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Abstract

YUE ZHAO: Sensitivity Analyses of Time-to-event Data With Possibly
Informative Censoring for Confirmatory Clinical Trials

(Under the direction of Dr. Gary G. Koch and Dr. Amy H. Herring)

We presents a multiple imputation method for sensitivity analysis of continuous

time-to-event data with possibly informative censoring. The imputed time for censored

values is drawn from the failure time distribution conditional on the time of follow-up

discontinuation. A variety of specifications regarding the post-withdrawal tendency of

having events can be incorporated in the imputation through a hazard ratio parameter

for discontinuation versus continuation of follow-up. Multiply imputed data sets are

analyzed with the primary analysis method, and the results are then combined using

the methods of Rubin.

We then introduce covariate-adjusted sensitivity analysis within the established

framework. For the illustrative example in the previous paper (chapter 2), we compare

three methods of analysis for time-to-event data, and then we illustrate how to incorpo-

rate these methods into the proposed sensitivity analysis for covariate adjustment. The

three methods are the multivariable Cox proportional hazards model, non-parametric

ANCOVA, and inverse probability weighting with propensity scores. The assumptions,

statistical issues, and features for these methods are discussed.

Lastly we extend the underlying principle of the proposed sensitivity analysis to

grouped time-to-event data. Various post-withdrawal assumptions are specified through

a conditional odds ratio of failure for the discontinued vs. retained patients, so that the

counts of withdrawals are redistributed to the failure counts in the following time inter-

vals or to the counts censored at the end of study, as if all the withdrawers completed
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follow-up. The hypothetical survival profile estimates and the inferences on treatment

effects (i.e., the incidence density ratio, the odds ratio, the Mann-Whitney probability,

and the Mantel-Haenszel criterion) are produced by matrix operations with the covari-

ance estimators obtained using the linear Taylor’s series approximations. Therefore

there is no need to perform the multiple imputation procedures for the missing out-

comes (i.e., probabilistically assign the patients to a failure status in the time intervals

following their withdrawals).

The methods are straightforward to implement with SAS macros. The interpreta-

tion of the sensitivity parameters is transparent and easily conveyed to clinical review-

ers.
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Chapter 1

Literature review

1.1 Introduction

The efficacy of a new treatment for providing better outcome, for improving patient’s

condition, or for preventing disease recurrence is typically evaluated in randomized

clinical trials in which patients are followed over time. Two types of data can be

collected to assess the efficacy of the new treatment: (1) Longitudinal data from the

repeated measurements of a criterion on the same subject at multiple visits over time.

This criterion may be a measure of functionality, physiological performance, symptoms,

or general well-being. (2) Time-to-event data, where the endpoint event may be death,

disease progression or recurrence.

In a perfect clinical trial, all randomized patients would be completers, who complete

the study as planned without any violation of protocol. Completers for longitudinal

data are the patients who attend every visit. And completers for time-to-event data

are the patients who either have an event during the follow-up period, or complete the

follow-up period without the event. If everybody in the trial is essentially a completer

and has data for all measured primary outcome variables, the data analysis and in-

terpretation of results would be fairly straightforward. In the longitudinal case, the



average effect of treatment across multiple visits or the effect at the last visit could be

analyzed using standard methods, such as the repeated measures mixed-effect models.

For time-to-event data, the Kaplan-Meier (KM) curve, Log-rank test, and possibly the

Cox proportional hazards model are most often used. However, a ubiquitous problem

in all clinical trials, regardless of the outcomes, is missing data due to patients discon-

tinuing study treatment before study completion. For longitudinal data, missing due to

withdrawal means a patient has missing status for all visits after a certain time point.

In the time-to-event analysis, it means a patient’s follow-up time is censored before

the end of the study. If we are able to make the assumption of missing at random

(MAR), which will be explained in the subsequent section, the usual methods men-

tioned previously will provide valid analysis and interpretable results. However, one

could never know for certain whether the MAR assumption is appropriate, and hence

there may need to be other methods to address the robustness of conclusions about the

treatment effect when departure from the MAR assumption is possible. Such analysis is

sometimes called sensitivity analysis, and it will be explained in the subsequent section.

Extensive efforts have been made to establish appropriate methods for analyzing in-

complete data and performing sensitivity analysis for longitudinal clinical trials. Here,

we want to focus on the issue of withdrawal in the time-to-event scenario and discuss

methods for sensitivity analysis for regulatory settings. Section 1.2 begins with re-

viewing methods available in the longitudinal data settings, and provides the concept

of withdrawal and discusses the impact of missing data in longitudinal data analyses.

Section 1.3 introduces missing data mechanisms in the context of withdrawal. Section

1.4 summarizes the common reasons for withdrawal. Mixed-effect models and multiple

imputation are the major analytic approaches to deal with missing data in longitudinal

clinical trials; and they are described in Section 1.5 and 1.6, respectively. Section 1.7
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discusses the concept and the necessity of sensitivity analysis, via selection and pat-

tern mixture models. Available sensitivity analysis strategies under the intent-to-treat

(ITT) principle for longitudinal clinical trials are presented in Section 1.8. Finally,

the recent development of sensitivity analysis for handling dependent and informative

censoring is reviewed in section 1.9.

1.2 Withdrawal in Longitudinal Clinical Trials

A defining feature of longitudinal clinical trials is that the repeated measurements

on the same individual during the course of treatment allow a direct study of change in

the treatment effect over time. Typically, a baseline (or pre-treatment) measurement is

taken on all patients who are then randomized. Measurements of the outcome variable

are then taken repeatedly at the same set of occasions for all participants in the study.

At the last planned time point, the treatment difference from placebo (i.e., the efficacy

of the experimental drug) can be assessed in terms of change in outcomes from baseline

or average rate of change in outcomes. Although efforts are made to collect data on

every individual in the trial at each time point of follow-up, some patients could stop

adhering to the protocol or discontinue their study treatment for reasons beyond the

control of investigators. Consequently, the subsequent follow-up data will be missing

(i.e., monotonic missing). If a patient is no longer seen after a certain follow-up visit,

we say the data is missing due to withdrawal. In the literature, dropout and loss to

follow-up are also used synonymously.

In many areas of clinical research, withdrawal is the major reason for missing data

and most directly affects the interpretation of trial results. For instance, how to analyze

and interpret longitudinal data often depends on unverifiable assumptions about the

underlying missing data mechanism. Therefore, different assumptions and associated
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analysis methods may lead to conflicting statistical inferences about treatment ben-

efit (Permutt and Pinheiro, 2009). Furthermore, incorrectly addressing missing data

may bias parameter estimates, inflate Type I and Type II error rates, and degrade

the performance of confidence intervals, thereby leading to incorrect conclusions about

treatment effect (Collins et al., 2001).

1.3 Missing Data Mechanisms

To understand how statistical inferences may be affected by missing data, it is

important to understand the missingness mechanisms. The following terminology is

based on the standard missing data framework of Little and Rubin (2002).

In the context of a longitudinal clinical trial, we assume that k measurements are

to be obtained at times t1, ..., tk for n independent subjects. For subject i, i = 1, ..., n,

a set of measurements yij (j = 1, ..., k) is collected, and we define the following:

• yi = (yi1, ..., yik) is a (1 × k) complete data vector of outcomes for subject i,

possibly with monotonic missing data.

• ri is the missing data indicator. Specifically, let rij = 1 if yij is observed; and let

rij = 0 if yij is missing.

• Given ri, yi can be partitioned into (yoi , y
m
i ), corresponding to the observed and

the missing part of yi.

Then, the full data density can be factored into two parts as follows:

f(yoi , y
m
i , ri|Xi,θ,ψ) = f(yoi , y

m
i |Xi,θ)f(ri|yoi , y

m
i , Xi,ψ). (1.1)

Here, Xi is the design matrix for observed covariates, and θ and ψ denote parameter

vectors for the measurement and missingness mechanism, respectively. The first factor
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is the marginal density of the measurement process, and the second one is the density

of the missingness process conditional on the outcomes.

Under a missing completely at random (MCAR) mechanism, the missingness is

assumed to be unrelated to either the observed data or the missing outcomes, i.e.,

f(ri|yoi , y
m
i , Xi,ψ) = f(ri|ψ). (1.2)

Therefore, 1.1 simplifies to

f(yoi , y
m
i , ri|Xi,θ,ψ) = f(yoi , y

m
i |Xi,θ)f(ri|ψ), (1.3)

indicating the independence of the measurement and missingness mechanisms. The

joint distribution of yoi and ri becomes

f(yoi , ri|Xi,θ,ψ) = f(yoi |Xi,θ)f(ri|ψ). (1.4)

Hence, in whatever way the observed data are analyzed (whether using a frequentist

or likelihood method), the missingness mechanism is ignorable. For instance, under

MCAR, analysis restricted to cases for which all measurements were recorded (i.e., a

complete-case analysis) will yield unbiased estimates. Furthermore, MCAR also im-

plies that the distribution of unobserved outcomes after withdrawal is the same for

those who do and do not withdraw, and the outcomes for those who withdraw has the

same distribution as the target population (Fitzmaurice, 2003). Unfortunately, those

assumptions are often not realistic.

Under a missing at random (MAR) mechanism, ri depends on yi only through its

observed part yoi . Thus, conditional on the observed data (i.e., the fixed covariates Xi
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and yoi ), the missingness is independent of the missing outcomes:

f(ri|yoi , y
m
i , Xi,ψ) = f(ri|yoi , Xi,ψ). (1.5)

The full data density is partitioned as

f(yoi , y
m
i , ri|Xi,θ,ψ) = f(yoi , y

m
i |Xi,θ)f(ri|yoi , Xi,ψ). (1.6)

At the level of observed data, we obtain

f(yoi , ri|Xi,θ,ψ) =

∫
f(yoi , y

m
i |Xi,θ)f(ri|yoi , Xi,ψ)dymi (1.7)

= f(yoi |Xi,θ)f(ri|yoi , Xi,ψ).

If θ and ψ are disjoint, then the likelihood can be factorized into two distinct compo-

nents. The missingness is ignorable within the likelihood framework, and inference can

be based solely on the marginal density of the observed data, f(yoi |Xi,θ). Apparently,

under the MAR process, the distribution of the outcomes for those who withdraw is

not the same as the distribution in population. But conditional on the observed out-

comes prior to the withdrawal occasion, the distribution of the unobserved outcomes

following withdrawal is the same for those who do and do not withdraw at that oc-

casion. However, this aspect of the assumption cannot be tested from the data at

hand (Fitzmaurice, 2003).

Covariate-dependent missing is a special situation, where the missingness only de-

pends on the fixed covariates Xi, but not on the outcomes yi, that is,

f(ri|yoi , y
m
i , Xi,ψ) = f(ri|Xi,ψ). (1.8)
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Molenberghs and Kenward (2007) viewed it as a special case of MCAR. But Little (1995)

suggested the term ‘MCAR’ should be reserved for the case where the missingness dose

not depend on either yi or Xi, as shown in (1.2). When the missingness mechanism

is only associated with the observed data (MAR), conditional on the fully observed

data regardless of either the fixed covairates Xi or the observed outcomes yi, the miss-

ingness is completely at random (MCAR). Hence, it is reasonable to refer assumption

(1.8) as ‘covariate-dependent MAR’ and refer assumption (1.5) as ‘outcome-dependent

MAR’ (DeSouza et al., 2009).

Finally, when a missing not at random (MNAR) mechanism operates, the miss-

ingness depends on the unobserved outcomes ymi , perhaps in addition to yoi . The

joint distribution of yi and ri (1.1) cannot be further simplified. Conditional on the

past outcomes prior to the withdrawal occasion, the distribution of the future out-

comes following withdrawal is different for those who do and do not withdraw. Clearly,

the missingness mechanism is non-ignorable, and the distribution of the unobserved

outcomes for those who withdraw is not estimable from the data on those observed

after withdrawal. Therefore, the inference can only be made by the joint models of

measurement and missingness processes, with model assumptions about missing data

mechanism. Such models can be formulated in either the selection model or the pattern-

mixture model framework. For selection models, the full data density is factored as the

marginal density of the measurement process and the density of the missingness pro-

cess, conditional on the outcomes (as shown in 1.1). While the pattern-mixture models

use the reverse factorization,

f(yoi , y
m
i , ri|Xi,θ,ψ) = f(yoi , y

m
i |ri, Xi,θ)f(ri|Xi,ψ), (1.9)

allowing a different response model for each pattern of the missing value.

For likelihood-based inference, MCAR and MAR with separate parameterization
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of θ and ψ are often called ignorable, because unbiased estimates of parameters can

be obtained from observed data. The same requirement hold for Bayesian inference.

But for non-likelihood frequentist inference, such as analysis of variance (ANOVA) and

generalized estimating equation (GEE) method, MCAR is the only sufficient condition

for ignorability. Either MNAR or MAR with parameters in common is called non-

ignorable. When missingness is non-ignorable, the inference based on the likelihood

ignoring the missingness process is biased (Molenberghs and Kenward, 2007).

1.4 Withdrawal Reasons in Clinical Trials

In general, no statistical test is available to assess from which mechanism the missing

data arise. Hence, in longitudinal clinical trials, an intuitive way to explore missingness

is to look at the reasons for withdrawals. Siddiqui et al. (2009) summarized the common

reasons as follows: (i) recovery, (ii) lack of improvement, (iii) treatment-related side-

effects, (iv) unpleasant study procedure, (v) intercurrent health problems, and (vi)

external factors unrelated to the trials. For example, MCAR might result from a

patient dropping out because of relocation (vi). If a patient was observed doing poorly

and then decided to discontinue participation, then the withdrawal was related to the

outcome of interest and was explained by the observed data. In this case, it is reasonable

to assume MAR. An example of MNAR could be an instance in which a patient had

been doing well and was then lost to follow-up due to a worsened condition after the

last observed visit (Mallinckrodt et al., 2003).

However, so far, there is no formal classification of withdrawal reasons into the three

missingness mechanisms defined by Little and Rubin (2002). This might partially be

due to the fact that the definition of missingness mechanisms is based on the relation-

ship between outcome and independent variables, and this relationship could vary from

case to case (Siddiqui et al., 2009). For instance, withdrawals due to adverse events
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are probably not MNAR in many cases because all the relevant data probably were ob-

served. But whether classifying it as MCAR or MAR depends on the specific situation.

In many clinical trial settings, extensive efforts are made to observe all the possible out-

comes and the factors that influence withdrawal. Thus, the MAR assumption is much

more plausible than the MCAR assumption, because the observed data could explain

much of the missingness in many scenarios (Mallinckrodt et al., 2003). In principle,

clinical trials by their very design seek to minimize the amount of MNAR. But, the

possibility of MNAR can never be ruled out, and a mixture of different missingness

mechanisms in a clinical dataset often takes place.

Within the framework of pattern mixture models, we develop sensitivity analy-

sis methods for time-to-event data with possibly informative censoring. The chapter

2 presents a multiple imputation (MI) method for sensitivity analysis of continuous

time-to-event data, invoking multiple imputation of the missing failure times due to

withdrawals. In the chapter 3, we discuss the covariate-adjusted sensitivity analysis

within the established framework. In the chapter 4, the underlying principle for this

type of sensitivity analysis is extended to grouped time-to-event data.

1.5 Mixed-Effect Regression Model (MRM)

Under the assumption of an ignorable missingness mechanism, the likelihood-based

mixed-effect models provide valid analysis for incomplete data from longitudinal clinical

trials. When outcomes are continuous and Gaussian, linear mixed models of Laird and

Ware (1982)are the sensible choice. And generalized linear mixed models could be used

to analyze endpoints that are of non-Gaussian type. Using the maximum likelihood

estimator, the missing values are treated as unknown random variables to be averaged

over by integration and removed from the likelihood.
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The linear mixed models assume that the vector Yi of k repeated continuous mea-

surements for the ith subject satisfies

Yi|bi ∼ N(Xiβ + Zibi,Σi) (1.10)

bi ∼ N(0, G)

where β is the p-dimensional vector of fixed effects; bi is the q-dimensional vector of

subject-specific random effects; and Xi(k × p) and Zi(k × q) are the corresponding

design matrices. It then can be easily derived that, marginally,

Yi ∼ N(Xiβ, Vi) and Vi = ZiGZ
′
i + Σi. (1.11)

Conditional on bi, the outcomes Yij’s, j = 1, 2, ..., k, are usually assumed to be mutually

independent. In this case, model residuals are uncorrelated, that is, Σi = σ2Ik×k.

The generalized linear mixed models combine generalized linear model concepts

with ideas from linear mixed models. It is assumed that, the conditional distributions

of outcomes Yij’, given bi, are independent, and in the form of the exponential-family

fi(yij|bi,β, φ) = exp{φ−1[yijθij − ψ(θij)] + c(yij, φ)}

bi ∼ N(0,G)

with

η(µij) = η(E(Yij|bi)) = x′ijβ + z′ijbi

for a known link function η(·), where φ is a scale parameter, and θij is the canonoical

parameter and satisfies dψ(θij)/dθij=E(Yij|bi)=µij. Unlike linear mixed models, the

marginal likelihood of the generalized linear model often involves the approximation of

integration over the q-dimensional random effects. This is because, in most situations,
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the integrals can not be solved analytically.

Typically, clinical trials are conducted to assess the fixed effects (i.e. the difference

in treatment effects), rather than the subject-specific random effects. To accommodate

this focus, the marginal linear mixed model (1.11) is often implemented in analyzing

the continuous outcome measures with pre-specified time points. In this formulation,

the random effects are modeled as a part of the marginal covariance matrix V , and

the fixed effects could include treatment effect, time trend, treatment-by-time inter-

action and other covariates, such as baseline measurement or risk factors. Mallinck-

rodt et al. (2008) referred to this model as mixed-effects model for repeated-measures

analysis (MMRM). A common implementation of MMRM is a cell mean model with

unstructured within-subject error covariance structure V . More specifically, the out-

come measure on the ith patient with treatment t at the jth occasion is modeled as

yijt = µjt + εij, where µjt is the group mean of treatment t at the jth occasion and εij

is the jth element of the residual vector εi with εi ∼ N(0, V ). This version of MMRM

is well suited to the general characteristics of clinical trials, i.e., common scheduled

measurements for all patients and relatively a small number of measurement occasions.

In addition, the unstructured covariance modeling relaxes the assumption about within

patient correlation and often provides the best fit to the data.

As we previously noted, in many longitudinal clinical trial settings, the MAR as-

sumption is always more plausible than the MCAR assumption. A MAR method is

valid if data are MCAR or MAR, but MCAR methods are valid only if data are MCAR.

The MMRM analysis uses all available data (observed outcomes) to provide information

about the missing outcomes, via the within patient correlation structure. Under MAR,

MMRM projects what would have happened if withdrawals continued to adhere to the

protocol, and seeks to estimate the intervention effect that would be seen if all patients

undertook the intervention as per the protocol (Carpenter and Kenward, 2008). Thus,
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broadly speaking, MMRM analysis, as well as other MAR model-based methods, could

be considered as a per-protocol(PP) analysis for the intent-to-treat(ITT) population.

Also, the MMRM analysis can be easily implemented using standard software, such

as the SAS Procedure Mixed (SAS Institute, Cary, NC). A series of simulation studies

have been conducted to compare the performance of MMRM with last observation

carried forward (LOCF), in evaluating treatment efficacy under different missing data

mechanisms (Mallinckrodt et al., 2008; Siddiqui et al., 2009). LOCF is an ad hoc

method commonly used to impute missing values due to withdrawal for the primary

efficacy analysis of clinical trials. Under MCAR or MAR, the MMRM analysis was

able to estimate the true treatment difference with a negligible bias and control the

type I error rate at a nominal level, whereas LOCF underestimated the standard error,

and yielded increased bias and inflated type I error. Furthermore, in the presence of

MNAR mechanism or a mixture of the three missing mechanisms, the MMRM analysis

was also superior to LOCF in minimizing estimation bias and controlling type I and II

error rates. In general, it has been recognized that the likelihood based MMRM is a

robust and appropriate approach to handle missing data for primary efficacy analysis.

However, a shortcoming for MMRM and almost every model-based approach is that

ignorable missingness depends on correct model spiflication. Missingness that might be

non-ignorable given one model could be ignorable given another (Mallinckrodt et al.,

2008). For instance, if withdrawal depends only on an observed variable, say treatment,

and treatment is included in the analytic model, then the mechanism giving rise to

the withdrawal would be ignorable (MCAR), and statistical analysis results would be

unbiased. Whereas if treatment is not included in the analytic model, the missingness

mechanism would be non-ignorable (MNAR), consequently the inference based on such

a model would be biased.
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1.6 Multiple Imputation (MI)

Multiple imputation was first introduced by Rubin (1987) to handle missing re-

sponses in a sample survey. Under ignorable missingness, it is another feasible approach

for analyzing incomplete data. Three steps are involved in MI analysis:

1. The missing values (ym) are filled M times by an imputation model to generate M

complete data sets. Each value is a random draw from the conditional distribution

of the missing value given the observed data, in such a way that the imputations

properly represent the information about the missing value in the imputation

model.

2. Each of the M complete data sets is then analyzed using the method that would

have been appropriate if the data had been complete (i.e., the analysis model).

3. The estimates of the desired quantities and associated standard errors from sep-

arate M analyses are combined into a single inference .

The MAR assumption needs to apply only for the first step, which can be carried out

by the SAS procedure MI. The statistical inference performed in the second step will

be valid, if the missingness given the imputation model is ignorable. The third step

could be conducted by the SAS procedure MIANALYZE using the multiple imputation

technology given by Rubin (1987).

More specifically, suppose that θ is the parameter of interest to be estimated using

a analysis model. If complete data were available, the inference about θ given large

samples would typically be based on the point estimate θ̂(yo, ym), the variance estimate

V̂θ(y
o, ym), and the appropriate normal approximation

(θ̂ − θ)√
V̂θ
∼ N(0, 1). (1.12)
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Let θ̂m and V m denote the point and variance estimates from the mth imputed data

set (m = 1, 2, ...,M). The MI estimate for θ is simply the average of estimates from

the M imputed complete data sets,

θ̄ =
1

M

M∑
m=1

θ̂m. (1.13)

Also, define W = 1
M

∑M
m=1 V

m to be the average of the M within-imputation variances,

and B = 1
M−1

∑M
m=1(θ̂m − θ̄)2 to be the between-imputation variance. Then, the

variance estimator of θ̄ is given by the sum of W and B multiplied by a finite sample

correction,

V = W +
M + 1

M
B. (1.14)

Confidence interval estimates and hypothesis tests are based on the approximation of

a t distribution

V −
1
2 (θ̄ − θ) ∼ tν (1.15)

with degrees of freedom ν = (M − 1)(1 + r−1)2, where r = (1 + M−1)B/W . Thus, a

100(1−α)% confidence interval estimate for θ is θ̄± tν,(1−α
2

)V
1
2 ; and a two-sided p-value

for the null hypothesis H0 : θ = 0 is obtained by comparing θ̄/V
1
2 with the distribution

of tν .

Notice that if ym carried no information about θ, the imputed data estimates θ̂m

would be identical and V would reduced to W . Therefore, r, the ratio of the between-

imputation to the within-imputation variation, measures the relative increase in vari-

ance due to missing information. When there is no missing information about θ the

values of r and B are both zero. The rate of missing information in the system can be
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obtained by comparing the spread of the distribution in (1.12) to the distribution in

(1.15) as

γ =
r + 2/(ν + 3)

1 + r
. (1.16)

Unlike maximum likelihood (ML) based mixed-effect models, the MI approach han-

dles missing data in a imputation step entirely separate from the analysis. The model

used to impute missing values can differ from the model used for inference (Liu and

Gould, 2002). An advantage about the MI method, compared to the ML mixed-effect

model approach, is that the imputation model can include considerably more variables

predictive of missingness, therefore increasing the plausibility of the MAR assump-

tion (Mallinckrodt et al., 2003). Besides the variables that are potential causes or

correlates of the missingness itself, the imputation model could also include the vari-

ables that are simply correlated with the variables that have missing values regardless

of their relation to the missingness mechanism. Collins and colleagues referred to this

class of variables as auxiliary variables (Collins et al., 2001). Their simulation study

indicated that incorporating the auxiliary variables not only increased efficiency and

statistical power under MAR, but also reduced the bias and moved the situation closer

to MAR when missingnes was non-ignorable. In clinical trial settings, the auxiliary

variables, such as postbaseline or time varying covariates correlated with treatment

could be included in the imputation model. But those variables cannot be included

in the analysis model or the MMRM model because of their confounding with the

treatment effect (Mallinckrodt et al., 2008).

From a theoretical standpoint, it is possible to add auxiliary variables to the ML

mixed-effect model. However, without a careful plan, it could produce undesirable ef-

fects, such as altering the meaning of model or computational complexity. Furthermore,

the statistical software that is currently available for ML missing data approaches also
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do not facilitate the use of auxiliary variables. Using MI, it is much easier to incor-

porate auxiliary variables into the analysis via the imputation step. For this reason,

the MI method is practically more robust against misspecification of the missingness

mechanism than the direct likelihood method.

1.7 Sensitivity Analysis

1.7.1 Why Sensitivity Analysis

When analyzing incomplete data, additional assumptions about missing data have to

be made in order to choose sensible statistical methods. Those assumptions break down

into two broad categories as follows (Carpenter and Kenward, 2008). The first type of

assumptions focuses on the missingness mechanism, specifically, how the probability of

missingness depends on the observed and unobserved data. This leads to the selection

model approach. The second type of assumptions focuses on the distribution of missing

data given the observed data, that is, whether or how the distribution of unobserved

outcomes is different from the distribution of outcomes for those who have no missing

data, and how this difference depends on the patterns of the missingness. This is

the extension of pattern mixture models. In section 1.3, the connections between

the missingness mechanisms and the assumptions of missing data distribution were

discussed in the context of MCAR, MAR, and MNAR.

Depending on the statistical approach we adopt to handle the missing data, we need

to make assumptions about either the missingness mechanism or the missing data dis-

tribution. Unfortunately, neither of those assumptions can be validated definitely from

the observed data. For instance, MCAR indicates the distribution of outcomes prior to

withdrawal is the same for those who do and do not withdraw at that occasion, which

can be suggested by the observed data. But we cannot be completely sure that data
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are MCAR, since we do not observe the missing outcomes. Nevertheless, the observed

data can rule out MCAR, if there is any relationship between the observed data and the

occurrence of missing data (Carpenter and Kenward, 2008). In clinical trials, MCAR

is most unlikely, and MAR is often reasonable; however, the possibility of MNAR is

impossible to be ruled out. Results from likelihood-based MAR methods without con-

sideration of their limitations could be misleading (Mallinckrodt et al., 2003). Thus,

In many circumstances, analysis valid under MNAR assumption is required. However,

one obvious and fundamental problem is that the conclusion of the MNAR analysis

is conditional on the appropriateness of the assumed model (Mallinckrodt and Ken-

ward, 2009), and MNAR model assumptions are not verifiable from the observed data.

More importantly, the consequences of model miss-specification are more severe with

MNAR methods than with MAR methods. Hence, no single MNAR approach can be

considered definitive or well suited for the primary analysis in confirmatory clinical

trials.

Given the above discussion, no universally best applicable approach for handling

missing data can be recommended. Investigators should make effort in exploring the

impact of missing data assumptions on the results of analysis. For longitudinal clinical

trial data, it has been a broad consensus among statisticians in the pharmaceutical

industry and academia that likelihood-based methods implemented under the MAR

framework are the sensible choice for the primary analysis, and a series of MNAR

analyses should be implemented as sensitivity analysis to assess the robustness of the

primary analysis result to the possible departure from the MAR assumption (Mallinck-

rodt and Kenward, 2009).

In presence of incomplete data, sensitivity analysis is generically defined as a way to

explore the impact of missing data assumptions on statistical inferences and scientific
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conclusions (Molenberghs, 2009). In clinical trial settings where interest is in the treat-

ment efficacy hypothesis, a pre-defined sensitivity analysis approach was recommended

by Carpenter and Kenward (2008) as follows. Either before the trial is conducted, or

during a blind review of the data, investigators identify a set of missing data mod-

els (i.e., assumptions about missingness mechanism or missing data distribution) to

address the impact of clinically plausible departure from MAR. A sensible analysis is

then planned under each missing data model. After the blinding is broken, a series

of analyses are performed. The results from such analyses would reflect a range of

conclusions under assumed models, and therefore demonstrate the robustness of the

inference about treatment comparisons to different missing data assumptions.

1.7.2 Selection and Pattern-mixture Models

The sensitivity of inference to missing data assumptions is typically investigated via

selection or pattern-mixture models under MNAR framework. Carpenter and Kenward

(2008) illustrated the application of both approaches using clinical trial examples.

Selection models (Diggle and Kenward, 1994; Little and Rubin, 2002) describe the

full data likelihood as the product of the marginal density of the measurement process

and the density of the missingness process conditional on outcomes (shown in 1.1).

Besides the model for the measurement process as used in MAR analysis, a model

explaining missingness has to be fitted at the same time in the analysis. Carpenter and

Kenward (2008) gave an example of the missingness process model for withdrawal as

logitPr(Rij = 0|Ri(j−1) = 1) = αj + δYij (1.17)

Pr(Rij = 0|Ri(j−1) = 0) = 1,

where Yij denotes the response of interest for the ith subject at the jth visit, i = 1, ..., n
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and j = 1, 2, ..., k. Here, the log odds of subject i withdrawal at the jth visit depends

not only on that visit (αj), but also on the response at that visit. δ = 0 corresponds

to a MAR assumption, and a positive value of δ implies odds of withdrawal at a visit

increases with the value of response at that visit. Using MCMC methods in winBUGS

(Spiegelhalter et al.,1999), this model can be fitted in conjunction with a mixed model

for the measurement process. However, the estimated value of δ and its standard error

depend critically on unverifiable assumptions for the missing data distribution. Thus,

estimating δ is usually not recommended (Carpenter and Kenward, 2008). Rather, in-

vestigators should identify a set of plausible values for δ, then fit the model with each

of these values, and explore how the estimated treatment effect varies as a sensitiv-

ity analysis. In many applications, model (1.17) could be extended to include other

variables, such as, treatment and response from previous visit. Theoretically, variables

that are included in a mixed model to maximize the plausibility of MAR should be

included to make the selection model more plausible and make the treatment estimates

less sensitive to MNAR. However, those complicated models are sometimes difficult to

fit and interpret.

An alternative approach to sensitivity analysis is the pattern-mixture (PM) mod-

els (Little, 1993). PM models are based on factorization of the full data likelihood as

the product of the measurement process conditional on the withdrawal pattern and

the missingness process (displayed in 1.9). An important feature of PM models is that

the parameters are overspecified, hence additional restrictions are needed to make pa-

rameters identifiable (Molenberghs and Kenward, 2007). One general rule is to set the

non-estimable parameters of incomplete patterns equal to the parameters or functions

of the parameters that describe the distribution of completers (Little, 1994; Mallinck-

rodt et al., 2003). In practice, the random-effect PM model formulated by Little (1995)

is often used to analyze incomplete clinical trial data. To implement this approach,
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analytical models are fitted separately for different groups, defined by withdrawal pat-

terns (e.g. early or late withdrawals, and completers), and then the overall estimate is

obtained as a weighted average of the pattern-specific estimates (Siddiqui et al., 2009;

Ali and Siddiqui, 2000).

A natural way to perform sensitivity analysis under the PM framework is to assume

that the model for missing data is a modification of the model for observed data. By

varying this modification, a range of sensitivity analyses could be easily performed.

Carpenter and Kenward (2008) illustrated this type of sensitivity analysis using an

example with a single response from normal distribution. For the control arm, assume

that the observed responses come from normal(µC , σ
2) and the unobserved responses

have shifted mean (µC + δC). Let πC denote the probability of withdrawal, then the

average response in the control arm is (1 − πC)µC + πC(µC + δC). Likewise, for the

intervention arm, µI , δI , and πI are defined analogously, then the average response in

the intervention arm is (1− πI)µI + πI(µI + δI). The averaged treatment effect, ∆, is

then

∆ = ((1− πI)µI + πI(µI + δI))− ((1− πC)µC + πC(µC + δC)) (1.18)

= (µI − µC) + (δIπI − δCπC).

Note that (µI −µC) is the treatment effect in completers, δI and δC are the parameters

describing the degree of informative missingness, and δI = δC = 0 implies MCAR.

Using a Bayesian approach, the sensitivity analysis could be performed via a series of

plausible prior elicitation about the joint distribution of δI and δC .
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1.8 Intent-to-treat Analysis and Sensitivity Analysis

1.8.1 Intent-to-treat and Per-protocol Analysis

Intent-to-treat(ITT) has been accepted as a fundamental principle for establishing

efficacy/effectvieness in randomized confirmatory clinical trials. ITT analysis attempts

to evaluate the effect of the original treatment strategy rather than directly assess the

effect of treatment itself (Flyer and Hirman, 2009). It includes all randomized patients,

regardless of adherence to the protocol or premature withdrawal. In a typical ITT

analysis, the treatment effect is measured with patients assigned to the treatment as

randomized, rather that to the treatment actually received (Little and Yau, 1996).

In contrast to ITT analysis, per-protocol (PP) analysis incorporates actual treat-

ment usage and compliance into a direct measurement of treatment effect. In the pres-

ence of missing data due to withdrawals, PP analysis seeks to estimate the treatment

effect that would have been seen if all patients completed their assigned treatment.

In this regard, PP analysis is consistent with the MAR assumption, under which the

missing data problem in longitudinal data can be properly addressed by ML based

mixed-effect models (Carpenter and Kenward, 2008; Flyer and Hirman, 2009).

The only ITT analysis approach that could address missing data is to continue fol-

lowing patients after they stop adhering to the intervention protocol, regardless what-

ever treatment they then receive. However, practical issues in data collection and trial

design make its implementation difficult (Flyer and Hirman, 2009), for instance, pa-

tients may withdraw consent. According to the ITT principle, data from patients who

stop treatment but do not begin other treatments should reflect the long-term benefit

of the initial treatment assignment. However, data collected from patients that received

non-study treatments will be very difficult to interpret. Because of those reasons, many

clinical trials are designed to not collect data on patients who discontinue their study
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treatment. Very often, when patients stop complying with the protocol, they withdraw

from the study, leading to missing responses.

1.8.2 PM Model with Longitudinal Data via MI

Because of the distinction in the underlying hypothesis between ITT and PP anal-

yses, methods to address the missing data issue for ITT analysis should be different

correspondingly from those for PP analysis. We should consider that the distribution

of responses is different for those who do and do not continue with the intervention

protocol, and even after taking into account the information in observed data, the

withdrawal mechanism may still depend on the unseen response (Carpenter and Ken-

ward, 2008). Furthermore, if the withdrawal is likely to be associated with a change in

treatment regime, then a different model is needed for those who withdraw. However,

we may not actually have enough information to model patients’ treatment adher-

ences and behaviors following withdrawal. Therefore, the missing data issue following

withdrawal in the ITT setting should be viewed as a MNAR analysis under specific

assumptions (Carpenter and Kenward, 2008).

Under MNAR, a range of missingness process models could be consistent with the

observed data. Thus, there is no longer a definitive ITT analysis (Carpenter and

Kenward, 2008). Different post-withdrawal behaviors should be incorporated into sen-

sitivity analyses as part of the ITT analysis. A natural approach for such a sensitivity

analysis is multiple imputation using PM models conditional on all relevant observed

data and different missing patterns to reflect treatment change (or discontinuation)

after dropout. Little and Yau (1996) proposed a PM imputation model including the

treatment dosage actually received after withdrawal, upon which multiple imputations

were created by sequential Bayesian draws from the parameter posterior distribution

and the missing value predictive distribution conditional on the drawn parameters. The
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sensitivity analysis was then carried out for a range of plausible alternative assumptions

about dosage after withdrawal. A key feature of this method is that the imputation

model differs from the model used for ITT analysis. Under the ITT principle, the anal-

ysis model must not include compliance information following randomization, but the

imputation model has no problem to incorporate such compliance information (Car-

penter and Kenward, 2008).

Furthermore, under simple but reasonable assumptions about the consequence of

treatment regime change on future behavior, the PM imputation model can be con-

structed from components estimated from a MAR mixed-effect model, therefore greatly

simplifying the modeling process (Carpenter and Kenward, 2008). This approach was

implemented in a SAS macro by Roger (2008). Suppose we are interested in ITT treat-

ment effects at the final visit of an active drug group and a placebo group, and assume

that patients discontinue their treatment after withdrawal. Then, it is reasonable to

apply a MAR model to the placebo group, and assume that, for the active treatment

group, the post-withdrawal behavior of response conditional on the past is probably the

same as those in the placebo group. Thus, MAR model estimations from the placebo

group can be used to construct a MNAR PM model to impute the future responses of

withdrawals in the active drug group. Based on this idea, a variety of PM models can

be constructed under various plausible assumptions about post-withdrawal behaviors

in the active drug group, to assess the robustness of the primary analysis result. For ex-

ample, one PM model hypothesis could be that the change in mean for post-withdrawal

responses in the active drug group is the same as the change in mean in the placebo

group, while another model could assume that the mean of post-withdrawal responses

in the active drug group become the mean in the placebo group. This method and the

standard MAR imputation only differ with respect to their implications for unobserved

responses from the active drug group. And this difference, in turn, leads to different
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treatment comparison estimates (Carpenter and Kenward, 2008).

1.9 Informative Censoring and Sensitivity Analysis

Survival analysis is used in medical research for analyzing time-to-event (survival)

data, which is the time duration from a well-defined time origin to the occurrence of a

particular event. A distinguishing feature of time-to-event data is that they are usually

censored or incomplete in some way. The survival time is said to be (right) censored

if the observation period was cut off before the event occurred. In such case, we do

not know when (or, indeed, whether) the patient will experience an event, and we only

know that the patient has not had the event at the last observed time.

In a typical setting for analyzing censored survival data, there is a potential censor

time C and a potential survival time T for each individual. We only observe time

Y= min(T , C) and the censor indicator δ = I(T ≤ C), which indicates whether a

failure is observed. Under this condition, the distribution of T is not identifiable unless

we make further assumptions. An important assumption in most survival analysis is

that the censoring mechanism is non-informative or ignorable. This means that the

instantaneous failure rate given subject survival to time t is not changed by additional

information that the subject was uncensored up to that time t (Leung et al., 1997;

Lagakos, 1979). In another words, the censoring of an observation does not provide any

information regarding the prospect of survival time of that particular subject beyond

the censor time. The contribution of a censored observation to the likelihood is just the

probability that survival time T exceeds the censor time c. Therefore, the censoring

mechanism is irrelevant for inference about the distribution of T .

In general, censoring due to study termination is called end-of-study or administra-

tive censoring, as apposed to loss-to-follow-up (LTF) censoring when patients withdraw

during the study period (Leung et al., 1997). It is usually reasonable to assume that the
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administrative censoring is independent of the survival time. Lagakos (1979) proved

that independent censoring is a special case of the noninformative censoring; hence the

administrative censoring imposes no problem to the standard survival analysis proce-

dures. However, it is not always proper to make non-informative assumptions about

the loss-to-follow-up censoring. When the probability of censoring depends on the sur-

vival time, the censoring mechanism is said to be informative (Kalbfleisch and Prentice,

2002), and the inference based on the standard methodologies is no longer valid (Col-

lett, 2003). If patients who withdraw are at higher risk of subsequently having an event

(i.e., the survival time and the censor time are positively correlated), the Kaplan-Meier

estimator would overestimate the survival function of T . Similarly, if the withdrawals

are at lower risk of failure (i.e., the survival time and the censor time are negatively

correlated), then the survival function would be underestimated (Leung et al., 1997).

Consequently, the main issue, related to the informative censoring in clinical trials, is

the potential bias in comparison of survival functions between treatment groups.

When censoring is informative or dependent, the focus of analysis is usually the

joint distribution of T and C. Unfortunately, this joint distribution is not identifiable

from the observed data Y and δ. Tsiatis (1972) showed that if we have a model with

dependent risks, then a proxy model with independent T and C always exists, and those

two models give the same joint distribution of observed Y and δ. Therefore, unless we

make additional assumptions, it is impossible to test the noninformative assumption,

or to estimate the degree of dependence between failure time and censoring mechanism.

Given that no definite model can be fit under dependent censoring in practice, many

references have proposed sensitivity analysis about informative censoring in a competing

risk framework. Additional assumptions and models were introduced on the dependence

structure between the failure time and the dependent censoring process in order to
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make the problem identifiable. Scharfstein and Robins (2002) proposed classes of semi-

parametric models for the cause-specific hazard of censoring indexed by censoring bias

functions. Their method allows adjustment for informative censoring due to measured

prognostic factors for failure time, and simultaneously quantifies the sensitivity of the

inference to residual dependence between failure and censoring due to unmeasured

factors. Siannis et al. (2005) studied the sensitivity analysis for informative censoring

in parametric survival models. The association between T and C was modeled by the

conditional distribution of C given the (possibly unobserved) T through a bias function

and a dependence parameter. The sensitivity analysis was developed on a range of the

dependence parameters for small values. Recently, Ruan and Gray (2008) investigated

the effect of the dependence between dependent withdrawal and disease progression

time using a conditional probability model incorporating a set of sensitivity parameters.

They linked the sensitivity analysis to the log-rank test via constructing log-rank-type

score statistics from the estimated distributions, and they explored the impact of the

sensitivity parameters on the inference by examining how much dependence between

the disease progression and withdrawal times would need to be present to ultimately

change the conclusion from the statistic for inference about the comparison of two

treatment groups.

1.10 Summary

Within the framework of pattern mixture models, we develop sensitivity analy-

sis methods for time-to-event data with possibly informative censoring. The chapter

2 presents a multiple imputation (MI) method for sensitivity analysis of continuous

time-to-event data, invoking multiple imputation of the missing failure times due to

withdrawals. In the chapter 3, we discuss the covariate-adjusted sensitivity analysis

within the established framework. In the chapter 4, the underlying principle for this
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type of sensitivity analysis is extended to grouped time-to-event data.
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Chapter 2

Sensitivity Analyses of withdrawals
in Time-to-Event Data

2.1 Introduction

An essential property of confirmatory clinical trials is the randomization of patients

so that the control and the test treatment have statistically equivalent distributions

for known and unknown baseline characteristics that may have potential associations

with the outcome of interest (NRC, 2010; CHMP, 2010). However, a ubiquitous and

inevitable problem that can undermine the comparability of randomized treatment

groups is potential bias from the nature and extent of missing data for patients who

prematurely discontinue their planned follow-up period for the assigned treatment (or

the study) without further assessment. In view of this problem, the design of many

clinical trials specifies continued follow-up of patients after premature termination of

the assigned treatment for such reasons as adverse events, lack of compliance, lack of

efficacy, or protocol deviations. A rationale for this practice is that it provides po-

tentially useful information about the experiences of these patients for their remaining

follow-up time until their planned (or premature) discontinuation from the study (Flyer

and Hirman, 2009; Walton, 2009). However, the role of this information can be un-

clear when patients receive effective rescue treatment after discontinuing their assigned



treatment (Flyer and Hirman, 2009). For example, the comparison of regimens that

begin with test treatment or placebo followed by effective rescue therapy after their

discontinuation could erroneously suggest that an ineffective test treatment is effective

solely because it forces more patients to switch to rescue therapy than placebo (Per-

mutt and Pinheiro, 2009). Thus, in such situations, analyses for the comparison of the

assigned treatments may need to ignore any unclear information subsequent to their

discontinuation and thereby proceed with the corresponding experiences of patients as

if missing.

Analytical strategies for drawing inferences from incomplete data rely on untestable

assumptions about the missing data distributions and the missingness mechanism (NRC,

2010; CHMP, 2010). Little and Rubin (2002) classified the missing data mechanism into

three categories: missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR). When the data are MCAR, the missing data are

unrelated to the observed and unobserved study variables, and so the observed data are

statistically representative for the experiences of all randomized patients. In practice,

however, MCAR is usually an unrealistic assumption. When the data are MAR, the

missingness depends only upon the observed study variables. That is, conditional on

the observed study variables, the probability of missing does not depend on the values

of the missing data. When the missingness probability also depends on the values of the

missing data, the data are said to be MNAR. In many situations, the MAR paradigm is

realistic for the primary analysis in confirmatory clinical trials (Zhang, 2009; Mallinck-

rodt et al., 2008). However, the observed data can never rule out the possibility of

MNAR. Therefore, sensitivity analyses exploring the implications of departures from

the primary MAR assumption are always of interest to assess the robustness of the

treatment effect inferences.

We consider randomized clinical trials where a time-to-event is the primary outcome.
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Conventional methods such as the Kaplan-Meier estimation of survival curves (Kaplan

and Meier, 1958), the logrank or Wilcoxon tests (Mantel, 1966; Gehan, 1965), and the

Cox proportional hazards model (Cox, 1972) are frequently employed to describe time-

to-event distributions and to assess treatment effects. Missing data for a time-to-event

occurs for patients who prematurely discontinue follow-up for the assigned treatment

(or the study) prior to the occurrence of the event or the end of their planned follow-

up period (or the administrative closing date of the study). One way to address this

type of missing data is to censor the follow-up times of such patients at their times

of premature discontinuation. Such censoring is non-informative in a sense like the

MAR assumption (Heitjan, 1994) when the assumption of its independence from the

possibly unobserved time-to-event applies; i.e., the possibly unknown true time to the

event for a patient is the same regardless of whether or not it is actually observed (or

whether censoring occurs or not prior to it). Unfortunately, the conventional MAR-like

methods ignore the fact that the patients who discontinue the assigned treatment no

longer receive it after discontinuation. Instead, they attempt to estimate what would

be expected for the study if all patients remained on their assigned treatments until

the occurrence of the event or the end of their planned follow-up period (Flyer, 2009).

Alternatively, discontinuation from treatment can be specified as clinical failure

when the event of interest is unfavorable (Flyer and Hirman, 2009). In this case, one

has a composite endpoint (i.e., time to the event of interest or discontinuation), and

it expresses the time period for which a patient has had favorable experience with

treatment. The application of this method to both the control and the test treatment

groups produces what can be called the worst-case analysis, because patients who dis-

continue treatment are managed as having much higher risk of a future event than

other patients (Rothmann et al., 2009). In contrast, the method in which a control

patient who discontinues treatment has their follow-up time censored at the time of
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discontinuation and such a test treatment patient is managed as having the event is

known as a worst-comparison analysis (Rothmann et al., 2009). The result from the

worst-comparison analysis provides a stringent boundary on the impact of patients who

discontinued treatment. Both the worst-case analysis and the worst-comparison anal-

ysis have potentially unclear relevance for a study because they both make unrealistic

assumptions (Wittes, 2009). Usually, they are not designated as the primary analysis,

but they can be used as sensitivity analyses with the worst-comparison analysis invok-

ing maximal stress to the robustness of the study results (Walton, 2009). If the study

conclusions are not altered by such methods, then one is reassured regarding the va-

lidity of the primary MAR-like analysis. Nevertheless, many studies will not maintain

robustness to such sensitivity analyses. Hence, these methods are often criticized as

unrealistically stringent and potentially problematic for a promising therapy to show

effectiveness (Yan et al., 2009).

For longitudinal data with discontinuing patients, Little and Yau (1996) proposed

multiple imputation of the missing responses on the basis of models incorporating ac-

tual treatment doses that might apply, or imputed doses under a variety of plausible

assumptions. Recently, using a similar basic approach, Roger (2008) developed a sen-

sitivity analysis, where the estimates from a mixed-effects model in the placebo group

were used to provide information about possible future behaviors of discontinued pa-

tients from the test treatment. In this paper, we propose a related sensitivity analysis

for time-to-event data. On the basis of Kaplan-Meier (KM) estimators (or Cox propor-

tional hazards model counterparts), patients who discontinue their assigned treatment

(or follow-up) have multiple imputations for their experiences during their unobserved

remaining times until the planned end of their follow-up period (as if they continued to

be followed). The imputed data sets, having only administrative censoring of follow-up

for patients who did not have the event by the end of their planned follow-up period,
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can then be analyzed by the standard methods for right censored time-to-event data.

A key feature of this multiple imputation method for sensitivity analyses is a corre-

sponding hazard ratio parameter θ for how the conditional survival distribution for

the missing extent of follow-up can allow for different post-discontinuation behaviors of

patients from the placebo and the test treatment groups. One can then investigate the

impact of departures from the primary missingness assumption (i.e., non-informative

independent censoring) by summarizing the treatment effect as a function of θ over

a plausible range. This multiple imputation method is an extension and modification

of the work by Taylor et al. (2002), where the conditional KM estimators were used

to impute failure times for survival analyses under a specification for non-informative

censoring. The implementation of this method is illustrated with data from a clinical

trial in psychiatry.

2.2 Clinical trial examples

For illustrative purposes, we consider time-to-event data based on a clinical trial

pertaining to maintenance treatment for bipolar disorder (Calabrese et al., 2003). For

reasons related to the confidentiality of the data from this clinical trial, the example

in this paper is based on a random sample (with replacement) of 150 patients with the

test treatment and 150 patients with placebo. The study design for this clinical trial

had an 8 to 16 weeks run-in period within which all patients received test treatment.

Eligible patients who tolerated and adhered to this therapy were randomized to the

test treatment or to the placebo, and then followed for up to 76 weeks as the planned

follow-up period. Accordingly, this study had a randomized withdrawal design, and

the primary efficacy endpoint was the time-to-intervention for any mood episode.

A total of 97 (32.33%) patients discontinued the study prematurely (35% on placebo

and 29% on test treatment). Cumulative proportions of discontinued patients are shown
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in Figure 2.1 (which has the convention of managing the patients who completed the

study with the primary event as having imputed follow-up of 76 weeks without pre-

mature discontinuation). Discontinuations predominantly occurred before 35 weeks

with higher cumulative proportions for the placebo group. The documented reasons

for discontinuation are summarized in Table 2.1, although except perhaps for ”adverse

events”, they are not informative about possible missing data mechanisms. The cumu-

lative proportions of discontinuation by those reasons are displayed for each treatment

arm in Figure A.1 of the Appendix. For an informal evaluation of the association of

discontinuation with treatments, patients’ demographics, and baseline psychiatric as-

sessments, we used logistic regression models for the odds of discontinuation versus

completion of the study (either with the primary outcome or completion of 76 weeks of

follow-up without it). As shown in Table 2.2, neither the unadjusted (from univariate

regression on each individual variable) nor the adjusted (from multivariate regression on

all the variables) odds ratios have p-values below 0.05 for any of the baseline variables

or treatments. However, in view of the substantial extent of discontinuations, sensi-

tivity analyses to address the robustness of conclusions to the management of missing

information are of interest.

Table 2.1: Discontinuations and the corresponding reasons by treatment groups

Disposition
Overall Treatment group

Placebo Test treatment
N % N % N %

Completed study without episode 46 15.33 15 10.00 31 20.67
Intervention for a mood episode 157 52.33 82 54.67 75 50.00
Discontinued study prematurely 97 32.33 53 35.33 44 29.33

Adverse event 24 8.00 16 10.67 8 5.33
Consent withdraw 28 9.33 13 8.67 15 10.00
Lost to follow-up 20 6.67 8 5.33 12 8.00
Protocol violation 10 3.33 3 2.00 7 4.67
Other (including missing data) 15 5.00 13 8.67 2 1.33

The primary time-to-event analysis for this example has censoring of follow-up time
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Figure 2.1: Cumulative discontinuation proportions by treatment groups

for patients with premature discontinuation of treatment, and so it has the MAR-like

assumption of non-informative independent censoring. The previously noted worst-case

analysis and the worst-comparison analysis serve as sensitivity analyses. The Cox pro-

portional hazards model with one explanatory variable for treatment is used to obtain

an unadjusted hazard ratio. The non-parametric logrank and Wilcoxon tests are also

used to compare the test treatment and placebo. The results from these analyses are

summarized in rows (1A), (1B), and (1C) of Table 2.3, and they are interpretable as

indicating superiority of the test treatment. The worst-case analysis provides stronger

results in favor of test treatment, whereas the worst-comparison analysis shows no

treatment difference. The worst-case analysis tends to overstate the difference in favor

of the test treatment because the placebo group has more prematurely discontinued

patients. Conversely, the worst-comparison analysis excessively understates the dif-

ference in favor of test treatment by unrealistically managing all of its patients with
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premature discontinuation as having events at the time of discontinuation. Therefore,

more realistic approaches are worthy of consideration for sensitivity analyses to address

robustness of conclusions for a clinical trial like this example to possibly informative

censoring of time-to-event data.
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2.3 Method

In most clinical trials with time-to-event data, a primary analysis that has censoring

of follow-up time for patients with premature discontinuation of treatment is generally

reasonable. The primary MAR-like assumption for such analysis is non-informative

independent censoring. The proposed sensitivity analysis in this paper addresses the

implications of departures from this assumption by imputing different outcomes for

the patients with premature discontinuation. It thereby enables assessment of the

robustness of the results from the primary analysis with censoring of follow-up times

for patients with premature discontinuation.

Consideration is first given to a Kaplan-Meier multiple imputation (KMMI) proce-

dure and its separate invocation for the placebo group and the test treatment group.

For this purpose, we describe the KMMI strategy for a single treatment group with

n patients who have the same planned follow-up time t∗. For the ith patient, we

observe time Yi = min(Ti, Ci), where Ti and Ci are the potential time-to-event and

time to premature discontinuation (or censoring) for the patient. We define the cen-

soring indicator δi = I(Ti ≤ Ci), so that the data can be summarized by (Yi, δi) for

i = 1, 2, . . . , n. We assume that a study has events observed at M distinct times

(t1 < t2 < · · · < tM), and it has premature discontinuation of patients observed at K

distinct times (c1 < c2 < · · · < cK). Also, there may be more than one patient with the

same times at risk yi (i.e., occasionally tied t’s or c’s), and we assume that y = t∗, δ = 0

for at least one patient who completes the entire planned follow-up time without the

event (and has administrative censoring of their follow-up time at t∗).

2.3.1 Kaplan-Meier Multiple Imputation Strategy

To establish the notation further, let k index the censoring times before t∗. Let tk,0

denote the latest failure time prior to ck (or equal to it) when t1 ≤ ck, and let tk,0 = 0
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if t1 > ck. Let tk,j denote the jth failure time after ck, j = 1, 2, . . . , Jk, when ck < tM .

Note that the possible values of Jk range from 1 to M , depending on the position of ck

with respect to the order of the tm’s (m = 1, 2, . . . ,M): Jk equals M if ck < t1, and Jk

equals 1 if tM−1 ≤ ck < tM . From the data (Yi, δi), we obtain the Kaplan-Meier (KM)

estimates Ŝ(t) for the survival distribution for the event times, and it has support on

the observed failure times (t1, t2, . . . , tM).

First, we estimate the survival rates for all K + 1 censoring times (t∗ and ck’s,

k = 1, 2, . . . , K). For a censoring time ck followed by at least one failure time (i.e.,

ck < tM), the estimate of the survival function Ŝ(ck) is defined by the straightforward

convention of linear interpolation as follows:

Ŝ(ck) = Ŝ(tk,0)− ck − tk,0
tk,1 − tk,0

× (Ŝ(tk,0)− Ŝ(tk,1)) (2.1)

=
(tk,1 − ck)Ŝ(tk,0) + (ck − tk,0)Ŝ(tk,1)

(tk,1 − tk,0)
.

In (2.1), linear interpolation is used for computational convenience and for transparent

interpretation. For the planned administrative censoring time t∗ > tM , (2.1) is not

applicable because there is not a KM estimate for Ŝ(t∗). Nevertheless, with motivation

from a suggestion in Brown et al. (1974) to use an exponential model to extrapolate

Ŝ(tM) to Ŝ(t∗), we use an exponential model for the conditional survival function for

the last f events (e.g., f = 5) as in (2.2)

Ŝ((tM − tM−f )|t > tM−f ) =
Ŝ(tM)

Ŝ(tM−f )
= exp{−h× (tM − tM−f )}, (2.2)

to determine the corresponding hazard h from which Ŝ(t∗) is computed as shown in
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(2.3).

Ŝ(t∗) = Ŝ(tM)× Ŝ((t∗ − tM)|t > tM) (2.3)

= Ŝ(tM)× exp{h× (t∗ − tM)}.

For a censoring time ck after the last failure time (i.e., tM < ck < t∗), (2.3) similarly

provides Ŝ(ck) = Ŝ(tM)× exp{h× (ck − tM)}.

Secondly, we construct the estimated conditional failure time distribution for each

patient with premature discontinuation. A fixed hazard ratio θ for a patient with

premature discontinuation having an event after their censoring time ck relative to the

patients still remaining on their assigned treatment is introduced as the sensitivity

parameter. Thus, under the proportional hazards assumption, the estimated survival

function at time t (after ck) equals Ŝ(t)θ. For a patient with premature discontinuation

at ck < tM , the estimated conditional probability of having the event in the time interval

[tk,j, tk,j+1], for j = 1, 2, . . . , (Jk − 1), is given by

f̂k,j(θ) =
Ŝ(tk,j)

θ − Ŝ(tk,j+1)θ

Ŝ(ck)θ
. (2.4)

For the interval [ck, tk,1] and [tk,Jk , t
∗], the estimated conditional probabilities are

f̂k,0(θ) =
Ŝ(ck)

θ − Ŝ(tk,1)θ

Ŝ(ck)θ
and f̂k,Jk(θ) =

Ŝ(tk,Jk)
θ − Ŝ(t∗)θ

Ŝ(ck)θ
, (2.5)

respectively. Correspondingly, for a patient with premature discontinuation at ck with

tM ≤ ck < t∗, the estimated conditional probability of having the event in the time

interval [ck, t
∗] is given by

f̂k,0(θ) =
Ŝ(ck)

θ − Ŝ(t∗)θ

Ŝ(ck)θ
(2.6)

40



Thus, the estimate for the conditional cumulative incidence function for a patient with

premature discontinuation at ck to have the event by the time t in [tk,j < t < tk,j+1],

for j = 1, 2, 3, . . . , Jk with tk,Jk+1 = t∗ by convention, can be obtained by cumulative

summation of the f̂k,j(θ) for the respective time intervals as shown in (2.7).

F̂k,j(θ) =

j∑
j′=0

f̂k,j′ = 1− Ŝ(tk,j+1)θ

Ŝ(ck)θ
(2.7)

Under this formulation, θ > 1 (or < 1) implies a higher (or lower) hazard after

ck for patients with premature discontinuation at ck than for patients with continued

follow-up after ck. Also, θ = 1 specifies that patients with premature discontinuation

and those with continued follow-up on the assigned treatment have the same tendency

to experience an event in the future, and so it is MAR-like (and in harmony with non-

informative independent censoring). Through the Cox proportional hazards model,

the primary analysis can produce an estimate φ̂ of the hazard ratio for the effect of

test treatment versus placebo under the MAR-like assumption of non-informative inde-

pendent censoring for patients with premature discontinuation. However, even if this

assumption is realistic, φ̂ pertains to what would be expected if the patients with pre-

mature discontinuation had hypothetically continued with their assigned treatments

after discontinuation. Although such a perspective may be realistic for the placebo

patients, it would usually be optimistic for the test treatment patients since those pa-

tients are no longer receiving test treatment after premature discontinuation. Thus,

sensitivity analyses to address the implications of this issue are of interest.

One way to proceed with sensitivity analyses is to use multiple imputation with

respect to the estimated conditional cumulative incidence functions in (2.7) to impute

times to event for the patients with premature discontinuation in each treatment group.

For the placebo group, one would typically use θP = 1 under the realistic assumption
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that its patients with premature discontinuation would have comparable experience

after discontinuation to their counterparts without premature discontinuation, although

other specifications of θP are feasibly optional. The test treatment group would usually

have θT > θP specified, and with θP = 1, θ = (θT/θP ) = θT becomes a single parameter

for calibrating sensitivity analyses. The choice of θ can either be arbitrary such as

1.05, 1.10, 1.15, etc. or it can be values in a range (L,U), where (1/U, 1/L) is a range

of hazard ratios from previous related studies or clinical judgment for the comparison

of effective medicines with placebo. For example, if previous related studies supported

(1/U, 1/L) = (0.60, 0.75), then one could consider θ in the range (1.333, 1.667) for the

extent to which a test treatment patient with premature discontinuation at ck has a

higher hazard after ck than their counterparts with continuation of test treatment after

ck (in view of their treatment after discontinuation being more like placebo than an

effective treatment).

With the conditional failure time distributions defined in (2.7), the multiple impu-

tation scheme is as follows:

1. Generate a random number p from the uniform distribution between 0 and 1, and

for computational convenience, use linear interpolation to impute failure times

(although exponential model interpolations are alternatively feasible).

2. Suppose a patient has premature discontinuation at ck < tM :

• If 0 ≤ p ≤ f̂k,0(θ) = F̂k,0(θ), then impute failure time t
(l)
k between ck and tk,1

as ck + (tk,1 − ck) p

f̂k,0(θ)
, where l indicates the l-th imputation set.

• If F̂k,j(θ) ≤ p ≤ F̂k,j+1(θ) for j = 0, 1, 2, 3, . . . , (Jk − 1), then impute failure

time t
(l)
k between tk,j+1 and tk,j+2 as

(
tk,j+1 + (tk,j+2 − tk,j+1)× p−F̂k,j(θ)

F̂k,j+1(θ)−F̂k,j(θ)

)
where tk,Jk+1 = t∗ by convention.

• If p > F̂k,Jk(θ), then manage the patient as having no event by the end of
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follow-up time t∗.

3. Suppose a patient has premature discontinuation between tM and t∗, so that

(tM < ck < t∗): If p ≤ f̂k,0(θ), then impute failure time t
(l)
k between ck and t∗ as

ck + (t∗ − ck) p

f̂k,0(θ)
; otherwise, manage the patient as having no event by the end

of follow-up time t∗.

4. The imputation procedure is repeated to form L imputed data sets.

The tied ck’s can be processed separately. Thus, each complete data set has no patients

with premature discontinuation, and so one can apply the conventional survival analysis

methods for the primary analysis with only administrative censoring of follow-up at time

t∗.

In reality, most clinical trials recruit patients over a period of time and have a com-

mon closing date. Therefore, patients always have different planned follow-up times

and correspondingly different administrative censoring times for when they could com-

plete the study without the event. Such staggered patient entry can be addressed by

letting t∗k denote the planned follow-up time for the kth patient with premature discon-

tinuation at ck(ck < t∗k). For t∗k between two consecutive failure times (tm, tm+1), the

applicable survival function can be estimated at ck and t∗ in an analogous fashion to

(2.1). For t∗k after the last failure time (t∗k > tM), the applicable survival function at ck

and t∗ can be estimated by the method described for (2.3). In this way, the conditional

failure time distribution can be constructed from (2.4) − (2.7) according to a prema-

turely discontinued patient’s planned follow-up time t∗k. The multiple imputation can

then be performed in the same fashion as discussed previously.

The proposed method does not seek inferences for the hypothetically true parame-

ters for treatment effects, but rather addresses the sensitivity issues associated with the
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unobserved outcomes of discontinued patients. For this purpose, the multiple imputa-

tion process regards the observed information being fixed, that is K and M , as well as

the corresponding times to event and times to premature discontinuation. In the con-

text of Bayesian multiple imputation, Rubin (1987) refers to this type of imputation as

‘improper’, because it does not account for the uncertainty associated with the sample

estimates (i.e. KM estimates or Cox proportional hazards model counterparts). A way

to address such uncertainty is to generate the L data sets by separate conditional fail-

ure time distributions estimated from independent nonparametric bootstrap resamples

(with replacement) of the original data.

2.3.2 Parameter Estimations

The method for combining results from L imputed data sets follows well established

rules (Rubin, 1987; Rubin and Schenker, 1991), and it can be applied easily by the

SAS procedure MIANALYZE. Let β be a scalar parameter such as a survival rate or

a cumulative hazard for a specific time point or a coefficient in the Cox proportional

hazards model (i.e., the log hazard ratio) that can be estimated from the complete data.

Let β̂(l) denote the point estimate for β and let V̂
(l)
β denote its variance estimate from

the lth data set. The overall multiple imputation (MI) estimate of β is obtained by

averaging the estimates from the L complete-data analyses, β̄ = (1/L)
∑L

l=1 β̂
(l), and its

estimated variance is the sum of the within-imputation variance V̄β = (1/L)
∑L

l=1 V̂
(l)
β

and the product of the between-imputation variance Bβ = (L − 1)−1
∑L

l=1(β̂(l) − β̂)2

and the finite sample correction shown in (2.8).

V̂β̄ = V̄β + (1 + L−1)Bβ (2.8)
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Given sufficiently large sample size for the complete data to support an approxi-

mately standard normal N(0, 1) distribution for its hypothetical version of (β̂−β)V̂
−1/2

β̂
,

for which missing data prevents availability, confidence intervals for β (and p-values for

corresponding statistical tests) can be based on (β̄ − β)V̂
−1/2

β̄
having the t-distribution

with approximate degrees of freedom (d.f.) as shown in (2.9).

d.f. = (L− 1)

(
1 +

(
(1 + L−1)Bβ

V̄β

)−1
)2

(2.9)

= (L− 1)(1 +R−1)2

Here, R expresses the relative increase in variance due to missing information. The

fraction of missing information about β is estimated as

γ =
R + 2/(df + 3)

(1 +R)
. (2.10)

For non-parametric hypothesis testing with the logrank (or Wilcoxon) statistic, β̂(l)

is the difference between test treatment and placebo for means of logrank or Wilcoxon

scores, and V̂
(l)
β is its estimated variance under the null hypothesis of no difference

between test treatment and placebo. It then follows that β̄(V̂
−1/2

β̄
) approximately has

the t-distribution with d.f. as in (2.9). Alternatively, Ẑ(l) = β̂(l)/V̂
(l)
β can serve as

β(l) with corresponding V̂
(l)
Z = 1, in which case the statistical test would be based on

Z̄(V̂
−1/2

Z̄
) with V̂Z̄ = (1 + (1 + L−1)BZ) with BZ =

∑L
l=1(Ẑ(l) − Z̄)2/(L − 1) (Taylor

et al., 2002).

The term L−1Bβ in (2.8) and the use of the t-distribution rather than a normal

distribution widen the resulting interval estimates to account for replication variability

incurred by using L < ∞ (Schafer, 1999). Schafer (1999) suggests that unless the

fraction of missing information γ is unduly large, the widening is not substantial, and
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MI inferences can be quite efficient even when L is small (usually less than 10). Nev-

ertheless, in practice, the appropriate number of imputations should be investigated

more closely, especially when the fraction of missing information is large (Horton and

Lipsitz, 2001).

2.4 Results

2.4.1 Performance of KMMI method under θ = 1

In this section, we consider the performance of the KMMI method with θ = 1 for

the clinical trial in Section 2.2. With this specification, the imputed data are produced

from the same conditional failure time distributions as estimated by the KM method

with censoring of the follow-up times of patients with premature discontinuation, and

it thereby has the same MAR-like assumption of non-informative independent censor-

ing. To apply this method, we proceed in accordance with Horton and Lipsitz (2001)

to determine the appropriate number of imputations (L) by evaluating the stability of

an estimator and its standard errors (SE) with respect to the different L’s. Multiple

imputations are performed separately for each of the two treatment groups with θ = 1,

and 100 replicates of imputations are produced for each of the following numbers of

imputations (L = 3, 5, 10, 20, 30, 40, 50, 70, and 100); and so there are seven different

sets of imputations. The variability of the estimates for the survival function at the

20th week are summarized in boxplots in Figure 2.2 relative to the conventional KM

estimates (with censoring of follow-up times for patients with premature discontinua-

tion). The relative variance increase due to missing data (R = (1 + L−1)Bβ/V̄β) of the

corresponding estimates are summarized in Figure 2.3. Compared to the conventional

KM estimates, the mean values of estimates from the KMMI method are somewhat
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smaller for all seven sets of imputations. Also, the KMMI estimates and the corre-

sponding R in Figure 2.2 and Figure 2.3 (for the 20-week survival rate) are not stable

for small numbers of imputations (i.e., L ≤ 10). The variability of the MI estimates

becomes smaller as the number of imputations increases, and stabilizes near L = 50

or higher for both treatment groups. Thus, 50 imputations is a reasonable choice for

the amount of missing information which this example has. Although a comprehensive

simulation study could shed more light on the choice of L for different extents of missing

data, such research is beyond the scope of this paper. Nevertheless, for any real study,

the specification of at least a moderately high value of L ≥ 50 should be considered,

especially given the simplicity of the computations even for large L.

We apply multiple imputation (MI) with L = 50 henceforth. The conventional

KM curves for both treatment groups are shown in Figure 2.4a with their counterparts

from averaging the KM estimates for 50 data sets imputed by the KMMI method. The

corresponding cumulative hazard curves (via the Aalen-Nelson estimator) are shown in

Figure 2.4b. The relationships shown for the KMMI method are almost identical to their

conventional counterparts. In row (2A) of Table 2.3, results from the KMMI method

are shown for the hazard ratio for the effect size of the test treatment versus placebo

from the unadjusted Cox proportional hazards model (which only includes treatments)

as well as for the p-values for the logrank test and the Wilcoxon test. Interestingly, the

estimated hazard ratio from the KMMI method is closer to unity (and so is a smaller

effect size) and has a somewhat larger p-value than its conventional counterpart with the

use of censoring (HR=0.724 with p=0.0436 for KMMI versus HR=0.675 with p=0.0140

for conventional). This disagreement between the inference for the effect of the test

treatment from the KMMI method with θ = 1 and conventional counterparts with

censoring could be a consequence of non-proportional hazards during the follow-up

period. As can been seen from the survival curves in Figure 2.4a and the cumulative
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(a) Placebo group

(b) Test treatment group

Figure 2.2: Distributions of 20 weeks survival rates for 100 replications of different num-
bers of imputations. The conventional KM estimates are indicated with the horizontal
line.
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(a) Placebo group

(b) Test treatment group

Figure 2.3: Distributions of relative variance increase due to missing data (R) of 20
weeks survival rates for 100 replications of different numbers of imputations.
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hazard curves in Figure 2.4b, the difference between the two treatment groups is most

clearly evident during the early stage of the follow-up and less apparent later. This

issue is explored further by partitioning the follow-up period into four distinct intervals

with approximately equal numbers of events, and then producing conventional interval-

specific hazard ratio estimates for each of them from an unadjusted Cox proportional

hazards model. The results of such analysis in Table 2.3(1) suggest much stronger effect

sizes for test treatment during 0− 6 weeks than 6− 76 weeks, and so they are contrary

to the hazard ratio being constant during the entire follow-up period.

When treatment is the only explanatory variable in the Cox proportional hazards

regression model, its estimated effect size is approximately an average of log HR over the

entire follow-up period. When there are many patients with premature discontinuation,

the estimation of the average log HR through conventional methods with censoring may

tend to be mainly influenced by events during the earlier part of the follow-up period

(where the effect sizes for test treatment are stronger for this example). The KMMI

method eliminates censoring during the follow-up period by imputing potential times

to event for every patient with premature discontinuation, and it thereby puts more

weight on what happens during the latter part of the follow-up period (where the effect

sizes for test treatment are smaller for this example), and so it produces a smaller

effect size for test treatment (in the sense of an estimated hazard ratio that is closer

to unity). Thus, this example suggests that the sensitivity analysis with θ = 1 for

the KMMI method can be useful for evaluating the implications of non-proportional

hazards during the follow-up period.

An alternative structure for multiple imputation is provided by the Breslow estima-

tors of the survival distributions for the placebo and test treatment groups from the Cox

proportional hazards model with treatment as the only explanatory variable, and it can

have implementation through its counterparts for (2.1) - (2.7). As shown in Table 2.3
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(a) Survivor Curves

(b) Cumulative hazard Curves

Figure 2.4: Comparison of the results from the conventional (MAR-like) and the KMMI
method
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rows (1A) and (3A), the proportional hazards multiple imputation (PHMI) method

under θ = 1 provides very similar results as the conventional methods with censor-

ing, mainly because both operate under the MAR-like assumption of non-informative

independent censoring and both have the proportional hazards assumption.

We further consider an imputation with non-parametric bootstrap resampling so

as to add extra between-imputation variability and thereby to be in better harmony

with a ‘proper’ imputation. Consequently L may need to be much larger than 50, in

order to provide appropriate precision for estimation. Both the KMMI and the PHMI

methods proceed with an additional bootstrap step for L = 50, L = 100, and L = 500.

The results of MI with the bootstrap for L = 500 are relatively consistent with the

methods without the bootstrap for L = 50 (see Table A.1 for details). The bootstrap

KMMI method uses separate samples with replacement for each treatment group, and

its results for L = 500 (Table 2.3.4A) are slightly weaker compared with its counterparts

without the bootstrap for L = 50 . The PHMI method with the bootstrap uses samples

with replacement from the combined treatment groups. As shown in Table 2.3.5A, when

performed for L = 500, the PHMI with the bootstrap produces comparable results to

the PHMI without the bootstrap for L = 50. The imputation methods with and

without the bootstrap arise from different paradigms. The imputation methods with

the bootstrap are based on Bayes theory and relate the posterior distribution given

the observed data to the complete posterior distribution given no missing data in a

random sample of a target population, and therefore they add more complexity to

the imputation process. Alternatively, the methods without the bootstrap address the

uncertainty of missing data in the context of the observed information being known

and fixed. Depending on the purpose of the sensitivity analysis, either process can be

applied. For this paper, we emphasize the sensitivity analysis using the MI methods

without the bootstrap for L = 50.
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2.4.2 Sensitivity analysis

The sensitivity analyses proceed with varying θ (for the test treatment) in a plausible

range from 1 to 2.5 (with θ = 1 for placebo) to determine how the assessment of the

treatment effect changes for the different extents of imputed events for patients with

premature discontinuation at specific times ck versus patients with continued follow-

up beyond those times. In this regard, θ = 2.5 = (1/0.4), and 0.4 might represent

a reasonably large effect size for a clearly effective treatment versus placebo in the

published clinical literature for maintenance treatments of bipolar disorder. On this

basis, it is a reasonable choice for the upper bound of the sensitivity parameter θ in

terms of how much more rapidly the patients that had premature discontinuation would

have the event compared to those that did not; in this regard, it is useful to note that

θ = ∞ corresponds to the worst comparison analysis. The value of θ is varied by

0.01 increments from 1 to 2.5, leading to 150 treatment effect assessments. Contour

plots of the hazard ratio estimates and the p-values for treatment comparisons are then

constructed as a function of the sensitivity parameter θ. We implement both the KMMI

method and the PHMI method in these sensitivity analyses. The multiple imputation

results from the Cox proportional hazards models as well as the logrank and Wilcoxon

tests are combined using the method described in Section 2.3.2.

The sensitivity analysis results using the KMMI method are summarized in Fig-

ure 2.5. The values of θ plotted against the estimated hazard ratios with 95% confi-

dence intervals are shown in Figure 2.5a, and the p-values obtained from the Wald test

from the Cox proportional hazards model, the logrank test, and the Wilcoxon test are

shown in Figure 2.5b. The magnitude of the estimated treatment effect moves closer to

the null (i.e., θ = 1) as the value of θ increases. The HR estimates for test treatment

versus placebo have a range from 0.724 (for θ = 1) to 0.867 (for θ = 2.5). The corre-

sponding p-values from the Wald test vary substantially over the range of θ, indicating
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that the assumptions for patients with premature discontinuation can substantially in-

fluence study conclusions. As expected, the p-values from the Wald test agree with

those from the logrank test, and they are larger than those from the Wilcoxon test. In

order to have p ≤ 0.05 with the Wald test (or the logrank test), θ ≤ 1.08 (or 1.05) is

needed, with this specification being only slightly more stringent than the MAR-like

assumption of non-informative independent censoring (or θ = 1). For the Wilcoxon

test, p ≤ 0.05 applies with θ ≤ 2.08, and so it has better robustness to assumptions

about patients with premature discontinuation of treatment for this example than the

Wald test or the logrank test. Since the Wilcoxon test receives relatively more weight

than the logrank test for early failures and relatively less weight for later failures, it

is more able to detect the early hazard differences for this example than the logrank

test. As shown in Figure 2.4b and Table 2.3(1), the estimated treatment effect is much

stronger (i.e., hazard ratios are further away from 1) in the earlier part of the follow-up.

The results of sensitivity analyses with the PHMI method are shown in Figure 2.6.

Because the PHMI method invokes the possibly unrealistic proportional hazards as-

sumption, it suggests better robustness for the conclusions from the Cox proportional

hazards model and the logrank test than the KMMI method. For p ≤ 0.05 with the

Wald test (or the logrank test), θ ≤ 1.59 (or 1.58) is needed; also, for the Wilcoxon test,

p ≤ 0.05 applies for all θ ≤ 2.5. In general, the PHMI method may not always suggest

stronger conclusions than the KMMI method. When the differences between the test

treatment and the placebo are more substantial during the latter part of the follow-

up period than the early part, the KMMI method with θ = 1 could lead to stronger

conclusions (i.e., estimated hazard ratios further from 1 and smaller p-values), while

the PHMI method under θ = 1 would tend to produce similar results as conventional

analyses with censoring of follow-up time for patients with premature discontinuation.
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(a) Hazard ratio (HR) with pointwise 95% CI from Cox regression model using
KMMI method

(b) P values from 3 different hypothesis tests using KMMI method

Figure 2.5: Sensitivity analysis results using KMMI method
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(a) Hazard ratio (HR) with pointwise 95% CI from Cox regression model using PHMI
method

(b) P values from 3 different hypothesis tests using PHMI method

Figure 2.6: Sensitivity analysis results using PHMI method
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Therefore, the sensitivity analysis based on the KMMI method may provide more ac-

curate assessment than the PHMI method.

Sensitivity analyses with both the KMMI and the PHMI methods can be useful

for reviewers to understand the robustness of conclusions for treatment effects to the

assumptions of non-informative independent censoring and proportional hazards. The

degree to which conclusions are stable across a reasonable range of θ provides an indica-

tion of the confidence that can be placed on them. Opinions on possible values of θ can

be based on knowledge from other studies for similar interventions. An investigation

of the differences between baseline characteristics of completers and patients with pre-

mature discontinuation can be useful as well as the reasons for discontinuation. If such

information suggests that only unrealistic values of θ would alter study conclusions,

then the results of a primary analysis with conventional methods could be considered

robust from a clinical perspective. When the inference about treatment effects could

be overturned for plausible values of θ, then it should be viewed with caution.

2.5 Discussion

Analysis of incomplete data is a challenge for most clinical trials. Often, MAR-like

assumptions about the missing data mechanism can be reasonable for primary analyses.

However, the possibility of MNAR is difficult to rule out, particularly when patients

with test treatment lose its benefit after discontinuation, and so sensitivity analyses for

alternative ways to address missing data become of interest.

In time-to-event analyses, patients with premature discontinuation have their follow-

up time censored at the time of discontinuation, and the usual assumption is non-

informative independent censoring. As right-censoring is a special case of coarsened

data, the assumption of non-informative independent censoring can be generalized to

’coarsened at random’, which extends the concept of MAR to coarsened data (Heitjan,
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1994). The MNAR issue for time-to-event data is to account properly for censor-

ing that may be informative. Most sensitivity analyses in the literature assess the

effect of various assumptions concerning the dependence between failure and censor-

ing times (Scharfstein and Robins, 2002; Siannis et al., 2005; Ruan and Gray, 2008).

However, clinical reviewers can have difficulty in understanding the interpretation of

the sensitivity parameters in those analyses, and this can make the specification of

reasonable ranges for the sensitivity parameter challenging.

This paper discusses sensitivity analyses for time-to-event data, and its suggested

methods can have several appealing features in regulatory clinical trial settings. First,

they enable direct exploration of the effect of departures from the non-informative in-

dependent censoring assumption for conventional methods (such as Cox proportional

hazards models, logrank tests and Wilcoxon tests) through a sensitivity parameter that

connects the unobserved outcomes and the observed outcomes, i.e., a hazard ratio for

a discontinued patient having an event after discontinuation relative to the patients

remaining on their assigned treatment. The multiple imputation strategy is straight-

forward because the predictive distributions are specified directly, and they do not

depend on the models for assumed missingness mechanisms. The interpretation of

the sensitivity parameter is transparent in the sense that the parameter is based on

a standard criterion for analyzing time-to-event data, and consequently may be more

understandable to reviewers. Secondly, the sensitivity analysis accounts for all ran-

domized patients. The specifications for post-discontinuation experience are intended

to address the question for what the long-term benefit of initial assignment would be

if patients with premature discontinuation were followed to the end of the study with-

out other treatment. In addition, the influence of departures from the non-informative

independent censoring assumption with respect to patients with premature discontinu-

ation can be assessed either simultaneously with the proportional hazards assumption
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by the KMMI method or separately in its own right by the PHMI method. Thirdly, the

sensitivity analysis is based on multiple imputation of missing outcomes, and therefore

it provides a simple way of generating statistical inference without the need of special

software and programming. All of the analyses presented in this paper can be produced

by standard SAS PROC procedures and SAS macros. Finally, the proposed sensitivity

analysis anchors on a primary MAR-like assumption, and then can have calibration

toward the worst comparison analysis through how it penalizes premature discontinua-

tion for the teat treatment. The method can be specified a priori and does not require

any post hoc (i.e., data driven) revisions. Therefore, this type of sensitivity analysis to

address the missing information from censored follow-up times could be attractive in

the regulatory environment.

The sensitivity analysis illustrated here was performed for a continuous time-to-

event endpoint. However, the methodology and underlying principles can be extended

to categorical (or interval censored) time-to-event data. Furthermore, the proposed

PHMI strategy can be modified to incorporate the information of patients’ baseline

risk factors. One can estimate the failure time distributions separately for subpopu-

lations defined by baseline covariates and treatments through the multivariable Cox

proportional hazards model that includes treatments and the set of covariates as ex-

planatory variables. The conditional failure time distributions can then be used for risk

adjusted multiple imputations. Currently, the discussed MI strategies invoke separate

imputations for each of the two groups with its corresponding survival distribution

estimates. An alternative approach is to impute times to event for both treatment

groups using the information in the placebo group. The details of this method and its

corresponding results are discussed in the Appendix 3. However, it may not address

robustness as stringently as the methods that are the main focus of this paper, when

the placebo group has a higher proportion of discontinuations than the test treatment
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group.

Typically, the design of a confirmatory trial should account for the loss of power

from patients with premature discontinuation (NRC, 2010). An often used approach

is simply to inflate the initially planned sample size by the reciprocal of one minus the

anticipated premature discontinuation rate, but it may only be reasonable if missing

information is MCAR. Power calculations should be based on more plausible MAR-like

assumptions, and perhaps accommodating the situations of MNAR and the potentially

reduced effect size estimation in sensitivity analyses. However, those concerns usually

cannot be addressed analytically in sample size calculations. The multiple imputa-

tion strategy presented in the current sensitivity analysis method can be adapted for

simulation-based power calculations to assess the effect of missing data on sample size.

60



Chapter 3

Covariate-Adjusted Sensitivity
Analysis for Time-to-event Data

3.1 Introduction

Missing data exist in practically all clinical trials. A major source of missing data

is from patients discontinuing their assigned treatment and then withdrawing from the

study. The extent to which missing data impact statistical inferences depends on the

process (i.e., the mechanism) leading to the missingness. Little and Rubin (2002) out-

lined the following missing data framework: (1) data are missing completely at random

(MCAR) if the missingness does not depend on either the observed or unobserved data;

(2) data are considered missing at random (MAR) when the missingness only depends

on the observed data; (3) data are missing not at random (MNAR) if the missingness

also depends on the unobserved data. If the parameters of the measurement process

and the missing data process are distinct under the MAR mechanism, the missing data

mechanism is said to be ignorable for likelihood-based inference since unbiased (or con-

sistent) parameter estimates can be obtained from the observed data (Mallinckrodt

et al., 2008).

In many clinical trials, MAR can be reasonable and hence it is often chosen as the

main assumption for the primary analysis (Mallinckrodt et al., 2008; Zhang, 2009).



However, missing mechanism can be more more complex than the ideal MAR assump-

tion in practice. the possibility of MNAR can never be ruled out. Therefore, a prudent

analyst should always conduct sensitivity analyses to assess the robustness of the treat-

ment effect inferences to various alternative missing data assumptions (NRC, 2010).

Zhao et al. (2012) recently introduced a method for sensitivity analysis for missing out-

comes in time-to-event data, for which the primary analytical strategy has the MAR-

like assumption of non-informative independent censoring. Based on the Kaplan-Meier

(KM) estimator or its Cox proportional hazards (PH) model (Cox, 1972) counterparts,

Zhao et al. (2012) employed multiple imputation of potential times to event for with-

drawal patients to produce the inference if they were followed off treatment until the

end of study. The departure from the primary MAR-like assumption was addressed

by a sensitivity parameter that captures the difference in the post-discontinuation ten-

dency of developing an event. When treatment effects are evaluated with the standard

methods without covariate adjustment, application of such a sensitivity analysis is

straightforward (Zhao et al., 2012).

Although the unadjusted analysis provides valid treatment comparisons in random-

ized studies, covariate-adjusted analysis is often implemented to increase statistical

power or to offset the influence of random imbalance between treatment groups for the

covariates with possibly strong relationships with the primary outcome (Tangen and

Koch, 2000). One concern regarding the appropriateness of covariate adjustment with

the Cox regression model is whether the proportional hazards assumption is hold for

each variable in the model. In addition, incorrect model specifications may produce

biased estimates for the regression coefficients (Tangen and Koch, 2000). One way to

avoid those issues is to account for the covariates with the randomization based analysis

of covariance (ANCOVA). Through the weighted least squares methodology (Grizzle
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et al., 1969), non-parametric approaches have been proposed to provide covariate ad-

justment for inferences on incidence density ratios (Tangen and Koch, 2000) or hazard

ratios (Moodie et al., 2011) for multiple non-overlapping time intervals. Recently,

Saville and Koch (2012) discussed a randomization based method to estimate the

covariate-adjusted population average hazard ratio with Cox regression models. Us-

ing the covariance matrix estimates of the unadjusted log hazard ratio from the Cox

regression model and the group differences in means of baseline covariates, and they

implemented the weighted least squares methodology to produce a covariate-adjusted

log hazard ratio by forcing the differences in means for covariables to zero. The nice

feature of this approach it incorporates the usual Cox regression model estimates into

the non-parametric ANCOVA (NPANCOVA) paradigm, hence it avoids the propor-

tional hazards assumption for the adjusted covariates and avoids possibly data driven

model refinements. Consequently, it could be a more appealing strategy for the primary

analysis in regulatory environments.

As an alternative to the conventional Cox multivariate regression models, inverse

probability weights (IPW) are commonly employed to balance covariates across treat-

ment groups in estimating risk-adjusted effects in comparative effectiveness studies with

observational data (Cole and Hernán, 2004; Curtis et al., 2007). To implement such

an approach, analysts first estimate, using a logistic regression, the predicted proba-

bility that an individual receives their own treatment conditional on the set of their

observed covariates. This predicted probability of exposure to one of the treatments

is called a propensity score (PS) (Rosenbaum and Rubin, 1983). Then each subject

receives a weight by the inverse of this probability to create comparable pseudo popu-

lations that have similar distributions for those covariates (Robins et al., 2000). The

average covariate-adjusted treatment effect can be easily produced by comparing the

re-weighted pseudo populations for treatment groups through standard methods, such
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as the conventional Cox regression model with treatments as the only factor. There-

fore, similar in spirit to the method of Saville and Koch (2012), the IPW approach with

PS also relax the strong assumption of proportional hazards for the multivariable Cox

regression model.

In this article, we discuss how to implement covariate adjustment in the sensitivity

analysis proposed in Zhao et al. (2012) for time-to-event data. When data are from

randomized clinical trials, one can regard the patients of each treatment group as a

random sample from the study population. As a result, one straightforward way to

perform MI is through KM estimates, i.e., the KM-MI method in Zhao et al. (2012),

mainly because the KM curve is a valid estimator of the survivor profile for randomized

treatments. For each imputed data set, the covariate-adjusted log hazard ratio can be

obtained with the method of Saville and Koch (2012). The final treatment estimate

can be obtained from these estimates using Rubin (1987)’s formulas. Alternatively, one

can impute data via the Breslow estimator from the Cox proportional hazards model

that includes treatment and the set of the covariates, and then proceed with analysis

by the same Cox regression model. Although this procedure is logically consistent and

applicable for either randomized or observational studies, the issues with the Cox model

assumptions could influence the acceptability of this approach in the regulatory setting,

especially when those assumptions are not supported by the observed data. Under less

stringent assumptions, we propose a new strategy for sensitivity analysis that employs

IPW to account for covariates in the imputation of failure times for patients with

premature discontinuation of treatment. As opposed to requiring randomized data as

in the approach of Saville and Koch (2012), the covariate-adjusted sensitivity analysis

strategy invoking IPW is applicable for both randomized and observational data. In

this paper, we will discuss these methods in the context of an illustrative clinical trial

in psychiatry.
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3.2 Covariate-Adjusted Hazard Ratio Estimation

3.2.1 Nonparametric ANCOVA

Saville and Koch (2012) proposed a non-parametric, randomization-based ANCOVA

(NPANCOVA) method to obtain covariate-adjusted log hazard ratios. Let h = 1, 2 in-

dex the test and the control group with nh patients in group h; and let rh be the corre-

sponding dfbeta residual (nh×1) vector obtained from the unadjusted Cox proportional

hazards model with treatments as the only factor. The ith element of rh is the change

in the log hazard ratio estimate (β̂) for comparing test treatment versus control when

the ith observation in group h is omitted, and it can be approximated by −I(β̂)−1Shi ,

where I(β̂) is the observed information matrix, and Shi is the ith score vector residual.

Therefore, for r = (r′1, r
′
2)′, r′r = (r′1r1 + r′2r2) approximates the robust sandwich

variance for β̂ (Wei et al., 1989; Lin and Wei, 1989). Let Xh = (xi1, . . . ,xiq) be the

(nh × q) matrix of q baseline covariates for group h; and let x̄h = (x̄h1, . . . , x̄hq)
′ be

the vector of means for the q baseline covariates for group h with the corresponding

covariance shown in (3.1),

V x̄h = (Xh − 1x̄′h)
′(Xh − 1x̄′h)/ (nh(nh − 1)) = C ′hCh (3.1)

where Ch = (Xh − 1x̄′h)/
√
nh(nh − 1) and 1 is a (nh × 1) vector of ones. Let d =

(β̂, (x̄1− x̄2)′)′ be the vector of the unadjusted log hazard ratio estimate for treatments

and the differences in means for the baseline covariates for the test treatment and the

control groups. Then the covariance matrix of d is obtained via the sums of cross

products of rh and Ch as shown in (3.2). The mathematical derivations were discussed
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by Saville and Koch (2012).

Vd =

 (r′1r1 + r′2r2) (r′1C1 − r′2C2)

(r′1C1 − r′2C2) (C ′1C1 +C ′2C2)

 (3.2)

With the NPANCOVA approach discussed in Koch et al. (1998), the covariate-

adjusted estimate for the log hazard ratio can be obtained via the weighted least squares

regression (Grizzle et al., 1969) for the model EA (d) = Zδ, where EA(d) is the asymp-

totic expected value for d, Z = [1,0′q]
′ is the matrix to specify the adjusted analysis,

and δ is the regression coefficient. With Z to force the difference in means for covariates

to zero, the covariate-adjusted log hazard ratio estimate is δ̂ = (Z ′Vd
−1Z)−1Z ′Vd

−1d

and the corresponding variance estimator is Vδ = (Z ′Vd
−1Z)−1. When the sample

sizes for each group are sufficiently large for d to have an approximately multivariate

normal distribution, confidence intervals and p-values of corresponding statistical tests

for the covariate-adjusted log hazard ratio can be based on (δ̂ − δ)V
−1/2
δ having an

approximately normal distribution. The rationale for randomization based covariance

adjustment is the expected absence of differences between the test treatment and the

control groups for means of the covariables. A related criterion for evaluating the extent

of random imbalances between the test treatment and control groups is Q0 in (3.3),

which approximately has a chi-square distribution with q degrees of freedom.

Q0 = (d−Z δ̂)′Vd−1(d−Z δ̂) (3.3)

3.2.2 Inverse probability weights using propensity score

In observational studies, direct adjustment or standardizations apply population

weights to subclass means in an effort to estimate population quantities from a sam-

ple that is not representative of the population. Motivated by the Horvitz-Thompson
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estimator, Rosenbaum (2000) proposed a model-based direct adjustment using inverse

propensity score weights. Later, in the counterfactual framework, Robins et al. (2000)

discussed an analogous approach (i.e.,inverse probability-of-treatment weighted esti-

mators) to estimate causal treatment effects in observational studies, defined as an

average response difference for the entire population if every individual had received

one treatment versus the other.

Let a = (0, 1) denote the control and the test treatment, and let X denote the set

of q covariates to be adjusted, so that we have (ag,xg) observed for the gth patient in

the study population with size n. For each patient g, the probability of receiving the

test treatment conditional on the corresponding observed covariates, i.e., pg = pr(a =

1|X = xg), is estimated by a logistic regression model

logit pg = γ0 + γxg. (3.4)

Rosenbaum and Rubin (1983) refer to those pg’s as propensity scores and the logistic

models for generating pg’s as propensity score models. Analysts can then assign each

patient g a weight wg equal to the inverse of the conditional probability of receiving the

observed treatment, that is wg = 1/p̂g for the patient in the test treatment group and

wg = 1/(1 − p̂g) for the patient in the control group. The effect of IPW is to create a

pseudo population consisting of wg copies of each subject g so that the pseudo sample

size for either treatment group approximately equals the total sample size (Robins

et al., 2000), i.e.,
∑
agwg ≈

∑
(1 − ag)wg ≈ n. In practice, standardized weights

(swg) shown in (3.5) are often implemented to construct a pseudo population for the

combined treatment groups with the pseudo sample size equal to the total sample size,
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i.e.,
∑
agwg +

∑
(1− ag)wg = n.

swg =
wg

(
∑n

g=1 wg)/n
=

n× wg∑n
g=1wg

(3.5)

If the model in (3.4) is correctly specified and provides a good fit of the data, the

marginal distributions of the q covariates in either group are similar to those in the

entire study population (i.e., the combined treatment groups). In addition, when all

q covariates are categorical and included in a saturated propensity score model, the

pseudo population for either treatment group is completely unrelated with the treat-

ment assignment, and it has exactly the same sample size and marginal distributions

of those adjusted covariates as the entire study population. Therefore, assessing the

extent to which IPW balances the treatment groups is often useful for developing an

appropriate propensity score model. Discussions of PS usages in IPW and other risk-

adjustment approaches for observational studies can be found in Curtis et al. (2007)

and Glynn et al. (2006).

Given an appropriate balance of covariates between the two treatment groups, the

covariate-adjusted log hazard ratio (β̂IPW) can be estimated by fitting a (univariate)

Cox regression model with treatments as the only factor and with weighing each patient

by swg. The robust sandwich variance estimator is used to perform Wald tests and to

obtain the confidence interval of β̂IPW. With the same weights, a covariate-adjusted

cumulative survival function estimator can be produced separately for each treatment

group via the corresponding cumulative hazards estimated by the weighted version of

the Breslow estimator. By this way, the survivor curves with non-proportion hazards

nature can be obtained from the SAS PHREG procedure, and these estimates provide

good approximation to the weighted KM estimator that cannot be produced from the

SAS LIFETEST procedure.
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3.3 Sensitivity Analysis using Multiple Imputation

3.3.1 Unadjusted multiple imputation

The Kaplan-Meier Multiple Imputation (KMMI) strategy, implemented separately

within individual treatment groups, was described in Zhao et al. (2012). Briefly, we

assume that a randomized group has events observed at M distinct times (t1 < t2 <

· · · < tM), and it has premature discontinuation of patients observed at K distinct

times (c1 < c2 < · · · < cK). With k indexing the censoring times, tk,0 denotes the latest

failure time prior to ck and tk,j denotes the jth failure time after ck. The imputation

scheme is as follow:

1. Obtain the Kaplan-Meier (KM) estimates Ŝ(t) for the survival distribution with

support of t ∈ (t1, t2, . . . , tM). For the end of follow-up time t∗ or the censor times

after the last failure time (i.e., tM < ck < t∗), an exponential model is used to

extrapolate Ŝ(tM) to Ŝ(t∗) or the corresponding Ŝ(ck) .

2. With the survivor rate Ŝ(ck) (for the patient discontinuing treatment at the time

ck ≤ tM) defined by a linear interpolation of Ŝ(tk,0) and Ŝ(tk,1), the probability

of having an event in the time interval [tk,j, tk,j+1] conditional on not having the

event by the time ck is given by

f̂k,j(θ) =
Ŝ(tk,j)

θ − Ŝ(tk,j+1)θ

Ŝ(ck)θ
, (3.6)

where the sensitivity parameter θ is a fixed hazard ratio for a patient with pre-

mature discontinuation having an event after the censoring time ck relative to the

patients still remaining on their assigned treatment.

3. The discontinued patients have their censoring times replaced by the failure times
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drawn at random from their corresponding conditional distributions with cumu-

lative density function

F̂k,j(θ) = 1− Ŝ(tk,j+1)θ

Ŝ(ck)θ
. (3.7)

More specific details are in in Zhao et al. (2012).

4. The imputation procedure is repeated to form L imputed data sets.

The imputed data sets do not have any patient with premature discontinuation, and so

analysts can apply the conventional analysis methods for time-to-event data with the

censoring only at the end of follow-up time t∗.

A usual way to perform sensitivity analyese is to perform KMMI in each group

under various values of the θ that address different post-discontinuation tendencies of

having events. The principle for specifying the sensitivity parameter was discussed pre-

viously (Zhao et al., 2012). Briefly, analysts could specify θT larger than that for the

placebo group to penalize the premature discontinuation for the test treatment. With

specifying θP = 1 for the placebo group to approximate the non-informative indepen-

dent censoring specification that patients with premature discontinuation would have

comparable experience after discontinuation to their counterparts without premature

discontinuation, θ = (θT/θP ) = θT for the test treatment becomes a single parameter

for calibrating sensitivity analyses.

3.3.2 Covariate-adjusted multiple imputation

The covariate-adjusted multiple imputations can proceed in two different ways. The

first method is covariate-adjusted proportional hazards multiple imputation (PHMI).

For this method, the imputation scheme (2) - (4) in section 3.3.1 is implemented for

every prematurely discontinued patient using a patient specific survival distribution
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estimated by the Breslow estimator from the Cox proportional hazards model with

treatments and the set of covariates. The covariate-adjusted hazard ratios can then be

obtained from imputed data sets by fitting the same Cox regression model for the MI

process.

An alternative approach to adjust for covariates is to estimate the covariate-adjusted

survival distributions for the placebo and the test treatment groups from the pseudo

populations with balanced covariate distributions constructed from the IPW method

described in section 3.2.2, and then to follow the MI process (2) - (4) in section 3.3.1

with the covariate-adjusted counterparts. Using the same set of weights for estimating

survival distributions, a univariate Cox model with treatments as the only factor can

be applied to estimate the covariate-adjusted hazard ratio for each imputed data set.

3.3.3 Parameter estimation

Following well established rules (Rubin, 1987; Rubin and Schenker, 1991), the

method for combining results from L imputed data sets can be applied easily by the

SAS procedure MIANALYZE. Let β be the log hazard ratio that would be estimated

from the complete data. Let β̂(l) denote the point estimate for β and let V̂
(l)
β denote its

variance estimate from the lth data set.

The overall multiple imputation (MI) estimate of β is obtained by averaging the

estimates from the L complete-data analyses, β̄ = (1/L)
∑L

l=1 β̂
(l), and its estimated

variance is the sum of the within-imputation variance V̄β = (1/L)
∑L

l=1 V̂
(l)
β and the

product of the between-imputation variance Bβ = (L−1)−1
∑L

l=1(β̂(l)− β̂)2 and a finite

sample correction shown in (3.8).

V̂β̄ = V̄β + (1 + L−1)Bβ (3.8)
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Given sufficiently large sample size for the complete data to support an approxi-

mately standard normal N(0, 1) distribution for its hypothetical version of (β̂−β)V̂
−1/2

β̂

when there were no missing data, confidence intervals for β (and p-values for corre-

sponding statistical tests) can be based on (β̄ − β)V̂
−1/2

β̄
having a t-distribution with

approximate degrees of freedom (d.f.) as shown in (3.9).

d.f. = (L− 1)

(
1 +

(
(1 + L−1)Bβ

V̄β

)−1
)2

(3.9)

= (L− 1)(1 +R−1)2

Here, R expresses the relative increase in variance due to missing information.

3.4 Application

3.4.1 Clinical trial example

We illustrate the proposed methods with a clinical trial for maintenance treatment

for bipolar disorder (Calabrese et al., 2003). For reasons related to the confidentiality

of the data from this clinical trial, the application uses a data set of 300 patients (150

patients with the test treatment and 150 patients with the placebo) from a random

sample (with replacement) from the true study population. The same data set was also

used previously in Zhao et al. (2012). After an 8 to 16 weeks run-in period within which

all patients received test treatment, eligible patients who tolerated and adhered to the

therapy were randomized to the test treatment or to the placebo, and then followed

for 76 weeks. Accordingly, this study had a randomized withdrawal design, and the

primary efficacy endpoint was the time-to-intervention for any mood episode. A total

of 97 (32.33%) patients discontinued the study treatment prematurely (35% on the

placebo and 29% on the test treatment). Of 300 patients, 75 patients (50.0%) on the
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test treatment and 82 patients (54.7%) on the placebo had the event of intervention

for any mood episode.

Seven covariables had a priori specification as being of interest in the analysis plan

and in the protocol for this clinical trial. Two of them are patients’ demographics,

and the rest of them are baseline psychiatric assessments related to disease progression

in previous studies. The distributions of these covariables are presented in Table 3.1.

The extent of random imbalance between treatments is summarized for each covari-

ate with the standardized difference (i.e., the difference between means divided by the

square root of the average of the two sample variances) and the two-sided p-value from

the Wilcoxon rank sum test for the association between the covariate and the treat-

ment assignment. The standardized difference (Std. Diff.) represents the difference in

means between two groups in units of the standard deviation (STD), and some authors

suggest that Std. Diff. < 10% likely expresses a negligible imbalance (Austin et al.,

2010). Table 3.2 describes the associations between the covariates and the primary

endpoint, as assessed by the Cox regression models stratified on the treatment. Under

the assumption of non-informative independent censoring, the univariate analyses for

each individual covariate and the multivariate regression analysis were used to evalu-

ate associations for the covariates. Of the five covariates with Std. Diff. ≥ 10%, the

pre-randomized (pre-rand) MRS 11 item total score has strong association with the

primary endpoint (p-value of 0.002 in the univariate analysis and p-value of 0.003 in

the multivariate analysis), whereas the pre-rand CGI-I score, the pre-rand CGI-S score,

and the pre-rand GAS score have weak associations with the outcome (0.05 ≤ p-values

≤ 0.15). The pre-rand CGI-I score has the largest Std. Diff. of 23.6% with p-value

< 0.05 for the Wilcoxon test of imbalance. Although the random imbalance criterion

in (3.3) does not contradict the expected balance of covariables from randomization

(p-value=0.257), the possibility of random imbalance is suggested. The distribution for
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the pre-rand CGI-I score favors the placebo group, but the random imbalance of the

pre-rand CGI-S score, the pre-rand GAS score, and the pre-rand MRS 11 item total

score could make the test treatment group to have better outcome.
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3.4.2 Covariate-adjusted analyses with MAR-like assumption

Analyses first proceed with the censoring of follow-up times for patients with

premature discontinuation of their assigned treatment, and so they have the MAR-like

assumption of non-informative independent censoring. The robust sandwich variance

estimator is used for hypothesis testing and to obtain confidence intervals throughout

the application. The analysis results are shown in Table 3.3. With a Cox PH model

with one explanatory variable for treatments (i.e., univariate Cox model), the unad-

justed log hazard ratio (HR) for comparing test treatment versus placebo, is estimated

by −0.393 with standard error (SE) of 0.1597 and p-value of 0.0138, indicating supe-

riority of the test treatment. The multivariable Cox model, with the assumption of

proportional hazards for treatment and all seven covariates, produces a larger estimate

for the treatment effect (covariate-adjusted log HR of −0.410) , a larger SE (0.167)

and a slightly larger p-value of 0.0142 than the unadjusted Cox regression counter-

parts. When adjusting for the covariates via the NPANCOVA method, the estimated

covariate-adjusted log HR is somewhat closer to the null (-0.374) than the unadjusted

Cox estimates. With a slightly reduced SE (0.1562), NPANCOVA produces a some-

what larger p-value (0.0167). The decreased treatment effect after covariate adjustment

with NPANCOVA is probably due to the random covariate imbalance favoring the test

treatment group in the unadjusted analysis. Conversely, the Cox model with covariate

adjustment often produces a point estimate for the treatment effect that is further from

the null, mainly because it pertains to patients with the same profile of covariates in

contrast to the population average nature of the unadjusted estimate or the adjusted

estimate produced by the NPANCOVA method (Tangen and Koch, 2000; Jiang et al.,

2008; Saville and Koch, 2012).

To apply inverse probability weights (IPW) and propensity scores (PS), we first fit

a multivariable propensity model with the structure shown in (3.4). The propensity
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model has treatment as the outcome and the set of seven covariates as explanatory

variables. After weighing each subject by the swg defined in (3.5), the extent to which

the IPW balances the treatment groups is assessed, and the corresponding results are

summarized in Table 3.4. The standardized weights generate a pseudo sample size of

300 for the combined treatment groups (about 150 for each group). Within the pseudo

population, the covariate means for the test treatment and the placebo groups are very

similar (Std Diff ≤ 1% and p-value > 0.9) and they are all approximating the overall

population covariate means (shown in Table 3.1). As shown in Table 3.3, the IPW

method produces a covariate-adjusted log HR estimate which is similar in value to that

using the NPANCOVA estimator, but a larger SE, and consequently a larger p-value.

Table 3.3: Covariate-adjusted analyses for treatment effects under the MAR-like as-
sumption

Method Parameter (SE) HR (95% CI) p-values
Univariate Cox model -0.3931 (0.1597) 0.675 (0.494, 0.923) 0.0138
Multivariable Cox model -0.4097 (0.1670) 0.664 (0.479, 0.921) 0.0142
NPANCOVA -0.3738 (0.1562) 0.688 (0.507, 0.935) 0.0167
IPW -0.3787 (0.1638) 0.685 (0.497, 0.944) 0.0208
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Figure 3.1: Sensitivity analyses with covariate adjustment

3.4.3 Sensitivity analyses with covariate adjustment

We first implement the sensitivity analysis without and with covariate adjustment

under θ = 1. With this specification, the imputed data are produced from the condi-

tional failure time distributions estimated with the censoring of the follow-up times of

patients with premature discontinuation, and they thereby have the MAR-like assump-

tion of non-informative independent censoring. We perform the multiple imputations

(MI) with L = 50 for the amount of missing information in this example. The justifi-

cation for L = 50 was discussed in Zhao et al. (2012). Table 3.5 presents the covariate-

adjusted (log) hazard ratios obtained from the combinations of the MI strategies and

the covariate adjustment methods for the imputed data sets. An important component

that differentiates various MI procedures is the survival distribution estimates, from

which the conditional failure time distribution for imputation is constructed. Table 3.6
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summarizes the methods for estimating the survival distributions, along with the other

key steps and assumptions for the corresponding sensitivity analyses presented in Ta-

ble 3.5. For the ease of comparisons, the unadjusted (log) hazard ratios were also

estimated using the KMMI and the PHMI methods without covariate adjustment.

When imputed data sets are produced by the unadjusted PHMI method under

θ = 1, the unadjusted (log) hazard ratio (row 1) is very similar to that obtained

via the conventional unadjusted Cox model with the censoring of follow-up times for

discontinued patients (Table 3.4 row 1), mainly because both under the MAR-like

assumption of non-informative censoring and both have the proportional hazards as-

sumption. With the data sets imputed by the unadjusted PHMI method, a multivariate

(i.e., covariate-adjusted) Cox regression model produces a smaller treatment effect es-

timate and a larger SE (row 2) than the unadjusted counterparts. Interestingly, the

covariate-adjusted PHMI method (row 3) produces a covariate-adjusted log hazard ra-

tio of −0.3886 that is comparable in value to the unadjusted log hazard ratio estimate

of −0.3885 from the unadjusted PHMI method (row 1). And its corresponding SE esti-

mate is in between the SE estimates from the unadjusted and adjusted Cox regression

analyses for the data imputed by the unadjusted PHMI method (row 1 and 2).

When data are from randomized clinical trials, one could regard the patients of

each treatment group as a random sample from the study population. Therefore, it

is appropriate to apply either unadjusted or covariate-adjusted analysis to the data

sets imputed by the KMMI method without covariate adjustment. The unadjusted

log hazard ratio from the unadjusted KMMI method (row 4) under θ = 1 is closer

to the null and has a somewhat larger p-value than its conventional counterpart with

the use of censoring (log HR=-0.3225 with p=0.0429 for unadjusted KMMI versus log

HR=-0.3931 with p=0.0138 for the conventional method), due to the non-proportional

hazards for the follow-up period (i.e., a much stronger effect size for the test treatment
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during the early period in the example). With the same set of imputed data, the esti-

mators for covariate-adjusted (log) hazard ratio from the multivariable Cox regression

(row 5), the NPANCOVA (row 6), and the univariate Cox model with IPW (row 7)

produce even smaller (i.e., closer to the null) treatment effects than the unadjusted Cox

model estimator (row 4), which leads to larger p-values (> 0.05) for all three covariate-

adjusted methods. Among those covariate adjustment analyses, only the NPANCOVA

method generates a SE estimate smaller than that of the unadjusted Cox regression,

whereas the multivariable Cox regression produces the smallest effect size and the

largest SE estimates, and hence has the largest p-value. The covariate-adjusted KMMI

strategy imputes failure times based on the survival distributions estimated from the

balanced pseudo populations created by IPW. The data sets imputed under θ = 1 are

then analyzed using the univariate Cox model with the same weights. As shown in

Table 3.5 row 8, it provides a slightly stronger adjusted result than the unadjusted

KMMI method paired with covariate adjustment using IPW (row 7). Except for the

unadjusted and adjusted PHMI methods supporting superiority of the test treatment,

most of the sensitivity analyses with covariate adjustment only show marginal benefits

for the test treatment under θ = 1.

We then conduct the covariate-adjusted sensitivity analyses, i.e., the unadjusted

KMMI with NPANCOVA (Table 3.5 and 3.6 row 6), the covairate-adjusted PHMI

(Table 3.5 and 3.6 row 3), and the covariate-adjusted KMMI with IPW (Table 3.5

and 3.6 row 8), by varying the sensitivity parameter θ (= θT/θP ) for the test treatment

group. For sensitivity analyses in the regulatory setting, one would usually have θP = 1

and θT > θP > 1 to penalize premature discontinuations for the test treatment. The

choice of θ can be values in a range of (L,U), where (1/U, 1/L) is a range of hazard

ratios from previous related studies or clinical judgment for the comparison of effective

medicines with placebo. Here, we set a lower bound < 1 and vary the value of θ by an
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0.01 increment in a range from 0.5 to 2.5, mainly because two of the three sensitivity

analysis methods fail to show the superiority of the test treatment under θ = 1 for

this example. The p-values for the covariate-adjusted (log) hazard ratios from the

unadjusted KMMI with NPANCOVA, the covairate-adjusted PHMI, and the covariate-

adjusted KMMI with IPW are plotted as functions of the sensitivity parameter θ in

Figure 3.1. In order to have p < 0.05 via the unadjusted KMMI with NPANCOVA or

the covariate-adjusted KMMI with IPW, θ < 1 or < 0.98 is needed, which may not

seem to be a reasonable assumption for the post-discontinuation behavior of patients

with the test treatment. For p < 0.05 with the covariate-adjusted PHMI , θ < 1.52

is needed, suggesting better robustness to assumptions about patients with premature

discontinuation of treatment for this example. Compared with the unadjusted hazard

ratio estimates obtained from the unadjusted PHMI method with the specification of

θ > 1 (presented in Zhao et al. (2012)), the covariate-adjusted PHMI method produces

slightly weaker results, i.e. treatment effect estimates that are closer to the null and

have larger SE estimates and larger p-values.

3.5 Summary

Covariate adjustment plays an important role in the analysis of observational stud-

ies and randomized clinical trials. In observational studies where the equivalence of

comparison groups cannot be controlled by randomization, covariance analysis adjusts

for inherent differences among comparison groups so that bias may be reduced (Koch

et al., 1982, 1998). For randomized studies, covariate adjustment may provide more

powerful statistical tests (relative to their unadjusted counterparts) for the comparison

between treatment groups (Koch et al., 1982, 1998). In this paper, we discussed three

covariance analysis methods for time-to-event data through an example from a clinical

trial for a maintenance treatment of bipolar disorder, in which substantial premature
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discontinuations of treatment occurred. The goal of this paper is to illustrate how to

adapt those methods of covariate adjustment to the sensitivity analysis for assessing

the robustness of conclusions to the management of missing information.

The multivariable Cox proportional hazards model is commonly employed for co-

variate adjustment in both observational and randomized studies. However, the appro-

priate application depends on several assumptions, such as correct model specification

and proportional hazards for each variable in the model. When the proportional haz-

ards assumption is not satisfied, the type I error is inflated for the Cox model with

adjustment for covariables that are related to the outcome (Jiang et al., 2008). With

adjustment for covariates, the treatment parameter estimates from the Cox model are

often further from the null, and the corresponding SE estimates are always larger than

the unadjusted counterparts. Therefore, the efficiency of the null hypothesis test of no

treatment effect may not be clear for covariate adjustment (Hauck et al., 1998). To

implement the covariate adjustment with multivariable Cox models in the sensitivity

analysis for missing data, the imputed data sets are generated and analyzed by the

Cox proportional hazards model with treatment and the set of covariates to be ad-

justed; and this could lead to the same issues as previously noted and cause concerns

for interpreting the adjusted results, especially in the regulatory setting.

The NPANCOVA method proposed by Saville and Koch (2012) has random assign-

ment of treatments as the principal assumption and avoids the major issues associated

with the multivariable Cox proportional hazards model. Unlike the multivariable Cox

model, the NPANCOVA method is more likely to preserve the type I error under non-

proportional hazards and is more robust for different model assumptions (Jiang et al.,

2008; Saville and Koch, 2012). The covariate-adjusted hazard ratio produced by NPAN-

COVA has the interpretation of a population average treatment effect, in contrast to

the subpopulation (defined by adjusted covariates) specific estimates provided by the
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multivariable Cox model. If adjusted covariates explain some of the variation in the

response variable, the NPANCOVA method could generate more powerful statistical

tests through variance reduction (Koch et al., 1982, 1998). In addition, the covari-

ate adjustment with NPANCOVA induces equivalent comparison groups by offsetting

random imbalances between treatment groups for covariables with noteworthy associ-

ations with the outcome of interest, and thereby it provides clarification of the degree

to which the detected difference between randomized groups for the response variable

is due to treatment rather than random imbalances for covariates. For the application

data set with more random covariate imbalances favoring the test treatment group to

have better response, the NPANCOVA method produces a covariate-adjusted log haz-

ard ratio closer to the null, and a larger p-value than the counterparts produced by the

unadjusted Cox regression even with the SE reduction. The covariate-adjusted sensi-

tivity analysis with NPANCOVA invokes the unadjusted KMMI process, and therefore

it generates somewhat weaker results than its conventional counterpart with the use of

censoring for this particular example.

To reduce bias for comparing treatment effects in observational studies, the inverse

probability weights (IPW) balances the distributions of the covariables to be adjusted

across treatment groups by creating a pseudo population for each group that has co-

variable distributions comparable to those of the combined treatment groups. For a

univariate Cox model with only treatment for the re-weighted pseudo population, the

IPW method produces a covariate-adjusted hazard ratio with a population average

nature similar to that from the NPANCOVA method, and it does not require the pro-

portional hazards assumption needed for covariates by the conventional multivariable

Cox regression. As shown in the example (Table 3.3 and 3.5), the IPW method re-

duces the bias due to the random covariate imbalance for treatment comparisons, but

it produces larger SE estimates and larger p-values, and consequently, it provided more
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conservative hypothesis tests than the NPANCOVA method. A comprehensive simula-

tion study may be able to shed more light on its performance for covariate adjustment.

Although the IPW method is usually used in observational studies, its appropriateness

in the covariate-adjusted sensitivity analysis for missing data can be justified for both

observational studies and confirmatory clinical trials.
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Chapter 4

Sensitivity Analysis for
Withdrawals in Grouped

Time-to-event Data

4.1 Introduction

Grouped time-to-event data often arise in longitudinal clinical trials, where patients

are evaluated repeatedly by diagnostic procedures at a specific set of follow-up times

until the event of interest occurs or until completion of the entire follow-up period.

Examples include assessing progression free survival in oncology by biopsy or imaging,

examining patients with an endoscope for ulcer healing or recurrence, or occurrence

of certain psychological characteristics which may not be immediately obvious to the

patients, and thereby need clinical evaluation. In these situations, one can only de-

termine the time interval during which the event occurs, but the exact time of failure

is unknown. Further description of examples generating the grouped survival data is

given in Johnson and Koch (1978), and Laird and Olivier (1981).

The general framework for analyzing grouped survival data was discussed in detail

by Koch et al. (1972), Johnson and Koch (1978), and Deddens and Koch (1988). Within

the context of longitudinal clinical trials, some patients may discontinue the study prior

to its completion (i.e., withdraw or dropout) without having an observed event for



reasons such as protocol violations, adverse events, worsening of symptoms, or unrelated

illness or some other reasons. Such patients always complicate the analysis and the

interpretation of the data for efficacy comparisons of treatment groups. Moreover,

the incomplete follow-up due to withdrawal can reduce the comparability of treatment

groups provided by randomization, consequently it can undermine the validity of the

trial and can lead to ambiguous study conclusions (NRC, 2010). Therefore, a central

issue for grouped survival data analysis is how to take into account the incomplete

follow-up information appropriately, and some methods are described in references such

as Elashoff and Koch (1991) and Somerville et al. (2009).

One way to manage the withdrawal patients is to designate them as ‘not having

event’ through the end of study. This approach gives rise to the crude event rate

during a time period as the ratio of the number of subjects with the event versus the

number of all randomized patients (Elashoff and Koch, 1991; Somerville et al., 2009).

Although this convention has an intention-to-treat (ITT) spirit, it underestimates the

event rate by unrealistically presuming all withdrawal patients would not experience

any event through the entire study period. Another approach is to view the withdrawals

as having the event, and this leads to overstated event rates. When one treatment group

has a greater prevalence of withdrawals than the other, the treatment comparison using

either method could be misleading and would need to be interpreted with caution (Koch

et al., 1984).

Another way to manage patients who prematurely withdraw during an interval is the

actuarial method that excludes them from the risk set for that interval and subsequent

intervals, since their actual status after their last visit is unknown (Koch et al., 1984;

Elashoff and Koch, 1991). This convention assumes withdrawals have no association

with the tendency of having an event, in other words, the subsequent unobserved event

rate for discontinued patients is the same as the observed event rate for patients who
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remain in the study. Similar in spirit to the usual life-table estimates that assume

non-informative independent censoring, the actuarial survival rate through the end of

a specific interval is the product of the proportion of patients with no event for it and

those for all preceding intervals. Although the actuarial method is adopted in most

analysis strategies, it is useful to note that it is in fact a per-protocol analysis, because

the method seeks to estimate the event rates would have been if the withdrawers had

remained under study treatment.

Since the survival status of discontinued patients remains unknown subsequent to

their last follow-up visit, there is no single correct way of computing the effective

number of patients at risk during a particular time interval (Koch et al., 1972). For

this reason, event rates are often summarized using multiple methods to demonstrate

the robustness of primary conclusions, and one should always evaluate the sensitivity

of the primary analysis results to alternative ways of managing incomplete follow-up

data (Koch et al., 1984; Somerville et al., 2009).

Although the actuarial method for survival rates analysis is based on the product

of conditional probability parameters, Koch et al. (1972) have shown that the grouped

survival data can also be arranged in a contingency table format so that the underlying

probability model can be written as a product multinomial distribution with uncondi-

tional probability parameters. Using the same computational framework, we develop a

sensitivity analysis to assess the implication of withdrawals to the conclusion concerning

the treatment comparison. Governed by the intention-to-treat principle, patients who

discontinue study treatment prematurely should not be censored, but rather managed

as if followed for the event of interest, at a possible higher event rate. The proposed

method computes the hypothetical unconditional multinomial distributions of grouped

survival time for all randomized patients, as if all the discontinued patients had been

followed to the end of study in the absence of their assigned treatment. A sensitivity
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parameter θ is introduced to the calculation as the conditional odds ratio of having

an event in a time interval following withdrawal, to reflect the different event rates

of patients who withdraw from study and patients who remain in the study. Differ-

ent values of θ can be specified separately for the test and control treatment groups

to cover a wide range of possible post-withdrawal experiences as alternatives to the

primary non-informative independent censoring assumption. The extent to which the

treatment inference changes over a range of θ allows a more complete assessment of

the robustness of primary results in terms of different managements of withdrawal pa-

tients. The application of this proposed sensitivity analysis is illustrated using data

from a maintenance trial for ulcer disease.

4.2 Methods

4.2.1 Data structure

Grouped survival data can usually be analyzed in a categorical data framework ac-

cording to the occurrence of the follow-up status of patients with respect to a set of

mutually exclusive time intervals (with possibly unequal lengths). Consider a study

comparing a test and a control treatment to prevent the occurrence of a medical con-

dition over t consecutive time intervals, where patients were evaluated at the end of

the kth interval , for k = 1, 2, . . . , t, until they experience the event of interest (i.e.,

fail) shown in (4.1). For each treatment group, the observed data can be arranged in

the contingency table format. Here, fk and wk represent, respectively, the number of

patients who fail or withdraw in the kth time interval, the quantity wt+1 represents the

number of patients who are followed and survive (i.e. event-free) through all t time
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intervals, and n =
∑t

k=1 fk +
∑t+1

k=1 wk is the total number of patients in that group.

Fail during follow-up Withdraw during follow-up Censor

(at end)

Total

1 2 · · · t 1 2 · · · t

f1 f2 · · · ft w1 w2 · · · wt wt+1 n
(4.1)

One can consider each treatment group to have a multinomial distribution in which

each patient has one of the (2t + 1) mutually exclusive outcomes. Then, the relevant

model for observing a specific set of frequencies fk and wk is given in (4.2),

φ =
n!∏t

k=1 fk!
∏t+1

k=1wk!

(
t∏

k=1

πfk1k

t+1∏
k=1

πwk2k

)
(4.2)

where π1k is the probability that an individual will fail at some time during the kth

time interval for k = 1, 2, . . . , t, π2k is the probability that an individual will with-

draw in the kth time interval for k = 1, 2, . . . , t, π2k, and π2(t+1) is the probabil-

ity that an individual will be followed through the entire t intervals and not fail.

From the properties of the multinomial distribution, the unbiased estimator of π, π=

(π11, . . . , π1t, π21, . . . , π2t, π2(t+1))
′, is a in (4.3).

π̂ = a =
1

n
(f1, f2, . . . , ft, w1, w2, . . . , wt, wt+1)′ (4.3)

Moreover, a consistent estimator for the variance-covariance matrix of a is

V̂ar(a) = Va =
1

n
[Da − aa′] (4.4)

where Da is a (2t+ 1)× (2t+ 1) diagonal matrix with the elements of the vector a on

the main diagonal.
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4.2.2 Survival/failure probability estimation

In order to specify a survival/failure profile for each treatment group, we adopt the

convention that patients are known to be event-free only to their last visits, and are

censored at the beginning of the time interval in which they withdraw. One can condi-

tionally view the fk as following uncorrelated binomial distributions with parameters

nk and λk, where nk =
∑t

j=k fj +
∑t+1

j=k+1wj is the number of patients at risk during

the kth interval, and λk is the conditional probability for failing in the kth interval

given survival of all preceding intervals. From the properties of the binomial distribu-

tion, λ̂k = hk = fk/nk, is an unbiased estimator for λk, and the variance of hk can be

estimated consistently by

V̂ar(hk) =
1

nk
(hk)(1− hk). (4.5)

Since the conditional binomial distributions for the fk within each time interval are

uncorrelated, one can note that Cov(hk, hk′) = 0 for k 6= k′.

It is also useful to express the hk’s, for k = 1, 2, . . . , t, simultaneously in matrix

notation as compound functions of the vector a, via a sequential series of linear, loga-

rithmic, and exponential transformations

h = (h1, h2, . . . , ht)
′ = exp[A2 loge(A1a)], (4.6)

where loge( ) denotes the element-wise vector operation that transforms a vector to the

corresponding vector of natural logarithms, and exp[ ] denotes the element-wise vector

operation that transforms a vector to the corresponding vector of exponentiated values,

and A1 and A2 are matrices for linear transformations (for which the structures are

described in ??). The principal reason for expressing h in this matrix framework is

that it facilitates the construction of the consistent estimator for the covariance matrix
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of h using the first order linear Taylor series approximation, as discussed in Koch et al.

(1972). After some matrix algebra, we show that the covariance matrix Vh estimated

by this approach is actually a diagonal matrix with 1
nk
hk(1−hk) (the quantity shown in

4.5) being the kth diagonal element. The details for obtaining Vh are given in Appendix

4. It is not difficult to note that the matrix method employing the first order linear

Taylor series approximation simply produces the appropriate variance and covariance

quantities, with the advantage that a large number of parameters can be processed

simultaneously.

By the definition of conditional probability, the actuarial (i.e., life table) estimator

for the probability that an individual will fail in the kth time interval is computed as

p1 = h1 and pk = hk

k−1∏
j=1

(1− hj), for k = 2, 3, . . . , t, (4.7)

when assuming non-informative independent censoring for withdrawal patients. Let

p = (p1, p2, . . . , pt)
′, and so the consistent covariance matrix estimator Vp can be ob-

tained through the linear Taylor’s series approximations as shown in Appendix 5. With

the specification in (4.7), the following relationship can be established,

p1

1− p1

=
h1

1− h1

p2

1− p1 − p2

=
(1− h1)h2

1− h1 − (1− h1)h2

=
h2

1− h2

p3

1− p1 − p2 − p3

=
(1− h1)(1− h2)h3

1− h1 − (1− h1)h2 − (1− h1)(1− h2)h3

=
(1− h2)h3

1− h2 − (1− h2)h3

=
h3

1− h3

...

As a deduction, we obtain
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pk

1−
∑k

j=1 pj
=

hk
1− hk

, for k = 1, 2, . . . , t, (4.8)

where the left-hand side of the equation is the estimated marginal odds for failing in the

kth time interval (versus surviving beyond it), and the right-hand side of the equation

is the estimated conditional odds for failing in the same interval given survival of all

proceeding intervals.

The actuarial method assumes that the experience of the censored patients following

their withdrawals is represented by the patients remaining in the risk set. This non-

informative independent censoring assumption is in a sense like the missing at random

(MAR) assumption in the language of missing data. Under this assumption, one can

impute the failure times for the withdrawals w1, w2, . . ., and wt, using the failure prob-

ability distribution estimated from the observed data. The marginal failure probability

distribution (p1, p2, . . ., and pt) is employed to impute failures for the withdrawals

w1. And for wk, k = 2, . . . , t, the imputations are based on the failure probabilities

conditional on survival through the first k − 1 intervals as estimated by

1

1−
∑k−1

j=1 pj
(pk , pk+1 , . . . , pt) .

Henceforth, one can redistribute the counts of wk into the time intervals of k, k + 1,

. . ., t. The counterpart estimates to the pk’s in (4.7), are easily obtained via (4.9) for

k = 1, 2, . . . , t, as if all the randomized patients were followed to the end of the study.
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q1 = p1 =
1

n
(f1 + p1w1) (4.9)

q2 = p2 =
1

n

(
f2 + p2w1 +

p2

1− p1

w2

)
qk = pk =

1

n

(
fk + pkw1 +

pk
1− p1

w2 +
pk

1− p1 − p2

w3 + ...+
pk

1−
∑k−1

j=1 pj
wk

)

=
1

n

(
fk +

k∑
g=1

pkwg

1−
∑g−1

j=1 pj

)
, with convention

0∑
j=1

pj = 0

...

qt = pt =
1

n

(
ft +

t∑
g=1

ptwg

1−
∑g−1

j=1 pj

)

By substitution of (4.7) into (4.9), the marginal failure probability distribution (i.e.

qk’s for k = 1, 2, . . . , t) can then be expressed as compound functions of the elements

of the vectors a and h as shown in (4.10).

q1 =
1

n
[f1 + h1w1] (4.10)

q2 =
1

n
[f2 + (1− h1)h2w1 + h2w2)

qk =
1

n

[
fk + hk

k−1∏
j=1

(1− hj)w1 + hk

k−1∏
j=2

(1− hj)w2 + · · ·+ hk(1− hk−1)wk−1 + hkwk

]

=
1

n

{
fk + hk

[
k−1∑
g=1

(
wg

k−1∏
j=g

(1− hj)

)
+ wk

]}
...

qt =
1

n

{
ft + ht

[
t−1∑
g=1

(
wg

t−1∏
j=g

(1− hj)

)
+ wt

]}

q(t+1) = 1−
t∑

k=1

qk (4.11)

Also, q(t+1) in (4.11) is the estimated probability that an individual would have an event
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after the tth time interval (i.e., the probability of survival through all t intervals).

4.2.3 General framework of sensitivity analysis

In discrete time-to-event analysis, the hazard function λ(tj) is a non-zero probability

of experiencing an event at a time tj, conditional upon the event of interest not occurring

prior to that time point. Cox (1972) proposed an extension of the proportional hazards

model to discrete time by working with the conditional odds of failing at each time tj

given survival up to that point

λ(tj)

1− λ(tj)
= exp(x′iβ)

λ0(tj)

1− λ0(tj)
,

where λ(tj) is the hazard at time tj for an individual with covariates xi, λ0(tj) is the

baseline hazard rate at time tj, and exp(x′iβ) is the odds ratio associated with covariates

xi. The logit of the hazard rate (or the logit of the conditional probability of having

an event at time tj given event-free up to that time) can then be the basis for fitting

logistic regression models. The similar concept can be applied to the grouped survival

data analysis. In this regard, we could view the marginal/conditional odds ratio for

failing, i.e., the ratio of the quantities in (4.8) for one group to the other, as a useful

criterion for evaluating the treatment difference.

For most clinical trials, withdrawals are likely to be associated with a change in

treatment regime, i.e., discontinuation of the study treatment, or even switching to a

rescue therapy. Consequently, the experience of developing an event for the remaining

patients will no longer represent the response of the entire treatment group if every

patient were followed without withdrawal. For this reason, let h̃k denote the probability

of failing in the kth time interval conditional on survival of all preceding intervals for

patients who drop out before or in the kth interval. Then, a different survival profile
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for discontinued patients can be specified through a conditional odds ratio (θ) of failure

for discontinued vs. retained patients as

h̃k

1− h̃k
= θ

hk
1− hk

, θ ∈ (0,∞). (4.12)

Solving equation (4.12), h̃k has the functional form

h̃k =
θhk

1 + (θ − 1)hk
, for k = 1, 2, . . . , t, (4.13)

where the odds ratio θ is treated as a specified parameter in the estimation of h̃k.

To simplify the notation, let hk,θ denote the value of h̃k at a fixed value of θ, such

that hk defined in (4.5) can be viewed as a special case of hk,θ under θ = 1. Then, a

corresponding covariance matrix for hθ = (h1θ, h2θ, . . . , htθ)
′ can be estimated using the

linear Taylor’s series approximations (Koch et al., 1972) (see Appendix 6 for details).

Replacing hk’s in (4.10) with hkθ leads to the analogous estimates of qk’s in (4.14).

qkθ =
1

n

[
fk + hkθ

k−1∑
g=1

(
wg

k−1∏
j=g

(1− hjθ)

)
+ wkhkθ

]
(4.14)

q(t+1)θ = 1−
t∑

k=1

qkθ

In order to construct the covariance matrix estimators for the failure probabilities

estimated via imputing withdrawals’ failure time intervals, we express qk’s and qkθ’s in

matrix form as

q = (q1, q2, . . . , qt, qt+1)′ and qθ = (q1θ, q2θ, . . . , qtθ, q(t+1)θ)
′.

The consistent estimators Vq and V qθ for their covariance matrices can then be ob-

tained using the linear Taylor’s series approximations. The details of the estimation
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are described in Appendix 7.

In our formulation, θ is the sensitivity parameter to control the difference in the

probability of experiencing an event between the withdrawal patients and the patients

retained in the study. When θ = 1, the estimators in (4.10) or (4.14) generate failure

probabilities and the corresponding covariance estimates that are the same as the usual

actuarial method. When θ > (or < ) 1, the discontinued patients are assumed to

have higher (or lower) probability of failure following their withdrawal compared to the

remaining patients, thus the corresponding failure probability distribution (q1θ, q2θ, . . .,

qtθ, q(t+1)θ) can be estimated via (4.14). By this way, an imputed data set can be created

to mimic the complete ITT analysis, in which the discontinued patients are followed

off treatment until the end of the study. For withdrawals in the placebo group, the

non-informative independent censoring assumption of θC = 1 is reasonable in the sense

that patients typically function under similar study conditions after dropout. However

a θC > 1 can be specified to address the possibility that the post-dropout experience

of placebo patients is less favorable than with a MAR-like assumption, especially when

an active drug is used for control. For the test treatment group, θT > θC (> 1) can be

specified so as to address larger departures from the independent censoring assumption.

With θC = 1, θ = (θT/θC) = θT becomes a single parameter for calibrating sensitivity

analyses, and therefore the sensitivity analyses can be carried out over a plausible

range of θ that connects the specifications of patients’ post-dropout behaviors and the

response of interest from the observed data.

The proposed method should have reasonably good asymptotic properties in terms

of the type I error of statistical tests and the coverage of confidence intervals when the

sample size is sufficiently large (e.g., for each group, the number of withdrawals is at

least 10 and the number of failures is at least 10 within each time interval, and there

is at least 10 people who complete all the intervals without the event).
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4.2.4 Criteria for treatment effect comparison

The treatment effect comparison between groups can be addressed through incidence

density ratio (IDR), odds ratio (OR), Mann-Whitney probability, or Mantel-Haenszel

test statistics calculated using the qkθ’s of the test and control groups. To establish

notations, let i = 1, 2 index the test and control treatments, assuming ni patients

in group i. Let k = 1, 2, . . . , t index a set of time intervals, with t denoting the

last time interval in the follow-up period. Let θi denote the sensitivity parameter

in the ith group. Let qikθi denote the estimated probability that a patient with ith

treatment will experience an event in the kth time interval via redistribution of the

withdrawal counts. Let qiθi = (qi1θi , qi2θi , . . . , qitθi , qi(t+1)θi)
′; and let ñiθi = niqiθi =

(ñi1θi , ñi2θi , . . . , ñitθi , ñi(t+1)θi)
′ be the redistributed numbers/counts of events within

the time intervals.

Incidence density ratio and odds ratio

Incidence density (ID) is the number of events that occur in a time interval divided

by the amount of person-time at risk for the same interval (Lavange et al., 1994; Tangen

and Koch, 2000). For time-to-event data from the exponential distribution, ID is the

maximum likelihood estimator (MLE) of the hazard rate. When grouped survival data

are assumed to have different exponential distributions within individual time intervals

(i.e., a piecewise exponential model), an ID can be calculated for each time interval

separately to estimate the interval-specific hazard rate. In general, the exponential

distribution assumption is not necessary to support ID as a useful descriptive statistic

to compare treatment groups for categorical time-to-event data. The rationale of using

odds ratio (OR) as a measure for the treatment effect comparison has been described

in the section (4.2.3). The computation and interpretation of these two measurements

share the similar principle, hence they are discussed here simultaneously.
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For the purpose of simplicity, we assume that all the time intervals have equal

length of 1 unit of time span and the occurrence of events is assessed at the end of each

interval. The ID and the odds of having an event in the kth time interval for group i

are computed as

γ̂ikθi =
niqikθi∑t+1
j=k niqijθi

=
qikθi∑t+1
j=k qijθi

(4.15)

and

φ̂ikθi =
qikθi

1−
∑k

j=1 qijθi
=

qikθi∑t+1
j=k+1 qijθi

(4.16)

respectively. One could then form the interval-specific loge incidence density ratio

(IDR) of the test (i = 1) to the control (i = 2) group

η̂k = loge
γ̂1kθ1

γ̂2kθ2

= loge q1kθ1 − loge(
t+1∑
j=k

q1jθ1)− loge q2kθ2 + loge(
t+1∑
j=k

q2jθ2) (4.17)

as a relevant basis for the treatment comparison. Similarly, the interval-specific loge

OR of the test (i = 1) to the control (i = 2) group is

ψ̂k = loge
φ̂1kθ1

φ̂2kθ2

= loge q1kθ1 − loge(
t+1∑

j=k+1

q1jθ1)− loge q2kθ2 + loge(
t+1∑

j=k+1

q2jθ2) (4.18)

Letting η̂=(η̂1, η̂2, . . ., η̂t) and ψ̂=(ψ̂1, ψ̂2, . . ., ψ̂t), the consistent variance-covariance

estimators V η̂ and V ψ̂ can be obtained through linear Taylor’s series approximation

(see Appendix 8 for details). In this paradigm, if the test and the control groups

have identical treatment effect, their corresponding η̂k and ψ̂k will approximately have

expected value of zero, and therefore the departure of those quantities from the null

represents the treatment difference between the two groups (Tangen and Koch, 2000).
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Let vector d denote either η̂ or ψ̂. When the sample sizes for both groups are suffi-

ciently large, the vector d has approximately a multivariate normal distribution with

V d as its essentially known covariance matrix. The variation in the elements of the

vector d can be analyzed by fitting linear regression models of the form

EA (d) = Xβ (4.19)

where X is a pre-specified design matrix with full rank for the model structure, β is

the corresponding vector of unknown regression coefficients, and ‘EA’ means asymptotic

expectation. The weighted least squares asymptotic regression (Grizzle et al., 1969) is

used to determine the estimator for β via

β̂ = (X ′V d
−1X)−1X ′V d

−1d, (4.20)

and a consistent estimator for the covariance matrix of b is given by

V β̂ = (X ′V d
−1X)−1 (4.21)

If the data are adequately described by this model, a test of hypothesis H0: Cβ=0,

can be performed with Wald statistics

QC = β̂
′
C ′(CV β̂C

′)−1Cβ̂ (4.22)

which has approximately a χ2-distribution with d.f.=rank(C) in large samples un-

der H0. For the model with identity matrix I t×t as X, an overall test of any treat-

ment difference among the intervals can be obtained via C = I t×t. One can also

use C=[−1(t−1)×1, I(t−1)×(t−1)] to evaluate the homogeneity of IDRs (or ORs) across

all of the intervals, i.e., the proportional ID (or odds) assumption. When the overall
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treatment effect is of interest regardless of departures from homogeneity, C=[11×t] can

be used to test whether the average loge IDR= 1
t

∑t
i=1 ηi (or loge OR= 1

t

∑t
i=1 ψi)

across the intervals equals zero. However, this test should be interpreted with caution,

particularly when intervals have IDRs (ORs) with opposite direction. Alternatively, a

common loge IDR (or loge OR) across intervals can be estimated as a single parameter

β via the simplified model for which X=[1t×1].

Mann-Whitney probability

For two random variables X and Y on the same support, the Mann-Whitney prob-

ability, Pr(Y ≥ X) or ξ= Pr(Y > X) + 1
2
Pr(Y = X), is a general measure of effect

size to characterize the degree of separation of their distributions. In terms of the

treatment difference in randomized clinical trials, ξ estimates the probability that a

randomly selected patient receiving the new treatment has a better response than a

randomly selected patient who receives the control treatment (Acion et al., 2006). This

probability measurement is applicable to both continuous and ordinal data without

requirement of assumptions on distributions, and at same time it maintains meaningful

interpretation across a variety of outcome measures and sample distributions. There-

fore, it has been advocated as an intuitive non-parametric approach to measure the size

of effects (Acion et al., 2006; Newcombe, 2006).

For categorical time-to-event data, ξ is the probability that a patient randomly

chosen from the test treatment (i = 1) group does not have the event of interest earlier

than the patient randomly chosen from the control (i = 2) group, i.e. Pr(T1 ≥ T2),

where Ti denotes the time to the event of interest in the ith group. In the present setting

where the follow-up period consists of t distinctive time intervals, the Mann-Whitney
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probability for the sensitivity analysis can be estimated as

ξ̂ =
t+1∑
k=1

q1kθ1(
k−1∑
j=1

q2jθ2 +
1

2
q2kθ2) =

t+1∑
k=1

q1kθ1(
k∑
j=1

q2jθ2 −
1

2
q2kθ2). (4.23)

If the two treatments are equally effective, the chance of having a better response in

the new treatment would be 1
2
, i.e. ξ = 1

2
. As the new treatment shows more benefit

than the control, ξ̂ moves towards 1, and as the new treatment shows less benefit, ξ̂

moves towards 0. To perform the Wald hypothesis test of H0: ξ=1
2

and calculate the

confidence interval of ξ̂, a consistent variance estimator of ξ̂ can be constructed using

linear Taylor’s series approximation (see Appendix 9 for details).

Mantel-Haenszel criterion

Mantel (1966) extended the Mantel-Haenszel methodology (Mantel and Haenszel,

1959) to compare two sets of survival patterns. In order to implement the Mantel-

Haenszel test, the imputed counts of all study intervals for two treatment groups (i.e.,

ñ1θ1 and ñ2θ2) are summarized in t (2×2) contingency tables, one for each time interval

of the form

Failed Survived Total

Group 1 ñ1k

∑(t+1)
k′=(k+1) ñ1k′

∑(t+1)
k′=k ñ1k′

Group 2 ñ2k

∑(t+1)
k′=(k+1) ñ2k′

∑(t+1)
k′=k ñ2k′

One can then compute the Mantel-Haenszel criterion for imputed data as

MHE =

(
t∑

k=1

ñ1k −
t∑

k=1

E(ñ1k)

)2

=

(
t∑

k=1

ñ1k −
t∑

k=1

(ñ1k + ñ2k)
∑(t+1)

k′=k ñ1k′∑(t+1)
k′=k (ñ1k′ + ñ2k′)

)2

(4.24)

Under the null hypothesis of no treatment difference, the Mantel-Haenszel statistics

QMH = MHE/Var(MHE) has approximately a χ2 distribution with df of 1, which
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allows simultaneous comparison of survival patterns as a whole. The calculation of the

numerator and denominator of QMH are given in Appendix 10.

4.3 Application

The proposed sensitivity analysis method is illustrated for a maintenance trial to

compare a test drug and an active control for prevention of duodenal ulcer recur-

rence (Elashoff and Koch, 1991). Endoscopic assessments for ulcer recurrence were

made for patients with previously healed ulcer at protocol-scheduled visits of months

4, 8, and 12 without regard for symptoms. The final status of patients can be classi-

fied into one of the following three categories:(1) the patient had completed the study

without recurrence; (2) the patient withdrew from further evaluation due to study

discontinuation for some reasons (e.g. protocol violation, poor compliance, lost to

follow-up); (3) the patient experienced a recurrence (i.e., treatment failure) during the

follow-up period (Koch et al., 1984). The data from such a maintenance study are

summarized in Table 4.1. An issue complicating the analysis is how to deal with the

patients who discontinued the assigned treatment and withdrew from the study with-

out having an observed ulcer recurrence. Those patients can cause ambiguity in the

study conclusion because of their unknown recurrence status subsequent to their last

endoscopic evaluation. As noted in Table 4.1, the overall withdrawal rate for the active

control is 25.3%(61/241) and that for the test drug is 23.5%(57/243). In addition, the

withdrawal rate in the first time interval is higher for the active control group (18.3%

for the active control vs. 14.9% for the test drug), whereas the test drug group has a

slightly higher withdrawal rates in the second and third intervals (5.0% and 2.1% for

the active control vs. 5.8% and 2.9% for the test drug). With uneven withdrawal rates

for the two treatment groups, multiple ways for managing these withdrawals need to

be used to assess their impact on conclusions (Elashoff and Koch, 1991).
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Table 4.1: Data for endoscopic assessment in 12-month maintenance trial for duodenal
ulcer

Number Number Number
with recurrence withdrawn from risk with no

first seen in interval during interval occurence
Treatment 0-4 M 4-8 M 8-12 M 0-4 M 4-8 M 8-12 M by 12 M Total

Active control 40 24 6 44 12 5 110 241
Test drug 17 11 16 36 14 7 142 243

We first consider the performance of the proposed method under θC = θT = 1. With

this specification, the withdrawal counts redistribution has the MAR-like assumption

of non-informative independent censoring that is also specified in the usual actuarial

method. For the purpose of comparisons, the data were also analyzed with the actu-

arial method and the crude rate approach. Table 4.2 summarizes the estimates of the

recurrent probabilities for individual time intervals and the corresponding accumula-

tive percentages with recurrence obtained by these three methods. The estimates for

the interval-specific (loge) IDR and OR for the test drug over the active control are

shown in Table 4.3 and 4.4, respectively, along with the corresponding inferences via

the linear model with X = I t×t as the design matrix. Table 4.5 presents the common

(loge) IDR and OR for the test drug vs. the active control estimated by the linear

model with X = 1t as the design matrix. The treatment effect is also assessed by

the Mann-Whitney probability and the Mantel-Haenszel criterion, and corresponding

results are displayed in Table 4.6.

Except for the Mantel-Haenszel criterion, the proposed sensitivity analysis with the

specification of θC = θT = 1 produces the exact same results as the actuarial method

on the statistical estimates and inferences. The interval-specific IDRs and ORs for

the test drug vs. the active control are not homogeneous across all three intervals

(p-values for homogeneity < 0.05 for all three different managements of withdrawals).

And more specifically, the test drug has smaller ulcer recurrence rates than the active
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control for the first and second time intervals (i.e., the interval-specific loge IDR and

OR estimates < 0) with p-values < 0.05, but there is an inconclusive suggestion of

more ulcer recurrence within the third interval (i.e., the interval-specific loge IDR and

OR estimates > 0) for which p-values ≈ 0.15. The common loge IDR or OR estimator

with the design matrix of X = 1t is an inverse weighted estimator, and so is weighted

roughly proportional to the number of events in the interval. As shown in Table 4.1,

the three intervals have very different numbers of events, which averaging the interval-

specific IDRs or ORs with equal weight would ignore. Therefore, using the common

(average) estimators is considered more appropriate. With the corresponding results

shown in Table 4.5, the common IDR of 0.52 (95% CI 0.36, 0.76) and the common OR of

0.49 (95% CI 0.32, 0.74) with corresponding p-values of 0.0008 suggest the superiority

of the test treatment. For the actuarial method and the counts redistribution approach

with θC = θT = 1, the Mann-Whitney probability (i.e., the probability that a patient

randomly chosen from active control have the event of interest earlier than the patient

randomly chosen from the test drug group) estimate is 0.58 (95% CI 0.54, 0.63) with p-

value of 0.0003. Consistently, the Mantel-Haenszel tests from both methods also favor

the test treatment, but the proposed sensitivity analysis under θC = θT = 1 produces

somewhat less significant result than the actuarial method (QMH=10.9 with p-value of

0.001 for the proposed method vs. QMH=11.7 with p-value of 0.0006 for the actuarial

method).

Results from the crude rate approach are also presented for comparisons. The

crude interval-specific and cumulative rates for ulcer recurrence are smaller than their

actuarial counterparts (Table 4.2). As noted in Table 4.3 and 4.4, the crude rate

approach produces larger interval-specific IDR and OR estimates than the actuarial

method for all three intervals, which give rise to the common loge IDR and OR that
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are closer to the null and have larger p-values (Table 4.5). Correspondingly, the p-

values from the Wald test with Mann-Whitney probability and the Mantel-Haenszel

test with the crude rate approach are also larger than those obtained from the actuarial

method and the proposed method with the specification of θC = θT = 1 (Table 4.6).

We then consider the sensitivity analyses with separate sensitivity parameters for the

active control and the test drug, i.e., θC and θT . One way to proceed is to specify θC > 1

to address the probability that the post-withdrawal experience is less favorable than

the primary assumption of non-informative independent censoring for control, and then

specify θ = θT/θC > 1 to address the larger departure from the primary assumption

for the test drug. Therefore, there is a value of θT = θC × θ for each specified θC . The

choices of θC and θ can be arbitrary, such as 1, 1.5, 2, and 2.5, where the value of

2.5 for θ might represent a reasonably large difference in the post-withdrawal tendency

of having ulcer recurrence, given the common OR estimate of having events for the

active control vs. test drug was about 2.1 (=1/0.486) under θC = θT = 1 (and 0.486 is

the estimated common OR in Table 4.5). The results from such a sensitivity analysis

are summarized in Table 4.7. The treatment effect estimate is closer to the null as

the value of θC and θT gets larger. Given a particular specification for θC and θT ,

the Wald test with Mann-Whitney probability produces the smallest p-values, whereas

the Mantel-Haenszel test produces the largest p-value. For all the scenarios, the p-

values are < 0.05, suggesting that the study conclusion is robust to the assumption of

non-informative independent censoring.
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Alternatively, the sensitivity analysis can proceed with varying θ in a range (L,U)

for a given θC to assess how the treatment effect changes for different post-withdrawal

tendencies of having the event for the test treatment group vs. the control. The values

of (1/U, 1/L) can be a range of odds ratios from previous related studies or the clinical

judgement for comparison of effective medicine with control. For example, if the odds

ratio for an active drug vs. placebo falls in the range of (0.5, 0.8), then one could

consider θT = θC × θ in the range of (1.25, 2) for the extent to which a test treatment

patient with premature discontinuation has higher odds to have the event than such a

patient without discontinuation for the time intervals following withdrawal. Here, we

proceed with varying the value of θ from 1 to 4 by 0.01 increments for θC = 1. In this

regards, the odds ratio of 0.25 = 1/4 (corresponding to θ = θT = 4) represents a large

effect size for a clearly effective treatment vs. control that most test drugs might not

exceed. And it is also useful to note that θC = θT = 0 corresponds to the crude rate

approach and θC = θT = ∞ corresponds to the approach that view the withdrawals

as having the event. The contour plot of the p-values for treatment comparisons is

constructed as a function of the sensitivity parameter θ for each of the four criteria.

As shown in Figure 4.1a, p ≤ 0.05 applies with θ ≤ 3.07 for the Mantel-Haenszel

test, θ ≤ 3.41 for the common OR inference, θ ≤ 3.56 for the common IDR inference,

and θ ≤ 3.93 for the Mann-Whitney probability approach. Therefore, all four criteria

suggest reasonably good robustness of the study conclusion to the assumption of non-

informative independent censoring. Such a sensitivity analysis can be implemented for

a set of θC separately. Figure 4.1b shows such a sensitivity analysis with the Mantel-

Haenszel test as the criterion for treatment effect comparison. With the specification

of θC=1.5 , 2, and 2.5, the sensitivity analyses suggest slightly weaker conclusions than

that with θC = 1, i.e., in order to have p ≤ 0.05, θ ≤ 2.91 with θC = 1.5, θ ≤ 2.90 with

θC = 2, and θ ≤ 2.97 with θC = 2.5 are needed.
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(a) Sensitivity analysis with the specification of θC = 1

(b) Sensitivity analysis with the Mantel-Haenszel criterion

Figure 4.1: Contour plots of sensitivity analysis
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4.4 Summary and discussion

In this article, we developed a sensitivity analysis method for grouped time-to-event

data with possible informative censoring. The method explores the effect of departures

from the non-informative independent assumption in terms of differences in the fail-

ure probability distributions of withdrawals and patients remained on their assigned

treatment. A conditional odds ratio (θ) of failure for the discontinued vs. retained

patients is incorporated as the sensitivity parameter to specify various post-withdrawal

hypotheses for the tendency of having the event of interest. The hypothetical survivor

profiles are estimated by redistributing the withdrawal counts to the failure counts in

the time intervals following their last visits or to the counts censored at the end of

study, as if the missing failure times were imputed for the withdrawals. The treatment

effect and the corresponding covariance estimates have closed analytical forms, there-

fore there is no need to perform the multiple imputation procedures for the missing

outcomes (i.e., probabilistically assign the patients to a failure status in the time inter-

vals following their withdrawals). Under the specification of θC = θT = 1, the proposed

method produces the same estimates as the actuarial method, while being naturally

comparable to the crude rate estimates that have all randomized patients as the de-

nominator. Hence, the interpretation of the sensitive analysis results is straightforward

for the non-statisticians and clinical reviewers.

We also presented methods for comparing treatment effects that are applicable in

the framework of the proposed sensitivity analysis. To extend the Cox model to the

discrete time-to-event data, the interval-specific odds ratios (ORs) are analyzed through

the weighted least squares (WLS) asymptotic regression. And the counterpart WLS

regression on the incidence density ratios (IDRs) is a direct application of the piecewise

exponential model. One advantage of such a piecewise model is that the piecewise

exponential (i.e., constant) hazards approximate reasonably well almost any shape of
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nonparametric baseline hazards. The common loge OR or IDR, produced by the linear

model with single coefficient, has the interpretation of a population average treatment

effect. However, an equal weighted average of the interval-specific loge ORs or IDRs

may be difficult to interpret when the assumption of proportional odds or incidence

densities is not appropriate. In contrast, the non-parametric methods provide valid

inferences regardless of departures from the homogeneity of ORs or IDRs. The Mantel-

Haenszel test for grouped data is equivalent to the logrank test for comparing survival

curves for ungrouped data (Koch et al., 1985), whereas the Mann-Wittney probability

(ξ) is related to the Wilcoxon (rank sum) test. The Wald hypothesis test of H0: ξ=1
2

is more able to detect the early treatment differences than the logrank test, because

it receives relatively more weight than the logrank test for early failures and relatively

less weight for later failures.

A challenging issue in the design of clinical trials is how to account for the effects of

missing outcomes (i.e., withdrawals) on inferences for the treatment comparison. The

power calculation should accommodate the loss of statistical power due to the reduc-

tion of information, and more importantly, the biased estimation of the treatment effect

when MAR assumption is in question. Often, those considerations cannot be addressed

analytically, but through relatively involved simulation studies. With the proposed sen-

sitivity analysis, the implication of departures from the MAR-like assumption to the

statistical power and the sample size can be assessed analytically through various spec-

ifications for the sensitivity parameter and the interval-specific failure and withdrawal

rates. Hence, this could be an additional feature that makes our method desirable to

employ in the regulatory environment.
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Chapter 5

Discussion

The intention-to-treat (ITT) principle was espoused by the Food and Drug Ad-

ministration (FDA) and International Conference on Harmonization (ICH) for unbiased

assessments of the efficacy/effectiveness for new therapies. The essence of the ITT prin-

ciple is to evaluate all patients randomized into a study as scheduled and include all

patients in the final analysis as randomized, even if they stop their assigned treatments

prematurely (Lachin, 2000). However, missing outcomes due to premature withdrawals

often create difficulties for implementing this principle. Even when the MAR assump-

tion is appropriate, the usual MAR approaches provide effectively per-protocol (PP)

analyses for the ITT population, because they attempt to estimate what would have

happened for outcomes if all patients had been staying on their assigned treatment.

In contrast, the ITT principle requires the missing data analysis strategies to focus on

what would have happened if the patients had been followed in the absence of treat-

ment. In harmony with this principle, we developed a series of sensitivity analyses for

time-to-event data (continuous and grouped). The proposed methods assess the impli-

cations of departures from the non-informative independent censoring assumption that

is often specified in the primary analysis. A major feature of our approaches is that they

anchor on the primary missing data assumption and directly address the sensitivity of



results to the primary missing data assumption by specifying different post-withdrawal

experiences of having the event of interest. The sensitivity parameters for calibrating

these specifications are standard criteria for treatment comparisons. Consequently, the

results from such sensitivity analyses are more informative for clinical judgement with

regard to the robustness of the study conclusion from the primary analysis.

Furthermore, our approaches for sensitivity analyses can be extended to multiple

failure time data. For a clinical trial example in cardiovascular diseases, the primary

endpoint could be time to MI or all-cause death, whichever occurs first, and patients

with a MI could have continued follow-up to the end of the study for mortality. In

addition to the composite primary endpoint, investigators also wish to perform separate

analysis on time-to-death and time-to-MI. In this situation, there are essentially 3 types

of censoring: (1) patients withdrew without any event (censored for both outcomes);

or (2) patients had a MI, then withdrew without being able to observe the event of

death (censored for the time-to-death); or (3) patients died without MI (censored only

for the time-to-MI). For the patients with type (1) censoring, both time-to-MI and

time-to-death need to be imputed. For the patients with type (2) censoring, only the

time-to-death needs to be imputed. And for patients with type (3) censoring, one could

consider the death and the MI occurred at the same time or could impute the time-to-

MI as if that patient might have lived to the end of the study. This principle is also

applicable for the grouped multivariate survival data.
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Appendix 1:
Cumulative discontinuation proportions by reasons

(a) Placebo group

(b) Test treatment group

Figure A.1: Cumulative discontinuation proportions by documented reasons
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Appendix 2:
KMMI and PHMI methods with bootstrap resampling

Table A.1: KMMI and PHMI methods with or without bootstrap resampling at θ = 1

Analysis method Semi-parametric analysis
(Cox PH model)

Coefficient (Std Err) P value Log-rank1 Wilcoxona

1. L = 50
KMMI without bootstrap -0.322 (0.160) 0.0436 0.0451 0.0109
KMMI with bootstrap -0.325 (0.180) 0.0727 0.0770 0.0167
PHMI without bootstrap -0.388 (0.158) 0.0143 0.0145 0.0053
PHMI with bootstrap -0.389 (0.165) 0.0191 0.0204 0.0068
2. L = 100
KMMI without bootstrap -0.328 (0.159) 0.0394 0.0410 0.0101
KMMI with bootstrap -0.347 (0.178) 0.0519 0.0550 0.0127
PHMI without bootstrap -0.394 (0.158) 0.0124 0.0126 0.0048
PHMI with bootstrap -0.399 (0.164) 0.0150 0.0157 0.0056
3. L = 500
KMMI without bootstrap -0.332 (0.156) 0.0332 0.0345 0.0091
KMMI with bootstrap -0.336 (0.170) 0.0480 0.0507 0.0114
PHMI without bootstrap -0.398 (0.156) 0.0106 0.0108 0.0044
PHMI with bootstrap -0.396 (0.160) 0.0134 0.0140 0.0053
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Appendix 3:
Alternative KMMI strategy for sensitivity analysis

An alternative way to perform sensitivity analysis is to use the information in

the placebo group to impute times to event for both treatment groups using the KMMI

approach. To generate one set of the L imputed data, one could first impute failure

time for discontinued patients in the placebo group under certain specification of θP ;

the KM estimates obtained from those complete data in the placebo group are then

used to perform imputation through (1) - (7) for the discontinued patients in the test

treatment group. In this MI procedure, the sensitivity parameter θ only needs to be

specified for the placebo group. Besides choosing θp = 1 to approximate a MAR-like

assumption, θp > 1 can be used to address the possibility that the post-discontinuation

experience is less favorable than the patients remaining on their assigned treatment.

The results of sensitivity analysis at L = 50 under various specifications of θP are

shown in Table A.2. For this particular example, The estimated treatment effect when

θp = 1 is slightly weaker than those from applying the KMMI method within individual

treatment groups with θ = 1 for both (Table 3.2A). As the value of θp increases, results

in favor of the test treatment become stronger, because the placebo group has more

prematurely discontinued patients than the test treatment group, and thereby θp > 1

penalizes the placebo group more.

Table A.2: Alternative KMMI strategy for sensitivity analysis

θP
Semi-parametric analysis (Cox PH model)

Coefficient Std Err HR (95% CI) P value Log-rank2 Wilcoxona

1 -0.315 0.155 0.730 (0.538, 0.990) 0.0430 0.0440 0.0131
1.1 -0.332 0.154 0.717 (0.530, 0.971) 0.0313 0.0322 0.0097
1.2 -0.346 0.153 0.708 (0.524, 0.956) 0.0241 0.0248 0.0075
1.3 -0.361 0.150 0.697 (0.519, 0.935) 0.0160 0.0164 0.0053
1.4 -0.368 0.150 0.692 (0.516, 0.928) 0.0140 0.0143 0.0043
1.5 -0.384 0.151 0.681 (0.507, 0.916) 0.0110 0.0113 0.0033
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Appendix 4:
Conditional probability of failing (h)

We construct a (2t+1)×1 vector a corresponding to the categorical data structure

in section 4.2.1,

a =
1

n
(f ′,w′)′ =

1

n
(f1, f2, . . . , ft, w1, w2, . . . , wt, wt+1)′,

with n =
∑t

k=1 fk+
∑t+1

k=1wk. And we assume that the vector na follows a multinomial

distribution with

E(na) = nπ and Var(na) = n[Dπ − ππ′],

where π = (π11, . . . , π1t, π21, . . . , π2t, π2(t+1))
′ and Dπ is a (2t + 1) × (2t + 1) diagonal

matrix with the elements of the vector π on the main diagonal. As a result, Var(a)

can be consistently estimated via

Va =
1

n
[Da − aa′] (A.1)

where Da is a (2t+ 1)× (2t+ 1) diagonal matrix with the elements of the vector a on

the main diagonal.

We then formulate h = (h1, h2, . . . , ht)
′, where hk = fk/nk and nk =

∑t
j=k fj +∑t+1

j=k+1wj for k = 1, 2, . . . , t, in the form of compound functions of the vector a as

h = exp[A2 loge(A1a)], (A.2)

where loge( ) denotes the element-wise vector operation that transforms a vector to the

corresponding vector of natural logarithms, and exp[ ] denotes the element-wise vector

operation that transforms a vector to the corresponding vector of exponentiated values,

and matrices A1 and A2, shown in (A.3) and (A.4) respectively, are matrices for linear
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transformations.

A1 =

 I t 0t,(t+1)

T t 0t T t

 (A.3)

A2 = [ I t −I t ] (A.4)

Here, I t denotes an identity matrix, 0 represents a vector or a matrix with all

elements equal to 0, and T t is a t×t upper triangular matrix with all non-zero elements

equal to 1.

T t =



1 1 1 · · · 1 1

0 1 1 · · · 1 1

...
...

...
...

...
...

0 0 0 · · · 1 1

0 0 0 · · · 0 1


(A.5)

The top half of A1 generates the numerators of the hk (i.e. fk) and the bottom half

of A1 generates the denominators of the hk (i.e. nk), then A2 loge( ) generates the

loge(hk), and finally exp[ ] generates the hk.

We apply the first order linear Taylor series approximation to obtain the corre-

sponding covariance matrix estimate. The first partial derivatives matrix H1 of h with

respect to a can be written as the product of the first derivative matrices of sequential

operations in accordance with the chain rule,

H1 =
∂h

∂a
=

∂h

∂a3

∂a3

∂a2

∂a2

∂a1

∂a1

∂a
= DhA2D1

−1A1 (A.6)
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with

a1 = A1a, a2 = loge(a1), a3 = A2a2, and h = exp(a3)

∂a1

∂a
= A1,

∂a2

∂a1

= D1
−1,

∂a3

∂a2

= A2, and
∂h

∂a3

= Dh,

where D1
−1 is a diagonal matrix with the reciprocals of the elements of the (2t+ 1)×1

vector a1 on the main diagonal and Dh is a diagonal matrix with the elements of h

on the main diagonal. It then follows from the method discussed in Koch et al. (1972)

and Stokes et al. (2012) that

Vh = H1VaH
′
1 = DhA2D1

−1A1VaA1
′D1

−1A2
′Dh (A.7)

is a consistent estimator for the covariance matrix of h. With standard vector and

matrix operations, one can show that (A.7) is a diagonal matrix with hk(1−hk)/nk on

the kth element. The following paragraph offers the detailed derivation.

Define vector n = (n1, n2, . . . , nt)
′ containing the number of patients at risk for each

of the t intervals. It is easily noticed that

a1 = A1a =
1

n
(f ′,n′)′ = (b′,m′)′ with Va1 = A1VaA

′
1 (A.8)
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By calculating the following variance and covariance estimates

Var(bk) =̂ bk(1− bk)/n (A.9)

Var(mk) =̂ mk(1−mk)/n

Cov(bk,m
′
k) =̂ bk(1−m′k)/n for k′ 6 k

=̂ −bkm′k/n for k′ > k

Cov(mk,mk′) =̂ mk′(1−mk)/n for k′ > k

Cov(bk, bk′) =̂ −bkbk′/n for k′ > k ,

we can identify the covariance structure of Va1 being

Va1 =
1

n

 [Db − bb′] [DbTt
′ − bm′]

[TtDb −mb′] [TtDm +DmTt
′ −Dm −mm′]

 (A.10)

where Tt was shown in (A.5), Db and Dm are diagonal matrices with the elements of

b and m on the main diagonal, respectively. Next, we determine that the covariance

structure of Va2 is

Va2 = D1
−1Va1D1

−1 (A.11)

=

 Db
−1 0

0 Dm
−1

Va1

 Db
−1 0

0 Dm
−1


=

1

n

 Db
−1 Tt

′Dm
−1

Dm
−1Tt [Dm

−1Tt + Tt
′Dm

−1 −Dm
−1]

− 12t1
′
2t ,

where 0 represents a (t × t) matrix with all elements equal to 0, and 12t represents a

(2t× 1) vector with all elements equal to 1. After some matrix algebra, it then follows
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that

Va3 = A2Va2A2
′ =

1

n
[Dd

−1 −Dm
−1] . (A.12)

Since Dh = DdDm
−1 = Dm

−1Dd, Vh can be expressed as

Vh = DhVa3Dh =
1

n
Dm

−1Dd[Dd
−1 −Dm

−1]Dm
−1Dd (A.13)

=
1

n
Dm

−1[Dh −DhDh] = Dn
−1[Dh −DhDh].

Thus, we show that

Vh = Diag{hk(1− hk)
nk

}. (A.14)
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Appendix 5:
Variance/covariance estimate for p

The life table estimates for the failure probability distribution p = (p1, p2, . . . , pt)
′

can be expressed as the compound function of vector h shown in A.15.

p = exp[B2 loge(B1h+C1)] (A.15)

The B1, B2, and C1 are defined in A.16, A.17, and A.18, respectively, where L1 is a

t× t lower triangular matrix with all non-zero elements equal to 1.

B1 =

 I t

−I t

 (A.16)

B2 =

[
I t (T ′t − I t)

]
(A.17)

C1 =

 0t

1t

 (A.18)

With the chain rule for matrix differentiation of compound vector functions, a con-

sistent covariance estimator Vp can be obtained as shown in A.19, where D2
−1 is a

diagonal matrix with the reciprocals of the elements of the 2t× 1 vector B1h+C1 =

[h′, (1t − h′)]′ on the main diagonal and Dp is a diagonal matrix with the elements of

the vector p on the main diagonal.
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Vp = DpB2D2
−1B1VhB1

′D2
−1B2

′Dp (A.19)
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Appendix 6:
Variance/covariance estimate for hθ

Based on the relationship established in (4.13), hθ = (h1θ, h2θ, . . . , htθ)
′ can be

generated via the compound exponential and log-linear transformation of the vector h

hθ = exp[A2 loge(A3h+C2)], (A.20)

with A2 = [I t − I t] as in (A.4), and A3 and C2 being defined by (A.21) and (A.22),

respectively,

A3 =

 θ

(θ − 1)

⊗ I t (A.21)

C2 =

 0

1

⊗ 1t (A.22)

where ⊗ is the right Kronecker product matrix operation such that the matrix on

the right multiplies each element of the matrix on the left. From (A.20), one can easily

note that the vector hθ is formulated in terms of a sequential series of matrix operations

on h that is analogous to those for h from a in (A.2). Thus, by the manner described

in (A.6), the covariance matrix V hθ for hθ may be estimated via

V hθ = H2VhH
′
2 with H2 = D4A2D

−1
3 A3 (A.23)

whereD3
−1 is a diagonal matrix with the reciprocals of the elements of the 2t×1 vector

A3h + C2 = [θh′, (θ − 1)h′ + 1t]
′ on the main diagonal and D4 is a diagonal matrix
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with the elements of the vector hθ on the main diagonal. Moreover, substituting (A.2)

into (A.20), the vector hθ can be expressed in terms of the observed categorical data

counts contained in a. As a result, V hθ is derived directly from Va as

V hθ = H3VaH
′
3 with H3 = H2H1. (A.24)

Alternatively, for any particular time interval k, one could view hkθ as a univariate

function of hk . Applying the Taylor series approximation on the function (4.13), we

easily show that

Var(hkθ) =
θ2hk(1− hk)

[(θ − 1)hk + 1]4nk
=
h2
kθ(1− hkθ)2

nkhk(1− hk)
, (A.25)

using the following equalities

(θ − 1)hk + 1 =
1− hk
1− hkθ

=
θhk
hkθ

. (A.26)

Finally, we note that the covariance matrix estimate for hθ is a diagonal matrix,

Vhθ
= Diag{h

2
kθ(1− hkθ)2

nkhk(1− hk)
}, (A.27)

since the covariance matrix estimate for h is also diagonal.
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Appendix 7:
Variance/covariance estimates for q and qθ

The formulation of qk and qkθ, for k = 1, 2, . . . , t, t+1, involves the same functional

structure, except that the hk in (4.10) for qk was replaced with the hkθ in (4.14) for qkθ.

Hence, we construct two concatenated vectors with similar structures as

g =


a

h

(1t − h)

 and gθ =


a

hθ

(1t − hθ)

 , (A.28)

so that the vectors q = (q1, q2, . . . , qt, q(t+1))
′ and qθ = (q1θ, q2θ, . . . , qtθ, q(t+1)θ)

′ can

be expressed in the compound functions of g and gθ, respectively, via an identical

series of matrix operations. As a consequence, the estimated covariance matrices of

q and qθ may be computed in the same manner, by applying the linear Taylor series

approximation. Here, we only describe the estimation for the covariance matrix of q in

detail, and then the covariance matrix of qθ can be consistently estimated in a similar

fashion.

On the basis of (A.6), the first partial derivative matrix of the concatenated vector

g with respect to a can be written as

H4 =
∂g

∂a
=


I(2t+1)

H1

− H1

 (A.29)

It then follows that the consistent estimate of the covariance matrix for g takes the
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form of (A.30).

Vg = H4VaH
′
4 (A.30)

=


Va VaH1

′ −VaH1
′

H1Va H1VaH1
′ −H1VaH1

′

−H1Va −H1VaH1
′ H1VaH1

′


By suitable choices of matrices A4 and A5 according to the specific value of t (i.e., the

number of follow-up time intervals), we can express the vector q∗ = (q1, q2, . . . , qt)
′ as

q∗ = A5 exp(A4 loge g). (A.31)

Thus, the linear Taylor series based covariance estimate (Vq∗) is

V q∗ = H5VgH
′
5 with H5 = A5D6A4D

−1
5 (A.32)

where D5
−1 is a diagonal matrix with the reciprocals of the elements of g on the

main diagonal and D6 is a diagonal matrix with the elements of the 2t × 1 vector

[exp(A4 loge g)] on the main diagonal.

With t∗ = t(t− 1)/2 =
∑t−1

j=1 j, the matrix A4 in (A.33), generates the appropriate

logarithms of product terms in (4.10) using the elements of g. More specifically, the

structure [ I 0 0 0 0 ] generates 1
n
f1, 1

n
f2, . . ., 1

n
ft, the structure [ 0 I 0 I 0 ] generates

1
n
h1w1, 1

n
h2w2, . . ., 1

n
htwt, and the structure [ 0 A4.1 0 A4.2 A4.3 ] generates the rest

of the product terms involved in formulating q∗ . Then, the row of the matrix A5,

defined in (A.34), sums the appropriate product terms into the corresponding elements
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of the vector q∗.

A4 =


I t 0t,t 0t 0t,t 0t,t

0t,t I t 0t I t 0t,t

0t∗,t A4.1 0t∗ A4.2 A4.3


(2t+t∗)×(4t+1)

(A.33)

A5 =

[
I t I t A′4.2

]
t×(2t+t∗)

(A.34)

The forms of A4.1, A4.2, and A4.3 are described in (A.35), (A.36), and (A.37),

respectively, where T ′ is a lower triangular matrix with all non-zero elements equal to

1. The first (t− 1) rows of the structure [ 0 A4.1 0 A4.2 A4.3] generate the logarithms

of the (t − 1) product terms involving w1, then the next (t − 2) rows generate the

logarithms of the (t− 2) product terms involving w2, and so on, the last row generates

the product term involving wt−1. As an example, when t = 5, the structures of matrices

A4.1, A4.2, and A4.3 are shown in (A.38).

A4.1 =



1(t−1) 0(t−1) 0(t−1) · · · 0(t−1) 0(t−1) 0(t−1)

0(t−2) 1(t−2) 0(t−2) · · · 0(t−2) 0(t−2) 0(t−2)

0(t−3) 0(t−3) 1(t−3) · · · 0(t−3) 0(t−3) 0(t−3)

...
...

...
. . .

...
...

...

02 02 02 · · · 12 02 02

0 0 0 · · · 0 1 0


t∗×t

(A.35)
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A4.2 =



0(t−1) I(t−1)

0(t−2),2 I(t−2)

0(t−3),3 I(t−3)

...
...

02,(t−2) I2

0′(t−1) 1


t∗×t

(A.36)

A4.3 =



T ′(t−1) 0(t−1)

[0(t−2) T ′(t−2)] 0(t−2)

[0(t−3),2 T ′(t−3)] 0(t−3)

...
...

[02,(t−3) T ′2] 02

[0′(t−2) 1] 0


t∗×t

(A.37)

A4.1 =



14 04 04 04 04

03 13 03 03 03

02 02 12 02 02

0 0 0 1 0


10×5

(A.38)

A4.2 =



04 I4

03,2 I3

02,3 I2

0′4 1


10×5
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A4.3 =



T ′4 04

[03 T ′3] 03

[02,2 T ′2] 02

[0′3 1] 0


10×5

Finally, the vector q = (q1, q2, . . . , qt, q(t+1))
′ can be written as

q = A6q
∗ +C3 (A.39)

with

A6 =

 I t

−1′t

 and C3 =

 0t

1

 .
The corresponding variance-covariance matrix estimate is then given by

Vq = A6Vq∗A6
′ (A.40)

To estimate the covariance matrix for vector qθ = (q1θ, q2θ, . . . , qtθ, q(t+1)θ)
′, one

could replace g and Vg with gθ and V gθ in the derivations from (A.29) to (A.40). V gθ

takes the form of

V gθ =


Va VaH3

′ −VaH3
′

H3Va H3VaH3
′ −H3VaH3

′

−H3Va −H3VaH3
′ H3VaH3

′,

 , (A.41)

since the first partial derivative matrix of hθ with respect to a is H3.
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Appendix 8:
Covariance estimates for loge IDR (η̂) and loge OR (ψ̂)

Let i = 1, 2 index the test and control treatments. And let qiθi = (qi1θi , qi2θi . . . , qitθi , qi(t+1)θi)
′

contains the distribution estimated via imputation under θi. One can construct a con-

catenated vector

F =

 q1θ1

q2θ2

 (A.42)

with the consistent covariance matrix estimator

V F =

 V q1θ1
0

0 V q2θ2

 (A.43)

Applying the principle of linear and logarithmic transformation described in ??, the

logarithms of the interval specific incidence density ratios (IDRs) η̂=(η̂1, η̂2, . . ., η̂t)’,

can be formulated for the comparison between treatments as the compound function

of the vector F via

η̂ = A8 loge(A7F ), (A.44)

where

A7 =

 1 0

0 1

⊗
 I t 0t

T t 1t


with the upper triangular matrix T t shown in ( A.5), and

A8 = [ I t −I t −I t I t ].
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Similarly, the interval specific loge ORs, ψ̂=(ψ̂1, ψ̂2, . . ., ψ̂t)’ can be expressed as

ψ̂ = A8 loge(A9F ), (A.45)

where

A9 =

 1 0

0 1

⊗
 I t 0t

(T t − I t) 1t


It then follows from linear Taylor series methods that the corresponding covariance

matrix estimators are

V η̂ = A8D
−1
7 A7V FA

′
7D
−1
7 A′8 (A.46)

and

V ψ̂ = A8D
−1
8 A9V FA

′
9D
−1
8 A′8, (A.47)

respectively, where D−1
7 is a diagonal matrix with the reciprocals of the elements of

the 4t × 1 vector A7F on the main diagonal and D−1
8 is a diagonal matrix with the

reciprocals of the elements of the 4t× 1 vector A9F on the main diagonal.
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Appendix 9:
Variance estimates for Mann-Whitney probability ξ̂

With the concatenated vector F and the corresponding covariance matrix esti-

mator V F shown in (A.42 and A.43, respectively), the ξ̂ shown in (4.23) can be written

in the general log-linear vector form

ξ̂ = 1′(t+1) exp[A12 loge(A11F )], (A.48)

where

A11 =

 I(t+1) 0(t+1)

0(t+1),(t+1) T ′(t+1) − 0.5I(t+1)


with T ′t+1 being a lower triangular matrix with all non-zero elements equal to 1,

and

A12 = [ I(t+1) I(t+1) ].

It then follows that the estimated variance for ξ̂ can be computed as

Vξ̂ = 1′(t+1)D10A12D
−1
9 A11V FA

′
11D

−1
9 A′12D101(t+1), (A.49)

where D−1
9 is a diagonal matrix with the reciprocals of the elements of the 2(t+ 1)× 1

vector A11F on the main diagonal, and D10 is a diagonal matrix with the elements of

the (t+ 1)× 1 vector exp[A12 loge(A11F )] on the main diagonal.
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Appendix 10:
Calculation of QMH

Define the vector F̃ as

F̃ =

 f 1θ1

f 2θ2

 =

 n1q1θ1

n2q2θ2

 (A.50)

with the corresponding covariance matrix estimator

V F̃ =

 n2
1V q1θ1

0

0 n2
2V q2θ2

 . (A.51)

The Mantel-Haenszel criterion in (4.24) is calculated as

MHE = A16 exp[A15 loge(A14F )], (A.52)

where

A14 =



I t 0t 0t,(t+1)

T t 1t 0t,(t+1)

I t 0t I t 0t

T t 1t T t 1t


,

A15 =

 I t 0t,t 0t,t 0t,t

0t,t I t I t −I t

 ,
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and

A16 = [ 1′t −1′t ].

With the linear Taylor series method, the variance of MHE in (A.52), i.e., the denom-

inator of Mantel-Haenszel statistics QMH , is then given by

Var(MHE) = A16D12A15D
−1
11 A14V FA

′
14D

−1
11 A

′
15D12A

′
16, (A.53)

where D−1
11 is a diagonal matrix with the reciprocals of the elements of the 4t×1 vector

A14F̃ on the main diagonal, and D12 is a diagonal matrix with the elements of the

2t× 1 vector exp[A15 loge(A14F̃ )] on the main diagonal.
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