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ABSTRACT 

Carrie E. Rubel: Defining the Molecular Mechanisms of Ubiquitin Proteasome System 
Dysfunction as a Driver of Disease: CHIP mutation in SCAR16 

(Under the direction of: Gary Johnson) 

 

All cells must respond to changes in their environment including a plethora of 

physiologic and pathologic stresses in order to maintain homeostasis and survive. Protein 

homeostasis is particularly critical to cell survival and cells utilize multiple highly specialized 

and integrated methods of protein quality control (PQC) to ensure that proteins are appropriately 

folded and terminally misfolded proteins are eliminated to prevent proteotoxicity. PQC depends 

on an elegant collaboration between molecular chaperones and the ubiquitin-proteasome system 

(UPS). Disruption of PQC and subsequent proteotoxicity is an underlying molecular phenotype 

in disease pathologies in the brain and heart. Understanding the molecular mechanisms 

underlying diseases where disruption of PQC is central to disease pathology is key to our ability 

to intervene therapeutically. To this end, this thesis focuses on understanding the function of E3 

ubiquitin ligases and how mutations in these key players in the UPS can drive disease pathology 

in the heart and brain. First, I describe and validate a novel method for the identification of E3 

ubiquitin ligase substrates addressing a significant technological limitation in the field. Next, I 

describe the first discovery of human mutation in the E3 ubiquitin ligase CHIP in a form of 

spinocerebellar ataxia, Gordon Holmes Syndrome that has led to the establishment of a new 

disease designation, autosomal recessive spinocerebellar ataxia-16 (SCAR16) to describe 

spinocerebellar ataxia caused by homozygous or compound heterozygous mutation in CHIP. 
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Finally, I expanded upon this discovery to define the structural and functional consequences of 

CHIP mutation in SCAR16 and explore the deficits associated with this mutation in a genomic 

context utilizing a mouse model system providing the first in vivo, disease-relevant model of 

partial CHIP dysfunction. Together these studies provide novel tools to further our understanding 

of the UPS and reveal fascinating insight into the molecular mechanisms underlying CHIP 

mutation in SCAR16 disease that not only may facilitate the development of therapies for this 

devastating disease, but also contribute to our basic understanding of the UPS and its role in 

disease pathogenesis to drive successful investment, innovation, preclinical investigation and 

clinical study design in other disease areas.   
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 CHAPTER I  

 

INTRODUCTION1 

 

Organisms must respond to changes in their environment in order to maintain 

homeostasis and survive. These environmental changes include a plethora of physiologic and 

pathologic stresses, such as perturbations in pH, temperature, and osmotic pressure; mechanical 

strain; oxidative stress; and alterations in the genetic code. In any case, when faced with these 

challenges, every individual cell that composes each unique organ and tissue must be equipped 

with and successfully mobilize specific mechanisms corresponding to the needs of that cell type 

for the overall maintenance of the organism.  

While cellular homeostasis encompasses many types of biomolecules, protein 

homeostasis is particularly critical to cell survival because of the central role proteins play in so 

many cellular processes. Proteins are the building blocks of the cell and also perform a vast array 

of functions within living organisms, including catalyzing metabolic reactions, replicating DNA, 

responding to stimuli, and transporting molecules from one location to another. Cells utilize 

multiple highly specialized and integrated methods of protein quality control (PQC) to ensure 

that 1) proteins are appropriately folded, and that 2) terminally misfolded proteins are eliminated 

 

1All Figures Contributed by Carrie Rubel and Adapted from Jonathan Schisler 
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 both under basal conditions as well as when exposed to molecular stressors. PQC depends on an 

elegant collaboration between molecular chaperones and the ubiquitin-proteasome system (UPS). 

The UPS is largely responsible for targeted proteolysis in the cell. When a misfolded or damaged 

protein fails to be repaired by chaperone-mediated processes, it will be degraded by the UPS.  

The pathophysiological significance of proper PQC is well illustrated during 

proteotoxicity. If the UPS becomes impaired or overwhelmed, the cell is unable to sufficiently 

clear misfolded proteins. These proteins may then associate with one another to form 

sequentially higher order protein aggregates, such as soluble oligomers, soluble aggregates, and 

eventually, inclusion bodies.1 Experimental evidence in neurodegenerative diseases suggests that 

protein aggregates or any one of the preceding intermediaries, even soluble protein oligomers, 

may induce cell death, a process termed proteotoxicity.2, 3  With their very limited capacity for 

self-renewal, this can be quite detrimental to post-mitotic cells in organs such as the heart and 

brain. In fact, proteotoxicity has long been associated as an underlying molecular phenotype in 

disease pathologies in the brain, including Alzheimer’s, Parkinson’s and Huntington’s diseases, 

and is beginning to be appreciated as a driver of disease pathologies in the heart.1, 4-6 In the heart 

and brain, proteotoxicity is a common hallmark of proteinopathies – diseases associated with the 

accumulation of malformed protein. Importantly, the underlying molecular phenotype of 

proteinopathy has most commonly been attributed to the accumulation of a particular malformed 

protein, usually as the result of its genetic mutation. However, as our understanding of PQC has 

expanded, proteinopathies are increasingly appreciated to also encompass diseases that result in 

the general accumulation of abnormal proteins as a result of disruption of PQC, for example as a 

result of genetic mutation of a component of the UPS.  
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Our understanding of the molecular components and mechanisms involved in cellular 

PQC has grown deeper in recent years and will likely expand exponentially as we fully 

appreciate and even exploit the opportunities presented by the overlap between pathologies in the 

heart and brain, both pre-clinically and clinically. In the United States alone, more than 5 million 

Americans have Alzheimer’s disease, and heart disease remains the most common cause of death 

and disability in our society.1, 7 Yet, current therapies are severely limited for these and other 

diseases where disruption of PQC is central to disease pathology, and the need for additional 

therapies remains substantial.  Developing better tools for studying these pathways and 

uncovering the underlying molecular mechanisms and links between disruption of PQC and 

disease pathology in humans will undoubtedly generate translational outcomes, allowing for the 

cultivation of novel and highly specific treatment options for these cardiovascular and 

neurological conditions.  

The work of this thesis focuses on understanding the molecular mechanisms underlying 

diseases where disruption of PQC is central to disease pathology. Specifically, I focus on 

understanding the function of E3 ubiquitin ligases and how mutations in these key players in the 

UPS can drive disease pathology in the heart and brain. One limitation to our understanding of 

E3 ubiquitin ligases is that current methods to identify E3 ubiquitin ligase substrates rely heavily 

upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological 

substrates in relevant model systems. In the following, I begin by describing a novel method for 

identifying ubiquitin ligase substrates utilizing the E3 ubiquitin ligase, MuRF1 (muscle RING-

finger proteins 1) because of its importance as a modulator of heart muscle protein homeostasis. 

However, this method can be applied to any E3 ubiquitin ligase, both in normal and disease 

model systems, in order to identify relevant physiological substrates under various biological 
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conditions, opening the door to a clearer mechanistic understanding of E3 ubiquitin ligase 

function and broadening their potential as therapeutic targets.  

I then focus on the protein E3 ubiquitin ligase CHIP (C-terminus of HSC70 interacting 

protein) encoded by the STUB1 gene. Loss of CHIP function has long been associated with 

protein misfolding and aggregation in several genetic mouse models of neurodegenerative 

disorders, and genetic depletion in mice results in robust hypertrophy and decreased cardiac 

function.8, 9 However, a role for CHIP in human disease had yet to be identified. Here I describe 

the first discovery of CHIP point mutation, STUB1 c.737C→T, p.Thr246Met, in a form of 

spinocerebellar ataxia, Gordon Holmes Syndrome, that has led to the establishment of a new 

disease designation, SCAR16 (Autosomal Recessive Spinocerebellar Ataxia-16) to describe 

spinocerebellar ataxia caused by homozygous or compound heterozygous mutation in the STUB1 

gene. I then expand upon this discovery to define the structural and functional consequences of 

CHIP mutation in SCAR16 and explore the deficits associated with this mutation in a mouse 

model system, providing the first definition of partial CHIP dysfunction and assignment of 

specific in vivo deficits that result as a consequence of partial (but not total) loss of CHIP 

function. By determining how CHIP mutation contributes to SCAR16 pathology, we will 

potentially identify means for modulating CHIP and/or its substrates/interactors as therapeutic 

targets for SCAR16. 

 

Disruption of PQC and Proteotoxicity in Human Disease 

Disruption of PQC and subsequent proteotoxicity is being increasingly recognized as a 

driver of disease pathology in both the heart and brain. This parallel between pathologies in the 

heart and brain is not largely surprising, given the importance of post-mitotic, terminally 
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differentiated cell types in these tissues. In these cells, misregulation of protein homeostasis may 

have more dire consequences, as post-mitotic cells cannot dilute out toxic proteins by cell 

division, and dead or dying cells cannot be readily replaced.   

The heart is a unique organ, constantly barraged with molecular stressors, such as the 

mechanical stress from perpetual contractions.10 The cardiomyocyte is well-adapted to withstand 

this level of stress. Cardiomyocytes are loaded with a huge amount of mitochondria to ensure 

that the energy demands of the cell are met and allow the heart’s perpetual motion to proceed. 

Cardiomyocytes are equipped with sophisticated and proficient mechanisms of cellular PQC, as 

discussed above, to eliminate misfolded proteins that could become deleterious if allowed to 

persist in the sarcoplasm.1 It has been recently discovered that an underlying molecular 

phenotype of many types of cardiac dysfunction is the accumulation of misfolded protein, 

suggesting that a breakdown in the fidelity of misfolded protein removal may play a causative 

role in cardiac pathologies. Protein misfolding has been suggested as a key contributor to the 

progression of heart failure, with evidence of proteotoxicity and PQC dysregulation in pathologic 

cardiac hypertrophy and dilated and ischemic cardiomyopathies.1, 5, 6 Indeed, it is thought that at 

least 30% of translated protein, for various reasons, never reaches its appropriate cellular 

location,11 so disruption of the PQC mechanisms in the heart can quickly lead to protein buildup 

and accelerate deleterious effects downstream. 

While protein accumulation in the heart has been observed for decades, desmin-related 

cardiomyopathy (DRM) is probably the best understood cardiac disease stemming from 

proteinopathy and associated proteotoxicity.12 DRM is a myofibrillar myopathy characterized by 

muscle weakness and cardiomyopathy. While the cause of the disease was unknown, histological 
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analysis showed a striking feature: electron-dense intracellular inclusion bodies that positively 

immunostained for desmin. Two papers published in 1998 showed that mutations in the 

intermediate filament protein desmin13 or its chaperone αB-crystallin (CryAB)14 can cause DRM. 

These genes were discovered in two families with DRM, demonstrating that a mutation in either 

of these genes can lead to heritable disease.  

In an attempt to understand these inclusions and how they affect cardiac function, Wang 

et al developed transgenic mouse models overexpressing DRM-related mutations in desmin 

(DesD7) or CryAB (CryABR120G) in a cardiac-specific manner.15, 16 The hearts of these mouse 

models developed hypertrophy and progressed to heart failure in early adulthood. Pathological 

analysis revealed that the hearts developed extensive fibrosis and, importantly, displayed the 

characteristic intracellular inclusions of DRM. These inclusions accumulate in the perinuclear 

region of cardiomyocytes and contained both CryAB and desmin. In addition, these inclusions 

were found to also contain proteins involved in the cardiac adaptation to stress, including heat 

shock protein 25 (Hsp25) and ubiquitin. This evidence suggests that these inclusions may be 

aggresomes, a common hallmark of neurodegenerative phenotypes. While DRM is a severe and 

unique case of cardiomyopathy derived from proteotoxicity, it is rare. However, this model 

clearly demonstrates that deficits in PQC mechanisms can have severe and devastating effects 

and are sufficient to cause heart failure.  

Like cardiomyocytes, the neurons that make up the brain are largely senescent cells, and 

numerous proteotoxic entities have been shown to affect this cell type, leading to neuronal cell 

death. In fact, disruption of PQC, accumulation of misfolded proteins, and resulting 

proteotoxicity has long been appreciated as a key underlying molecular phenotype in disease 
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pathologies in the brain.17, 18 More than 100 years ago Dr. Alois Alzheimer observed abnormal 

accumulations of protein in the brain of his patient who died from what was then described only 

as “an unusual mental disease.”19 Since this first observation, the list is ever-expanding as we 

have come to understand that misfolded proteins are central to the pathophysiology of not only 

Alzheimer’s disease, but many other neurodegenerative diseases including Huntington's disease, 

Parkinson's disease, Amyotrophic Lateral Sclerosis, and more recently polyglutamine expansion 

diseases like Spinocerebellar Ataxia Type 3 (SCA3).4 In this disease class, the proteotoxic entity 

can take many forms, including α-synuclein, beta-amyloid and tau, huntingtin, and SOD1, which 

are the molecular bases for Parkinson’s, Alzheimer’s, Huntington’s, and Amyotrophic Lateral 

Sclerosis, respectively .  

Common to all of these diseases is the presence of misfolded protein accumulated within 

the cell or within the extracellular space. However, the molecular drivers behind the toxic 

accumulation of protein in each of these disease pathologies may differ. In some cases, certain 

polypeptides, such as hyperphosphorylated tau in Alzheimer’s disease, which have a propensity 

towards misfolding, leads to their spontaneous misfolding and rapid aggregate formation.20 In 

others, genetic mutation in specific proteins, such as huntingtin in Huntington’s disease or α-

synuclein in Parkinson’s disease, disrupts their folding, leading to aggregate formation.21, 22 One 

common thread to these disease pathologies, however, is reduced UPS activity in the brain. 

Many studies have identified reduced proteasome activity associated with aging, resulting in a 

diminished capacity to clear misfolded protein, contributing to the formation of pathological 

protein aggregates.23-25 To make matters worse, the accumulation of aggregates of both mutated 

proteins and aggregation-prone proteins has been shown to further inhibit the activities of the 

UPS, including the proteasome, promoting this vicious cycle of misfolded protein accumulation 
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and subsequent aggregation.24, 26-30 For example, ubiquitinated and aggregated tau in Alzheimer’s 

disease as well as aggregated mutant α-synuclein in Parkinson’s disease can block the gate of the 

19S catalytic subunit of the proteasome by binding to its recognition site, blocking proteasome 

enzymatic activity and impairing proteasomal degradation. 24, 28, 31 

Inhibition of the proteasome is not the only disruption of PQC that is proposed to drive 

disease pathogenesis in neurodegeneration. Studies have also implicated impairments in 

ubiquitination and deubiquitination as well as substrate delivery to the proteasome. Examples 

include the mutation of the cytosolic E3 ubiquitin ligase parkin in Parkinson’s disease and the 

deubiqutinating enzyme Ataxin-3 in SCA3. Both inherited and/or sporadic mutation of either of 

these proteins not only leads to increased propensity towards aggregation of these proteins, 

potentially driving proteasome impairment and proteotoxicity, but also inhibits these proteins’ 

respective UPS functions as an E3 ubiquitin ligase and a deubiquitining enzyme (DUB).32, 33 

Under conditions of stress, parkin is normally recruited to the outer membrane of the 

mitochondria, where it polyubiqutinates and directs proteasomal degradation of outer 

mitochondrial membrane proteins, including Mitofusins 1/2.34, 35 Loss of parkin function has 

been associated with reduced polyubiquitination of these outer mitochondrial membrane 

proteins, the accumulation of damaged mitochondria and increased cell death.33  

Similarly, Ataxin-3 is a highly conserved DUB with a flexible C-terminal tail that 

features three ubiquitin-interacting motifs flanking a polyQ region of variable length. Abnormal 

expansion of the polyQ region to more than 53 glutamines is pathological and manifests in 

SCA3. Like mutant parkin, not only does accumulation of this mutant Ataxin-3 lead to its toxic 

aggregation, but may also drive proteotoxicity due to loss of DUB function, as expression of 

pathogenic Ataxin-3 in vivo has been associated with higher global levels of ubiquitinated 
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proteins than the nonexpanded form, likely due to reduced DUB activity of pathogenic Ataxin-3 

as a result or impaired substrate binding or proteolysis.36 Interestingly, Ataxin-3 has also been 

reported to regulate protein turnover of other UPS proteins, including the E3 ligase CHIP, thus 

further expanding the potential implications of Ataxin-3 mutation on UPS activity and UPS 

dysregulation as a driver of disease pathogenesis.37  

While in many cases the precise molecular mechanisms of protein aggregation, 

proteotoxicity, and the causative deficiencies in PQC that promote disease pathogenesis in the 

heart and brain remain to be elucidated, it is clear that disruption of PQC is a key driver of 

disease in both the heart and brain and modulation of PQC pathways represents a putative 

therapeutic strategy for the treatment of these devastating diseases. 

 

PQC and the UPS 

Coordinated PQC is crucial to the maintenance of the proteome both under basal 

conditions and particularly under conditions of stress. PQC encompasses both the refolding of 

misfolded proteins largely by molecular chaperones, as well as their degradation by the 

degradative machinery of the UPS. We define a molecular chaperone as any protein that interacts 

with, stabilizes, or helps another protein to acquire its functionally active conformation, without 

being present in its final structure.38 As such, molecular chaperones are responsible for not only 

promoting the proper de novo folding of newly synthesized proteins and their translocation 

across membranes, but also the refolding of stress-denatured substrates. Due to their upregulation 

during conditions of stress that result in protein denaturation, such as elevated temperature 

molecular chaperones are often referred to as heat-shock proteins (Hsps). Most Hsps are 

classified by their molecular weight and include small Hsps, Hsp40, Hsp60, Hsp70 and Hsp90.39, 



10 
 

40 With their inherent ability to recognize and bind non-native proteins, chaperones serve as the 

first line of defense against the accumulation of misfolded proteins and triage them 

appropriately. This triage occurs either directly by facilitating their refolding to a functional 

native state, or, when this is not possible or is not energetically favorable, promotes their 

degradation by the UPS. Interestingly, the activity of some Hsps, including Hsp70 and Hsp90, is 

regulated by their direct interaction with proteins termed molecular co-chaperones. These 

molecular co-chaperones, including members of the UPS such as E3 ubiquitin ligase CHIP, 

modulate chaperone function and expression and consequently regulate the molecular triage 

decision determining whether substrate proteins enter the productive folding pathway or the 

degradation pathway.41 The function of these molecular co-chaperones is particularly intriguing 

as it represents a direct link between the two mutually exclusive pathways of folding and 

degradation that are central to PQC. 

 

The UPS 

As described extensively in the previous section the UPS is critical to the regulation of 

protein homeostasis in both the heart and brain, emphasized by myriad cardiovascular and 

neurodegenerative diseases linked to altered UPS function, including cardiac hypertrophy, heart 

failure, diabetes, ischemia-reperfusion injury, Alzheimer’s, Parkinson’s and Huntington’s 

diseases.42 43  Here I focus on its role as degradative machinery, but it should be noted that the 

UPS is also increasingly being recognized for its role in non-proteolytic regulatory mechanisms, 

including membrane transport, chromatin structure and transcription, DNA repair and diverse 

signaling pathways.44-46 
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Ubiquitination is a multi-step enzymatic process that covalently links the carboxylic acid 

of the small protein ubiquitin to a substrate protein lysine to form a covalent amide bond. 

Substrate specificity of the ubiquitination reaction occurs at the level of the E3 ubiquitin ligase.47, 

48  However, prior to substrate recognition and ubiquitin transfer by the E3 ubiquitin ligase, 

ubiquitin is activated in a two-step process involving the E1 ubiquitin-activating enzyme and the 

E2 ubiquitin conjugating enzyme. First, in an ATP-dependent process, the E1 enzyme interacts 

with ubiquitin, forming a thioester linkage between the C-terminal carboxyl group of ubiquitin 

and the E1 sulfhydryl moiety. Next, the ubiquitin is transferred to the active cysteine of the E2 

enzyme. The ubiquitin molecule is now ready to be finally transferred to the substrate protein 

lysine by the E3 enzyme in a substrate-specific and highly regulated reaction. This process can 

then be repeated, adding additional ubiquitin molecules to generate a polyubiquitin chain. The 

human genome encodes >600 E3 ubiquitin ligases that are specific to particular targets, while 

just two E1 ubiquitin-activating enzymes and 38 E2 ubiquitin conjugating enzymes participate in 

different ubiquitination reactions.49 

E3 ubiquitin ligases function as distinct molecular regulators as the modulators of UPS 

specificity and so are the focus of this thesis work. At least nine E3 ubiquitin ligases have been 

identified in the heart, including CHIP; MuRF-1, MuRF-2, and MuRF-3 (muscle RING-finger 

proteins 1, 2, and 3); atrogin-1/MAFbx (muscle atrophy F-box); and MDM2 (murine double 

minute 2).50 In the brain, the list is significantly longer, but also includes CHIP and MDM2 as 

well as UBE3A (ubiquitin protein ligase E3A), Parkin and brain-specific TRIM9 (Tripartite 

Motif-Containing Protein 9).51  Ubiquitin post-translational modification can occur by the 

addition of a single ubiquitin (monoubiquitination) or as a chain of ubiquitins 

(polyubiquitination), with these chains varying in length and linkage type. Ubiquitin has seven 
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lysine (K) residues by which polyubiquitination can occur (K6, K11, K27, K29, K33, K48 and 

K63), as well as the amino-terminus. Both homogenous and heterogeneous ubiquitin chains can 

be formed, utilizing the same lysine on each ubiquitin in the former and different ubiquitin 

lysines in the latter.52 The fate of the ubiquitinated protein depends upon which lysine residue 

within the protein the ubiquitin is attached to and the length and linkage type of the added 

ubiquitin. (Fig. 1.1) Addition of canonical K48 polyubiquitin chains of at least four ubiquitin 

molecules leads to subsequent degradation of the substrate protein by the 26S proteasome. 

Monoubiquitination and non-canonical polyubiquitination via other linkage types and branched 

chains containing multiple linkage types can also occur, and generally do not target proteins for 

UPS-mediated degradation, but rather regulate substrate proteins via non-proteolytic 

mechanisms, including modulating protein localization, activity, or stability.53, 54 

The 26S ubiquitin proteasome is a cylindrical molecular machine consisting of a 

proteolytic 20S core particle capped at both ends by a 19S regulatory particle.49, 55 The center 

barrel-shaped proteolytic chamber of the 20S core particle has a narrow diameter of as little as 13 

angstroms, thus restricting the size of the entering polyubiquitinated substrate proteins.56 Thus, 

upon binding the polyubiquitinated substrate protein, the 19S particle deubiquitinates the 

substrate, recycling the ubiquitin, and unfolds the protein, feeding the now unfolded polypeptide 

chain into the center of the 20S core particle for proteolytic degradation. This proteolytic 

degradation is achieved by the combined activities of the β1, β2 and β5 subunits that have 

caspase-like, chymotrypsin-like and trypsin-like peptidase activities, respectively.57-59  

Similar to other post-translational modifications, ubiquitination is reversible. A key component 

in this process of both proteasomal degradation and non-proteolytic protein regulation by 

ubiquitin are a family of approximately 100 enzymes called DUBs. DUBs are responsible for 
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disassembly of polyubiquitin chains and removal of ubiquitin from substrates by cleavage of the 

bonds between ubiquitin and protein.60 In this role, DUBs play a critical role in regulating the 

dynamics of ubiquitination, proofreading ubiquitination and recycling ubiquitin. Functionally 

this may spare some proteins from degradation, reverse changes in cellular localization or alter 

protein-protein interactions.61 An additional layer of specificity is added to the UPS by the work 

of DUBs, as they contain varying ubiquitin binding domains which confer specificity for 

different ubiquitin chains.62, 63 
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Figure 1.1 The Ubiquitin Pathway. Ubiquitin conjugation of substrates occurs in a series of 
ATP-dependent reactions facilitated by the coordinated efforts of E1 ubiquitin-activating 
enzymes, E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases. Substrate specificity of the 
ubiquitination reaction is determined by the E3 ubiquitin ligase. The fate of ubiquitinated 
substrates is dependent upon the length and type of the ubiquitin linkage.  
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MuRF1  

This work begins by focusing on the description of a novel method for the identification 

of E3 ubiquitin ligase substrates, specifically substrates of MuRF1. The development of this 

methodology addresses a significant gap in our ability to fully understand E3 ubiquitin ligases by 

creating a novel and improved method to identify relevant substrates under various biological 

conditions. MuRF1 is a muscle-specific E3 ubiquitin ligase regulating the function and stability 

of numerous proteins in multiple regions of the cardiomyocyte.64, 65, 66 It is known to be involved 

in PQC and reorganization of the cardiac sarcomere by placement of polyubiquitin chains on 

substrates, including troponin I, β/slow myosin heavy chain and myosin binding protein-C, 

targeting them for destruction by the proteasome.66-69 MuRF1 cellular localization is key to the 

specificity of substrates it regulates and the consequences of this ubiquitination. Outside the 

sarcomeric M-line, MuRF1-mediated ubiquitination can also regulate its substrates via non-

proteolytic mechanisms. For example, in the nucleus of cardiomyocytes, MuRF1 regulates the 

nuclear export of peroxisome proliferator-activated receptor-α (PPARα), and in the perinuclear 

region it interacts with the receptor for activated protein kinase C-1, inhibiting the translocation 

of protein kinase C-ϵ (PKCϵ) to focal adhesions following stimulation with G protein-coupled 

receptor agonists.64, 70 At the functional level of the myocardium, MuRF1 has been shown to be 

important in multiple cardiac disease models. In models of global ischemia-reperfusion (I-R) 

injury both in vitro and in vivo, MuRF1 demonstrates dramatic cardioprotection from I-R injury, 

in part mediating phospho-c-Jun degradation.66  Additionally, MuRF1 inhibits pathological 

cardiac hypertrophy induced by pressure overload in vivo and is required for induction of cardiac 

atrophy following transaortic constriction.71, 72 As a multi-faceted muscle-specific E3 ligase with 

well-established molecular targets and clear functional links to cardiac pathologies, MuRF1 is 

clearly a valuable test E3 ubiquitin ligase for validation of our substrate screening methodology. 
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Furthermore, given our interest in understanding how dysregulation of protein homeostasis can 

lead to disease pathology in the heart, studying MuRF1 in this capacity not only provides 

validation of our method but also has led to the identification of physiological substrates of 

MuRF1 that may provide mechanistic insight these cardiac pathologies and possible therapeutic 

targets. 

 

CHIP and Spinocerebellar Ataxia 
 

CHIP is an E3 ubiquitin ligase encoded by the STUB1 gene that is abundantly expressed 

in most tissues and plays a central role in maintaining PQC. CHIP is uniquely suited as a 

regulator of PQC due to its dual functions as both a molecular co-chaperone protein and E3 

ubiquitin ligase enzyme. As a co-chaperone, CHIP interacts with Hsp-bound proteins to aid in 

substrate stabilization and refolding.73 Conversely, as a ubiquitin ligase, CHIP ubiquitinates 

terminally-defective proteins and prepares them for degradation by the UPS (Fig. 1.2). 

Additionally, CHIP regulates activation of the stress-chaperone response through induced 

trimerization, nuclear localization and transcriptional activation of heat shock transcription factor 

1 (HSF1),74 which upregulates levels of Hsps that are then subsequently ubiquitinated and 

targeted for proteasomal degradation by CHIP after all substrates have been refolded or 

ubiquitinated.75 In addition to Hsp chaperone protein substrates,CHIP has also been reported to 

ubiquitinate numerous other substrates, including neuronal substrates α-synuclein and leucine-

rich repeat kinase-2 (LRRK2) and to regulate the proteasomal degradation of tumor suppressor 

p53.76-78  
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Figure 1.2. Traditional Roles of CHIP in PQC. CHIP  bridges two PQC functions with 
opposite purposes. Under cellular stress, CHIP interacts with Hsp chaperone proteins to 
determine the fate of misfolded proteins, preventing their accumulation and subsequent 
proteotoxicity. As an E3 ubiquitin ligase, CHIP can ubiquitinate misfolded proteins, targeting 
them for proteasomal degradation. Conversely, CHIP can act as a molecular co-chaperone, 
aiding the Hsp chaperone protein refolding and recycling of the damaged substrate proteins.   
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CHIP contains three primary functional domains: the tetracopeptide repeat (TPR) 

domain, the charged coiled-coil (CC) domain, and the U-box domain. The TPR domain is 

required for chaperone protein binding. CHIP dimerization and structural conformational 

flexibility are required for activation of the bound E2 conjugating enzyme and subsequent 

ubiquitin transfer. This dimerization and conformational flexibility are dependent upon both the 

U-box domain and CC domain.79, 80  

Since the discovery of CHIP in 1999,81 numerous reports have been published detailing 

CHIP’s co-chaperone and ubiquitin ligase activities in both the brain and heart. Loss of CHIP 

function has long been associated with protein misfolding and aggregation in several genetic 

animal models of neurodegenerative disorders.9, 77, 82 CHIP modulates the effects of 

polyglutamine-induced neurodegeneration, protecting cells from neurotoxicity by interacting 

with and ubiquitinating expanded ataxin-1 in a Drosophila model of Spinocerebellar Ataxia Type 

1 (SCA1).82 Additionally, Dickey et al. showed that genetic depletion of CHIP leads to the 

accumulation of toxic phospho-tau in mouse brain, demonstrating that polyubiquitination of tau 

by CHIP may facilitate the formation of  less cytotoxic insoluble filamentous tau lesions.9  

Furthermore, genetic depletion of CHIP in mice results significant deficits in multiple models of 

cardiac disease.8, 83-86 When CHIP-/- mice undergo ischemia/reperfusion injury, the size of 

myocardial infarction (as assessed by the ratio of infarct area to area at risk) is increased by 50% 

relative to wild type controls, and the hearts from these mice lacking CHIP are more susceptible 

to apoptosis and have a markedly increased frequency of reperfusion arrhythmias.84 

Additionally, induction of cardiac pressure overload in CHIP-/- mice results in robust 

hypertrophy and decreased cardiac function.8 Together these data suggest the particular 

importance of CHIP as a regulator of PQC in the heart under stress. In addition to these 
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important implications in models of heart disease and neurodegeneration that highlight CHIP’s 

traditional roles as an E3 ubiquitin ligase and co-chaperone, recent reports have also emerged 

detailing surprising new roles for CHIP, including involvement in cardiac metabolic homeostasis 

(as a regulator of AMP-activated protein kinase (AMPK)) and DNA damage repair (as a 

regulator of Sirtuin-6 (SirT6)).8, 87  However, until recently, a role for CHIP in human disease 

had yet to be identified.  

Here I describe the first direct association between a CHIP polymorphism and a human 

disease with the discovery of CHIP point mutation, STUB1 c.737C→T, p.Thr246Met, in a form 

of spinocerebellar ataxia, Gordon Holmes Syndrome (GHS). GHS is a rare and devastating 

neurodegenerative disorder characterized by cerebellar ataxia with hypogonadism.88 GHS 

belongs to a family of rare recessively inherited ataxia disorders known as autosomal recessive 

cerebellar ataxia (ARCA) (estimated prevalence is 7 per 100,000).89 The mutations associated 

with ARCA affect functionally diverse genes; furthermore, the underlying genetic basis and 

pathophysiological mechanisms are largely unknown, resulting in severely limited therapeutic 

options. Interestingly, this and six additional independent reports have identified 10 STUB1 

mutation genotypes in a diverse pool of ARCA patients.89  In fact, a study cohort of 167 

Caucasian ataxia patients identified STUB1 mutation in nearly 2% of ARCA patients.90  These 

reports have led to the establishment of a new disease designation, SCAR16 (Autosomal 

Recessive Spinocerebellar Ataxia-16) to describe spinocerebellar ataxia caused by homozygous 

or compound heterozygous mutation in the STUB1 gene.89 The high frequency of STUB1 

mutations in ARCA demands an investigation into the molecular mechanisms that are at play as 

a result of CHIP mutation and how they result in disease pathology in SCAR16, most 

importantly to guide therapeutic interventions for this underserved patient population. 
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This is the precise goal of the remainder of this thesis, where I expand upon our 

discovery of T246M mutation in GHS to define the structural and functional consequences of 

CHIP mutation in SCAR16 and explore the deficits associated with this mutation in a mouse 

model system providing the first definition of partial CHIP dysfunction and assignment of 

specific in vivo deficits that result as a consequence of partial (but not total) loss of CHIP 

function. Interestingly, cerebellar ataxias can also manifest as a secondary feature of 

neurodegenerative diseases associated with proteotoxicity, including Huntington’s and 

Parkinson’s diseases. Given the multifaceted roles of CHIP in PQC and cellular protein 

homeostasis as well as other cellular functions, the structural, biochemical and in vivo analysis of 

T246M CHIP provides a unique opportunity to delineate the different functions of CHIP and 

how they may contribute to specific deficits observed in cells and in vivo. Furthermore, these 

studies allow us the unique opportunity to evaluate how these different CHIP functions 

specifically contribute to proteotoxicity in the brain, heart and other tissues and whether 

proteotoxicity and/or other molecular mechanisms are the true drivers behind CHIP-associated 

disease pathology in ARCAs. Ultimately, by determining how CHIP mutation contributes to 

SCAR16 pathology, we will potentially identify means for modulating CHIP and/or its 

substrates/interactors as therapeutic targets for SCAR16 that may even have the potential to be 

applied clinically to other diseases characterized by proteotoxicity or PQC dysregulation in the 

heart and brain, areas where disruption of CHIP and/or the UPS has upset the delicate balance 

required to maintain protein homeostasis in the face of cellular stress resulting in devastating 

disease pathologies. 
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Therapeutically Targeting the UPS  

Recently there has been increasing interest in focusing on modulation of the UPS as a 

therapeutic strategy to treat many disease indications, particularly neurodegeneration, cancer and 

immunological disorders. Because of its central role in PQC, chemically modulating this cellular 

machinery provides a unique mechanism to alter protein homeostasis in diseases where it has 

become dysregulated. Specific components of the UPS have been targeted or are currently 

emerging as targets thus far, including the proteasome, E3 ubiquitin ligases and DUBs. These 

targets represent a promising therapeutic opportunity, as they provide chemical specificity but 

with the ability to alter protein homeostasis and cellular processes across a range of disease 

indications.  

The proteasome inhibitor Bortezomib was the first drug targeting the UPS in the clinic 

and was approved for treatment of multiple myeloma and mantle cell lymphoma by the FDA in 

2003.91 The success of this inhibitor has proven that the proteasome is a feasible and valuable 

anti-cancer target, and since its approval has led to the development of multiple second-

generation proteasome inhibitors with increased potency and oral bioavailability.92 These 

proteasome inhibitors are now being evaluated for additional non-cancer indications, including 

progressive muscular dystrophies and late-stage systemic lupus erythematosus.93 The success of 

Bortezeomib and these subsequent next generation proteasome inhibitors has greatly inspired 

further exploration into other potential UPS targets. However, the complexity of the UPS, 

including the ubiquitination reaction and its outcomes, has resulted in a significant lag in the 

development and approval of additional drugs targeting other specific components of the UPS, 

such as E3 ubiquitin ligases and DUBs.94 Fortunately, significant improvements in our 

understanding of the UPS as well as advances in screening technologies now make these much 
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more tractable therapeutic targets that are being actively and, in some cases successfully, pursued 

not only for the treatment of cancer but also many other disease indications. 

Multiple small-molecule inhibitors are currently in development targeting various steps in 

the ubiquitination cascade. As described above, the target specificity of the ubiquitination 

reaction occurs at the level of the E3 ubiquitin ligases. Direct inhibitors of E3 ubiquitin ligase 

enzymatic activity, E3–E2 or E3–substrate interactions therefore may enable specific targeting of 

a limited number of substrate proteins, which may translate into a better therapeutic ratio and 

fewer side effects. Structural constraints specific to each class of E3 ubiquitinating enzyme will 

likely determine whether targeting protein-protein interaction domains or catalytic sites will 

prove to be easier, more effective and have greater specificity.95 Several classes of E3 ubiquitin 

ligases are being actively targeted in the field. One interesting example of targeting protein-

protein interactions to modulate E3 ubiquitin ligase activity that is now being tested clinically for 

the treatment of cancer are inhibitors of the RING E3 ubiquitin ligase MDM2, specifically, 

inhibitors of MDM2’s interaction with tumor suppressor p53. Stabilization of p53 blocks cancer 

progression, and MDM2 is a highly selective negative regulator of p53 abundance.96  

Multiple MDM2-targeting compounds have been identified or designed, accounting for a vast 

majority of the current E3-liagse-targeting molecules, and there are currently at least four small-

molecule MDM2 antagonists in clinical development for multiple types of cancer.96, 97 Most of 

these compounds antagonize the MDM2-p53 interaction by targeting the p53 binding site of 

MDM2 as competitive inhibitors directly occupying these interaction domains or inducing 

conformational changes that alter MDM2-p53 affinity.95, 96  

Preclinical data demonstrated that these compounds induce apoptosis in human tumor 

cells with minimal toxicity to normal cells and slow the growth of tumor xenografts in mice.95, 97  
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Unfortunately, one of the first published clinical trial results revealed that the treatment of 

liposarcoma patients with MDM2 antagonist RG7112 increased p53 levels in biopsy specimens 

and reduced proliferation in tumors; however, clinical benefit in the study was modest, with only 

1 patient (out of 20) showing a partial response and 14 showing stable disease, while the 

remaining 5 patients had progressive disease. Additionally, trial patients had a high rate of 

adverse reactions, with hints that some may be the result of on-target toxicities related to 

stabilization of p53.98 Clearly, the clinical efficacy and achievable therapeutic window in the 

appropriate patient population will determine the success of these inhibitors. Success in 

modulating p53 by antagonizing MDM2 would undoubtedly not only provide real clinical 

benefit to patients with potentially many different malignancies, but also provide important 

clinical validation for targeting E3 ubiquitin ligases and specific other components of the UPS 

beyond the proteasome. This clinical validation would provide important momentum for 

continued drug development in this burgeoning field, where basic understanding of the UPS and 

its role in disease pathogenesis as is detailed in this thesis will drive successful investment, 

innovation, preclinical investigation and clinical study design.   
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CHAPTER II 

 

 
DIGGIN’ ON U(BIQUITIN): A NOVEL METHOD FOR THE IDENTIFICATION OF 

PHYSIOLOGICAL E3 UBIQUITIN LIGASE SUBSTRATES1,2 

 

 
The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein 

homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function 

such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central 

role in both the promotion of proteasomal degradation as well as cellular signaling through 

regulation of the stability of transcription factors and other signaling molecules. Substrate 

specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. 

Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac 

hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and 

maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases 

provides both mechanistic insights into heart disease as well as possible therapeutic targets.  

Current methods identifying substrates for ubiquitin ligases rely heavily upon non-

physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in 

relevant model systems. Here we describe a novel method for identifying ubiquitin ligase 

substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional 

differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the 

identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in 
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primary cardiomyocytes.  This method can be applied to any ubiquitin ligase, both in normal and 

disease model systems, in order to identify relevant physiological substrates under various 

biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase 

function and broadening their potential as therapeutic targets. 
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Introduction 

Protein ubiquitination and the ubiquitin-proteasome system (UPS) play a critical role in 

the regulation of protein homeostasis, emphasized by a myriad of diseases associated with 

aberrant UPS function. Ubiquitin is added to a substrate protein through a covalent linkage to a 

lysine residue on a substrate protein catalyzed by a class of enzymes called ubiquitin ligases; as 

an additional layer of regulation, this mechanism is counter-regulated by a class of enzymes 

called de-ubiquitinating enzymes (DUBs).99, 100  The effect of protein ubiquitination depends 

upon which lysine residue within the protein the ubiquitin is attached to as well as the length and 

linkage type of the added ubiquitin. The UPS is most commonly thought of in terms of 

regulating the turnover of mis-folded and damaged proteins by the addition of canonical K48 

polyubiquitin chains and subsequent proteasomal degradation. However, non-canonical linkages, 

for example K63 polyubiquitin chains, or single ubiquitin molecules (monoubiquitination) can 

also occur and mediates non-proteolytic mechanisms such as modulating protein localization, 

protein-protein interactions, activity or stability.43, 47, 53  The essential nature of protein 

ubiquitination is well illustrated in the heart where dysfunction, of both proteolytic and non-

proteolytic mechanisms, has been associated with multiple disorders, including cardiac 

hypertrophy, heart failure, diabetes and ischemia-reperfusion injury.43 5. 

Substrate specificity of the ubiquitination reaction occurs at the level of the ubiquitin 

ligase; as such, ubiquitin ligases are attractive therapeutic targets for diseases involving aberrant 

protein ubiquitination.47, 101  Muscle-specific RING finger protein 1 (MuRF1, Trim63) is a 

striated muscle-specific ubiquitin ligase involved in PQC of the muscle sarcomere by targeting 

numerous proteins for polyubiquitin-dependent proteasomal degradation, including troponin I, 

muscle actin, β/slow myosin heavy chain and myosin binding protein-C.68, 69, 102, 103 Ubiquitin 
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ligases, including MuRF family proteins, function as distinct molecular regulators by which the 

heart controls not only sarcomeric structure, but also cellular signaling pathways implicated in 

multiple models of cardiac disease, both in maladaptive and cardioprotective roles.43, 66, 67, 102, 104-

107 Targeting ubiquitin ligases in the heart may allow for more precise, single therapy 

manipulation of a smaller, specific subset of substrate proteins that contribute to disease-causing 

mechanisms while avoiding the negative cardiovascular effects observed with global proteasome 

inhibition.108, 109 Yet the substrates targeted by MuRF1 and their DUB counterparts remain 

incompletely understood and more robust identification methods for identifying ubiquitin ligase 

substrates is required for development of successful therapies.110  

Traditional ubiquitin ligase substrate discovery utilizes protein-protein interaction based 

methods, such as yeast-two hybrid and co-immunoprecipitation paired with mass spectrometry. 

Although refined recently by several modifications to increase efficiency in substrate 

identification102, 111, 112  interaction-based methods are hindered by the transient, weak nature of 

the ubiquitin ligase-substrate interaction. To circumvent the limitations of interaction-based 

methods, high-throughput in vitro approaches, such as in vitro ubiquitination biochemistry 

coupled with protein microarrays, have proven to be successful at identifying ubiquitin ligase 

substrates.113, 114  The use of in vitro-based methods is limited, however, to the content printed on 

protein arrays, limiting the substrate candidate pool. Importantly, neither yeast-two hybrids nor 

in vitro methods for ubiquitin ligase substrate identification are performed in physiologically 

relevant conditions, thereby limiting and biasing substrate discovery.66, 75  

Given the limitations of existing ubiquitin ligase substrate screening methods, our aim 

was to develop a methodology to better identify candidate ubiquitin ligase substrates under 

physiological conditions. Tandem Ubiquitin Binding Entities (TUBE) technology allows 
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unbiased ubiquitome isolation through high affinity binding to polyubiquitinated proteins. TUBE 

also protects polyubiquitiated proteins from de-ubiquitination and degradation during processing, 

allowing for detection of even low abundant species.115 Furthermore, the use of different TUBE 

types that have higher affinities for specific polyubiquitin lysine linkages can be used to enrich 

for subsets of the ubiquitome, providing another potential level of specificity to the screen. We 

used a subtractive approach combining TUBE technology, 2-D DIGE, and mass spectrometry, to 

develop a method for ubiquitin ligase substrate identification that is translatable to 

physiologically relevant inputs, either from cells or tissues. We describe and validate this method 

demonstrated by the identification of both previously identified as well as novel physiological 

substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. 

 

 

Results 

Outline of the methodology used to screen for ubiquitin ligase substrates. Identification of 

substrates for ubiquitin ligases have traditionally relied on either artificial systems, such as yeast 

two-hybrid screens, or inefficient candidate substrate screens. Our goal for a more robust and 

flexible substrate screen included the use of biologically relevant cell systems combined with a 

proteomic approach for identification. A key component of this method is the selection, as well 

as the lack of selection, of polyubiquitinated proteins immunoprecipitated by Tandem Ubiquitin 

Binding Entities (TUBE) conjugated to agarose beads. This allows us to compare the relative 

ratio of proteins that bind to TUBE (eluate) as well as compare proteins that did not bind 

(supernatant) across multiple conditions. We have provided a graphical overview of the method 

(Fig. 2.1) and discuss below the major components of this approach. 
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1) Protein source. Our method relies on a subtractive approach (i.e. comparing one state to 

another); therefore the starting material must include two conditions wherein the expression or 

activity of the ubiquitin ligase is manipulated. We classify systems where ubiquitin ligase 

activity is either increased or decreased as gain-of-function or loss-of-function, respectively (see 

Fig. 2.1 for examples). The starting material can range from protein isolated from animal tissues, 

primary cells, or stable cell culture models in which either the ubiquitin ligase or a counter-

regulatory de-ubiquitination enzyme is manipulated.  

2) Ubiquitome isolation. Protein extracts are isolated and quantified from each condition and an 

equal amount of protein is subsequently added to either agarose control beads or beads 

conjugated with TUBE. We used TUBE that bind equally to K48- and K63-ubiquitin linkages, 

however, there are other TUBE varieties that preferentially bind certain lysine linkages that can 

be used depending on the type of substrates desired (e.g. canonical versus non-canonical). From 

each condition we collect both the eluate from the TUBE, containing the selected ubiquitome, as 

well as the unbound supernatants from both the control agarose and TUBE, which provide an 

additional measure of the ubiquitome from each condition.  

3) 2D-DIGE and pick selection. In order to reduce the number of false positives, we established a 

three spot comparison to identify substrate picks. Within each 2D-DIGE gel, relative differences 

between the two conditions are quantified. We established three independent comparisons that 

are analyzed in parallel to increase the likelihood of positive substrate identification. The first 

comparison of the pick selection contrasts the eluted ubiquitome from the experimental and 

control condition. In the case of gain-of-function studies, a spot pick would be increased in the 

experimental condition compared to the control condition (converse for loss-of-function models). 

The second and third gels allow comparisons of the TUBE-selected ubiquitomes within the 
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experimental condition (Gel 2) or control condition (Gel 3). In these later comparisons, enriched 

ubiquitinated proteins are identified by comparing the unbound fraction from the control agarose 

beads (ubiquitin-enriched) versus the unbound fraction from the TUBE agarose (ubiquitin-

depleted). Naturally occurring ubiquitinated proteins in the control condition are identified in Gel 

3 whereas Gel 2 identifies the enriched (or depleted in the case of loss-of-function) pool of 

proteins in the experimental conditions.  

4) Spot pick identification. All of the spots that meet the pick criteria for each Gel are tabulated 

and subsequently used to identify picks that are common to all multiple comparisons (see Figure 

1 for the differences in pick criteria in gain-of-function versus loss-of-function models). These 

picks are then subjected to MALDI-TOF for protein identification and classified as potential 

ubiquitin ligase substrates. 
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Figure 2.1. Schematic model representing the ubiquitin ligase/deubiquitinating enzyme 
screening platform. 

Protein is isolated from control and experimental animal tissue or cell culture samples where the 
expression or activity of a ubiquitin ligase or deubiquitinating enzyme of interest is manipulated 
to increase or decrease, dubbed a gain-of-function or loss-of-function manipulation.  Isolated 
protein is then quantitated and incubated overnight at 4 °C with Tandem Ubiquitin Binding 
Entities (TUBE) or agarose control beads. Both the bound (eluate) and unbound (supernatant) 
fractions are collected and subjected to 2D-DIGE. Three different 2D-DIGE gels are run, each 
also including a pooled internal standard sample. Gel 1 compares the control sample ubiquitin 
enrichment to the experimental sample ubiquitin enrichment, identifying proteins whose 
ubiquitination is dependent upon the ubiquitin ligase of interest. The second and third gels allow 
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comparisons of the TUBE-selected ubiquitomes within the experimental condition (Gel 2) or 
control condition (Gel 3) by comparing the ubiquitin-depleted supernatants from the sample 
incubated with TUBE to the ubiquitin-rich sample incubated with agarose control beads. The 
comparison on Gel 2 identifies proteins whose ubiquitination is potentially dependent upon the 
ubiquitin ligase of interest. The Gel 3 comparison reveals naturally occurring ubiquitinated 
proteins, as here, the ubiquitin ligase of interest is unperturbed. Spots are identified as “picks” by 
DeCyder Analysis Software based upon the determination of relative changes in intensity 
between the two samples and picks are aligned across all three gel comparisons to select spots 
for subsequent MS/MS peptide sequencing and protein identification.  
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Figure 2.2. MuRF1 ectopic expression and TUBE-mediated ubiquitin enrichment. Fluorescent 
imaging and immunoblot verified MuRF1 ectopic expression and ubiquitin enrichment prior to 
2D-DIGE. 

A. Representative fluorescence micrographs of primary cardiomyocytes after 24 h of 
transduction with adenovirus expressing green fluorescent reporter protein alone (Ad-GFP) or in 
combination with Myc-tagged MuRF1 (Ad-MuRF1) at MOI of 10. 

B. Representative immunoblots (IB) of Myc, MuRF1, and GAPDH protein levels in extracts 
isolated from primary cardiomyocytes transduced with Ad-GFP (-) or Ad-MuRF1 (+) adenovirus 
for 24 h. The red arrow indicates endogenous MuRF1, with ectopically-expressed myc-tagged 
MuRF1 migrating at a slightly higher molecular weight.  

C. Representative immunoblot of total ubiquitin from TUBE enrichment in extracts isolated 
from primary cardiomyocytes transduced with Ad-GFP (G) or Ad-MuRF1 (M) for 24 h as 
performed in the 2D-DIGE MuRF1 substrate screen. Lanes 1 and 2: input samples; lanes 3 and 
4: unbound TUBE supernatant collected; lanes 5 and 6: ubiquitinated protein enrichment eluted 
from TUBE. From 3 independent experiments we observed an average of 30 ± 14.7% increase in 
total ubiquitinated protein with MuRF1 ectopic expression as measured by densitometry. 
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MuRF1 expression in primary cardiomyocytes. Using traditional substrate identification 

approaches, our laboratory as well as and other groups identified substrates for MuRF1, a striated 

muscle-specific ubiquitin ligase. As a proof of principle for our method, we screened for MuRF1 

substrates in primary rat cardiomyocytes and hypothesized we would identify both previously 

established substrates as well as potential novel substrates. We utilized a transient gain-of-

function model in primary cardiomyocytes as previously described through the use of 

adenoviral-mediated expression of either the reporter green fluorescent protein (GFP) alone or in 

combination with MuRF1 (mouse) at a multiplicity of infection of 10 MOI per cell (Fig. 2.2A). 

Confirmation of the expression of the MuRF1 transgene was performed via immunoblot 

detection of the myc epitope tag (Fig. 2.2B, top) that corresponded to an approximate 25-fold 

increase in MuRF1 transgene expression relative to the endogenous MuRF1 expression in 

control cells, measured by densitometry, after 18 h of adenoviral transduction. These data 

confirm the successful expression of the MuRF1 transgene in primary cardiomyocytes. 

MuRF1 ubiquitome isolation. Prior to 2D-DIGE analyses, we first confirmed that we could 

successfully isolate the TUBE-selected ubiquitome. Lysates were prepared, quantified, and 

incubated for 18 h in the presence of either control agarose or TUBE beads. Both the unbound 

(supernatant) and bound (eluate) fractions were collected and separated via SDS-PAGE. The 

bound fractions from the TUBE beads in both the Ad-GFP and Ad-MuRF1 conditions contained 

highly enriched levels of ubiquitinated proteins compared to the unbound fraction determined via 

immunoblot analysis (Fig. 2.2C). We also consistently noticed a 30% increase in the total 

densitometry of ubiquitin immunoreactivity in cells transduced with Ad-MuRF1 (Fig. 2.2C, 

right) suggesting an overall increase in total protein ubiquitination in the presence of increased 

MuRF1 expression. Given the successful selection of ubiquitinated proteins using the TUBE 
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isolation procedure, we moved forward to the differential gel analysis to attempt to identify 

specific proteins that are more readily ubiquitinated in the presence of increased MuRF1 

expression. 

2D-DIGE and selection of picks corresponding to increased MuRF1 expression. Using the three 

gel conditions outlined above (Fig. 2.1) we used 2D-DIGE to identify candidate picks from each 

of the three comparisons. The primary comparison was between the elution profiles of the GFP 

versus MuRF1 ubiquitome (Gel 1). As shown in Figure 2.3, 2D-DIGE resolved differentially 

fluorescent-labeled pools of proteins in the same gel separated by both molecular weight (MW, 

vertical) and isoelectric point (pH, horizontal). A relative ratio of protein species was determined 

by the ratio of fluorescent intensity at identified spots in the gel. The image of the Cy3-labeled 

GFP eluate (green) and Cy5-labeled MuRF1 eluate (Fig. 2.3 top left and bottom left, 

respectively) were overlaid to locate differentially expressed spots (Fig. 2.3 top right). In the 

eluate comparison, we were interested in spots that were ≥1.5-fold more red than green (yellow 

spots represent similar protein amounts) indicating potential protein species that were more 

abundant in the MuRF1 eluate sample. Differential spots in the other two gels that met both 

quality standards and were changed in the expected direction were also identified as “picks” (for 

additional gel image data, see Fig. 2.4). 
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Figure 2.3. 2D-DIGE gel of the TUBE-isolated ubiquitome. 

2D-DIGE image analysis of ubiquitin-enriched samples eluted from TUBE identified spots for 
mass spectrometry protein identification. Proteins eluted from TUBE incubated with protein 
extract from Ad-GFP or Ad-MuRF1 transduced cardiomyocytes were labeled with Cy3 and Cy5, 
respectively, and separated by molecular weight and isoelectric point (Cy3-GFPeluate and Cy5-
MuRF1eluate, top left and bottom left, respectively). Relative changes in protein spots were 
calculated using the ratio of fluorescence intensity of each fluorescent channel visualized by 
coloring and overlaying the Cy3-GFPeluate (green) and Cy5-MuRF1eluate images (top right). The 
region containing the 16 spots selected for mass spectrometry identification (top right, hashed 
white box) was magnified and used to generate a ratio image (Cy5/Cy3) to highlight the fold-
enrichement and identification of each picked spot (bottom right). 
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Figure 2.4. Full 2D-DIGE gel images for Gels 1-3. 

 Full fluorescent micrographs of either the individual Cy3 (left column, green) and Cy5 (middle 
column, red) channels or the false-colored overlay of both channels (right column) for all three 
gels used in generation of the “picks”. 
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Picks that pass all three selection criteria and subsequent protein identification by MALDI-TOF 

identify candidate MuRF1 substrates. We tabulated all of the individual spots that passed the 

selection criteria from each gel comparison; for a list of all the spots “picked” in each 

comparison, see Table 2.1. In total, there were nine spots that satisfied all three gel comparison 

criteria (highest confidence, Table 2.1), and an additional seven spots that satisfied criteria in Gel 

1 and Gel 2 (high confidence, Table 2.1) for gain-of-function substrate identification (Fig. 2.1). 

These 16 spots all fell within the intermediate to low pH range, spanning a molecular weight 

range of 20-75 x 103 Daltons (Fig. 2.3 upper right, boxed region). As a reference, we included a 

ratio image of this region to highlight the fold enrichment of these samples in the MuRF1 TUBE 

elution relative to the GFP TUBE elution as well as an annotated ratio image to highlight and 

label the 16 spots (Fig. 2.3, bottom right). The 16 spots were picked from an independently run 

“pick” gel and submitted for protein identification using MALDI-TOF. Peptide sequencing 

identified a total of 20 polypeptides identified from the 16 spots (Table 2.1, Table 2.2, Table 

2.3). Consistent with our hypothesis and validation of our proof-of-principal, three of the 20 

proteins were previously identified in our yeast two-hybrid screen102 9 or a published yeast two-

hybrid screen116 and all but one of the proteins (Coq9) have been published as an identified 

polyubiquitinated protein.116-119 Additionally, the functional classification of the proteins 

identified included both structural (sarcomeric) protein components and mitochondrial 

substrates, two known locations within the cardiomyocyte where MuRF1 is known to 

function,116, 120, 121  suggesting this approach may, in fact, identify bona-fide MuRF1 substrates. 
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Table 2.1. Alignment of 2D-DIGE picks across three gel comparisons for selection of spots for 
mass spectroscopy identification. 

Spots are identified by a common spot number (Spot #) across all three gels based on MW and 
pI. The table includes if the spot was detectable in the gel (Appearance?) and if so, the average 
ratio of the comparison (Av. Ratio) indicated in the table header. Spots that also passed 
additional quality standards as described in the methods are indicated (QualitySpot?). If the 
criteria were met for an individual spot and the direction of change satisfied the indicated 
comparison, the spot was considered a “Pick”. The last column represents a confidence threshold 
based on the presence of “Pick” calls across all three gels. 

 

 

Spot # Appearance? Av. Ratio QualitySpot? M > G ? Appearance? Av. Ratio QualitySpot? C >T ? Appearance? Av. Ratio QualitySpot? C >T ?

Highest

Gel 1: MuRF1eluate / GFPeluate Gel 2: MuRF1TUBES / MuRF1ctrl Gel 3: GFPTUBES / GFPctrl 

Confid
en

ce
Pick = MuRF1eluate > GFPeluate Pick = MuRF1TUBES < MURF1ctrl Pick = GFPTUBES < GFPctrl 

1817 Yes 6.17 Yes Pick Yes -6.67 Yes Pick Yes -2.03 Yes Pick
1814 Yes 4.68 Yes Pick Yes -2.20 Yes Pick Yes -2.66 Yes Pick
1815 Yes 4.58 Yes Pick Yes -1.78 Yes Pick Yes -2.84 Yes Pick
941 Yes 3.41 Yes Pick Yes -1.34 Yes Pick Yes -2.00 Yes Pick

1134 Yes 3.11 Yes Pick Yes -1.75 Yes Pick Yes -1.79 Yes Pick
1425 Yes 2.72 Yes Pick Yes -1.15 Yes Pick Yes -1.66 Yes Pick
1339 Yes 2.25 Yes Pick Yes -1.16 Yes Pick Yes -2.06 Yes Pick
764 Yes 2.16 Yes Pick Yes -1.56 Yes Pick Yes -2.12 Yes Pick
972 Yes 1.82 Yes Pick Yes -1.15 Yes Pick Yes -2.63 Yes Pick

Highest

High

949 Yes 7.96 Yes Pick Yes -1.37 Yes Pick -1.85
1816 Yes 5.13 Yes Pick Yes -1.39 Yes Pick -2.42
810 Yes 4.60 Yes Pick Yes -1.15 Yes Pick Yes -1.52

1108 Yes 3.21 Yes Pick Yes -1.19 Yes Pick Yes -1.38
842 Yes 2.82 Yes Pick Yes -1.15 Yes Pick Yes -1.35
544 Yes 2.49 Yes Pick Yes -1.20 Yes Pick Yes -2.17

1022 Yes 2.41 Yes Pick Yes -1.16 Yes Pick 2.23

High

Medium

931 Yes 11.33 Yes Pick Yes -1.95 Yes Pick
1369 Yes 3.19 Yes Pick Yes -1.02 Yes -1.79 Yes Pick
826 Yes 3.14 Yes Pick Yes -1.08 Yes -1.78 Yes Pick

1319 Yes 2.60 Yes Pick Yes -1.11 Yes -1.96 Yes Pick
1006 Yes 2.40 Yes Pick Yes -1.00 Yes -1.74 Yes Pick
1011 Yes 2.36 Yes Pick Yes -1.02 Yes -2.90 Yes Pick

Medium

Lo
wer

821 Yes 3.54 Yes Pick Yes -1.12 Yes 1.21
314 Yes 3.12 Yes Pick Yes -1.11 Yes 1.03
833 Yes 3.11 Yes Pick Yes -1.13 Yes 1.18
542 Yes 2.89 Yes Pick Yes -1.10 Yes -2.09
888 Yes 2.68 Yes Pick Yes -1.06 Yes 1.43

1145 Yes 2.50 Yes Pick Yes -1.08 Yes -1.48
782 Yes 2.26 Yes Pick Yes -1.00 Yes -2.23
517 Yes 1.57 Yes Pick Yes 1.06 Yes -1.40

Lo
wer
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Table 2.2. Mass spectroscopy summary data for the 16 spots submitted for identification. 

The 2D-DIGE master spot number is listed with corresponding protein(s) identified by MALDI-
TOF (Protein Name, Species, Database Accession ID, Molecular Weight in Daltons (Da)) 
including peptide counts MS and MS/MS scores, peptide sequenced ion scores, and scoring for 
each identified protein. 

 

Master 
Number Protein Name Species Database 

Accession ID 
MW 
(Da) 

Peptide 
Count 

MS & 
MS/MS 
Score 

Peptide 
sequenced 
Ion Score 

Scoring 
threshold 

544  Tax_Id=10116 Gene_Symbol=Hspa5 78 kDa 
glucose-regulated protein 

Rattus IPI00206624 72302.4 38 2,310 2042 59

764  Tax_Id=10116 Gene_Symbol=Hspd1 60 kDa 
heat shock protein, mitochondrial 

Rattus IPI00339148 60917.4 36 2,370 2094 59

810  Tax_Id=10116 Gene_Symbol=Vim Vimentin Rattus IPI00230941 53700 40 1,880 1526 59
 Tax_Id=10116 Gene_Symbol=Tuba1a Tubulin 
alpha-1A chain 

Rattus IPI00189795 50103.6 9 169 145 59

842  Tax_Id=10116 Gene_Symbol=Tubb5 Isoform 1 
of Tubulin beta-5 chain 

Rattus IPI00197579 49639 25 1,460 1285 59

 Tax_Id=10116 Gene_Symbol=Tubb2c Tubulin 
beta-2C chain 

Rattus IPI00400573 49769 22 1,170 1036 59

941  Tax_Id=10116 Gene_Symbol=Atp5b ATP 
synthase subunit beta, mitochondrial 

Rattus IPI00551812 56318.5 27 1,750 1560 59

949  Tax_Id=10116 Gene_Symbol=Atp5b ATP 
synthase subunit beta, mitochondrial 

Rattus IPI00551812 56318.5 27 1,800 1607 59

972  Tax_Id=10116 Gene_Symbol=Pdia6 protein 
disulf ide-isomerase A6 

Rattus IPI00365929 48729.6 14 1,290 1242 59

 Tax_Id=10116 Gene_Symbol=Atp5b ATP 
synthase subunit beta, mitochondrial 

Rattus IPI00551812 56318.5 15 400 354 59

 Tax_Id=10116 Gene_Symbol=Hnrnpf 
Heterogeneous nuclear ribonucleoprotein F 

Rattus IPI00210357 45700.9 7 255 241 59

1022

 RecName:MuRF-1 Full=E3 ubiquitin-protein 
ligase TRIM63; AltName: Full=Muscle-specif ic 
RING finger protein 1; Short=MuRF-1; 
Short=MuRF1; Short=Muscle RING finger 
protein 1; AltName: Full=Tripartite motif-

Mus musculus gi|84029592 39465.2 25 1,210 1032 83

 Tax_Id=10116 Gene_Symbol=Ppp1r7 Protein 
phosphatase 1 regulatory subunit 7 

Rattus IPI00358083 41271.4 9 204 180 59

1108  Tax_Id=10116 Gene_Symbol=Actc1 Actin, 
alpha cardiac muscle 1 

Rattus IPI00194087 41991.9 22 1,660 1511 59

1134  Tax_Id=10116 Gene_Symbol=Actc1 Actin, 
alpha cardiac muscle 1 

Rattus IPI00194087 41991.9 22 1,230 1093 59
 Tax_Id=10116 Gene_Symbol=Actb Actin, 
cytoplasmic 1 

Rattus IPI00189819 41709.7 19 805 704 59

1339  Tax_Id=10116 Gene_Symbol=Tpm1 Isoform 1 
of Tropomyosin alpha-1 chain 

Rattus IPI00197888 32660.7 37 1,960 1649 59

1425  Tax_Id=10116 Gene_Symbol=Coq9 
Ubiquinone biosynthesis protein COQ9, 

Rattus IPI00365149 35123.5 13 701 627 59

 Tax_Id=10116 Gene_Symbol=Actc1 Actin, 
alpha cardiac muscle 1 

Rattus IPI00194087 41991.9 8 271 252 59
 Tax_Id=10116 Gene_Symbol=Tollip Toll-
interacting protein 

Rattus IPI00366104 30294.9 9 251 218 59

1814  Tax_Id=10116 Gene_Symbol=Myl2 Myosin 
regulatory light chain 2, ventricular/cardiac 

Rattus IPI00214000 18868.4 24 1,330 1091 59

1815  Tax_Id=10116 Gene_Symbol=Myl3 Myosin 
light chain 3 

Rattus IPI00231788 22142.1 18 1,330 1209 59

1816  Tax_Id=10116 Gene_Symbol=Ldhb L-lactate 
dehydrogenase B chain 

Rattus IPI00231783 36589.1 31 1,960 1662 59

 Tax_Id=10116 Gene_Symbol=Mdh1 Malate 
dehydrogenase, cytoplasmic 

Rattus IPI00198717 36460.1 6 103 89 59

1817  Tax_Id=10116 Gene_Symbol=Actc1 Actin, 
alpha cardiac muscle 1 

Rattus IPI00194087 41991.9 24 1,630 1464 59
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Figure 2.5. Validation of screen-identified proteins Hspd1, Tpm1, and Atp5b as substrates of 
MuRF. 

In vitro and in vivo data demonstrate that the screen-identified proteins Hspd1, Tpm1 and Atp5b, 
are MuRF1 substrates.  

A. Representative immunoblot (IB) of Hspd1 protein levels in extracts isolated from primary 
cardiomyocytes transduced with Ad-GFP (G) or Ad-MuRF1 (M) adenovirus for 24 h. Lane 1 
and 2: input samples (light exposure, see Fig. 2.6B); lane 3 and 4: Ad-GFP samples eluted from 
either TUBE (Tu) or agarose control beads (Ag); Lane 5 and 6: Ad-MuRF1 samples eluted from 
TUBE (Tu) or agarose control beads (Ag). 

B. Immunoprecipitations (IP) of Hspd1 and Tpm1 in extracts isolated from wild-type (WT) or 
MuRF1 transgenic (TG) mouse hearts, subsequently immunoblotted (IB) for Hspd1 or Tpm1 and 
ubiquitin (Ub). Lane 1 and 2: IgG control IP; lane 3 and 4: Hspd1 (top) or Tpm1 (bottom) IP; 
Lane 5 and 6: 10% input of extract. Red arrows indicate ubiquitin-reactive Hspd1 or Tpm1 
species in MuRF1 Tg hearts (lane 4) that are not present or are of lower relative abundance in 
wild-type hearts (lane 3). The black arrow indicates a non-specific band also present in the IgG 
control IP.  

C. In vitro ubiquitination assays for MuRF1 ubiquitination of Hspd1 and Atp5b performed in 
presence or absence of purified ubiquitin or MuRF1 as indicated and detected by immunoblot 
analysis (IB) for Hspd1 (top) or Atp5b (bottom). 
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Figure 2.6. Full immunoblot images for figures 2.2C and 2.5A. 

A. Full image of total ubiquitin immunoblot from TUBE enrichment in extracts isolated from 
primary cardiomyocytes transduced with Ad-GFP or Ad-MuRF1 for 24 h as performed in the 
2D-DIGE MuRF1 substrate screen as represented in Figure 2.2C. For the figure in the 
manuscript, only lanes 1-4 and 7-8 contained samples relevant to this manuscript using an equal 
exposure (Fig. 2.2C). 

B. Full image of total Hspd1 immunoblot in extracts isolated from primary cardiomyocytes 
transduced with Ad-GFP or Ad-MuRF1 as represented in Figure 2.5A. For the figure in the 
manuscript, only lanes 1-6 contained samples relevant to this manuscript and shown here with an 
equal exposure. 
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Validation of Hspd1, Tpm1, and Atp5b as substrates of MuRF1. To determine if the candidate 

proteins identified in our 2D-DIGE method were substrates of MuRF1, we took advantage of 

available antibodies and purified recombinant proteins to validate selected candidates. First, we 

measured the pattern of Hspd1 (Fig. 2.3, spot #764) modification in primary cardiomyocytes 

transduced with either Ad-GFP or Ad-MuRF1 via SDS-PAGE/immunoblot analysis from 

independent experiments prepared with TUBE or control agarose identically as described in the 

2D-DIGE screen. As expected, in cells overexpressing MuRF1, we detected several higher 

molecular weight proteins bound to the TUBE beads that were reactive to the Hspd1 antibody 

(Fig. 2.5A), consistent with a MuRF1-dependent increase in Hspd1 polyubiquitination. To 

determine if our primary cell system of MuRF1 overexpression accurately reflected the action of 

increased MuRF1 activity in vivo, we immunoprecipitated Hspd1 as well as another MuRF1 

substrate candidate Tpm1 (Fig. 2.3, spot #1339) from heart tissue isolated from either wild-type 

or MuRF1-transgenic mice (Fig. 2.5B). Consistent with the pattern observed in primary 

cardiomyocytes (Fig. 2.5A), after successful immunoprecipitation of either candidate substrate 

protein, using immunoblot analysis we observed increases in higher molecular weight proteins 

reactive to an antibody that recognizes ubiquitin (Fig. 2.5B) in MuRF1-trangenic hearts 

compared to wild-type hearts. These data suggest that in vivo, both Hspd1 and Tpm1 are cardiac 

substrates of MuRF1; furthermore, the translatability of using this ubiquitin ligase screen in our 

primary cardiomyocyte culture model to identify in vivo cardiac substrates demonstrates the 

utility of developing methods that are performed in a biologically relevant context. Finally, we 

used a purified recombinant protein system to test if the candidate substrates Hspd1 and Atp5b 

(Fig. 2.3, spot #941, #949, #972) could be polyubiquitinated by MuRF1 in a cell-free in vitro 

system. Interestingly, in the absence of MuRF1 we observed E2-mediated monoubiquitination 
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(an emerging property of E2 enzymes; 122, 123 of both Hspd1 and Atp5b,. As expected, we found 

both Hspd1 and Atp5b to be polyubiquitinated in the presence of MuRF1, providing further 

validation that these proteins are direct substrates of MuRF1. Through the use of multiple 

approaches we demonstrated that all three candidate substrates identified by our 2D-DIGE 

method were validated as MuRF1 substrates.  
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Table 2.3. Identities and characterization of MuRF1 substrates identified by MS/MS analysis of 
selected 2D-DIGE spots. 

Symbols, descriptions and PANTHER protein classifications for each of the MuRF1 substrates 
identified by mass spectroscopy analysis are listed. Also indicated are those proteins previously 
identified as MuRF1 substrates by yeast two-hybrid screening (Y2H102, 116 and Cam Patterson – 
data not shown) and those proteins previously reported as MuRF1 substrates (or interacting 
proteins) in skeletal muscle.   

 

Symbol Protein description Reported 
substrate 

Identified 
by Y2H PANTHER Protein Class 

ACTB Actin, cytoplasmic 1    actin and actin related protein 
ACTC1 Actin, alpha cardiac muscle 1  skeletal 103 yes 102 actin and actin related protein 

ATP5B ATP synthase subunit beta, mitochondrial   yes 116 ATP synthase/ion 
channel/hydrolase 

COQ9 Ubiquinone biosynthesis protein COQ9, 
mitochondrial    cofactor biosynthesis* 

HNRNPF Heterogeneous nuclear ribonucleoprotein F    ribosomal protein 
HSPA5 78 kDa glucose-regulated protein    Hsp70 family chaperone 
HSPD1 60 kDa heat shock protein, mitochondrial    chaperonin 
LDHB L-lactate dehydrogenase B chain    dehydrogenase 
MDH1 Malate dehydrogenase, cytoplasmic    dehydrogenase 
MURF1 E3 ubiquitin-protein ligase TRIM63 (MuRF1)  auto Ub  ubiquitin-protein ligase 

MYL2 Myosin regulatory light chain 2, 
ventricular/cardiac muscle isoform  skeletal 118  yes 102 cytoskeletal protein 

MYL3 Myosin light chain 3  skeletal 118  yes102  actin family cytoskeletal 
protein/calmodulin 

PDIA6 Protein disulfide-isomerase A6    isomerase 

PPP1R7 Protein phosphatase 1 regulatory subunit 7    
phosphatase 
modulator/microtubule family 
cytoskeletal protein 

TOLLIP Toll-interacting protein    adapter protein* 
TPM1 Isoform 1 of Tropomyosin alpha-1 chain    actin binding motor protein 
TUBA1A Tubulin alpha-1A chain    tubulin 
TUBB2C Tubulin beta-2C chain    tubulin 
TUBB5 Isoform 1 of Tubulin beta-5 chain    tubulin 

VIM Vimentin    structural protein/intermediate 
filament 
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Discussion 

Ubiquitin ligases and their counter-regulatory deubiquitinating enzymes (DUBs) play 

unique roles in protein ubiquitination and the UPS as the regulators of substrate specificity; 

therefore, substrate identification is critical to the mechanistic understanding of the UPS as well 

as our ability to modify protein ubiquitination in order to modulate disease. Despite this, the 

available methods to identify ubiquitin ligase and DUB substrates do not provide robust or 

unbiased means to identify physiological substrates, often relying upon non-physiological in 

vitro approaches. Given the current limitations in ubiquitin substrate screens, we developed a 

novel method for the identification of physiological ubiquitin ligase/DUB substrates (Fig. 2.1). 

As a proof-of-principle for our method, we successfully utilized a transient gain-of-function 

model to screen for MuRF1 substrates in primary cardiomyocytes (Fig. 2.2) and identified both 

previously identified MuRF1 substrates as well as novel substrate proteins (Table 2.3). Not 

surprisingly, nearly all of the candidate substrates were previously identified as polyubiquitinated 

proteins;116-119 additionally, the novel candidate substrates were functionally classified in cellular 

locations where MuRF1 is known to function including the sarcomere and mitochondria, 116, 120, 

121 reflective of the physiological approach utilized by our method. Furthermore, we validated 

several novel MuRF1 substrates both in vitro (Hspd1, Atp5b) and in vivo (Hspd1, Tpm1). In fact, 

the increased in polyubiquitination of Hspd1 and Tpm1 in hearts of MuRF1 transgenic animals 

not only validates the ability of our screen to identify novel substrates but also demonstrates the 

unique translatability of this screening method performed in a biologically relevant context to an 

independent in vivo model. 

Our method circumvents major pitfalls of traditional substrate screens by: 1) using a 

physiological setting that is relevant to the ubiquitin ligase/DUB or disease model; 2) utilizing 
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TUBE technology to isolate and protect the ubiquitome,115 independent of the strength of the 

physical interaction between the ubiquitin ligase/DUB and substrate; and 3) employing 2D-

DIGE with multiple subtractive comparisons to reduce the number of false positives. For our 

proof-of-principle we used a biologically relevant primary cell culture system; however, TUBE-

based ubiquitome isolation can be used with a myriad of other protein sources including stable 

cell culture models, isolated preparations of subcellular compartments (for example, 

mitochondria, Rubel and Patterson – data not shown), and animal tissues. The flexibility in 

starting material allows the study substrates of a ubiquitin ligase, or the action of an opposing 

DUB (Fig. 2.1), under specific physiological or pathophysiological conditions. We performed 

our screen using TUBE technology that has an equal affinity to K63 and K48 ubiquitin linkages; 

however, there are other TUBE variants that bind specific lysine linkages allowing the screen to 

be biased towards non-canonical ubiquitinated substrates if desired. Moreover, we used semi-

quantitative proteomics using 2D-DIGE, allowing high resolution separation and reduction of 

sample complexity prior to mass spectrometric analysis, and enhancing accuracy of protein 

identification, while avoiding issues of gel-to-gel variability associated with traditional 1D or 2D 

gel-based proteomics.124 To minimize false positives, we coupled our 2D-DIGE strategy with a 

multi-sample cross-comparison to achieve higher confidence in spot-picking prior to MALDI-

TOF peptide identification, the stringency of which could be increased or decreased based on the 

user’s preference for confidence (Table 2.1). 

We realize that there are other modifications to this protocol that could be used to refine 

substrate identification. Although we did not include proteasome inhibition to our protocol, an 

approach that is often used in interaction-based methods, the inclusion of a proteasome inhibitor 

such as MG132 for cell-based protein sources prior to protein extraction would likely increase 
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the pool of K48-linked polyubiquitinated proteins. In addition, there are other protein 

identification methods that could be used in place of 2D-DIGE/MALDI-TOF as there are 

limitations to a gel-based approach including difficulty detecting very hydrophobic proteins, 

proteins with extreme molecular weights and pI values, as well as the potential limited 

availability of 2D-DIGE facilities and personnel with the required expertise. With minimal 

modification this method could be used with gel-free quantitative proteomics strategies such 

Tandem Mass Tags (TMT) or Isobaric Tags for Relative and Absolute Quantification (iTRAQ) 

to identify and quantitate proteins in each of the collected eluate and supernatant samples.125 It 

should be noted that, even with the use of a gel-free based approach, the same subtractive 

approach could be used to reduce false positives. With the robust, flexible nature of the protocol 

described here, we are hopeful that this method will be broadly applied to the study of both 

ubiquitin ligases and DUBs and through the identification of their substrates, aid in the 

understanding of these unique and important regulatory proteins. 

 

Experimental Procedures 

Neonatal Rat Ventricular Myocyte Isolation and Culture. Neonatal rat ventricular myocytes 

(NRVM) were isolated from day old Sprague–Dawley pups utilizing the Worthington Neonatal 

Cardiomyocyte Isolation System as previously described and according to manufacturer’s 

instructions. 126 Briefly, isolated neonatal hearts were sequentially digested at 4 °C overnight 

with trypsin and then at 37 °C for 2 h with collagenase type II. After preplating to minimize 

nonmyocyte contamination, cells were plated on tissue culture dishes precoated with laminin 

(Sigma). NRVM were cultured at 37 °C and 5% CO2 in Dulbecco's Modified Eagle Medium 

(DMEM, Invitrogen) with 10% horse serum, 5% fetal bovine serum and 100 μM 5-bromo-2'-



49 
 

deoxyuridine (BRDU) to inhibit non-myocyte growth for the first 24 h post isolation and 

subsequently in a 4:1 ratio of DMEM:Minimum Essential Medium with 100 μM BRDU.  

Freshly isolated NRVM were cultured for 72 h prior to adenoviral infection.  

Adenoviral Constructs. Full-length mouse MuRF1 was cloned into the Myc-pCMV vector. 

Adenovirus plasmids Ad-GFP and Ad-MuRF1 (the later expressing GFP and Myc-tagged 

MuRF1 bicistronically) were constructed in pADTrack-CMV and used as previously 

described.102 

Adenoviral Infection and TUBE Enrichment for Ubiquitinated Proteins. Six independent 15 cm 

plates of cultured NRVM were transduced with Ad-GFP or Ad-MuRF1 at a multiplicity of 

infection (MOI) of 10 for 18 h. Lysates were prepared by scraping, trituration and brief 

sonication of cells in cell lysis buffer containing 50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 1 mM 

EDTA, 1% NP-40, 10% glycerol, 50 μM deubiquitinating enzyme inhibitor PR619 (LifeSensors) 

and 1X HALT protease/phosphatase inhibitor (Pierce) followed by clarification by centrifugation 

at 15,000 x g. Lysates from all plates transduced with Ad-GFP or Ad-MuRF1 were pooled and 

total protein concentration determined by BCA protein assay (Pierce). Lysate containing 1 mg of 

total protein was incubated for 18 h at 4 °C with 60 μl of prewashed Agarose TUBE 2 beads 

(LifeSensors) or Control Agarose beads (LifeSensors). Unbound supernatant was removed and 

frozen at -80 °C. Beads were thoroughly washed in 20 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 

0.1% Tween-20 (TBST) and ubiquitinated proteins eluted in 0.2 M glycine, pH 2.5 and 

neutralized with 1 M Tris pH9.0. Elutions were stored at -80 °C prior to 2D-DIGE and proteomic 

analysis. Alternatively, ubiquitinated proteins were eluted by resuspending the beads in 20 μl 

SDS reducing sample buffer and boiling for 5 m followed by centrifugation at 13000 x g for 5 m. 
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Beads were discarded and eluted samples analyzed by SDS-PAGE and immunoblotting for 

Hspd1 (Abcam, ab59457) or total ubiquitin (Lifesensors, VU-1). 

Two-Dimensional Differential In Gel Electrophoresis (2D-DIGE). To detect differential protein 

expression, samples were first cleaned by methanol/chloroform precipitation and dissolved in 

lysis buffer (8 M urea, 20 mM tris-HCl, pH 8.5, 4% CHAPS). Aliquots of the MuRF1 TUBE 

eluate, MuRF1 TUBE supernatant, MuRF1 agarose control supernatant, GFP TUBE eluate, GFP 

TUBE supernatant, and GFP agarose control supernatant were labeled with either Cy3 or Cy5 

fluorescent dyes. An internal control (IC) was prepared by pooling equal amounts of protein (15 

µg) from all samples, and then labeled with 200 pmol of Cy2 for every 15 µg of protein. The 

labeling reaction was carried out on ice for 30 min, protected from light. To quench the reaction, 

1 µL of 10 mM lysine was added, and the reaction was then incubated for an additional 10 m on 

ice in the dark. After labeling, corresponding samples were combined. An equal volume of 2X 

sample buffer (8 M urea, 4% CHAPS, 20 mg/mL DTT, 2% (v/v) IPG buffer 4–7 (GE 

Healthcare)) was added and the mixture was placed on ice for 15 m. Rehydration buffer (8 M 

urea, 4% CHAPS, 2 mg/mL DTT, 1% (v/v) IPG buffer 4-7) was added to a final volume of 250 

µL. For each gel IC, Cy3, and Cy5 labeled samples were mixed before applying to immobilized 

pH gradient (IPG) strips (24 cm, pI range 4–7, GE Healthcare). Isoelectric focusing and the 

subsequent SDS-PAGE (second dimension) were performed as previously described.127 37. Three 

independent gels were run: the first comparing MuRF1 TUBE eluate to GFP TUBE eluate, the 

second comparing MuRF1 TUBE supernatant to MuRF1 agarose control supernatant and the 

third comparing GFP TUBE supernatant to GFP agarose control supernatant. Gels were analyzed 

using DeCyder 7.0 software (GE Healthcare). A “spot number” of 4500 was used to generate 

spot maps using the differential in-gel analysis (DIA) component. Spot maps were filtered via 
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the built-in algorithm using a Max slope of 1.0, and manually edited to remove dust particle 

signals. Expression changes were assessed using the Volume Ratio between samples within each 

gel. 

Spot selection and MALDI-TOF.  Protein spots displaying greater than 1.5 fold expression 

changes were marked as “picks” and the list of “picks” from all three gel comparisons were 

aligned to determine spots that were identified as “picks” by all three comparisons.  Spots that 

were identified as “picks” across all multiple gels were selected for further analysis and removed 

from the 2D gels using an Ettan Spot Picker (GE Healthcare) and submitted to the Michael 

Hooker Proteomics Center (University of North Carolina) for protein identification by matrix-

assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. With the 

aid of a Progest Protein Digestion System (Digilab), proteins were digested with trypsin, and the 

resulting peptides were extracted. Peptides were mixed with matrix (α-Cyano-4-

Hydroxycinnamic Acid) and analyzed using a MALDI-TOF/TOF mass spectrometer (Applied 

Biosystems 4800 Plus). MS spectra were obtained in reflector positive ion mode and peaks with 

signal-to-noise ratio above 10 were selected for MS/MS analysis (maximum of 45 MS/MS 

spectra per spot). All spectra were searched using GPS Explorer, Version 3.6 (AB Sciex) linked 

to the Mascot (Matrix Science, Inc.) search engine and compared to the IPI rat database 

downloaded from European Bioinformatics Institute. 

Immunofluorescence. 24 h post infection with Ad-GFP or Ad-MuRF1, cells were washed with 

PBS, fixed, and permeabilized in phosphate-buffered 2% paraformaldehyde/0.2% Triton X-100 

for 30 minutes at 4 °C. Immunofluorescence labeling was carried out with a mouse anti-GFP 

(Sigma, G6795) followed by a FITC-conjugated goat anti-mouse secondary antibody (Jackson 
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ImmunoResearch Laboratories Inc.) and DAPI (Sigma-Aldrich). Images were acquired by 

fluorescence-inverted microscopy. 

Western blotting. 24 h post infection with Ad-GFP or Ad-MuRF1, cells were washed with PBS 

and lysates prepared by scraping, trituration and brief sonication of cells in cell lysis buffer 

containing 50 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 1 mM EDTA, 1% NP-40, 10% glycerol, 50 

μM deubiquitinating enzyme inhibitor PR619 (LifeSensors), and 1X HALT 

protease/phosphatase inhibitor (Pierce) followed by clarification by centrifugation at 15,000 x g. 

Proteins were separated by SDS-PAGE, transferred to PVDF and detected by Western blot 

analysis with anti-myc (Sigma, C3956), anti-MuRF1 (R&D Systems, AF5366), or anti-GAPDH 

(Sigma, G8795). 

In Vitro Ubiquitination Reactions. In vitro ubiquitination reactions were performed as previously 

described.128 In brief, 2 μM human MuRF1 (LifeSensors), 0.25 μM Ube1 (Boston Biochem), 2.5 

μM UbcH5c and 10 mg/ml ubiquitin and 500 ng of recombinant Hspd1 (Enzo Life Sciences) or 

ATP5b (Abnova) were incubated in 20 μM HEPES, pH 7.4, 10 μM KCl, 5mM ATP, 5mM 

MgCl2, and 1X Energy Regeneration Solution (ERS, Boston Biochem) for 3 h at 30 °C.  Samples 

were analyzed by SDS/PAGE and immunoblotting for ATP5b (Aviva Systems Biology, 

ARP48186) or Hspd1 (Abcam, ab59457). 

Animals. The MuRF1 transgenic (MuRF1-Tg) mice used in this study were previously 

described.121 All animal protocols were reviewed and approved by the University of North 

Carolina Institutional Animal Care Advisory Committee and were in compliance with the rules 

governing animal use as published by the National Institutes of Health. 
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Immunoprecipitation from MuRF1 Transgenic Hearts. Whole heart ventricles were excised from 

anesthetized male wild-type and MuRF1-Tg mice and homogenized on ice in T-Per tissue 

protein extraction reagent (Pierce) containing 1X HALT protease/phosphatase inhibitor (Pierce), 

50uM PR619 (Lifesensors), 50uM MG132 (Millipore) and 10mM N-ethylmaleimide (Sigma) 

first in a 2 ml glass tissue grinder homogenizer followed by brief homogenization by handheld 

tissue homogenizer. Homogenates were clarified by centrifugation at 10,000 x g.  Protein G 

Dynabeads (Invitrogen) pre-conjugated to 2 μg of Hspd1 (Abcam, ab59457) or Tpm1 (Abcam, 

ab133292) antibody or appropriate IgG control were incubated for 1 h at 4 °C with clarified 

homogenates. Beads were washed five times with Tris-Buffered Saline with 0.02% Tween-20 

and subsequently, proteins were eluted in SDS-sample buffer and analyzed by SDS-PAGE and 

western blotting.  
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CHAPTER III 

 

 
ATAXIA AND HYPOGONADISM CAUSED BY THE LOSS OF UBIQUTIN LIGASE 

ACTIVITY OF THE U BOX PROTEIN CHIP1,2 

 

 

Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder 

characterized by ataxia and hypogonadism. Despite being recognized clinically for nearly 

100years, little has been understood about the pathophysiological mechanisms or underlying 

genetic causes of GHS. However, recently there have been several reports of mutations in 

STUB1 (NM_005861), a gene that encodes the protein CHIP, (C-terminus of HSC70 interacting 

protein) in GHS. Furthermore, it was suggested that disordered ubiquitination underlies GHS 

though the discovery of exome mutations in another E3 ligase RNF216 and the deubiquitinase 

OTUD4. Here we describe the first discovery of STUB1 mutation in GHS. We performed exome 

sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and 

identified a homozygous mutation STUB1 c.737C→T, p.Thr246Met, the gene encoding CHIP. 

CHIP plays a central role in regulating PQC, in part through its ability to function as an E3 

ligase. 

Loss of CHIP function has long been associated with protein misfolding and aggregation 

in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in 

human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into 

CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins 
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as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and 

reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS 

can be caused by a loss of function mutation in CHIP. Our findings further highlight the role of 

disordered ubiquitination and PQC in the pathogenesis of neurodegenerative disease and 

demonstrate the utility of combining whole exome-sequencing with molecular analyses and 

animal models to define causal disease polymorphisms. Furthermore, our findings and 

subsequent reports of human STUB1 mutation in various forms of ataxia have led to the 

establishment of a new disease designation, SCAR16 (Autosomal Recessive Spinocerebellar 

Ataxia-16) to describe spinocerebellar ataxia caused by homozygous or compound heterozygous 

mutation in the STUB1 gene.  
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 Introduction 

Gordon Holmes syndrome (GHS [MIM 212840]) is a rare neurodegenerative disorder 

characterized by ataxia with hypogonadism. 129 Generally the term ‘Ataxia’ is used to describe a 

loss of coordination and may be caused by a variety of diseases including metabolic disorders, 

vitamin deficiencies, peripheral neuropathy, cancer, or brain injuries. In the case of GHS, ataxia 

is the result of progressive deterioration of the cerebellum. As such, GHS belongs to a large 

family of disorders termed ‘cerebellar ataxias,’ (CA) all characterized by cerebellar degeneration. 

The majority of diseases caused by CA mutations, including GHS, are inherited as autosomal 

recessive CA (ARCA, estimated prevalence is 7 per 100,000). 89 Patients with GHS typically 

present in early adulthood with variable movement disorders, most notably ataxia but may also 

include chorea, dysmetria, unsteady gait and dysdiadochokinesis. These deficits are progressive 

and may be accompanied by a wide range of additional neurological features including 

dysarthria, brisk reflexes, impulsivity, aggressive behavior, nystagmus, dementia and cognitive 

impairment.130-132 As one might expect with this variability in reported neurological symptoms, 

brain imaging of GHS patients has also revealed significant clinical variability with reports of 

cortical atrophy, pronounced cerebellar degeneration, diffuse white matter lesions in the 

cerebrum, brainstem and cerebellum as well as atrophy of the putamen.131, 132   

This neurologic phenotype is accompanied by hypogonadotropic hypogonadism. In the 

normally functioning hypothalamic-pituitary axis the hypothalamus releases gonadotropin-

releasing hormone (GnRH) which stimulates the pituitary gland to release follicle-stimulating 

hormone (FSH) and leutinizing hormone (LH). These hormones then act upon the female ovaries 

or male testes to stimulate the release of estrogen, progesterone and testosterone driving normal 

sexual development in puberty. Any change in this hormone release chain causes a lack of sex 
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hormones and prevents normal sexual maturity. Concordant with hypogonadotropic 

hypogonadism, patients with GHS present with low serum levels of sex steroids and 

gonadotropins and a lack of sexual development and infertility. Hypogonadotropic refers to a 

defect in the production or release of gonadotropins by the pituitary gland. In most cases of GHS, 

the hypogonadism is hypogonadoptropic in nature.130, 132  However, in some patients extended 

treatment with physiologic doses of pulsatile GnRH is able to stimulate a gonadotropin response, 

suggesting that in these patients the pituitary is able to produce and release gonadotropins, but 

under physiological conditions does not do so normally.131 It is notable that in addition to that 

which is observed in association with ataxia in GHS, hypogonadism has a distinctive association 

with variable neurological disorders including epilepsy, dysmyelination, nerve muscle disease, 

movement disorders, mental retardation and deafness. This clearly indicates an intrinsic 

pathophysiological association between neurological function and hypogonadism yet the 

molecular mechanisms underlying this association remain unknown.133 

Despite almost 100 years of clinical recognition, there is still little understanding of the 

pathophysiological mechanisms or underlying genetic causes of GHS. Here we describe the 

discovery of the first mutation in STUB1, the gene encoding the protein CHIP, in humans 

associated with GHS. We performed exome sequencing in a family with two of three siblings 

afflicted with ataxia and hypogonadism and identified a homozygous mutation, STUB1 

c.737C→T, p.Thr246Met. CHIP is a 35 kDa protein that functions as both a molecular co-

chaperone, autonomous chaperone, and ubiquitin E3 ligase. 8, 128, 134These activities are 

facilitated by three functional domains: a tetratricopeptide repeat (TPR) domain required for 

interaction with heat shock proteins (Hsp), a charged domain that mediates CHIP’s dimerization 

and activity, and a U-box domain that confers ubiquitin ligase activity.8, 79 As a ubiquitin ligase 
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CHIP forms a homodimer and associates with ubiquitin conjugating enzymes to ubiquitinate 

substrates with canonical or noncanonical chains. In cooperation with heat shock chaperone 

proteins, including HSC70, HSP70, and HSP90, CHIP plays a crucial role in recognizing and 

modulating the degradation of numerous chaperone-bound proteins.87 CHIP can also promote the 

folding and/or activity of substrates, including the metabolic energy sensor AMPK acting 

directly as an autonomous chaperone.8, 135  

Recently the E3 ligase RNF216 and deubiquitinase OTUD4 were associated with GHS in 

multiple non-Asian families.136 Protein ubiquitination is primarily regulated through E3 ligases 

that construct covalently-linked polyubiquitin chains on protein substrates, subsequently 

resulting in the targeting of ubiquitinated proteins for degradation through the 26S proteasome. 

Together these data suggest that perhaps disordered ubiquitination in general plays an essential 

role in the pathophysiology of ataxia and hypogonadism.  

 In genetic mouse models of neurodegenerative disease, the loss of CHIP function is associated 

with the misfolding and aggregation of several proteins (such as expanded polyglutamine tracts, 

hyperphosphorylated Tau and oligomeric forms of α-Synuclein), all of which are thought to be 

associated with multiple neurodegenerative disorders such as Spinocerebellar ataxia, Alzheimer's 

disease and Parkinson's disease. 82, 137, 138 However, prior to our discovery, mutations in the 

human STUB1 gene had not been reported, and information about the physiology of CHIP 

deficiency in humans was non-existent. We demonstrate that the STUB1 mutation leads to a loss 

of function of CHIP resulting in diminished E3 ligase activity; furthermore, mice lacking the 

expression of CHIP phenocopy some aspects of human GHS, supporting a direct link between 

CHIP and GHS pathophysiology. 
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Results 

Clinical assessment of two sisters with GHS. We initially observed a pedigree characterized by 

ataxia with hypogonadism in two sisters (II-1 and II-2) with an autosomal recessive inheritance 

pattern. The initial behavioral and sexual development of the proband (II-1) appeared normal, but 

unsteady gait developed when she was 19 years old, followed by dysarthria 2 years later and 

remarkable ataxia (Table 3.1). Upon neurological examination, patient II-1 exhibited horizontal 

gaze-evoked nystagmus with no restriction of extraocular movement. Photography and fluoresce 

angiogram of the ocular fundus revealed no abnormality (data not shown). Additionally, muscle 

tone, power and deep tendon reflexes of the four limbs were normal without any overt pathology. 

Neuroelectrophysiological examination was generally normal, except for decreased amplitude of 

motor-evoked potential in the bilateral lower limbs.  

The younger sister (II-2) also had a similar illness recognized at 17 years of age with a 

progressive deterioration of balance and gait disturbance (Table 3.1). Over the next two years, 

patient II-2 developed noticeable hand tremors during activity along with coarse head tremors. 

Further examination revealed findings similar to patient II-1, in addition to increased tendon 

reflex and positive pathological signs in the four limbs, suggesting pyramidal tract lesions. 

Patients II-1 and II-2 were administered the mini-mental state examination (MMSE) resulting in 

normal cognitive scores, whereas the Montreal Cognitive Assessment (MoCA), which is more 

sensitive to subtle cognitive defects particularly in the early stages of disease, 139 did reveal 

cognitive deficiencies in both sisters (Table 3.1). Furthermore, patients II-1 and II-2 completed 

only four and eight years of schooling, respectively. The neurological phenotype consisting of 

severe ataxia with selective cognitive impairments are consistent with cerebellar ataxia. The 

diagnosis of cerebellar ataxia was confirmed with MRI brain scans that revealed remarkable 
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atrophy of the cerebellum in both sisters (Fig. 3.1A).  

In addition to the neurological defects, both sisters had poor sexual organ development. At 

22 years of age, patient II-1 had still not menstruated, had poor development of secondary sexual 

characteristics (Table 3.1) and hypoplasia of uterus and ovaries, as revealed via ultrasound 

analysis (Table 3.1). Similar to her older sister, patient II-2 did not attain menarche or any 

secondary sexual characteristics, presenting with infantile uterus and ovarian development (Table 

3.1). Along with the lack of sexual development in both patients, the serum levels of estradiol 

and progesterone were much lower than the normal reference range, leading to a diagnosis for 

both patients of hypogonadotropic hypogonadism (Table 3.1). In addition to the low circulating 

sex hormones and the lack of menses, levels of the pituitary hormones FSH and LH in both 

sisters were comparable to pre-pubescent levels (Table 3.1). The nature of the hypogonadism in 

GHS is still not clear and may derive from either hypothalamic or pituitary hypogonadotropism. 

132 Interestingly, a gonadotropin-releasing hormone (GnRH) stimulation test showed the 

pituitaries in both patients were responsive to a single intravenous dose of GnRH (100 μg) 

measured by the stimulated release of FSH and LH (Fig. 3.1B), suggesting the primary defect in 

these sisters may be due to hypothalamic versus pituitary hypogonadotropism. However, the 

pituitary response to GnRH in other GHS patients is reported to diminish over time, suggesting 

pituitary dysfunction may still be an issue in these patients,132, 136 making it difficult to pinpoint 

the primary lesion of the hypogonadotrophic hypogonadism in GHS. The two patients in this 

study were referred to a gynecological endocrinologist, and exogenous estrogen and progestin 

supplement therapy was administered in an attempt to construct an artificial menstrual cycle. 

After three weeks of therapy, their menarche came, demonstrating that the lack of reproductive 

organ maturity was due to the lack of circulating hormones. 
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Table 3.1. Clinical phenotypes of STUB1 genotypes 

 

 

 

 

 

 

 

 

 

 
  

Subject II-1 II-2 
Ataxia   
  SARA 13 15 
Cognitive measures   
  MMSE 25 27 
  MoCA 11 24 
Sexual development   
  Tanner stage II-III II-III 
  Corpus uterus (mm) 35 x 31x 25 28 x 20 x 19 
  Cervix (mm) 23 16 
  Ovaries (mm) 14 x 9 13 x 10 
Hypogonadism   
  Estradiol (pg/ml) 26 28 
  Progesterone (ng/ml) 0.31 0.33 
  FSH (mIU/ml) 6.97 6.25 
  LH (mIU/ml) 5.95 6.44 
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Figure 3.1. Clinical Manifestations in Patients Presenting with Ataxia and Hypogonadism.  
 
A. MRI scans revealed remarkable cerebellum atrophy of patient II-1 (left) and II-2 (right).  
 
B. Gonadotropin-releasing hormone (GnRH) stimulation tests measured the response in 
circulating FSH and LH serum levels to exogenous GnRH administration (at time = 0) in patient 
II-1 (left) and II-2 (right). 
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Exome sequencing reveals a mutation in Stub1 associated with GHS. In an attempt to identify the 

causative mutation in this family, we performed whole exome sequencing of the two affected 

patients (II-1, II-2) as well as the unaffected brother (II-3). Using a combination of bioinformatic 

repositories and functional algorithms, we developed a strategy to identify causal mutations 

segregating with the GHS phenotype (Fig. 3.2A). After quality control and coverage criteria were 

met, we started with a total of 98255, 96183, 98507 SNPs, and 7227, 7046, 7159 insertions or 

deletions (indels) for II-1, II-2, and II-3, respectively. Since ataxia with hypogonadism is a rare 

disorder but has a clear phenotype, there was a low likelihood that a causal mutation in our 

patients was present in wider, healthy populations. We therefore filtered for novel variants by 

comparing our exome data to dbSNP build 132, 140 the 1000 Genomes Project, 141 Hapmap, 142, 

143 YH project, 144 and the National Heart, Lung, and Blood Institute (NHLBI) Exome 

Sequencing Project, 145 further refining our target list to around 2000 SNPs and 130 indels (Fig. 

3.2A). Next, we filtered for a recessive inheritance pattern for variants that were present in the 

affected sisters, but not in the unaffected brother, which reduced the number of candidate 

variants to six, including three compound heterozygote variants and three homozygous variants 

(Fig. 3.2A and Table 3.2). 

The analysis of chromosomal regions that are identical by descent (IBD) is a form of 

homozygosity mapping, a fundamental tool in linkage analysis of pedigree data. For Mendelian 

diseases with a recessive inheritance pattern, affected family members usually share the genomic 

segment harboring the causal mutation. Therefore, variants inside the IBD regions found among 

the affected family members are of primary interest and can be exploited to identify genomic 

regions consistent with inheritance of a recessive monogenic disease. 146, 147 These regions of 

interest are indicated by an IBD score of two, signifying the intersection between paternal and 
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maternal haplotypes. 147 Using the criteria of IBD = 2 we excluded three additional variants, 

reducing the number of candidate variants to three. Finally, we carried out functional-impact 

prediction on protein mutations by PolyPhen-2, 148 Mutation Taster, 148 and SIFT. 149 

Interestingly, only one homozygous variant predicted an impact on protein function in this 

family, STUB1 (NM_005861) c.737C→T, resulting in a p.Thr246Met (T246M) amino acid 

change in the corresponding protein commonly known as CHIP (C-terminus of HSC70 

interacting protein, Figure 3.2C). As an additional control, we tested for the STUB1 c.737C→T 

mutation in 500 Chinese control individuals; consistent with our data mining of multiple SNP 

databases used in our filtering strategy (Fig. 3.2A), the c.737C→T mutation was not detected in 

the Chinese control population. 

The genetics of cerebellar ataxia has been intensely pursued over the last decade, identifying 

over 30 loci that associate with the disease.150 Therefore, we were not surprised that we did not 

detect any STUB1 mutations in an additional cohort of 32 Chinese cerebellar ataxia patients 

without hypogonadism, suggesting that mutations in STUB1, and the recently described 

mutations in RNF216/OTUD4, associate with the distinct pathophysiological phenotype of 

cerebellar ataxia with hypogonadism. We also sequenced the STUB1 gene in a cohort of five 

GHS patients that harbor a single heterozygous RNF216 mutation and eight GHS patients that do 

not have either RNF216 and OTUD4 mutations; 136 interestingly, we did not identify any 

mutations in STUB1 in any of these GHS patients, suggesting additional genetic factors likely 

remain to be identified in other GHS patient populations. We also performed copy number 

variations (CNV) analysis and did not find any CNV that co-segregated either separately with the 

disease phenotype or together with single heterozygous variations in this family,151 suggesting 

that gene dosage was not contributing to the GHS phenotype. Taken together, our genetic and 
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bioinformatics analyses demonstrate the association of the STUB1 c.737C→T mutation with 

GHS and predict the T246M in CHIP results in a functional change that directly contributes to 

the pathophysiology of cerebellar ataxia and hypogonadism.  
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Figure 3.2. Exome Sequencing Identifies a p.Thr246Met Mutation in the GHS Family.  
 
A. Schematic representation of our exome data-filtering approach to identify mutations with 
recessive inheritance patterns in the family.  
 
B. Posterior probabilities of IBD = 2 classification. The logarithmic ratio (LOD) of the posterior 
probabilities of being IBD = 2 versus IBD ≠ 2 are plotted for all classified variant positions on 
chromosome 16. A disease-causing mutation in the STUB1 gene was identified in an IBD = 2 
region of high posterior probability, indicated by the red arrow. 
 
C. A pedigree of the family indicating the unaffected (open symbols) and affected (filled 
symbols) members. Sanger sequencing confirmed the co-segregation of the c.737C→T resulting 
in p.Thr246Met mutation in STUB1 within the family.  
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Table 3.2. Six Candidate Variants from Exome Sequencing Data. 

  

Chromosome Position Reference 
Allele 

Variant 
Allele HET/HOM 

Gene 
Substitution IBD=2 Functional 

Prediction Name 

chr19 9025639 A G HOM MUC16 N12272S NO ……… 

chr1 75037091 G A HET C1orf173 G1435R NO ……… 

chr1 75039089 C G HET C1orf173 L769V NO ……… 

chr2 97914920 T A HET ANKRD36 C1893S NO ……… 

chr2 97915322 T G HET ANKRD36 I1914M NO ……… 

chr4 151769986 G T HET LRBA G94V YES TOLERATED 

chr4 151356766 G T HET LRBA S2350I YES TOLERATED 

chr22 24325095 A G HOM GSTT2 K129E YES TOLERATED 

chr16 732232 C T HOM STUB1 T246M YES DAMAGING 
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The T246M mutation in CHIP abolishes ubiquitin ligase activity. The identification of the 

homozygous c.737C→T mutation in sibling GHS subjects and the co-segregation of functional 

mutation algorithms predicting a strong impact on protein function suggested that the resulting 

T246M substitution mutation in CHIP results in a change in protein function. T246, which is 

highly conserved across CHIP homologs, is located within the U box domain of CHIP (Figure 

3.3A), the domain responsible for ubiquitin ligase activity. 128 In addition, T246 is located in the 

core of a conversed beta hairpin turn (Fig. 3.3A),152 likely contributing to the high impact scores 

of the T246M mutation identified in our functional prediction analysis. In addition to the role 

that CHIP plays as a ubiquitin ligase, CHIP can also act as a co-chaperone through its direct 

interactions with cellular chaperones including HSC70, HSP70, and HSP90 via CHIP’s 

tetratricopeptide repeat (TPR) domain (Fig. 3.3A).81, 128, 134, 153 Both a functional TPR and U box 

domain are required for CHIP’s ability to directly impact PQC and attenuate the cellular stress 

response in large part through polyubiquitiantion of HSP chaperones.75, 79 Given that the CHIP 

mutation identified in our patients resides in the U box domain, we hypothesized that the T246M 

substitution would result in a loss of CHIP’s ubiquitin ligase activity, without affecting CHIP’s 

interaction with cellular chaperones though the intact TPR domain.  

To test effect of the T246M substitution on CHIP’s ubiquitin ligase activity and its ability to 

bind to chaperones, we first expressed either wild-type CHIP (CHIP-WT) or CHIP engineered 

with a methionine substituted for threonine at residue 246 (CHIP-T246M) in COS-7 cells. As 

expected, both the WT and T246M proteins immunoprecipitated with exogenous HSP70 (Fig. 

3.3B and Fig. 3.4A), demonstrating that CHIP-chaperone interactions are not perturbed by the 

T246M substitution. In fact, more CHIP-T246M protein immunoprecipitated with HSP70 

compared to CHIP-WT (Fig. 3.3B and Fig. 3.4A). Surprisingly, the increased interaction 



69 
 

between CHIP-T246M and HSP70 did not result in robust HSP70 ubiquitination compared to 

CHIP-WT expressing cells (Fig. 3.3B and Fig. 3.4A), indicating that the T246M substitution 

deleteriously affects CHIP’s ubiquitin ligase activity. We subsequently tested both the interaction 

and ubiquitination function of CHIP-T246M on an endogenously-expressed CHIP substrate, 

HSC70, and again observed an increased interaction between CHIP-T246M and HSC70 with 

diminished polyubiquitination (Fig. 3.3C). Together, these data suggest the functional defect in 

CHIP-T246M is a loss of ubiquitin ligase activity.   

To directly test the impact of the T246M substitution on CHIP-dependent substrate 

ubiquitination we compared the T246M mutation to previously engineered point mutations of 

CHIP. To do this we used CHIP constructs with mutations located either in the TPR domain 

(CHIP-K30A) or the U box (CHIP-H260Q), that abolish either the interaction with cellular 

chaperones, such as HSC70 and HSP70, or the ubiquitin ligase activity of CHIP, respectively 

(Fig. 3.3A) using cell-free assays comprised of purified recombinant proteins. Similar to the 

results observed in cell culture models (Fig. 3.3B and 3.3C), CHIP-T246M failed to 

polyubiquitinate HSC70 in vitro, mimicking the effect of the H260Q (U box) mutant CHIP 

protein (Fig. 3.3D). To confirm that the lack of chaperone ubiquitination in vitro is due to a 

defect in the U box domain and not due to the inability to bind to the chaperone substrate, we 

measured the effect of the CHIP-T246M mutation CHIP’s intrinsic ability to autoubiquitinate, a 

phenomenon that readily occurs in vitro.79 Similar to the H260Q mutation, the CHIP-T246M 

mutant did not exhibit any autoubiquitination, in contrast to CHIP-WT and CHIP-K30A proteins 

that both contain functional U boxes (Fig. 3.3E), confirming that the T246M mutation abolishes 

CHIP’s ubiquitin ligase activity.  
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Taken together, these data suggest the CHIP-T246M mutation is, at minimum, a partial loss 

of function mutation, that results in an inability of the mutant protein to polyubiquitinate both 

chaperone-bound proteins as well as the chaperone proteins themselves, functions that are 

integral to CHIP’s role in PQC. 75, 154 

 

  



71 
 

Figure 3.3. The T246M Substitution mutation in CHIP Abolishes Ubiquitin Ligase Activity.  
 
A. CHIP is comprised of three functional domains, tetratricopeptide repeat (TPR), coiled-coil 
(CC), and U box. The arrows indicate the location and identity of point mutations used to 
measure the functional parameters of CHIP (top). The structural features of the U box include 
alpha helices (cylinders), beta strands (arrows), beta turns (TT), and alpha turns (TTT). Sequence 
alignment demonstrates the evolutionary conservation of the T246 in the U box domain of the 
CHIP protein across the indicated species. Conservation of residues are labeled as fully 
conserved (*), strongly similar (:), or non- similar ( ).  
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B. COS-7 cells were co-transfected with the indicated vectors (transgenes, CTL = pcDNA3, WT 
= pcDNA3-CHIP, T246M = pcDNA3-CHIP-T246M) in addition to HA-tagged ubiquitin. HSP70 
was immunoprecipitated (IP) with FLAG beads and the resulting precipitants as well as inputs 
were immunoblotted (IB) with the indicated antibodies.  
 
C.COS-7 cells were co-transfected with the indicated transgenes in addition to HA-tagged 
ubiquitin and immunoprecipitated with either an HSC70 antibody or rat IgG. The inputs and 
resulting precipitants (IP) were immunoblotted with the indicated antibodies. Approximate 
molecular weights in kilodaltons (kd) are also provided.  
 
D. and E. Cell-free ubiquitination reactions containing recombinant HSC70 and the indicated 
CHIP proteins resolved via SDS-PAGE and immunoblotted for an antibody recognizing HSC70 
(D) or CHIP (E). Ubiquitin (Ub) was excluded in lane 1 (E) to demonstrate the 
autoubiquitination of CHIP, arrows indicate the incomplete reduction of CHIP oligomers. 
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Figure 3.4. CHIP-T246M Interacts with Chaperones but Lacks Ubiquitin Ligase Activity.  
 
A. To confirm the effect of CHIP-T246M on the exogenous HSP70 substrate, we performed the 
reverse IP shown in Figure 3A. COS-7 cells were co-transfected with the indicated vectors 
(transgenes, CTL = pcDNA3, WT = pcDNA3-CHIP, T246M = pcDNA3-CHIP-T246M) in 
addition to HA-tagged ubiquitin. Ubiquitinated proteins was immunoprecipitated (IP) with HA 
beads and the resulting precipitants as well as inputs were immunoblotted (IB) with the indicated 
antibodies.  
 
B. Cell-free ubiquitination reactions from the experiment represented in Figure 3D containing 
recombinant HSC70 and the indicated CHIP proteins resolved via SDS-PAGE and 
immunoblotted for an antibody recognizing CHIP. 
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CHIP-deficient mice exhibit defects in motoric, sensory, cognitive and reproductive function. The 

profound cerebellar ataxia exhibited by both siblings homozygous for the CHIP-T246M 

substitution suggests that CHIP plays a critical role in maintaining cerebellar function. Given the 

autosomal recessive nature of CHIP deficiency in our GHS subjects, we first wanted to assess the 

neurological behavior of Chip-/- mice to determine if the loss of CHIP expression leads to 

impairments associated with cerebellar ataxia. Our group has previously described a line of mice 

deficient in CHIP expression.74, 155  Given the data above linking the human CHIP-T246M 

mutation with cognitive impairments, we evaluated the phenotype of Chip-/- mice using a battery 

of behavioral assessments (Fig. 3.6A). The rotarod test is extensively used in mouse models to 

detect cerebellar dysfunction by testing motor coordination and motor learning on a rotating 

dowel. The performance of Chip-/- mice on the rotarod demonstrated a severe motoric 

impairment irrespective of gender, with wild-type mice having between 2.9 ± 0.6 and 4.2 ± 1.8 

fold increase in latency to falling times in male and female mice, respectively, compared to Chip-

/- mice (Fig. 3.5A). The performance of Chip-/- mice did not improve with retesting (Fig. 3.5A), 

demonstrating a lack of motor learning. To further confirm a motoric defect and to test for 

defects in sensory gating we measured the acoustic startle response in wild-type and Chip-/- mice 

(Fig. 3.5B). Consistent with the motoric impairment observed in Chip-/- mice using the rotarod 

assessment, the magnitude of the startle response was reduced 86% in Chip-/- mice compared to 

wild-type mice (Fig. 3.5C). Additionally, the reaction time to the acoustic startle was delayed 

across all sound levels by an average of 40% ± 4% (7.8 ms) in Chip-/- mice (Fig. 3.5D), 

consistent with our hypothesis that the loss of CHIP expression results in motoric impairment 

due to cerebellar dysfunction. Interestingly, pre-pulse inhibition levels were not affected by the 

loss in CHIP expression (Fig. 3.6B), suggesting that sensory gating (as well as auditory function) 
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was not impaired. In addition to the deficits attributed to cerebellar dysfunction, Chip-/- mice also 

exhibited an aberrant pattern of exploration in a novel environment demonstrated by increased 

time in the open arms of the elevated plus maze (EPM, Fig. 3.5E) and a higher error rate in the 

acquisition of a spatial learning task in the Barnes maze (Fig. 3.5F) compared to wild-type mice, 

suggesting hippocampal function may also be impaired with the loss of CHIP function. 

Additional testing found no differences in physical activity, both in the EPM and open field (Fig. 

3.6C, 3.6D, and 3.6E), latency measures in a spatial task (Fig. 3.6F), or in social behavior (Fig. 

3.6G). In gait testing, Chip-/- mice took smaller steps relative to wild-type mice (8% to 16% 

reduction in stride length, F(1,16) = 5.515, p = 0.032) however there were no differences in 

overlap, front paw stride length, or front paw and hind paw base width (data not shown) 

suggesting that motoric synchrony is not altered. Taken together, the loss of CHIP expression 

appears to have a selective impact in motoric, sensory, and cognitive function, in particular with 

tasks attributed to cerebellar function.  
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Figure 3.5. Chip-/- Mice Have Extreme Ataxia and Other Selective Motoric and Cognitive 
Impairments.  
 
A. Latency to fall from an accelerating rotarod represented by the mean ± SEM for either Chip-/- 
or wild-type mice (n = 5 per genotype per gender). The first three trials were given on the first 
day of rotarod testing. Retest (R) indicates the highest latency across two trials given 48 hours 
after the day one trials: ** p < 0.01 comparing Chip-/- versus wild-type mice at the retest; † p < 
0.05 and †† p < 0.01 comparing the indicated time point with first trial within the genotype.  
 
B. The acoustic startle response is comprised of a prepulse followed by an acoustic stimulus (AS, 
120 decibels, dB). Both the reaction time to the AS and the magnitude of the response was 
measured.  
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C and D. Amplitude and reaction time of the startle response following AS is represented by the 
mean ± SEM for each genotype (n = 6 and 10 for Chip-/- and wild-type mice, respectively). Trials 
included no stimulus trials (No) and AS alone trials: p < 0.05 comparing Chip-/- versus wild-type 
mice across all stimulus conditions shown in (C) or as indicated by * in (D).  
 
E and F.  Time on the open and closed arms of an elevated plus maze (E) and the number of 
errors (incorrect holes explored) before finding the target hole on the Barnes maze (F) 
represented by the mean ± SEM for each genotype (n = 10): * p < 0.05 comparing Chip-/- versus 
wild-type mice.  
  



78 
 

 

 
 
Figure 3.6A. Behavioral Assessment Tests of Chip-/- Mice.  
 
The goal of these assessments was to determine the behavioral phenotype of mice with a 
deficiency in CHIP expression. Subjects were 10 wild-type mice and 10 Chip-/- mice with an 
equal number of males and females per genotype. In all tests, an observer took measures blind to 
experimental treatment (genotype). Data were analyzed using two-way ANOVAs, looking for 
effects of genotype (wild-type or Chip-/-) or sex, or when indicated, repeated measures ANOVAs. 
Fisher's protected least-significant difference (PLSD) tests were used for comparing group means 
only when a significant F value was determined.  
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Figure 3.6B-E. Prepulse Inhibition During Acoustic Startle Test and Various Measures of 
Physical Activity Throughout Behavioral Testing. 
 
B. Prepulse Inhibition During Acoustic Startle Test, depicted in Figure 3.5B. The prepulse 
inhibition was calculated as 100 - [(response amplitude for prepulse stimulus and startle stimulus 
together / response amplitude for startle stimulus alone) x 100] and represented by the mean ± 
SEM for each genotype (n = 6 and 10 for Chip-/- and wild-type mice, respectively). Four animals, 
all Chip-/- mice (three males and one female), did not show significant startle responses to the 
acoustic stimuli, suggesting auditory impairment.  Therefore, their data were removed from the 
analysis. There was no significant effect of genotype on levels of prepulse inhibition, indicating 
that the Chip deficiency did not lead to impairment in sensory gating.  This result also suggested 
that the remaining knockout mice had normal auditory function, since a prepulse stimulus only 8 
dB above background noise (the 78 dB prepulse level) decreased the startle response by more 
than 25%. These data suggest a possible motoric deficit for the decrease in startle amplitude and 
reaction time (Fig. 3.5C and 3.5D). 
 
C. The number of entries into the open and closed arms of mice in the elevated plus maze 
(EPM). There was no difference between the groups for arm entries, suggesting that wild-type 
and Chip-/- mice have equal levels of activity.  
 
D. and E. The number of crossings and rears in an open-field chamber were counted at two 
different time points (2 and 5 weeks of testing). For all data shown neither genotype nor sex had 
a significant impact on the various measures represented by the mean ± SEM for each genotype.



80 
 

 
 
Figure 6F-G: Latency in the Barnes Maze and Social Affiliation Test 
 
F. Latency in the Barnes Maze. Each mouse received one trial per day, across seven days. 
Measures were taken of latency to find the target hole until reaching the target represented by the 
mean ± SEM for each genotype (n = 10). Both wildtype and Chip-/- mice showed high latency 
scores, reflecting the performance of some animals which never left the center of the maze 
(especially on the first and second trials).  A repeated measures ANOVA did not result in any 
significant effects for genotype or gender on latency, although the significant effect for trials (the 
repeated measure) confirmed that some learning occurred in this task [F(6,108) = 10.99, p = 
.0001]. 
 
G. Social Affiliation Test. Animals were tested in a three-chambered apparatus, with the 
chambers connected by short tubes. Each mouse was first set in the middle chamber and allowed 
to explore for five minutes in the absence of another mouse (habituation period, H). Then 
measures were taken of the time each mouse spent in either and empty chamber (open squares) 
or the chamber containing an unfamiliar mouse (closed squares) for the first (1) and second (2) 
five minutes of the session. Separate repeated measures ANOVAs were performed for time spent 
in the side with the unfamiliar mouse and time in the empty side. No significant overall effects of 
either group (wild-type or Chip-/-) or gender were detected. One-way ANOVAs indicated that 
Chip-/- mice spent less time exploring during the habituation period (when both sides of the 
chamber were empty, p < 0.05), but Chip-/- mice subsequently showed normal social preference 
during the test period. These data indicate that loss of CHIP protein does not cause deficits in the 
preference for social affiliation. 
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CHIP expression in the human cerebellum and the neuropathological and reproductive 

phenotype of Chip-/- mice. In the healthy human brain, CHIP is widely expressed throughout, 

including the molecular and granular region of the cerebellum where it is abundantly expressed 

in Purkinje cells (Fig. 3.7A). A similar pattern of CHIP immunoreactivity is found in mouse 

brains.156 Histological examination of sagittal cerebellar sections from Chip-/- mice revealed 

cellular loss throughout the various lobes of the cerebellum, specifically in the Purkinje cell layer 

with noticeable degeneration and a 3-fold increase in the number of pyknotic nuclei compared to 

an intact Purkinje cell layer in wild-type cerebellum (Fig. 3.7B and Fig. 3.8A), mimicking the 

observation of Purkinje cell loss identified in the neuropathological analysis in a deceased GHS 

patient with disordered ubiquitination (RNF216 and OTUD4 mutations).136 The effect on 

Purkinje cell pathology was confirmed with the Purkinje cell-specific marker, calbindin (Fig. 

3.7C, middle). Additionally, calbindin staining revealed a mosaic expression pattern in Chip-/- 

mice where calbindin expression in the molecular layer is reduced or absent in regions with 

significant Purkinje cell loss (Fig. 3.7C, left) similar to other mouse models of cerebellar ataxia 

157. Likewise, the cerebellar regions of Chip-/- mice that do contain intact Purkinje cells exhibited 

severe dendritic swelling (Fig. 3.7C, right), a common feature in ataxias. 158, 159 Taken together, 

these data demonstrate that the complete loss of CHIP function in our mouse model results in 

behavioral and cellular phenotypes consistent with the cerebellar ataxia found in human subjects 

with the T246M mutation. 

 The profound lack of sexual development in patients II-1 and II-2 suggests that CHIP 

plays a role in neuroendocrine signaling and is necessary for proper sexual development. 

Notably, since originally deriving the Chip-/- mice,74 we have long been aware of the inability of 

Chip-/- breeding pairs to successfully mate, necessitating that the Chip-/- colony be maintained 
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through Chip+/- crossings. Not surprisingly, FSH levels in Chip-/- mice were reduced more that 

50% when compared to wild-type littermate mice, irrespective of gender (Fig. 3.9A), consistent 

with the low levels of FSH in patients II-1 and II-2 (Table 3.1). As an additional measure of 

gonadal dysfunction in Chip-/- mice, we measured testicular weight and observed a 38% decrease 

in Chip-/- testes compared to wild-type testes (Fig. 3.9B). Not surprisingly, CHIP is expressed in 

wild-type mouse testes as well as in both male and female human gonads (Fig. 3.8B and 3.8C). 

Therefore, the Chip-/- mice also appear to encompass some of the neuroendocrine deficiencies 

seen in patients II-1 and II-2 with the CHIP T246M mutation. In summary, given the likeness of 

the neurological and neuroendocrine phenotypes in the Chip-/- mice with those reported in the 

GHS patients described in this study, it is highly probably that the c.737C→T in the STUB1 gene 

results in a loss of CHIP function in these patients and directly contributes to the disease 

phenotype observed in this pedigree. 
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Figure 3.7. CHIP Expression in Human Cerebellum and the Loss of Purkinje Cells in Chip-/- 
mice. 
 
A. Immunohistochemistry of CHIP expression in adult human cerebellum from a healthy female 
(♀) and male (♂) with the major regions of the cerebellum identified: molecular layer (ML), 
Purkinje cell layer (PL), and the granular layer (GL). The colored arrows highlight intense CHIP 
immunoreactivity throughout the cerebellum including increased reactivity in Purkinje cells, 
both in the cell body (downward arrows) and dendrites (upward arrows). Scale bar represents 
100 microns.  
 
B. Representative whole cerebellar sagittal sections from wild-type and Chip-/- cerebellums 
(left) with the major regions labeled at higher power (middle) as shown in (A) stained with either 
hematoxylin and eosin (left, middle) or cresyl violet (right). The open arrows identify normal 
Purkinje cells in wild-type mice whereas the closed arrows identify the pyknotic uclei in Purkinje 
cells in Chip-/- cerebellums.  
C. Representative whole cerebellar sagittal sections from wild-type and Chip-/- cerebellums 
immunostained for calbindin (left). Magenta arrowheads (left) indicate regions with no calbindin 
immunoreactivity and the black and red boxes correspond to the higher power images (middle 
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and right, respectively). The closed arrows identify the pyknotic nuclei present in Purkinje cells 
(middle) and the cyan arrows identify swollen dendrites in Chip-/- cerebellums. (B and C) Scale 
bars for whole cerebellum and higher power images are 1 mm and 100 microns, respectively. 
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Figure 3.8. Increase in Purkinje Cell Pathology in Chip-/- Mice and CHIP Expression in Mouse 
and Human Gonads.  
 
A. Sagittal sections of whole cerebellums from either wild-type or Chip-/- mice were stained 
with crystal violet (Fig. 5B) to measure Purkinje cell pathology. Data are represented by the 
number of Purkinje cells with pyknotic nuclei per 100 health Purkinje cells with each data point 
corresponding to one sagittal section (n = 18). A two-tailed t test was used to compare the two 
genotypes. Chip-/- mice had three-fold more pyknotic Purkinje cells compared to wild-type mice 
(1079 and 324 across all 18 sections from 3 different mice per genotype, respectively) and a 
decrease in healthy Purkinje cells (3390 and 4051, respectively).  
 
B. Immunoblot confirmation of CHIP protein expression in extracts isolated from wild-type 
testes.  
 
C. CHIP is expressed in both human testes (upper) in both Leydig cells (open arrows) and 
seminiferous ductal cells (closed arrows) and throughout human ovarian stromal cells (lower). 
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Figure 3.9. Hypogonadism in Chip-/- mice.  
 
A. Serum levels of FSH in wild-type and Chip-/- mice represented by the mean ± SEM for each 
genotype (n = 10): * p < 0.05, ** p < 0.01 comparing Chip-/- versus wild-type mice. 
 
B. Representative pictographs of testes and testicle weights from wild-type and Chip-/- mice. 
Scale bar represents 20 mm. Weights are represented in mg of testicle per mm of tibia length to 
control for animal size and represented by the mean ± SEM for each genotype (n = 10 and 8, 
wild-type and Chip-/- mice, respectively). 
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Discussion 

There is considerable heterogeneity in terms of age of onset and progression of symptoms 

within groups of clinical syndromes presenting with both ataxia and hypogonadism.133 Previous 

studies have found mutations in POLR3A and GBA2 associated with both ataxia and 

hypogonadism,160, 161 but given the additional complex clinical features in these patients, they 

were not diagnosed with GHS. Immediately prior to our discovery of STUB1 mutation in GHS, 

disordered ubiquitination was proposed as a contributing factor to the etiology of GHS, 

demonstrated by the identification of mutations in the E3 ligase RNF216 and deubiquitinase 

OTUD4 associated with GHS in non-Asian populations.136 Consistent with an integral role for 

ubiquitination in GHS pathophysiology, in this study we identified a mutation in the STUB1 gene 

encoding the E3 ligase CHIP (Fig. 3.2A and 3.2C) that results in a GHS phenotype (Fig. 3.1A 

and 3.1B).  

Although both hypo- and hypergonadotropic forms of GHS have been reported, most GHS 

patients, including the RNF216-associated GHS patients, usually present with hypogonadotropic-

induced hypogonadism.132, 136 In our patients, the level of gonadotropin is low given their age, 

but is in the normal range for pre-pubescent individuals; this may indicate a more mild 

abnormality in the reproductive-endocrine axis, although the lack of sexual development remains 

remarkable. It is intriguing that deficiency in either RNF216 or CHIP can both lead to a similar 

clinical syndrome. One possible explanation is RNF216 and CHIP ubiquitin ligase substrates 

overlap or may converge to a shared pathway that contributes to GHS. Alternatively, RNF216 

may have some physiological functions that overlap with the functions of CHIP. It is notable 

however, that outside of the fundamental phenotype of GHS, ataxia and hypogonadism, there are 

some other distinct differences in the clinical features of our patients to those harboring RNF216 
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and OTUD4 mutations; most notably, we did not observe dementia or white matter lesions 

described previously.136 However, as mild cognitive impairment was observed in our patients 

(Table 3.1) and likewise in Chip-/- mice (Fig. 3.5), we speculate that cognitive impairment may 

also act as a core clinical feature in the STUB1-associated GHS patients. Long-term follow-up of 

these patients will be needed to clarify this issue.  

 Our molecular characterization of the STUB1 c.737C→T, p.Thr246Met mutation 

demonstrates a loss in ubiquitin ligase activity (Fig. 3.3D and 3.3E), while still maintaining 

chaperone interactions (Fig. 3.3B and 3.3C). The ability of CHIP-T246M to maintain its 

chaperone interaction without a functional U box may result in a dominant-negative phenotype 

versus a complete loss of CHIP function. Generation of a CHIP-T246M knock-in mouse and 

comparison of the pathophysiology related to GHS phenotypes will provide valuable insight into 

the role of CHIP in this disease. Nonetheless, Chip-/- mice share several striking physiological 

similarities to GHS patients with ataxia and hypogonadism (Fig. 3.1), including neuronal 

degeneration (Fig. 3.7B and 3.7C), pronounced ataxic motor behavior (Fig. 3.5) and reproductive 

impairments (Fig. 3.9). This strong similarity between the findings in our GHS patients and those 

in the Chip-/- mouse model establishes an important role for CHIP in the maintenance of 

cerebellar function and the reproductive-endocrine axis. Taken together, our results demonstrate 

that deficiency of the ubiquitin ligase CHIP causes ataxia with hypogonadism and further 

highlight the role of aberrant ubiquitin ligase function in the pathogenesis of GHS. 

Subsequent to our discovery there have been multiple reports utilizing clinical genomics to 

identify mutations in STUB1 in GHS as well as other related forms of ARCA. The majority of 

these mutations are nicely reviewed by Ronnebaum et al. here.89  To date, 7 independent reports 

including our own have identified 10 STUB1 mutation genotypes in a diverse pool of ARCA 
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patients.90, 162-166 These 10 genotypes feature 15 unique mutations that have led to disease 

pathology in patients harboring either compound heterozygous or homozygous mutations (Fig. 

3.10). The amino-acid substitutions reported result in nonsense, missense, frameshift and 

splicing mutations and are predicted to significantly alter protein function. The CHIP mutations 

associated with ARCAs are present in all three of CHIP’s functional domains, although 

interestingly the majority are concentrated in the charged domain and the Ubox domain (Fig. 

3.10), such that one might predict negative implications for CHIP dimerization and ubiquitin 

ligase activity. Given the clinical heterogeneity of the ARCA patients harboring these STUB1 

mutations it begs the question whether the affected protein domain may directly correlate to 

clinical phenotype. For example, cognitive impairment occurs in five out of six genetic 

signatures harboring mutations in the U-box domain, such that residual CHIP activity involving a 

defective or truncated U-box domain but intact TPR domain could directly correlate to specific 

clinical symptoms in some patients.  

As a direct result of our report and the subsequent clinical genomics reports of STUB1 

mutation in a heterogeneity of ARCAs, including GHS, a novel disease classification, Autosomal 

Recessive Spinocerebellar Ataxia-16 (SCAR16) has recently been established. SCAR16 is 

precisely defined as spinocerebellar ataxia caused by homozygous or compound heterozygous 

mutation in the STUB1 gene on chromosome 16p13. SCAR16 is described as a progressive 

neurologic disorder characterized by truncal and limb ataxia resulting in gait instability. This 

novel classification better defines the clinical symptoms specifically correlated with STUB1 

mutation in ARCAs to include ataxia, dysarthria, nystagmus, spasticity of the lower limbs, and 

mild peripheral sensory neuropathy. Additionally, this new definition encompasses those cases of 

STUB1 ataxia without hypogonadism that would not fall under the GHS terminology. While 
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STUB1 mutations in GHS may in fact be relatively rare, Synofzik et al. performed whole exome 

sequencing to evaluate the frequency of STUB1 mutations in ataxia. They screened for STUB1 

mutations in a large cohort of Caucasian degenerative ataxia (n=167) and spastic paraplegia 

patients (n=133) as well as an additional 1707 exomes from 891 index families with other 

neurological diseases and discovered STUB1 mutations have a high incidence rate of 1.8% (3 of 

167) in degenerative ataxia patients, with 0% occurring in the other two groups.90 This high 

frequency of STUB1 mutation in ataxia further highlights the importance of this new definition 

of ataxias specifically linked to STUB1 mutation. Future studies of animal models harboring the 

identified disease-causing mutations will undoubtedly allow us to better define whether the 

clinical heterogeneity seen in SCAR16 can be related to the location of the mutations as well as 

better define the molecular functions of CHIP, particularly in the brain.  Furthermore, additional 

clinical genomics studies across even larger, more diverse cohorts of ataxic patients will more 

precisely define both the spectrum of STUB1 mutations represented by SCAR16 and the 

specifically associated clinical symptoms. SCAR16 represents the first definition of human 

disease caused by dysfunctional CHIP protein, or “CHIPopathy.” Pre-clincal data has long 

implied a role for CHIP not only in neurodegenerative diseases but also cardiac pathologies and 

cancer such that as whole exome sequencing strategies are more broadly utilized clinically it may 

not be surprising if other CHIPopathies are discovered. With this increased understanding of 

clinical CHIPopathies will come an even greater opportunity to utilize the wealth of pre-clinical 

data surrounding CHIP biology to the guide the potential development of improved therapeutic 

strategies for these diseases. 
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Figure 3.10. SCAR16 human CHIP mutations 
 
A. STUB1 genomic structure and corresponding CHIP protein domains are diagramed. The 

locations (arrows) of the various mutations associated with SCAR16 and respective nucleic 
acid and amino acid changes are indicated in the inset table. Joined arrows indicate a 
compound heterozygous mutation. 
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Experimental Procedures 

Exome sequencing and candidate gene validation. Targeted exon enrichment was performed with 

the use of the NimbleGen SeqCap EZ Human Exome Library (Roche - NimbleGen Inc). The 

exon-enriched DNA libraries were subjected to paired-end sequencing with the Illumina 

Hiseq2000 platform (Illumina). Sequence data were mapped with SOAP2 167 and BWA 168 onto 

the hg18 human genome as a reference. We generated an average of 15 Gb of sequence with 90× 

average coverage for each individual as single-end, 80-bp reads, calls with variant quality less 

than 20 were filtered out and 99% of the targeted bases were covered sufficiently to pass our 

thresholds for calling SNPs and small indels (Beijing Genomic Institute, Shenzhen, China). 

Furthermore, coding regions of the STUB1, RNF216 and OTUD4 gene were amplified by 

polymerase chain reaction (PCR) for conventional direct sequencing. Purified PCR products 

were sequenced on an ABI 3500 Genetic Analyzer (Applied Biosystems, CA). Sanger 

sequencing results were analyzed by Mutation Surveyor (Softgenetics, PA) and reconfirmed by 

the same procedure. 

Expression plasmids and recombinant proteins. Mammalian expression plasmids pcDNA3-myc-

CHIP, pcDNA3-myc-CHIP-K30A, pcDNA3-myc-CHIP-H260Q, HA-Ubiquitin and FLAG-

HSP70 were used as described previously 75, 128, 135. CHIP, CHIP-H260Q, CHIP-K30A, CHIP-

T246M and HSC70 recombinant proteins were produced in Escherichia coli BL21(DE3) as His-

tagged fusion proteins by induction with 0.1mM isopropyl-1-thio-β-D-galactopyranoside 

overnight at 18 °C followed by purification with HisTrap™ HP columns (GE Healthcare), 

concentrated, and stored in in 20 mM HEPES pH 7.4 with 150 mM NaCl.   

Mutagenesis. A point mutation of threonine to methionine at position 246 of CHIP was created 

by site-directed mutagenesis using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs, 
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E0554S) according to manufacturer’s instructions using previously described pcDNA3-myc-

CHIP template 128 and mutagenic primers 5’-CCGTGCATCATGCCCAGTGGC-3’ and 5’-

CTCCCGCATCAGCTCAAAGC-3’ (BaseChanger software, New England Biolabs). The myc-

CHIP-T246 expression plasmid was produced by transformation in Escherichia coli DH5α, 

purified, and the single-base pair substitution was verified by DNA sequencing.  

In vitro ubiquitination reactions. In vitro ubiquitination reactions were carried out as previously 

described 128. Briefly, 0.75 μg (1 μM) of bacterially-expressed HSC70 was incubated in the 

presence of 2.5 μM CHIP or CHIP mutants, 50 nM purified Ube1 (BostonBiochem, E305), 2.5 

μM purified UbcH5c (BostonBiochem, E2-627) and 0.25 μM ubiquitin (BostonBiochem, 

U100H) in 50 mM Tris pH 7.5, 600 μM DTT, 2.5 mM MgCl2-ATP (BostonBiochem, B20) in a 

total volume of 10 μl for 1 h at 37 °C. Samples were analyzed by 4-12% Bis-Tris SDS-PAGE 

and immunoblotting was performed with either anti-HSC70 (Enzo, ADI-SPA-815) or anti-CHIP 

(Sigma, S1073) antibodies. 

Cell culture and transfection. COS-7 cells were maintained in Dulbecco's modified Eagle's 

medium (Invitrogen) supplemented with 10% fetal bovine serum (Sigma) at 37 °C in an 

atmosphere of 5% CO2. Cell transfections were performed using X-tremeGENE 9 (Roche) with 

the indicated plasmid DNA at a 1:3 DNA to X-tremeGENE 9 ratio. 

Immunoprecipitation/Co-immunoprecipitation of FLAG-HSP70/CHIP from COS-7 cells. 1E6 

COS-7 cells were plated in normal growth media in 10 cm2 tissue culture-treated dishes and 

incubated overnight under normal growth conditions. Cells were then transiently transfected with 

pcDNA3-mycCHIP (0.5 μg), pcDNA3-mycCHIP T246M (2.5 μg), pcDNA3 (2.5 μg) and/or 

FLAG-HSP-70 (2 μg) and HA-Ubiquitin (1 μg) and incubated for 24 h under normal growth 

conditions, followed by treatment with 20 μM MG132 or DMSO for 2.5 h prior to harvest. Cells 

http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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were washed in cold PBS and lysed in Cell Lytic M (Sigma) containing 1X HALT 

protease/phosphatase inhibitor (Pierce) and 50uM PR619 (Lifesensors). Lysates were clarified 

by centrifugation at 15,000 x g for 10 min. Total protein concentration was determined by BCA 

protein assay (Pierce) and 1 mg total protein clarified lysate incubated overnight at 4 °C with 20 

μg of either EZview™ Red ANTI-FLAG® M2 or ANTI-HA Affinity Gel (Sigma). The gel was 

then washed five times with Tris-Buffered Saline with 0.5% Nonident P-40; subsequently, 

proteins were eluted in reducing SDS-sample buffer and analyzed by SDS-PAGE and western 

blotting was performed using anti-Hsp70 (Enzo ADI-SPA-810), anti-FLAG HRP (Sigma, 

A8592), anti-HA HRP (Sigma, A6533) and anti-myc HRP (Sigma, A5598) antibodies. 

Immunoprecipitation/Co-immunoprecipitation of HSC70/CHIP from COS-7 cells. 1E6 COS-7 

cells were plated in normal growth media in 100mm tissue culture treated dishes and incubated 

overnight under normal growth conditions. Cells were then transiently transfected with pcDNA3-

mycCHIP (1.5 μg), pcDNA3-mycCHIP T246M (4 μg) or pcDNA3 (1.5 μg) and HA-Ubiquitin 

and incubated for 24 h under normal growth conditions, followed by treatment with 20 μM 

MG132 or DMSO control for 2.5 h prior to harvest. Cells were washed 1X in cold PBS and lysed 

in Cell Lytic M (Sigma) containing 1X HALT protease/phosphatase inhibitor (Pierce) and 50 μM 

PR619 (LifeSensors). Lysates were clarified by centrifugation at 15,000 x g for 10 min. Total 

protein concentration was determined by BCA protein assay (Pierce) and 1.8 mg total protein 

clarified lysates were incubated overnight at 4 °C with 10 μg anti-Hsc70 (Enzo ADI-SPA-815) 

or rat IgG antibodies. 120 μl Protein-G Dynabeads (Invitrogen) were then added to each sample 

and incubated for 0.5 h at room temperature with rotation. Beads were washed four times with 

Phosphate-Buffered Saline with 0.05% Tween-20; subsequently, proteins were eluted in SDS-

sample buffer and analyzed by SDS-PAGE and western blotting using anti-Hsc70 (Enzo ADI-
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SPA-815), anti-CHIP (abcam, Ab4448), anti-HA HRP (Sigma, A6533) and anti-myc HRP 

(Sigma, A5598) antibodies. 

Mouse behavioral assessments.  

Home cage behavior. In the first week of testing, a bedding nestlet was added to each home cage 

of the experimental groups. 24 hours later animals were observed to note if nests had been 

formed from the bedding material and, in the case of multiply-housed mice, if the animals 

huddled together in the nest. Nests were observed in each cage, and no aberrant behavior was 

observed. 

 

Elevated plus maze test for anxiety. The elevated plus maze (EPM) test was performed as the 

first behavioral test to avoid possible confounding effects of extensive handling. Mice were 

given one five-minute trial on the plus maze, which had two walled arms (the closed arms) and 

two open arms. The maze was elevated 52 cm from the floor, and the arms were 51 cm long. 

Animals were placed on the center section (9.5 cm x 9.5 cm), and allowed to freely explore the 

maze. Measures were taken of time on, and number of entries into, the open and closed arms.  

Activity. One day following the EMP test (week two), exploratory activity in a novel 

environment was further assessed by a five-minute trial in an open field chamber (40 cm x 30 

cm). A grid of squares (10 X 6) was drawn on the floor of the chamber, and counts were taken of 

number of squares crossed and rears during the trial. A second activity test was performed during 

week five of testing.  

Neurophysiological screen and gait testing. The neurophysiological screen consisted of several 

measures to assay overall appearance and behavior of the mice. Measures included general 

observations on the animal's appearance, body posture, and normality of gait. Normal reflexive 
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reactions to a gentle touch from a Q-tip to the whiskers on each side of the face, and the 

approach of the Q-tip to the eyes, were assessed. Each mouse was placed in a small, empty 

plastic cage, and ability to remain upright when the cage was moved from side-to-side or up-and-

down was noted. Locomotor coordination was assayed by allowing the mouse to walk across an 

elevated dowel (wrapped in nylon rope to facilitate grasping) and to climb a similar pole.  Each 

subject was also placed on a wire grid and allowed to hang for two minutes. Reaction to 20 

seconds of tail-suspension was observed. For the gait test, a footprint record was generated by 

painting the paws of the mice and letting the animals run down a narrow alley into a small box. 

Front paws were painted yellow and hind paws were painted blue with a nontoxic poster paint. 

Each mouse was given two trials, and measures of front paw and hind paw stride lengths, and 

front paw and hind paw base widths, were taken. In addition, measures were also taken for paw-

print overlap. 

Rotarod. Mice were tested on an accelerating rotarod (IITC Inc., Woodland Hills, CA) to assess 

motor coordination. For the first test session, animals were given three trials, with 45 seconds 

between each trial. Two additional trials were given 48 hours later. RPM (revolutions per 

minute) was set at an initial value of three, with a progressive increase to a maximum of 30 RPM 

across three minutes (the maximum trial length).  Measures were taken for latency to fall from 

the top of the rotating barrel. 

Acoustic startle. This test is based on the measurement of the reflexive whole-body flinch, or 

startle response, that follows exposure to a sudden noise.  Assessments included startle 

magnitude and prepulse inhibition, which occurs when a weak prestimulus leads to a reduced 

startle in response to a subsequent louder noise.  Animals were tested with a San Diego 

Instruments SR-Lab system, using the procedure as described in 169. Briefly, mice were placed in 
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a small Plexiglas cylinder within a larger, sound-attenuating chamber (San Diego Instruments). 

The cylinder was seated upon a piezoelectric transducer, which allowed vibrations to be 

quantified and displayed on a computer. The chamber included a houselight, fan, and a 

loudspeaker for the acoustic stimuli. Background sound levels (70 dB) and calibration of the 

acoustic stimuli were confirmed with a digital sound level meter (San Diego Instruments). Each 

mouse was given one session, consisting of 42 trials that began with a five-minute habituation 

period. There were seven different types of trials: the no-stimulus trials, trials with the acoustic 

startle stimulus (120 dB) alone, and trials in which a prepulse stimulus (either 74, 78, 82, 86, or 

90 dB) occurred 100 ms before the onset of the startle stimulus. Measures were taken of the 

startle amplitude for each trial, and an overall analysis was performed for each animal’s data for 

levels of prepulse inhibition at each prepulse sound level. 

Spatial learning on the Barnes maze. The Barnes maze consisted of a large, brightly lit, circular 

platform (diameter = 122 cm), elevated 96.5 cm from the floor and positioned like a table, with 

40 holes (diameter = 5 cm) drilled along the perimeter. An escape box containing fresh nesting 

material was placed under one of the holes, and the task required that the animal learn which 

hole allowed escape from the maze surface. Each mouse was assigned a particular "target" hole, 

which remained constant across trials, and was different for each subject. At the beginning of 

each trial, the animal was placed in the center of the maze and allowed 5 minutes to find and 

enter the escape box. Subjects received one trial per day, across seven days. Measures were taken 

of latency to find the target hole and number of errors (incorrect holes investigated) until 

reaching the target. 

Social affiliation test. Animals were tested in a three-chambered apparatus, with the chambers 

connected by short tubes. Each mouse was first set in the middle chamber and allowed to explore 
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for five minutes. After the habituation period, the animal was removed and an unfamiliar male 

probe mouse (C57BL/6J strain) was set in one of the side chambers (the particular side alternated 

between trials). The probe mouse was enclosed in a small metal cage, which allowed nose 

contact between the bars. The test mouse was then returned to the middle chamber and allowed 

to freely explore for a ten-minute session. Measures were taken of the amount of time spent in 

each chamber of the apparatus for the first and second five minutes of the session. 

Histology. Mouse brains were carefully excised, gently rinsed, fixed in 4% paraformaldehyde for 

24 h, and then placed in 70% ethanol prior to embedding into paraffin. Five micron sections were 

processed for histology, and stained with either hematoxylin and eosin or cresyl violet for routine 

histological examination. Unstained sections were used to detect calbindin expression using 

immunohistochemistry. Slides were stained per the manufacturer instructions using the calbindin 

D1I4Q rabbit monoclonal antibody (Cell Signaling, 13176) with citrate antigen retrieval, 

SignalStain® Boost Detection Reagent (Cell Signaling, 8114), and SignalStain® DAB Substate 

Kit (Cell Signaling, 8059). Degenerating neurons were characterized via light microscopic level 

by cell body shrinkage, loss of Nissl substance and a small/shrunken darkly stained (pyknotic) 

nucleus as described 170. Human cerebellum, testes, and ovary sections were from the Human 

Protein Atlas tissue array 171 and were stained with anti-CHIP antibody (Sigma, C9243). 
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CHAPTER IV 

 

THE UNFOLDING TAIL OF CHIP MUTATION IN SCAR16 DISEASE PATHOLOGY: 
PARTIAL LOSS OF FUNCTION AS A DRIVER OF DISEASE 1 

  

 

Our findings and subsequent reports of human STUB1 mutation in various forms of 

ataxia have led to the establishment of a new disease designation, SCAR16 (Autosomal 

Recessive Spinocerebellar Ataxia-16), to describe spinocerebellar ataxia caused by homozygous 

or compound heterozygous mutation in the STUB1 gene that encodes the CHIP protein. Using 

recombinant proteins as well as in cell culture models, we previously demonstrated that 

introduction of the T246M mutation into CHIP is associated with SCAR16 and results in loss of 

CHIP ubiquitin ligase activity, and that CHIP-/- mice have behavioral and reproductive 

impairments that mimic some of the clinical features of GHS. However, due to the limitations of 

exogenous overexpression studies and our findings that CHIP-/- mice do not exactly phenocopy 

the diverse disease heterogeneity in SCAR16, we wanted to extend our initial findings and study 

the biophysical, cellular and in vivo repercussions of T246M CHIP mutation in a more disease-

relevant context.  

Using multiple biophysical approaches, we demonstrate that T246M mutation results in 

disorganization and misfolding of the CHIP U-box domain, which disrupts its dimerization and 

promotes both its aggregation and enhanced clearance by a proteasome-dependent mechanism. 

In addition to its role as an E3 ubiquitin ligase, CHIP has additional roles within the cell as a co-
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chaperone that contribute to PQC as well as emerging roles as a metabolic regulator and nuclear 

protein involved in DNA repair. Using both in vitro assays as well as a primary cell culture 

model, we demonstrate that while ubiquitin ligase activity is lost as a consequence of T246M 

mutation, T246M CHIP maintains some function in these other roles that may directly impact the 

cellular stress response and also contribute to SCAR16 pathophysiology. Furthermore, utilizing 

CRISPR/Cas genome editing technology, we established a mouse model (T247M) that mimics 

the human mutation and observed behavioral deficits attributable to cognitive cerebellar 

dysfunction not observed in our total loss of CHIP animal model, as well as deficits in learning 

and memory attributable to hippocampal dysfunction that are reflective of cognitive deficits 

reported in SCAR16 patients. We conclude that T246M mutation is not equivalent to total loss of 

CHIP and that specific CHIP mutations in SCAR16 likely have varying biophysical and 

functional consequences to CHIP that may directly correlate to clinical phenotype. Sadly, the 

therapeutic options for patients with ARCAs, including SCAR16 are severely limited. Our 

findings both further expand our basic understanding of CHIP biology and provide meaningful 

mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may 

be used to inform the development of novel therapeutics for this devastating disease. 
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Introduction 

Our findings and subsequent reports of human STUB1 mutation in various forms of 

ataxia have led to the establishment of a new disease designation, SCAR16 (Autosomal 

Recessive Spinocerebellar Ataxia-16) to describe spinocerebellar ataxia caused by homozygous 

or compound heterozygous mutation in the STUB1 gene that encodes the CHIP protein. Sadly, 

the therapeutic options for patients with ARCAs, including SCAR16 are severely limited. 

Understanding the underlying molecular mechanisms associated with CHIP mutation in SCAR16 

will provide insight required for the development of effective therapies for this devastating 

degenerative disease.  

Using recombinant proteins, as well as in cell culture models, we demonstrated that 

introduction of the T246M mutation into CHIP associated with SCAR16 results in loss of CHIP 

ubiquitin ligase activity. However, the T246M CHIP protein does still bind chaperone proteins, 

suggesting it may retain some chaperone activity. Interestingly, we also showed that CHIP-/- 

mice have behavioral and reproductive impairments that mimic some of the clinical features of 

GHS. However, the complete genetic depletion of CHIP in these mice results in other phenotypic 

changes, including accelerated aging and metabolic complications. These additional changes 

may be caused by compensatory mechanisms in the mouse model or may be due to the total loss 

of all CHIP functions. 8, 155 While these studies provide powerful evidence that SCAR16 can be 

caused by a loss of function mutation in CHIP and further highlight the role of disordered 

ubiquitination and PQC in the pathogenesis of neurodegenerative disease, they are limited in 

their direct application to human pathophysiology by two important constraints. First, these cell-

based studies were all performed in the context of exogenous overexpression of T246M CHIP 
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protein. While these types of studies provided a powerful tool to begin to understand the biology 

of T246M CHIP in cells, their interpretation is limited because CHIP protein is not expressed at 

physiologic levels, and in some cases is being studied in cells that normally do not express CHIP 

protein. Second, while the CHIP-/- mice mimic some of the phenotypes of SCAR16 patients, they 

are not the appropriate model for understanding the in vivo repercussions of CHIP mutation in 

SCAR16. To date, 7 independent reports, including our own, have identified 10 STUB1 mutation 

genotypes in a diverse pool of ARCA patients.90, 162-166 These 10 genotypes feature 15 unique 

mutations that have led to disease pathology in patients harboring either compound heterozygous 

or homozygous mutations. The amino acid substitutions reported result in nonsense, missense, 

frameshift and splicing mutations and are predicted to significantly alter protein function. There 

is great clinical heterogeneity of the ARCA patients harboring these STUB1 mutations. This 

suggests that specific CHIP mutations may have varying biophysical and functional 

consequences to CHIP that may directly correlate to clinical phenotype. Clearly, in this context 

an animal model with a total loss of CHIP does not adequately represent the spectrum of human 

disease represented by SCAR16. For these reasons, we wanted to extend our initial findings and 

study the biophysical, cellular and in vivo repercussions of T246M CHIP mutation in a more 

disease-relevant context. 

Initially we hypothesized that the functional loss of CHIP ubiquitin ligase activity as a 

result of T246M mutation was the result of catalytic inactivation of the U-box domain. However, 

based upon our understanding of the CHIP structure-function relationship, several additional 

structural consequences of T246M CHIP could also result in functional loss of ubiquitin ligase 

activity. As described previously, CHIP has three important functional domains: the 

tetracopeptide repeat (TPR) domain, the charged coiled-coil (CC) domain, and the U-box 
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domain. The TPR domain is required for chaperone protein binding. Conversely, CHIP 

dimerization and structural conformational flexibility are required for activation of the bound E2 

conjugating enzyme and subsequent ubiquitin transfer. This dimerization and conformational 

flexibility are dependent upon both the U-box domain and CC domain. 79, 80 Importantly, while 

the CHIP mutations associated with ARCAs are present in all three of CHIP’s functional 

domains, the majority are concentrated in the charged domain and within the U-box domain, 

including T246M. This suggests that the structural consequences of T246M mutation may not be 

as straightforward as simple catalytic activation, but might instead reflect loss of CHIP 

dimerization ability or general destabilization of the U-box that results in a misfolded protein that 

may retain some normal functions or may instead be damaging. Here we utilize multiple 

biophysical methods and cell culture studies to evaluate the consequences of T246M mutation on 

CHIP dimerization status and U-box domain structure and stability in order to better define the 

structural implications of CHIP mutation in SCAR16. 

In addition to its role as an E3 ubiquitin ligase, CHIP has many additional roles within 

the cell. As a co-chaperone, CHIP interacts with Hsp-bound proteins to aid in substrate 

stabilization and refolding and regulates activation of the stress-chaperone response through 

activation of HSF1.72-74 Additionally, our laboratory has recently uncovered a range of new and 

unexpected functional roles for CHIP, including involvement in cardiac metabolic homeostasis 

(as a regulator of AMP-activated protein kinase (AMPK)) and DNA damage repair (as a 

regulator of Sirtuin-6 (SirT6)).8, 87 Because CHIP is such a multi-faceted protein, in order to fully 

appreciate how CHIP mutation drives disease pathology in SCAR16, we evaluated the 

consequences of CHIP mutation from multiple angles. Here we determine the effects of T246M 

mutation on CHIP function in its traditional roles as an E3 ubiquitin ligase and co-chaperone, as 
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well as on the emerging functions of CHIP as a direct chaperone and regulator of AMPK and as 

a nuclear protein involved in DNA damage repair.  

To evaluate the pathophysiological implications of T246M mutation in vivo, we 

generated a mouse model (T247M) that mimics the human mutation. We used this model to 

validate our biophysical studies and cellular models in the genomic context of the mutation vs. 

overexpression studies at super-physiological levels of protein in less disease-relevant cell types. 

Additionally, we performed an in-depth behavioral assessment of these mice to determine the 

effects of T246M mutation at a whole-animal level, begin to understand the pathophysiology of 

T246M in vivo and validate this animal model as a representative of SCAR16 human disease. 

Studying T246M mutation both in vitro and in vivo has allowed us a unique opportunity to begin 

to delineate the contribution of co-chaperone, ubiquitin ligase activity and other emerging CHIP 

activities to specific deficits observed in vitro and in vivo in a disease-relevant context. This 

biophysical, cellular and in vivo characterization of T246M mutation in SCAR16 will provide 

valuable insight required for the development of effective therapies for this devastating 

degenerative disease.  
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Results 

The T246M mutation destabilizes the CHIP U-box and promotes aggregate formation in vitro. 

Asymmetric homodimerization of CHIP as well as conformational flexibility are required for 

CHIP ubiquitin ligase activity. Critical to both the dimerization and conformational flexibility is 

an intact U-box domain 128, 172. T246, which is highly conserved across CHIP homologs, is 

located within the U-box domain of CHIP. Furthermore, T246 is located in the core of a 

conversed beta hairpin turn that lies at the interface between two dimerized CHIP molecules. We 

hypothesized that this amino acid substitution within the CHIP U-box domain may have overall 

structural consequences and/or affect its ability to form functional dimers, consequently reducing 

or abolishing CHIP’s ubiquitin ligase function towards both chaperone and non-chaperone 

substrates and leaving its ability to function as a chaperone intact. To test the effects of T246M 

substitution on U-box stability, we performed solution structure NMR on the isolated WT and 

T246M CHIP U-box domain. NMR has evolved as the main technique to obtain structural 

information at atomic resolution in solution on  proteins and allows for the determination of 

protein’s structures as well as their interactions. While the WT CHIP U-box showed distinct 

peaks across the N and H spectrums, consistent with a stable, structured protein, the T246M 

spectra revealed broad, fuzzy peaks, overlapping in the middle of the N and H spectrums 

consistent with misfolded or conformationally diverse molecules (Fig. 4.1A). This was 

confirmed by collecting spectra at additional temperature (data not shown) with similar results. 

Having demonstrated that NMR the T246M U-box spectrum was not consistent with a well-

folded protein regardless of temperature, we wanted to confirm this lack of stable structure by 

another method. Circular dichroism spectroscopy was collected for both WT and T246M CHIP 

U-box protein at 15°C in 10 mM sodium phosphate pH 7.0 with 20 mM NaCl and 1 mM DTT. 
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The protein was at 0.25 mg/mL in both cases according to UV absorbance at 280 nm. These 

conditions were chosen to optimize the spectrum of the WT protein, which demonstrates clear 

secondary structure including significant α-helical character (dips around 208 and 222 nm) (Fig. 

4.1B, left). The T246M mutant protein was at the same buffer conditions and protein 

concentration; however, the signal is much weaker and is consistent with more random coil or 

less stable protein. Further, we then monitored the protein melting temperature (Tm) at 222 nm, 

which corresponds to α-helical structures. The WT protein clearly shows a loss of signal as the 

temperature increases with a Tm around 30°C. Again, the T246M protein was not well-folded to 

begin with, and I observed no real change with temperature (Fig. 4.1B, left). Together these data 

suggest the T246M mutation destabilizes the U-box domain, resulting in a loss of secondary α-

helical structure and protein misfolding.  

To test the effects of T246M substitution on CHIP dimerization status, we purified full-

length WT, T246M, K30A and H260Q mutant recombinant protein and performed dynamic light 

scattering (DLS). DLS measures the intensity of light scattered by molecules as a function of 

time, such that in solutions of equal concentration one can determine the fraction of each sample 

that exists in various multimeric states (monomer, dimer, trimer, etc.). Interestingly, by DLS we 

observed that both WT and K30A CHIP exist primarily as dimer, with a small population of 

trimer and tetramer (which we were unable to resolve). However, T246M mutation as well as the 

other U-box domain mutation H260Q result in little to no detectable CHIP dimer and a dramatic 

shift to primarily large multimeric aggregates (Fig 4.1C). Together these data suggest that 
T246M mutation results in dramatic structural instability and disorganization of the CHIP U-box 

that inhibits dimer formation and promotes the formation of large multimeric aggregates, likely 

resulting in significant functional consequences particularly to CHIP ubiquitin ligase activity. 
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Figure 4.1 The T246M mutation in CHIP results in the formation of large multimeric aggregates 
in cells.  

A. 600-MHz 15N-1H transverse relaxation-optimized spectroscopy-HSQC spectra collected at 
293K for 2H,15N-labeled WT (left) and T246M (right) CHIP U-box (218-303). 
 

B. Circular dichroism spectroscopy data collected for both WT (blue) and T246M (red) CHIP 
U-box (218-303) at 0.25 mg/mL at 15°C in 10 mM sodium phosphate pH 7.0 with 20 mM 
NaCl and 1 mM DTT (left). Melting point (Tm) determination for WT and T246M CHIP U-
box (218-303) at 222 nm (right). 

 
C. Size distribution of full-length recombinant WT (red), T246M (blue), K30A (green) and 

H260Q (pink) CHIP at 0.5mg/mL as determined by DLS measurements. Peaks representing 
CHIP dimer, trimer/tetramer, and large, multimeric aggregates are indicated with 
corresponding molar mass values.  
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The T246M mutation in CHIP results in the formation of large multimeric aggregates in cells. 

As we observed in vitro, T246M mutation in CHIP dramatically destabilizes the CHIP U-box 

domain and results in a loss of secondary α-helical structure (Fig. 4.1A, B). Given that we 

observed the formation of large multimeric T246M CHIP aggregates in vitro (Fig. 4.1C), we 

hypothesized that the T246M substitution would also lead to the formation of multimeric CHIP 

aggregates in cells. To test the effect of the T246M substitution on CHIP’s dimerization status, 

we first expressed either myc-tagged wild-type CHIP (CHIP-WT) or CHIP engineered with a 

methionine substituted for threonine at residue 246 (CHIP-T246M) as well as a TPR-domain 

mutant K30A CHIP and an additional U-box domain mutant H260Q in COS-7 cells and 

performed blue native polyacrylamide gel electrophoresis (BN PAGE) and Western blotting for 

myc-tagged CHIP. As expected, both the WT and K30A proteins migrate at approximately 70 

kDa, as predicted for a CHIP dimer. However, both U-box domain mutants, T246M and H260Q 

are detected as higher molecular weight species, suggesting they exist in cells predominantly as 

large, multimeric aggregates (Fig. 4.2A). We subsequently performed immunocytochemistry for 

myc-tagged CHIP protein to observe CHIP localization and aggregation in the same model of 

exogenous CHIP expression in COS-7 cells. Not surprisingly, WT protein is detected as diffuse 

staining throughout the cytoplasm and within the nucleus, while T246M protein appears as 

punctate staining in the cytoplasm that we hypothesize represents accumulations of multimeric 

CHIP aggregates (Fig. 4.2B). Taken together, these data suggest that in cells T246M protein is at 

least partially misfolded as a result of disorganization of the U-box domain that results from the 

amino acid substitution. This inhibits proper dimerization between T246M CHIP molecules and 

likely contributes to the loss of ubiquitin ligase activity of T246M CHIP previously observed 

(Fig. 3.3).  
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Figure 4.2. The T246M substitution mutation in CHIP results in the formation of large 
multimeric aggregates in cells. 

A. COS-7 cells were co-transfected with the indicated vectors (transgenes, CTL=pcDNA3, 
WT=pcDNA3-myc tagged CHIP, T246M=pcDNA3-myc tagged CHIP-T246M, 
K30A=pcDNA3-myc tagged CHIP K30A, H260Q=pcDNA3-myc tagged CHIP-H260Q). Cells 
were collected on ice and total protein collected and freshly separated by BN PAGE and 
immunoblotted (IB) with the indicated antibodies. The same samples were also separated on a 
denatured reducing gel and immunoblotted with the indicated anti-myc CHIP antibody to detect 
total CHIP protein expression. 

B. COS-7 cells were co-transfected with the indicated transgenes. 24 hours post-transfection, 
cells were fixed and immunostained for myc-CHIP expression. (scale bars=20 μm) 



111 
 

Coexpression of WT CHIP with T246M CHIP does not rescue T246M aggregation or 

significantly disrupt WT CHIP dimerization and localization. Given the nature of GHS as an 

autosomal recessive CA, where mutation carriers who are heterozygous for CHIP mutation are 

clinically unaffected, we hypothesized that the coexpression of T246M CHIP with WT CHIP, as 

would exist in a heterozygote, would not result in WT-T246M heterodimers that would disrupt 

normal WT CHIP function. When exogenously expressed alone in COS-7 cells, T246M forms 

almost no detectable dimer, existing predominantly as large multimeric aggregates (Fig. 4.2). To 

test whether WT CHIP and T246M CHIP protein interact, we first expressed HA-tagged wild-

type CHIP (HA-WT) and myc-tagged T246M CHIP (Myc-T246M) alone or in combination in 

COS-7 cells and performed coimmunoprecipitation of HA-WT and Myc-T246M from purified 

cell lysates followed by gel electrophoresis and immunoblotting for HA, Myc or total CHIP. 

Interestingly, we observed that WT and T246M CHIP protein do interact when coexpressed in 

COS-7 cells, with each able to be coimmunoprecipitated by direct pull-down of the other. In 

lysate coexpressing HA-WT and myc-T246M, myc-T246M was detectable following 

immunoprecipitation of HA-WT and HA-WT was detectable following immunoprecipitation of 

myc-T246M (Fig. 4.3A). Furthermore, the amount of detectable HA-WT present in the input 

samples was lower in lysates also expressing myc-T246M than in lysates only expressing HA-

WT, which we hypothesize may be due to some portion of HA-WT becoming insoluble or being 

more rapidly turned over as a result of its association with myc-T246M (Fig. 4.3A). Next, to test 

whether this interaction between WT and T246M CHIP resulted in heterodimerization, we 

performed the same coexpression of HA-WT and Myc-T246M CHIP as in Fig. 4.3A but 24 

hours post-transfection, we instead directly separated the lysates by BN PAGE to observe the 

dimerization/aggregation status of CHIP. Interestingly, we observed that coexpression of HA-
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WT CHIP did not significantly increase the presence of Myc-T246M-containing dimers (Fig. 

4.3B, middle panel), but T246M resulted in a slight increase in higher molecular weight species 

of HA-WT CHIP (Fig. 4.3B, left panel). Given the lack of phenotype in WT-T246M 

heterozygotes, we hypothesized that WT CHIP localization would be largely unaffected by 

T246M coexpression, such that normal CHIP functions would remain intact by the maintenance 

of fully functional CHIP protein in the appropriate cellular compartments. To test whether WT 

CHIP localization is affected by coexpression of T246M CHIP, we again coexpressed HA-WT 

and Myc-T246M in Cos-7 cells and performed immunostaining for HA and Myc. As predicted, 

we observed that the localization of HA-WT was largely unaffected by coexpression of Myc-

T246M (Fig. 4.3C). Taken together, these data suggest that while WT and T246M CHIP interact 

and their coexpression may result in the aggregation/enhanced turnover of some small portion of 

total WT CHIP protein, the localization and dimerization status of WT CHIP is largely 

unaffected by the presence of T246M. Therefore, WT CHIP function likely also remains intact. 

Furthermore, the presence of WT CHIP does not appear to rescue the misfolding/structural 

disorganization of T246M CHIP and prevent T246M aggregation to allow formation of 

functional dimers. Rather, based upon this data, we hypothesize that in heterozygotes, the 

remaining WT CHIP is sufficient to maintain normal CHIP functions within the cell despite the 

presence of T246M CHIP. 
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Figure 4.3. Coexpression of WT CHIP with T246M CHIP does not rescue T246M aggregation 
or disrupt WT CHIP dimerization and localization. 

A. COS-7 cells were co-transfected with the indicated vectors (transgenes, HA-WT=pcDNA3-
HA-tagged CHIP, Myc-T246M=pcDNA3-myc tagged CHIP-T246M) or both. 24 hours post-
transfection, cell lysates were collected and immunoprecipitated with EZview Red Anti-HA 
Affinity Gel or EZview Red Anti-Myc Affinity Gel. The inputs and resulting precipitants (IP) 
were separated by SDS-PAGE and immunoblotted with the indicated antibodies.  

B. COS-7 cells were co-transfected with the indicated transgenes. 24 hours post-transfection, 
cells were collected on ice and total protein collected and freshly separated by BN PAGE and 
immunoblotted (IB) with the indicated antibodies. Approximate molecular weights in kilodaltons 
(kd) are also provided.  

C. COS-7 cells were co-transfected with the indicated transgenes. 24 hours post-transfection 
cells were fixed and immunostained for HA-WT CHIP (left panels) or Myc-T246M CHIP 
(center panels) expression/localization. DAPI nuclear staining is also shown (right panels). (scale 
bars=20 μm) 
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T246M CHIP is more rapidly turned over than WT CHIP, in part by a proteasome-dependent 

mechanism. We consistently observed lower levels of soluble CHIP protein when expressing 

equal amounts of transgenes for CHIP U-box domain mutant T246M relative to WT CHIP in 

COS-7 cells (data not shown). Additionally in this model, we also observed significant amounts 

of large molecular weight aggregates of T246M CHIP not observed with WT CHIP expression 

(Fig. 4.2). Taken together with our in vitro structural data where we observe disorganization and 

lack of secondary structure in the U-box of T246M, we believe T246M and other U-box domain 

mutations dramatically destabilize CHIP structure and likely result in the accumulation of 

misfolded protein aggregates. One mechanism by which cells attempt to eliminate these types of 

terminally misfolded proteins and reduce their accumulation in toxic aggregates is by way of the 

UPS. 173, 174 To test whether T246M CHIP is being degraded via the UPS, we transiently 

expressed his-tagged wild-type CHIP (WT CHIP) or his-tagged T246M CHIP (T246M CHIP) in 

COS-7 cells. Twenty-four hours post-transfection, we treated cells with 50 µg/ml cyclohexamide 

for 0, 1 or 2.5 hours in the presence or absence of 20 µM proteasome inhibitor MG132 and then 

performed SDS-PAGE and immunoblotting for His-CHIP and β-tubulin (Fig. 4.4A). As 

expected, the turnover rate of T246M CHIP observed in the presence of cyclohexamide was 

significantly greater than that observed for WT CHIP, with 50% of soluble T246M CHIP 

remaining after 2.5 hours of cyclohexamide chase relative to 80% of WT CHIP (Fig. 4.4B,C). 

Furthermore, when the proteasome was also blocked by MG132 co-treatment, T246M CHIP 

protein levels were restored to 75% of the untreated control levels whereas WT CHIP was fully 

restored to control levels (Fig. 4.4B,C).  
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This suggests that both WT CHIP and T246M CHIP are degraded by the UPS; however, while 

the turnover of WT CHIP appears to be entirely UPS-dependent, the turnover of T246M CHIP is 

both more rapid and is also only partially proteasomally regulated. This further suggests that 

other clearance mechanisms such as autophagy may also contribute to the more rapid turnover of 

T246M CHIP.  
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Figure 4.4. T246M CHIP is more rapidly turned over than WT CHIP, in part by a proteasome-
dependent mechanism  

A. COS-7 cells were co-transfected with the indicated vectors (transgenes, HA-WT=pcDNA3-
his-tagged CHIP, Myc-T246M=pcDNA3-his tagged CHIP-T246M). 24 hours post-transfection 
cells were treated with 50 µg/ml cyclohexamide for 0, 1 or 2.5 hours in the presence or absence 
of 20 µM proteasome inhibitor MG132 and lysates collected and separated by SDS-PAGE and 
immunoblotted with antibodies against His-CHIP and β-tubulin. 
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B. Quantitation of the ratio of total CHIP relative to total β-tubulin protein in immunoblots 
represented in Fig.4.4A calculated using Licor Image Studio Lite. 

C. Quantitation of the ratio of total CHIP relative to total β-tubulin protein as a percentage of this 
protein ratio in control cells not treated with cyclohexamide or MG132. 
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Expression of endogenous T247M CHIP protein in primary MEFs is dramatically reduced 

despite normal mRNA levels. While incredibly useful as an initial tool to understand the cellular 

effects of T246M CHIP mutation, the COS-7 cell model is significantly limited by potential 

artifacts of ectopic CHIP expression. Thus, utilizing CRISPR/Cas-mediated genome engineering, 

we generated mice homozygous for the single amino acid substitution T247M in CHIP (T246M 

in humans). From these mice, we harvested and cultured primary mouse embryonic fibroblasts 

(MEFs) and evaluated total CHIP protein and mRNA levels in these cells. Interestingly, total 

CHIP protein levels as detected by CHIP immunoblot were dramatically reduced in T247M 

MEFs isolated from 4 different T247M mouse embryos relative to WT MEFs from WT 

littermates (Fig. 4.5A). However, T247M STUB1 mRNA levels in lysates from the same MEFs 

as detected by SYBR green quantitative PCR showed no change relative to WT STUB1 mRNA 

(Fig. 4.5B). Together these data suggest that the reduction in detectable T247M protein is likely 

a result of post translational regulation, with probable mechanisms including proteasomal 

degradation and/or clearance by autophagy. miRNA regulation of CHIP/STUB1 translation has 

also been previously shown and may represent an additional mechanism of T247M CHIP protein 

downregulation175.  

Endogenous T247M CHIP is detected in a punctate immunostaining pattern in primary MEFs 

that exhibit slower growth rates. Ectopic expression of T246M CHIP in COS-7 cells resulted in 

notably punctate immunostaining of CHIP protein relative to a highly diffuse staining pattern 

observed with WT CHIP expression (Fig. 4.2B), which we hypothesize represents misfolded 

T246M CHIP protein aggregates. To test whether these aggregates are also present at 

endogenous protein expression levels, we performed CHIP immunostaining in T247M and WT 

CHIP MEFs. As expected, we observe a distinct punctate pattern of CHIP staining in T247M 



120 
 

MEFs, with the appearance of more focused regions of high intensity CHIP staining relative to 

the more diffuse pattern observed in WT MEFs (Fig. 4.5C). This suggests endogenous T247M 

CHIP may be forming multimeric aggregates or may potentially be accumulating in a particular 

cellular compartment or clearance vesicle such as an autophagosome. We subsequently measured 

growth rates of wildtype (WT), T247M and heterozygous (HET) primary MEFs to determine 

whether CHIP dysfunction as a result of T247M mutation and/or proteotoxicity associated with 

T247M CHIP expression might affect the growth rate of these cells in culture. We cultured WT, 

T247M and HET primary MEFs in parallel by tracking the population doubling time with the 

iCELLigence impedance-based system for real-time monitoring of cell growth under normal 

growth conditions. Interestingly, T247M MEFs exhibited a significantly slower growth rate 

relative to WT MEFs (T247M MEF doubling time=45 hours vs WT MEF doubling time=36 

hours) (Fig. 4.5D). Taken together these data suggest that when expressed at endogenous levels 

T247M accumulates within the cell in a distinct pattern relative to WT CHIP that may represent 

aggregation and/or misfolded protein clearance efforts by the cell. This phenotype may manifest 

to alleviate proteotoxicity associated with the aggregation and/or dysfunction of this abnormal 

protein that is, at the very least, negatively impacting cell growth. Given CHIP’s multi-faceted 

role within the cell, this T247M mutation alters multiple cellular processes.  
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Figure 4.5. Expression of endogenous T247M CHIP protein in primary MEFs is dramatically 
reduced despite normal mRNA levels and is detected in a punctate immunostaining pattern in 
primary MEFs that exhibit slower growth rates.  

A. Immunoblottting for CHIP and β-tubulin in P1 primary WT, T247M CHIP and Heterozygous 
(HET) MEFs. 
 

B. Relative quantitation of total STUB1 mRNA in P1 primary WT, T247M CHIP and 
Heterozygous (HET) MEFs. 

 
C. CHIP immunostaining in P2 primary WT and T247M CHIP MEFs. 

 
D. Cell growth of WT, T247M and HET MEFs was monitored over 72 hours utilizing the 

iCELLigence impedance-based system for real-time monitoring of cell growth under normal 
growth conditions. Electrode impedence is directly correlated to cell index and the 
population doubling time is the time required for the cell index to double and thus represents 
time when the whole cell population has performed at least 1 division. 
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Endogenous T247M CHIP is rapidly turned over and UPS inhibition dramatically increases 

T247M protein levels, particularly in the insoluble fraction. As described above, we observed 

more rapid rate of T246M CHIP protein turnover observed in the COS-7 cell ectopic expression 

model (Fig. 4.4) and the dramatic difference in soluble endogenous T247M CHIP protein 

observed in T247M MEFs relative to WT MEFs (Fig. 4.5A). Therefore, we wanted to evaluate 

the turnover rate of endogenous T247M CHIP in primary MEFs. To determine the rate of 

T247M CHIP protein turnover, we blocked protein synthesis in WT, T247M and CHIP knockout 

primary MEFs by treatment with 50µg/ml cycloheximide for 0, 2, 4 or 6 hours and measured 

CHIP protein expression. As expected, while the total soluble CHIP protein expression is 

dramatically reduced in the T247M MEFs as observed previously (Fig. 4.5A) (in fact, requiring 

separate exposure lengths to most clearly visualize the protein), the turnover rate of T247M 

CHIP is significantly faster than WT CHIP, with T247M CHIP completely undetectable by 6 

hours of cycloheximide chase compared to approximately 75% of WT CHIP remaining after 6 

hours (Fig. 4.6A). This suggests increased protein turnover likely contributes significantly to the 

lower levels of detectable soluble T247M CHIP. Our findings in vitro and in COS-7 cells when 

ectopically expressed demonstrate that T246M CHIP forms less functional dimers and instead 

may accumulate in large multimeric aggregates, (Fig. 4.1, 4.2). Therefore we hypothesized that 

another contributing factor to the low levels of detectable soluble T247M CHIP protein may be 

the accumulation of misfolded/aggregated T247M CHIP in the insoluble fraction. To evaluate 

the T247M fractional distribution and whether this distribution was effected by proteasome 

inhibition relative to WT, we treated WT and T247M primary MEFs with 20 µM MG132 or 

0.05% DMSO control for 4 hours. We then collected soluble, insoluble and total protein 

fractions from samples containing equal cell numbers. These samples were separated by SDS-
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PAGE and immunoblotted for CHIP and β-tubulin. To allow direct comparison of CHIP protein 

levels across fractions, we performed 660 nm protein assay to quantitate total protein/sample 

prior to SDS-PAGE and normalized protein load across fractions. We observed several 

interesting phenomenon that help us to understand the regulation of T247M CHIP. First, we 

observed that even when accounting for insoluble protein, total T247M protein 

(soluble+insoluble) is dramatically lower than total WT protein (Fig. 4.6B, C). Secondly, the 

change in total protein levels is dramatically higher with proteasome inhibition for T247M (4-

fold) protein than WT (<1-fold), suggesting dramatically more UPS-dependent turnover of 

T247M relative to WT (Fig 4.6C). Surprisingly though, proteasome inhibition did not restore 

T247M total protein levels to that of WT, suggesting another highly efficient mechanism of 

T247M turnover that dramatically reduces total T247M protein. We also observed that both the 

baseline and MG132 treatment-dependent distribution between soluble and insoluble fractions 

was significantly different for T247M relative to WT (Fig. 4.6D). At baseline WT CHIP appears 

to exist largely in the soluble fraction, and inhibition of the proteasome only slightly shifts the 

distribution from soluble to insoluble. This suggests that, as expected, only a small percentage of 

total WT CHIP is normally turned over by the proteasome under baseline conditions and this 

CHIP will accumulate in the insoluble fraction upon proteasome inhibition. Interestingly, T247M 

has > 2-fold greater distribution in the insoluble fraction at baseline relative to WT, and 

inhibition of the proteasome dramatically increases the total amount of T247M CHIP in both 

fractions but specifically increases T247M present in the soluble fraction by 2-fold and the 

insoluble fraction by 6-fold. This suggests that the proteasome appears to be responsible for 

clearing a large fraction of T247M CHIP that would otherwise accumulate as insoluble protein, 

but also clears some T247M CHIP that remains soluble but may be functionally defective and 



124 
 

therefore deleterious to the cell (Fig. 4.6D). Together these data suggest that T247M CHIP is 

rapidly cleared by the proteasome, and much of the protein degraded by the UPS will accumulate 

in the insoluble fraction, likely due to its misfolded nature. However, other efficient clearance 

mechanisms must exist within the cell to reduce the total T247M protein burden and prevent 

large amounts of accumulation of T247M CHIP protein both as soluble, potentially toxic protein 

as well as in damaging insoluble aggregates.  
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Figure 4.6. Endogenous T247M CHIP is rapidly degraded in part by the UPS, largely reducing 
accumulation of insoluble protein.  

A. Immunoblottting for CHIP and β-tubulin in soluble cell lysates from P2 primary WT, T247M 
CHIP and CHIP knockout (-/-) MEFs collected after 0, 2, 4 or 6 hours of protein synthesis 
inhibition by cyclohexamide chase. (light and dark exposure for total CHIP to allow easier 
visualization of poorly expressed T247M CHIP) 
 

B. P2 primary WT, T247M CHIP and CHIP knockout (-/-) MEFs were treated with 20 µM 
MG132 or 0.05% DMSO control for 4 hours. Cells were counted and divided into two equal 
samples that were then processed into soluble, insoluble and total protein lysates. Half of the 
cells were lysed directly in SDS sample buffer and sonicated (total protein) the other half 
were lysed in TritonX-100 lysis buffer. The TritonX-100 samples were then separated by 
centrifugation and the supernatant collected (soluble). The remaining pellet was then rinsed 
and lysed directly in SDS sample buffer and sonicated (insoluble). Samples were then 
quantitated by 660 nm protein assay and samples of equal protein concentration separated by 
SDS-PAGE and immunoblotted for CHIP and β-tubulin.  

 
C. Quantitation of total CHIP protein in each condition relative to total CHIP present in DMSO 

treated WT CHIP control cells in Fig. 4.6B.  
 

D. Quantitation of the relative distribution of total CHIP between soluble and insoluble fractions 
within each genotype in Fig. 4.6B. Prior to calculating the relative distribution, CHIP values 
were normalized for the percentage of each fraction loaded on the gel to allow comparison of 
CHIP expression across fractions of unequal total volume. 
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T246M CHIP does not ubiquitinate non-chaperone substrates but has enhanced E2 ligase 

binding. We have previously shown that both in vitro and in cells, T246M CHIP has virtually no 

detectable ubiquitin ligase activity towards chaperone substrates (Chapter III). We hypothesized 

that this would also be the case for non-chaperone substrates given the disorganization of the 

T246M CHIP U-box (Fig. 4.1). To test this, we evaluated the previously reported non-canonical 

monoubiquitination of non-chaperone neuronal substrate α-synuclein by in vitro ubiquitination 

assay176. As expected, we observed a loss of α-synuclein monoubiquitination as a result of 

T246M mutation (Fig. 4.7A). Since first observing the loss of ubiquitin ligase activity but 

preserved interaction with chaperone proteins (Chapter III) and the structural disorganization of 

the T246M U-box domain (Fig. 4.1), we hypothesized that T246M CHIP may still associate with 

E2 ligases that, when bound to CHIP, normally facilitate the transfer of ubiquitin to 

ubiquitination substrates, but that the transfer of ubiquitin may be impaired by the structural 

consequences of T246M mutation. To test whether T246M CHIP still binds to E2 ligases in 

cells, we transiently expressed myc-tagged wild-type CHIP (WT CHIP), myc-tagged T246M 

CHIP (T246M CHIP) or myc-tagged H260Q CHIP (H260Q) in COS-7 cells and performed co-

immunoprecipitation for CHIP and E2 ligase known to function with CHIP UbcH5c. 

Interestingly, we observe an enhanced association of U-box domain mutants, T246M CHIP and 

H260Q CHIP with UbcH5c relative to WT CHIP, suggesting the rate of association/dissociation 

between CHIP and the E2 enzyme may be impaired by the loss of ubiquitin transfer that results 

from U-box mutation (Fig. 4.7B). We hypothesize that this may reduce accessibility of the 

associated E2 ligase to other E3 enzymes, perhaps impairing ubiquitination reactions beyond 

only CHIP substrates. Together these data suggest that, while it can no longer ubiquitinate 

substrate proteins, T246M CHIP still binds many of its normal binding partners, but that the 
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dynamics of these interactions may be altered. This may have larger implications for additional 

enzymatic reactions outside of direct regulation of CHIP substrates, potentially further impairing 

the cell’s ability to maintain baseline cellular homeostasis and/or allowing the cell to respond to 

stress.  
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Figure 4.7. T246M CHIP does not ubiquitinate non-chaperone substrates but has enhanced E2 
ligase binding. 

A. Cell-free ubiquitination reactions containing recombinant α-synuclein and the indicated CHIP 
proteins resolved via SDS-PAGE and immunoblotted for an antibody recognizing α-synuclein. 

B. COS-7 cells were co-transfected with the indicated transgenes and immunoprecipitated with 
either a UbcH5c antibody, CHIP antibody or IgG. The inputs and resulting precipitants (IP) were 
immunoblotted (IB) with the indicated antibodies.  
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T246M CHIP promotes HSF1 translocation to the nucleus and activation of transcription. In 

addition to its role as a ubiquitin ligase, CHIP can also act as a co-chaperone through its direct 

interactions with cellular chaperones, including HSC70, HSP70, and HSP90 via CHIP’s 

tetratricopeptide repeat (TPR) domain.81, 128, 134, 153 Both a functional TPR and U-box domain are 

required for CHIP’s ability to directly impact PQC and attenuate the cellular stress response in 

large part through polyubiquitination of HSP chaperones.75, 79 Given that the T246M CHIP 

mutation resides in the U-box domain, we hypothesized that the T246M substitution would result 

in a loss of CHIP’s ubiquitin ligase activity, without affecting CHIP’s interaction and activities 

with cellular chaperones though the intact TPR domain. Through its interaction with HSP 

chaperones, CHIP also regulates the transcriptional activation of heat shock factor 1 (HSF1), 

which is normally under negative regulatory control by molecular chaperones Hsp70 and Hsp90. 

Furthermore, this activation of HSF1 confers protection from cellular stress and prevents 

apoptosis74. We demonstrated previously by co-immunoprecipitation assay that T246M 

substitution does not impair its ability to bind to chaperones (Fig. 3.3 and 3.4). To test whether 

CHIP’s regulation of HSF1 remains intact with T246M mutation, we first transiently expressed 

wildtype (WT) CHIP, T246M CHIP and TPR-domain mutant K30A CHIP in COS7 cells and 

measured the nuclear translocation of HSF1 induced by CHIP expression. As previously 

reported74, we observed that expression of WT CHIP drives HSF1 to the nucleus. As expected, 

expression of T246M CHIP also resulted in nuclear translocation of HSF1 while expression of 

TPR domain mutant did not (Fig. 4.8A). These data suggest that despite disruption of the CHIP 

U-box, T246M mutation leaves the TPR domain sufficiently intact to maintain this activity.  

To test whether HSF1 that is driven to the nucleus by T246M CHIP is transcriptionally 

active, we utilized the Promega HSF1 Dual-Luciferase Reporter (DLR) Assay System in COS7 
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cells to measure the transcriptional activation of HSF1 with CHIP expression. As previously 

reported,74 we observed that expression of WT CHIP results in activation of HSF1 transcriptional 

activity. Interestingly, expression of T246M CHIP as well as U-box domain mutant H260Q also 

resulted in activation of HSF1; however, that activation of HSF1 by U-box domain mutants was 

1-fold to 2.5-fold higher than that observed with WT CHIP. Importantly, we also observed no 

significant HSF1 activation by the expression of control protein β-galactosidase (β-gal) or TPR 

domain mutant K30A CHIP (Fig. 4.8B).  

The dramatic increase in HSF1 activation relative to WT CHIP observed with both U-box 

domain mutants that we have previously shown to form large multimeric aggregates in cells led 

us to hypothesize that perhaps the increased HSF1 activation was not a CHIP-specific effect but 

rather driven by a cellular-stress response to the presence of these aggregates. To test this 

hypothesis, we developed a CHIP double-mutant K30A-T246M CHIP containing the T246M 

mutation and also the TPR domain mutation K30A that disrupts CHIP-driven HSF1 nuclear 

translocation and activation. To first characterize the aggregation status of this double mutant, 

we transiently expressed it in COS-7 cells at both 1X and 2.5X concentrations alongside WT 

CHIP, T246M CHIP and H260Q CHIP, performed BN PAGE and CHIP immunoblotting. We 

observed that, like T246M CHIP, K30A-T246M CHIP also forms large multimeric aggregates 

when transiently expressed in COS7 cells (Fig. 4.8C). To test whether HSF1 activation by U-box 

domain mutants is driven by chaperone-mediated interaction of HSF1 with CHIP or is merely a 

consequence of the overexpression of aggregation-prone proteins, we measured HSF1 activation 

in the presence of K30A-T246M double mutant as well as previously reported misfolded, 

aggregation-prone derivative of BSA, cBSA177. Interestingly, we observed that expression of 

neither K30A-T246M CHIP nor cBSA promote HSF1 activation relative to WT CHIP, 
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suggesting that the enhanced potentiation of HSF1 activity by CHIP U-box mutants T246M 

CHIP and H260Q CHIP is specific and not solely due to their tendency towards forming large 

multimeric aggregates (Fig. 4.8B). 

In our COS-7 transient overexpression model, when transfecting in equal amounts of 

CHIP DNA across constructs, we consistently observed lower amounts of soluble CHIP protein 

when expressing T246M CHIP, H260Q CHIP and K30A-T246M CHIP relative to WT CHIP. 

We hypothesized that due to disorganization of the U-box domain, some portion of these 

expressed CHIP proteins was becoming insoluble, potentially as multimeric aggregates. To test 

this hypothesis, we performed SDS-PAGE and immunoblotting for CHIP comparing the soluble 

fraction (prepared by lysing cells in 1% Triton X-100 lysis buffer) and remaining insoluble pellet 

(solubilized by sonication in SDS-sample buffer). As expected, we observed significant amounts 

of T246M CHIP, H260Q CHIP and K30A-T246M CHIP in the insoluble pellet with no 

detectable WT or K30A CHIP present in the insoluble pellet (Fig. 4.8D).   

Based upon this observation that T246M CHIP, H260Q CHIP and K30A-T246M CHIP 

were all observed significantly in the insoluble fraction, we wanted to confirm that enhanced 

potentiation of HSF1 activation was specific to soluble CHIP and further confirm it was not 

aggregate driven. To test this, we repeated the experiment presented in Fig. 4.8B but now 

expressing higher amounts of T246M, H260Q and K30A-T246M CHIP such that the amount of 

soluble CHIP detectable by immunoblot was roughly equivalent to WT CHIP (Fig. 4.8E). As 

expected, we observed that under these conditions where there is likely to be both more soluble 

and insoluble CHIP, there remains no activation of HSF1 by K30A-T246M CHIP.  
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Furthermore, the increased expression of either T246M CHIP or H260Q resulted in even greater 

potentiation of HSF1 activation. Together these data suggest that HSF1 activation is driven by 

soluble CHIP in a dose-dependent manner and this potentiation is dramatically enhanced by U-

box mutants T246M and H260Q. 
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Figure 4.8. T246M CHIP promotes HSF1 translocation to the nucleus and activation of 
transcription. 

A. Immunoblottting for HSF1, CHIP, HP1α and MEK in cytosolic (C) and nuclear (N) fractions 
from COS7 cells transiently transfected with the indicated vectors (transgenes, CTRL=pcDNA3, 
WT=pcDNA3-myc tagged CHIP, T246M=pcDNA3-myc tagged CHIP-T246M, 
K30A=pcDNA3-myc tagged CHIP K30A) and treated with or without heat shock in 42°C water 
bath for 30 min as marked.  

B. Immunoblotting for CHIP, HSP70 and AMPKα in Triton X-100 soluble and insoluble 
fractions from COS7 cells transiently transfected with the indicated vectors (transgenes, 
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CTRL=pcDNA3, WT=pcDNA3-myc tagged CHIP, T246M=pcDNA3-myc tagged CHIP-
T246M, K30A=pcDNA3-myc tagged CHIP K30A, H260Q=pcDNA3-myc tagged CHIP-H260Q, 
K30A-T246M=pcDNA3-myc tagged K30A-T246M double mutant). 

C. Top, HSF1 transcription activity fold increase relative to control cells as detected by Promega 
HSF1 Dual-Luciferase Reporter (DLR) Assay System in COS7 cells transiently transfected with 
the indicated vectors (transgenes, CTRL=pcDNA3, WT=pcDNA3-myc tagged CHIP, 
T246M=pcDNA3-myc tagged CHIP-T246M, K30A=pcDNA3-myc tagged CHIP K30A, 
H260Q=pcDNA3-myc tagged CHIP-H260Q, K30A-T246M=pcDNA3-myc tagged K30A-
T246M double mutant, β-gal=pcDNA3 beta-galactosidase, cBSA=pcDNA3 cytosolic bovine 
serum albumin) at low (1X) and high (2X) expression levels. Bottom, immunoblotting for CHIP 
and β-tubulin of COS7 cells transfected in parallel with top DLR assay. 

D. Top, HSF1 transcription activity fold increase relative to control cells as detected by Promega 
HSF1 Dual-Luciferase Reporter (DLR) Assay System in COS7 cells transiently transfected with 
the indicated vectors (transgenes, CTRL=pcDNA3, WT=pcDNA3-myc tagged CHIP, 
T246M=pcDNA3-myc tagged CHIP-T246M, K30A=pcDNA3-myc tagged CHIP K30A, 
H260Q=pcDNA3-myc tagged CHIP-H260Q, K30A-T246M=pcDNA3-myc tagged K30A-
T246M double mutant, GFP=green fluorescent protein) at low (1X) and high (2X) expression 
levels. Here T246M CHIP, H260Q CHIP and K30A-T246M CHIP were each expressed at 
adjusted concentrations to produce relative soluble CHIP as that present with WT CHIP 
expression. Bottom, immunoblotting for CHIP and β-tubulin of COS7 cells transfected in 
parallel with top DLR assay. 

E. Immunoblotting for CHIP aggregation status under native, non-denatured, non-reduced 
conditions. COS-7 cells were transfected with the indicated vectors (transgenes, CTL=pcDNA3, 
WT=pcDNA3-myc tagged CHIP, T246M=pcDNA3-myc tagged CHIP-T246M, 
K30A=pcDNA3-myc tagged CHIP K30A, H260Q=pcDNA3-myc tagged CHIP-H260Q, K30A-
T246M=pcDNA3-myc tagged K30A-T246M double mutant at equal and 2.5X WT 
concentration). Cells were collected on ice and total protein collected and freshly separated by 
BN PAGE and immunoblotted (IB) with the indicated antibodies. The same samples were also 
separated on a denatured reducing gel and immunoblotted with the indicated anti-myc CHIP and 
β-tubulin antibodies to detect total CHIP protein expression. 

F. Immunoprecipitation of ubiquitinated Hsp70. COS-7 cells were co-transfected with the 
indicated vectors (transgenes, CTRL=pcDNA3, WT=pcDNA3-CHIP, T246M=pcDNA3-CHIP-
T246M and K30A-T246M=pcDNA3-CHIP K30A-T246M double mutant) in addition to HA-
tagged ubiquitin and FLAG-Hsp70. HSP70 was immunoprecipitated (IP) with FLAG beads and 
the resulting precipitants as well as inputs were immunoblotted (IB) with the indicated 
antibodies. CTRL lanes shown are (left to right) CTRL=HA-tagged ubiquitin and pcDNA3, 
CTRL= HA-tagged ubiquitin+pcDNA3+FLAG-Hsp70 
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T247M CHIP chaperone interactions and co-chaperone activities remain intact and may be 

enhanced in T247M primary MEFs. We have previously shown that when expressed transiently 

in COS-7 cells T246M CHIP maintains interactions with chaperone proteins (Fig. 3.3) and 

promotes chaperone-mediated activities, including the translocation and activation of HSF1 

(Fig.4.8A, B, E). To test whether T247M CHIP expressed endogenously in T247M primary 

MEFs still interacts with chaperone proteins and still maintains previously reported CHIP 

chaperone functions, particularly under stress conditions, we first performed co-

immunoprecipitation (IP) of endogenous CHIP and endogenous Hsc70 from purified P2 primary 

cell lysates followed by gel electrophoresis and immunoblotting (IB) for CHIP or Hsc70 in the 

remaining precipitants and input samples (Fig.4.9A). As expected, immunoprecipitation of both 

WT and T247M CHIP resulted in co-isolation of Hsc70, demonstrating that T247M CHIP 

maintains its interaction with Hsc70 when expressed endogenously. Interestingly, the amount of 

Hsc70 isolated with T247M CHIP was proportionally greater than the amount of Hsc70 isolated 

with WT CHIP. Interestingly, the immunoprecipitation of Hsc70 resulted in detectable levels of 

co-isolated WT CHIP; however, T247M CHIP was not detectable. Based upon our detection of 

Hsc70 in the CHIP immunoprecipitation, we hypothesize that this is a reflection of the very low 

levels of soluble T247M CHIP present in these cells such that it is not detectable by this method 

and not a true lack of interaction between T247M CHIP and Hsc70. After confirming T247M 

CHIP chaperone interactions are intact and perhaps even enhanced, we next tested whether this 

interaction is functional, such that T247M CHIP retains its normal co-chaperone functions. It has 

been previously shown that CHIP not only enhances Hsp70 induction during acute stress but also 

mediates its turnover during the stress recovery process, with the former a result of its co-

chaperone activities and the later mediated by its ubiquitin ligase activity75. To test whether one 



136 
 

or both of these activities remains intact despite T247M mutation we subjected WT, T247M and 

CHIP knockout (CHIP-/-) primary MEFs to heat shock (HS) in a 42°C water bath for 10 min and 

then collected total cell lysates after 0, 4 and 20 hours of recovery under normal growth 

conditions. As expected, we observed that in the presence of WT CHIP, Hsp70 expression is 

significantly increased and then is dramatically reduced again by 20 hours post-HS. Also as 

expected, we observed that in the absence of CHIP the induction of Hsp70 at 4 hours post-HS is 

dramatically reduced. Interestingly, in the presence of T247M CHIP the induction of Hsp70 is 

not only preserved, but is enhanced relative to WT, while the return of Hsp70 to baseline levels 

is slowed, with more Hsp70 remaining after 20 hours of recovery relative to WT CHIP cells (Fig. 

4.9B). In order to further evaluate the regulation of Hsp70 following heat shock in the presence 

of T247M CHIP, we again subjected WT and T247M primary MEFs to heat shock (HS) in a 

42°C water bath for 10 min and then collected total cell lysates in a more extensive timecourse, 

collecting cells after 0, 2, 4, 8, 12, 16, 20 and 24 hours of recovery under normal growth 

conditions. As expected, in the presence of WT CHIP, Hsp70 expression was increased 

following HS, reaching a peak at 12 hours post-HS and returning to near baseline levels by 24 

hours post-HS. Interestingly, in the presence of T247M CHIP, Hsp70 expression was induced 

more rapidly and to a great extent than WT, with a significant increase over baseline levels by 

just 8 hours post-HS. Furthermore, in the presence of T247M CHIP, the increased expression of 

Hsp70 was prolonged, as we observed significantly elevated protein levels even at 24 hours post-

HS (Fig. 4.9C). Together these data suggest that when expressed at endogenous levels in primary 

MEFs, like WT CHIP, T247M CHIP interacts with chaperone proteins. Furthermore, via these 

chaperone interactions, T247M CHIP maintains its ability to enhance Hsp70 induction during 

acute stress, and in fact may more greatly enhance Hsp70 expression than WT CHIP. However, 
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its ability to mediate Hsp70 turnover during the stress recovery process is impaired, likely due to 

its loss of ubiquitin ligase activity. We hypothesize that the observed enhanced induction of 

Hsp70 expression during stress may be a result of a change in binding kinetics between T247M 

CHIP and Hsp70 due to changes in T247M protein structure caused by the U-box domain 

mutation.  

  



138 
 

 

 

Figure 4.9. T247M CHIP chaperone interactions and co-chaperone activities remain intact and 
may be enhanced in T247M primary MEFs. 

A. CHIP and Hsc70 immunoblot of P2 primary WT and T247M MEF cell lysates collected and 
immunoprecipitated with a HSC70 antibody or CHIP antibody. The inputs and resulting 
precipitants (IP) were separated by SDS-PAGE and immunoblotted with the indicated 
antibodies. Control samples (CTRL) contained a mix of 50% WT lysate and 50% T247M lysate 
and were immunoprecipitated with either rat IgG or rabbit IgG. 

B. CHIP and Hsp70 immunoblot of P2 primary WT, T247M and CHIP knockout (CHIP-/-) MEFs 
treated without heat shock (NHS) or with heat shock (HS) in a 42°C water bath for 10 min. HS 
cells were then returned to normal growth conditions and total cell lysates collected after 0, 4 or 
20 hours of recovery. Cleared lysates were separated by SDS-PAGE and immunoblotted with the 
indicated antibodies. 

C. CHIP and Hsp70 immunoblot of P2 primary WT and T247M (T247M or TM) MEFs heat 
shocked (HS) in a 42°C water bath for 10 min. HS cells were then returned to normal growth 
conditions and total cell lysates collected after 0, 2, 4, 8, 12, 16, 20 or 24 hours of recovery. 
Cleared lysates were separated by SDS-PAGE and immunoblotted with the indicated antibodies. 
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T246M disrupts CHIP regulation of SIRT6 and does not protect primary MEFs from UVC-

induced cell death. We have recently uncovered a connection between CHIP and the nuclear 

lysine deacetylase/ADP ribosylase SIRT6, which is an essential regulator of inflammatory gene 

expression and DNA repair CHIP stably interacts with SIRT6 and CHIP-mediated non-canonical 

ubiquitination promotes SIRT6 protein stability. In the absence of CHIP, SirT6 is subject to 

canonical ubiquitination and proteasome-mediated degradation, dramatically reducing SIRT6 

half-life, reducing DNA repair capacity, and increasing expression of inflammatory genes.87 

Furthermore, our additional preliminary data demonstrate that stress-induced nuclear 

accumulation of CHIP results in CHIP’s association with not only SIRT6, but also other nuclear 

proteins, including several DNA repair proteins (data unpublished). GHS patients with T246M 

CHIP mutation have significant loss of cerebellar mass with associated cerebellar ataxia (Fig. 

3.1), and CHIP-/- mice have significant degeneration of cerebellar Purkinje cells where CHIP is 

highly expressed (Fig. 3.7). Apoptosis of these neuronal populations may be a direct 

consequence of impaired DNA repair as a result of T246M CHIP mutation. We hypothesized 

that the clinical pathology of T246M CHIP mutation is in part caused by an impairment of 

CHIP-mediated DNA repair mechanisms by disruption of CHIP protein interactions or CHIP-

mediated non-canonical ubiquitination of DNA-repair protein substrates. To test whether CHIP-

mediated DNA-repair mechanisms remain intact after T246M mutation we first evaluated 

T246M CHIP regulation of SIRT6 in vitro and in cells. We performed cell free in vitro 

ubiquitination reactions containing SIRT6 and WT or T246M CHIP. As expected, we observed 

that T246M CHIP is unable to ubiquitinate SIRT6 in vitro (Fig. 4.10A). We next performed 

immunoprecipitation of FLAG-SIRT6 to test whether SIRT6 interaction is preserved after 

T246M CHIP mutation when expressed in COS-7 cells and evaluated the ubiquitination status of 
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SIRT6 in the presence of T246M CHIP in these cells. Interestingly, we observed that T246M 

CHIP maintains its interaction with SIRT6 and, in fact, this interaction appears to be enhanced, 

with more T246M CHIP precipitating with FLAG-SIRT6 than WT CHIP. Additionally, not only 

does expression of T246M CHIP result in less ubiquitinated FLAG-SIRT6 relative to that 

observed in the presence of WT CHIP expression, but in fact, the ubiquitination of FLAG-SIRT6 

is reduced relative to control cells with no CHIP expression. Together, these data suggest that 

T246M CHIP does interact with but does not ubiquitinate SIRT6 in vitro or in cells and may 

inhibit access to SIRT6 by the competing E3. This likely would result in significantly impaired 

SIRT6 regulation that we hypothesize may negatively impact the DNA repair capacity in cells 

expressing T246M CHIP.  

UVC-radiation has previously been shown to induce apoptosis in DNA-repair deficient 

cell-models178. To test whether T246M mutation inhibits the DNA repair capacity of cells, we 

subjected WT, T247M and CHIP knockout (CHIP-/-) primary MEFs to 10J/m2 UVC-radiation 

and measured viability 24 hours later using MTT cell viability assay. As expected, we observed 

that WT MEF viability was unaffected but both T247M and CHIP-/- MEF viability was 

significantly reduced by ~20-25% following exposure to 10J/m2 UVC-radiation (Fig. 4.10C). 

Notably, at higher UVC doses, WT MEFs did also exhibit a reduction in viability as measured by 

MTT assay, but the loss of viability in T247M and CHIP-/- MEFs was always greater than that 

observed with WT up to doses of 30J/m2 (data not shown). This suggests significant impairment 

of DNA repair capacity in primary MEFs either by total loss of CHIP or as a result of 

dysregulation of DNA repair proteins, such as SIRT6, as a result of T247M CHIP mutation. 
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Figure 4.10. T246M disrupts CHIP regulation of SIRT6 and does not protect primary MEFs 
from UVC-induced cell death. 

 

A. Cell-free ubiquitination reactions containing recombinant SIRT6 and the indicated CHIP 
proteins resolved via SDS-PAGE and immunoblotted for antibodies recognizing SIRT6 and 
CHIP. 

B. Immunoprecipitation of ubiquitinated FLAG-SIRT6. COS-7 cells were co-transfected with 
the indicated vectors (transgenes, CTL=pcDNA3, WT=pcDNA3-CHIP and T246M=pcDNA3-
CHIP-T246M) in addition to HA-tagged ubiquitin and FLAG-HSP70. HSP70 was 
immunoprecipitated (IP) with FLAG beads and the resulting precipitants as well as inputs were 
immunoblotted (IB) with the indicated antibodies. CTRL lane 1 (far left) contains no FLAG-
SIRT6. 

C. MTT cell viability in WT, T247M and CHIP knockout (CHIP-/-) P2 primary MEFs 24 hours 
after exposure to 10J/m2 UVC radiation. % viability calculated relative to untreated cells of the 
same genotype.  
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T246M CHIP potentiates AMPK activity in vitro and interacts with AMPK in cells, protecting 

them from oxidative stress but does not ubiquitinate upstream AMPK-regulator LKB1. We 

recently uncovered a link between proteolytic and metabolic pathways with our discovery that 

CHIP serves as an autonomous chaperone for AMP-activated kinase (AMPK)8. AMPK is a 

global metabolic sensor, activated by reduced ATP levels to limit energy-consuming processes 

and promote ATP synthesis179-181. The AMPK holoenzyme consists of three subunits: the 

catalytic α subunit (α1 or α2) and the β and γ regulatory subunits. AMPK is regulated both by 

phosphorylation of the α subunit, principally mediated by liver kinase B1 (LKB1), and 

allosterically through the AMP/ATP binding domain found in the γ subunit182. CHIP regulation 

of AMPK is proposed to involve two-fold promotion of AMPK activity during cellular stress, 

first by enhancing its phosphorylation by upstream kinase LKB1 and by acting as a direct 

chaperone, binding to AMPK to affect its tertiary structure, agonizing AMPK activity followed 

by recovery in which CHIP-mediated ubiquitination and subsequent degradation of LKB1 

restores AMPK activity to baseline levels8. The importance of an intact CHIP U-box domain in 

these regulatory roles remains incomplete, although FRET studies suggest that the CHIP U-box 

still binds AMPK but only partially induces changes in its tertiary structure that may mediate 

CHIP’s direct agonism of AMPK activity8. Our data suggests that T246M mutation in the CHIP 

protein disrupts its ubiquitin ligase activity but leaves at least some of its endogenous protein-

protein interactions and chaperone functions intact (Figs. 3.3, 3.4, 4.7-4.10). Therefore, we 

hypothesized that T246M CHIP maintains its ability to bind AMPK and agonize AMPK activity. 

Furthermore, we hypothesized that this activation is sufficient to protect cells from acute 

oxidative stress, especially because AMPK activation may be prolonged as a result of loss of 

CHIP-mediated LKB1 ubiquitination and degradation.  
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To test whether T246M CHIP regulation of AMPK upstream regulator, LKB1 is 

preserved we performed cell free in vitro ubiquitination reactions containing LKB1 and WT or 

T246M CHIP. As expected, we observed that T246M mutation results in loss of CHIP-mediated 

LKB1 monoubiquitination (Fig. 4.11A). We have previously shown that when expressed 

transiently in COS-7 cells, T246M CHIP maintains interactions with chaperone proteins (Fig. 

3.3) and promotes chaperone-mediated activities, including the translocation and activation of 

HSF1 (Fig.4.8A, B, E). To test whether T246M also maintains its interaction with AMPKα, we 

transiently expressed myc-tagged WT and T246M CHIP in COS-7 cells and performed co-

immunoprecipitation of CHIP and AMPKα1. As expected, we observed that T246M CHIP 

precipitates with AMPKα1 and, in fact as we observed with other CHIP interacting proteins, the 

association between AMPKα1 and T246M CHIP appears to be enhanced (Fig. 4.11B). 

CHIP binding to AMPKα1 has previously been shown to potentiate AMPK kinase 

activity8, therefore to test whether the intact/enhanced binding of T246M CHIP to AMPK also 

potentiates AMPK, we performed an in vitro kinase activity assay utilizing recombinant CHIP, 

AMPK and Z’LYTE peptide substrate (Invitrogen). Interestingly, we observed that like WT 

CHIP, T246M CHIP potentiates AMPK substrate phosphorylation in a dose-dependent manner 

(Fig. 4.11C). Notably, as indicated by the right-shifted dose-response curve, the potentiation 

appears to be reduced with T246M CHIP relative to WT CHIP. However it is important to point 

out that the physiological significance of this observation is unclear given the likely large 

difference in the distribution of WT and T246M CHIP between soluble dimer and multimeric 

aggregates as indicated by our biophysical characterization of recombinant WT and T246M 

CHIP. such that the concentration of CHIP protein participating in this potentiation of AMPK 
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may not truly be equivalent (Fig. 4.1). Based upon this data we can however conclude that 

T246M CHIP does maintain its ability to potentiate AMPK activity. 

AMPK activation has been previously shown to protect cells from acute oxidative stress 

and we have previously demonstrated that CHIP is required for this AMPK activation8, 183. 

Having observed that the interaction of AMPK and CHIP is preserved and CHIP-mediated 

potentiation of AMPK is maintained in spite of T246M mutation, we hypothesized that this 

activation will be sufficient to protect cells from acute oxidative stress, especially because while 

potentially diminished in amplitude AMPK activation may be prolonged as a result of loss of 

CHIP-mediated LKB1 ubiquitination and degradation. To test this, utilizing the iCelligence 

impedance-based system for cell-based assays, we cultured and monitored the growth over time 

of HEK293 cells that had been stably depleted of WT CHIP by shRNA knockdown (shCHIP) as 

well as control HEK293 cells expressing wildtype CHIP (shCTRL). WT or T246M CHIP was 

then reintroduced in these cells by transient transfection, followed by exposure to 0 µM or 200 

µM H2O2 for 24 hours beginning at 24 hours post-transfection (Fig. 4.11D). As expected, in 

HEK293 cells stably depleted of WT CHIP, 200 µM H2O2 resulted in a dramatic reduction in the 

recorded delta cell index relative to vehicle treated cells as well as relative to shCTRL cells also 

treated with 200 µM H2O2. The delta cell index is a reflection of the change in total cells over 

time, thus suggesting that in the absence of CHIP, oxidative stress dramatically inhibits cell 

proliferation and/or promotes cell death. Interestingly, reintroduction of both WT and T246M 

partially rescued this loss of cell proliferation/viability, confirming that like WT CHIP, T246M 

CHIP is protective against oxidative stress, perhaps via its regulation and activation of AMPK 

activity.      
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Figure 4.11. T246M CHIP potentiates AMPK activity in vitro and interacts with AMPK in cells, 
protecting them from oxidative stress but does not ubiquitinate AMPK-regulator LKB1. 

A. Cell-free ubiquitination reactions containing recombinant LKB1 and the indicated CHIP 
proteins resolved via SDS-PAGE and immunoblotted for an antibody recognizing LKB1. 

B. In vitro kinase assay measuring AMPK kinase activity towards Z’LYTE peptide substrate in 
the presence of increasing amounts of recombinant CHIP protein and IgG protein control. 

C. Co-immunoprecipitation of myc-CHIP and AMPKα1. COS-7 cells were co-transfected with 
the indicated vectors (transgenes, CTL=pcDNA3, WT=pcDNA3-CHIP and T246M=pcDNA3-
CHIP-T246M). myc-CHIP or AMPKα1 was then immunoprecipitated (IP) with CHIP or 
AMPKα antibody. The inputs and resulting precipitants (IP) were separated by SDS-PAGE and 
immunoblotted (IB) with the indicated antibodies. IgG indicates control immunoprecipitation of 
cell lysates utilizing rabbit or goat IgG. 

D. Delta cell index recorded by iCelligence impedence-based cell monitoring system as a 
measure of cell proliferation/viability in HEK293 cells stably depleted of CHIP with and without 
the reintroduction of WT or T246M CHIP in the presence and absence of 200 µM H2O2. 
HEK293 cells were stably depleted of WT CHIP by shRNA knockdown (shCHIP). Control cells 
were HEK293 cells expressing wildtype CHIP stably transfected with control shRNA (shCTRL). 
WT or T246M CHIP was then reintroduced in these cells by transient transfection, followed by 
exposure to 0 µM or 200 µM H2O2 for 24 hours beginning at 24 hours post-transfection. Delta 
cell index (Delta CI) was calculated as the change in cell index before and after exposure to 0 
µM or 200 µM peroxide.  
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T247M CHIP interacts with and regulates AMPK phosphorylation in primary MEFs that are 

protected from oxidative stress perhaps through an AMPK-mediated mechanism. We observed 

that in vitro and when expressed transiently in cells, T246M CHIP maintains interactions with 

AMPK and potentiates AMPK activity, likely promoting the protection of cells from oxidative 

stress (Fig. 4.11B-D). However, the relationship between T247M CHIP and AMPK when 

expressed T247M CHIP was expressed endogenously was still unknown. To address this, we 

utilized WT and T247M primary MEFs to test whether T247M CHIP interacts with AMPK and 

whether this interaction results in enhanced phosphorylation of AMPK under conditions of 

oxidative stress and whether expression of T247M protects cells from oxidative stress-induced 

cell death as is observed in the presence of WT CHIP. We performed co-immunoprecipitation of 

CHIP and AMPK from WT and T247M MEF whole cell lysates. As expected, we observed that 

like WT CHIP, endogenous T247M CHIP interacts with AMPKα1. Interestingly, similar to what 

we observed with exogenous expression of T246M CHIP in COS-7 cells, while the amount of 

soluble CHIP isolated by immunoprecipitation was significantly higher from WT MEFs vs. 

T247M MEFs, the amount of co-precipitated AMPK was not significantly different (Fig. 4.12A). 

This suggests that the amount of soluble T247M CHIP present, while dramatically reduced 

relative to WT CHIP, is sufficient to accomplish the same AMPK binding. This may reflect a 

change in T247M CHIP binding kinetics as a consequence of mutation-induced structural 

changes and/or may result in reduced availability of T247M CHIP to other binding partners.  

CHIP has previously been shown to promote AMPK activity during acute oxidative stress by 

enhancing its phosphorylation by upstream kinase LKB18. Having confirmed AMPK-T247M 

interaction in this endogenous expression model, we next wanted to evaluate whether the 

functional consequences of this interaction remain intact. To test this we exposed WT and 
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T247M primary MEFs to 0, 200 and 400 µM H2O2 to induce acute oxidative stress and measured 

the phosphorylation of AMPKα. Interestingly, the phosphorylation of AMPKα in the presence 

of T247M CHIP was not significantly different relative to that observed in the presence of WT 

CHIP (Fig. 4.12B, C). This suggests that despite loss of CHIP-mediated LKB1 ubiquitination 

and/or changes in T247M CHIP-AMPK binding dynamics, the functional interaction at the level 

of AMPKα phosphorylation under stress remains intact.  

We observed in shCHIP HEK293 cells that re-introduction of T247M CHIP could rescue 

loss of cell proliferation/viability caused by oxidative stress (Fig. 4.11D). To confirm that like 

WT CHIP, endogenous T247M CHIP protects cells from oxidative stress we exposed WT, 

T247M CHIP and CHIP knockout (CHIP-/-) primary MEFs to 0 or 500 µM H2O2 and utilized the 

iCelligence impedence-based cell monitoring system to measure the change in cell index 

recorded as a measure of cell proliferation/viability over time before and after H2O2 or vehicle 

exposure. Primary MEFs lacking CHIP (CHIP-/-) had a dramatic reduction in the change in cell 

index during H2O2 exposure, indicating a loss of cell proliferation/viability in response to 

oxidative stress. However, this loss of proliferation/viability was not observed in MEFs 

expressing either WT or T247M CHIP, suggesting that CHIP mediates this protection of 

oxidative stress and, importantly, T247M CHIP is also sufficient to protect primary MEFs from 

oxidative stress (Fig. 4.12D). Taken together, these data suggest that while some aspects of 

AMPK regulation by CHIP are affected by T247M mutation either by loss of its ubiquitin ligase 

activity or changes in its binding dynamics, T247M CHIP is still sufficient to regulate AMPK 

activity and promote cell survival during oxidative stress.  
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Furthermore, T247M mutation is a partial-loss of function mutation that results in an inability of 

the mutant protein to ubiquitinate its substrates, but other functions that are integral to CHIP’s 

role in the cellular stress response that may not be dependent on CHIP ubiquitin ligase activity 

remain intact. 
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Figure 4.12. T247M interacts with AMPK in cells, protecting them from oxidative stress and 
promotes phosphorylation of AMPK during acute oxidative stress. 

A. Co-immunoprecipitation of CHIP and AMPKα1. Purified whole cell lysates from WT and 
T247M CHIP P2 primary MEFs were immunoprecipitated (IP) with CHIP or AMPKα antibody. 
The inputs and resulting precipitants (IP) were separated by SDS-PAGE and immunoblotted (IB) 
with the indicated antibodies. IgG indicates control immunoprecipitation of cell lysates utilizing 
rabbit or goat IgG. 

B. Immunoblot of purified whole cell lysates from WT and T247M primary MEFs following 10 
min exposure to 0, 200 or 400 µM H2O2 to induce acute oxidative stress. Lysates were separated 
by SDS-PAGE and immunoblotted (IB) with the indicated antibodies. 

C. Quantitation of phosphorylated AMPKα relative to total AMPKα as shown in representative 
immunoblot in Fig. 4.12B. 

D. Delta cell index recorded by iCelligence impedence-based cell monitoring system as a 
measure of cell proliferation/viability in WT, T247M CHIP and CHIP knockout (CHIP-/-) P2 
primary MEFs in the presence of 0 µM or 500 µM H2O2. Delta cell index (Delta CI) was 
calculated as the change in cell index before and after exposure to 0 µM or 500 µM peroxide for 
24 hours.  
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T247M protein is significantly reduced while mRNA remains unchanged in mouse tissues. 

T247M protein levels are significantly reduced relative to WT CHIP in T247M CHIP primary 

MEFs (Fig. 4.5A), while T247M CHIP mRNA levels are unchanged (Fig. 4.5B). Additionally, 

patient fibroblasts from SCAR-16 patients with other CHIP mutations also have significantly 

reduced CHIP protein expression184. However, the expression of SCAR-16 related mutant CHIP 

in animal tissue was unknown. To test this, we isolated protein and mRNA from brains, testes, 

livers and hearts of T247M CHIP male mice and their wildtype littermates. Tissue homogenates 

were separated by SDS-PAGE and immunoblotted for CHIP and β-tubulin. Confirming what we 

observed in primary MEFs, in all 4 tissue types, T247M CHIP protein expression was 

dramatically reduced relative to WT CHIP (Fig. 4.13A). Reduced protein expression may be the 

direct result regulation at the transcriptional level. Therefore, we also isolated mRNA from the 

same tissues and performed quantitative real-time polymerase chain reaction (qRT-PCR) to 

evaluate STUB1 (CHIP) mRNA levels. Despite the dramatic difference in protein expression, we 

measured no significant difference in WT vs. T247M CHIP mRNA levels across all 4 tissues 

(Fig. 4.13B). Together these data suggest that T247M CHIP protein expression is differentially 

regulated when compared to WT CHIP, but that this regulation does not occur at the mRNA 

level. Our primary MEF data showing enhanced T247M turnover, that is at least in part 

dependent on proteasomal degradation (Fig 4.6) provides one possible mechanism underlying 

this observed difference in CHIP protein levels. Additionally, cellular mechanisms for clearing 

large insoluble aggregates such as autophagy may also be involved. However, it is important to 

note that while levels of soluble T247M CHIP are dramatically reduced relative to WT CHIP, 

T247M CHIP mutation does not phenocopy total loss of CHIP.  
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Instead, the remaining T247M CHIP is sufficient to maintain many of CHIP’s normal functions 

such that T247M CHIP likely results in only a partial-loss of function mutation but changes in 

protein binding dynamics may also, in some contexts cause T247M CHIP to behave as a 

dominant negative.  
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Figure 4.13. T247M protein is significantly reduced while mRNA remains unchanged in mouse 
tissues. 

A. Immunoblottting for CHIP and β-tubulin in WT and T247M male mouse brain (B), testes (T), 
liver (L) and heart (H) tissue homogenates. T247M tissue homogenates were evaluated loading 
both 10 µg and 50 µg of total protein to allow for visualization of T247M CHIP. 

B. Relative quantitation of total STUB1 mRNA isolated from WT and T247M male mouse brain 
(B), testes (T), liver (L) and heart (H) tissue. 
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T247M homozygous mutant mice exhibit dysregulation of inhibitory processes governing 

activity, exploration, and sensorimotor gating, and to impaired learning and memory. We 

reported previously that both siblings homozygous for the CHIP T246M substitution have 

profound cerebellar ataxia as well as selective cognitive impairments. Additional reports of 

CHIP mutation in other cases of SCAR16 feature cerebellar dysfunction (ataxia) with an 

additional range of clinical features associated with disease, including a heterogeneity of 

additional neurological deficits.90 The profound cerebellar ataxia exhibited in SCAR16 suggests 

that CHIP plays a critical role in maintaining cerebellar function. And in fact when we examined 

our CHIP-/- mouse line in a battery of cognitive assessments, we observed that total loss of CHIP 

expression has a selective impact in motoric, sensory, and cognitive function, in particular with 

tasks attributed to cerebellar function (Figs. 3.5 and 3.6). However, the results of our biophysical 

and cell based models suggest that T246M mutation is not functionally equivalent to total loss of 

CHIP, thus in order to determine the pathophysiological implications of T246M mutation in vivo 

we generated a mouse model (T247M) that mimics the human mutation. We first wanted to 

assess the neurological behavior of the T247M CHIP mice to determine if this mutation found in 

human SCAR16 patients leads to neurological impairments associated with SCAR16. Given the 

autosomal recessive nature of CHIP deficiency in SCAR16, we examined both T247M 

homozygous and heterozygous mice as well as their wildtype littermates in a battery of 

neurological assessments.  

The rotarod test is extensively used in mouse models to detect cerebellar dysfunction by 

testing motor coordination and motor learning on a rotating dowel. The performance of CHIP-/- 

mice on the rotarod demonstrated a severe motoric impairment, and we hypothesized that given 

the severe ataxia associated with cerebellar dysfunction in SCAR16 patients we would observe 



154 
 

similar deficits in the homozygous T247M mice. However, neither the heterozygous nor 

homozygous T247M mice exhibited any significant deficits in motor coordination on an 

accelerating rotarod when tested in 4 different trials at 9-10, 22, 27-28 and 31 weeks of age (Fig. 

4.14). While these results are surprising, we predict that this may be a strain dependent effect as 

strain differences have been reported with the rotarod test in other studies of mouse models of 

neurdegeneration185, and when comparing the wildtype animals tested previously against our 

CHIP-/- mice (C57/Bl6 x 129SVEV) vs. the wildtype tested here (C57/Bl6) the latency to fall 

from the accelerating rotarod of the C57/Bl6 WT mice is more than 4X longer than the C57/Bl6 

x 129SVEV WT animals (Fig 3.5A and 4.14). This suggests that the C57/Bl6 mouse strain may 

be particularly well-adapted to this task, such that to observe a degenerative deficit may require 

further advanced aging of the mice. This hypothesis is further supported by the variable age of 

onset of motor deficits reported previously in additional mouse models of cerebellar degenerative 

disorders.186  
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Figure 4.14. Latency to fall from an accelerating rotarod. Maximum trial length was 300 sec. 
Trials 4 and 5 were given 48 hours after the first 3 trials, when mice were 9-10 weeks (Wk) in 
age. 
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Next, to assess auditory function, reactivity to environmental stimuli, and sensorimotor 

gating the mice were examined in the acoustic startle and prepulse inhibition test. CHIP-/- mice 

had previously demonstrated significantly reduced magnitude of the startle response as well as a 

delayed reaction time with no change in prepulse inhibition when evaluated at 25 weeks of age 

(Fig. 3.5C, D). However, no effects of T247M genotype were observed for acoustic startle 

amplitudes at either age of testing, 11-13 weeks or 33 weeks (Fig. 4.15A and 4.15B). Similarly, 

the three genotypes demonstrated comparable levels of prepulse inhibition in the first test (Fig. 

4.15C). Interestingly, in the second test, the T247M mutant mice exhibited significant decreases 

in percent inhibition across every prepulse sound level, indicating the emergence of sensorimotor 

deficits by age 33 weeks [main effect of genotype, F(2,41)=9.62, p=0.0004, genotype x decibel 

interaction, F(8,164)=2.08, p=0.0406] (Fig. 4.15D). These degenerative deficits in prepulse 

inhibition are consistent with other mouse models of cerebellar degeneration with profound 

Purkinje cell loss.187 

 In addition to this deficit in prepulse inhibition attributed to cerebellar dysfunction, the 

mutant mice demonstrated both hyperactivity and increased impulsivity in an open field test. As 

shown in Table 4.1, highly significant effects of genotype were found for distance traveled, 

rearing, and center time at both ages tested (Fig. 4.16). In the first test at age 8-9 weeks, the 

CHIP mutant mice had increased levels of locomotor activity in comparison to WT and HET 

mice at most intervals in the 1-hr session (Fig. 4.16A). By the second test, the mutant mice were 

overtly hyperactive across the entire test (Fig. 4.16B). In fact, data from one female mutant 

mouse was removed from the analysis, because of extreme activity levels (i.e. distance 

traveled=7,230 cm at the 50 min interval). A different pattern emerged for rearing movements, a 

measure of vertical activity. At both 8-9 weeks and 32 weeks, the mutant mice had significantly 
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reduced levels of rearing at the beginning of each session (Fig. 4.16C, D), indicating a deficit in 

the initial exploration of the open field. In the second open field test, higher levels of rearing 

emerged in the mutant group in the last half of the session, in line with a hyperactive phenotype 

(Fig. 4.16D). In both open field tests, the disruption of CHIP led to increased time spent in the 

center region, suggesting a reduction in typical cautionary avoidance of the open area (Figure 

4.16E, F). Together these data suggest T247M CHIP expression led to more impulsive and risky 

exploration, as observed in mouse models for mania and impulsivity188, 189 and overt 

hyperactivity. Interestingly, both impulsivity and hyperactivity have been attributed to cognitive 

cerebellar dysfunction in humans190-192. Surprisingly, when we then evaluated the T247M CHIP 

mutant mice in the elevated plus maze (EPM) test for anxiety-like behavior, no significant 

effects of genotype were observed. We hypothesize that this may be because the mice were only 

evaluated in the EPM at 7-8 weeks at which point overt cognitive cerebellar decline may not 

have yet occurred and significant differences in anxiety-like behavior would be observable 

(Table 4.2). 
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Figure 4.15. Magnitude of startle responses and prepulse inhibition in an acoustic startle test. 
Trials included no stimulus (NoS) trials and acoustic startle stimulus (AS) alone trials. 
 
A.-B. Magnitude of startle response of WT, T247M HET and T247M homozygous mutant mice 
at 11-13 weeks (A) and 33 weeks (B). 
 
C.-D. Prepulse inhibition of WT, T247M HET and T247M homozygous mutant mice at 11-13 
weeks (C) and 33 weeks (D). 
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Table 4.1. Statistical analysis of open field data. F values, degrees of freedom, and p values 
from a repeated measures ANOVA, with the factors genotype and time (5-min intervals across a 
1 hour test). In the second test, data from one female mutant mouse was removed from analysis, 
due to extreme levels of hyperactivity.  
_____________________________________________________________________________ 
 
Measure and Age at Testing            Main Effect of Genotype     Genotype x Age Interaction 
________________________________________________________________________________ 
Distance traveled 
  8-9 weeks     F(2,45)=7.41, p=0.0017          F(22,495)=2.00, p=0.0047 
  32 weeks     F(2,40)=25.96, p<0.0001 F(22,440)=1.05, p=0.3971 
Rearing movements 
  8-9 weeks     F(2,45)=0.09, p=0.9160         F(22,495)=3.38, p<0.0001 
  32 weeks     F(2,40)=0.82, p=0.4495          F(22,440)=3.12, p<0.0001 
Time spent in center region 
  8-9 weeks     F(2,45)=3.37, p=0.0434         F(22,495)=4.00, p<0.0001 
  32 weeks     F(2,40)=19.21, p<0.0001 F(22,440)=2.60, p=0.0001 
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Figure 4.16. Distance traveled, rearing movements and time in spent in the center in two open 
field tests at ages 8-9 weeks and 32 weeks.  *p<0.05, comparison to WT, **p<0.05, comparison 
to both WT and HET. 
 

A.-B. Distance traveled in open field test of WT, T247M HET and T247M homozygous mutant 
mice at 8-9 weeks (A) and 32 weeks (B). 
 
C.-D. Number of rearing movements (vertical activity) in open field test of WT, T247M HET 
and T247M homozygous mutant mice at 8-9 weeks (C) and 32 weeks (D). 
 
E.-F. Time spent in the center in open field test of WT, T247M HET and T247M homozygous 
mutant mice at 8-9 weeks (E) and 32 weeks (F). 
 
 



161 
 

Table 4.2. Performance of WT, HET and T247M CHIP mutant mice in an elevated plus maze 
test for anxiety-like behavior, a marble-burying assay for exploratory digging, and a buried food 
test for olfactory function.  
______________________________________________________________________________ 
 
                 WT       HET           Mutant 
______________________________________________________________________________ 
 
Elevated plus maze 
   Percent open arm time   32 ± 3     30 ± 4   36 ± 4     
   Percent open arm entries  39 ± 2     41 ± 2      42 ± 3   
   Total number of entries  28 ± 2     27 ± 2   28 ± 3   
 
Number of marbles buried in 30 min 
   First test (age 12 weeks)  16 ± 0.6  18 ± 0.4  11 ± 1.7** 
   Second test (age 32 weeks)  17 ± 0.4  16 ± 0.7  13 ± 1.3** 
 
Olfactory test 
   Latency to find food (sec)  267 ± 74  189 ± 52   289 ± 95 
   Percent of group finding food      80%       95%        89% 
__________________________________________________________________________________ 
**p<0.05, comparison to both WT and HET. 
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In addition to the deficits attributed to cerebellar dysfunction, the T247M also 

demonstrated highly significant impairment in both contextual and cue-dependent learning in the 

conditioned fear procedure, perhaps suggesting hippocampal dysfunction, resulting in 

impairment of learning and memory as a result of T247M CHIP mutation. On Day 1, the training 

day, all of the genotype groups had similar, very low levels of freezing before any exposure to 

the aversive foot shock (Fig. 4.17A). In contrast, during the test for context learning on Day 2, 

the mutant mice exhibited significantly less freezing than either the WT or HET mice at every 

time point [main effect of genotype, F(2,45)=18.46, p<0.0001; genotype x time interaction, 

F(10,225)=3.3, p=0.0005] (Fig. 4.17A). These learning deficits were still evident in the mutant 

group 2 weeks later, during the second test [main effect of genotype, F(2,45)=12.17, p<0.0001] 

(Fig. 4.17B). Strong genotype effects were also observed for cue-dependent learning (Fig. 4.17C, 

D). For both tests, the mutant mice failed to demonstrate a sharp increase in freezing typically 

observed with the onset of the auditory cue [Test 1, main effect of genotype, F(2,45)=4.4, 

p=0.018; genotype x time interaction, F(8,180)=3.48, p=0.0009; and Test 2, main effect of 

genotype, F(2,45)=11.75, p<0.0001; genotype x time interaction, F(8,180)=2.78, p=0.0063]. This 

lack of response could not be attributed to hearing impairment, since the mutant mice had normal 

performance in the acoustic startle test. Together these data suggest significant impairment in 

learning and memory as a result of homozygous T247M CHIP expression. 
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Figure 4.17. Context-dependent and Cue-dependent conditioned fear testing in WT, HET and 
T247M CHIP mutant mice at age 14-18 weeks. **p<0.05, comparison to both other groups. 
 
 
A. Context-dependent learning, Test 1. Baseline levels of freezing behavior before shock 

exposure were determined on Day 1 (the training day). Contextual learning was evaluated 
across 5 min on Day 2 of testing. 

B. Context-dependent learning, Test 2. Test for retention of contextual learning was conducted 2 
weeks following the first test.  

C. Cue-dependent learning, Test 1. An 80 decibel acoustic stimulus (Cue) was presented 2 min 
after mice were placed in the conditioned fear chambers.  

D. Cue-dependent learning, Test 2. Test 2 was conducted 2 weeks after Test 1.  
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Additional testing in the 3-chamber choice test found altered social behavior as a result of 

T247M CHIP expression, such that T247M mutant mice had increased preference for social 

novelty (Fig. 4.18). During the social novelty phase of testing the T247M mutant mice had a 

shift in preference towards the newly-introduced stranger 2 [within-genotype repeated measures 

ANOVAs, following overall significant effect of side, F(1,44)=8.08, p=0.0068] (Fig. 4.18B) and 

the mutant mice made significantly more entries than either the WT or HET mice into the side 

containing stranger 2 [genotype x side interaction, F(2,44)=4.92, p=0.0118, effect of side, 

F(1,44)=11.05, p=0.0018] (Fig. 4.18D).  

Further behavioral testing revealed the T247M mutant mice also had reduced marble 

burying, indicating a decrease in exploratory digging (Table 4.2). However, no effects of 

genotype were observed for olfactory ability in a buried food test (Table 4.2). Overall, the CHIP 

mutation did not lead to overt signs of poor health; however, both the male and female mutant 

mice had significantly lower body weights than the WT and HET groups at almost every time 

point during the behavioral study (Fig. 4.19). Overall, the results of the battery of behavioral 

assessments performed suggest that homozygous T247M CHIP mutation leads to the 

dysregulation of inhibitory processes governing activity, exploration, and sensorimotor gating, 

and to impaired learning and memory in tests for conditioned fear. Interestingly, impaired 

conditioned fear and decreased marble-burying have also been reported in mice with deletion of 

maternal E3 ubiquitin ligase Ube3a, a model for Angelman syndrome193.  Surprisingly, testing at 

ages up to 31 weeks did not reveal significant motor impairment indicative of cerebellar ataxia as 

a result of T247M mutation; however, other behavioral deficits attributable to cognitive 

cerebellar dysfunction were observed as well as deficits in learning and memory attributable to 

hippocampal dysfunction that are reflective of cognitive deficits sometimes observed in SCAR16 
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patients. Interestingly, we have observed some behavioral deficits that overlap with those 

observed in our mouse model of total loss of CHIP; however, the majority were unique to 

T247M mutation, supporting our cell-based data suggesting T247M mutation and total loss of 

CHIP are not equivalent. Additional efforts to compare these mouse strains on the same genetic 

background are on-going to better enable this comparison. Furthermore, it is notable that the 

deficits observed occur largely in the homozygous mutation setting as would be predicted based 

upon the recessive inheritance pattern of SCAR16.  
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Figure 4.18. Social approach in a 3-chamber choice test of WT, HET and T247M mutant mice at 
10-13 weeks of age. * p < 0.05, within-genotype comparison between stranger 1 side and 
opposite side. ## p < 0.05, comparison to same measure in both other genotypes. 
 
A.-C. 3-chamber choice test of sociability of WT, HET and T247M mutant mice at 10-13 weeks 
of age. Time spent with stranger 1 (A) and number of entries into side containing stranger 1 (C). 
 
B.-D. 3-chamber choice test of social novelty of WT, HET and T247M mutant mice at 10-13 
weeks of age. Time spent with already-investigated stranger 1 vs. novel stranger 2 (B) and 
number of entries into side containing already-investigated stranger 1 vs. novel stranger 2 (D). 
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Figure 4.19. Body weights across the behavioral study. Data are missing from one male mutant 
mouse for the first weight measure. *p<0.05, comparison to WT. **p<0.05, comparison to both 
WT and HET. 
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Discussion 

Our biophysical, cellular and in vivo characterization of T246M mutation in SCAR16 

both in vitro and in vivo has allowed us a unique opportunity to begin to delineate the 

contribution of co-chaperone, ubiquitin ligase activity and other emerging CHIP activities to 

specific deficits observed in vitro and in vivo in a disease-relevant context. Initially we had 

hypothesized that the functional loss of CHIP ubiquitin ligase activity as a result of T246M 

mutation was the result of catalytic inactivation of the U-box domain. However, our structural 

and biophysical data suggest that T246M mutation leads to dramatic destabilization and 

misfolding of the CHIP U-box that results in a loss of CHIP’s ability to form dimers and 

promotes the formation of large, multimeric CHIP aggregates both in vitro and in cells. 

Furthermore, when T246M is expressed endogenously across multiple tissues and cell types the 

amount of total soluble protein is dramatically reduced. Additionally, the rate of turnover of 

T246M is greatly enhanced relative to WT CHIP protein, suggesting that the destabilization of 

the U-box promotes the clearance of this structurally misfolded mutant CHIP, likely in an effort 

by the cell to reduce the accumulation of insoluble toxic aggregates, in part through a 

proteasome-dependent mechanism. Importantly when expressed with WT CHIP, T246M CHIP 

does not disrupt WT CHIP dimerization status or localization and conversely the presence of WT 

CHIP does not rescue the misfolding/structural disorganization of T246M CHIP. This data 

supports the recessive inheritance pattern of SCAR16 and may explain why the heterozygous 

T246M mutant carriers do not have any disease phenotype.  

Interestingly, a small population of soluble, partially-functional endogenous T246M 

CHIP protein remains. It is particularly fascinating to us that T246M CHIP’s E3 ubiquitin ligase 

activity towards a variety of substrates is completely abolished but T246M CHIP retains the 
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ability to function in some of CHIP’s critical cellular roles in PQC as a co-chaperone and as an 

autonomous chaperone promoting the phosophorylation and potentiating the activity of AMPK, 

protecting cells from oxidative stress. This is particularly intriguing given the very low levels of 

soluble T246M expressed endogenously. Importantly, while T246M CHIP retains co-chaperone 

activities, binding chaperone proteins and inducing HSF1 nuclear translocation and Hsp70 

expression following stress, both chaperone binding and the induction of Hsp70 are enhanced, 

possibly suggesting abnormal binding kinetics that result from the structural disorganization of 

the CHIP U-box that may alter normal CHIP-mediated regulation of the chaperone-mediated 

stress response. CHIP-/- mice are highly stress intolerant74; therefore, it will be fascinating to 

elucidate whether the abnormal aspects of T246M CHIP co-chaperone activity we have observed 

are functionally deleterious or advantageous in our T247M CHIP mice in in vivo stress models. 

As one might expect due to the multifaceted nature of CHIP activity in cells, our studies suggest 

that the functional consequences of T246M mutation under stress are stress-specific, as we 

observed T246M CHIP protects cells from oxidative stress, but similar to total loss of CHIP, 

T246M mutation does not protect cells from UVC-induced cell death. These data further support 

our conclusion that T246M mutation is not functionally equivalent to total loss of CHIP.  

In order to best understand this distinction when T246M is expressed in a genomic 

context and to evaluate the pathophysiological implications of T246M mutation in vivo, we 

generated a mouse model (T247M) that mimics the human mutation. Surprisingly, testing at ages 

up to 31 weeks did not reveal significant motor impairment indicative of cerebellar ataxia as a 

result of T247M mutation, however other behavioral deficits attributable to cognitive cerebellar 

dysfunction were observed as well as deficits in learning and memory attributable to 

hippocampal dysfunction that are reflective of cognitive deficits reported in SCAR16 patients. 
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These data further support our previous findings from CHIP-/- mice that CHIP plays a critical 

role in cerebellar maintenance. Interestingly, while we have observed some behavioral deficits 

that overlap with those observed in our mouse model of total loss of CHIP, the majority were 

unique to T247M mutation, further validating our cell-based data that suggest T246M mutation 

and total loss of CHIP are not functionally equivalent. We hypothesize that the phenotypic 

differences observed between CHIP-/- mice and T247M mice are likely reflective of our cell-

based and in vitro findings that while T247M CHIP no longer functions as an E3 ubiquitin 

ligase, other CHIP functions remain intact despite this mutation. And in fact, perhaps even more 

intriguingly, T247M mutation may in some cases modify CHIP’s co-chaperone activities in a 

functionally advantageous or, more likely, deleterious manner, similar to a dominant-negative 

mutation. These data further support our previous findings that highlight the role of aberrant 

ubiquitination in the pathogenesis of SCAR16 however suggest that loss of CHIP ubiquitin 

ligase activity alone may not fully explain the molecular mechanisms underlying the diverse 

pathophysiology observed in the heterogeneity of SCAR16 disease. As such, it appears that 

T246M mutation in SCAR16 is best described as a partial loss of function mutation. 

The CHIP mutations that have been associated with SCAR16 are present in all three of 

CHIP’s functional domains, although interestingly the majority are concentrated in the charged 

domain and the U-box domain, supporting disruption of CHIP ubiquitin ligase activity as a likely 

driver of disease. Our data clearly support this role of aberrant ubiquitin ligase function in the 

pathophysiology of SCAR16 but suggest that this is not mechanism whereby CHIP mutation 

drives disease. Given the diversity of reported mutations and the clinical heterogeneity of the 

ARCA patients harboring these STUB1 mutations, we originally hypothesized that the affected 

protein domain may directly correlate to clinical phenotype. For example, cognitive impairment 
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occurs in 5 out of 6 genetic signatures harboring mutations in the U-box domain, such that 

residual CHIP activity involving a defective or truncated U-box domain but intact TPR domain 

could directly correlate to specific clinical symptoms in some patients. Our extensive behavioral 

analysis of the T247M CHIP mouse model provides direct evidence to support this hypothesis, 

demonstrating that particular cognitive deficits are in fact associated in vivo with a U-box 

domain point mutation that has been demonstrated in vitro and in cells to have a partially 

functionally intact TPR domain. The development of additional animal models with isolated 

domain mutations may help to further validate this hypothesis and identify how the 

multifunctional roles of CHIP contribute to particular clinical pathologies. It seems clear, 

however, that while disordered ubiquitination contributes to SCAR16 pathology, CHIP mutation 

as a driver of disease is not limited to loss of ubiquitin ligase activity but may represent a more 

multi-faceted disruption of CHIP-mediated PQC.  

To date, we have only begun to fully evaluate the in vivo consequences of T247M 

mutation. The results of our behavioral assessment of these mice are fascinating and raise many 

questions about the underlying pathological, cellular and biochemical changes that are occurring 

to drive this phenotype. At a cellular level, future studies will aim to elucidate this by evaluating 

changes in cell signaling pathways that result from T247M mutation in vivo. Additionally, 

having observed significant cerebellar deficits we are interested in evaluating the health of the 

cerebellum in T247M mice, particularly to evaluate its structure and identify signs of atrophy, 

quantitate and evaluate localization of CHIP expression, identify the presence of aggregates 

indicative of proteotoxicity and evaluate Purkinje cell pathology. It will be particularly 

fascinating to compare these data to our previous data evaluating many of these parameters in 

vivo in the context of total loss of CHIP.  
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Within the spectrum of disease phenotypes represented by SCAR16, patients with GHS 

represent a unique group where cerebellar ataxia characteristic of SCAR16 is paired with 

neuroendocrine deficits and resulting reproductive impairments associated with hypogonadism. 

We previously observed CHIP-/- mice recapitulate many of the reproductive impairments 

characteristic of GHS. While developing the T247M mouse model and establishing the mouse 

colony we have observed impaired breeding of T247M homozygous mice. Additionally, 

preliminary hormonal studies of male T247M mice suggest abnormal circulating hormone levels 

and an impairment of the pituitary’s ability to respond to stimulation with gonadotropin releasing 

hormone, similar to that observed in hypogonadism associated with GHS (data not shown). 

Future studies will seek to characterize the neuroendocrine deficits and reproductive impairments 

associated with T247M. Both by comparison to the CHIP-/- animals as well as to additional 

SCAR16 point mutant mice we may be able to delineate the contribution of particular CHIP 

functions to this unique disease phenotype. 

These studies represent the first in vivo characterization a CHIP mutation relevant to 

human disease. Loss of CHIP function has long been associated with protein misfolding and 

aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for 

CHIP in human neurological disease had never been identified. In light of the identification of 

T246M CHIP mutation and subsequent designation of SCAR16, the establishment of the T247M 

mouse model of SCAR16 represents a novel and important tool to finally evaluate CHIP 

dysfunction in vivo in a disease-relevant context. Our biophysical, cellular and in vivo 

characterization of T246M mutation in SCAR16 has provided significant insight into both the 

molecular mechanisms driving disease pathology in SCAR16 as well as basic CHIP biology, by 

shedding new light on the structure-function relationship, particularly how it contributes to the 
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multifaceted activities of CHIP within the cell. Furthermore, we are hopeful these studies have 

provided valuable insight required for the future development of effective therapies for this 

devastating degenerative disease.  
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Experimental Procedures 

Expression plasmids and recombinant proteins. Mammalian expression plasmids pcDNA3-myc-

CHIP, pcDNA3-myc-CHIP-K30A, pcDNA3-myc-CHIP-H260Q, HA-Ubiquitin, FLAG-SIRT6, 

FLAG-HSP70, β-galactosidase, GFP and cBSA were used as described previously 75, 87, 128, 135, 

177. CHIP, CHIP-H260Q, CHIP-K30A, CHIP-T246M and AMPK recombinant proteins were 

produced in Escherichia coli BL21(DE3) as His-tagged fusion proteins by induction with 0.1mM 

isopropyl-1-thio-β-D-galactopyranoside overnight at 18°C followed by purification with 

HisTrap™ HP columns (GE Healthcare), concentrated, and stored in in 20 mM HEPES pH 7.4 

with 150 mM NaCl.  

Mutagenesis. A point mutation of threonine to methionine at position 246 of CHIP was created 

for generation of single T246M point mutant and K30A-T246M double point mutant by site-

directed mutagenesis using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs, 

E0554S) according to manufacturer’s instructions using previously described pcDNA3-myc-

CHIP template or pcDNA3-myc-K30A CHIP template128 and mutagenic primers 5’-

CCGTGCATCATGCCCAGTGGC-3’ and 5’-CTCCCGCATCAGCTCAAAGC-3’ 

(BaseChanger software, New England Biolabs). The myc-CHIP-T246M and myc-CHIP-K30A-

T246M expression plasmids were produced by transformation in Escherichia coli DH5α, 

purified, and the single-base pair substitution was verified by DNA sequencing.  

In vitro ubiquitination reactions. In vitro ubiquitination reactions were carried out as previously 

described 128. Briefly, bacterially-expressed 4uM LKB1 (Sigma, SRP0246), 1uM α-synuclein 

(ab123758) or 1 µM SIRT6 (Sigma, SRP0120) was incubated in the presence of 2.5 μM CHIP or 

CHIP mutants, 50 nM purified Ube1 (Boston Biochem, E305), 2.5 μM purified UbcH5c 

http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
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(BostonBiochem, E2-627) and 0.25 μM ubiquitin (BostonBiochem, U100H) in 50 mM Tris pH 

7.5, 600 μM DTT, 2.5 mM MgCl2-ATP (BostonBiochem, B20) in a total volume of 10 μl for 1 h 

at 37°C. Samples were analyzed by 4-12% Bis-Tris SDS-PAGE and immunoblotting was 

performed with either anti-LKB1 (Santa Cruz, SC32245), anti-SIRT6 (Abcam, Ab62739) or 

anti-α-synuclein (Abcam, ab138501) antibodies. 

Dynamic Light Scattering. The solution molecular weights of WT CHIP, K30A, H260Q and 

T246M point mutant CHIP were determined using size exclusion chromatography followed by 

multi-angle light scattering (SEC-MALS). The SEC-MALS system consisted of a GE Superdex 

200 column connected to Wyatt DAWN HELEOS-II multi-angle light scattering instrument and 

a Wyatt T-Rex refractometer (Wyatt Technology, Santa Barbara, CA, USA). 100 µl of 0.5 

mg/ml of each sample was loaded onto the column, and the light scattering and refractive index 

data were collected as the eluted samples passed through light scattering system. The molar 

masses of the samples eluting in various peaks were calculated from these data using ASTRA 6 

software (Wyatt Technology). 

Nuclear Magnetic Resonance Spectroscopy. Human WT and T246M U-box (amino acid residues 

212-303) recombinant proteins were purified as previously described for WT CHIP U-box.194 

NMR spectra were recorded at 600 MHz (1H) and 20°C in buffer containing 20 mM HEPES (pH 

7.5), 50 mM NaCl, and 1 mM DTT as previously described194. NMR data were processed with 

NMRPipe195 and analyzed with SPARKY.196  

Circular Dichroism Spectroscopy. CD spectra of WT and T246M U-box CHIP were collected as 

previously described197 at 0.25 mg/mL and 15°C in 10 mM sodium phosphate pH 7.0 with 20 

http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem
http://www.jbc.org.libproxy.lib.unc.edu/cgi/redirect-inline?ad=Calbiochem


176 
 

mM NaCl and 1 mM DTT. Tm for WT and T246M U-box CHIP was additionally determined by 

CD at 222 nm.  

T247M mouse generation and off-target site mutation anaylsis. Guide RNA Cloning. Guide 

RNA protospacer (target) sequences were cloned into a T7 promoter vector in context with guide 

RNA structural elements, allowing T7-mediated in vitro transcription to produce the full guide 

RNA molecule. A guanine was added to the 5’ end of protospacer sequences that do not have a 

native 5’ guanine to allow T7 in vitro transcriptional initiation, which requires a 5’ guanine 

residue. T7 ligation mixtures were transformed into Stellar competent cells. Miniprep DNA was 

sequence-verified. 

Guide RNA In Vitro Transcription. Guide RNA plasmids were linearized by digestion with DraI, 

which cleaves at the end of the guide RNA sequence. Linearized material was purified by silica 

column (Qiaquick) and used as template for T7 in vitro transcription using the NEB HiScribe T7 

kit. Reactions included 1000 ng linear guide RNA plasmid in a standard reaction recommended 

by the kit provider. Reactions were incubated at 37°C overnight followed by addition of DNAse 

I and 30 min additional incubation at 37°C to remove plasmid DNA. Guide RNAs were then 

purified using Qiagen RNEasy mini kit, eluted in 30 µl RNAse-free microinjection buffer (5 mM 

Tris-Cl pH7.5, 0.1 mM EDTA) and quantitated on a Nanodrop spectrophotometer. 

Guide RNA Activity Test. The Cas9/guide RNA target region was PCR amplified from wild-type 

C57BL/6 DNA using primers Stub1-ScF1 (5’-GGAGACAGGAGTTGCCCACACA-3’) and 

Stub1-ScR1 (5’- CAGTTCAGAACCCATCAGCAGG-3’). PCR product was purified on a silica 

minicolumn and eluted in 10 mM Tris-Cl pH8.5. 
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In Vitro Cleavage Assay. Guide RNAs were tested for activity in an in vitro cleavage assay, 

which included 1x NEB restriction buffer 3, 1 mg/ml BSA, 30 µg/ml Cas9 protein, 300 ng target 

DNA and 600 ng guide RNA in a 20 µl reaction volume. A control reaction was performed in 

parallel with all components except guide RNA. Reactions were incubated at 37°C 1 hr, 80°C 10 

min, then 4°C until gel analysis. Reaction mixes were separated on 2% Agarose TAE gels with 

ethidium bromide and imaged using a standard ethidium bromide gel imaging system. Guide 

RNA Stub1-g82T (GAACCCTGCATTACACCCAGTGG, protospacer associated motif NGG 

underlined) produced nearly 100% target site cleavage and was selected for embryo 

microinjection to produce Stub1-T247M knock-in animals.  

Mouse production. Genome editing was performed using CRISPR/Cas technology with the 

modification of mouse sequence NM_019719 at positions #740 and #741: ACAATG, 

resulting in change of Threonine247 to Methionine. Founder animals were produced by 

microinjection of C57BL/6J embryos with a mixture of 100 ng/ul Cas9 mRNA, 50 ng/ul Stub1 

guide RNA g82T and 100 ng/ul donor oligonucleotide Stub1-T247M-T (5’-

TGACTACTTGTGTGGCAAGATTAGCTTTGAGCTGATGCGGGAACCCTGCATTATGCC

CAGTGGTATCACCTATGACCGCAAGGACATTGAGGAGCACCTGCAGGTAAG-3’) in 5 

mM Tris pH7.5, 0.1 mM EDTA. Injected embryos were surgically implanted in CD-1 

pseudopregnant recipients and resulting pups were genotyped by PCR amplification of the Stub1 

T246 region followed by Sanger sequencing. Animals harboring the Stub1 T246M codon change 

were identified by deconvolution of sequence traces. Founder animals were mated to wild-type 

C57BL/6J animals and F1 animals harboring the T246M mutation were intercrossed to generate 

homozygous animals. 
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Off-target analysis. For off-target analysis, guide RNAs were checked for predicted off-target 

sites using the web server crispr.mit.edu. The top 10 predicted off-target sites were PCR 

amplified from the founder biopsy DNA and PCR products were sequenced to detect the 

presence of mutations at each off-target site. Mutations were detected based on the presence of 

multiple peaks in the sequence traces. 

Cell culture and transfection. CHIP+/+, CHIP−/− and T247M CHIP mouse embryonic fibroblasts 

(MEFs) were cultured as previously described74. COS-7 and shCTRL and shCHIP HEK293 cells 

were maintained in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% 

fetal bovine serum (Sigma) at 37°C in an atmosphere of 5% CO2. Cell transfections were 

performed using X-tremeGENE 9 (Roche) with the indicated plasmid DNA at a 1:3 DNA to X-

tremeGENE 9 ratio. 

iCelligence Population Doubling/Cell Proliferation/Viability. For determination of primary MEF 

growth rates, cells were plated on iCelligence E-Plates L8. Cell attachment, spreading, and 

proliferation were continuously monitored every 30 min for 72 hours using the iCELLigence 

System (Acea Biosciences). The electronic readout of cell-sensor impedance is displayed 

continuously in real time as the Cell Index (CI). The CI value at each time point is defined as Rn-

Rb/Rb, where Rn is the cell-electrode impedance of the well with the cells, and Rb is the 

background impedance of the well with media alone. Population doubling was determined from 

the exponential phase of the growth curve and calculated using the iCELLigence RTCA software 

(Roche Applied Science) according to manufacturer’s protocol. For determination of cell 

proliferation/viability of HEK293 cells in the presence of 200 µM H2O2 HEK293 cells stably 

depleted of CHIP or shCTRL were used as previously described.87 Cells were plated in E-plates 

L8 at 40,000 cells/well and CI continuously monitored for the duration of the experiment. 24 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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hours later WT or T246M CHIP was reintroduced by transient transfection as described above. 

Cells were then exposed to 0 µM or 200 µM H2O2 for 24 hours beginning at 24 hours post-

transfection. Delta cell index (Delta CI) was calculated as the change in cell index before and 

after exposure to 0 µM or 200 µM peroxide utilizing iCELLigence RTCA software as per 

manufacturer’s instructions. For determination of cell proliferation/viability of WT, T247M and 

CHIP-/- primary MEFs in the presence of 500 µM H2O2 cells were plated in E-plates L8 at 

30,000 cells/well and CI continuously monitored for the duration of the experiment. 24 hours 

post-plating, cells were exposed to 0 µM or 500 µM H2O2 for 24 h. Delta cell index (Delta CI) 

was calculated as the change in cell index before and after exposure to 0 µM or 500 µM peroxide 

utilizing iCELLigence RTCA software as per manufacturer’s instructions. 

 

mRNA analysis. CHIP mRNA levels in primary MEFs were determined using the SingleShot™ 

SYBR® Green Kit (Biorad, 1725085) and Roche LightCycler 480 with PrimePCR SYBR green 

primer assays targeting the indicated genes (Biorad) listed below. Relative expression values 

were calculated using the ΔCT method correcting for PCR efficiency and mean centered across 

the three genotypes. Expression was normalized to the geometric mean of Actb and Hprt, the two 

most stable reference genes across genotypes as determined via Normfinder198 (also tested 

Gapdh and Tbp). 

Table 4.3. qPCR Primers                
 
Gene  Biorad Assay ID 
Act  qMmuCED0027505 
Gapdh  qMmuCED0027497 
Hprt  qMmuCED0045738 
Stub1  qMmuCED0001075 
Tbp  qMmuCID0040542 
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Protein and mRNA isolation/analysis from mouse tissue. Liver, heart, brain and testes were 

isolated from anesthetized 4 month old WT, HET and T247M male littermates. Tissue was 

stored frozen in RNAlater solution (Ambion) until protein and mRNA were isolated using the 

Ambion PARIS Kit (Ambion, AM1921) as per manufacturer’s instructions. Tissue disruption 

prior to protein/RNA isolation was performed with Ambion PARIS Kit Cell Disruption Buffer 

and Qiagen TissueLyser LT with 5 mm steel beads. Any contaminating DNA was removed from 

RNA prepared by PARIS Kit by treatment with TURBO DNA-free™ Kit (Ambion) and mRNA 

was reverse transcribed using Iscript cDNA synthesis kit (Bio-Rad). Real-time PCR was 

performed using Roche LightCycler 480 and Sso Advanced Universal SYBR Green Supermix 

(Biorad) with PrimePCR SYBR green primer assays targeting the indicated genes (Biorad) listed 

above. Relative expression values were calculated using the ΔCT method correcting for PCR 

efficiency and mean centered across the three genotypes. Expression was normalized to the 

geometric mean of Actb and Gapdh, the two most stable reference genes across genotypes as 

determined via Normfinder198 (also tested Hprt and Tbp). 

Cell lysate collection/nuclear fractionation/isolation of total, soluble and insoluble fractions. For 

all assays unless otherwise noted, cell lysates were prepared by first washing cells in cold PBS 

and lysing in Cell Lytic M (Sigma) containing 1X HALT protease/phosphatase inhibitor (Pierce) 

and 50 µM PR619 (Lifesensors). Lysates were clarified by centrifugation at 15,000 x g for 10 

min at 4°C. Total protein concentration was determined by BCA protein assay (Pierce). 

Alternatively, cells were lysed on ice for 15 m in Triton X-100 cell lysis buffer (50 mM Tris, pH 

7.4, 150 mM NaCl, 1% Triton X-100, 1mM EDTA, protease inhibitor [Complete; Roche], 50 

µM PR-619 (LifeSensors)). Triton X-100 insoluble material was collected by solubilization of 

the insoluble pellet following 15,000 x g centrifugation by resuspension in 2X Laemmeli Sample 
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buffer (Biorad), brief sonication and heating for 5 m at 100°C. Nuclear fractions were prepared 

using the NE-PER kit (Pierce), as per manufacturer’s instructions. Total, soluble and insoluble 

fractions as shown in Fig. 4.6 were prepared by first trypsinizing and counting P2 primary MEFs 

grown on 15-cm tissue-culture treated dishes to near 100% confluency. Cells were then divided 

equally between two tubes, spun at 500 x g, pellet rinsed in PBS and spun again at 500 x g. Cells 

for total protein fraction (tube 1) were then lysed in 2X Laemmeli SDS sample buffer (65mM 

Tris-HCl, 10% Glycerol, 2%SDS), sonicated briefly on ice and boiled at 100°C for 5 m. The cell 

pellet in tube 2 was then lysed for collection of soluble and insoluble fractions. This pellet was 

lysed in Triton X-100 cell lysis buffer as described above and soluble protein collected following 

centrifugation at 15,000 x g for 10 m at 4°C. The Insoluble pellet was then rinsed once in lysis 

buffer and spun again at 15,000 x g for 10 m at 4°C. The pellet was then solubilized in 2X 

Laemmeli SDS sample buffer (65mM Tris-HCl, 10% Glycerol, 2%SDS), sonicated briefly on ice 

and boiled at 100°C for 5 min. Total protein concentrations in each fraction were then 

determined by 660nm Protein Assay (Thermo Scientific) and samples of equal total protein 

prepared for SDS-PAGE by addition of final concentrations of 0.025% bromophenol blue and 

100mM DTT.  

Polyacrylamide gel electrophoresis, Blue native polyacrylamide gel electrophoresis, gel 

immunoblotting, and densitometry. For reduced and denatured conditions, protein samples were 

resolved on NuPAGE Novex® Bis-Tris Gels (Life Technologies) using the MOPS/LDS buffer 

system or Mini-PROTEAN® TGX Precast Gels (Bio-Rad) using the Tris/Glycine/SDS buffer. 

Native protein samples were resolved on 4-16% NativePAGE Novex® Gels (Life Technologies) 

using 0.001% G-250 cathode buffer. Proteins were transferred to PVDF membranes and 

incubated with primary antibodies overnight (see following table for antibody information) and 
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detected with either anti-rabbit or anti-mouse (GE Healthcare), or anti-goat (Sigma) HRP-

conjugated antibodies and visualized with ECL Advance substrate (GE Healthcare) using the 

EC3™ Imaging System (UVP). For quantification of relative protein levels, densitometry 

analysis was performed using LI-COR Image Studio Lite.  

Immunoprecipitation/Co-immunoprecipitation of FLAG-HSP70/CHIP, FLAG-SIRT6/CHIP, HA 

WT-CHIP/MYC T246M-CHIP from COS-7 cells. COS-7 cells were cultured and transiently 

transfected as described above with the indicated transgene vectors. 24 h post-transfection cells 

were treated with 20 μM MG132 or DMSO for 2.5 hours prior to harvest. Cells were washed in 

cold PBS and lysed in Cell Lytic M (Sigma) containing 1X HALT protease/phosphatase 

inhibitor (Pierce) and 50 µM PR619 (Lifesensors). Lysates were clarified by centrifugation at 

15,000 x g for 10 min. Total protein concentration was determined by BCA protein assay 

(Pierce) and 1 mg total protein clarified lysate incubated overnight at 4°C with 20 μg of 

EZview™ Red ANTI-FLAG® M2, EZview™ Red ANTI-MYC® M2 or EZview™ Red ANTI-

HA® M2 (Sigma). The gel was then washed 5 times with Tris-Buffered Saline with 0.5% 

Nonidet P-40; subsequently, proteins were eluted in reducing SDS-sample buffer and analyzed 

by SDS-PAGE and western blotting was performed using anti-FLAG HRP (Sigma, A8592), anti-

HA HRP (Sigma, A6533) and anti-myc HRP (Sigma, A5598) antibodies. 

Immunoprecipitation/Co-immunoprecipitation of UbcH5c/CHIP, AMPKα1/CHIP, Hsc70/CHIP 

from COS-7 cells or Primary MEFs. COS-7 cells were cultured and transiently transfected as 

described above with the indicated transgene vectors. Primary MEFs were cultured as previously 

described and plated in 2 15cm tissue culture dishes and incubated overnight under normal 

growth conditions. 24 h post-transfection (COS-7) or plating (Primary MEFs) cells were treated 

with 20 μM MG132 or DMSO for 2.5 h prior to harvest. Cells were washed 1X in cold PBS and 
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lysed in Cell Lytic M (Sigma) containing 1X HALT protease/phosphatase inhibitor (Pierce) and 

50 μM PR619 (LifeSensors). Lysates were clarified by centrifugation at 15,000 x g for 10 min. 

Total protein concentration was determined by BCA protein assay (Pierce) and 1.5 mg total 

protein clarified lysates were incubated overnight at 4°C with 10 μg anti-UbcH5c (Cell Signaling 

Technologies, 4330S), anti-AMPKα1 (R and D Systems, AF3197), anti-CHIP (Abcam, ab4447), 

anti-Hsc70 (Enzo, ADI-SPA-815), rat IgG, rabbit IgG or goat IgG antibodies. 120 μl Protein-G 

Dynabeads (Invitrogen) were then added to each sample and incubated for 0.5 h at room 

temperature with rotation. Beads were washed four times with Phosphate-Buffered Saline with 

0.05% Tween-20; subsequently, proteins were eluted in SDS-sample buffer and analyzed by 

SDS-PAGE and western blotting using anti-UbcH5c (Cell Signaling Technologies, 4330S), anti-

CHIP (Sigma, S1073), anti-AMPKα1/2 (Cell Signaling Technologies, 2532) or anti-Hsc70 

(Enzo, ADI-SPA 815) antibodies. 

Myc-CHIP and endogenous CHIP Immunofluorescence: CHIP Immunofluorescence was 

performed as previously described199 with the following modifications. Cells were fixed in 4% 

paraformaldehyde for 10 min, then incubated in permeabilization buffer (PBS, 0.5% Triton X-

100, 1% BSA) for 10 min. Primary and secondary antibodies were prepared at dilutions of 1:500 

(CHIP-Sigma HPA043531) or (anti-c-myc, Sigma M4439) and 1:800 (Alexa-Fluor Goat anti-

rabbit or Goat anti-mouse), respectively, in blocking buffer (PBS, 0.05% Triton X-100, 1% 

BSA). Coverslips were mounted using Vectashield Hardset with Dapi (Vector Laboratories). 

Cells were visualized using a Zeiss LSM 710 spectral confocal. 

HSF1 Luciferase Reporter Assay. COS-7 cells were cultured, plated at 5000cells/well in clear-

bottom white 96-well plates (Thermo Scientific, 165306) and transiently transfected as described 

above with the indicated transgene vectors and the Qiagen Cignal Heat Shock Response Reporter 
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(luc) Kit (CCS4023L) as per manufacturer’s instructions. 24 h post-transfection cells were lysed 

and luciferase assays were performed using a Dual-Luciferase® Reporter Assay System 

(Promega, Madison, WI) on a BMG Labtech CLARIOstar dual-injection plate reader following 

the manufacturer’s protocol. Transfection of each construct was performed in triplicate in each 

assay and a total of 3 assays were performed on 3 separate days. Empty vector was transfected in 

each plate in triplicate to be used for normalization purposes. Ratios of Renilla luciferase 

readings to Firefly luciferase readings were taken for each experiment and triplicates were 

averaged. The average values of the tested constructs were normalized to the activity of the 

empty construct. Bars represent the averages of the normalized values with error bars indicating 

the range. 

Cyclohexamide chase. COS-7 cells were co-transfected with the indicated vectors and 24 h post-

transfection treated with 50 µg/ml cyclohexamide for 0, 1 or 2.5 h in the presence or absence of 

20 µM proteasome inhibitor MG132 and lysates collected and separated by SDS-PAGE and 

immunoblotted with antibodies against His-CHIP and β-tubulin as described above. Primary 

MEFs were plated and incubated for 24 h under normal growth conditions. Cells were then 

treated with for 0, 2, 4 or 6 h with 50 µg/ml cyclohexamide and lysates collected and separated 

by SDS-PAGE and immunoblotted with antibodies against CHIP (ab4447) and β-tubulin as 

described above. 

 

Heat Stress and Recovery. Two models of heat stress and recovery were utilized. For measures 

of heat stress/CHIP-induced nuclear translocation of HSF1 in COS-7 cells, cells were heat 

shocked in a water bath for 30 min at 42°C prior to lysate collection and nuclear fractionation as 

previously described.74 For Hsp70 induction and recovery assays in primary T247M and WT 
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MEFs, cells were heat shocked in a water bath for 10 min at 42°C prior to recovery at 37°C 

under normal growth conditions for the indicated times.  

AMPK in vitro activity assay. Recombinant proteins CHIP, CHIP point mutants and AMPKα2 in 

20 mM HEPES pH 7.4 with 150 mM NaCl prepared as described above and as previously 

described 8 were diluted to final concentrations of 730nM (pAMPKα2) or 7 point 5X serial 

dilution curve starting from 2.8 µM in 1X kinase buffer A (50 mM HEPES pH7.5, 1 mM EGTA, 

0.01%Brij-35 and 10mM MgCl2) and pre-incubated together at 30°C for 30 min with gentle 

shaking. Invitrogen Z’-LYTE Kinase Assay Kit-Ser/Thr 23 Peptide was then utilized as per 

manufacturer’s instructions to determine pAMPKα2 enzymatic activity in the presence of CHIP 

with each condition measured in triplicate in 3 independent assays. 

Acute oxidative stress. WT and T247M Primary MEFs were exposed to 0, 200 or 400 µM H2O2 

for 10 min under normal growth conditions as previously described8 and lysates collected and 

separated by SDS-PAGE and immunoblotted with antibodies against pAMPKα1/2 –T172 (Cell 

Signaling Technologies, 4188) and total AMPK(Cell Signaling Technologies, 2532) as described 

above. Relative protein levels of phosphorylated AMPKα-T172 normalized to total AMPK are 

expressed as mean ± SEM from 3 independent experiments. *P < 0.05 via Dunnett’s comparison 

to wild-type 0 µM H2O2 condition. 

UVC Viability Assay. Fresh never frozen primary MEFs (P3) were plated at 5,000 cells/well in 

96-well plates 24 h prior to treatment. Cells were then rinsed once with warm PBS and placed in 

100 µl of warm PBS and placed uncovered under a UV lamp emitting primarily 254 nm 

radiation at a fluency rate 0 or 10J/m2/s as previously described.200 Cells were then placed back 

in normal growth media and allowed to recover for 20 hours under normal growth conditions 
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prior to measuring viability by Promega CellTiter 96® AQueous One Solution Cell Proliferation 

and Viability MTS assay. 

Mouse behavioral assessments.  

Table 4.4. Behavioral testing regimen 
 
 
Age (weeks)  Procedure 
 
   7-8    Elevated plus maze test for anxiety-like behavior   

First wire-hang test for grip strength 

    8-9     First open field test (1 hour) 

   9-10     First and second rotarod tests for motor coordination 

   10-13  Social approach in a 3-chamber choice task  

   11-13 First marble-bury assay and acoustic startle test (index of sensorimotor 

gating) 

   12-14  Buried food test for olfactory ability  

   14-16  Conditioned fear (contextual and cue-dependent learning, first tests) 

   16-18  Retention test for conditioned fear (2 weeks following first test) 

   22 (5 months) Third rotarod test 

   27-28  Fourth rotarod test 

   31    Fifth rotarod test, second wire-hang test 

   32    Second activity test, second marble-bury test 

   33   Second acoustic startle test  
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Table 4.5.  Number of mice in study.  Four mice were taken for histology following the first 
round of testing (before the third rotarod test). 
_____________________________________________________________________________ 
              WT    HET               Mutant 
______________________________________________________________________________ 
 
First behavioral tests 
   Male      7    9   5 
   Female    13   10   4 
 
Follow-up tests 
   Male      6    7   4 
   Female    13   10   4 
______________________________________________________________________________ 
 

Data analysis. For each procedure, measures were taken by an observer blind to mouse genotype 

(CHIP WT, HET, or mutant). Behavioral data were analyzed using one-way or repeated 

measures Analysis of Variance (ANOVA). Fisher's protected least-significant difference (PLSD) 

tests were used for comparing group means only when a significant F value was determined. For 

all comparisons, significance was set at p < 0.05. Data presented in figures and tables are means 

(± SEM). 

 

Wire-hang test for grip strength. Mice were suspended from a cage lid for the maximum trial 

time of 60 sec.  

 

Elevated plus maze for anxiety–like behavior. This procedure is based on a natural tendency 

of mice to actively explore a new environment, versus a fear of being in an open area. Mice were 

given one 5 min trial on the plus maze, which had two walled arms (the closed arms, 20 cm in 

height) and two open arms. The maze was elevated 50 cm from the floor, and the arms were 30 

cm long. Animals were placed on the center section (8 cm x 8 cm), and allowed to freely explore 

the maze. Measures were taken of time on, and number of entries into, the open and closed arms 
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Marble-burying assay. Mice were tested in a Plexiglas cage located in a sound-attenuating 

chamber with ceiling light and fan. The cage contained 5 cm of corncob bedding, with 20 black 

glass marbles (14 mm diameter) arranged in an equidistant 5 x 4 grid on top of the bedding. 

Subjects were given access to the marbles for 30 min. Measures were taken of the number of 

buried marbles (two thirds of the marble covered by the bedding). 

 

Buried food test for olfactory function. Several days before the olfactory test, an unfamiliar 

food (Froot Loops, Kellogg Co., Battle Creek, MI) was placed overnight in the home cages of 

the mice. Observations of consumption were taken to ensure that the novel food was palatable. 

Sixteen to twenty hours before the test, all food was removed from the home cage. On the day of 

the test, each mouse was placed in a large, clean tub cage (46 cm L x 23.5 cm W x 20 cm H), 

containing paper chip bedding (3 cm deep), and allowed to explore for 5 min. The animal was 

removed from the cage, and 1 Froot Loop was buried in the cage bedding. The animal was then 

returned to the cage and given 15 min to locate the buried food. Measures were taken of latency 

to find the food reward. 

 

Open field test. Exploratory activity in a novel environment was assessed by a one-hour trial in 

an open field chamber (41 cm x 41 cm x 30 cm) crossed by a grid of photobeams (VersaMax 

system, AccuScan Instruments). Counts were taken of the number of photobeams broken during 

the trial in 5-min intervals, with separate measures for ambulation (total distance traveled) and 

rearing movements. Time spent in the center region of the open field was measured as an index 

of anxiety-like behavior. Mice were tested at two ages: 8-9 weeks and 32 weeks. 
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Rotarod. Subjects were tested for motor coordination and learning on an accelerating rotarod 

(Ugo Basile, Stoelting Co., Wood Dale, IL). For the first test session, animals were given 3 trials, 

with 45 seconds between each trial. Two additional trials were given 48 hours later. Rpm 

(revolutions per min) was set at an initial value of 3, with a progressive increase to a maximum 

of 30 rpm across 5 min (the maximum trial length). Measures were taken for latency to fall from 

the top of the rotating barrel. Additional tests (2 trials per test) were conducted at 3 other time 

points during the behavioral study.  

 

Sociability in a 3-chamber choice test. Mice were evaluated for the effects of Chip deficiency 

on social preference. The test session consisted of 3 10-min phases: a habituation period, a test 

for sociability, and a test for social novelty preference. For the sociability assay, mice were given 

a choice between being in the proximity of an unfamiliar conspecific (“stranger 1”), versus being 

alone. In the social novelty phase, mice were given a choice between the already-investigated 

stranger 1, versus a new unfamiliar mouse (“stranger 2”). The social testing apparatus was a 

rectangular, 3-chambered box fabricated from clear Plexiglas. Dividing walls had doorways 

allowing access into each chamber. An automated image tracking system (Noldus Ethovision) 

provided measures of entries and duration in each side of the social test box, as well as time in 

spent within 5 cm of the Plexiglas cages (the cage proximity zone).  

At the start of the test, the mouse was placed in the middle chamber and allowed to 

explore for 10 min, with the doorways into the two side chambers open. After the habituation 

period, the mouse was enclosed in the center compartment of the social test box, and an 

unfamiliar, sex-matched C57BL/6J mouse (stranger 1) was placed in one of the side chambers. 
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The stranger mouse was enclosed in a small Plexiglas cage drilled with holes, which allowed 

nose contact, but prevented fighting. An identical empty Plexiglas cage was placed in the 

opposite side of the chamber. Following placement of the stranger and the empty cage, the doors 

were re-opened, and the subject was allowed to explore the entire social test box for 10 min. 

Measures were taken of the amount of time spent in each chamber and the number of entries into 

each chamber by the automated tracking system. At the end of the sociability phase, stranger 2 

was placed in the empty Plexiglas container, and the test mouse was given an additional 10 min 

to explore the social test box. 

 

Acoustic startle and prepulse inhibition. This procedure was used to assess auditory function, 

reactivity to environmental stimuli, and sensorimotor gating. The test was based on the reflexive 

whole-body flinch, or startle response, that follows exposure to a sudden noise. Measures were 

taken of startle magnitude and prepulse inhibition, which occurs when a weak prestimulus leads 

to a reduced startle in response to a subsequent louder noise. Mice were tested at two ages: 11-13 

weeks and 33 weeks.  

For each test, mice were placed into individual small Plexiglas cylinders within larger, 

sound-attenuating chambers. Each cylinder was seated upon a piezoelectric transducer, which 

allowed vibrations to be quantified and displayed on a computer. The chambers included a 

ceiling light, fan, and a loudspeaker for the acoustic stimuli. Background sound levels (70 dB) 

and calibration of the acoustic stimuli were confirmed with a digital sound level meter (San 

Diego Instruments). Each session consisted of 42 trials that began with a 5-min habituation 

period. There were 7 different types of trials: the no-stimulus trials, trials with the acoustic startle 

stimulus (40 msec; 120 dB) alone, and trials in which a prepulse stimulus (20 msec; either 74, 
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78, 82, 86, or 90 dB) occurred 100 ms before the onset of the startle stimulus. Measures were 

taken of the startle amplitude for each trial across a 65-msec sampling window, and an overall 

analysis was performed for each subject's data for levels of prepulse inhibition at each prepulse 

sound level (calculated as 100 - [(response amplitude for prepulse stimulus and startle stimulus 

together / response amplitude for startle stimulus alone) x 100].  

 

Fear conditioning. Mice were evaluated for learning and memory in a conditioned fear test, 

using the Near-Infrared image tracking system (MED Associates, Burlington, VT). The 

procedure had the following phases: training on Day 1, a test for context-dependent learning on 

Day 2, and a test for cue-dependent learning on Day 3. Follow-up tests for retention of learning 

were conducted 2 weeks later. 

Training. On Day 1, each mouse was placed in the test chamber, contained in a sound-

attenuating box, and allowed to explore for 2 min. The mice were then exposed to a 30-sec tone 

(80 dB), followed by a 2-sec scrambled foot shock (0.4 mA). Mice received 2 additional shock-

tone pairings, with 80 sec between each pairing.  

Context- and cue- dependent learning. On Day 2, mice were placed back into the original 

conditioning chamber for a test of contextual learning. Levels of freezing (immobility) were 

determined across a 5-min session. On Day 3, mice were evaluated for associative learning to the 

auditory cue in another 5-min session. The conditioning chambers were modified using a 

Plexiglas insert to change the wall and floor surface, and a novel odor (dilute vanilla flavoring) 

was added to the sound-attenuating box. Mice were placed in the modified chamber and allowed 

to explore. After 2 min, the acoustic stimulus (an 80 dB tone) was presented for a 3-min period. 

Levels of freezing before and during the stimulus were obtained by the image tracking system. 
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Two weeks following each test, mice were given second tests to evaluate retention of context- 

and cue- dependent learning. 

 

Study approval. All animal procedures were approved by the Institutional Animal Care and Use 

Committee of The University of North Carolina at Chapel Hill. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Throughout the lifetime of an organism all cells must respond to changes in their 

environment, including a plethora of physiologic and pathologic stresses, in order to maintain 

homeostasis and survive. Protein homeostasis is particularly critical to cell survival because of 

the central role proteins play in so many cellular processes. Both under basal conditions and in 

response to stress, cells utilize multiple highly specialized and integrated methods of PQC to 

ensure that proteins are appropriately folded and terminally misfolded proteins are eliminated to 

prevent proteotoxicity. This is particularly crucial to post-mitotic organs such as the heart and 

brain, with their very limited capacity for self-renewal. PQC depends on an elegant collaboration 

between molecular chaperones and the ubiquitin-proteasome system (UPS). Disruption of PQC 

and subsequent proteotoxicity has long been considered an underlying molecular phenotype in 

disease pathologies in the brain and is being increasingly recognized as such in disease 

pathologies in the heart as well. Using a multifaceted approach, we focused on understanding the 

molecular mechanisms underlying diseases where disruption of PQC is central to disease 

pathology. Specifically, we focused on understanding the function of E3 ubiquitin ligases and 

how mutations in these key players in the UPS can drive disease pathology in the heart and brain. 

Chapter II described and validated a novel method for the identification of E3 ubiquitin ligase 

substrates addressing a significant technological limitation in the field. In Chapter III, I described 
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the first discovery of human mutation in the E3 ubiquitin ligase, CHIP in a form of 

spinocerebellar ataxia, Gordon Holmes Syndrome, that has led to the establishment of a new 

disease designation, SCAR16 to describe spinocerebellar ataxia caused by homozygous or 

compound heterozygous mutation in CHIP. In Chapter IV, I expanded upon this discovery to 

define the structural and functional consequences of CHIP mutation in SCAR16 and explored the 

deficits associated with this mutation in a genomic context utilizing a mouse model system 

providing the first definition of partial CHIP dysfunction and assignment of specific in vivo 

deficits that result as a consequence of partial but not total loss of CHIP function. In this chapter, 

I will consider how these observations can guide future investigations.  

 

E3 Ubiquitin Ligase Substrate Identification 

 In Chapter II, we described a novel method for the identification of E3 ubiquitin ligase 

substrates. The development of this methodology addresses a significant gap in our ability to 

study these key PQC components as existing methods to identify their substrates have relied 

heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of 

physiological substrates in relevant model systems. In order to validate this methodology, we 

utilized it to identify physiological substrates of MuRF1 in cardiomyocytes. MuRF1 has recently 

been shown to be an important regulator of mitochondrial function in vivo201. Not only did this 

work validate our methodology, but also identified several very intriguing MuRF1 substrates, 

including mitochondrial proteins Hspd1 and Atp5b. MuRF1has been shown both in vitro and in 

vivo to be cardioprotective in models of global ischemia-reperfusion injury, and given the pivotal 

role of mitochondria in ischemia-reperfusion injury, further characterization of MuRF1 
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regulation of these novel substrates in mitochondria may provide important mechanistic clues 

towards this dramatic cardioprotection.  

 With the robust, flexible nature of the protocol we have described in Chapter II, we are 

hopeful that this method can be easily adapted to fit the needs, technical expertise and resource 

availability of many users. For example, due to the limitations of  2D-DIGE/MALDI-TOF as 

discussed in Chapter II, with minimal modification this method could be used with gel-free 

quantitative proteomics strategies such Tandem Mass Tags (TMT) or Isobaric Tags for Relative 

and Absolute Quantification (iTRAQ) to identify and quantitate proteins in each of the collected 

eluate and supernatant samples.125 Furthermore, it is our hope that this protocol will be broadly 

applied to the study of both ubiquitin ligases and DUBs. In fact, applying this methodology to 

the identification of novel CHIP substrates, particularly in the cerebellum, could provide 

important mechanistic understanding of the underlying drivers of SCAR16 disease pathology.   

 

 CHIP in SCAR16 

 In Chapters III and IV we reported the first discovery of CHIP mutation in GHS 

(T246M), which led to the SCAR16 disease designation and began to elucidate the biophysical 

and functional consequences of CHIP mutation in SCAR16 in vitro, in cells and in vivo. In 

Chapter III and IV, it was determined that T246M point mutation results in loss of CHIP 

ubiquitin ligase activity that is likely a result of dramatic destabilization and misfolding of the 

CHIP U-box that results in a loss of CHIP’s ability to form dimers and promotes the formation of 

large, multimeric CHIP aggregates both in vitro and in cells. The CHIP mutations that have been 

associated with SCAR16 are present in all three of CHIP’s functional domains and there is great 

clinical heterogeneity within SCAR16 disease. Therefore, the extension of the biophysical, 

structural and in vitro studies to include additional SCAR16 CHIP mutations both within the U-
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box domain and elsewhere will provide valuable insight into the structure-function relationship. 

This will allows us to better understand how mutations across multiple structural domains may 

uniquely affect CHIP function but result in the same disease. Importantly, this provides insights 

in how these structural and resulting functional changes may directly correlate to specific aspects 

of the disease phenotype to result in the observed clinical heterogeneity. 

 In Chapter IV, we observed that T246M CHIP is prone to aggregation and likely in an 

attempt to prevent the accumulation of insoluble toxic aggregates the turnover of this protein is 

dramatically increased relative to WT CHIP. Furthermore, we observed that the expression of 

soluble T246M CHIP in primary MEFs and across multiple tissues is dramatically reduced, in 

part through a proteasome-dependent mechanism. However, inhibition of the proteasome only 

partially blocks this turnover of T246M CHIP, suggesting other cellular mechanisms are at work 

to remove this damaged protein before its accumulation becomes damaging to the cell. We do 

not believe this is unique to T246M CHIP mutation. Of the many mutations associated with 

SCAR16, only one is a truncating mutation, and we can assume that in the majority of these 

cases the mutated CHIP protein is also being translated and then must be cleared by the cell. In 

fact, similar to what we observed with T246M mutation in our mouse model, in another reported 

case of SCAR16, soluble mutant CHIP protein expression was also dramatically reduced in 

primary patient fibroblasts.184  Autophagy is one possible mechanism known to clear protein 

aggregates and has even been shown to be activated to clear ubiquitinated proteins in a 

compensatory manner when the UPS cannot meet the proteolytic demands of the cell.202 

Evaluating the turnover of T246M CHIP in primary MEFs in the presence of autophagy inhibitor 

bafilomycin as well as evaluating markers of autophagy such as LC-3 and p62 would allow us to 
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further understand the molecular mechanisms the cell is utilizing to eliminate this damaging 

protein. 

In Chapters III and IV, we determined that T246M mutation results in the loss of CHIP 

ubiquitin ligase activity while retaining the ability to function in some of CHIP’s critical cellular 

roles in PQC as a co-chaperone and as an autonomous chaperone promoting the 

phosophorylation and potentiating the activity of AMPK, protecting cells from oxidative stress. 

Importantly, while T246M CHIP retains co-chaperone activities, binding chaperone proteins and 

inducing HSF1 nuclear translocation and Hsp70 expression following stress, both chaperone 

binding and the induction of Hsp70 are enhanced. This suggests that while it remains partially 

intact ,T246M mutation may alter normal CHIP-mediated regulation of the chaperone-mediated 

stress response in a deleterious manner. These data and our findings in our analysis of behavioral 

deficits in the T246M mice demonstrate that T246M mutation is not equivalent to total loss of 

CHIP. In order to better understand this distinction at a molecular mechanistic level, we 

performed preliminary protein microarray studies comparing protein expression and 

phosphorylation of over 800 proteins in lysates from primary WT, CHIP-/- and T246M MEFs. 

While there was a subset of overlapping changes in protein expression and 

phosphorylation, the majority of detectable changes relative to WT cells were unique to total loss 

of CHIP or T246M CHIP point mutation. This supports our functional data that total loss of 

CHIP and T246M mutation are not equivalent and suggests that, in fact, this can be dissected 

down to the level of protein expression and cell signaling. Validation of the protein changes 

identified in this preliminary study as well as additional protein microarray studies comparing 

genotypes in the context of different cellular stresses would provide valuable insight into 

important cellular signaling pathways that contribute to T246M disease pathology. Particularly 
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evaluating the changes in cell signaling following oxidative stress and UVC-induced damage, 

where we have observed functional differences between total loss of CHIP and T246M CHIP 

would provide insight into the distinct molecular mechanisms that underlie this difference in 

phenotype. Furthermore, exploring the key signaling pathways uniquely affected by T246M 

CHIP mutation both under basal conditions and during stress has the potential to provide 

additional downstream therapeutic targets for modulation of SCAR16 disease.  

 In Chapters III and IV, we demonstrated that CHIP-/- mice have behavioral and 

reproductive impairments that mimic some of the clinical features of SCAR16. However, these 

mice do not directly phenocopy the diverse disease heterogeneity in SCAR16, leading us to 

establish a point mutant mouse model (T247M) that mimics the human mutation in order to 

study the in vivo repercussions of T246M CHIP. We observed behavioral deficits attributable to 

cognitive cerebellar dysfunction not observed in our total loss of CHIP animal model, as well as 

deficits in learning and memory attributable to hippocampal dysfunction that are reflective of 

cognitive deficits reported in SCAR16 patients. We concluded that T246M mutation is not 

equivalent to total loss of CHIP, and that specific CHIP mutations in SCAR16 likely have 

varying biophysical and functional consequences to CHIP that may directly correlate to clinical 

phenotype. Surprisingly, testing of these mice at ages up to 31 weeks did not reveal significant 

motor impairment in the accelerating rotarod test indicative of cerebellar ataxia as a result of 

T246M mutation. We hypothesize that this may be a strain-dependent effect, as even the WT 

mice are particularly skilled at this task and other studies have suggested strong strain-

dependence in the ability of the mice to perform this task and consequently to detect deficits by 

this measure.185, 203 Additionally, variable age of onset of motor deficits has been reported 

previously in additional mouse models of cerebellar degenerative disorders.186  For these reasons, 
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retesting of our animals at a more advanced age as well as performing additional measures of 

motor dysfunction including the parallel rod floor test reported to have significantly less strain-

dependence204 will allow us to determine with confidence the presence or absence of cerebellar 

ataxia in the T246M mouse model. 

In Chapter III, we observed motor dysfunction in CHIP-/- mice as well as cellular loss 

throughout the various lobes of the cerebellum, specifically in the Purkinje cell layer with 

noticeable degeneration, mimicking the observation of Purkinje cell loss identified in the 

neuropathological analysis in a deceased GHS patient with disordered ubiquitination (RNF216 

and OTUD4 mutations). 136 Together, these data suggest CHIP is required for cerebellar 

maintenance. In Chapter IV, we described behavioral deficits attributable to cognitive cerebellar 

dysfunction in our T246M mouse model, many of which unique to this model and not present in 

our total loss of CHIP animal model. In order to fully appreciate the distinction between T246M 

CHIP mutation and total loss of CHIP, as well better understand the molecular mechanisms 

underlying SCAR16 disease pathophysiology, a careful analysis of brain pathology should 

accompany the behavioral analysis we have already performed. These studies would include 

longitudinal MRI studies to assess progressive cerebellar atrophy in T246M mice as well as 

histological staining of the cerebellum using hematoxylin and eosin stain to detect 

morhphological changes. Additionally, they would include immunohistochemical staining of the 

cerebellum for CHIP to evaluate CHIP expression and localization, calbindin staining to evaluate 

Purkinje cell health, morphology and abundance and Congo red staining to evaluate for signs of 

proteotoxic protein aggregation. Given our observation of additional functional deficits in the 

T246M mice attributable to other brain regions, such as deficits in learning and memory related 

to hippocampal dysfunction and reports of similar deficits in SCAR16 patients, these studies may 
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be extended to other brain regions including the hippocampus as well in order to determine 

whether observed changes in brain pathology as a result of T246M mutation occur similarly 

throughout affected brain regions and/or whether these changes directly correlate to functional 

deficits. Careful and thorough analysis of the brain pathology associated with T246M mutation 

in mice and the accompanying behavioral deficits would not only provide important mechanistic 

clues into disease pathology but also provide validation of this model for use in the development 

of SCAR16 therapies and may suggest important study endpoints for the preclinical validation of 

these future clinical candidates.  

In Chapter III, we observed that CHIP-/- mice recapitulate many of the reproductive 

impairments characteristic of GHS. Within the spectrum of disease phenotypes represented by 

SCAR16, patients with GHS represent a unique group where cerebellar ataxia characteristic of 

SCAR16 is paired with neuroendocrine deficits and resulting reproductive impairments 

associated with hypogonadism. While developing the T247M mouse model and establishing the 

mouse colony, we have observed impaired breeding of T247M homozygous mice. Additionally, 

preliminary hormonal studies of male T247M mice suggest abnormal circulating hormone levels 

and an impairment of the pituitary’s ability to respond to stimulation with gonadotropin releasing 

hormone (GnRH), similar to that observed in hypogonadism associated with GHS (data not 

shown). Future studies to characterize the neuroendocrine deficits and reproductive impairments 

associated with T246M, both by comparison to the CHIP-/- animals as well as to additional 

SCAR16 point mutant mice, would have the potential to allow us to delineate the contribution of 

particular CHIP functions to this unique disease phenotype within the SCAR16 disease 

spectrum. In order to fully assess neuroendocrine deficits and reproductive impairments 

associated with T246M in mice, these studies would include measurements of circulating 
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hormone levels of the hypothalamic-pituitary axis, including lutenizing hormone, follicle 

stimulating hormone, testosterone, estrogen and progesterone, assessment of pituitary function 

by GnRH stimulation test, pathological and morphological evaluation of  the pituitary and sex 

organs, including immunohistochemical staining for CHIP expression and localization, and 

observation and quantitation of reproductive patterns of these mice. Together these studies would 

bring to light the neuroendocrine deficits and reproductive impairments associated with T246M 

mutation in mice and begin to describe an as-yet unexplored aspect of CHIP biology in hormonal 

signaling, pituitary function and reproductive health.  

In Chapters III and IV, we report neurobehavioral deficits associated with total loss of 

CHIP and T246M mutation in mice. However, importantly previous studies of CHIP-/- mice have 

revealed significant cardiac deficits in multiple models of cardiac disease as well as dramatically 

reduced longevity and stress-intolerance as a result of genetic depletion of CHIP.8, 83-87, 155  While 

the studies presented in Chapters III and IV highlight the importance of fully functional CHIP 

protein in the brain, these previous reports also strongly suggest the particular importance of 

CHIP as a regulator of PQC in the heart and elsewhere. Studying the T246M mice in the context 

of cardiac disease and stress models as well as evaluating their longevity would allow us to more 

fully characterize this model in terms of our existing knowledge of CHIP biology, as well as gain 

further insight into SCAR16 disease pathology. Furthermore, in Chapter IV, we determined that 

T246M CHIP’s E3 ubiquitin ligase activity towards a variety of substrates is completely 

abolished, but T246M CHIP retains the ability to function in some of CHIP’s critical cellular 

roles in PQC as a co-chaperone and as an autonomous chaperone towards AMPK. Thus, by 

direct comparison of results observed with T246M mice in cardiac disease models and other 

models of stress to those observed with total genetic depletion of CHIP would provide a unique 
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opportunity to a unique opportunity to delineate the contribution of co-chaperone, ubiquitin 

ligase activity and other emerging CHIP activities to these specific deficits observed in vivo in a 

disease-relevant context. 

 

Implications for SCAR16 therapeutics 

Recently there has been increasing interest in modulation of the UPS as a therapeutic 

strategy to treat many disease indications, particularly neurodegeneration, cancer and 

immunological disorders, and some clinical success in doing so. In Chapters III and IV, we 

defined T246M as a causative mutation in SCAR16 and began to uncover the underlying 

structural and functional changes in CHIP that result from its mutation and serve as the 

molecular drivers of SCAR16 disease pathogenesis. Furthermore, we established and evaluated 

neurobehavioral deficits of a mouse model of human CHIP mutation in SCAR16.  This 

biophysical, cellular and in vivo characterization of T246M mutation in SCAR16 provides 

valuable insight required for the development of effective therapies for this devastating 

degenerative disease.  

Central to any successful therapeutic development process is the identification of 

druggable therapeutic targets. The data we have presented in Chapters III and IV clearly validate 

CHIP as a driver of SCAR16 disease pathogenesis and suggest that loss of CHIP ubiquitin ligase 

activity as a consequence of structural misfolding of the U-box domain is central to disease. In 

light of this, one potential therapeutic strategy would be the direct modulation of mutant CHIP to 

prevent the disorganization of the U-box domain and restore CHIP ubiquitin ligase activity. 

Crispr-mediated gene editing is being increasingly utilized pre-clinically and is actively being 

developed for use therapeutically in humans. Application of this technology is particularly 
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attractive for SCAR16, as it would provide a mechanism to restore normal CHIP sequence at the 

genomic level, restoring normal CHIP protein expression and function and could be done early 

in disease before significant degeneration occurs potentially curing and at the very least halting 

disease progression.  

While repairing the disease-causing CHIP mutation is ideal, many hurdles still exist 

before this technology is likely to be successfully applied in humans. In the meantime, our data 

suggests other strategies for modulating CHIP activity as well. In Chapter IV, we demonstrated 

that T246M mutation results in only partial loss of CHIP function, such that while ubiquitin 

ligase function is completely lost, many of CHIP’s other integral cellular functions remain intact. 

If SCAR16 disease is largely driven by loss of CHIP ubiquitin ligase function as this suggests, 

then activating CHIP ubiquitin ligase activity may be sufficient to prevent disease. Thus, 

activating CHIP ubiquitin ligase activity, independent of CHIP itself, may be a viable strategy to 

treat SCAR16. In terms of specific therapeutic targets, this could include the activation of other 

E3 ubiquitin ligases that could ubiquitinate CHIP substrates in a compensatory manner. 

Identification of disease relevant CHIP substrates utilizing methodology as described in Chapter 

II would likely aid in this pursuit.  

Activation of other E3 ubiquitin ligases may not represent the only path to modulating 

CHIP without directly targeting CHIP. Utilizing a whole-genome cDNA overexpression and/or 

siRNA screening strategy to identify other genes that when overexpressed or depleted rescue the 

phenotype associated with T246M mutation (for example, UVC-induced cell death) would be a 

useful approach to begin to identify additional therapeutic targets. Furthermore, additional 

protein microarray studies comparing the protein expression and phosphorylation profile of 

T246M expressing cells to WT cells both under basal conditions and during stress has the 
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potential to provide additional downstream therapeutic targets for modulation of SCAR16 

disease. Extending these studies to identify changes in protein expression in the cerebellums of 

T247M mice relative to wildtype mice by SILAC studies may also provide valuable in vivo 

cerebellum-specific therapeutic targets. By these efforts targets may even be identified for which 

clinically approved or pre-clinical well-validated specific chemical entities already exist that can 

be applied to this novel disease indication. 

 Our understanding of CHIP and its role in SCAR16 disease pathogenesis as detailed in 

this thesis is ongoing, yet the data presented here represents validation of CHIP’s importance in 

human disease and makes great strides towards explaining the molecular mechanisms underlying 

SCAR16 disease pathology. Interestingly, it highlights similarities but also some distinct and 

likely clinically relevant differences between total and partial loss of CHIP function (Fig. 5.1), 

deepening both our basic understanding of CHIP biology and SCAR16 and potentially guiding 

future therapeutic strategies. More broadly, this work extends our understanding of the UPS and 

its role in disease pathogenesis that will undoubtedly drive successful investment, innovation, 

preclinical investigation and clinical study design to treat patients suffering from not only 

SCAR16 but many other devastating diseases.   
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Figure 5.1. Phenotypic effects of total vs. partial loss of CHIP function in humans and mice. 

A. The effects of CHIP genetic depletion in the CHIP KO mouse model (left), clinical 
phenotype of humans with SCAR16 CHIP partial loss of function mutations (center) and the 
effects of CHIP partial loss of function in the T247M mouse model (right). 
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