
 

 

 

DYNAMIC HYDROLOGIC ECONOMIC MODELING OF TRADEOFFS  

IN HYDROELECTRIC SYSTEMS 

 

 

Jordan D. Kern 

 

 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of 

Environmental Sciences and Engineering in the Gillings School of Global Public Health. 

 

 

Chapel Hill 

2014 

 

 

Approved by: 

Gregory Characklis 

Martin Doyle 

             Jackie MacDonald 

Dalia Patino-Echeverri 

Marc Serre 

 

  

 



  

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

Jordan D. Kern 

ALL RIGHTS RESERVED 

 

 

 



  

iii 
 

 

 

 

ABSTRACT 

Jordan D. Kern: Dynamic Hydrologic Economic Modeling of Tradeoffs in Hydroelectric Systems 

(Under the direction of Gregory Characklis) 

 

Hydropower producers face a future beset by unprecedented changes in the electric power industry, 

including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas 

due to horizontal hydraulic fracturing (or “fracking”). There is also increased concern surrounding the 

potential for climate change to impact the magnitude and frequency of droughts. These developments 

may significantly alter the financial landscape for hydropower producers and have important 

ramifications for the environmental impacts of dams.  

Incorporating wind energy into electric power systems has the potential to affect price dynamics in 

electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to 

schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power 

system model for assessing the impact of large scale wind power integration of hydropower resources. 

Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind 

energy to displace fossil fuel-based generation may inadvertently yield further impacts to river 

ecosystems by disrupting downstream flow patterns. 

Increased concern about the potential for climate change to alter the frequency and magnitude of 

droughts has led to growing interest in “index insurance” that compensates hydropower producers when 

values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon 

threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts 

to also account for changes in natural gas prices in order to be cost-effective. 
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Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to 

fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-

daily variability in river flows by limiting the flexibility of dam operators in scheduling reservoir releases 

concurrent with peak electricity demand.   
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INTRODUCTION 

 

On an annual basis hydroelectric dams account for a significant fraction (about 7%) of total U.S. 

electricity generation and roughly two-thirds of the nation’s renewable electricity generation. Although 

these are important contributions, it is the unmatched operational flexibility and extremely low variable 

costs of hydroelectric dams that distinguish them as prized assets in electric power systems. Dams can 

increase electricity output from zero to maximum plant capacity—or decrease it by the same amount—in 

a matter of minutes. They are also highly efficient (> 90%) at converting potential energy (hydraulic 

head) to electrical energy, and they entail no fuel costs.  

These operating characteristics give hydroelectric dams a tremendous competitive advantage over 

thermal generation sources (i.e., coal, nuclear, natural gas and oil)—simply put, dams are a cleaner, 

cheaper and faster way to produce electricity. For more than 75 years, hydroelectric dams have been used 

by utilities as giant batteries: to store potential energy (reservoir inflows) when electricity demand is low, 

and produce electricity at maximum rates during high demand periods. This practice decreases system-

wide reliance on fossil fuel-based power plants (thereby reducing emissions of CO2 and other pollutants 

into the atmosphere) and lowers electricity prices. Hydroelectric dams are also used to provide emergency 

back-up power during unexpected de-ratings and shut downs at thermal power plants. Thus, they also 

play a critical role in maintaining system reliability.  

Despite the critical role that hydroelectric dams play in electric power systems, they are known to 

have an array of negative environmental consequences for riparian ecosystems. In particular, dams block 

the transport of sediment and nutrients downstream, degrade downstream water quality, and radically 

alter natural river flow patterns downstream. Hydroelectric dams are also highly susceptible to sustained 

periods of low reservoir inflows, i.e., droughts. Reduced water availability limits the ability of 
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hydroelectric dams to help meet peak electricity demand in power systems and can cause harmful 

financial consequences for hydropower producers.  

Over the last several decades, research in engineering, hydrology, ecology and economics has 

contributed to an improved understanding of the tradeoffs that exist between the benefits of hydroelectric 

dams and their environmental impacts, and has begun to explore the vulnerability of dams (and larger 

electric power systems) to drought. Through the Federal dam relicensing process—and on occasion, the 

court system—this research has made headway in establishing management practices at dams that 

integrate consideration of financial goals, water availability and the protection of river ecosystems.   

Nonetheless, hydropower producers face a future beset by unprecedented changes in the electric 

power industry, including the rapid growth of installed wind power capacity and a vastly increased supply 

of natural gas due to horizontal hydraulic fracturing (or “fracking”). There is also increased concern 

surrounding the potential for climate change to impact the magnitude and frequency of droughts. These 

developments may significantly alter the financial landscape for hydropower producers and have 

important ramifications for the environmental impacts of dams.  

Hydropower is also linked to other forms of renewable energy (e.g., solar, wind), largely by virtue 

of its ability to complement these highly variable sources. Although the U.S. currently derives only 4% of 

its total electricity needs from wind power, annual wind energy production has increased 2200% since the 

year 2000, and in 2012 construction of wind turbines made up 43% of all new generating capacity. 

Incorporating wind energy into electric power systems reduces the amount of electricity needed from 

other generation resources, but it also requires other power plants to more frequently change power output 

to compensate for wind’s intermittency. As such, wind power development has the potential to affect 

price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam 

operators rely to schedule reservoir releases. Previous efforts to evaluate the potential for wind power 

development to impact decision making at hydroelectric dams have, however, relied mostly on pair-wise 

analysis of hypothetical wind-hydro projects. This approach omits consideration of the roles that both 

dams and wind energy play in the operation of larger electric power systems with diverse generation 
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portfolios. Chapter 1 of this doctoral dissertation presents a system-based approach for assessing the 

impact of large scale wind power integration of hydropower resources using an integrated reservoir-

power system model. Chapter 2 explores how efforts to reduce the carbon footprint of electric power 

systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further 

impacts to river ecosystems by disrupting downstream flow patterns. Due to the operational flexibility of 

hydropower, dams have been suggested as an ideal resource for compensating for both the variability and 

unpredictability of wind energy. However, coordinated use of wind and hydropower may exacerbate 

dams’ current impacts on downstream environmental flows, i.e., the magnitude and timing of water flows 

needed to sustain river ecosystems.  

Increased awareness of the vulnerability of hydroelectric dams to drought (along with concern 

about the potential for climate change to alter the frequency and magnitude of these events) has led to 

growing interest in risk management strategies that can reduce hydropower producers’ exposure to 

periods of low reservoir inflows. In recent years, efforts have focused on a risk transfer tool known as 

“index insurance”, a type of third party contract designed to compensate hydropower producers during 

droughts. Index insurance is designed to pay-out when values of an environmental variable (or index), 

such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). These types of 

agreements have the potential to dramatically reduce the frequency of very low revenue years for 

hydropower producers. However, they may also be susceptible to fluctuations in peak electricity prices 

(i.e., changes in the value of hydropower)—in particular, those caused by price volatility in natural gas 

markets. Chapter 3 evaluates the need to account for changes in natural gas prices in the design of index-

based financial hedging strategies that aim to protect hydropower producers against drought-related 

damages.   

Previous efforts to reduce the impacts of hydroelectric dams on downstream river ecosystems have 

included the use of ramp rate restrictions, which help restore sub-daily variability in river flows by 

limiting the flexibility of dam operators in scheduling reservoir releases concurrent with peak electricity 

demand. These restrictions impose significant financial penalties on dam owners that are a function of: 1) 
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the “spread” (difference) between peak and off-peak electricity prices; and 2) total generation at dams 

(i.e., the availability of water for hydropower production). Variability in these two factors may cause 

significant seasonal and year-to-year fluctuations in the cost of ramp rate restrictions at dams. This 

variability may be particularly problematic for downstream stakeholders interested in “purchasing” 

environmental flow benefits (i.e., compensating a hydropower producer in exchange for the 

implementation of ramp rate restrictions). More recently, however, advances in gas extraction technology 

(i.e., horizontal hydraulic fracturing) have led to low natural gas prices. As a consequence, it may be less 

costly than in the past to implement ramp rate restrictions at dams. Chapter 4 of this dissertation analyzes 

the impact of recent low natural gas prices on the cost of implementing ramp rate restrictions at dams, and 

proposes a method for providing financial certainty to purchasers of environmental flow benefits by 

hedging against year-to-year changes in these costs. 
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CHAPTER 1: AN INTEGRATED RESERVOIR-POWER SYSTEM MODEL FOR 

EVALUATING THE IMPACTS OF WIND POWER INTEGRATION ON HYDROPOWER 

RESOURCES  

 

1. INTRODUCTION 

 

 The extent to which large scale integration of wind energy in electric power systems will impact 

market prices, system costs and reliability may depend greatly on the availability of sources that can 

quickly change (or ‘ramp’) electricity output [1,2,3]. Due to their capacity for energy storage, low 

marginal costs, and fast ramp rates, hydroelectric dams are often regarded as an ideal resource for 

mitigating problematic issues related to wind’s intermittency and unpredictability [4]. In recent years, 

researchers have investigated a wide range of topics concerning the coordinated use of wind and 

hydropower. However, few studies to date have made use of comprehensive reservoir and power system 

models in assessing the costs and benefits of wind-hydro projects, and the development of such models 

remains a limiting factor in addressing a number of unanswered questions in this area. 

Previous studies of wind-hydro projects can be separated conceptually into two categories of 

analysis: ‘pairwise’ and ‘system-based’ [4]. Pairwise analyses evaluate the costs and benefits of wind-

hydro projects operated in isolation (i.e., somewhat disconnected from other elements of a larger electric 

power system). Simpler examples include investigations of the capacity value [5] and firm energy costs 

[6,7] of wind-hydro projects. More sophisticated pairwise studies have used historical market prices to 

represent wind-hydro projects’ connection to larger electric power systems. Examples include previous 

research on: the value of energy storage in wind-hydro systems [8,9]; the financial and environmental 

costs of dams’ providing a ‘wind firming’ service [10]; project optimization [11]; the use of dams to 



  

6 
 

increase wind market penetration [12]; and the use of multipurpose dams to integrate wind energy [13]. 

Pairwise wind-hydro studies, particularly those that include some consideration of a project’s system 

context, can offer valuable insights. However, they are generally less capable of capturing the more 

complex, endogenous economic and operational consequences of large scale wind integration for 

generators and consumers [4]. 

More comprehensive ‘system-based’ models simulate the effect of wind power integration on the 

workings of entire electric power systems made up of many different sizes and types of generators. As 

such, they offer the significant advantage of being able to simulate changes in market prices and system 

costs that may occur as a result of wind power integration, and then evaluate how these changes could 

impact the use of hydroelectric dams. However, most previous system-based wind-hydro studies have 

been conducted by electric power utilities, and detailed modeling information (and even results) from 

these studies is generally considered proprietary [4]. Examples of system-based studies from academic 

literature include investigations of the impacts of wind-hydro projects on: the value of wind energy [14]; 

and the cost of reducing CO2 emissions [15].  

Few wind-hydro studies to date have taken a system-based approach. As a consequence, significant 

gaps in knowledge remain as to how wind power integration may impact hydropower resources. For 

example: in all but a few US states, hydropower meets less than 10% of total annual electricity demand; 

but most (if not all) system-based wind-hydro studies have focused on ‘hydro dominant’ systems, in 

which hydropower makes up a much larger percentage of total system generation. The effects of wind 

power integration on dam operations may be much different in a system with relatively little hydropower 

capacity. There has likewise been little consideration in previous studies given to the role of market type 

(i.e., regulated versus competitive) in framing the incentive structure for hydroelectric dams to help 

integrate intermittent wind energy. In addition, no system-based study has addressed the potential for 

wind energy to impact environmental flows downstream of hydroelectric dams. Investigation of these 

topics requires models that can simulate the effects of wind power integration on hydroelectric dams 
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under a variety of structural, economic, and hydrological conditions, while also maintaining the 

operational complexity of interconnected reservoir and electric power systems.  

At present, there are few systems-based wind-hydro studies available in the scientific literature. 

This work represents an attempt to begin filling this gap through the development of a systems-based 

modeling framework for analysis of wind power integration and its impacts on hydropower resources. 

The model, which relies entirely on publically available information, was developed to assess the effects 

of wind energy on hydroelectric dams in a power system typical of the Southeastern US (i.e., one in 

which hydropower makes up < 10% of total system capacity). However, the model can easily reflect 

different power mixes; it can also be used to simulate reservoir releases at self-scheduled (profit 

maximizing) dams or ones operated in coordination with other generators to minimize total system costs. 

The modeling framework offers flexibility in setting: the level and geographical distribution of installed 

wind power capacity; reservoir management rules, and static or dynamic fuel prices for power plants. In 

addition, the model also includes an hourly ‘natural’ flow component designed expressly for the purpose 

of assessing changes in hourly flow patterns that may occur as a consequence of wind power integration. 

 

2. METHODS 

 

The reservoir-power system model consists of: 1) an electricity market (EM) model; and 2) a 

reservoir system model.  The EM model iteratively solves two linked mixed integer optimization 

programs, a unit commitment and economic dispatch problem, to allow a power system operator to meet 

fluctuating hourly electricity demand.  A single iteration of the EM model and its two sub problems yields 

hourly market prices for a single 24 hour period. 

The reservoir system model consists of: 1) an hourly natural flow model that simulates ‘natural’ 

(pre-dam) flows at dam sites; 2) a daily reservoir operations model that determines available reservoir 

storage for hydropower production; and 3) a hydropower dispatch model that schedules hourly reservoir 
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releases in order to maximize dam profits. Figure 1 shows a schematic of the integrated reservoir 

(components shown in dark grey) and EM (components shown in light grey) model. 

 



  

 
 

 

Figure 1. Conceptual framework of integrated reservoir-power system model. Orange boxes denote computing order; light grey boxes denote 

components of the electricity market (EM) model; and dark grey boxes denote components of the reservoir system model. 

9 
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2.1 Electricity Market Model 

 

The EM model was developed in order to simulate the operation of a large power system based on 

the Dominion Zone of PJM Interconnection (a wholesale electricity market located in the Mid-Atlantic 

region of the U.S). Dominion’s total generation capacity is approximately 23 gigawatts (GW), with a peak 

annual electricity demand of roughly 19 GWh. Using the Environmental Protection Agency’s (EPA) 2010 

eGrid database, each generator in the utility’s footprint was catalogued by generating capacity (MW), age, 

fuel type, prime mover and average heat rate (MMBtu/MWh). Specific operating constraints parameters 

were estimated for each size and type of plant using industry, governmental and academic sources. To 

reduce the computational complexity of the EM model (i.e., maintain reasonable solution times) units 

from each plant type were clustered by fixed and variable costs of electricity and reserves, with each 

cluster of similar generators forming a ‘composite’ plant.  The total number of power plants represented 

in the model was reduced from 68 to a more manageable, yet representative, quantity (24)—with total 

system wide capacity remaining the same.  Each generator in the modeled system belongs to one of eight 

different power plant types: conventional hydropower, pumped storage hydropower, coal, combined cycle 

natural gas (NGCC), combustion turbine natural gas (NGCT), oil, nuclear or biomass. Appendix 1 

contains detailed operating characteristics of each plant in the modeled generation portfolio. 

The EM model has two main components: 1) a unit commitment (UC) problem that  represents 

both ‘day ahead’ electricity and ‘reserves’ markets; and 2) an economic dispatch (ED) problem that 

represents a 'real time' electricity market [16]. 

 

2.1.1 Unit Commitment Problem 

 

The UC problem uses information regarding the costs (variable, fixed, and start) of participating 

power plants to schedule the status (on/off) and generation (MWh) at each plant in the system 24 hours in 

advance. The UC problem is responsible for meeting forecast ‘day ahead’ (DA) electricity demand and 
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satisfying system wide requirements for the provision of spinning and non-spinning ‘reserves’ 

(unscheduled generating capacity that is set aside for the next day as ‘back up’). The objective function of 

the UC problem is to minimize the cost of meeting forecast electricity demand and reserve requirements 

over a 96 hour planning horizon, given a diverse generation portfolio:  

 

             ∑ ∑                    
 
 

  
                   (1) 

   (                )    (                )                   ) 

               )]  

 

                                               

                                   

 

 Decision Variables: 

                                                                    

                                                                      

                                                                              

                                  indicating spinning reserve provision 

           = Non spinning reserve capacity scheduled in hour t at generator j (MW) 

                                                         

 

 Parameters 

                                                               ($/MWh) 

                                                            ($) 

                                                         ($/MWh) 
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                                                         ($) 

                                                             ($/MW) 

                                

  

Solution of the UC problem yields a preliminary hourly schedule of DA electricity generation and 

provision of reserves for each plant in the system over the entire planning horizon (t = 1,2,...96). 

However, only the first 24 hours of the calculated operating schedule is considered ‘locked in’—

scheduled generation and reserves for later hours, i.e., t = 25, 26,... 96, are immediately discarded. This 

strategy ensures that plant operating schedules are conditioned on multi-day forecast information for 

electricity demand, wind availability, and hydropower capacity, but it also makes sure plant operations 

are formally scheduled no more than 24 hours in advance. Market prices for both DA electricity and 

reserves for hours t = 1,2,...24 are then determined by the variable cost of the most expensive plant used 

to meet demand in each market, respectively.  

 

2.1.2 Economic Dispatch Problem 

 

After the UC problem is solved, the model adjusts in real time via the economic dispatch (ED) 

problem. The ED problem represents the operation of a ‘real time’ (RT) electricity market that 

compensates for demand forecast error, forced reductions in power plant output, and/or wind forecast 

errors by scheduling generation from system reserves. The objective function for the ED problem is to 

minimize the cost of meeting RT electricity demand over a 24 hour planning horizon (t = 1,2,...24) using 

generation capacity that was designated one day prior as reserves by the UC problem:  

 

              ∑ ∑                  
 

  
         (2) 

+ ∑ ∑                   
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 where,                                       

                                             

 n = generator in non-spinning reserves portfolio 

 

 Decision Variables: 

                                                                          

                   

                                                                                

                   

                                                                              

                                          

                                                         (non-spinning generator) 

 

 Parameters: 

                                                              ($/MWh) 

                                                               ($/MWh) 

                                                        ($) 

                                

  

Solution of the ED problem yields an hourly schedule of RT electricity generation from each plant 

in the system’s combined spinning and non-spinning reserves portfolio over the planning horizon (t = 

1,2,...24). RT electricity prices are then set by the variable cost of the most expensive generator used to 

meet demand in each hour. After the ED problem is solved, the larger electricity market (EM) model 

shifts 24 hours into the future and begins its two stage process again.  
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Both the UC and ED problems are subject to a number of constraints, which can be separated 

conceptually into two classes: 1) constraints that enforce adherence to plant specific operating 

characteristics (e.g., minimum/maximum generating capacities, maximum ramp rates, minimum up/down 

times, etc.); and 2) constraints that apply to overall system operation (e.g., the system must always meet 

hourly demand for electricity and reserves). It is important to note that the EM model does not include 

consideration of transmission constraints and therefore assumes infinite transmission capacity on all lines. 

Further details regarding the EM model, including plant specific operating parameters for the modeled 

generation portfolio, problem constraints, and modeling assumptions, and full mathematical formulations 

can be found in Appendix 1 section 1. 

  

2.1.3 Wind Development Scenarios 

 

The EM model can represent a wide array of potential wind development pathways using hourly 

wind data from the Eastern Wind Integration and Transmission Study (EWITS) dataset [17]. Wind 

development scenarios are developed for testing by specifying a desired: 1) geographical source region(s) 

(e.g., Mid West, Offshore Atlantic coast, etc.); 2) wind site distribution (i.e., single or multi region); and 

3) average annual wind penetration (wind energy as a fraction of total electricity demand— e.g., 5%, 

15%, or 25%). After these three parameters have been specified, the EWITS database is filtered to 

remove wind sites outside the desired geographical region(s); then the remaining wind sites are sorted by 

capacity factor (CF) and selected one at a time (highest CF value first) until the product of cumulative 

installed wind capacity (MW) and average wind site CF (%) is equivalent to the product of target wind 

market penetration (%) and average annual DA electricity demand (MWh). This wind site selection 

algorithm inherently assumes that in order to maximize return on investment, wind power developers will 

first exhaust sites with higher capacity factors before installing wind turbines in areas where wind is less 

active. This assumption does not, however, account for the cost of transmission infrastructure, which may 
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make the distance between wind sites and demand centers a more important concern than capacity factor 

[18]. 

The wind site selection algorithm yields an assembly of individually modeled wind sites, each of 

which is associated with two unique time series: 1) a vector of hourly  DA wind energy forecasts (MWh); 

and 2) a vector of hourly wind forecast errors, i.e., actual minus forecast wind energy output (MWh). For 

a given wind development scenario, time series data are summed across all individually selected sites, 

yielding a pair of composite wind data vectors—the first describing total  DA forecast wind energy across 

all selected wind sites, and the second describing total wind energy forecast error across the same 

collection of wind sites.  

  

2.1.4 Day Ahead and Real Time Electricity Demand 

 

Forecast wind energy is incorporated into the DA electricity market as ‘demand reduction’ by 

estimating hourly net demand as equal to forecast DA electricity demand (taken from historical databases 

maintained by PJM Interconnection) [19] minus forecast wind energy (taken from the EWITS database) 

(Equation 3). RT electricity demand in each hour is simulated stochastically as the sum of three different 

factors: 1) forced reductions in plant output; 2) demand forecast errors in the DA electricity market; and 

3) wind forecast errors: 

 

                                             (3)     

                             + ∑           
 
              , 0)  (4)       

 

where,                                                             
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       (MWh) 

                                                                           (MW) 

                                                                               

                

                             

                                

 

The max operator in Equation 4 ensures that RT electricity demand is always greater than or equal 

to zero, thereby disregarding cases when forecast errors can lead to negative demand.  Details regarding 

the stochastic model used to simulate RT electricity demand are described in section 1.3 of Appendix 1. 

 

2.1.5 Reserve Requirements 

 

Each wind scenario tested assumes a static, baseline reserve requirement consistent with an N 

minus 1 criterion (i.e., the system operator must always have enough reserves to be able to compensate 

for the loss of its single largest generator). In addition, each scenario includes an additional dynamic 

reserve component set as a fixed percentage of forecast wind energy in each hour. The total hourly system 

reserve requirement for each scenario is then calculated as: 

 

                                      (5) 

 

where,                         

                         

    static N minus 1 reserve requirement (MWh) 

    fixed percentage specified for wind scenario s 
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An approach similar to those described in [20, 21] is used to determine values of   . Values of    

are selected for each scenario such that loss of load probability is equivalent to baseline conditions (i.e., 

system reliability is equivalent to that of a system with 0% wind market penetration). Detailed discussion 

of the reserve requirement calculation process, along with typical values of    found for different wind 

levels, can be found in section 1.4 of Appendix 1.   

 

2.2 Reservoir System Model 

 

The reservoir system model is based on a three dam cascade in the Roanoke River basin, which 

spans both North Carolina and Virginia (Figure 2). The reservoir system model comprises: 1) an hourly 

natural flow model that simulates reservoir inflows into the furthest upstream reservoir (John H. Kerr 

Dam), as well as natural flows at the present day site of the furthest downstream dam in the basin 

(Roanoke Rapids Dam); 2) a daily reservoir operations model that outputs daily volumes of reservoir 

storage available for hydropower production at each dam; and 3) a hydropower dispatch model that 

optimizes hourly reservoir releases. The hydropower dispatch model is only used to schedule releases 

(maximize hydropower profits) at dams that are assumed to be self-scheduled. If dams are assumed to be 

controlled by a central operator, they are included as generators in the EM model and scheduled in a 

manner consistent with the system’s minimum cost objectives.  
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Figure 2. Three dam cascade in Roanoke River basin. USGS gages used to calculate hourly inflows at John H. 

Kerr reservoir and at the present day site of Roanoke Rapids Dam are shown in green.  

 

2.2.1  Hourly Natural Flow Model 

 

In many regions, there is considerable interest in how flow patterns below hydroelectric dams 

influenced by wind development would compare to flows under both baseline (0% wind) and ‘natural’ 

(pre-dam) conditions.  However, despite widespread availability of historical daily flow data, no records 

of hourly, pre-dam flows exist for many present day dam sites. In order to simulate natural hourly flow 

dynamics at the sites of present day hydroelectric dams, an hourly river flow model was developed using 

a signal processing technique similar to that used by Knapp [22]. Details on model construction and 

validation can be found in section 2.1 of Appendix 1.  
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2.2.2 Daily Reservoir Operations Model 

 

Reservoir inflows to the furthest upstream dam in the system (John H. Kerr Dam) simulated by the 

hourly natural flow model are fed directly to a daily reservoir operations model (DROM), which uses 

time series inputs of inflows, precipitation, and evaporation to drive water balance equations at all three 

reservoirs. The DROM calculates available storage for hydropower generation at each dam on a daily 

basis as a function of: reservoir guide curves (schedules of target lake elevation for each day of the 

calendar year); beginning of period reservoir storage values; hydropower turbine capacities; minimum 

flow requirements, and water supply contracts. Output from the DROM (in the form of daily volumes of 

water for release) is then fed to the EM model (for centrally controlled dams) or the hourly hydropower 

dispatch model (for self-scheduled dams) for more detailed hourly scheduling. For more information on 

the daily reservoir operations model (data sources, reservoir operating parameters, and model validation), 

please refer to Kern et al. [23]. 

 

2.2.3 Hourly Hydropower Dispatch Model 

 

Any dam assumed to be controlled by a central system operator is scheduled by the EM model, 

consistent with the objective of minimizing system cost.  For self-scheduled dams, however, an hourly 

hydropower dispatch model is used to maximize profits from the sale of DA electricity, reserves and RT 

electricity.  The hydropower dispatch model works by iteratively solving a deterministic optimization 

program with the following objective function: 

 

 

                  ∑         
  
                             (6) 

                                                           



  

20 
 

 

where,                                       

 

Decision Variables: 

                                                      

                                                       

                                                      

ONt =                         indicating electricity production      

STARTt =                                                       

 

Time Series Parameters: 

DA_Pt =  DA electricity price in hour t ($/MWh) 

RV_Pt = Reserves price in hour t ($/MWh) 

RT_Pt = RT electricity price in hour t ($/MWh) 

 

A single iteration of the hydropower dispatch model’s core optimization program yields an hourly 

schedule of hydropower production in each market (i.e.,  DA electricity, reserves, and RT electricity) for 

hours t = 1,2,...96. However, only the first 24 hours of the proposed hydropower schedule are considered 

‘locked in’. Sales of electricity and reserves in other hours (t = 25,26,...96) are discarded immediately, 

and water associated with these discarded sales are retained as available storage. This strategy ensures 

that reservoir releases are conditioned on expectations of future water availability and market prices, but 

also makes sure that releases are formally scheduled no more than 24 hours in advance. After the 

hydropower dispatch model schedules reservoir releases for a single 24 hour period, the planning horizon 

is shifted one day into the future. The model gives the dam operator some degree of perfect foresight for 

future day-ahead, reserves and real-time prices. Thus, the solutions obtained are considered an upper 
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bound to the profits a dam would make in reality by responding to market prices. Further discussion of 

the hydropower dispatch model for self-scheduled hydroelectric dams (including a complete 

mathematical formulation) is presented in section 2.2 of Appendix 1.   

 

3. RESULTS 

 

In the following section, we present results on computational performance and discuss model 

validation of the reservoir and EM models. In addition, results from three yearlong wind development 

scenarios are presented in order to demonstrate the capabilities of the integrated modeling framework in 

evaluating the impact of wind power integration on hydropower resources. 

3.1 Computing Environment and Solver Algorithm Performance 

 

The hourly natural flow model and daily reservoir operations model were implemented in Matlab. 

All optimization problems (the EM and hydropower dispatch models) were formulated using the AMPL 

language and solved using CPLEX.  

By far, the most computationally intensive component of the integrated model is the UC problem of 

the EM model, due to the large number of binary variables involved in its mathematical structure (three 

binary variables per generation unit (24), per hour (96), for a total of 6912). As such, efforts to shorten the 

average simulation time of the larger integrated model focused on limiting the UC model’s role as a 

performance bottleneck. Solution times for a single iteration of the UC problem—a single iteration 

simulates hourly prices in the DA electricity and reserves markets for one day—were restricted to four 

minutes. This time restriction, which ensures that a yearlong modeling run requires roughly 24 hours of 

computing time (or less), was selected heuristically based on tradeoffs between model detail and solution 

optimality. 

The solver CPLEX works by first identifying the non integer based solution of a linear program; 

then it employs branch and bound and simplex algorithms to identify integer based solutions whose 
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objective function values approximate that of the non integer solution. The relative degree of separation 

between the objective functions of integer and non integer solutions (Equation 7) can be viewed as a 

measure of solution optimality, and is calculated as:  

 

                  
         

    
      (7) 

 

where,                                                        

                                                   

 

The effect of a four minute time restriction on the solver’s ability to achieve optimal solutions is 

explored in Figure 3. A cumulative probability distribution function (CDF) was derived from relative MIP 

gap values observed in 19 separate yearlong simulation runs of the UC problem (each representing a 

different wind development scenario). Figure 3 shows that roughly 83% of all UC problem iterations were 

within 1% of the non integer objective function value (i.e., total system costs in $US), and 99.4% of all 

solutions were within 10% of the non integer objective function value. Thus, even with a time restriction 

of four minutes, the solver is able to closely approximate the optimal non integer solutions to the UC 

problem over a range of wind development scenarios.  
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Figure 3. Cumulative probability distribution function of relative MIP gap values for the UC problem from 

19 yearlong simulation runs (6935 model solutions), using a four-minute restriction on solution time by 

CPLEX. 83% of all individual solutions are within 1% of the optimal non-integer objective function value. 

 

3.2 Model Validation 

 3.2.1 Electricity Market Model 

 

Figure 4 compares historical mean daily prices for DA electricity in the Dominion Zone of PJM 

alongside prices simulated by the UC problem of the EM model for the year 2006. Panel A, which shows 

CDFs for both historical and simulated DA prices, suggests that the simulation underestimates most 

prices by between $15 and $25/MWh. This error may be due to underestimated fuel prices and plant heat 

rates; is also likely due to generators in Dominion’s actual portfolio submitting bids to provide electricity 

at rates higher than their marginal costs to recoup fixed operational and start costs (or, possibly, take 
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advantage of market power).  In panel B of Figure 4, frequency histograms are shown for historical DA 

electricity prices and ‘corrected’ prices simulated by the UC problem (i.e., simulated prices + $19/MWh). 

Histograms for both historical and corrected prices are mean centered on $55/MWh, but the distribution 

of corrected prices shows significantly more kurtosis, due to the smaller number of generating units and 

corresponding unique prices possible in the EM model. Nonetheless, panels B and C of Figure 4 

demonstrate that the UC problem is able to accurately reproduce historical dynamics in DA electricity 

prices over different timescales.   

The UC model also demonstrates a high degree of success in replicating the time series 

characteristics and statistical moments of historical reserves prices, which, compared to electricity prices, 

tend to be significantly much lower and less volatile (typically fluctuating between $5 and $15/MW). 

RT electricity demand in the ED component of the EM model is driven by stochastic models for 

demand forecast error and forced unit outages; as such, no effort was made to reproduce the exact 

historical sequence of RT electricity prices in the Dominion Zone of PJM. However, it is worth nothing 

that, like historical RT electricity prices, those simulated by the ED problem tend to be lower on average 

(but more volatile) than DA prices. The main discrepancy between historical and simulated RT electricity 

prices is a higher frequency of simulated prices with a value of $0/MWh; this is due to the EM model’s 

hourly temporal resolution, which precludes it from considering minute to minute markets for load 

following electricity or frequency regulation.  



  

 
 

 

Figure 4. Validation of unit commitment problem of electricity market model. A) cumulative probability distribution functions for simulated 

and historical mean daily day-ahead electricity prices; B) histogram of corrected (simulated + $19/MWh) and historical mean daily day-ahead 

electricity prices; C) daily autocorrelation functions for simulated and historical electricity prices; D) time series of corrected and historical 

mean day-ahead electricity prices.
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3.2.2  Reservoir System Model 

 

The hourly natural flow model developed in order to simulate ‘pre-dam’ river flows and current 

dam sites was able to closely reproduce hourly time series characteristics of natural river flows; however, 

the model does underestimate total annual inflows to the three dam system by roughly 11%, because it 

does not account for runoff from floodplains adjacent to the river. A detailed validation of the hourly 

natural flow model can be found in section 2.1 of Appendix 1. The DROM, which calculates available 

storage for hydropower generation at each dam on a daily basis, was fully developed as part of a previous 

study. For details on the DROM (including data sources, reservoir operating parameters, and model 

validation), please refer to Kern et al. [26].  

Output from the DROM (daily volumes of reservoir storage available for hydropower production) 

is fed to the EM model (for centrally controlled dams) or the hourly hydropower dispatch model (for self-

scheduled dams) for hourly scheduling. Figure 5 compares historical hourly reservoir releases at Roanoke 

Rapids Dam for the year 2006 alongside releases simulated by the EM model (i.e., Roanoke Rapids Dam 

is assumed to be controlled by the centralized system operator).  Panel A of Figure 5 shows a count of 

simulated and historical hourly flows compartmentalized into four quadrants: i) hours of historical ‘peak’ 

releases (i.e., reservoir discharges >= 280kL/s) that were correctly simulated as such; ii) hours of 

historical minimum flow releases (i.e, flows < 280kL/s) that were simulated as peak releases; iii) hours of 

minimum flow releases that were correctly simulated as such; and iv) hours of historical peak releases 

that were simulated as minimum flow releases. Approximately 80% of all simulated flows are located in 

quadrant (i) or (iii), i.e., they are correctly matched to historical reservoir releases. The largest source of 

error (accounting for roughly 15% of simulated hourly flows) is the EM model scheduling minimum 

flows at Roanoke Rapids Dam during hours of historical peak flow. The primary source of this error is the 

hourly natural flow model, which underestimates inflows to the reservoir system (and thereby reduces 

reservoir storage available for peak hydropower releases. Panel B of Figure 5 shows that overall, 

however, the reservoir system model does well at replicating typical reservoir release schedules.   



  

 
 

 

Figure 5. Comparison of historical and simulated hourly hydropower releases at Roanoke Rapids Dam. A) Historical and simulated flows 

presented in tabular form show the model correctly predicts hourly flows 80% of the time; B) Time-series of historical and simulated reservoir 

releases. 
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3.3 Wind Integration Case Study 

 

The EM model was used to simulate market prices for  DA and RT electricity and reserves under 

three different levels (0%, 5% and 25%) of average daily wind market penetration (i.e., wind energy 

consumed as a fraction of total electricity demand) using land based wind sites located in the Mid-

Atlantic region of the US.  

Figure 6 shows CDFs of mean daily prices for  DA (panel A) and RT electricity (panel B), 

estimated from the results of a yearlong simulation that assumed average 2010 fuel prices for coal and 

natural gas power plants (of about $1.62/MMBtu, and $4.86/MMBtu respectively)  [24]. Each panel also 

indicates the plant type that is dominant in setting the hourly market clearing price for each section of the 

CDF. Panel A shows that a modest amount (i.e., 5% market penetration) of low cost wind energy reduces 

the market share of combined cycle natural gas (NGCC) generators in the DA electricity market, which 

results in less expensive coal generators setting the market clearing price more often. At 25% wind 

penetration, however, the system relies much more on NGCC generators in order to accommodate lower, 

more volatile net electricity demand patterns and increased demand for spinning reserves; as a result, 

NGCC units more frequently set the market clearing price and the bottom 2/3 of the cumulative 

probability distribution increases in value.  At the same time, 25% wind market penetration reduces the 

frequency of DA price spikes (e.g., especially those caused by periods of peak summer demand) 

associated with the use of more expensive oil and combustion turbine natural gas generators. Thus, panel 

A shows that the upper quartile of the DA price distribution is reduced at 25% wind penetration.  

In the RT electricity market (Figure 6, panel B) wind energy has two main effects on prices: 1) 

positive wind forecast errors offset other sources of RT electricity demand and result in more frequent 

hours with a RT price of $0/MWh; and 2) negative wind forecast errors increase RT electricity demand 

and cause more frequent occurrences of high RT prices. Particularly at 25% market penetration, wind 

energy causes the bottom portion of the cumulative probability distribution function for RT prices to 

decrease, while the top half increases.  
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Figure 6. Cumulative probability distribution functions of DA (panel A) and real time (panel B) electricity 

prices at baseline (0%), 5% and 25% average daily wind market penetration. Market clearing plant types are 

noted at each price level.  

 

 

 

In order to illustrate the ability of the integrated model to capture changes in dam operations and 

revenues as a consequence of wind power integration, results are also presented from the hydropower 

dispatch model under 0%, 5%, and 25% average daily wind market penetration (i.e., here Roanoke Rapids 

Dam is assumed to be a self-scheduled, profit maximizing entity). Figure 7 shows that at 0% wind market 

penetration, the ratio of total annual DA electricity to reserves sold is roughly 8:5 in favor of the DA 

market.  At 5% wind market penetration, Roanoke Rapids Dam sells slightly more reserves and RT 

electricity and less DA electricity. Average prices in each market decrease due to wind energy’s effect on 
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the market share of NGCC plants, and annual profits at the dam decrease from $US 8.13 million at 

baseline to $US 7.81 million at 5% wind penetration.  

At 25% wind market penetration, average prices in each market increase due to increased market 

share of NGCC plants—and profits at the dam increase to $US 9.44 million. More severe negative wind 

forecast errors entice the dam to significantly increase its sale of reserves and RT electricity on an annual 

basis, resulting in a sales volume ratio of roughly 1:1 (DA electricity to reserves). This considerable 

increase in the Dam’s sale of reserves may entail more ‘stop/start’ reservoir releases, which could 

negatively impact the operational efficiency and longevity of power equipment, and river flows 

downstream. However, further investigation is needed to develop a robust understanding of these effects 

on the dam from wind energy.   
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Figure 7. Impact of wind market penetration on market production (primary y-axis) and annual profits 

(secondary y-axis) at Roanoke Rapids Dam. Results show the dam selling significantly more reserves (and less 

DA electricity) at 25% wind market penetration. 

 

 

4. CONCLUSIONS 

 

Building a more complete understanding of the costs and benefits of incorporating intermittent 

energy resources will require comprehensive, yet transferable, modeling approaches that can be adapted 

to different circumstances.  This paper presents an integrated reservoir-power system model specifically 

designed for system-based analysis of the effects of wind power integration on hydropower resources. 

The model relies only on publically available information from government, industry and academic 

sources, and model detail can be tailored to a desired solution time to accommodate available computing 

resources.  It can incorporate a large number of assumptions regarding power system makeup and fuel 



  

32 
 

prices, wind development pathways, and reservoir management strategies. As such, it is capable of 

addressing many unanswered questions concerning the use of hydroelectric dams as a complement to 

wind energy. 
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CHAPTER 2: THE IMPACTS OF WIND POWER INTEGRATION ON SUB-DAILY 

VARIATION IN RIVER FLOWS DOWNSTREAM OF HYDROELECTRIC DAMS  

 

1. INTRODUCTION 

 

An increased reliance on intermittent wind energy by the electric power industry has augmented the 

need for sources of generation that can rapidly change power output [1]. Hydroelectric dams can do this 

more quickly and less expensively than thermal power plants (i.e., coal, natural gas, nuclear, or oil)—as 

such, they are ideally suited to compensate for the variability and unpredictability of wind energy 

production. The operational flexibility of dams allows them to start and rapidly increase electricity 

production when wind is unavailable, and/or curb output when wind is plentiful [2]; and unlike thermal 

power plants, operating hydroelectric dams in this manner does not entail significant sacrifices in plant 

efficiency or additional contributions to CO2 emissions [3]. Nonetheless, the coordinated use of wind and 

hydropower may exacerbate dams’ current impacts on downstream environmental flows, i.e., the 

magnitude and timing of water flows needed to sustain river ecosystems.  

Due to their operational flexibility and low variable costs, hydroelectric dams are often used as 

“peaking” resources; i.e., they generate electricity at maximum turbine capacity during a few high 

demand periods per day and release much less water during other, less valuable hours. This practice 

triggers large, abrupt changes in flows that have been linked to numerous negative consequences for river 

ecosystems, including habitat loss, altered temperature and sediment dynamics, stranding of fish and other 

organisms, and/or the disruption of life cycle processes [4,5,6,7,8]. However, results from previous 

studies on the ecosystem impacts of hydropower peaking are predicated on traditional market dynamics, 

i.e., predictable fluctuations in electricity demand and prices that yield 1-2 peak periods (sustained 

reservoir releases) per day. Very little consideration has been given to the potential impacts of 
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hydroelectric dams on environmental flows in systems with higher levels of intermittent wind power 

penetrating the market.  

Two previous studies have suggested that providing an exclusive “back-up” service to wind farms 

could compromise a hydroelectric dam’s ability to meet instantaneous minimum flow targets [9,10]; as 

well as increase the intensity of short-term flow fluctuations [9]. But, these studies give little attention to 

the larger system context in which wind and hydropower resources operate. As a result, they do not 

capture the effect wind power integration could have on market prices for electricity and reserves. Market 

prices, along with reservoir inflows, are often the primary drivers of short-term reservoir release 

scheduling. These previous studies also omit consideration of coal and natural gas-fired power plants, 

which will help bear the brunt of wind power integration in regions with limited hydropower capacity [3]; 

as well as the level and geographical location of wind energy production, two factors that may be critical 

in determining how power systems accommodate a significant influx of new wind energy [11].  

This study represents an effort to more fully understand the implications of wind power integration 

for river ecosystems using a system-based approach. An integrated reservoir-power system modeling 

framework is used to: 1) explore the effects of wind energy on market prices for electricity and reserves in 

a system with limited (<10%) hydropower capacity under different levels of wind market penetration; and 

2) show how shifting financial incentives for hydropower producers could affect reservoir release 

schedules and impact sub-daily flow patterns below dams. 

 

2. METHODS 

2.1 Incorporating Wind Energy in Electric Power Systems 

 

Wholesale electricity markets generally rely on three different mechanisms to meet demand on an 

hourly basis: 1) a “day-ahead” electricity market; 2) a “real-time” electricity market; and 3) a “reserves” 

market [12]. The vast majority of electricity produced and consumed in wholesale markets is bought and 

sold via day-ahead markets [13,14], in which participating power plants submit “bids” (an amount of 
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electricity in megawatt-hours (MWh) and an offer price in $/MWh) to provide electricity 24 hours in 

advance. Bids are collected by a system operator, who uses them to meet forecast electricity demand 

(schedule generation) for the next day at the lowest possible cost.  

In real-time electricity markets, system operators schedule smaller amounts of generation in order 

to compensate for real-time electricity demand (Equation 1), calculated as the sum of positive day-ahead 

demand forecast errors (Equation 2), which typically range from 1-3% [15], and forced reductions in 

power plant output.  

   

                                         (1) 

 

                       
             

   
        (2) 

 

where, t = hour of the day 

 EDt = actual electricity demand in hour t (MWh) 

 f_EDt = day-ahead forecast electricity demand for hour t (MWh) 

Outaget = forced reduction in output at power plants in hour t (MWh) 

  

In order to ensure that adequate generation capacity is always available to meet potential real-time 

electricity demand, system operators also manage markets for reserves, or unscheduled power capacity 

(MW). In reserves markets, providers are paid for each unit of capacity they leave unscheduled (with the 

understanding that, should the system have a need for real-time electricity, reserved capacity may be 

called upon to provide it). Reserves can be provided by power plants that are already online (i.e., 

“spinning”), provided these plants are operating below their maximum generating capacity, or by units 

that are offline (i.e., “non-spinning”), assuming these plants are able to start and increase production 
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quickly. Although rules vary by system, a commonly used requirement is that in any given hour 50% of a 

system’s supply of reserves should be spinning [3].   

Each type of market (i.e., day-ahead electricity, real-time electricity, and reserves) is associated 

with a separate hourly price generally set by the variable cost of the most expensive resource used to meet 

demand. Price dynamics in these three markets, which constitute a critical driver of hourly reservoir 

release schedules at hydroelectric dams, may be significantly affected by large-scale wind integration. 

Due to the extremely low variable costs of wind energy, forecast wind energy is generally incorporated 

into day-ahead electricity markets as “demand reduction”; that is, each unit (MWh) of forecast wind 

energy results in a commensurate reduction in “net” day-ahead electricity demand (Equation 3). Wind 

energy thus yields lower (but sometimes more volatile) demand patterns for day-ahead electricity.  

 

                                      (3) 

   

where,  f_WEt = day-ahead forecast wind energy in hour t (MWh) 

 

 The effect of wind energy on demand for real-time electricity depends largely on wind 

forecasting skill (i.e., the magnitude and sign of wind forecast errors in each hour (Equation 4)), with 

positive errors serving to reduce real-time electricity demand, and negative errors increasing it (Equation 

5).  

 

                         (4) 

 

                                                  (5) 

 

where, WEt = actual wind energy in hour t (MWh) 
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Wind power integration also increases demand in reserves markets, with the extent of this increase 

dependent on the amount of installed wind capacity and the accuracy of wind energy forecasting [16,17].  

In this study we employ methods similar to those used in previous studies [3,18,19] to model hourly 

demand for reserves dynamically as a function of forecast wind energy (Equation 6) using proportionality 

constants (   calculated based on the level of installed wind power capacity (MW) in the system, as well 

as the accuracy of wind forecasting at modeled wind sites. For the system presented in this paper, values 

of   range from 4.5% at lower levels of wind capacity up to 29% at higher levels of wind capacity (see 

Appendix 2 for  -values used in this study). 

 

                                       (6) 

 

where,                          

     fixed ‘N minus 1’ reserve requirement (i.e., contingency against loss of largest   power 

plant in the system 

   value between 0 and 1 

  

2.2 Implications for Hydroelectric Dams 

 

In its simplest form, the problem of maximizing profits at a hydroelectric dam can be viewed as a 

choice (made in each hour) between: 1) producing day-ahead electricity; and 2) offering reserves and 

selling real-time electricity. Alternatively, dam operators can choose to do neither and instead retain 

reservoir storage until a later, more valuable time, since the operational flexibility of dams allow 

operators to only sell electricity and reserves in hours when they anticipate high prices. 

Based on the effects of wind power integration outlined above, we hypothesize that wind energy 

will decrease prices for day-ahead electricity and increase prices for reserves, and that a profit 

maximizing dam will respond by selling less day-ahead electricity and selling more reserves and real-time 
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electricity. In line with this shift in strategy, we also posit that the dam will make more frequent and 

shorter duration reservoir releases as power production at the dam is increasingly used to compensate for 

negative wind forecast errors, and that this change in behavior will drive “flashier” river flows 

downstream. 

 

2.3 Modeling Framework 

 

An electricity market (EM) model is used to represent the operation of the Dominion Zone of PJM 

Interconnection, a 23 gigawatt (GW) electric power system in the Mid-Atlantic region of the U.S. The 

EM model has two main components: a unit commitment problem, which is used to conduct separate 

hourly markets for day-ahead electricity and reserves, and an economic dispatch problem, which is used 

to conduct an hourly market for real-time electricity. Each generator in the system belongs to one of eight 

different power plant types. Listed by fraction of total system capacity, they are: coal (34.4%), natural gas 

combustion turbine (NGCT) (24.3%), nuclear (15.5%), natural gas combined cycle (NGCC) (13.4%), 

pumped storage hydropower (6.9%), biomass (1.9%), conventional hydropower (2.1%), and oil (1.5%). 

The EM model was used to simulate hourly market prices for day-ahead electricity, reserves, and real-

time electricity over a 1-year period (2006), under baseline conditions (0MW wind power capacity) and 

under 15 different wind scenarios (varying the amount and geographical source of installed wind power 

capacity in the system).  

Simulated market prices for each scenario were then sent to a reservoir system model representing 

the Lower Roanoke River basin (Virginia and North Carolina, U.S.). The reservoir system model uses a 

deterministic optimization framework along with inputs of market prices to schedule profit-maximizing, 

hourly reservoir releases at Roanoke Rapids Dam (100MW), subject to operational constraints and water 

availability. The resultant river flows simulated under baseline conditions and under the 15 wind 

scenarios were then compared alongside simulated “natural” (pre-dam) flows in terms of an ecologically 
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relevant flow metric, the Richards-Baker Flashiness index [20], to estimate the impacts of wind energy on 

sub-daily flow patterns. 

A complete description of the integrated reservoir-power system model used in this study can be 

found in [21], which details validation, data sources and full mathematical formulations of the models, as 

well as plant-specific operating parameters for the modeled generation portfolio, and descriptions of 

methodologies used to simulate hourly real-time electricity demand and dynamic reserve requirements.  

2.4 Wind Scenarios 

 

The 15 wind scenarios explored in this study represent a range of potential development pathways 

by varying the geographical location and level of installed wind power capacity—two key factors that 

could determine the impacts of wind energy on market prices [11]. Five different regions in the U.S. are 

considered: 1) the Southern Plains; 2) the Northern Plains; 3) the Midwest; 4) the Mid-Atlantic; and 5) 

offshore Atlantic Coast. For each of the five geographical regions, three levels of installed wind power 

capacity are considered: LOW, MED, and HIGH. These capacity levels correspond to average annual 

wind market penetrations (a_WMP) (Equation 8) of 5%, 15%, and 25%, respectively.  It is important to 

note the difference between a_WMP and daily wind market penetration (d_WMP) (Equation 9), which is 

a dynamic value that fluctuates depending on wind availability and electricity demand. 

 

      
 

   
 ∑       

   
        (8) 

        
 

  
  ∑   

    

    

  
         (9) 
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Hourly wind data (day-ahead wind energy forecasts and forecast errors) were taken from the 

updated Eastern Wind Integration and Transmission Study (EWITS) dataset made publicly available by 

the National Renewable Energy Laboratory [22]. Details regarding contributing U.S. states, total installed 

wind capacity (GW), and average capacity factors for the 15 wind scenarios can be found in Appendix 2.  

The algorithm used to select individual wind sites for each scenario is explored in detail in [21].  

 

2.5 River Flow Analysis 

 

The use of flow metrics that describe one or more general characteristics of river flows (i.e., 

magnitude, duration, frequency, rate-of-change, and timing) is common in efforts to quantify the impact 

of hydroelectric dams on the downstream environment [23,24,25,26].  In this study, the Richards-Baker 

flashiness (RBF) index (Equation 10), which has been used in previous efforts to characterize changes in 

sub-daily flows due to human influences like dams [20,27],  is employed to quantify the impacts of wind 

power integration on downstream flows.  

 

        
∑    (|        | |        |)  

   

∑   
  
   

      (10) 

 

 

 where,                                                          

 

The RBF index is a value assigned to each calendar day that approximates the length of a river’s 

hydrograph within a 24-hour period, weighted inversely by total daily discharge. As such, the RBF index 

is a visually intuitive measure of the frequency and magnitude of fluctuations in hourly flows, with high 

RBF values indicating frequent, large flow fluctuations, and low RBF values denoting relatively static 

flows. The RBF index is also (in hydropower systems) highly correlated with metrics used in previous 

studies to address the response of fish populations to changes in hourly flows, such as coefficient of 

variation [28] and percentage of total flow [6]; it is also moderately correlated with the number of “flow 
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reversals,” or successive periods of increasing and decreasing flow often produced from dams’ practice of 

hydropower peaking [29].  It is important to note, however, that while the RBF index is useful for 

describing changes in hourly flow patterns (some of which may be associated with direct or indirect 

impacts to riparian ecosystems), results presented in terms of this flow metric cannot be viewed explicitly 

as measures of ecological damage—only the potential for it to occur. We expect the effects of wind power 

integration on market prices to incentivize a hydroelectric dam to make more frequent, shorter duration 

reservoir releases, and anticipate that this change in behavior will lead to higher values of the RBF index.  

 

3. RESULTS  

 

3.1 Impacts of Wind Energy on Market Prices 

 

Figure 8 shows expected changes in mean daily prices, relative to baseline conditions, as a function 

of daily wind market penetration (d_WMP), using results from all 15 wind scenarios. In general, we find 

that prices in all three markets move in the same direction in response to increased wind market 

penetration, with prices decreasing at d_WMP less than 20% and increasing at d_WMP greater than 20%.  

This finding does not support the hypothesis that increased wind market penetration will have opposite 

effects on prices for day-ahead electricity and reserves. Nonetheless, increases in real-time electricity 

prices at d_WMP greater than 25% are found to be considerably larger than corresponding increases in 

day-ahead electricity prices or reserves (see Figure 8).  These large increases in real-time electricity prices 

are caused by more severe negative wind forecast errors, and they represent the strongest potential for 

wind energy to financially incentivize a change in behavior at Roanoke Rapids Dam. The following two 

sections give more details about how wind energy causes price changes in each market.  
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Figure 8. Expected changes in mean daily price at different levels of daily wind market penetration. Wind 

energy generally causes prices in all three markets to decrease at daily wind market penetration < 20%. 

Above this level, wind energy causes increases in prices. 

 

3.1.1 Day-Ahead Electricity and Reserves 

 

Figure 9 shows the modeled system’s marginal cost curve for production of electricity. Under 

baseline conditions, market prices for both day-ahead electricity and reserves are set by either coal or 

natural gas combined cycle (NGCC) plants for a combined 90% of the simulation year (prices in the 

remaining 10% of the year set by more expensive natural gas combustion turbines or oil generators). The 

model assumes 2010 fuel prices for coal ($1.62/MMBtu) and natural gas ($4.86/MMBtu) [30]. With these 

fuel prices, NGCC plants have higher variable costs of electricity generation ($29-35/MWh) than coal 

plants ($14-20/MWh) (see Figure 9). NGCC plants also have more convex heat rate curves than coal 
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plants, which cause them to experience larger losses in efficiency when providing spinning reserves. As a 

result, the variable cost of spinning reserves from modeled NGCC plants ($7-9/MW) is also higher than 

that of coal plants ($4-6/MW).   

At levels of d_WMP below 20%, forecast wind energy incorporated as “demand reduction” often 

displaces NGCC plants completely from the day-ahead electricity market (these NGCC plants would 

otherwise be turned on under baseline conditions). When this happens, the most common result is that 

less expensive coal plants become the marginal system generator and day-ahead prices decrease. Figure 9 

shows a hypothetical example of how forecast wind energy can decrease day-ahead electricity prices by 

reducing net demand and allowing coal plants to set the market price. In the example shown, 1.5GWh of 

forecast wind energy reduces net demand by 10%, and the price of day-ahead electricity decreases from 

$26/MWh (the marginal cost of electricity from a NGCC plant) to $17/MWh (the marginal cost of 

electricity from a coal plant). Since demand for reserves increases as a function of forecast wind energy 

(see Equation 6) lower levels of d_WMP result in only modest increases in demand for reserves. If NGCC 

plants have been displaced from the day-ahead electricity market by wind energy (as shown in Figure 9), 

the system operator may also have to compensate for the loss of spinning reserves from NGCC plants, 

because NGCC plants cannot provide spinning reserves if they are offline. But, at lower wind market 

penetration the system is generally able to meet increased demand for reserves and absorb the loss of 

NGCC plants using less expensive coal plants and pumped storage. As a result, prices for reserves 

typically decrease alongside prices for day-ahead electricity. 

At levels of d_WMP above 20%, prices for reserves and day-ahead electricity typically increase, 

relative to baseline conditions. High levels of d_WMP cause the system to experience very low net 

demand for day-ahead electricity and, simultaneously, high demand for spinning reserves. Under these 

circumstances, the system operator is forced to rely much more on NGCC plants. Compared to coal 

plants, NGCC plants have higher maximum “ramp rates”, lower minimum output requirements, and 

lower start costs. As such, they can physically provide more reserves and are better suited to be turned on 

and off in response to changes in forecast wind energy under low net demand conditions. But, because 
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NGCC plants also have higher variable costs than coal plants, increased usage of NGCC plants at high 

levels of d_WMP often leads to higher prices for reserves and day-ahead electricity.  

 

 

Figure 9. Effect of low-to-moderate forecast wind energy on the day-ahead electricity price. Figure shows 

1.5GWh of forecast wind energy reducing “net” day-ahead electricity demand from 15GWh to 13.5GWh 

(10%) and the price decreasing from $26/MWh (marginal cost of electricity from a NGCC unit) to $17/MWh 

(marginal cost of electricity from a coal plant). 
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3.1.2 Real-Time Electricity 

 

Real-time electricity prices are similarly affected by increases and decreases in the system’s usage 

of NGCC plants. But the effect of wind energy on real-time electricity prices also depends strongly on the 

magnitude and sign of wind forecast errors.  Panel A of Figure 10 shows the median and interquartile 

range (IQR) of wind forecast errors as a function of forecast wind energy (f_WE) for all 15 wind 

scenarios tested. This graph shows that at high levels of f_WE negative wind forecast errors (increases in 

real-time electricity demand) are much more likely to occur than positive wind forecast errors (reductions 

in real-time demand). Figure 10 also shows that the magnitude (absolute value) of negative wind forecast 

errors generally increases as a function of f_WE.  

These two trends are due in part to the logical upper and lower bounds on the value of wind forecast 

errors. Panel A of Figure 10 may also reflect systematic errors in the forecasting technique used in the 

EWITS. Regardless, the positive relationship observed between f_WE and the frequency and severity of 

negative wind forecast errors has important implications for the effects of wind energy on the real-time 

electricity market. Panel B of Figure 10 shows probability distributions of hourly f_WE at LOW, MED 

and HIGH installed wind power capacity. Clearly, HIGH wind capacity is more likely to experience very 

large negative wind forecast errors (spikes in real-time electricity demand) than LOW and MED wind 

capacity. This trend explains the significant increases in real-time electricity prices observed at high 

levels of dWMP (see Figure 8) and likewise plays an important role in incentivizing changes in 

hydropower operations.  
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Figure 10. Wind forecast errors as a function of forecast wind energy (panel A) and probability distribution 

functions of forecast wind energy for each level of installed wind power capacity (panel B).  Panel A shows 

median and IQR wind forecast errors for the 15 wind scenarios considered. Negative wind forecast errors 

(increases in real-time electricity demand) are much more likely to occur at HIGH wind capacity. 

 

3.2 Impact of Market Price Changes on Dam Operations 

 

Table 1 shows annual volumes of day-ahead electricity, reserves, and real-time electricity sold by 

Roanoke Rapids Dam (hereafter ‘the Dam’) at different levels of installed wind power capacity. Data for 

the wind scenarios (i.e., LOW, MED and HIGH wind capacity) are shown in terms of the average values 

and standard errors (in italics) for the five geographical regions tested.  

 We find little potential for wind power to impact the volumes of electricity and reserves sold at 

LOW and MED installed power capacity, due in large part to the similar manner in which prices in each 

market respond to increased wind market penetration. Table 1 shows that the Dam sells equivalent 
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amounts of day-ahead electricity and reserves at baseline conditions and LOW installed wind capacity, 

and only slightly less day-ahead electricity (more reserves) at MED wind capacity.  

The strongest potential for wind energy to cause changes in hydropower operations occurs at HIGH 

wind capacity. At HIGH wind capacity the Dam sells significantly more reserves and less day-ahead 

electricity, relative to baseline conditions. This shift in strategy is not, however, due to any observed 

effects of wind energy on prices for day-ahead electricity and reserves. Rather, it reflects the increased 

likelihood of large negative wind forecast errors at higher levels of daily wind market penetration (see 

Figure 10).  We find that real-time electricity price spikes caused by large negative wind forecast errors 

are the critical factor in incentivizing the Dam to shift capacity away from the day-ahead electricity 

market to reserves at HIGH wind capacity.  

The Dam’s decision to sell more reserves at HIGH capacity also has implications for reservoir 

release schedules. Table 1 shows that the expected duration of reservoir releases made at maximum 

turbine capacity decreases by 1.3 hours, relative to baseline conditions. Since the total volume of water 

passing through the dam on an annual basis is equal for each scenario, this likewise translates to more 

frequent reservoir releases made at turbine capacity. We also find that at HIGH wind capacity the 

frequency of days in which the Dam releases only static minimum flows decreases by 19, relative to 

baseline conditions. Collectively, these changes indicate that dam operators are scheduling hydropower 

production in smaller discretized amounts and spreading this production more evenly throughout the day 

and week, as opposed to simply concentrating production around traditional peak demand periods. This 

result is consistent with the Dam being used more frequently to compensate for brief periods of negative 

wind forecast errors, which occur somewhat randomly and are not tied to regular changes in electricity 

demand.  



  

 
 

 

Table 1. Impacts of wind energy on dam operations and downstream flows. For the wind scenarios (i.e., LOW, MED and HIGH installed wind 

capacity) data are presented in terms of the means and standard errors (italics) across each of the 5 geographical regions considered. 

  
Installed Wind Capacity [average wind market penetration %] 

  
Baseline [0%] LOW [5%] MED [15%] HIGH [25%] 

Day Ahead Electricity 

(GWh) 
118.64 118.38 (1.41) 111.83 (1.65) 93.55 (3.75) 

Reserves (GW) 72.90 71.50 (1.53) 78.72 (1.59) 96.94 (3.83) 

Real Time Electricity 

(GWh) 
72.57 71.00 (1.53) 78.11 (1.63) 96.39 (3.88) 

Mean Reservoir Release 

Duration (hrs) 
7.08 6.82 (0.1) 6.46 (0.19) 5.81 (0.2) 

 Static Minimum Flow 

Days (out of 365) 
148 149.6 (3.17) 142.4 (5.03) 129 (9.84) 

Richards Baker Flashiness 

(RBF) Index 
0.339 0.354 (.006) 0.359 (.018) 0.404 (.015) 

  

5
2
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3.3 Impacts of Wind Energy on Richards-Baker Flashiness (RBF) Index 

 

Table 1 shows that statistically significant increases (relative to baseline conditions) in the expected 

value of the Richards-Baker Flashiness (RBF) index occur at LOW and HIGH installed wind power 

capacity. The increase in the RBF index at LOW capacity occurs despite no significant difference in the 

volume of reserves sold by the Dam, indicating that other consequences of wind power integration (in 

particular, increased volatility of day-ahead electricity prices) are capable of exerting modest impacts on 

downstream flows, even if the Dam’s annual production of day-ahead electricity and reserves remains the 

same.  Nonetheless, the largest change in the RBF index occurs at HIGH wind capacity and is directly 

attributable to the Dam selling more reserves.  

Figure 11 explores the link (at HIGH wind capacity) between wind market penetration, changes in 

the amount of reserves sold by the Dam, and changes in the RBF index. Daily RBF index values 

simulated under baseline conditions were subtracted from those simulated at HIGH wind capacity 

(Equation 11) for each of the five geographical regions considered, yielding a total of 1790 time-series 

data points (5 simulation runs x 358 days). These RBF index differentials (        were then sorted into 

bivariate bins according to daily wind market penetration (d_WMP) and reserve differentials (Equation 

12).  

 

                                          (11) 

                                                       (12) 

  

where, d = day of simulation year 
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Figure 11 shows a histogram of        values sorted by d_WMP and reserve differentials 

(           ). Cell numbers denote the frequency of simulated days (out of 1790) contained in each 

bivariate bin (empty cells have a frequency of zero), and cell coloration indicates the expected value of 

       for each bin. Red cells, which indicate an expected increase in the RBF index (            , 

account for 89% of the days in which the Dam sells more reserves (             ); conversely, blue 

cells, which indicate an expected decrease in the RBF index ( [      ]    , account for 78% of the 

days in which the Dam sells less reserves (             ). We thus fund that, on average, increases in 

the Dam’s daily provision of reserves exacerbate sub-daily variation in river flows, while decreases in 

reserves sold reduce said variation.  
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Figure 11. Relationship at HIGH installed wind capacity between wind market penetration (d_WMP), 

changes in the amount of reserves sold by the Dam (         ), and changes in the Richards-Baker Flashiness 

(    ) index. Cell numbers denote the frequency of simulated days contained in each bivariate bin. Those 

days in which the dam sells more reserves (          > 0) are strongly associated with an expected increase in 

the RBF index (red cells, less natural flows). 

 

 

Another important question is how changes in wind market penetration impact flow patterns 

relative to the current impacts of the dam. Figure 12 shows a bar graph of annual expected values of the 

RBF index for “natural” (pre-dam) flows, baseline conditions, and the three levels of installed wind 

capacity tested. Figure 12 also shows the marginal impact of each scenario on the expected value of the 

RBF index, calculated as the difference between a given scenario and its neighbor to the left (e.g., 

baseline conditions minus natural flows, LOW wind capacity minus baseline conditions, etc.). Despite the 

potential for wind power integration (in particular, HIGH wind power capacity) to increase values of the 

RBF index, Figure 12 nonetheless shows that the marginal impacts of the wind scenarios are considerably 
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smaller than the initial change exerted on natural flows by dam construction (and the Dam’s subsequent 

use as a peaking resource under baseline conditions). The largest impact from wind energy occurs at 

HIGH wind capacity, when the expected value of the RBF index increases by +0.065, relative to baseline 

conditions.  But, this change is equivalent to a relatively small fraction of the increase in the RBF index 

that occurs moving from natural flows to baseline conditions (+0.328).  

 

 

Figure 12. Impacts of wind power integration on values of the Richards-Baker Flashiness (RBF) index. 

Marginal changes (dotted line) are calculated as the difference between a given scenario and its neighbor to 

the left. Statistically significant increases in RBF index values occur at LOW and HIGH installed wind 

capacity, but the marginal impacts of wind energy on downstream flows are considerably lower than the 

impact of initial dam construction (baseline conditions). 
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4. CONCLUSIONS 

 

Increased wind market penetration was expected to decrease prices for day-ahead electricity and 

increase prices for reserves, and incentivize a profit-maximizing hydroelectric dam to sell more reserves 

and less day-ahead electricity on an annual basis. We hypothesized that greater participation by dam 

operators in the reserves market would more directly link reservoir releases to spikes in real-time 

electricity prices caused by negative wind forecast errors, and that this would exacerbate existing levels of 

sub-daily variation in downstream flows (increase RBF index values). 

Our results, however, indicate that in a power system dominated by coal and natural gas plants 

(assuming 2010 fuel costs), prices for day-ahead electricity and reserves decrease and increase together as 

a function of daily wind market penetration. Accordingly, we find limited potential for wind power 

integration to financially incentivize dams to sell more reserves except at HIGH wind capacity (an 

average annual market penetration of 25%), when large negative wind forecast errors (i.e., spikes in real-

time electricity demand) are more prevalent. At HIGH wind capacity the Dam is found to sell 

significantly more reserves in order to exploit substantial increases in real-time electricity prices, and 

reservoir releases made at turbine capacity become shorter and more frequent. This, in turn, yields 

increased sub-daily variation in downstream flows.  

It is important to note that the deterministic optimization framework used to schedule hydropower 

releases at the Dam gives operators perfect foresight regarding market prices, including increases in real-

time prices caused by negative wind forecast errors. Although wind data used in this study (taken from 

the EWITS) indicate that large negative wind forecast errors are much more likely to occur at higher 

forecast wind energy levels, results presented in this paper should be viewed as an upper bound on the 

Dam’s ability to take advantage of changes in market prices. Even with a heightened ability to predict 

real-time prices, however, we do not find that the Dam uses its capacity exclusively to provide reserves 

under any wind scenario (even at HIGH wind capacity, roughly half of the Dam’s capacity remains in the 

day-ahead electricity market).  
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Thus, although our results confirm some potential for wind power integration to increase RBF 

index values (in particular, at HIGH wind capacity), the greatest marginal impacts to hourly flow patterns 

are shown to occur as a result of initial dam construction (and the Dam’s subsequent use as a peaking 

resource under baseline conditions). The additional effects of wind energy on downstream flows are 

relatively minor, due in part to the significant degree of flow impairment that exists below the Dam under 

baseline conditions.  Moreover, the critical role of wind forecast errors in pushing the dam to sell more 

reserves suggests that improvements in forecasting methods would eliminate most of the potential that 

does exist for wind energy to exacerbate sub-daily variation in river flows below the Dam. 

A number of results from this study may be transferrable to other systems—in particular, the 

impacts of wind energy on market prices in fossil-fuel based systems, and the limited ability of wind 

energy to exacerbate dams’ current impacts on hourly flows. It is likely, however, that the findings of this 

paper are most applicable in systems similar to the one presented in this paper. The effects of increased 

wind market penetration on dams in different systems, e.g., ones with significantly different generation 

mixes or systems in which dams are centrally controlled (scheduled to help minimize total system costs, 

rather than maximize hydropower revenues), could vary from the results presented in this paper. For 

example, in power systems that derive larger fractions of total electricity generation from hydropower 

(e.g., the Pacific Northwest region of the U.S.) there may be considerably less potential for wind 

integration to alter market prices and financially incentivize a change in operations at any one project. 

Alternatively, systems of dams structured as cascades (with little free flowing river between 

impoundments) may facilitate the designation of upstream dams as “wind-following” while allowing for 

better protections at downstream projects whose operations impact sensitive river ecosystems.  

Another important factor that could influence the effects of wind power development on dam 

operations and downstream flows (albeit on larger temporal scales) is seasonal wind availability. If strong 

seasonal patterns in wind availability exist, then it may be beneficial to both dam owners and power 

system operators to alter seasonal reservoir storage strategies to reflect when hydropower is needed most 

(is most valuable) in accommodating the availability of wind.  
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CHAPTER 3: NATURAL GAS PRICE UNCERTAINTY AND THE SUCCESS OF 

FINANCIAL HEDGING STRATEGIES FOR HYDROPOWER PRODUCERS  

 

1. INTRODUCTION 

 

Conventional hydroelectric dams are associated with extremely low variable costs of electricity 

production and an ability to increase power output to maximum plant capacity within minutes of starting 

[1]. As a result, hydroelectric dams are typically operated within electric power systems as highly 

valuable “peaking” plants—i.e., they are used to produce electricity at maximum rates during high 

demand hours and produce as little as possible in other, less valuable periods. Nonetheless, extended 

periods of low reservoir inflows (i.e., droughts) limit the ability of hydroelectric dams to provide peak 

power and can impact the balance sheets of dam owners in two different ways: 1) by decreasing total 

generation (revenues); and/or 2) by forcing a power producer to rely on more expensive sources of 

electricity to compensate for lower than expected hydropower generation (i.e., increasing total costs) 

[2,3]. In either case, drought contributes to increased volatility in the net income streams of power 

producers with significant hydropower capacity. This increased financial instability can in turn result in a 

higher cost of capital, reductions in shareholder value (for publically traded companies), difficulty paying 

off existing debt, and in extreme cases, even bankruptcy [4,5]. 

In recent years, “index insurance” has emerged as a potentially useful tool for mitigating the 

financial impacts of extreme hydrological conditions. Previous work has investigated the use of index 

insurance to indemnify agricultural producers [6,7,8,9,10] municipalities [11,12] and hydropower 

producers [13] against drought, as well as protect communities against losses associated with flooding 

[14]. Unlike conventional insurance, which guarantees a payout to policyholders in the event of a loss, 

index insurance makes payouts based on levels of an environmental variable or “index”. The index itself 
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is typically based on some form of transparent, publically available data (e.g., precipitation or 

streamflows). Structuring insurance contracts to pay out based on such an index reduces transaction costs 

for insurers and policyholders, and it also limits concerns over moral hazard while reducing opportunities 

for outright fraud [8].  

In general, reservoir inflows and hydropower generation are highly correlated on seasonal and 

annual time scales [13]. Therefore, it is logical that index insurance for hydropower producers be based 

either wholly or in part on reservoir inflows (or some reasonable proxy for inflows, such as localized 

stream flow or precipitation totals). Such contracts are designed so that whenever hydrological conditions 

(as measured by the index) fall below a predetermined threshold, payouts are made to the policyholder. In 

recent years, risk transfer products of this type have been implemented in a small handful of systems in 

the U.S. and abroad [15,16].  However, apart from recent work by Foster and Characklis [13], there is 

little evidence that strategies for hedging against hydrological risk in hydropower production have been 

considered in the scientific literature. As a result, a number of critical issues remain concerning the design 

and use of index insurance contracts for hydropower producers. One particularly important issue that has 

not been explored is how the “basis risk” of such contracts (i.e., the correlation between losses 

experienced by the policyholder and payouts triggered by the index) may be susceptible to volatility in 

natural gas markets. Since peak electricity prices are generally set by the marginal cost of electricity 

production at natural gas plants [17], the value of hydropower generation is closely tied to the price of 

natural gas (high gas prices make hydropower more valuable, and low gas prices make it less valuable). 

During droughts, dam owners that are contractually obligated to meet their customers’ electricity 

demand (known as “load serving entities” (LSEs)) must often compensate for reduced hydropower 

generation by purchasing electricity from another utility via the “spot” market (see Figure 13a). Since 

much of this generation is likely to come from natural gas plants, droughts cause LSEs with hydropower 

assets to experience unexpected higher costs, and this financial risk becomes much more acute when dry 

periods overlap with high natural gas prices. A well-known example of coincident drought and high gas 

prices causing financial hardship for LSEs is the California energy crisis of 2001, when wholesale 
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electricity costs soared as a result of both reduced hydropower production and high gas prices, even as 

revenues (retail electricity prices) remained relatively constant due to price caps [5].  

On the other hand, for hydropower producers with little or no firm power commitments, i.e., 

independent “non-utility” power producers (IPPs), drought does not impact total costs—rather, it reduces 

total generation (decreases revenues). In terms of foregone hydropower revenues, droughts that coincide 

with higher natural gas prices (i.e., higher peak electricity prices) are likewise more costly for IPPs. High 

natural gas prices can, however also act as a stabilizing influence on an IPP’s revenue stream in dry years 

(less hydropower is sold, but that generation earns a higher price). In fact, for an IPP primarily concerned 

about the incidence of years with extremely low revenues, coincident drought and low natural gas 

prices—that is, reduced generation and low electricity prices—represent a worst case scenario (see 

Figure 13b). 

Failure to account for natural gas price volatility in the design of index insurance for hydropower 

producers (for either a LSE or an IPP) is likely to result in higher levels of basis risk (i.e., a lower 

correlation between losses experienced by the policyholder and contract payouts) and, accordingly, less 

effective mitigation of drought-related financial losses.  In order to reduce basis risk, it may be desirable 

to explicitly tie insurance payouts to natural gas prices by employing a joint hydrologic-natural gas index. 

Another viable alternative (one that would also circumvent the need for a single counterparty to absorb all 

of a hydropower producer’s financial risk) could be the use of exchange-based natural gas derivatives 

(i.e., put options) in conjunction with index insurance based on hydrological measures alone.  

This study addresses an important gap in our knowledge of how natural gas prices affect the 

performance of index insurance designed to protect hydropower producers against the harmful financial 

impacts of drought.  Using an integrated reservoir-power system model, we assess the cost-effectiveness 

of index insurance designed to reduce the financial exposure of a hydropower producer without firm 

power commitments (i.e., an IPP whose lowest annual revenues occur in dry years with low natural gas 

prices). Several different contract types (which vary primarily in their respective treatments of natural gas 

prices) are tested under three different levels of historical natural gas price volatility: low (2010-2012); 
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average (1997-2012); and high (2003-2005). In addition, we evaluate the potential for exchange based 

natural gas derivatives (i.e., put options) to be used alongside index insurance contracts based on 

hydrologic factors alone in order to reduce a hydropower producer’s risk exposure.  Results from this 

study are meant to provide hydropower producers with a more comprehensive quantitative understanding 

of how natural gas prices impact the financial risks posed by drought, along with a menu of options for 

mitigating this type of exposure.   

 

 

Figure 13. Power marketing setup for load serving entity (LSE) with end use customers (A) and independent 

power producers (IPPs) (B). For IPPs, the lowest revenues from hydropower production occur in dry years 

with low natural gas prices. 
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2. METHODS 

2.1 Modeling Platform and Study Area 

 

This study makes use of an integrated reservoir-power system modeling framework adapted from 

previous work by the authors [18] that simulates the simultaneous operation of a series of hydroelectric 

dams in the Roanoke River basin (Virginia and North Carolina, U.S.) and the Dominion Zone of PJM 

Interconnection, a large deregulated electricity market in the Mid-Atlantic region of the U.S. The power 

system model iteratively solves a mixed-integer optimization program whose objective function is to 

minimize the total cost of meeting peak electricity demand (MWh) using a diverse fleet of thermal 

generation (nuclear, coal, natural gas and oil) and hydropower (conventional and pumped storage). Power 

system model inputs include time-series of electricity demand, fuel prices and water availability for 

hydropower production, and outputs are peak electricity prices ($/MWh) for each day, determined by the 

marginal cost of the most expensive generator used to meet demand.  

The reservoir system model uses hydrologic inputs of run-off, precipitation and evaporation, along 

with existing reservoir operating rules, to drive water balance equations and allocate daily volumes of 

water for release (hydropower production) at dams. Daily volumes of water available for hydropower 

production are then scheduled for release on an hourly basis using a mixed integer optimization program 

that maximizes revenues from the sale of electricity using market prices simulated by the power system 

model. A detailed description of the reservoir-power system modeling framework can be found in Kern et 

al. [18]. 

Index insurance contracts developed in this paper are designed specifically to reduce the risk 

exposure of John H. Kerr Dam, a project that is owned and operated by the U.S. Army Corps of 

Engineers. Although the operation of Kerr Dam is represented here as an IPP without firm power 

commitments, in reality electricity produced by Kerr Dam is marketed by the Southeastern Power 

Administration (SEPA), which does maintain firm power contracts with a group of Federal power 
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customers. However, SEPA is not required to compensate for reduced hydropower production (i.e., buy 

electricity from the spot market) during droughts, and their total annual costs are dominated by constant 

expenditures related to the amortization of debt. Thus, while Kerr Dam is not strictly speaking owned by 

an IPP, SEPA is, similar to an IPP, concerned about the potential for drought to diminish annual revenues 

(as opposed to increase its costs). 

It is also important to note that although the specific hedging strategies developed in this paper are 

different than what would be used for LSEs, the hedging principles explored can be easily tailored to fit 

any power producer’s unique circumstances. 

 

2.2 Study Framework 

 

Figure 14 shows a schematic of the study framework used in this paper. Employing synthetically 

generated inputs of reservoir inflows, temperature, and natural gas prices, the reservoir-power system 

model is used to simulate electricity prices and hydropower revenues, which are in turn used to calibrate 

and test four different index insurance contract types for use at Kerr Dam (contract types are described at 

length in section 2.3).  

Pricing of index insurance contracts for hydropower producers necessitates having an accurate 

understanding of: 1) the probability of damaging events occurring (in this case, drought); and 2) the 

magnitude of losses (i.e., reductions in hydropower revenues) distributed across a range of drought 

conditions. Developing such an understanding requires sufficiently long records of hydrological inputs 

(reservoir inflows, precipitation, and evaporation), fuel prices, and temperature data (the primary driver of 

electricity demand). In the Roanoke River basin, however, robust statistical characterization of these three 

inputs is limited by a lack of historical data. Although 84 years (1929-2012) of daily reservoir inflow data 

exists, only 66 years (1947-2012) of daily temperature data exists, and only the most recent 20 years 

(1993-2012) of prices for natural gas have been recorded. Thus, at most 20 consecutive years of 

concurrent historical data can be used to characterize the risk exposure of hydropower producers (and 
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likewise, of potential insurers) in this system. Rather than rely on such a limited data set in developing 

hedging strategies, synthetic time-series for each input are generated.  

Synthetic daily time-series data for hydrological inputs and temperature (peak electricity demand) 

were calculated for two 300-year periods—one 300-year period for calibrating index insurance contracts 

(assessing the magnitude and frequency of drought related losses) and a second for evaluating contract 

performance—using a method developed by Nowak et al. [19]. For each 300-year dataset of synthetic 

hydrological and temperature inputs, three separate 300-year time-series of weekly natural gas prices 

were simulated via an Ornstein-Uhlenbeck (OU) stochastic difference process (representative of low, 

average, and high price volatility levels). Natural gas prices have historically displayed different levels of 

volatility as a result of technological changes, changes in production/distribution infrastructure, more 

widespread demand, and unexpected disruptions in supply (see Figure 15). In this paper, low, average and 

high natural gas volatility levels used in the OU model are represented by the annualized standard 

deviations of daily log returns for the periods 2010-2012; 1997-2012; and 2003-2005, respectively.  In 

order to isolate the impacts of natural gas price volatility on contract performance, index insurance 

contracts were tested at each volatility level using the same hydrological and temperature data. Details 

regarding the methods used to generate synthetic time-series inputs for temperature, electricity demand, 

hydrological inputs and natural gas prices can be found in Appendix 3.  
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Figure 14. Schematic of study framework used in this paper. Grey boxes indicate synthetically 

generated system inputs. 

 

2.3 Contract Design 

 

All index insurance contracts considered in this paper are structured as contingent payoff functions 

((       that compensate a hydropower producer when the value of an agreed upon index falls below a 

predetermined threshold or “strike” level (Equation 1). 

 

                          (1) 

  

 where,                                      strike ) 
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                in coverage period T 

 

Payoffs are not initiated until index values fall below the strike, and then compensation increases as 

a function of the difference (     .  

One of the primary challenges in establishing viable index insurance contracts is basis risk, i.e., 

disagreement between the underlying index and actual hydropower revenues that can lead to contract 

payouts occurring at the wrong time (and in the wrong quantities) and diminish the ability of insurance to 

mitigate a hydropower producer’s risk. Ideally, the selected index (  ) should correspond perfectly with 

hydropower revenues. If this is the case, then basis risk is said to minimized and the strike level ( ) can 

be viewed as a revenue “floor”, or minimum allowable revenue level; the dam owner’s revenues will 

never be less than this floor (minus the purchase price of insurance), because if revenues drop below the 

strike level a commensurate insurance payment compensates for the loss.  

The working assumption of this study is that the correlation between the index (  ) and 

hydropower revenues      will improve if the index reflects both the amount of generation produced by a 

dam, as well as the value of that electricity (Equation 2).  

 

    ∑      
 
           (2) 

 

where,                   

                          

                                          

                                      
 

   
   

 

Index insurance contracts are designed for seasonal coverage periods (   (consecutive 3-month 

periods, i.e., Dec.-Feb., Mar.-May, June-Aug., and Sept.-Nov.). This is done for two reasons. First, 
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reservoir inflows at Kerr Dam are highly correlated (R
2
 = 0.94) with total generation (    ∑   

 
   ) on a 

seasonal basis [13]. As such, seasonal inflows can be substituted as a good proxy for    in contract 

indices.  

Besides ensuring a high correlation between reservoir inflows and generation, structuring contracts 

in this manner also allows for the control of seasonal changes in the peak price of electricity caused by 

fluctuations in electricity demand. Recent work by Foster and Characklis [13] showed that by designing 

index insurance contracts on a seasonal basis and assuming constant fuel prices, contracts written for any 

3-month period (e.g., June-August) could reasonably assume an static seasonal peak price of electricity 

applicable in any year. This allowed the achievement of very high (R
2
 > 0.90) correlations between 

seasonal inflows and hydropower revenues and the subsequent design index insurance contracts based 

solely on inflows. 

However, accounting for changes in the seasonal peak price of electricity (    
 

 
∑   

 
      is in 

reality a more complex challenge than simply controlling for fluctuations in seasonal electricity demand. 

Since peak electricity prices typically correspond to the marginal cost of electricity production at natural 

gas power plants, fluctuations in natural gas prices have tremendous potential to cause year-to-year 

differences in    for the same season. Considering the degree of year-to-year variability present in 

historical natural gas prices over the last 20 years (see Figure 15), we hypothesize that explicitly 

accounting for fluctuations in gas prices may be vital in establishing an appropriate index (    for use in 

insurance contracts. To test this hypothesis, we explore four different contracts that vary in their treatment 

of natural gas prices, specifically in how gas prices are incorporated in the insurance index. 
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Figure 15. Monthly natural gas prices (1993-2012). 

 

2.3.1 Explicit Consideration of Natural Gas Prices 

 

The most comprehensive way to account for the effects of fluctuating natural gas prices on peak 

electricity prices is to explicitly include gas prices in the formulation of the index, such that index values 

(estimated hydropower revenues for a coverage period) are calculated as a linear combination of inflows 

and natural gas prices: 

 

                                            (3) 

 

where,                                         
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Multivariate regression of the index       on hydropower revenues (    using ordinary least 

squares can then be used to identify the appropriate values of unknowns      and  . Ultimately, the 

degree to which the index       corresponds to seasonal hydropower revenues depends on the correlation 

between seasonal inflows (    and generation      and the correlation between the seasonal peak 

electricity price      and natural gas price          

2.3.2 Historical Median Gas Price 

 

The contract pricing methods used here (discussed in detail in section 2.4) assume that cumulative 

reservoir inflows for any given 3-month coverage period (  ) can be considered an independent random 

variable. The validity of this assumption holds only if a long enough time lag is employed between 

contract inception and the coverage period in order to remove statistically significant levels of 

autocorrelation in streamflows (in the Roanoke River basin, the minimum required time lag is on the 

order of 4 months [13]). In this paper, we consider contracts that are initiated (signed) 1 year prior to the 

beginning of the coverage period, such that hydrologic conditions at the time the contract is signed are 

essentially independent of those experienced during the period covered by the contract. 

If natural gas prices are not explicitly accounted for in the insurance index (as they are in      ), 

some prediction of future natural gas prices must then be made at the time of contract inception (i.e., 

contracts must assume some value of hydropower to use as a rate-of-compensation when making payouts 

during droughts). Three models of predicting future natural gas prices at contract inception are evaluated. 
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The most rudimentary of these models is an assumption that natural gas prices will not fluctuate 

and rather will remain fixed at the historical median level for the coverage period. Provided that natural 

gas prices are stationary (have a constant mean and volatility), in the long run such an assumption should 

overestimate seasonal peak electricity prices roughly half of the time, and underestimate prices the other 

half of the time. An insurance index comprising seasonal reservoir inflows and median historical natural 

gas prices (Equation 4) can be thus viewed as a baseline metric, one that implicitly assumes that changes 

in revenues are driven solely by variability in reservoir inflows. 

 

                                            (4) 

 

where,                                                
 

     
  

 

2.3.3 Price Parity at Contract Signing and during Coverage Period 

 

A second, slightly more sophisticated option for predicting natural gas prices is to assume that 

prices in the coverage period (e.g., several months in the future) will equal prices at the time of contract 

signing.  Although incorporating this assumption in an insurance index (as shown in Equation 5) 

conditions contract payouts on a lagging estimate of the price of gas, historical natural gas prices 

demonstrate significant levels of autocorrelation at a 12-month lag (R = .48). As a result, assuming parity 

between present and future gas prices should allow the index to reflect important, longer lasting changes 

in the value of hydropower. 

 

                                            (5) 

 

where,                                                  
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2.3.4 Conditional expectation 

 

In a third approach, conditional probabilities gathered from 2,500-year simulations of synthetic 

natural gas prices are used to forecast natural gas prices for the coverage period       , given prices at 

contract inception       . Because the Ornstein-Uhlenbeck (OU) model used to generate synthetic 

prices assumes stationarity (a constant mean and volatility), prices simulated by the model are mean-

reverting. Accordingly, including the term       |      (i.e., the conditional expectation of gas prices 

in one year given the current price) in the insurance index (see Equation 6) ascribes a mean-reverting 

estimate of natural gas prices to the value of hydropower production. For example, if the mean natural gas 

price were $5/MMBtu and the current price were $3.50/MMBtu, then       |      > $3.50/MMBtu. 

Likewise, if the current price were $6.50/MMBtu, then       |      < $6.50/MMBtu.  

 

                                   |              (6) 

 

where,       |                                                                         

                                
 

     
  

 

2.4 Contract Premiums 

 

The pricing of seasonal (3-month) contracts is performed using 300-year synthetic datasets of 

reservoir inflow data and natural gas prices in a manner similar to that presented in Foster and Characklis 

[13].  The following is a general step-by-step procedure of how contract premiums are determined. 

 

 First, an index is selected along with a desired seasonal coverage period   (i.e, spring, summer, 

fall or winter).  
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 Premiums are calculated on an annual basis at contract signing (i.e., one year prior to the 

selected coverage period  ).  

 Each year, a distribution of possible index values (  ) for the coverage period   is generated 

using a 300-year time-series of synthetic inflows from the calibration dataset, as well as some 

estimate of the future price of natural gas.  

 Then, for a range of strike levels (percentiles of the distribution of (  )), a distribution of 

possible insurance payouts       is calculated from the distribution of (  ) produced in the 

previous step.  

 The empirical probability distribution of insurance payouts (       is then transformed 

(Equation 7) in order to account for the market price of risk [20]. This transform assigns more 

weight to the risk posed by large insurance payouts (rare instances when the index value is well 

below the predetermined strike level).  

 Annual contract premiums (    are then calculated as the annualized expected value of the 

payout function       after its density function has been altered by the Wang transform 

(Equation 8). 

 

                (        )          (7) 

  

  where,                                                                               

                                                             

                                                    

                                               

                       

 

                *           (8) 
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Premiums calculated in this manner can then be said to equal an insurer’s annualized expected cost 

of providing coverage for a hydropower producer plus an additional risk premium determined by the 

market price of risk ( ), which, like authors of previous studies on this subject, we assume to equal 0.25 

[20,13]. 

Some important distinctions are made when calculating annual premiums for contracts with 

different indices (i.e., for contracts that make different assumptions about the price of natural gas). 

Premiums for contracts that use index       are based on the empirical distribution of         , which is 

made up of 90,000 values (each one representing a different combination of seasonal inflows (    from 

the 300-year calibration dataset and 300-years of synthetic natural gas prices (    |      generated 

via Monte Carlo simulation). In contrast, premiums for contracts based on the indices              and 

     ) are based on empirical probability distributions of       made up of 300 possible values (one 

estimated future gas price and 300 seasonal inflow values).  

Since contracts based on       assume a static price of natural gas (the historical median value), 

premiums (  ) associated with this contract type do not change on a year-to-year basis. In contrast, 

contracts that include some dynamic consideration natural gas prices (i.e., ones that employ either        

      or      )) are associated with premiums that change each year depending on the current price of 

natural gas. For example, because insurance payouts are more likely to occur in drought years with low 

natural gas prices, premiums are higher if the price of natural gas is low at contract signing (and they are 

lower if the price of natural gas is high).  

 

2.5 Contract Testing  

 

The four contract types were then tested for a range of strike levels under low, average, and high 

natural gas price volatility using independently generated 300-year synthetic datasets. 
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 Adjusted revenues accruing to the operators of Kerr Dam during each seasonal coverage period 

       were calculated as follows: 

 

        
     

     
            (9) 

  

 where,                                                          

 

Note that seasonal values of hydropower revenues (    and insurance premiums (  ) are always 

greater than zero, whereas        is only greater than zero when payouts are triggered.  

Using adjusted revenues calculated for the 300-year evaluation period, contracts were assessed in 

terms of their cost (reduction in mean revenues) and effectiveness (ability to reduce dam owners’ 

exposure to incidences of very low seasonal revenues). It is important to note the distinction between the 

premiums associated with an insurance contract (i.e., the amount of money paid by a policyholder at 

regular intervals in order to receive insurance coverage) and the net cost of a contract. The net cost to the 

policyholder is the mean annual difference between revenues with insurance (    ) and revenues without 

insurance (   . Net cost is also equivalent the total return for the insurer, i.e., the cumulative difference 

between insurance premiums and payouts. 

 

               
 

   
∑             

     =  
 

   
∑       

     

     
    

     (10) 

 

This cost can also be standardized as a percentage decrease relative to (   .  

 

                
∑             

   

∑   
   
   

       (11) 
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The effectiveness of index insurance contracts, in terms of their ability to mitigate financial risk, is 

measured as the difference between the single lowest value of    over the 300-year test period (i.e., the 

old revenue “floor” without insurance) and the single lowest value of      over the same period (i.e., the 

new revenue “floor” with insurance) (Equation 12). The degree of risk mitigation offered by an insurance 

contract can also be expressed as the ratio of the new floor divided by the old floor (Equation 13), which 

is henceforth referred to as the “risk mitigation factor” (RMF). An RMF value of 1 indicates no increase 

in the seasonal revenue floor; an RMF value of 2 indicates that the new floor is double the value of the 

floor without insurance; and a RMF value of 3 indicates that the new floor value is triple the value of the 

old floor.  

 

                                                         (12) 

 

                                               (13) 

 

2.6 Replicating Portfolio 

 

In addition to testing the four contract types described above, an alternative strategy that makes use 

of existing financial tools for mitigating risk in natural gas markets is explored.  Here a hydropower 

producer’s hydrological risk and natural gas price risk are managed separately via “replicating portfolios” 

made up of: 1) index insurance contracts based on reservoir inflows alone; and 2) natural gas derivatives 

(in particular, “put options”).  In principle, this approach would circumvent the potential challenge of 

finding a single counterparty willing to absorb all of a hydropower producer’s risk.  

The hydrological index insurance contracts used in creating replicating portfolios are structured 

identically to Equation 1. In this case, however, the index    is set equal to seasonal reservoir inflows 

(    and   is a seasonal inflow level against which a policyholder desires to be protected. 
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                         (14) 

 

No consideration is given to the value of hydropower (i.e., the price of natural gas). Rather, an 

individual contract of this sort makes very small payouts equivalent to the term (       (the value of 

this term typically ranges from $0 - $3, if seasonal reservoir inflows are considered in units of cubic 

kilometers). In order to protect themselves fully against hydrological financial risk, a hydropower 

producer must therefore purchase a large number of these smaller hydrological insurance contracts. 

Premiums for these contracts are calculated at a range of strike levels in an identical manner as that 

described in section 2.4. 

Index insurance based on inflows alone is paired with “European” style put options on natural gas, 

which also have payout structures identical to that of Equation 1, with the index    set equal to the price 

of natural gas in the coverage period, and   equaling the natural gas strike price.  

 

                       *10,000      (15) 

 

Put options are priced using a version of the Black-Scholes formula adapted to use natural gas 

futures prices as the underlying asset [21] (see Appendix 3 for details). Put option prices are simulated for 

the entire 300-year test period on a 12-month-ahead basis for a range of strike values under low, average 

historical and high natural gas price volatility. Payouts from individual put options are scaled by a factor 

of 10,000 to reflect the contract size of natural gas futures traded on the Chicago Mercantile Exchange 

[22]. 

A search algorithm is employed to identify strike levels and purchase amounts of insurance and 

natural gas put options that collectively replicate the cost-effectiveness of contracts based on index      . 

It is important to note that to match the performance of contracts based on      , the search algorithm is 
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limited to selecting a fixed volume of insurance and put options to buy for each year of the 300-year test 

period, and the algorithm must likewise identify strike levels for each contract type that remain constant 

for the entire 300-year test period (the premiums of the natural gas put options, however, change each 

year depending on the price of natural gas). This constraint prohibits selectively purchasing underpriced 

put-options (ones whose value are guaranteed to exceed their cost). 

3. RESULTS 

 

In the following section, testing results are presented for each of the four contract types (      

     ,      , and      ) as well as for the replicating portfolio of insurance based on inflows alone and 

natural gas put options.  

3.1 Validation of the Reservoir Power System Model 

 

Although the connection between peak prices and the marginal cost of electricity production at 

natural gas plants is a well-established phenomenon [17], the extent to which these values are correlated 

on a daily, seasonal and annual basis can depend on specific system characteristics. For the system 

considered in this paper (i.e., the Dominion Zone of PJM Interconnection),  linear regression of seasonal 

peak electricity prices simulated by the reservoir-power system model and synthetically generated natural 

gas prices yields an R
2
 value of 0.94 under historical levels of natural gas price volatility. Actual 

historical peak electricity prices for the system on which the model is based (obtained from PJM 

Interconnection for the period 2005-2012) show less correlation with natural gas prices (R
2
 = 0.73). This 

difference suggests that the reservoir-power system model overestimates the extent to which natural gas 

prices (as opposed to other factors, such as changes in electricity demand) explain changes in peak prices. 

It is likely therefore that contracts designed for an actual hydropower producer in the Dominion Zone of 

PJM would also need to include consideration of electricity demand in the index (or some reasonable 

proxy for electricity demand, such as heating and cooling degree days).  
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3.2 Index Basis Risk 

 

A first, critical step in minimizing the basis risk of index insurance contracts (i.e., maximizing the 

correlation between contract payouts and actual damages experienced by the policyholder) is selecting an 

underlying index that accurately predicts seasonal hydropower revenues. 

At each level of natural gas price volatility, index       demonstrates the highest correlation with 

seasonal revenues at Kerr Dam. This is a strong indication that contracts structured around       will 

trigger payouts that correspond most closely in timing and magnitude to periods of low revenues for dam 

operators. The index      , which incorporates a static assumption of the historical median price of 

natural gas, generally demonstrates the weakest correlation to revenues, although there is little difference 

in terms of R
2
 values among index       and the indices       and      , which make dynamic estimates 

of the price of natural gas based on the current spot price.  

Table 2 shows R
2
 values between seasonal hydropower revenues simulated by the reservoir-power 

system model and estimates produced using the four indices. The level of volatility in natural gas prices 

significantly affects the correlation between indices      ,      , and       and hydropower revenues, 

with low volatility increasing correlations and high volatility having the opposite effect. Correlations 

between hydropower revenues and values of index      , however, are immune to changes in natural gas 

price volatility. This further suggests that explicitly accounting for natural gas prices is a critical element 

in the design of reliable and cost-effective index insurance for hydropower producers, and indicates that 

doing so is even more important during periods of high volatility in fuel prices.  
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Table 2. Strength of correlation (R
2
 values) between index values and simulated hydropower revenues 

at Kerr Dam. 

 

  
Seasonal Coverage Period 

Index 

Natural Gas 

Price 

Volatility 

Spring Summer Fall Winter 

      

LOW 0.9387 0.8916 0.95 0.9063 

AVERAGE 0.9276 0.906 0.9294 0.9203 

HIGH 0.9399 0.9256 0.9563 0.9384 

      

LOW 0.6429 0.4557 0.7042 0.4707 

AVERAGE 0.5331 0.2283 0.5412 0.2719 

HIGH 0.4772 0.2277 0.5493 0.2636 

      

LOW 0.7246 0.55 0.7249 0.6428 

AVERAGE 0.5831 0.2924 0.5141 0.471 

HIGH 0.3861 0.2744 0.6176 0.261 

      

LOW 0.7437 0.5856 0.7486 0.6173 

AVERAGE 0.5969 0.3501 0.5723 0.4693 

HIGH 0.4863 0.3364 0.6455 0.3213 

 

  

The indices      ,      , and       also generally demonstrate a diminished ability to reproduce 

the tails (more extreme events) in empirical probability distributions of seasonal revenues. Since 

protecting against extremely low revenue values is the primary objective the contracts, this is a significant 

weakness. 

Figure 16 illustrates the basis risk (i.e., the correlation between actual damages experienced by the 

operators of Kerr Dam and contract payouts) of a contract based on index       (panel A) and one based 

on index       (panel B) under average natural gas price volatility. Both contracts assume a seasonal 

revenue strike level of $2.7M and are written for the winter season (December – February). The x-axis of 
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each panel measures damages experienced by operators of Kerr Dam (defined here as the degree to which 

seasonal hydropower revenues fall below the chosen contract strike of $2.7M). 

 

                                 (16)  

 

The y-axis of each panel measures the size of corresponding contract payouts. Payouts made by the 

contract based on index       are highly correlated (R
2
 = 0.87) to actual damages experienced by the dam 

operator, while payouts from the contract based on index       exhibit considerably less correlation with 

actual damages (R
2
 = 0.42).  

In addition, panel B indicates that the contract based on index       results in many more 

incidences in which the dam operator experiences damages (  > 0) but receives no payout (  = 0), and in 

several of these cases damages exceed $1M without any insurance compensation. Panel B also indicates 

that the contract based on index       results in many more instances in which the dam operator 

experiences no damages (   ) but receives a payout (    . Although less problematic from the 

perspective of operators at Kerr Dam, these errors likewise indicate a higher degree of basis risk inherent 

in the index      . Comparison of damages vs. payouts for the other two contract types (i.e., those based 

on indices       and      ) generally yield levels of basis risk similar to that of index      .  

As will be shown in the following sections, the significantly lower levels of basis risk demonstrated 

here by index       contribute to a vastly improved effectiveness of index insurance contracts.   
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Figure 16. Correlation between actual damages experienced by operators of Kerr Dam (revenues less than 

$2.7M) and payouts from contracts based on the indices i(1)T (panel A) and i(2)T (panel B) under historical 

average natural gas price volatility. Data shown is for winter season. 

 

3.3 Contract Performance 

 

The performance of the four contracts (           ,      , and      ) over the 300-year testing 

period was assessed at multiple strike levels in terms of several factors, including:  

 

 Annual premiums  

 Net cost, or the difference between mean annual hydropower revenues with and without index 

insurance, expressed as both $ and % (Equations 10 and 11, respectively) 
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 Risk mitigation (Equation 12), or the difference between the minimum allowable revenue levels 

(or “floors”) with and without insurance 

 Risk mitigation factor (RMF) (Equation 13), defined as the ratio of the floor with insurance over 

the floor without insurance  

 

Tables 21-28 in Appendix 3 display these values for each contract type, assessed under three 

different levels of natural gas price volatility (low, average and high) for each season (spring, summer, 

fall, and winter). For each volatility level, the minimum allowable revenue level without insurance (i.e., 

the old “floor”) is specified. The new “floor” can be determined for each contract and at each strike level 

by adding the dollar-value extent of risk mitigation to the old floor.  

 

3.3.1 Annual Premiums 

 

Results for each contract type show that as the strike level is increased (i.e., as the hydropower 

producer’s tolerance for risk is lowered), annual premiums and net cost increase monotonically. Figure 17 

shows the increase in premiums and net cost for contracts based on index       implemented for the 

spring season under low, average, and high natural gas price volatility. Insurance premiums, or the 

amount of money paid up-front on an annual basis by a policyholder in order to receive insurance 

coverage, are shown to be distinct (and generally much larger) than the net cost of insurance, which takes 

into account payouts made by the insurer. Also note that both insurance premiums and net cost increase as 

a function of natural gas price volatility. 
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Figure 17. Increase in premiums and net cost for contracts based on index       implemented for the spring 

season under low, average, and high natural gas price volatility. 

 

3.3.2 Identification of Non-dominated Index  

 

A primary goal of this study is to identify whether any contract type is “non-dominated” (i.e., can 

consistently achieve a higher degree of risk mitigation for the same (or lower) net cost as other options). 

In order to facilitate identification of such a non-dominated contract type, cost effectiveness curves that 

plot RMF values as a function of net cost (%) are used.  

Figure 18 shows cost effectiveness curves for each contract type implemented for the spring season 

under average natural gas price volatility. Except at very low net cost levels (i.e., strike levels <4%) 

contracts based on index       result in significantly larger increases in the revenue floor (i.e., higher 
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RMF values) for the same cost as other indices. Figure 18 also shows that contracts based on the indices 

(i.e.,      ,        and      ) exhibit more discontinuous behavior (RMF values fluctuate, increasing 

then decreasing and increasing again, as a function of net cost (strike level)). This type of behavior is 

caused by the inability of contract indices to consistently recognize low-revenue years and trigger 

insurance payments (i.e., high basis risk).  

Results for other seasons (see Tables 21-28 in Appendix 3) also show that contracts based on index 

      generally demonstrate significantly higher RMF values for the same net cost (%) than contracts 

based on the indices      ,      , and      . Results also demonstrate that the degree to which contracts 

based on       outperform other contract types is affected by natural gas price volatility (with higher 

volatility resulting in a much wider performance gap). This confirms findings from the basis risk analysis 

(see section 3.2) and further suggests that explicitly accounting for changes in natural gas prices in indices 

is critical during periods of high price volatility. 

.  
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Figure 18. Cost-effectiveness curves for contracts in spring season under average natural gas price volatility. 

The placement of the star on the curve of       corresponds to the performance of the contract shown in 

Figure 19. 

 

Adjusted revenues (    ) (i.e., total revenues with insurance in place) under contract       are 

plotted alongside hydropower revenues without insurance (  ) in Figure 19.  Results displayed are for the 

spring season under average natural gas price volatility. The contract based on index       is 

implemented using a strike of 35% and entails net cost of 2.6%. Note that the performance of this 

particular contract is also represented by the star on the curve for       shown in Figure 18. 
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Figure 19. Spring revenues over 300-year testing period without insurance (gray) and with contract based on 

index       (red), assuming a strike of 35% (net cost of 2.6%). Insurance is shown to increase the seasonal 

revenue floor from $0.58M to $1.62M (an RMF of 2.8). 

 

 The contract based on index       is associated with an average annual premium of $382,000 and 

a net cost of $113,000 (i.e., mean annual spring revenues over the 300-year testing period are reduced by 

$113,000 from $4,369,812 to $4,256,812, a 2.6% percent decrease). In exchange, the minimum allowable 

spring revenue level (i.e., the floor) is raised from $583,332 to $1,616,765 (an RMF of 2.8). To give some 

perspective on how this compares to the performance of contracts based on other indices, for the same net 

cost ($113,000, or 2.6%) a contract based on index       only increases the revenue floor by $482,735 to 

$1,066,067 (an RMF of 1.8) This is due largely to basis risk in index       , which results in the contract 

failing to make adequate payouts in several low revenue years.  
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3.4 Replicating Portfolio 

 

Results  discussed so far strongly suggest that the use of an index like       (i.e., one that explicitly 

accounts for changes in the price of natural gas) yields index insurance contracts for hydropower 

producers that are significantly more cost-effective than ones based around the indices      ,      , or 

     . Nonetheless, it is conceivable that under certain circumstances (e.g., following periods of high 

natural gas volatility caused by extreme weather or economic disturbances, or in systems in which natural 

gas prices and hydrological conditions are not statistically independent (as is assumed in this paper)) a 

single insurer may be hesitant to assume both hydrological risk and natural gas price risk from a 

hydropower producer.  

In an attempt to present a viable alternative to the use of the index insurance contracts based on 

index      , the potential use of “replicating portfolios” comprising: 1) index insurance contracts based 

on inflows alone; and 2) natural gas derivatives (put options), is investigated. The premise of these 

portfolios is that the financial risks to hydropower producers posed by dry periods and low natural gas 

prices can be separated and mitigated using independent hedging instruments.  

Using 300 years of synthetic calibration data, combinations of insurance contracts based on inflows 

alone and natural gas put options were identified that, when used in concert, replicate as closely as 

possible the shape of seasonal cost effectiveness curves for the index       under average natural gas 

price volatility. The replicating portfolios were then implemented for the 300-year testing period, and 

their cost-effectiveness was compared alongside results from contracts based on index      .  

 Figure 20 shows cost-effectiveness curves calculated for each season under average natural gas 

price volatility for contracts based on the index       (blue lines) and the replicating portfolios of 

hydrological insurance and natural gas put options (blue dotted lines). For additional comparison, the 

performance of contracts based on the index       (red squares) is also shown. Table 29 in Appendix 3 

lists details of the replicating portfolios identified using calibration data (i.e., the volume/strike levels of 

hydrological insurance and natural gas put options used for each level of net cost (%)).  
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Figure 20. Comparison of cost-effectiveness curves for insurance contracts using i(1)T (red lines) and 

replicating portfolio of hydrological insurance and natural gas put options (black dotted lines). 

 

Figure 20 shows that only in a few cases do the replicating portfolios demonstrate a very high level 

of success at matching the performance of contracts based on      . Part of the replicating portfolios’ 

lack of success at matching the performance of contracts based on       is attributable to the fact that, 

similar to contracts based on the indices       and      , they are associated with dynamically priced 

premiums that incorporate probabilistic assumptions about the future price of natural gas. In the case of 

natural gas put options, premiums are higher if the current 1-year futures price is close to or below the 

strike price, and they are lower if the futures price is well above the strike. This method of contract 

pricing is not inherently problematic; however, it can result in situations in which a hydropower producer 
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pays a very high premium for natural gas put options that do not pay-out (e.g., following an increase in 

the spot price of gas) in a moderately dry year. Even if payouts from hydrological insurance are made, 

they may be too modest to offset the substantial cost of natural gas put options, and total revenues can 

remain low.  

Other drawbacks of the replicating portfolios used in this paper are that they are deliberately 

constrained in their purchase of a static volume of put options and insurance contacts (and likewise, static 

strike levels for each) for the entire 300-year testing period. This was done to prohibit the search 

algorithm from basing prospective replicating portfolios only on “sure things” (insurance and options that 

are guaranteed, with foresight, to pay-out). It is possible that a more sophisticated approach to purchasing 

insurance and options could yield better results (one such approach might be to purchase natural gas 

options closer to the coverage period (e.g., 6 months out), which would likely incorporate more accurate 

price estimates into the put option contracts).   

Despite the replicating portfolios’ lack of success at emulating exactly the cost-effectiveness of 

contracts based on      , they are in most instances at least as cost-effective as contracts based on the 

indices      ,      , and      . Thus, in the event that a single counterparty willing to take on both the 

hydrological and natural gas price risk of a hydropower producer could not be found, replicating 

portfolios of hydrological insurance and natural gas put options may be a viable alternative, particularly if 

more sophisticated knowledge of natural gas markets were available.   

4. CONCLUSIONS 

 

The central goal of this study was to investigate the need for integrating consideration of natural 

gas price volatility in the development of index insurance contracts designed to reduce the financial 

exposure of hydropower producers to drought. To this end, four contract indices (     ,      ,       and 

     ) that differ primarily in their treatment of natural gas prices were investigated.  

Contracts were calibrated and tested under three different levels of historical natural gas price 

volatility: low (2010-2012); average (1997-2012); and high (2003-2005). Results show that the index 
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     , which is structured as a linear combination of seasonal reservoir inflows and natural gas prices, 

demonstrates the highest correlation with seasonal hydropower revenues at Kerr Dam and the lowest basis 

risk. Accordingly, contracts that are structured around       consistently show a greater ability (at 

equivalent costs) to increase the minimum allowable revenue level (or floor) than contracts based on other 

indices. Increased natural gas volatility was generally found to increase the basis risk of indices       , 

      and      , but was found to have little effect on the basis risk of index      . We thus find that 

increased natural gas volatility contributes to a wider performance gap between contracts built around 

      and the other indices, with contracts built around       becoming more even more preferable at 

high levels of natural gas price volatility.  

We also investigated the potential use of “replicating portfolios”, or combinations of insurance 

contracts based on inflows alone and natural gas put options. In theory, replicating portfolios would be 

used to separate a hydropower producer’s hydrological risk and electricity price risk and deal with them 

independently using instruments that exist right now (this could also circumvent the challenge of finding 

a single counterparty willing to absorb all of a hydropower producer’s financial risk). In particular, there 

was interest in determining whether a portfolio of smaller hydrological insurance contracts and natural 

gas options could reduce a hydropower producer’s overall financial exposure to the same extent (and for 

the same cost) as contracts based on index      .  

The results from this analysis were mixed: rarely are replicating portfolios shown to perfectly 

mimic the cost-effectiveness of contracts that use       (in most cases there is some performance gap 

between the two, and in some cases this gap can be considerable). Nonetheless, the use of replicating 

portfolios compares favorably to the performance of contracts based on other indices (     ,      , and 

     ), i.e., most of the time they are at least as cost-effective. As such, we suggest that replicating 

portfolios may yet represent a viable (albeit more complex) alternative to the use of index insurance based 

on the index       (particularly if more sophisticated strategies for purchasing natural gas options can be 

employed), and we recommend this topic as an area for more detailed future research. 
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It is also important to note that although contracts were evaluated under different levels of natural 

gas price volatility, stationarity in system hydrology (i.e., reservoir inflows) is assumed throughout. 

Climatic changes that result in more frequent or severe dry periods (increased financial risk for 

hydropower producers) over extended periods of time would likely make hedging strategies more 

expensive (increase premiums) by: 1) increasing insurers’ expected costs; and/or 2) increasing the largest 

occurring payout (increasing the amount of capital reserves that a potential insurer would need to keep in 

a liquid state). It is also possible that an insurer may perceive additional, unquantifiable hydrological 

uncertainty in future inflows and increase premiums simply in anticipation of an altered hydrological 

cycle.  

Another important subject not considered here is contract duration. All contracts evaluated in this 

analysis are assumed to be signed 1-year out from the coverage period and cover a hydropower producer 

for one 3-month season. In principle, contracts could also be designed to cover much longer periods (e.g., 

the summer season over a consecutive 5 or 10-year period). There may be some advantages in doing so 

for a hydropower producer, namely the ability to lock-in a fixed premium. However, increased contract 

duration may increase premiums overall, since a longer time horizon exposes the insurer to unforeseen 

changes in natural gas prices. Longer duration contracts may likewise be subject to reduced effectiveness 

if changes in system hydrology yield reservoir inflows that are inconsistent with the historical record on 

which contracts were based.  

Ultimately, a hydropower producer wishing to pursue one or the other of the index insurance 

contracts described here must weigh any internal tradeoffs presented by three things: 1) annual premiums 

(i.e., the up-front liquidity required to be able to purchase insurance; 2) net cost (the percentage of mean 

annual revenues that will be forfeit to the insurer over the long term); and 3) the desired level of risk 

mitigation. Strategies for balancing these three areas is not a concept that is explored in significant detail 

in this paper, but it is one that, considering the strong potential of index insurance to reduce the exposure 

of hydropower producers, deserves close attention in future work.  
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CHAPTER 4: THE IMPACTS OF CHANGES IN NATURAL GAS PRICES AND 

HYDROLOGIC VARIABILITY ON THE COST OF RAMP RATE RESTRICTIONS AT 

HYDROELECTRIC DAMS   

 

 

1. INTRODUCTION 

 

The financial optimization of hydropower projects relies heavily on the practice of hydropower 

“peaking,” in which dams produce electricity (release water) at maximum rates during high demand hours 

and release much less water during other, less valuable hours. However, the large fluctuations in sub-daily 

river flows that occur as a result of this practice can cause significant environmental impacts downstream, 

including: habitat loss, altered physicochemical properties, changes in sediment dynamics, stranding of 

fish and other organisms, and/or the disruption of life cycle processes [1,2,3,4,5]. Policymakers’ 

understanding of these negative externalities has developed alongside an increasing awareness of the 

economic benefits of healthy river ecosystems [6,7,8,9]. As a result, efforts to protect downstream 

ecosystems from the effects of hydropower peaking have become more widespread, particularly as part of 

the Federal Energy Regulatory Commission’s dam relicensing process [10].  Jager and Bevelhimer [11] 

found that of the 223 dams whose licenses were renewed between 1988 and 2000, 23 (13%) were 

converted from peaking to “run-of-river” (ROR) operations, a distinction that means reservoir output is 

set equal to inflows on a daily (and sometimes hourly) basis. Nonetheless, the high value of hydropower 

as a peaking resource persists as a barrier to restoring natural sub-daily variability in river flows.  

Efforts to restore sub-daily flow patterns below dams commonly include the use of “ramp rate” 

restrictions, or limits on the magnitude of hour-to-hour changes in reservoir discharge, which force a 

fraction of total hydropower production to be shifted away from periods of peak electricity demand 

towards less valuable off-peak hours. The financial penalty that dam owners incur as a result of these 



  

99 
 

restrictions is a function of two factors: 1) the “spread” (difference) between peak and off-peak electricity 

prices; and 2) the total amount of generation that is shifted from peak to off-peak hours (this amount, in 

turn, depends on the availability of water for hydropower production) [8,12,13,14]. 

In recent years, a handful of studies have estimated the annualized cost of ramp rate restrictions for 

dam owners. Harpman [13] found that implementing ramping restrictions at Glen Canyon Dam (Arizona, 

USA) for a single representative water year would result in a reduction in hydropower revenues of $6.17 

million (8.8%). Kotchen et al. [8] found the mean annual cost of implementing ROR operations at two 

dams in Michigan over a 12-year period to be $310,000. More recent work by Jager and Bevelhimer [11] 

noted lower bound cost estimates of between $2,500 and $93,000 per year, depending on the size of the 

project.  

These previous research efforts give very little consideration, however, to the extent to which the 

cost of ramp rate restrictions at dams may vary on a seasonal and year-to-year basis due to fluctuations in 

the price spread and hydrologic variability.  A more comprehensive quantitative understanding of how 

uncertainty in each of these factors contributes to changes in the cost of restrictions at dams would allow 

more realistic long-term projections of these costs to be included in dam relicensing—an important 

consideration given the typical length of FERC operating licenses (30 years).  

For example, in the last decade, the spread between peak and off-peak electricity prices has 

fluctuated significantly, rising in numerous months to more than $100/MWh and at other times falling to 

around $20/MWh (Figure 21). A primary cause of this historical variability may be volatility in natural 

gas markets. Natural gas power plants are typically used in a similar manner to hydroelectric dams (i.e., 

as peaking plants) and they generally set the market price of electricity during peak hours [15]. As a 

consequence, increases and decreases in peak electricity prices often reflect changes in the price of natural 

gas.  More recently, however, horizontal hydraulic fracturing, or “fracking”, has led to a surge in 

domestic (U.S. and Canadian) gas supply, and contributed to an extended period of low natural gas prices 

[16]. As a consequence, the spread between peak and off-peak prices is at a relative low point, and the 

implementation of ramp rate restrictions at hydroelectric dams may be less costly than in the past.  
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Figure 21. Average monthly price spread in Dominion Zone of PJM Interconnection (2005-2013). 

 

Collectively, variability in the price spread and reservoir inflows may cause large swings in the 

cost of ramp rate restrictions on a seasonal and annual basis. This variability may be particularly 

problematic for downstream stakeholders (e.g., conservation trusts, non-profits, and charitable 

organizations) interested in “purchasing” operational changes at upstream dams in order to restore sub-

daily variation in river flows to natural levels.  There is significant precedent for this type of arrangement, 

in which downstream stakeholders agree to send “make whole” payments to upstream water users in 

return for the implementation of conservation practices that improve downstream river conditions [17]. 

The potential for large year-to-year fluctuations in the cost of ramp rate restrictions may, however, 

preclude downstream stakeholders from engaging dam owners in this type of exchange. As a result, 
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financial hedging strategies capable of significantly reducing this uncertainty may be of value to 

prospective buyers of ramp rate restrictions at dams. One such strategy could be the use of “collar” 

agreements between a downstream stakeholder and a third party insurer that compensate the downstream 

stakeholder in high cost periods and require a pay-out to the insurer in low cost periods, yielding net costs 

that approximate the long-term mean.  

In this paper, we characterize the effects of water availability and the spread between peak and off-

peak prices on the cost of ramp rate restrictions at a hydroelectric dam over the period 2005-2013. Of 

particular interest is determining whether recent low natural gas prices (partly attributable to 

improvements in oil and gas extraction technology) have reduced the cost of implementing operating 

restrictions.  The historically observed costs of ramp rate restrictions are also used to calibrate a model for 

estimating the seasonal cost of restrictions based on price spread and total hydropower generation. This 

seasonal cost model is then used to price collar agreements designed to help prospective purchasers of 

environmental flow benefits make constant payments in exchange for the implementation of operational 

restrictions at dams.   

 

2. METHODS 

2.1. Modeling Platform and Study Area 

 

This analysis builds on previous research involving the development of a hydrologic-economic 

model adapted from previous work by the authors [18] that simulates the operation of a series of 

hydroelectric dams in the Lower Roanoke River basin (Virginia and North Carolina, U.S.) (Figure 22). 

The model uses historical hydrological inputs of run-off, precipitation and evaporation, along with 

existing reservoir operating guidelines, to drive water balance equations and allocate daily volumes of 

water for release (hydropower production) at dams. Daily volumes of water available for hydropower 

production are then scheduled for release on an hourly basis using a mixed integer optimization program 

that maximizes revenues from the sale of electricity using historical market prices. 
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This paper focuses on the operation of Roanoke Rapids Dam, a 100MW project that is owned and 

operated by Dominion Energy. As the furthest downstream dam in the Roanoke River basin, the 

operations of Roanoke Rapids Dam have been the subject of considerable scrutiny in the past, particularly 

with regard to its impacts on the downstream environment. Downstream of Roanoke Rapids Dam are 

extensive areas of un-fragmented bottomland hardwood forest considered by The Nature Conservancy, 

the U.S. Fish and Wildlife Service, and the State of North Carolina to be highly valuable ecological 

resources [19]. In addition, the Roanoke River downstream of Roanoke Rapids Dam provides estimated 

recreational fishing benefits of $4.2M (million) per year [20]. 

 

Figure 22. The Lower Roanoke River Basin, featuring John. H. Kerr Dam (US Army Corps of Engineers) 

and Gaston and Roanoke Rapids dams (Dominion). 
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2.2. Study Framework 

 

Figure 23 shows a schematic of the study framework used in this paper. First, the seasonal cost of 

restrictions at Roanoke Rapids Dam over the period 2005-2013 is determined by comparing simulated 

hydropower revenues at the dam under two different operational scenarios that, respectively, represent the 

lowest and highest degree of sub-daily operational restrictions typically found at hydroelectric dams in the 

U.S. 

 

 Unrestricted: dam owners are free to employ hydropower peaking (i.e., schedule power 

production in a manner that maximizes profits) and make hourly reservoir releases up to 

maximum turbine capacity (20,000 cfs). Hourly releases from Roanoke Rapids Dam are, 

however, subject to instantaneous minimum release requirements (325 cubic feet per second 

(cfs). 

 

 Restricted: in this scenario, operations at Roanoke Rapids Dam are converted to “run-of-

river” (ROR), with daily reservoir discharge at Roanoke Rapids Dam set equal to reservoir 

inflows and hourly flows re-regulated to remove peaking effects from upstream Gaston Dam 

(e.g., if total reservoir inflows for a given day equal 240,000 cfs, then the dam releases 

10,000 cfs in each hour).  

 

Hydropower revenues at Roanoke Rapids Dam are maximized for both scenarios over the period 

2005-2013, subject to dam operating constraints and water availability, using a moving 4-day planning 

horizon and historical day-ahead electricity prices obtained for the Dominion Zone of PJM 

Interconnection, a large deregulated electricity market in the Mid-Atlantic region of the U.S. [21]. The 

operations of upstream dams (Gaston and John H. Kerr) are simulated in an identical manner under each 

scenario according to existing guidelines for these projects. As a result, daily inflows to Roanoke Rapids 
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Dam are the same for each scenario, and differences in revenues between the two scenarios can be 

attributed solely to the implementation of operating restrictions at the dam.  

The cost of restrictions at Roanoke Rapids Dam is calculated on a seasonal (cumulative 3-month) 

basis as the difference in hydropower revenues between the unrestricted scenario and restricted scenario. 

 

                    (1) 

 

where,          (Spring, Summer, Fall, or Winter) 

                                                      

                                                    

 

 

Figure 23. Study framework. 
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 Historically observed seasonal cost data (  ) are then evaluated for linear correlation with price 

spread, hydropower generation (water availability), and natural gas prices. In particular, we assess 

whether low natural gas prices in recent years have contributed to: 1) a narrower spread between peak and 

off-peak electricity prices; and 2) a decline in the cost of restrictions at Roanoke Rapids Dam.  

 

2.2.1. Cost Model   

 

Seasonal cost data (  ) calculated for the period 2005-2013 are used to calibrate a mathematical 

model for estimating the cost of restrictions at Roanoke Rapids Dam based on seasonal price spread and 

hydropower generation.  Estimated seasonal costs ( ̂ ) are assumed by the model to be linearly 

dependent on price spread (the higher the price spread, the higher the cost of ramp-rate restrictions) and 

non-linearly dependent on hydropower generation, as shown in Equation 2.  

 

 ̂  = (    
      

                   (2)  

 

where,  ̂                                             

                                   

                                                           

  = multiplication coefficient for price spread 

                                                                            
 

   
  

 

Values for the parameters           and   in Equation 2 are identified using a non-linear 

optimization algorithm, the objective of which is to find a model that yields a non-dominated linear 
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correlation (R
2
 value) and mean squared error when compared with actual seasonal costs (    over the 

period 2005-2013.   

The rationale for using a non-linear relationship to describe the effect of seasonal hydropower 

generation on the cost of restrictions (shown in Figure 24) is based on results from a preliminary analysis 

in which seasonal costs were calculated across a range of inflow levels while keeping electricity prices 

constant. For any given season, the lowest possible cost of restrictions is $0 (no difference in revenues 

between the restricted and unrestricted operating scenarios).  Although rare, this circumstance can occur 

as a result of either: 1) very high reservoir inflows that force dam operators to release water at maximum 

turbine capacity in every hour for an entire season; or 2) very low reservoir inflows that result in the dam 

making only the FERC-required minimum release in every hour for an entire season.   

As seasonal generation is increased from the FERC-required minimum level, the cost of 

restrictions increases because the marginal value ($/MWh) of hydropower generation is higher under the 

unrestricted scenario than it is under the restricted scenario. Costs increase until they reach an inflection 

point (maximum), which occurs when the marginal value of hydropower generation is equal for both the 

restricted and unrestricted scenarios (this point is associated with high inflows that force a peaking dam to 

produce substantial amounts of electricity in off-peak hours). As seasonal generation increases further, 

costs decrease (and eventually reach zero), because the marginal value of generation in the unrestricted 

scenario is below that of the restricted scenario. 

 



  

107 
 

 

Figure 24. Non-linear relationship between seasonal generation and the cost of restrictions at a hydroelectric 

dam, assuming a fixed spread between peak and off-peak electricity prices.  

  

2.2.2. Financial Hedging Strategy 

 

We also explore the potential for financial hedging strategies to help achieve constant costs for 

downstream stakeholders interested in purchasing operational limits at dams in order to restore sub-daily 

variability in river flows.   

There is significant precedent for financial exchanges in which conservation organizations agree to 

compensate upstream agricultural water users in exchange for implementing conservation practices that 

augment in-stream flows. For example, since 2005 the Freshwater Trust in Oregon (U.S.) has 

administered a program in which upstream agricultural water users are compensated by the trust for 
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reducing their water consumption. This reduced consumption then helps maintain increased river flows 

for salmon spawning downstream [17].  

An analogous arrangement structured to reduce the impacts of hydropower peaking on sub-daily 

variation in river flows would entail a downstream stakeholder sending “make-whole” payments to 

compensate a dam owner for implementing ramp rate restrictions. In principle, payments sent from the 

downstream stakeholder to the dam owner would be equivalent to the “spot” cost of restrictions at the 

dam, i.e., the difference in hydropower revenues between the restricted and unrestricted scenarios in each 

period (   . To the extent that this value changes on a seasonal and/or annual basis, a downstream 

stakeholder may also wish to engage in a financial hedging agreement that allows them to make constant 

payments rather than pay the spot cost of restrictions.   

One option for doing so could be multi-year bilateral agreements in which the downstream 

stakeholder pays the expected spot cost of restrictions (     ) to the dam owner. In most years, payments 

made by the downstream stakeholder would either be too large (         ) or too small (         ). 

Over a longer period, however, the average payment made by the downstream stakeholder would 

approximate the expected spot cost of operational restrictions. 

Nonetheless, dam owners may be unwilling to engage in such a payment scheme and, rather, 

require that payments from the downstream stakeholder in each period equal the spot cost of restrictions 

(  ). This research develops an alternative approach that would allow the downstream stakeholder to 

achieve constant conservation payments by engaging a third party insurer in a financial “collar” 

agreement [22] (see Figure 25). 

In a collar agreement, the downstream stakeholder pays a premium to a third party insurer, who, in 

return, agrees to make payments in period   to the downstream stakeholder equal to: 

 

                                                 (3) 
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When          , the value of         is negative and a contract pay-out is made from the 

downstream stakeholder to the insurer.  Alternatively, when          the value of         is positive 

and a contract pay-out is made from the insurer to the downstream stakeholder (if           no 

exchange of funds occurs). Thus, in high cost periods (i.e., whenever          ) the collar agreement 

is a source of funds for the downstream stakeholder that can be used to defray any portion of make-whole 

payments to the dam owner in excess of      . In low cost periods, however, (i.e., whenever    

     ) the downstream stakeholder must make a payment to the insurer equal to            .  

Net payments made by the downstream stakeholder in each period equal the sum of three 

components (Equation 4): 1) the spot cost of restrictions (   ); 2) the risk premium associated with the 

collar agreement      ; and 3) the collar payoff function (Equation 3).  

 

                                  (4) 

 

In principle, this type of arrangement allows the downstream stakeholder to make a payment of 

(        ) in each period. The only fluctuation in this value comes as a result of relatively minor 

fluctuations in the risk premium. 
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Figure 25. Schematic of financial risk management strategy for achieving constant conservation payments. 

 

Contract premiums are calculated on a rolling, seasonal basis one year prior to period   using a 

method outlined in Wang et al. [23], in which an empirical probability distribution for         derived 

from 300 years of synthetic input data is transformed (see Equation 5) in order to account for the “market 

price of risk”. This transform assigns more weight to the risk posed by positive collar payouts (instances 

when the insurer is paying the downstream stakeholder). Seasonal contract premiums (    are then 

calculated as the expected value of the net collar payment function after its density function has been 

altered by the Wang transform (Equation 6). 

 

                  (          )         (5) 
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where,                                                                                 

                                                             

                                                    

                                                   

                       

 

                  *             (6) 

 

Premiums calculated in this manner are said to equal the expected net collar payment plus an 

additional risk premium determined by the market price of risk ( ). Similar to previous studies that have 

employed the Wang transform to price index-based insurance products and weather derivatives 

[23,24,25], here   is assumed to equal 0.25. For a detailed description of methods used to calculated 

contract premiums, please refer to Appendix 4, section 2. 

3. RESULTS 

 

 Results are presented in three sections. In section 3.1, historical changes in the cost of restrictions 

at Roanoke Rapids Dam are analyzed for the period 2005-2013. In particular, we determine whether 

recent years of low natural gas prices have resulted in lower costs. In section 3.2, a model for estimating 

the seasonal cost of restrictions based on the spread between peak and off-peak electricity prices is 

validated; and in section 3.3, we explore the potential for third party collar agreements to achieve constant 

conservation payments for purchasers of environmental flow benefits.  
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3.1. Historical Changes in Cost of Restrictions 

 

 Seasonal costs of restrictions at Roanoke Rapids Dam (    were calculated over the period 2005-

2013 (Figure 26). The mean trend (fitted via ordinary least squares) decreases from approximately 

$1.9M/season in early 2005 to around $0.5M/season at the end of 2013. In particular, a decrease in the 

mean and volatility of the cost of restrictions occurs in late 2008/early 2009 and is shown to persist 

throughout the remainder of the time series. This shift coincides with a decline in natural gas prices 

caused by: 1) a global financial crisis that significantly reduced worldwide economic productivity; and 2) 

a surge in supply from increased domestic (U.S. and Canadian) production from underground shale 

deposits, made possible by horizontal hydraulic fracturing [16].  
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Figure 26. General decline in seasonal cost of restrictions at Roanoke Rapids Dam and natural gas prices over 

the period 2005-2013.  

  

Clearly, however, the seasonal cost of restrictions at Roanoke Rapids Dam also depends on factors 

other than natural gas prices, since the cost of restrictions fluctuates significantly around the mean trend 

and at no point corresponds on a 1:1 basis with changes in natural gas prices. In order to quantify the 

extent to which gas prices (as well as other factors, such as total hydropower generation (i.e., water 

availability)) impact the cost of restrictions at Roanoke Rapids Dam, Pearson correlation coefficients 

were calculated between seasonal costs and several relevant variables (Table 3). 
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Table 3. Matrix of Pearson correlation coefficients (R) describing relationship between the seasonal 

cost of restrictions and fuel prices, peak demand, electricity prices, hydropower production at Roanoke 

Rapids Dam, and price spread.  

 

Gas Price 

($/MMBtu) 

Demand 

(MWh) 

Hydro 

Generation 

(MWh) 

Peak 

Price 

($/MWh) 

Spread 

($/MWh) 

Cost of 

Restrictions 

($) 

Gas Price 

($/MMBtu) 
1.00           

Demand 

(MWh) 
0.03 1.00 

   
  

Hydro 

Generation 

(MWh) 
0.05 -0.07 1.00 

  
  

Peak Price 

($/MWh) 
0.86 0.47 -0.13 1.00 

 
  

Spread 

($/MWh) 
0.79 0.54 -0.20 0.97 1.00   

Cost of 

Restrictions 

($) 
0.70 0.53 -0.13 0.89 0.90 1.00 

 

 

 Table 3 highlights a series of linked statistical dependencies that connect changes in gas prices to 

fluctuations in the cost of restrictions at Roanoke Rapids Dam. First, changes in the price of natural gas 

are strongly linked to movements in the peak price of electricity (R = 0.86). Changes in peak prices in 

turn act as the primary driver of fluctuations in the spread between peak and off-peak prices (R = 0.97); 

and the price spread is shown to be a critical factor in determining the seasonal cost of restrictions at 

Roanoke Rapids Dam (R = 0.90). The direct correlation between natural gas prices and the cost of 

restrictions is shown to be R = 0.70 (we thus estimate that natural gas prices explain roughly R
2
 = 49% of 

the seasonal variability in the cost of restrictions). This result strongly suggests that lower natural gas 

prices, driven in part by advances in drilling technology, have caused a reduction in the cost of 

implementing ramp rate restrictions at dams. 

 Table 3 also shows that, in addition to natural gas prices, seasonal variability in electricity 

demand is an important driver of the price spread (R = 0.54), and thus also the overall cost of restricted 
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operations at the dam (R = 0.53), with higher costs more likely to occur in high demand seasons (i.e., 

winter and summer). Although water availability (i.e., seasonal hydropower generation) is a critical 

contributing factor to the cost of restricted operations at the dam, the non-linear relationship between 

hydropower generation and the cost of restricted operations (described in section 2.2.1) leads to a very 

weak linear relationship between these two variables.  

 Figure 27 maps the seasonal cost of restrictions (    over the period 2005-2013 according to 

price spread (x-axis) and seasonal generation at Roanoke Rapids Dam (y-axis). This figure reaffirms the 

linear relationship found between the cost of restrictions and price spread, with costs at a given generation 

level increasing as a function of price spread. The non-linear quality of the relationship between seasonal 

hydropower generation and the cost of restrictions is also evidenced somewhat by the lowest costs at each 

price spread generally occurring at higher or lower generation levels, and the highest costs at each price 

spread occurring at intermediate generation levels.  
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Figure 27. Seasonal cost of restricted operations as a function of total hydropower generation (GWh) and 

spread between peak and off-peak electricity prices ($/MWh) for the period 2005-2013. 

  

3.2. Cost Model 

 

 Cost data for the period 2005-2013 was used to calibrate a model that estimates the seasonal cost 

of restrictions at Roanoke Rapids Dam based on total hydropower generation and the price spread (see 

Equation 2). Figure 28 shows a three dimensional representation of the calibrated model. For any given 

price spread, estimates of seasonal cost ( ̂   change as a function of total hydropower generation in a 

non-linear manner: the lowest cost values occur at high and low generation levels, while the highest cost 
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values occur at intermediate generation levels (i.e., when total hydropower generation is around 95GWh). 

Maximum possible costs increase as a function of price spread, as does the sensitivity of seasonal costs to 

different levels of hydropower generation. Likewise note that hydrologic conditions regulate the 

sensitivity of seasonal costs to the price spread (for example, during extremely wet or dry hydrological 

conditions, price spread has little influence on costs).  

 

 

Figure 28. Model of seasonal cost of restricted operations at Roanoke Rapids Dam as a function of total 

hydropower generation and price spread. 

 

Figure 29 compares historical seasonal costs (    for the period 2005-2013 alongside estimates 

produced using the cost model; results suggest that the cost model has a high capacity for reproducing the 

historical times series of seasonal costs, with R
2
 = 0.91 and MSE of $158,000/season (13% of      ). 
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Figure 29. Actual and estimated seasonal costs of restricted operations using cost model calibrated with 

historical hydropower generation and price spread data from 2005-2013. 

 

3.3. Financial Hedging Strategy 

 

 The financial hedging strategy shown in Figure 25 (i.e., a collar agreement between a 

downstream stakeholder and a third party insurer) was implemented over the period 2005-2013, with 

collar payments triggered by fluctuations in the seasonal (or “spot”) cost of restrictions at Roanoke 

Rapids Dam (    (see Equation 3). Table 4 shows the results of this arrangement in terms of the mean 

and standard deviation of net payments (see Equation 4) made by a hypothetical downstream stakeholder 

who has agreed to send make-whole payments to the dam owner in exchange for the implementation of 
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restricted operations. Results shown are for contracts “signed” one year prior to season   that entail 

coverage for one full calendar year (four consecutive seasons).  

Note that since the use of third party insurance requires the downstream stakeholder to pay a 

premium regardless of the net exchange of funds in the collar agreement, the average net seasonal 

payment under the third party contract ($1.34M) is higher than the expected spot cost of restrictions 

(       ($1.15M). The average seasonal premium associated with the collar agreement was calculated to 

be $190,000, or about 16.5% of the expected spot cost of restrictions. In exchange for this premium, 

however, the collar agreement provides to the downstream stakeholder a significant decrease in the 

seasonal variability of net payments (the standard deviation is reduced from $0.69M to $0.19M). The 

collar agreement also reduces the downstream stakeholder’s exposure to very large single season 

payments (the maximum payment falls from $2.8M to $1.58M).  

 

Table 4. Effect of collar agreement on net seasonal payments paid by downstream stakeholder over the 

period 2005-2013.  

 
Mean ($M) 

Standard 

Deviation ($M) 

Min 

($M) 
Max ($M) 

Without 

Collar  
1.15 0.69 0.17 2.80 

With 

Collar 
1.34 0.19 0.99 1.58 

 

 

 Figure 30 shows net seasonal payments for the downstream stakeholder with and without the 

collar agreement over the period 2005-2013. The collar agreement enables the downstream stakeholder to 

make lower net payments when    is high (collar payments are used to defray costs above          but it 

increases net payments for the downstream stakeholder when    is low.   
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Figure 30. Seasonal net payments with and without a collar agreement for the period 2005-2013. 

 

4. CONCLUSIONS 

 

Findings from this study confirm that the mean cost of restricted operations at Roanoke Rapids 

Dam decreased over the period 2005-2013, and that this decrease is strongly associated with a narrower 

spread between peak and off-peak electricity prices caused by low natural gas prices. In addition to the 

price spread, year-to-year changes in hydropower generation at the dam are also identified as a primary 

factor driving fluctuations in the cost of restrictions. Although natural gas prices have in recent years been 

near a 20-year low point, we suggest that, based on historical variability in gas prices and hydrological 

conditions in this region, the cost of restrictions at the dam is susceptible to large year-to-year fluctuations 

in the future.  
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With this in mind, we also evaluated the use of third party hedging agreements to help a 

hypothetical downstream stakeholder reduce year-to-year financial uncertainty associated with the 

purchase of environmental flow benefits (operational restrictions) from an upstream dam owner. Results 

suggest that for a relatively small premium (16.5% of expected costs), the downstream stakeholder can 

dramatically reduce fluctuations in net payments and eliminate their risk of having to make very large 

payments in any given year. Although this type of hedging strategy increases mean net payments for the 

dam stakeholder, the corresponding improvement in financial certainty may be important in setting up 

multi-year exchanges between conservation organizations and dam owners.  

In considering prospective sites for the implementation of exchanges between dam owners and 

downstream stakeholders, it is important to note that the costs of ramp rate restrictions at large dams are 

likely to be much greater than those of smaller dams. In addition, third party insurers may be reluctant to 

engage in collar agreements if seasonal reservoir inflows (hydropower production) are subject to 

manipulation by the dam owner or a different upstream water user. As a result, the best sites for the 

implementation of exchanges (along with third party collar agreements) may be smaller headwater 

projects, where the cost of restrictions is reduced and inflows can be considered unregulated.  

Results from this analysis represent an improved understanding of how different underlying factors 

contribute to variability in the cost of ramp rate restrictions at dams and provide a framework for making 

more accurate estimates of the long-term costs of these restrictions that can be included in dam 

relicensing discussions.  In addition, the demonstrated potential of collar agreements in reducing financial 

uncertainty for purchasers of environmental flow benefits provides the basis of another viable pathway 

(outside of the FERC relicensing process) for the restoration of sub-daily variability in river flows.    
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APPENDIX 1: CHAPTER 1 

1. Electricity Market Model 

 

The actual generating portfolio in the system of interest (i.e., the Dominion Zone of PJM 

Interconnection) was modeled using the Environmental Protection Agency’s (EPA) 2010 eGrid database, 

with each generator in the utility’s footprint was catalogued by generating capacity (MW), age, fuel type, 

prime mover and average heat rate (MMBtu/MWh). Specific operating constraints parameters were 

estimated for each size and type of plant using a range of industry, governmental and academic sources 

(Table 5). The exact generation portfolio used to simulate wind integration results is shown in Table 6. 

1.1 Plant Costs 

1.1.1 Electricity 

 

The cost of electricity production at each size and type of thermal power plant in the system was 

estimated from average heat rates reported in the EPA’s eGrid database, as well as information taken 

from previous industry and academic studies. For illustrative purposes, an example calculation of fixed 

and variable costs of electricity production at a 254MW coal plant is presented below.  

For each type of thermal power plant in the system, applicable heat rate data from previous studies 

were standardized in terms of an independent variable (percentage of maximum plant output) and a 

dependent variable (a multiplier of maximum plant efficiency); then, a single, standardized heat rate curve  

was estimated using a power law or polynomial function. Figure 31 plots heat rate data for coal plants of 

different sizes from three different sources [25,26,27] along with the standardized heat rate curve 

determined for all coal plants.  
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Figure 31. Standardized heat rate curve for all modeled coal plants. 

 

Heat rate curves for each individual thermal plant in the system were then established by 

multiplying each plant’s reported heat rate from the EPA eGrid database times the appropriate 

standardized curve. For example: the reported average heat rate for the 254 MW coal plant  is 10.27 

MMBtu/MWh; in order to calculate the heat rate curve for this plant, the standardized curve calculated for 

all coal plants (shown in Figure 31) was multiplied by 10.27 MMBtu/MWh. Table 7 shows the 

standardized heat rate curve for all coal plants, as well as the individual heat rate and fuel cost curve for 

the example 254 MW coal plant, assuming a delivered 2010 cost of coal of $1.62/MMBtu [24]. 

Since there is great interest in simulating hourly market prices over an entire year for many 

different wind development scenarios, achieving reasonable solution times for a single iteration of the 
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electricity market model (i.e., hourly prices for a single 24-hour period) is critical. In order to reduce the 

number of binary variables in model’s sub programs, linear regression was used to represent fuel cost 

functions for each individual plant (r
2
 > 0.98 in all cases), yielding constant variable fuel costs. Fixed fuel 

costs were represented by the y-intercept of the linear cost models. Fixed and variable operations and 

maintenance (O&M) costs were estimated by plant type using reported information from investor owned 

utilities [28]. Start costs were estimated from a number of previous academic studies [29,25,26,30]. 

 

1.1.2 Reserves 

 

Two costs of power plants’ providing reserves were considered: 1) the additional O&M costs 

associated with ramping activities, which applies to both spinning and non-spinning reserves; and 2) the 

heat rate penalty associated with producing power at a lower efficiency, which applies only to spinning 

reserves. For the former, median costs of cycling for thermal plants of different sizes and types were 

taken from a report funded by the NREL completed by Intertek Aptec [30]. 

 The heat rate penalty that a thermal power plant experiences as a result of providing spinning 

reserves is a dynamic value that depends on the amount of reserves offered and where the generator is 

operating along its heat rate curve (i.e., how much electricity it is already producing). For each power 

plant in the system, the expected value of this dynamic cost was approximated using a matrix (an example 

for the 254 MW coal plant is shown in Table 8) with the value in each cell equaling: 

 

                           
       

     
      (8) 

 

 where                                          
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 Equation 8 represents the additional fuel costs associated with producing i MWh of electricity at a 

higher heat rate, C(i)—i.e., a lower efficiency, because of a j MW reserve offer. The expected value of 

each column j of Table 8 is the estimated heat rate penalty associated with a reserve offer of that amount. 

Using similar matrices for each individual thermal plant, cost functions describing reserve offer (MW) vs. 

heat rate penalty ($) were estimated using linear regression (r
2
 > 0.96 for all plants). This yielded constant 

variable heat rate penalties ($/MW), and fixed penalties set by the y-intercept. Total variable costs of 

spinning reserves were calculated by adding variable heat rate penalties and variable O&M costs ($/MW) 

attributable to cycling.  

 

1.2 Simplifying Assumptions 

1.2.1 Portfolio Clustering 

 

In order to reduce the computational complexity of the EM model’s problems, the generation 

portfolio for the system of interest (i.e., Dominion Zone of PJM) was clustered. In this process, the full 

portfolio of 68 generators was sorted by fuel type and prime mover into eight categories; each of these 

eight groups  was then partitioned by fixed and variable costs of electricity and reserves using a geometric 

clustering method, with each cluster of similar generators forming a ‘composite’ plant.  In this manner, 

the total number of power plants represented (and concurrently, the computational burden of the model) 

was reduced to a manageable, yet representative, quantity (24)—while total system wide generating 

capacity remained the same.  The number of clusters used was determined heuristically by contrasting 

results and solution times from the full generating portfolio with those of simplified portfolios. Moreover, 

nuclear and biomass plants in the system (totaling 4118 MW generating capacity) were assumed to be 

‘must take resources’ for the system and incorporated as demand reduction in the day-ahead electricity 

market.   
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1.2.2 Transmission Constraints 

 

Transmission constraints can introduce a critical bottleneck in unit commitment problems that 

limits the flow of power from one point to another. However, incorporating these limits into a power 

system model can dramatically increase its computational complexity. Previous studies employing unit 

commitment problems to investigate the impacts of wind integration on power systems have omitted 

consideration of transmission constraints, forgoing some level of model detail to enhance its explorative 

power [31]. Likewise, the electricity model described in this paper disregards transmission constraints and 

physical power flows among wind sites, power plants and demand centers, in the interest of achieving 

solution times short enough to simulate hourly results over long periods for multiple scenarios.  

 

1.3 Stochastic Real-time Electricity Demand Model 

 

Real-time electricity demand in each hour is simulated using as the sum of three different factors: 

1) unexpected (‘forced’) outages of scheduled generation capacity; 2) demand forecast errors in the day-

ahead electricity market; and 3) positive and negative wind forecast errors: 

 

                              +  ∑          
 
             , 0)  (9)       

 

where,                                                          (MWh) 

                                                          (MW) 
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A stochastic model for simulating demand forecast error in the day-ahead electricity market 

(DemErrt) was constructed using a discrete Markov Chain Monte Carlo method and historical 

information from PJM regarding day-ahead demand forecast errors. Historical hourly demand forecast 

error data were converted to histogram form (Table 9); for each bin, sample populations were built 

describing the ‘t+1’ (next period) error. Normal conditional probability density functions were calculated 

using the sample means and standard deviations of these t+ 1distributions. Then a Markov Chain model 

employing truncated versions of the ‘t+1’ probability distributions  was used with a random number 

generator to create a time series simulation of day-ahead demand forecast error in the modeled system. 

Special consideration was given to accurate reproduction of the standard moments of historical demand 

forecast errors (Figure 32), as well as their time series characteristics, e.g., autocorrelation (Figure 33). 

Results show the model does well in both respects. 
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Figure 32. Histograms of historical and simulated day-ahead demand forecast error. 
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Figure 33. Autocorrelation functions for historical and simulated day-ahead demand forecast error.  

 

 

In order to simulate forced outage events at power plants in the system (OutGent,j), hourly forced 

outage probabilities for each plant are determined using reported rates from the North American Electric 

Reliability Corporation [32]. Forced outage rates for each size and type of plant (i.e., # of outages per 

1000 service hours) were weighted by lognormal hourly electricity demand, such that the likelihood of a 

forced outage event increases during periods of higher plant usage. Time series of weighted outage 

probabilities for each plant were then converted to outage signals using Monte Carlo sampling over the 
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order to isolate the effects of wind energy, the same time series of forced plant outages and historical 

demand forecast errors are used to calculate real-time electricity demand in each wind scenario. 

 

1.4  Calculation of System Reserve Requirements 

 

Allocating too few generating reserves can expose a system to more frequent and more severe 

economic losses from ‘loss of load’; on the other hand, allocating too many generating reserves can result 

in higher system costs without any associated increases in reliability [33]. Methods for determining 

hourly reserve requirements vary by system; but, a general rule is the so called ‘N minus 1’ criterion, 

which stipulates that a system operator should reserve enough hourly generating capacity to cover the 

potential loss of its largest power plant [34].  This level of reserves may suffice to protect a system from 

loss of load in most contingencies; but due to the variability and unpredictability of wind speeds, 

maintaining system reliability while integrating wind energy will require utilities to reserve generating 

capacity beyond current levels [35]. 

An approach similar to those of [20] and [21] is used to determine hourly reserve requirements 

under wind development. Each scenario tested assumes a static base level reserve requirement (consistent 

with an N minus1 criterion). In addition, each wind scenario includes an additional dynamic reserve 

component beyond the N minus 1 criterion, set as a fixed percentage of forecasted wind energy in each 

hour. The total hourly system reserve requirement for each scenario is calculated as: 

 

                                      (10) 

 

where,                         

                     

                                   

    Fixed percentage specified for scenario s 
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Fixed percentages for each respective wind scenario (  ) are determined using the stochastic model 

for real-time electricity demand described in section 1.3 of this Appendix. For each wind scenario tested, 

hourly real-time electricity demand is simulated over 300 discrete, year long periods. Then, a value of    

is identified that yields a loss of load probability (LOLP) equivalent to that of baseline conditions (i.e., a 

system with no wind capacity). 

 

        
∑     

 
   

 
        (11) 

 

where,       {
                          

           
 

                     

T = number of hours in simulation period 

 

Wind reserve requirements      generally increase with greater installed wind power capacity, 

because negative wind forecast errors become more severe and require higher levels of reserves to 

maintain baseline reliability. Values of    calculated using the EM model and EWITS data from five 

separate geographical regions suggest that an average daily wind market penetration of 5% would require 

additional reserves equivalent to 7 to 10% of forecasted wind energy (i.e.,    = 0.07 to 0.10); while a 

market penetration of 25% would require additional reserves equivalent to 10 to 25% of forecasted wind 

energy (i.e.,    = 0.10 to 0.25), depending on source region and geographical distribution. 
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1.5  Unit Commitment Problem 

 

The solution of a single iteration of the unit commitment (UC) problem, which co optimizes the 

provision of day-ahead electricity and reserves to meet forecasted demand in each market, is bound by a 

number of system wide and plant specific constraints. Most of the constraints imposed by the UC problem 

on individual generators reflect plant specific operating parameters. These include: maximum generating 

capacity, minimum (‘turn down’) generating capacity, ramp rate, and minimum up and down times.  

Another important constraint that applies to the day-ahead problem concerns its use of a single market for 

allocating both spinning and non-spinning reserves. In reality, a system may distinguish between reserves 

used to meet real-time electricity demand occurring as a result of demand forecast error (e.g., spinning 

reserves) and reserves used to respond within minutes to the sudden loss of generating capacity (non-

spinning reserves) [35]. Although a single market for reserves is represented in this study, the UC 

problem is bound by a constraint that 50% of hourly demand for reserves must be met by spinning 

reserves, i.e., unused capacity that is already online in the day-ahead electricity market or hydropower, a 

rule shared by other large electric power systems [36].  

The provision of reserves by an individual power plant is limited by its ramp rate. In addition, 

startup times affect a power plant’s ability to provide non-spinning reserves. Coal fired and natural gas 

combined cycle generators, both of which are assumed to have start up times longer than one hour, can 

only provide reserves if they are already online [37]. Natural gas and oil combustion turbines have 

quicker start up times and are able to provide spinning or non-spinning reserves; hydropower is also able 

to provide either type of reserve. 

 

1.5.1 Full Mathematical Formulation 

 

Time series parameters and decision variables for the UC problem are described in Tables 10 and 

11, respectively. Constraints are described in Table 12. 



  

135 
 

Objective Function: 
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20. ∑
                        

                  

    
                      

  

1.6  Economic Dispatch Problem  

 

The primary constraint on the solution of the economic dispatch problem is that the system must 

exhaust its hourly supply of reserves before selecting other resources to help meet real-time electricity 

demand. In addition, the amount of real-time electricity provided by any plant in a given hour must be 

less than or equal to its concurrent offer in the reserves market.  

1.6.1 Full Mathematical Formulation 

 

Time series parameters and decision variables for the economic dispatch problem are described in 

Tables 13 and 14, respectively. Constraints are described in Table 15. 

 

Objective Function: 
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where,                                       

                                             

 n = generator in non-spinning reserves portfolio 

 

Subject to Constraints: 

21.                    

22. ∑          ∑         
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24.                        

25.                                

26.                   

 

2. Reservoir System Model 

2.1 Hourly Natural Flow Model 

 

The hourly river flow model uses cross correlation functions calculated for pairs of subsequent 

(upstream and downstream) United States Geological Survey (USGS) stream gages to estimate expected 

travel times (and likewise, flow speeds) for river segments throughout the Roanoke River basin. Average 

flow speeds are then used to extrapolate hourly inflows to John H. Kerr Reservoir, as well as natural 

flows at the present day site of Roanoke Rapids Dam.  

Given simultaneous hourly flow records at a pair of successive (upstream and downstream) gages 

on the same river, their sample cross correlation function rxy(k) can be calculated as follows: 

 

        
      

    
            (12) 

 

where,          
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The hourly lag (member of k) yielding the highest sample cross correlation (rxy(k)) between the two 

flow records approximates txy, or the average time required for water to flow from the upstream (x) to 

downstream (y) site.  The average flow speed for the gage pair (spxy) can then be calculated as dxy 

(measured stream length from x to y) divided by txy.  Assuming a constant flow speed and a Lagrangian 

frame of reference in which individual parcels of hourly flow experience no inter blending, flows at a 

downstream location in future time period (ft) are estimated using recorded flows from an upstream gage.  

  

                   (13) 

 

where,                                                     

   
 

    
                                                                

                                                                       

 

The methodology described above is used by the hourly natural flow model to simulate inflows to 

John H. Kerr reservoir, as well as pre-dam flows at the present day site of Roanoke Rapids Dam. Pairs of 

successive US Geological Survey (USGS) gages were selected for the Staunton and Dan Rivers, which 

collectively contribute 90% of the inflows reaching upstream John H. Kerr Reservoir from the upper 

basin. Hourly flow records for the period 2005 to 2010, as well as stream distances measured in ArcGIS, 

were used to estimate flow speeds for both rivers. Figure 34 shows historical hourly flows at the furthest 

downstream USGS stream gage on the Staunton River (#2066000) alongside simulated flows at the same 

site, which were extrapolated using cross correlation analysis from a second USGS gage 42km upstream 

(#2062500). Linear regression of the two time series for the period 2005 to 2010 yields an r
2
 = 0.92. 

Results for the gage pair selected on the Dan River reveal a similarly high level of predictive capacity (r
2
 

= 0.89). No pairs of gages are available for the Bannister or Hyco Rivers, so flow speeds for these rivers 
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are assumed to be an average of values for the Staunton and Dan Rivers, weighted by contributing flow 

volume.  

 

 
 

Figure 34. Historical vs. Simulated Hourly Flows at USGS gage 2066000, for the period 7/1/2006 – 12/31/2006. 

Simulated flows are extrapolated from USGS gage 2062500 (42km upstream) using cross correlation analysis.  

 

 

Hourly flows at the confluence of the four rivers are estimated, employing: 1) one USGS gage for 

each river, located just upstream of the confluence; 2) calculated flow speeds for each individual river; 

and 3) stream distances measured in ArcGIS. Pre dam flows at the present day site of Roanoke Rapids 

Dam are simulated in a similar manner, using the weighted average flow speed of the Staunton and Dan 

Rivers.  
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It is important to note that this technique does not incorporate runoff from floodplain areas adjacent 

to the river or the contribution of unrecorded downstream tributaries. As a result, the model 

underestimates flows at downstream sites, particularly during high magnitude flow events. Although 

linear regression of historical and simulated weekly inflows to Kerr Reservoir show an r
2
 = .95, total 

annual inflows are underestimated by 11%. It is likely, therefore, that the hourly flow model under 

predicts the magnitude of pre dam flows at the site of Roanoke Rapids Dam. Nonetheless, cross 

correlation analysis provides an accurate representation of natural flow dynamics (i.e., hourly and daily 

variability) for present day dam sites.  If characterizing flow dynamics under a variety of wind 

development scenarios were a central modeling focus, relatively small errors in flow volume would be 

deemed an acceptable cost.  

 

2.2 Hourly Hydropower Dispatch Model 

 

The hydropower dispatch model’s core optimization program has perfect foresight regarding day-

ahead electricity and reserve prices within each discrete planning horizon, i.e., for hours t = 1,2,...96, as 

well as perfect foresight regarding real-time electricity prices for hours t = 1,2,...24.  In general, forecasts 

of day-ahead electricity prices in wholesale markets demonstrate mean absolute error of (3 to 20%) [38]. 

Real-time electricity prices, which depend on stochastic elements like forced outages and forecast errors, 

are more difficult to predict. A result of assigning the hydropower dispatch model enhanced foresight 

regarding real-time market prices is that reservoir release schedules simulated by the hydropower dispatch 

model may not always reflect decisions that a dam operator would make under uncertainty. Rather, they 

should be viewed as an upper bound on a dam operator’s ability to respond to financial incentives.  
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2.1.1 Full Mathematical Formulation 

 

Detailed lists of time series parameters, decision variables and constraints for the hourly 

hydropower dispatch model are contained in Tables 16, 17, and 18.  

 

Objective Function: 

                  ∑        
  
                         

                                                       

 

 

 where, t = hour of operating horizon 

 

Subject to: 

1.               

2.                      

3. ∑   
              

 
                  

  
                      

4.              

5.                         

6.                  
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Table 5. List of plant specific operating parameters with descriptions and source material. 

Parameter Description Source 

Minimum Generating 

Capacity (MW) 

Minimum generating capacity that can be 

sustained by a unit before it must be shut 

off. 

[25,26,39,41] 

Minimum Up Time (hrs) 
Minimum number of consecutive hours that 

a unit must run if it is turned on. 
[25,26,29,43,47] 

Minimum Down Time (hrs) 
Minimum number of consecutive hours that 

a unit must rest if it is turned off. 
[25,26,30,39,45,47] 

Ramp Rate (MWh/hr) 
Maximum hour to hour change in plant 

electricity output.  
[26,39,40,41,44,45,46] 

Forced Outage Rate 
Probability of unplanned outage at power 

plant.  
[32] 

Planned Outage Rate 
Probability of planned outage at power 

plant. 
[32] 

Start Up Cost ($) Cost ($) of starting a plant that is off. [25,26,29,30] 

Heat Rate Curves 
Plant heat rate (MMBtu/MWh) as function 

of plant electricity output. 
[25,26,27] 

Fixed O&M Cost ($) 
Fixed operations and maintenance costs 

accruing while plant is on. 
[25] 

Variable O&M Cost ($/MWh) 
Operations and maintenance costs accruing 

as a function of plant energy output. 
[25,30,42] 

Fuel Prices ($/MMBtu) Price of fuel feedstocks for thermal plants. [24] 



  

 
 

Table 6. Reference generation portfolio based on Dominion Zone of PJM (assuming 2010 prices of coal and natural gas of $1.62/MMBtu and 

$4.86/MMBtu, respectively).  

 

MaxCapj 

(MW) 

MinCap

j (MW) 

MinUpj 

(hours) 

MinDownj 

(hours) 

RRatej 

(MW/h) 

VCj 

($/MWh) 
FCj/n ($) SCj/n ($) 

VCSRj 

($/MW) 

FCSRj 

($) 

VCNRn 

($/MW) 

VCn/s 

($/MWh) 

HYD1 208.0 1.0 1 1 208 0.00 1224 400 0.00 0.00 0.00 0.00 

HYD2 178.0 1.0 1 1 178 0.00 1306 400 0.00 0.00 0.00 0.00 

PSH1 1637.0 1.0 1 1 1637 8.11 5300 450 0.00 0.00 0.00 8.11 

COAL1 1918.4 226.0 9 15 226 19.76 6991 84800 5.25 51.87 n/a 17.19 

COAL2 440.5 73.5 9 15 88 17.51 2092 22960 5.18 21.08 n/a 14.17 

COAL3 3480.4 180.0 24 24 180 18.90 13375 264526 5.39 12.76 n/a 16.94 

COAL4 483.8 81.3 17 20 94 18.00 3019 37367 5.26 25.15 n/a 14.66 

COAL5 1257.0 180.0 24 24 180 18.88 31397 184779 5.15 20.00 n/a 16.92 

COAL6 439.3 58.3 9 15 64 16.60 1372 18230 5.06 14.36 n/a 13.26 

COAL7 99.4 18.5 12 17 21 14.58 366 5780 4.77 4.47 n/a 11.24 

NGCT1 1462.7 44.7 2 2 536 68.48 13369 22576 2.68 193.98 1.10 67.38 

NGCT2 1943.9 10.0 2 2 1944 51.96 9132 200221 2.14 473.50 1.10 50.86 

NGCT3 509.1 46.0 2 2 509 75.13 25171 16291 2.79 199.00 1.10 74.03 

NGCT4 1813.5 46.0 2 2 676 68.60 18594 91927 2.61 231.00 1.10 67.50 

NGCC1 399.0 45.0 4 6 399 29.54 6068 31521 7.28 682.00 n/a 28.90 

NGCC2 330.0 42.7 4 6 330 34.77 6867 26070 8.60 676.00 n/a 34.13 

NGCC3 480.4 41.2 4 6 255 31.77 4941 23731 7.85 478.71 n/a 31.13 

NGCC4 1885.1 35.9 4 6 943 30.93 14428 74741 8.28 1856.02 n/a 30.29 

OIL1 104.2 1.0 4 3 104.2 308.73 2191 2649 18.81 283.59 0.60 308.13 

OIL2 131.2 1.0 1 1 131.2 229.74 2878.47 768.00 13.99 44.59 0.60 229.14 

OIL3 130.4 1.0 4 2 130.4 369.79 2105.54 2649.60 22.59 353.01 0.60 369.19 

NUC1 1695 
 

HYD = Conventional Hydropower 
 

NGCC = Combine Cycle Natural Gas 
 

NUC2 1944 Key: PSH = Pumped Storage Hydropower 
 

BIOM = Biomass 
   

BIOM1 463 
 

NGCT = Combustion Turbine Natural Gas 
 

NUC = Nuclear 
   

  

 

1
4

3
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Table 7. Calculation of heat rate and fuel cost curves for a 254 MW coal plant with reported eGrid efficiency 

of 10.27 MMBtu/MWh, assuming a delivered fuel price for coal of $1.62/MMBtu. 

 

Fraction of 

Maximum Plant 

Capacity 

Individual Plant 

Output (MWh) 

Standardized 

Heat Rate 

Multipliers for All 

Coal Plants 

Individual Plant 

Heat Rate 

(MMBtu/MWh) 

Individual 

Plant Fuel 

Costs ($) 

0.1 25.4 1.568 16.1 662.48 

0.2 50.8 1.361 13.98 1150.50 

0.3 76.2 1.253 12.87 1588.72 

0.4 101.6 1.181 12.13 1996.50 

0.5 127 1.129 11.59 2384.53 

0.6 152.4 1.088 11.17 2757.74 

0.7 177.8 1.054 10.82 3116.55 

0.8 203.2 1.026 10.53 3466.31 

0.9 228.6 1.001 10.28 3807.01 

1 254 1 10.27 4225.90 

  

 

 

 

 

 

 

 

 

 

 

 



  

 
 

Table 8. Expected heat rate penalties associated with provision of reserves for example 254 MW coal plant with minimum generating capacity 

of 101.6 MW and a ramp rate of 127MW/h. 

 

  
Reserve Offer (MW) 

 
(i,j) 12.7 25.4 38.1 50.8 63.5 76.2 88.9 101.6 114.3 127 

E
le

ct
ri

ci
ty

 P
ro

d
u

ct
io

n
 (

M
W

h
) 101.6 $46.77  $87.68  $123.95  $156.46  $185.87  $212.68  $237.28  $259.99  $281.06  $300.68  

127 $45.34  $85.97  $122.74  $156.25  $187.00  $215.39  $241.72  $266.25  $289.20  $310.74  

152.4 $44.11  $84.33  $121.23  $155.30  $186.89  $216.33  $243.87  $269.72      

177.8 $43.06  $82.80  $119.66  $154.00  $186.13  $216.29          

203.2 $42.13  $81.38  $118.10  $152.57              

228.6 $41.31  $80.08                  

 
E[] $43.79  $83.71  $121.14  $154.92  $186.47  $215.17  $240.96  $265.32  $285.13  $305.71  

 

 

1
4

5 
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Table 9. Historical Day-ahead Demand Forecast Error Probabilities 

Period t Frequency Histogram Period t+1 Conditional 

Distribution N(μ,σ) 

Bins Frequency Mean Variance 

 3400  3200 5  3222.6 20620.96 

 3200  3000 5  2808.6 545529.96 

 3000  2800 2  2938 43222.41 

 2800  2600 4  2732.5 114446.89 

 2600  2400 2  2469.5 34077.16 

 2400  2200 8  2117.9 536263.29 

 2200  2000 3  1994 109627.21 

 2000  1800 6  1813.3 99351.04 

 1800  1600 20  1517.2 232131.24 

 1600  1400 53  1372.9 109759.69 

 1400  1200 70  1286.4 73495.21 

 1200  1000 123  1039.5 106536.96 

 1000  800 192  827.9 95976.04 

 800  600 314  612.9 96783.21 

 600  400 562  455.3 45582.25 

 400  200 861  248.9 40320.64 

 200 0 1482  90 25953.21 

0 200 2209 53.7 30102.25 

200 400 1024 261.6 31612.84 

400 600 664 454 44436.64 

600 800 390 626.2 70649.64 

800 1000 228 759.9 110556.25 

1000 1200 98 913.1 166953.96 

1200 1400 70 1224 94310.41 

1400 1600 20 1415.6 99225 

1600 1800 27 1487.4 105820.09 

1800 2000 13 1749.9 334199.61 

2000 2200 10 1799.3 383037.21 

2200 2400 5 2117.4 121452.25 

2400 2600 2 2385 510.76 
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Table 10. UC problem time series parameters. 

Parameter Description 

Planned Outaget,j (MW) Planned outage or derating of generator. 

Turbine Efficiencyt,j (MWh/km
3
) 

Water to electricity conversion efficiency of 

hydroelectric turbine; function of reservoir 

elevation. 

Available Storagej (km
3
) 

Available reservoir storage for hydroelectric 

power production at plant j (dynamic value). 

DADemandt (MWh) 
Net hourly electricity demand in day-ahead 

market. 

RVDemandt (MW) 
Hourly demand in reserves market (spinning + 

non-spinning). 

InitialONj {0,1} 
Initial plant status conditions determined from 

previous iteration of UC model. 

InitialMWhj (MWh) 
Initial plant status conditions determined from 

previous iteration of UC model. 

  

 

Table 11. UC problem decision variables 

Variable Description Range 

DAMWht,j Day-ahead electricity production in hour t at generator j >= 0 

NRVMWt,j Non-spinning reserve provided in hour t by generator j >= 0 

SRVMWt,j Spinning reserve provided in hour t by generator j >= 0 

Ont,j 
Binary state variable indicating production in day-ahead 

electricity market 
{0,1} 

NRVONt,j 
Binary state variable indicating provision of non-spinning 

reserves 
{0,1} 

SRVONt,j 
Binary state variable indicating provision of spinning 

reserves 
{0,1} 

STARTt,j 
Binary state variable indicating plant start in day-ahead 

market 
{0,1} 

Reservoir Spillt,j Reservoir release that does not produce electricity >= 0 
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Table 12. Unit commitment problem constraints. 

Constraint Description Scope 

1 Unit 'on/off' initial conditions. 
 

2 Unit production initial conditions.   

3 
Total day-ahead electricity generation must 

meet forecasted hourly demand.   

4 
Forces ON variable = 1 if scheduled 

generation > 0. 

 

5 Minimum or 'turn off' generating capacity. 

 

6 

Cumulative system supply of spinning and 

non-spinning reserves must meet hourly 

demand. 

 

7 
Spinning reserves must supply at least half 

of total reserves. 

 

8 
Total supply of reserves at a generator is 

limited by unit's maximum ramp rate. 

 

9 
Forces SRON variable = 1 if scheduled 

spinning reserves > 0. 

 

10 
Forces NRON variable = 1 if scheduled 

non-spinning reserves > 0. 

 

11 

Spinning reserves can only be supplied by 

thermal units that are already online, or 

hydropower. 

 

12 

Non-spinning reserves can only be supplied 

by quick start units (hydropower, combustion 

turbine natural gas, and oil). 

 

13 
Maximum turbine capacity constraint with 

planned outages and deratings. 
 

14 Ramp rate restriction. 

 

15 Ramp rate restriction. 

 

16 Minimum up time. 

 

      = 0 

      = 0 

    

      

      

    

    

      

      

      

      

     

                

      

               
  

               
  

                     
 
 {      

        ( 

             )} 
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17 Minimum down time.  

 

18 
Forces START variable = 1 if unit is started 

in hour t. 
 

19 
Water balance equation for conventional 

hydroelectric dams. 

 

20 
Water balance equation for pumped storage 

hydroelectric dams. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    
 
 {      

        ( 

               )} 
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Table 13. ED problem time series parameters. 

Parameter Description 

RTDemandt (MWh) Hourly electricity demand in real-time market. 

InitialONn {0,1} Plant status condition determined by UC model. 

 

 

 

Table 14. ED problem decision variables. 

Variable Description Range 

RTMWht,n 
Real-time electricity production from non-spinning 

reserves in hour t at generator n 
>= 0 

RTMWht,p 
Real-time electricity production from spinning 

reserves in hour t at generator s 
>= 1 

rtONt,n 
Binary state variable indicating production real-time 

production 
{0,1} 

RTONt,n 
Binary state variable indicating real-time (but not day-

ahead) production 
{0,1} 

STARTt,n 
Binary state variable indicating plant start in real-time 

market 
{0,1} 
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Table 15. Economic dispatch problem constraints. 

Constraint Description Scope 

21 
Unit 'on/off' initial conditions for 

non-spinning reserve. 
 

22 
Real-time electricity demand 

constraint. 

 

23 

Real-time electricity production 

from non-spinning reserves must be 

less than or equal to reserve offering; 

forces rtON variable = 1 if real-time 

electricity production is > 0 
 

24 
Forces RTON variable = 1 if real-

time electricity production is > 0 and 

day-ahead electricity production = 0. 

 

25 
Forces RTSWITCH variable = 1 if 

plant start occurs in real-time. 

 

26 
Real-time electricity production 

from spinning reserves must be less 

than or equal to reserve offering. 
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Table 16. Time series parameters for hourly hydropower dispatch model. 

Parameter Description 

σ (MWh/km
3
) 

Water to electricity conversion efficiency of hydroelectric 

turbine; function of beginning of period reservoir elevation. 

Available Storage (km
3
) 

Available reservoir storage for hydroelectric power 

production (dynamic value). 

DAPt ($/MWh) Hourly electricity price in day-ahead market. 

RTPt ($/MWh) Hourly electricity prices in real-time market. 

RVPt ($/MW) 
Hourly price in reserves market (spinning + non-

spinning). 

InitialON {0,1} 
Initial plant status conditions determined from previous 

iteration of dispatch model. 

 

 

 

Table 17. Decision variables in hourly hydropower dispatch model. 

Variable Description Range 

DAMWht Day-ahead electricity production in hour t >= 0 

RVMWt Non-spinning reserve provided in hour t  >= 0 

Ont 
Binary state variable indicating production in day-ahead 

electricity market 
{0,1} 

STARTt 
Binary state variable indicating plant start in day-ahead 

market 
{0,1} 

Reservoir 

Spillt 
Reservoir release that does not produce electricity >= 0 

RTMWht Real-time electricity production in hour t  >= 0 

 

 

 

 

 

 

 



  

153 
 

Table 18. Constraints for hourly hydropower dispatch model. 

Constraint Description Scope 

1 Unit 'on/off' initial conditions. 

 

2 Turbine capacity constraint. 

 

3 Reservoir water balance equation. 

 

4 
Limits production of real-time electricity 

by reserve offer. 

 

5 
Forces ON variable = 1 if electricity 

production in the day-ahead or real-time 

markets > 0. 

 

6 
Forces START variable = 1 if electricity 

production > 0 in hour t and equal to zero 

in hour t 1. 
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APPENDIX 2: CHAPTER 2 

 

 

Table 19. Proportionality constants ( ) used to calculated hourly reserve requirements for each wind 

scenario. Please refer to [21] for detailed description of methodology used to simulate hourly dynamic reserve 

requirements. 

 

 
 

Installed Wind Power Capacity 

 
 

LOW MED HIGH 

G
eo

g
ra

p
h

ic
al

  

S
o
u
rc

e 
R

eg
io

n
 Northern Plains 8 7.7 10.17 

Southern Plains 7.83 7.71 9.29 

Midwest 10.82 15.69 28.75 

Mid-Atlantic 8.33 10.7 19.13 

Offshore 7.69 11.09 15.44 

  

 

 

 



  

 
 

Table 20. The 15 wind development scenarios tested in this study. Please refer to [21] for detailed description of algorithm used to select wind 

sites for each scenario. 

 

  
Geographical Source Region 

  
Northern Plains Southern Plains Midwest 

Mid-Atlantic and 

Appalachia 

Offshore 

Atlantic Coast 

  

MT, ND, SD, NE, 

MN, IA, MI, KS, 

CO  

NM, OK, TX, KS, 

MI, AK, CO  
IL, IN, OH 

NC, VA, WV, PA, 

MD  
NC, VA 

  

Installed Capacity       

(Avg. Capacity 

Factor) 

Installed Capacity      

(Avg. Capacity 

Factor) 

Installed Capacity      

(Avg. Capacity 

Factor) 

Installed Capacity      

(Avg. Capacity 

Factor) 

Installed Capacity      

(Avg. Capacity 

Factor) 

In
st

al
le

d
 W

in
d
 

C
ap

ac
it

y
 L

O
W

 

1.21 GW (.469) 1.36 GW (.464) 1.61 GW (.339) 1.53 GW (.357)  1.20 GW (.442) 

M
E

D
 

3.82 GW (.452) 3.62 GW (.451) 4.78 GW (.335) 4.98 GW (.323) 3.62 GW (0.439) 

H
IG

H
 

6.49 GW (.441) 6.37 GW (.444) 8.87 GW (.333) 8.81 GW (.303) 6.04 GW (.438) 
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APPENDIX 3: CHAPTER 3 

 

1. Synthetic Model Inputs 

 

1.1 Weather Data 

 

An approach developed by Nowak et al. [19] for disaggregating annual to daily streamflow across 

multiple sites was used to generate synthetic hydrological inputs (precipitation, evaporation and runoff) 

for the reservoir model. This method simulates daily flow data at multiple locations from historical annual 

flow values using K-nearest neighbor resampling of historical daily flow proportion vectors (all historical 

flows were obtained from the North Carolina Department of Natural Resources). The approach produces 

daily synthetic flow data that exhibits identical time-series characteristics as the historical record (e.g., it 

maintains historical daily, weekly and seasonal precipitation patterns) and provides for the potential 

occurrence of daily flow values outside (lower or higher than) historical occurrences. Each calendar year 

(365 days) of synthetic hydrological data is constructed as the algebraic product of: 1) a scalar equal to an 

annual flow value (Za) selected at random from a year (y = a) in the historical record; and 2) a daily flow 

proportion vector ( ⃗⃗ b) resampled from a different year (y = b) in the historical record.  

In order to maintain the connection between the occurrence of precipitation and changes in mean 

daily temperature, each year of synthetic hydrological data produced was paired with historical 

temperature data collected from the Richmond International Airport (Virginia) obtained from the National 

Climatic Data Center from year b (the year from which the proportion vector ( ⃗⃗ b) was obtained). Daily 

temperature data was then used to estimate daily peak electricity demand using a Markov Chain Monte 

Carlo model. Since the co-generation of synthetic hydrological and temperature (electricity demand) data 

in this manner requires concurrent historical records of each input, historical daily data from the period 

(1947-2012) served as the basis for the creation of synthetic temperature (electricity demand) and 

hydrological inputs. 
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Historical data for the period 1993-2012 were then assessed for statistical dependence between 

temperature and inflows and Henry Hub natural gas prices taken from the Energy Information 

Administration. A method developed by Haugh [23] for checking the dependence of stationary time series 

was used to evaluate each pair of inputs (i.e., temperature and gas prices, reservoir inflows and gas 

prices), with the null hypothesis in each case being that monthly values of one input (e.g., cumulative 

inflows to Kerr Reservoir) are independent of monthly values of another input (e.g., average natural gas 

price). Autoregressive (AR) models were fit to log-transformed historical data for each input, and the 

cross correlation function (Equation 1) of model residuals were used to calculate a test statistic, SM
* 

(Equation 2), described by a chi-square distribution. Results from this test failed to reject the null 

hypothesis (statistical independence) for each input pairing at a significance level of α = 0.05.  

 

         
      

    
            (1) 

 

where,          
 

 
∑    

   
      ̅         ̅   

    √              

    √               
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              ∑     | |      
                  (2) 

 

 where,                                    

 

Although Haugh’s test suggests that natural gas prices are relatively independent of localized 

temperature and inflows in Roanoke River basin, seasonal changes in temperature (electricity demand) 

are known to increase demand for natural gas in many systems, and extreme weather (e.g., hurricanes) 

can have significant short term impacts on supply [24]. It is thus important to recognize that the 

independence of natural gas prices from temperature and reservoir inflows may not hold in other systems, 

and if a significant relationship were to exist between gas prices and other model inputs, that relationship 

would need to be accounted for in the generation of synthetic data.  

 

1.2 Natural Gas Prices 

 

 Synthetic natural gas prices were generated using an Ornstein-Uhlenbeck (OU) stochastic 

difference model (Equation 3). In order to replicate the statistical characteristics of the historical record, 

model parameters (volatility, mean, and mean reversion rate) were estimated using a least squares 

polynomial fit to a time-series of historical natural gas prices (1997-2012). 

 

                            (3) 

 

 where,                                ($/MMBtu) 

                                        ($/MMBtu) 
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Synthetic natural gas prices simulated by the fitted model demonstrate a high degree of success and 

replicating historical time-series characteristics and statistical moments of average monthly natural gas 

prices. Figure 35 shows that the OU model is adept at reproducing the historical time-series 

autocorrelation of monthly gas prices at lags up to one year (12 months), an important consideration for 

the contracts developed in this paper, which are assumed to apply to seasonal coverage periods 12 months 

after contract inception. Figure 36 shows that the OU model also reproduces the log-normal shape of the 

historical distribution of natural gas prices, as well as the mean (historical: $5.60/MMBtu; simulated: 

$5.52/MMBtu). 
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Figure 35. Time-series autocorrelation of historical and simulated monthly natural gas prices. 
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Figure 36. Probability distributions for historical and simulated natural gas prices. 

 

The OU model was also used to simulate natural gas prices assuming lower and higher levels of 

volatility than the historical average. “Low” volatility was calculated as the lowest volatility level for any 

consecutive three-year section in the historical record (years selected were 2010-2012, a period of very 

low natural gas prices brought on by reduced economic activity and the recent increase in natural gas 

supply, largely attributable to advances in horizontal hydraulic fracturing). Likewise, “high” volatility 

was calculated as the highest volatility level for any three-year period (years selected were 2003-2005, a 

period in which the price of natural gas spike on multiple occasions due to Gulf occurring hurricanes 

disrupting refinery activity).  
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1.2.1 Natural Gas Derivatives 

 

Natural gas put options are priced on a monthly basis using a version of the Black-Scholes formula 

adapted to use natural gas futures prices as the underlying asset [21].  

 

                                             (4) 

     
  (

 

 
)  

 

 
       

 √   
        (5) 

           √           (6) 

  

 where,      = time to maturity 

                          
 

     
  

                 
 

     
  

                                                     

                                       

 

Monthly futures prices (   were simulated in a manner similar to that employed by Kogan et al. 

[25], as the risk-neutral conditional expectation of natural gas prices one year into the future, given the 

current spot price (Equation 7).  

   

            |                    (7) 

  

 where,                                        (
 

     
) 

                                                 
 

     
  



  

 

1.3 Additional Results 

 

Table 21. Contract cost effectiveness measures for contracts i(1)T and i(2)T for spring coverage period (March, April, May). Note that 

premiums listed for contracts based on the index i(1)T are averages for the 300-year testing period (in reality, premiums for these contracts 

fluctuate on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium     

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation 

($) 

RMF 
Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation 

($) 

RMF 
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5 2.76E+04 1.10E+04 0.25 1.94E+05 1.32 2.00E+04 -1.56E+03 -0.04 2.10E+05 1.34 

15 1.26E+05 4.57E+04 1.03 6.36E+05 2.04 1.10E+05 2.67E+04 0.60 5.90E+05 1.96 

25 2.37E+05 8.04E+04 1.82 8.99E+05 2.46 1.89E+05 4.96E+04 1.12 7.40E+05 2.20 

35 4.35E+05 1.31E+05 2.95 1.16E+06 2.89 3.81E+05 9.29E+04 2.10 6.70E+05 2.09 
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5 4.47E+04 1.95E+04 0.45 2.54E+05 1.43 1.79E+04 -1.67E+03 -0.04 4.18E+04 1.07 

15 1.34E+05 5.47E+04 1.25 6.53E+05 2.12 1.08E+05 2.65E+04 0.61 2.66E+05 1.46 

25 2.32E+05 8.36E+04 1.91 8.92E+05 2.53 1.90E+05 5.04E+04 1.15 4.33E+05 1.74 

35 3.82E+05 1.13E+05 2.59 1.03E+06 2.77 3.44E+05 8.54E+04 1.95 5.64E+05 1.97 
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5 5.15E+04 2.54E+04 0.54 6.64E+05 3.11 2.35E+04 -1.94E+03 -0.04 4.61E+05 2.46 

15 1.84E+05 7.24E+04 1.54 8.90E+05 3.82 1.27E+05 3.05E+04 0.65 5.21E+05 2.65 

25 3.51E+05 1.19E+05 2.54 1.04E+06 4.29 2.32E+05 6.13E+04 1.30 5.59E+05 2.77 

35 6.44E+05 1.81E+05 3.86 1.22E+06 4.88 4.66E+05 1.12E+05 2.39 5.65E+05 2.79 
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Table 22. Contract cost effectiveness measures for contracts i(3)T and i(4)T for spring coverage period (March, April, May). Note that 

premiums listed for contracts based on the indices i(3)T and i(4)T are averages of the 300-year testing period (in reality, premiums for these 

contracts fluctuate on an annual basis, depending on the spot price of natural gas). 

 

 
            

 
Strike 

(%) 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation 

($) 

RMF 
Premium  

($) 

Net Cost 

($) 

Net Cost 
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5 1.92E+04 -1.52E+03 -0.03 2.17E+05 1.35 1.92E+04 -1.37E+03 -0.03 2.12E+05 1.34 

15 1.13E+05 3.08E+04 0.69 5.13E+05 1.83 1.12E+05 2.86E+04 0.65 5.30E+05 1.86 

25 2.05E+05 5.81E+04 1.31 6.64E+05 2.08 2.04E+05 5.61E+04 1.27 7.41E+05 2.21 

35 3.98E+05 1.04E+05 2.34 7.74E+05 2.26 3.94E+05 9.86E+04 2.23 7.18E+05 2.17 
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5 1.91E+04 -2.74E+03 -0.06 4.69E+04 1.08 1.98E+04 -2.69E+03 -0.06 3.96E+04 1.07 

15 1.13E+05 1.97E+04 0.45 2.51E+05 1.43 1.17E+05 2.21E+04 0.50 2.50E+05 1.43 

25 2.05E+05 4.12E+04 0.94 4.00E+05 1.69 2.10E+05 4.67E+04 1.07 4.14E+05 1.71 

35 3.98E+05 7.74E+04 1.77 5.00E+05 1.86 4.08E+05 8.62E+04 1.97 5.77E+05 1.99 
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5 2.10E+04 1.18E+03 0.03 4.42E+05 2.40 2.14E+04 -1.28E+03 -0.03 4.52E+05 2.43 

15 1.23E+05 2.66E+04 0.57 5.27E+05 2.67 1.25E+05 2.72E+04 0.58 5.53E+05 2.75 

25 2.23E+05 5.18E+04 1.10 6.53E+05 3.07 2.30E+05 5.65E+04 1.20 6.10E+05 2.93 

35 4.28E+05 8.88E+04 1.89 8.28E+05 3.63 4.44E+05 9.99E+04 2.13 7.78E+05 3.47 
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Table 23. Contract cost effectiveness measures for contracts i(1)T and i(2)T summer season (June, July, August). Note that premiums listed for 

contracts based on the index i(1)T are averages for the 300-year testing period (in reality, premiums for these contracts fluctuate on an annual 

basis, depending on the spot price of natural gas).  

  
            

 
Strike 

(%) 

Premium     

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation 

($) 

RMF 
Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 
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RMF 

L
o

w
 V

o
la

ti
li

ty
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

  
 

O
ld

 f
lo

o
r:

 $
1

,0
4

9
,0

0
4

 

5 3.25E+04 1.70E+04 0.52 1.71E+05 1.16 6.36E+03 -1.72E+03 -0.05 1.17E+05 1.11 

15 8.46E+04 3.34E+04 1.01 1.68E+05 1.16 2.74E+04 1.17E+03 0.04 2.56E+05 1.24 

25 1.54E+05 5.23E+04 1.59 1.24E+05 1.12 9.88E+04 1.82E+04 0.55 1.95E+05 1.19 

35 2.70E+05 8.36E+04 2.54 1.52E+04 1.01 1.69E+05 2.94E+04 0.89 1.24E+05 1.12 
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5 2.17E+04 1.08E+04 0.33 3.40E+05 1.46 5.19E+03 -1.35E+03 -0.04 1.13E+05 1.15 

15 1.04E+05 3.73E+04 1.13 2.41E+05 1.33 4.24E+04 5.82E+03 0.18 1.77E+05 1.24 

25 1.95E+05 6.03E+04 1.83 1.93E+05 1.26 9.38E+04 1.74E+04 0.53 1.66E+05 1.22 

35 3.41E+05 9.30E+04 2.82 3.67E+05 1.50 1.64E+05 2.85E+04 0.86 2.72E+05 1.37 
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5 3.09E+04 1.78E+04 0.52 4.39E+05 1.72 6.81E+03 -1.86E+03 -0.05 2.72E+05 1.45 

15 1.09E+05 5.27E+04 1.52 5.53E+05 1.91 4.34E+04 5.06E+03 0.15 3.69E+05 1.61 

25 2.49E+05 9.43E+04 2.73 6.14E+05 2.01 1.21E+05 2.20E+04 0.64 3.60E+05 1.59 

35 4.24E+05 1.25E+05 3.62 2.93E+05 1.48 1.93E+05 3.35E+04 0.97 2.88E+05 1.47 
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Table 24. Contract cost effectiveness measures for contracts i(3)T and i(4)T for summer season (June, July, August). Note that premiums listed 

for contracts based on the indices i(3)T and i(4)T are averages of the 300-year testing period (in reality, premiums for these contracts fluctuate 

on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation ($) 
RMF 

Premium  

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation ($) 
RMF 
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9
,0

0
4
 

5 7.28E+03 -1.93E+03 -0.06 1.21E+05 1.12 6.59E+03 -1.97E+03 -0.06 1.19E+05 1.11 

15 3.77E+04 5.65E+03 0.17 2.10E+05 1.20 3.77E+04 4.44E+03 0.13 2.54E+05 1.24 

25 1.12E+05 2.09E+04 0.63 2.13E+05 1.20 1.12E+05 2.13E+04 0.65 2.03E+05 1.19 

35 1.96E+05 3.44E+04 1.05 1.37E+05 1.13 1.90E+05 3.28E+04 1.00 1.31E+05 1.13 
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5 7.29E+03 -3.62E+03 -0.11 1.51E+05 1.20 6.94E+03 -2.61E+03 -0.08 1.76E+05 1.24 

15 3.78E+04 -1.31E+03 -0.04 1.93E+05 1.26 3.74E+04 1.94E+03 0.06 1.82E+05 1.25 

25 1.11E+05 1.32E+04 0.40 1.81E+05 1.24 1.16E+05 1.87E+04 0.57 1.92E+05 1.26 

35 1.95E+05 2.49E+04 0.76 2.69E+05 1.36 1.99E+05 3.07E+04 0.93 2.54E+05 1.34 
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5 7.89E+03 -3.02E+03 -0.09 2.76E+05 1.45 8.66E+03 -3.28E+03 -0.09 2.72E+05 1.45 

15 4.10E+04 9.53E+02 0.03 3.27E+05 1.54 4.07E+04 2.68E+03 0.08 3.41E+05 1.56 

25 1.20E+05 1.54E+04 0.45 3.70E+05 1.61 1.24E+05 2.09E+04 0.60 3.57E+05 1.59 

35 2.11E+05 2.28E+04 0.66 2.61E+05 1.43 2.17E+05 3.09E+04 0.89 2.44E+05 1.40 
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Table 25. Contract cost effectiveness measures for contracts i(1)T and i(2)T for fall season (September, October, and November). Note that 

premiums listed for contracts based on the index i(1)T are averages for the 300-year testing period (in reality, premiums for these contracts 

fluctuate on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium     

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation ($) 
RMF 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation ($) 
RMF 
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 5 1.02E+04 6.22E+03 0.28 9.66E+04 2.02 5.45E+03 3.21E+03 0.14 8.44E+04 1.89 

15 4.05E+04 1.93E+04 0.86 1.32E+05 2.40 3.11E+04 1.17E+04 0.52 1.36E+05 2.45 

25 9.58E+04 3.70E+04 1.66 2.57E+05 3.72 7.94E+04 2.37E+04 1.06 1.52E+05 2.61 

35 1.98E+05 6.55E+04 2.93 3.76E+05 4.99 1.13E+05 3.16E+04 1.41 2.18E+05 3.31 
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5 8.07E+03 4.19E+03 0.19 -7.59E+03 0.93 5.74E+03 3.34E+03 0.15 1.04E+05 2.02 

15 4.36E+04 1.75E+04 0.81 1.26E+05 2.24 3.24E+04 1.19E+04 0.54 9.81E+04 1.96 

25 1.15E+05 3.61E+04 1.67 2.98E+05 3.93 8.21E+04 2.43E+04 1.11 1.26E+05 2.24 

35 1.96E+05 5.24E+04 2.42 3.85E+05 4.78 1.17E+05 3.24E+04 1.49 1.91E+05 2.87 
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5 1.12E+04 6.24E+03 0.24 -1.50E+04 0.86 2.19E+03 1.46E+03 0.06 3.37E+04 1.32 

15 7.54E+04 2.29E+04 0.90 8.76E+04 1.83 3.71E+04 1.36E+04 0.53 9.10E+04 1.87 

25 1.61E+05 4.07E+04 1.59 1.85E+05 2.76 8.53E+04 2.56E+04 1.00 1.03E+05 1.98 

35 2.99E+05 6.45E+04 2.53 3.27E+05 4.12 1.58E+05 4.15E+04 1.62 2.28E+05 3.17 
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Table 26. Contract cost effectiveness measures for contracts i(3)T and i(4)T for fall season (September, October and November). Note that 

premiums listed for contracts based on the indices i(3)T and i(4)T are averages of the 300-year testing period (in reality, premiums for these 

contracts fluctuate on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigation ($) 
RMF 

Premium  

($) 

Net Cost 

($) 

Net Cost 
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Risk 

Mitigation ($) 
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 5 4.26E+03 2.30E+03 0.10 -1.38E+02 1.00 4.10E+03 2.94E+03 0.13 1.86E+04 1.20 

15 3.23E+04 1.18E+04 0.53 1.42E+05 2.50 2.99E+04 1.09E+04 0.49 1.41E+05 2.50 

25 8.77E+04 2.42E+04 1.08 1.35E+05 2.43 8.54E+04 2.42E+04 1.08 1.65E+05 2.75 

35 1.37E+05 3.26E+04 1.46 2.03E+05 3.15 1.36E+05 3.46E+04 1.55 2.29E+05 3.43 
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5 4.57E+03 1.41E+03 0.07 6.44E+04 1.63 4.71E+03 2.69E+03 0.12 7.70E+04 1.75 

15 3.29E+04 9.38E+03 0.43 1.05E+05 2.03 3.38E+04 1.24E+04 0.57 9.53E+04 1.94 

25 8.92E+04 2.26E+04 1.05 9.60E+04 1.94 9.29E+04 2.58E+04 1.19 1.10E+05 2.07 

35 1.40E+05 3.28E+04 1.52 1.55E+05 2.52 1.44E+05 3.67E+04 1.70 1.80E+05 2.76 
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5 4.92E+03 2.36E+03 0.09 2.19E+04 1.21 5.04E+03 2.62E+03 0.10 4.36E+04 1.42 

15 3.66E+04 1.30E+04 0.51 9.60E+04 1.91 3.72E+04 1.38E+04 0.54 9.84E+04 1.94 

25 9.85E+04 2.99E+04 1.17 1.29E+05 2.23 9.95E+04 2.99E+04 1.17 1.01E+05 1.96 

35 1.54E+05 4.21E+04 1.65 1.92E+05 2.83 1.54E+05 4.01E+04 1.57 2.28E+05 3.17 
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Table 27. Contract cost effectiveness measures for contracts i(1)T and i(2)T for winter season (December, January, February). Note that 

premiums listed for contracts based on the index i(1)T are averages for the 300-year testing period (in reality, premiums for these contracts 

fluctuate on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium     

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigtation ($) 
RMF 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigtation ($) 
RMF 
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5 3.34E+04 1.17E+04 0.30 5.07E+05 1.79 2.68E+04 1.61E+03 0.04 2.33E+05 1.36 

15 1.36E+05 5.16E+04 1.30 6.36E+05 1.99 7.89E+04 1.03E+04 0.26 5.59E+05 1.87 

25 2.41E+05 7.59E+04 1.92 8.06E+05 2.25 1.82E+05 3.32E+04 0.84 6.34E+05 1.98 

35 4.03E+05 1.14E+05 2.89 9.93E+05 2.54 2.94E+05 5.48E+04 1.39 7.95E+05 2.23 
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5 2.53E+04 1.10E+04 0.28 1.02E+05 1.18 2.40E+04 1.60E+03 0.04 1.61E+05 1.29 

15 1.39E+05 4.57E+04 1.17 7.05E+05 2.27 7.34E+04 9.06E+03 0.23 4.11E+05 1.74 

25 2.94E+05 8.71E+04 2.22 9.53E+05 2.72 1.75E+05 3.17E+04 0.81 4.48E+05 1.81 

35 4.40E+05 1.28E+05 3.28 9.99E+05 2.80 2.86E+05 5.35E+04 1.36 6.37E+05 2.15 
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5 4.47E+04 2.49E+04 0.58 2.72E+05 1.38 2.87E+04 1.93E+03 0.04 9.13E+03 1.01 

15 1.99E+05 6.70E+04 1.55 4.88E+05 1.69 9.21E+04 1.21E+04 0.28 1.21E+05 1.17 

25 4.39E+05 1.28E+05 2.97 6.12E+05 1.86 1.92E+05 3.37E+04 0.78 3.64E+05 1.51 

35 6.32E+05 1.64E+05 3.79 7.52E+05 2.06 3.80E+05 6.95E+04 1.61 3.55E+05 1.50 
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 Table 28. Contract cost effectiveness measures for contracts i(3)T and i(4)T for winter season (December, January, February). Note that 

premiums listed for contracts based on the indices i(3)T and i(4)T are averages of the 300-year testing period (in reality, premiums for these 

contracts fluctuate on an annual basis, depending on the spot price of natural gas). 

  
            

 
Strike 

(%) 

Premium    

($) 

Net Cost 

($) 

Net Cost 

(%) 

Risk 

Mitigtation ($) 
RMF 

Premium  
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Net Cost 
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Net Cost 
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Mitigtation ($) 
RMF 
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5 2.92E+04 4.66E+03 0.12 2.51E+05 1.39 2.88E+04 3.29E+03 0.08 2.55E+05 1.40 

15 8.25E+04 1.62E+04 0.41 5.11E+05 1.79 8.24E+04 1.37E+04 0.35 5.17E+05 1.80 

25 1.88E+05 4.26E+04 1.08 6.38E+05 1.99 1.87E+05 3.71E+04 0.94 6.53E+05 2.01 

35 3.29E+05 7.27E+04 1.84 7.64E+05 2.19 3.26E+05 6.48E+04 1.64 7.95E+05 2.23 

 

           

A
v

er
a

g
e 

V
o

la
ti

li
ty

  
  
  

  
  

  
  

  
  
  

  
  

  
  

  
  
 

O
ld

 f
lo

o
r:

 $
5

5
4
,8

6
8

 

5 2.97E+04 -1.97E+03 -0.05 1.86E+05 1.33 3.09E+04 -7.89E+02 -0.02 1.63E+05 1.29 

15 8.45E+04 4.58E+03 0.12 3.61E+05 1.65 8.91E+04 6.65E+03 0.17 4.16E+05 1.75 

25 1.94E+05 2.13E+04 0.54 4.66E+05 1.84 1.98E+05 2.79E+04 0.71 4.73E+05 1.85 

35 3.40E+05 4.28E+04 1.09 5.90E+05 2.06 3.48E+05 5.35E+04 1.37 5.97E+05 2.08 

 

           

H
ig

h
 V

o
la

ti
li

ty
  

  
  

  
  
  

  
  
  

  
  
  
  

  
  

  
 

O
ld

 f
lo

o
r:

 $
7

1
2
,1

6
9

 

5 3.25E+04 -1.09E+03 -0.03 1.31E+04 1.02 3.30E+04 -5.35E+02 -0.01 6.77E+03 1.01 

15 9.11E+04 3.08E+03 0.07 1.48E+05 1.21 9.25E+04 6.48E+03 0.15 1.35E+05 1.19 

25 2.08E+05 2.46E+04 0.57 3.33E+05 1.47 2.13E+05 2.96E+04 0.69 3.62E+05 1.51 

35 3.63E+05 5.57E+04 1.29 2.48E+05 1.35 3.74E+05 6.09E+04 1.41 2.88E+05 1.40 

 

1
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Table 29. Replicating portfolios under average natural gas price volatility. 

 

Net Cost 

(%) 

Hydrological Insurance 

Volume (millions) 

Inflow Strike 

(km
3
) 

Put 

Volume 

Natural Gas Put 

Strike ($/MMBtu) 
RMF 

S
p
ri

n
g
 

0.45 0.62 1.55 2 6.42 1.44 

1.25 0.96 1.72 2 4.49 1.74 

1.91 0.86 2.09 6 5.38 1.88 

2.59 1.12 2.46 6 7.26 2.29 

3.64 1.04 2.85 2 5.96 2.49 

       

S
u
m

m
er

 0.33 0.82 0.59 4 4.94 1.26 

1.13 1.92 0.74 6 4.94 1.34 

1.83 1.22 0.77 12 2.62 1.23 

2.63 0.70 1.67 8 4.40 1.46 

       

F
al

l 

0.19 1.02 1.17 16 7.23 0.93 

0.82 0.82 0.71 2 5.46 2.24 

1.67 1.06 0.88 0 n/a 3.35 

2.42 1.48 0.94 2 7.23 3.74 

3.93 1.02 1.35 2 2.28 4.65 

 

      

W
in

te
r 

0.28 0.24 1.28 2 4.44 1.18 

1.17 0.80 1.87 2 7.43 2.04 

2.22 1.04 1.94 2 3.14 2.16 

3.28 1.30 2.10 4 4.97 2.33 

4.32 1.10 2.82 4 1.78 2.35 
  

1
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APPENDIX 4: CHAPTER 4 

 

1.  Alternative Cost Model 

 

 

An alternative formulation of the cost model based on exogenous environmental and market 

variables was also developed for use in calculating premiums associated with the third party collar 

agreement.  

 

 ̂  = (   ̂ 
 
    ̂ 

 
     ̂       ̂      (1) 

 

where,  ̂                                             

                                   

 ̂                                                         

 ̂                                      
 

   
  

   = multiplication coefficient for price spread 

 

In the alternative model formulation, seasonal hydropower generation at Roanoke Rapids Dam is 

replaced by a function of seasonal inflows into upstream Kerr Reservoir (linear regression of seasonal 

generation at Roanoke Rapids Dam and Kerr Reservoir inflows yields an R
2
 = 0.93).  

 

 ̂                        (2) 

 

where,    = inflows to Kerr Reservoir in season T 
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Seasonal price spread is replaced with a linear combination of natural gas price and heating and 

cooling degree days (i.e., proxies for electricity demand) (regression of estimated price spread and actual 

price spread yields an R
2
 = 0.89).  

 

 ̂                                            (3) 

 

      ∑    (     )
 
          (4) 

 

      ∑    (     )
 
          (5) 

 

where,                                                  

                                                 

                                     
 

     
  

                                 

                   

                                    

 

 

Table 29 lists model parameters           and   and performance metrics (R
2
 and mean squared 

error (MSE)) for the cost model shown in Equation 2 (row 1), as well as for the alternative model 

formulation (row 2). It shows that the use of exogenous inputs (Kerr inflows, gas prices, and degree days) 

in the alternative model formulation reduces the R
2
 value to 0.84, and increases the MSE to 

$215,000/season.  
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Table 30. Model performance and parameters for the cost models calibrated with historical data from 2005-

2013.  

Model Inputs 

Performance Parameters 

R
2
 

MSE 

($100k) 
a b c γ 

Generation Price Spread 0.91 1.58 4.81E-10 -2.93E-04 41.3 0.0171 

Kerr 

Inflows 

Gas Prices, 

Degree Days 
0.84 2.15 1.07E-09 -4.00E-04 38 0.025 

 

 

2.  Premium Calculations 

 

 Premiums are calculated on a rolling, seasonal basis using empirical probability distributions of 

        derived from synthetic input data and the alternative cost model. For each season  , 300 

synthetic values of    ,       and      are simulated using a method outlined in Nowak et al. [26] 

that makes use of historical (1947-2012) streamflow and temperature records in the Roanoke River basin. 

Monte Carlo sampling from conditional probability distributions of natural gas prices one year in the 

future (    |       is used to generate 300 years of synthetic natural gas prices for each season. 

Conditional probability distributions of natural gas prices are based on results of an Ornstein-Uhlenbeck 

(OU) stochastic difference model fit to historical natural gas prices over the period 1997-2012.  

Synthetic weather inputs (  ,     , and     ) and natural gas prices (      are paired to 

create 300 x 300 = 90,000 separate values of  ̂ . Estimated costs are then combined with a normally 

distributed error function    that describes the distribution of errors between  ̂  and    over the period 

2005-2013. The 90,000 synthetic values of  ̂  are used to calculate a corresponding empirical probability 

distribution for        , which is then transformed (see Equation 5), and the risk-adjusted expected 

value is taken as the seasonal premium.   
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Seasonal premiums      are found to fluctuate on a seasonal basis because the empirical 

probability distribution of         is influenced by price spread, which, in turn, depends on electricity 

demand and the price of natural gas. In particular, premiums are larger for high demand seasons (winter 

and summer) and following years of high natural gas prices. From the perspective of a hypothetical 

downstream stakeholder, however, the goal of the collar agreements is to ensure relatively constant net 

payments, and the ability of collar agreements to do this can be impacted by large fluctuations in 

premiums. One option for reducing variability in premiums is to extend the coverage period of collar 

agreements to one year (i.e., a downstream stakeholder would simultaneously purchase coverage for 

spring, summer, fall and winter of the same year). A downstream stakeholder could then pay the average 

seasonal premium over the one year period. Contracts can similarly be adjusted to apply over multi-year 

periods (e.g., 5 or 10 years).  

Table 30 shows how contract duration impacts the mean and standard deviation of net payments 

made by the downstream stakeholder.  

 

Table 31. Impact of contract duration on mean and standard deviation of net seasonal payments made by 

downstream stakeholder. 

 
Mean ($M) 

Standard 

Deviation 

($M) 

Min ($M) Max ($M) 

   1.15 0.69 0.17 2.80 

Seasonal 1.25 0.36 0.56 2.08 

1 year 1.34 0.19 0.99 1.58 

9 years 1.55 0 1.55 1.55 

 

 

  

Extending the contract duration (e.g., from seasonal to 1 year, and from 1 year to 9 years) results 

in a greater reduction in the standard deviation of net payments experienced by the downstream 
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stakeholder because fluctuation in seasonal premiums is reduced. In order to eliminate all variability in 

seasonal net payments over the period 2005-2013, the downstream stakeholder must sign a single 

agreement for the entire 9-year period (2005-2013). However, engaging a downstream stakeholder in 

longer term contracts increases the risk exposure of the third party insurer. As a consequence, seasonal 

premiums (and therefore mean net payments) are higher.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


