced muscle damage enough cytokines are produced and leukocytes recruited 

to clear the damaged muscle tissues and limit excessive inflammation that may damage 

healthy muscle tissues.  The results of this study will contribute to this body of 

knowledge and provide insight as to the role of estrogen on inflammatory markers TNF-α 

and IL-6 after prolonged aerobic exercise. 
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CHAPTER III 

METHODOLOGY 

 

 The recruited participants in this study made five visits to the Applied Physiology 

Laboratory at the University of North Carolina, Chapel Hill.  The first visit was an 

orientation visit, where informed consent was obtained, subjects were determined eligible 

for the study, descriptive characteristics were acquired, menstrual histories were recorded, 

and maximal oxygen consumption (VO2max) tests were completed.  The menstrual cycle 

was used to create two hormonal conditions, low E2  (LE) and high E2 (HE).  Participants 

reported to the investigator the first day of menses, which was denoted as day 1.  The LE 

phase occurs early in the menstrual cycle, roughly between days 3-7, when E2 is lower, 

while the HE phase occurs later, approximately between days 20-24, when E2 is much 

higher. Session two and four was an experimental protocol where subjects performed 60 

minutes of treadmill running at 65% of their predetermined VO2max in each hormonal 

condition, LE and HE.  The variables TNF-α, and IL-6 were measured at baseline, 

immediately post-exercise, 30 minutes post-exercise. E2 was measured at baseline. 

During session three and five, the days after the exercise protocol, the 24-hour post-

exercise blood draw was taken in each hormonal condition.  

Participants  

 Healthy, highly trained, pre-menopausal women between the ages of 18-30 years 

were recruited for this study.  Samples size was estimated from previous research in the 

literature to ensure adequate power (Appendix A). To be considered for this study, 
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participants were eumenorrheic for the past six months, had not taken oral contraceptives 

or other hormone therapy six months prior to participation, and were not currently taking 

anti-inflammatory medications for chronically diagnosed conditions, such as ibuprofen, 

naproxen, or aspirin.  Additionally participants had a current minimum training volume 

of 3-5 days a week, 45-120 minutes per session of aerobic activity, a VO2max of 45 

ml/kg/min, and no major injuries that limited the ability to engage in exercise. 

Participants that had sustained an injury in the past 6 months were fully recovered with a 

physician’s clearance for exercise before participating in the study.  Participants that 

became ill with a immune responding condition were dropped from the study.  Once 

cleared, participants signed informed consent after being thoroughly informed of the 

experimental protocol and any risks or rewards related to the study.  Additionally, 

participants agreed to abstain from strenuous physical activity and maintain a diet similar 

in calories and carbohydrate content for the 24 hours prior to the two experimental trials.  

Compliance was assessed through the use of a 24-hour food log and compliance 

questionnaire. Participants were asked to replicate their diet prior to each prolonged 

treadmill bout. 

Instrumentation  

Height was determined using a portable stadiometer (Perspectives Enterprises, 

Portage, MI USA).  Body mass was measured using a mechanical scale (Detecto, Webb 

City, MO USA).  Skinfolds were measured with a Lange skin caliper (Beta Technology, 

Inc., Santa Cruz, CA USA).  Maximal oxygen consumption was determined during a 

continuous, incremental treadmill test on a Quinton Q65 treadmill (Bothell, WA USA).  

Respiratory gases were obtained for the orientation session, as well as the two 
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experimental sessions using the Parvo Medics TrueMax 2400 Metabolic System (Parvo 

Medics, Salt Lake City, UT USA).  Heart rate was monitored continuously using the 

Polar telemetry system (Polar Electro, Inc., Lake Success, NY USA).  Ratings of 

perceived exertion were determined using Borg’s 20 point scale. Urine specific gravity 

was assessed using CLINITEK Atlas Automated Urine Chemistry Analyzer (Bayer, 

Erlangen, Germany).  Hematocrit was determined using an Adams MHCT II 

microhematocrit centrifuge (Becton Dickinson, Franklin Lakes, NJ USA) and an 

International Microcapillary Reader (International Equipment Company, Needham 

Heights, MA USA).  Hemoglobin was determined from a Stanbio Lab Hemopoint H
2
 

analyzer (Boerne, TX USA).  Whole blood samples were placed in an IEC Centra-8R 

refrigerated centrifuge (International Equipment Company, Needham Heights, MA USA) 

and the resultant separated plasma was stored and frozen at -80˚C.  Plasma TNF-α and 

IL-6 were measured using ABNOVA ELISA kits (Taipei, Taiwan).  Plasma E2 was 

measured using the radioactive (
125

I) immunoassay technique, (Siemens Healthcare 

Technologies, Los Angeles, CA USA).   

Protocol 

Pre-Screening 

 Women interested in participating in this study emailed the investigator. During 

this initial communication the investigator determined if they met the inclusion criteria.  

Women accepted into the study were scheduled for an orientation session.   

Orientation Session I 

 Participants arrived at the Applied Physiology Laboratory at The University of 

North Carolina, Chapel Hill and were informed of the experimental protocol, made aware 
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of the possible risks and rewards associated with the protocol, and signed an informed 

consent form (Appendix B). The Office of Human Research Ethics, Institutional Review 

Board, of The University of North Carolina, Chapel Hill approved the informed consent 

form.  After giving informed consent, participants underwent a physical screening and a 

12 lead electrocardiogram.  Then participants filled out the Exercise and Sports Science 

medical history questionnaire and passed the medical screening (Appendix C).  

Descriptive characteristics, such as height, weight, age and percent body fat were 

obtained.  Percent body fat was measured via measurements at the triceps, thigh, and 

suprailliac skinfolds, using the 3-site Jackson, Pollock, and Ward equation (Jackson et al., 

1980). 

 Next, participants completed a VO2max test using a continuous, incremental 

treadmill test.  They were allowed a five minute warm up consisting of running on the 

treadmill at their preferred pace, followed by light stretching.  Following the warm up, 

resting oxygen consumption VO2 was recorded for at least three minutes.  Participants 

then began the graded exercise test, as determined by the Bruce treadmill protocol 

(ACSM Guidelines, 2010).  Table 1 lists the Bruce protocol treadmill test. Throughout 

the test, heart rate (HR), 20 point scale ratings of perceived exertion (RPE), and 

respiratory gases were collected.  At the conclusion of the test, participants recovered 

(actively or passively) and were permitted to leave the laboratory when HR dropped 

below 100 beats per minute (bpm).  In order to confirm that the VO2 test was a maximal 

test (rather than a peak test) participants showed three of the four following criteria: a 

plateau or decrease in VO2 with increases in workload, respiratory exchange ratio (RER) 

greater than or equal to 1.1, RPE ≥ 18, and a HR within 10% of predicted heart rate max 
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(220-age, [ACSM Guidelines, 2010]). ACSM guidelines were used to estimate exercise 

intensity corresponding to 65% of VO2max, as shown in Appendix D (ACSM Guidelines, 

2010).  

 

Table 1: Speed (miles per hour; mph) and grade for each three minute stage of the Bruce 

protocol incremental exercise test.  

 

Stage Speed (mph) Grade (%) 

1 1.7 10 

2 2.5 12 

3 3.4 14 

4 4.2 16 

5 5.0 18 

6 5.5 20 

7 6.0 22 

 

Experimental Sessions II and IV  

Participants arrived at the Applied Physiology Laboratory once during the mid-

follicular (LE) phase of the menstrual cycle and once during the mid-luteal (HE) phase.  

The forward counting method (Chavanne & Gallup 1998) was used to determine and 

schedule sessions during the respective phases of the menstrual cycle. Participants 

reported to the investigator the first day of menses, this was denoted as day 1.  The LE 

phase occurs early in the menstrual cycle, roughly between days 3-7, when E2 is lower, 

while the HE phase occurs later, approximately between days 20-24, when E2 is much 

higher. The LE and HE phases of the menstrual cycle were used for the two experimental 

sessions to find the largest differences between naturally fluctuating E2 levels and 

maximize effect size. These date ranges are approximations, thus exact days in each cycle 



 29 

varied as a result of the actual length of a subjects’ menstrual cycle and when they were 

scheduled for a testing session.  A menstrual cycle questionnaire was used to determine 

each participant’s respective phases of the menstrual cycle (Appendix E). The two 

experimental sessions were counterbalanced to prevent order effects.   

Subjects were asked to refrain from intense physical activity and replicated their 

diet 24 hours prior to each experimental session.  Subjects were asked if they followed all 

guidelines prior to the testing sessions, and a food diary was used to ensure nutrient 

intake was replicated between trials, as well as to make sure they consumed adequate 

calories and carbohydrate (Appendix F). To ensure adequate hydration, a urine sample 

was requested to assess urine specific gravity. If subjects were compliant, the 

experimental trial was continued. Subjects rested supine in a relaxed, quiet environment 

for 10 minutes.  After the resting period, blood was obtained (3mL) via individual blood 

draws.  The blood sample was placed in a sterile K2 –EDTA (purple top) Vacutainer™ 

tube and immediately put on ice.  Subjects then completed a five-minute warm-up 

consisting of cycling and stretching, followed by 60 minutes of running at their 

previously determined workload of 65% of VO2 max.  This intensity and time frame was 

chosen to make sure E2, IL-6 and TNF-α were elevated as a result of exercise (Bonen et 

al., 1979; Mendham et al., 2011; Pederson 2000).  During both treadmill bouts heart rate 

and VO2 was assessed at rest, while heart rate, ratings of perceived exertion, and VO2 was 

assessed from 6-10 minutes, 26-30 minutes, and 56-60 minutes.  This is shown in figure 2.  

During the first treadmill bout, at 10 and 30 minutes, VO2 was checked to ensure 

participants reached this intensity of 65%.  If participants were below 65%, the running 

speed was increased. This was not done in the second treadmill bout, because the running 
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trials were exactly replicated.  Immediately post exercise and 30 minutes into recovery, 

blood samples were taken (3mL) and promptly put on ice.  Plasma was separated from 

blood samples and stored until later analysis for E2, TNF-α, and IL-6.  Blood samples are 

stored for three years. 

Follow Up Blood Draws Session III and V 

 

 Participants returned to the APL 24 hours post exercise for additional blood draws.  

Upon entering the APL, participants laid supine, in a quiet environment, for 10 minutes.  

Blood samples were obtained to measure E2, TNF- α and IL-6 using the same procedures 

specified above. All data collection forms used are included in Appendix G. 

 

Figure 2: A diagram showing the protocol of the experimental sessions. 

 

 
 

 

Blood Procedures 

Hematocrit 

 Immediately post each exercise test, resting and post-exercise Hematocrit (Hct) 

values were determined in triplicate from whole blood samples.  Whole blood was put 
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into 75mm Allied Corporation microcapillary tubes (Fisher Scientific, Pittsburgh, PA) 

and sealed using Critoseal (Krackeler Scientific, Albany, NY).  Capillary tubes were spun 

in a microhematocrit centrifuge for three minutes at 10,000 RPM and then placed on a 

hematocrit wheel to determine the hematocrit values of each sample.  A mean was 

calculated from three samples and used in data analysis.   

Hemoglobin 

 
 Resting, immediately post-exercise, and recovery hemoglobin (Hb) values from 

each experimental session were measured in duplicate from the whole blood samples 

using the Stanbiolab Hemopoint H
2
 analyzer (Boerne, TX).  These values were 

determined immediately after completion of the exercise tests.  A mean was calculated 

from three samples and used in data analysis.   

Plasma Volume Shift 

Hb and Ht values were used to calculate exercise induced plasma volume shifts 

according to the Dill and Costill equation (Dill & Costill 1974).  

Cytokines (TNF-α and IL-6), E2 

 To separate plasma from whole blood, the blood samples were centrifuged at 

3,000 x g for 10 minutes.  The separated plasma was transferred to storage tubes and 

stored until analyses are conducted.  Radioactive (125I) immunoassay technique 

(Siemens Healthcare Technologies, Los Angeles, CA USA) with solid-phase antibody 

procedures was used to measure plasma E2 concentrations.  The assay manufacturer 

reports a minimum detectable concentration of 2.0 pg/mL.  High-sensitivity enzyme-

linked immunosorbent assay kits (Abnova, Taipei, Taiwan) were used to measure both 

TNF-α and IL-6.  The assay manufacturer reports a minimum detectable concentration of 
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5.0 pg/ml for TNF-α and 0.92 pg/mL for IL-6. All blood assays were performed in 

duplicate while standards were done in triplicate.  See Appendix H for assay sheets. 

 
Data Analysis 

 Statistica statistical software was used to analyze the data in this study (version 

6.3 Tulsa, OK USA).  Significance for all data was set at α < 0.05.   Descriptive statistics 

were shown as means ± standard deviations (SD).  Sample size of fifteen participants was 

estimated from previous research in the literature to ensure adequate power (=0.80).  

Effect size was calculated for all significant measures to determine if statistically 

significance effects had practical meaning.   

 Separate 2 x 4 (estradiol level x time) totally within, repeated measures ANOVAs 

and where appropriate, Bonferoni post hoc test, was used to assess the effects of estradiol 

on blood TNF-α and IL-6 concentrations.   

 At dependent t-test analysis was used to evaluate statistical significance between 

resting levels of estradiol--17 (E2) at LE and HE phase of each experimental session.   
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CHAPTER IV 

RESULTS 

Due to the stringency of the inclusion criteria and study protocol, only 10 of the 

15 initially recruited subjects completed all aspects the study.  Three subjects completed a 

VO2 max test, but did not meet the 45 ml/kg/min criteria.  One subject dropped out for 

personal health reasons.  One subject was not able to complete the treadmill bouts due to 

scheduling constraints.  The remaining 10 subjects met and maintained all of the 

inclusion criteria.  However, due to medical reasons, one subject was unable to complete 

the mid-luteal prolonged running bout.  In order to not lose this subject’s data within the 

statistical analysis, mean substitution was used to approximate their mid-luteal values.  

Additionally, several subject’s HR or RPE data were accidentally missed during data 

collection and this data was also approximated using mean substitution.    

Subject characteristics 

 As noted, ten eumenorrheic, aerobically trained females completed this study.  

These subjects met all the inclusion criteria: healthy females between the ages of 18-30 

years, eumenorrheic, not currently taking or have taken oral contraceptives or other 

hormone therapy 6 months prior to participation, have not had an injury in the previous 

six months, not currently taking anti-inflammatory medication, and have a current 

minimum training volume of 3-5 days per week, 45-120 minutes per session of aerobic 

activity and a VO2 max of at least 45 mL/kg/min.  Participant physical characteristics are 

reported in Table 2. 
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Table 2: Descriptive data for subjects. 

Measure Mean ± SD 

Age (yr) 21±1 

Height (cm) 164.5±5.7 

Body Mass (kg) 61.3±8.3 

Estimated Body Fat (%) 24.1±2.8 

 

VO2 peak testing 

 All the criteria for a maximal oxygen consumption test was not achieved by all 

subjects, thus all maximal oxygen consumption tests are referred to as VO2 peak tests.  

Average relative VO2 peak was 53.5 ± 4.7 ml/kg/min, while the average peak RPE 

obtained was 18 ± 1 Borg units, and the average peak HR was 191 ± 7 bpm.  The average 

calculated 65% of VO2 peak to use during the submaximal 60 minute prolonged runs was 

34.8 ± 3.0 ml/kg/min.   

Hormonal condition determination 

 Average menstrual cycle length of subjects was 28 ± 1 days.  Menstrual cycle 

condition was determined using the protocol detailed in the Methodology chapter.  With 

the onset of menses denoted day 1, subjects were tested on 7 ± 2 days during the mid-

follicular (low E2; LE) phase, while subjects were tested on 23 ± 3 days for the mid-luteal 

(high E2; HE) phase.  Analysis of resting blood samples for E2 indicated appropriate 

hormonal condition was achieved.    The LE concentration was 39.3 ± 18.3 pg/mL and 

the HE concentration was 148.1 ± 35.2 pg/mL.  These concentrations were significantly 

different from one another (p=0.003). The significant difference between hormonal 

conditions confirms the desired treatment effect was achieved. 
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Prolonged treadmill running bout  

Before each prolonged treadmill running bout, subjects submitted a 24 hour food 

log, and answered a questionnaire regarding compliance of pre-testing guidelines.  

Between the two testing sessions, all subjects complied with all guidelines (no strenuous 

exercise or consumption of anti-inflammatory medication, replication of dietary intake, 

and adequate consumption of fluids within 24 hours prior to the testing session).  Three 

subjects participated in light exercise within the 24 hour period prior to the first testing 

session, and this exercise was replicated exactly prior to the second prolonged running 

session.  The resting urine specific gravity was well below 1.030 cc
3
 for all subjects for 

both LE and HE prolonged running sessions, indicating adequate hydration prior to 

exercise.  Mean body mass prior to exercise for LE was 61.4 ± 8.6 kg and for HE was 

61.1 ± 8.3 kg; these values did not differ significantly (p>0.05).   

 Each prolonged running bout was performed for 60 minutes at the calculated 

running speed to elicit 65% of the individual’s VO2 peak.  All subjects were able to 

complete each of the 60 minute running bouts.  Actual treadmill running speed was 

replicated for each prolonged running bout, which was equal to 14.7 ± 1.3 km/hr with a 

corresponding VO2 of 61.7 ± 5.0% during LE and 59.7 ± 2.8% during HE.  The 

prolonged running sessions were counterbalanced in order to prevent order balances, six 

subjects completed LE then HE, while four subjects completed HE before LE.  The mean 

VO2, HR and RPE were nearly identical for each of the 60 minute running sessions.  

Descriptive data at each measurement time is shown in Table 3 below.  
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Table 3: Descriptive data (mean ± SD) for VO2, HR and RPE for each prolonged running 

bouts in each hormonal condition (LE and HE). 

 

Hormonal 

Condition 
Measure 

Time (min) 

Rest 10 30 60 

LE 

VO2  

(mL/kg/min) 
4.9±0.6  30.4±4.2 33.2±3.2 35.2±2.9 

HR  

(bpm) 
63±7 150±15 157±13 165±13 

RPE  

(Borg units) 

 

- 11±1 12±1 14±1 

HE 

 

VO2 

(mL/kg/min) 

4.9±0.4  30.0±3.2 32.7±3.3 33.1±4.5 

HR  

(bpm) 
61±4 149±7 154±6 164±6 

RPE  

(Borg units) 
- 11±1 12±1 14±2 

 

Using the Dill and Costill method of determining plasma volume shifts, plasma volume 

decreased over the prolonged running bouts were calculated.  These plasma volume shifts 

are reported in Table 4.    

 

Table 4: Mean (± SD) plasma volume shifts from rest to immediately post exercise (R-IP), 

rest to 30 minutes post exercise (R-30P) and rest to 24 hours post exercise (R-24P). 

 

Hormonal 

Condition 

Plasma Volume Shift (%) 

R-IP R-30P R-24P 

LE -8.5±6.9 -3.1±8.0 6.6±16.1 

HE -8.1±5.9 -8.6±7.6 -2.6±6.8 
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Blood responses to prolonged exercise   

Tumor necrosis factor-α (TNF-α) 

TNF- responses are reported in Table 5.  The main effect for hormonal condition 

was not significant (p=0.48).  The main effect for time was significant (p=0.001), with 

post-hoc tests indicating there was a significant increase from rest to 30 minutes post 

exercise (p=0.001), from rest to 24 hours post exercise (p=0.001), and from immediately 

post exercise to 24 hours post exercise (p=0.03).  There was not a significant interaction 

effect for hormonal condition and time (p=0.60).  

Interleukin-6 (IL-6) 

 Interleukin-6 responses are reported in Table 6.  The main effect for hormonal 

condition was significant (p = 0.022), with post hoc revealing IL-6 response was greater 

in LE than HE.  The main effect for time was also significant (p=0.001), with IL-6 

elevated from rest to immediately post exercise, and from rest to 30 minutes post exercise.  

There was a significant interaction effect between hormonal condition and time for IL-6 

(p=0.001).  Post hoc revealed that IL-6 was significantly increased from rest to 

immediately post exercise, and from rest to 30 minutes post exercise in both hormonal 

conditions.  The response at immediately post exercise did not differ between LE and HE, 

however, the response at 30 minutes post exercise was significantly elevated in LE when 

compared to HE (p=0.002).    
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Table 5: Mean (± SD) for TNF- at rest, immediately post exercise (IP), 30 minutes post 

exercise (30P), and 24 hours post exercise (24P). An * indicates significant increase from 

rest, while an ^ indicates significant increase from IP.   
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Table 6: Mean (± SD) for IL-6 at rest, immediately post exercise (IP), 30 minutes post 

exercise (30P), and 24 hours post exercise (24P). An * indicates significance from rest, 

an ^ indicates significantly lower IL-6 compared to LE, while a # indicates an interaction 

effect between hormonal condition and time.   
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CHAPTER V 

DISCUSSION 

The purpose of this study was to determine if circulating E2 levels influenced the 

pro-inflammatory cytokine biomarker TNF- responses in the blood, following a 

moderate intensity prolonged exercise session in eumenorrheic women.  A secondary 

purpose of this study was to determine if E2 levels influenced the cytokine biomarker IL-

6 (both a pro- or anti-inflammatory) response in the blood, following a moderate intensity 

prolonged exercise session in eumenorrheic women.  It was hypothesized that higher E2 

levels would attenuate both TNF- and IL-6 responses after the exercise bout.  To test 

these hypotheses, ten aerobically trained, eumenorrheic women completed 60 minute 

treadmill bouts in a LE condition and again in a HE condition, with blood collection 

occurring at rest, immediately post exercise, 30 minutes post exercise, and 24 hours post 

exercise.   

Hormonal condition determination 

 In this study, there was a significant treatment condition between the LE and HE 

menstrual cycle conditions (p=0.003), with an approximately four times greater increase 

in E2 from LE to HE (39.3 ± 18.3 pg/ml to 148.1 ± 35.2 pg/ml, respectively). These 

results fell within expected values determined by the ELISA kit used in analysis; as mid-

follicular (LE) levels were reported to range from 30-100 pg/ml and mid-luteal (HE) 

levels were reported to range from 60-400 pg/ml (Human E2, Abnova, Walnut, CA).  The 
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existence of a significant treatment condition is in alignment with other studies 

investigating the effect of E2 on inflammatory markers (Chiu et al., 2000; Hackney et al., 

1991; Northoff et al., 2008).   

Prolonged aerobic exercise session 

The physiological responses (results in Table 3) to the 60 minute the treadmill 

running bouts confirm the experimental sessions were closely replicated.  That is, the 

results show that VO2, HR, and RPE responses were similar between bouts. Furthermore, 

actual running speed in each session was replicated exactly and corresponded to an 

average VO2 of 61.7 ± 5.0% during LE and 59.7 ± 2.8% during HE. While this elicited 

VO2 was below the prescribed 65% of VO2peak desired, this intensity has been shown in 

previous research done by this laboratory to elicit suitable muscle damage to initiate 

inflammation (Hackney et al., 2012). With the physiological markers confirming that 

there was very little difference between 60 minute testing sessions, it is concluded that 

any differences in blood measured cytokine responses to the exercise resulted primarily 

from fluctuating E2 across the menstrual cycle. 

Plasma volume values indicate that plasma fluid left the vascular bed from rest to 

immediately post exercise and from rest to 30 minutes post exercise during LE (-8.5 ± 

6.9% and -3.1 ± 8.0%, respectively) and during HE (-8.1 ± 5.9% and -8.6 ± 7.6%, 

respectively).  This hemoconcentration of the blood is most likely indicative of slight 

exercise induced dehydration (Dill & Costill, 1974).   From rest to 24 hours post exercise, 

the plasma volume shift was positive during LE (+6.6 ± 16.1%) and slightly negative 

during HE (-2.6 ± 6.8%) indicating the subjects may have rehydrated well and plasma 

volume was closer to normal values, respectively.   The percent changes in the blood 
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measured responses of TNF- and IL-6 were much larger than the plasma volume shifts, 

indicating that the changes in these outcome variables were indicative of increased 

production level and thus an inflammatory response and not hemoconcentration or 

hemodilution induced changes.   

Blood responses  

Tumor Necrosis Factor (TNF-α) 

 There was a significant main effect for time with post hoc tests indicating that 

there was a significant increase from rest to 30 minutes post exercise, from rest to 24 

hours post exercise and from immediately post exercise to 24 hours post exercise.  These 

results are in line with other previous research, suggesting that there is an acute 

inflammatory response, mediated by the pro-inflammatory cytokine TNF-, after 

exercise induced muscle damage (Ostrowski et al., 1999; Pederson et al., 2000: Smith et 

al., 2000).   The concentrations of TNF- reported in this study are in line with the 

concentrations reported in one other study (Ostrowski et al., 1999).  Specifically, 

Ostrowski et al. reported TNF- values significantly increase in males after a marathon, 

and these values stayed elevated for up to 1.5 hours post exercise.  The significant 

increase in TNF- complements the current study, which suggests that TNF- followed 

the same response in women after a much shorter exercise intervention.   

In the current study there was not an interaction effect for TNF- for hormonal 

condition by time.  The comparative literature is limited in the number of investigations, 

which have studied the effects of E2 on TNF-, hence this is why the present study was 

conducted.   Those available studies have shown an effect of fluctuating E2 on TNF- at 

rest (Schwarz et al., 1990), and in endotoxin models (Chao et al., 1995; Puder et al., 
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2001). Schwarz et al., found that TNF- was attenuated during HE when compared to LE.  

Puder et al., suggests that high concentrations of E2 can limit the inflammatory response, 

with the reduction of circulating TNF-.   Lastly, Chao et al., proposes that E2 greatly 

regulates the release of TNF-, with very high and low physiological levels of E2 

attenuating TNF- and mid-physiological concentrations of E2 increasing TNF-.    

While it has been shown in these few select studies that E2 does affect TNF-, there may 

not be as large of an effect following an exercise intervention to be physiologically 

detectable; which this study supports.  Additionally, the sample size was not adequately 

powered to see significance for TNF- (=0.68; i.e., underpowered). However it is un-

likely significance would have occurred with 15 subjects, because the largest mean 

difference (TNF-α response at 24 hours post exercise) would have required a sample size 

of 55 subjects to reach significance.      

Interleukin-6 (IL-6) 

There was a main effect for both hormonal condition and time, and an interaction 

effect for hormonal condition by time.  Post hoc testing revealed that IL-6 was 

significantly increased from rest to immediately post exercise, and from rest to 30 

minutes post exercise in both hormonal conditions.  The response immediately post 

exercise did not differ between LE and HE; however, the response at 30 minutes post 

exercise was significantly greater in LE condition when compared to HE.  The practical 

significance of these findings, as shown by the effect size, was large (Cohen d statistic = 

1.135).  This suggests that there is a strong relationship between E2 and IL-6 and the 

results are meaningful.   
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The results of this study are in line with the results of previous research produced 

in our laboratory where E2 was found to attenuate IL-6 immediately post exercise and 30 

minutes post exercise (Hackney et al., 2012).  These results are also in line with studies 

investigating the effect of E2 on IL-6 at rest (Angstwurm et al., 1997; Chiu et al., 2000; 

Schwarz et al., 2000).  Interestingly, and somewhat in contradiction to the current study, 

Northoff et al., found HE facilitates up-regulation of TNF- genes and down-regulation 

of IL-6 genes, suggesting higher E2 levels influences a pro-inflammatory environment.  

This study was set up very similarly to the current study, with the measurement of TNF- 

and IL-6 occurring after a high intensity (~93% of anaerobic threshold) exercise bout.  

Other studies, however, indicate that there is a weak or non-existent relationship between 

E2 and IL-6.  Ives et al., found E2 to be unrelated to IL-6 at rest or in response to exercise.  

These results of Ives et al. should be interpreted with caution, however, because there 

was not a treatment effect (LE was not significantly different from HE). Considering the 

differing results regarding the estrogenic effect on inflammation, it is hard to know for 

certain how or if E2 exerts a strong influence on IL-6. The current results suggest there is 

an effect; nonetheless, more research is warranted 

It is well documented that IL-6 increases dramatically with exercise (Brenner et 

al., 1999; Edwards et al., 2006; Ives et al., 2011; Ostrowski et al., 1998).  IL-6 is a unique 

cytokine because of its both pro- and anti-inflammatory effects.  Recent investigations 

suggest IL-6 is released locally from the skeletal muscle after an acute exercise bout, with 

the amount released dependent on the type of physical activity and the duration of the 

exercise (Hamer & Karageorghis. 2007).  This acute IL-6 released is thought to have 

primarily anti-inflammatory cytokine effects, such as the inhibition of pro-inflammatory 
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TNF- (Febbraio et al., 2002; Pederson et al., 2003; Schwarz et al., 2000). The acute IL-

6 response is also thought to have myokine effects such as the stimulation of lipolysis and 

fat oxidation to aid in the maintenance of glucose metabolism (Ives et al., 2011).   In the 

context of this study, the attenuation of IL-6 may be considered negative because there is 

less IL-6 exerting anti-inflammatory and glucose sparing effects or it may be considered 

positive because there is overall less inflammation due to the protective effects of E2. 

Further work is necessary to address this paradox.    

The mechanism by which E2 exerts a protective effect on skeletal muscle and 

inflammation is not well understood, but thought to be a result of E2 acting as an 

antioxidant, membrane stabilizer and gene regulator (Perksy et al., 1999).  While it can be 

interpreted that there is less IL-6 exerting anti-inflammatory and glucose sparing effects 

during HE, a bulk of the research literature suggests that the attenuation of IL-6 is 

positive because it means there is less overall inflammation following damaging exercise 

(Angstwurm et al., 1997; Chiu et al., 2000; Schwarz et al., 2000).  Additionally previous 

research in this laboratory, found HE concentrations to promote glucose-sparing 

mechanisms and increase fat utilization by increasing the activity of lipoprotein lipase, 

circulating growth hormone, and decreasing circulating insulin levels (Hackney et al., 

1999).  This supports the theory that HE levels promote fat utilization and the attenuation 

of IL-6 may result from less muscle damage and inflammation following the exercise 

bout and less of a need for IL-6 as enhancer of lipolysis since HE may be exerting some 

of these actions directly.  Additionally, previous research has shown that there is less 

muscle damage following an exercise intervention during HE concentrations (Carter et al., 

2001).  This also suggests that the attenuation of IL-6 is positive, indicating that there is 
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less potential overall inflammation following the exercise bout, less collateral damage to 

healthy skeletal muscle tissue and less muscle soreness. While there is uncertainty 

regarding the exact mechanistic influence of IL-6, future research is needed to fully 

elucidate the role of E2 as it fluctuates across the menstrual cycle and inflammation after 

a moderate intensity aerobic exercise bout.       

The inability to determine whether pro- and anti-inflammatory IL-6 exerts a 

positive or negative influence on skeletal muscle after exercise-induced muscle damage 

was a major limitation of this study.  Other limitations include a small sample size.  

While the sample size was adequate to see a meaningful significance between hormonal 

condition and IL-6, the sample size was not adequately powered to see significance for 

TNF- (=0.65; i.e., underpowered).   In order to see significance, additional subjects 

needed to be recruited.  Additionally, results are only applicable to eumenorrheic women 

because post-menopausal, amenorrheic, oligomenorrheic, and oral contraceptives users 

have different hormonal profiles, which alters their inflammatory response to exercise.     

Due to the pro- and anti-inflammatory actions of IL-6, and the uncertainty in the 

literature as to how IL-6 exerts its influence with respect to E2 after muscle damaging 

exercise, there is great need to conduct more research in this area.  Recommendations for 

future research include clarifying the role of E2 and its effect on inflammation after 

exercise induced muscle damage, as well as clarifying the role of IL-6.  In order to 

determine a more comprehensive understanding of the effect of E2 on the immune 

response, additional cytokines needed to be investigated, both pro- and anti-inflammatory, 

in order to elucidate whether there is an estrogenic effect after exercise.  Future research 

should also investigate whether there is a possibility of interaction between E2 and 
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progesterone on the immune response following exercise, since both of these hormones 

fluctuate across the menstrual cycle.   

In conclusion, there was not a significant interaction effect between E2 and the 

cytokine TNF-, indicating that HE does not attenuate pro-inflammatory TNF- 

responses.  However, there was a significant interaction effect between E2 and IL-6, the 

significance of this finding is unclear due to the pro- and anti-inflammatory effects of IL-

6.   Other known pro-inflammatory markers should also be looked at to determine if there 

is in fact a protective influence of E2 on muscle damage, inflammation, and repair.  

Information regarding the estrogenic effect on inflammation across the menstrual cycle 

would be useful for eumenorrheic women not on birth control, when designing exercise 

programs, as well as considerations in study design when investigating the inflammatory 

response in women.   
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APPENDIX A 

SAMPLE SIZE CALCUATIONS 
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APPENDIX B 

INFORMED CONSENT  

University of North Carolina at Chapel Hill 

Consent to Participate in a Research Study 

Adult Participants 
 

Consent Form Version Date: __2013-2014____________ 

IRB Study # 10-2109 

Title of Study: Influence of Estrogen on Cytokine Response to Prolonged Treadmill Running 

Principal Investigator: Anthony Hackney 

Principal Investigator Department: Exercise And Sport Science 

Principal Investigator Phone number: (919) 962-0334 

Principal Investigator Email Address: ach@email.unc.edu 

_________________________________________________________________ 

 

What are some general things you should know about research studies? 
You are being asked to take part in a research study.  To join the study is voluntary. 

You may refuse to join, or you may withdraw your consent to be in the study, for any reason, without 

penalty. 

 

Research studies are designed to obtain new knowledge. This new information may help people in the 

future.   You may not receive any direct benefit from being in the research study. There also may be risks to 

being in research studies. Deciding not to be in the study or leaving the study before it is done will not 

affect your relationship with the researcher, your health care provider, or the University of North Carolina-

Chapel Hill. If you are a patient with an illness, you do not have to be in the research study in order to 

receive health care. 

 

Details about this study are discussed below.  It is important that you understand this information so that 

you can make an informed choice about being in this research study.  

 

You will be given a copy of this consent form.  You should ask the researchers named above, or staff 

members who may assist them, any questions you have about this study at any time. 

 

What is the purpose of this study? 
Recent work has shown a negative relationship between concentration of estrogens and the inflammatory 

response, specifically cytokines, at rest. Females in the midluteal phase of the menstrual cycle, high 

estrogen concentration, exhibited significantly lower circulating cytokines (and creatine kinase) compared 

to females in the midfollicular phase, low estrogen concentration. These demonstrated fluctuations at rest 

begs the question - Is there an altered cytokine response during exercise at different points within the 

menstrual cycle as estrogen changes? 

  

To date, few exercise studies on human female subjects with respect to estrogen concentration and 

cytokines exist. The studies that do exist present divergent results. The studies performed have limitations; 

primarily small sample sizes, potential inaccurate menstrual phase determination, or dosage of exercise was 

not enough to provoke a response. 

  

The purpose of this research study is to learn about the influence estrogen has on the cytokine response to 

prolonged treadmill running. The results of this study will add to the limited body of knowledge available 

on the influence of estrogen on cytokine expression in response to exercise within women, potentially 

providing insight as to how training regimens might be altered for optimal performance and minimal risk. 

  

The main aim of the study is to determine if there is a significant difference in cytokine response at rest, 
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immediately post exercise, 30 minutes post exercise, and 24 hours post exercise between two phases of the 

menstrual cycle, midluteal and midfollicular. On separate days, you will perform an exercise test on a 

treadmill to determine your maximal aerobic capacity (VO2max), two 60-minute running bouts at 

approximately 65-70% VO2max, and have blood drawn before, immediately post, 30 minutes post, and 24-

hours post the 60-minute running bout. Blood samples will be assessed for estrogen and cytokine 

concentration and creating kinase levels.  

  

You are being asked to be in the study because you are a healthy, highly trained woman between the ages 

of 18 and 30 with a normal menstrual cycle for at least 6 months. You have not used oral contraceptives for 

at least six months prior. Have no major injuries within the last six months that limit ability to engage in 

exercise or if have sustained an injury are completely recovered and cleared by a physician to partake in 

exercise. Your current VO2max is at least 45 ml/kg/min. Your current minimum training volume is 3-5 

days a week, 45-120 minutes per session of aerobic activity. 

 

Are there any reasons you should not be in this study? 
You should not be in this study if you are knowingly pregnant or become pregnant during the study, if you 

have an irregular or absent menstrual cycle, are currently taking or have taken within the six months prior 

oral contraceptives, you have sustained an injury within the last six months that has limited your ability to 

exercise, use substances known to alter immune response (e.g. NSAIDS) the week before each 60-minute 

exercise session, or you become ill with immune responding conditions (i.e., colds, respiratory 

infections…etc.). 

 

How many people will take part in this study? 
There will be approximately 25 people in this research study. 

 

How long will your part in this study last? 
You will be enrolled in the study for approximately 6 weeks. Within the 6 weeks, 3 visits are made to the 

Applied Physiology Laboratory at the University of North Carolina at Chapel Hill. 

 Visit 1: Orientation Session, duration is approximately 90 minutes 

 Visit 2 (approximately 1-6 weeks after visit 1): Prolonged treadmill running bout (60 min)  with a 

before and immediately, and 30 minutes after exercise blood draws performed by a certified 

phlebotomist (NCPT 56147) visit, duration is approximately 2 hours 

 Visit 3: 24-hours after prolonged running bout blood draw, duration is approximately 30 minutes 

Visits 4-5 will be a repeat of visits 2-3 approximately 2-6 weeks after visit 2. Blood specimens will be 

stored for 3 years following the completion of the study. 

What will happen if you take part in the study? 
Orientation/Familiarization Session, duration approximately 90 minutes (visit 1): 

  

 The study protocol, schedule, inherent benefits, and potential risks will be explained to you, 

followed by signing the informed consent. 

 You will go through a physical screening that includes completing the Department of Exercise & 

Sport Science (EXSS) medical history questionnaire and undergoing a physical examination and 

12-lead electrocardiogram in the Applied Physiology Laboratory. The physical examination 

includes auscultation of blood pressure, review of heart sounds, and pulmonary assessment. The 

physical examination and 12-lead electrocardiogram will be conducted and assessed by approved 

personnel. 

 Height and mass will be obtained and you will be fitted for a heart rate monitor and then asked to 

rest lying down for 10 minutes. After obtaining your resting heart rate, you will be fitted for a 

mouthpiece that will be used to collect expired air. 
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 You will then perform a modified Bruce Protocol to volitional fatigue to determine VO2max. The 

protocol consists of 3-minute stages with progressive speed at 0% inclined to near max, then grade 

will be introduced to maximal exertion (e.g. 3 minutes: 6.0, 0%, 3 minutes: 7.5, 0%, 3 

minutes:  9.0, 0%, 3 minutes, 9.0, 2.5%). Heart rate (HR), rating of perceived exertion (RPE), and 

expired air will be monitored throughout the test. VO2max attained will be used to determine 

running speed for the specific menstrual phase prolonged running bout for each individual subject. 

Menstrual Phase Determination: 

  

You will need to inform the principal investigator at the start of menses (the first menses following visit 1 

to the lab), which will be denoted as day one. Scheduling of the prolonged treadmill running bout will 

correspond to a specific menstrual phase. 

  

Prolonged treadmill running bout 1, duration approximately 2 hours (Visit 2 and 4): 

  

The time lapse between visit 1 and visit 2 is not determined by investigators, rather it is determined based 

upon your menstrual cycle. The start of your menstrual cycle (e.g. menses, day 1) and the approximate 

length of your menstrual cycle (day 1 of menses to the start of the next menses) will determine when you 

are scheduled for the prolonged running bouts so as to ensure you are in the appropriate menstrual cycle 

phase. The approximate time between visit 1 and visit 2 can be 1-6 weeks. Between visit 1 and 24-hours 

before visit 2 you can partake in normal daily activities and exercise training with no restrictions. Twenty-

four hours prior to the prolonged running bout you will be asked to refrain from exercise, drink plenty of 

fluids, and eat a diet rich in carbohydrates. 

 Upon arrival, you will be asked to urinate into a sterile specimen container. The urine will be 

assessed for hydration status. If the urine analysis comes back as dehydrated you will not 

participate in the prolonged running bout, you will be encouraged to consume plenty of fluids, and 

you will be rescheduled. 

 If the urine analysis comes back normal you will be weighed, fitted with a HR monitor, and asked 

to rest lying down for 10 minutes. After, a resting HR will be recorded and a 1-teaspoon blood 

sample will be drawn from your arm by a certified phlebotomist (NCPT 56147), placed into a K3-

EDTA blood collection tube and immediately put on ice. The blood sample will be used to 

confirm menstrual cycle status and resting IL-6, and estrogen levels. 

 You will then be transferred to the treadmill and fitted for a mouthpiece. You will be asked to sit 

quietly for 4 minutes as your expired air is collected to determine resting VO2. 

 You will then have 10 minutes to warm-up: 5 minutes will be dedicated to easy walking on the 

treadmill followed by 5 minutes of stretching appropriate muscles used in the upcoming prolonged 

running bout (e.g. calf stretch, hamstring stretch, quadriceps stretch, and hip flexor stretch). 

During the walking, you will practice going on and off the mouthpiece as you are moving. 

 Following warm-up, you will run on a treadmill at a 0% incline and a speed to elicit 65-70% 

VO2max. At 6 minutes, 26 minutes, and 56 minutes you will be asked to return to the mouthpiece 

and expired air will be recorded for four minutes. This is to ensure appropriate intensity and make 

adjustments in running speed if necessary. Heart rate and RPE will be recorded during the last 10 

seconds of minutes 9, 29, and 59 of the running bout. 

 Throughout the running bout you will have a fan to keep you cool, can drink water at your 

convenience, and listen to music. 

 At the completion of exercise, another 1-teaspoon blood sample will be drawn following the same 

procedure, placed in K3-EDTA blood collection tube, and immediately placed on ice. This blood 

sample will be analyzed for IL-6 and estrogen concentrations. After blood collection you will cool 

down. The cool down will consist of walking on the treadmill at an easy pace for 5 minutes, 

stretching muscles used during the prolonged running bout (e.g. calf stretch, hamstring stretch, 

quadriceps stretch, and hip flexor stretch), and sitting quietly in a chair. 

 30 minute post blood draw 

 Once your heart rate has returned to 100 bpm you are free to leave the laboratory. 



 52 

  

Follow-up Blood Draws, duration approximately 30 minutes: 

  

At 24 hours after the running bout you will report to the laboratory for additional blood draws. You will be 

asked to rest lying down for 10 minutes. Blood samples will be obtained following the same blood draw 

procedures as explained above. These blood samples will be analyzed for IL-6 and estrogen concentrations. 

During the 24 hours of recovery from the exercise you are asked to refrain from performing any physical 

activity other than that of daily routine living. 

  

Prolonged treadmill running bout, duration approximately 2 hours: 

  

You will be asked to repeat the aforementioned protocol during two different phases of your menstrual 

cycle. The time frame between the prolonged running bouts is approximately 2 to 6 weeks. Between visit 4 

and 24-hours before visit 5 you can partake in normal daily activities and exercise training with no 

restrictions. 

  

Blood Analysis: 

  

The blood samples will be separated by centrifuging and frozen until later analysis. The blood plasma will 

be analyzed for estrogen levels, creatine kinase and immune markers. 

What are the possible benefits from being in this study? 
Research is designed to benefit society by gaining new knowledge.  There is little chance you will benefit 

from being in this research study. The benefits to you from being in this study may be the obtaining of your 

Vo2max (aerobic capacity) which you can use in setting up a specific exercise training program. 

 

What are the possible risks or discomforts involved from being in this study? 
The potential risks to you from participating in this study may be related to exercise or the blood draw 

process. 

  

Potential risks associated with exercise are outlined by American College of Sports Medicine as: sudden 

cardiac death, musculoskeletal injury, and falling. 

 The risk of sudden cardiac death is low in healthy individuals; however, to minimize risk a health 

history questionnaire and physical examination will occur prior to testing. 

 To minimize risk of musculoskeletal injury a proper warm-up will be completed prior to all testing. 

 Given the prolonged nature of the exercise bout dehydration is a potential risk. To minimize this 

risk your hydration status will be determined before testing begins ensuring you are in normal 

hydrated state; if dehydrated the testing session will be cancelled and rescheduled. You will be 

asked to consume plenty of fluids 24 hours before testing and encouraged to drink water 

throughout and after the running bout. 

 The universal sign for stopping an exercise session will be explained to you prior to all testing 

sessions. Research technicians will closely monitor your status during the exercise sessions for 

signs and symptoms of fatigue or a cardiac event to reduce risk of injury or falling. 

Furthermore, the potential risk of exercise for you will be minimal because you have performed similar 

exercise intensities and durations within previous training programs. 

  

Risks associated with blood draws include infection, bruising of the area around the needle insertion, and 

dizziness/fainting. 

 To minimize infection, cleaning of the puncture area and sterile equipment will be used. 
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 Proper needle gauge and firm pressure applied to the puncture following the blood draw will help 

minimize risk of bruising. 

 Following the blood draw, to minimize the risk of syncope you will be asked to move from a 

supine position to sitting and eventually standing slowly. Research technicians will monitor 

complexion and skin temperature for adverse signs. 

A certified phlebotomist will perform all blood draws. First aid procedures and universal precautions will 

be followed during blood draws and handling of blood samples. 

There may be uncommon or previously unknown risks. You should report any problems to the researcher. 

 

What if we learn about new findings or information during the study?  
You will be given any new information gained during the course of the study that might affect your 

willingness to continue your participation.  

 

How will information about you be protected? 
Following initial screening, an identification number will be assigned to you for future identification. A 

hard copy of records will be stored in a locked cabinet in the Applied Physiology Laboratory.  Electronic 

records will be maintained on a secured, password-protected computer. All identifiable hard-copy files will 

be shredded and disposed of using UNC-CH mechanisms and procedures. Blood samples will be stored in a 

secured ultra-freezer behind a access code protected door within a laboratory involving only electric ID 

card access. These specimens will be encoded and labeled so that no personal identifying information will 

be revealed. The identification number will consist of a unique number along with phase and the sample 

time (e.g. 00913, 009 is the subject ID, 1 is indicative of menstrual phase, 3 is time sample). Study data and 

specimens will only contain the identification number. These numbers will be indiscernible unless access to 

the master list which will be locked in a file cabinet in the Applied Physiology Laboratory. Only the 

principal investigator will have access to the records. 

 

Participants will not be identified in any report or publication about this study. Although every effort will 

be made to keep research records private, there may be times when federal or state law requires the 

disclosure of such records, including personal information.  This is very unlikely, but if disclosure is ever 

required, UNC-Chapel Hill will take steps allowable by law to protect the privacy of personal 

information.  In some cases, your information in this research study could be reviewed by representatives 

of the University, research sponsors, or government agencies (for example, the FDA) for purposes such as 

quality control or safety. 

 

What will happen if you are injured by this research? 
All research involves a chance that something bad might happen to you.  This may include the risk of 

personal injury. In spite of all safety measures, you might develop a reaction or injury from being in this 

study. If such problems occur, the researchers will help you get medical care, but any costs for the medical 

care will be billed to you and/or your insurance company. The University of North Carolina at Chapel Hill 

has not set aside funds to pay you for any such reactions or injuries, or for the related medical care. You do 

not give up any of your legal rights by signing this form. 

 

What if you want to stop before your part in the study is complete? 
You can withdraw from this study at any time, without penalty.  The investigators also have the right to 

stop your participation at any time. This could be because you have had an unexpected reaction, or have 

failed to follow instructions, or because the entire study has been stopped. 

 

Will you receive anything for being in this study? 
You will not receive anything for taking part in this study. 

 

Will it cost you anything to be in this study? 
It will not cost you anything to be in this study.  
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What if you are a UNC student? 
You may choose not to be in the study or to stop being in the study before it is over at any time.  This will 

not affect your class standing or grades at UNC-Chapel Hill.  You will not be offered or receive any special 

consideration if you take part in this research. 

 

What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this research. If you have 

questions about the study (including payments), complaints, concerns, or if a research-related injury occurs, 

you should contact the researchers listed on the first page of this form. 

 

What if you have questions about your rights as a research participant? 
All research on human volunteers is reviewed by a committee that works to protect your rights and 

welfare.  If you have questions or concerns about your rights as a research subject, or if you would like to 

obtain information or offer input, you may contact the Institutional Review Board at 919-966-3113 or by 

email to IRB_subjects@unc.edu. 
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Participant’s Agreement: 

 

I have read the information provided above.  I have asked all the questions I have at this time.  I voluntarily 

agree to participate in this research study. 

  

 

______________________________________________________ 

Signature of Research Participant 

 

____________________ 

Date 

 

______________________________________________________ 

Printed Name of Research Participant 

  

  

 

______________________________________________________ 

Signature of Research Team Member Obtaining Consent 

 

____________________ 

Date 

 

______________________________________________________ 

Printed Name of Research Team Member Obtaining Consent 
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APPENDIX C 

MEDICAL SREENING FORMS 

 
Physical Examination Screening 
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Medical History Questionnaire  
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APPENDIX D 

ACSM METABOLIC EQUATION FOR DETERMINING EXERCISE INTENSITY 
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APPENDIX E 

MENSTRUAL CYCLE QUESTIONNAIRE 
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APPENDIX F 

FOOD LOG 
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APPENDIX G 

DATA COLLECTIONS FORM 

Orientation Session 
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Experimental Session 
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Hematocrit and Hemoglobin 
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Subject Compliance  

Have you had anything to eat or drink, besides water, within the last two hours?  
 
Yes                     No 
 
Have you had any anti-inflammatory drugs (Advil, Tylenol, etc) within the last 24 
hours? 
 
Yes                     No 
 
Have you participated in any strenuous exercise within the last 24 hours? 
 
Yes                     No 
 
Have you had any caffeine or alcohol within the last 24 hours? 
 
Yes                     No 
 
Do you have your diet log? (make a copy and give back to subject) 
 
Yes                     No 
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APPENDIX H 

ASSAY SHEETS 

 
Estrogen Assay Information  
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TNF- Assay Information  

 
 



 70 

 



 71 

 
  



 72 

IL-6 Assay Information  
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