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ABSTRACT

Xiaotong Jiang: Developing Machine Learning Methodology for Precision Health
(Under the direction of Michael R. Kosorok)

Precision health has been an increasingly popular solution to improve health care quality

and guide the decision making process. This includes precision medicine (at the individual

level) and precision public health (at the population level such as communities and institutions).

By learning from the available medical data with advanced analytical tools, precision health

recommends the treatments that are individualized to each patient or entity to maximize clinical

outcomes for each individual.

We extend and develop three machine learning methods to improve the estimation of optimal

individualized treatment regimes in precision health: the jackknife estimator of value function of

precision medicine models compared with zero-order models, doubly robust outcome-weighted

estimators with deep neural network structures for complex and large data, and risk-adjusted

adverse event monitoring for survival data. First, motivated by a knee osteoarthristis trial, we

estimate value functions and select the optimal treatment with the jackknife method whose

consistency is established under weak assumptions. Next, we implement deep learning architec-

ture in augmented outcome-weighted learning to increase model flexibility and computation

efficiency, especially for high-dimensional data such as medical imaging. Lastly, we develop a

risk-adjusted survival model to monitor adverse events and estimate its variance for hierarchi-

cal, right-censored data with recurrent events. All three methodologies aim to solve practical,

health-related challenges and provide data-driven decision support and operations.
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CHAPTER 1: INTRODUCTION

With the rapid developments in science and technology, the sheer amount of data generated

in healthcare and health-related research has been both empowering and overwhelming. Machine

learning tools are able to absorb more and learn better about health policy and behaviors because

they are no longer constrainedwith homogeneity and small sample sizes. Meanwhile, traditionally

well-established methods have been challenged because it is difficult to accommodate for the

increasing complexity of data, such as source, structure, size, and type. Assigning the same

treatment to everybody is often not effective, and there has been a higher and higher demand for

new, more powerful analytical methods to target on the well-being of each individual (rather than

a population as a whole) and personalize treatments better without strong domain knowledge.

This, however, does not mean that we are negating the traditional treatments; instead, we are

looking for the treatments (traditional or innovative) that best fit each patient. It is this “big data”

era we are living in that offers such opportunities for this precision medicine concept to thrive

and sustain. We aim to develop data-driven and generalizable machine learning approaches with

weak or minimal assumptions under the framework of precision medicine. More specifically, we

will examine the following three research topics.

First, comparison and selection of the best individualized treatment regime for clinical trial

patients are key tasks in precision medicine. To improve model selection with well-defined

uncertainty estimation and statistical testing, we propose to apply the jackknife method (also

known as the leave-one out cross validation) to more than a dozen of machine learning models.

The consistency proof of jackknife estimators was established under minimal assumptions. The

variance of jackknife estimators is composed of a newly defined, influence-function inspired
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value and we show evidence of asymptotic normality through simulations. The usage of jackknife

estimators is fully studied in a clinical trial called IDEA for knee osteoarthritis.

The existing machine learning approaches have proven their ability in optimal individualized

treatment estimation for small sample sizes of observational studies and clinical trials. There is

yet room for collaboration between precision medicine and deep learning, the two increasingly

popular areas in public health application. The non-parametric hierarchical architecture in

deep learning increases the flexibility of existing learning regimes and expands the influence of

precision medicine to large, high-dimensional data. We show how to get the best of both worlds

between deep learning and augmented outcome weighted learning, a recent method that thrives

on doubly robustness and residuals.

Finally, we arrive at the crossroad of precision medicine and survival analysis, where we are

interested in monitoring survival time while taking into account multi-level hierarchical structure

and recurrent events in right-censored data. we aim to extend a mixed-effect Andersen-Gill

model (also known as a frailty model) with risk adjustment and provide variability estimates of

the survival time. This method will be particularly useful for infection prevention and control,

where health programs or hospitals want to gain knowledge on their infection rates in advance

and be able to take proactive actions.

We organize the remainder of this document as follows. We proceed with the aforementioned

three precision medicine research topics in chapters 2, 3, and 4 respectively. Chapter 5 discusses

future directions of the three areas, followed by technical details and references of the entire

document.
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CHAPTER 2: A PRECISION MEDICINE APPROACH TO DEVELOP AND INTER-
NALLYVALIDATEOPTIMALTREATMENTS FOROVERWEIGHTANDOBESE SE-

NIOR ADULTS WITH KNEE OSTEOARTHRITIS

2.1 Introduction

Knee osteoarthritis (KOA) is one of the most common forms of arthritis worldwide account-

ing for a significant proportion of pain and disability in the adult population (Cross et al., 2014).

Known risk factors for KOA include older age (especially 55 years and older), increased body

weight, previous joint injury, and genetics (Vina and Kwoh, 2018). Clinical trials in overweight

and obese adults with symptomatic KOA have shown weight loss and exercise interventions

can improve pain and function, although not all individuals achieve a similar amount of benefit

(Messier et al., 2013; Nelson et al., 2014; Messier et al., 2018). Overweight and obese patients

with KOA will want to know if they need to diet and exercise or whether exercise or diet alone

would be sufficient. Likewise, clinicians still have limited knowledge and will need additional

insight into which specific therapies are most likely to benefit particular patients in a given

situation. To address these questions, we utilized machine learning tools to develop and inter-

nally validate the optimal precision medicine treatment regime from OA clinical trial data and

simulations that would maximize expected clinical outcomes.

A precision medicine approach incorporates patient heterogeneity to inform clinical deci-

sions. In many routine clinical settings, it is common for all patients with a given condition to

receive the same treatment, despite the fact that treatment effectiveness differs by individual.

Precision medicine is able to leverage the abundant patient information collected in the clinical

setting (e.g., demographic and social economic characteristics, clinical history and physical exam

findings, lab results, and in some cases even medical imaging and genetic traits) in the decision

making process of who should receive what treatment at what time. This is done through a
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function called a decision rule which maps individual characteristics to a recommended in-

tervention. The decision rules are estimated by machine learning models, which have been

recommended to aid clinical decision-making (Jamshidi et al., 2018). Although many decision

rules could potentially map patient information to a treatment, an optimal treatment rule (or

optimal treatment regime) can be identified that maximizes the expected clinical outcomes of

interest, thus serving to provide the optimal treatment recommendation to a patient population

of interest (Kosorok and Laber, 2018).

We use the precision medicine approach to develop and internally validate the optimal

treatment regimen for making exercise and weight loss recommendations for individuals with

symptomatic KOA, utilizing data collected during the Intensive Diet and Exercise for Arthritis

(IDEA) trial. The IDEA trial compared 3 interventions over 18 months: 1) E - exercise alone

(considered standard of care as a control group), 2) D - diet-induced weight loss with the goal

of a 10% reduction in body weight, and 3) D+E - diet plus exercise, in overweight and obese

adults with symptomatic radiographic KOA (Messier et al., 2013). IDEA results showed that,

compared to exercise alone, participants randomized to D and D+E groups had greater weight

loss and greater reductions in interleukin-6 (IL-6) at 18th month. The other primary outcome,

knee compressive force, was significantly reduced in the D group but not the D+E group. Self-

reported pain and function scores improved more in the D+E group. Not unexpectedly, there was

a variable response to each intervention among the study participants and those who lost more

weight demonstrated more improvements in function, pain, knee compressive force and IL-6

levels (Messier et al., 2013, 2018), independent of group assignment. We hypothesized that one

or more of these variables could be used to determine an optimal treatment regime that would

inform which individuals would benefit the most (in terms of specific outcomes) from a given

intervention when compared to assigning all individuals to just one of the three interventions.

We emphasize the following contributions: i) Exercise and weight loss, alone or together, can

benefit individuals with KOA although the response varies suggesting there may be subgroups

who would achieve more benefit from a specific intervention; ii) This study is the first to apply
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precision medicine-based machine learning approaches to clinical trial data in KOA; iii) These

approaches identified subgroups of patients for whom a precision medicine decision rule would

lead to improved outcomes over assignment of all individuals to the combined exercise and

weight loss intervention.

2.2 Patients and Methods

2.2.1 Patient Data

IDEA was an assessor-blinded, single-center randomized trial conducted during 2006 - 2011

at Wake Forest University and Wake Forest School of Medicine. Details of the study design and

the results for the main outcomes have been previously published (Messier et al., 2009, 2013).

In brief, IDEA included 454 individuals with mild or moderate radiographic OA in one or both

knees. They were ambulatory, community-dwelling persons aged 55 or older (mean 66 ± 6

(SD) years) with a body mass index (BMI) between 27 and 41 (mean 33.6± 3.7 (SD) kg/m2),

a sedentary lifestyle, and pain on most days due to KOA. Measures (76 covariates) relevant to

participant demographics, standard sociodemographic factors, physical performance measures,

KOA, and its effects on pain and function were collected at baseline with selected outcome

measures also obtained at 6 months (not used in this study) and 18 months.

2.2.2 Preprocessing

The initial precision medicine analysis used five of the seven clinical outcomes at 18 months

that would be easiest for a clinician to obtain in a practice setting: weight loss since baseline,

WOMAC (Western Ontario and McMaster Universities OA index) pain, function and stiffness

scores, and the SF-36 physical component score (PCS). Of the 454 participants who entered

the trial, 399 completed the 18-month study. Because observed outcomes provide important

information that drives the decision rule, we excluded participants missing one or more outcomes

at 18 months leaving 343 participants (Input data 1, Table 2.1). Dimension reduction was applied

to control overfitting and extract the important features of the original 76 covariates at baseline,

from which 15 covariates (Table 2.1) were chosen based on three criteria: 1) <15% missing

data, 2) clinically important and potentially measurable in clinical practice, and 3) statistically
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important as determined by the variable importance measure from random forests (RF) (Breiman,

2001). Selected covariates were then imputed via a non-parametric random forest method called

missForest (Stekhoven and Bühlmann, 2011), which does not require assumptions about the

data distribution, utilizes out-of-bag imputation error estimates to avoid cross validation (CV),

and can be applied to high-dimensional mixed-type data of unequal scales. Lastly, categorical

variables were conformed and dichotomized, and all outcomes were transformed such that higher

values represented improvements in the outcomes. All baseline covariates were standardized

to the standard normal distribution to avoid artifacts from differences in scaling, due to the

potential for varying scales to create misleading values of coefficients in models such as penalized

regression. Missing data were investigated in the original IDEA study with multiple imputation

analysis, which “revealed minimal differences from [the] original intention-to-treat analysis”

(Messier et al., 2013). Further details on data cleaning, dimension reduction, and imputation are

provided in the Supplemental Materials.

A second analysis used all seven outcomes including the two mechanistic outcomes (knee

compressive force and plasma IL-6) at 18 months. This analysis was considered so as not to

overlook any potentially valuable information from the two mechanistic outcomes, although

they are not patient reported or as easily obtainable in clinical practice as the other outcomes.

We cleaned and imputed the second input dataset (Input Data 2, Table 2.1) and applied the same

preprocessing procedure as described above. Values for IL-6 at 18 months were log-transformed

in the analyses due to right-skewness and exponentiated back to original values during testing

and optimal estimation.

2.2.3 Training Process and Performance

After the input data were cleaned and preprocessed, a total of 24 machine learning models

were implemented (Table 2.2). They were selected specifically to suit the IDEA data, which

represent a single-decision setting. The candidate models can be summarized in the following

categories: penalized linear regression (M1-4), ensemble learning of decision trees (M5-7),

tree-based dynamic treatment regime (DTR) (M8-20), support vector machine-based learning
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Table 2.1: Description of input datasets used in the analyses

Input Data 1 Input Data 2
Participants (n) 343 293
Outcomes 5 7
at 18m (n) Physical component score (PCS), Compressive force,

Weight loss since baseline, Plasma IL-6,
WOMAC pain score, Physical component score (PCS),
WOMAC function score, Weight loss since baseline,
WOMAC stiffness score WOMAC pain score,

WOMAC function score,
WOMAC stiffness score

Baseline 15 17
Covariates (n) ABC, BMI, walking distance, ABC, BMI, walking distance,

WOMAC function score, gait, WOMAC function score, gait,
heart attack, hip circumference, heart attack, hip circumference,
WOMAC pain score, PCS IL-6, WOMAC pain score, PCS
baseline, average walking speed, baseline, average walking speed,
WOMAC stiffness score, waist WOMAC stiffness score, waist
circumference, whole body lean circumference, whole body lean
DXA, whole body fat DXA, DXA, whole body fat DXA,
weight, randomization group whole body percentage fat DXA,

weight, randomization group
Abbreviations: ABC - Activities-specific balance confidence scale, BMI – Body mass index, DXA – Dual-
energy X-ray absorptiometry, IL- Interleukin, PCS – Physical component score, WOMAC - Western Ontario
and McMaster Universities OA index

(M21-23), and Bayesian model (M24). Our selection of models covered both conventional and

emerging concepts in the statistical literature; the rational for each model choice is included

in the Supplemental Materials. In addition to the precision medicine models, we investigated

three zero-order models (ZOMs) which assigned just one of the treatments (E, D, D+E) to all

participants (M25-27). ZOMs are named after zero-order processes which are fixed decision

rules that do not change by individual.

Twenty-four machine learning models and the 3 ZOMs, for a total of 27 models, provided

estimated individualized treatment rules (ITRs), which were compared based on estimated value

functions separately for each outcome. The value function is a scalar measure of performance for

each ITR that evaluates the expectation of an outcome if future patients followed the estimated

decision rule that is derived from training input data. A higher value function indicates a higher
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Table 2.2: Listing of precision medicine based machine learning models and zero-order models
used in the analyses

Model Parameters M#
Penalized regression Lasso, α = 1 1

(Tibshirani, 1996) Ridge, α = 0 2
(Zou and Hastie, 2005) Elastic Net, α = 0.5 3

Kernel ridge regression (KRR) Gaussian kernel 4
(Zhang et al., 2018)

Random forests (RF) Rules based on each individual outcome 5
Number of trees = 500 Rules based on a weighted outcome 6
(Breiman, 2001) of weight loss, pain, and function

Reinforcement learning trees Number of trees = 50 7
(RLT) (Zhu et al., 2015)

List-based dynamic treatment Q-functions estimated by KRR 8,9,
regime (DTR) Number of nodes = 2, 3, 5, 10 10,11

(Zhang et al., 2018) Q-functions estimated by RF 12,13,
Number of nodes = 2, 3, 5, 10 14,15

Q-functions estimated by Super Learning 16,17,
Number of nodes = 2, 3, 5, 10 18,19

Q-functions estimated by elastic net 20
Number of nodes = 10

Residual weighted learning Linear kernel 21
(RWL) (Zhou et al., 2017) Polynomial kernel with 2nd order 22

Polynomial kernel with 3rd order 23
Bayesian additive regression trees Number of trees = 500 24
(BART) (Chipman et al., 2010) Number of draws = 5500 (with 500 burn-ins)
Zero-order (ZOM) Always assign to E 25

Always assign to D 26
Always assign to D + E 27

quality of the estimated ITR and more benefit to future patients in terms of that outcome. Hence,

a learning model that maximizes the value estimate with small variation would be preferred.

Mathematical definitions of the true and estimated value functions can be found in subsection

Value Function of Supplemental Materials. The value estimates are usually derived from model

evaluation techniques such as CV. A simple CV procedure that splits the sample data into one

training and one testing set would usually generate biased, ungeneralizable results. An alternative

isK-fold CV, which refers to training ITRs on K − 1 of the randomly divided folds and testing
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the performance and generalization of ITRs on the one remaining fold. This is repeated until

every fold has been tested.

We used the jackknife method to estimate the bias and standard error of the estimated value

function used for model selection. The jackknife is a a leave-one out cross validation (LOOCV)

or n-fold CV method where each individual serves as a fold so the training sample leaves one

observation out at a time (Efron and Tibshirani, 1994). We chose the jackknife estimator because

it requires weak assumptions (i.e., unrestricted shape of the probability distribution as long as

the observations are independently and identically distributed) and is approximately unbiased

for the true prediction error (Friedman et al., 2001). In addition, stratified 10-fold CVs were also

performed to check the stability of jackknife value function estimates and compare test results.

Such validation methods (jackknife and CV) as well as simulation experiments accommodate

for internal validation to prevent overfitting. More details on the jackknife and CV estimators as

well as simulations on their theoretical properties may be found in subsections: The Jackknife

and Stratified Cross Validation in Supplemental Materials.

2.2.4 Testing Process and Model Selection

We applied all 27 candidate models to each outcome for training, recorded their estimated

decision rules, and compared the jackknife value function estimators and their standard errors

in the testing process. For each outcome separately, the optimal precision medicine model

(PMM) was the model with the highest estimated value function with smaller standard error

among the 24 machine learning models, i.e., its decision rule would bring the highest reward to

future patients with small uncertainty in the value estimate. We found that, in general, standard

errors of the value estimators on the same outcome did not differ substantially across candidate

models, so we focused on the value estimators. Similarly, the optimal ZOM is the model with

highest value estimate and relatively small standard error from the three ZOMs. We performed

a two-sample Z-test to compare the optimal PMM with the optimal ZOM (details in Model

Selection in Supplemental Materials). Once outcomes with statistically significant results were

found, we estimated the decision rule of the optimal PMM trained on the entire dataset (without
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jackknife validation), which served as the final data-driven, precision medicine-based treatment

recommendation.

2.2.5 Multiple Outcomes

To account for potential correlations among outcomes, we derived optimal treatment rules

based on a weighted sum across multiple outcomes. A minimax algorithm was proposed to

optimize data-driven weights for the three outcomes of greatest interest: weight loss since

baseline, WOMAC pain sub score, and WOMAC function sub score at 18 months. To reduce

computational time, we used a coarse-to-fine grid search with RF models to determine the weight

combination that maximized the lowest jackknife value function estimates among the three

outcomes, hence the name “minimax” (details in subsection Multiple Outcomes in Supplemental

Materials). The selected minimax weights were then used to create a composite outcome, i.e.,

the weighted sum of weight loss, pain, and function score, to train a RF model (M6) and estimate

the optimal treatment rule. This contrasts with the other models discussed above where the PM

treatment rule was trained on a single outcome but all models were tested on a single outcome.

All analyses were performed with R version 3.4.4 (R Core Team, 2019). In formation on

specific packages can be found in subsection Choice of Models in Supplementary Materials. As

these analyses were exploratory in nature, the significance level was relaxed to be 0.1 throughout

this paper. A complete outline of the entire precision medicine approach is visualized in Figure

2.1.

2.3 Results

Descriptive characteristics for the two input datasets, as well as the full dataset with all

399 participants who finished 18 months of follow-up, are summarized in Table 2.3. In general,

baseline characteristics of participants with available data were evenly distributed across the

three intervention groups, as would be expected from a randomized clinical trial. There were no

differences in selected baseline characteristics for participants with or without missing outcome

data.
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Process Input Data
(identify outcomes/covariates/treatments,
cleaning, feature selection, imputation, etc.)

Identify candidate ZOMs and PMMs
that suit the data

Training and testing all models
with internal validation (e.g., jackknife)

Select the optimal ZOM and optimal PMM
based on estimated value functions

Compare the optimal ZOM and optimal PMM
with a Z-test

Output the estimated decision rule
of the optimal PMM

for outcomes with signifcant results

Validate the treatment recommendation
with external validation*

Figure 2.1: Flowchart of the proposed precision medicine approach. An asterisk means the step
was not performed in this analysis due to unavailable data but is highly recommended for a

more complete analysis.
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Table 2.3: Descriptive characteristics of baseline input datasets

Count (%) or Mean (SD)
Input Data 1 Input Data 2 Overall

(n = 343) (n = 293) (n = 399)
Randomization Group

Exercise (E) 111 (32%) 99 (34%) 135 (34%)
Diet (D) 116 (34%) 95 (32%) 129 (32%)
Diet and Exercise (D+E) 116 (34%) 99 (34%) 136 (34%)

Age in years 65.5 (6.1) 65.9 (6.2) 65.9 (6.2)
Weight in kg 92.1 (14.5) 92.0 (14.8) 92.4 (14.6)
BMI in kg/m2 33.4 (3.8) 33.3 (3.8) 33.5 (3.7)
Female 251 (73%) 211 (72%) 291 (73%)
Race

Black 57 (17%) 47 (16%) 68 (17%)
White 286 (83%) 246 (84%) 332 (83%)

Education
High School 100 (29%) 84 (29%) 117 (29%)
College 164 (48%) 142 (48%) 194 (49%)
Post College 77 (22%) 65 (22%) 87 (22%)
Missing 2 (1%) 2 (1%) 2 (< 1%)

Smoking
Never 196 (57%) 169 (58%) 229 (57%)
Former 132 (38%) 112 (38%) 153 (38%)
Current 10 (3%) 8 (3%) 12 (3%)
Missing 5 (1%) 4 (1%) 6 (2%)

Alcohol
Never 66 (19%) 60 (20%) 77 (19%)
Former 69 (20%) 51 (17%) 83 (21%)
Current 199 (58%) 174 (59%) 229 (57%)
Missing 9 (3%) 8 (3%) 11 (3%)

Marital Status
Presently married or in a 239 (70%) 208 (71%) 276 (69%)

marriage-like relationship
Never married, divorced, 103 (30%) 85 (29%) 123 (31%)

separated, widowed
Missing 1 (<0.5%) - 1 (<0.5%)
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2.3.1 The optimal zero-order model (ZOM)

Considering the three ZOMs, we found that the optimal ZOM model assigned every indi-

vidual to D+E for all 5 clinical outcomes: weight loss since baseline, WOMAC pain, function

and stiffness scores, and PCS at 18 months (Table 2.4). Treatment D was the optimal ZOM for

the two mechanistic outcomes: knee compressive force and plasma IL-6 level at 18 months.

2.3.2 The optimal precision medicine model (PMM)

The RF model with minimax weights (M6) was the optimal PMM for each of the three

WOMAC sub scores regardless of input data (Table 2.5). For the rest of the outcomes (Table

2.4), list-based models (M9-13) and RLT (M7) were optimal among the 24 PMMs.

2.3.3 The optimal ZOM vs. the optimal PMM

The relative increments between the estimated value functions of the optimal PMM and those

of the optimal ZOM were positive (Table 2.4), indicating that the optimal PMM outperformed

the optimal ZOM for all outcomes. According to the Z-test, such improvement of the optimal

PMMs compared to the optimal ZOMs was significant both for weight loss since baseline and

for IL-6 levels (Table 2.4). We investigated these two outcomes further.

For weight loss between baseline and 18 months, the application of our PM approach showed

that future patients are estimated to lose 11.2kg of weight on average between baseline and 18

months, according to the optimal PMM (list-based DTR with at most 5 nodes). This is an average

of 1.4kg more weight loss than if all patients had received D+E, the optimal ZOM (significant

improvement, p = 0.01). Trained on input data 1 as a whole, the estimated optimal decision

regime for weight loss would recommend intervention D+E to patients who meet either of the

following two conditions:

1.1) If, at baseline, weight does not exceed 109.35 kg and waist circumference is above 90.25

cm,

1.2) If, at baseline, weight is greater than 109.35 kg or waist circumference does not exceed

90.25 cm, and they have reported a prior heart attack.
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Optimal Group ● ●D D+E Previous Heart Attack ● no yes
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Figure 2.2: Visualization of the estimated optimal decision regimes for outcomes (a) weight loss
since baseline and (b) IL-6 at 18 months. Scatter plots of data for each individual are

color-coded to indicate the optimal treatment group assignment of all individuals in the input
data (input data 1 for outcome weight loss since baseline in panel (a) and input data 2 for

outcome IL-6 at 18 months in panel (b)). Blue indicates individuals who would be assigned to
diet only (D) and orange to those assigned to diet plus exercise (D+E). For weight loss since
baseline (a), previous heart attack (yes or no) also determined group assignment and is shown as
a checked box for those individuals who met that criteria. The horizontal and vertical reference
lines indicate the cut-off levels for the variables shown on the horizontal and vertical axis,

respectively, that determined group assignment.
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If neither of these conditions are met, the recommendation is for treatment D. The visualization

of this optimal treatment rule can be found in Figure 2.2a.

For IL-6, the application of our PM approach showed that future patients are estimated to

decrease IL-6 to 2.29 pg/mL on average at 18 months, according to the optimal PMM (list-based

DTR with at most 2 nodes). This is an average of 0.26 pg/mL more reduction than if all patients

had received D, the optimal ZOM (significant improvement, p = 0.09). Trained on input data 2,

the estimated optimal treatment rule for IL-6 assigned D+E to patients who meet the following

condition:

2.1) If, at baseline, IL-6 does not exceed 4.5 pg/mL and WOMAC function score is more than

12.5.

If this condition is not met, patients would be assigned to treatment D (Figure 2.2b). As evidence

of stability, we found similar patterns and similar conclusions for weight loss and IL-6 using the

stratified 10-fold CV method (see Stratified Cross Validation in Supplementary Materials).

2.3.4 Multiple Outcomes

The outcomes were positively correlated to some extent. The highest correlations were

found among WOMAC scores (pain, function, stiffness) and PCS scores (Pearson correlation

coefficients ranged from 0.52 to 0.87). For input data 1, the minimax rule selected 0.1, 0.6,

0.3 as data-driven weights for the three selected outcomes (weight loss, pain, and function,

respectively) and 0, 0.32, and 0.68 for input data 2. We did not scale the outcomes but allowed

the weights to adjust for different scales in the outcomes. Similar to the Z-test comparison

in the previous subsection (Table 2.4), we compared the optimal ZOM with one PMM: the

RF model trained on the weighted composite outcome (M6) (Table 2.5). There was evidence

of significant improvements of M6 relative to the optimal ZOM (D+E) for weight loss since

baseline for input data 1 (p = 0.05). Although not statistically significant, the remaining outcomes

(except compressive force) also expressed positive relative improvement in both input datasets.

In particular, M6 outperformed other PMMS in terms of the estimated value function for the

17



three WOMAC scores, but not for outcomes uncorrelated to the three weighed outcomes, which

are compressive force and IL-6.

2.4 Discussion

In this paper, we investigated optimal treatment recommendations for older and overweight

or obese individuals with KOA using precision medicine techniques and machine learning tools

applied to data obtained from the IDEA trial. The individual treatment decisions obtained from

our precision medicine approach are data-driven (requiring no strong assumptions), reproducible

(with careful reporting of the analysis process) (Kosorok and Laber, 2018), and generalizable

and extendable to other clinical settings (because of rich heterogeneity in the clinical input data).

The results of the optimal ZOM, where everyone would be assigned to a single intervention,

match with those from the published IDEA trial (Messier et al., 2009, 2013). The assignment

of patients to the D+E intervention would be expected to result in the optimal improvement in

the majority of patients in the clinical outcomes of weight loss since baseline, WOMAC pain,

function, and stiffness scores, as well as PCS and so should remain the recommendation of

choice. In individuals where the primary goal is to reduce systemic inflammation as measured

by plasma IL-6 levels and/or reduce the knee compressive force, D alone would be the treatment

of choice.

The optimal treatment rules of the optimal PMMs suggested that not everyone benefits from

D+E even though patients are expected to be assigned to this group based on the ZOM. Further

improvements in weight loss could be obtained in certain patients selected by measures of high

baseline weight (over 109.35 kg) or low waist circumference (90.25 cm or less) accompanied by

lack of a previous heart attack that would result in assigning them to D rather than D+E. This

would only be a consideration if weight loss alone was more important to the patient than the

level of improvement in pain and function. We can only speculate why people of higher weight

with lower waist circumference and no history of heart attack would benefit more from D than

D+E. First, it is likely that following the suggested exercise program may be more difficult for

patients with a height weight. Second, higher weight with lower waist circumference could be
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seen in individuals who have more peripheral adiposity rather than central adiposity. In these

cases, D could be more effective in losing weight. The finding that our results were modified by

a history of a heart attack may be that the cardiac status of these individuals encourages optimal

compliance and improves more with the combined D+E than D alone and this allows for greater

activity levels resulting in greater weight loss.

The finding that the IL-6 outcome improves more with D than D+E in certain individuals is

not easily explained. We noted that individuals with high baseline IL-6 levels (i.e. above 4.5

pg/mL) or those with low baseline function scores (12.5 or less in a range of 0 to 68) reduced

their IL-6 more from diet only. Individuals whose IL-6 was not high but have poorer function

are recommended to receive both diet and exercise. The decrease in IL-6 suggests less systemic

inflammation but there is no solid evidence to suggest that exercise would modulate the reduction

in IL-6 that occurs with dietary weight loss. Because all three groups received an intervention,

the significant differences in outcomes noted among the groups at 18 months would be unlikely

to be due to regression to the mean. Our findings that specific subgroups of individuals received

more benefits from specific interventions argues against the premise that response was simply

due to patient perception rather than to the intervention itself.

As for the multiple outcomes, comparison between Table 2.4 and Table 2.5 suggested that

our minimax rule together with the coarse-to-fine grid search for parameter optimization can

be a useful way to incorporate multiple outcomes, and combining correlated outcomes has the

potential for bringing more benefits to patients than single outcomes. However, uncorrelated

outcomes do not benefit from the composite outcome.

2.4.1 Limitations

Potential limitations of this study include the following. First, we were not able to use the

information of about 100 of the trial participants due to missing outcome data. Although larger

sample size might lead to higher power, our two input datasets remain representative of the

overall data as Table 2.3 shows. Secondly, the analyses did not include intermediate follow-up

data at 6 months. Although longitudinal analysis methods could be applied to the IDEA data, we
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were more interested in the final improvements of each outcome between the start and the end

of the trial and less on the intermediate progress. It is also unlikely for adding one more time

point shortly after the trial would be influential as we expect it takes time for the interventions

to take effect. Thirdly, there were some covariates with a large proportion of missing data

excluded from the analysis. The majority of these were measures that would not be routinely

collected in the clinical setting such as full-length lower extremity radiographs for alignment,

computed tomography for abdominal and thigh fat, knee MRI, and isokinetic strength testing.

Finally, our results are from a single clinical trial of patients with mild-to-moderate symptomatic

KOA (Kellgren-Lawrence scores of 2-3) (Messier et al., 2013) and may not be generalizable to

populations with more severe KOA.

2.5 Supplementary Materials

2.5.1 Data Cleaning

We performed extensive data cleaning for the baseline covariates in the raw IDEA trial

data. First, marital status was originally classified into six categories and we combined them

into two categories, where 1 stands for presently married and in a married-like relationship and

0 stands for never married, divorced/separated, and widowed. Second, three questions, “How

many falls have resulted in injury, minimal medical attention, and hospitalized/bedridden?”, had

-1 values because the patient answered “no” to a previous question “Over the past 6 months,

how many times you have fallen on the ground?”. We converted all -1 values to 0’s because the

patient had not fallen in the past six months so no falls have resulted in the three conditions.

Third, we reordered ordinal variables such as education, alcohol, and thinking of falling (i.e.

“how often do you think about falling”) so they were all ordered from never/low to current/high.

Binary variables were converted from values of 1 or 2 to values of 0 or 1. Fourth, two variables,

“number of falls resulted in hospitalization” and “pacemaker condition” were excluded from the

cleaned data because they have no or only a few cases when almost all other patients answered

“no”. With too few cases, these would not spread evenly across training and validation sets,

which could generate unreliable estimates and predictions. Lastly, we excluded follow up data at
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6th and 12th month, kept baseline and 18th month data only, and reshaped the raw data from a

long format to a wide format.

2.5.2 Dimension Reduction

The original IDEA analysis included 76 variables, all measured at baseline, including stan-

dard sociodemographic factors, anthropomorphic measures, measures related to co-morbidities,

self-reported measures of pain and function, quality of life, physical performance measures

including gait and strength analysis, and blood levels of inflammatory markers including IL-6 at

baseline and C-reactive protein (CRP) at baseline. As part of the preprocessing, we performed

dimensionality reduction to remove unimportant or highly correlated covariates to speed up

computation and avoid multicollinearity. Among patients with complete outcome measures, we

applied a random forests model to each outcome separately and acquired variable importance

measures of the covariates. Random forests (RF) are a suitable dimension reduction tool because

they can examine both the marginal and multivariate predictive performance of predictors. The

categorical variables in our input data have two to six categories, which are comparable scales for

the importance scores of RF to be valid. A variable was considered to be “statistically important”

if it was among the top 10 most important variables for at least three of the outcomes that RF was

modeled on, or the value of its scaled mean squared error (MSE) rate was at least 9. We observed

that more predictors have low importance scores compared to those with high scores. Thus,

our two criteria filtered out noisy, non-influential variables and maintained influential variables

that are either important to many outcomes or extremely important to one single outcome. A

variable was considered to be “clinically important” if it is patient-reported or a test result that

could be obtained in medical settings (such as blood levels of IL-6 or DXA). Thus, we avoided

using the variables generated by gait analysis since this would require patients to be assessed in

a gait lab which would not be available in most medical settings. As a result, we included 15

covariates in input Data 1 and 17 baseline covariates in input Data 2 (Table 2.1) because they

were missing less than 15% of the observations and were considered to be both clinically and

statistically important.
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2.5.3 Missing Data and Imputation

In addition to the multiple imputation analysis conducted in the original IDEA study, we

looked into the missingness pattern in the preprocessed Input Data 2 (with 7 outcomes) from

two perspectives. We first performed logistic regression modeling for raw X covariates on the

missingness of each outcome (0/1), and none of the X covariates was found to be significant. We

also calculated Spearman correlation coefficients between the original data and the corresponding

indicator data of 0/1’s (where 0 means the value is not missing, and 1 means it is missing).

Mixing the covariates and outcomes together, we randomly sampled five variables at a time

(to maintain the size of the square matrix) for the correlation matrix but repeated this random

sampling 15 times. Most pairwise correlations between the original data and missingness

indicator data were less than 0.2, except around one to six moderate correlations occasionally

observed per sample, which was partially due to moderate correlations between the two original

variables. After we confirmed that there were no obvious missing data problems, imputation was

conducted on covariates missing in less than 15% of the participants because too many missing

data points would lead to biases and potentially poorly imputed values. The imputation process

was unsupervised (using only X-variables) because more biases would be introduced if outcomes

were involved at this stage. The algorithm missForest suit our study because it did not require

assumptions about the data distribution, can be applied to high-dimensional mixed-type data of

unequal scales, utilized out-of-bag imputation error estimates to avoid CV, and outperformed

other popular imputation methods such as multiple imputation by chained equations (MICE)

(Stekhoven and Bühlmann, 2011). The R package “missForest” was used to run this imputation

(Stekhoven and Bühlmann, 2011).

2.5.4 Choice of Models

Table 2.2 shows all the models we considered in the clinical data analysis. Penalized

regression is a linear regression model that penalizes high-dimensional data in the model by

shrinking the coefficients. This kind of model reduces variance of coefficients and automatically

reduces dimensions while making predictions as a regular linear model. We chose three kinds
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of penalty terms (lasso, ridge, and elastic net) that differ in terms of the amount of shrinkage

determined by a penalty parameter: lasso (M1) forces coefficients to be exactly zero with an

absolute value penalty and ridge (M2) forces the coefficients to be close to zero with a squared

term penalty, whereas elastic net (M3) with parameter is an even mix of lasso and ridge. Kernel

ridge regression (KRR) (M4) is a ridge regression method that directly computes kernel functions

to make predictions and the Gaussian kernel extends the regression model to a more flexible,

non-linear space (Paterek, 2007). We chose RF for individual outcomes (M5) and weighted

multiple outcomes (M6) because RF is a common prediction method that reduces overfitting

and variance significantly by aggregating a group of independent individual classifiers. RF

also takes into account variable interactions sequentially with its tree structure without user-

specification. RLT (M7) is similar to RF as they are both tree-based methods, but it has two

attractive properties: RLTs can eliminate noise variables with a built-in muting procedure and

implements reinforcement learning to select variables at each node that improve outcomes in

the long run (Zhu et al., 2015).

Although RF usually generates good predictions, it is often considered a “black-box” because

it lacks the interpretability when averaging over many individual trees. In contrast, list-based

DTRs estimate optimal treatment regimens with a sequence of decision rules which can be

easily interpreted as lists, a set of “if-then” statements (Zhang et al., 2018). The list-based

models require predictions of the potential outcome under all treatment options first before

generating interpretable lists. We embedded four models to make such predictions: KRR, RF,

super learning, and elastic net with . Super learning (SL) is a recent semi-parametric ensemble

method (Van der Laan et al., 2007; Polley and Van Der Laan, 2010) that learns the optimal

decision rules by combining candidate learners with weights instead of selecting only one

optimal model, and is applicable to dynamic treatment regimens with multiple time points.

The candidate SL base learners are BART, elastic net, KRR, lasso, RF, RLT, and ridge. We

implemented a super learning algorithm with simulated annealing as the meta learner that learns

the weights of the seven base learners and optimizes the super learning model (Rashid et al.,
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2019). Simulated annealing is a numerical optimization method that speeds up optimization by

finding the approximate global optima (as opposed to the exact global optima) without getting

stuck in local optima (Givens and Hoeting, 2005). Our implementation can be found on our

GitHub repository (https://github.com/phoebejiang/pmoa). The default number of list nodes,

which is the maximum number of “if-then” statements, is 10. The higher the number of nodes,

the more complicated it will be for interpretation of the estimated list of statements, so we also

considered simpler lists with at most 2, 3, and 5 nodes for list with KRR, SL, and RF (M8 - M19).

The majority of the candidate models are list-based DTRs because of their interpretability and

flexibility in accepting multiple treatments and different types of embedded models for outcome

prediction. Note that a list with 1 node is equivalent to a ZOM because it always assigns patients

to the same group.

Residual weighted learning (RWL) models use outcome residualization to improve on

outcome-weighted learning (OWL), a policy learning model that optimizes clinical outcomes

directly (Zhou et al., 2017; Zhao et al., 2012). Using residuals instead of the original outcomes

allows RWL to handle various types of outcomes and any shifts in the outcomes. We chose

three kernels to learn both linear and nonlinear decision rules: linear kernel (M21), 2nd order

polynomial kernel (M22), and 3rd order polynomial kernels (M23). Gaussian kernels can be

more flexible but were not considered due to the burden of extensive computation times and

interpretational difficulties. The current RWL algorithm can only deal with two treatments, and

we generalized the model to three treatments by performing a two-stage procedure: 1) First fit

RWL to the control group E versus the combined D and D+E group; 2) Then fit RWL again to

only patients whose optimal group was predicted to be in the D and D+E combined group to

further distinguish the optimal group into D or D+E. Finally, Bayesian Additive Regression Trees

(BART) (M24) (Chipman et al., 2010) is an ensemble method similar to the idea of tree-based

methods, but each tree in the ensemble is regularized by a prior distribution, and predictions are

made from resampling from the posterior distribution. We included this nonparametric model

for its flexibility in accepting various data types and its direct inference on estimation precision.
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The following R packages were used to run themodels mentioned above: “glmnet” (Friedman

et al., 2010) for penalized regression models (M1-M3, M20), “listdtr” for KRR and list-based

models (M4, M8-20) (Zhang et al., 2018), “randomForest” (Liaw et al., 2002) for RF models

(M5-M6), “RLT” (Zhu et al., 2015) for the RLT (M7) model, and “DynTxRegime” (Holloway

et al., 2018) for RWL models (M21-23), and “BART” (Sparapani et al., 2016) for the Bayesian

model (M24).

2.5.5 Value Function

The true value function is the expected reward of a potential outcome under ITR and is

defined as

V0(d) = E[Y d] = E

[
Y

1{A = d(X)}
P (A|X)

]
(2.1)

where X ∈ X ⊆ Rp represents patient covariates, A = {−1, 1} ⊆ A is treatment group,

Y ∈ Y ⊆ R is the clinical outcome of interest, and d is the decision rule that maps patient

information to a treatment (Qian and Murphy, 2011). The true value function is often estimated

by

V̂ (d̂) =

∑n
i=1 Yi1{Ai = d̂(Xi)}/P̂ (Ai|Xi)∑n
i=1 1{Ai = d̂(Xi)}/P̂ (Ai|Xi)

(2.2)

which can be deemed as a weighted combination of individual outcomes.

2.5.6 The Jackknife

The “leave-one-out” jackknife idea was first brought up by Quenouille (1949) and Tukey

(1958) to reduce estimation bias, which later inspired the bootstrap resampling methods. Back

in 1995, Kohavi et al. (1995) claimed that jackknife “has smaller (pessimistic) bias but larger

variance than leave-more-out CV”. This statement is influential, but rather broad and debatable.

There has been much literature pertaining to the performance of jackknife estimators that is

more specific and substantiated. In least square linear regressions, Burman (1989) showed that

jackknife (also referred to as ordinary CV) estimates reached the lowest biases and variances

among other k-fold cross-validated estimates for simulated samples of 12 and 24. A recent

publication by Zhang and Yang (2015) in 2015 argued that the jackknife is “typically the best or
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among the best for a fixed model or a very stable modeling procedures (such as BIC) in both

bias and variance, or quite close to the best in mean squared error (MSE) for a more unstable

procedure (such as AIC or even high-dimensional LASSO)”.

The jackknife method was chosen because it requires weak assumptions, which are typical

assumptions such as independent and identically distributed observations (thus can be more

representative of future data). Given reasonable sample sizes like that in the main paper, the

jackknife is relatively easy to implement because it loops through each patient once and only

once without the need of repetitions. As for bias and variance trade-off, we took into account

the correlation among the training sets when calculating variance estimates and test statistics of

jackknife estimators, as shown below and in the next section. Furthermore, we show that our

jackknife estimators retain algorithmic stability by comparing them with estimators obtained

from stratified 10-fold CV.

Mathematically, the jackknife value estimator is defined as

V̂ jk
(
d̂n

)
=

∑n
i=1 Ui∑n
i=1Wi

(2.3)

where Ui = Yi
1{Ai=d̂

(−i)
n (Xi)}

P̂ (Ai|Xi)
and Wi = 1{Ai=d̂

(−i)
n (Xi)}

P̂ (Ai|Xi)
, d̂(−i)

n is the decision rule estimated

from a training set of size n with the i-th observation left out, and P̂ (Ai|Xi) is the estimated

propensity score of the testing set ith observation. Conceptually, V̂ jk
(
d̂n

)
is similar to V̂ (d̂)

with the decision rule estimated by the jackknife d̂(−i)
n . For our IDEA trial data, the propensity

score is known and is simply the proportion of being in each of the three treatments since

treatment and covariates are independent for randomized trials. For non-randomized studies,

propensity scores need to be estimated by methods such as logistic regression.

Let Rjk
i = 1

W̄n
Ui − Ūn

W̄ 2
n
Wi be a bias-corrected, influence function-inspired form of value

function with Ūn =
∑n

i=1 Ui and W̄n =
∑n

i=1Wi (see Appendix A for derivation). This is

bias-corrected because
∑n

i=1R
jk
i = 0. We defined the estimated variance of the jackknife value
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estimator as

V̂ar
[
V̂ jk

(
d̂n

)]
=

1

n(n− 1)

n∑
i=1

Rjk
i

2
(2.4)

We adjusted the summation by n(n− 1) because of n− 1 degrees of freedom in the summation

and correlation among the n training sets. The standard error of the value estimator is thus

ŜE =

√
V̂ar(V̂ jk).

2.5.7 Model Selection

We performed a Z-test to compare the optimal PMM with the optimal ZOM. The test results

are used to inform us of whether there is a strong precision medicine effect and whether or not

ZOMs are always the optimal choice. Let V̂ jk(d̂PMM) be the jackknife estimator of the value

function of the selected optimal PMM and V̂ jk(d̂ZOM) be the jackknife estimator of the value

function of the optimal zero-order model. The null hypothesis was that there is no difference

between the values of the selected optimal PM decision rule Ho : V0(d̂PMM) = V0(d̂ZOM) and

the zero-order decision rule and the alternative hypothesis was two-sided Ha : V0(d̂PMM) 6=

V0(d̂ZOM). The test statistic for the jackknife was a standardized difference between the two value

estimates:

T jk(d̂PMM, d̂ZOM) =
V̂ jk(d̂PMM)− V̂ jk(d̂ZOM)√∑n

i=1(RjkPMM−R
jk
ZOM )2

n(n−1)

(2.5)

The p-value for this test was defined as p = 2P (|T | ≤ z) = 2
∫∞
|T | f(z)dz where z ∼ N(0, 1).

Note that the test statistic is nonnegative because the optimal PMM would either outperform

the optimal ZOM or assign the same treatment to everyone just like the optimal ZOM. With a

significance level chosen to be 0.1, we conclude that there is evidence that the treatment rules

derived from the optimal PMM provides statistically significant improvement in the outcome if

p < 0.1.

2.5.8 Stratified Cross Validation

In addition to the jackknife method (i.e., LOOCV), we applied stratified 10-fold CV with 50

repetitions, with each fold stratified by the randomization group. LetM = 50 denote the total
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number of repetitions,K = 10 denote the number of CV folds, and j = 1, . . . , KM denote all

500 folds regardless of the repetition. The estimated value function was defined as

V̂ cv(d̂n) =

∑MK
j=1

∑nj
i=1 Uji∑MK

j=1

∑nj
i=1Wji

(2.6)

where i = 1, . . . , nj is the ith observations in the j-th overall fold, Wji =
1{Aji=d̂

(−j)
n (Xji)}

P̂ (Aji|Xji)
,

Uji = YjiWji, d̂(−j)
n is the decision rule estimated from a training set of size n with the jth fold

left out, and P̂ (Aji|Xji) is the estimated propensity score. We defined the estimated variance of

the jackknife value estimator as

V̂ar[ V̂ cv(d̂n)] =
1

K(MK − 1)

MK∑
j=1

nj∑
i=1

Rcv
ji

2 (2.7)

where Rcv
ji = 1

W̄j
Uji − Ūj

W̄ 2
j
Wji is an influence function-inspired form of the value function with

Ūj =
∑nj

i=1 Uji and W̄j =
∑nj

i=1 Wji, similar to that defined in the jackknife method above and∑MK
j=1

∑nj
i=1R

cv
ji = 0. The variance estimate was adjusted by the degrees of freedomMK − 1

for MK overall folds as well as by the correlations among K folds for each repetition. The

standard error of the value estimator is then ŜE =

√
V̂ar(V̂ cv). Because the jackknife is a special

case of CV, the value function estimates of the jackknife are also special cases of those of CV

withM = 1, K = n. As we can see, the jackknife is much simpler in terms of notation and

computation.

We applied the Z-test to stratified CV value estimates defined above with the test statistic

adjusted by K(MK − 1):

T cv(d̂PMM, d̂ZOM) =
V̂ cv(d̂PMM)− V̂ cv(d̂ZOM)√∑MK

j=1 (RcvPMM,j−R
cv
ZOM,j)

2

K(MK−1)

(2.8)

Similar test results were observed when we compared the optimal PMM with the optimal ZOM:

For input data 1, the optimal PMM for weight loss since baseline was a list model with at most
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2 nodes. Applied to future patients with the 10-fold CV method, the optimal rules derived

from this list-based model is expected to increase average weight loss to 10.8 kg at 18 months,

contrasted with 9.8 kg had all patient received D+E. The relative increment of 1.0 kg between

the PMM and ZOM was significant (p = 0.06). For input data 2, the optimal PMM for IL-6

(log-transformed in the model) was list-based DTR with at most 2 nodes embedded with RF,

which is one of the two optimal PM models the jackknife method detected in the main Results

section. Applied to future patients with the 10-fold CV method, the optimal rules derived from

this list model is expected to decrease average IL-6 level to 2.34 pg/mL, compared with 2.56

pg/mL had all patients received D+E. The relative increment of 0.22 pg/mL was significant (p

= 0.09). The CV estimated optimal rule for weight loss was the same as condition 1.1) in the

Results section. The estimated optimal rule based on list DTR with a maximum of 2 nodes was

the same as condition 2.1) in the Results section. Stratified 10-fold CVs tend to produce similar

results as the jackknife method.

2.5.9 Multiple Outcomes

The coarse-to-fine grid search was defined as follows. First, a coarse grid search of weights

between 0 and 1 with increment 0.1 was applied to find the weight combinations (of length 3)

that generate the top five lowest jackknife estimators of the value function, V̂ jk(d̂). Here, d̂ was

trained by a RF model and the V̂ ’s were transformed to percentiles to be compared on the same

scale across the three outcomes. Next, a finer grid search of increment 0.02 was conducted

to a range within ±0.06 of the five selected sets of weights. This is to find the one weight

combination that maximizes the lowest V̂ jk(d̂). This two-step grid search reduced computation

time significantly, as opposed to for example one large fine grid search of weights between 0 and

1 with increment 0.02.

2.5.10 Generalizability

Our efforts in preventing overfitting and improving generalizability of our PM approach are

represented in three major ways: i) we applied feature selection with RF to reduce the complexity

of input data; ii) we used the jackknife resampling technique to evaluate model performance as
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internal validation to all models; iii) we proposed a precision medicine-based approach for many

of its advantages, one of which is that PM is carried under a causal framework which produces

generalizable rules. For instance, basic causal assumptions (e.g., consistency, positivity, no

unmeasured confounders) and the definition of value function estimators enable the conclusions

to be applied to future population. Nonetheless, we recommend a follow-up to the IDEA trial or

a new randomized clinical trial to be performed in the future to confirm our findings.

2.6 Simulation Analyses

2.6.1 Simulation Settings

In addition to the clinical data analyses on the IDEA data, we carried out extensive simula-

tions to assess the performance of the jackknife estimators of value functions in various settings.

We set up the simulations to be as close to the IDEA data as possible. For each observation, the

simulation data can be written as a triplet (X, A, Y ) that consists of three clinical covariates

X = {X1, X2, X3} i.i.d. from uniform distribution U(−2, 2), a treatment variable A of values

{0, 1, 2} generated from multinomial distribution Multinom
(

1
3
, 1

3
, 1

3

)
independently ofX , and

a response variable Y normally distributed with mean Q0 = X1 +X2 + δ0(X, A) and standard

deviation 1. We considered four scenarios with the following different choices of Q0:

(1) δ0(X, A) = 1{A > 0}(1−X2
1 −X2

2 )(X2
1 +X2

2 − 3)1{A=1}

(2) δ0(X, A) = 1{A > 0}(1{X2 ≤ dX1 − 2 · 1{A = 2}e}

−1{X2 > dX1 − 2 · 1{A = 2}e})

(3) δ0(X, A) = 1{A > 0}(X1 +X2 − 1)(−X1 −X2 − 1)1{A=1}

(4) δ0(X, A) = 1{A > 0}(X2 −X2
1 )(X2

1 −X2
2 − 2)1{A=1}

Scenarios (1)-(4) were determined by X1 and X2 only, with X3 as a nuisance variable. The true

decision boundaries of these scenarios can be described as (1) two concentric circles, (2) two

parallel sets of steps of length 1, (3) two parallel lines with slope , and (4) two nested sets of

parabolas (Figure 2.3). The purpose of including various scenarios in this simulation study is to
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Figure 2.3: True decision boundaries of simulation scenarios (where white, light gray, and dark
gray areas represent true optimal treatment 0, 1, and 2 respectively)

explore if candidate models can work well with difficult boundary structures. Samples sizes were

chosen to be 50, 100, 200, 400, which cover our clinical data sample sizes, and 100 simulations

were performed. In Jiang et al. (2020a), a higher sample size of n = 800 was explored. The

estimated decision rule was denoted as d̂n where n is the training size, and an independent

sample of the same size as the simulation data (X, A, Y ) was denoted as (X̃, Ã, Ỹ ). We derived

four estimators on simulation data:

1) Empirical estimator, where the same n observations were used for training and testing the

decision rule.

V̂1(d̂n) =

∑n
i=1 Yi1{Ai = d̂n(Xi)}/P̂ (Ai|Xi)∑n
i=1 1{Ai = d̂n(Xi)}/P̂ (Ai|Xi)

2) Jackknife estimator, where n − 1 observations were used for training the decision rule

and the n-th observation for testing.
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V̂2(d̂n) =

∑n
i=1 Yi1{Ai = d̂

(−i)
n (Xi)}/P̂ (Ai|Xi)∑n

i=1 1{Ai = d̂
(−i)
n (Xi)}/P̂ (Ai|Xi)

3) Jackknife + test estimator, where n− 1 observations were used for training and an inde-

pendent copy of one observation was used for testing.

V̂3(d̂n) =

∑n
i=1 Ỹi1{Ãi = d̂

(−i)
n (X̃i)}/P̂ (Ãi|X̃i)∑n

i=1 1{Ãi = d̂
(−i)
n (X̃i)}/P̂ (Ãi|X̃i)

4) Empirical + test estimator, where all n observations were used for training and an inde-

pendent copy of the training data with the same size n was used for testing.

V̂4(d̂n) =

∑n
i=1 Ỹi1{Ãi = d̂n(X̃i)}/P̂ (Ãi|X̃i)∑n
i=1 1{Ãi = d̂n(X̃i)}/P̂ (Ãi|X̃i)

5) Empirically true estimator, where all n observations were used for training and an inde-

pendent copy of the training data with size npop = 1, 000, 000 was used for testing.

V0(d̂n) =

∑npop
i=1 Ỹi1{Ãi = d̂n(X̃i)}/P̂ (Ãi|X̃i)∑npop
i=1 1{Ãi = d̂n(X̃i)}/P̂ (Ãi|X̃i)

The jackknife estimator V̂2 was applied in the KOA study described in the main text. Here

in the simulations, we focused on the other three estimators for comparison. Estimator V̂1 was

not honest (i.e. ‘honesty’ means that data are used for training or testing but not both) and was

expected to overfit the training set. Estimator V̂3 was considered as a bridge between V̂2 and V̂4

because it was tested on independent copies like V̂4 but trained based on the jackknife method

like V̂2. We hoped to find that V̂2 has similar performances and statistical inferences as V̂4, which

is the honest estimator with the largest training set. In comparison, estimator V0 was trained

on the same training set of size n as the empirical estimator but tested on a simulated data set

of a much larger test size that generated the best possible estimates of the truth one can obtain

empirically.
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Similar to the IDEA trial analysis, we fit the three ZOMs and 23 PMMs (excluding M6)

to the simulation data, with two main changes to the precision medicine models: i) multiple

outcome RF model (M6 in Table 2.2) was not possible for data with one outcome hence we

applied only 23 PMMs for simulations, and ii) for RLT and RF models, the default number of

variables randomly sampled at each split as candidates was one for four covariates (threeX’s

and one A) and we forced it to be two so the model does not split on the only one candidate

variable. We also examined the distribution of four estimators of value functions together with

the empirically true estimates and compared the optimal PMM and optimal ZOM with a Z-test.

The test statistic for each simulation is

T sim(d̂PMM, d̂ZOM) =
V̂ (d̂PMM)− V̂ (d̂ZOM)√∑n

i=1(RPMM,i−RZOM, i)2

n(n−1)

(2.9)

where d̂PMM and d̂ZOM are estimated decision rules for the optimal PMM and the optimal ZOM

respectively, V̂ stands for estimated value function respectively, and RPMM,i and RZOM,i represent

the bias-corrected, influence function-inspired value function of the ith individual under the rule

for the optimal PMM and ZOM respectively. The null hypothesis was that the expected future

reward of the optimal PMM is the same as that of the optimal ZOM.

2.6.2 Simulation Results

First, we looked at the accuracy of the precision medicine models for reproducing the true

decision boundaries of the four scenarios (Figure 2.4).KRR was selected because it represented a

precision medicine model with good performance in different scenarios. The estimated decision

boundaries were based on fitting the model once for a simulation sample size of n = 500. It is

clear that KRR was able to estimate the decision boundary of scenarios 1, 3, and 4, with scenario

3 being the best. It had a difficulty finding the second set of steps for scenario 2 due to the small

decision area of treatment A = 2 but was able to detect the longer set of steps.

Second, we compared the distribution of our jackknife estimators V̂2 with the distribution of

empirical + test estimators V̂4, which are the best possible estimators but not feasible in reality
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Figure 2.4: Estimated decision boundaries for a simulated dataset of size n = 500 trained by
KRR models (scenario 1 - circles, scenario 2 - steps, scenario 3 – lines, scenario 4 – quadratic

curves)
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because we often do not have an independent copy of the sample data with the same size (or we

cannot afford 50/50 random splitting of our available data). Figure 2.5 contains Q-Q plots that

compare four estimators V̂2 to V̂4 with the empirical + test estimator V̂4 based on the KRR model,

which had better performance compared with other models. The purple curve is a straight line

because it is a comparison between V̂4 and itself. The green curve, our jackknife estimator,

mostly follows the straight line except at the left tail (i.e. when the estimators are less than -2)

for difficult scenarios such as 1 and 4 when n=50. As sample size increases the green curve

becomes much straighter for all scenarios. This indicates that our jackknife estimators have a

similar distribution as the empirical + test estimators, especially for higher sample sizes.

Next, we explored the coverage of the jackknife estimators V̂2 over V̂4. Given V̂2 and its

standard error, a 95% confidence interval (CI) was calculated for each simulation, V̂2 ± z0.975 ·

SE(V̂2), where z0.975 ≈ 1.96 is the standard normal quantile of 97.5%. The coverage was defined

as the proportion of simulations whose 95% CI contains V0, which has a Monte Carlo error

(the maximum standard error of the estimated proportion) of 5%. We continued to use KRR

as an example of a good performing PMM and summarized the percentage of coverage with

95% CIs in Table 2.6. Overall, coverage generally increases as sample size goes up. Scenarios

2-4 have at least or almost 95% coverage for higher sample sizes. Scenario 1 did not reach as

high a coverage as the other scenarios across sample sizes; we believe this is because concentric

circles are complex, non-linear decision boundaries. After increasing the sample size to 800

(Jiang et al., 2020a), we saw a 96% coverage for scenario 1 and concluded that the 92%-to-88%

dip at n = 400 was due to Monte Carlo errors. With the additional simulations, we were able to

see more uniform patterns.

Table 2.6: Coverage of the empirically true estimator V0 with 95% CI of V̂2 based on 100
simulations

Sample Size 50 100 200 400
Scenario 1 84% 87% 92% 88%
Scenario 2 91% 91% 96% 96%
Scenario 3 93% 97% 96% 96%
Scenario 4 89% 88% 90% 94%
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Lastly, we estimated the power of the jackknife test statistic T sim. Power was estimated by

the proportion of simulations whose p-values were under 0.05 out of 100 simulations, which

also has a Monte Carlo error of 5%. This reflects how often the test will detect a significant

effect of PMM over ZOM when there is an effect. We found that T sim0 experienced difficulty at

small sample sizes and at large sample sizes for complex boundaries such as scenarios 1 and 2

(Table 2.7). Yet, the estimated power almost always increased as sample size increased for each

scenario. Scenario 3, the decision boundary that KRR had good accuracy in predicting, reached

the highest power (81%) at n = 400 compared with other scenarios. We saw higher power for

the jackknife test statistic with larger sample size n = 800 and confirmed that power generally

increases with larger sample sizes, a similar trend to CI coverage (Jiang et al., 2020a).

Table 2.7: Estimated power of jackknife T sim based on 100 simulations

Sample Size 50 100 200 400
Scenario 1 13% 7% 18% 38%
Scenario 2 16% 13% 23% 34%
Scenario 3 15% 24% 41% 81%
Scenario 4 11% 15% 35% 56%

2.6.3 Consistency of Jackknife Estimators

Statistical inference properties of the jackknife estimators were evaluated through a math-

ematical proof and simulations. It is known that the estimate of expected prediction error

calculated from cross validation is conditionally unbiased but its variance can be very large

(Breiman et al., 1996). Moreover, there have been theoretical arguments that claimed that it

depends on how correlated the training data are and there are no universally unbiased estimator

of such variance of expected prediction error under all distributions of observations (Bengio

and Grandvalet, 2004). We argued that for our case jackknife estimates of value functions are

asymptotically unbiased and their variances converge to zero as sample size increases. We

summarized the consistency statement of a jackknife estimator summarized in Theorem 2.1 as

well as its assumptions.
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Assumption 2.1.

E[PX(d̂n(X) 6= d̂n−1(X))]→ 0

Assumption 2.2.

E

[
Y 2

P̂ (A|X)
+

1

P̂ (A|X)

]
<∞

Assumption 2.1 is reasonable because the training sets of size n and n−1 are asymptotically

equal, which implies that the decision functions estimated from these two training sets eventually

converge as sample size grows to infinity. Assumption 2.2 requires a finite second moment of

the outcome adjusted by the propensity score and thus a finite variance of the adjusted outcome,

which is easily satisfied for clinical data where the outcome itself is finite and is usually contained

in a range. The second term in Assumption 2.2 is automatically satisfied because propensity

scores are bounded between 0 and 1 and it is used in the analogous proof ofWn.

Theorem 2.1. Given Assumptions 2.1 and 2.2,

∑n
i=1

Yi1{Ai=d̂
(−i)
n (Xi)}

P̂ (Ai|Xi)∑n
i=1

1{Ai=d̂
(−i)
n (Xi)}

P̂ (Ai|Xi)

− E[Y |A = d̂n(X)]→
p

0

The proof can be found in Appendix A.

2.6.4 Asymptotic Normality of Jackknife Estimators

We examined the asymptotic normality property of jackknife estimators via simulations.

For each estimator, sample size, and data scenario across 100 simulations, we calculated the

following shifted test statistic:

T sim0 =
[V̂ jk(d̂PMM)− V̂ jk(d̂ZOM)]− [V0(d̂PMM)− V0(d̂ZOM)]√∑n

i=1(RjkPMM,i−R
jk
ZOM,i)

2

n(n−1)

(2.10)

which is a function of jackknife estimators and a “shifted” version of T sim. The test statistic

measures the difference between the estimated value function of optimal PMM and that of optimal

ZOM, shifted by the corresponding difference in the true value function. The distribution of
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T sim0 over 100 simulations was compared with the standard normal distribution and visualized

via Q-Q plots for all four scenarios (Figure 2.6). Only two sample sizes 50 and 400 were shown

for cleaner plots. We can see that the distribution of test statistic is mostly standard normal in

the middle and the scattering of points in scenarios 2 and 3 is particularly close to a straight line.

In addition to visual inspections, we also tested the normality on T sim0 using the Shapiro-Wilk

test. Simulation studies have shown that Shapiro-Wilk (SW) test has good power properties over

symmetric distributions as well as a wide range of skewed distributions (Yap and Sim, 2011).

Based on both the Q-Q plots and SW test results (Table 2.8), T sim0 has fewer outliers and is more

normally distributed (especially in the middle) when sample size increases. We were able to

reject the null hypothesis that T sim0 follows a standard normal distribution for scenarios 3 and

4 when n = 50, which we believe was due to a few outliers at the positive end. In summary,

we conclude that there is not enough evidence to reject the hypothesis that T sim0 is standard

normally distributed for moderate to high sample sizes (n ≥ 100) in all four decision boundary

scenarios, and the Q-Q plots indicated evidence for asymptotic normality. In addition to the

consistency and asymptotic normality properties inspected here, there are more complex and

technically rigorous approaches to value function inference than what we propose here: for a

review of such methods, see (Laber et al., 2014).

Table 2.8: P-values of Shapiro-Wilk test of normality on jackknife T sim0 based on 100
simulations

Sample Size 50 100 200 400
Scenario 1 0.20 0.37 0.15 0.18
Scenario 2 0.85 0.92 0.41 0.79
Scenario 3 <0.01 0.99 0.13 0.61
Scenario 4 <0.01 0.67 0.81 0.84

39



●

●
●

●
●
●●

●●
●●●●

●●●●●●
●●●●●●

●●●●
●●●●
●●●●●
●●●●●
●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●
●●●●
●●●●●

●●●
●●●
●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●
●
●●

●●
●●

●●
●●●

●●●
●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●
●●●
●●●●●

●●●●●
●●

●
●

●
●

●

●

●

●
●

●
●●

●●●
●●●

●●●
●●●

●●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●●●●
●●●●
●●●●

●●●●●●
●●●●●

●●
●●

●●
●●

●
●

●
●

●

●

●

●
●

●
●●

●●
●●

●●
●●●●

●●●
●●●●

●●●●
●●●●
●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●●

●●●●
●●●●

●●●●●
●●
●●

●●●
●●

●
●

●

●
●

●

●

●
●

●
●●

●●●●
●●
●●●

●●●
●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●

●●
●●

●●●
●
●

●

●

●

●

●
●

●
●

●

●●
●●

●●
●●
●●●●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●●●
●●●
●●●●

●●
●●

●●●●●
●

●

●
●

●

●

●

●
●

●
●●●●

●●
●●●●

●●●●●
●●●●

●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●
●●●●●
●●●●●●

●●●●●
●●●●
●●●●

●●●●●●●●●●●
●●

●●●
●

●

●
●

●

●
●

●
●

●
●●

●●●●●●
●●●

●●●
●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●
●●●●●

●●●
●●

●●●●
●

●
●

●

●

S
ce

na
rio

 1
S

ce
na

rio
 2

S
ce

na
rio

 3
S

ce
na

rio
 4

n = 50 n = 400

−
2

0
2

−
2

0
2

−
2

0
2

−
2

0
2

−
2.

5

0.
0

2.
5

5.
0

−
2.

5

0.
0

2.
5

5.
0

S
ta

nd
ar

d 
N

or
m

al

Sample Test Statistic

Fi
gu
re

2.
6:

Q
-Q

pl
ot
so

ft
he

di
str

ib
ut
io
n
of

ja
ck
kn
ife
T
si
m

0
ve
rs
us

th
e
sta

nd
ar
d
no
rm

al
di
str

ib
ut
io
n
ac
ro
ss

10
0
sim

ul
at
io
ns

fo
rn

=
50

an
d

n
=

40
0
ov
er

4
sc
en
ar
io
s

40



CHAPTER 3: DEEP DOUBLY ROBUST OUTCOME-WEIGHTED LEARNING

3.1 Introduction

Clinical practices have been gradually undergoing a slow-but-steady transformation, from

prescribing the same treatment to all patients of one disease (which tends to work well “on

average”) to personalizing treatment options that target precisely on smaller groups of patients.

This is often accomplished through a data-driven diagram called precision medicine (Kosorok

and Laber, 2018), which takes into account patient heterogeneity into the decision making

process of disease treatment and does not require prespecified values or strong assumptions.

Patient heterogeneity can be acquired in the richer medical history of routine visits, lab exams,

medication, surveys, as well as larger and more complex data in medical images and genetic traits.

The goal of precision medicine is to identify the combination of treatment and patient groups

that achieves optimal clinical outcomes, which can be described by individualized treatment

regimes (ITRs).

Assume the input data is a sample of n i.i.d. triplets (Xi, Ai, Yi) for i = 1, . . . , n, where

Xi ∈ X ⊆ Rp represents p-dimensional patient information, Ai = {−1, 1} ∈ A represents

treatment, and Yi ∈ R clinical outcome. The underlying data-generating model does not

change regardless of the chosen treatment and the observed input data are used to determine

the optimal treatment rule to be applied to future patients (Kosorok and Laber, 2018). Let

Pa(x) = P (A = a|X = x) denote the propensity score, which is known for randomized

trials and needs to be estimated for observational studies or non-randomized trials. An ITR

is a function d : X → A that maps from the patient characteristic space X to the treatment

space A. The optimal ITR is the one function dopt, within the class of all available functions

D, that gives the best expected outcome results. Throughout this paper, we make the following
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three standard causal assumptions: consistency Y = Y ∗(A), no unmeasured confounders

Y ∗(a) ⊥ A|X for all a ∈ A, and positivity Pa(x) > 0 for all a ∈ A and x ∈ X in addition to

the SUTVA assumptions of no interference and no multiple versions of treatments. We also

assume higher outcomes are more desirable. Under these assumptions, the optimal decision

rule is dopt(x) = arg maxd∈D E(Y d) where E(Y d) is the expectated outcome under treatment

d, which is known as the “value” of an ITR as V (d) = E(Y d) = E
[
Y 1{A=d(X)}
P (A|X)

]
. Because

V (d) = E[Q(X, d(X))], the optimal ITR also satisfies dopt(x) = arg maxd∈D Q(x, d) a.s. for

all x ∈ X , where Q(x, a) = E[Y |X = x, A = a] is the “quality” of treatment a applied at

patient observation x and can be estimated by traditional regression models (Qian and Murphy,

2011). The goal of precision medicine boils down to finding d̂n, the estimator of dopt, given n

triplets of observed data {(Xi, Ai, Yi)}ni=1.

Many machine learning methods that solve for the ITR estimation problem are indirect

and regression-based like described above. For example, Qian and Murphy (2011) used a

two-step procedure with a `1-penalized least squares model. Zhang et al. (2012) went on

another path with counterfactuals, where the optimal ITR was obtained by the augmented

inverse probability weighting estimator (AIPWE, Robins et al. (1994); Rotnitzky et al. (1998)).

The outcome regression model was thus protected by double robustness from misspcification

while gaining estimation precision (Zhang et al., 2012). An alternative to completely avoid the

potential misspecification of regression models is a direct, classification-based approach. A

leading example is outcome weighted learning (OWL), which estimated the optimal treatment

by converting the maximization problem to a weighted classification problem with support

vector machine (SVM) (Zhao et al., 2012). A lot of research has been done to generalize this

classification approach to a broader range of problems and datasets. To name a few: residual

weighted learning (RWL) improved finite sample performance of OWL by replacing the outcome

with residuals which leave only the heterogeneous part of the X − A − Y relationship and

are more invariant to different types and scales of data (Zhou et al., 2017), and augmented
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outcome-weighted learning (AOL) extended RWL further by combining RWL and AIPWE to

achieve even better performance and computational efficiency (Zhou and Kosorok, 2017).

We propose a newmethod called deep, doubly robust outcomeweighted learning (DDROWL)

that applies deep learning techniques to solve the AOL problem with greater flexibility, especially

for large, complex data sizes. AOL benefits from desirable properties of both residuals and

doubly robustness while outperforming either model. Deep learning has recently gained much

popularity due to its supreme prediction accuracy trained from high-dimensional data. Living

under the umbrella of machine learning, deep neural networks (DNN) are flexible, data-driven

tools that effectively extract important representations layer-by-layer from a large amount of input

data. We propose to apply DNNs directly in the optimization problem to find the optimal decision

function dopt. If well-trained, DNNs avoid the need to posit regression models on outcomes or

residuals like the regression-based methods and thus the possibility of model misspecification.

Instead of using kernel mapping to generalize the decision rule to non-linear problems, the

nonlinear hierarchial architecture of DNN can accommodate for any form of decision rules while

maintaining good performance and computation speed. In addition, DNN enables DDROWL to

take in high-dimensional and complex patient data such as medical imaging and time series data

(e.g., audio and speech). It is known that DNN can easily overfit, therefore training and tuning

the network well is an important task in our methodology development.

The rest of the paper is organized as follows. In Sections 3.2.1 and 3.2.2, we review existing

methods (i.e., OWL, RWL, and AOL) and present the proposed DDROWL for estimating optimal

ITRs in more general settings. Background information of DNN structures we used can be found

in Sections 3.2.3 and 3.2.4. Theoretical properties and intuitions are explored in Section 3.2.5.

In comparison with other competing methods, the performance of our proposed method in terms

of estimated value functions is demonstrated through simulations in Section 3.3 and clinical

application using clinical data and brain images in Section 3.4. Section 3.5 concludes the article

with discussions. Future research directions and technical details can be found in Chapter 5.
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3.2 Methods

Before introducing DDROWL and its theoretical properties, we first review several current

methods on which our proposed idea was based.

3.2.1 Existing Work

Recall that the objective function of outcome weighted learning (OWL) can be turned into

a weighted misclassification error as each misclassified event 1{A 6= d(X)}, a 0-1 loss, is

weighted by Y/P (A|X),

dopt = arg min
d∈D

E

[
Y 1{A 6= d(X)}

P (A|X)

]
.

This misclassification error is approximated using observed data and the optimal ITR can be

obtained through some function f in a class of all possible decision functions F , such that

f̂ opt = arg min
f∈F

n−1

n∑
i=1

[
Yi1{Ai 6= sign f(Xi)}

P̂ (Ai|Xi)

]

where P̂ (Ai|Xi) is the estimated propensity score for the ith subject and dopt(x) = sign(f opt(x)).

To alleviate the non-convexity of the 0-1 loss function in this optimization problem, Zhao et al.

(2012) proposed a nonparametric approach to adopt hinge loss as a surrogate hinge loss because

it is a tight and convex upper bound of 0-1 loss. Thus, OWL aims to solve the following objective

function with an added term to penalize the complexity of f and avoid overfitting:

f̂ opt = arg min
f∈F

n−1

n∑
i=1

{[
Yi

P̂ (Ai|Xi)
`H(Aif(Xi))

]
+ λn||f ||2

}
,

where `H(t) = max(1− t, 0) is the hinge loss function, || · || is some appropriate norm in the

F space, and λn is a penalization parameter. This optimization problem can then be solved by

support vector machine (SVM). Zhao et al. (2012) derived the estimators for both linear and

non-linear decision rules and established consistency proofs of optimal ITRs estimated by OWL

as well as the risk bounds.
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As it is indicated in Section 3.1, OWL has potential weaknesses in that: i) it tries to minimize

misclassification rates and tends to keep the same treatments that patients already received, ii)

the estimated ITR can be affected by a shift in the outcome which leads to unstable estimates

especially when sample size is small, and iii) it lacks of variable selection (VS) features (Zhou

et al., 2017). Residual weighted learning (RWL), proposed by Zhou et al. (2017), mitigates these

problems with the following optimization

f̂ optRWL = arg min
f∈F

n−1

n∑
i=1

Yi − ĝ(Xi)

P̂ (Ai|Xi)
`SR(Aif(Xi)) +

λn
2
||f ||2 (3.11)

where `SR is a smoothed ramp loss function and λn and || · || are defined similarly as those in

(3.11). In (3.11), the outcome Y is replaced by the residuals of a model g(X) that only depends

onX thus the optimal ITR is invariant to many kinds of outcomes (binary, continuous, count).

A good choice of function g should not depend on d because d is unknown but g should reduce

the variance of Y−g(X)
P (A|X)

1{A 6= d(X)}. The authors recommend a reasonable choice of g to be

g∗(X) = E

(
Y

2P (A,X)

∣∣∣∣X) ,
and the estimation of g∗ can be achieved by either the main effects model g∗(X) = β0 +XT

i β

or the null model g∗(X) = β0. The finite sample performance has demonstrated to be improved

because residuals could stabilize the variance of the value function while controlling for the

treatment matching factor (Zhou et al., 2017).

RWL requires computationally intensive optimization due to the non-convex loss function

`SR which does not always promise a global solution or possess fully semi-parametrical effi-

ciency. Zhou and Kosorok (2017) proposed augmented outcome-weighted learning (AOL) which

optimizes the following objective function with weights derived from augmented outcomes:

f̂ optAOL(x) = arg min
f∈F

n−1

n∑
i=1

{
|yi − ˆ̃g(xi)|
P̂ (ai|xi)

`HH(ai sign(yi − ˆ̃g(xi))f(xi)) +
λn
2
||f ||2

}
(3.12)
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where g̃(x) = P (−1,x)E[Y |X = x, A = +1] + P (+1,x)E[Y |X = x, A = −1] is derived

from the AIPWE and `HH is the Huberized hinge loss function that is smooth everywhere. AOL

inherits good properties of RWL(e.g. location-scale invariant, universally consistent, and stable

variability) and builds on the doubly robust estimator to construct semi-parametrically efficient

regimes. AIPWEs provide double protection against mismodeling because they require either the

propensity score model or the regression model to be correctly specified but not both. Zhao et al.

(2019) showed theoretical results that the AIPWE estimator of value function is consistent for

the true value function for a fixed d. In addition to the benefits of using a residual (as discussed

in the previous paragraph), AOL is location-scale invariant to the outcomes and recommends

optimal treatments based on the sign of residuals (Zhou and Kosorok, 2017).

3.2.2 Deep Doubly Robust Outcome Weighted Learning (DDROWL)

Let µa(x) = E[Y |A = a,X = x] be the conditional expectation of outcome given

covariatesX = x and treatment A = a. We define Y − r̂(X) as residuals where

r̂(x) =
∑

a∈{−1,1}

P̂a(x)µ̂a(x) (3.13)

is the estimated weighted average of conditional outcomes µa for a ∈ {−1, 1}. Note that r̂(x)

is equivalent to Ê[Y |X = x], the estimated conditional expectation of outcomes.

The weighted classification problem associated with RWL consists of finding the empirical

optimal rule d(x) in (3.14). By (3.15), a convex optimization result from Liu et al. (2016), the

optimal rule dopt is equivalent to the weighted classification problem associated with doubly

robust outcome weighted learning, which leads to finding the optimal rule d∗(x) in (3.16).

d̂opt = arg min
d∈D

(
1

n

n∑
i=1

yi − r̂(xi)
P̂ (ai|xi)

1{ai 6= d(xi)}

)
(3.14)

= arg min
d∈D

(
1

n

n∑
i=1

yi − r̂(xi)
P̂ (ai|xi)

1{ai 6= d(xi)}+
1

n

n∑
i=1

max(r̂(xi)− yi, 0)

P̂ (ai|xi)

)
(3.15)

= arg min
d∈D

(
1

n

n∑
i=1

|yi − r̂(xi)|
P̂ (ai|xi)

1{ai · sign(yi − r̂(xi)) 6= d(xi))}

)
(3.16)

46



Here the 0-1 loss is not convex and also NP-hard, which makes it computationally hard to find

global minima. Despite choosing the commonly used hinge loss and adding penalty terms to

regularize parameters, we propose to apply the Cauchy-Schwarz divergence loss instead. An

recent article that looked into many loss functions for deep neural network in classification found

that “Cauchy-Schwarz divergence as an optimisation criterion seems to be a consistently better

choice than log loss” and recommended further investigation (Janocha and Czarnecki, 2017).

For our classification problem, this translates to replacing the 0-1 loss 1{ai · sign(yi − r̂(xi)) 6=

d(xi))} in (3.16) with

`CS(x, y) = −1{a · sign(y − r̂(x)) = 1}f(x) +
1

2
log
(
1 + e2f(x)

)
(3.17)

This new surrogate is smooth and convex because all derivatives with respective to f exist and

the second derivative is positive. The derivation of the Cauchy-Schwarz divergence loss (3.17)

can be found in Appendix B. We express the proposed deep doubly robust outcome weighted

learning (DDROWL) as the following optimization over the function f(x):

f̂ optDDROWL = arg min
f∈F

(
1

n

n∑
i=1

|yi − r̂(xi)|
P̂ (ai|xi)

`CS(xi, yi)

)
(3.18)

where F denotes a class of all possible functions that we choose from. The optimal decision rule

is obtained by d̂optDDROWL(x) = sign(f̂ optDDROWL(x)). As the name suggests, DDROWL utilizes

deep neural networks to estimate f , whose implementation is laid out with more detail in the

next section.

3.2.3 Feedforward Neural Networks (FFNN)

Consider a L-layer feedforward deep neural network (with one hidden layer) where l =

{0, . . . , L} represents the layer with input layer l = 0, the output layer l = L, and everything

in the middle as hidden layers. Let Z [l] ∈ Rnl be the output of the lth layer, then Z [0] = X

and Z [L] = Y . Denote the matrix of weights connecting previous layer l − 1 and the current

layer l asWl ∈ Rnl×nl−1 with n0 = p and nL = 1, and b[l] ∈ Rnl as the bias vector. For the ith
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observation, the output of the l-th later of a neural network is a nl × 1 vector of the form

Z
[l]
i = a[l](W [l]TZ

[l−1]
i + b

[l]
i ) (3.19)

where a[l] is a non-linear function called activation function at the lth layer. Often continuously

differentiable and convex, activation functions map the linear output from the current layer to a

desired range of values as inputs of the next layer. Putting together all layers defined in (3.19),

and we can denote the decision function as

f(xi) = a[L](W [L]Tz
[L]
i + b[L])

= a[L]
{
W [L]T

[
· · · a[1](W [1]T (xi) + b[1]) · · ·

]
+ b[L]

}
= f(xi;W , b)

Let θ = {W , b} = {(W [1], b[l]) . . . , (W [L], b[L])}. The objective function in (3.18) can be

further transformed as a minimization over θ, which is automatically implemented in deep neural

network algorithms such as forward and backward propagation with (3.18) as the loss function.

After we get Ŵ opt
n and b̂optn which are the estimated paramters from carefully trained and tuned

DNNs, the optimal decision function follows as f̂ optDDROWL(x) = f(x; Ŵ opt
n , b̂optn ).

The deep learning part of DDROWL comes in handy and exhibits flexibility, especially

when the covariates are too complex or large in size to be modeled parametrically or model

well-specification is unknown or crucial to the question. Later in simulations (Section 3.3), we

apply such a feedforward neural network designed from scratch as one of the two DDROWL

methods. Although not demonstrated in this article, µ̂a(x) and P̂a(x) in (3.13) can be obtained

from appropriately-chosen deep learning models rather than the commonly used (generalized)

linear models.

3.2.4 Deep Kernel Learning (DKL)

We incorporate deep kernel learning to estimate f̂ as the second DDROWL model. Deep

kernel learning (Wilson et al., 2016) uses neural networks to derive scalable closed-form kernels
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from inputs of a spectral mixture base kernel, applies Gaussian processes (GP) to learn these

kernels, and produces probabilistic mapping from the infinite non-parametric layer to the outputs.

Simply put, DKL can be pictured as a GP mounted on top with a deep learning architecture and

it jointly learns both the neural network parameters and base kernel hyperparameters. It is able

to lower the computation complexity down to linear order compared to conventional scalable

GP approaches. The authors demonstrated scalability and accuracy in learning expressive

respresentations in experiments of 16 UCI regression datasets as well as image extractions such

face orientation and digit magnitude, all of which have larger sample sizes in the thousands.

Although the results show that larger datasets are more useful for extracting representations, we

observe the performance of DKL in smaller dataset scales in Sections 3.3 and Sections 3.4.

DKL can be used for both regression and classification, but it is not straightforward to directly

apply DKL in our classification problem described in Eq (3.18). We propose to transform the

input data with weighted bootstrapping first before applying DKL. First, rewrite Eq (3.18) with

ŵ(xi) = |yi−r̂(xi)|
P̂ai (xi)

and u(xi, ai) = 1{ai sign(yi − r̂(xi)) = 1}, and

f̂ optn = arg min
f∈F

1

n

n∑
i=1

{
ŵ(xi)

[
−u(xi, ai)f(xi) +

1

2
log
(
1 + e2f(xi)

)]}
= arg min

f∈F

1

n

n∑
i=1

{
ŵ(xi)∑n
i=1 ŵ(xi)

[
−u(xi, ai)f(xi) +

1

2
log
(
1 + e2f(xi)

)]}
= arg min

f∈F

1

n

n∑
i=1

{
p̂(xi)

[
−u(xi, ai)f(xi) +

1

2
log
(
1 + e2f(xi)

)]}

The objective function of a bootstrapped sample ofx (resampling with replacement) with weights

p̂i = p̂(xi) = ŵ(xi)∑n
i=1 ŵ(xi)

for i = 1, . . . , n can be expressed as

arg min
f∈F

1

n

n∑
i=1

{
ωi
n

[
−u(xi, ai)f(xi) +

1

2
log
(
1 + e2f(xi)

)]}
where (ω1, . . . , ωn) are the bootstrap weight samples drawn from a multinomial distribution

Multinom(n; p̂1, . . . , p̂n) such that ω1 + ω2 + . . . + ωn = n. In a more general case, we can

considerm-out-of-n bootstrap. Instead of a bootstrapped sample of the same size as the original
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sample size n, m-out-of-n bootstrap draws a sample of size m where m ≥ n. The bootstrap

weights are (ω1, . . . , ωn) ∼Multinom(m; p̂1, . . . , p̂n) such that ω1 + ω2 + . . .+ ωn = m.

3.2.5 Theoretical Properties

We first draw connections of our proposed objective function with the new surrogate loss to

logistic regression and then justify the use of weighted bootstrap described in Section 3.2.4 with

a consistency theorem.

3.2.5.1 Connection to Logistic Regression

The use of Cauchy-Schwarz divergence loss has a connection with the objective function of a

logistic regression. To see this, we simplify the objective function (3.18) with ŵ(x) = |yi−r̂(xi)|
P̂ai (xi)

and u(xi, ai) = 1{aisign(yi − r̂(xi)) = 1} like we did in Section 3.2.4. The optimization

problem can be further rewritten as

arg min
f

Pn
{
ŵ(x)[−u(x, a)f(x) +

1

2
log(1 + e2f(x))]

}
= arg min

f

1

2
Pn
{
ŵ(x)[−u(x, a) · 2f(x) +

1

2
log(1 + e2f(x))]

}
= arg min

f
Pn
{
ŵ(x)[−u(x, a)f(x) + log(1 + ef(x))]

}
(3.20)

For logistic regression, define the sigmoid function to be σ(z) = 1
1+e−z

= ez

1+ez
. Thus

log(σ(z)) = z − log(1 + ez) and log(1 − σ(z)) = − log(1 + ez). Under the independent,

identically distributed assumption (i.i.d.), the log likelihood of all data is

`(θ) =
n∑
i=1

{
yi log

[
σ(θTxi)

]
+ (1− yi) log

[
1− σ(θTxi)

]}
=

n∑
i=1

{
yi(θ

Txi)− yi log
(

1 + eθ
Txi
)
− (1− yi) log(1 + eθ

Txi)
}

=
n∑
i=1

{
yi(θ

Txi)− log(1 + eθ
Txi)

}

The optimization of logistic regression is θopt = arg maxθ
∑n

i=1

{
yi(θ

Txi)− log(1 + eθ
Txi)

}
.

The linear predictor θTx can be relaxed to g(x) for any function of interest f . Thus, for logistic
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regression the generalized objective is maximizing `(f) =
∑n

i=1

{
yif(xi)− log(1 + ef(xi))

}
,

which is equivalent to minimizing−`(f) =
∑n

i=1

{
−yif(xi) + log(1 + ef(xi))

}
.We now have

converted the optimization problem to

f optlogistic(x) = arg min
f

Pn
{
−yif(xi) + log(1 + ef(xi))

}
.

This means (3.20) can be treated as a weighted classification problem solved by a weighted

“generalized” logistic regression with binary outcome u(x) and weights ŵ(x). This aligns with

proposition 3 of Janocha and Czarnecki (2017), where Cauchy-Schwarz divergence loss is shown

to be equivalent to regularized cross entropy loss.

3.2.5.2 Consistency of Weighted Bootstrap

Lemma 3.1. Let Θn be the space containing all possible θ for a sample size of n. Assume there

exists a sequence of partitions in Θn such that Θn = {∪1≤j≤KnΘjn} where Θjn’s are the finite

and disjoint partitions that become smaller in size as n→∞ andKn is the number of partitions

for n. If h(fθ,X, A) = −1{A · sign(Y − r̂(X)) = 1}f(X) + log(1 + ef(X)), then h is smooth

in fθ and bounded sinceX and A are bounded and fθ the deep learning structure is bounded.

Thus,

E

[
max

1≤j≤Kn
sup

θ1,θ2∈Θjn

|h(fθ1,X, A)− h(fθ2,X, A)|

]
→ 0 (3.21)

as n→∞.

Theorem 3.2. Let Θ be the space of all θ parameters associated with a fixed function f . Let

h(fθ,Xi, Ai) =
[
−1{u(Xi, Ai)}f(Xi) + log(1 + ef(Xi))

]
. Assume the objective function of

DDROWL (Eq (3.18)) is uniformly smooth over Θ, and the envelope of {h(fθ,X, A) : θ ∈ Θ},

H(X) satisfies PH2 <∞ or P ∗H2 <∞ if H is not measurable. The objective function of the

weighted m-out-of-n bootstrap sample is consistent for the objective function of the original
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sample for all θ ∈ Θ:

sup
θ∈Θ

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

)
h(fθ,Xi, Ai)

∣∣∣∣∣→ 0

form,n→∞,m ≥ n, where p̂i is the true multinomial weight (derived from data) and ωi/m

is the sampled bootstrap weight.

Proof. By Lemma 3.1,

sup
θ∈Θ

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

)
h(fθ,Xi, Ai)

∣∣∣∣∣
≤ max

1≤j≤Kn

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

)
h(fθjn ,Xi, Ai)

∣∣∣∣∣
+ max

1≤j≤Kn
sup
θ∈Θjn

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

) (
h(fθjn ,Xi, Ai)− h(fθ,Xi, Ai)

)∣∣∣∣∣
≤ op(1) + n−1

n∑
i=1

max
1≤j≤Kn

sup
θ∈Θjn

∣∣h(fθjn ,Xi, Ai)− h(fθ,Xi, Ai)
∣∣

= op(1) + op(1) = op(1)

The op(1) in the third line above is based on the proof of such consistency for a fixed θjn ∈ Θjn

presented in Appendix B, and the inequality in the third line above is based on p̂i, ωim ∈ [0, 1] =⇒∣∣ωi
m
− p̂i

∣∣ ≤ 1 and the fact that the max sup does not depend on i. The last equality (last line

above) is based on Eq.(3.21).

3.3 Numerical Experiments

Various simulations have been conducted to study the performance of the proposed precision

medicine DL approach. We examine three main aspects: low versus high dimensions, sparse

versus abundant data, and linear versus non-linear boundaries. The sample size was fixed to

be n = 800 and the dimension of covariate space varies p = 5, 25, 100, 800. DDROWL is

compared with existing methods such as penalized linear regression with L1 penalty (`1-PLS),

Q-learning with random forests (Q-RF), RWL, and AOL. We look at both linear and Gaussian
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kernels for RWL and AOL and utilize the variable selection feature in AOL for high dimensions.

The simulations for DDROWL models are performed in Python 3.6.8 and ran on Tesla M10 and

V100-SXM2 gpu nodes. Pytorch 1.4.0 (Paszke et al., 2017) and GPytorch 0.3.5 (Gardner et al.,

2018) are used for the two DDROWL models, FFNN and DKL respectively. R version 3.5.2

and R packages glmnet 2.0.18 (Friedman et al., 2010), randomForest 4.6.14 (Liaw et al., 2002),

DynTxRegime 4.0 (Holloway et al., 2018) are used to run competing methods `1-PLS, Q-RF,

and RWL. MATLAB 9.2 is used to run competing method AOL as in Zhou and Kosorok (2017).

All simulations are run on three sets of data: a training set used for parameter estimation,

a tuning set used for hyperparameter tuning, and a test set used for overall model peformance.

The training and tuning sets are split based on repeated 5-fold cross-validation (CV) on the

sample size of ntr = 800. We train the network for each CV fold with out reinitializing the

weights for the neural network. We discuss and justify this decision in Section 3.5. The tuning

process is a random grid search with HyperBand in Python package Ray (Liaw et al., 2018),

a configuration evaluation approach. The testing set contains nte = 100, 000 samples that are

set aside until networks are trained and tuned. For DKL, the weighted bootstrap only applies

to the training samples, not the tuning or testing sets. The performance of learning model in

both tuning and testing are determined by higher estimate value functions and lower standard

deviations. The definitions of value function and its standard deviation can be found in Appendix

B. Hyperparameters are chosen based on a combination of higher tuning value functions with

lower standard deviations and lower tuning cost.

Next we provide specific configurations of the networks used in simulations. The activation

function is chosen to be the rectified linear unit (ReLU) a(t) = max(0, t) and Adam (Kingma

and Ba, 2014) with L2 regularization is the optimization algorithm. As a trending gradient-based

algorithm with adaptive learning rates, Adam is efficient, easy-to-implemented, and suitable

for non-stationary objectives as well as noisy and sparse gradients. Early stopping was initially

applied when the tuning loss has been increasing for a consecutive number of times (i.e., patience)

per frequency of recorded loss. We find that early stopping, together with random dropouts on
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the input and hidden layers, put a lot of constraints on the networks so we do not use them in the

final model. Weight decay in Adam and learning rate decay on plateau are applied to prevent

overfitting in the training phase and we set the number of epochs to be relatively small, 500, as

an indirect way of overfitting prevention. For testing phase, however, the number of epochs is set

to be 1000. The number of simulations vary by the method and dimension p with faster methods

and/or smaller p’s ran on 500 simulations and slower methods and/or larger p’s ran on 50 or

100 simulations. Tables 3.9 and 3.10 summarize the constants and hyperparameters involved in

DDROWL. The computation time of all methods we consider are presented and discussed in

Appendix B.

Table 3.9: Listing of constants in DDROWL simulations

Constant Name Notation Values
Number of Simulations M [50, 100, 500]
Training size (before CV split) ntr 800
Covariate dimension p [5, 25, 100, 800]
Testing size nte 100,000
Number of Epochs 500 (train), 1000 (test)
Activation function a[l] ReLU
Optimizer Adam with L2 regularization
Weight decay 1e−5

CV fold K [5, 10]
Number of samples drawn from

a latent Gaussian Process (DKL) 101
Independent treatment A ⊥X True
Treatment probability P (A|X) (1

2
, 1

2
)

Table 3.10: Listing of hyperparameters in DDROWL simulations

Hyperparameter Name Notation Tuning Values
Learning rate α [0.00001, 0.0001, 0.001]
Number of hidden layers L [1, 2]
Number of hidden units nl if p = 5:

[4, 8, 16, 32, 64, 128, 256, 512]
if p = 25:

[4, 8, 16, 32, 64, 128, 256, 512, 1024]
if p = 100, 800:

[8, 16, 32, 64, 128, 256, 512, 1024, 2048]
Bootstrap sample size (DKL) m [n, 5n]
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Our simulations settings are defined as follows. Vectors of clinical covariatesX1, . . . ,Xp

are generated from independent uniform random variables U(1, 1). TreatmentsA = {−1, 1} are

independently generated from Binomial distribution with p = 0.5 as we assume a randomized

trial setting. The outcome variable Y is normally distributed with mean Q0(x, a) and standard

deviation one, where Q0 is the true decision boundary. We look into a total of 8 decision

boundary scenarios.

3.3.1 Low-Dimensional Examples

Four low-dimensional scenarios with both linear and non-linear treatment are considered,

which are based on simulation settings in Zhou and Kosorok (2017). The true decision boundaries

are defined as

Q01(x, a) = (0.5 + 0.5x1 + 0.8x2 + 0.3x3 − 0.5x4 + 0.7x5) + a(0.2− 0.6x1 − 0.8x2)

Q02(x, a) = exp[Q01(x, a)]

Q03(x, a) = (0.5 + 0.6x1 + 0.8x2 + 0.3x3 − 0.5x4 + 0.7x5) + a(0.6− x2
1 − x2

2)

Q04(x, a) = exp[Q03(x, a)]

The coefficients were chosen so that the Cohen’s d index (the standardized treatment difference

in mean outcomes) would be near 0.5 which implies medium effect size. We consider two

dimensions of X in the low-dimensional setting: p = 5 and p = 25. When p = 5, we

observe low-dimensional, abundant scenarios since the outcome is determined by two of the

five covariates. When p = 25, the four scenarios represent low-dimensional, sparse situations

where most covariates are nuisance variables and do not determine the true decision boundary.

We tuned number of hidden layers and learning rate, for each scenario and sample size pair. The

simulation results of low-dimensional covariates (p = 5 and p = 25) are presented in Tables

3.11 and 3.12, respectively. The highest estimated values are marked in bold for each scenario.

The proposed DDROWL methods are FFNN and DKL. RWL-G does not have results when

p = 5, 25 because they fail to finish within reasonable time limit (e.g., 11 days), and so does
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AOL-VSG for p = 25. Note that the VS feature of AOL is turned on when there are many

nuisance covariates p = 25. For both p = 5, 25, values functions of the FFNN model have

lower estimated standard errors than those of AOL regardless of scenario or kernel, and FFNN

has shorter computation time than AOL (see Appendix B). FFNN is outperformed by the PLS

model for simple linear scenario (scenario 1) and AOL-G for complex linear (scenario 2). When

p = 5, AOL-G proves its performance in scenario 3. For the most complicated non-linear case,

FFNN has the best performance (scenario 4) compared with other existing methods. FFNN also

has the second highest performance for scenario 3, which implies that neural networks have

potential in nonlinear situations. The performance of DKL gets close to competing methods

but does not stand out much compared with FFNN. When p = 25, all models perform worse

than when p = 5 because the addition of 20 new nuisance covariates makes it a harder problem

than before the addition. In sparse situations, Q-RF has the best performance for the simple

and complex non-linear scenarios (scenarios 3 & 4) which could be explained by the fact that

random forests are designed to detect interactions and other non-linear relationships among

many nuisance variables. Our DDROWL models outperform other linear competing methods

but do not outperform Q-RF for nonlinear, sparse scenarios when p = 25.

Table 3.11: Mean (sd) of estimated value functions for 5 covariates and 4 simulation scenarios
with sample size 800

p = 5 Scenario 1 Scenario 2 Scenario 3 Scenario 4
(Optimal 1.000) (Optimal 3.660) (Optimal 0.850) (Optimal 3.314)

`1-PLS 0.995 (0.003) 3.530 (0.026) 0.522 (0.035) 2.662 (0.018)
Q-RF 0.971 (0.008) 3.600 (0.011) 0.771 (0.017) 3.209 (0.019)
RWL-L 0.985 (0.011) 3.636 (0.012) 0.560 (0.022) 2.765 (0.075)
AOL-L 0.991 (0.008) 3.629 (0.022) 0.560 (0.030) 2.666 (0.032)
AOL-G 0.987 (0.012) 3.640 (0.025) 0.824 (0.020) 3.192 (0.033)
FFNN 0.986 (0.005) 3.609 (0.012) 0.793 (0.015) 3.244 (0.018)
DKL 0.978 (0.006) 3.608 (0.017) 0.738 (0.024) 3.121 (0.050)
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Table 3.12: Mean (sd) of estimated value functions for 25 covariates and 4 simulation scenarios
with sample size 800

p = 25 Scenario 1 Scenario 2 Scenario 3 Scenario 4
(Optimal 1.000) (Optimal 3.660) (Optimal 0.850) (Optimal 3.314)

`1-PLS 0.989 (0.004) 3.553 (0.025) 0.515 (0.023) 2.648 (0.032)
Q-RF 0.958 (0.011) 3.582 (0.022) 0.701 (0.032) 3.123 (0.038)
RWL-L 0.957 (0.016) 3.616 (0.022) 0.535 (0.028) 2.689 (0.042)
AOL-VSL 0.988 (0.010) 3.617 (0.024) 0.554 (0.030) 2.655 (0.031)
FFNN 0.959 (0.008) 3.565 (0.021) 0.615 (0.015) 2.994 (0.034)
DKL 0.896 (0.016) 3.479 (0.031) 0.570 (0.021) 2.757 (0.037)

3.3.2 High-Dimensional Examples

We study four non-linear high-dimensional scenarios with p = 100 and p = 800, the first

two of which are sparse and the last two of which are abundant:

Q05(x, a) = 1 + 0.6x1 + 0.8x2 + 0.3x3 − 0.5x4 + 0.7x5

+a[0.45− 0.1x2
1 − 0.2x2

2 + 0.3x2
3 + 0.2x2

4 − 0.9x2
5]

Q06(x, a) = exp[Q05(x, a)]

Q07(x, a) = [0.5 + 0.6(x1 : x10) + 0.8(x11 : x20) + 0.3(x21 : x30)− 0.5(x31 : x40)

+0.7(x41 : x50) + 0.5(x51 : x60)) + 0.4(x61 : x70)− 0.4(x71 : x80)

+0.2x81 − 0.9x82]

+a[0.6− 0.1(x2
1 : x2

15)− 0.2(x2
16 : x2

30) + 0.3(x2
31 : x2

45)]

Q08(x, a) = exp[Q07(x, a)− 4]

Here, γ(xa : xb) = γxa + γxa+1 + . . . + γxb for cleaner notation. The six unique coefficient

values ofX main effects are kept the same as those in scenario 4. For scenarios 7 and 8, we added

extra coefficients to make the boundary more complicated with moreXji variables involved.

The same training/tuning/testing process is applied to the high-dimensional scenarios.

Simulation results of high-dimensional covariates are summarized in Tables 3.13 and 3.14.

For p = 100, 800, RWL-G and AOL-VSG continue to be slow and fail to give estimates within
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Table 3.13: Mean (sd) of estimated value functions for 100 covariates and 4 simulation
scenarios with sample size 800

p = 100 Scenario 5 Scenario 6 Scenario 7 Scenario 8
(Optimal 1.317) (Optimal 5.084) (Optimal 1.131) (Optimal 3.714)

`1-PLS 1.210 (0.012) 4.609 (0.027) 1.091 (0.017) 2.614 (1.265)
Q-RF 1.224 (0.011) 4.731 (0.040) 1.081 (0.033) 3.165 (0.451)
RWL-L 1.207 (0.022) 4.605 (0.066) 1.103 (0.028) 3.095 (0.463)
FFNN 1.109 (0.018) 4.415 (0.044) 1.111 (0.001) 3.523 (0.486)
DKL 1.138 (0.027) 4.578 (0.031) 1.102 (0.007) 3.070 (0.394)

Table 3.14: Mean (sd) of estimated value functions for 800 covariates and 4 simulation
scenarios with sample size 800

p = 800 Scenario 5 Scenario 6 Scenario 7 Scenario 8
(Optimal 1.317) (Optimal 5.084) (Optimal 1.131) (Optimal 3.714)

`1-PLS 1.208 (0.016) 4.628 (0.027) 1.072 (0.020) 1.687 (0.748)
Q-RF 1.202 (0.039) 4.716 (0.043) 1.020 (0.115) 1.795 (0.488)
FFNN 1.078 (0.200) 4.290 (0.635) 0.892 (0.452) 2.175 (1.111)
DKL 1.078 (0.199) 4.291 (0.636) 0.892 (0.452) 2.175 (1.111)

reasonable time limit; AOL-VSL is able to complete but produces negative values which means

that it is not applicable to high-dimensional data either. When p reaches 800, RWL-L becomes

slow as well, which results in only two remaining competing methods. In the sparse situation

(scenarios 5 & 6), Q-RF and `1-PLS perform well for p = 100, 800 given their ability to reduce

feature space efficiently even with higher dimensions and/or larger sample sizes. Our FFNN

method stands out with the highest value estimates for both p = 100 scenario 8 and p = 800

scenario 8 by a large margin compared with other methods. FFNN also has the highest value

estimate for p = 100 scenario 7. DKL is able to catch up quickly with FFNN in the high-

dimensional setting and match the value estimate with FFNN for p = 800 which means that

they both find similar decision rules. We examine more of DKL’s performance in complex

imaging data in Section 3.4 the clinical application. Both DDROWL methods have relatively

large standard errors for p = 800, and we speculate that this is due to our relatively small sample

size and large amount of nuisance variables for deep neural networks to generate more stable

results.
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3.4 Application to Medical Data and Imaging

This is a clinical application of DDROWL using the National Alzheimer’s Coordinating

Center (NACC) database (Beekly et al., 2004). We acquire three sets of observational data

from the NACC database: i) the Uniform Data Set (UDS), a longitudinal data set of detailed

clinical records of subjects from 19 Alzheimer’s Disease Centers (ADC) funded by the National

Institute on Aging (NIA) during the time period 2005-2019, ii) MRI, structural MRI scans in

NIFTI and DICOM formats taken within one year of a UDS visit , and iii) Imaging Data (ID),

the summarized data that contains descriptive statistics of the MRI scans and information that

links the MRIs with the UDS data. The following sections of UDS data are requested: A1

demographics, A4 medication, A5 health history, B1 physical, B4 CDR® (Clinical Dementia

Rating), B9 clinician judgement of symptoms, C1/C2 neuropsychological battery, D1 clinician

diagnosis, and genetic data such as APOE (Apolipoprotein E) genotype and status of the e4 allele.

The raw UDS data have 19,889 observations and 495 variables of 4,036 unique individuals.

More information about UDS can be found in Besser et al. (2018). The first three sections of ID

data are requested: MRI scan date data, MRI scan type and series-associated data, as well as

MRI calculated summary data. The raw ID dataset has 5,644 observations and 177 variables of

4,036 unique individuals.

Preprocessing. The NACC database has been constantly updated and modified throughout

the past 15 years. Different centers have different data collection methods and policies during

different time periods which might not conform to each other. Such conformity issue could

create noisy heterogeneity in a bad way, and we believe data quality trumps data quantity. We

apply some stringent inclusion and exclusion criteria to keep the multi-center, multi-stage data

relatively clean. We find that there are more missing data in earlier form versions and later visits,

and the most information was collected at the initial visits. Under the assumption that we are

interested in baseline information, only observations of the first visit of each subject with form

version 3 (the latest version) are included. For categorical variables, categories such as unknown

(e.g., 9, 99, 999, 8888, 9999 values), not applicable (form submitted did not collect such data or
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a skip pattern precludes such responses), or left blank are considered missing. For continuous

variables, indicators of unknown, not assessed, and not available (e.g., -4, 888.8) and extreme

values outside of the normal range (e.g., height more than 80 inches) are considered missing.

Our outcome Y is change in cognitive status. Cognitive status at UDS visit is a variable in

UDS which classifies the cognitive status into normal cognition, dementia, MCI (mild cognitive

impairment), and impaired-not-MCI. We dichotomize this variable by combining the last three

categories into not normal to mitigate the unbalanced distribution. We look at cognitive status

at the initial visit and the closest visit to one year after the initial visit. Subjects who do not

have the latter visit are excluded. The analysis outcome Y is defined as 1 if the subject stays

normal or was not normal at the initial visit but becomes normal at the visit a year later, and 0

if the subject stays not normal or was normal at the initial visit but becomes not normal at the

a year later. This definition is more balanced than a three-category definition of worse, same,

and better. The treatment A is chosen among binary modifiable variables at the initial visit, the

majority of which are medications and habitual variables such as smoking and alcohol usage. We

choose A as current use of any type of antihypertensive or blood pressure medication because

it is a reasonable risk factor and is well-distributed between the two categories. For example,

a 5/95 distribution would be considered imbalanced, whereas a 30/70 or 40/60 distribution

would be considered balanced. This is also the reason that categorical covariates with low

proportion (< 5%) in any subcategories are excluded. Because the UDS dataset has many

forms/variables that contribute to the assessment of the subject’s cognitive status, covariates

that have moderate to high estimated Pearson correlations (> 0.5) with the outcome variable are

excluded to avoid multicollinearity. Covariates with high estimated Pearson correlation (> 0.8)

with other non-outcome covariates are excluded as well (e.g., height/weight and body mass

index, and various CDR® scores). The ID data, data containing information that links with UDS

and MRI, are processed similarly as the UDS data, such as removing severe missing data and

multicollinearity. Subjects could have multiple MRI scans and the MRI scan closest to the initial

visit of each subject is used. If there are multiple MRIs on the same day, we choose the latest
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one. We force one MRI per subject because we are only interested in baseline covariates and to

keep input dimension the same.

The preprocessed ID and preprocessed UDS are merged by unique NACC subject ID, their

ADC center, and visit year. Only complete cases are used because imputation on such multi-

center observation is often unreliable or needs extremely careful manipulation. More details

about the preprocessing of certain variables can be found in Appendix B. In the preprocessed

data (before merging with MRI scans but after merging UDS with ID), there are 424 observations

and 50 variables collected from 12 ADCs spanning from 2015 to 2019. Among the 424 subjects,

48% have better or maintain normal cognitive status and 48% currently use antihypertensive or

blood pressure medication at the initial visit.

After UDS and ID are merged, we preprocess the MRI scans before matching with the

merged UDS-ID data. There are a total of 5,616 MRI sessions available, where one subject

could have multiple sessions at different times. Each session contains multiple DICOM files,

with one file representing one MRI slice. The DICOM format is preferred because it contains

image information such as slice position and sequence type in the headers. We extract the MRI

slices from each subject’s MRI session in a compressed folder, remove slices without series

description or image position because series description informs the sequence type of the MRI

scan and image position helps sort the slices in the right order, and select every 5th slice among

the middle 150 T1 slices. T1 sequence is determined by keyword, not by imageology. We discard

end slices because they contain less useful information about the brain. Since the consecutive

slices differ by a matter of milliseconds, we select every 5th slice from the 150 middle slices to

save space and maintain the same reasonable image dimension for every subject. Each slice is

resized to the dimension of 64 × 64 and standardized to mean 0 and standard deviation 1 for

comparable values. The preprossed MRI data are merged to the UDS-ID data by file locator

information so only subjects who have qualified UDS, ID, and MRI data are included, resulting

in a sample size of 186. The dimension for the preprocessed MRI data is 186× 30× 4096 where

30 = 150/5 and 4096 = 64× 64. The dimension for the preprocessed UDS-ID data is 186× 48.
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As mentioned above, we apply a strict inclusion criteria to make sure the input data for the

DL models are relatively clean and conformative. The MRI data are only lightly processed to

preserve the original values but could be piped through more systematic image processing tools;

we discuss this more in future research.

Models and Methods. Because of the large dimension difference, it is not appropriate

to directly apply FFNN and DKL models used in Section 3.3 to the UDS-ID-MRI data. We

apply the pretrained ResNet34 model (He et al., 2016) to the preprocessed brain images first;

only the convolutional and pooling layers. ResNet34 is a 34-layer convolution neural network

(CNN) based on the deep residual learning framework, which increases the ease of learning by

approximating the residual functions instead of the original functions. The residual learning

is achieved by shortcut connections and is adopted to every few stacked convolutional layers

with fixed dimensions (He et al., 2016). It is not always better to have deeper models because

gradients could shrink to zero very quickly and stop updating the weights. ResNet34 is able to

address the vanishing gradient problem by letting gradients take shortcuts when transmitting

input data thus stopping the information loss (Talo et al., 2019). The ResNet34 model is

pretrained on the renowned ImageNet database which has resources of over 10 million images

over 20,000 subcategories (or synsets) by 2019 and is commonly used as the first step to train

deep architectures. We apply a pretrained model instead of training our own structure because

the lower-level representations extracted from the earlier layers of existing models are generally

transferrable across images. ResNet34 is chosen as the pretrained model because it has lower

model complexity and relatively low top-1 and top-5 errors on the ImageNet data compared

wth other famous deep learning architectures such as AlexNet or VGG. Top-1 error means the

proportion of test images whose true label does not match with the prediction class with the

highest estimated probability. Top-5 error means the proportion fo test images whose true label

is not among the 5 prediction classes with the top 5 highest estimated probabilities. ResNet34

has also been shown to work well with MRI. Talo et al. (2019) used it to detect brain abnormality

and reached a 5-fold classification accuracy of 100% over 600 MRIs. This shows that ResNet34’s
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learning from ImageNet can be transferred to learn MRI. This transfer learning technique enables

us to apply DL to smaller image datasets while standing on the shoulder of a giant.

Transfer learning can also be regarded as a feature selection tool because images often

contain a large amount of nuisance pixels. The outputs of ResNet34 prior to the dense layers

have a lowered dimension of 1000, much smaller and more extracted than the original dimension.

The MRI data would dominate the dimension if we fed them together with UDS-ID directly into

a DL architecture. An alternative to transfer learning is applying unsupervised learning such as

autoencoder (AE) to the MRI data. AE is a good dimension reduction method but the encoded

outputs are sometimes not necessarily good representations of the original input. Evidence

shows that introducing labels earlier helps with dimension reduction as well as prediction, which

is why we choose to use transferring learning on the brain imaging. After ResNet34 is applied,

we combine the extracted MRI features with preprocessed UDS-ID data and apply a FFNN and

a DKL model to estimate the optimal decision rule for antihypertensive medication. The rest is

similar to the FFNN and DKL in simulations. Using symbols from ENNUI (an element neural

network user interface) (Michel, 2020), Figure 3.7, illustrates the deep learning structure of our

DDROWL models designed for the NACC data. We denote our proposed DDROWL methods as

ResNet34 + FFNN and ResNet34 + DKL, respectively.

We freeze the weights of ResNet34 and only tune the dense layers. Since it is impossible

generate a separate data set to test performance in clinical application, nested 10-fold cross

validation is applied. We apply the first 10-fold CV to the combined NACC data to set aside

test sets and apply the second 10-fold CV to split each of the nine folds into training and tuning

sets. The mean and standard deviation of estimated value functions are calculated from the 10

tuning sets (10 nested folds) to tune three hyperparameters: number of hidden layers, number

of hidden units, and learning rate. A summary of constants and hyperparameters used in this

clinical application is presented in Table 3.15. The numbers of hidden layers and hidden units

refer to the second part of the DDROWL architecture on the combined NACC data. After the

hyperparameters have been tuned, we train the two DRROWL models on the 10 combined
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Preprocessed MRI Data

Preprocessed UDS Data

Preprocessed ID Data

DDROWL Part I: Pretrained ResNet34 

DDROWL Part II: FFNN or DKL 

Outputs

Figure 3.7: Diagram of the DDROWL architecture for the NACC data application

training and tuning sets and calculate the mean and standard deviation of estimated value

functions from the 10 test sets.

Competing methods are chosen to be `1-PLS, RF, RWL with linear kernel, and RWL with

Gaussian kernel. For RWL models, a nested 10-fold CV is applied to tune two hyperparameters,

bandwith parameter and penalty tuning parameter. Four values are given as candidates for both:

e−1, e0, e1, e2. Due to the large dimension of the MRI data, existing methods such as `1-PLS,

Q-RF, and RWL use UDS-ID data as inputs whereas the two DDROWL models use merged

NACC data as inputs as well as the UDS-ID data for comparison. All analyses in this section

are performed in the similar language, packages, and platform as those in simulations Section

3.3: Python 3.6.8, Tesla M10 and V100-SXM2 gpu nodes, Pytorch 1.4.0, GPytorch 0.3.5, R

3.6.1, glmnet 2.0.18, randomForest 4.6.14, and DynTxRegime 4.2. In addition, the pretrained

ResNet34 model comes from the torchvision subpackage of Pytorch.
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Table 3.15: Listing of constants and hyperparameters in DDROWL clinical application

Constant Name Notation Values
Total Sample Size n 186
Dimension of MRI 30 × 4096
Dimension of UDS-ID 48
CV fold K 10
Training size ntr 150, 151, 152 (depending on rounding)
Tuning size ntu 16 or 17 (depending on rounding)
Test size nte 18 or 19 (depending on rounding)
Number of Epochs 1000 (DKL) or 5000 (FFNN)
Batch size 64
Activation function a[l] ReLU and tanh
Optimizer Adam with L2 regularization
Bootstrap sample size (DKL) m Same as n
Number of samples drawn from

a latent Gaussian Process (DKL) 101
Hyperparameter Name Notation Tuning Values
Learning rate α [0.001, 0.01]
Number of hidden layers L [1, 2]
Number of hidden units nl if 1 layer:

[8, 16, 32, 64, 128, 256, 512, 1024]
if 2 layers:

[[1024, 512], [512, 256], [256, 128],
[128, 64], [64, 32], [32, 16], [16, 8]]

Results. Results of the clinical application of DDROWL to the NACC data are contained in

Table 3.16. During the tuning phase, we find that learning rates do not affect tuning results as

much as number of hidden units or layers. Unlike simulations, we cannot derive the optimal

value for the NACC data and can only compare performance relative to the models selected.

Despite the high standard deviations (SDs), `1-PLS has the highest estimate value among the

methods that use UDS-ID as inputs. This is not surprising because of its penalization feature

and versatility in small to medium data, as demonstrated in simulations. For both DDROWL

methods, the UDS-ID-MRI inputs give higher estimated value functions than the UDS-ID only

inputs, which indicates the additional MRI data are beneficial to the search for decision support.

Increment is higher for ResNet34+DKL than ResNet34+FFNN. The ResNet34+DKL model

with both UDS-ID and MRI as input data have the highest estimate value function by far, with
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Table 3.16: Estimated value function of change in cognitive status between initial visit and the
next visit at least a year later and computation time

Learning Hidden Computation
Model Rate Units Mean (SD) Input Time (active)
`1-PLS 0.709 (0.213) UDS-ID 4s

RF 0.690 (0.206) UDS-ID 4s
RWL-L 0.642 (0.193) UDS-ID 100s
RWL-G 0.644 (0.194) UDS-ID 2,763s

ResNet34 + FFNN 0.001 [1024] 0.654 (0.187) UDS-ID 969s
ResNet34 + FFNN 0.001 [128, 64] 0.664 (0.161) UDS-ID-MRI 27,724s
ResNet34 + DKL 0.001 [256] 0.659 (0.234) UDS-ID 1,350s
ResNet34 + DKL 0.001 [64, 32] 0.876 (0.115) UDS-ID-MRI 21,620s

more than one SD higher than the next highest value function. All SDs are relatively large

compared to the scale of value functions, and we speculate this is due to the small sample size

and the underlying distribution of the data. Three out of four DDROWL methods have lower

SDs than those of existing methods. ResNet34+DKL has the smallest SD using all data but the

highest SD using only UDS-ID data, suggesting that it has less variation in estimation when

inputs are larger and more complex. DKL model fits the NACC data more than FFNN, whereas

FFNN fits the simulation data more than DKL. We conclude that the structure of DDROWL is a

key performance factor. We recommend choosing an appropriate DL model based on domain

knowledge and a good understanding of the input data. The time listed in Table 3.16 is active

computing time assuming all parallel programs work at the same time with no waiting. The

time spent in reality is longer than those listed due to resource and priority queues. `1-PLS

and Q-RF are still the fastest methods, followed by RWL and DDROWL models with UDS-ID

as inputs. Both DDROWL models consider the same amount ot tuning parameter candidates

and the ResNet34+DKL model has shorter computation time. RWL models are slow due to the

search for hyperparameters and DDROWL models with UDS-ID-MRI data are slow due to the

larger sample size. In general, computation is much faster in this application than simulation

because of no repetition and small sample size but the general orders of magnitude stay the same

for all chosen models.
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3.5 Discussion

Three major contributions of the proposed DDROWL method can be identified: 1) We are

able to combine the best of three worlds: deep learning, doubly robustness to misspecification and

efficiency, and the proven performance and asymptotic properties of residual weighted learning,

to develop a robust, efficient, and flexible machine learning tool; 2) With the implementation of

deep neural networks, DDROWL is able to expand the influence of precision medicine to high-

dimensional data with great flexibility and computation power; 3) We confirm that it is possible

to use deep learning models to develop decision support from abundant high-dimensional data

and the classical PLS and Q-learning with RF are eminent, computationally fast methods for

small to medium, or large and sparse data.

Overall, `1-PLS dominates the simple, linear decision boundary (scenarios 1 & 5 and UDS-

ID data) for various dimensions. AOL-G performs well in scenarios 2 & 3 when dimension is low

(p = 5), which can be deemed as medium decision boundaries (as opposed to simple boundaries

such as scenarios 1 & 5 or complex boundaries such as scenarios 4, 7, & 8). RWL and AOL have

trouble with higher dimensions (p ≥ 25), especially with Gaussian kernels which can be very

slow in computation. Q-RF shines with its built-in variable selection feature for difficult, low-

dimensional, non-linear data (scenario 4) and medium, high-dimensional, non-linear (scenarios

5 & 6) decision boundaries as well as UDS-ID data. In simulations, FFNN outperforms AOL and

Q-RF when data are abundant and the decision boundary is complex and nonlinear (scenarios 4

& 8) regardless of dimension, whereas DKL slowly catches up with FFNN for high-dimensional

data. In clinical applications, DKL outperforms FFNN and climbs to the top when input is a

mix of extracted images and clinical data. DDROWL methods are able to handle abundant data

with complex, non-linear relationships, and depending on the model choice, we even see them

perform better than `1-PLS and Q-RF. The intuition behind this finding is that deep learning has

proven performance in areas such as computer vision and natural language processing, both of

which have non-linear complexity and abundance in their input data. Images, in particular, do

not contain key information in a few pixels but a group of pixels and relative values of pixels
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may contain useful information as well as the actual pixel values. Although less DL research

has been conducted using the typical sample-by-feature data (such as our simulated data and

clinical data), our results confirm this advantage of deep learning methods and show that we

can use it to improve the flexibility and complexity of precision medicine models. Despite its

promising performance, there is a lot of room to improve DDROWL. The distance between the

highest empirical value (2.175) and the theoretical optimal value (3.714) in simulations is large

relative to other scenarios, and ResNet34+FFNN fails to outperform `1-PLS using combined

NACC data in clinical applications. The time it takes DDROWL to find the optimal decision

rule could also be improved (see Appendix B) by running different simulation copies in parallel.

One could argue whether the improvement in value function for the DDROWL is worth the time

spent on training and tuning. Additionally, there is value in visualizing the estimated decision

rules, yet it is not always approachable for machine learning models. For random forests, the

variable importance would be informative of important factors in the decision rule. For deep

learning, it is possible to inspect nodes in the networks, identify region of interest (ROI), or

create heatmaps from the MRI scans to help interpret the decision support.

In addition to the results, our work provides valuable insights about deep learning archi-

tecture. In our experiments, adding hidden units tend to affect performance (in terms of higher

value function) more than adding hidden layers or changing learning rates, and thus we consider

many hidden unit values but only focus on one or two layers and a few learning rates. Mini-batch

gradient descent speeds up computation. There is a trade-off between batch size and model per-

formance because smaller batch size is easier to compute but does not carry enough information

for the model to learn useful representations. It is reassuring to see that hyperparameters with

higher estimated value functions usually have lower tuning costs. We observe mild to strong

negative correlation between them with Pearson correlation as high as around −0.95 to as low

as −0.20 for the simulated datasets. During cross validation in the training and tuning phase,

recycling the tuning data into training data is expected to cause overfitting because the model has

seen the tuning data in the previous CV fold. Based on the test results provided in the previous
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section, however, we discover that there is a net benefit even given the potential of overfitting.

We think it is because it is similar to data augmentation, where we use more data replicates as

we tune through each CV fold. Data recyling elongates the training/tuning period and increases

the training sample size and provides better tuned hyperparameters for the testing stage. Future

research is given in Chapter 5.
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CHAPTER4: RISK-ADJUSTED INCIDENCEMODELINGONHIERARCHICALSUR-
VIVAL DATAWITH RECURRENT EVENTS

4.1 Introduction

Right-censored data such as patient encounters in healthcare settings often have a multilevel

structure where the assumption of independent observations is violated. Moreover, there is

a need for many health institutions to monitor survival events which could occur repeatedly

for patients. We expand on existing statistical approaches in mixed effect survival models and

resampling methods to provide program specific predictions with confidence intervals (CIs) and

detect excessive or fewer-than-expected events at the highest level of hierarchy.

In the world of infection control, there is no perfect measure of risk-adjusted rates of

healthcare-associated infection (HAI) (Gustafson, 2006). The primary summary statistic used

by the National Healthcare Safety Network (NHSN) to track HAI is standardized infection ratio

(SIR). The SIR is a ratio of the observed number of infections divided by the expected number

of infections, the latter of which is a summation of the number of patients weighted by the

national standard stratum-specific rates (Center for Disease Control, 2018; Gustafson, 2006). In

addition to providing absolute numbers, this rate is adjusted for known risk factors associated

with infections, such as patient characteristics or geography. SIRs have demonstrated that risk

adjustment methods are promising, but the ratio is not ideal for comparisons between hospitals or

across time (Delgado-Rodríguez and Llorca, 2005). Infection is one of the examples of lifetime

data where time and censoring play an important role in risk adjustment that needs appropriate

methodology. Inspired by this clinical background, we aim to develop a more powerful risk-

adjusted model that takes into account time-varying covariates and complex right-censoring

data.
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We aim to provide better, more appropriate methodology to predict and monitor survival

events in complex situations. This paper has two main goals and contributions: i) To develop

a risk-adjusted model for predicting events for right-censored survival data and incorporating

complex but common situations such as multilevel hierarchical grouping and recurrent events; ii)

To test the validity and practicality of this model on bacterial infection incidence usingU.S. nation-

wide data from the cystic fibrosis (CF) foundation. The rest of the paper is organized as follows:

We generalize the problem and lay out modeling methods in Section 4.2. In particular, we review

existing survival models and explain why frailty model is selected in subsection 4.2.1, set up

our problem of interest in subsection 4.2.2, and provide explanation of the parameter estimation

as well as its variability estimation in subsections 4.2.3 & 4.2.4. Numerical experiments are

explored in Section 4.3 to learn the performance of our risk-adjusted models. In Section 4.4, we

introduce the clinical background and implement our methods in the CF data, illustrating each

step of the analysis process: preprocessing, variable selection, multiple imputation, survival

modeling and results. Finally, strengths, limitations, and future research are discussed in Section

4.5.

4.2 Methods

4.2.1 The Frailty Model

When the survival data contain multilevel hierarchies and recurrent events, the standard

Cox proportional hazards model is no longer suitable because it is designed to assess time to

first event. Alternative models need to be considered to accommodate for these special features.

The Andersen and Gill (AG) model (Andersen and Gill, 1982) is a popular choice that extends

the common Cox model to repeated time-to-event data. However, Andersen-Gill assumes that

the recurrent event times are independent conditioning on time-varying covariates (Amorim and

Cai, 2015) and the baseline intensity is the same across all recurrent events (Yang et al., 2017).

These assumptions do not necessarily hold in the hierarchical data setting we are interested

in. Other models that also address multiple failure times include Prentice-William-Peterson

(PWP) and Wei-Lin-Weissfeld (WLW) are robust and well-developed but they do not explore
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the relationships between failures (Wei et al., 1997). There are two leading ways to model both

recurrent events and hierarchical structure: 1) A marginal approach: Fit a generalized estimating

equation (GEE) to estimate the parameters of the marginal cumulative incidence function where

the correlated observations are taken into account by the variance with a sandwich estimator

(Logan et al., 2011). This approach focuses more on the marginal covariate effect on failure

risks by adjusting the variance but not necessarily the coefficients; 2) A conditional approach:

Fit a mixed effect survival model where random effects can be incorporated as a frailty model

and the baseline hazard varies by the group variable(s), thus a multiplicative effect on the hazard.

This approach adjusts for both coefficients and variance. Conditioning on the random effects,

it is assumed that the intensity function of each subject follows the Andersen-Gill model (Wei

et al., 1997); thus this approach can be deemed as a mixed effect AG model.

We choose the second approach because we believe the inclusion of random effect improves

the model fit and CIs. The random effects describe the term ‘frailty’, which is the excessive risk

for distinct grouping variables (Therneau et al., 2003). In general, the hazard of a frailty model

for subject i in group j is

λij(t) = λ0(t)eUijβωij = λ0(t)eUiβ+Wijb

where ωij = exp(Wijb) is the unmeasured frailty, Ui denotes covariates for the ith subject,

Wij = 1 if subject i belongs to group j, and β, b are the fixed and random effects (Pickles and

Crouchley, 1995). The frailty term accounts for variation in the risk that are not captured solely

by the covariates, and the frailty model assumes that the time increments are uncorrelated once

we adjust for both the covariates and random effects (Pickles and Crouchley, 1995; Amorim and

Cai, 2015). Our setup meets this assumption. Intuitively speaking, we are willing to assume that

there are unobserved information (i.e., the random effects) that explains the heterogeneity in

the data which cannot be explained solely by the observed covariates. The linear mixed effect

approach follows the partial likelihood approach of Cox (1975) whose key advantage is that the
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the maximum partial likelihood estimation of the covariates does not need the baseline hazard

function to be specified and is unbiased and asymptotically normally distributed under mild

conditions (Yau, 2001).

4.2.2 The Setup and Overview

Assume we have two hierarchical levels in the survival data. This makes it a little bit

more complicated but more generalizable than one-level hierarchy, thus more room to explore

and discover. Let j = 1, . . . , N represent the unique level-1 grouping variable (the highest

hierarchical level), i = 1, . . . , cj represent the unique level-2 grouping variable within the jth

level-1 grouping variable, and k = 1, . . . ,mij denote the observations in the ith level-2 group

and jth level-1 group. To make it easier to comprehend, we set up notations within the framework

of the clinical cystic fibrosis (CF) data that we will officially introduce in Section 4.4. For CF

data, an event is bacterial infection incidence, which could be recurrent given a long enough

washout period (e.g., 2 years). The level-1 grouping variable is a CF program j, level-2 is the

CF patient i, and number of encounters for a CF patient at a CF program is k. CF program is

the highest level because they accept CF patients who have different numbers of events. Our

model allows nested and crossed random effects. An example of the crossed random effects

would be the case where CF patients do not necessarily go to only one program given that they

could relocate so we specify two random effects instead of two nested random effects. Because

there might be recurrent events, mij can be greater than 1. Covariates (time-varying and/or

time-invariant) for the jth level-1 group, ith level-2 group, and kth encounter are denoted by

Zjik(t) ∈ Rp at time t where p is the total number of covariates of interest. The at-risk time

interval is denoted by Tjik. For CF, the start date is the first date that the patient has not had any

bacterial infection for 2 years during the time period of interest and end date is date of event,

lost to follow-up date, or the cutoff date (last day of time period of interest). We propose the true

intensity process of the counting process to be

R0j =

cj∑
i=1

mij∑
k=1

∫ Tjik

0

eZjik(s)β0+bijdΛ0(s) (4.22)
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Data Preprocessing

Define survival events

Calculate at risk intervals

Multiple imputation
on covariates*

Apply exclusion criteria*

Feature Selection*

Stepdown selection (on
imputed data if applicable)

Survival Modeling

Fit frailty model
on training data

Fit frailty model
on resampled training data
(e.g., block jackknife)

Validate model on test data

Results

Report estimated risk
factor coefficients

Estimate number of survival
events and its variance

Create confidence intervals
and monitor survival events

Figure 4.8: Diagram of the risk-adjusted survival analysis (from left to right). Steps marked
with asterisks are optional but recommended if applicable.

for each program j (Lawless, 1987). The random effects bij are i.i.d. zero-mean Gaussian random

variables. The covariate effects β0 will be estimated by partial likelihood on the full n dataset,

i.e. all events for all patients at all programs. Hence, n =
∑N

j=1

∑cj
i=1mij . With the covariate

effect estimator, β̂n, the hazard will be estimated using an extension of the Breslow estimator

(Lin, 2007). Point estimates by themselves are not useful. The next section will elaborate more

on estimating the variability of the estimators with the block jackknife method (Ma et al., 2005).

We will also provide a two-sided CI for various significance levels for the predicted survival

events at each program. This interval is calculated based on our estimated intensity process and

a Poisson process that describes the survival events. At the end, we validate the model estimated

in the training period with a separate test data. Note that we use the words “test” and ”validate”

interchangeably throughout the paper. Later, we compare the estimated, risk-adjusted CI with

the true, observed survival cases to evaluate the accuracy of the model in predicting survival

events. Figure 4.8 describes the pipeline of our methods and data analysis presented in the next

couple of sections.
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4.2.3 Estimation of Parameters and Their Variability

Missing data have become a universal issue in data analysis due to nonresponses and data

collection mistakes or simply because the information we want is not available. Since it could

cause problems if left untended or removed completely, many researchers resort to imputation

and more particularly, multiple imputation (MI), which is used in our survival analysis before

modeling.

Recall that β is a p-dimensional vector where p is the number of covariates in the data.

Assume there areM copies of MI and let β̂nl be the estimated coefficient from the fraily model

for the lth MI dataset where l = 1, . . . ,M trained on a data size of n. Pooling the multiple

imputed β̂nl together to determine important risk factors, we apply Rubin’s rule (Rubin, 2004)

as follows. The pooled beta estimate is the average over β̂nl’s acrossM multiple imputations

¯̂
βM =

1

M

M∑
l=1

β̂nl.

The variance of this pooled estimate is

V ar(
¯̂
βM) =

1

M

M∑
l=1

Cov(β̂nl) +

(
1 +

1

M

)∑M
l=1(β̂nl − ¯̂

βM)T (β̂nl − ¯̂
βM)

M − 1
.

where the first term is the average of the variance-covariance of β̂nl estimate in the fitted frailty

model (within MI) and the second term is the variance across the MI estimates β̂nl’s (across

MI). Test statistic for the pooled estimate is defined as Tpooled =
¯̂
βM(

V ar(
¯̂
βM )

)1/2 and the p-value

follows a two-sided student t-distribution.

Another estimator we need is the estimated hazard function. We extend the Breslow estimator

(Lin, 2007) to our data structure and define the hazard function estimator as the empirical survival

cases across all levels of hierarchies in the data at a certain time point adjusted by the at-risk

population whose at risk interval covers the current time point. Mathematically, the baseline
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hazard function estimator is

dΛ̂nl(s) =

∑N
j=1

∑cj
i=1

∑mij
k=1 dNjik(s)∑N

j=1

∑cj
i=1

∑mij
k=1 1{Ljik < s ≤ Ujik}eZjikl(s)β̂nl

(4.23)

where j, i, k are introduced in Section 4.2.2, dNjik(s) is the indicator of an observed survival

event at time s (the derivative of the counting process), Zjikl(s) represent covariates at time

s for the lth MI copy, and Ljik, Ujik are the lower and upper bound of the at-risk interval for

the jth level-1 group, ith level-2 group, and kth encounter. The accumulative hazard functions

is cumulative over all survival time points for all levels across j, i, k. The at-risk intervals are

shifted to relative days since at-risk, rather than the actual date because we care more about the

relative length and the actual dates do not give more information than relative days. Hence, the

first interval for each subject would always start with zero.

When there are multiple hierarchies in the survival data, which level of the hierarchy is of

interest? The purpose of this paper is to monitor and predict the number of events at the highest

level (e.g., the program level). This is a common task especially for infection prevention and

control (IP&C). The observed number of events at the jth level-1 group (e.g., program j) is

summed over the bottom two levels

Nj =

cj∑
i=1

mij∑
k=1

Njik . (4.24)

The expected number of risk-adjusted events for the jth level-1 group (e.g., program j) and lth

multiple imputation is

N̂jl =

cj∑
i=1

mij∑
k=1

∫
s

1{Ljik < s ≤ Ujik}eZjikl(s)β̂nldΛ̂nl(s) (4.25)

Averaging over all multiple imputations, we obtain the expected number of risk-adjusted events

N̂j• =
1

M

M∑
l=1

N̂jl (4.26)
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The variation of this estimator mainly comes from the two plug-in estimators, β̂nl and dΛ̂nl, and

we propose that there are three parts that contribute to this variability ̂̃V j:

1. Within-group variance: N̂j• . The variance of the estimated events for all level-2 groups

within each level-1 group. The word “group” in “within-group” refers to the level-1 group;

2. Across-group variance: V̂j• = 1
M

∑M
l=1 V̂

(
N̂jl

)
. The variance of the estimated events

across level-1 groups;

3. Multiple imputation variance: ŝ2
j• = 1

M

∑M
l=1

(
N̂jl − N̂j•

)2

.

Thus, ̂̃
V j = N̂j• + V̂j• + ŝ2

j• . (4.27)

The first and third components are readily available, but the second component is not

straightforward and we apply block jackknife (Ma et al., 2005) to estimate the across-group

variance. Let a fixed integerm be the number of blocks and qm,N be the number of elements

in each block, which is defined as the largest integer such thatm · qm,N ≤ N, where N is the

unique number of values of the level-1 grouping variable. We are interested in the events on

level-1 N , not the total number of observations n. Next, them · qm,N observations are randomly

sampled from the original data D, denoted as D∗, to prepare for splitting data into even blocks.

For example, if there are N = 271 and m = 10 blocks, each block will contain qm,N = 27

elements becausem ·qm,N = 270 is the largest integer divisible bym but is still less thanN . The

notation ∗ is used to distinguish the block jackknife data from the original data. For each block

b = 1, . . . ,m, we obtain θ̂∗
(−b)
j = N̂j

(
β̂∗

(−b)
, dΛ̂∗

(−b))
based on D∗(−b), which is them · qm,N

randomly sampled level-1 groups after omitting the bth block (thus b− 1 blocks remaining). We

then combine the estimators and their estimated variance from allm blocks by computing

θ̄∗j =
1

m

m∑
b=1

θ̂∗
(−b)
j
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and

S∗j = (m− 1)qm,N

m∑
b=1

(θ̂∗
(−b)

j − θ̂∗j )(θ̂∗
(−b)

j − θ̂∗j )T .

Although MI notation is omitted here for simplicity and easier explanation, this block jackknife

algorithm should be repeated to each l = 1, . . . ,M multiple imputed copies with l added to the

subscript of S∗j . The second component of the variance of ̂̃V j is then

V̂j• =
1

M

M∑
l=1

V̂jl =
1

M

M∑
l=1

S∗jl.

We provide more justifications of the three components in the variance ̂̃V j as well as using block

jackknife in Section 4.2.4.

Now we have all the components we need to construct hypothesis testing on how precise

our event estimator is compared to the true number of events and adjusted by variability. The

test statistic of a Z-test is

T̂j =
Nj − N̂j•√̂̃

V j

(4.28)

where Nj is defined in Eq (4.24), N̂j• in Eq (4.26), and ̂̃V j in Eq (4.27). The null hypothesis is

Ho : T̂j = 0 and the alternative hypothesis is Ha : T̂j 6= 0. The alternative is two-sided rather

than one-sided because we not only want to flag when observed events are more than expected

(although it is the main concern) but also care about how precise our expectation is even when

the observed is less than expected. With α representing the significance level, the two-sided

(1− α)× 100% CI for the estimated number of events is

N̂j• ± z1−α
2

√̂̃
Vj . (4.29)

Depending on the interest, this CI can be one-sided if only excessive or deficient events are

wanted, or even asymmetrically two-sided where we want to be more sensitive about excessive

events than deficient events. Same as the alternative, the regular two-sided CI is used here because
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we care about precision on both sides. Although no actions are needed for fewer-than-expected

events, we want to be notified if we are doing better than expected.

4.2.4 Theoretical Justification

The three components of ̂̃V j are derived from the definitions of N̂jl in Eq (4.25) and N̂j•

in Eq (4.26). By its definition, the variability of N̂j• comes from the two plug-in estimators,

β̂nl estimated from the frailty model and dΛ̂nl(s) in Eq (4.23), and we decompose them by

hierarchical layers. First, the number of events for a level-2 group in a level-1 group follows

a Poisson process and should have an inherent variability from the model. The variance of

a Poisson distribution is the event rate, which is estimated by N̂j•. This component records

the variability from the fixed effects. Going up one level, there is variability across level-1

groups, which are captured by the random effects, and we apply block jackknife to estimate the

covariance matrix. Lastly, N̂j• comes from taking the average over M and there is variation

across the different MI copies. If no MI is involved, the third component can be omitted in Eq

(4.27). The rest of the components in N̂j• are observed data which contribute to the variability

through the parameters but have no variability on their own.

The within-group variance is tricky to estimate as there are no known studies on what

algorithms to use. Before block jackknife, we have explored two other methods, bootstrap

and jackknife to calculate V̂j•. There are two ways of bootstrapping, one is resampling with

replacement and one is weighted bootstrap. When resampling level-1 groups as a whole (meaning

all subsequent level-2 groups and recurrent events) with replacement, we encounter singularity

issues. We think this error is mainly due to the fact that some level-1 groups never get to be

in the resampled data. After attaching the original dataset to the bootstrap sample to make

sure every level-1 group is included, we encounter similar errors. After careful checks we find

out that the issue is because repeating the data produces tied failures times, even with Efron

approximations (Efron, 1977). This leads us to the idea of weighted bootstrap where we do not

resample with replacement but apply a weight randomly drawn from exponential distribution

with parameter 1 for each level-1 group. Weighted bootstrap is more applicable in general, even
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when some nuisance parameters are not
√
n−consistent (Kosorok, 2008). However, we run

into optimization error despite the different optimization methods we try, Nelder-Mead (Nelder

and Mead, 1965), BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), or

Conjugate Gradient (CG) (Fletcher and Reeves, 1964). An alternative to bootstrap is jackknife,

also known as leave-one-out cross validation (LOOCV). We apply jackknife to β̂(−v)
nl where we

take out the vth level-1 grouping variable at a time. This gives us

dΛ̂
(−v)
nl (s) =

∑N
j=1,j 6=v

∑cj
i=1

∑mij
k=1 dNjik(s)∑N

j=1,j 6=v
∑cj

i=1

∑mij
k=1 1{Ljik < s ≤ Ujik}eZjikl(s)β̂

(−v)
nl

and

N̂
(−v)
jl =

cj∑
i=1

mij∑
k=1

∫
s

1{Ljik < s ≤ Ujik}e(β̂
(−v)
nl )TZjikl(s)dΛ̂

(−v)
nl (s)

where s represents all unique event time points in the original dataset. Hence,

V̂jl = V̂ (N̂jl) = (N − 1)
N∑
v=1

(
N̂

(−v)
jl − N̂jl

)⊗ 2

.

We do not run into any optimization or singularity issues with the jackknife method but the

variance is large and some lower bounds of confidence intervals are far below zero, implying

it is not likely to give meaningful confidence intervals. This is not unexpected since jackknife

improves on bias by using as much training data as possible compared with other cross validation

methods, but this improvement is achieved by the sacrifice of variability. This inspires us to

consider block jackknife, the middle ground, where we remove one block of level-1 groups at

time instead of only one level-1 group. Although similar tom-fold cross validation where a fold

corresponds to a block, block jackknife specifies each block to have the same number of elements

whereas cross validation does not necessarily have folds of equal lengths. Block jackknife requires

fewer assumptions and is computationally simpler than nonparametric bootstrap including its

alternatives, m within n bootstrap and subsampling. It has been shown that when properly

normalized, the block jackknife estimator converges to an F distribution at rate n, which means
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that it obtains asymptotically valid confidence ellipses for the true parameter (Kosorok, 2008).

Block jackknife has a hyperparameter, the number of blocksm, that could be adjusted to balance

the bias-variance tradeoff. Our exploratory results in Sections 4.3 and 4.4.4 show that block

jackknife gives reasonable, well-validated variance estimation.

4.3 Simulations

4.3.1 Simulation Settings

To evaluate our proposed risk-adjusted frailty model, we conduct various simulations whose

parameter settings are chosen to mimic the clinical data used in Section 4.4. In a hypothetical

situation, let there be 10, 000 subjects (i.e., level-2 groups, denoted by i) at 150 health care

programs (i.e., level-1 groups, denoted by j), and each subject has an equal probability of going

to each program. We assume a nested effect of the hierarchy where one subject belongs to one

and only one program and there is no relocation involved. We study two time periods, 2012

to 2014 (3-year) and 2014 (1-year), and validate the predictions of survival events and their

variation on year 2015. We use l to denote encounters. Based on CF regulations, patients are

expected to go to their CF programs about four times a year, so we create 12 encounter time

points (tl, l ∈ L = {1, . . . , 12}) for the 3-year training period and 4 encounter time points

(tl, l ∈ L = {1, 2, 3, 4}) for the 1-year period and assume all subjects in a simulated dataset have

the same time points for each simulated dataset. The tl’s are ordered in an increasing order with

t1 = 0. The rest of the l − 1 time points are randomly generated from a uniform distribution

U(1, 1100) or U(1, 400) across the 3-year or 1-year period, all rounded to the nearest integer to

imitate number of days.

A total of 10 covariates are generated. The five time-invariant covariates, denoted as

Z11, . . . ,Z15, follow a multivariate normal distributionMVN (µ1,Σ1) where
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µ1 =

(
0, 0, 0, 0, 0

)T
and

Σ1 =



0.1 0.02 0.02 0.02 0.02

0.02 0.1 0.02 0.02 0.02

0.02 0.02 0.1 0.02 0.02

0.02 0.02 0.02 0.1 0.02

0.02 0.02 0.02 0.02 0.1


.

We assume all Z1 variables are correlated somewhat weakly. The five time-variant covariates

are denoted as Z21(t), . . . ,Z25(t), independent and identically distributed, where each Z2p(t)

for p = 1, . . . , 5 follows a multivariate normal distributionMVN (µ2,Σ2) across t. The mean

vector is µ1
2 =

(
−5,−4,−3, . . . , 4, 5, 6

)T
for 12 time points or µ2

2 =

(
−1, 0, 1, 2

)T
for four

time points. The covariance matrix is

Σ1
2 = c



12 11 10 . . . 2 1

11 12 11 . . . 3 2

. . .

1 2 3 . . . 11 12


or Σ2

2 = c



4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4


for 3-year and 1-year period respectively, where c is a scalar randomly sampled from uniform

distribution U(0, 0.1) for each simulation dataset. The covariance matrices are chosen to reflect

correlation over time.

The piece-wise survival time S(tl) follows a piece-wise exponential distribution with rate

being the hazard with a constant baseline hazard function h0:

hij(tl) = h0 exp(Z1ijβ1 +Z2ij(tl)β2 + b1i + b2j),
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where β1, β2 are coefficients for the time-invariant and time-variant covariate Z1ij,Z2ij(tl) and

b1i, b2j are the random intercept effects on level-2 (patient level) and level-1 (program-level).

We assume no random slope effect for simplicity. Under the assumption that Z2ij(tl) does not

change in the time interval [tl, tl+1) and the memoryless property of exponential distribution, the

event time is T 1
ij = tl + Sij(tl) if tl + Sij(tl) < tl+1. Otherwise, there is no event between tl and

tl+1 and we simulate the next piece-wise survival time Sij(tl+1) from hij(tl+1) and repeat the

process until we reach the last time point. LetWij denote the length of the pre-specified washout

period for the ith patient at the jth program. For simplicity, we assumeWij = w for all i, j’s

with a constant w. For recurrent events, the second event time is T 2
ij = T 1

ij +Wij + Sij(tl′) if

T 1
ij +Wij + Sij(tl′) < tl′+1 where l′ = {l ∈ L : max(tl′ ≤ T 1

ij +Wij)}. Otherwise, there is no

event between T 1
ij +Wij and tl′+1. We simulate the next piece-wise survival time Sij(tl′+1) and

determine the second event time as T 2
ij = tl′+1 +Sij(tl′+1) if tl′+1 +Sij(tl′+1) < tl′+2 and repeat

this process the same way as the first event time described above. The independent censoring

time C is exponentially distributed with rate 1/600 and 1/300 for the 3-year and 1-year period.

The event indicator δij = 1{Tij ≤ Cij} where 1 indicates an event and 0 indicates censoring.

The observed time is Yij = min(Tij, Cij). There could be more than one δij = 1 because of

recurrent events.

Table 4.17 is a summary of all constants and parameters in the simulation introduced so far.

Since we assume a nested structure between the level-1 group and level-2 group, all notations

with subscript ij could be written with subscript i only because j is deterministic given i, but

we use ij as it suits not nested structures (e.g., crossed) between level-1 and level-2 groups. The

values of baseline hazard and the censoring time parameter are determined by the censoring

rate.

Since there are only 10 covariates and no missing data, we skip the multiple imputation

and feature selection steps in the pipeline illustrated in Figure 4.8. After the event/censoring

time and the at-risk intervals are generated, we move on to survival modeling directly. The

modeling involves two parts. For each iteration, we start with fitting a Cox proportional hazards
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Table 4.17: Simulation constants and parameters

Parameter Notation Value
3-year 1-year

No. of groups, level-1 n2 150
No. of groups, level-2 n1 10,000
No. of time points |L| 12 4
Length of study period 1100 400
Encounter time tl, l ∈ L U(12, 1100) U(4, 400)
No. of time-invariant covariates p1 5
No. of time-variant covariates p2 5
Time-invariant covariate Z1 MVN(µ1,Σ1)
Time-variant covariate

(i.i.d. across p = 1, . . . , p2) Z2p(t) MVN(µ1
2,Σ

1
2) MVN(µ2

2,Σ
2
2)

Baseline hazard h0 e−8

Covariate coefficient β1, β2 all 0.5
Random intercept effect, level-1 bj N(0, Gj), Gj ∼ N(0, 0.001)
Random intercept effect, level-2 bi N(0, Gi), Gi ∼ N(0, 0.001)
Piece-wise hazard function hij(t) h0 exp(Z1ijβ1 +Z2ij(tl)β2 + b1i + b2j)
Piece-wise survival time Sij(t) exp(hij(t))
Censoring time Cij exp(1/600) exp(1/300)
Washout period Wij 730 (2 years)
No. of Simulations 100

model to acquire initial values for the coefficients of the later frailty model. Taking into account

correlated observations, we utilize robust standard errors by identifying level-1 (e.g., program)

and level-2 (e.g., patient) as correlated groups. R package survival is used for the Cox model.

The mixed effect survival model is applied to the same covariates using the initial values from

the Cox model to help with convergence. The computation tool we use to fit the frailty model

is the R package coxme, which assumes the random effects follow a Gaussian distribution

(Therneau, 2019) and is more efficient because of the use of semiparametric estimation in the

lognormal frailty model. Instead of treating random effects as missing data and applying EM

algorithm which has been proven to be slow, it incorporates random effects by penalizing the

partial likelihood which can be easily implemented by adding a penalty term to standard Cox

semiparametric models (Therneau et al., 2003). The rest of the pipeline (resampling, variance
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estimation, and validation) are followed as described in the diagram. Section 4.4 will explore all

steps in the pipeline. Simulation calculations are performed in R 3.6.1 (R Core Team, 2019).

4.3.2 Simulation Results

The 3-year training period is set to be from January 1, 2012 to December 31, 2014. The

1-year training period is from January 1, 2014 to December 31, 2014. The 1-year test period for

both training periods is January 1, 2015 to December 31, 2015. For each of the three periods,

100 simulated datasets have been generated following the assumptions and definitions in Section

4.3.1. The observed censoring rate in Section 4.4 is between 0.67 and 0.83 for 2012-2014 and

0.86 and 0.95 for 2013, 2014, 2015. The observed second event rate for 2012-2014 period is

between 0.0001 and 0.005. The censoring rate in our 100 simulated data has mean 0.78 and

standard deviation (SD) 0.05 for the 3-year period and mean 0.90 and SD 0.02 for the two 1-year

periods. The second event rate has mean 0.004 with SD 0.003.

The estimated coefficients for Z1 and Z2(t) with SDs are displayed in Table 4.18 using a

Cox model and Table 4.19 using a frailty model. Overall, all estimated coefficients are reasonably

close to the true value 0.5 regardless of time-invariant or time-variant covariate or survival

model. The two 1-year periods have smaller bias than the 3-year period but higher SDs. The

2012-2014 period has relatively lower estimates than 0.5 and we speculate this is due to the

interference of recurrent events. The coefficients in the mixed effect model have smaller biases

for the corresponding coefficients in the the Cox model, indicating that adjusting for the random

effects helps with estimation and it learns the structure in the data better. This confirms that our

simulated data and models are reasonably generated and well-fit. All covariates have p-values

less than 0.05, implying that the coefficients are significantly different from 0, which is expected

as all covariates are involved in the definition of hazard function and survival time.

Next, we apply block jackknife resampling to estimate the variance as well as the CIs. To

observe results for various situations and settings, three values ofm (the number of blocks in the

block jackknife) are used and several levels of the confidence intervals are explored spanning

from 0.7 to 0.995. Tables 4.20 and 4.21 contain mean coverage of the estimated risk-adjusted
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Table 4.18: Mean (SD) of estimated covariate coefficients across 100 simulations for three time
periods based on a Cox proportional hazards model

Covariate 2012-2014 2014 2015
Z11 0.46 (0.07) 0.51 (0.11) 0.51 (0.11)
Z12 0.47 (0.08) 0.51 (0.11) 0.51 (0.11)
Z13 0.46 (0.07) 0.49 (0.11) 0.49 (0.11)
Z14 0.45 (0.08) 0.51 (0.12) 0.50 (0.12)
Z15 0.46 (0.08) 0.49 (0.10) 0.49 (0.10)
Z21 0.46 (0.09) 0.49 (0.12) 0.50 (0.14)
Z22 0.47 (0.05) 0.50 (0.11) 0.51 (0.12)
Z23 0.47 (0.09) 0.50 (0.16) 0.49 (0.15)
Z24 0.47 (0.10) 0.53 (0.16) 0.52 (0.16)
Z25 0.47 (0.04) 0.48 (0.14) 0.48 (0.14)

Table 4.19: Mean (SD) of estimated covariate coefficients across 100 simulations for three time
periods based on a mixed effects Cox model

Covariate 2012-2014 2014 2015
Z11 0.47 (0.07) 0.51 (0.11) 0.52 (0.11)
Z12 0.48 (0.08) 0.52 (0.11) 0.51 (0.11)
Z13 0.47 (0.07) 0.49 (0.11) 0.50 (0.11)
Z14 0.46 (0.07) 0.52 (0.12) 0.50 (0.12)
Z15 0.47 (0.07) 0.49 (0.10) 0.49 (0.10)
Z21 0.47 (0.09) 0.49 (0.12) 0.50 (0.14)
Z22 0.47 (0.05) 0.51 (0.12) 0.51 (0.12)
Z23 0.48 (0.09) 0.50 (0.16) 0.50 (0.15)
Z24 0.48 (0.09) 0.53 (0.16) 0.52 (0.16)
Z25 0.48 (0.04) 0.48 (0.15) 0.48 (0.14)

CIs for the 3-year period and 1-year period, both validated on the 2015 data. When trained and

tested on the same 3-year period, the CI is generally good for all α’s andm’s with the largest

absolute value of mean coverage difference being 0.016 and the majority under 0.006. There

is more coverage for higher confidence levels. When tested on a validation period 2015, the

CI coverage is relatively worse, which is not surprising because the model has not seen the

validation data, but it is within an absolute value of 0.032. For this validation, there is no clear

trend that higher confidence levels have more coverage or that certain value ofm gives higher

coverage. When trained and tested on the same 1-year period, the CI coverage is exceptionally

good for all α’s andm’s with the largest absolute value of mean coverage difference being 0.005.
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Table 4.20: Results of risk-adjusted model of 2012-2014 simulated data validated on 2012-2014
and 2015 simulated data separately, where α is significance level,m is number of blocks in
block jackknife estimation of variance, meanCoverage is mean proportion of level-1 groups

whose true number of survival cases in the validation set is contained in the risk-adjusted 1− α
confidence interval estimated from the training data averaged across 100 simulations, and

AbsCovDiff is absolute difference between the mean coverage and 1− α.

2012-2014 Training 2012-2014 Validation 2015 Validation
1− α m meanCoverage AbsCovDiff meanCoverage AbsCovDiff

0.7 5 0.706 0.006 0.724 0.024
10 0.711 0.011 0.729 0.029
15 0.716 0.016 0.732 0.032

0.8 5 0.800 0.000 0.805 0.005
10 0.806 0.006 0.808 0.008
15 0.811 0.011 0.812 0.012

0.9 5 0.895 0.005 0.882 0.018
10 0.901 0.001 0.884 0.016
15 0.905 0.005 0.886 0.014

0.95 5 0.946 0.004 0.919 0.031
10 0.948 0.002 0.921 0.029
15 0.951 0.001 0.923 0.027

0.995 5 0.991 0.001 0.962 0.033
10 0.992 0.002 0.964 0.031
15 0.992 0.002 0.964 0.031

When tested on a validation period 2015, the CI coverage is relatively worse again, but within

0.060 below the true confidence interval. The coverage is uniformly better as confidence level

1 − α increases. In addition, m = 15 seems to produce low coverage differences compared

withm = 5, 10 but not by very much. The 2015 validation results are better using 3-year data

than 1-year data in terms of absolute coverage difference and we think this is is because 3-year

data are richer and contain more heterogeneity information for the proposed model to learn. In

general, it is not useful to look at results trained and validated on the same dataset as it almost

guarantees overfitting but we study such results as a comparison reference in addition to the

more important 2015 validation results.

To visually inspect the estimation of survival events across simulations, Figure 4.9 contains

four histograms of estimated versus true number of events across 100 simulated datasets. The

four subplots are results trained and validated on 2012-2014 (top left), trained on 2012-2014 but
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Table 4.21: Results of risk-adjusted model of 2014 simulated data validated on 2014 and 2015
simulated data separately, where α is significance level,m is number of blocks in block

jackknife estimation of variance, meanCoverage is mean proportion of level-1 groups whose
true number of survival cases in the validation set is contained in the risk-adjusted 1− α
confidence interval estimated from the training data averaged across 100 simulations, and

AbsCovDiff is absolute difference between the mean coverage and 1− α.

2014 Training 2014 Validation 2015 Validation
1− α m meanCoverage AbsCovDiff meanCoverage AbsCovDiff

0.7 5 0.695 0.005 0.646 0.054
10 0.697 0.003 0.649 0.051
15 0.700 0.000 0.651 0.049

0.8 5 0.802 0.002 0.742 0.058
10 0.803 0.003 0.745 0.055
15 0.806 0.006 0.747 0.053

0.9 5 0.901 0.001 0.840 0.060
10 0.903 0.003 0.842 0.058
15 0.904 0.004 0.844 0.056

0.95 5 0.951 0.001 0.895 0.055
10 0.952 0.002 0.897 0.053
15 0.953 0.003 0.898 0.052

0.995 5 0.992 0.002 0.967 0.028
10 0.992 0.002 0.968 0.027
15 0.992 0.002 0.968 0.027

validated on 2015 (top right), trained and validated on 2014 (bottom left), trained on 2015 but

validated on 2015 (bottom right). The estimated Spearman correlation coefficients between the

estimated and observed for each of the four subplots are 0.71, 0.24, 0.50, 0.37, indicating weak

to moderate positive correlations. The first histogram has the highest number of survival events

because it spans over three years of period. All four distributions of the estimated events have

roughly similar means and ranges as the four distributions of observed events, but the heights

of the modes vary. The top left histogram has the closest observed nad estimated distributions

because it uses and overfits three years of data. The top right histogram is the second closest

with the estimated distribution denser at the mode with estimated distribution denser near the

mode than the observed distribution. The estimated and true distributions differ more in the

bottom histograms. This phenomenon can be explained by regression to the mean.
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Figure 4.9: Histograms of estimated versus observed (true) number of survival events for
different training and validation periods cumulative across 100 simulations (top left: 2012-2014
training and validation, topright 2012-2014 training and 2015 validation, bottom left: 2014

training and validation, bottom right: 2014 training and 2015 validation)

4.4 Clinical Implementation

Cystic fibrosis (CF) is a chronic, genetic disorder where defects in a chloride ion channel

lead to excessively thick and sticky mucus throughout the respiratory and digestive systems.

This impaired mucus clearance predisposes patients to respiratory infections and chronic lung

damage, the main cause of morbidity and mortality in patients with cystic fibrosis. Two bacteria

in particular, methicillin-resistant Staphylococcus aureus (MRSA) and pseudomonas aeruginosa

(PA) are particularly harmful and lead to decreased lung functions and poor outcomes for patients

with CF. These respiratory pathogens can be acquired and spread in healthcare institutions for

both the inpatient and outpatient settings (Saiman et al., 2003). Monitoring such transmission

is much needed for CF IP&C. There is considerable variability in IP&C among CF programs

and they currently do not have an accurate, timely way of estimating their incidence rates of
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key pathogens such as MRSA and PA (Stoudemire et al., 2019). The incidence rate is defined

as the number of incidence cases (with a 2-year look-back free of infection) divided by the

at-risk population of the bacterial infection. We apply the new proposed pipeline to the U.S.

CF Foundation Patient Registry (CFFPR) data for the period of 2012-2015 to study, predict,

and monitor the incidence of bacteria infection. The CFFPR fits our setup because it gives

right-censored data with i) a 3-level hierarchy, where level 1 is CF program, level 2 is CF patient

who goes to a CF program, and level 3 is an encounter observation from a CF patient who goes

to a CF program; 2) repeated events as infections could occur again after a washout period. All

analyses are performed in R 3.6.1 (R Core Team, 2019).

4.4.1 Preprocessing

We start with defining MRSA and PA infections. MRSA infection is defined as having a

positive respiratory culture for methicillin-resistant staphylococcus aureus - a bacteria that has

developed resistance to penicillin-based antibiotics. PA infection is defined as having a positive

respiratory culture to any of the different species of Pseudomonas. Sensitivity analyses had been

done preliminarily to compare 2, 5, 10 years of a washout period and concluded that shorter

look-back intervals did not alter overall estimates of incidence or changes in incidence. Hence,

the start date of an at-risk period for a patient is defined as the first day that the patient has 2

years free of infections since last infection. We apply the following exclusion criteria to define

the at-risk population. We exclude all encounters of patients 1) who do not have encounter date

data; 2) whose start date of at-risk day is the infection date; and we exclude encounters (not

the entire patient) 3) who have gaps in encounter data for more than 18 months (otherwise we

assume the patient’s infection status stays the same during the gap); 4) after organ transplants.

Babies less than two years old are considered at-risk even though they do not have two years of

data to look back at. Relocation and change of program are allowed. After data cleaning, we

construct at-risk intervals for each patients consisted of start and end dates of being at-risk as

well as a censoring indicator. For a time period of three years, each patient could have 0, 1, or 2
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infections (because the two year look-back is contained in three years) but each patient should

have at most one infection case for a time period less than two years.

Potential risk factors are also included in the preprocessed, right-censored data. The CFFPR

data contain different modalities of data on prevalence of CF related pathogens, provided by CF

programs once a year. We combine three modalities demographics and diagnosis, encounter, and

annualized data by unique patient ID and review year. The mean number of yearly encounters

per patient is around 5.6. The potential risk factors could be time invariant (demographic data)

or time varying covariates (often found in encounter and annualized data). The values of time

varying covariates are associated with the start dates of the corresponding at-risk intervals, as

we assume that the time varying covariates do not change between the current encounter and the

next consecutive encounter (for gaps less than 18 months). The time scales of the risk factors

vary, which could be by year or by day. Note that the start date of one at-risk interval may not be

an actual encounter date because we derive the hypothetical at-risk start date by going back two

years from an infection date. Each of the potential risk factors is carefully chosen, preprocessed,

and transformed (if necessary) by both the clinician and biostatistician on board. The reasons that

we exclude some covariates are but not limited to correlation and multicollinearity, rare events,

and more than 50%missingness. As a result, the number of covariates in the preprocessed data is

79 for MRSA and 72 for PA. The number of observations vary by the time period. For 2012-2014

(the longest period that we look at) MRSA has 219,251 observations of 18,366 patients and

PA has 123,341 observations of 13,228 patients. For 2014, MRSA has 70,363 observations of

15,810 patients and PA has 41,085 observations of 10,505 patients.

4.4.2 Multiple Imputation

To handle missing data in the preprocessed covariates, different imputation methods are

applied to each modality separately before merging. We generateM = 10 copies of imputed

datasets.

Encounter data. First we apply last observation carried forward (LOCF) first and then next

observation carried backward (NOCB) to variables in the encounter data. Missing FEV1 (forced
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expiratory volume for the first forced breath) values are replaced by the max FEV1 value in

the past 365 days for each patient. After LOCF and NOCB, what is left should be missing

for all observations/encounters of the patients. Taking into account the longitudinal nature in

the encounter data, we apply joint modeling imputation (Carpenter and Kenward, 2012) in the

mitml R package (Grund et al., 2019) with unique patient ID as the random effect. This is a

MCMC imputation algorithm suited for multilevel data continuous and categorical data, which

match with the longitudinal nature in our encounter data.

Annualized data. We do not apply LOCF or NOCV to annualized data because a year

is considered too long to be carried forward or backward, whereas encounter data are more

frequent. Instead, joint modeling is applied again with patient ID as a random effect because

annualized data are longitudinal as well, only less frequent than encounters.

Demographic data. We apply multiple imputation by chained equations (MICE) with random

forests (RF) because it is able to impute nominal variables (e.g., mutation information such as

F508 - the most common disease causing mutation in CF) and there are no random effects in

demographic data.

4.4.3 Survival Model and Variable Selection

With more than 70 potential risk factors in the preprocessed data, we want to narrow them

down and identify only the important risk factors that are associated with incidence rates of

MRSA and PA. Stepdown selection is used for this purpose. Stepdown selection typically

starts with modeling on all covariates and remove one insignificant covariate at a time until

all covariates left have p-value less than the significance level. The remaining covariates are

called the important risk factors. It has been shown that under several reasonable, generalized

assumptions, meaningful recursive feature elimination methods with kernel machines can find

the correct feasible feature space with uniform consistency (Dasgupta et al., 2019).

As in the simulations, we use Cox model first to acquire initial values for the coefficients

before fitting the frailty model. The same R packages (survival and coxme) are applied

to the CF data. We make two changes to the stepdown selection procedure to fit our situation
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better. First, removing variables one at a time for over 70 covariates would be time consuming.

We changed the classic stepdown selection to allow it to drop more than one variable for each

iteration in order to speed up the variable selection process. More specifically, we remove three

variables at a time in the early selection stage where the p-values of the dropped variables

are greater than or equal to 0.5 then drop two variables at a time when p-values are strictly

between 0.25 and 0.5. When the p-values are less than or equal to 0.25, we slow down the

elimination process and drop one variable at a time. We do not drop any variable when the

highest p-values are all below 0.1. Second, due to MI, we fit the two survival models to each

imputation copy separately then pool the estimates from all M multiple imputation datasets

together and determine which variable(s) to drop based on the p-values described above. This is

one iteration and we repeat with newly dropped covariates. When all p-values are below 0.1,

we pool the coefficient estimates one last time and use the results to determine important risk

factors. Note that stepwise selection is performed separately for MRSA and PA since different

infections do not necessarily have the same risk factors.

4.4.4 Results

There are six combinations of training and testing for the period of 2012-2015: training 2012

to validate 2013, training 2013 to validate 2014, training 2014 to validate 2015, training 2012-

2013 to validate 2014, training 2013-2014 to validate 2015, and training 2012-2014 to validate

2015. For the purpose of concise result presentation, we select two exemplary combinations. We

present year 2014 as the training set and year 2015 as the test set because they are the most recent

data, and later look at a training set of three years 2012-2014. Other combinations are omitted

because results are similar if the numbers of years in the training set are the same but results are

more different when the number of years differs. The training set and testing set are preprocessed

in the same way as described in Section 4.4.1. Only CF programs in the training set are included

in the testing set, and only the important risk factors in the training set are included in the testing

set. After stepdown selection of 2014 data, there are 19 out of 79 risk factors selected for MRSA

and 34 out of 72 for PA. For 2012-2014, as a comparison, 41 out of 79 (MRSA) and 45 out of
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72 (PA) risk factors are selected because this time period has more data. This shows that PA

infection is associated with more factors than MRSA. Important risk factors of MRSA include

season, region, whether or not bacterial culture was done, need-based insurance, number of

hospitalization/outpatient visit in the past year, feeding, smoking, birth year, etc. PA has more

important risk factors such as mutation class, hispanic race, sale supplement, FEV1, in addition

to season and region. More results on variable selection and clinical interpretation of the selected

risk factors can be found in Stoudemire et al. (shed), which provides the clinical prospective of

our risk-adjusted survival analysis. Other specifications in the clinical analysis includeM = 10

multiple imputed copies andm = 5, 10, 15 numbers of blocks.

Risk-Adjusted Incidence Modeling. After preprocessing, multiple imputation, and variable

selection, we follow the proposed pipeline in Figure 4.8. We perform the risk-adjuted survival

models and calculate the CIs as defined in Eq (4.29) for 2014 CFFPR data. Prior to the validation

stage, we check to see if the risk-adjusted CIs trained from 2014 contain the true number of

events for the same dataset. Based on Table 4.22, we see that the coverage of the risk-adjusted

confidence intervals is close to the true 1−α as almost all absolute absolute coverage differences

are less than 0.05 (except 2 places). This is expected as the training and testing data are the

same. What is more interesting ism. For PA,m = 10 has the lowest absolute difference for low

confidence levels (1−α ≤ 0.9) and the difference among different values ofm starts to decrease

for high confidence levels (1 − α ≥ 0.95). High confidence levels require wider confidence

intervals and thus the bias-variance tradeoff controlled bym is no so prominent. For MRSA,

m = 5 has the lowest absolute difference for all 1− α’s but the differences are still larger when

confidence levels are high. Figure 4.10 shows the distribution of the observed incidence cases

is similar to the estimated incidence cases for both bacteria even at the tails. The correlation

between the estimated and observed incidence is strong as the estimated Spearman correlation

coefficients are 0.68 for MRSA and 0.77 for PA.

Validation with New Data. We now validate the model trained from 2014 data on 2015

data. Table 4.23 shows that the validation coverages are relatively worse by a small amount
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Table 4.22: Results of risk-adjusted incidence model of 2014 CFFPR data validated on 2014
data, where α is significance level,m is number of blocks in block jackknife estimation of
variance, Coverage is proportion of programs whose true number of 2014 incidence cases is
contained in the risk-adjusted 1− α confidence interval trained on 2014 data, and AbsCovDiff

is absolute difference between the coverage and 1− α.

2014 on 2014 PA MRSA
1− α m Coverage AbsCovDiff Coverage AbsCovDiff

0.7 5 0.62 0.080 0.68 0.020
10 0.70 0.000 0.72 0.020
15 0.74 0.040 0.75 0.050

0.8 5 0.76 0.040 0.82 0.020
10 0.81 0.010 0.84 0.040
15 0.83 0.030 0.87 0.070

0.9 5 0.88 0.020 0.93 0.030
10 0.91 0.010 0.94 0.040
15 0.92 0.020 0.95 0.050

0.95 5 0.92 0.030 0.96 0.010
10 0.93 0.020 0.97 0.020
15 0.94 0.010 0.97 0.020

0.995 5 0.98 0.015 0.99 0.005
10 0.98 0.015 0.99 0.005
15 0.98 0.015 0.99 0.005

Figure 4.10: Histogram of estimated versus observed (true) number of 2014 MRSA and PA
incidence cases where the risk-adjusted model is trained from 2014 data
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Table 4.23: Results of risk-adjusted incidence model of 2014 CFFPR data validated on 2015
data, where α is significance level,m is number of blocks in block jackknife estimation of
variance, Coverage is proportion of programs whose true number of 2015 incidence cases is
contained in the risk-adjusted 1− α confidence interval trained on 2014 data, and AbsCovDiff

is absolute difference between the coverage and 1− α.

2014 on 2015 PA MRSA
1− α m Coverage AbsCovDiff Coverage AbsCovDiff

0.7 5 0.61 0.090 0.64 0.060
10 0.67 0.030 0.65 0.050
15 0.71 0.010 0.70 0.000

0.8 5 0.72 0.080 0.76 0.040
10 0.77 0.030 0.79 0.010
15 0.80 0.000 0.80 0.000

0.9 5 0.84 0.060 0.85 0.050
10 0.87 0.030 0.86 0.040
15 0.91 0.010 0.87 0.030

0.95 5 0.92 0.030 0.88 0.070
10 0.94 0.010 0.90 0.050
15 0.94 0.010 0.91 0.040

0.995 5 0.98 0.015 0.94 0.055
10 0.99 0.005 0.95 0.045
15 0.99 0.005 0.96 0.035

compared with the results in Table 4.22, because the test set is now new data that the model

has not seen. As confidence levels go up, the coverage difference decreases for both MRSA

and PA. The overall coverage of our risk-adjusted intervals is close to the desired 1− α level

as the absolute coverage differences are all less than 0.1 for all three m’s. All differences are

less than 0.05 when m = 10, 15. For this test set, m = 15 gives the best coverage for both

bacteria. The distributions of observed versus estimated incidence cases are similar as well

(Figure 4.11) including the right-skewed tails. The estimated Spearman correlation coefficient

between the estimated and observed incidence is 0.59 for MRSA and 0.79 for PA (moderate

to strong correlations). Results are depended on the hyperparameterm to some extent but are

within reasonable range overall. Overall, block jackknife is able to estimate variabilities in the

incidence cases well enough for the coverage difference to be small regardless of the value ofm.
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Figure 4.11: Histogram of estimated versus observed (true) number of 2015 MRSA and PA
incidence cases where the risk-adjusted model is trained from 2014 data

Multiple years of training data. When the training set contains more than one year of CFFPR

data, overcoverage is observed in the validation stage while the training coverage differences

stay small. This is concluded from the summarized MRSA and PA coverage results, where

we pick the 2012-2014 period as training set and validate on both 2012-2014 and 2015. We

present MRSA results in Table 4.24. PA results are similar and can be found in Appendix C,

which also contains the histograms of estimated versus observed number of 2014 and 2015

incidence cases using models trained from 2012-2014 data for both MRSA and PA. Simulation

results in Section 4.3.2 show that three years of training data produce CIs with higher coverage

than one year of data. Indeed, having three years of data allows recurrent events and increases

sample size but the data seem to be noisier and contain more complex situations in our real

world clinical situation. For instance, recall that the gaps between two consecutive encounters

are allowed to be as long as 18 months, which is carefully determined with the clinicians on

board. When the training set contains more than one year, it is possible that we include more

encounters (encounters with longer gaps) which increases the variability of data. The proposed

model learns from this complexity and estimates larger variance and wider CIs that overcover
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Table 4.24: Results of risk-adjusted MRSA incidence model of 2012-2014 CFFPR data
validated on 2012-2014 and 2015 data separately, where α is significance level,m number of
blocks in block jackknife estimation of variance, Coverage is proportion of programs whose
true number of incidence cases in the test set is contained in the risk-adjusted 1− α confidence
interval trained on 2012-2014 data, and AbsCovDiff is absolute difference between the coverage

and 1− α.

MRSA 2012-2014 Validation 2015 Validation
1− α m Coverage AbsCovDiff Coverage AbsCovDiff

0.7 5 0.60 0.100 0.87 0.170
10 0.63 0.070 0.89 0.190
15 0.68 0.020 0.90 0.200

0.8 5 0.70 0.100 0.93 0.130
10 0.73 0.070 0.94 0.140
15 0.77 0.030 0.94 0.140

0.9 5 0.82 0.080 0.97 0.070
10 0.85 0.050 0.97 0.070
15 0.88 0.020 0.97 0.070

0.95 5 0.88 0.070 0.98 0.030
10 0.90 0.050 0.98 0.030
15 0.93 0.020 0.98 0.030

0.995 5 0.97 0.025 0.99 0.005
10 0.98 0.015 0.99 0.005
15 0.98 0.015 0.99 0.005

the test set. Nonetheless, the coverage of 2015 test set is below 0.1 when confidence level is

less than or equal to 0.9 and the difference becomes smaller when confidence level is higher.

Overcoverage is noticeable when confidence level is low (≈ 0.7, 0.8). For common confidence

levels (e.g., 0.95) the validation coverage is under control despite slight overcoverage.

4.5 Discussion

A risk-adjusted model is developed to learn from right-censored hierarchical data with

recurrent events and estimate the survival events with CIs. The variability of predicted incidence

cases has three sources and one of which is obtained with the block jackknife method. We

propose to carefully preprocess the data and recommend useful tools such as multiple imputation

and variable selection to produce clean and concise input data before modeling. Simulations are

conducted to evaluate our methodology of the risk-adjusted CIs. CF Foundation Patient Registry

data are used as clinical application to evaluate the practicality of our pipeline. Overall, the
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results show promising usage of our incidence models when we train with shorter periods of

CF data or larger periods of simulated data. This slight discrepancy implies that larger data are

beneficial when they are clean and well-organized but larger data often bring in more unknown

noise which may increase the difficulty of variance estimation. For the CF clinical data, data

recency and quality trump data quantity. There is potential cohort effect across different time

periods in the CF patients which is worth further investigation for generalizability.

Our methodology estimates the survival events and its variability for each program and

packages everything into a CI which is easy to understand and acquire. The risk-adjusted

incidence estimates and confidence intervals are organized into a spreadsheet. This is a ready-to-

use incidence monitoring tool as the only inputs needed from CF programs are the observed

incidence cases and the built-in formulae would be able to calculate whether or not to flag the

programs if the observed incidence falls out of expectation. More explanation of this monitoring

tool is discussed in Stoudemire et al. (shed). Stoudemire et al. (shed) also looks into coverage

results when the test year has not ended, i.e., validating on 3, 6, 9, months instead waiting

for the 12 whole months of data. We are able to provide quarterly reports on MRSA and PA

incidence for each program, so unusual incidence rates can be detected earlier and infection

control procedures can be implemented sooner. Limitations and future research are located in

Chapter 5.
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CHAPTER 5: FUTURE RESEARCH

This chapter will discuss future research directions for methods proposed in the three

preceding chapters.

In Chapter 2, jackknife estimators of value functions were applied to compare performance

of various machine learning models and select the optimal individualized treatment rule for knee

osteoarthritis patients. We expect the following future studies to be useful: 1) Exploring more

robust models that directly determine the optimal treatment rules. We have observed from the

results that, in general, machine learning models which predict well do not necessarily find the

optimal treatment rule. The objectives are different: better prediction aims to lower mean squared

errors whereas optimal treatment rules aim to increase value functions. For example, there has

been recent advances in super learning that directly learn the optimal treatment regime (van der

Laan and Luedtke, 2014, 2015; Luedtke and van der Laan, 2016), and we believe it is worth

investigating further such robust models; 2) Finding optimal treatment regimes in the setting of

multiple decision time points, where data can vary regularly by time and treatment plans can

be adjusted periodically rather than fixed for the entire intervention period. This would make

the individualized treatment recommendations more up-to-date and adaptive. There are many

dynamic models that can be applied to this setting, and we recommend reinforcement learning

(Schulte et al., 2014) and Gaussian processes (Wilson and Adams, 2013); 3) Although external

validation was investigated via simulations, a new randomized trial on a similar population

would be needed for external validation of our findings.

In Chapter 3, we proposed DDROWL where deep neural networks (DNN) were applied to a

doubly robust optimization learning problem in the area of precision medicine. The limitation

and future research of DDROWL can be summarized in the following directions: i) We imposed
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strict inclusion criteria on the NACC data and performed basic preprocessing to the MRI scans.

A future research direction would be to relax the inclusion criteria or add similar neuroimaging

and clinical data from existing database to increase the size of available data, and apply more

flexible powerful image processing tool boxes. The package Nipype in Python (Gorgolewski

et al., 2011) possesses many preprocessing tools, such as co-registration, segmentation, and

region of interests, that could remove unrelated noise and further standardize the size and region

of interest; ii) The grid and random search that we applied in this paper is commonly used but

not the most efficient way to tune hyperparameters for all cases, especially when the level of

tuning is high. Bayesian optimization (Bergstra et al., 2011) has been shown to be “smarter” in

hyperparameter tuning because it uses priors to learn from past evaluations and avoid wasting

time in the “bad” part of the hyperparameter space that do not perform well (Bergstra et al.,

2013); iii) A sensitivity analysis of different surrogate loss functions provides insights in the

influence of loss functions. Such analysis can closely look at whether the performance of

Cauchy-Schwarz divergence loss carries over from classification to regression and fully applies

to different situations. This can be done using simulated data and clinical data; iv) The current

setting is restricted on two interventions and it is possible to extend DDROWL to more than

two interventions. This extension can be achieved using balanced policy evaluation (Kallus,

2018; Leete et al., 2019) where the conditional mean squared error can be decomposed into a

bias component and a variance component with the goal of minimizing the worse case bias and

variance. We hope our work encourages more methodology research in empowering precision

medicine using high performance machine learning tools. Although we presented several types

of deep learning structure in DDROWL (FFNN, DKL, ResNet), they can be replaced with other

network models depending on input data; for example, recurrent neural networks (RNN) for

time-series data and generative adversarial network (GAN). We encourage future research to

implement more complex DL architectures in DDROWL.

In Chapter 4, a risk-adjusted Anderson-Gill frailty model was applied to monitor survival

events. Additionally, a three-component variance estimator was designed to generate confidence
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intervals allowing missing data, hierarchies, and recurrent events. There are several limitations

and extensions: The level-1 group, the highest level in the hierarchy that we focused on, is

usually a social entity or some group of subjects that can vary in size. For example, CF programs

in the U.S. could be as large as more than 300 patients or as small as less than 10 patients.

Our model did not treat small programs (size less than 50) differently in preprocessing, and the

feature selection did not necessarily select program size as an important risk factors. Smaller

programs are more likely to create outliers. Although our results imply that it is not always small

programs whose risk-adjusted intervals fail to contain the observed number of incidence cases

(especially when training period is one year), we think dealing with small programs has potential

benefits of improving our model performance and generalizability. More simulations need to be

done to study the underlying intensity process. Another potential generalization of our methods

would be in the area of multiple event types. The event types could be a mixture of competing

risks and not competing risks. Taking the general health of elderly people as an example, both

hospitalization and death are considered events with hospitalization as recurrent events and

death as a competing risk for hospitalization. In CF, clinicians are often interested in multiple

events at the same time, such as CF-related diabetes and liver diseases, which may or may not

be competing. Bivariate or multivariate survival models could be applied for multiple events.

Finally, this paper serves as the first step into the precision public health paradigm for general

IP&C. Precision medicine tailors patient characteristics into the decision making of clinical

interventions, where as precision health focuses on precise recommendatiosn on a broader level

for larger entities such as schools and hospitals (Kosorok and Laber, 2018; Sperger et al., shed).

Since our proposed methods provide contextual intelligence of bacterial infection rates on a

program-level for CF, a natural continuum of this in the realm of precision public health is to

identify modifiable program-level risk factors and provide strategies tailored to each program to

proactively prevent infections. Precision health is a new and growing area that are in need of

methodology development.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 1

This chapter contains technical details supplemental to the main text of Chapter 2.

Derivation of Influence Function-Inspired Value Function

Rjk
i andRcv

ji have similar derivations so we omit the notation of jk or cv for cleaner notations.

Assume Y = Op(1) and E[W ] ∈ (ε, 1− ε) for 0 < ε < 0.5.

V̂ (d)− V0(d)

=

∑n
i=1 Ui∑n
i=1 Wi

− E[U ]

E[W ]

=
n−1

∑n
i=1(Ui − E[U ])

n−1
∑n

i=1Wi

− n−1E[U ] ·
∑n

i=1 (Wi − E[W ])

(n−1
∑n

i=1Wi)E[W ]

=
n−1

∑n
i=1(Ui − E[U ])

E[W ] + oP (1)
− n−1E[U ] ·

∑n
i=1(Wi − E[W ])

E[W ](E[W ] + oP (1))

=
n−1

∑n
i=1(Ui − E[U ])

E[W ]
− n−1E[U ] ·

∑n
i=1(Wi − E[W ])

(E[W ])2
+ oP (1)

According to (ii) of Theorem 18.7 in Kosorok (2008)

√
n(V̂ (d)− V0(d)) =

√
n

n∑
i=1

ψ̌i + op(1)

for a fixed d, the influence function and its estimator would be

ψ̌i =
(Ui − E[U ])

E[W ]
− E[U ](Wi − E[W ])

(E[W ])2
=

1

E[W ]
Ui −

E[U ]

(E[W ])2
Wi

ψ̈i =
1

W̄
Ui −

Ū

W̄ 2
Wi

where R follows a similar form as ψ̌i.
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Proof of Theorem 2.1

Proof. Let Ui = Yi1{Ai=d̂
(−i)
n (Xi)}

P (Ai|Xi)
,Wi = 1{Ai=d̂

(−i)
n (Xi)}

P (Ai|Xi)
, Un = n−1

∑n
i=1 Ui, and

Wn = n−1
∑n

i=1Wi. First,

µn = E[Un] = n−1

n∑
i=1

E

[
Yi1{Ai = d̂

(−i)
n (Xi)}

P (Ai|Xi)

]
= E

[
Y 1{A = d̂n−1(X)}

P (A|X)

]
.

Denote µ̃n = E
[
Y 1{A=d̂n(X)}

P (A|X)

]
, then

µn − µ̃n = E
[

Y

P (A|X)

(
1{A = d̂n−1(X)} − 1{A = d̂n(X)}

)]
≤ ME

[
1{A = d̂n−1(X)} − 1{A = d̂n(X)}

]
+E

[
|Y |

P (A|X)
1

{
|Y |

P (A|X)
> M

}]
→ 0

where the convergence is based on Assumption 2.1 for the first term and Assumption 2.2, which

implies finite first moment, for the second term. Given the first term in Assumption 2.2, we have

the following property of the variance

Var[Un] = n−1Var

[
n∑
i=1

Ui

]

= n−2

n∑
i=1

n∑
j=1

[E(UiUj)− E(Ui)E(Uj)]

= n−2

n∑
i=1

n∑
j=1

[
E

(
YiYj1{Ai = d̂

(−i)
n (Xi)}1{Aj = d̂

(−j)
n (Xj)}

P (Ai|Xi)P (Aj|Xj)

)
− µ2

n

]

→ n−2

n∑
i=1

n∑
j=1

[
E

(
YiYj1{Ai = d̂

(−i,−j)
n (Xi)}1{Aj = d̂

(−i,−j)
n (Xj)}

P (Ai|Xi)P (Aj|Xj)

)
− µ2

n

]

= n−2

n∑
i=1

n∑
j=1


[
E

(
Y 1{A = d̂n−2(X)}

P (A|X)

)]2

− µ2
n
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→ n−2

n∑
i=1

n∑
j=1

(µ2
n − µ2

n) = 0

where the convergences are based on Assumption 2.1. Thus, we have shown that

E[Un]− µ̃n → 0

Var[Un] → 0

Applying the same arguments as above to Wn with Assumption 2.1 and the second term in

Assumption 2.2,

τn = E[Wn] = E

[
1{A = d̂n−1(X)}

P (A|X)

]

τ̃n = E

[
1{A = d̂n(X)}

P (A|X)

]
= E

{
E

[
1{A = d̂n(X)}

P (A = d̂n(X)|X)

∣∣∣∣X
]}

= 1,

and similarly

E[Wn]− 1 → 0

Var[Wn] → 0

Thus by the weak law of large numbers (WLLN),

Un − µ̃n →
p

0 andWn − 1→
p

0

which yields
Un
Wn

− µ̃n →
p

0

by the multivariate continuous mapping theorem. This completes the proof because

µ̃n = E

[
Y 1{A = d̂n(X)}

P (A|X)

]
= E[Y d̂n(X)] = E[Y |A = d̂n(X)]
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by applying a version of Radon-Nikodym derivative (i.e. dP d
dP

= 1{a = d(x)}/P (a|x) where P

denotes the distribution of (X, A, Y ) and P d denotes the distribution of (X, A, Y ) under the

decision rule d (Qian and Murphy, 2011)) and since

∑n
i=1

Yi1{Ai=d̂
(−i)
n (Xi)}

P (Ai|Xi)∑n
i=1

1{Ai=d̂
(−i)
n (Xi)}

P (Ai|Xi)

− E[Y |A = d̂n(X)] =
Un
Wn

− µ̃n.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 2

This chapter contains technical details including as assumptions, proofs, definitions, and

other materials supplemental to the main text of Chapter 3.

Derivation of Cauchy-Schwarz Divergence Loss

The Cauchy-Schwarz divergence loss was originally derived from Cauchy-Schwarz inequal-

ity and have the following forms to describe the “distance” between two vectors or two probability

density functions (PDFs), respectively

Dcs(x,y) = − log
xTy

||x||2||y||2

Dcs(p, q) = − log

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

.

We first convert the random variables in (3.16) from {−1, 1} to {0, 1} so they match with the

notations of Bernoulli distributions, i.e., U(d) = 1{A · sign(Y − r̂(X)) = 1} = U ⊥ d and

W (d) = 1{d(X) = 1}, where d is short for d(x). Thus,

1{A · sign(Y − r̂(X)) 6= d(X)} = 1{U(d) 6= W (d)}.

Let w(d) = P (W (d) = 1) = P (d(x) = 1) = ef(x)

1+ef(x)
= p(f(x)) for some function f(x) and

u(d) = u. Note that u ⊥ d. We use the PDF version of Cauchy-Schwarz divergence loss to

rewrite the 0-1 loss into
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Dcs(u,w) = − log

{ ∑
d uw(d)√∑

d u
2
∑

dw
2(d)

}

= − log

{ ∑
dw(d)√∑
dw

2(d)

}
+ c

= − log


(

ef(x)

1+ef(x)

)u (
1

1+ef(x)

)1−u

√(
ef(x)

1+ef(x)

)2

+
(

1
1+ef(x)

)2

+ c

= − log

{
euf(x)

1+ef(x)

(1+e2f(x))1/2

1+ef(x)

}
+ c

= −uf(x) +
1

2
log
(
1 + e2f(x)

)
+ c

= −1{a · sign(y − r̂(x)) = 1}f(x) +
1

2
log
(
1 + e2f(x)

)
+ c

where c is a constant. The third equality comes from the reasoning that d(x) = 1 when

P (d(x) = 1) = ef(x)

1+ef(x)
> 1

2
which is when f(x) > 0. Thus, d(x) = sign f(x). The second

term in the last line is a function in the form φ(t) = 1
k

log(1 + ekt) which serves as a penalty

term for regularization of f(x). For a fixed k > 0, it approaches to 0 when t→ −∞ and grows

infinitely large when t→∞. The derivative of this function when k = 1 is the famous sigmoid

function et

1+et
= (1 + e−t)−1.

Proof of Theorem 3.2

This is a proof of the consistency of weighted bootstrap for fixed θ ∈ Θ, which is a special,

simpler case of the original consistency statement ∀θ ∈ Θ.

Proof. For simplicity, denote fθ = fθ(Xi). First, we show that the expectation is 0.

E

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

)
h(fθ,Xi, Ai)

∣∣∣∣∣ ≤ n−1

n∑
i=1

E
∣∣∣ωi
m
− p̂i

∣∣∣ · |h(fθ,Xi, Ai)|

= n−1

n∑
i=1

∣∣∣∣mp̂im
− p̂i

∣∣∣∣ · |h(fθ,Xi, Ai)| = 0
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Second, we show the variance converges to 0.

V ar

∣∣∣∣∣n−1

n∑
i=1

(ωi
m
− p̂i

)
h(fθ,Xi, Ai)

∣∣∣∣∣
≤ V ar

(
n−1

n∑
i=1

∣∣∣ωi
m
− p̂i

∣∣∣ · |h(fθ,Xi, Ai)|

)

= n−2

n∑
i=1

n∑
j=1

Cov
[∣∣∣ωi
m
− p̂i

∣∣∣ · |h(fθ,Xi, Ai)|,
∣∣∣ωj
m
− p̂j

∣∣∣ · |h(fθ,Xj, Aj)|
]

≤ n−4

n∑
i=1

n∑
j=1

Cov (ωi, ωj) · |h(fθ,Xi, Ai)| · |h(fθ,Xj, Aj)|

= n−2

n∑
i=1

n∑
j=1

(mp̂i(1− p̂i)1{i = j} −mp̂ip̂j1{i 6= j}) · |h(fθ,Xi, Ai)| · |h(fθ,Xj, Aj)|

= n−4

[
n∑
i=1

(
mp̂i(1− p̂i)h2(fθ,Xi, Ai)

)
−

n∑
i,j=1,i 6=j

mp̂ip̂j|h(fθ,Xi, Ai)| · |h(fθ,Xj, Aj)|

]

≤ n−3

[
n∑
i=1

p̂i(1− p̂i)h2(fθ,Xi, Ai)−

(
n∑
i=1

p̂i|h(fθ,Xi, Ai)|

)2

+
n∑
i=1

p̂2
ih

2(fθ,Xi, Ai)

]

= n−3

 n∑
i=1

p̂ih
2(fθ,Xi, Ai))−

(
n∑
i=1

p̂i|h(fθ,Xi, Ai)|

)2


≤ n−3

n∑
i=1

h2(fθ,Xi, Ai)

≤ n−3

n∑
i=1

H(Xi) = op(1)

The last inequality is because H(X) is the envelope of {h(fθ,X, A : θ ∈ Θ)}.

Definitions of Value Functions

We use the same CV definition of value function estimate and its variance estimator as

in Jiang et al. (2020b). Let j = 1, . . . ,MK denote allMK tuning folds regardless repetition
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acrossM repetitions andK CV folds and i = 1, . . . , nj be the ith observation in the jth overall

fold. The CV estimated value function was used to compare tuning performance as in

V̂ cv(d̂(−j)
ntr ) =

∑MK
j=1

∑nj
i=1 Uji∑MK

j=1

∑nj
i=1Wji

whereWji =
1{Aji=d̂

(−j)
ntr (Xji)}

P̂ (Aji|Xji)
, Uji = YjiWji, d̂(−j)

ntr is the decision rule estimated from a training

set of size ntr with the jth fold left out, and P̂ (Aji|Xji) is the estimated propensity score (known

for randomized trials). Its standard deviation was used to measure the estimation uncertainty

V̂ar[ V̂ cv(d̂(−j)
ntr )] =

1

K(MK − 1)

MK∑
j=1

nj∑
i=1

R2
ji

where Rji = 1
W̄j
Uji − Ūj

W̄ 2
j
Wji is an influence function-inspired form of the value function with

Ūj =
∑nj

i=1 Uji and W̄j =
∑nj

i=1 Wji. By definition,
∑MK

j=1

∑nj
i=1Rji = 0.

For testing results, there is no CV so j = 1, . . . ,M . The estimated value function is

V̂ (d̂nte) =

∑nte
i=1 Ui∑nte
i=1Wi

where Ui,Wi are defined similarly as the Uji,Wji but with i = 1, . . . , nte and decision rule d̂nte .

Its standard deviation is

V̂ar[V̂ (d̂nte)] =

∑M
j=1(V̂ (d̂nte,j)− V̄ (d̂nte,M))2

M − 1

where d̂nte,j is the single estimated decision rule from the jth repetition and V̄ (d̂nte,M) =∑M
j=1 V̂ (d̂nte,j) is the average estimated value functions overM single estimated decision rules.

Computation Time

Below is computation time in seconds for all the dimensions and scenarios in Section 3.3

simulations. Trends are generally consistent across dimensions and scenarios. More specifically,

`1-PLS is the fastest for all scenarios and dimensions, followed by Q-RF, AOL-L, and RWL-L.
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AOL-L or AOL-VSL is faster than RWL-L, which confirms that AOL is an improvement of RWL

in terms of speed. The computation time increases by a lot for RWL-L when the dimension

increases from 5 to 100. Both DDROWL methods are faster than AOL methods. Note that

number of simulations vary. For example, p = 5 has large DKL-1L computation time because we

tuned on 100 simulations whereas the rest of DKL were tuned on 10 simulations. Computation

time is roughly on the same scale across scenarios and vary within reasonable margins. So far

the different scenarios and dimensions have been programmed to multiple processed, and one

future improvement is to parallelize the 100 simulations to speed up the computation.

More Preprocessing Details of the NACC Clinical and Imaging Data

Variables related to smoking (e.g., consumption of tobacco in the past 30 days, number of

years smoking, whether or not the subject quit smoking, etc.) are combined into two variables: an

indicator of current smoker (has quit smoking, or no tobacco consumed in the last 30 days) and

an indicator of ever smoked (smoked cigarettes in the last 30 days, or more than 100 cigarettes

in life, or non-zero years of smoking, or at least 1 cigarette smoked per day on average).

Diabetes is redefined as a binary variables with 1 representing Type 1, Type 2, or other type

of diabetes such as diabetes insipidus, latent autoimmune diabetes /Type 1.5, and gestational

diabetes, and 0 representing no diabetes reported.
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Table B.25: Computation time in seconds for each scenario and model, ntr = 800

p = 5
Model/ Scenario 1 2 3 4
`1-PLS 190 170 170 168
Q-RF 4609 4067 4249 4227
RWL-L 87421 223820 70889 157953
AOL-L 726 750 444 473
AOL-G 395415 416133 352826 307203
FFNN-1L 178469 158252 183132 183061
FFNN-2L 158845 157140 159840 159615
DKL-1L 855820 829547 783503 800124
DKL-2L 212892 220662 214471 212960

p = 25
Model/ Scenario 1 2 3 4
`1-PLS 311 311 308 314
Q-RF 5595 5578 5764 5830
RWL-L 315525 301377 363569 369956
AOL-VSL 18769 22477 17027 19253
FFNN-1L 149716 112517 101992 113389
FFNN-2L 139633 152411 399695 300425
DKL-1L 115756 118899 108750 118899
DKL-2L 232065 249131 241691 229938

p = 100
Model/ Scenario 5 6 7 8
`1-PLS 773 720 3495 3517
Q-RF 47960 49174 46692 69191
RWL-L 133812 136468 270067 1066383
FFNN-1L 511830 513246 602744 615860
FFNN-2L 328991 342228 277136 324328
DKL-1L 172889 135249 126635 162101
DKL-2L 280842 363113 339546 326032

p = 800
Model/ Scenario 5 6 7 8
`1-PLS 3157 2947 1449 1763
Q-RF 10092 10837 10077 22648
FFNN-1L 615814 637164 626503 627302
FFNN-2L 534719 577726 576447 434781
DKL-1L 525672 548699 540052 524156
DKL-2L 269259 340318 370372 363733
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 3

This chapter contains technical details including as definitions, extra analysis results, and

other materials supplemental to the main text of Chapter 4.

Additional Clinical Results

When there are three years of training data, Section 4.4.4 shows estimated coverage of

MRSA incidence in 2012-2014 and 2015 using 2012-2014 training data. The corresponding

PA incidence coverage is summarized in Table C.26 and we see that PA has similar patterns as

MRSA. There is again overcoverage for the 2015 validation but not the 2012-2014 validation. The

absolute coverage difference decreases as confidence level increases, with almost no overcoverage

when confidence level is 0.995. This section also contains distribution comparison between

estimated and observed survival events for both MRSA and PA (see Figure C.12). The top figure

has more incidence cases because it has 2012-2014, three years of data, compared with the

bottom figure which has only 2015 data. Visually inspecting the histograms, we conclude that

the estimated and observed distributions are both skewed to the right with similar modes and

tails, regardless of bacteria and training data. Additionally, the estimated Spearman correlation

coefficients are 0.87 (MRSA) and 0.91 (PA) for 2012-2014 validation and 0.58 (MRSA) and

0.80 (PA) for 2015 validation, all of which are moderate to strong correlations. Overall the

correlations are stronger for CF data than simulated data and we speculate this is due to model

setting, parameter estimation, and how much variance can be explained by the covariates.

113



Table C.26: Results of risk-adjusted PA incidence model of 2012-2014 CFFPR data validated on
2012-2014 and 2015 data separately, where α is significance level,m number of blocks in block
jackknife estimation of variance, Coverage is proportion of programs whose true number of
incidence cases in the test set is contained in the risk-adjusted 1− α confidence interval trained
on 2012-2014 data, and AbsCovDiff is absolute difference between the coverage and 1− α.

PA 2012-2014 Validation 2015 Validation
1− α m Coverage AbsCovDiff Coverage AbsCovDiff

0.7 5 0.59 0.110 0.89 0.190
10 0.64 0.060 0.93 0.230
15 0.67 0.030 0.94 0.240

0.8 5 0.69 0.110 0.94 0.140
10 0.73 0.070 0.95 0.150
15 0.78 0.020 0.95 0.150

0.9 5 0.83 0.070 0.97 0.070
10 0.86 0.040 0.97 0.070
15 0.89 0.010 0.97 0.070

0.95 5 0.90 0.050 0.98 0.030
10 0.92 0.030 0.98 0.030
15 0.93 0.020 0.99 0.040

0.995 5 0.96 0.035 0.99 0.005
10 0.96 0.035 0.99 0.005
15 0.97 0.025 0.99 0.005
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Figure C.12: Histogram of estimated versus observed (true) number of 2012-2014 (top) and
2015 (bottom) MRSA and PA incidence cases where the risk-adjusted model is trained from

2012-2014 data
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Glossary for Key Notations Introduced in the Methods Section 4.2

1. ∗: The indicator of the block jackknife data, as opposed to the original data.

2. b: The indicator of block in the block jackknife.

3. β0: The covariate coefficient in the intensity process R0j , assuming effects are the same

for all i, j, k’s.

4. β̂l: The indicator of multiple imputation copy.

5. ˆ̄βM : The pooled estimator of β0 averaged over acrossM β̂nl’s.

6. β̂nl: The estimator of β0 from the frailty model for the lth multiple imputation dataset.

7. β̂(−v)
nl : The estimator of β0 from the frailty model for the lth multiple imputation dataset

but with the vth level-1 group taken out.

8. cj: Total number of unique level-2 group variable (i) in the jth level-1 group.

9. dΛ̂nl(t): The estimator of the hazard function at time t for the lth multiple imputed data.

10. dΛ̂nl(t): The estimator of the hazard function at time t for the lth multiple imputed data.

11. dΛ̂
(−v)
nl (t): The estimator of the hazard function at time t for the lth multiple imputation

data but with the vth level-1 group taken out.

12. dNijk(t): The indicator of an observed survival event at time t.

13. i: The indicator of level-2 group variable in the survival data with a three-level hierarchical

structure, e.g., CF patient (the middle level).

14. j: The indicator of level-1 group variable in the survival data with a three-level hierarchical

structure, e.g., CF program (the highest level).

15. k: The indicator of observations in a level-2 group, e.g., visits at a CF program.
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16. Lijk: The lower bound of the at-risk interval for the jth level-1, ith level-2, and kth

encounter; used in dλ̂nl(s).

17. M : Number of multiple imputation copies.

18. m: Number of blocks in the block jackknife.

19. mij: Total number of observations (denoted by k) in the ith level-2 group and the jth

level-1 group.

20. N : Total number of unique level-1 group variable (j).

21. Nj: The observed number of survival events for the j level-1 group.

22. N̂jl: The estimated number of survival events for the jth level-1 group and lth multiple

imputed data.

23. N̂j•: Th e estimated number of survival events for the jth level-1 group acrossM multiple

imputations.

24. N̂j

(
β̂∗

(−b)
, dΛ̂∗

(−b))
: The estimated survival events for the jth level-1 group based on

estimated parameters of data with the bth block removed.

25. N̂ (−v)
jl : The estimated survival events for the jth level-1 group based on estimated parame-

ters of data with the vth level-1 group removed.

26. n: Total sample size, n =
∑N

j=1

∑cj
i=1mij .

27. p: The dimension of Zijk(t); number of all covariates of interest.

28. qm,N : The number of elements in each block of the block jackknife method.

29. R0j: The true intensity process for the jth level-1 group.

30. S∗j : The estimated variance of the survival events pooled across all m block jackknife

datasets.
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31. S∗jl: The estimated variance of the survival events pooled across all m block jackknife

datasets using the lth multiple imputation data as the original data.

32. ŝ2
j•: The estimated multiple imputation variance in the jth level-1 group.

33. Tijk: At-risk time interval for the kth encounter, the ith level-2 group, and the jth level-1

group.

34. T̂j: The test statistic of the Z-test comparing the estimated number of events with the

observed number of events.

35. t: Time.

36. θ̂∗
(−b)
j : The estimator of the survival events for the jth level-1 group based on estimated

parameters of data with the bth block removed.

37. θ̄∗j : The estimated survival events pooled across allm block jackknife datasets.

38. Uijk: The upper bound of the at-risk interval for the jth level-1, ith level-2, and kth

encounter; used in dλ̂nl(s).

39. ˆ̃
V j: The estimated variance of the estimated number of survival events N̂j•.

40. V̂j•: The estimated across-group variance in the jth level-1 group.

41. V ar
(

ˆ̄βM

)
: The pooled estimator of the variance of β0 acrossM multiple imputations of

βnl.

42. v: Indicator of the level-1 group that is taken out of training set in the jackknife method.

43. Zijk(t): The p-dimensional covariate variable at time t including both time-invariant and

time-varying variables, for the kth event, the ith level-2 group, and the jth level-1 group.

44. Zijkl(t) The p-dimensional covariate variable in the lth multiple imputed data at time t

including both time-invariant and time-varying variables, for the kth encounter, the ith

level-2 group, the jth level-1 group.
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