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ABSTRACT 

CARLOS F. MENA: Characterization and Modeling Agricultural and Forest Trajectories in 
the Northern Ecuadorian Amazon: Spatial Heterogeneity, Socioeconomic Drivers  

and Spatial Simulations 
(Under the Direction of Stephen J. Walsh) 

 

This research shows that agricultural frontier regions are heterogeneous and complex 

entities. This dissertation links four interconnected questions that seek to generate new 

insights into the processes of land use and land cover change in the Northern Ecuadorian 

Amazon (NEA). The research uses household survey data collected in the study area in 1990 

and 1999 and a set of classified Landsat images for 1973, 1986, 1999, 1996, and 2002. This 

study, first, analyzes the composition and spatial configuration of the Land Use and Land 

Cover (LULC) trajectories in the NEA. Land trajectories are built using image algebra and 

stratified by deforestation stage and census sector. The analysis of LULC trajectories has 

suggested a core and periphery pattern of transitions in the NEA and shows the complexity of 

land changes in the region. Second, this research characterizes secondary forest succession, 

its extent and the socioeconomic, demographic, and biophysical factors that control forest 

generation. The analysis, using logistic regression, shows how improvements in accessibility 

and off-farm employment contribute positively to forest regeneration. Third, this research 

analyzes the spatial heterogeneity and spatial dependence of the relationships between 

socioeconomic, demographic, and biophysical drivers and LULC. The intent of this question 

is to find the spatial non-stationarity of the relationships between factors and LULC change 

using Geographically Weighted Regression and Spatial Lag Models. There is also an 
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emphasis on new spatial representations of the parameters resulting from the regression 

analysis. This research component determined that the intensity of the drivers of LULC 

change is heterogeneous across space. Four, this research develops a cellular automata model 

that simulates LULC trajectories using pixels, neighborhoods, and spatial regimes that 

interact to produce broad LULC patterns. LULC patterns emerge from rules that control 

interactions among cells, cell neighborhoods and other spatial regimes created using GWR 

models. The aim of this research is to clarify the spatial and temporal nature of the 

relationship between population and land change and to predict positive and negative 

feedbacks between social, geographical, and biophysical factors that have implications for 

environmental management and policy.  
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CHAPTER 1 

1. Land Use and Land Cover Trajectories in the Northern Ecuadorian Amazon 

 
 

The soul of geography lies in its origins as a discipline 
involved with both the natural world  

and the created second world within the world of nature 
and their mutual interaction (Glacken, 1967 c.f. Brookfield, 2004(c.f. )) 

 
  

 

1.1. Introduction  

Land Use/Land Cover (LULC) change is an anthropogenic activity as old as 

civilization, as people in need of land systematically clear natural vegetation for different 

uses. The impacts of land change have several dimensions. Agricultural expansion, for 

example, has been basic for the survival of civilization since the domestication of wild plants 

12,000 years ago. Today the conversion of natural areas into agriculture is one of the core 

problems of global environmental change. It is estimated that by 2050 nearly 109 hectares of 

natural ecosystems will be converted to agriculture. This change will produce a 2.5-fold 

increase in nitrogen- and phosphorus- driven eutrophication of terrestrial, freshwater, and 

marine ecosystems, and a comparable increase in pesticide use (Tilman et al. 2001). The 

impacts of LULC change are more evident in agricultural frontiers, where several processes, 

including deforestation of native vegetation and demographic and socioeconomic change, 

occur on vast geographical scales and accelerated rates.  

The Northern Ecuadorian Amazon (NEA) is not an exception. In the last four 

decades, almost 40 percent of the forested landscape in the region has been transformed into 



 

2 

agricultural fields, pasture, secondary succession, and urban areas. This transformation has 

contributed to the accelerated destruction of the Ecuadorian rainforest and the associated 

ecological services.  

Although there have been unprecedented advances in the study of the driving 

exogenous and endogenous forces of land change1, several challenges remain, including: (a) 

the study of the processes behind the spatial patterns, (b) extrapolation of results in space and 

time, (c) linkage of data of varying quality, and (d) the study of culture as a driver of 

landscape change (Bürgi et al. 2005). This research deals with these challenges in different 

ways, through the use and linkage of household socioeconomic and demographic data and 

remotely sensed data to identify agricultural expansion, spatial pattern and processes, and 

future land use change scenarios2.  The aim of this research is to characterize, model, and 

spatially simulate the relationships between LULC trajectories of change (both composition 

and spatial structure) in response to socioeconomic, geographic, demographic, and 

biophysical processes acting across different temporal and spatial scales linked through 

remote sensing data, household survey, geographic information systems, and spatially 

explicit models.  

The objectives of this introductory chapter are twofold: first, to define the scope of 

the research, research questions to be addressed, and hypothesis of land use/land cover 

change, and second, to describe the theoretical and methodological linkages between data 

                                                 

1A number of studies have reviewed and synthesized theoretical and methodological approaches and case 
studies, mainly focused on tropical regions (Geist and Lambin 2001; Geist and Lambin 2002; Kaimowitz and 
Angelsen 1998; Lambin et al. 2001; Rudel and Roper 1997; Southgate 1990). 

2 A notable exception is the relationship of culture (or cultural change) and land use that is indirectly addressed. 
Although the dataset used here does not contain direct measures of culture, the study assumes that culture is 
heterogeneous across households and communities within the Northern Ecuadorian Amazon.  
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sets and research questions. This chapter reviews the characteristics of the study area and 

data collected beginning in 1990. The research questions, hypothesis, and importance of the 

study are then described, followed by a discussion of the relevant bodies of literature related 

to land change science and links to the theoretical structures that guide the four research 

questions. Finally, the main methodological approaches are described and linked to support 

the aims of this research.   

1.2. The Northern Ecuadorian Amazon  

The study area is located in the northeast portion of the Ecuadorian Amazon. The 

region covers an approximate area of 34,000 km² (Figure 1.1), which is comparable to the 

area of the State of Maryland, USA. The Northern Ecuadorian Amazon (NEA) has a variety 

of natural vegetation types represented: evergreen forest of lowlands and foothills, evergreen 

forest flooded by white water, evergreen forest flooded by black water, cloud forest, palm 

forest, and humid brush (Palacios et al. 1999). The Ecuadorian rainforest is among the most 

biologically diverse and unique environments in the world and has been considered one of 

the world’s ecological hotspots, i.e., areas with high biodiversity under intense human 

pressure (Myers 1988; Myers 1990; Orme et al. 2005), and an area with the highest alpha 

biodiversity (Pitman et al. 2003).  The NEA has seven national protected areas within its 

region, but despite this status, the pressures of agricultural expansion and petroleum activity 

continue to increase through time.  Ethnic diversity is also high in the region, as the 

Ecuadorian Amazon is home to approximately 30,000 indigenous people from seven ethnic 

groups (i.e., Quichua, Shuar, Ashuar, Huaorani, Cofan, Siona, Secoya, and Saparo) who have 

adapted to the Amazonian environment over hundreds of years. 

The discovery of petroleum marked the division between two periods in the history of 
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the NEA. Prior to the exploitation of petroleum, the natural landscape was essentially intact 

and populated by indigenous peoples and very few colonists who were devoted to 

subsistence agriculture. The petroleum era began after 1967 when Texaco drilled its first oil 

well in the Ecuadorian Amazon. Roads were opened, oil pipelines laid, and colonists began 

to populate the rainforest. Between 1964 and 1992, 322,176 km2 within the NEA were 

colonized by 41,737 farmers, but only 133,448 km2 have been legalized through land titles 

(Barsky 1984; Ruiz 2000). Between 1974 and 1982 when the pace of colonization was at its 

highest, annual population growth rates were 8 %/yr compared to 6 %/yr for 1982 to 1990, 

5%/yr between 1990 and 2001, in each period double the national average (Bilsborrow 

2003).  Migration from the Highlands and Coastal regions of Ecuador is the main factor 

contributing to population growth and agricultural expansion in the NEA. Lately, unofficial 

reports have shown evidence of high international migration: refugees from neighboring 

Colombia, escaping the violence from the civil war. Today the Northern Ecuadorian Amazon 

has one of the highest population densities in the Amazon Basin (ECORAE 1996).  

As indicated, colonization is strongly associated with oil exploitation in the 

Ecuadorian Amazon. The petroleum industry built new roads to lay pipelines for oil 

exploration and settlers concentrated along the roads. Two small planned colonization 

projects were developed in the study area in the early 1970s and reflected government 

concerns about national security and desire to expand the agricultural frontier (Uquillas 

1984), but virtually all the colonization has been spontaneous. Petroleum from the region is 

crucial to the Ecuadorian economy, and attracts labor and services to the region. Petroleum 

provides nearly one-half of Ecuador’s export revenues, almost all coming from the provinces 

of Napo, Sucumbios, and Orellana in the study region (Kratsas and Parnell 2001). More oil 
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infrastructure development is expected due to the large petroleum reserves located in the 

region. Ecuador is ranked third for oil reserves in South America (Energy Information 

Administration 2003). New deforestation fronts are expected, if not already being created, 

near protected areas and indigenous territories in the NEA. Assessment of these land 

transformation patterns is among the central aims of this research. 

 

Figure 1.1. The Northern Ecuadorian Amazon. 
 

Land cover change, primarily deforestation, in the region has been estimated by 

Sierra (2000). He estimates deforestation rates for the Napo region, including portions of 

Colombia, Ecuador, and Peru, at 0.6%/yr and for the NEA at 3.2%/yr. Ecuadorian official 

reports have pointed to colonization and agricultural expansion, timber extraction, 

monocultivation plantations, oil and mining, weak land titling programs, and poverty as the 

main overall causes of forest cover change in Ecuador (Food and Agriculture Organization 

2000).  More detailed, small-scale studies show patterns in which larger cleared areas emerge 



 

6 

among households with greater farm labor resources (i.e., male workers per household) 

(Marquette 1998), duration of settlement, soil quality, road access, education (Pichón 1997; 

Pichón et al. 2002), and household demographic characteristics  (Pan et al. 2004). Migrant 

women in the Ecuadorian Amazon who have greater numbers of children are more likely to 

be involved in agriculture and engaged in clearing more forest for pasture and cattle ranching 

(Keshari et al. 1996). Southgate et al. (1991), in a statistical analysis of deforestation, 

supports the argument that the settlement of forested lands is driven by the prospect of 

collecting agricultural rents. Deforestation in the Ecuadorian Amazon is thus framed by a set 

of scale-dependent socioeconomic conditions and biophysical settings. Land cover change on 

fincas in the NEA appears related to the development of local agricultural markets, road 

accessibility, demographic pressures, and cultural practices, while at regional scales, land 

cover change responds to national and global oil prices and markets, internal migration, and 

infrastructure extension. This brief review of case studies suggests that different 

socioeconomic and demographic factors interact with different agents and drivers that 

operate at different spatial and temporal scales to produce agricultural extensification through 

deforestation. As such, the need for an integrated approach capable of capturing the forces 

and factors of land dynamics in the NEA, and within a spatially explicit context is a critical 

need. 

1.3. Organization and Central Questions in this Research  

This research will map, statistically model, and spatially simulate LULC trajectories 

in the Northern Ecuadorian Amazon related to different socioeconomic, demographic, and 

geographical processes at work across different social or political units. The work will inform 

policy and environmental management concerns in the region. The dissertation research 
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revolves around four interconnected research questions, each developed and expressed in the 

form of a journal article that deals with land change in the following domains: (a) a regional 

assessment of the temporal and spatial dimension of land change trajectories in the 

colonization area; (b) an analysis of the emergence of secondary forests in the study area and 

the socioeconomic and demographic factors that promote the emergence of secondary 

forests. This section constitutes the next step following previous studies related to the 

deforestation in the Ecuadorian Amazon (Mena et al. 2006a; Mena et al. 2006b); (c) an 

analysis of the spatial non-stationarity of the relationships between the drivers of land use 

and land cover change in the Ecuadorian Amazon; and (d) the spatially explicit simulation of 

land cover change using cellular automata models that link the socioeconomic, demographic 

and biophysical drivers of change at the regional level with transition probabilities derived 

from  an assembled satellite time series.  

1.3.1  Research Questions and Hypotheses 

Research Question 1: What is the compositional and spatial configuration of the land 

use and land cover transitions in the NEA between 1986 and 2002? 

Such questions include: is there any regular cycle in the composition of LULC 

trajectories: from forest to perennial crops, annual, semi-annual, and pasture, etc? Are there 

spatial differences in the trajectories of land use change between the core and periphery 

regions in the colonization area? Do new colonization areas tend to have a higher rate of 

LULC and different trajectories of change? Are there distinct clusters of unique sets of 

LULC trajectories?   

Hypothesis 1: It is hypothesized that the land use/land cover transitions in the 

Northern Ecuadorian Amazon have spatial and temporal patterns that emerge according to 
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the lines (or lineas) of colonization and the influence of urban centers.  

Research Question 2: What is the extent of secondary forest succession and what are 

the socioeconomic, demographic, and biophysical factors contributing to the generation of 

secondary forests in the Northern Ecuadorian Amazon between 1986-1996 and 1996-2002? 

This question addresses the main drivers of secondary forest generation or forest 

transition in two periods (1986-1996 and 1996-2002) with a special emphasis on the 

influence of socioeconomic and demographic factors. The two study periods are defined 

through the dates of the longitudinal household surveys (1990 and 1999) and the assembled 

remote sensing time series. Sub-questions include: is LULC change dependent upon 

demographic factors at both time periods? Are forest transitions controlled by accessibility to 

agricultural markets? The intention of this question is to clarify the temporal nature of the 

relationship between population and secondary forests and to infer future positive and 

negative feedbacks between socioeconomic, demographic, and biophysical considerations of 

reforestation as suggested in the sequence of changes captured in the LULC trajectories? 

Hypothesis 2: At the farm level, forest transitions respond to several socioeconomic, 

demographic, and biophysical factors. Forest transition, the production of secondary forest, is 

less intense in the early stages of the settlement when farmers had more incentive to keep 

agricultural lands active (e.g., higher soil fertility, higher agricultural rents), however in a 

later period, farmers face decrease in soil fertility and there are more off-farm employment 

opportunities, push farmers to seek other livelihoods, which have spatially-explicit land use 

responses, such as an increase in secondary forest. 

Research Question 3: What is the spatial heterogeneity of the relationships between  

socioeconomic, demographic, and biophysical drivers of LULC in 1990 and 1999?  
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The intent of this question is to examine the spatial non-stationarity of the 

relationships between factors of LULC change created when a stimulus provokes different 

responses in different parts of the study area. As has been observed in pre-dissertation 

fieldwork, the region has intrinsic differences in the farmer's adaptation to the different 

environments and a different natural resource base, therefore, exogenous and endogenous 

factors might affect land use in different ways the rates and patterns of LULC dynamics 

depending on location or place.  

Hypothesis 3: There is spatial heterogeneity in the relationships between land use and 

land cover change and their socioeconomic, demographic, and biophysical drivers.  

Research Question 4: Can LULC patterns be modeled using complex systems as a 

theoretical framework? If so, is it possible to model and spatially simulate LULC trajectories 

as a complex adaptive system using Cellular Automata (CA) approaches that account for 

feedbacks, self organization, and spatial interaction of individuals and communities? 

Might decisions made by farmers about the use of the land, particularly LULC change 

trajectories, indicate emergent behavior expressed at some higher order of spatial 

organization or scale (i.e., the pixel). Can land use plots function as independent units, where 

aggregation creates complex LULC change patterns?  

Hypothesis 4: It is possible to model LULC change produced by farmers on 

agricultural lands, which is influenced by socioeconomic, geographic, biophysical, and 

demographic factors.  A CA spatially-explicit model will be developed that can capture the 

changing environment and model the feedbacks between actors and the surroundings in 

which uncertainties play an important role.  



 

10 

1.4. Importance of the Study 

The modeling and simulation of LULC change have strong local to global 

implications. Linked to global environmental change, modeling and spatially-explicit 

simulations of LULC transitions greatly enhance our ability to predict biodiversity loss, the 

impact of future climate scenarios, and carbon budget estimates.  In the Amazon Basin, at the 

local scale, the study of the drivers of LULC change is of special interest, because the 

generally poor local populations (i.e., indigenous communities, colonist farmers, and urban 

residents) are vulnerable to drastic and pronounced environmental changes that can 

undermine food security, socioeconomic conditions, and human health. The efficacy by 

which governments and local populations cope with these drastic LULC changes depends on 

their ability to predict the likely consequences of various actions. Specifically, the spatially-

explicit simulations can be used by Ecuadorian organizations such as ECORAE (the 

Ecuadorian governmental agency for the Eco-development of the Amazon), the Ministry of 

Environment, EcoCiencia (a leading Ecuadorian non-governmental organization for 

ecological studies) to create response scenarios to new policies (i.e., new Forestry Law), 

projected development efforts (i.e., new roads), and changes in cultural and demographic 

characteristics of the population.  

1.5. Theoretical Construct and the Adaptive System    

This section reviews the linkages among the main theoretical approaches that guide 

the research questions. In this research, population and environment is intended to be seen as 

a dynamic and adaptive coupled human-natural system. Population encompasses 

demographic, socioeconomic, and institutional changes, while environment includes the 

natural resource base, the biophysical template and LULC dynamics.  
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1.5.1 Socioeconomic and Demographic Drivers of Land Use and Land Cover Change  

Although the effects of population growth and its potential negative effects were 

reported at several points in human history, just in the early 1970s theoretical and empirical 

models were used to explain the effects of uncontrolled population growth on the 

environment at global scales (Meadows et al. 1972; Pestel 1989). The connection between 

population growth and environmental degradation, however, was studied earlier two 

centuries ago by Malthus (1803), who pointed out that human populations could collapse due 

to their size increasing at geometric rates since the food supply would increased at an 

arithmetic rate. In terms of LULC change, neo-Malthusian theories are built on the 

assumption that land productivity is fixed and returns to capital investments tend to bring 

diminished returns (United Nations Organization 2001). Consequently, it is necessary to 

expand agricultural lands to feed the growing populations. Some cross-national and regional 

studies in frontier settings have shown that population growth results in higher rates of 

deforestation (Ehrhardt-Martinez 1998; Parayil and Tong 1998). Among the observations 

made by Malthus is that the most productive land is generally used first, and consequently, 

newer agricultural lands tend not to be as productive. In the NEA land occupied in the later 

stages of colonization have disadvantages related to their natural resource base, geographic 

accessibility, and access to technology that renders these lands less suitable for highly 

productive agriculture. In frontier environments, such as the NEA, population pressure 

affects LULC dynamics. As migration to the Amazon increased, coupled with the high 

human fertility, growing populations of farmers and urban centers expanded, creating needs 

for new agricultural products and agricultural land for production. The assumption that land 

productivity is fixed is also taken in to consideration by classical agricultural economics. The 
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Law of Diminished Returns (Ricardo 1887) argues that when land is fixed, increased 

applications of labor inputs generate a decrease in the productivity of the mean output per 

worker (Bilsborrow and Carr 2000).  

Opposed to the Malthusian view, Boserup (1965; 1981) challenges the Ricardian and 

Malthusian assumption of fixed land productivity. She argues that more people create 

technological changes that intensify land use so higher populations per unit area can be 

supported without overall resource decline. Boserupian theory is important in that it enhances  

the possible role of population pressure on natural resources as a catalytic component in the 

process of land use intensification. According to Boserup, the increase of labor inputs per 

unit of land through time creates the following stages of intensification that ranges from low 

to high intensity: (a) forest fallow with long fallows with 20-25 years between crops; (b) 

bush fallow with 6-10 years between crops; (c) short fallows with 1-2 years between crops; 

(d) annual cropping; and (e) multiple cropping, within a year. Modern conceptualizations of 

land use intensification are associated to increases in input variables, e.g. chemical fertilizers, 

pesticides, and output intensification, that measure the increases in production against 

constant units of land area and time, e.g. calories/hectare/year (Lambin 2000). Critics of the 

Boserupian view argue that the endogenous character of the intensification process applies 

only to particular settings, relatively rich soil areas where investments in new technologies 

are possible and in areas where population density is relatively low with a capacity to change 

tenure regimes (Lee et al. 2000).  

Beyond Boserup, the theory of induced innovation argues that technological change 

and innovation, an endogenous product, is associated with basic institutional changes and 

market demands (Lambin 2000). In the Northern Ecuadorian Amazon, two different types of 
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intensification scenarios are present. First, in colonist environments, where the population 

pressure on natural resources emerges in the form of farm subdivisions, the rapid decrease in 

soil nutrients in small areas coupled with expensive cost of technology (e.g., fertilizers), 

makes the process of intensification unsustainable for long periods of time, ending with the 

decline of the natural resource base. Second, in indigenous territories, where exogenous 

forces (e.g., reduction of ancestral territory due colonization) and endogenous factors (e.g., 

high fertility rate) emerge to create growing population pressures on the natural resource 

base, intensification occurs through decreasing the fallow periods of chacras (i.e., vegetable 

gardens) across the different ethnic groups.    

Other relevant theoretical approaches, such as multiphasic response and the 

household life cycle theory will be also used to interpret outcomes and guide modeling. 

Multiphasic response (Davis 1963) explains how possible demographic responses (i.e., 

postponing marriage, reducing fertility, and out-migration) are followed to avoid a decline in 

living standards produced by increases in population density.  In this context, Bilsborrow 

(1987) and Bilsborrow and Okoth-Ogendo (1992) extend multiphasic response to include 

economic and other economic-demographic changes. Accordingly, human responses to 

population pressure on natural resources can emerge in four ways. First, an increase in food 

production can occur by either intensifying or extensifying land use to keep pace with 

population growth. If these two forms of adaptation fail, another strategy is possible, i.e., 

temporary migration of individuals to urban centers or other rural destinations to overcome 

insufficient available land. The fourth strategy engages household members in permanent 

migration to areas with more available land. Finally, the fifth strategy invokes the decline of 

human fertility only if the strategies presented above fail. The interpretation of LULC 
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transitions can be seen as responses and adaptations to the changing environment (e.g., 

improvements in accessibility, soil fertility decrease, and fall of market prices). 

To include the relationship between "time since settlement" and LULC transitions, 

the household life cycle theory is used and adapted to the reality of the NEA. This theoretical 

approach argues that the changes in the extent/intensity of agricultural activities are 

dependent upon the household life cycle. Chayanov (Cancian 1989; Chayanov 1966) 

explored the size and age structure of households and their affect on the proportion of land 

cultivated. He observed, in the early 20th century on isolated farms in Russia, that older 

households with a greater number of adults meant a higher local labor force, and the 

necessity and means for generating increases in cultivated land. In later years, some studies 

tried to extend and adapt Chayanov’s findings to the Brazilian Amazon. For instance, 

McCraken et al. (1999), Perz and Walker (2002), and Walker and Homma (1996) identified 

five stages of a household life cycle of small farmers in the Brazilian Amazon (Figure 3). 

They describe the life cycle as (1) young parents who recently arrived in the area (i.e., 

duration of settlement <5 years) who initiate forest clearings for annual crops for subsistence, 

(2) parents with growing children (i.e., duration of settlement ~5 years old) become engaged 

in the cultivation of perennials and pasture, in addition to the cultivation of annual crops, (3) 

older parents with teenage children (i.e., duration of settlement ~10 years) produce a decrease 

in the cultivation of annuals and an increase in cattle raising and secondary vegetation, (4) 

pasture and perennial crops dominate with increasing proportions of secondary forest as 

parents age and children research young adulthood (i.e., duration of settlement ~15 years), 

and (5) children begin to leave the farm (i.e., duration of settlement > 15 years), and the 

presence of perennials remains a large portion of farm land use, as secondary forest 
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succession increases.  

Source: McCraken et al. (1999) 

Figure 1.2. Household life cycle and land use.  
 

In terms of the household life cycle, there is a basic difference between the scenario 

in the Brazilian Amazon and the one in the Ecuadorian Amazon. In the NEA, the space for 

future agricultural expansion is extremely limited as the total area is relatively small and the 

geographic accessibility to the region remains a constraining factor to settlement and 

development. Land scarcity has produced little farm abandonment and instead a process of 

farm subdivision is on-going. When young adults marry, they claim a portion of the farm for 

their own agricultural activities and new households are created that begin using portions of 

the existing farm plot. Although, these young adults might leave to work temporally outside 

the farm, the subdivision remains with relatively active agricultural production, which has 
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implications for land use. For example, the regeneration of secondary forest in the NEA does 

not increase with advances in household life cycle, rather, it is generated through the 

abandonment of cultivation plots within working farms. This is, in part, caused by the 

opportunity for off-farm employment, poor and inconsistent crop prices, the effects of 

globalization on the supply and demand of the primary commercial crops within the region 

(i.e., coffee, cacao, and pasture for cattle), relatively infertile soils, increases in the cost of 

transportation, general political instability in the country and region, and the continued 

difficulties associated with the 1999 “dollarization” of the Ecuadorian economy.  

1.5.2 Economic Approaches to Land Use and Land Cover Change 

Land and agricultural economics are sub-disciplines of Economics that traditionally 

have dictated governmental policies for rural areas. Although theories and models of land use 

change have been widely studied, the foundations include the Theories of Malthusi, Boserup, 

and Chayonov. In this section, two relevant additional views are presented: von Thünnen 

land use models and economic models of agricultural households.  

Early advances of the relationship between transportation and accessibility were 

produced by German Geographer, Johann von Thünnen, who in 1826 develop a model that 

illustrated the connection between land use, location, and transportation costs and, thereby, 

generated the first serious treatment of spatial economics (Nelson 2002). Nelson explains the 

von Thünnen model as follows (Figure 1.3.): "….suppose a plain, featureless, landscape with 

a central market and two crops, wheat and vegetables. All locations have identical production 

characteristics, including profit maximizing operators, but transport costs to the central 

market, with exogenously determinate prices. The prices of vegetables in the central market 

(a) is higher than the price of wheat (b), but vegetables are more expensive to transport. 
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Hence  price of vegetables falls faster than the price of wheat as distance from market 

increases. Beyond point c the price of wheat is higher than vegetables. The result is a series 

of concentric rings of land use around the central market."  

 

 

 

 

 

 

 

 

Source: Nelson (2002) 

Figure 1.3. Von Thünnen model of land use.  

 

The von Thünnen model is an oversimplification of the relationship between 

transportation costs and land use. When land productivity, input costs, and labor markets are 

introduced, the model becomes more complex, but the basic features remain the same.  In 

this research, the implications of the von Thünnen model are more practical than theoretical, 

because prices of agricultural products can be a determinant of land use, and as such, it can 

be coupled with GIS functions to indicate the possible suitability for different crops 

depending upon transportation cost and distances.   

There is a wide range of economic theories and models that explore relationships 

between human activities and agriculture at different levels of organization (e.g., households, 

firms). Microeconomic models, most of the time, see households as a singular type of firm, 

Central Market 

c 

Price of Vegetables 

Price of Wheat 

Wheat 

Vegetables 
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where relationships with markets and inputs are simplified in different degrees, almost 

always, following a profit maximizing assumption. Small open economy models of land use 

in rural areas assume that (1) all relevant prices are exogenous, which indicates that the 

actions and behavior of agents of land use change (i.e., farmers and households) do not have 

an affect on prices, and (2) markets fully determine how farmers value their resources and 

inputs (Kaimowitz and Angelsen 1998). 

1.5.3 Development, Institutions, and LULC Change 

Detractors of the pure population and economic approaches argue that they ignore the 

historical and political-economic factors underlying rural poverty, deprivation, and 

environmental degradation (Parayil and Tong 1998). Studies of environmental change in the 

developing world should pay attention to the localized social and economic dynamics 

involving population and social change, rather than solely focusing on population and 

economic growth (Taylor and Garcia-Barrios 1995). One of the most applied paradigms of 

development to explain how the different paths of development affect LULC change is 

Modernization theory (also called Dual Society Models in Economics). In this approach, 

there are two clear sectors: a core, which is the urban, modern, production center, and the 

periphery, which is mainly a rural subsistence sector. Core and periphery are linked by 

mechanisms of polarization (i.e., the core growths) and spread (i.e., periphery growths) 

(Brown 1991). The modernization approach argues that environmental degradation (e.g., 

deforestation) is a function of the level and rate of development within a given country 

(Ehrhardt-Martinez 1998). Development can be explained as the increasing use of technology 

to achieve development, including economic growth, infrastructure, technology, 

urbanization, education, and extractive practices or improvements.  
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The role of poverty in rural areas is important in explaining small-holding LULC 

change, but this relationship is complex and likely not linear. It can be viewed from two 

different contrasting perspectives. First, rural populations are often impoverished by a 

declining resource base, and as a consequence, they are forced by their circumstances to 

further degrade the environment creating a cycle difficult to break. In addition, short-term 

attention to current needs takes precedence over long-term stewardship of resources (de 

Sherbinin 2000). Second, small farmers with increasing amounts of cultivated land tend to 

have the capital, access to technology, education, and subsides necessary to succeed 

(Marquette 1998; Pichón 1997). The political and economic inequalities in the larger society, 

where urban systems are incapable of assimilating demographic growth, compel poor, 

dispossessed peasants to seek a livelihood on the margins of society, in the rain forest (Rudel 

and Horowitz 1993). At the same time, inequality creates the need to understand the role of 

institutional and household level factors in influencing the observed variation in the strategies 

of forest clearing (Pichón 1997). One clear critique to the studies based on household surveys 

that explore the agency of the agricultural household is that they ignore the larger structural 

setting within the regional and national economy (Chowdhury and Turner 2006). Theories, 

such as modernization, try to understand LULC change at cross-national scales, but do not 

work properly when applied to regional and sub-regional settings (Runge 1992). The 

complexity of the relationship between LULC change and development depends on a range 

of macro- and micro-economic variables, that drive LULC change with different degrees of 

intensity at different levels of social organization. A theoretical approach that deals with the 

institutional relationships between state, local communities, individuals, and natural 

resources is the study of regimes of property rights. A regime of property rights is the 
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Property 

Rights 

Duties Benefit 

structure of rights to natural resources and rules under those rights are exercised (Hanna et al. 

1996). The study of property rights is important, because the change of property rights is the 

preferred alternative by governments and international organizations to improve ecosystems 

management. Bromley (1992) defines property as the social relationship that defines the 

property holder with a benefit stream (i.e. natural resource). Property is, in consequence, the 

claim that some higher body (the State) will protect property through the assignment and 

enforcement of duties, as rights have no meaning without duties (Figure 1.4).  

 

 

 

 

 

Source: Bromley (1992) 

Figure 1.4. Property in relation to rights, benefits and duties. 
 

Open access (i.e., non-owner) resources have been strongly linked to environmental 

degradation. Individuals tend to exploit natural resources on open access lands without 

concern for the cost to society, according to what is called the “Tragedy of the Commons” 

(Hardin 1968). It holds that as long as incentives exist to privatize open access resources, 

there will be a tendency, at the societal level, to over-exploit available resources. Hardin 

assumes that an individual in his or her self-interest will try to maximize gains despite the 

negative effects on society. Unfortunately, open access resources have been confused by 

planners and national governments with common property regimes and have privatized 

communal lands. Common properties are different from open-access lands in the fact that 
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open-access lands have no rules regulating individual use rights, whereas common right 

property  involve tacit cooperation by individual users according to a complex set of rules 

that regulate the rights of joint use (Runge 1992). Table 1.1 modified from Hanna et al. 

(1996), describes the several property regimes that currently exist within the NEA. 

Table 1.1. Property Regimes in the Ecuadorian Amazon. 
 

Propery-

rights  

regimes 

Owner Owner Rights Owner Duties In the NEA 

Private Individual Acceptable social 
uses and control of 
access 

Avoid un-
acceptable uses 

Farms  

Common-
Property 

Collective Exclusion of non-
owners 

Maintenance and 
sustainability 

Indigenous 
communities 
and colonist 
communities 

State owned Citizens Creation of duties Maintain social 
objectives 

National parks / 
sub-soil 

Open Access None Capture none Rivers 

  

Central questions in property rights research include: How are incentives shaped by 

systems of property rights? How do those incentives lead to particular patterns of 

environmental use (Hanna et al. 1996). Young (2002) points out that the land use patterns 

and sustainability of human-environment relationships are associated with and determined by 

the interplay of sub-national (i.e., modern, formal) institutions and local (i.e., informal) land 

tenure regimes. Within this context much of the LULC patterns are dependent on the 

interplay between institutions across-scales. Cross-scale institutions deal with horizontal (i.e., 

across space) and vertical linkages (i.e., across levels of social organization). Much of the 

natural resources needed to be managed across several scales are not isolated from one 

another, but occur simultaneously (Berkes 2002). National arrangements offer greater 

opportunities to include management practices in large ecosystems however these regimes 
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tend to include consumptive/extractive practices managed by elites. Local systems are 

adapted to small-scale users, less tied to markets, and maintain ecosystems for longer time. 

The pattern of local LULC is affected by the cross-scale integration operating at different 

levels of social organizations. Berkes (2002) lists the effects of higher institutions in local 

institutions as both positive and negative (Table 1.2).  

Table 1.2. Effects of higher scale institution in local institutions. 

 

In the Ecuadorian Amazon, the process of agricultural colonization shows the 

evolution of the perceptions about property rights regimes among colonist, indigenous, and 

the state. In the early stages of colonization, the NEA was seen by local authorities, 

international development agencies, and poor colonist as an open access regimen, and, 

therefore, played a central role in the agrarian reform or reforma agraría and larger 

development schemes (Barsky 1984). When farmers settle on new lands, the colonization 

processes favor forest clearing to access property rights, specifically, privatization of lands 

that induces a cycle of excessive land clearing and inadequate soil conservation (Southgate 

1990). Only 40 percent of the proportion of lands in the NEA have legal title over the land 

(Ruiz 2000), however, despite the absence of land titles, farmer hold an informal private 

regimen or effective possession that consists of the physical delimitation of the property and 

recognition from neighbors. Rudel (1995) has found that the lack of title does not contribute 

to deforestation in the central Ecuadorian Amazon. It is also important to note that in the 

Negative Positive 
Centralization of decision-making 
Shifts in systems of knowledge 
Colonization  
Nationalization of resources 
Increased participation of markets 
Development of policies 

State legitimizing of local institutions 
Enabling legislation 
Cultural and political revitalization 
Capacity building 
Institution building 



 

23 

Ecuadorian Amazon, the legal title or escritura is central to the access of agricultural or non-

agricultural credits. State and private banks grant loans to support agricultural activities (e.g., 

cattle raising and coffee production) and other non-agricultural activities (e.g., acquisition of 

small trucks to be used as taxis).  

1.5.4 Landscape Ecology: Scale, Pattern, Process, and Hierarchy  

Conceptualizations of landscapes and landscape ecology have evolved at a 

remarkable pace in the last few decades. Different definitions offer disciplinary and regional 

biases. The landscape definition used in this research is based on one proposed by  Burdel 

and Baudry (2003), as a level of organization of ecological systems that is higher than the 

ecosystem level, characterized essentially by its spatial and temporal heterogeneity and its 

dynamics, and partly governed by human activities. It exists independently of perceptions.   

Three fundamental landscape characteristics associated with the study of landscape 

ecology are structure, function, and change (Turner 1989; Turner et al. 1989). Structure 

refers to the spatial relationships between distinctive ecosystems, that is, the distribution of 

energy, materials, and species in relation to the sizes, shapes, numbers, kinds, and 

configurations of components. Dynamic (i.e., function) refers to the interactions between 

spatial elements, including the flow of energy, materials, and organisms among the 

component ecosystems. Change (i.e., transformation) refers to alterations in the structure and 

function of the ecological mosaic through time.  

Landscape Ecology is based on the premise that there are strong links between 

ecological (spatial) pattern and ecological process evident at different spatial and temporal 

scales (Gustafson 1998). Previous ecological studies of the landscapes and regions have 

centered on the description of the processes that create certain biotic patterns, while 
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landscape ecology emphasizes the effects of spatial patterning on ecosystems.3 Specifically, 

landscape ecology considers (a) the development and dynamics of spatial heterogeneity, (b) 

interactions and exchanges across heterogeneous landscapes, (c) the influences of spatial 

heterogeneity on biotic and abiotic processes, and (d) the management of spatial 

heterogeneity (Turner 1989).   

Spatial pattern has been used extensively in the landscape ecological literature, 

primarily to describe both the composition and structure of landscapes. The terms spatial 

heterogeneity and spatial pattern are used synonymously to refer comprehensively to its main 

parts: composition, configuration, and temporal aspects of heterogeneity. Pattern is generated 

by process at various space-time scales (Urban et al. 1987). 

The dynamics of landscapes depends on the relationships between societies, different 

levels of social organization (from households to states), and their environment (from small 

ecosystems to plateaus). Scale creates structures that change in space and time. Spatio-

temporal heterogeneity controls the landscape dynamics (Burel and Baudry 2003). Because 

landscapes are spatial entities, their structure, function, and change are scale dependent. 

There is no single natural scale at which ecological phenomena should be studied; systems 

generally show characteristic variability on a range of spatial, temporal, and organizational 

scales (Levin 1992).  

The problem with scale, as a concept, lies in the fact that scale has a variety of 

meanings according to the research focus or discipline involved. Cao and Lam (1997) 

categorize geographical scale in four dimensions: (1) cartographic and map scale refers to the 

                                                 

3 For example heterogeneity mapped versus heterogeneity ecologically relevant. 
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ratio of a distance on a map to the corresponding distance on the ground, (2) the geographic 

or observational scale refers to the size or spatial extent of the study, (3) the operational scale 

refers to the scale at which certain processes operate across the environment: the operational 

scale is dependent on the geographical phenomenon being studied, and (4) measurement 

scale is intrinsically linked to the concepts of grain and extent. Grain refers to the smallest 

unit that can be distinguished, while extent refers to the size of the study area.  

An important consideration related to scale is that geographical and ecological 

phenomena are scale dependence, where the pattern under observation varies with scale 

(Walsh et al. 1999; Walsh et al. 1997). The failure to account for scale-dependent changes in 

pattern and process relationships have confused and confounded the synthesis of ecological 

data and the extrapolation of ecosystems effects from sample plots to landscape scales 

(Wiens et al. 1993). The ability to detect changes in patterns and make predictions at more 

than one level of scale resolution requires identifying the physical and biological processes of 

interest, estimating the variables and parameters that affect these processes at several scales, 

and developing rules to translate the information across scales (Gardner 1998).     

It has been shown that pattern is generated by processes at various scales. A system 

can be divided or decomposed into components operating at different scales. There is no 

continuum in scale, but a set of levels. Hierarchy theory (Allen and Starr 1982) defines a 

system that can be divided or decomposed into several components. The level 0 is bounded 

and controlled by a higher level. Level 0 can be divided into its interacting components at 

level -1, with which phenomena at level 0 can be explained. Hierarchy implies that to 

understand a phenomenon, it is necessary to understand processes at its lower and higher 

levels (de Koning 1999). Lower level "events" are small and occur rapidily, while higher 
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level "events" are larger and occur slowly. Levels in the hierarchy also have interactions. 

Rate aggregated or rate-structured components of one level interact more frequently with 

similar components (i.e., due similar rate in what is called horizontal structure). Here, vertical 

structure is the structure of spatially nested systems (Urban et al. 1987). Another proposition 

of Hierarchy theory is that spatial and temporal scales tend to covary, processes that operate 

over long temporal scales also operate over large spatial scales (Goodchild and Quatrochi 

1997). Critics to the Hierarchy theory emphasize that the theory does not validate, a-priori, 

established theoretical concepts,  therefore the theory itself seems arbitrary or heuristic. The 

theory does not provide methods for extracting levels from observed data.  

1.5.5 Complexity and Complex Adaptive Systems 

In science, social processes are usually regarded as complex outcomes of interactions 

between social structure and human agency, while natural processes are usually regarded as 

determined by laws of nature (Blackman 2000). Currently, there is a certain degree of 

convergence in the study of social and natural systems supported by developments in the 

fields of systems theory, chaos, and emergence. Beyond some terrible legacies of 

environmental determinism, complexity research tries to find coincident points in 

morphology of patterns and processes in both social and natural processes.  

The definition of complexity theory and complex systems is difficult, in the sense that 

there is no identifiable complexity theory. Different disciplines and theories concerned with 

complex systems are gathered under the banner of complexity research (Manson 2000). To 

understand how complexity and complex systems contribute to this research, it is necessary 

to review some concepts related to the foundation of complexity science. The origin of 

systems theory in social (Von Bertalanffy 1950) and natural (Patten 1959; Watt 1966) 
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sciences are the basis for the development of several concepts related to complex systems, 

among them feedback mechanisms. Chorley and Kennedy (1971) define feedbacks (Figure 

1.5a, 1.5b, 1.5e) as the property of systems that when changes are introduced via one of the 

system variables, transmission through the structure leads the effect of the change back to the 

initial variable, to give a circularity of action. With a negative feedback (Figure 1.5c), the 

system is maintained in a steady state by self-regulation processes termed morphostatic. With 

a positive feedback (Figure 1.5d), the system is characterized as morphogenetic, changing its 

characteristics as the effect of B on C leads to further changes in B, via D.  

 

Source: Chorley and Kennedy (1971) 

Figure 1.5. Feedback mechanisms in systems theory. 

 

Blackman (2000) explains Complexity theory as a type of Systems theory that 

approaches explanation in terms of causes and effects, but is not deterministic. According to 

Blackman (2000), the basic principles of complexity can be summarized as: (1) system-
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environment interactions that allows feedbacks, (2) systems of social and environmental 

characteristics that have multiple and interacting causes with non-linear trajectories of 

change occurring within a phase space (i.e., neither totally ordered nor totally chaotic) of 

possible attractors, (3) certain parameters that govern the general properties of a system and 

its trajectory in phase-state, and (4) system states that are not predictable in the long-term, 

but the generic class to which they belong can be described, investigated, and perhaps 

anticipated.    

A Complexity theory analysis of LULC change aims at understanding the dynamics 

of LULC change patterns in terms of a state-space within which the system functions. 

Characteristics of complexity in this state-space include thresholds that cause rates of change 

to vary, bifurcations that cause systems to diverge from similar states, folds that lead to 

jumps of state, and various stability conditions. All of these characteristics can be thought of 

as constraints on LULC dynamics and future trajectories. A relevant topic within Complexity 

is the concept of self-organizing systems: spatially extended, dynamic systems can self-

organize to generate order. Complexity conceives a system as either reproducing its current 

state (i.e., stable state) via negative feedbacks with the environment or moving along 

trajectories from one state to another (i.e., state cycle) as a result of positive feedbacks 

(Blackman 2000). State cycle is known in complexity theory as a system phase, and 

embodies all the possible states for a system in a possible environment. In this research, the 

system phase is the possible LULC trajectories. Environmental change (e.g., the construction 

of a road or the implementation of a new policy) can cause perturbation to the system that 

can "soften" its development by a negative feedback or develop into a chaotic behavior with 

a positive feedback that generates change along a trajectory within the system’s state-space. 
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Complexity theory can be applied to the analysis of LULC transitions, because 

landscape frontiers (i.e., the NEA) are emergent phenomena resulting from human-

environment interaction at local scales. Specifically, complexity provides a framework for 

two important features in the NEA agricultural system: feedbacks and uncertainty. Positive 

and negative feedbacks need to be accounted for in the spatially-explicit and dynamic 

models; important positive and negative feedbacks include the creation/improvement of 

accessibility, a decrease in the natural resource base, and subdivision and immigration to the 

area. In terms of uncertainty, peasant farmers might not be fully capable of outlining a clear 

maximizing strategy when planting food crops as "small farmers can strive, but they cannot 

maximize, because they lack the information that would allow them to do so" (Ortiz 1973). 

Complex approaches, such as agent based models, can account for a degree of 

"communication" and can account for local uncertainty and random behavior to create 

regional homogeneous patterns. 

In social systems, the existence of institutions and networks that learn and store 

knowledge and experience, create flexibility in problem-solving, and balance power among 

interest groups play an important role in adaptive capacity (Berkes 2002). Social 

organizations can act as an adaptive system that behaves in a complex way, that is, with 

higher degrees of freedom and with numerous components. The adaptive cycle (Gunderson 

and Hollings 2002; Hollings and Sanderson 1996) alternates between long periods of 

aggregation and transformation of resources and shorter periods that create opportunities for 

innovation. The adaptive cycle is proposed as a fundamental approach to understand complex 

systems that extend from cells to ecosystems and to societies. In the adaptive cycle, four 

distinct stages have been identified (Figure 1.6): (1) growth or exploitation, (2) conservation, 



 

30 

(3) collapse or release, and (4) reorganization.  

The adaptive cycle has been used to guide adaptive ecosystem management, which 

identifies uncertainties, and then establishes methodologies to test hypotheses concerning 

those uncertainties. It uses management as a tool not only to change the system, but as a tool 

to learn about the system (Gunderson & Hollings, 2002).  There are several processes, both 

scientific and social, that are vital components of adaptive management: (1) management is 

linked to appropriate temporal and spatial scales, (2) management retains a focus on 

statistical power and controls, (3) use of computer models to build synthesis and an 

embodied ecological consensus, (4) use embodied ecological consensus to evaluate strategic 

alternatives, and (5) communicate alternatives to political arenas for negotiation of a 

selection (Gunderson & Hollings, 2002). The relevance of the adaptive cycle for this research 

is that it provides a framework to test different future scenarios of LULC change, in the 

spatially-explicit modeling phase, concerning to decision-making strategies. When adaptive 

local cycles are embedded in higher order cycles, they can mimic the relationships between 

lower and higher level forms of social and natural organization that operate under great levels 

of uncertainty.  

 

 

 

 

 

 

Source: Gunderson & Hollings (2002) 

Figure 1.6. The adaptive cycle in complex systems. 
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1.6. Rethinking Land Use Trajectories  

Despite the numerous theoretical approaches that explain environmental degradation 

in the tropics as a response of single socio-economic or demographic factors, such as 

population, technology, or economic dependency, a number of cases studies suggest that 

single-factor determinants of LULC change do not exist. Land cover is a result of contextual 

factors or different combinations of various proximate causes and underlying driving forces 

that are associated with different social, geographical, biophysical, and historical 

circumstances (Geist and Lambin 2001; Lambin et al. 2001). It is also evident, from the 

empirical perspective, that statistical "global" models that have supported traditional 

theoretical explanations do not fully capture the complexities of LULC change.  For 

example, household LULC statistical models rarely explain the majority of the variation 

produced.  Within a region, the subtle heterogeneity or inhabitants inequalities produce 

different responses that are masked by equations that generalize the relationships across 

temporal and spatial scales.   

In this research, a single theoretical framework will not be used.  Instead an 

articulation of different theoretical frameworks based on linkages of drivers operating at 

different time-space scales will be developed. The assembly of hypotheses, observations, 

analyses, interpretations, and discussions will be used as pivotal frameworks: household life 

(i.e., at the farm scale), and landscape ecology (i.e., regional scale), and complexity theory 

(i.e., linking between scales).  The coupling of rigorous statistical methods with complex 

approaches (e.g., Cellular Automata) offers a tool to explore LULC trajectories in more 

pragmatic ways, because quantifies the localized parameters of relationships and also 

captures the uncertainty inherent in peasant agricultural farming.  
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The methods to be used to address the research questions in this research are 

structured in a form that they link research questions. When possible outcomes in one 

questions are used to inform other questions. Figure 1.7 shows the configuration of the 

different phases of the methodology.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Diagram of the methodological approach.  

Chapter 2 deals with the assessment of land cover transitions, which is based on 

satellite imagery classifications analysis, statistical methods, and landscape ecology 

approaches. A time-series of Landsat TM images (path 60 row 9) for 1986, 1989, 1996, 

1999, and 2002 were classified by the Ecuador Project using a hybrid approach. These 

classifications are based on a central LULC scheme that includes 16 land cover that can be 

grouped depending upon the trajectory to be analyzed.  

Chapter 3 is devoted to deriving the magnitude and direction of relationships among 

secondary vegetation, and demographic, socioeconomic, and biophysical variables. The 
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temporal nature of these relationships will be assessed for the Ecuador-NASA surveys 

conducted in 1990 and 1999, based on a representative probability household sample (5.9% 

of the rural populations) and selected in 1990 to implement the first household survey 

(Pichón 1997). The household surveys encompass aspects related to demographic, economic, 

and agricultural characteristics of the households, but also include institutional characteristics 

(i.e., land tenancy) and health. The follow-up survey was made in 1999 on the same farms 

visited in 1990. The unit of analysis is the farm or plot and the sample consist of 450 plots. 

Farms were chosen as the unit, because spatially-explicit information (GPS data) were 

available only at the farm level. Using the GPS data, it is possible to link farms to the LULC 

trajectories.  

Chapter 4 explores the spatial heterogeneity of the relationships between factors of 

change and trajectories of LULC. This analysis is performed using the same independent 

variables used in Research Question 2. Two separated cross-sectional models will be created 

for 1990 and 1999. The dependent variable is continuous and represents the proportion 

within the farm i of certain LULC class as in 1990 and 1999. Geographically Weighed 

Regressions (GWR) are used. GWR is a local statistical technique to analyze the spatial 

variation in relationships. Through the use of GWR, this research examines the spatial non-

stationarity in the relationships between LULC change and demographic and socioeconomic 

factors that are produced when the same stimulus produces different responses in different 

locations of the study area. The output from GWR is a set of location-specific parameters 

estimate β' that can be mapped and analyzed to provide information on relationships 

(Fotheringham et al., 2002). 

Chapter 5 is devoted to the Cellular Automata (CA) spatially-explicit modeling. The 
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process of conceptualization, formalization, and parameterization of the model will be 

informed on statistical analysis performed in earlier components of this research. The outputs 

from logistic models, geographically-weighted regression models will be used to 

parameterize or set the transition functions in the spatially-explicit simulations using the 

Cellular Automata (CA) model approach.  

CA models are examples of mathematical systems constructed from many simple 

identical components that together are capable of representing complex behavior. From their 

analysis, CA can, first, develop specific models for particular systems, and second, hope to 

abstract general principles applicable to a wide variety of complex systems (Wolfram 1984).  

The geographically-weighted model will create "regions" of relationships within the NEA. 

The 1990 classified image is used to create the initial conditions in the landscape and the 

later images are used for verification, analysis, and validation. Chapter 6, the final and 

concluding chapter, synthesizes main findings, charts subsequent research directions, and 

places in context the approaches, questions, data, methods, and results.  

1.7. Conclusions 

This research presents an interconnected set of analyses that explore the trajectories 

of land change in the Northern Ecuadorian Amazon. An assessment of the trajectories at the 

landscape-level analyzes regional trends beginning in 1986 to draw policy and environmental 

management implications. An analysis of the extent and drivers of the secondary forest 

regeneration is conducted at the farm level to better understand the patterns of succession that 

complement other studies related to deforestation in the NEA. Also, at the farm-level, but 

with regional implications, geographically weighted regression analysis is used to understand 

the spatial non-stationarity or heterogeneity in the relationships between drivers and land use. 
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Finally, the results of the previous research questions are linked to generate a spatially-

explicit model that, based on systems and complexity theory, generates future scenarios of 

land change.  
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CHAPTER 2 

 

2. Land Use/Land Cover Trajectories in the Ecuadorian Amazon 

 

2.1. Introduction 

Land use and land cover (LULC) change is recognized as a core concern of global 

environmental change. Nearly one-quarter of the tropical rainforest biome have been 

fragmented or removed by humans (Wade et al. 2003) and converted to agricultural fields, 

urban areas, and other anthropogenic land uses. Despite an increasing awareness of the 

consequences of land change in tropical areas, global carbon cycle (Cramer et al. 2004; Levy 

et al. 2004), climate (Laurance 2004; Mayle et al. 2004), biodiversity (Gaston et al. 2003; 

Sala et al. 2000) and to local health (Patz et al. 2004), culture and economy (Godoy et al. 

2005a), the need reminds to address complex interplay of population, land use, and 

environment and to examine the causal relationships between drivers of change and the 

contextual factors (Entwisle and Stern 2005).  

Land use and land cover trajectories are the temporal sequence of LULC classes at 

the pixel level described through classified image assembled in a satellite time-series. They 

can be used as an assessment tool that helps to sketch policy or environmental management 

implications linked to the consequences of land use. At global scales, there has been a 

general trajectory of different land-use regimes associated with frontier development: from 

pre-settlement natural vegetation to frontier clearing, then to subsistence agriculture and 
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small-scale farms, and intensive agriculture, urban areas, and protected recreational lands 

(Figure 2.1.) (Foley et al. 2005). 

 

Figure 2.1. Different land use transitions at different stages of settlement. 
 

From the methodological point of view, different disciplinary approaches, practical 

applications, and technical restrictions have created different ways to quantify LULC change. 

These procedures can be classified based on its degree of methodological complexity: (1) 

simple measures of change, such as the proportion of change, (2) annual rates of change, (3) 

changes in the spatial arrangement or structure of LULC, (4) and spatially-explicit 

representation of change at the pixel level using a panel approach and the concept of pixel 

histories. The first category, widely used, is the simple difference of areas or proportions of 

certain class or classes, sometimes divided by time to obtain the rates of change within a 

certain area and land class between two points in time without being spatial explicit 

(Fearnside 1993; Godoy and Contreras 2001; Sierra 2000; Wood and Skole 1998). The 

second category involves the calculation of the annual rate of change assuming linear or non-

linear changes between end-members periods. For example, annual deforestation rates using 
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formulas that originate in the Compound Interest Law are capable to capture the annual 

exponential discount within the forest class between two time points (Food and Agriculture 

Organization 2000; Food and Agriculture Organization 2001; Mena et al. 2006b; Ochoa-

Gaona and Gonzales-Espinosa 2000; Puyravaud 2003). The third approach, based on the 

principles of Landscape Ecology quantify the changes in the spatial configuration and 

composition of LULC at multiple dates and between dates of change (Pan et al. 2004; Walsh 

et al. 2002; Walsh et al. 2003). Another type of multitemporal analysis, the spatially-explicit 

representation of change refers to the maps or raster objects that locate change of one or more 

land use categories per area (e.g., pixels) between two points in time in only one surface. In 

general, most of these analyses come from the use of aerial photography and/or satellite 

imagery change-detection (Castro et al. 2003; Foody and Curran 1994; Lu et al.). In general, 

traditional land change measurements to quantify LULC change are performed using pair-

wise comparisons that emphasize composition or configuration changes between dates. 

LULC trajectory is the representation of the temporal sequence of land use dynamics that 

refers to the succession of land cover types for a given sampling unit over more than two 

observation years (Crews-Meyer 2002; Crews-Meyer 2004; Mertens and Lambin 2000). This 

study characterizes LULC trajectories over space and though time by focusing on: 

composition, configuration, and probability of change across the time-series of classified 

images.  

The examination of the composition of the LULC trajectories explores the landscape 

temporal dynamics by describing patterns of change (e.g., cycles) represented within the 

satellite image time-series. LULC trajectory composition is used to define land use types 

assigned to certain unit of analysis (e.g., pixels, patches, parishes). The LULC composition 
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Agriculture 

Pasture 
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characterizes the static or dynamic nature of a place (i, j) for a series of (k + n) snapshots in 

time (Figure 2.2).  The LULC compositional trajectory depends on a number of factors, 

including the classification scheme, scale of observation and spatial resolution, and temporal 

considerations.  

 

 

 

 

 

 

 

 

 

Figure 2.2. LULC trajectory composition. 
 

The spatial configuration of land use change is based on the paradigms of landscape 

ecology, which emphasize the strong links between landscape spatial patterns and ecological 

functions and processes (Gustafson 1998). Configuration of a LULC trajectory refers to the 

changing spatial arrangement created by different land uses and land cover across the 

classification time-series and at different levels of organization: patch, class, and landscape.  

Although, the prospects of a landscape or a region to change have been explored 

extensively in social and natural sciences, the probabilities of a landscape to change from a 

spatial-explicitly perspective is less studied. The spatial-explicit probability of a land use unit 

(e.g., pixel) to change is captured by (a) the use of geographic relationships (e.g., proximity) 
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of different drivers of change (Geoghegan et al. 2001; Turner 1989; Waggoner and Stephens 

1970) and (b) the representation of these probabilities in space (Chomitz and Gray 1996; de 

Koning 1999; Florax and Van der Vlist 2003). The probability of a land use unit to maintain 

its stability across time or transition to other land uses will depend also on the types of 

geographical relationships and how these relationships are represented.  

In this research, a regional approach is taken to address the problems of LULC change 

in an evolving agricultural frontier. The objectives of this paper are: (a) to explore the 

composition of the main LULC trajectories across time, (b) to examine the spatial 

configuration of the LULC trajectories and (c) find the probabilities of LULC transitions in 

the NEA.  This research uses a set of classified Landsat images time-series that ranges from 

1974 to 2002. Additional data includes a set of spatial socioeconomic, demographic, and 

accessibility data assembled in a geographic information system. The methodological aspects 

of this research are divided in three phases: (1) description of the LULC trajectories in the 

Northern Intensive Study Area (NISA), an area where a deeper image time-series exist; (2) 

analysis at the regional-level (i.e., the Northern Ecuadorian Amazon) using LULC 

trajectories by census sectors using a cluster analysis and landscape pattern metrics; (3) 

generation of a spatially explicit model of the stability versus dynamics of the trajectories 

using variables that represent geographic accessibility, biophysical variability and 

demographic and socioeconomic characteristics.   

2.2. The Study Area: The Northern Ecuadorian Amazon  

This study focuses on land change in the Northern Ecuadorian Amazon (NEA) 

(Figure 2.3). Ecuador had the highest deforestation rate in South America during the 1980s 

and 1990s (Food and Agriculture Organization 2005), which has had significant impact on 
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loss of biodiversity. About 282 plant species are qualified as critically endangered (Pitman et 

al. 2002). The NEA, the second deforestation front within Ecuador (Sierra 2000), is a region 

where LULC change is a spatially-explicit response to several processes occurring at 

different levels of social organization. In the NEA, landscape dynamics can be explained by 

two contrasting processes: (a) the agricultural frontier expansion and its intrinsic 

components: population change, land tenure regime change, extensification and 

intensification of agriculture, increase in geographic accessibility, and market integration 

(Rindfuss et al. In Press) and (b) the changing characteristics of indigenous populations that 

adapt to the new conditions of the frontier development (Godoy and Contreras 2001; Godoy 

et al. 2005a; Holt et al. 2004).  The NEA, a frontier environment, is a good example of a 

coupled human-natural, where humans and the environment interact in complex ways within 

a unique set of ecosystems that for centuries has been a social and economic space under 

different types of management. The dynamics of coupled human-natural system have 

implications for ecosystem sustainability, resilience, and trajectories of change.  
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Figure 2.3. The study area: Ecuador and the Northern Ecuadorian Amazon. 
 

2.3. Landscape Change: Theoretical Implications  

The emphasis of the analysis in this section is theoretical implications related to land 

use change at the regional or landscape level. At this level of spatial aggregation, and 

specifically in tropical areas, the separation of human and natural systems is a challenge. 

Natural scientists often see human activities on the landscape as disturbances in the 

ecosystems (e.g., Barbero 1990). On the other hand, social scientists often treat the 

environment as the "background" context where economic, social, and cultural processes 

develop. Often, too, applied science related to environmental conservation or economic and 

social development assumes that complex problems are driven by a number of critical factors 

and processes whose assumptions derive from disciplinary theoretical and methodological 

approaches, which generates contrasting and competing objectives and strategies that make 

difficult to achieve sustainability (Hollings and Sanderson 1996). The NEA, a frontier 
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environment, is a good example of a coupled human-natural, where humans and the 

environment interact in complex ways within a unique set of ecosystems that for centuries 

has been a social and economic space under different types of management. The dynamics of 

coupled human-natural system have implications for ecosystem sustainability, resilience, and 

trajectories of change.  

Conceptualizations of landscapes have evolved at a very fast pace in the last few 

decades. Different definitions have disciplinary and regional biases. The landscape definition 

used in this research is based on one proposed by Burdel and Baudry (2003); i.e., landscape 

is a level of organization of ecological systems that is higher than the ecosystem level, and it 

is characterized essentially by its spatial and temporal heterogeneity and its dynamics, partly 

governed by human activities. Landscape exists independently of perceptions.  There are 

three fundamental landscape characteristics: structure, function, and change (Turner 1989; 

Turner et al. 1989). Structure refers to the spatial relationships between distinctive 

ecosystems, that is, the distribution of energy, materials, and species in relation to the sizes, 

shapes, numbers, kinds, and configurations of landscape components. Function refers to the 

interactions between spatial elements, including the flow of energy, materials, and organisms 

among the component ecosystems. Change refers to alterations in the structure and function 

of the ecological mosaic through time. In landscape ecology, anthropogenic activities are 

seen as a set of disturbances that affect the physical and biotic templates of the landscape. 

Studies of the landscapes and regions have centered on the description of the processes that 

create biotic patterns, with an emphasis on the effects of spatial patterning on ecosystems 

function.  

Spatial pattern and scale are two important conceptualizations in landscape ecology. 
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Spatial pattern has been used extensively in the landscape ecology literature, primarily to 

describe both the composition and structure of landscapes. Spatial heterogeneity and spatial 

pattern are used synonymously to refer comprehensively to its central elements: composition, 

configuration, and temporal aspects of heterogeneity. Patterns are generated by processes at 

various scales (Urban et al. 1987). But scale is just an artifice that creates structures helpful 

to analyze change in space and time. Regional dynamics depends on the relationships 

between societies, different levels of social organization (e.g., households to districts), and 

their environment (e.g., slope units to watersheds). Because landscapes are spatial 

hierarchical entities, their structure, function, and change are scale dependent.  

There is no single natural scale at which ecological phenomena should be studied; 

systems generally show characteristic variability on a range of spatial, temporal, and 

organizational scales (Levin 1992). The problem with scale, as a concept, lies in the fact that 

scale has a variety of meanings according to the research focus or discipline involved. Cao 

and Lam (1997) categorize geographical scale in four dimensions: (1) cartographic and map 

scale that refers to the proportion of distance on a map to the corresponding distance on the 

ground, (2) the geographic or observational scale refers to the size or spatial extent of the 

study, (3) the operational scale refers to the scale at which certain processes as operate in the 

environment: operational scale then is dependent on the geographical phenomenon studied, 

and (4) measurement scale that is intrinsically linked to the concepts of grain and extent. 

Grain refers to the smallest unit that can be distinguished, while extent refers to the size of 

the study area. An important consideration related to scale is that geographical and ecological 

patterns under observation vary with scale (Walsh et al. 1999; Walsh et al. 1997). The failure 

to account for scale-dependent changes in patterns and processes can confuse and confound 
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the synthesis of ecological data and the extrapolation of ecosystem's effects that range from 

sample plots to landscape scales (Wiens et al. 1993). The ability to detect changes in spatial 

pattern and make predictions at more than one level of spatial resolution requires identifying 

the physical and biological processes of interest, estimating the variables and parameters that 

affect these processes at several scales, and developing rules to translate the information 

across scales (Gardner 1998).     

In theory, a system can be divided or decomposed into components operating at 

different scales. Hierarchy theory defines a system that can be divided or decomposed into 

several components (Allen and Starr 1982) . As such, level 0 is bounded and controlled by a 

higher level. Level 0 can be divided into its interacting components at level -1, with which 

phenomena at level 0 can be explained. Hierarchical implies that to understand a 

phenomenon, it is necessary to understand processes at its lower and higher levels (de 

Koning 1999). Lower level "events" are smaller and occur faster, while higher level "events" 

are larger and occur slower. Levels in the hierarchy also have interactions. Rate-aggregated 

or rate-structured components of one level interact more frequently with similar components 

(Urban et al. 1987). Another proposition of Hierarchy theory is that spatial and temporal 

scales tend to co-vary, processes that operates over long temporal scales also operate over 

large spatial scales (Goodchild and Quatrochi 1997).  

One of the most applied paradigms of development that is used to explain how the 

different paths of development on LULC change is Modernization theory (also called Dual 

Society Models). In this approach, there are two clear sectors: a core (i.e., the urban, modern, 

productive center) and the periphery (i.e., a rural subsistence sector). Core and periphery are 

linked by mechanisms of polarization (the core growths) and spread (periphery growths) 
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(Brown 1991). The modernization approach argues that environmental degradation (e.g., 

deforestation) is a function of the level and rate of development within a given country 

(Ehrhardt-Martinez 1998). Development can be explained as the increasing use of technology 

to achieve development, including economic growth, infrastructure, technology, 

urbanization, education, and extractive practices or improvements.  

The role of economic development in rural areas is important to explain small-

holding LULC change, but this relationship is complex. Economic development can be 

viewed from two different contrasting perspectives: first, rural populations are often 

impoverished by a declining resource base, and as a consequence, they are forced by their 

circumstances to further degrade their environment creating a cycle difficult to break. In 

addition, short-term attention to current needs takes precedence over long-term stewardship 

of resources (de Sherbinin 2000). The second perspective shows that small farmers with 

increasing amounts of cultivated land tend to have the capital, access to technology, 

education, and subsides necessary to succeed (Marquette 1998; Pichón 1997). The political 

and economic inequalities in the larger society, where urban systems are incapable of 

assimilating demographic growth compel poor, dispossessed peasants to seek a livelihood on 

the margins of the society in the rain forest (Rudel and Horowitz 1993). At the same time, it 

creates the need to understand the role of institutional and household level factors in 

influencing the observed variation in forest clearing strategies (Pichón 1997). Theories, such 

as modernization, try to understand LULC change at cross-national scales, but such theories 

do not work properly when applied to regional and sub-regional settings (Runge 1992). The 

complexity of the relationship between LULC change and development depends on a range 

of macro or micro-economic variables that drive LULC change with different degrees of 
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intensity at different levels of social organization.  

2.4. Methodology 

The methodology in this research lies heavily in spatial analysis, geographic 

information systems, and satellite image processing. In addition to data pre-processing, 

satellite imagery classifications, and geographic information database construction, the 

methods used are divided in two main components: (a) analysis of LULC trajectories at the 

pixel-level for the Northern Intensive Study Area (NISA) and (b) analysis of LULC 

trajectories at the censal sector-level, which include examination of LULC compositional 

patterns, and probability of change analyses.    

2.4.1 Data  

Land Use Land Cover Data: A time-series of Landsat TM images, path 60/row 9, for 

19734, 1986, 1996, 1999, and 2002 were classified by the Ecuador Project5 using a hybrid 

approach. Pre-processing steps included atmospheric correction, geometric correction, and 

extensive fieldwork for geodetic control and land use validation. For geometric correction, 

the 1996 image was selected as the original, or master, image and was rectified using a set of 

geodetic control points (GCP) collected using global positioning system (GPS) receivers and 

topographic maps. The remaining images were rectified using the master image as the  

reference (i.e., relative registration) (Frizzelle 2004). A hybrid classification approach uses a 

combination of unsupervised and supervised approaches applied to defined spectral features, 

                                                 

4 The 1973 is a Landsat MSS  

5 The Ecuador Project is an interdisciplinary project at the Carolina Population Center, Departments of 
Geography and Biostatistics (www.cpc.unc.edu/projects/Ecuador). 
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such as an extended set of layers that includes Landsat spectral bands, principal components, 

and fractional cover and vegetation indices (Messina and Walsh 2001; Walsh et al. 2003) to 

extract the land use/land cover classes. The resulting classifications are based on a central 

LULC scheme that includes 16 land use/land cover types that were grouped to represent, for 

instance relative categories of economic activity and deforestation (Table 2.1).   

Table 2.1. Central and Grouped Classification Schemes. 
 

 

 

 

 

 

 

 

 

 

Geographic and Demographic Data:  A set of spatially-explicit variables were 

generated and assembled in a Geographic Information System: (1) Ecuador 2001 National 

Census Data at the census sector-level boundaries (i.e., a sub-parish level). Parish is the 

minimal political unit within Ecuador; (2) Population counts at the census sector-level for 

2001; (3) location of main cities (i.e., Lago Agrio, Coca, Shushufindi, and Coca); (4) location 

of main communities (64 communities) surveyed in 1999 using Global Position Systems 

(GPS); (5) a road network obtained from topographic base maps at a scale of 1:50,000 and 

updated through fieldwork conducted in 2000 and 2001 using GPS measurements; (6) 
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elevation data obtained from the Shuttle Radar Topographic Mission (SRTM); and (7) 

official boundaries of the Ecuadorian System of Protected Areas. 

2.4.2 Methods 

The characterization of the LULC trajectories was restricted by the availability of 

cloud-free satellite imagery. This limitation necessitated the separation of the analysis into 

two segments: (a) the analysis of the trajectories of LULC in the NISA, using satellite images 

for 1973, 1986, 1996, 1999, and 2002, and (b) the analysis of the LULC trajectories in the 

larger colonization area (NEA) that covers an area of approximately 775,000 ha using 

satellite imagery for 1986, 1996, and 2002. The first analysis, in the NISA, is an exploratory 

examination of the compositional arrangement of the LULC trajectories by settlement stage, 

a pattern that shows the advance of a deforestation front across the region. The second phase, 

at the regional level, which constitutes the core of the study, characterizes the trajectories by 

LULC composition, spatial configuration, and factors contributing to the stability or 

dynamics of the LULC transitions, with implications for environmental management.   

(a) LULC Trajectories in the NISA: A categorical map that contains the pixel 

history, or the LULC trajectory, at the pixel-level were created using map algebra.  Land 

classes are converted to a number, multiplied by a factor distinctive for each year, then 

summed to obtain a sequence for every pixel transition, and then a name is assigned to the 

respective combination. The LULC classes used in this analysis are indicated in the Grouped 

Scheme 1 (Table 1). Classes for each year are: forest (F), succession (S), pasture (P), small 

scale agriculture (Sa), large scale agriculture (La), barren/urban (U), water, and unclassified. 

For 1973, the classification represented only forest and non-forest classes due the quality of 

the Landsat MSS (Multi Spectral Scanner) data. Figure 2.4 illustrates the map algebra 
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procedure. Later, unnecessary pixels (i.e., water bodies, clouds, and shadows) were excluded 

from the analysis and finally, pixel histories that were inconsistent (e.g., a transition from 

forest to urban to forest in a short time period) were excluded from subsequent analysis as 

they were judged to be artifact of classification error.   The Classification Scheme 1 is highly 

simplified, because more detailed classification scheme (i.e., 16 LULC classes) have 

increased uncertainty related to its accuracy due the lack of ground control points to assess 

the classification.  

The quantification of error in classifications at the pixel level (Foody 2002) and in  

multi-temporal analysis (Lunetta 1999) is challenging for different reasons including: (1) the 

lack of temporal coherence of the measures for validating images assembled within a time-

series, (2) demands of field sampling in remote and inaccessible environments, and (3) 

linkage between the documentation of error and uncertainty through an error matrix and 

standard reporting protocols and the improvement of the classification to reduce ambiguity. 

The problem of the uncertainty related to the accuracy of the classifications is exacerbated in 

frontier areas, most of the time considered marginal lands, where ground data or other types 

of complementary remote sensing information (e.g., aerial photography) for past years do not 

exist and Landsat Images are the best information available. The approach taken here is that 

acknowledging that there must be error and misclassification related to the classifications,  

these errors will be detected and eliminated using the trajectories themselves. Only logical 

trajectories, where land use changes are consistent with anecdotal information will be used to 

find general LULC patterns or trends.   

Grouped Scheme 1 captures socioeconomic characteristics of land use (e.g., degrees 

of extensification), but also the spectral characteristics. For example, small agriculture (Sa), 
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in Grouped Scheme 1 includes coffee, cacao, banana, and corn, and likely fruit trees (i.e., 

orange, lemon, etc.). These agricultural crops are small, mostly subsistence agriculture that 

have similar spectral characteristics, particularly related to cash crops (i.e., coffee and cacao).  

The analysis conducted within the NISA performs an exploratory description of the 

LULC trajectories by age of deforestation6. To carry out this task an additional map was 

created: a stage of deforestation map. It was produced for data of actual forest clearing, i.e., 

the image date where LULC change was initially observed Landsat images from 1973, 1986, 

1996, 1999, and 2002 to illustrate the areas that were deforested within the periods between 

images (prior-1973, 1973-86, 1986-96, 1996-2002). It is important to note that the aim of this 

complementary map is not to provide a chronological account of the colonization process, 

but a meaningful strategy to separate the LULC trajectories. Trajectories were mapped and 

ranked based on the proportion of LULC changes at the landscape-level and stratified by 

periods of deforestation.  

 

Figure 2.4. Pixel history to trajectory name. 
 

                                                 

6 Deforestation Age is the actual clear of the forest within a certain period.  
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Composition and Configuration of LULC Trajectories in the NEA: This section 

describes the analysis of LULC trajectories at the sector-level to explore the spatial and 

temporal patterns of trajectories within the region. The methodology follows the same logic 

used in the above section (a): first, a categorical map is developed containing the pixel 

trajectories in for 1986, 1996, and 2002; second, unnecessary pixels were excluded and third, 

pixel histories that were inconsistent were also excluded from subsequent analysis.  

Due the extensiveness and diversity of LULC trajectories (i.e., 665 trajectories after 

exclusion of non-relevant trajectories), the trajectories were stratified by sector censal or 

census sector, which is in the hierarchy of the Ecuadorian political division after province, 

canton, and parroquia. The original census sector maps from INEC (Instituto Ecuatoriano de 

Estadisticas y Censos) were digitized by the Spatial Analysis Unit at the Carolina Population 

Center. They contained 233 census sectors that were distributed across the land colonization 

area (Figure 2.5).  In each of the census sectors, the proportion of area covered by each of the 

transitions was calculated and used in the cluster analysis.   
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Figure 2.5. Census sectors in the Northern Ecuadorian Amazon. 
 

A hierarchical-divisive clustering algorithm is used to identify the main trends and 

associations of trajectories. The hierarchical algorithm divides groups that produce a 

hierarchical structure, displaying the order in which groups are merged or divided (Kaufman 

and Rousseeuw 1990; MathSoft 1999). The method is divisive, because it starts with all the 

observations in a single group and proceeds until each observation is in a separate group. The 

data set for clustering is a matrix (n x p) with the following structure: 
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where rows represent objects (i.e., sectors) and columns represent variables (i.e., proportion 

of LULC transitions). The algorithm creates a dissimilarity matrix (n x n) that indicates the 

distance or dissimilarity between to different objects (i and j). Dissimilarity between two 
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objects is computed using Euclidean distance: 

∑
=

−=
p
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jfif XXjid
1

2)(),(  

where, d(i,j) is the Euclidean distance which measure the difference or dissimilarity between 

the objects i and j and p is the number of columns.  

The divisive cluster algorithm finds the object with the highest average dissimilarity, 

which initiates the first object of a different cluster. The rest of the objects, based on their 

dissimilarity, are divided between the two clusters. The cluster with the largest dissimilarity 

follows a similar process until the number of desired clusters is achieved.   

Landscape Pattern Indices: For each of the 233 census sectors, a set of landscape 

pattern indices are calculated for 1986, 1996, and 2002 at the landscape level (assuming that 

each census sector is a landscape) and for each LULC class. The spatial pattern indices used 

are:  (1) Patch Density (PD) that measures the number of land cover patches per 100 

hectares; patch density is an indicator of the degree of fragmentation of a landscape; (2) 

Perimeter Area Fractal Dimension (PAFRA) is a index that indicates the complexity of the 

shape of the landscape or class; the range of PAFRA is between 1 and 2 (no units). For a 2-

dimensional landscape, a fractal dimension greater than 1 indicates a departure from a 

Euclidean geometry (i.e., an increase in patch shape complexity) (McGarigal et al. 2002); (3) 

contagion index that refers to the tendency of patch types to be spatially aggregated. It ranges 

from 0 to 100, where 0 is totally disaggregated and interdispesed patches, while 100 is a 

single patch (McGarigal et al. 2002); and (4) the division index that measure the diversity of 

LULC types in the landscape. It is 0 when the landscape consists of single patch, and one 

when the landscape is maximally subdivided (McGarigal et al. 2002).   

Probability of Transitioning: The objective of this analysis is to create a spatially 
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explicit model of the probability of LULC transition (versus stability) in the region based on 

accessibility, biophysical, and demographic factors. Stability is represented by trajectories or 

"pixel histories" that are constant through time (e.g., f-f-f or p-p-p), and change is represented 

by pixels with different or dynamic trajectories across the time-series. The model is created 

using a spatially-explicit logistic regression approach, where the dependent variable is a 

binary image that contains constant trajectories (value 0) versus pixels with dynamic 

trajectories (value 1). The independent variables are a set of accessibility, biophysical, and 

demographic factors (Table 2.2): 

Table 2.2. Variables used in the Logistic Regression model. 

 

Although the objective of this portion of the research is not to test statistically test the 

significance of the main drivers of landscape transition, because of the limited number of 

variables available for the model, it is hypothesized that accessibility characteristic of the 

landscape, such as distance to roads, to promotes different types of conversion of the land. In 

other words, distance to roads will be negatively related to flux or transitions. For example, 

 
VARIABLE 

 
TYPE SOURCE/DERIVED FROM 

Distance to main city             Interval: 1 Km categories 1:50,000 topographic map 
updated to 2001 

Distance to community        Interval: 1 Km categories 1:50,000 topographic map 
updated to 2001 

Distance to oil camp             Interval: 1 Km categories Ministry of Environment of 
Ecuador 

Distance to protected area       Interval: 1 Km categories Ministry of Environment of 
Ecuador 

Distance to main road         Interval: 1 Km categories 1:50,000 topographic map 
updated to 2001 

Elevation                  Continuous (resolution 90 m) Shuttle Radar Topographic 
Mission  

Slope                      Continuous (resolution 90 m) Shuttle Radar Topographic 
Mission  

Soil                      Categorical (Good soil=reference) Ministry of Agriculture of 
Ecuador 

Population Density        Number of people/1000 hectares 2001 National Ecuadorian 
Census 
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cheaper transportation costs will provide the opportunity to effectuate different types of 

investments on the land and to induce LULC change accordingly. Nearness to cities and 

communities will provide access to different markets (e.g., labor, agricultural outputs, and 

inputs), therefore, increasing the transitions among land use classes and generating negative 

relationships to flux of transitions. Protected areas, low quality soil, and steep slopes are 

hypothesized to promote stability of the landscape. Finally, population density should be 

positively related to flux and transitions, because people provide the labor that induces the 

transitions.   

The logistic regression module can be estimated using the formula:  

∑
∑

+
==

)exp(1

)exp(
)|1(

BX

BX
XyP  

where: 
P is the probability of the dependent variable being 1 
X is the set of independent variables 
V is the estimated parameters 

 

The model is fitted using a Maximum Likelihood Estimator (MLE) procedure to find 

the best fitting set of parameters (coefficients). A 10 percent pixels of the landscape was 

sampled for the regression analysis (819,134 observations) using a stratified random sample 

to decrease spatial autocorrelation. Parameters of the regression are extrapolated to a surface 

of probabilities of transitioning.  

2.5. Results  

2.5.1 LULC Trajectories in the NISA 

In the NISA, in general, the trajectories are dominated (i.e., in terms of area) by 

recent transitions that contain forested classes (i.e., primary forest or succession), as well as 

the consistent representation of pasture through time. Table 2.3 presents the top 10 LULC 
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"all" pixel trajectories in the NISA (column a) and the top 10 agricultural transitions (column 

b) in the NISA. This table sorts the transitions in terms of area and shows the dominance of 

pasture and succession in the "all" trajectories (i.e., column a). There is a dominance of 

pasture and small and large scale agriculture (i.e., column b). Small-scale agriculture is 

produced in major amounts of area in the later stages of the trajectory.  

 

Table 2.3. Top 10 LULC transitions in the NEA and its proportion in the landscape. 
 

(a) 
All trajectories 

 

(b) 
Agricultural 
trajectories

7
 

Trajectory %
8
 Trajectory % 

F-F-F-F-F 30.83 F-F-F-F-P 2.15 

F-F-F-F-S 2.67 F-F-F-F-La 1.29 

F-F-F-F-P 2.15 F-F-F-F-Sa 1.10 

F-F-S-F-F 1.56 F-F-P-P-P 0.84 

F-F-F-S-F 1.37 F-F-F-P-P 0.63 

F-F-F-F-La 1.29 F-P-P-P-P 0.49 

F-F-F-F-Sa 1.10 F-F-P-P-Sa 0.34 

F-F-P-P-P 0.84 F-F-F-P-Sa 0.33 

F-F-F-P-F 0.79 F-F-F-La-La 0.24 

F-F-P-F-F 0.68 F-F-F-Sa-P 0.22 

 

Figure 2.6 is a visual representation of selected LULC transitions in the NEA9 that 

illustrate different views at varying scales and areas. While it is very difficult to make a 

visual interpretation of the LULC patterns, because of the diversity and mix of transitions, 

                                                 

7 Agricultural trajectories exclude forest succession and urban/barren classes, to emphasize change between 
pasture, small, and large agriculture.  

8 One percent of the landscape in the NISA is 802 hectares about 1,000 soccer fields.  

9 Figure 3 contains trajectories that started in 1973 as Forest. For visual purposes trajectories that in 1973 were 
non-forest class and water, clouds, and shadows were excluded.  
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being represented, it is possible to identify a number of very interesting patterns. For 

example, trajectories illustrated in "green" illustrate stability of forest trough time; grey 

indicates recent changes (i.e., appearing in 2002); light purple indicates changes that began 

earlier (since 1999) that transitioned from forest to other land uses; dark purple indicates 

relatively old transitions (since 1996) that started with large agriculture and transitioned to 

other land uses; blue represent changes (since 1996) that started with succession or secondary 

forest10 and transitioned to other land uses in later years; and green, yellow and brown 

represent older transitions (from 1986) that started to change from large scale agriculture to 

pasture and successional vegetation.    

The results of the LULC transitions in the NISA, stratified by period of deforestation 

are shown in Table 2.4 and Figure 2.7. Table 2.4 shows the top agricultural transitions by 

area and confirms the presence of pasture (P) as a dominant class across all the periods, of 

deforestation. In all the deforestation periods the presence and permanence of pasture is 

clear. The second detectable trend across all the deforestation periods is the irregular cycle 

between pasture and large scale agriculture (La) and small agriculture (Sa). With a couple of 

exceptions, pasture (P) is always interdigitated in the agricultural transitions. The trajectories 

produced in the oldest deforestation period (i.e., before 1974) are the most stable. Changes to 

the urban class are produced within this set of transitions. Large-scale agriculture is dominant 

during the two following periods (i.e., 1974-86) and (i.e., 1986-96). Table 2.4 ranks the 

transitions based on area so the dominance of large scale agriculture is expected. Small 

agriculture is also important in earlier periods of deforestation. In terms of overall area, later 

                                                 

10 Succession here can indicate a selective degradation of forest (e.g., selective logging or a combination of 
pasture and tress), which can be characterized as a secondary forest. 



 

59 

and less diverse transitions are more extensive.  

2.5.2 Composition and Configuration of LULC Trajectories in the NEA  

This section of the research contains the results of the analysis of the LULC 

composition and spatial configuration of LULC trajectories for the entire region (NEA). The 

objective of this section is to identify census sectors that can be grouped according to the 

proportion of trajectories that they contain. A data set containing the proportion of each 

trajectory per census sector was created and the hierarchical-divisive clustering algorithm 

applied.  The clustering algorithm was used to create 3, 6, 9, and 12 cluster groupings of 

similar LULC trajectories across census sectors. The different number of clusters, in general, 

followed the same pattern: clusters forming rings that buffered the main cities or followed a 

core-periphery patterns. Table 2.5 describes the results of the clustering technique using six 

clusters and the area characterized of the main transitions. The results are mapped and the 

trajectories of each cluster described.   
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Figure 2.6. Visual representation of selected LULC trajectories. 
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Figure 2.7. Location of LULC trajectories according to the deforestation period. 
 

(a) before 1974, (b) between 1974-1986, (c) between 1986-1996, and (d) 1999-2002. 
Grey areas represent agricultural trajectories and black areas represent succession. Stable 

forested areas are excluded. 
 



 

62 

Table 2.4. Main Agricultural Transitions by period of deforestation in the NISA.  
Deforestation before 1974 Deforestation 1974-1986 Deforestation 1986-1996 Deforestation 1996-1999 Deforestation 1999-2002 

Trajectory Ha % Trajectory Ha % Trajectory Ha % Trajectory Ha % Trajectory Ha % 

Nf-P-P-P-P 63.00 1.49 F-P-P-P-P 392 2.62 F-F-P-P-P 674.01 3.20 F-F-F-P-P 506.16 5.63 F-F-F-F-P 1729.53 11.79 

Nf-U-U-U-U 29.34 0.69 F-La-P-P-P 212 1.42 F-F-La-P-P 443.97 2.11 F-F-F-P-La 348.93 3.88 F-F-F-F-La 1033.38 7.04 

Nf-La-P-P-P 28.17 0.67 F-P-La-P-P 154 1.03 F-F-La-P-La 318.96 1.52 F-F-F-P-Sa 262.35 2.92 F-F-F-F-Sa 882.09 6.01 

Nf-La-La-La-La 25.92 0.61 F-P-P-P-La 106 0.71 F-F-P-P-La 296.46 1.41 F-F-F-La-La 193.68 2.15    

Nf-La-La-P-La 24.12 0.57 F-La-La-P-P 104 0.69 F-F-La-P-Sa 227.43 1.08 F-F-F-Sa-P 178.92 1.99    

Nf-P-La-P-P 16.56 0.39 F-P-P-P-Sa 97.4 0.65 F-F-La-La-La 196.20 0.93 F-F-F-La-P 167.04 1.86    

Nf-La-P-P-La 16.11 0.38 F-La-La-P-La 83.1 0.56 F-F-Sa-P-P 167.49 0.80 F-F-F-Sa-La 143.10 1.59    

Nf-P-P-P-U 15.93 0.38 F-La-P-P-La 82.6 0.55 F-F-P-La-P 166.23 0.79 F-F-F-La-Sa 100.80 1.12    

Nf-La-La-P-P 15.30 0.36 F-P-La-P-La 72 0.48 F-F-La-La-P 154.35 0.73 F-F-F-Sa-Sa 96.48 1.07    

Nf-P-U-U-U 14.9 0.4 F-P-P-La-P 70 0.47 F-F-P-La-La 135.00 0.64 F-F-F-P-U 13.95 0.16    

 

Table 2.5. Top LULC trajectories within six clusters of the NEA. 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Traj % Traj % Traj % Traj % Traj % Traj % 

F-F-F 10.14 F-F-F 26.79 F-F-F 47.57 F-F-F 66.84 La-F-La 11.56 F-F-F 82.82 

F-F-P 4.30 F-F-P 4.73 F-F-S 4.09 F-S-F 3.38 F-F-F 10.38 F-F-S 2.23 

F-F-La 3.68 F-F-S 4.52 F-F-P 3.87 F-F-S 3.33 F-F-La 8.56 F-S-F 1.95 

F-P-P 3.54 F-F-La 3.83 F-S-F 3.27 F-F-P 2.27 F-La-La 7.63 F-F-P 1.47 

F-F-S 3.48 F-S-F 3.02 F-F-La 2.61 F-F-La 1.98 La-La-La 7.14 F-P-F 0.95 

F-La-P 3.18 F-F-Sa 2.62 F-F-Sa 2.13 F-P-F 1.96 F-P-La 6.16 F-F-La 0.94 

F-La-La 3.09 F-La-La 2.50 F-P-F 1.96 F-La-F 1.30 La-S-La 5.23 F-F-Sa 0.77 

F-S-P 2.78 F-P-P 2.48 F-P-P 1.88 F-F-Sa 1.21 F-S-La 3.95 F-La-F 0.70 

F-P-La 2.52 F-La-P 2.38 F-S-P 1.60 F-Sa-F 0.60 La-P-La 3.43 F-Sa-F 0.34 

F-F-Sa 2.27 F-S-P 2.35 F-La-F 1.59 F-S-P 0.57 F-La-P 1.84 F-S-P 0.29 
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The clusters are characterized based on the composition of the dominant trajectories. 

Although the definition of the clusters is relative and depend on the number of clusters 

identified, the clusters can be categorized by the trajectories they contain. In this case for 

example, the six clusters classified can be labeled:   

Cluster 1: very low forest stability, new pasture and large scale agriculture, transitions 

between pasture, large scale agriculture, and succession. 

Cluster 2: low forest stability, new pasture and large scale agriculture, transition to 

succession. 

Cluster 3: medium forest stability, transition to succession, transitions between pasture, large 

scale agriculture, and small scale agriculture. 

Cluster 4: High stability of forest, transitions to succession, new pasture, and large scale 

agriculture. 

Cluster 5: Dominance of large scale agriculture. 

Cluster 6: Very high stability of forest, dominance of succession, new pasture, small 

agriculture, and large agriculture.  

Figure 2.8 is a map of the six clusters in the NEA that shows the spatial arrangement 

of the clusters is in the form a core-periphery
11.  The core is located in the proximity of main 

towns of (Lago Agrio, El Eno, Coca, and Joya de los Sachas). The periphery is located in 

areas close to the national parks, where indigenous communities and less connected colonist 

populations are distributed. 

                                                 

11 This core and periphery clustering pattern was also found when 3, 9, and 12 clusters were generated 

using the clustering algorithm.  
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Clusters have different temporal compositions of Forest (F), Pasture (P), Large-Scale 
Agriculture (La), Small-Scale Agriculture (Sa), and Succession (S).  

 

Figure 2.8. Spatial distribution of six LULC transitions clusters.  
 

Very low F stability, new P and La, transitions between P-La-S. 

Low F stability, new P and La, transition to S 

Medium F stability, transition to S, transitions between P- La-Sa 

High stability of F, transitions to S, new P and La 

Very high stability of F, dominance of S, new P, Sa, La 

Dominance of large scale agriculture 
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Landscape Pattern: A set of landscape pattern metrics are calculated for the NEA 

using census sectors as the unit of analysis.  Figure 2.9 shows the results for three years: 

1986, 1996, and 2002. Figure 2.9 (a) shows frequencies of the contagion index for the census 

sectors across the NEA. The graph indicates that for 1986 the number of census sectors with 

a high connectivity between patches was dominant. With time the landscape became more 

fragmented, although 1996 and 2002 had similar; 2002 shows census sectors with patches. 

Figures 2.9 (b) and (c) shows similar results for the landscape index and patch density 

respectively. In 1986, the number with patches across the landscape was relatively low and 

consistent. In 1996 and 2002 the density of patches increased, suggesting an intense 

fragmentation of the landscape.   

Figure 2.10 illustrates the relationship between patch density across census sectors 

and distance to road (a) and the perimeter/area fractal dimension with distance to city (b). 

These graphs indicate that patch density decreases with distance to roads and cities. The 

same pattern is found using fractal dimension. In all the cases, the difference between 1986 

and 1996 is larger than the difference between 1996 and 2002 suggesting that the process of 

fragmentation of the landscape occurred at a higher rate in earlier periods.  
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Figure 2.9. Distribution of landscape metrics calculated using census sector as unit. 
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Figure 2.10. Landscape metrics and their relationship to accessibility. 
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Statistical Analysis: This section of the research presents the results of the statistical 

model. The aim of the logistic regression analysis is to create a spatially-explicit model of the 

flux (versus the stability) of the transitions based on geographic, demographic, and 

biophysical characteristics within the NEA. This model is graphically presented in Figure 

2.11. The number of sampled observations used in the model is 820,132 defined using a 

stratified random sample. The percentage of sampled pixels with stable transitions (i.e., 

LULC constant across time) is 58.08% (Value=0), and percentage of sampled landscape with 

dynamic transitions is 41.91% (Value=1). Table 2.6 shows a set of descriptive statistics for 

the independent variables.  

Table 2.7 indicates the coefficients obtained for each of the explanatory variables. 

The direction of the relationships between the dependent and independent variables is as 

expected. The exception is the distance to the two main cities (i.e., distance to Lago Agrio 

and Coca), which is positively related in the model is positive. Distance to communities is 

negatively related however, community includes all the small and medium tows, which 

probably captures better the effect of urban areas.  

In terms of how well the model performs, ROC (Relative Operating Characteristic) 

measures the goodness of fit of the logistic regression, and compares Boolean maps of 

“reality” versus a "suitability" map (Idrisi 2006). ROC for this model is 0.7532 that indicates 

a relative regular fit12. Also, Pseudo R_square = 0.13 that indicates an average goodness of 

fit13.    Another method of assessing the overall fit of a model is to consider its prediction 

                                                 

12 ROC=1 indicates a perfect fit; and ROC=0.5 indicates a random fit. 

13 Pseudo R_square > 0.2 is considered a relatively good fit (Clark and Hosking 1986)  
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success. Table 2.8 contrasts the observed versus the predicted observations. The higher 

probabilities of transitioning are found in the core of the NEA, close to the towns of Coca 

and Joya de los Sachas, and relatively low probabilities are found in the periphery, close to 

protected areas.  

 

Table 2.6. Descriptive statistics of independent variables and expected relationship. 
 

Independent Variables Mean Std. 
Deviation 

Expected 
relationship 

Distance to city (km) 22.596 12.622 (-) 

Distance to community (km) 9.075 6.648 (-) 

Distance to oil wells (km) 6.928 4.972 (-) 

Distance to protected area (km) 19.403 11.403 (+) 

Distance to main roads (km) 5.687 6.456 (-) 

Elevation (m) 255.816 646.485 (-/+) 

Slope (degrees) -37.072 626.609 (-/+) 

Population Density (persons/ha) -19.279 439.703 (+) 

Soil (good soil=reference) 0.468 0.499 (-) 

 

Table 2.7. Logistic regression coefficient for the logistic regression. 
 

Variables Coefficient 

Intercept 2.170786 

Distance to city 0.000061 

Distance to community -0.028418 

Distance to oil well 0.008013 

Distance to protected area 0.028398 

Distance to main road -0.086366 

Elevation -0.007524 

Slope 0.007948 

Population Density 0.000017 

Soil -0.584315 
 
-2logL0 
-2log(likelihood) 
ChiSquare( 9) 

1115411.6 
967999.8 
147411.8 
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Table 2.8. Classification of cases and odds ratio. 
 

 

 

 

Figure 2.11. Probability of transitioning in the Northern Ecuadorian Amazon 
 

2.6. Conclusion and Discussion  

This work provides an exploratory assessment of LULC change patterns in the 

Northern Ecuadorian Amazon. It shows a complex and diverse sets of LULC trajectories in 

the study area. There are, however, patterns that can be observed and discriminated using 

Observed Fitted 0 Fitted 1 % Correct 

0 352334 124031. 73.96 

1 124031 219736 63.92 



 

 

 

96 

statistical analysis. From the methodological point of view, there are implications related to 

the accuracy of the classification and the use of pixel-based trajectories and ranks based on 

proportions. Lastly, there are connotations for future research related to theory and spatially-

explicit complex modeling. 

The exploration of trajectories at the "pixel" level has many drawbacks that make its 

analysis complicated. For instance, through the analysis of the LULC transitions in the 

Northern Intensive Study Area (NISA), it was found that the quantity and diversity of LULC 

transitions makes it impractical to generate comprehensive assessments of the status and 

change patterns without the use of some type of generalization and segregation of the 

trajectories. A commonly encountered concern in the multi-temporal analysis of frontier 

environments is the lack of multi-temporal control data that prevent the quantification of the 

error produced within the land use classification for earlier periods. The lack of data and 

methods to capture systematic errors of the classification creates a high level of uncertainty 

for the LULC transitions. In the case of this research, the objective was to find the main 

patterns of spatial and temporal organization of the trajectories. As such, they were 

aggregated or stratified by different spatial units. It was crucial to eliminate trajectories that 

were clearly not consistent or occupied a small proportion of the landscape. In other words, 

the methods employed transitions that were most important, in terms of area, to ameliorate 

the uncertainty produced by the lack of control data and the amount of information produced 

by the diversity of trajectories.  

The analysis of LULC transitions has suggested a “core and periphery” pattern of 

transitions in the NEA. It is well accepted that land use change within farms in the 

Ecuadorian Amazon is, in great part, a spatially-explicit response to different demographic 
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and socioeconomic processes at the household- (e.g., farm subdivision) and community-

levels (e.g., urbanization, territory reduction). Von Thünnen in 1826 already described the 

generation of concentric circles around market towns that are composed of different land use 

types and demonstrated the connection between land use, location of the property, and 

transportation costs to markets (Nelson 2002). Processes at higher levels of social, political, 

and spatial organization are, in turn, dependent on economic development policies and, in the 

Amazonian case, also on conservation policies. The agricultural and forest trajectories 

occurring in urban or semi-urban places and marginal lands are sufficiently different to 

produce diverse and explicitly explicit responses. In the case of the NEA, where regional 

planning is restricted to the timing and territorialization of natural resources exploitation and 

agricultural growth is mostly spontaneous, LULC patterns are good indicators of the link 

between agricultural development and environmental change (i.e., forest change). Future 

studies on the NEA should benefit from core and periphery models of the economic change 

that have been extensively studied through Dual Society-Models, Modernization, and New 

Economy Geography (e.g., Brown 1991; e.g., Gradus and Lithwick 1996; Krugman 1991). 

The key question to address is whether greater level of aggregation or concentration of land 

investments in the core areas, without the regulatory presence of the governments (i.e., land 

protection) by itself will imply forest retention in periphery areas.   

The LULC transitions also have implications for the condition of ecosystems and 

landscapes. The NEA is a frontier environment flanked by a set of relatively healthy and 

protected ecosystems: the Cayambe-Coca, Llanganates, and Gran Sumaco protected areas to 

the west and the Cuyabeno and Yasuni to the east. It is well know that connectivity among 

protected areas is vital to achieve real and effective protection of sensitive environments. The 
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designs of corridors will be a effective approach to ecosystem conservation, particularly, if 

the relative stability of current land use transitions is taken into consideration. For example, 

in the case of the NEA, clusters with forest stability or areas with low probability of 

transitioning to other land uses should be taken into consideration to form parts of corridors 

for restoration efforts.   
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CHAPTER 3 

 

3. Secondary Forest Succession in the Northern Ecuadorian Amazon:  Spatial Patterns 

and Drivers 

3.1. Introduction 

 It is estimated that one-third of the world's tropical forest area is now covered by 

secondary forests (Center for International Forest Research 2002). In the tropics, secondary 

forests offer an alternative to accelerated environmental degradation by restoring deforested 

and disturbed habitats to a transitional land use/land cover (LULC) type and often providing 

income to the inhabitants of tropical forests. The analysis of secondary forests in tropical 

regions has recently received renewed attention, because of its importance in the calculation 

of carbon budgets, as an option for the sustainable management of forests, and for 

biodiversity conservation. As a carbon sink, the growth of biomass is in fact more rapid in 

young forests. Forest regrowth produces an accumulation of carbon at rates that range from 

1.5 Mg C ha-1 yr-1 in forests with biomass < 100 Mg C ha-1 to 5.5 Mg C ha-1 yr-1 in forests 

with biomass > 190 Mg C ha-1 (Houghton et al. 2000). Also, secondary forests serve as 

connectors between primary forest remnants, decrease edge effects on primary habitats, 

affect biodiversity conservation by serving as critical habitat for key species, and protect soils 

and watersheds. Little is known, however, about secondary forest management as an 

effective conservation strategy that has both biotic and economic relevance (Center for 

International Forest Research 2002).   
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 An accurate understanding of the extent of secondary forests and their formation is 

key to recognizing their potential for conservation and development. Recent advances have 

addressed (a) secondary forests in different parts of the Amazon: in Brazil (Perz and Skole 

2003a; Perz and Skole 2003b; Perz and Walker 2002; Smith et al. 2003), Peru (Coomes et al. 

2000; De Jong et al. 2001), and Ecuador (Rudel et al. 2002), (b) ecology of secondary forests 

(Brown and Lugo 1990; Chokkalingam and De Jong 2001; De Jong et al. 2001; Fearnside 

1996), (c) remote sensing of successional vegetation (e.g., Castro et al. 2003; Foody and 

Curran 1994; Kimes et al. 1999; Kimes et al. 1998; Rignot et al. 1997; Tokola et al. 1999; 

e.g., Vieira et al. 2003), (d) socio-economic drivers of secondary forests (e.g., Perz and Skole 

2003a; Perz and Skole 2003b; Perz and Walker 2002; Rudel et al. 2002; Smith et al. 2003), 

and (e) secondary forest management (e.g., Chokkalingam et al. 2001; e.g., Kammesheidt 

2002). This study will examine secondary (or successional) forest and rastrojo (or early 

successional vegetation) that are formed following agricultural extensification and years of 

land use in the Northern Ecuadorian Amazon (NEA). 

 The definition and classification of secondary forests varies from one context to 

another, but invariably it depends on the age, use, and composition of the forest. Secondary 

forests are those formed as a consequence of the human impact on forested lands (Brown and 

Lugo 1990). For this study, secondary forest excludes extensive mono-species plantations as 

well as secondary forests formed by natural disturbances (e.g., fire or wind blow-down).  

Within this context, in the NEA successional vegetation occurs as a result of: (a) traditional 

or deliberate land use practices employed by colonists and indigenous groups as a 

mechanism to restore soil nutrients through recharge, and (b) abandonment of farms or 

agricultural plots on active farms. In the NEA, where household decision-making is the 



 

 

 

101 

primary proximate cause of land transformation (e.g., Bromley 1989; Pichón and Bilsborrow 

1999; Rudel and Horowitz 1993; Southgate and Whitaker 1994) this research hypothesizes 

that the emergence of secondary forests in the NEA depends upon factors such as local 

biophysical and terrain conditions, antecedent and contemporary land use practices, market 

demands and labor availability, geographic accessibility, socioeconomic and demographic 

characteristics of households, and the links between households and local communities. 

 The specific objectives of this research component are to: (a) quantify the extent of 

secondary forest and fallow at the regional level between 1986 and 2002 in the NEA; and (b) 

analyze the socioeconomic, demographic, and biophysical factors that contribute to the 

generation of secondary successional vegetation at the farm-level in the NEA for 1990 and in 

1999. 

 The results of this research contribute to (a) the understanding of the patterns and 

processes of secondary forest generation in the NEA, (b) the improvement of the 

measurement of the area in secondary forest through remote sensing, and (c) the use of 

longitudinal household socioeconomic survey data to build statistical models that examine 

the influence of socioeconomic, demographic, biophysical, and geographical factors on 

succession of forests. 

3.2. The Northern Ecuadorian Amazon (NEA) 

 The study area is located in the colonization area of the northeastern portion 

of the Ecuadorian Amazon (Figure 3.1). The region covers an area approximately 7,096 km² 

and comprises 19 parroquias or parishes located in the provinces of Sucumbios, Orellana, 

and Napo.   The NEA exhibits a variety of natural vegetation types: evergreen forest of the 

lowlands and foothills, evergreen forest flooded by white waters, evergreen forest flooded by 



 

 

 

102 

black waters, palm forest, and humid brush (Palacios et al. 1999). The Ecuadorian rainforest 

is among the most biologically diverse and unique environments in the world. It has been 

considered one of the world’s ecological hotspots, an area with extraordinary levels of 

biodiversity, and at the same time, at risk from high human demand for land conversion and 

development (Myers 1988; Myers 1990; Orme et al. 2005). This region has experienced 

considerable LULC change primarily through deforestation and agricultural extensification 

on household farms located on or near petroleum roads. Deforestation rates have been 

approximately 2.5 percent/year for the 1986-1996 and 1.8 percent/year for 1996-2002 (Mena 

et al. 2006b).  

 

 

Figure 3.1. The Northern Ecuadorian Amazon. 
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Demographic change has been dramatic in the last 30 years. Population growth was 8 

percent/year in the period 1974-1982, 6 percent/year for 1982-1990, 4 percent/year between 

1990 and 2001, more than double the national average (Bilsborrow 2003). Migration from 

the Sierra and Costa regions of Ecuador is among the main factors contributing population 

growth and agricultural expansion in the NEA (Uquillas 1984). More recently, refugees from 

neighboring Colombia are arriving in the region to escape the violence. As a result, the NEA 

has one of the highest population densities in the Amazon Basin. Household farms extend up 

to 8-lineas (i.e., development lines) or 14-km from the nearest primary road, that links farms 

to market towns and population centers. Farm formation in areas of limited accessibility 

farther from primary roads reflects growing population density in the region, that is also 

manifest in increasing subdivisions of plots, community creation and expansion, and the 

direct and indirect effects of continuing expansion of oil extraction. 

 Prior studies in the NEA have found land use change on farms linked to farm labor 

(i.e., more male workers per household) (Marquette 1998); duration of settlement, soil 

quality, education (Pichón 1997; Pichón et al. 2002); household socioeconomic and 

demographic characteristics (Pan and Bilsborrow 2001; Pan et al. 2004); and urbanization, 

subdivision of property, road expansion and resulting improved geographic accessibility and 

access to growing agricultural markets (Barbieri et al. 2005; Barbieri and Carr 2005; Pan and 

Bilsborrow 2005; Pan et al. 2004). Land use in the NEA is thus framed by socio-economic 

conditions and biophysical settings that give context to this study, and includes secondary 

forests as an important landscape element that reflects ecological transition and dynamism 

caused by social, biophysical, and geographical drivers of LULC change. 
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3.3. Conceptual Model and Theoretical Framework  

 In the NEA, nearly 40 percent14 of the forest cover has been transformed to 

agriculture between 1974 and 2002. Deforestation is a process of land change that cycles 

between a forest-dominated landscape, an agriculture/pasture-dominated landscape, and a 

fragmented landscape of multiple land uses and land covers. Secondary forest is often a 

transitional LULC type that mediates the landscape matrix and links change and no-change 

patterns across the NEA.  

 Based on work by Chokkaliangam and de Jong (2001), secondary forests in the NEA 

have been classified into several classes depending on their use and age (Table 3.1). The 

perceptions and uses of secondary forest among indigenous and colonist populations may be 

different, which has implications for conservation and sustainable development. Indigenous 

groups use secondary forest plots (i.e., agricultural gardens that are partially abandoned or 

inactive) mostly for fruit collection and as hunting magnets for animals. Thus an 

ethnographic study carried out in eight indigenous communities in the Ecuadorian Amazon 

by Holt et al. (2004) reports that inactive gardens are used in different ways after cultivation 

by the ethnic groups in the NEA. Gardens are used for about three years and then left fallow 

for one to 18-years. Post-cultivation use in the fallow period is diverse but mostly to collect 

fruit and less frequently for hunting. Colonists, on the other hand, sometimes allow 

secondary forests to regenerate to recharge soil nutrients and prevent erosion, and often 

renew cultivation after a relatively short period of time. Alternative, they abandon farms or 

agricultural parcels on active farms as a consequence of declining soil fertility.  

                                                 

14 Characterizations made using Landsat MSS and Landsat TM images.  
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Table 3.1. Types of secondary forest succession in the Ecuadorian Amazon. 
 

Use 

 

Definition Observation (Age) 

Swidden (slash and 
mulch) 

Forest regenerating for the 
purposes of restoring the 
land for cultivation. 

� Low Rastrojo or resting (< 2 
years) 
� High Rastrojo or barbecho (2-7 
years) 
� Secondary forest (> 7 years)  

Secondary forest 
gardens 

Less-intensively-managed 
smallholder plantations or 
home gardens, mainly in 
indigenous territories, where 
regeneration is tolerated. 

� Semi-abandoned chacras (< 7 
years)  

Post-extraction & 
agriculture secondary 
forests 

Forest regenerating after 
significant reduction in the 
original forest through tree 
extraction or agriculture at a 
single point in time or over 
an extended period. 

� Abandoned agricultural plots (> 
7 years of abandonment) 
� Selective logging 

 

The general approach in this study is to view the formation of secondary forests and 

fallow as linked to socioeconomic, demographic, biophysical, and geographical 

characteristics at the farm-level. It is expected that secondary forest succession and fallow are 

positively linked to land security, that is, tenancy over the farm through a land title. During 

the early stages of colonization, farmers deforested a proportion of their land to help establish 

a claim to the land and gain title (Uquillas 1984). Once the farmer secures tenancy over 

property and the responsibility of deforestation is met, cleared areas that were not directly 

involved in the cultivation process were left to fallow. However, land tenancy and 

deforestation in the Ecuadorian Amazon are only weakly coupled, because of informal 

mechanisms of land tenancy and transfer (Bilsborrow et al. 2004; Rudel 1995). The general 

recognition of “land possession” through a certificado de posesión as a valid form of tenancy 

has reduced the perceived need for a formal land tile or escritura. As a result, informal land 

security has afforded farmers the opportunity to consider long-term investments in the land, 
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such as the regeneration of forests for selective logging and the security that “un-worked” 

land is still a secure part of the landholding. 

 Another important factor affecting deforestation, agricultural extensification, and 

secondary forest succession is off-farm employment, which is often at oil related 

installations, in nearby cities or market towns, or associated with agricultural activities away 

from the household farm. Members of farm households increasingly migrate, permanently or 

temporarily, to local towns. Off-farm employment is hypothesized to have a positive effect 

on the regeneration of forests. Fewer workers on the farm implies less labor dedicated to 

agricultural activities, and therefore, the possibility of an increase in successional vegetation. 

On the other hand, hiring temporary labor for agricultural activities on the farm is 

hypothesized to retard the regeneration of secondary forests by keeping land in active 

agricultural use.  

Forest transition theory suggests that forests follow an inverse U-shaped curve 

(Mather 2000) in which initially rapid deforestation is followed by regeneration in the later 

stages of economic development, in broad terms (Klooster 2003). Forest transition theory has 

been used to explain forest succession at higher scales of spatial and social aggregation in 

temporal environments, its applicability in tropical environments have its limitation (Perz 

2007). In the NEA, economic development in the form of expanding urban centers and the 

perceived availability of jobs in the oil industry attract farmers and adult members of their 

households seeking off-farm employment to increase and diversify farm household income. 

However, because rural economic activities in the NEA are centered on natural resources 

extractive practices, factors such as household assets, education, access to electricity, loans, 

and technical assistance are expected to be negatively associated with secondary forest 
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generation, since they are positively related to agricultural land use.  In the NEA, 

development, in the context of forest transition theory, defined broadly, is in its very early 

phases and will probably positively influence further deforestation and agricultural 

extensification rather than support forest regeneration.   

 In isolated areas with weak agricultural and labor markets, population pressure 

declines on the farm (due to out-migration of children reaching adulthood), thereby 

promoting forest succession. Chayanov (c.f. Cancian 1989) explored the effects of the size 

and age structure of households and their effects on the proportion of land cultivated. In the 

early 20th century, older households with a greater number of adults present on isolated farms 

in Russia had both the necessity and means for cultivating more land. More recently, Walker 

and Homma (1996) McCracken et al., (1999) and Perz and Walker (2002) identified the 

relationship of the household life cycle and land use change on frontier environments as 

composed of five stages: (1) young parents recently arrived in the area (duration of 

settlement <5 years) and initiate forest clearings for annual crops for subsistence; (2) parents 

with young children (duration of settlement ~5 years) become engaged in the cultivation of 

perennials and pasture, in addition to annual crops; (3) older parents with teenage children 

(duration of settlement ~10 years) decrease the cultivation of annuals and increase cattle 

raising and secondary vegetation; (4) pasture and perennial crops dominate, with increasing 

proportions of secondary forest as parents age and children reach young adulthood (duration 

of settlement ~15 years); and (5) children often leave the farm (duration of settlement > 15 

years), family labor supply declines, and perennials remain a large portion of farm land use, 

as secondary forest succession further increases.   

 In terms of the household life cycle, there is a basic difference between the scenario 



 

 

 

108 

in the Brazilian Amazon and that in the NEA. Unlike Brazil, in the NEA, space for 

agricultural expansion is extremely limited as the total area is relatively small and large areas 

of forest have also been set aside in national parks or titled to indigenous communities. Land 

scarcity has lead to little farm abandonment in the region and instead a process of farm 

subdivision is on-going. In later stages of the household life cycle, when young adults marry, 

they often claim a portion of their parent's farm for their own agricultural activities rather 

than create a new farm. Although, these young adults might work temporally outside the 

farm in off-farm employment, the subdivision remains. The regeneration of secondary forests 

in the NEA is generated through the abandonment of cultivation of certain plots on working 

farms, rather than the abandonment of farms as in Brazil (Barbier and Burgess 2001). This is 

in turn partly caused by growing opportunities for off-farm employment, declining crop 

prices (i.e., coffee, cacao, and beef), and declining soil fertility due to previous use.  

 Other relevant factors that contribute to change in population-environment relations 

include accessibility, which has been found to be increasingly important to explain rural to 

rural, rural to urban mobility, urbanization, and deforestation in the region (Barbieri and Carr 

2005; Pan et al. 2004; Pichón 1997). Higher levels of deforestation occur in areas close to 

main roads and with vehicle access.  It is expected that the generation of secondary forests 

will follow a similar pattern, that is, succession will be more common in deforested areas that 

initially had relatively high degree of accessibility. Also, farm subdivision in the NEA is a 

process that drives LULC change (Bilsborrow et al. 2004) and might also affect secondary 

forest succession. It is expected that the process of subdivision will be affected by 

neighborhood conditions that are not easily captured at the household level. For example, 

these neighborhood effects can be explained by the emergence of small towns linked to 
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industries or services which may generate diffuse parcelization processes. Here we examine 

whether the number of subdivisions within 3 km, 5 km, and 10 km of sample farms has a 

negative effect on secondary forest generation.  

 Biophysical factors, such as declining soil fertility, play an important role in forest 

succession. Moran et al. (2000) found that inter-regional differences of forest succession in 

the Brazilian Amazon are explained by differences in soil fertility. In the NEA, the typical 

soils are dystropepts (oxic or typic) and typic dystrandepts. The dystropepts may be either 

red or grey in color and are generally low in fertility. Dystrandepts have much higher fertility 

and are dark in color due to their composition (volcanic ash).  In both the 1990 and 1999 

household surveys, farmers were asked about the color of the main soil and its soil quality in 

the farm. In addition, farmers were asked about farm topography. Although optimal 

environmental conditions would favor forest regeneration, here soil fertility is hypothesized 

to be negatively associated with secondary forest generation, because lands with less fertile 

soil or steep topography are more likely to be abandoned to natural vegetation succession.  

3.4. Methodology 

3.4.1 Remote Sensing of Secondary Forest 

 The proportions of secondary forest and fallow land at the landscape level were 

obtained using remotely sensed data. The limitations and uncertainties of remote sensing 

characterizations of secondary are well documented (e.g., Castro et al. 2003; e.g., Foody and 

Curran 1994; Kimes et al. 1999; Kimes et al. 1998; Rignot et al. 1997; Song and Woodcock 

2003; Song et al. 2002; Tokola et al. 1999). Besides the errors related to geometric 

rectification and classification per se, uncertainties also exist related to the temporal 

synchronization of satellite and field data, correlation of plant greenness and spectral 
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response (particularly, of older secondary forests), ambiguity in the trajectory of secondary 

forest succession between image dates of the time-series, atmospheric issues and cloud 

concealment (and their shadows) of landscape features, and topographic effects related to 

moisture patterns and spectral biases. Specific to the NEA, older coffee, cacao plantations, 

and secondary forests have similar spectral response patterns. Coffee and cacao, the primary 

cash crops cultivated during the period studied, are often inter-cropped, further confusing 

their spectral separation through the concept of the integrated pixel. Finally, the small area of 

older chacras or successional gardens in indigenous communities (often < 1 ha in size) are 

difficult to categorize as they appear similar to surrounding primary forest, particularly when 

characterized at the 30-m pixel of Landsat TM. However, our use of fairly broad LULC 

classes in the analysis tends to alleviate some of the within and between class uncertainties 

implied in this discussion. 

 Figure 3.2 shows eight sample farms and their individual land parcels mapped 

through a digital classification of Landsat Thematic Mapper (TM) data for 1986, 1996, and 

2002. Note the type and spatial pattern of LULC on these sample farms and the nature of 

change across the image time-series. Figure 3.3. shows a farm that also has been 

characterized at the individual parcel level through field surveys conducted in 2001. GPS 

technology was used to spatially locate the main corner points of each land parcel for each 

sample farm, averaging 50 hectares, with the assistance of the farmer. Farm owners also were 

interviewed and a land use questionnaire was administered to identify land use practices in 

2001. Retrospective questions were also asked about parcel-specific land use practices on the 

farm in 1996, and prospective questions about parcel-specific land use practices anticipated 

in 2003. A GIS database was developed to track the changes in LULC types and parcel 
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location, shape, and orientation for each farm, with emphasis on deforestation and secondary 

forest succession. These datasets were used for training of the classification and validation 

purposes, but they also suggest that in the NEA farms are characterized by LULC dynamism, 

which has implications for mapping and modeling secondary forest succession and fallow.   

 

Figure 3.2. Land cover change detection in sample farms. 
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Figure 3.3: Land use change from parcel history and GPS survey. 
 

The proportions of secondary forest and fallow land at the landscape level were 

obtained using remotely sensed data. This analysis uses a hybrid supervised-unsupervised 

classification of Landsat TM images for 1986, 1996, and 2002. As described by Walsh et al. 

(2002), the approach was designed to be repeatable across images in the assembled time-

series; uses image characteristics assessed through statistical measures for characterizing 

class types; and limits the use of alternative field and/or air photo data in the classification 

process for consistency across the images. The hybrid approach begins with a supervised 

classification using the ISODATA classifier to define approximately 500 “naturally” 

occurring spectral classes. Using output statistics such as the transformed divergence and 

divergence statistics, the 500 spectral classes are reduced by approximately 50 percent. Then 

a supervised classification is applied using a maximum likelihood classifier to relate 

unclassified pixels to the 250 classes (i.e., the training data) defined through the unsupervised 

classification approach (Messina and Walsh 2001). This approach relies upon a hierarchical 

classification scheme to characterize the LULC types in the study area. Classes were then 

grouped into 5 broad categories: primary forest, secondary forest, rastrojo, other vegetation 

classes (including all crops and pasture), and other anthropogenic features (including towns 
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and roads). Secondary forest and rastrojo were used to calculate respective proportions for 

1986, 1996 and 2002. 

3.5. Statistical Analysis 

 This analysis was performed on 125 finca madres, which are farms colonized by 

initial settlers of approximately 50 ha in size. This set of farms is a sub-sample of about 30% 

of all farms surveyed in 1990 (i.e., 405 farms and 418 households) and 1999 (i.e., 405 farms 

and 767 households). The selected farms are those located in intensive study areas (ISAs) 

where cloud-free Landsat images and classifications were available at the time of this 

research, which allows further comparison between remotely sensed data and survey data. 

The original sample of farms, collected in 1990, was derived from a two-stage probability 

sample design and a 6 percent probability sample of all sectors in the development region. 

The first stage was the selection of sectors or “pre-cooperatives” or groups of individual 

farms. A list of official settlement sectors was compiled from maps of IERAC (Ecuadorian 

Institute for Agrarian Reform and Colonization). A random sample of 64 sectors was drawn 

from this list. The second stage of sampling was the selection of individual farms: 5-10 

contiguous farms were randomly selected from each sector using a probability proportional 

to the size of the sector (Pichón 1997).  

 The data collected in the 1990 and 1999 household surveys cover many 

topics, including land use and agriculture, socio-economic and demographic aspects, and 

technical assistance. The dependent variable in the cross sectional models represents the 

presence or absence of secondary successional vegetation on the farm at the moment of 

interview, which includes rastrojo and secondary forest. The independent variables 

represents a set of socioeconomic, technological, biophysical, geographical (accessibility), 
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and intensification variables operating at the local farm-level, which are used to examine the 

probability of secondary forest at the farm-level. Table 3.2 shows the independent variables 

used in this study, their definitions, and means and standard deviations.  
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Table 3.2. Independent variables at the farm-level for 1990 and 1999. 

 
Domain 

 
Variable 

 
Definition 

Expected  
Effect 

1990Mean     
Std.Dev 

1999 
Mean     Std.Dev 

Economic & LABORH  Person-months of hired labor on the farm (-) 7.68 16.54 5.16 6.94 

Technology OFE  Person-months of off-farm employment on the farm (+) 4.72 9.14 3.44 9.19 

  INCOME  Total annual income of the household (- / +) 65.87* 110.29  1729.97* 461.27  

  ASSETS   Average assets within the farm (- / +) 7.89 2.32 6.65 2.13 

  LOAN  Loans received (0/1) (- / +) 0.25 0.43 0.88 1.67 

  TITLE  Percentage of the farm under title (+) 0.67 0.46 0.62 0.45 

  TECH  Percentage of the farm received technical assistance  (- / +) 0.39 0.48 0.37 0.48 

  EDUC  Education of head of household  (- / +) 1.46 0.71 2.66 0.98 

  POWER  Electricity in the farm (- / +) 0.2 0.4 0.66 0.48 

Demographic NHH   Number of households on the farm (-) 1.15 0.44 2.15 1.54 

  POPF   Number of adult females living on the farm (-) 2.36 1.68 3.45 2.66 

  POPM   Number of adult males living on the farm (-) 3.05 1.83 4.72 3.59 

  AGE  Age of the head of household (+) 46.89 12.73 46.21 10.12 

  YRSET  Years since settlement (+) 9.96 4.57  19.84  5.10 

  SUBDIV  Number of farm subdivisions (-) 1.15 0.44 2.63 2.04 

Biophysical FLAT  Proportion of flat land on the farm (-) 0.57 0.49 0.68 0.43 

  BLACK  Proportion of the farms with black soils (-) 0.79 0.41 0.59 0.46 

  NCROPS   Number of crops grown (+) 3.2 1.61 3.81 2.06 

  GOOD   Proportion of good soil on the farm (-) 0.4 0.48 0.38 0.43 

  MEANSLP  Mean slope of the farm (-) 1.21 1.53 1.21 1.52 

 PROPF86  Proportion of primary forest in 1986
a 

(-)   

 PROPF96  Proportion of primary forest in 1996
b 

(-)   

Accessibility WALK   Walking distance to main road (+) 2.00 2.86 0.58 0.95 

  ROAD   Distance traveled by road to reference town (+) 16.97 11.78 14.09 9.26 

  TOWATER  Euclidean distance to rivers (+) 397.54 296.94 390.48 299 

  TOREFCOM   Euclidean distance to reference community (-) 9.99 7.29 10.32 7.57 

  ACCESS  Vehicle access to the farm (-) 0.65 0.48 0.85 0.36 

Densification NSUB_3K   Number of subdivisions within 3-km (-) 7.58 2.93 18.36 10.34 

  NSUB_5K   Number of subdivisions within 5-km (-) 8.92 3.49 20.9 11.22 

  NSUB_10K   Number of subdivisions within 10-km (-) 26.57 12.65 67.76 45.7 
a
 In 1986: mean = 0.801 and std.dev = 0.239; 

b 
In 1996: mean = 0.480 and std.dev=0.160; *In Sucres, not corrected for inflation  

1
1
5
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Statistical methods are used to examine the probability, direction, and significance of 

the relationships between secondary forest and a variety of socio-economic, demographic, 

and geographical variables. Methods included descriptive statistics and logistic regression 

models.  The logistic regression model for π(x) = P(Y=1=secondary forest) at values 

X=(x1,x2,…,xp) of p predictors is:  

logit (π(x)) = α+β1x1+β2x2+…..+βpxp 

Where the parameter βi refer to the effect of xi on the logs odds that Y=1, controlling 

for the other xj (j≠i). Two cross-sectional logistic regression models were created for 1990 

and 1999 based on the longitudinal household survey performed in the study area during 

these years.  

3.6. Results 

3.6.1 Measurement of Secondary Forest 

This study is concerned with secondary forest succession in a young frontier 

environment, where, as noted above, new agricultural land is scarce and little farm 

abandonment occurs. Remotely sensed information shows the extent and proportion of 

secondary forest and rastrojo (Table 3.3) for the entire NEA. These numbers, although 

showing the expected pattern of low levels of succession during the early years and higher 

levels in the middle of the 1990s, also provide an incomplete picture of the forest 

regeneration processes. Land in fallow and secondary forest can be conceptualized as land 

use categories that are in continuous flux. Between the years when Landsat images are 

available (i.e.,1986, 1996, and 2002), there may have been several cycles of deforestation 

and regrowth as new forests grow at a fast rate and farmers clear land.  
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Table 3.3. Secondary forest for the NEA obtained from satellite imagery.  
 

 

 

 

The proportion of secondary forest and fallow suggests three distinct periods in the 

NEA. Up to the mid-1980s, when spontaneous colonization was at its maximum rate, about 

15-percent of primary forest had been converted to other uses, and the amount of secondary 

forest was still very small (less than 1-percent of the landscape). Between 1986 and 1996 the 

period with the highest annual rate of deforestation (about 2.45 percent/year) - 130 thousand 

hectares of primary forest were transformed to other uses, and the proportion of secondary 

forest increased to 49,000 ha (9.5 percent of the NEA). By 2002, the proportion of primary 

forest was the lowest as result of further continued deforestation and the proportion of 

secondary forest was lower than in 1996, decreasing by 19,000 ha. This is consistent with the 

data showing a fall in the percent secondary forest reported in our longitudinal survey by 

farmers in 1990 (mean = 5.17%) and in 1999 (mean= 3.64%) (Tables 3.4 and 3.5, 

respectively).  

Table 3.4. Land in secondary forest reported by farmers in 1990. 
 

Statistic 
1990 

Secondary Forest  
(%) 

Min. 0.00 

Mean 5.17 

Max. 66.00 

Std. Dev. 10.30 

 

 

 
 

 1986 1996 2002 

 Ha (%) Ha (%) Ha (%) 

Primary Forest 599,532.21 (84.61) 467,828.01 (66.02) 426,785.76 (60.30) 

Secondary Forest 17,683 (2.50) 67,114 (9.47) 47,706 (6.74) 

Rastrojo 6,188 (0.87) 5,457 (0.77) 16,796 (2.37) 
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Table 3.5. Land in succession reported by surveyed farmers in 1999. 
 

 

Young Fallow  
(%) 

< 2 years old 

Old fallow 
 (%.) 

2-7 years old 

Secondary Forest  
(%) 

< 7 years old 

All  
Succession 

(%) 

Min. 0.00 0.00 0.00 0.00 

Mean 1.71 5.85 3.64 11.20 

Max. 21.53 37.50 78.75 80.00 

Std. Dev. 3.22 8.70 12.04 14.86 

 

3.6.2 Logistic Regression Results 

 The results of the logistic regression models of the determinants of the presence of 

secondary forest in the farms for 1990 and 1999 are shown in Table 6 and Table 7, 

respectively. A number of additional independent variables were examined in earlier models, 

but are not shown here, since they did not have significant effects on dependent variable, or 

they varied in collinear ways with other variables and have been omitted from the analysis. 

Nevertheless, variables with a strong theoretical base were retained. In general, the results of 

the logistic regressions indicate that various demographic, accessibility, biophysical, and 

socioeconomic factors are important in explaining the presence of secondary forest 

succession on farms. Densification, measured by the number of subdivisions within a certain 

prescribed Euclidean radial distances of the farm, has less effect than anticipated once other 

factors are controlled, including population.  

Table 3.6 shows three models for 1990. Model 1 comprises variables that capture the 

main socioeconomic, geographical, and biophysical characteristics of the farm and that are 

not collinear with other independent variables. Consistent with expectations, the variable 

AGE, representing the household life cycle, is statistically significant and has a positive sign, 

which indicates higher odds of having secondary forest on an older farm. Thus, farms with 
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older heads of household have a higher probability of having secondary forest in 1990. The 

findings in the 1990 regression support this household life cycle. The proportion of good 

soils (GOOD) on the farm and walking distance to the nearest main road (WALK) also show 

strong relationships with secondary forest; their negative sign indicates a decrease in the odds 

of having secondary forest. Although soils characterized as good would facilitate a rapid 

regeneration of forest, the relationship can exist in either direction. Good soils facilitate 

maintaining agricultural uses and encourage more deforestation. Contrary to what was 

expected, accessibility, represented by WALK, indicates that a higher walking distance to the 

road in 1990 decreases the odds of secondary forest. In other words, there is a higher 

probability of secondary forest regeneration on farms located close to roads.  This can be 

explained by the fact that more deforestation, an obvious requirement for forest regeneration, 

occurred on farms close to roads. Farms with more deforestation produce greater 

opportunities for land to cycle into fallow or secondary forest. Legal title over the farm 

(TITLE) increases the odds of secondary forest in the farm. As hypothesized, title might give 

a transient security that allows the abandonment of cultivated plots without the concern of 

having a productive farm thereby that justifying colonization.  

Model 2 in Table 3.6 comprises the statistically significant variables from Model 1. 

The variable TITLE shows a reduction of statistical significance which might indicate a 

degree of interaction with another independent variable in Model 1. Nevertheless, title is 

potentially important variable that represents how institutional factors affect secondary forest 

succession.  In Model 3, the demographic variable, male population in the farm (POPM), was 

included. Contrary to what was expected, POPM is positively linked to secondary forest. A 

higher number of male adults in the household increases the odds of the existence of 
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secondary forest. POPM is also correlated with other demographic variables not included in 

the regressions (i.e., number of households, number of females, number of males, and 

subdivisions in the farm). It was hypothesized that increases in population pressure over the 

land would produce a decrease of secondary forest. However, regression results show that 

demographic variables have only an indirect relationship with succession. Indicators of 

pressure on the land (e.g., number of households, number of males) have a direct causal 

relation to the original deforestation, so being deforested is the requirement for secondary 

succession. Thus, demographic factors should be positively related to land in secondary 

forest.   

Table 3.7 shows the results of the logistic regression for 1999. Model 1 and Model 2 

show that the variables: education of the head of household (EDUC), proportion of forest in 

1986 (PROPF86), and years since settlement (YRSRT) have statistically significant negative 

relationships with secondary forest succession, while off-farm employment (OFE) and 

walking distance to the main road (WALK) have statistical significant positive relationship. 

As expected more education (EDUC) decreases the odds of having secondary forest in the 

farm. More educated farmers are more successful in optimizing the use of deforested lands. 

That is, in intensifying land use to support the families. Increases in education, besides 

supporting access to new agricultural techniques and financial opportunities, can bring 

changes in expectations about land and production.  The lagged proportion of primary forest 

in 1986 (PROPF86) is also a strong predictor of secondary forest succession in 1999. As 

expected, it indicates that higher proportion of primary forest in 1986 is linked to lower odds 

of secondary forests in 1999. Although not statistical significantly for 1990 the negative sign 

of this relationship confirms the relationship between deforestation and secondary forest. 



 

 

 

124 

Years since settlement (YRSET) has a statistically significant negative relationship with 

secondary forest. The direction of this relationship in 1999 is consistent with the overall 

decline of secondary forest in the NEA between mid-1990s and 2001.       

As hypothesized before, more off-farm employment increases the odds of secondary 

forest succession within the farm. As oil related and service jobs increased between 1990 and 

1999, off-farm employment is increasingly important to explain land use changes in the farm. 

Walking distance to the main road (WALK) is another variable that is statistically significant 

in 1999, as it was in 1990. However, in 1999 as opposed to 1990, WALK has a positive 

relationship with secondary forest. Farms located farther from main roads have a higher 

probability of having secondary forest. The difference in the sign in the relationship between 

WALK and the probability of secondary forest may indicate a non-linear relationship, but 

also might be explained by changes in accessibility. While in 1990 the mean walking 

distance was 2 km, in 1999 it was only 0.56 km, therefore, less likely to be important. In 

1990 when main roads were scarce, succession happened in areas where earlier deforestation 

happened -- close to roads. By 1999, when the majority of farms were close to roads, and 

deforestation was common across the landscape, succession occurred in areas more likely to 

be abandoned, those further away. As in 1990, finally, Model 3 of Table 3.7 indicates, the 

final model showing a positive significant relationship between the number of households 

and the presence of secondary forest in 1999. 
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Table 3.6. Logistic Regression Model for Secondary Forest in 1990. 
 

 Model 1 Model 2 Model 3 

Variables β s.e.  β s.e.  β s.e.  

(Intercept) -0.429 (1.554)  -2.016 (1.196)  -2.513 (1.261)  

POPM       0.223 (0.123) 
+ 

YRSET 0.039 (0.050)  0.035 (0.047)  0.025 (0.049)  

AGE 0.029 (0.018) * 0.027 (0.017) 
+ 

0.027 (0.018)  

EDUC -0.258 (0.328)   -0.191 (0.304)  -0.123 (0.309)  

GOOD -0.991 (0.473) 
 

-1.089 (0.449) * -1.228 (0.470) * 

SLOPE 0.036 (0.169) 
 

      

WALK -0.160 (0.091) 
+ 

-0.114 (0.081) * -0.135 (0.083) * 

ROAD -0.018 (0.019)        

ASSETS -0.203 (0.131)        

POWER -0.092 (0.676)        

LABORH -0.005 (0.019)        

OFE 0.007 (0.023)  0.008 (0.022)  -0.006 (0.023)  

TITLE 1.162 (0.571) * 0.727 (0.493)  0.690 (0.503)  

   

   ** Significant at 1%;  * significant at 5%; 
 +  significant at 10% 

 

Table 3.7. Logistic Regression Model for Secondary Forest in 1999 
 

 Model 1 Model 2 Model 3 

Variables β s.e.  β s.e.  β s.e.  

(Intercept) 10.018 (2.985)  7.511 (2.186)  3.171 (1.160)  

POPM       0.106 (0.086) * 

GOOD -0.417 (0.540)  -0.285 (0.513)  -0.366 (0.506)  

ROAD -0.005 (0.025)        

POWER 0.338 (0.528)        

AGE -0.039 (0.025)        

YRSET -0.079 (0.048)  -0.083 (0.045)  -0.082 (0.043) 
+ 

EDUC -0.942 (0.314) * -0.743 (0.253) * -0.532 (0.251) 
+ 

MEANSLP 0.013 (0.159)        

PROPF86 -5.048 (2.142) ** -4.373 (1.865) **    

TITLE 0.248 (0.546)        

OFE 0.010 (0.005) * 0.010 (0.005) * 0.009 (0.005) * 

WALK 0.666 (0.350) * 0.615 (0.318) * 0.457 (0.297) 
+ 

 

** Significant at 1%;  * significant at 5%; 
 +  significant at 10% 
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3.7. Conclusions  

 The succession of vegetation in the NEA is still an incipient process. At the farm-

level, farmers reported that the proportion of successional vegetation within farms was 5.17% 

in 1990 and 11.20% in 1999. These differences in the proportion of secondary vegetation are 

small in relation to other changes in LULC on the same farms (Walsh et al 2003, Bilsborrow 

et al 2004). For the entire NEA, remotely-sensed data indicate that the area of secondary 

forest increased between 1986 and 1996 (49,400 ha), but decreased by 19,400 ha between 

1996 and 2002. Conversely, the area in rastrojo maintained relatively constant values 

between 1986 and 1996, but increased from 5,457 ha in 1996 to 16,796 ha in 2002. Although 

the information provided by farmers through the longitudinal survey, and that obtained 

through remotely sensed methods, are not directly comparable, both sources show that in the 

late 1990s and early years of the present decade, there has been a decrease in the relative 

proportion of secondary forest (excluding fallow), consistent at the farm- and landscape-

level.  

 This exploratory study uses statistical models to study the socioeconomic, 

geographic, and demographic factors that contribute to the generation of successional 

vegetation in the NEA. The study estimates two cross-sectional models, for 1990 and 1999. 

Each reflects different time periods and conditions at the time of survey. While the models 

yield different levels of explanation and show varying slope coefficients, they indicate that 

aspects related to the proportion of forest in past years, household and plot life cycle, 

accessibility, and socioeconomic characteristics such as off-farm employment, males, and 

education are related to secondary forest at different stages of the colonization.  

 The NEA is a region that has been deeply influenced by oil activity. This activity has 
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contributed to the development of infrastructure, urbanization, a floating population of 

migrant labor, and cultural change in indigenous population (Holt et al. 2004). Landscape 

change, and, in this case, the dynamics of successional vegetation, is, in part, caused by 

activities related to the oil industry and its impact on the transportation network, the growth 

of towns, and rising employment opportunities for farmers and young adults.  

 As shown in the statistical analysis, there are a variety of factors that contribute to the 

generation of secondary vegetation, and although this study does not include data on price of 

coffee, the drastic decrease in agricultural commodity prices that begun in the late 90s and 

continued since contributed to the abandonment of coffee “pushed” farmers to seek 

alternative incomes in the oil industry and in towns. Push factors from the farm and “pull” 

factors to non-agricultural activities can promote farm abandonment (something heretofore 

relatively rare in the NEA), which could promoted the regeneration of forest and fallow in 

previously cultivated sites. While too early to tell if such a transition will occur, anecdotal 

evidence suggests that the process of farm and agricultural parcel abandonment has begun in 

the NEA. If correct, an increase in secondary forest and fallow is likely to occur at a scale 

observable through remote sensing systems and identifiable through socio-economic and 

demographic surveys. 
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CHAPTER 4 

 

4. Characterizing the Spatial Dependence and Spatial Heterogeneity of the Drivers of 

Land Change in the Northern Ecuadorian Amazon 

 

4.1. Introduction  

 Land cover change is one of the core problems of global environmental change. 

Although the environmental consequences of land cover change can be traced to colonial 

times (Grove 1992), significant advances have been made in the last two decades in the 

understanding of spatial and temporal dimensions of change at regional and global scales 

(Ramankutty et al. 2006), direct and underlying causes (Geist and Lambin 2002; Lambin et 

al. 2001), economic factors (Barbier and Burgess 2001; Cancian 1989; Kaimowitz and 

Angelsen 1998), ecological changes (Dirzo and Raven 2003; Sauders et al. 1991; Turner 

1996), and socio-cultural consequences of habitat modification (Godoy et al. 2005b).  

 One of the most devastating impacts following ecosystem change with minimal 

management to agricultural extensification is loss of species and populations extinction 

(Brook et al. 2003; Laurance et al. 2002). Furthermore, it is not only direct habitat 

destruction, but broad degradation of habitat quality through forest fragmentation (Fahrig 

2003; Laurance et al. 2002) and edge effects (Woodroffe and Ginsberg 1998) in surrounding 

areas that affect biotic communities and ecosystems. Rapid land use and land cover change 

also has negative feedbacks to the livelihoods of local populations. The advance of the 
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agricultural frontier is linked to technological and cultural change, engagement to markets 

(Godoy et al. 1997; Godoy and Wilkie 1997), and reduction of the natural resource base of 

indigenous populations (Cannon 1995). Deforestation and the associated land cover changes 

negatively affect not only the local physical template, including effects to the microclimate 

(Bruijnzeel 2004) and soil erosion (Bruijnzeel 2004), but also to larger Earth system by 

contributing to global warming through the release of large amounts of carbon to the 

atmosphere (Fearnside 2000; Lewis 2006).  

 One of the challenges of global environmental change is the mismatch between the 

scale of management and the scale of assessment (Cash and Moser 2000). The assessment of 

the drivers of land cover change, in great part, has been supported by statistical methods that 

generalize relationships across regions, landscapes, or study areas, in this paper also called 

global regression models. Global regression analysis may be misleading, if one assumes that 

the relationships are constant or invariant across space (or exhibit stationarity), but, in fact, 

are heterogeneous across space (Fotheringham et al. 2002).  Specifically in the Amazon 

Basin, characterized by its very high biological and cultural diversity, the advance of the 

agricultural frontier and the natural systems are characterized by a high degree of 

heterogeneity across space. For example,  the variability in land-use strategies among 

colonist farmers (Pichón 1996), different types of human adaptation to similar environments 

(Coomes 1992; Moran 1991), and the heterogeneity of soils and landforms (Williams et al. 

2002; Zender et al.) show striking differences across space. Even in the political arena, the 

homogeneity of the Amazon, which was a traditional assumption within governments of the 

region for many decades, is now characterized as just another myth (Amazonic Cooperation 

Agreement 1994). Thus, it should not be surprising that the assumption of processes working 
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identically across geographical units (e.g., colonization areas) is not supported by global 

statistical models, because they are missing some local characteristics that might be relevant 

for successful sustainable development or conservation.   

 In addition to the heterogeneity of the relationships that might exist across space, 

there are localized processes or factors that influence the behavior (or decision-making 

process) of agents, as well as localized errors in the data, which create local influences and 

produce clusters of similar characteristics in the landscape. This is conceptualized as spatial 

dependency, or the extent to which the value of an attribute in one location depends on the 

values of the attribute in nearby locations (Anselin 1988; Fotheringham et al. 2002; Moran 

1948). The challenge is to distinguish spatial dependence from spatial heterogeneity; in other 

words, the difficulty is to distinguish whether a location is different because it is impacted by 

its neighboring values or is different because the processes have different intensities or 

directions at a geographic location (GeoDa 2007). 

 The objectives of this paper are therefore: (1) explore the spatial dependency and 

spatial heterogeneity of the drivers of deforestation and agricultural extensification in the 

Northern Ecuadorian Amazon, and (2) determine how the intensity, type, and direction of the 

factors that control land change are affected and differ across space within the region. This 

research links remotely-sensed land use and land cover data to household survey information, 

and assesses spatial dependency and spatial heterogeneity of the relationships through the use 

of Ordinary Least Square regressions (OLS), Spatial Lag Models (SLM), and Geographically 

Weighted Regression models (GWR). In the results section, besides the exploration of spatial 

dependence and spatial heterogeneity, this research briefly discusses the implications of the 

factors that contribute to land change and illustrates alternative representations of these 
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drivers.  

4.2. The Northern Ecuadorian Amazon (NEA) 

 The study area is located in the colonization area of the northeastern portion of the 

Ecuadorian Amazon (Figure 1). The region covers an area approximately 7,300 km² and 

exhibits a variety of ecosystems (Palacios et al. 1999) and ethnic groups (Holt et al. 2004) 

that include colonist farmers with distinct origin and different histories of settlement and 

indigenous populations of ancestral and recent presence in the region. The Ecuadorian 

rainforest is among the most biologically diverse and unique environments in the world. It 

has been considered one of the world’s ecological hotspots, an area with extraordinary levels 

of biodiversity, and at the same time, at risk from high human demand for land conversion 

and development (Myers 1988; Orme et al. 2005). This region has experienced considerable 

LULC change primarily through deforestation and agricultural extensification on household 

farms that are generally located along roads.  

 The discovery of petroleum in the region in the early 1960s helped define two periods 

in the history of the NEA. Prior to the exploitation of petroleum, the natural landscape was 

essentially intact and populated mainly by indigenous populations and some colonists 

devoted primarily to subsistence agriculture. Using roads built by the petroleum industry to 

explore, lay pipelines, and extract oil, colonists began arriving in the early 1970s and began 

converting land from forest to agriculture on 50-ha farms to initially support themselves with 

subsistence agriculture, followed by the commercial cultivation of coffee, and eventually to 

raise cattle for sale. Virtually all the colonization has been spontaneous. Colonist, household 

farms in the Ecuadorian Amazon extend up to 8-lineas (i.e., development lines) or 16 km 

from the nearest primary road, which links farms to market towns and population centers.  
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 Population growth was 8-percent, 6-percent, and 4-percent per year in the intercensal 

periods 1974-1982, 1982-1990, and 1990-2000, respectively (Bilsborrow 2003). Migration 

from the Sierra and Costa regions of Ecuador, and recently from the neighboring Colombia, 

is among the main factors contributing to population growth in the NEA. As a result, the 

NEA has one of the highest rural population densities in the entire Amazon Basin. More 

recently, population growth has been induced subdivision of property into smaller farms and 

the formation of solares (non-agricultural plots), which has decreased the percentage of 

properties with full legal titling, from 50-percent in 1990 to 34-percent in 1999 (Bilsborrow 

et al. 2004). Off-farm employment (OFE) of members of farm households in emerging urban 

centers contributes to land transformations, as does the direct and indirect effects of 

communities as they expand their core services and influence land use patterns on nearby 

farms. In our longitudinal survey of 405 farms, 35-percent of our respondents in 1990 

reported some household member engaged in OFE, whereas in 1999 this increased to 51-

percent. During the same time period, hired labor decreased from 60-percent to 41-percent 

(Bilsborrow et al. 2004) .  

 Prior studies have found deforestation on farms in the NEA to be linked to farm labor 

(i.e., more male workers per household) (Marquette 1998), duration of settlement, soil 

quality, road access, education (Pichón 1997; Pichón et al. 2002), and household socio-

economic and demographic characteristics (Pan and Bilsborrow 2005; Pan et al. 2004). 
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Figure 4.1. The Northern Ecuadorian Amazon. 
 

4.3. Theoretical Considerations 

4.3.1 Drivers of Land Use and Land Cover Change in Tropical Regions 

 The complexity of the drivers and processes of land change, which emerges due to 

the many factors involved, their feedbacks and thresholds, and the co-evolution of human 

and natural systems, have impeded the generation of an integrated theory of land use change. 

Progress in land change studies, however, lies in the integration of different theoretical 

approaches and the understanding of how these have proven to be useful (Lambin et al. 

2006). In tropical areas, the nature and drivers of land use and land cover change has been 

explored by an expanding body of literature that deals with the direct and indirect 

consequences of land use conversion (Geist and Lambin 2002; Rudel 2005) and the policy 
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implications of the rapid anthropogenic land use change and associated environmental 

degradation (Goetz et al. 2004). It is widely accepted that there is no single overarching land 

change driver; deforestation, for example, responds to localized demographic, 

socioeconomic, and biophysical processes that have global connections, and where historical, 

political, and cultural contexts are very important (Geist and Lambin 2002; Moran 1993; 

Rudel 2005; Rudel and Roper 1997).  In the Northern Ecuadorian Amazon, a relatively new 

agricultural frontier with no additional space for expansion, land change drivers include 

population growth, internal and external population fluxes, the changing nature of labor and 

agricultural markets, and expansion of infrastructure.  

 In the early 1970s demographic approaches were used to explain the effects of 

uncontrolled population growth on the global environment (Meadows et al. 1972; Pestel 

1989), based on the connection between population growth and environmental degradation, 

originally advocated two centuries ago by Malthus (1803). Relevant to land change, neo-

Malthusian theories are built on the assumption that land productivity is fixed, therefore, it is 

necessary to expand agricultural lands to feed the growing populations (United Nations 

Organization 2001). An observation made by Malthus is that the most productive land is 

generally used first and consequently, newer agricultural lands tend not to be as productive. 

In the NEA areas occupied in the later stages of colonization have disadvantages through 

constrains associated with geographic accessibility, land security, and access to technology 

that renders these lands less suitable for highly productive agriculture. The assumption that 

land productivity is fixed is also taken in to consideration by classical agricultural economics. 

The law of diminishing returns (Ricardo 1887) argues that when land is fixed, increased 

applications of labor inputs generate a decrease in the productivity of the mean output per 
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worker (Bilsborrow and Carr 2000). In the NEA, a region with relatively infertile soils, 

decreases in soil fertility and the availability of a growing agricultural labor market might 

contribute to the extensification of agriculture. Within the NEA, demographic factors, such 

as temporal and permanent population flows also have consequences for the advancing 

deforestation front and urban center growth (Barbieri and Carr 2005) that may more 

important than the population growth per se.  

 In contrast to the Malthusian view, Boserup (1965; 1981) challenges the Ricardian 

and Malthusian assumption of fixed land productivity. She argues that more people create 

technological changes that intensify land use, so higher populations per unit area can be 

supported without overall resource decline in living standards. Boserupian theory is 

important in that it descirbes the role of population pressure on natural resources as a 

catalytic component in the process of land use intensification. According to Boserup, the 

increase of input labor per unit of land through time creates the stages of intensification that 

range from low to high intensity. Although not always linked to population change, modern 

conceptualizations of land use intensification are associated with increases in input variables, 

for example, chemical fertilizers, pesticides, and output intensification, that measures the 

increases in production against constant units of land area and time (e.g., 

calories/hectares/years) (Bilsborrow and Geores 1992; Lambin 2000). Critics of the 

Boserupian view argue that the endogenous character of the intensification process only 

applies to particular settings, relatively rich areas where investments in new technologies are 

possible or areas where population density is relatively low with an extraordinary capacity to 

change tenure regimes (Lee et al. 2000). In the Northern Ecuadorian Amazon, two different 

types of intensification scenarios are present. First, in colonist environments, where the 
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population pressure on natural resources emerges recently in the form of farm subdivisions, 

the decrease in soil nutrients in small intensely used areas coupled with the expense of 

compensating technology (e.g., fertilizers) makes the process of further intensification 

unsustainable for long periods of time and ends with the decline of natural resource base. 

Second, in indigenous territories, where exogenous forces (e.g., reduction of ancestral 

territory due to colonization) and endogenous factors (e.g., high fertility) create population 

pressures on the natural resource base, the intensification is produced by decreasing fallow 

periods in chacras (i.e., gardens) across the different ethnic groups.    

 The household life cycle theoretical approach argues that changes in extent/intensity 

of agricultural activities are dependent on the household life cycle. Chayanov (Cancian 1989; 

Chayanov 1966) explored the size and age structure of households and their affect on the 

proportion of land cultivated. He observed, in the early 20th century on isolated farmland in 

Russia, that older households with a greater number of adults created a higher local labor 

force, the necessity and means for generating increases in cultivated land. In recent years, 

studies have extended and adapt Chayanov’s findings to the Brazilian Amazon. Several 

studies (McCracken et al. 1999; Perz and Walker 2002; Walker and Homma 1996) identify 

stages of a household life cycle of small farmers in the Brazilian Amazon that are closely 

linked to the extent of forest, cattle ranching, and annual and perennial crops.  In the NEA, 

the space for future agricultural expansion is extremely limited as the total area is relatively 

small and geographic accessibility to the region remains a constraining factor to settlement 

and development. Land scarcity has produced little farm abandonment in the region and a 

process of farm subdivision is on-going. When young adults marry, they claim a portion of 

the farm for their own agricultural activities and new households are created that begin using 
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portions of the farm. Although, these young adults might leave to work temporarily outside 

the farm, the subdivision remains with relatively active agricultural production. 

 There are a wide range of economic theories and models that explore relationships 

between human activities and agriculture at different levels of organization (e.g., households, 

firms). Microeconomic models, generally, see households as a singular type of firm, where 

relationships with markets and inputs are simplified in different degrees, almost always, 

following a profit maximizing assumption. Small open economy models of land use in rural 

areas assume that (1) all relevant prices are exogenous, which indicates that the actions and 

behavior of agents of land use change (i.e., farmers and households) do not have an effect on 

prices, and (2) markets fully determine how farmers value their resources and inputs 

(Kaimowitz and Angelsen 1998). Labor markets have a significant effect on the farm’s 

economy, labor markets also impacts the demographic-economic models, such as neo-

Chayonovian and neo-Malthusian, because households are not only dependent on household 

demographic characteristics and land constraints, but they can opt to hire and work outside of 

the farm. Specifically for the NEA, the relevance of these models is that they support the 

quantification of the effects produced by exogenous factors, such as the demand for off-farm 

employment produced by the oil industry and in other agricultural farms, current markets 

decline and prices of agricultural products, and at the same time, consider some fixed 

characteristics of the population.  

 The role of poverty in rural areas is important to explain small-holding LULC change, 

but this relationship is complex and non-linear. It can be viewed from different contrasting 

perspectives: first, rural populations are often impoverished by a declining resource base, and 

as a consequence, they are forced by circumstances to further degrade the environment, 
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creating a cycle difficult to break. In addition, short-term attention to current needs takes 

precedence over long-term stewardship of resources (de Sherbinin 2000). The second 

perspective shows that small farmers with increasing amounts of cultivated land tend to have 

the capital, access to technology, education, and subsidies necessary to succeed (Marquette 

1998; Pichón 1997). The political and economic inequalities in the larger society, where 

urban systems are incapable of assimilating demographic growth, may compel poor, 

dispossessed peasants to seek livelihoods on the margins of society in the rainforest (Rudel 

and Horowitz 1993). At the same time, it creates the need to better understand the role of 

institutional and household level factors in influencing the observed variation in forest 

clearing strategies (Pichón 1997).  

 A theoretical approach that deals with the institutional relationships between state, 

local communities, individuals, and natural resources is the study of regimes of property 

rights. A regime of property rights is the structure of rights to natural resources and rules 

under those rights are exercised (Hanna et al. 1996). The study of property rights is 

important, because the change of property rights is the preferred alternative by which 

governments and international organizations improve ecosystems management.  Bromley 

(1992) defines property as the social relationship that defines the property holder with a 

benefit stream (i.e., natural resource). Open access (i.e., non-owner) resources has been 

strongly linked to environmental degradation. Individuals tend to exploit natural resources on 

open access lands without concern for the cost to society, according to what is called the 

“Tragedy of the Commons” (Hardin 1968). It holds that as long as incentives exist to 

privatize open access resources, there will be a tendency at the societal level to over-exploit 

available resources. Hardin assumes that an individual in his or her self-interest will try to 
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maximize gains despite the negative effects on society. In the Ecuadorian Amazon, the 

process of agricultural colonization shows the evolution of the perceptions about property 

rights regimes among colonist, indigenous people, and the state. In the early stages of 

colonization, the NEA was seen by local authorities, international development agencies, and 

poor colonists as an open access regime, and, therefore, played a central role in the reforma 

agraría (agrarian reform) and larger development scheme (Barsky 1984). When farmers 

settle, the colonization processes favor forest clearing to access property rights, specifically, 

privatization of lands that induces a cycle of excessive land clearing and inadequate soil 

conservation (Southgate 1990). Only 40-percent of farmers have legal title over their lands 

(Ruiz 2000), however, despite the absence of land titles, farmer holds an informal private 

regime or effective possession that consists of the physical delimitation of the property and 

recognition from neighbors. Rudel (1995) has found that the lack of title does not contribute 

to deforestation in the central Ecuadorian Amazon. It is also important to note that in the 

Ecuadorian Amazon, the legal title or escritura is central to the access of agricultural or non-

agricultural credits. State and private banks grant loans to support agricultural activities (e.g., 

cattle raising, coffee production) and other non-agricultural activities (e.g., acquisition of 

small trucks to be used as taxis).  

4.3.2 Spatial Dependence and Spatial Heterogeneity in the Drivers of Land Use 

 Land use patterns generally exhibit spatial autocorrelation that is generated by the 

distribution of landscape features and gradients of environmental conditions  (Verburg et al. 

2006). Much of the analysis of the drivers of land change use statistical multivariate 

techniques to estimate the significance and magnitude of the relationships (Kaimowitz and 

Angelsen 1998). The problem with using conventional statistical methods, like regression, in 
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spatial land use analysis is that these methods assume that the data are statistically 

independent, when in reality the variables are space-dependent (Overmars et al. 2003). The 

justification to include spatial dependence in statistical models emerges from theory-driven 

specifications (i.e., there are diffusion networks, neighborhood or other spatial processes in 

the phenomenon studied) or from data-driven specifications, when the information collected 

is dependent on location (Anselin 2002).  

 Multivariate statistical models thus assume spatial stationarity that represents 

situations where the nature of the relationships is fixed over space (Brunsdon et al. 1998). 

Social and ecological processes, in general, appear to be non-stationary: the relationship 

depends in part on where it occurs (Fotheringham et al. 2002; Pickett and Cadenasso 1995). 

If non-stationarity is evident, global techniques provide an unrealistic or "average" summary 

that implies that a local modeling approaches may be more appropriate (Foody 2004a). In 

land use and land cover change analysis, some global statistical approaches, such as 

multilevel models (Pan and Bilsborrow 2005) that represent processes across hierarchical 

spatial scales, the addition of variables that represent spatial domains, or geo-coding of land 

change processes to represent spatial regimes (Mertens and Lambin 2000; Nelson et al. 

2001), assume an a priori definition of discrete sets (Brunsdon et al. 1998; Fotheringham et 

al. 2002). This assumption implies that relationships or behaviors are different once the 

artificial boundaries  (e.g., community limits, political boundaries) are crossed.   

 In statistical modeling, there are several reasons why one might expect measurements 

of relationships to vary over space (Fotheringham et al. 2002): (a) the social or natural 

relationships between factors are intrinsically different across space, (b) the estimation of 

parameters is made using spatially different subsamples of a larger dataset, (c) the model and 
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the estimated relationships are a misspecifications of reality, in that relevant variables should 

either be omitted or represented incorrectly. In the Northern Ecuadorian Amazon all of these 

factors may be of concern. This research hypothesized that, first, processes of land change 

are non-stationary and the relationships change across space. Within this colonization area, 

that has a relatively homogenous population (i.e., migrant colonists), local processes can 

have different intensities and directions, because pre-cooperatives, towns, and localities have 

different paths of development that are influenced by different process of settlement, as well 

as social and cultural conditions (Uquillas 1984). Therefore, different farms in different 

sectors may have different paths of adaptation, as well as opportunities and challenges in the 

use of their land and resources. Second, it is hypothesized that there are local influences that 

affect changes on the land and the associated drivers. For example, deforestation in one plot 

will promote deforestation in the adjacent plots, because previous forest clearing has created 

easier access to plots close to the edge. Specific to this research is the manner in which the 

initial sampling was made (i.e., clustered sample farms) that might affect the results of the 

land change study. A final caveat is that the process of land change is affected by a 

multiplicity of very dynamic factors, and, as much, this research can only present a partial 

picture of the land change process in the NEA. The comparison of the GWR and SLM 

modeling approach indicates processes that are present/missing and the nature of their 

correlation to location.  

4.4. Methodology 

4.4.1 Data 

  Household Survey Data: This analysis was performed on 316 finca madres, farms 

colonized by initial settlers of approximately 50-ha in size. This set of farms is a sub-sample 
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of all farms surveyed in 1990 (i.e., 405 farms) and 1999 (i.e., 715 farms), because geospatial 

data and Landsat imagery were available. The original sample of farms, collected in 1990, 

was derived from a two-stage sample design and a 6-percent probability sample of all sectors 

within the development region. The first stage was the selection of sectors, or “pre-

cooperatives,” groups of individual farms. A list of official settlement sectors was compiled 

from maps of IERAC (Ecuadorian Institute for Agrarian Reform and Colonization). A 

random sample of 64 sectors was drawn from this list. The second stage of sampling was the 

selection of individual farms: 5-10 contiguous farms were randomly selected from each 

sector using a probability proportional to the size of the sector (Bilsborrow 1991 unpublished 

report; Pichón 1997). The sample farms as viewed from a regional perspective form clusters. 

This pattern generated the interest in the study of spatial dependence. Beyond the data 

collection, the settlement process has created pockets of farmers that share similar 

characteristics of origin and time since settlement and, therefore, similar adaptation 

processes.  

 The data collected in the 1990 and 1999 household longitudinal surveys cover many 

topics, including land use and agriculture, socio-economic and demographic aspects, and 

technical assistance. The independent variables accordingly consist of a set of 

socioeconomic, technological, biophysical, and geographical characteristics. Table 4.1 shows 

the set of selected independent variables used in this study, their definitions, and mean and 

standard deviation. Additional variables (e.g., household size, number of subdivisions, annual 

income, distance to rivers, technical assistance, etc.) were assessed and excluded, because of 

the  high correlation with other variables or endogeneity.  
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Table 4.1. Selected independent variables used in the regression models. 
 

 

 Remotely Sensed Data: The proportion of land use and land cleared or in various 

uses on farms, used as an independent variable, were obtained using remotely-sensed data. 

This analysis uses a hybrid supervised-unsupervised classification of Landsat TM images for 

1986, 1996, and 2002, with a resolution of 30 meters. As described by Walsh et al. (2002), 

the classification approach was designed to be repeatable across images in the assembled 

time-series. It uses image characteristics assessed through fieldwork, Global Positioning 

System (GPS) data collection, air photography interpretation, and statistical methods. The 

hybrid approach begins with a supervised classification using the ISODATA classifier to 

  1990 1999 

Variable Definition Mean SD Mean SD 

Male 
Number of males on the farm, older than 12 
years  

2.68 (1.71) 5.03 (4.93) 

Female 
Number of females on the farm, older than 12 
years  

2.10 (1.47) 3.88 (3.76) 

Child 
Number of children on the farm, younger than 
or equal  than 12 years old 

2.82 (2.35) 4.64 (4.66) 

Age 
Mean age of the head of households within 
the farm 

44.56 (12.39) 45.20 (10.49) 

PriEduc 
Any primary education (binary) of the head of 
household 

0.89 (0.31) 0.82 (0.38) 

SecEduc 
Any secondary education (binary) of the head 
of household 

0.05 (0.23) 0.13 (0.34) 

Walk Walking distance to main road (km) 2.68 (3.36) 1.04 (1.62) 

Road 
Distance to reference city by the main road 
(km) 

20.85 (14.15) 11.64 (11.96) 

Access Car access to the farm (binary) 0.50 (0.50) 0.55 (0.50) 

SecRoad 
Distance to the main road by secondary road 
(km) 

2.11 (4.08) 6.47 (7.77) 

Soil Black soil on the farm (binary) 0.65 (0.48) 0.56 (0.50) 

Fertility 
Farmer reports soil fertility decrease in the 
farm (binary) 

0.86 (0.35) 0.79 (0.41) 

Flat Flat land on the farm (binary) 0.42 (0.49) 0.48 (0.50) 

Wetland Wetlands on the farm  (binary)   0.58 (0.49) 

Hlabor 
Hired labor on the farm in the last year 
(binary) 

0.54 (0.49) 0.61 (0.48) 

Ofe 
Off farm employment on the farm in the last 
year (binary) 

0.34 (0.48) 0.68 (0.46) 

Title 
At least some of the farm under legal title 
(binary) 

0.33 (0.46) 0.37 (0.48) 
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define approximately 500 “naturally” occurring spectral classes. Using output statistics such 

as the transformed divergence and divergence statistics, the 500 spectral classes are reduced 

by approximately 50-percent. A supervised classification is applied using a maximum 

likelihood classifier to relate unclassed pixels to the 250 classes (i.e., the training data) 

defined through the unsupervised classification approach (Messina and Walsh 2001). This 

approach relies upon a hierarchical classification scheme to characterize the LULC types in 

the study area. The resulting classifications are based on a central LULC scheme that 

includes 16 land cover types that were grouped depending on relative categories of 

"economic activity" and deforestation (Table 4.2).  Farm boundaries were constructed using 

field data from GPS surveys, official IERAC (Ecuadorian Institute of Agrarian Reform and 

Colonization) maps, and topographic maps that were used to clip the classified imagery. 

 

Table 4.2. Central and Grouped Classification Schemes. 

 

 CENTRAL SCHEME GROUPED SCHEME 
1 Primary Forest 
2 Swamp 

Forest  

3 Secondary Forest 
4 Rastrojo 

Succession  

5 Pasture No Trees 
6 Pasture Few Trees 

7 Pasture Many Trees 
Pasture 

8 Coffee 

9 Cacao 

12 Banana 

13 Corn 

Mostly Cash Crops or small scale agriculture 

10 Palmito 

11 African Palm  

Alternative crops and industrialized agriculture or 
large scale agriculture 

14 Barren 
15 Urban 

Barren/Urban  

16 Water Water  
17 Unclassified  Unclassified  
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4.4.2 Methods 

 The methodology followed in this study includes the following phases: (a) an analysis 

of the local indicators of spatial dependence, (b) generation of an Ordinary Least Square 

(OLS) regression model and assessment of spatial dependence, (c) generation of Spatial Lag 

Models (SLM) and analysis of the magnitude, direction, and significance of relationships, 

and (d) a generation of Geographically Weighted Regression model (GWR) that includes a 

Monte Carlo test for the significance of spatial non-stationarity.  

 Spatial dependence is the extent to which the value of an attribute in one location 

depends on the values of the attribute in nearby locations (Anselin 1988; Fotheringham et al. 

2002; Moran 1948). This analysis includes a global (or regional) Moran's I test (test for 

clustering) and a local Moran's I (test for clusters) (Anselin et al. 2006) that are available in 

GeoDa15. The local indicators of spatial autocorrelation are well situated for identifying the 

existence of hotspots or local spatial clusters and assessing assumptions of spatial stationarity 

(Longley and Tobon 2004). Results of the global and local Moran's I are displayed 

graphically. In the case of global Moran's I, the standardized variable (on the x axis) is 

regressed against its spatially-lagged version (y-axis). The spatially-lagged variable is 

obtained by multiplying the value of each neighboring location by the spatial weight and the 

products summed. The slope of the regression is the global Moran's I values. Every sample 

farm, within a 5-km area, was considered as a neighbor of the “target” farm, and, therefore, 

the definition of neighborhood captured all farms from the corresponding cooperative or 

sector. The exploration of local spatial correlation or clusters within the region is computed 

                                                 

15
 GeoDa 0.9.5-I is a software package (https://www.geoda.uiuc.edu/) developed by the Spatial 

Analysis Lab at the University of Illinois and leaded by Dr. Luc Anselin. GeoDa will be also used to explore the 
spatial dependency of OLS models and to create the spatial lag regression models. 
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using local Moran's I values and represented in maps of direction of the spatial 

autocorrelation and statistical significance, based on a permutation test (Anselin et al. 2006).  

 Three regression model types, OLS, SLM, WGR, are used to explain LULC change 

between 1986-1996 and 1996-2002 for the entire colonization area (Figure 4.1). The 

dependent variables in the regressions are the proportion of land change, at the farm level, 

specifically: deforestation (proportion of forest cleared), proportion of pasture, proportion 

small scale agriculture, and proportion large scale agriculture, generated in both periods 

(1986-1996 and 1996-2002). The set of independent variables, described in Table 4.1, 

originate from the household surveys carried out in 1990 and 1999. The intention was to 

build models in which the independent variables were collected approximately in the middle 

of each time period.  

 The objective of the OLS models is to serve as a baseline for the assessment of the 

models. If the OLS model is biased due to spatial dependence, it will be corrected using a 

spatial parameter within the spatial lag models. Thus the general form of the linear multiple 

(OLS) regression model is:  

y = Xβ + ε 

where, X is a matrix of predictor variables, β is a vector of regression coefficients, y is the 

vector of response variables and ε is a vector of independent random errors.  

 OLS model diagnostics are used to assess the assumptions of normality of errors 

(Jarque-Bera test), heteroskedasticity (Breusch-Pagan test and Koenker-Bassett test), and 

multicollinearity (condition number). Spatial dependence within the OLS regression model is 

assessed using Moran's I, the Lagrange Multiplier, and the Robust Lagrange Multiplier test 

(Anselin 1988; Anselin 2002; Anselin et al. 2006) that will indicates the type of dependence.  
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 Spatial lag models will be used to obtain the magnitude and significance of the 

relationships between land change and the drivers of deforestation. SLM are global 

regressions that generalize the relationships across the region, but take into consideration the 

spatial dependency of the relationships. SLM uses a weighted neighbor matrix W that 

characterizes neighbors and their relative weights. The definition of neighbors, therefore, 

changes the degree of spatial autocorrelation.  The spatial lag model is defined as (Anselin 

1988; Anselin 2002):  

y = ρWy +Xβ + ε 

where y is the dependent variable, ρ is the autoregressive parameter, Wy is the spatially 

lagged dependent variable, X the set of independent variables, β the vector of their 

coefficients, and ε the vector of random error terms. The estimation of coefficients is by 

maximum likelihood (Anselin and Bera 1998). The SLM provides a solution to the problem 

of parameterization of a model taking into consideration the neighborhood effects or the 

spatial interactions among agents. Spatial regressions have been widely applied in spatial 

econometrics models (Florax and Van der Vlist 2003) and more recently in landscape 

ecology (Gustafson et al. 2005), land cover change (Mena et al. 2006b), and medical 

geography (Mobley et al. 2006).  

 The last phase of the methodology is the use of GWR models to capture the spatial 

heterogeneity of the relationships. This technique has been found useful in detecting spatial 

trends in relationships that may be missed in a typical global regression analysis (Foody 

2004a). GWR generate spatially explicit regression coefficients and standard errors that make 

possible the mapping of the direction of the relationships and their statistical significance.  

Geographically Weighted Regression can be expressed as  (Brunsdon et al. 1998; 
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Fotheringham et al. 2002; Fotheringham and Wegener 2000): 

∑ ++=
k iikiiKiioi xvuvuy εββ ),(),(  

where yi is the observation of the dependent variable at the location i, (ui,vi) represents the 

coordinates of the i in space, and βk(ui,vi) is the realization of the continuous function βk(u,v) 

at point i.  

 The basic assumption of this model is that locations nearer to i will have more 

influence on the estimation of the parameter βk(ui,vi) than those farther from i. Under this 

assumption, a continuous surface of parameter values is estimated.  The geographical 

weighting is accomplished using an adaptive Gaussian kernel or moving window that defines 

the geographical weights (wij) using: wij= (1-(dij/b)2)2, where dij is the distance between i and 

j and b is the bandwidth (Figure 4.2). In practice, the selection of the kernel type is not as 

important as the selection of the bandwidth. The bandwidth, which increases where data 

points are sparser (Figure 4.2), is defined following a procedure that finds the minimum 

Akaike Information Criterion (AIC) (Fotheringham et al. 2002). The minimization of AICs 

provides optimal values for the trade-off between goodness-of-fit and degrees of freedom. 

Within GWR, dividing the local estimates by their corresponding standard errors allows the 

mapping of pseudo t-statistics that are necessary to estimate the significance of the 

independent variables. GWR has been applied in the social sciences (Calvo and Escolar 

2003; Longley and Tobon 2004; Yu 2006) and the natural sciences (Atkinson et al. 2003; 

Foody 2003; Foody 2004b; Wang et al. 2005) to explore the spatial heterogeneity of 

relationships.  
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Figure 4.2. Two adaptive moving weighting kernel. 
 

4.5. Results 

 This section reviews, first, the results of the exploratory spatial analysis, followed by 

the diagnostic test of the OLS regression model. The results of the global regression model 

(spatial lag) are then presented, and finally the results of the GWR model are shown. Figure 

4.3 and Figure 4.4 show the global Moran's I for selected variables for the 1990 and 1999 

models respectively. Both figures show measures of clustering for the dependent variables 

(i.e., deforestation, pasture, small- and large-scale agriculture) and for the four independent 

variables that had the highest spatial autocorrelation (i.e., soil, flat, road, and walk). The 

upper-right quadrant and lower left quadrant in the graphs indicate positive spatial 

autocorrelation or association of high values surrounded by high values (high-high) or low-

low values, respectively. Upper-left and lower-right quadrants indicate negative spatial 

autocorrelation or high-low and low-high values, respectively. Values range from 0 (no 

spatial autocorrelation) to 1 (full spatial autocorrelation). Figure 4.3 shows that for the 

proportion of change between 1986 and 1996 for forest, pasture, small and large agriculture 

Bandwidth 
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have relatively low positive spatial autocorrelation. The highest value is in small scale 

agriculture (Moran's I=0.4) followed by deforestation (Moran's I=0.27). The values for the 

selected independent variables are much higher, geographically accessibility measures (road 

and walk) over 0.93 and terrain characteristics over 0.41.   

 Figure 4.4 shows measures of global spatial autocorrelation for land change between 

1996 and 2002 and terrain and geographic accessibility characteristics for 2001. In general, 

spatial autocorrelation values are similar to those in the earlier period. Noticeable differences 

include the decrease in positive spatial autocorrelation for small scale agriculture that 

suggests the spread of small agriculture plots (not necessarily extensification) and also 

improvements in accessibility characteristics, the latter of which might be triggered by better 

connectivity for farms.  

 The representation of local spatial autocorrelation within regions is illustrated using 

(uni- or bi-variate) maps. Unfortunately, the modeling presented here contains 13 

independent variables and four dependent variable for each period, therefore, making a 

challenge to include all the maps for individual local Moran's I values in this chapter. As 

result, all the maps were visually examined to find clusters and outliers, and two examples 

were chosen and presented in Figure 4.5 and Figure 4.6. Figure 4.5 is the analysis of the 

proportion of deforestation between 1986 and 1996, and Figure 4.6 represents local spatial 

autocorrelation for the variable walking distance to main road (walk). For deforestation (in 

the period 1986-1996), the global or regional Moran's I indicates a relatively low global 

spatial autocorrelation, whereas Figure 4.5 indicates the presence of clusters dispersed across 

the region. Walk on the other hand, had very high values of global spatial autocorrelation and 

Figure 4.6 indicates that there are very well defined clusters with the exception of farms 
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located closed to the main two cities, Lago Agrio and Coca, which are not significant. 

Despite the fact that the initial sampling frame created different sets of clusters of sample 

farms (within pre-cooperatives of settlement), not all of the sampled farms share similar 

patterns of deforestation or accessibility characteristics, even if they belong to the same 

sample clusters. 

 The results of the OLS regression model for land change (1986-1996) and (1996-

2002) are shown in Table 4.3 and Table 4.4, respectively. Both tables contain four models, 

where the dependent variables are the proportions of the change in forest cover 

(deforestation), pasture, small scale agriculture, and large scale agriculture within the 

respective period. Although there are statistically significant variables in all the models, the 

focus of this portion of the analysis is the diagnostic test of the models. One of the more 

important tests is for normality of the errors. The Jarque-Berta test is not significant for six 

models indicating a normal distribution of errors. The exceptions are the small-scale 

agriculture (1986-1996) and large-scale agriculture in (1996-2002), models that were later 

modified using transformations to correct the non-normality. The large scale agriculture 

model was corrected after a square-root transformation16. The normality assumption is 

important, because diagnostics of spatial dependence and heteroskedasticity depend on this 

assumption, and models with non-normal errors should be viewed with caution (Anselin 

2002; Longley and Tobon 2004). The condition number, although not a test for collinearity, 

helps to identify problems related to the high degree of correlation between variables in a 

regression (Anselin 1990). Regressions with a condition number higher than 30 are 

                                                 

16 The other dependent variables were normally distributed and did not show improvement when using 
transformations.  
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considered to contain collinearity problems (Anselin 2005). The OLS equations in Tables 4.3 

and 4.4 have condition numbers approximately 20 and 21, respectively, that indicate the 

absence of serious problems with collinearity. Some degree of collinearity is expected, 

because many of the processes considered and measured by the household survey, specially 

in frontier environments, are related. For example, isolation (or distance to city) is indirectly 

related to labor, farms closer to cities have easier access to non-agricultural jobs located in 

towns. The Breusch-Pagan tests for heteroskedasticity, used when the errors are normally 

distributed, are not significant in all the OLS models. The Koenker-Bassett test for 

heteroskedasticity when non-normality is suspected is significant for the small scale 

agriculture (1986-1996) model. Some degree of heteroskedasticity is the product of spatial 

dependence.  

 Moran's I, the Lagrange Multiplier (LM), and the Robust LM show that the models 

are statistically significant, and spatial dependence exist across the models. Within GeoDa, 

Lagrange Multiplier (LM) and Robust LM were applied in each regression model to 

investigate the spatial dependence in the lagged variable and in the residuals. Robust LM 

(Lag) was always more significant than LM (Error) (not shown here), and, therefore, spatial 

lag models were constructed (Anselin 2005). This suggests that the spatial dependence, 

created by the relationships among farms (within a 5-Km distance neighborhood) is stronger 

than the spatial dependence created by the error in the data. The only model that is not 

spatially correlated is large-scale agriculture (1996-2002) after being subject to a square-root 

transformation to normalize the errors. This indicates that this particular OLS model offers a 

good specification and spatial regression is not necessary.  
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Table 4.3. OLS Regression Results -- Land Change (1986-1996). 
 

Statistically significant at 1% (***), 5%(**), and 10%(*) 

 OLS Regression Results -- Land Change (1986-1996) 

 Deforestation  Pasture   Small Scale Ag.   Large Scale Ag.   

Variable Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  

Constant 33.8848 (4.4089) *** 11.9987 (2.1824) *** 4.3231 (0.8214) *** 6.3278 (1.7408)  

Age -0.1777 (0.0603) *** -0.1112 (0.0299) *** 0.0013 (0.0112)  0.0001 (0.0234)  

Child -0.2996 (0.3359)  -0.5224 (0.1663) *** 0.1285 (0.0626) ** 0.0785 (0.1306)  

Fertility -1.1602 (2.2051)  -2.0111 (1.0915) * 0.0649 (0.4108)  0.2469 (0.8487)  

Prieduc 0.3380 (2.2301)  0.1780 (1.1039)   0.2552 (0.4155)  0.1866 (0.8690)  

Flat 4.1707 (1.5339) *** 0.5524 (0.7593)   1.2320 (0.2858) ***    

Soil           1.0390 (0.6204) * 

Male 1.1343 (0.4840) ** 0.7336 (0.2396) *** 0.0570 (0.0902)  0.0172 (0.1840)  

Female          -0.1208 (0.0839)  

Walk -0.7526 (0.2154) *** -0.4092 (0.1066) *** -0.1729 (0.0401) *** 0.0005 (0.0210)  

Road -0.1485 (0.0515) *** -0.0259 (0.0255)   -0.0371 (0.0096) *** 0.7165 (0.5699)  

Ofe 1.7087 (1.4646)  1.9688 (0.7250) *** -0.1944 (0.2729)  -0.0420 (0.0379)  

Hlabor 1.9528 (1.4030)  1.0252 (0.6945)   0.0887 (0.2614)  -0.3502 (0.5843)  

Tenure 1.8038 (1.5093)  0.5328 (0.7471)   -0.0320 (0.2812)  6.3278 (1.7408)  

             

Akaike info criterion       2365.7400   1941.0100   1350.8100   1781.0000  

             

Condition Number     20.3000   20.3000   20.3000   20.4500  

Jarque-Bera 1.6817    0.2032   8.9322 *  2.8200  

Breusch-Pagan test 18.3008    12.8077   26.0981 *  19.4261 * 

Koenker-Bassett test 22.1255 **  13.1385   29.0353 *  22.2264 * 

             

Moran's I (error) 0.211707    ***  0.1391 ***  0.2612 ***  0.1276 *** 

Lagrange Multiplier (lag) 51.6794 ***  25.6832 ***  66.6465 ***  16.0404 *** 

Robust LM (lag) 23.0797 ***  16.8137 ***  9.0494 ***  5.3514 *** 

1
4
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Table 4.4. OLS Regression Results -- Land Change (1996-2002). 

 

Statistically significant at 1% (***), 5%(**), and 10%(*) 

 OLS Regression Results -- Land Change (1996-2002) 

 Deforestation  Pasture   Small Scale Ag.   Large Scale Ag.   

Variable Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  

Constant 9.0593 (3.0232) *** 6.9473 (2.1227) *** 5.4397 (1.2312) *** 1.1060 (0.5847) ** 

Male 0.1265 (0.1237)  0.0520 (0.0868)  0.1267 (0.0504) ** -0.0188 (0.0206)  

Fertility -1.3861 (1.1795)  -1.0044 (0.8281)  -0.3657 (0.4803)  0.0579 (0.2281)  

Flat 3.3634 (1.0363) *** 2.3451 (0.7276) *** 0.6296 (0.4220)  0.3655 (0.1923) ** 

Age -0.0724 (0.0483)  -0.0329 (0.0339)  -0.0317 (0.0197)  0.0024 (0.0098)  

Walk -0.3365 (0.2975)  -0.2860 (0.2089)  -0.0265 (0.1211)  -0.0718 (0.0496)  

Child 0.2384 (0.1280) * 0.0430 (0.0899)  -0.0130 (0.0521)  0.0222 (0.0199)  

Road 0.0119 (0.0392)  -0.0491 (0.0275) * -0.0115 (0.0160)  -0.0043 (0.0076)  

Prieduc 1.5469 (1.2424)  -0.4077 (0.8723)  0.1433 (0.5059)  0.3279 (0.2333)  

Ofe -1.4658 (1.0744)  -0.8936 (0.7543)  -0.7710 (0.4375) * -0.0135 (0.2139)  

Tenure 0.2609 (1.0499)  0.7284 (0.7371)  0.2943 (0.4275)  0.4174 (0.2101) ** 

Hlabor 2.4701 (1.0114) ** 1.3168 (0.7101) * 1.0439 (0.4119) ** 0.0431 (0.2047)  

             

Akaike info criterion     2069.68   1861.0300   1539.6400   305.6500  

             

Condition Number 21.8910   21.8910   21.8910     

Jarque-Bera 1.2788   1.9449   4.4206   0.9410  

Breusch-Pagan test 6.6720   9.4624   11.7893   17.2680 * 

Koenker-Bassett test 5.8111   9.2587   13.7960   19.4854 * 

             

 Moran's I (error)             0.0597 ***  0.1171 ***  0.0870 ***  0.0220  

Lagrange Multiplier (lag) 8.0860 ***  17.4292 ***  8.4259 ***  0.5468  

Robust LM (lag) 12.8851 ***  12.8792 ***  3.8514 ***  0.9985  
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Figure 4.3. Moran's I Index for selected variables for 1990. 
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Figure 4.4. Moran's I Index for selected variables for 1999. 
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Figure 4.5. Local indicators of spatial autocorrelation for the variable deforestation in the period 1986-1996. 
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Figure 4.6. Local indicator of spatial autocorrelation for the variable WALK (walking distance to the main road) in 1990. 
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 Table 4.5 and Table 4.6 show the results of the spatial regression models for land 

change in 1986-1996 and 1996-2002 respectively. For deforestation in the first period (Table 

4.5), age of the head of household (age), walking distance to the road (walk), and distance by 

road to the reference city (road) are negatively related to deforestation. Older households and 

more distant households tend to deforest less over time since most is done in the early years. 

For the same period, number of male adults (male) and flat topography on the farm (flat) are 

statistically significant and positively related to deforestation. Farms with better land and 

with more working adults contribute to deforestation. For deforestation in the second period 

(Table 4.6), the variables age and flat are still statistically significant and negatively related 

to deforestation. However accessibility and number of males is not significant. Additionally, 

hired labor (hlabor) is significant and positively related to deforestation in the second period. 

Farms with older heads of households that hired agricultural labor and possessed flat land 

deforested more in the period 1996-2002.  

 For pasture in the first period, the variable age, number of children on the farm 

(children), farms that reported a decrease in the soil fertility (fertility), and walk are 

negatively related to the change in proportion of area in pasture. Number of males (male) and 

off farm employment (ofe) are significant and positively related to proportion of pasture. In 

the second period, hired labor (hlabor) and flat topography (flat) are the only variables 

significant and positively related to pasture. For the first period, demographic and 

accessibility variables are important controls on pasture, but hired labor becomes more 

important in the second studied period.  

 Small-scale agriculture in the first period is positively associated and statistically 

significance to the number of children on the farm (children) and flat land (flat) and 
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negatively related to the accessibility variables (road and walk) that are also statistically 

significant. Small scale agriculture for the second period is positively related to hired labor 

and male adults and negatively related to off-farm employment. While in the earlier period of 

colonization, there is a signal of the Chayonovian perspective on land use, in the second 

period, when accessibility becomes more homogenous, access to labor markets is more 

important and promotes a decrease in small scale agriculture.   

 In the case of large scale agriculture for the period (1986-1996), the OLS model 

shows that black soil on the farm (soil) is positively related and statistically significant (Table 

4.3). This OLS regression reports very strong spatial dependence, but when the lagged 

variable was introduced, soil is not statistically significant, thus this spatial lag model is not 

relevant. In the second period, the spatial dependence tests for the model of the large scale 

agriculture (1996-2002) show that there is no significant spatial dependence and, therefore, a 

SML is not needed. The OLS results indicate that flat land and land tenure are positively 

related to the increase in area in large scale agriculture and statistically significant.   
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Table 4.5. Spatial Lag Model Results -- Land Change (1986-1996). 
 

 Spatial Lag Model Results -- Land Change (1986-1996) 

 Deforestation  Pasture   Small Scale Ag.   

 Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  

ρ 0.4176 (0.0615) *** 0.3201 (0.0691) *** 0.4617 (0.0568) *** 

Constant 21.3822 (4.5080) *** 8.9276 (2.1362) *** 2.1716 (0.8002) *** 

Age -0.1460 (0.0546) *** -0.0962 (0.0281) *** 0.0005 (0.0099)  

Child -0.1727 (0.3042)   -0.4604 (0.1563) *** 0.1416 (0.0553) ** 

Fertility -1.5613 (1.9969)   -1.7931 (1.0266) * -0.0931 (0.3633)  

Prieduc 0.3417 (2.0189)   0.4695 (1.0374)  0.1851 (0.3674)  

Flat 2.3251 (1.3928) * 0.1681 (0.7137)  0.7477 (0.2552) *** 

Male 0.9082 (0.4382) ** 0.6686 (0.2251) *** 0.0339 (0.0797)  

Walk -0.4837 (0.2001) ** -0.2942 (0.1032) *** -0.0970 (0.0370) *** 

Road -0.0920 (0.0479) * -0.0219 (0.0240)  -0.0198 (0.0089) ** 

Ofe 1.7992 (1.3260)   1.8460 (0.6814) *** 0.0286 (0.2414)  

Hlabor 1.8167 (1.2700)   1.0209 (0.6526)  0.1416 (0.2312)  

Tenure 0.8668 (1.3663)   0.2063 (0.7020)  -0.2936 (0.2487)  

 Akaike 
info-
criterion       2331.9100  1924.2400   1306.0000   

Statistically significant at 1% (***), 5%(**), and 10%(*) 

 

Table 4.6 Spatial Lag Model Results -- Land Change (1996-2002). 
 

 Spatial Lag Model Results -- Land Change (1996-2002) 

 Deforestation  Pasture   Small Scale Ag.   

 Coefficient Std.Error  Coefficient Std.Error  Coefficient Std.Error  

ρ 0.2176 (0.0762) *** 0.2942 (0.0720) *** 0.2199 (0.0776) *** 

Constant 7.7721 (2.9741) *** 5.8245 (2.0440) *** 4.5296 (1.2318) *** 

Male 0.0994 (0.1191)  0.0486 (0.0823)  0.1128 (0.0485) ** 

Fertility -1.1427 (1.1371)  -0.8610 (0.7851)  -0.3790 (0.4627)  

Flat 2.6327 (1.0177) *** 1.5556 (0.6980) ** 0.4829 (0.4095)  

Age -0.0804 (0.0465) * -0.0422 (0.0321)  -0.0324 (0.0189)  

Walk -0.2665 (0.2877)  -0.1966 (0.1991)  -0.0063 (0.1167)  

Child 0.1968 (0.1235)  0.0150 (0.0852)  -0.0128 (0.0502)  

Road 0.0093 (0.0377)  -0.0383 (0.0263)  -0.0095 (0.0154)  

Priedu 1.6031 (1.1965)  -0.3233 (0.8266)  0.1663 (0.4872)  

Ofe -1.2188 (1.0354)  -0.7052 (0.7149)  -0.7446 (0.4216) * 

Tenure -0.0207 (1.0113)  0.6431 (0.6988)  0.2989 (0.4117)  

Hlabor 2.2398 (0.9745) ** 1.2144 (0.6732) * 0.9757 (0.3968) ** 

Akaike 
info 
criterion  2064.5600   1848.9700   1539.4900   

Statistically significant at 1% (***), 5%(**), and 10%(*) 
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 Finally, the results of the GWR models are presented. The GWR’s power resides in 

the presentation of results in a spatially explicit way. This approach, however, makes it 

somewhat impractical to present each variable map of the four models, taking into 

consideration that each variable has a map of the parameter and a map of t-test values. GWR 

results for significant variables in the SLM and other relevant independent variables are 

presented in Figures 4.7 to 4.12. Deforestation (1986-1996) and deforestation (1996-2002) 

are presented in Figures 4.7 and 4.8, respectively. Pasture in (1986-1996) and (1996-2002) is 

presented in Figure 4.9 and Figure 4.10, respectively. Small scale agriculture for (1986-1996) 

and (1996-2002) are displayed in Figure 4.11 and Figure 4.12, respectively. Consistent with 

postmodern approaches that emphasize local context, the main objective of GWR is to detect 

local patterns. The results emphasize the strong variation of coefficients and the statistical 

significance across space within the NEA. This suggests that the region does not have 

homogenous processes of land change across space, and land change is non-stationary. There 

are some spatial patterns that can be explored at the region level. First, in some cases, the 

influence on the core versus periphery of the effects on the main towns are evident (e.g., the 

parameter for male in the 1986-1996 deforestation model or walk and road in the 1986-1996 

small scale agriculture model), while in other cases, there are differences between the north 

and south, that have different biotic characteristics (e.g., hired labor is always statistically 

significant in the north portion of the study area). 

 The results of a more formal statistical test, a Monte Carlo test of significance for 

spatial variation, are presented in Tables 4.7 and 4.8. Variables that are not significant 

indicate a high probability that the variation occurred by chance. Accessibility measures, 

topographic and soil characteristics, and market labor for specific models have statistically 
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significant spatial variability. These are strong indicators of spatial non-stationarity and 

further modeling should pay close attention to issues of spatial heterogeneity in the 

relationships.  

 

Table 4.7. Results of Monte Carlo test for the spatial variability of parameters in land change 
models (1986-1996). 

 

 

 

 

 

 

 

 
Table 4.8. Results of Monte Carlo test for the spatial variability of parameters in land change 

models (1986-1996). 
 

Parameter Deforestation Pasture   Small  Agriculture 

Constant 0.6900 n/s 0.0300 * 0.2200 n/s 

Male 0.1500 n/s 0.3300 n/s 0.0300 * 

Fertility 0.5600 n/s 0.8400 n/s 0.0100 ** 

Flat 0.0500 * 0.0700 n/s 0.2700 n/s 

Age 0.5000 n/s 0.4700 n/s 0.1700 n/s 

Walk 0.5200 n/s 0.1400 n/s 0.8800 n/s 

Child 0.8100 n/s 0.6700 n/s 0.3600 n/s 

Road 0.2000 n/s 0.0200 * 0.1900 n/s 

Priedu 0.1300 n/s 0.0800 n/s 0.6700 n/s 

Ofe 0.0900 n/s 0.3400 n/s 0.1300 n/s 

Tenure 0.0200 * 0.1700 n/s 0.4400 n/s 

Hlabor 0.3300 n/s 0.0500 * 0.1400 n/s 
Statistically significant at 1% (***) 

 

 It is clear from the analysis that the large scale agriculture model for (1986-1996) is 

not well specified. None of the variables is statistically significant after controlling for spatial 

Parameter Deforestation Pasture   Small Agriculture 

Constant 0.1700 n/s 0.3100 n/s 0.2700 n/s 

Age 0.4400 n/s 0.1100 n/s 0.1300 n/s 

Child 0.9500 n/s 0.6700 n/s 0.8600 n/s 

Fertility 0.2500 n/s 0.1000 n/s 0.6500 n/s 

Prieduc 0.7200 n/s 0.7600 n/s 0.4300 n/s 

Flat 0.1700 n/s 0.2200 n/s 0.2000 n/s 

Male 0.9800 n/s 0.4900 n/s 0.6700 n/s 

Walk 0.0000 *** 0.0000 *** 0.2200 n/s 

Road 0.0000 *** 0.0000 *** 0.0000 *** 

Ofe 0.1700 n/s 0.6700 n/s 0.0000 *** 

Hlabor 0.1700 n/s 0.2400 n/s 0.2000 n/s 

Tenure 0.2900 n/s 0.6300 n/s 0.0700 n/s 
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dependence. On the other hand, the large scale agriculture models for 1996-2002 do not have 

significant spatial dependence, and the Monte Carlo test suggests that the model does not 

have spatial variation across the study site. Both of these results indicate that more research is 

needed. The residuals of the GWR for large scale agriculture (1996-2002) in Figure 4.13 

indicate that higher errors within the model are produced around the main road that connects 

Lago Agrio and Coca. It is possible that, for large scale agriculture, this is a problem of 

accessibility not being captured by the variables (e.g., transportation cost) or that other types 

of variables that are at work outside the household level (e.g., Market prices of agricultural 

products) control the changes in the study area.  

 The Akaike information criterion, measures of the goodness of fit, for the GWR 

models are as follows: for deforestation, 2343.43 (1986-1996) and 2073.40 (1996-2002); for 

pasture, 1916.59 (1986-1996) and 1862.80 (1996-2002); and for small scale agriculture, 

1345.71 (1986-1996) and 1543.81 (1996-2002). In all cases, SLM provides better results than 

the GWR models, which indicates that SLM provides a better goodness-of-fit. However, 

SLM and GWR might be complementary, where GWR provides an exploration of the factors 

that are dynamic in space or which are not seen can bias the results of SLM.  

 Finally, Figure 4.14 and Figure 4.15 are 3-dimnesional representations of two 

selected parameters. Elevation is the value of the parameter across space. In Figure 4.14. 

colors represent parameter values. In the case of Figure 4.15, colors represent t-test values for 

local regressions. This alternative representation of the parameters is helpful to spatially 

visualize the results of statistical models.   
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Figure 4.7. GWR results for selected significant variables in the Deforestation (1986-1996) model. 
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Figure 4.8. GWR results for selected significant variables in the Deforestation (1996-2002) model. 
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Figure 4.9. GWR results for selected significant variables in the Pasture (1986-1996) model. 
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Figure 4.10. GWR results for selected significant variables in the Pasture (1996-2002) model. 
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Figure 4.11. GWR results for selected significant variables in the small  scale agriculture (1986-1996) model. 
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Figure 4.12. GWR results for selected significant variables in the small  scale agriculture (1996-2002) model.
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Figure 4.13. Residuals of the Large Scale Agriculture Model (1996-2002) 
 

Figure 4.14. 3-D representation of the effect of the variable male on the proportion of 
deforestation for the period 1986-1996.  
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Figure 4.15. 3-D representation using contour lines of the effect of the variable child on 

pasture for the period (1986-1996): The colors represent t-test values in the GWR model  
 

4.6. Conclusions  

 This research has explored the use of different techniques to explore spatial 

dependence and spatial heterogeneity within the drivers of land change. This study 

determined how the relationships between different socioeconomic, demographic, and 

biophysical factors and land change are non-stationary across the Northern Ecuadorian 

Amazon. The issue of non-stationarity has implications for environment and development 

policy and management. The limitations of the study are related to the lack of information to 

explain processes that maybe less related to small households farming and more related to 

agro-industrial plantations (i.e., large scale agriculture, including cultivation of African palm 

and palmito). Processes that are related, for example, to the patterns of consumption of 
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African palm within Ecuador. From the methodological perspective, this research 

successfully links remotely-sensed and households survey data to provide information that 

can help guide spatially-explicit modeling efforts that examine local effects (e.g., cellular 

automata) opposed to regional trends.       

 The Northern Ecuadorian Amazon is an agricultural frontier where different actors 

with different histories of settlement have followed different processes of adaptation. 

Although, the diverse conditions under which migrant colonist operate are sometimes 

recognized in studies of LULC change, the statistical models used generalize the drivers of 

land change across a study area. This generalization is necessary to generate new knowledge 

paradigms or for policy implications. Unfortunately, the different intensities of the 

relationships over space are thereby "washed out" and the importance of place is overlooked. 

This research analyzes the spatial heterogeneity within the drivers of LULC change across 

space and demonstrates how factors, such as accessibility, impact with different intensities 

across the in the study area. For example, for deforestation in the period 1986-1996, walking 

distance to main road (walk) is more important in the southern portion of the study area. 

Obviously, efforts devoted to halt deforestation through access to roads should be focused in 

the southern portion, since in the North there are already so many primary and secondary 

roads and conservation efforts should be devoted to restoration of degraded forests.  

 The problem of spatial dependence and heterogeneity can be seen as a problem of 

geographic scale. Using the same data, global models find relationships a level higher than 

the observed data, while local models (e.g., GWR) find relationships at a lower levels than 

the global regressions. At this level, "pockets" of different conditions can be found (Longley 

and Tobon 2004). From the methodological point of view, Anselin and Bera (1998) argue 
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that spatial dependence can arise due to certain misspecifications, specifically, when there is 

a mismatch between the unit of measurement and the unit within the process. In this analysis, 

for example, despite the fact that the models are carried out at a very basic level of 

geographic organization (i.e, farm), several households might control (formally or 

informally) different portions of land that exist within farms and such relationships are not 

captured in this research performed on 50 hectares finca madre. Unfortunately, there are data 

limitations in terms of lack of geodetic surveys of the subdivisions and satellite imagery.  

 Specific for the NEA, this research indicates that there is strong spatial dependence in 

the effects of many of the explanatory variables. The analysis shows that the spatial 

dependence must be caused by processes at work in the NEA rather than produced by 

spatially autocorrelated errors in the data. However, this study used farms as the unit of 

analysis. It is obvious that the results of this research cannot be extended to areas where 

urban or suburban processes are at work. The study area does not include protected areas or 

indigenous territories, but may include the effects of migrant indigenous groups that have 

settled as pre-cooperatives but still manage their land as a community. This case also should 

be excluded.  The use of GWR and SLM (or error models) provides a good synergism to 

explore the spatial dependence and spatial heterogeneity of the relations between drivers of 

land use and land cover change.  

 Finally, one of the outcomes of the analysis is related to representation. The 

benefit of having images and maps to represent relationships of the drivers of LULC have 

benefits for communicating the results of statistical models to policy-makers. Of course the 

visual representation does not replace the need to communicate exact parameters of 

relationships to scientific audiences.  
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CHAPTER 5 

 

5. Simulating Land Cover Trajectories, Spatial Heterogeneity, and Local Variation 

through Cellular Automata Modeling in the Northern Ecuadorian Amazon 

 

5.1. Introduction 

 Land-based anthropogenic processes, such as agricultural expansion, deforestation, 

urbanization, and desertification, have altered the earth system in significant ways during the 

past century. A better understanding of these processes and their feedbacks are indispensable 

for the better management and sustainability of human actions (National Research Council 

1999a). These processes are “place" based, thus providing a conceptual and operational 

framework within which progress in integrative understanding and management are possible 

(National Research Council 1999b). Spatial analysis, which plays an important function in 

the study of land resources, is fundamental in the modeling of human decision making 

regarding the use of space, or human preferences for land attributes (Bell 2005). Coupled 

with insights from complexity theory and complex adaptive systems, spatial analysis and 

modeling offer a novel way to capture the spatial dimensions, amounts, and rates of the 

complex interactions. The theoretical and applied links between spatial analysis techniques 

and complex systems concepts separate spatial analysis from traditional positivist modeling 

and supports the development of less deterministic models that better represent the realities 

of an uncertain world. 
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 The objective of this research is to create a spatially-constrained Cellular Automata 

(CA) model that captures uncertainty, neighborhood change and spatial heterogeneity to 

explore the effects of land transitions (i.e., agricultural extensification and urbanization) in 

the Northern Ecuadorian Amazon (NEA). This model is empirically-based and uses satellite 

imagery, a geographic information systems, household survey data, national census data, and 

other datasets to generate parameters that influence landscape transitions, manage 

uncertainty, and generate suitability surfaces to affect land transformations in the NEA, 

primarily due the actions of colonists settlers, whose decision-making and conditions are 

mediated by a complex set of exogenous and endogenous forces.  

5.1.1 Cellular Automata and the Spatially-Explicit Modeling of Land Cover Change 

 CA models are examples of mathematical systems constructed from many simple, 

identical components that together are capable of complex behavior. From their analysis, CA 

can, first, generate specific models for particular systems, and second, abstract general 

principles applicable to a wide variety of complex systems (Wolfram 1984). CA involves a 

regular division or tessellation of space into cells, each characterized by a state that 

represents the actual condition of the cell; the state changes according to a transition function 

that depends on the initial conditions, states of neighboring cells, and the initial state of the 

focal cell (Badalamenti et al. 2002). CA is not used to describe a complex system with 

complex equations, but instead allows complexity to emerge by the interaction of simple 

"individuals" following simple rules. The essential properties of a CA are: first, a regular n-

dimensional lattice (in most cases of one or two dimensions), where each cell has a discrete 

state, and second, a dynamical behavior, described by growth or transition rules. These rules 

describe the state of a cell for the next time-step, depending upon the states of the cells in the 
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defined neighborhood. From a methodological point of view, White and Engelen (1993; 

1994) and White (1997) defined the components of a CA as: (1) the cell, the basic element of 

a CA and works as a memory element and stores states; (2) the lattice, cells arranged in a 

spatial web; and (3) neighborhoods, defined by the rules that perform changes of the state in 

the cells depending on the neighboring cells. Cells, cell arrangements, and neighborhoods are 

easily defined within Geographic Information Systems (GIS), which provide the basic tools 

to create datasets that input the model.  

 Cellular automata has been used in various studies that address the pattern-process 

relations and dynamics of natural and social systems, including fisheries (Badalamenti et al. 

2002), forest fires (Bendicenti et al. 2002), urban land use change (Batty et al. 1999; Clarke 

and Gaydos 1998; de Almeida et al. 2005; de Almeida et al. 2003; Ward et al. 2000), and 

deforestation (Alonso and Solé 2000; Messina and Walsh 2001; Silveira et al. 2002). CA 

cannot, however, model all types of spatial phenomena. CA models are more useful if used in 

conjunction with other modeling techniques (White and Engelen 1994) and several pure- and 

pseudo-CA models have been created using empirical data and different types of methods to 

calibrate land use transitions. For example, Wu (2002) used a sequential process that 

combines data-driven global and local probabilities to generate transition rates, updated at 

each step of the simulation. Li (2002) generated a CA that used a three-layer neural network 

to calculate conversion probabilities for competing multiple land uses that simulate gradual 

land use conversion processes. Xu et al. (2006) integrated CA with genetic algorithms to find 

optimization functions that define land class proportions. The theoretical basis of the 

quantification of the neighborhood functions for the CA models is relatively poor (Verburg et 

al. 2004). The model developed in this research overcomes this problem by using 



 

 

 

182 

Geographically-Weighted Regression (GWR) to explore and address the spatial 

heterogeneity of the drivers of land cover change, based on household survey data.   

5.1.2 Complexity and Complex Systems 

 In science, social processes are usually regarded as complex outcomes of interactions 

between social structures and human agency, while natural processes are usually regarded as 

determined by laws of nature (Blackman 2000). Currently, there is a certain convergence in 

the study of coupled social and natural systems supported by developments in the fields of 

complexity theory, complex adaptive systems, vulnerability, and resilience (Hollings and 

Sanderson 1996). To define complexity theory and complex systems is not an easy task, in 

the sense that there is no identifiable complexity theory per se. Different disciplines and 

theories concerned with complex systems are positioned under the banner of complexity 

research (Manson 2000). To understand how complexity and complex systems contribute to 

this research, it is necessary to review some concepts related to the foundation of complexity 

science.  

 Complexity theory is a type of systems theory that approaches explanation in terms of 

causes and effects, but it is not deterministic. According to Blackman (2000), the basic 

principles of complexity can be summarized as: (1) system-environment interactions that 

allow feedbacks, (2) systems of social and environmental signatures that have multiple and 

interacting causes with non-linear trajectories of change occurring within a phase-space of 

possible attractors, (3) certain parameters that govern the general properties of a system and 

its trajectory in phase-state, and (4) system states that are not predictable in the long-term, 

but the generic class to which they belong can be described, investigated and perhaps 

anticipated. Dynamics emerging from local nonlinear feedbacks can constrain the evolving 
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patterns or create the emergence of new landscape structures that create additional feedback 

mechanisms on subsequent activities (Walsh et al. In Press-a).  

 The origin of systems theory in social (Von Bertalanffy 1950) and natural (Patten 

1959; Watt 1966) sciences is the basis for the development of several concepts related to 

complex systems, among them feedback mechanisms. Chorley and Kennedy (1971) defined 

feedbacks as the property of systems that, when changes are introduced via one of the system 

variables, transmission through the structure directs the effect of the change back to the 

initial variable, i.e., circularity of action. With a negative feedback the system is maintained 

in a steady-state by self-regulation processes, termed morphostatic; with a positive feedback, 

the system is characterized as morphogenetic, changing substantially, its characteristics and 

effects over time. 

 Complexity conceptualizes the outcome of processes as states of the system. It 

conceives a system as either reproducing its current state (i.e., stable state) via negative 

feedbacks with the environment or moving along trajectories from one state to another (i.e., 

state cycle) as a result of positive feedbacks (Blackman 2000). In this research, the states of 

the system are the land classes that change across time or remain the same. A state cycle 

(also known as a system phase) embodies all the possible states for a system in a possible 

environment. In this research, the system phase is the possible land trajectories. 

  A Complexity theory analysis of land use and land cover (LULC) change aims at 

understanding the dynamics of LULC change patterns in terms of a state-space within which 

the system functions. Characteristics of complexity in this state space may include thresholds 

that cause rates of change to vary; bifurcations that can cause systems to diverge from similar 

states; folds that lead to jumps of state; and various stability conditions. All are constraints on 
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LULC dynamics and future trajectories. A relevant topic within complexity is the concept of 

self-organizing systems: spatially-extended, dynamic, systems can self-organize to generate 

order.  

 Environmental change (e.g., the construction of a road or the implementation of a 

new policy) can cause perturbations to the system that can slow its development by a 

negative feedback or develop into a chaotic behavior with a positive feedback, thereby, 

generating change along a trajectory within the system’s state-space. Complexity theory can 

be applied to the analysis of LULC transitions, because landscape frontiers (e.g., the NEA) 

are emergent phenomena resulting from human-environment interaction at local scales and 

manifested at regional scales. 

 It is expected that complexity will provide a framework for two important features in 

the NEA agricultural system: feedbacks and uncertainty. Positive and negative feedbacks 

need to be accounted for in the spatially-explicit and dynamic models; important positive and 

negative feedbacks include the existence and creation/improvement of accessibility, 

subdivision of plots, and immigration to the area. In terms of uncertainty in complex systems, 

it can be classified in stochastic and epistemic uncertainty. Stochastic, or irreducible  

uncertainty describes the inherent variation associated with the system or the environment 

under consideration, while epistemic, or reducible uncertainty describes the lack of 

information or knowledge in any phase or activity of the modeling process (Oberkampf et al. 

2004). Sources of uncertainty are numerous. In the case of agricultural frontiers, there is 

uncertainty related to the scarcity of information small farmers in the agricultural frontier 

face within their decision-making space that does not allow a clear maximizing strategy for 

planting food or cash crops (Ortiz 1973). In this model, there is also uncertainty related to the 
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data, for example how well initial satellite classifications of land use capture the initial 

conditions. Spatially-explicit models of complex systems generate spatial patterns that can be 

very sensitive to slight differences in processes or initial conditions, i.e., path dependence 

(Brown et al. 2005). The type of uncertainty addressed here is the stochastic type, using 

random elements that generate a degree of variation in the outcome. The model developed 

here does not focus on prediction that might generate overfitting, but emphasizes patterns to 

capture process at work in the study area.  

 The challenge and major weakness of the CA models is the difficulty they have to 

capture processes at a level of social organization where the land change decision-making 

actually occurs, which in the NEA is at the household level. The CA model works at the cell 

level but human decisions are made by households and implemented at the farm level. 

Therefore, CA models capture only indirectly the main decisions that influence LULC 

change. This research tries to overcome this challenge by incorporating the drivers of LULC 

change at the household-level by using spatially-explicit statistical models and Geographical 

Weighted Regression (GWR), that are capable of characterizing and managing the 

heterogeneity of relationships.  

5.2. The Study Area: The Northern Ecuadorian Amazon 

Ecuador had the highest deforestation rate in South America over the last twenty years (Food 

and Agriculture Organization 2001; Food and Agriculture Organization 2005). The NEA is 

the second deforestation front within the Ecuador, after the Choco Region in North Western 

Ecuador (Sierra 2000). This oil rich region covers an area of approximately 7,000 km² and 

comprises three provinces: Sucumbios, Orellana, and Napo. The Napo rainforest, where the 

NEA is located, is among the most biologically diverse and unique environments in the 
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world, and it is considered one of the world's hotspots—areas with high biodiversity and 

under high human pressure (Myers 1988; Myers 1990; Orme et al. 2005). The NEA has 

experienced considerable LULC change primarily through deforestation, agricultural 

extensification, and urbanization.   

 The discovery of petroleum in the region in the early 1960s helped define two periods 

in the history of the NEA. Prior to the exploitation of petroleum, the natural landscape was 

essentially intact and populated mainly by indigenous populations and some colonists 

devoted primarily to subsistence agriculture. Using roads built by the petroleum industry to 

explore, lay pipelines, and extract oil, colonists began arriving in the early 1970s and began 

converting land from forest to agriculture on 50-ha farms, to initially support themselves with 

subsistence agriculture, followed by the commercial cultivation of coffee and eventually to 

raise cattle for sale. Virtually all the colonization has been spontaneous. Population growth 

between 1974 and 1982, 1982 and 1990, and 1990 and 2001 increased at  rates of  8%, 6%, 

and 5% per year respectively (Bilsborrow 2003) —almost double those of the national 

population. As result, the total population grew from 384,616 in 1990 to 548,419 in 2001 

(ECORAE 1996). The tenancy of legal titles of colonist decreased from 50 to 34 percent 

among colonist farmers in the region between 1990 and 1999 (Bilsborrow et al. 2004).  

 The CA-based, spatial simulation is developed for a smaller portion of the 

colonization area in the Northern Ecuadorian Amazon. This area is the Northern Intensive 

Study Area (NISA), shown in Figure 5.1. The NISA covers an area of 80,260 hectares and 

contains the largest city in the Ecuadorian Amazon: Lago Agrio (or Nueva Loja), which had 

a population of 34,000 inhabitants as the 2001 population census.  The NISA is an excellent 

place to apply the CA model, because it contains two major land change processes: 
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agricultural extensification and urbanization. This CA model, because it captures the 

hetereogeitity of the relationships between the drivers of land change across space, can be 

applied to any area of the NEA 

 

 

Figure 5.1. The North Intensive Study Area (NISA) within the colonization area of the 
Northern Ecuadorian Amazon. 

 

5.3. Cellular Automata Models in the Ecuadorian Amazon 

 Considerable advances in the field of spatially-explicit simulation modeling have 

been made using the Ecuadorian Amazon as the setting and using complexity as the 

theoretical framework.  The first generation of CA models in the Amazon, described in 

Messina and Walsh (2001) and Messina (2001), set the basis for further development of the 
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CA models by applying three elements used in modified form in later models: initial 

conditions, random number generation, and growth rules. The predictive emphasis of these 

initial models explains the use of autoregressive techniques to quantify errors in the products 

and the lack of socioeconomic information to generate growth rules. Further development of 

this model (Messina and Walsh 2005) includes the generation of a flux class, also used in the 

model presented here, where classes are combined before the simulation and separated after 

growth rules are applied. These set of models include a more sophisticated form of 

calibration that uses satellite image-based transition probabilities that tune the parameters of 

the model. This model also includes the use of geographical accessibility, a dimension of 

socioeconomic condition. There is, also, an evolution from the software used to code the 

model, initially Erdas Imagine software and Spatial Modeling Language were used because 

they have strong capabilities for processing satellite images, but limited spatial and statistical 

analysis functions Later models, including the model presented here, use IDL (Interactive 

Data Language) to code and run simulations. IDL provides vast potentials to generate spatial 

simulations, including  the use of established statistical functions.   

 Other advances include models explained in Walsh et al. (In Press-a; In Press-b). 

Although these models contain similar elements as earlier models, the use of household 

socioeconomic data is emphasized. The source of socioeconomic data includes household 

survey and national census data. The use of socioeconomic data allows the construction of 

different scenarios of future LULC change based on changes in some socioeconomic 

characteristic. Specifically, this model hypothesizes that an increase in accessibility will 

create negative feedback by generating better access to towns and consequently more 

opportunities for off-farm employment that creates higher income on farms and accelerates 
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the process of deforestation.  

 The advances of the model presented here in relation to earlier models are based on 

two key characteristics: (a) the use of Geographically Weighted Regression (GWR) to create 

spatial regimes that control the random seeding that creates a semi-constrained stochastic 

uncertainty in the system; and (b) the direct use of household survey data to parameterize the 

model by providing data to create spatially-explicit parameters in the GWR model.  

5.4. The Simulation Process 

 The spatially-explicit simulation uses a cell-based, dynamic modeling approach based 

on cellular automata principles to calculate change for several land cover classes in annual 

time steps. The model is grounded in empirical data obtained from a longitudinal household 

survey in the Northern Ecuadorian Amazon conducted in 1990 and 1999. One of the key 

elements of this model is that the relationships between socioeconomic and demographic 

factors and LULC change, obtained for discrete points (i.e., sample households), are 

transformed in continuous surfaces using Geographically Weighted Regression (GWR). In 

broad terms, the simulation process is divided into three components: (a) determination of the 

initial conditions and rules within the system, (b) dynamics of the land change processes: 

dilation and seeding, and (c) suitability for transitions and resolution of conflicts. Figure 5.2 

illustrates the main components in the process defined to simulate land change for Year 1 of 

the 20-year simulation period that begins in 1986.   

 The initial conditions of the system are represented by an initial land cover 

classification (Land Classes in Year t), here represented by the 1996 Landsat classification 

generated using a hybrid classification approach (Messina and Walsh 2001; Walsh et al. 

2003) and explained in Chapter 2. In this initial classification and in the simulated LULC 
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surfaces, the classes used are: primary forest, succession, pasture, agriculture, urban/barren, 

and water. Three other initial parameters are designated to capture the local and regional 

dynamic: a growth kernel, neighborhood threshold, and a random seeding coefficient. The 

growth kernel neighborhood is a moving window of 3 x 3 cells (1 cell = 90m2), where the 

central or focal cell is susceptible to change based on the values of its neighbors.  The 

neighborhood threshold is an integer that indicates the minimum number of cells that must be 

from the same class to generate a change or transition of the central cell to another class. For 

instance, if a center cell is forest and it is surrounded by agriculture, it is highly likely that the 

state of the cell will be switch to agriculture during the next interaction of the model.  

 Seeding is the process by which random cells are distributed across the landscape to 

represent the possibility that landcover may change in less predictable ways and in isolated 

locations. Seeding, in this case, is not completely random, it is partially controlled by the 

generation of spatial regimes. Geographically Weighted Regression (GWR) is used to create 

spatial stratifications of the landscape. GWR is designed to capture the spatial heterogeneity 

of relationships, and, in this study, is applied to create spatial regimes in the relationships 

influencing the drivers of land change. GWR generates spatially-explicit regression 

coefficients that define the spatial distribution and direction of relationships and their 

statistical significance.  Geographically Weighted Regression (Brunsdon et al. 1998; 

Fotheringham et al. 2002; Fotheringham and Wegener 2000) can be expressed as: 

∑ ++=
k iikiiKiioi xvuvuy εββ ),(),(  

where, yi is the observation of the dependent variable at the location i, (ui,vi) that represents 

the coordinates of i in space, and βk(ui,vi) is the realization of the continuous function βk(u,v) 

at point i. The basic assumption of this model is that locations nearer to i will have more 
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influence on the estimation of the parameter βk(ui,vi) than data points farther from i. Under 

this assumption, a continuous surface of parameter values is estimated. Detailed information 

of how the GWR models were created and the variables used is provided in Chapter 4. The 

dependent variables are the proportion of land change (i.e., agriculture, pasture, and 

succession) that occurred between 1986 and 1996 at the farm-level, calculated from the 

Landsat classifications. Table 5.1 shows the set of independent variables generated using the 

1990 household survey and used in the GWR model. The model was generated for the entire 

NEA using 314 farms and the area that corresponds to the NISA was extracted.  

 The dilation or growth of land classes in this CA model is captured by three basic 

processes that are based on principles of complex systems modeling, and described by 

Messina and Walsh (2005) and Walsh and Messina (In Press-b). The basic processes include: 

(1) the dilation (or growth) coefficient for the urban class, (2) the dilation coefficient for the 

flux class (i.e., the grouped set of classes: succession, agriculture, and pasture), and (3) the 

transition probabilities to separate the flux class at the end of each model iteration. Dilation is 

the propensity of one class to “flip” to another class based upon a defined threshold of LULC 

class frequencies within a defined filter window or kernel. Dilation is used to fill holes or add 

pixels along a boundary. The equations for these processes can be expressed as (Messina and 

Walsh 2005; Seul et al. 2000):   

   on, if I(i0, j0) = off, and Ø (i,j,η) ≥ TØ, 

Idc (i0, j0) =   and x(i,j,η) (>, <, =) Tx 

   off, otherwise; 

 

where I is the image, the main element; (i, j) represents all the pixels; η represents the 
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neighborhood around the center pixel; (i0, j0) = on or off pixels; I is the main element; TØ is a 

growth kernel threshold; Tx is a neighborhood threshold.  

 

Table 5.1. Set of independent variables from 1990 used to parameterize the GWR model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The separation of the flux class is made using transition probabilities of land classes 

across time and space that incorporate a Markovian process. The transition probabilities were 

derived from summary cross-tabulations of land class areas for the 1986 classification and 

standardized to represent the probability of those classes to exist in the next year.  The last 

step of the model deals with the calculation of a suitability score that allows the resolution of 

  1990 

Variable Definition Mean SD 

Male Number of males in the farm, older or equal 
than 12 years old 

2.68 (1.71) 

Female Number of females in the farm, older or equal 
than 12 years old 

2.10 (1.47) 

Child Number of children in the farm, younger than 
12 years old 

2.82 (2.35) 

Age Average age of the head of households within 
the farm 

44.56 (12.39) 

PriEduc Any primary education (binary) 0.89 (0.31) 

SecEduc Any secondary education (binary) 0.05 (0.23) 

Walk Walking distance to main road (km) 2.68 (3.36) 

Road Distance to reference city by the main road 
(km) 

20.85 (14.15) 

Access Car access to the farm (binary) 0.50 (0.50) 

SecRoad Distance to the main road by secondary road 
(km) 

2.11 (4.08) 

Soil Black soil on the farm (binary) 0.65 (0.48) 

Fertility Farmer reports fertility decrease in the farm 
(binary) 

0.86 (0.35) 

Flat Flat land on the farm (binary) 0.42 (0.49) 

Wetland Wetlands on the farm  (binary)   

Hlabor Hired labor on the farm in the last year 
(binary) 

0.54 (0.49) 

Ofe Off farm employment in the farm on the last 
year (binary) 

0.34 (0.48) 

Title A portion of legal title on the farm (binary) 0.33 (0.46) 
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conflicts that occur when a cell has been changed and activated for different types of land 

transitions. For example, when the dilation process has flipped a cell to urban, but the 

seeding has designated the same cell as succession, the difference of suitability scores for 

each land class then indicates the type of change that should be applied to the cell in 

question. When the differences of suitability scores are too small, the change is random. The 

suitability scores are calculated using a set of biophysical and socioeconomic variables 

shown in Table 5.2.  

 The process mentioned in the preceding paragraphs is carried out for the initial year. 

The results serve as the inputs for the next iteration of the model. The same cycle is repeated 

for each of the years modeled. Obviously, the more years modeled, the higher the uncertainty 

related to how well the model represents reality and how new un-modeled processes that  

impact LULC. The CA results presented here model land changes only to the year 2010.  

 

Table 5.2. Layers used to characterize the suitability  for flux class change or urban change. 
The sign indicates the direction of the relationship. 

 
 Flux Class Suitability Urban Class Suitability 
Travel distance to main towns (-) Travel distance to main towns (-) 

Euclidean distance to nearest road (-) Euclidean distance to nearest road  (-) 

Population density (+) City Gravity Model (+) 
Slope (-)  
Topographic moisture index (-)  
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Figure 5.2. Main components in the process of land change using the CA model. 

1
9
4



5.5. Results  

 The spatial simulation process builds a set of predictive maps based on a set of initial 

conditions that include biophysical, socioeconomic, and demographic factors. Figure 5.3 (a) 

indicates the initial land cover conditions of the system, while Figure 5.3(b) shows one of the 

various possible outcomes for the simulation at the year 2010. This final year of the model 

run shows changes in the composition and spatial pattern of land cover that are simulated to 

occur over space and time. The linear features (colonization lines) that exist in 1986 are the 

main axis of agricultural extensification through the time series.   

 There are several random elements at work in the simulation that are included to 

capture some of the uncertainty contained in the land change decision-making at different 

levels of social organization, as well as our imperfect understanding of the system. Figure 5.4 

shows the results of 100 runs of the model that simulates land cover through the year 2010. 

The variability of the results for each run is evident; however, all the results are within a 

reasonable range of outcomes. For primary forest, for example, there is a difference of 1,250 

hectares between the maximum and minimum simulated area. This is to be expected, because 

the model also includes stochastic processes, so no model run is identical and, hence, results 

can vary in subtle and less than subtle ways.  
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Figure 5.3. Simulation results: (a) the initial land cover in 1986, and (b) the simulated land 
cover in 2010. 
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Figure 5.4. Results of 100 runs of the model for the year 2010 for different land classes. 
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Figure 5.5 specifies the yearly simulation for different land classes. In this case 

deforestation occurs at 1.9%/year for the period 1986-1996 and 0.8 %/year for the period 

1996-2002, which is consistent with deforestation rates reported in other studies (Mena et al. 

2006b). The simulation captures a sustained advance of the deforestation front as seen in 

Figure 5.5, where pasture and agriculture are non-linear, and the shape of a exponential 

function ay
=x (with a>1), where y is area of the land class and x is time.  

Different components of the simulation are compared to a classification of LULC 

using Landsat imagery for 2002. Table 5.3 shows the results of the comparison of class areas 

for that year. In general, the model performs well, taking in consideration that tuning, or 

calibration of the model, has not been implemented. The major deficiency is the under-

estimation of agriculture (11% of the landscape) in the model when compared to the 

classification. This obviously has implications for the amount of forest remaining that differs 

by approximately 8% between modeled and classified tabulations. The assumption is that the 

Landsat classification is perfectly and absolutely correct, an assumption that is tenuous at 

best.   
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Figure 5.5.  

 

 

 

Figure 5.5. Areas of land cover generated by the model between 1986 and 2010. 
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Table 5.3. Comparison of the total land class areas and percentage of the landscape obtained 
using Landsat Classification and Simulations for the year 2002. 

 

 Classification Simulation 
Land Cover Ha % ha % 
Forest 35807.49 39.61 49010.49 47.70 
Succession 10400.22 11.50 8281.08 8.06 
Pasture 14688.45 16.24 13188.33 12.83 
Agriculture  16619.85 18.38 7149.24 6.95 
Urban/Barren 1195.11 1.32 1477.62 1.43 
Water 543.78 0.60 753.48 0.73 

 

 The spatial pattern of the simulation was also compared to the spatial pattern 

generated by the Landsat classification. Several pattern measurements were used: number of 

patches in the landscape (Patches), the number of patches per 100 ha (Patch Density), the 

percentage of the landscape comprised by the largest patch (Largest Patch Index), patch 

shape complexity measured by the fractal dimension (Perimeter-Area Fratal Dimension, 

higher than one indicates complex shapes), and measurement of aggregation of the patches 

(Contagion is 100 when the patches are completely aggregated).  

 The results indicate that the model performs poorly in terms of configuration of the 

patches in space. Table 5.4 shows that the simulation creates fewer and larger patches. 

Contagion, a measurement of landscape aggregation, indicates that the simulation tends to 

produce patches that are clumped together or clustered. The only index that shows a good 

performance is related is the complexity of the patch shape measured by the perimeter-area 

dimension. The poor performance related to spatial pattern of land use is the result of the 

randomness created when the flux class is divided using transition probabilities. The model 

however, should improve with additional tuning.   
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Table 5.4. Comparison of relevant spatial pattern indices obtained from Landsat 
Classification and Simulations for the year 2002. 

 

Spatial Pattern Indices Classification Simulation 
Patches 106147 52760 

Patch Density 117.42 51.35 
Largest Patch Index 4.31 18.36 

Perimeter Area Fractal Dim 1.64 1.64 
Contagion 32.61 49.86 

 

5.5. Conclusions and Discussion  

 This chapter explains how a CA model for the Northern Ecuadorian Amazon has 

been created and shows its application to a smaller area (NISA). This CA model is based on 

demographic, socioeconomic, and biophysical characteristic of the study area collected 

through household surveys, census data, and geographic information systems. The manner in 

which the agricultural frontier and urbanization processes advance across space and time 

emphasize the creation of a morphogenetic model that emphasizes positive feedbacks within 

the system, feedbacks or forces that change substantially the nature of the land cover through 

time.  

 In this CA model, the positive feedbacks can be explored at different levels. The more 

general positive feedback occurs when the land classes produced in an early iteration 

generate a higher probability of land change in current or future years. Other specific 

feedbacks occur when the different biophysical, demographic, and socioeconomic factors 

reinforce or constrain the seeding and dilation processes and increase or decrease the 

suitability scores and transition probabilities.   

 This model, on one hand, conserves different random elements that seek to capture 

uncertainty in the interactions across time. On the other hand, the model attempts to account 
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for the observed processes using statistical models and other user-defined parameters. 

Therefore, the model is not completely deterministic, but is also not chaotic either. The 

millions of interactions across cells and across time allow complexity to occur, but it is 

restricted by spatial regimes and follows empirically-based rules.     

 The relatively low degree of coherence in the spatial pattern as compared to satellite 

data should not be considered a major problem. This present simulation is only a base or 

initial model, which will undergo modifications and fine-tuning. The further development of 

this model is related to general options including: the generation of a knowledge system or 

the generation of a predictive model. A knowledge system would emphasize the processes at 

work in the study area, and aims to test different theoretical approaches and methodologies. 

This knowledge system is less able to capture land change outcomes that mimics reality, its 

objective is to capture the processes behind the patterns. A predictive system, on the other 

hand, would emphasize accurate outcomes that have relevance for environmental policy and 

management. In this context, a tunning or modification of the transition rules is needed to 

generate outcomes closer to reality. The key is that when the model forces a "more" real or 

likely outcome, it also generates a more deterministic model, which is contrary to a complex 

model where the interactions generate spatial pattern.  

 The potential of this particular CA model is that it lays the groundwork for the 

development of a set of scenarios relevant to theory or policymaking. Scenario analysis is a 

useful tool to test incentives, measures, or planning regulations according to different policy 

objectives (Reginster and Rounsevell 2006). Beyond, traditional land use management 

prediction and its impact on terrestrial ecosystems, land change scenarios is essential for the 

prediction of climate change and global warming (Feddema et al. 2005) and is basic to 
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address the tradeoff, for example, between environmental change and human health (Patz et 

al. 2004). Different CA models have already demonstrated an ability to address a range of 

regional planning issues, but spatial accuracy and scale sensitivity (Jantz et al. 2003) and path 

dependence (Brown et al. 2005) need to be addressed. This CA model can be used in 

combination with other modeling techniques (e.g., agent based models) to model how short 

term human decision-making affects the long term stability of human and ecosystem health.  
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CHAPTER 6 

 

6. Conclusion  

 

6.1. Revisiting Research Questions  

 This research has shown that agricultural frontier regions are heterogeneous and 

complex entities. Stea (1996) characterizes frontiers in three senses: as a region, as a cutting 

edge separating regions, and as an intellectual territory. The agricultural expansion of the 

Northern Ecuadorian Amazon (NEA) responds to the advance of perpendicular and parallel 

lines, roads, and edges that open into forested areas, but the region that these lines engender 

is far from geometric, homogenous, or constant. The chapters included in this research show 

that: (a) the NEA can be characterized and modeled by the LULC trajectories, (b) different 

combinations of factors control the regeneration of forests, (c) there is non-stationarity in the 

underlying processes that drive LULC trajectories within the region, and (d) spatially-explicit 

models can simulate the emergence of broad LULC patterns from the interactions at low 

levels of geographic organization. The intellectual territories, the different kinds of spatial 

representation of the NEA shown in this research, are the result of the synergism between 

spatial analysis, statistics, remote sensing, and complexity theory.  

 This research links four interconnected research questions whose answers seek to 

generate new insights in the processes of land use and land cover change in the Ecuadorian 

Amazon. The first question, treated in Chapter 2, deals with the composition and spatial 
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configuration of the LULC transitions in the NEA between 1986 and 2002. The intent of this 

section is to find temporal patterns and logical or regular cycles in land use change when 

analyzed through classified satellite time-series. This question also explores the spatial 

organization of the LULC trajectories in the colonization area.  It is hypothesized that the 

land use and land cover transitions in the Northern Ecuadorian Amazon have spatial and 

temporal patterns that emerge according to the lines of colonization and urban center 

influence.  

 Chapter 3 characterizes secondary forest succession, its extent, and the 

socioeconomic, demographic, and biophysical factors that effort forest generation. As in the 

first research question, the analysis is restricted to the period 1986-2002, when satellite 

imagery was available. This chapter analyzes whether a transition to forest is controlled, for 

example, by accessibility, demographic characteristics, or biophysical conditions. The aim of 

this question is to clarify the temporal nature of the relationship between people and 

secondary forests and to infer future positive and negative feedbacks between social, 

geographical, and biophysical considerations of reforestation as revealed in the sequence of 

changes captured in the LULC trajectories. It was hypothesized that the production of 

secondary forest is less intense at the early stages of the settlement where initial positive 

feedbacks to farmers (e.g., high productivity and rents) promote deforestation and 

conservation of agricultural lands. In the latter period, however lands decrease in soil fertility 

and forest resources, thereby, pushing farmers to seek other strategies (e.g., off-farm 

employment ) to cope with exogenous changes. 

 Chapter 4 is devoted to the analysis of the spatial heterogeneity of the relationships 

between socioeconomic, demographic, and biophysical drivers and LULC in 1990 and 1999.  
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The intent of this question is to identify the spatial non-stationarity of the relationships 

between explanatory factors and LULC change. Non-stationarity or spatial heterogeneity is 

created when a stimulus provokes different responses in different locations of the study area. 

It is hypothesized that the region has intrinsic differences in the farmer's typology and their 

natural resource base; therefore, they show different intensities across the NEA. This analysis 

uses Geographically Weighted Regression (GWR) and Spatial Lag Models (SLM) to identify 

spatial dependence and heterogeneity within relationships. There is also an emphasis on new 

spatial representations of the parameters resulting from regression analysis that facilitates the 

communication of results generated through statistical analysis.  

 Chapter 5 deals with the development of a Cellular Automata (CA) model for the 

Northern Intensive Study Area (NISA). This CA model, based on previous models generated 

for the NEA, simulates LULC trajectories using pixels, neighborhoods, and spatial regimes 

that interact to produce broad LULC patterns. It is hypothesized that it possible to model 

farms and farmer's behavior using cells that are influenced by socioeconomic, geographic, 

biophysical, and demographic factors in a changing environment with feedbacks between 

actors and the environment. Specifically, LULC patterns emerge from rules that control 

interactions among cells, neighborhoods and other spatial regimes. The model presented here 

will serve as the basis for the construction of a predictive tool or a process-based model 

suitable for the construction of theoretical scenarios with LULC change outcomes.  

6.2. Main Findings, Applications, and Contributions    

The work on the LULC trajectories (Chapter 2) provides an exploratory assessment of LULC 

change patterns in the Northern Ecuadorian Amazon. This section of the research shows the 

complex and diverse nature of the sets of LULC trajectories derived for the agricultural 
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frontier of the NEA. Different patterns were identified using different types of statistical 

analyses: descriptive statistics, cluster analysis, and spatial logistic regression. Within the 

NISA and the NEA, trajectories were aggregated and stratified by different spatial units, 

stages of deforestation, and census sectors. The analysis of LULC transitions has suggested a 

“core and periphery” pattern of transitions in the NEA. The agricultural and forest 

trajectories occurring in urban or semi-urban places and marginal lands are sufficiently 

different to produce diverse responses. From this analysis, practical implications for 

environmental management can be made. For example, the design of corridors for 

conservation will be more effective if the stability of LULC transitions is taken into 

consideration. Clusters with forest stability or areas with low probability of transitioning to 

other land uses should be considered to form components of corridors and patches for 

restoration efforts. From a methodological point of view, Chapter 2 contributes through a 

novel methodology to extract broad or general patterns from pixel histories that come from 

classifications of unknown accuracy. The key elements in this method are the elimination of 

LULC trajectories that are not consistent with the realities and history of the study area, the 

stratification by geographic units, and the application of a clustering algorithm. This 

approach supports the further exploration of trends in areas where historical control data are 

not available.  

 Chapter 3 deals with the analysis of secondary forest. It was found that the succession 

of vegetation in the NEA is an incipient increasing process, but at increasing rates. At the 

farm-level, farmers reported that the proportion of successional vegetation of  5.2-percent in 

1990 and 11.2-percent in 1999. For the entire NEA, remotely-sensed data indicates that the 

area of secondary forest increased between 1986 and 1996 (i.e., by 49,400 ha), but the 
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decreased by 19,400 ha between 1996 and 2002. Conversely, the area in rastrojo (or young 

succession) maintained relatively constant values between 1986 and 1996, but increased from 

5,457 ha in 1996 to 16,796 ha in 2002. Although the information provided by farmers 

through the longitudinal survey, and that obtained through remotely sensed methods, are not 

directly comparable, both sources show that in the late 1990s there was an increase in the 

relative proportion of secondary forest, consistent at the farm- and landscape-levels.  

 The dynamics of secondary vegetation is partially caused by activities related to the 

oil industry and broad development efforts, specifically the impact on the transportation 

network, the growth of towns, and rising employment opportunities for farmers and young 

adults. There are a variety of factors that contribute to the generation of secondary 

vegetation, and although this study does not include data on prices of coffee and cacao, the 

drastic decrease in agricultural commodity prices starting in the late 1990s contributed to 

some abandonment of long-standing coffee crop and served to “push” farmers to seek 

alternative income in the agricultural labor or oil industry and in towns. "Push" factors from 

the farm as well as “pull” factors from growing towns can promote plot abandonment that 

promoted the regeneration of forest and fallow in previously cultivated sites. In practical 

terms, this research shows that some factors (e.g., off-farm employment) can contribute to 

the regeneration of forest and these results can be used as the basis for development and 

restoration programs that take into consideration the socioeconomic situation. From a 

theoretical point of view, this research shows that despite the fact that secondary forests are 

increasing in the NEA, the drivers of change are not likely to be compatible with those 

advocated in the Forest Transition theory. In the NEA, secondary forest is not the result of 

“development” per se, but occurs as a consequence of a series of factors, including land 
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abandonment, biophysical conditions, and off-farm employment.    

In Chapter 4, this research has explored the use of different techniques to explore spatial 

dependence and spatial heterogeneity within the drivers of land change. This study 

determined how the relationships between different socioeconomic, demographic, and 

biophysical factors and land change are non-stationary across the Northern Ecuadorian 

Amazon. This implies that the intensity of the drivers of LULC change is different across 

space.   This study has shown that important characteristics of the relationships can be 

simplified by “global” statistical models. In the NEA, for example, road accessibility affects 

LULC in different ways for different places. Discussions about the impact of roads on forests 

should take this into consideration: access affects deforestation in different ways depending 

upon geographic location. From a methodological point of view, Anselin and Bera (1998) 

argue that spatial dependence can also arise due to certain misspecifications, specifically, 

when there is a mismatch between the unit of measurement and the unit within the process. 

This research indicates that in the NEA there is strong spatial dependence for some variables, 

but that spatial dependence is caused by processes at work in the NEA, rather than produced 

by spatially-autocorrelated errors in the data or sampling issues. The advances in Land 

Change Science are centered on the use of spatial statistical models, i.e., Geographically 

Weighted Regression (GWR) and Spatial Lag Models (SLM), to explore the spatial 

dependence and spatial heterogeneity of the drivers of land use and land cover change, and to 

provide alternate ways of representation of parameters and outcomes.  

 Chapter 5 explains how a CA model for the Northern Ecuadorian Amazon has been 

created, with application to a smaller area, the NISA. The CA model simulated change in 

forest, pasture, agriculture, and urban/barren classes from 1986 to 2010. The main advance 
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and contribution of this CA model, and the difference with previous versions, is the direct 

use of demographic, socioeconomic, and biophysical variables collected through household 

surveys. This is possible due to the application of GWR and the use survey data to create 

spatial regimes that partially control CA dynamics. The synergism between GWR and spatial 

simulation methods has strong potential, especially when socioeconomic information (i.e., 

household survey data) is scattered across the landscape at survey farms used for the 

estimation of spatially-explicit models.   

 This CA model used methods to develop spatially continuous models derived from 

household information. The method is not an interpolation per se, but the use of spatial 

regimes is created according to the intensities of the drivers of LULC across space. The use 

spatial regimes can have utility in the implementation of other spatial simulations (e.g., agent 

based models) that are built using discrete units in space.    

6.3. Main Challenges  

The challenges addressed in this research have several dimensions, specifically 

related to data, methods, and theoretical approaches. The first problem, and probably the 

main obstacle, was related to data and involves the accuracy of the Landsat image 

classifications. Commonly encountered, particularly in the multi-temporal analysis of frontier 

environments, is the lack of multi-temporal control data for the quantification of the error 

produced within the land use classification for earlier periods. The classifications used in this 

research were generated by the Ecuador Project Team using an hybrid method of 

classification (Frizzelle 2004; Messina and Walsh 2001; Walsh et al. 2002; Walsh et al. 

2004). Unfortunately, the lack of ground control points for an overall accuracy assessment of 

the time-series is a limiting factor common to the Land Change Science and remote sensing 
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communities. Although ground control points were collected at various points in time 

between 1999 and 2004, which in practice would support an analysis of the accuracy for the 

2002 classification, there is no exact match between ground control points and the 2002 

image. The situation for the classifications for the period 1973-1996 is more severe because 

ground control points do not exist and other ancillary data (e.g., aerial photography) are 

inconsistent with the years of the classifications.  

Thus analyses made at the pixel level should be interpreted with caution. The study of 

the LULC trajectories attempts to overcome the lack of a rigorous accuracy assessment and 

possible errors in the classification by identifying the main patterns after the extraction of 

illogical trajectories. New retrospective data, acquired in the field in 2007 about the age of 

secondary forest, coffee, and cacao farm patches, will support the development of an 

accuracy assessment to help improve estimates, especially related to secondary forest.   

Other limitations of this research are related to the lack of information to explain 

processes that are less related to small household farms than to agro-industrial plantations 

(i.e., large scale agriculture, including African palm and palmito). Although this research 

makes use of the most comprehensive data source available for the Ecuadorian Amazon, the 

1990 and 1999 longitudinal household data, these data are not sensitive to several processes 

that have occurred after 1999, specifically between the period 1999-2002 and beyond. These 

processes include the advance of the agro-industrial sector, specifically African palm and 

palmito plantations that are developed by small to medium scale entrepreneurs or companies. 

These plantations affect the landscape in significant ways but not always obey endogenous 

and exogenous factors related to households, more related to small or large commercial 

operations.   
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The issue of spatial scale is also important. In this analysis, despite the fact that the 

statistical models are carried out at a very basic level of geographic organization (i.e, farms), 

several different households often control (formally or informally) different portions of land 

within the farm, as in the case of subdivisions of "finca madres". Different management 

strategies may thus exist within the same farm, which are not captured in this research. 

Unfortunately, there are data limitations in terms of the lack of geodetic GPS data to 

precisely identify the subdivisions boundaries. Additionally, observations based on satellite 

imagery depend on their spatial resolution, which set the level of detail or scale of analysis.  

The results of this research focus on small-farmer agricultural land use and land cover 

change. As such, the results of this research cannot be extended to areas where urban or sub-

urban processes are at work in the NEA. The study area does not include protected areas or 

indigenous territories, but the NEA may include the effects of migrant indigenous groups that 

have settled as pre-cooperatives but still manage their land as a community (e.g., the Sardinas 

and Alama communities in Sucumbios).  

 In the case of the cellular automata simulations, the inability to replicate spatial 

patterns indicated by satellite data is related to the tradeoff between an improved predictive 

accuracy and a more theoretical deterministic model.  This present model tries to conserves 

the complexity and not over-parameterize the model. However, this base model can be 

modified and fine-tuned to generate a more predictive model. Another challenge is the use of 

a flux class, a temporal class that encompasses agriculture, pasture, and succession within the 

simulation. The flux class was designed in earlier versions of the Ecuador CA model 

(Messina and Walsh 2001; Messina and Walsh 2005; Walsh et al. In Press-b) to capture non-

linearities and randomness in the system. However, land use classes within the flux class 
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respond to stimulus in different ways (i.e., direction and intensity) and the generation of 

scenarios is often limited.  

6.4. Rethinking Agricultural Frontiers  

This research finds that the processes of land use and land cover change in the 

Northern Ecuadorian Amazon, including the drivers of change and the spatial-explicit 

responses, are extremely diverse and heterogeneous across space and time. This is not a 

surprise, in a place characterized by its very high biological and cultural diversity. However, 

there is the perception that colonist areas are homogenous entities produced along 

deforestation fronts. This research has shown that there is high spatial heterogeneity in the 

transformation of land and in the drivers of such transformations. Frontiers are not static or 

homogenous, but they have different types of stratifications, in the case of the NEA, 

variations from core-periphery patterns in the land use systems to different spatial regimes in 

the factors that drive land change. The homogeneity of the Amazon Basin, a traditional 

assumption for many decades within governments of the region, is now characterized just as 

another myth (Amazonic Cooperation Agreement 1994). This characterization can be 

extended to specific colonist areas such as the NEA. The processes related to the advance of 

an agricultural frontier (i.e., migration and population growth, deforestation, socioeconomic 

and cultural change) create an area that is diverse. Although, the need for generalization is 

deeply rooted in scientific paradigms, the generation of models that capture intra-regional 

variability related to site-specific patterns will help to understand localized necessities for 

conservation and development hence assist in developing appropriate local policies.   

6.5. Implications to Future Research  

The vision for future research related to this dissertation lies within a population-
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environment framework in broad terms, but in which this framework not only emphasizes 

demographic and socioeconomic factors and land use change but stresses the integration of 

the human-natural system. The study of population- environment relationships within the 

NEA will thus have two dimensions: first, a continuation of the research in the Ecuador 

Project that revolves around household survey design and data collection for statistical 

analysis and spatial simulation, and remote sensing and a second dimension, more applied to 

development and conservation with implications to everyday life of the inhabitants of the 

region. What follows is a review of research topics to be pursued and how they connect to 

this research.  

Remote Sensing of Tropical Forests: The experience acquired during the analysis of 

remotely-sensed products suggests that the study of LULC in the Amazon, using “classical” 

classification schemes (e.g., supervised classification), is difficult to implement. On the other 

hand, it is widely accepted that the structure, condition, and dynamics of tropical forest is 

important to advance knowledge related to ecosystem productivity, landscape dynamics, and 

climate change, among others (Widlowski et al. 2004). Remote sensing is key to defining 

tropical forest parameters (Kerr and Ostrovsky 2003). The emphasis of future research will 

be on the analysis of the biotic characteristics of tropical forest, including biodiversity. The 

Ecuadorian Amazon offers unlimited opportunities for remote sensing, because the diversity 

of forested ecosystems (e.g., upland forest, forested wetlands, and cloud forests) occurs with 

different degrees of intervention (from pristine primary forest to heavily managed secondary 

forest). The analysis of the structure and dynamics of tropical forest will be easily extended 

to practical applications. For example, the development of an early warning system to control 

and monitor illegal selective logging, prevalent even in the Cuyaveno Reserve and the 



 

 

 

215 

Yasuní National Park, can be designed that includes use of image processing methods, such 

as mixture models and object-based image analysis.   

Rural Households, Mobility, and Migration: Questions and hypothesis that extends 

from this research include the spatial and social characterization of internal and international 

migration and their effects on households, agriculture, and the environment. This research 

shows the strong effects of off-farm employment in land use and land cover change. 

Furthermore, different stages of fieldwork have demonstrated the cultural, social, and 

economic value of labor and the impacts that temporary migration (mobility) and 

international migration have on the conditions of rural households. While the effects of 

international migration on the environment via remittances is a topic that has received 

renewed attention (e.g., Hecht et al. 2006; Orozco 2002; VanWey et al. 2005), international 

migration into the Amazon is a relatively new phenomenon and new research on the topic is 

needed. The hypotheses revolve around the potential opportunities that different types of 

migration generate and how they influence the wellbeing of ecosystems and households. For 

example, the role of off-farm employment and forest regeneration, on the one hand,  and how 

private and governmental oil companies can catalyze forest restoration through labor, on the 

other, is an important concern. A second example includes the study of the “mobilization” of 

indigenous communities within protected areas that respond to governmental or private 

strategies beyond the control of the communities.   

Inequality, Vulnerability, and Resilience: Inequality, vulnerability, and resilience are 

intrinsically linked to issues of poverty and environmental degradation. Economic inequality 

is an essential component of different processes of degradation of ecosystems (Gray and 

Moseley 2005; Mikkelson et al. 2007) and an intrinsic component of the impoverishment of 
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communites. The different dimensions of vulnerability are difficult to quantify (Fussel 2007; 

Mocduch 1994); however, new conceptualizations of resilience of human-natural systems 

(e.g., Berkes and Seixas 2005; Walker et al. 2006) provide better alternatives to characterize 

how poverty, inequality, and the environment are related.  

This research, and other advances within the Ecuador Project, provides a framework 

for the development of a more applied assessment of the geography of small farming 

communities (colonist and indigenous) in the Ecuadorian Amazon. Future research can 

usefully focus on specific communities located within or near protected areas with an 

emphasis in qualitative, spatial, and biotic data collection.    

6.5.1 Spatially-Explicit Simulations 

The emphasis of spatial analysis and simulations can be developmed within the context of 

inequality, vulnerability, and resilience, using Agent Based Models (ABM) as the primary 

tool. This research proposes to integrate and extend existing quantitative modeling methods in 

an innovative fashion to investigate complex human behavior in the context of an ABM that 

allows the generation of future scenarios. The approach also uses complexity theory as a 

framework to incorporate multiple behavioral models of human behavior in a simulation 

model to explore a number of plausible future scenarios involving environmental and 

population change and the emergence of economic opportunities. In the ABM work, specific 

aims will provide descriptive information on (1) the demographic system, (2) the ecological 

systems, and (3) the socio-economic system. Data collection and analysis will include: the 

analysis of demographic change using existing and proposed household survey data (1990, 

1999, and 2008), and national census data, and analysis of land use and land cover change 

using remote sensing methods. ABMs will be used to integrate the endogenous and exogenous 
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factors and feedbacks among the three systems so that we can examine, for example, land 

abandonment, off-farm employment, migration, and tourism development scenarios.  

6.6. Summation  

 This research shows that agricultural frontier regions are heterogeneous and complex 

entities. This dissertation linked four interconnected questions that sought to generate new 

insights into the processes of land use and land cover change in the Northern Ecuadorian 

Amazon. The four papers included in this research demonstrate that the composition and 

spatial configuration of the land use and land cover (LULC) trajectories in the NEA have 

temporal and spatial patterns that emerge due to the effects of the combinations of different 

factors across time and space. This study has implications for broad theoretical and applied 

problems of spatial analysis, land change science, conservation, and development.  For the 

author, this research is only the beginning of a lifetime set of applications of geographical 

knowledge to seek a better understanding of humans and the environment.  
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