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ABSTRACT

Giang Nguyen: The High Frequency Economics of Government Bond Markets
(Under the Direction of Eric Ghysels)

This dissertation is a collection of four essays examining different aspects of government bond markets,
with a special focus on the US Treasury securities. The first is a study of the microstructure of BrokerTec, the
larger of the two electronic interdealer trading platforms for US Treasury securities, providing institutional
background essential for subsequent studies. We characterize empirically market activities and the price
discovery process. We show that both limit orders and trades affect prices, and that these effects are greater
around monetary policy announcements. Contrary to previous findings pertaining to equity markets, we find
that iceberg orders, which allow traders to hide liquidity, are not used frequently, even around volatile times.

The second essay examines a frequently used channel of hidden liquidity — the workup protocol. We
ask whether trading activities during workups contain any private information and leave harmful effects on
uninformed traders. We find that workup activities account for a significant portion of market liquidity not
ex ante observable, but they tend to be less informative than transparent trades. We show that workups are
used more often, but contain relatively less information, around volatile times, indicating that workups tend
to be used as a channel to guard against adverse price movements, rather than as a channel to hide private
information.

In the third essay, we propose a novel model to study jointly the intraday dynamics of liquidity and price
risks, two important determinants of bond yields. We show that liquidity declines sharply during the 2008
crisis and on flight—to—safety days, accompanied by increased price volatility. Our model reveals a negative
feedback effect between liquidity and volatility, and that each becomes more persistent during the crisis.

The fourth study provides an international perspective by studying the propagation of liquidity and
volatility shocks during the 2010-2012 sovereign debt crisis across major euro-area bond markets, namely
Belgium, France, Germany, Italy, the Netherlands, and Spain. We show that liquidity is generally the more
important source of shocks transmitted across the borders, and this transmission largely originates from Italy

and around the Italian crisis.
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CHAPTER 1
INTRODUCTION

This dissertation is a collection of four essays on the high—frequency economics of government bond
markets, with a special focus on the market for securities issued by the U.S. Government. Currently, the total
outstanding amount of US Treasury securities exceeds $11 trillion. This market serves many vital roles in the
financial system, not only in the U.S. but also around the globe with foreign countries holding nearly half of
all Treasuries outstanding. The securities’ creditworthiness and sheer liquidity make them a main instrument
of monetary policy, a key store of value, a crucial source of collateral for financial transactions and a pricing
benchmark for other financial assets.

The need to understand market dynamics in this important market at increasingly high frequencies arises
from recent trends in trading. Since the Securities and Exchange Commission (SEC) authorized electronic
markets in 1998, speed competition and technological advancements have turned the trading environment into
one highly automated by computer algorithms and in which even a few milliseconds can affect the trading
outcome (e.g., the Flash Crash of May 2010). The past few years have seen a growing body of literature
seeking to further our knowledge of the new high speed trading environment. However, most research
addresses equities markets. The Treasury market, despite its vital roles, remains much less studied, in part
due to data availability (or lack thereof). The dissertation helps bridge this gap by providing a comprehensive
analysis of this market along several dimensions of great interest to market participants, policy makers and
academic researchers.

The first essay provides a detailed examination of an electronic trading platform for US Treasury
securities, the BrokerTec platform (the larger of the two electronic interdealer trading platforms). Our
findings suggest a level of liquidity on the BrokerTec platform that is improving over time and markedly
greater than that found by other studies using data from the period before trading in these Treasury securities

went electronic.



Importantly, we examine the price impact of not only trades but also of order book activities not previously
available for the Treasury market. In fact, given the sheer amount of limit order book activities in comparison
to trades, there is a lot to be learned about how these activities affect price dynamics. Furthermore, limit
orders are often considered as supplying liquidity and market orders consuming it. Accordingly, our study
can delineate the response of price to shocks in liquidity supply from that to shocks in liquidity demand. and
show that limit orders as well as trades affect prices. In particular, the price impacts are found to be greater
around monetary policy announcements, an important type of information events in this market.

In addition, we shed lights on the use of iceberg orders to hide liquidity in this fixed income market, an
analysis not heretofore possible for Treasury securities. Several of our findings are consistent with the equity
market evidence, but more importantly, we contribute evidence novel to the U.S. Treasury market. We find
that iceberg orders are used much less often than in other markets examined in the literature. Furthermore,
contrary to some earlier evidence on iceberg orders in equity markets, we find that Treasury traders are less
likely to use iceberg orders when they post more aggressively priced limit orders, or when the market is more
volatile, precisely when traders need greater protection.

The puzzling lack of popularity of iceberg orders contrasts sharply with the high usage of the workup
protocol, an alternative mechanism to hide liquidity. This is the main subject of the second study. We examine
this protocol and ask whether trading activities induced by this protocol, which generally account for more
than half of market liquidity, are motivated by private information.

The contribution of this work extends beyond a study of a specific microstructure feature of the U.S.
Treasury market. First, the workup mechanism is essentially a dark pool trading mechanism. Our study
provides the first set of evidence on dark pool trading in a fixed income market setting. It is therefore a timely
addition to the literature on dark pool trading and the current discussion among researchers and policy makers
on the effects and implications of dark pool activities on market quality and welfare. We find that volatility
tends to generate more workups, but that those workups tend to be less informative, suggesting the value of
this dark pool mechanism in protecting traders against adverse price movements. In general, the amount of
private information hidden in this Treasury dark pool is quite small, easing concerns that the dark pool could
harm less informed traders.

Secondly, our work helps inform the current debate on market design response to high frequency trading.
High frequency trading, or computer-driven trading in general, has increased significantly over the last few

years — a trend dubbed “rise of the machines” in Chaboud et al. (2013). There is a continual need to devise



new market design features to keep up with changing trends in trading, and to understand the implications of
those features. The BrokerTec market design with the workup protocol fits neatly into this discussion via
an interesting mix of continuous auction (the limit order book) and periodic call auctions (workups). Our
empirical results readily provide a glimpse of the implications of such a market feature on price discovery
and trading patterns.

With the first two studies providing a micro foundation for our understanding of the trading environment
in the US Treasury market, the third study aims to understand the dynamics of liquidity and volatility, two
important determinants of Treasury securities values. To this end, we propose a new class of econometric
models to capture jointly the dynamics of liquidity and volatility at a high frequency interval (i.e., five-
minute). Our models address several interesting questions for the US Treasury market. Is liquidity supply
available when it is needed most? How is liquidity supply driven by uncertainty and other market factors, and
conversely, does the supply of liquidity have any role in dampening or magnifying volatility in the market?
How do the dynamics of the Treasury limit order book differ around the time of economic announcements,
through the recent financial crisis, and during flight-to-safety episodes? Most of the previous studies use data
prior to the 2008 crisis period, leaving market dynamics during the crisis — the most serious to hit the global
economy since the Great Depression — much less understood.

We show that liquidity posted in the order book is lower on flight-to-safety days, when liquidity is
especially needed. However, a high level of trading activity is also observed on those days, along with an
elevated level of price uncertainty. These patterns collectively suggest that liquidity providers monitor the
market more closely on these days and refrain from using limit orders to passively supply liquidity to the
market. In general, price volatility and liquidity supply at the best price tier are negatively interrelated and
each becomes more persistent during the crisis. This dangerous combination provides a great illustration to
models of liquidity crashes (for example, Cespa and Foucault (2012)) in that bad shocks to either volatility or
liquidity can intensify the negative feedback effect, leading to liquidity crashing while volatility spiking up.
Our models also provide consistent evidence with the earlier literature that depth is withdrawn immediately
before important economic announcements but then quickly gets refilled once the announcement is released,
accompanied by a surge in trading activity and price uncertainty.

If the third essay focuses solely on the interaction between volatility and liquidity within the same bond
market, namely the market for US Treasury securities, the final essay provides an international perspective by

studying shock transmission across multiple bond markets. Shock propagation during a crisis is a particular



concern for policy makers. The euro area sovereign debt crisis provides a valuable opportunity to study bond
market linkages and spillover effects. In addition, with some of the bond markets in the area being among the
largest in the world, only after the US and Japan markets, the findings of this study complement nicely what
we have learned from the US government bond market.

We first measure spillovers via a forecast error variance decomposition of a vector autoregressive model,
which captures jointly the dynamics of liquidity and volatility in the government bond markets of Belgium,
France, Germany, Italy, the Netherlands, and Spain. The model controls for common trends in sovereign
credit risk, financial sector credit risk, funding conditions, aggregate default risk, and proxies for regional and
global risk aversion. As in the US Treasury market, liquidity and volatility in these euro area bond markets are
closely inter-related, but we show that liquidity is generally the stronger force driving this inter-relationship.

We further show that liquidity is more responsive to macroeconomic developments and also the more
important source of shocks transmitted across borders during the euro-area sovereign bond crisis. Our
framework permits an assessment of the systemic role of each bond market during the crisis. The evidence
consistently points to Italy as the sole net sender of liquidity shocks to other countries in the region.
Furthermore, this transmission is greatest around the Italian crisis, as compared to that around the crisis

associated with the other smaller sized periphery countries (i.e., Greece, Ireland, Portugal and Spain).



CHAPTER 2
THE MICROSTRUCTURE OF A US TREASURY ECN

2.1 Introduction

Since the early 2000’s, trading in the U.S. Treasury securities market has migrated from voice-assisted
brokers to fully electronic platforms (Mizrach and Neely (2006)). For the most recently auctioned securities
in particular, the transition has been nearly complete, with nearly all interdealer trading now taking place via
one of two electronic communications networks, BrokerTec and eSpeed (Barclay et al. (2006)). BrokerTec
accounts for about 60% of trading activity (based on comparison with earlier studies using data from eSpeed).

This chapter assesses the microstructure of the U.S. Treasury securities market using tick data from
BrokerTec. It is the first paper to closely study a U.S. Treasury market electronic communications network
(ECN) and one of the first to analyze any fixed income market ECN.! Many previous papers have examined
the microstructure of the Treasury market using data from GovPX, which consolidates data from voice-
assisted brokers.> The migration of bond trading to the electronic platforms (which do not contribute to
GovPX) has sharply reduced GovPX coverage of the interdealer market, as noted by Boni and Leach (2004)
and others. The breadth of the BrokerTec tick data allows us to provide a comprehensive analysis of the

market’s microstructure as orders enter and leave the order book, and characterize market liquidity beyond

!Campbell and Hendry (2007) examine price discovery in the 10-year note using transactions data from BrokerTec. Mizrach and
Neely (2006) estimate bid-ask spreads and market impact using transactions data from eSpeed. Additional studies examine the
euro area sovereign debt market using data from MTS (e.g., Cheung et al. (2005), Menkveld et al. (2005), and Beber et al. (2009)).
In addition, since the first draft of this chapter, there are several studies that look at different aspects of this market, including
Dungey et al. (2013) for trade duration on eSpeed, Engle et al. (2012c) for intraday dynamics of market liquidity and volatility on
BrokerTec, and Fleming and Nguyen (2013) for the order flow segmentation induced by the workup protocol on BrokerTec and the
informational content of workup and non-workup trades.

’Fleming (1997) characterizes intraday liquidity, Fleming and Remolona (1997), Fleming and Remolona (1999), Balduzzi et al.
(2001), Huang et al. (2002), and Fleming and Piazzesi (2005) look at announcement effects, Fleming (2002) examines the
relationship between issue size and liquidity, Fleming (2003), Brandt and Kavajecz (2004), Green (2004), and Pasquariello and
Vega (2007) assess the information content of trades, Goldreich et al. (2005) gauge the relationship between liquidity and value, and
Brandt et al. (2007), Campbell and Hendry (2007), and Mizrach and Neely (2008) compare the information content of trades in spot
and futures markets.



the inside tier for the first time. This is an important improvement, as the BrokerTec data shows that the inside
tier depth is often not greatest in the book, and accounts for only a small fraction of the book’s total depth.?

In addition, electronic trading facilitates greater speed of order manipulation and execution, permits an
increased role for computer-driven and automated trading processes, and enables better market information
collection, dissemination and processing. Coupled with the rise in electronic trading is a newly emergent
trend in high frequency and/or algorithmic trading, the so-called “rise of the machines” (Chaboud et al.
(2013)). Therefore, there is a great interest in understanding this new market structure and its level of trading
activity and market liquidity from both academic and practitioner points of view.

Using tick data from 2010 to 2011, we characterize trading activity and liquidity on the BrokerTec
platform for the on-the-run 2-, 3-, 5-, 7-, 10-, and 30-year Treasury securities.* Our findings suggest a level
of liquidity on the BrokerTec platform that is improving over time and markedly greater than that found by
earlier studies using data from GovPX. Since BrokerTec’s inception, trading activity has grown many folds,
e.g., starting at below $5 billion per day in 2001 to between $30-40 billion per day in 2011 for the 5- and
10-year notes. Over the 2010-2011 period, inside bid-ask spreads for maturities of five years or less average
less than 1/100th of one percent. An average of over $300 million is available on the platform at the best
price on either side for the 2-year note, $80 million for the 3-year note and in the $30 million range for each
of the three remaining notes. There are even greater amounts available at the adjacent price tiers. Across the
whole book, there is about $2.4 billion on each side for the 2-year note, $700 million for the 3-year note, and
around $400 million for the 5- and 10-year notes.

Besides being the first to provide a comprehensive picture of a U.S. Treasury ECN, we make two further
contributions. First, while previous studies have assessed price impact using GovPX trade data (e.g. Fleming
(2003), Brandt and Kavajecz (2004), and Green (2004)), we examine the price impact of not only trades but
also of order book activities not previously available for the Treasury market. In fact, given the sheer amount
of limit order book activities in comparison to trades, there is a lot to be learned about how these activities
affect price dynamics. Furthermore, limit orders are often considered as supplying liquidity and market orders
consuming it. Accordingly, it is important to delineate the response of price to shocks in liquidity supply

from that to shocks in liquidity demand.

3This fact has also been documented for equity limit order markets (e.g., Biais et al. (1995)).

*On-the-run securities are the most recently auctioned securities of a given maturity



We first calculate the permanent price impact of trades following the framework in Hasbrouck (1991a).
We then extend this model to include limit order flow, separately for the bid and ask sides. Our work builds
upon earlier studies of equity markets that incorporate order book information into the market impact function
(e.g., Engle and Patton (2004), and Mizrach (2008)). A recent paper by Hautsch and Huang (2012a) uses a
vector error correction model to analyze the dynamics of the limit order book for select NASDAQ stocks, and
compute the price impact of orders of different types, sizes, and levels of price aggressiveness. They show
that limit orders also have significant market impact.

We find that the price impact of trades on BrokerTec is quite small, but increases in maturity of the
securities considered, ranging from 0.006/256th for the 2-year note to 0.450/256th for the 30-year bond per
$1 million buyer-initiated volume. Equivalently, it takes about $182 million in signed trading volume to
move the price of the 2-year note by 1/256th of one percent of par, whereas the required volume is only $2.2
million to move the price of the 30-year bond by the same amount. Moreover, limit order activities affect
prices, and play an especially large role in the price dynamics of longer-dated maturities. Accounting for
the impact of limit order activities on trading activities and price dynamics, the price impact of trades is
about 9-14% lower for the 2-, 5-, 10-, and 30-year securities, and 26% and 40% lower for the 3- and 7-year
notes, respectively. Our analysis also shows that trades and especially limit orders have a larger price impact
immediately following Federal Open Market Committee (FOMC) rate decision announcements.

Another contribution lies in our analysis of hidden liquidity in the form of iceberg orders. The ability to
enter “iceberg” orders (partially hidden orders) on the BrokerTec platform allows analyses not heretofore
possible for Treasury securities.”> Hidden orders in equity markets have been examined by Harris (1996),
Aitken et al. (2001), Hasbrouck and Saar (2002), Anand and Weaver (2004), Tuttle (2006), De Winne and
D’Hondt (2007a), De Winne and D’Hondt (2007b), Bessembinder et al. (2009), Pardo and Pascual (2012),
and Hautsch and Huang (2012b), among others. We add to this literature by providing the first analysis of
iceberg orders in the trading of Treasury securities. In particular, we study traders’ order submission decision
and explore whether certain order characteristics as well as prevailing market conditions might help predict
the likelihood as well as the extent of hidden size of an iceberg order.

Several of our findings are consistent with the equity market evidence. For example, the use of hidden

depth increases with order size and the prevailing bid-ask spread, intuitively highlighting the benefit of hidden

3Iceberg orders are not used on eSpeed, the other electronic platform for trading U.S. Treasury securities, leaving BrokerTec the only
venue to study traders’ choice with respect to such hidden orders.



orders as a mechanism to prevent information leakage and mitigate adverse selection risk. Additionally, when
there is lower prevailing depth or lower likelihood of future orders whose display size will take precedence
over the current hidden size, hidden orders tend to be used more often, as the cost of using them in terms of
execution probability is lower.

Perhaps more valuable is our contribution of findings that are novel to the U.S. Treasury market. We
find that iceberg orders are used much less often than in other markets examined in the literature. Typically
iceberg orders account for less than 2% of order flow in the Treasury market, compared to 18% for stocks on
Euronext-Paris (Bessembinder et al. (2009)), and 9% for 30 German blue chip stocks on Deutsche Borse’s
Xetra platform (Frey and Sandas (2012). Furthermore, contrary to the evidence documented in Bessembinder
et al. (2009) that traders are more likely to use iceberg orders when they select a more aggressive limit order
price, Treasury traders are generally less likely to do so for quote improving orders, except for the less liquid
7- and 30-year securities.

Another interesting finding of our work is that volatility and hidden order usage are negatively linked. At
first blush, the finding seems counter-intuitive, as it suggests that the more volatile the market, the less likely
that hidden orders will be used, precisely when traders need greater protection. However, if we place this
finding in the context of the Treasury market, in which there exists another mechanism for order exposure
management, namely the workup protocol, we can better understand how it could be the case for this market.
The workup protocol gives market participants the ability to workup order sizes if and when desired, whereas
iceberg orders can be adversely executed when the market is moving so fast that traders cannot cancel
soon enough. As documented in Fleming and Nguyen (2013), workups tend to be used more frequently in
more volatile times, undermining the popularity of iceberg orders. Likewise, hidden orders are used less
often around the release of key macroeconomic reports, FOMC rate decision announcements, and Treasury
auctions. These are moments when the market is eagerly waiting for and trading on the newly released
announcements, so priority in the order queues seems to be an important consideration.

Overall, our work highlights how the electronic market for trading in U.S. Treasury securities differs
from its voice-assisted precedent and from other markets studied in the literature. Comparing with the
voice-assisted trading system, the electronic market facilitates a much greater frequency and volume of trades
and limit order activities, resulting in greater competition for liquidity provision and thus lower bid-ask

spreads and market impact. Comparing with other market setups, the high level of market liquidity and the



presence of the more preferred protocol to manage order exposure in this market are likely related to the lower
usage of iceberg orders and the seemingly greater importance of execution probability in traders’ decisions.

The chapter proceeds as follows. Section 2.2 describes the structure of the interdealer Treasury market.
Section 2.3 describes the BrokerTec data, characterizing trading activity and liquidity in the market. Section
2.4 presents the VAR model of returns and trades, and discusses a number of specifications and the resulting
estimates of the price impact of trades. In Section 2.5, we add order book information to the model and
quantify the price impact of limit orders. Section 2.6 presents our analysis of hidden orders. Section 2.7

concludes.

2.2 Market Structure

The secondary market for U.S. Treasury securities is a multiple dealer, over-the-counter market. The
predominant market makers are the primary government securities dealers those dealers with a trading
relationship with the Federal Reserve Bank of New York. The dealers trade with the Fed, their customers,
and one another. The core of the market is the interdealer broker (IDB) market, which accounts for nearly all
interdealer trading. Trading in the IDB market takes place 22-23 hours per day during the week, although we
find that slightly over 90% of trading occurs during New York hours, roughly 07:00 to 17:30 Eastern time
(comparable with what Fleming (1997) finds using GovPX data).

Until 1999, nearly all trading in the IDB market for U.S. Treasury securities occurred over the phone via
voice-assisted brokers. Voice-assisted brokers provide dealers with proprietary electronic screens that post
the best bid and offer prices called in by the dealers, along with the associated quantities. Quotes are binding
until and unless withdrawn. Dealers execute trades by calling the brokers, who post the resulting trade price
and size on their screens. The brokers thus match buyers and sellers, while ensuring anonymity, even after a
trade. In compensation for their services, brokers charge a fee.

The migration from voice-assisted to fully electronic trading in the IDB market began in March 1999
when Cantor Fitzgerald introduced its eSpeed electronic trading platform. Cantor spun eSpeed off in a
December 1999 public offering. After many ownership changes, eSpeed merged with BGC Partners, an
offshoot of the original Cantor Fitzgerald. In 2013, eSpeed was purchased by NASDAQ OMX Group.

In June 2000, BrokerTec Global LLC, a rival electronic trading platform, began operations. BrokerTec

had been formed the previous year as a joint venture of seven large fixed income dealers. BrokerTec was



acquired in May 2003 by ICAP PLC. Mizrach and Neely (2006) describe the migration to electronic trading
in greater detail, and Mizrach and Neely (2011) provide a summary of the evolution of the microstructure in

the Treasury market.

2.2.1 The Electronic Platforms

BrokerTec and eSpeed are fully automated electronic trading platforms where buyers are matched to sellers
without human intervention. A comparison of BrokerTec trading activity with that of eSpeed reported in Luo
(2010) and Dungey et al. (2013) shows that BrokerTec accounts for around 60% of electronic interdealer
trading in the on-the-run 2-, 5-, and 10-year notes and slightly above 50% for the 30-year bond.

The brokers provide electronic screens which display the best bid and offer prices and associated
quantities. On BrokerTec, for example, a manual trader can see five price tiers and corresponding total size
for each tier on each side of the book, plus individual order sizes for the best 10 bids and offers. For computer-
based traders, the complete order book information is available. Traders enter limit orders or hit/take existing
orders electronically. As with the voice brokers, the electronic brokers ensure trader anonymity, even after a
trade, and charge a small fee for their services.

The BrokerTec platform operates as an electronic limit order market. Dealers send in orders that can be
aggressive (market orders) or passive (limit orders), but they must all be priced. The minimum order size is
$1 million par value. Dealers can enter aggressive orders at a price worse than the current best price. This is
typically the case when dealers need to trade a large quantity for which the limit order quantity at the best
price is not sufficient. The order will first exhaust all depth, both displayed and hidden, at better price levels
until it reaches the originally stated price. Therefore, large aggressive orders can be executed at multiple
prices. However, the incidence of market orders walking up or down the book is very small (below 0.5%).
This is likely due to the large amount of depth usually available at the best price tier, and the ability to work
up volume at a given price point.

The BrokerTec platform allows traders to enter iceberg orders, whereby a trader can choose to show
only part of the amount he is willing to trade. As trading takes away the displayed portion of an iceberg
order, the next installment of hidden depth equal to the pre-specified display size is then shown. This process
continues until trading completely exhausts the iceberg order. It is not possible to enter iceberg orders with

zero displayed quantity; that is, limit orders cannot be completely hidden.
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The priority of execution of limit orders is based on price, display status and time. That is, limit orders
with better prices have higher priority of execution. Displayed limit orders in the same price queue are
executed on a first in, first out basis. Once all displayed depth at a particular price level is exhausted, hidden
depth at that same price — if there is any — is then shown and executed.

Beside iceberg orders, the electronic brokers have retained the workup feature similar to the expandable
limit order protocol of the voice-assisted brokers, but with some important modifications.® On BrokerTec,
the most important change is that the right-of-first-refusal — previously given to the original parties to the
transaction — has been eliminated, giving all market participants immediate access to workups. All trades
consummated during a workup are assigned the same aggressive side as the original market order.” For a

detailed analysis of workup activity in this market, see Fleming and Nguyen (2013).

2.2.2 The Voice-Assisted Brokers: GovPX

Most previous research on the microstructure of the Treasury market has used data from voice-assisted
brokers, as reported by GovPX, Inc. GovPX receives market information from IDBs and re-disseminates
the information in real time via the internet and data vendors. Information provided includes the best bid
and offer prices, the quantity available at those quotes, and trade prices and volumes. In addition to the
real-time data, GovPX sells historical tick data, which provides a record of the real-time data feed for use by
researchers and others.

When GovPX started operations in June 1991, five major IDBs provided it with data, but Cantor
Fitzgerald did not, so that GovPX covered about two-thirds of the interdealer market. Over time, the number
of brokers declined due to mergers, and a new non-contributing electronic broker (BrokerTec) was formed.
By the end of 2004, GovPX was receiving data from three voice-assisted brokers, but neither eSpeed nor
BrokerTec, even though nearly all trading of on-the-run securities had migrated to these fully electronic
brokers. After ICAP’s purchase of GovPX in January 2005, ICAP’s voice brokerage unit was the only

brokerage entity reporting through GovPX.

Boni and Leach (2004) provided a thorough explanation of this feature in the voice-assisted trading system. This feature allows a
Treasury market trader whose order has been executed to have the right-of-first-refusal to trade additional volume at the same price.
As a result, the trader might be able to have his market order fulfilled even though the original quoted depth is not sufficient. That is,
the quoted depth is expandable.

"For a detailed description of the workup process on the BrokerTec platform, see “System and Method for Providing Workup Trading
without Exclusive Trading Privileges”, U.S. Patent number US8,005,745B1, dated August 23, 2011.

11



2.3 Data

Our analysis is based on tick data from the BrokerTec platform. The database provides a comprehensive
record of every trade and order book change over the BrokerTec system for the on-the-run 2-, 3-, 5-, 7-
and 10-year Treasury notes as well as the 30-year Treasury bond. We choose to focus on the period from
January 2, 2010 to December 31, 2011. This is the most recent period for which we have available data. It is
a sufficiently long sample period for a microstructure study, and relatively distanced from the 2007-2009
financial crisis, so that our analysis can provide an up-to-date characterization of the market’s microstructure

in a typical trading environment. For market dynamics during the crisis period, see Engle et al. (2012c).

2.3.1 Data Processing

From BrokerTec’s detailed record of every trade and order book change, time-stamped to the millisecond, we
process the data into two main parts: the trade data and the order book data. The trade data include price,
quantity, and whether a trade was seller-initiated (a “hit”) or buyer-initiated (a “take”). It should be noted that
BrokerTec records the execution of a market order against multiple limit orders, as well as further matches
during workups, as separate trade records. We aggregate these multiple trade records that belong to the same
workup as one market transaction for the following reasons. First, treating the individual trade records as
separate and distinct trades would artificially inflate the serial correlation in both trade initiation and signed
trade flow and might compromise econometric modeling and inferences. Furthermore, our aggregation
permits a more precise analysis of market order submission and the price impact of market orders, the size
of which is better measured by the total volume exchanged during a trade and its associated workup. Our
treatment is in line with BrokerTec’s workup patent document which states that a workup is conceptually a
“single deal extended in time”. Nevertheless, the aggregation is not without cost in that it will sometimes
overestimate the market order size.

The second part of the data concerns the limit order book, which we recreate from order book changes
on a tick-by-tick basis, saving as much of the richness of the data as is practical. Each order book change
record specifies the price, quantity change, shown and total quantities for that order, whether the order is a
bid or an ask, and the reason for the change. The book can be changed as a result of limit order submission,
modification, cancellation or execution against market orders. The order book data provide a view of the

Treasury market far more detailed than that provided by GovPX data. In particular, our processed dataset
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not only tells us the best bid and offer and associated sizes at any given time, but also the depth available
outside of the first tier. Moreover, we see the number of individual orders comprising the quantities available
at particular prices. In addition, we are able to discern what quantities were visible to market participants at
the time and what quantities were hidden.

Over our sample of 500 trading days in 2010 and 2011, BrokerTec intermediated almost $63 trillion in
trading of on-the-run coupon securities, or $125.6 billion per day. The activity involved nearly 6 million
transactions (each comprised of one or more trades), or almost 12,000 per day. Moreover, there were roughly
2.4 billion order book changes at the first five price tiers alone for these securities over our sample period,

amounting to over 4.7 million order book ticks per day.

2.3.2 Trends in Trading Activity

To provide a historical perspective of trading activity on the BrokerTec platform since its beginning in the
early 2000’s, Figure 2.1 plots the average daily trading volume by year for the respective on-the-run coupon
securities. As can be observed from the figure, there has been a sharp increase in trading activity over time,
especially in the first seven years of the platform’s history before the financial crisis intensified in late 2008.
For the 10-year note, for example, average daily trading volume grew from $2.9 billion in 2001 to a level
over ten times larger in 2007 and, except for 2009, has remained above $30 billion since. Another interesting
observation is that the 2-year note — which used to be the most actively traded security with an average daily
trading volume of nearly $50 billion in 2008 — has seen lower activity since the crisis as the short rate has
stayed at the zero bound. This contrasts with the post-crisis recovery observed in other securities. In 2010
and 2011, the 5-year note is the most actively traded, closely followed by the 10-year note. Trading in the
other on-the-run securities is far below the level of the 2-, 5- and 10-year notes, although trading in the 3-year
note rose quickly between late 2008 and 2011.

Focusing on the most recent years of 2010 and 2011, Table 2.1 reports average daily trading volume,
trading frequency and trade size for each security. The table shows that trading in the 5- and 10-year notes is
most frequent, with over 3,000 transactions per day, on average. The 5-year note is the most actively traded in
terms of volume, with a daily trading volume exceeding $36 billion. The 30-year bond is also quite frequently
traded with nearly 2,000 transactions per day, but each trade is of much smaller size than that of the other

securities, so that its total daily trading volume of nearly $6 billion is far below the others. On the other hand,
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the 2-year note has the lowest trading intensity, but the largest average trade size, nearly ten times larger than

that of the 30-year bond.

2.3.3 Liquidity Around the Clock

Figure 2.2 plots average BrokerTec trading volume by half-hour interval over the round-the-clock trading day
for our six notes and bonds. To make the intraday patterns comparable across securities, we standardize the
half-hour volume figures by the total daily volume of the relevant security. The findings are very consistent
with what Fleming (1997) finds using GovPX data from 1994, and the patterns are strikingly similar across
the six securities. Trading activity is extremely low during Tokyo trading hours (roughly 18:30 or 19:30
the previous day to 03:00 Eastern time), then picks up somewhat during morning trading hours in London.
Trading then rises sharply during morning trading hours in New York, peaking between 08:30 and 09:00,
and then peaking locally between 10:00 and 10:30. Trading reaches a final local peak between 14:30 and
15:00 and then tapers off by 17:30. This pattern is probably largely explained by scheduled macroeconomic
announcements (most of which are made at 08:30 and 10:00), the hours of open outcry Treasury futures

trading (08:20 to 15:00), and the pricing of fixed income indices at 15:00.

2.3.4 Spreads

The most basic measure of the bid-ask spread is the quoted spread. The inside quoted spread, s;, is defined as

the gap between the best (lowest) ask price, pf, and the best (highest) bid price, pé’, ie.:

b
St :pg—Pt-

The middle column of Table 2.2 shows the average inside bid-ask spread in multiples of tick size of the
relevant security.® Spread is generally increasing in maturity, from 1.03 128ths (2.06 256ths) at the 2-year
maturity to 2.66 64ths (10.64 256ths) at the 30-year maturity. The 10-year note, however, has a narrower
spread than the 7-year note. An interesting feature of the BrokerTec spreads is that they are quite close to the
tick size for all of the notes (but not the 30-year bond), suggesting that the minimum tick increment may

be constraining. Comparing to earlier studies using GovPX data, BrokerTec spreads are generally narrower.

8The tick size for the 2-, 3-, and 5-year securities is 1/128"™ of one percent of par and that for the 7-, 10- and 30-year securities is
1/64™ of one percent of par.
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Fleming (2003), for example, reports average bid-ask spreads of 0.39 32nds (3.12 256ths) for the 5-year note
and 0.78 32nds (6.24 256ths) for the 10-year note, whereas the corresponding BrokerTec spreads are 1.18
128ths (2.36 256ths) and 1.15 64ths (4.60 256ths) respectively for these securities.”

Providing new information on how market depth is spaced along the price dimension beyond the inside
tier, Table 2.2 shows the average price distance between adjacent price levels up to the fifth level in the book.
All of the securities except for the 30-year bond have tightly populated order books at the first five price
levels: adjacent depths are roughly one tick apart, although they get slightly wider further away from the
inside tier.

To supplement the information provided in Table 2, we show in Figure 2.3 the frequency distributions of
inside spreads for the six securities. Immediately apparent from the figure is the high degree of clustering of
inside spreads at one tick, except for the 30-year bond whose distribution is more spread out at wider spread
levels and peaks at two ticks. In particular, nearly 97% of inside spreads for the 2-year note are 2/256ths,
another 3% are 4/256ths, and the negligible remainder is split between 0/256ths and above 4/256ths. Zero
spreads, or “locked” markets, are possible, albeit infrequent, because prices exclude the brokerage fee, and

because passive limit orders at the same price are not automatically executed against one another.

2.3.5 Market Depth

As a limit order market, liquidity on BrokerTec is supplied by limit orders submitted by market participants.
Table 2.3 reports the total visible quantity of limit orders available on average at the best price level, the best
five price levels, and across all price levels on each side of the market. Market depth is generally declining
in maturity, greatest at the 2-year and lowest at the 30-year segment. At the inside price tier, there is about
$300 million available on either side for trading in the 2-year note. It is interesting to observe that while
being the most actively traded, the 5- and 10-year notes’ market depth is on the lower end, averaging $26-31
million, suggesting a higher replenishment rate of liquidity to meet the high trading activity level. The inside
depths reported here greatly exceed average depths on GovPX reported by earlier studies. For the 2-year note,
for example, Fleming (2003) reports average depth on GovPX at the first tier of just $25 million (averaging

across the bid and ask side).

“Note that the prices in both databases do not reflect brokerage fees. Such fees are proprietary, and can vary by customer and with
volume, but are unquestionably lower for the electronic brokers than the voice-assisted brokers.
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In addition, earlier studies using GovPX data are limited to the inside tier, leaving market liquidity
beyond the first tier unknown. As Table 2.3 shows, market liquidity away from the first tier is substantial,
several orders of magnitude larger than that available at the inside tier. Collectively across the best five tiers
on each side, there is over $1.5 billion market depth for the 2-year note, about $470 million for the 3-year
note, in the range of $210-280 million for each of the 5-, 7- and 10-year note, and $28 million for the 30-year
bond. The first five tiers account for about 55-79% of total market depth for the notes and 47% of total market
depth for the bond. That is, the first five tiers collect a disproportionally large amount of depth, given that
there are typically around 16-18 price tiers on each side (slightly higher for the 5- and 10-year notes). The
maximum number of price levels on one side during our sample ranges from 43 for the 30-year bond (on the
bid side) to 101 for the 2-year note (on the ask side).

While depth in the book concentrates among the best five tiers, the inside tier is not the one with the
greatest depth. To learn more about the depth distribution in the book away from the inside tier, we display a
depth histogram of the order book in Figure 2.4. The figure illustrates again that order book depth outside the
first tier is considerable. A notable feature of the depth distribution patterns is that there is consistently more
quantity available at the second and third price tiers (and even fourth and fifth for some securities) than the
first. The available quantity generally peaks at the second tier on both the bid and ask sides for the notes, and
at the third tier for the bond. Depth then declines monotonically as one moves further away from the inside
quotes. Biais et al. (1995) also find depth lower at the first tier than the second tier, but find similar depths at

the second through fifth tiers.

2.3.6 Hidden Depth

In addition to information on visible depth at the best five tiers, Figure 2.4 also shows information on hidden
depth. Hidden depth is only a small share of total depth at each price tier on average. The first tier has
proportionally more hidden depth than other tiers. Among the securities, the 30-year bond has a greater share
of depth that is hidden from view.

Next, we examine more closely the extent of hidden depth at the inside tier as well as across all tiers, and
report the results in Table 2.4. The column “Full Sample” shows the percentage of hidden depth calculated
across all five-minute snapshots over the whole sample period, representing an unconditional estimate of the
extent of hidden depth. We then compute the percentages over only those snapshots when there is positive

hidden depth (column “Hidden>0"). The percentages of those snapshots with positive hidden depth are
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reported in column “% of Obs.”. These numbers indicate the probability of having hidden depth in the order
book at any given time.

Since the results are quite similar between the bid and the ask side (although the numbers on the ask side
are slightly lower), we discuss the findings for the bid side only. We find that on the bid side, hidden depth as
a share of total depth at the inside tier is roughly in the vicinity of 10% for the 2-, 3-, 5-, and 10-year notes.
The extent of hidden depth is particularly low at the 7-year maturity (just under 4%). In contrast, the share of
hidden depth for the 30-year bond is far larger, about 23%. In terms of how likely it is for the inside tier to
have hidden depth, the 2-year note is at the top with a 45% probability, followed by a nearly 25% probability
for the 3-year. When there is hidden depth, the percentage hidden can be quite high, and in the extreme case
of the 30-year bond, the average percentage reaches nearly 70%. The 7-year remains at the lower extreme in
terms of both the extent and the likelihood of having hidden depth. When analyzing the overall percentages
of hidden depth across the whole book, the numbers are much smaller, indicating that depth outside the first
tier contains relatively less hidden depth. This finding is consistent with the belief that there is a greater need

to hide exposure of orders closer to the market.

2.4 Price Impact of Trades

In this section, we quantify the price impact of trades as the long run cumulative response of price to a unit
shock in trades, following Hasbrouck (1991a). This framework allows us to approximate the permanent price
impact of trades that incorporates any delayed response and that is not contaminated by transitory effects.
Accordingly, it provides a measure for the informational content of trades in this market.

Specifically, we estimate a structural VAR model with five lags for a vector of endogenous variables that
consist of return and trade-related variables. We measure returns as changes in the best bid-ask midpoint, i.e.,
ry = my — my—1, where t indexes transaction time, and m; is the midpoint prevailing at the end of the tth
transaction. We let X; denote trade-related variables (X; can be a vector), so that the general structural VAR

model is:
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where u; is the structural innovation vector. The matrix By captures the comtemporaneous effects within
the endogenous variable vector. We will explain the chosen direction of contemporaneous effects when we
present specific model estimates in subsequent subsections. The model is estimated by Seemingly Unrelated
Regressions (SUR).

Based on the estimated dynamics of return and trade-related variables, we then compute the impulse

response function (IRF) to a unitary shock in trade, that is,

oriin
0X;

We compute the IRF out to 50 transactions after the shock (h = 50).! The permanent price impact is
approximated by the cumulative return over this horizon.

We consider a number of specifications so as to gain a deeper understanding of how trading affects
price dynamics, such as the extent to which trade direction contributes to price impact, both by itself and in
conjunction with trade size. We present each specification and the corresponding price impact estimates in

turn below.

2.4.1 Baseline Specification

We begin the estimation of market impact with a bivariate VAR of return and order flow ¢;. We consider two
alternative measures of order flow. The first is the direction of trade initiation z; with a buy order signed +1
and a sell order signed -1. Trade initiation is recorded in the BrokerTec dataset, so all trades are classified
properly. The second is the signed volume x;V; where V; is the actual volume of the #* transaction.

In an ECN like BrokerTec, we can be sure that transactions, as well as the sequence of events associated
with each transaction, are recorded in the proper order. That is, a market order arrives, executes against
available limit orders on the opposite side, and the order book subsequently updates to reflect the transaction
just taking place. This supports the identifying assumption that order flow contemporaneously affects return,

but not vice versa. Accordingly, the model specification is:
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1%Visual inspection of the IRF indicates that the 50-tick horizon is sufficiently long for the IRF to stabilize.
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where Bj are (2 x 2) matrices. We estimate model (2.1) separately for ¢; = x; and ¢; = x;V;.

The permanent price impact estimates from model (2.1) are reported in Table 2.5. Under the column
titled “Trade Direction” is the price response across maturities to a buyer-initiated trade (i.e., computed
from the specification with trade initiation), while the column “Signed Trade Volume” shows the response
to a $1 million shock in buyer-initiated trade flow (i.e., computed from the specification with signed trade
volume). The price impact rises with maturity, except for the 7-year note which has a higher price impact
than the 10-year note in the model using signed trade volume. A buy market order results in a permanent
price increase, ranging from 0.357/256th for the 2-year note to 2.921/256th for the 30-year bond.

Since transaction size varies across maturities, a better cross securities comparison may be obtained by
looking at the price impact per $1 million shock in the order flow of the respective securities. A $1 million
increase in buyer-initiated trade flow moves the 2-year note’s price by 0.006/256th, or alternatively, it takes
about $363 million increase in buyer-initiated transaction volume to move the price by one tick (or 2/256th).
The 30-year bond is much less liquid: a $1 million shock in the buyer-initiated order flow permanently
increases the price by 0.450/256th, or equivalently, only $8.9 million is needed to move the price by one tick

(or 4/256th).

2.4.2 Separate Effects of Trade Direction and Size

In the spirit of Hasbrouck (1991a), we also estimate a specification that incorporates both trade direction and

size in order to explore their respective market impact:

1 —Q12 —Q13 Tt 5 Tt—j Ut

0 1 0 v | =D Bi | wmy | | ey | 22)
j=1

0 0 1 zV, zVi_j Ug v/t

Based on the model estimates, we compute the permanent price impact of trade direction and the marginal
market impact of trade size beyond the minimum size.

We report the results in Table 2.6. The first column shows the price impact of a minimum-sized trade ($1
million), which ranges from 0.271/256th for the 2-year note to 2.378/256th for the 30-year bond. From here,
price impact increases directly with trade size. Essentially, this specification disentangles the price impact of

trade into two separate components: a “fixed” component due to trade initiation and a “variable” component
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that scales directly with the volume of the trade. For example, for a $100 million buyer-initiated transaction
in the 10-year note, the buy direction increases price by 1.033/256th, and the $99 million increment in trade
size from the $1 million minimum increases price by an additional 3.265/256th, for a total price impact of
4.298/256th.

To entertain the possibility that the price impact of trade size does not increase linearly in trade size
beyond the minimum size, we explore a further specification that allows for the non-linearity of trade size by

incorporating signed trade volume squared in the system, as in Hasbrouck (1991a). Specifically,
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We plot the permanent price impact calculated from this model for varying trade sizes in Figure 2.5. It is
clear from the figure that price impact is increasing in trade size. The concavity of the price impact function
of the notes is quite mild, almost visually indistinguishable from linearity for the notes, especially the 2-year
note whose price impact is already very small. Only the 30-year bond demonstrates a pronounced concavity
in the price impact function. Parameter estimates (not shown) reveal that the squared trade size variable
has a significant and negative contemporaneous effect on mid-quote return for all notes and bonds, but the
magnitude is overwhelmed by the positive effects of trade direction and size. This suggests that a very large
trade size is required for the concavity effect of price impact to kick in. We are able to see the concavity of

the price impact function for the 30-year bond as trade size in this bond is typically very small ($3 million).

2.4.3 Asymmetric Effects of Buys and Sells

We extend the baseline specification in equation (2.1) to explore if there is any asymmetry in the price impact
between buyer-initiated and seller-initiated trades. Saar (2001), for example, motivates theoretically an

asymmetric response to buyer- and seller-initiated block trades. The model we estimate is:
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where V' B and V'S are the buy and sell transaction volume respectively. For buyer-initiated transactions,
V By is equal to the transaction volume and V' .S; = 0 (and vice versa for seller-initiated transactions).

The permanent price impact estimates are reported in Table 2.7. The estimates are quite similar in
magnitude to the baseline estimates. In addition, there is little evidence to suggest that the market responds

asymmetrically to buy versus sell trade initiation.

2.4.4 Asymmetric Effects on the Bid and Ask

Econometric modeling of the order book by Engle and Patton (2004) has stimulated interest in models which
allow for a possibly asymmetric price impact on the bid and ask. Escribano and Pascual (2006) provide a
detailed review of empirical evidence showing that bid and ask quotes do not adjust symmetrically after a
trade. However, most prior evidence of such asymmetry is documented for equity markets. We explore if this
asymmetry also prevails in the Treasury market.

We follow Escribano and Pascual (2006)’s generalization of Hasbrouck (1991a)’s structural model. The
model allows bid and ask prices to follow separate stochastic processes, but imposes a vector error correction
mechanism through the spread. That is, bid and ask prices can follow different dynamics but cannot deviate
too much from each other given the spread. Buy and sell volumes are also separated to allow for their price
effects to differ. This more flexible specification allows us to explore asymmetries, if any, in the market
effects of buyer- versus seller-initiated transactions on bid versus ask prices. Escribano and Pascual (2006)’s

generalization leads to the following structural vector error correction representation:
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where v is a 4 x 1 vector of error correction coefficients, s is the bid-ask spread, and (L) are matrices of
autoregressive coefficients. The data also support a more parsimonious specification of the AR structure in
which bid (ask) prices depend only upon lagged bid (ask) prices, and buys (sells) depend only upon changes
in the ask (bid) prices:
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The system of dynamic structural equations (2.5) is estimated using SUR to allow for the possible
correlation among the error terms. Indeed, as shown in Escribano and Pascual (2006), they have common
components and therefore cannot be treated as mutually uncorrelated. Based on the model estimates, we
compute the impulse response function of bid and ask prices to a unitary shock in buy (or sell) trades by
forecasting this dynamic system over a 50-tick horizon following the shock. Before the shock, the system is
assumed to be at rest with constant bid and ask prices, no trades and zero spread.

Table 2.8 reports the cumulative impact after 50 transactions following a $1 million shock to buyer-
initiated transaction volume (on the bid and ask prices), and similarly a $1 million shock to seller-initiated
transaction volume (on the bid and ask prices) in that order. The evidence presented in this table again
suggests that there is little difference in the impact on bid price versus ask price induced by the same shock
to order flow. Likewise, prices appear to respond similarly to a buyer-initiated order flow shock versus a
seller-initiated one. In addition, the magnitudes of the price impact estimates remain quite similar to the

baseline estimates, further highlighting the lack of asymmetry in the price impact of trades in this market.

2.5 Price Impact of Limit Orders

Given that the order book information is observable by market participants, the decision to place a trade
and its size can be influenced by activities in the book. As reported earlier, there are about 4.7 million
order book changes in the best five tiers alone, overwhelmingly outnumbering trading activity (about 12,000
transactions per day across the six securities). Theoretically, Boulatov and George (2013) suggest the concept
of “informed liquidity provider”, that is, informed traders can also be on the supply side, as opposed to the
common assumption that informed traders merely consume liquidity. If so, relevant information might also be
present in the limit order flow. Empirically, Mizrach (2008) shows that excluding this order book information
is likely to overstate the market impact of trades. Hautsch and Huang (2012a) document significant price

impact of limit orders for select NASDAQ stocks. We now extend our specification to incorporate information
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on limit order activities. We first estimate the price impact of trades and limit orders unconditionally. We
then examine the price impact of both trades and limit orders following FOMC announcements in order to
shed light on how price discovery varies with the information environment.

2.5.1 Price Impact of Limit Orders

We modify our specification (2.4) by adding the visible inside bid and ask net order flow between trades:
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where [b, the bid limit order flow, is the volume of limit buy orders submitted to (positive) or cancelled from
(negative) the first tier between trades, i.e., between the (¢t — 1) and ¢ transactions. Similarly, [a is the ask limit
order flow. The measurement timing of the endogenous variables supports the direction of contemporaneous
effects from limit order flow to trade flow to return in the above specification.

The measurement of limit order flow variables warrants some further discussion. Because our model
already incorporates the effects of trades directly, we explicitly exclude order book changes caused by
execution from our limit order flow measures. Specifically, the net flow of limit orders on each side of the
market is computed as the difference between the quantity of new order submissions and that of cancellations
from the last trade until immediately before the current trade. Our resulting measures of limit order flow
account for the non-trade related change in liquidity supply in the market. As a result, our model can capture
the dynamic interactions of liquidity demand (trade flow), liquidity supply (limit order flow) and price
revisions. The model then allows for delineating the price impact of liquidity supply change from the price

impact of liquidity demand change, a novel feature of our empirical exercise.!!

"Hautsch and Huang (2012a) measure the price impact of limit orders by modeling the limit order book as a co-integrating vector
comprised of price and depth up to the third level in the limit order book. Our model has a similar spirit in that it also incorporates
limit order information in the vector of variables of interest, but focuses on the trading process and the price dynamics as affected
by both trading and limit order activities.

23



We analyze the permanent price impact of trades and limit order activities by computing the cumulative
price response to a shock vector that is zero everywhere except for the relevant order flow variable which
has a unitary shock. The estimates are reported in Table 2.9. In line with the evidence on the impact of limit
orders for equity markets (e.g., Hautsch and Huang (2012a)), our results show that limit order activity also
leaves a permanent impact on price, although the impact is of smaller magnitude than that of trades. For
example, a $1 million increase in bid limit order volume permanently raises the best bid-ask midpoint by
0.001/256th, 0.014/256th, and 0.035/256th for the 2-, 5- and 10-year notes. This implies that an increase in
bid depth of $1.85 billion, $144 million and $113 million is required to raise the best bid-ask midpoint of the
respective notes by one tick. In the less liquid 30-year bond, it takes as little as an $11.5 million increase in
the bid limit order flow to raise the midpoint by one tick.

Additionally, the price impact of limit orders is higher for longer-maturity securities, both in magnitude
as well as in comparison with the corresponding price impact of trades. For the 2-year note, the price impact
of limit orders is about one fifth the impact of market orders of equal volume. A similar comparison for the
10-year note shows that limit orders have effects that are roughly two-thirds the corresponding impact of
trades. For the 30-year bond, limit orders have almost as large effects as market orders.

The results also show that including information on order book depth affects market impact estimates. In
particular, across all securities, trades now show smaller price impact estimates than those estimated from
earlier specifications without limit order flow (as in Tables 2.5 and 2.7). These results suggest that ignoring
limit order activity overstates the price impact of trades by 9-14% for the 2-, 5-, 10- and 30-year securities.

The extent of overestimation is particularly acute for the 3- and 7-year notes: 27% and 40% respectively.

2.5.2  Market Impact Following FOMC Announcements

As our price impact estimates are based on all transactions over our sample period, one question that can
naturally arise is whether price impact varies by the information environment. For example, Green (2004)
shows that the information content of trades increases following macroeconomic announcements. We explore
this question by choosing FOMC announcements as an exemplified information event around which to
study the extent to which price impact might differ. FOMC announcements are key information events for

the formation of Treasury prices, precipitating high price volatility, high trading volume, and wide bid-ask
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spreads (Fleming and Piazzesi (2005)).!> The idea is to quantify price impact using only limit orders and
transactions that take place during a short period following FOMC announcements, and compare with that
computed during the same time window on non-FOMC days. The choice of the window and the “control”
sample is discussed below.

During our sample period, there are 16 announcements following FOMC meetings, three of which
occurred at about 12:30, and the rest of which occurred around 14:15. We collect the exact time at which the
announcements reached the market, using the timestamp of the first news report appearing in Bloomberg. We
focus on the 90-minute intervals after these announcements. In order to avoid the effect of price jumps that
typically occur at announcement times without requiring trades, as documented in Fleming and Remolona
(1999), we start the post-announcement window two minutes following the actual announcement times. We
choose the same time window on the five days preceding and five days following each FOMC announcement
to serve as the non-announcement counterpart, effectively controlling for the time-of-day effect and general
market conditions.

We estimate model (2.6) using data in the post-announcement window on FOMC days and in the
comparable window on non-FOMC days. The corresponding market impact estimates are reported in Panel A
and B respectively in Table 2.10. Two important results can be observed. First, market impact is pervasively
higher following FOMC announcements. The market impact of a buyer-initiated trade is about 20-40% larger
than in the same time interval on non-FOMC days, except for the 10-year note and 30-year bond where
the price impact is slightly weaker on FOMC days. The increase in price impact of seller-initiated trades
following FOMC announcements varies more widely across securities, ranging from about 5% for the 7-year
note to over 100% for the 3-year note.

Secondly, and perhaps more strikingly, limit order flows have a much greater impact after FOMC
announcements than during the comparable time window on non-FOMC days. For example, for the 2-year
note, the price impact of limit order flow to the bid side is about triple the non-FOMC price impact, and
that to the ask side increases nearly five fold. Accordingly, limit order flows become nearly as important
as, or occasionally even more important than, trade flows in the price discovery process following FOMC

announcements.

12Gao and Mizrach (2013) show that price impact in the equity market rose substantially following regularly scheduled Permanent
Open Market Operations during the Federal Reserve’s first large-scale asset purchase program.
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In order to address the concern that our comparable sample, which includes both the five days before and
five days after each of the FOMC announcements, may be contaminated by the effect of these announcements,
we alternatively include in the non-FOMC sample only the five days preceding each of the announcements.
The results are qualitatively similar. Furthermore, we check the robustness of our estimates by varying the
starting time of the window between two and five minutes after announcement times, as well as using a

shorter window of 60 minutes. These sensitivity analyses all confirm the results obtained above.

2.6 Hidden Orders

The preceding price impact analysis characterizes market liquidity as observable by market participants.
However, traders on the BrokerTec platform have the option to submit iceberg, or partially hidden, orders.
The hidden quantity represents a source of liquidity that is not known to the marketplace until and unless it is
later revealed in trade executions. From the perspective of the hidden order traders, this type of order helps
them manage their order exposure, reducing information leakage and front running.

To gain a more complete understanding of this market, we explore the pattern of iceberg order usage
on BrokerTec and examine the effects of order characteristics and market conditions on the likelihood and
hidden size of iceberg orders. Given the sheer amount of data at the order level, we choose to work with
newly submitted orders to the first tier only, and for a subset of trading days in the sample, in order to keep
our analysis computationally manageable. Specifically, of the 500 trading days in the sample, we randomly

select 100 days for analysis.

2.6.1 Descriptive Analysis of Hidden Orders

Hidden order usage and some basic features of orders, whether completely transparent or partially hidden,
are shown in Table 2.11. The number of order submissions per day varies across securities. For the 5-, 7- and
10-year notes, there are over 145,000 orders submitted to the first tier per day, on average. The 2- and 3-year
notes have over 60,000 orders per day, and the 30-year bond has the lowest number of orders at 38,000 per
day. While order submission activity is quite high, most of the order flow is completely visible — only about
2% or less of orders are iceberg orders. This is much lower than the extent of hidden order usage in other
markets. For example, Bessembinder et al. (2009) report that iceberg orders on average account for 18% of

order flow for stocks on Euronext-Paris.
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There are several additional observations of interest from this table. First, iceberg orders tend to be
several orders of magnitude larger than normal orders. For example, an average iceberg order in the 10-year
note is about $11.6 million, whereas an average visible order is only $1.4 million. This finding helps reconcile
the low percentage of iceberg orders with the much higher percentage of hidden depth residing in the book at
any given point in time. That is, iceberg orders, while used sparingly, tend to hide a large quantity, so the
hidden depth proportion tends to be higher.

Secondly, iceberg orders tend to be more price-aggressive, as the percentage of orders placed inside the
prevailing spread is higher among iceberg orders than completely visible orders. This is especially the case
with the 30-year bond with over 53% of iceberg orders that are price-improving. Contributing to this result is
the fact that the bid-ask spread for the 30-year bond is typically much wider than the spread for the notes,
making it easier to undercut the best price.

Thirdly, the arrival rate of similar limit orders around the time of order submission shows some noticeable
differences between visible and iceberg orders. Iceberg orders tend to be used when similar limit orders
arrive more slowly. Given the priority rule favoring displayed depth, the hidden part of an iceberg order has
lower priority than the displayed depth of future limit orders at the same price point. Accordingly, the higher

the expected arrival rate of future competition, the less likely the use of iceberg orders.

2.6.2 Determinants of Hidden Orders

We proceed to analyze factors that might contribute to the likelihood of hidden orders in a multivariate
framework. The order-level data from BrokerTec allows us to examine hidden orders directly as they enter
the limit order book. This provides for a clean analysis of factors that might be driving the exposure choice.
We employ a logistic model to predict the likelihood that an incoming limit order contains some hidden
size, building upon the approach in De Winne and D’Hondt (2007b) and Bessembinder et al. (2009). The
dependent variable is a binary variable that takes the value of 1 if the order is an iceberg order, and O
otherwise.

Findings in the literature help guide our selection of explanatory variables. First, in Bessembinder et al.
(2009) and references therein, the price aggressiveness of an order has been shown to affect the use of hidden
orders. That is, more aggressively priced orders are more likely to be iceberg orders. Since our study is
concerned with only the orders coming to the first tier of the book, we measure price aggressiveness by 1M P,

an indicator variable for whether the order is improving the current best price on the relevant side.
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The next explanatory variable is SIZ E, the total size of the order (logged and standardized by its daily
mean and standard deviation). This variable relates to the benefits and costs of order exposure as articulated in
Harris (1997). Traders choose to expose their orders in order to attract potential counterparties who otherwise
may not have known about the existence of such trading interest. However, exposing their trading interest,
especially when such interest is large, can reveal useful information about trading intention and potential
future price impact. Such exposure can provide free trading options to other market participants who may
then take actions detrimental to the exposing traders. Accordingly, large traders may find it useful to hide
part of their orders from the market.

Another possible factor in hidden order usage, as suggested by Moinas (2010), is that informed traders
may use hidden orders to mitigate information leakage. As a result, it is predicted that hidden orders are more
likely when adverse selection risk is higher. Following Bessembinder et al. (2009), we use the bid-ask spread
S PR (measured in basis points of the bid-ask midpoint) as a proxy for the degree of adverse selection and
test whether a wider bid-ask spread is associated with a greater probability of an iceberg order and a greater
hidden size. Empirically, results reported in Bessembinder et al. (2009) support this prediction for a sample
of Euronext-Paris stocks during April 2003.

Furthermore, the state of the order book has been shown to affect the choice of order exposure. Buti
and Rindi (2013) argue that uninformed liquidity suppliers use hidden orders to reduce picking-off risk
and discourage undercutting in liquidity provision. This has several implications for iceberg order usage
concerning the level of depth and price volatility in the order book.

On the one hand, a higher level of prevailing depth on the same side (especially relative to the order
size and the prevailing depth on the opposite side) indicates a lower probability of a new limit order being
picked off. That is, the greater depth queueing in front of the incoming order provides a greater protection
against adverse execution of such order. This in turn reduces the need to use an iceberg order. On the other
hand, fully displaying the order size and adding to the already high level of prevailing depth can potentially
induce future order submitters to undercut and post price-improving orders instead of joining the current
price queue. As a result, higher prevailing depth may lead to a higher probability of hidden order. Therefore,
while prevailing depth on the same side, DSAM E, is argued to be an important determinant of hidden order
usage, whether it is negatively or positively linked with hidden order usage is an empirical question.

Moreover, as documented in De Winne and D’Hondt (2007b), the order book imbalance (positive-valued

if the book is heavier on the same side as the order) decreases the likelihood of an iceberg order. Thus, it

28



appears that the relative magnitude of same side depth and opposite side depth also matters in explaining
hidden order usage. Our model includes prevailing depth on the opposite side of the market, DOPP, to
explore this conjecture.

Besides the effect of depth, the degree of market volatility increases the risk of adverse execution of limit
orders, thereby making hidden orders more useful in helping traders manage their order exposure and reduce
the chance of being picked off. We measure this risk by VOL A, the prevailing five-minute realized volatility
of one-second returns based on the best bid-ask midpoint.

In addition, there is abundant empirical evidence suggesting that the level of trading activity and the
rate of limit order arrival in the market helps explain the use and extent of hidden orders (for example, see
Bessembinder et al. (2009), De Winne and D’Hondt (2007b), Aitken et al. (2001), and references therein). In
particular, Aitken et al. (2001) argue that a higher trading activity level indicates a lower expected time-to-
execution of limit orders, thereby reducing the need to hide part of a limit order as a way to mitigate the free
trading option inherent in limit orders. If this argument applies, we expect to see a negative link between
trading activity, as captured by NT RAN S — the number of transactions over the last five minutes — and
hidden order usage.

On the contrary, during periods when limit orders on the same side are slow to arrive, the threat of future
(displayed) limit orders taking priority over the hidden portion is lessened, resulting in higher likelihood of
hidden order usage. The expected arrival rate of similar limit orders is measured by W AIT, the average
inter-order duration (in seconds) for the last three limit orders on the same side.

Finally, we include several dummy variables to account for potential differences in the order expo-
sure choice around the announcement of important news and overnight trading hours.'?> In particular,
PRENEWS and POSTNEW S are indicator variables for whether the order is submitted within the
five-minute time window before and after an announcement. O F' F'H R is an indicator variable that is equal
to 1 if the order is submitted outside the New York trading hours of 7:00 to 17:30.

Our model is estimated using data on all order submissions on the 100 randomly selected days. We
note that continuous explanatory variables (namely SIZFE, SPR, DSAME, DOPP, VOLA, WAIT,
NTRANS) are standardized by the corresponding daily mean and standard deviation so that they are

comparable across days. Table 2.12 presents the model parameter estimates along with the odds ratios. Since

3We consider the same set of key macroeconomic reports, FOMC rate decisions and Treasury auction results as in Engle et al.
(2012¢)
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continuous variables in the model are demeaned and variance-rescaled by daily statistics, the odds ratios
correspond to a one standard deviation change in the relevant variable.

As shown by the significantly negative coefficients for IMP for four out of the six securities (the 2-, 3-,
5-, and 10-year notes), price-improving orders are less likely to contain hidden volume, after controlling for
other factors believed to affect hidden order usage. This result is opposite to that reported in De Winne and
D’Hondt (2007b) and Bessembinder et al. (2009). By achieving price priority with a price-improving order,
the order submitter seems to indicate an eagerness for faster execution and the result suggests that the trader
prefers to display the full order size so as not to lose the priority to future orders that join the queue at the
new price. However, this is not the case for the 7- and 30-year securities, which are traded much less actively,
and for which orders are hence less likely to lose priority to future orders.

Consistent with the prior literature, we find that large orders are more likely to be partially hidden,
because posting a large order may give away information to the market as suggested by Harris (1997). A one
standard deviation increase in the logged order size is associated with more than twice the odds of the order
having hidden size. Furthermore, comparing the odds ratios across explanatory variables shows that order
size is uniformly the most important driver of the hidden order decision.

With regard to adverse selection risk, we find that hidden orders are more likely when the bid-ask spread
is wider for all of the notes, in line with the prediction by Moinas (2010) and the empirical evidence reported
in Bessembinder et al. (2009). A one standard deviation increase in the prevailing spread is associated with a
roughly 10% increase in the odds of hidden size. The 30-year bond is an exception, in which the bid-ask
spread has a negative effect on the likelihood of an iceberg order. That is, when the spread is wide, liquidity
providers seem to prefer to submit a fully displayed order rather than an iceberg order, possibly to achieve
faster execution in order to earn the spread. As documented earlier, the 30-year bond has a markedly wider
spread, on average, and is much less liquid than the notes (i.e., lower trading volume and lower standing
depth), indicating a lower degree of competition for liquidity provision. Accordingly, although a wider
spread makes it easier for an order to be front-run, the front-running risk is probably not substantial, thereby
reducing the need to use iceberg orders. While this finding is somewhat unexpected, the same effect has been
documented by De Winne and D’Hondt (2007b) for non-marketable limit orders for the majority of their
sample of 40 stocks on Euronext.

The prevailing depth on the same side as the incoming order has a significantly negative effect on the

probability of hidden volume across all securities, except for the 2-year note. This finding provides support
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for the hypothesis that an order is less likely to have hidden volume if the prevailing depth is high, since the
plentiful depth on the same side provides a reassuring signal that orders on that side are less subject to being
picked-off. In addition, Treasury securities have very tight spreads, providing less scope for undercutting,
so that the opposite effect of depth on iceberg order usage relating to undercutting risk is less pronounced.
Even for the 30-year bond, whose wider bid-ask spread makes undercutting easier, this risk is evidently not
a large concern for traders. However, depth on the opposite side is generally also negatively related with
iceberg order usage, suggesting that the likelihood of an iceberg order is lower when the standing order book
is deeper.

Interestingly, the consistently negative coefficients on volatility across maturities do not support the-
oretical predictions of a positive relationship discussed earlier. We suspect that, when prices are moving
fast, Treasury traders refrain from using hidden orders altogether since they have an alternative mechanism,
namely the workup protocol, to protect themselves from adverse price movements. That mechanism affords
them complete control over how much to bid/offer based on changing market conditions, as opposed to
making a firm commitment over the total quantity they want to bid/offer, even if part of that commitment is
hidden from view. In fact, Fleming and Nguyen (2013) show that workups are utilized more in volatile times.

The rates of limit order arrivals, as captured by the average wait time between recent same-side orders,
show expected effects on hidden order usage. Specifically, a longer wait time suggests a slower arrival rate
for future orders, and thus, the threat of the order’s hidden volume losing priority to future orders is lessened.
The positive and significant coefficients on W AIT across securities support this hypothesis. In contrast,
there is mixed evidence as to the effect of trading rates, NT RAN .S, on hidden order choice. It is negative for
the 3- and 7-year notes, but positive for the 5-, 10- and 30-year securities and insignificant for the 2-year note.

Importantly, there is consistent evidence that hidden orders are used less often around announcement
times. This appears to be the period when the market is geared up to receive and then incorporate the
news. Accordingly, the lower priority of hidden volume may make hidden orders less attractive around these

moments. Lastly, we find that hidden orders are more likely during the overnight trading hours.

2.6.3 Determinants of Hidden Volume

Conditional on the choice to partially hide an order’s volume, the next natural step is to explore how hidden
volume is determined. For this purpose, we regress the hidden size (logged) of hidden orders on the same set

of explanatory variables in the hidden order choice model, and report the results in Table 2.13. To facilitate
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interpretation, we also report the exponential of parameter estimates so that one can see the effect of each
explanatory variable directly on the hidden size, as opposed to logged hidden size.

A few key observations from this table are in order. First, S1Z E continues to be a key driver of hidden
orders: the larger the size, the larger the hidden volume. A one standard deviation increase in the logged
order size is associated with an increase in the hidden size ranging from 47% for the 30-year bond to 140%
for the 2-year note. I M P also appears to play an important role in the extent of volume hidden: those hidden
orders placed inside of the spread have about 3-10% higher hidden volume than similar hidden orders that are
not price-improving. In addition, the PREN EW S and POST N EW S variables are generally negative,
suggesting that hidden orders placed around announcement times tend to have lower hidden volume, in
addition to the earlier reported evidence that these hidden orders are less likely around these times. The
effects of other variables on hidden volume are less determinative and vary across securities, suggesting that
these variables matter more to the choice of hidden orders than the extent of hidden volume once the choice

has been made.

2.7 Conclusion

The microstructure of the U.S. Treasury securities market has changed markedly in recent years, with trading
activity migrating from voice-assisted brokers to fully electronic brokers. We use tick data from one of these
platforms, BrokerTec, to reassess market liquidity. We find that the market is notably more liquid than earlier
reports based on GovPX data, and that there has been an increase in liquidity over time, except for the crisis
period. In addition, our work offers the first look into market liquidity beyond the inside tier. We show that
market liquidity concentrates more heavily at the price tiers immediately behind the market, and that the first
five tiers collect over half of the total market liquidity in the order book at any given point in time.

We formally quantify the price impact of trading and limit order book activities. The price impact of
trades on BrokerTec is quite small but generally increasing in maturity. Baseline estimates based on the
specification with price dynamics and trading activities suggest that it takes $182 million in signed trading
volume to move the price of the 2-year note by 1/256th of one percent of par, but only slightly over $2 million
to move the price of the 30-year bond by the same amount. Accounting for the impact of limit order activities
on trading activities and price dynamics, we find that limit order flow itself affects prices, and is especially

important in the price dynamics of longer-dated maturities. We also find that part of the price impact of trades
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initially estimated from the model of trade flow alone can be attributed to limit order activities: including limit
order activities reduces the price impact of trades by about 9-40%, on average, for the on-the-run securities.
Finally, price impact is larger following FOMC announcements, particularly that of limit orders.

We find that iceberg orders are used sparingly in the Treasury market. However, the hidden portion
of these iceberg orders is several orders of magnitude larger than the displayed part, thus occupying a
proportionately larger portion of depth residing in the order book at any point in time. We find that the use of
hidden depth increases with the order size and the prevailing bid-ask spread, highlighting the benefit of hidden
orders as a mechanism to prevent information leakage and mitigate adverse selection risk. Additionally, when
there is lower prevailing depth or lower likelihood of future orders whose display size will take precedence
over the current hidden size, hidden orders tend to be used more often, as the cost of using them in terms
of execution probability is lower. These results are generally in line with the evidence reported for other
markets.

However, we also find a number of results in this market that have not been documented elsewhere.
Unlike Bessembinder et al. (2009), we find that traders are less likely to use iceberg orders when their orders
are price improving, except for the less liquid 7- and 30-year securities. Considering that this market is highly
liquid, in which the inside spread is restrained at one tick the majority of the time, opportunities to undercut
the market are limited and thus, whenever such opportunities are present, execution probability seems to take
on greater importance. The extent of iceberg order usage in this highly liquid market is also much smaller
than what has been documented in the literature for equity markets. In this regard, our findings actually
support the evidence from equity markets that hidden order usage is lower for the more liquid stocks.

Another interesting departure from both theoretical predictions and previous empirical evidence is that
volatility and hidden order usage are negatively linked. At first blush, the finding seems counter-intuitive, as
it suggests that the more volatile the market, the less likely that hidden orders will be used, precisely when
traders need greater protection. However, if we place this finding in the context of the Treasury market,
in which there exists another mechanism for order exposure management, namely the workup protocol,
we can better understand how it could be the case for this market. Recall that the workup protocol gives
market participants the ability to workup order sizes if and when desired, whereas iceberg orders can be
adversely executed when the market is moving so fast that traders cannot cancel soon enough. Empirically,
workups tend to be used more frequently in more volatile times, undermining the popularity of iceberg orders.

Likewise, hidden orders are used less often around the release of key macroeconomic reports, FOMC rate
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decision announcements, and Treasury auctions. These are moments when the market is eagerly waiting for
and trading on the newly released announcements, so priority in the order queues seems to be an important
consideration.

Overall, our study highlights how the electronic market for trading in U.S. Treasury securities differs
from its voice-assisted precedent and from other markets studied in the literature. Comparing with the
voice-assisted trading system, the electronic market facilitates a much greater frequency and volume of trades
and limit order activities, resulting in greater competition for liquidity provision and thus lower bid-ask
spreads and market impact. Comparing with other market setups, the high level of market liquidity and the
presence of the more preferred workup protocol to manage order exposure in this market are likely related to
the lower usage of iceberg orders and the seemingly greater importance of execution probability in traders’

decisions.
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Table 2.1: Trading Activity

Maturity Trading Volume Trade Frequency Average Trade Size

2-Year 26,354 934 28.2
3-Year 16,204 1,297 12.5
5-Year 36,262 3,052 11.9
7-Year 9,640 1,500 6.4
10-Year 31,462 3,066 10.3
30-Year 5,705 1,921 3.0

The table reports daily averages of trading volume, trade frequency, and average trade size for on-the-run Treasury coupon securities
on the BrokerTec platform, for the period 2010-2011. Volume and trade size are reported in millions of dollars. Multiple order

matchings (including during workups) associated with the arrival of an aggressive order are aggregated as a single trade.
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Table 2.3: Limit Order Book Depth
First Tier First 5 Tiers All Tiers

Bid Ask Bid  Ask Bid  Ask

2-Year 308 300 1,561 1,538 2422 2,355
3-Year 82 81 474 467 715 684
5-Year 31 31 278 275 465 443
7-Year 37 36 236 236 301 297
10-Year 26 26 213 211 393 376
30-Year 3 3 28 28 59 59

The table reports average depth on BrokerTec at the first tier, the first five tiers, and across all tiers. The statistics are computed from
five-minute snapshots of the limit order book for the respective securities for the hours 07:00-17:30 over the period 2010-2011.

Depth is reported in millions of dollars.
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Table 2.4: Unconditional and Conditional Percentage of Hidden Depth
Bid Ask

Full Sample Hidden > 0 % of Obs. || Full Sample Hidden > 0 % of Obs.

A: At First Tier

2-Year 10.2 16.8 454 8.2 15.3 394
3-Year 9.0 25.1 24.5 7.1 234 21.6
5-Year 12.2 38.7 19.7 10.6 37.7 18.1
7-Year 3.9 27.3 10.7 34 25.3 10.0
10-Year 11.9 38.6 19.1 10.7 38.5 17.3
30-Year 22.9 68.5 13.8 22.2 69.9 12.7
B: Across All Tiers
2-Year 5.4 6.0 85.7 4.1 5.0 77.5
3-Year 5.8 7.7 69.5 4.3 6.7 58.7
5-Year 10.2 11.9 80.2 7.3 94 72.7
7-Year 3.1 7.2 39.8 2.7 6.5 38.7
10-Year 10.4 11.6 85.2 8.8 10.2 80.1
30-Year 17.8 21.7 73.8 14.9 19.2 69.2

The table reports the percentage of depth that is hidden at the first tier (panel A) and across all tiers (panel B). Column “Full Sample”
shows the percentage of hidden depth based on all observations, while column “Hidden > 0” shows the percentage of hidden depth
based on observations with positive hidden depth only. The percentage of observations with positive hidden depth is reported in
column “% of Obs’. The statistics are computed from five-minute snapshots of BrokerTec’s limit order book for the respective
securities for the hours 07:00-17:30 over the period 2010-2011.
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Table 2.5: Baseline Price Impact of Trades

Trade Direction  Signed Trade Volume

2-Year 0.357 0.006
3-Year 0.486 0.017
5-Year 0.708 0.028
7-Year 1.302 0.078
10-Year 1.340 0.066
30-Year 2.921 0.450

The table reports 50-tick cumulative price impact of trades using a bivariate VAR(5) model of trade and return (based on the best
bid-ask midpoint), with two alternative measures for the trade variable: 1) trade direction (1 for buys and -1 for sells), and 2) signed
trade volume (positive for buys and negative for sells). Cumulative price impact is in 256ths of one percent of par. Estimation is
based on BrokerTec data for the period 2010-2011.
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Table 2.6: Separate Price Impact of Trade Direction and Size

Trade Direction $1M Increment

2-Year 0.271 0.003
3-Year 0.390 0.008
5-Year 0.571 0.013
7-Year 1.132 0.031
10-Year 1.033 0.033
30-Year 2.738 0.093

The table reports 50-tick cumulative price impact of trade direction (buy) and size separately, using a trivariate VAR(5) model of
return (based on the best bid-ask midpoint), trade direction and signed trade volume. Trade direction is 1 for buys and -1 for sells.
Signed trade volume is the volume of trade, signed positive for buys and negative for sells. Cumulative price impact is in 256ths of
one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.

40



Table 2.7: Price Impact of Buyer-Initiated versus Seller-Initiated Trades
Buy Sell

2-Year  0.006 -0.005
3-Year 0.017 -0.016
5-Year  0.028 -0.027
7-Year  0.081 -0.075
10-Year 0.066 -0.065
30-Year 0.435 -0.464

The table reports 50-tick cumulative price impact of buyer-initiated versus seller-initiated trades using a VAR(S5) model of buy trade
volume, sell trade volume and return (based on the best bid-ask midpoint). Cumulative price impact is in 256ths of one percent of par.
Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.8: Bid and Ask Price Impact of Buys and Sells (VECM)

Buy Sell
Bid Price Ask Price Bid Price  Ask Price
2-Year 0.005 0.005 -0.005 -0.005
3-Year 0.016 0.016 -0.016 -0.016
5-Year 0.029 0.029 -0.028 -0.028
7-Year 0.081 0.081 -0.077 -0.076
10-Year 0.068 0.068 -0.068 -0.067
30-Year 0.451 0.449 -0.483 -0.485

The table reports 50-tick cumulative bid and ask price impact of buyer-initiated versus seller-initiated trades using a VECM(5)
model of bid and ask price revisions, buy trade volume and sell trade volume, with the bid-ask spread as the error correction term.

Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.9: Price Impact of Trades and Limit Orders
Buy Trade Sell Trade Bid Limit Order Ask Limit Order

2-Year 0.0052 -0.0049 0.0011 -0.0011
3-Year 0.0132 -0.0131 0.0078 -0.0053
5-Year 0.0245 -0.0236 0.0139 -0.0119
7-Year 0.0592 -0.0544 0.0285 -0.0275
10-Year  0.0579 -0.0570 0.0353 -0.0341
30-Year  0.3986 -0.4258 0.3491 -0.2801

The table reports 50-tick cumulative price impact of trades and limit orders using a VAR(5) model of buy trade volume, sell trade
volume, bid limit order flow, ask limit order flow and return (based on the best bid-ask midpoint). The limit order flow variables
are measured as the total volume of limit orders submitted to the inside tier between trades, net of modifications/cancellations.

Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.10: Price Impact of Trades After FOMC Announcements

2-Year
3-Year
5-Year
7-Year
10-Year
30-Year

2-Year
3-Year
5-Year
7-Year
10-Year
30-Year

Buy Trade Sell Trade Bid Limit Order Ask Limit Order
A: On FOMC Days
0.0049 -0.0069 0.0018 -0.0024
0.0153 -0.0264 0.0176 -0.0083
0.0258 -0.0283 0.0150 -0.0248
0.0749 -0.0592 0.0567 -0.0281
0.0504 -0.0702 0.0587 -0.0508
0.1925 -0.5242 0.5640 -0.4224
B: On Non-FOMC Days
0.0037 -0.0042 0.0006 -0.0005
0.0123 -0.0121 0.0058 -0.0032
0.0210 -0.0237 0.0096 -0.0121
0.0512 -0.0564 0.0276 -0.0289
0.0541 -0.0576 0.0300 -0.0285
0.2134 -0.2732 0.2828 -0.2976

The table reports 50-tick cumulative price impact of trade and limit order flow after 16 scheduled FOMC announcements over the
period 2010-2011 (Panel A), and compare with similarly calculated price impact of trade and limit order flow over the same time
interval on 5 days preceding and 5 days following these announcements (Panel B). The price impact estimates are based on a VAR(S)
model of return (based on the best bid-ask midpoint), buy volume, sell volume, net limit order flow to the inside bid, and net limit
order flow to the inside ask. Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for

the 90-minute window that begins 2 minutes after the announcement time of each FOMC announcement. The announcement times

are collected from Bloomberg.
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Table 2.11: Descriptive Statistics of Normal versus Iceberg Orders

2-Year

3-Year

5-Year

Normal Iceberg

Normal Iceberg

Normal Iceberg

Percent Placed Inside Spread 1.18 2.57 2.40 4.58 2.74 10.25
Total Size ($M) 4.4 13.5 2.5 8.8 1.6 8.8
Hidden Size ($M) 0.0 9.4 0.0 6.1 0.0 6.7
Spread (cents/$100) 0.8 0.9 0.9 1.0 0.9 1.0
Same Size Depth ($M) 246 227 65 66 36 34
Opposite Size Depth ($M) 264 210 88 59 32 29
Inter-Order Duration (secs) 2.4 5.0 2.1 5.2 0.9 2.3
Past Realized Vol. (ann.) 0.03 0.03 0.06 0.05 0.09 0.08
Past Trading Rate (#Trades/5min) 8 7 12 10 24 21
Past Trading Volume ($M/5min) 292 228 183 141 369 323
No. of Orders Per Day 62,497 1,244 69,159 1,018 172,152 1,454
7-Year 10-Year 30-Year

Normal Iceberg Normal Iceberg Normal Iceberg
Percent Placed Inside Spread 2.04 8.91 2.93 15.98 16.83 53.26
Total Size ($M) 1.5 5.3 1.4 11.6 1.2 7.1
Hidden Size ($M) 0.0 3.7 0.0 9.3 0.0 5.8
Spread (cents/$100) 1.9 2.2 1.8 2.0 4.6 4.8
Same Size Depth ($M) 39 38 29 27 5 3
Opposite Size Depth ($M) 34 34 26 25 3 3
Inter-Order Duration (secs) 1.0 3.0 1.0 3.4 3.9 11.7
Past Realized Vol. (ann.) 0.14 0.13 0.18 0.16 0.30 0.27
Past Trading Rate (#Trades/Smin) 13 12 23 20 18 16
Past Trading Volume ($M/5min) 92 89 311 262 57 52
No. of Orders Per Day 145,062 759 151,719 767 38,211 432

The table reports descriptive statistics based on limit orders submitted to the first tier of the order book on the BrokerTec platform on
100 days randomly selected from the 500 trading days spanning the sample period 2010-2011. Past realized volatility, trading rate
and trading volume are calculated over the five minute interval before each order submission. Inter-order duration is the prevailing
average wait time between orders on the same side, measured in seconds and averaged over the previous three orders on the same
side. Past realized volatility is the square root of the past five-minute realized variance computed as the five-minute sum of squared
one-second log midquote returns and annualized by a factor of 288 x 250 (288 five-minute intervals per day and 250 trading days per
year).
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Figure 2.1: Trading Activity Over Time
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The figure shows average daily trading volume by year in billions of dollars from 2001 through 2011 for on-the-run Treasury coupon
securities on the BrokerTec platform. The 2007 and 2008 figures for the 3-year note are based on data through August 2007 and
from November 2008 respectively, due to the suspended issuance of this note between August 2007 and November 2008. The 2009

figure for the 7-year note is based on data from February 2009, when this note was reintroduced.
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Figure 2.2: Round-the-Clock Trading Activity

0.08 [ e
- B —-2-Y
o 0.07F = + =3-Y
E -0 —-5-Y
S 0.06F =Y
> - % —-10-Y
g 30-Y
= 0.05F |
9 .
|_
004
T
()
45 0.03 1 e g TR
[
O
5 002F
©
LL
0.01F

o Le2atissassnne
18:00 21:00 0:00 3:00 6:00 9:00 12:00 15:00 18:00

The figure shows the fraction of daily total trading volume by half-hour interval for on-the-run Treasury coupon securities on the

BrokerTec platform, based on data for the period 2010-2011. Times are Eastern time and indicate start of half-hour interval.
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Figure 2.3: Frequency Distribution of Inside Spread
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The figure shows the frequency distribution of the inside spread (measured in number of ticks) on BrokerTec. The tick size for the 2-,
3- and 5-year maturities is 1/128"™ of one percent of par, and that for the 7-, 10- and 30-year maturities is 1/64"™ of one percent of par.
The numbers are computed from five-minute snapshots of BrokerTec’s limit order book for the respective securities for the hours
07:00-17:30 over the period 2010-2011.
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Figure 2.5: Non-linear Price Impact of Trade Size
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The figure plots the permanent price impact (y-axis) for different buyer-initiated trade sizes (x-axis). The permanent price impact
of a given trade size is the cumulative price change (measured in 256ths of one percent of par) over a 50-tick horizon following
the trade. This is based on a VAR(5) model of return (based on the best bid-ask midpoint), trade direction, signed trade volume
and signed trade volume squared. Trade direction is 1 for buys and -1 for sells. Signed trade volume is the volume of trade, signed
positive for buys and negative for sells. Signed trade volume squared is the squared volume of trade, signed positive for buys and
negative for sell. Estimation is based on BrokerTec trade data for the period 2010-2011.
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CHAPTER 3
DARK POOL TRADING IN THE US TREASURY MARKET

3.1 Introduction

The ability to hide trading intention is important and valuable to market participants. As Harris (1997) writes:
“the art of trading lies in knowing when and how to expose trading interest.” Many trading venues provide
features that enable market participants to manage their exposure, ranging from hidden orders to dark pools.

The BrokerTec platform, one of two interdealer electronic trading platforms for U.S. Treasury securities,
is one such place where traders can conceal the extent of their trading interest. One way they can do this is
through iceberg orders. An iceberg order is a limit order that displays only a portion of the order quantity,
called the display size, with the rest invisible to the market. The hidden quantity is revealed only gradually to
the market as the displayed size is fully executed and the next installment becomes visible.

A second way traders can conceal the extent of their trading interest is through the workup process. A
workup is a protocol that automatically opens after the execution of each market order. During the workup
window, any interested market participants can transact additional volume at the same price established by
the initial execution, as long as counter trading interest exists. Workups thus provide traders the option to
submit orders of smaller size than desired, and then to increase the size when the workup opportunity opens.

It is intriguing to observe that iceberg orders are used sparingly in this market as compared to workups,
even though the former has higher execution priority. On average, less than 5% of transactions involve
execution against iceberg orders, whereas volume expansion through the workup protocol happens 49-56%
of the time for the on-the-run 2-, 5- and 10-year notes and nearly 40% of the time for the 30-year bond.

The economic significance of the workup protocol is demonstrated not only by its frequent usage, but
also by the magnitude of the expanded volume. On average, worked-up trading volume accounts for 43-56%
of total daily trading volume, depending on the security being traded. In transactions with a workup, the
worked-up dollar volume accounts for over 60% of total transaction volume. Collectively, these statistics

show that the workup protocol uncovers a significant amount of market liquidity that is not ex ante observable
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to market participants. More importantly, the workup feature relates to a salient fact about the Treasury limit
order book: market orders rarely walk up or down the book, at least for the on-the-run securities examined in
this chapter.

The fact that a significant portion of market liquidity is only revealed during the workup process, while
the price is fixed, raises an important question about its role in the price formation process. Does this portion
of order flow carry information? If so, how does it compare to the “transparent” part (i.e., the execution
of the initiating market order)? Up until now, the literature on price discovery of U.S. Treasury securities,
such as Brandt and Kavajecz (2004), Green (2004), Pasquariello and Vega (2007), and others, has been
concerned only with the informational role of generic order flow. Implicitly, it is assumed that the trade
flow is homogeneous and that the portion transacted in the pre-workup stage has the same impact on price
dynamics as that in the workup phase.

The theoretical literature on dark trading suggests that this is not the case. For example, Zhu (2014)
argues that the different execution probability of orders in transparent versus dark venues for informed versus
uninformed traders likely steers informed traders to the transparent venue and uninformed traders to the dark
venue. In contrast, Ye (2012) predicts that informed traders are more likely to hide their information in the
dark, thereby reducing price discovery. Although arriving at opposing predictions, both models suggest that
the information content of the transparent and dark parts of trading is different as a result of how informed
traders optimize their exposure strategy to exploit their information advantage.

It is also not realistic to study the information role of trades in this market without recognizing or
appreciating that the workup feature is an integral part of the trading process and a useful device for order
exposure management. Accordingly, it can alter traders’ optimization outcomes and decisions, as compared to
a hypothetical market setup in which this option is not available. For example, aside from choosing between
market and limit orders, traders also have choices over the exposure of their trading intention. If it is a limit
order, the submitter can 1) display the full order size, 2) submit the full order size but hide part of it from
view (i.e., submit an iceberg order), or 3) submit a smaller sized order and wait to expand the order size if and
when the order is executed and the workup is open. Likewise, if it is an aggressive order, the available choices
are: 1) submit the full sized market order for immediate execution, 2) submit a smaller sized market order and
hope to increase the volume in the ensuing workup, or 3) wait for a workup at the right price to trade. The

fact that workups are used so frequently in this market speaks for its importance in traders’ decision making.
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The workup protocol, by providing traders with an option to expand order size beyond the initially
submitted level, can be beneficial to informed traders in multiple ways. For example, an informed trader
may choose to submit a limit order of less than the intended quantity to minimize information free-riding
by others, knowing that he has the opportunity to increase the size when the order is aggressed against (i.e.,
executed by a market order). These are the “informed liquidity providers” as discussed in Boulatov and
George (2013). Alternatively, an impatient informed trader with a large trading interest may submit a market
order small enough to execute at the best price, and then search for further counter trading interest during the
subsequent workup at the same price, without having to walk deeper into the book.

The informativeness of the workup order flow, however, also depends on the actions of the uninformed.
If they behave in the sense of Zhu (2014), or if they are reactive traders who act upon the lead of others as
described in Harris (1997), the uninformed are more likely to trade in the workup stage, thereby reducing the
informativeness of workup order flow. Likewise, the uninformed can participate in the market on the liquidity
provision side, and thus volume expansion of limit orders during workups is not necessarily information
motivated.

Given the mixed guidance from theory, the informativeness of workup order flow in practice is an open
question. Our work in this chapter aims to address this question and thereby provide a more complete picture
of the price formation process of U.S. Treasury securities. We do this by separating order flow into the
trade initiation (or “transparent”) part and the workup (or “dark”) part, and quantifying how these respective
components contribute to price discovery.

Based on transaction data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities from the BrokerTec
platform over the period 2006-2011, we find that workup order flow is informative, albeit less informative
than trade initiation order flow. Workup order flow is most informative for the 2-year note, explaining about
17% of the total variation of the efficient price update. The 5- and 10-year counterparts explain between 7-8%
of the variation of the efficient price. It is only 1%, however, for the 30-year bond, indicating that traders in
this maturity segment do not opt for the workup as a channel to exploit their information advantage. Price
discovery in the 30-year segment is most attributable to public information, which accounts for over 80%
of the variation of the efficient price update. Our analysis also illustrates the importance of recognizing the
information segmentation of order flow due to the workup protocol. We show that the impact of actively
initiating a trade and the share of trade-related information are underestimated if one does not consider the

segmentation.
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Except for the 2-year note where the workup order flow is slightly more informative, our information
share analysis generally supports the predictions of Zhu (2014) in that the transparent part of order flow is
more informative than the dark part. Our evidence is also consistent with Comerton-Forde and Putnins (2013)
who study dark trading and price discovery of stocks traded on the Australian Stock Exchange and find that
the order flow that migrates to the dark is less informed, but not completely uninformed. Intuitively, informed
traders with a short-lived information advantage may choose to initiate a trade and realize their information
advantage quickly, since the potential of not finding a counter-party during the workup can make the workup
option costly (e.g., forgone information value). This is strongly supported by our result that the transparent
(or “lit”) part of the order flow becomes relatively more informationally important on high volatility days,
when adverse price movements could fasten the expiry of information.

Although less informative than the trade initiation flow, the workup process is responsible for the
discovery of a significant portion of market liquidity and plays a non-trivial role in price discovery. It is
therefore important to understand what factors might predict the use of a workup following a market order
execution and the extent of the volume expansion. We employ a logistic regression model for the probability
of a workup as a function of hypothesized determinants, including prevailing order book depth on the same
side, spread, depth on the opposite side, price volatility and a set of control variables. We employ a Tobit
model censored at the zero lower bound to capture the effects of the same set of explanatory variables on
workup volume, since volume is zero for non-workup transactions and strictly positive for those with a
workup. We find that, in general, a workup is more likely and expands greater volume when the market
is deep, upon the discovery of hidden orders, and around the times of high trading intensity, volatility and
workup activity. Outside New York trading hours, workups occur less frequently and discover less volume.

Despite workups being an unusual and economically important trading feature in the U.S. Treasury
market, academic research specifically on the workup process and its implications on market participants’
trading strategies is limited. The paper closest to ours is Boni and Leach (2004) who investigate the workup
protocol using GovPX data for October 1997. At that time, interdealer trading was still conducted over a
network of voice-assisted interdealer brokers (IDB). GovPX collected and disseminated market data from five
such IDBs. Each of the IDBs maintained its own limit order book, facilitated trades and mediated quantity

negotiations beyond the quoted depth. Boni and Leach hence characterize this market as one in which limit
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orders are “expandable”.! They find that this expandability option helps limit order traders reduce costs
associated with information leakage and adverse execution of stale limit orders.

Dungey et al. (2013) account for the workup feature in their model of trading intensity on eSpeed, the
other electronic trading platform. They find that the duration of a workup significantly fastens the arrival of
the next market order. They interpret this result in light of Easley and O’Hara (1992)’s theory that market
participants infer the presence of informed traders by the time between trading events. They thus suggest that
workups provide information to the market.

Adding to this literature, our work is the first to consider the segmented order flow due to the workup
protocol and formally quantify the informativeness of the dark trade flow in comparison with that of the
transparent trade flow in a well defined microstructure model of the dynamics of price and order flow. We
therefore provide a more complete picture of how the trading process with the embedded workup feature — a
distinctive microstructure feature of secondary trading in U.S. Treasury securities — affects the price formation
process of these securities.

Furthermore, we extend the model used by Boni and Leach by exploring and controlling for a wider
range of potential determinants of workups as suggested by the literature on dark pool trading and hidden
liquidity. The extension is also valuable because the workup protocol as prevailing on BrokerTec differs
considerably from its historical precedent as studied in Boni and Leach, making it important to reevaluate the
workup protocol under its current structure.

Our contribution goes beyond a study of a specific microstructure feature of the U.S. Treasury market
in two important ways. First, this work is a timely addition to the literature on dark pool trading. There is
currently an active discussion among researchers and policy makers on the effects and implications of dark
pool activities on market quality and welfare (see for example Degryse et al. (2014)). On the one hand, the

existence of undisplayed liquidity compromises pre-trade transparency and can potentially harm less informed

"BrokerTec’s workup protocol differs from that of voice-assisted brokers in several ways. First, quantity negotiation on BrokerTec is
governed by a set of precise rules stipulating the window of opportunity for workup trades, replacing the role of human brokers in
going back and forth between counterparties working up the size of a trade. Second, as explained by Boni and Leach, with the
voice-assisted brokers, when a limit order on an IDB’s book is aggressed by a market order, the IDB gives the limit order’s submitter
the right-of-first-refusal to provide additional liquidity, even when there are other limit orders at the same price in the book. This
exclusivity was completely eliminated on BrokerTec in early 2006, making workups immediately open to all market participants
following the original trade(s) on a first come, first served basis (source: “System and Method for Providing Workup Trading
without Exclusive Trading Privileges”, patent number US 8,005,745 B1, dated August 23, 2011). Furthermore, the expanded volume
can come from either the aggressive or passive side during a workup so that the workup is no longer confined to expanding only
limit orders. Recently, BrokerTec instituted a new rule that allows for a workup to terminate prematurely if there is sufficient trading
interest at a better price point (source: “System and Method for Providing Workup Trading”, patent number US 7,831,504 B1, dated
November 9, 2010).
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traders. On the other hand, supporters of dark pool trading mechanisms point to greater market liquidity and
better execution quality for trades, especially for large trades that can be executed without causing negative
price impact. Complicating matters, dark pools come in many forms. It is therefore important to understand
these various types of dark pools in different market setups and how their specific operationalization might
affect trading behavior and patterns.

The workup process in the Treasury market resembles a crossing network, a common form of dark pool.?
As in a crossing network, workup trades are matched on a first come, first served basis at a reference price
derived from the initial marketable order execution. While a crossing network is a common form of dark
pool used in many equity trading venues, not much is known about this form of dark pool in a fixed income
market setting. We find that volatility tends to generate more workups, but that those workups tend to be
less informative, suggesting the value of this crossing network in protecting traders against adverse price
movements. In general, the amount of private information hidden in this Treasury dark pool is quite small,
easing concerns that the dark pool could harm less informed traders.

The second direction in which our findings might be valuable is in the area of market design response
to high frequency trading. High frequency trading, or computer-driven trading in general, has increased
significantly over the last few years — a trend dubbed “rise of the machines” in Chaboud et al. (2013). This
has spurred debate on whether the competition for speed has resulted in socially wasteful investments in
trading technology. Budish et al. (2014) argue that a continuous limit order book is a flawed market design in
the face of increased high frequency trading. They propose frequent batch auctions as a way to eliminate
technical arbitrage opportunities prevailing at very high frequency and to slow down the arms race. Whether
this is a feasible proposal is outside the scope of our work, but the important takeaway from this discussion is
that there is a continual need to devise new market design features to keep up with changing trends in trading,
and to understand the implications of those features.

The BrokerTec market setup fits right into this discussion via its unique design. Its market structure

features an interesting mix of continuous auction (the limit order book) and periodic call auctions (workups).

Buti et al. (2011b) characterize dark pools as having “limited or no pre-trade transparency, anonymity and derivative pricing.” The
workup process has precisely these characteristics. First, the workup process enables execution of additional trading interest not
observed by market participants before each transaction. Second, all trades through interdealer brokers in the Treasury market are
anonymous. During the allowable workup time window, market participants can send in orders, which are then matched by the
system. Any unmatched volume is held in the system waiting for subsequent counter trading interest in the workup. Third, the
price for these workup executions derives from the execution of the initial market order that triggers the workup. We thank Joel
Hasbrouck for this insight.
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These periodic call auctions open and close after every marketable order execution, allowing for the discovery
of additional liquidity. This can potentially help slow down activities of high frequency traders and give other
traders an opportunity to trade at a given price point. Viewed from this angle, the workup protocol might be
one possible design response to high frequency traders and the arms race discussed above. Our empirical
results readily provide a glimpse of the implications of such a market feature on price discovery. Even though
price is fixed during workups, activities during the workup window do contribute to price discovery, mostly
by trades that expand the aggressive side. Nevertheless, the extent of this contribution is small in comparison
to that of initiating trades that lead to workups.

The chapter is organized as follows. Section 3.2 describes the workup process in detail, discusses
the data used for the analysis and presents key stylized facts concerning workups. Section 3.3 presents a
microstructure model for the dynamics of segmented order flow and price, and analyzes the price impact
and informativeness of the respective components of order flow. In Section 3.4, we model and discuss the
dependence of workup probability and workup volume on market condition variables. Finally, Section 3.5

summarizes our key empirical findings and concludes the chapter.

3.2 The Workup Process

3.2.1 Market Overview

This chapter focuses on the interdealer trading segment of the secondary market for U.S. government
securities.’ Trading in this segment, especially in the on-the-run securities, occurs mostly on two electronic
trading platforms, BrokerTec and eSpeed (Barclay et al. (2006)). Comparing BrokerTec trading statistics with
those reported by other studies using eSpeed data (e.g., Dungey et al. (2013) and Luo (2010)), we observe a

greater market share for BrokerTec across all four securities considered.* Dunne et al. (2011) compare price

*In this interdealer market, the majority of participants are Treasury securities dealers, some of whom are primary dealers with
obligations to participate in Treasury securities auctions. We use the term “dealers” interchangeably with “traders” and “market
participants”, even though there are other participants in the market such as hedge funds.

*Comparison of BrokerTec and eSpeed activity for the same sample periods and trading hours shows that the market share of
BrokerTec ranges between 57% to slightly over 60% for the 2-, 5- and 10-year notes. The market share in the 30-year bond is
slightly lower, but it is still over 50%.
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discovery on the two platforms using non-contiguous data for 2002, 2004 and 2005 and conclude that more
price discovery takes place in the more active but less transparent BrokerTec platform.>

Both BrokerTec and eSpeed operate as electronic limit order markets with no designated market maker.
Liquidity supply comes from the limit order book, which is a collection of limit orders at various price levels
submitted by market participants. Execution of orders follows the price and time priority rule. Our empirical
analysis is based on BrokerTec data and our discussion of how the market works is for the BrokerTec platform.

In submitting limit orders, market participants can choose to display order size either partially (iceberg
orders) or completely. If the former, the rest of the order size is not observable by other market participants.
As the displayed portion is exhausted through trading, the next installment of the order quantity becomes
displayed. This process continues until the total order quantity is completely executed. It is noted that the
hidden portion of an iceberg order takes precedence over the displayed part of orders queuing behind it at the
same price level.®

Traders demanding liquidity can send in market orders. Market orders must be priced. That is, beside the
order quantity and whether it is a purchase or sale, traders must specify a price.” When a market order arrives,
it is matched with one or more limit orders standing on the opposite side at that price (or better), starting
with the displayed depth before executing against any hidden depth. For example, consider a market order
to buy $100 million at a price of 25580 when there is $30 million available at the best ask price of 25578
and another $100 million at 25580.% The first $30 million of the order will be matched with limit sell orders
at 25578. Assuming there is no hidden depth at that price, the remaining $70 million will be executed at
25580. If a limit sell order is an iceberg order, then upon the execution of the displayed portion, the next
portion becomes visible and available for execution. Continuing with the above example, assume that there is
$15 million hidden depth at the best ask price of 25578. The market order will be executed as follows: $45
million at 25578 ($30 million displayed + $15 million hidden), and $55 million at 25580.

5These authors note that eSpeed does not have hidden orders, whereas BrokerTec allows such orders and is thus considered as having
less pre-trade transparency.

SThis is different from other market setups in which the hidden part of an iceberg order goes to the end of the queue when it becomes
visible.

LLIY3

"In essence, they are marketable limit orders. In this chapter, we use the terms “market orders”, “marketable orders” and “aggressive
orders” interchangeably.

81n the BrokerTec database, prices are stored in 256th’s of one percent of par value. The prices used in the example translate to
99.9140625 (25578/256) and 99.921875 (25580/256).
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The execution of a market order is just the beginning of a transaction. Once all possible matches have
been made (against displayed and hidden depth in the book, if any), the market then enters into a workup
process during which additional volume at the same price can be transacted, until there is no further trading
interest. Using the example above, once the original buy order execution of $100 million is complete, the
workup protocol opens at the last price of 25580. As described in one of BrokerTec’s patent documents
relating to the workup protocol, the whole process is conceptually “a single deal extended in time”.® The
protocol is discussed in greater detail in the next subsections.

Finally, it is worth noting that BrokerTec charges a fee for order execution, and that this fee is trader-
specific and not order-type specific.!? That is, a trader is charged the same fee whether his order is a limit or
a market order, and whether his order is executed in the pre-workup or workup stage. Therefore, for each
trader, the fee is not a consideration when it comes to the choice of order type and exposure. However, traders

with different levels of trading activity might be subject to different fee structures.

3.2.2  The Workup Process

The workup is a distinctive feature of trading in U.S. Treasury securities. The process automatically opens
after each market order execution, giving all market participants the chance to transact additional quantity at
the last price. The ability to transact additional quantity during the workup process thus enables traders to
submit orders of smaller size than their desired quantity, and then expand the quantity during the workup.
The workup protocol therefore offers a higher degree of control over if and when to trade the additional
needed quantity, whereas iceberg orders are subject to the risk of being adversely executed before the order
submitters have a chance to modify or cancel. However, the cost for the traders hoping to expand volume in a
workup is that the incremental quantity they expect to transact may not materialize if counter trading interest
is lacking. Thus, for those who need immediate execution, non-execution risk can be a major deterrent to
using workups.

Historically, the workup process consisted of two distinct phases: 1) the private phase, which gave an
exclusive right of first refusal to the original parties to the transaction, and 2) the public phase, which is open

to all other market participants. However, in 2006, the private phase was replaced by a public phase, making

9“System and Method for Providing Workup Trading”, U.S. Patent No. 7,831,504 B1, dated November 9, 2010.

10The exact fees are proprietary and we do not have information on these fees.
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the workup a double-public process. As a result, a transaction will progress straight to the first public workup
phase after all possible matches with the limit order book have been completed. During this phase, additional
trading interest can come from either side of the market, and these extra trades are conducted on a first come,
first served basis.

The first public workup phase is open for a pre-specified duration (it was 4 seconds from early 2006 until
July 2011 when the duration was shortened to 3 seconds). If there is no trading interest, the workup process
automatically expires at the end of this duration. However, if and when a new execution occurs during this
time window, the second public phase commences and a new duration opens up. It is then re-settable each
time a new execution occurs. This protocol allows the workup to last as long as there is trading interest at
the same price point, or to terminate after a predetermined time period if no such interest exists so that the
market can move forward.

All trades during a workup — triggered by the initial execution of a market order — are executed at the
same price as that of the original market order. As the extra liquidity discovered during the workup process at
a given price is not known to the market ex ante, the workup process can be likened to a dark pool trading
mechanism. More precisely, it resembles a crossing network, in which the last price serves as the reference
price for the execution of additional trades during the workup.

We treat the whole process from the initial execution to the expiration of the ensuing workup as a single
transaction. Each transaction can involve multiple trades or order matches. For example, a market order can
execute against multiple (smaller sized) limit orders. Each of these executions is recorded separately in the
database and is referred to as a trade, an order match, or an execution. We refer to those trades (or matches)
that happen before the workup as pre-workup trades. Other interchangeable terms for “pre-workup trades”
include “transparent trades”, “lit trades”, “normal trades”, and “non-workup trades”. Those that occur during

the workup phase are referred to as workup trades or “dark trades”.

3.2.3 The BrokerTec Data

The tick data from BrokerTec contains records of all market activity, from limit order submission, cancellation,
and modification, to matching with incoming market orders, time-stamped to the millisecond. We extract
information on all trading activity from this raw, comprehensive database. There is a flag each time a market

order arrives. Once automatic order matching with the limit order book completes, another flag indicates the
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commencement of the workup phase. Finally, when the workup expires, it is also flagged in the database. As
a result, we are able to identify the complete sequence of activities pertaining to each transaction.

The trade direction of the original market order, i.e., whether the aggressive side is a buy or a sell, is
also recorded, thus providing unambiguous signing of all pre-workup trades. The signing of trades executed
during the workup process warrants some further discussion. BrokerTec considers these trades as an extension
(time-wise and volume-wise) of the original execution. Hence, workup trades occur at the same price and
follow the same trade direction as that of the original execution, even though they can arise from either side
of the market. For example, if the original aggressive side is a buy, then the buy side remains the aggressive
side in the workup, and the sell side is the passive side. Therefore, there is no confusion as to the signing of
workup trades.

After identifying the sequence of activities for each transaction, we aggregate information for the
transaction, separately for the pre-workup and workup phases. In particular, we count the number of trades as
well as the total dollar volume exchanged in each respective phase. Furthermore, if there is execution against
the displayed portion of an iceberg order resulting in the exposure of new depth, we mark the transaction as
involving execution against an iceberg order.

The transaction data is then combined with the limit order book snapshots prevailing just before and
after each transaction. The limit order book is reconstructed from the raw BrokerTec data by cumulating
changes to the order book from the beginning of each trading day. Combining the limit order book data with
the transaction data provides a complete picture of the market at each transaction, facilitating our empirical
analysis of factors that are related to workup activities.

Our sample covers the period from 2006 to 2011. We focus the study on the on-the-run 2-, 5-, 10- and
30-year fixed principal securities. The on-the-run 3- and 7-year notes are excluded from our analysis due to
discontinuity in issuance. Issuance of the 3-year note was suspended between May 2007 and November 2008.
Issuance of the 7-year note was suspended between April 1993 and February 2009. We do not have access to

comparable tick data for any other Treasury securities.
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3.2.4 Univariate Analysis of Workup Activities
3.2.4.1 Trading and Workup Activities

An overview of market trading activity is presented in Table 3.5. Panel A shows the average daily total trading
volume and number of transactions. The 2-, 5- and 10-year notes have comparable trading volume in the
$30-35 billion range. This far exceeds the average of $5 billion in daily trading volume for the 30-year bond.
The number of transactions per day varies across securities, from the low 1,000’s range for the 2- and 30-year
securities to over 2,600 for the 5- and 10-year notes. It follows that trading in the 2-year note tends to occur
in much larger size than is the case for other securities.

We find that market participants utilize the workup protocol in 49-56% of transactions for the notes, but
only 39% of transactions for the 30-year bond. The workup share of dollar volume happens to be similar to
the share of transactions with workups, ranging from 48-56% for the notes, but only 43% for the bond.

To complement the sample average statistics on workups, we further examine the time series trend of the
use of workups in Figure 3.1. There is a modest increase in the use of workups from early 2006 until late
2008, when the workup shares of transactions and order flow drop before partially bouncing back in early
2009. The patterns have been fairly stable since then, except for a sharp decline in workups for the 2-year
note, to about 40% in the second half of 2011. Also evident from the figure is that workups in the 30-year
bond happen less frequently that they do in the notes, but expand proportionally greater volume when they do
occur.

Table 3.5, Panel A also reports the probability of transacting against an iceberg order for comparison, and
illustrates that workups are used much more frequently in this market. The chance of hitting/taking an iceberg
order is only around 4%, which is less than one tenth the probability of having a workup. Additionally, the
workup protocol, in providing traders with the opportunity to expand transaction volume at a given price,
likely contributes to the finding that transactions in these securities almost never execute at multiple prices,
beside the fact that the market is often very deep relative to the size of most market orders.

Further details at the transaction level, with and without workups, are presented in Panels B and C
respectively. We discuss first the transactions with workups (Panel B). This panel shows that the 2-year note
has the largest dollar volume per transaction when there is a workup, at about $42 million. This is more than

double the size of a transaction in the 5- or 10-year notes and about eight fold the size of a typical transaction
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in the 30-year bond. The number of trades per transaction is just below 10 for the notes and about 4 for the
30-year bond. Roughly two thirds of trades occur in the workup phase.

Panel C shows that transactions without workups tend to be much smaller in size, in terms of both
dollar volume and trade count, than those with workups. Moreover, transactions without workups tend to be
somewhat smaller than even just the pre-workup portions of transactions with workups. For example, the
2-year note’s average transaction size without a workup is about $12 million, compared with a $16 million
pre-workup size and $42 million total size for transactions with a workup. This is consistent with Harris
(1997)’s reasoning that small traders are usually not concerned with exposure issues, and importantly, the
small size is of little interest to other traders. Small trades can also be absorbed more easily by outstanding
limit orders. Consequently, small market orders are more likely to be executed without a workup.

Finally, it is useful to compare workups on BrokerTec with those on eSpeed as reported in Dungey et al.
(2013) for the period from January 2006 to October 2006. BrokerTec’s greater market share in terms of
total trading volume masks the fact that trading is slightly less frequent on BrokerTec, but that an average
transaction has a much greater size.'! The likelihood of workups is a few percentage points higher on
BrokerTec than on eSpeed. However, BrokerTec workups typically discover a slightly smaller proportion of
transaction volume. Accordingly, the overall share of workup volume does not differ greatly between the two

platforms.

3.2.4.2 Intradaily Pattern of Workup Usage

Figure 3.2 plots the probability of workup over the course of a typical trading day, from 18:30 of the previous
day to 17:30 of the current day (Eastern Time — ET).'? The figure shows that workups are most active
between 8:30 and 15:00. Outside of New York hours, workup activity is markedly lower, with a mild increase
occurring around the start of London trading at 3:00.

The lower workup usage in the overnight hours may be related to the low overall level of activity during

the overnight hours (e.g., Fleming (1997), Fleming et al. (2014)). The workup protocol requires more active

"Our comparison shows that an average transaction in the 2-, 5- or 10-year note is over 40% larger on BrokerTec than on eSpeed,
while that in the 30-year bond is about 14% larger.

"ZFleming (1997) provides a description of the global trading day in U.S. Treasury securities. It starts at 8:30 local time in Tokyo,
which is 18:30 EST (or 19:30 EDT) the previous day (Japan has not adopted daylight saving time). Trading then passes on to
London at 8:00 local time, i.e., 3:00 ET. New York trading then starts at 7:30 and continues until 17:30. Statistics for the hour from
18:30-19:30 of the previous day are based on the periods over which the U.S. is on standard time.
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monitoring of market activity and exercise of judgment on the part of traders, which are less likely to occur
during these hours. Moreover, workups during the off hours are less likely to be filled due to lower market

participation and hence lower chance of meeting counter trading interest.

3.2.4.3 Workups and Order Flow

There are further interesting stylized facts relating to trading and workups. Table 3.2 reports several pairwise
correlations of interest. First, the signed order flow imbalance, measured by net order flow as a percentage
of total order flow for each day, is only weakly related with workup usage, with the absolute correlation
coefficient under 0.05 for three out of four securities. However, the absolute order imbalance shows a much
stronger correlation with the use of workups: except for the 30-year bond, the correlation coefficient is in the
negative 0.2-0.3 range. That is, we tend to see relatively more workup activities on days when the market
is balanced than when it is one-sided, whereas the direction of the imbalance does not matter much. This
observation can be interpreted in light of Sarkar and Schwartz (2009)’s notion of market sidedness as an
indication of asymmetric information, as informed traders tend to collect on one side of the market. If so,
they are more likely to initiate trades to exploit their information advantage quickly, as opposed to trade in
workups or post expandable limit orders.

Secondly, workups tend to be used relatively more frequently on more volatile days. This is illustrated by
the strong positive correlation coefficients across the four securities, ranging from 0.26 for the 30-year bond
to 0.54 for the 2- and 10-year notes. Finally, we also observe positive first order auto-correlation in workup
activities, consistent with a liquidity externality effect of workup trades as predicted by Buti et al. (2011a).
Specifically, increased workup activities imply that it is relatively easier to find counter trading interest in

workups, thereby increasing the execution probability, and hence attractiveness, of workup orders.

3.2.4.4 Direction of Workup Volume Expansion

Given the current workup setup on BrokerTec, any trader from either side can join an open workup. Accord-
ingly, volume can be expanded from either the limit order book side, or the aggressive side of the transaction.
It is informative to examine the direction of volume expansion in a workup because it is ultimately linked
to the degree of pre-trade transparency with respect to liquidity: the level of available liquidity market
participants can see before a trade versus what actually shows up in the trade. Moreover, workup volume

expansion from the aggressive side suggests the extent to which other traders follow the lead of the initial
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aggressive trader. It provides an indication for the amount of inactive trading interest which gets revealed only
when someone else has initiated a trade. Most importantly, the ability to work up volume on either side of a
transaction is one of the key features that differentiates BrokerTec’s workup protocol from its voice-assisted
predecessor. '3

Figure 3.3 provides an analysis of the mix of workups with respect to the direction of workup volume
expansion. We classify workups into three categories: 1) expanding volume on the aggressive side only, 2)
expanding volume on both sides, and 3) expanding volume on the passive side (or both). Specifically, if a
transaction’s total volume is not greater than the available depth, all of the workup trades must have come
from the aggressive side (category 1). If, instead, a transaction’s total volume is greater than the available
depth, the limit order book must have been expanded during the workup. Whether or not the aggressive side
is also expanded can be determined by examining the pre-workup volume. If the pre-workup volume is less
than the available depth, it is clear that the workup also expands the aggressive side (category 2). However, if
the pre-workup trades completely wipe out the available depth, it is less clear whether the aggressive side is
also expanded during the workup, although the passive side is certainly expanded (category 3). Accordingly,
the sum of categories 1 and 2 provides a lower bound for the fraction of workups that expand the aggressive
side, whereas the sum of categories 2 and 3 equals the percentage of workups that involve expansion on the
passive side.

As can be seen from the figure, there is a cross-maturity variation in the direction of workup volume
expansion. For the 2-year note, the majority of workups (at least 73%) expands the aggressive side, including
the 53% of workups that expand only the aggressive side. Workups that expand the passive side occur 47% of
the time. On the other end of the maturity spectrum, for the 30-year bond, workups mostly expand the limit
order book (78%). Instances where only the aggressive side is expanded account for only 22% of workups.
The 5- and 10-year notes are in the middle, with nearly 40% of workups expanding the aggressive side only,
23% expanding both sides, and another nearly 40% expanding the passive side or both.

These statistics show that aggressive workups are common for the notes (especially the 2-year) but not

for the 30-year bond. In addition, workup trades often come from both sides within a given transaction,

BThis is also where BrokerTec’s workup protocol differs from eSpeed’s. As described in one of eSpeed’s patent documents, a
market order needs to be sufficiently large to exhaust all displayed passive orders at the best price in order to trigger a workup,
during which the initial parties to the trade are granted the right of first refusal (source: “Systems and Methods for Trading”, patent
application publication number US 2004/0210512 A1, dated October 21, 2004). That is, small-sized market orders do not trigger
workups and thus the volume expansion on only the aggressive side is not possible under eSpeed’s workup protocol.
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accounting for 20% or more of workups in the notes. Taken together, the evidence demonstrates how the
workup protocol on BrokerTec’s electronic trading platform differs markedly from the earlier workup protocol
described in Boni and Leach (2004).

In order to see if the workup mix is sensitive to different times of day and market conditions, we also
analyze the direction of workup volume expansion over different trading hours, on volatile days versus
tranquil days, and on days with extreme net order inflow versus net order outflow. In general, the patterns are
similar and thus, for brevity, not reported. One notable finding from our sensitivity analysis is that traders
in the notes tend to expand limit orders more often on extremely volatile days. Together with the evidence
documented earlier that workups are used more frequently on volatile days, this finding is consistent with
Boni and Leach (2004)’s conclusion that limit order expandability is helpful to limit order traders as it helps
them reduce pick-off risk and information leakage associated with posting large limit orders during volatile

times.

3.3 Informational Value of Workup Trades

We proceed to specify a microstructure model for the dynamics of price and order flow, built upon the general
framework described in Hasbrouck (2007). The notable feature of our model is that it accounts explicitly for
the segmentation of order flow due to the workup feature, as theory suggests that the transparent and dark
components of order flow likely have different information values. From this model, we derive a structural
VAR representation in (irregular) trade time to be estimated using the data. We then discuss the empirical

implementation and findings of the model.

3.3.1 A Microstructure Model of Price and Trade

Let ¢ index the #*" market order. We distinguish events occurring during the pre-workup and workup phases
of the t" transaction by the subscripts t~ and t T respectively. P,— denotes the best bid ask midpoint (logged)
observed as of the " transaction, and 1m,— the unobservable efficient price. Let LT}— be the signed volume
of pre-workup (or “lit”) trading, and (DT}+) the signed volume of workup (or “dark”) trading. Both volume

variables are positive if the t** transaction is a buy, and negative if it is a sell.
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The basic building blocks of the model are:

M- = My—_1 + Wi~ 3.1
P = my- +cLT;- (3.2)
LTy~ = v+ Bvrg-—1 (3.3)
Wi = Uy + A1V -+ AovUg g (3.9
DTy = wgu+ + Bovg 1 + a1vy 4~ + aouy (3.5)

where the efficient price m,- is specified to follow a random walk as in equation (3.1). w;- is the efficient
price increment and the subscript ¢~ indicates that the price updating takes place with the execution of
the ¢** market order, but before the workup begins. The observed price P,—, as expressed in equation
3.2, consists of the permanent component m,— as well as a component reflecting trading frictions (cLT;-).
Since workup trades are conducted at the price determined in the pre-workup trading round, P,- depends
contemporaneously on the lit trade flow LT;— but not on the dark trade flow DT}+.

To allow for the positive auto-correlation of transaction sign as predicted by theory (for example, Parlour
(1998)) and observed in the data, a MA(1) model is specified for the lit trade flow as in equation (3.3), where
vy 4~ 18 a white noise process and captures the pre-workup trade innovation. Likewise, equation (3.5) for
the dark trade flow DT}+ has an MA(1) error structure with the error term v, 4+. However, it also includes
the contemporaneous effect of the innovation in lit trade flow v; ;- that precedes and initiates the workup
process, as well as public information that arrives at the time of the trade u;-.

Equation (3.4) models the efficient price increment w,— as consisting of both a public information
component u;— that is unrelated to trade and a trade-related private information component. The latter
component consists of non-public information inferred from the lit trade flow, as well as the lagged dark
trade flow. While workup trades have no immediate price implication as they are executed at an established
price, traders can observe the workup trade flows after each transaction and update their belief about the
fundamental security value in subsequent transactions. Therefore the dark trading innovation enters the
efficient price increment equation with a lag. Finally, the model’s innovation terms, namely u;-, v; ;- and

vg 4+ are assumed to be uncorrelated.
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From this point, we simplify the notation by suppressing the plus and minus superscripts of ¢. With this

setup, we can derive a VMA(2) for Y; = [ LT, AP DTJ with an error vector ¢;, where ¢, relates to the

T
model’s exogenous variables through the following expression: ¢, = B |:U1t U Vo t} , with:

1 0 0
B=1|X\+c 1 0]- (3.6)

a1 ay 1

Assuming invertibility condition, a VAR representation (of infinite order) exists for Y; with the error
vector ¢; and a covariance matrix 2 = Var(e;). The matrix B accordingly captures the contemporaneous
dynamic structure of the model. It is a lower triangular matrix, reflecting our key assumption with respect
to the causal ordering in the model. Specifically, the ordering goes from pre-workup trades to price update
and finally to workup trades (which also corresponds to the way we intentionally stack up the vector Y;).
Price revision following the pre-workup trade variable reflects the commonly adopted assumption in the
literature that traders watch order flow to update their beliefs about the fundamental value of a security. That
the pre-workup trade variable and price revision precede the workup trade variable in the ordering is natural
given the way the workup process works: a market order (i.e., pre-workup, or originating, trade) must arrive
and execute against standing limit orders before the workup process opens at the established price point.

Formulated this way, the model implies that the price revision incorporates two sources of information:
1) public information unrelated to trades (u;), and 2) private information inferred from the contemporaneous
trade flow innovation (v1 ;) and the previous workup trade flow innovation (v2 :—1). The role of private and
public information in the process of price formation in the U.S. Treasury bond market has been well studied in
the literature (e.g., Pasquariello and Vega (2007)). Our model goes one step further by delineating the sources
of private information and quantifying the informational importance of workup trade activities separately
from the information content of initiating a market order. For comparison, we also estimate a standard model
of the price impact of trades with only the generic transaction volume, which we refer to as the “bivariate”

model (as opposed to our “trivariate” model).
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3.3.2  Permanent Price Impact of Trades

The VAR representation discussed in the previous section can be fit to the data and the permanent price impact
of the respective components of order flow can be evaluated. For empirical implementation, we estimate a

structural VAR(5) model. Given the assumed ordering discussed earlier, the structural dynamics (i.e., the

2
V17

matrix B as well as the structural variance o2, 02 , and 032) can be fully identified.
The long-run cumulative response of price provides a measure of the permanent price impact which is
attributable to information and not transitory liquidity effects (see Hasbrouck (1991b)). In other words, it

corresponds to the increment in the efficient price wy:

E[AP; + APy + ...Jef] = Yoo pey (3.7)

We approximate W, p by computing the cumulative impulse response function (IRF) out to a sufficiently
long horizon over which the price response has stabilized and any transitory effects have washed out. As
is standard in the literature, we compute the IRF for price from the estimated VAR model by forecasting
the system recursively forward to the chosen horizon, assuming that the system is initially at rest, i.e., all
variables are set to 0 except for the shocked variable. Inspection of the path of the estimated IRFs indicates
that a horizon of 50 transactions provides a reasonable approximation of the permanent price impact ¥, p.
The price impact is measured with units in hundredths of a percent of par value (basis points), which is
equivalent to cents per $100 par value. The model is estimated separately for each day in our sample.

Figure 3.4 plots the average cumulative change in price up to 25 transactions following an initial $1
billion shock in trade volume initiated from the buy side. The figure shows clearly that the transparent part of
order flow has a much greater price impact than the dark part for most securities. The only exception is in
the 2-year note, where the impact of the pre-workup and workup trade flows is comparable. The figure also
shows that the cumulative price response largely settles by the fifth transaction.

The estimated permanent price impact per $1 billion shock is reported in Table 3.3. The table shows
the mean and the 95% range of the time series of the daily price impact estimates separately for pre-workup
trade flow (under the “Lit Trades” column) and workup trade flow (under the “Dark Trades” column). The
mean impact is monotonically increasing in maturity, and this pattern applies to both the pre-workup and
workup trade flow. At the shorter end, the 2-year note price increases by merely 3.7 bps if the trading volume

during the pre-workup phase increases by $1 billion. In sharp contrast, the same shock, if it occurs in the
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30-year bond, induces a permanent increase of nearly 400 bps, about a hundred times larger. With respect to
workup trade flow, the differential in the price impact between the two maturity ends is not as extreme: 51
bps for the 30-year versus 3 bps for the 2-year. In between, the 5- and 10-year notes exhibit a more moderate
difference: the price impact of the latter is slightly more than twice that of the former. The ranges of price
impact estimates for lit and dark trade flow also generally respect the ordering by maturity just discussed,
except for the 30-year bond where a much wider range is observed.

Finally, it is useful to look at the variation over time of the price impact to gain an understanding of how
market liquidity has evolved. Figure 3.5 plots the 20-day moving average of price impact over the sample
period. Considering first the price impact of initiating a market order, one can see a significant increase
during the crisis period (from August 2007 to June 2009), with the sharpest increases (to about four to eight
times larger than the pre-crisis level) occurring in late 2008. This is consistent with the patterns of market
depth and bid-ask spreads, other measures of market liquidity, shown in Engle et al. (2012a), in suggesting
that the market was markedly less liquid during the crisis.

The price impact of workup trades also varies significantly over time, albeit less so than the price impact
of pre-workup trades, with a mild increase during the crisis period. There is thus roughly a doubling of price
impact from the pre-crisis level to the peak of the crisis for the 5-, 10-, and 30-year securities, versus a four-
to six-fold increase for the pre-workup trades. For the 2-year note, there is roughly a quadrupling of price
impact at the peak of the crisis for the workup trades, versus a roughly eight-fold increase for the pre-workup
trades. The differential response during the crisis means that the 2-year note’s price impact estimates for
pre-workup and workup trades, which are similar for the pre-crisis period, separate out during the crisis.
Taken together, the evidence indicates that initiating a trade produces a greater impact than waiting to trade

the same quantity during a workup, and that this gap is more pronounced during times of crisis.

3.3.3 Information Content of Workup Trades

To evaluate the informational value of workup trades, we follow the information share framework as
introduced in Hasbrouck (1991b) and applied widely in subsequent studies of price discovery. Conceptually,
the information share of a variable measures the extent to which its variation contributes to the variance of

the efficient price update wy. From equation (3.7), this variance can be approximated by:

=, pQU} p (3.8)



Given the structure of the system, it is easy to show that the right-hand side of equation (3.8) is a linear

2

. . 2
combination of o, oy, ,

and 032. Each of these terms can then be expressed as a percentage of o2 and
is referred to as the “Hasbrouck information share” of the relevant variable. Specifically, the percentage
attributable to o2 indicates the extent to which public information drives the variation in the efficient
price update, whereas those attributable to agl and 032 quantify the contribution of non-public information
revealed through the trade flows during the pre-workup and workup phases respectively. The information
share statistics thus allow us to disentangle the information structure and determine the degree of private
information being conveyed in workups in comparison to that conveyed through the normal/visible trade
flows.

The information share estimates are reported in Table 3.4. We observe that the informativeness of the lit
trade flow is quite consistent across all four securities, ranging on average between 15% and 19%. At the
95% upper bound, this part of order flow explains about 30% or more of the total variation in the efficient
price innovations for each of the 2-, 10-, and 30-year securities, and about 26% for the 5-year note.

In contrast, there is a much wider range for the informational value of workup trades across maturities.
On the one hand, the dark trade flow of the 2-year note drives about 17% of the variation in the efficient
price — slightly higher than the contribution of the lit trade flow. On the other hand, there is almost no private
information revealed by the workup trade flow for the 30-year bond (1%). Even the 95% upper bound for
the bond is only about 5%. In between, the 5- and 10-year notes are quite similar in terms of workup trade
informativeness, with average contributions of 7 and 8% respectively, and corresponding 95% upper bounds
of 18% and 21%.

Despite the importance of trade flow, the table also shows that public information is nonetheless the
main driver of the variation in the efficient price. For the 5- and 10-year notes, the average contribution of
public information to the price discovery process is between 73-77%, with a 95% range of roughly 60-90%.
The 30-year bond has a slightly higher public information share, with a mean of 82% and a 95% range
between 69% and 94%. The 2-year note shows a slightly lower public information share, averaging 67%
and ranging between 42% and 88%. That is, trade flow is most informative at the short maturity end and
least informative at the long maturity end. Moreover, the breakdown between lit and dark trades shows that
this overall differential between public information and trade-related information is explained mainly by the

differential in the informativeness of workups.
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The time series of the information shares, presented in Figure 3.6, show that the informativeness of the lit
trade flow appears rather stable over time, with a slight increase toward the end of the sample period. On the
other hand, the informational role of the dark trade flow changes more appreciably over time, most notably
among the notes. The information share of workup trades trended down through much of 2007 and 2008,
before rebounding in 2009. The information share of workup trades for the 2-year note settled at a new higher
level after 2009, whereas the share remained similar or lower than pre-crisis levels for the 5- and 10-year

notes, respectively.

3.3.4 Information Structure on Special Days

We now analyze the information structure on days of special interest. We specifically look at days with
important announcements, days when the market is highly volatile, and days when the market experiences
extreme buying pressure — an indicator of a possible flight-to-safety. Table 3.5 documents this analysis. Under
each security, there are three columns: Lit Trades, Dark Trades and Public Information. Different from Table
3.4 where we report the raw information shares of lit and dark trades, in this table, the respective shares are
standardized by the total trade-related information share, i.e., these two columns add up to 100%. This makes
it easier to see the relative informational importance of lit versus dark trade flow. The private versus public
information split can be gauged by examining the public information share reported in the third column for

each security.

3.3.4.1 Announcement Days

In Table 3.5, Panel A, we compare non-announcement days to days with announcements of: 1) FOMC
rate decisions, 2) important macroeconomic releases, and 3) auction results.'* These announcements have
been shown to be important to Treasury price formation (see Fleming and Remolona (1997), Balduzzi et al.
(2001), Green (2004), Pasquariello and Vega (2007) and references therein). For each of these announcement
types, we compare the relative informativeness of the lit and dark trade flow on announcement days with that
estimated on days when none of these three announcement types occurs.

Interestingly, there is no major change in the private information structure on announcement days, as

compared to non-announcement days. That is, the mix of information content of lit and dark trade flow

14See Appendix A for the list of announcements considered.
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remains quite similar across different announcement types (including no announcement). However, the
trade flow collectively has relatively less information value on FOMC and macroeconomic announcement
days. This result is intuitive, because there is a greater amount of public information arriving on these
announcement days which can move prices without requiring trades, as shown in Fleming and Remolona

(1999) and other studies.

3.3.4.2 Volatile Days

Table 3.5, Panel B shows a comparison of the information structure on highly volatile days against days
with low volatility (based on the 95th and Sth percentiles of the volatility distribution). We first focus on the
private information mix. Consistently across all four securities, the pre-workup trade flow — the lit part — is
relatively more informative on high volatility days. It is helpful to tie this result to an earlier stylized fact
that workups are used more on volatile days, and, particularly for the notes, more often expand the quoted
depth. We interpret these results collectively as indicating that: 1) information is short-lived in volatile times,
necessitating fast execution and 2) the increased incidence of quoted depth expansion reflects how liquidity
providers (not necessarily informed) use the workup option to guard against adverse execution of their orders.

It is also interesting to see that public information takes on a greater role in price discovery when
the market is highly volatile, as compared to when the market is tranquil. That trades are relatively less
informational when price is highly volatile is to be expected, because the variance of the efficient price
update is a linear combination of the variances of return and the two order flow variables. When price
fluctuates greatly, this variability dominates the variance of the efficient price update, leaving a lesser role for
trade-related information in the price formation process. An intuitive way to think about this result is that
noisier public information makes it harder for market participants to interpret trade flow patterns and discern

value-relevant information.

3.3.4.3 Days with Extreme Net Order Flow

In Table 3.5, Panel C, we compare the information structure on days with high net inflows and high net
outflows (based on the 95th and 5th percentiles of the distribution of net order flow). Net order flow, if
positive, suggests a possible flight-to-safety into Treasury securities (see Beber et al. (2009)), whereas strongly
negative net order flow suggests a flight out of Treasury securities. The results show that the 2- and 10-year

notes do not exhibit a statistically significant change in the information structure between flights into and
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out of Treasuries. In contrast, the lit order flow of the 5- and 30-year securities becomes relatively more
informative on days with high flows into the market, compared to flows out of the market. However, the shift
is fairly small in magnitude. Furthermore, most securities show a similar public information share between
high inflow and high outflow days. Overall, the nature of the flows in the market does not seem to alter

substantially the information structure and workup characteristics.

3.3.5 Comparison with Standard Model of Price Impact of Trades

Our analysis in the previous section illustrates that delineating the trade flow into the pre-workup and workup
components permits a more complete understanding of how the different layers of the trading process
convey non-public information and affect price dynamics. One of the key findings is that trade flow is not
homogeneous. A $1 million trade initiated in the pre-workup stage generally results in a greater price impact
and carries more information than when the same trade occurs in the workup stage.

As aresult, if we model only the trade volume variable without considering its respective components, we
may underestimate the price impact of a market order, since the lower impact of the workup component pulls
down the estimate for the whole transaction size. In addition, omitting the possible endogenous interaction of
workup and pre-workup activity might underestimate the overall informativeness of order flow. To formally
see this, we estimate a bivariate VAR(S) of trade flow and return, and compute the permanent price impact as
well as the information share of transaction volume. The comparison to the trivariate results is provided in
Table 3.6.

Panel A illustrates that for the 5-, 10- and 30-year securities the price impact of a lumped-together (or
“generic”) trade estimated from the bivariate model is much smaller than the price impact of a market order
of the same size estimated from the trivariate model (about half the magnitude). At the same time, Panel B
shows that the price impact of a generic trade is higher than the price impact of a trade occurring during a
workup.

For the 2-year note, the estimated price impact of a generic trade is not only lower than the estimated
price impact of a market order (Panel A), but also lower than the price impact of a workup trade (Panel B). As
discussed earlier, workup activity in the 2-year note is generally as informative as pre-workup trading activity.
Failure of the bivariate model to capture the endogenous dynamics between workups and trade initiation
featured in our trivariate model results in a lower price impact estimate than that of workups for the 2-year

note.
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In addition, as shown in Panel C, the bivariate model attributes less information value to order flow.
Our tests of the hypothesis that the information share of trades in the model of segmented order flow is
not higher than that implied by the bivariate model are rejected for three of the four securities considered.
This is because the bivariate model does not capture and attribute adequately the different contributions and
variations in the respective components of the overall order flow. More importantly, as discussed above, the
dynamic interaction between pre-workup and workup order flow is absent in the bivariate model, implying a
lower information role of order flow than is the case when this dynamic interaction is taken into account.

Economically, it is important to recognize that the workup option is an integral part of the trading process
in the Treasury interdealer market. It is undoubtedly factored into the trading decisions of dealers, since
they can choose to trade immediately by submitting a market order, or wait to trade in a workup. Factors
such as liquidity need, degree of impatience and/or possession of short- versus long-lived information might
contribute to the segmentation of order flow, as dealers balance faster execution with higher price impact.
Treating this market as one where such a workup option is not available and trade flow is homogeneous may

give rise to a less than accurate characterization of the trading process and how trading affects price dynamics.

3.3.6  Is Direction of Workup Expansion Informationally Relevant?

As discussed earlier, the workup protocol on the BrokerTec electronic platform differs from the voice-assisted
protocol described in Boni and Leach (2004) in that workup volume can originate from either side, as opposed
to just expanding the limit order book. The analysis performed up to this point has considered all workup
volume to be equal, but additional insight may be gained by examining whether the direction of volume
expansion during a workup matters to price discovery. Our results show that this is indeed informationally
relevant.

To proceed, we estimate an expanded VAR model in which the workup trade flow (D7) is replaced
by three workup trade flow types (D711, D15, and DT3). These are workups that expand volume on: 1)
the aggressive side (D7), 2) both sides (DT5), and 3) the passive side (DT3).!> The vector of endogenous
variables isnow Y; = | LT, AP, DTy, DTy; DTs, T. To check whether the relative importance

of each of these workup trade flow types is sensitive to the VAR variable ordering, we also report the

results based on an alternative ordering in which the different workup trade flow categories are reversed,

13See subsection 3.2.4.4 for a detailed description of this classification.
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T
e, Y, = |LT, AP DTs; DTy: DTigl| - From the estimated VAR, we compute the information

share for each of the variables in the system as described earlier, and report them in Table 3.7. For brevity,
the information shares of lit trades and public information are not shown as they are quite similar to the
previously reported results.

The results indicate that workup volume coming from the aggressive side contributes significantly more
to price discovery. For example, the information share of workups that expand the aggressive side averages
13% for the 2-year note, compared with the 6% information share of workups that expand both sides and the
1% information share of workups that expand the passive side. Interestingly, this pattern holds even for the
30-year bond, where workups mainly expand the passive side. A comparison of the two orderings shows that
the results are not ordering sensitive.

To see whether the information contribution of each type of workup order flow is commensurate with its
share of volume (shown in Figure 3.3), we rescale the three information shares so that they add up to 100%.
The rescaled numbers indicate the relative contribution of each workup type to the total informativeness
of workup order flow. We use the mean information shares based on the first variable ordering for this
calculation, but the result is similar for the other ordering. The relative information contribution of aggressive
workups is 63.9%, 64.1%, 64.1%, and 64.2% respectively for the 2-, 5-, 10- and 30-year securities. These
percentages are consistently higher than the volume share of aggressive workups, which are 53%, 38%, 29%

and 22%. That is, aggressive workups are disproportionately more informative than the other two workup

types.

3.4 Determinants of Workup Trades

As the previous section shows, trading activity that takes place during the workup stage has a non-trivial role
in the price discovery process. Additionally, workups take place in more than half of transactions and account
for a large share of volume transacted in this market. Collectively, these findings provide a motivation for our
subsequent analysis exploring the determinants of the workup option and the extent of volume transacted
during this phase. Being able to predict the likelihood and extent of a workup upon the arrival of the next
market order, based on prevailing market conditions, can be valuable to market participants in making trading

decisions.
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In order to identify workup determinants, it is important to understand workup benefits and costs. The
most natural cost of waiting to transact in a workup is the risk of non-execution and perhaps the loss of private
information advantage, since counter trading interest may not exist in a workup. Therefore, variables that
correlate with non-execution risk or the perishability of private information are expected to be negatively
associated with workup usage and workup volume.

On the other hand, the obvious benefit of the workup protocol is that traders have more flexibility with
what to do with their trading intention, including not doing anything at all if the market moves unfavorably.
This provides an important advantage over iceberg orders, since the hidden part of an iceberg order may get
executed adversely before the trader has a chance to modify or cancel. Furthermore, the ability to expand
volume during workups can be valuable to those traders with a large trading interest. By submitting an initial
small sized order, those traders can avoid causing adverse price impact that could have resulted had they
submitted the full-sized large order altogether.

The use of workups therefore reflects a trade-off among non-execution risk, increased control over one’s
trading activities, and the ability to avoid adverse price impact. We thus model the probability of workup
(i.e., whether or not a transaction has a workup), as well as the magnitude of the workup volume, with the

following explanatory variables capturing this trade-off:
* DepthSame: prevailing inside depth on the same side of the transaction (logged).
* DepthOpp: prevailing inside depth on the opposite side of the transaction (logged).
* PretradeSpr: prevailing relative spread in basis points (10, 000%).

* MoSize: pre-workup volume of the transaction (i.e., the volume transacted before the workup start)

(logged).
* HdRevealed: whether trading activities during the pre-workup stage have revealed any iceberg orders.
* AveDurLast5: average transaction duration (in seconds) in the last five minute interval (logged).

* Vola5Min: volatility as measured by the high low range of the logged mid-quote over the last five

minute interval, capturing the level of volatility immediately before the transaction.

* PctWkup5Min: percentage of transactions with a workup in the last five minute interval, to control for

the possible liquidity externality of workup activities as predicted by Buti et al. (2011a)’s model.
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* PctWkupV5Min: percentage of volume expanded during workups (conditional on workup usage) in the

last five minute interval. This is another control for the liquidity externality.

* Tokyo trading hour dummy: equals 1 if the transaction starts during the period from 18:30 EST (or

19:30 EDT) the previous day to 3:00 ET.

* London trading hour dummy: equals 1 if the transaction starts during the period from 3:00 ET to 7:30

ET.

We employ a logistic regression model for the probability of workup, in which the dependent variable
equals 1 for those transactions with workup, and 0 otherwise. For the extent of volume expansion during
a workup, we estimate a Tobit model in which the dependent variable is the workup volume, and those
transactions with no workup are censored at zero. The model estimates are presented in Table 3.8. Given the
large number of observations, most of the coefficient estimates are significant at the 5% level. Only those
coefficients that are not significant are marked with an asterisk. We discuss each determinant below.

First, the prevailing depth on the same side is positively related with both the probability of workup and
the magnitude of workup volume. This supports the argument that a higher level of depth, indicative of longer
time to execution for the marginal limit order, might encourage traders with trading interest on the same
side to opt for the immediate execution opportunity offered by the workup. This finding is enhanced by the
negative relationship between prevailing spread and the likelihood of workup.'® A tighter spread (the spread
is often 1 tick in this market) makes it harder to post limit orders inside the spread, while simultaneously
reducing the cost to trade at the workup price (i.e., the forgone spread). Thus, the choice of immediate
execution becomes more attractive, despite it being at a worse price than that of a limit order price. Both of
these findings provide empirical support for Buti et al. (2011a)’s model of dark pool trading strategies in limit
order markets.

Our finding concerning the effect of depth on the opposite side provides some insight into what matters
more to traders when the market is shallow on the opposite side. Theoretically, the effect of opposite side
depth on the likelihood and extent of a workup can go either way. On the one hand, the model by Buti et al.
(2011a) shows that lower depth on the opposite side to absorb incoming orders can result in more adverse

price impact for incoming trades. If so, the workup protocol can be valuable as it gives traders an option to

'Note that once the workup choice is made, the effect of prevailing spread on the extent of volume expansion during the workup is
mixed: negative for the 2- and 10-year securities, but positive for the 5- and 30-year securities.
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start with a smaller sized order and expand the size in a workup without bearing significant market impact.
On the other hand, lower depth on the opposite side may be a sign that trading interest on that side is lacking.
This can reduce the execution probability of trades in a workup, resulting in a lower likelihood of successful
matching during the workup window. Even if a workup does occur, the workup quantity is likely to be lower.

Our empirical evidence of a positive relationship for most securities supports the latter argument; that
is, non-execution risk appears to be a more important consideration than the adverse price impact concern.
The only exception is the 2-year note, for which we observe a negative effect of opposite side depth on the
likelihood of a workup. Recall that the transaction size in the 2-year note is often much larger than that for
other securities. Accordingly, the adverse price impact associated with the lack of opposite standing depth
might become a more important concern, thereby encouraging greater usage of workups. As for workup
quantity, the effect of opposite side depth is also positive for all securities, providing additional support for
the non-execution risk hypothesis.

Next, the initial size of a transaction is positively associated with the likelihood of workup (as shown by
the positive coefficients for pre-workup volume across securities, except for the 30-year bond). This provides
direct empirical support of Harris (1997)’s argument that there might be inactive traders in the market who
only take action based on the actions of others. A larger volume transacted during the pre-workup phase
is more likely to ignite interest from otherwise inactive traders. Another possible explanation is that large
initial volume is perceived by the market to be associated with large liquidity demand. This may induce
the expansion of the quoted depth during the workup beyond the level observed just before the trade — an
idea that finds empirical support in Boni and Leach (2004). Interestingly, once a workup is taking place,
the additional volume transacted may increase or decrease with the pre-workup volume depending on the
security. For example, it is positive for the 2- and 30-year securities but negative for the 5- and 10-year notes.

Another aspect of pre-workup trading — the revelation of hidden depth — can also predict higher workup
usage and volume expansion. The revelation informs market participants that there is a hidden liquidity pool in
addition to the initially observed depth and that workup trades have a greater chance of being filled/absorbed.

We further find that price volatility, measured over the 5S-minute time window leading to each transaction,
is positively related with workup activities. This is consistent with Boni and Leach (2004)’s finding using
GovPX data under a protocol in which workups expand the limit order book only. Intuitively, when the

market is volatile, the risk of adverse execution of limit orders increases, thereby motivating a greater reliance
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on workups because the protocol allows traders greater control over when and how much to trade, or even not
to trade at all.

Moreover, since the workup protocol can be likened to a crossing network, we can also borrow theoretical
insights from that literature for a better understanding of our empirical volatility finding. Ye (2012) suggests
a linkage between security value uncertainty and the choice of trading in the crossing network as opposed to
the transparent exchange. Specifically, uncertainty increases both the price impact of trades on the exchange
and the non-execution probability in the crossing network, but the net effect is that the crossing network is
comparatively more beneficial for the informed traders. As a result, Ye predicts that crossing network usage
should increase in value uncertainty. Our finding concerning the effect of volatility is generally in line with
this prediction, as well as empirical evidence in Ready (2012) for a cross section of the 500 largest NASDAQ
stocks from 2005 to 2007.

Our result also shows that the speed of trading in the market significantly increases the likelihood of a
workup, as well as the magnitude of worked-up volume. In light of Easley and O’Hara (1992) and Dufour
and Engle (2000), high trading intensity is likely reflective of information arrival, and thus, inactive trading
interest can be activated and revealed in a workup following the lead of market order traders. Furthermore,
the positive coefficients for the prevailing level of workup activity support Buti et al. (2011a)’s argument that
dark pool liquidity begets dark pool liquidity, as a higher level of workup activity signals an increased chance
of finding counter-party trading interest and successful execution of workup orders.

Finally, the probability of workup and extent of worked up volume are both significantly lower outside
New York trading hours, even after having controlled for the level of trading activity through the previously
discussed covariates. This seems to be consistent with the hypothesis that workups are used less in the
overnight hours when there are fewer traders in the market. There is simply a lower chance of meeting with a
counter-party in a workup, or being able to ignite inactive trading interest, when there are not many traders at

their desks.

3.5 Conclusion

This chapter studies the workup protocol, a distinctive and frequently used trading feature in the U.S. Treasury
securities market. Given its importance in discovering a large portion of market liquidity, we examine its

role in the price formation process, and distinguish it from the information value of non-workup trades that
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initiate workups. We find that workup trade flow generally contains less information than its transparent
counterpart, but that its role is not trivial. In addition, it is the aggressive side workups that account for most
of the information value of workup trade flow. Workups that expand the limit order book as described in Boni
and Leach (2004) are far less informative.

Furthermore, we find that workups occur more frequently around volatile times, when the incidence
of workups expanding the pre-trade limit order book also increases for all three notes, suggesting that the
workup protocol is helpful to limit order traders in managing their trading interest. Additionally, workups are
more likely when the market is more liquid (e.g., greater market depth and tighter bid-ask spreads) or trading
more active. Interestingly, lit order flow becomes more informationally relevant on highly volatile days,
supporting the belief that traders with better information are more likely to initiate trades and exploit their
information before adverse price movements can render the information less valuable. Taken together, the
evidence seems to suggest that workups are used more as a channel for liquidity providers to guard against
adverse price movements, than as a channel to hide private information.

Our findings provide important implications for research into the price discovery of U.S. Treasury
securities. Consistent with theory, we document that the different layers of order flow have different
information content. Intuitively, given the option of trading in a workup, a trader who chooses to initiate a
trade (as opposed to wait for a workup) conveys a stronger signal to the market than otherwise would be
the case in a hypothetical market setup where such a workup option does not exist. Therefore, the act of
initiating a trade should contribute more to information discovery than the act of trading in a workup. We
show that, without considering this segmentation, the price impact so estimated can underestimate the impact
of initiating a trade and the share of non-public information flow.

Beyond the literature on price discovery in financial markets, our research adds to two important areas of
research, namely dark pool trading and security market design. The workup protocol in essence is a dark
pool mechanism and provides a valuable opportunity for examining how such a mechanism operates in a
fixed income market setting. We show that in the market for U.S. Treasury securities, dark pool trades are
only mildly informative and that they tend to occur more often at more volatile times, highlighting the benefit
of this mechanism in protecting traders against large price swings. While equity dark pools have recently
come into the spotlight for the potential of compromising market quality and fairness, our evidence indicates
that this is not a major concern for this fixed income market, one that is populated mostly by sophisticated

market participants (i.e., government securities dealers).
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With respect to security market design, the workup protocol presents an interesting case study of a
continuous limit order market combined with periodic call auctions. This is a timely contribution to the
current discussion on the market design response to the trend in high frequency trading. With increasing high
frequency trading activity across markets, continuous limit order market design has shown certain limitations
(e.g., encouraging an arms race in trading technology). Naturally, these limitations invite further research into
alternative market design features and necessitate an understanding of possible implications of such features.
In this direction, our work readily offers empirical implications on trading patterns, exposure choice and price

discovery in a continuous limit order market enhanced with periodic auctions.
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Table 3.1: Summary Statistics of Trading and Workup Activities
2-Year 5-Year 10-Year 30-Year

PANEL A: DAY-LEVEL STATISTICS

Volume ($B) 33.5 34.0 293 4.7
Pre-workup % 51.8 43.6 45.5 57.3
Workup % 48.2 56.4 54.5 42.7

Number of Transactions 1,224 2,679 2,642 1,464
% with Workup 49.0 56.2 55.2 39.1
9 with Iceberg Order Match 4.2 4.3 4.4 3.9
% Executed at Multiple Prices 0.0 0.2 0.2 0.5

PANEL B: TRANSACTION-LEVEL STATISTICS (WITH WORKUP)

Transaction Size ($M) 41.8 18.6 16.4 5.4
Pre-workup 15.6 6.0 5.5 1.9
Workup 26.2 12.7 10.9 3.5

Number of Trades 9.9 8.7 8.6 3.9
Pre-workup 32 2.9 3.0 1.4
Workup 6.7 5.8 5.6 2.5

PANEL C: TRANSACTION-LEVEL STATISTICS (WITHOUT WORKUP)

Transaction Size ($M) 11.9 4.6 4.2 1.7
Number of Trades 2.4 2.1 2.2 1.3

PANEL D: SAMPLE SIZE

Number of Transactions 1,836,812 4,017,905 3,946,216 2,197,471
Number of Trading Days 1,501 1,501 1,494 1,501

This table provides summary statistics of trading activity in the on-the-run 2-, 5-, 10-, and 30-year Treasury securities on the
BrokerTec platform. The sample period is 2006-2011. A transaction refers to a complete sequence of order executions that starts
with the arrival of a market order and ends when the workup initiated by the original market order completes. A trade refers to a
single paired order matching. There is no data available for the 10-year note on seven days during the sample period (August 3-7,
10-11, 2009). Numbers reported in Panel A are daily averages. Numbers in Panels B and C are averages across all transactions with

and without workups respectively.
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Table 3.2: Correlations of Workup and Order Flow Variables
2-Year 5-Year 10-Year 30-Year

Daily Signed Order Imbalance & Workup Usage 0.048  0.169 0.043 0.043
Daily Absolute Order Imbalance & Workup Usage -0.297 -0.266  -0.206  -0.081

Daily Volatility & Workup Usage 0.541 0.380 0.540 0.256
Workup Autocorrelation 0.110  0.084 0.089 0.063
Workup Volume Autocorrelation 0.098 0.120 0.136 0.114

This table shows correlations of workup and trading variables for the on-the-run 2-, 5-, 10-, and 30-year Treasury securities on the
BrokerTec platform. The sample period is 2006-2011. A transaction refers to a complete sequence of order executions that starts
with the arrival of a market order and ends when the workup initiated by the original market order completes. Daily signed order
imbalance is buy volume minus sell volume, standardized by the day’s total trading volume. Daily absolute order imbalance is the
absolute order imbalance standardized by the day’s total trading volume. Daily volatility is the average five-minute realized volatility
of the bid-ask midpoint (logged) for each day. Workup usage is the percentage of transactions with workups for each day. The

workup and workup volume autocorrelation coefficients are computed based on transaction-level data.

86



Table 3.3: Permanent Price Impact of Segmented Order Flow
Lit Trades Dark Trades

Mean 3.70 3.19
2-Year  95% Range Lower Bound 0.76 0.88
95% Range Upper Bound 13.59 8.57
Mean 21.88 7.54
5-Year  95% Range Lower Bound 5.23 2.59
95% Range Upper Bound 59.42 15.44
Mean 48.16 18.04
10-Year 95% Range Lower Bound 11.02 6.24
95% Range Upper Bound 129.36 34.00
Mean 397.97 50.60
30-Year 95% Range Lower Bound 113.59 -61.24
95% Range Upper Bound 938.46 203.19

This table reports the permanent price impact (in basis points per $1 billion buyer-initiated volume) of pre-workup trades (“Lit
Trades”) versus workup trades (“Dark Trades”). The estimates derive from a VAR(S) model of pre-workup trade flow, return and
workup trade flow. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the
period 2006-2011. Observations outside the [7:00-17:30] time window are excluded. The model is estimated separately for each day.

The mean and 95% range are computed from the time series of daily price impact estimates.
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Table 3.4: Share of Trade and Non-Trade Related Information

2-Year

5-Year

10-Year

30-Year

Mean
95% Range Lower Bound
95% Range Upper Bound

Mean
95% Range Lower Bound
95% Range Upper Bound

Mean
95% Range Lower Bound
95% Range Upper Bound

Mean
95% Range Lower Bound
95% Range Upper Bound

Trade Related Information Public

Lit Trades Dark Trades Information
15.23 17.48 67.28
3.52 3.01 41.72
30.67 38.67 87.73
16.09 6.72 77.19
6.07 0.54 63.19
26.35 17.82 91.08
18.52 8.21 73.28
7.83 0.67 59.11
30.10 21.19 86.53
16.66 1.05 82.29
5.66 0.00 68.69
29.95 5.13 93.73

This table reports the information share (%) of pre-workup trades (“Lit Trades”), workup trades (‘“Dark Trades”), and non-trade-
related information (“Public Information”). The estimates derive from a VAR(5) model of pre-workup trade flow, return and workup
trade flow. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the period

2006-2011. Observations outside the [7:00-17:30] time window are excluded. The model is estimated separately for each day. The

mean and 95% range are computed from the time series of daily information share estimates.
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Table 3.6: Informational Content of Segmented versus Generic Order Flow
2-Year 5-Year 10-Year 30-Year

PANEL A: PRICE IMPACT OF $1 BILLION PRE-WORKUP VOLUME

Model with Segmented Trade Flow 3.70 21.88 48.16  397.97
Model with Generic Trade Flow 2.74 11.34 2594  181.00
p-value of paired sample t-test (right tail) <0.001 <0.001 <0.001 <0.001

PANEL B: PRICE IMPACT OF $1 BILLION WORKUP VOLUME
Model with Segmented Trade Flow 3.19 7.54 18.04 50.60
Model with Generic Trade Flow 2.74 11.34 25.94  181.00
p-value of paired sample t-test (left tail) 1.000 <0.001 <0.001 <0.001
PANEL C: INFORMATION SHARE OF TRADES
Model with Segmented Trade Flow** 3272% 22.81% 26.72% 17.71%

Model with Generic Trade Flow 26.64% 22.76% 2639% 14.45%
p-value of paired sample t-test (right tail) <0.001 0.201 <0.001 <0.001

This table compares the price impact and informational content of order flow estimated by our trivariate VAR model, which considers
separately the pre-workup and workup order flow, with those estimated by a standard bivariate VAR model, which considers the
generic order flow without segmentation. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury

securities over the period 2006-2011. ** This is the combined information share of pre-workup and workup trades.
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Table 3.7: Information Share of Workup Trades by How Workup Volume Arises

Aggressive
2-Year Both
Passive

Aggressive
5-Year Both
Passive

Aggressive
10-Year Both
Passive

Aggressive
30-Year Both
Passive

Ordering 1

Ordering 2

Mean 95% LB 95% UB

Mean 95% LB 95% UB

12.96
6.20
1.13

6.55
3.09
0.58

7.72
3.73
0.59

1.97
0.67
0.43

2.18
0.52
0.00

1.29
0.16
0.00

1.59
0.23
0.00

0.01
0.00
0.00

31.18
16.31
5.96

14.41
8.72
3.05

16.30
10.47
3.10

7.10
3.19
242

13.47
5.88
0.95

6.81
2.99
0.43

8.05
3.56
0.42

2.00
0.64
0.42

2.25
0.39
0.00

1.35
0.13
0.00

1.66
0.21
0.00

0.01
0.00
0.00

31.97
15.84
4.98

14.87
8.68
2.61

16.92
10.18
2.40

7.13
3.13
242

This table reports the % information share of workups classified by how workups expand volume: 1) the aggressive side only, 2) both
sides, and 3) the passive side. The estimates derive from a VAR(5) model of pre-workup trade flow, return and three categories of
workup trade flow. For brevity, information shares of pre-workup trades and public information flow are not reported. Estimation is
based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the period 2006-2011. Observations
outside the [7:00-17:30] time window are excluded. Ordering 1 columns show the information share based on a variable ordering of

Aggressive, Both, and Passive. Ordering 2 columns show the information share based on a variable ordering of Passive, Both, and

Aggressive.
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Figure 3.1: Workup Activity over Time
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This figure shows the monthly share of transactions with workups (upper plot) and monthly share of volume transacted in workups
(lower plot). The numbers are first calculated daily for the on-the-run 2-, 5-, 10- and 30-year Treasury securities on the BrokerTec

platform and then averaged across days by month. The sample period is 2006-2011.
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Figure 3.2: Intraday Pattern of Workup Probability

0 | | | |
18:00 21:00 0:00 3:00 6:00 9:00 12:00 15:00 18:0C

This figure shows the pattern of workup usage over the global trading day (Eastern Time). The plot starts at 18:30 of the previous day
and ends at 17:30 of the current day. The numbers are first calculated for a given interval and day for the on-the-run 2-, 5-, 10- and

30-year Treasury securities on the BrokerTec platform and then averaged across days. The sample period is 2006-2011.
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Figure 3.3: Which Side Do Workups Expand?
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This figure shows the percentages of workups that expand volume on: 1) the aggressive side only, 2) both sides, and 3) the passive
side. A workup expands only the aggressive side if the total transaction volume (pre-workup and workup volume combined) is
not greater than the depth posted in the limit order book immediately before the transaction. A workup expands both sides if the
pre-workup volume is less than the posted depth, but the total transaction volume exceeds the posted depth. A workup expands
the passive side if the pre-workup trades exhaust the posted depth. This expansion of the passive side includes instances where the
aggressive side is also expanded during the workup. The percentages are first calculated daily for the on-the-run 2-, 5-, 10-, and
30-year Treasury securities on the BrokerTec platform and then averaged across days. The sample period is 2006-2011.
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Figure 3.4: Cumulative Impulse Response of Price to Trade
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This figure plots the cumulative midpoint return (in basis points) in response to a $1 billion shock to pre-workup and workup trading

volume respectively, based on a VAR(5) model of return and segmented order flow. Estimation is first done daily based on BrokerTec

data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities and then averaged across days. The sample period is 2006-2011.

Observations outside the [7:00-17:30] time window are excluded from model estimation.
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Figure 3.5: Permanent Price Impact of Trade
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This figure plots the 20-day moving average of the price impact of $1 billion buyer-initiated volume transacted during pre-workup
versus workup phases. The price impact measures are first computed daily from a VAR(5) model of return and trade flows, and then
averaged over rolling 20-day intervals. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury

securities over the period 2006-2011. Observations outside the [7:00-17:30] time window are excluded from model estimation.
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Figure 3.6: Information Share of Pre-Workup and Workup Order Flow
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This figure plots the 20-day moving average of the information share of pre-workup versus workup order flow, using Hasbrouck
(1991b)’s information share approach. The information share measures are first computed daily from a VAR(S) model of return and
trade flows, and then averaged over rolling 20-day intervals. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and
30-year Treasury securities over the period 2006-2011. Observations outside the [7:00-17:30] time window are excluded from model
estimation.
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CHAPTER 4
INTRADAY DYNAMICS OF VOLATILITY AND LIQUIDITY IN THE US TREASURY MARKET

4.1 Introduction

Interest in the dynamics of market liquidity and volatility in the U.S. Treasury securities market stems from
the market’s many vital roles. Because of their liquidity, Treasury securities are commonly used to price
and hedge positions in other fixed-income securities and to speculate on the course of interest rates. The
securities’ creditworthiness and liquidity also make them a key instrument of monetary policy and a crucial
source of collateral for financing other positions. These same attributes make Treasury securities a key store
of value, especially during times of crisis.

The flight-to-liquidity premium in Treasury bond prices documented by Longstaff (2004) is a good
example of how the plentiful liquidity in the Treasury market is valued by investors. This poses several
interesting questions for the U.S. Treasury market. Is liquidity supply available when it is needed most? How
is liquidity supply driven by uncertainty and other market factors, and conversely, does the supply of liquidity
have any role in dampening or magnifying volatility in the market? How do the dynamics of the Treasury
limit order book differ during flight-to-safety episodes?

A dynamic model for liquidity and its interrelation with volatility is highly useful for addressing these
questions and exploring other microstructure issues of interest. With the availability of intraday data on the
limit order book of Treasury securities in the interdealer market, the model can be cast in high frequency time
intervals, and can accordingly convey rich and insightful information about the micro behavior of liquidity
and volatility in this market.

Our study contributes to the extensive literature on price formation and liquidity in the U.S. Treasury
market. This strand of literature includes Fleming and Remolona (1999), Balduzzi et al. (2001), Huang
et al. (2002), Fleming (2003), Brandt and Kavajecz (2004), Green (2004), Fleming and Piazzesi (2005),
Goldreich et al. (2005), Mizrach and Neely (2007), Pasquariello and Vega (2007), Fleming and Mizrach

(2009), Jiang et al. (2011), and many others. However, most of the extant studies use data prior to the 2008

99



crisis period, leaving market dynamics during the crisis — the most serious to hit the global economy since
the Great Depression — less documented.

Being a safe haven for investors, the role of the Treasury market during flight-to-safety episodes is
particularly important. An active literature studying the flight-to-safety phenomenon has provided (1) a
number of theoretical models (see for example, Vayanos (2004) and Brunnermeier and Pedersen (2009)) and
(2) related empirical evidence (see for example, Longstaff (2004), Goyenko and Sarkissian (2008), Baele
et al. (2010), Baur and Lucey (2009), Beber et al. (2009), Bansal et al. (2010), and Baele et al. (2012)). While
these studies provide great insights into the potential determinants of flight-to-safety episodes, such as the
elevated level of risk, the changing risk aversion of investors, the tightening of margin requirements, and so
on, little attention has been paid to how the destination of such flights — the Treasury market — is affected by
the actions of those investors seeking safe haven. Our work aims to fill this gap by documenting the behavior
of liquidity and volatility during such episodes and by providing an econometric model to isolate the effect of
flights to safety on this benchmark market.

Our study is related to papers that have documented asset pricing anomalies that arose during the financial
crisis. Fleckenstein et al. (2010) show that a significant mispricing arose during the crisis between Treasury
bonds and inflation-swapped TIPS issues with replicating cash flows. Musto et al. (2011) document a large
and systematic mispricing during the crisis between notes and bonds with identical cash flows. Hu et al.
(2011) show that “noise” in Treasury security prices rose sharply during the crisis. Our work also documents
the unusual market behavior during the crisis, but by directly assessing market liquidity. Moreover, while
the previously mentioned pricing anomalies are shown to have arisen largely among less traded Treasury
securities, our study identifies liquidity declines in the most actively traded Treasury securities.

Our study is also relevant for the general market microstructure literature on price discovery. Price
incorporates news and converges to fundamental value through the trading process. The availability of
liquidity is critical to that process and therefore modelling the evolution of liquidity can complement and
further our knowledge on the dynamics of asset prices. Although equity limit order books have been studied
extensively, studies on Treasury limit order books remain scant in comparison. There is no a priori reason
to expect empirical findings from equity markets to hold up in the Treasury market. Informed trading is
important in equity markets, but less so in the Treasury market, which is driven more by macroeconomic

conditions and, in particular, monetary policy decisions and macroeconomic data releases. As a result, the
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dynamics of price and liquidity in this market could potentially differ from that documented for equity
markets.

While market liquidity can be measured in many ways, we focus on market depth — a direct measure of
the quantity of securities available for purchase and sale. Henceforth, we will use the two terms liquidity and
depth interchangeably.! It is useful to note that the distinction between liquidity supply and demand may not
be clear in limit order markets. In their comprehensive survey of the limit order book literature, Parlour and
Seppi (2008) describe how investors with a demand for liquidity may choose to post aggressive limit orders
rather than market orders. Such limit orders have the flavor of both supply and demand. Therefore, while the
liquidity available in the order book (on both sides) is often considered representative of the liquidity supply,
some of this liquidity could potentially come from demanders of liquidity who happen to have more patience
to wait for their orders to be executed at better prices than those who submit market orders for immediate
execution. In this study, we adopt the traditional approach of considering limit orders as the supply side and
market orders as the demand side.

We propose a new joint model of liquidity and volatility based on the multiplicative error model (hereafter
“MEM?”) formally introduced in Engle (2002). There are important features of the U.S. Treasury market that
make this modelling choice superior to the standard linear Gaussian framework adopted in many previous
empirical models of the limit order book.? First, it has been shown that depth tends to disappear prior to
economic news announcements (e.g., Fleming and Remolona (1999) and Fleming and Piazzesi (2005)).
This study also documents a large liquidity drop in the fall of 2008. Therefore, the model must be able to
accommodate zero or small values of depth with a reasonable probability mass. Secondly, both market depth
and volatility are nonnegative variables, but under a linear Gaussian framework their predictions are not
guaranteed to be nonnegative. Even if log transformation is used to avoid the nonnegativity issue, researchers
run into the problem of exact zero values at which the logged depth or volatility is not defined. The log

linear framework is also problematic for predicting small values of depth as these are implicitly treated as

"Market depths (in plural) refer to depth at multiple price tiers, while market depth (singular) refers to the depth at a particular price
tier.

For example, Ahn et al. (2001) use a regression framework to study the dynamics of the number of limit orders posted. Likewise,
Nes and Skjeltorp (2006) regress trade size and number of transactions on volatility to document the existence of a volume-volatility
relationship in the Norwegian equity market. Hérdle et al. (2009) propose a dynamic semiparametric factor approach to modelling
liquidity supply, combining nonparametric factor decomposition for the order curve’s spatial structure with VAR for time variations
of factor loadings. Other studies similar in their use of VAR include Danielsson and Payne (2010) and Hautsch and Huang (2009),
among others. Ranaldo (2004) uses an ordered probit regression framework to analyze how the state of the limit order book affects
order submission strategy.
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extreme events whereas empirical evidence tells us that small values of depth are not uncommon. The new
class of models we suggest can easily handle spells of near-zero (and positive valued) liquidity. Lastly, our
MEM-based model enjoys the benefit of modelling directly the variables of interest, not their log-transformed
counterparts, which can be convenient in interpretation and forecasting.

The key insight from our model choice is that we make empirical limit order book models look much like
asset price volatility models. This has several advantages. First, we can readily borrow many specifications
and modelling strategies from the vast volatility literature. For example, we can study the effect of news via
so called news impact curves, see e.g., Engle and Ng (1993). Second, we can easily study the interactions of
volatility and limit order book dynamics within a well understood and unified framework. Third, nonnegativity
of depth — and obviously volatility — is guaranteed within the MEM specification. This rules out nonsensical
predictions and therefore addresses many of the issues discussed in the previous paragraph.

The cross-fertilization of insights from the volatility literature to that of limit order books goes beyond
modelling strategies — it also pertains to measurement. In the past decade, the notion of so-called realized
(price) volatility has been extensively studied (see the recent survey by Barndorff-Nielsen and Shephard
(2007)). We introduce the notion of limit order book depth realized volatility — which measures the variability
of liquidity using high frequency data. Namely, our modelling strategy consists of taking five-minute
snapshots of the book as well as measuring one-second changes in the book. The latter allows us to compute
for every five-minute interval the realized quadratic variation at all levels of the limit order book.®> This
provides us with a measure of liquidity risk, similar to the quadratic variation measure widely used in the
volatility literature to characterize price risk. Thanks to this new measure of realized depth volatility, we can
study the impact of liquidity uncertainty on the level of liquidity. Needless to say, the realized depth volatility
is obviously also a nonnegative process. Hence, our modelling strategy is perfectly suited to include this new
measure as well.

Using limit order book data for the 2-, 5- and 10-year U.S. Treasury notes over the period from 2006 to
the end of the second quarter of 2010, our class of models identifies several key findings. First, the order
book exhibits clustering in all three variables of interest: depth, price volatility, and liquidity volatility (except
liquidity volatility at the first tier). More importantly, there is a negative feedback loop between market

depth and price uncertainty at the inside bid and ask. For other price levels however, depths tend to lower

3Technically speaking the limit order book, unlike high frequency returns, is not a martingale difference sequence. We provide
several robustness checks with respect to the drift specification.
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subsequent price uncertainty but the reverse effect is not present. Submitting orders to the inside queues
subjects dealers to adverse execution risk and thus, when price is volatile, it is easy to see why dealers tend
to cut back on supplying liquidity at the best bid and ask. There is room for modification or cancellation
of orders behind the market when price moves unfavorably, so price volatility is less of a concern in the
decision to supply depth at the outer tiers. In contrast to the negative interaction between liquidity and price
uncertainty, we find that an increased level of depth uncertainty tends to bring out more depth, and this is
consistent across all price levels. This evidence seems to suggest that liquidity supply tends to increase when
it is more valuable to the marketplace, consistent with the findings in Biais et al. (1995).

Examining the dynamics of depth and volatility during the crisis period, we find that both become
more persistent during the crisis. This dangerous combination provides a great illustration to models of
liquidity crashes (for example, Cespa and Foucault (2012)) in that bad shocks to either volatility or liquidity
can intensify the negative feedback effect, leading to liquidity crashing while volatility spiking up. Our
models also provide consistent evidence with the earlier literature that depth is withdrawn immediately
before important economic announcements but then quickly gets refilled once the announcement is released,
accompanied by a surge in trading activity and price uncertainty. Furthermore, the news impact curve — a
concept standard in the volatility literature but novel in a limit order book context — shows evidence of an
asymmetric response of market depth to negative price changes, whereas price volatility does not seem to
discriminate between price increases and decreases. Price volatility instead appears sensitive to the magnitude
of the value change only. The fact that many dealers take part on both sides of the market, and large price
moves may be indicative of important events around which divergences of opinion often rise, could explain
this behavior.

Our analysis of the Treasury market during flights to safety contributes new evidence to the discussions
of this phenomenon. In particular, the ex ante liquidity supply, namely the limit order book, is substantially
lower on flight days — those days when liquidity is especially needed. However, a high level of trading activity
is also observed on those days, along with an elevated level of price uncertainty. These patterns collectively
suggest that liquidity providers monitor the market more closely on these days and refrain from using limit
orders to passively supply liquidity to the market.

The chapter is organized as follows. Section 4.2 presents stylized facts on trading, liquidity and volatility
in the U.S. Treasury market. These stylized facts provide the motivation for our modelling approach based on

the multiplicative error framework, which we discuss in Section 4.3. Practical issues with model estimation
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and the measurement of volatility are also covered in this section. In Section 4.4, we present and discuss
the empirical dynamics of Treasury liquidity and volatility as estimated by our proposed class of models.
We then provide an analysis of the Treasury market during flight-to-safety episodes in Section 4.5. Finally,

Section 4.6 concludes.

4.2 The U.S. Treasury Market — Some Stylized Facts

U.S. Treasury securities are debt instruments sold by the U.S. government through public auctions and
subsequently traded in the secondary market. The secondary market is structured as a multi-dealer, over-
the-counter market, in which the dealers trade with their customers, the Federal Reserve Bank of New York,
and one another. Interdealer trading prior to 1999 was based on a network of voice-assisted brokers. Fully
electronic trading started in 1999 with the introduction of the eSpeed platform, followed by the BrokerTec
platform in 2000. Mizrach and Neely (2006) estimate that the BrokerTec platform accounts for about 61
percent of all interdealer trading activity.

There are no clearly defined trading hours for this market. Instead, trading spans 22-23 hours per day
during the week, commencing around the start of the trading day in Tokyo and fading off with the end of
the trading day in New York. During these hours, dealers send in their orders, have their orders executed,
or modify or cancel existing orders. Each order specifies the quantity and price, whether it is for purchase
or sale, and whether the order is aggressive.* Limit orders, when submitted, are queued in the order book
according to the price and time priority rules until executed or cancelled. Although trading spans almost the
entire day, trading outside of the New York trading hours is sparse, so we limit our analysis to between 7:00

and 17:00 Eastern time.

4.2.1 Data Description

Our analysis is based on order book data from the BrokerTec platform. All order messages sent to this
platform are captured and time-stamped to the millisecond. The order book snapshot data is constructed by
accumulating these order changes at the corresponding price tiers from the beginning of the trading day. This

results in a tick-by-tick dataset with market depths measured in millions of dollars (par value), and prices

* Aggressive, or market, orders are executed immediately against best available limit orders on the opposite side of the market.
Passive, or limit, orders are queued in the limit order book at the corresponding price level. All orders, whether aggressive or passive,
need to specify both quantity and price. Best limit orders on opposite sides with the same price are not automatically executed.
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reported in 256ths of a point, where a point equals one percent of the par value. We focus our attention on
the on-the-run 2-, 5- and 10-year notes, as these are the most actively traded Treasury securities. The 2- and
5-year notes are newly issued every month, while the 10-year note comes out every quarter with reopenings
in the following month and — since November 2008 — two months.?

Our sample period is January 2, 2006 to June 30, 2010, and thus covers the financial markets crisis of
2008-2009, as well as a period before the crisis. We date the start of the crisis to August 9, 2007, when BNP
Paribas announced that it could not value assets in three of its investment funds (see Boyd (2007)).% There is
no clear ending date to the crisis, so we mark the end with the NBER’s end-of-recession date of June 2009.

For our empirical analysis, we choose to work with the five-minute snapshot data, supplemented by the
one-second snapshot data needed for the computation of the realized volatility measures The five-minute
snapshot data are extracted from the tick data described above by taking the last observation of each five-
minute interval between 7:00 and 17:00. This results in 120 observations per day, except for those days with
an early market close. For such days, we discard data after the recommended closing time.” The one-second
snapshot data is extracted from the tick data in the same fashion. Although the data is available tick-by-tick,
our choice of the five-minute interval is to avoid data errors (e.g., erroneous order messages that enter and
exit the book in split seconds) and microstructure noise inherent in ultra-high frequencies. The interval is
also long enough for sufficient movements in the book, so that meaningful predictions can be made.

We focus our analysis on the best five price tiers on each side of the market. First, we know from Biais
et al. (1995) that liquidity is not concentrated at the inside tier. Second, the five-minute sampling implies that
depth at different tiers is relevant for the future evolution of the limit order book. We choose to look at five

tiers, which mirrors what market participants can see.

SWe apply the following filters to the data. Since we are exclusively looking at recently issued on-the-run securities, and Treasury
securities are issued at a price close to par value, then prices have to be in the vicinity of 25,600 (par value). We adopt a range
of 20,000 - 30,000 to remove outliers, a filter that is narrow enough to remove obvious price errors, but conservative enough to
still capture valid but extreme prices. For depth variables, we adopt a filter of $10 billion of par value for each price tier, which is
roughly one-third the size of the typical issue in our dataset.

®Note that the Business Cycle Dating Committee of the National Bureau of Economic Research (NBER) considers December 2007
as the start of the recession (http://www.nber.org/cycles.html). However, for the purpose of modelling liquidity in the
Treasury market, the earlier date at which the crisis started in the money markets is more appropriate.

"Information on recommended early closes in the bond market is from the Securities Industry and Financial Markets Associa-
tion and is posted here: http://www.sifma.org/uploadedfiles/research/statistics/statisticsfiles/
misc-us-historical-holiday-market-recommendations-sifma.pdf.

105


http://www.nber.org/cycles.html
http://www.sifma.org/uploadedfiles/research/statistics/statisticsfiles/misc-us-historical-holiday-market-recommendations-sifma.pdf
http://www.sifma.org/uploadedfiles/research/statistics/statisticsfiles/misc-us-historical-holiday-market-recommendations-sifma.pdf

4.2.2  Some Stylized Facts

In this section, we document a number of stylized facts pertaining to the 2-, 5- and 10-year notes, with
particular focus on their time series behavior through the most recent financial crisis, as well as their patterns

around macroeconomic announcements.

Market Depths Decline Sharply During Crisis

As shown in Table 4.1, prior to the crisis, the average depth at the best price tier for the 2-year note is over
$400 million. It plummets to roughly one fifth this level during the crisis period. Coming out of the crisis, the
market recovers somewhat, but remains far below the pre-crisis level. Similar trends can be observed for the
5- and 10-year notes: the pre-crisis average depth at the best price tier is about $72 million, before dropping
to a level slightly above $20 million during the crisis. However, unlike the partial recovery observed with the
2-year note, liquidity does not seem to improve much after the crisis for the 5- and 10-year notes. Note that
Treasury issue sizes have steadily increased over the sample period. So the decline in liquidity we observe
during the crisis is not attributable to a declining issue size.

Another observation of interest is that average market depth is highest at the second tier and gradually
declines over the subsequent tiers. This is consistent with the finding of Fleming and Mizrach (2009) using
BrokerTec data from January 2005 to February 2006. That liquidity is not concentrated at the inside tier is
also documented by Biais et al. (1995) using order book data for stocks on the Paris Bourse. They attribute
this finding to the fact that trading consumes liquidity at the front line.

To see the trend in Treasury market depth throughout the crisis period more closely, we graph daily
averages of depth in Figure 4.1 for the 2-year note (solid line). Graphs on the left are for the inside ask and on
the right for the inside bid. Whether on the bid or ask side, market depth starts to decline sharply in mid 2007,
providing evidence of mounting pressures in the Treasury market at the onset of the crisis. Liquidity drops
sharply again in the fall of 2008 following Lehman Brothers’ bankruptcy. Depth then bottoms out towards
the end of 2008 and then improves fairly steadily from there. Depths at other tiers as well as the total depth
across the best five price tiers have the same time series pattern. The 5- and 10-year notes exhibit very similar
trends (not shown), although their recovery following the crisis is not as strong as what is observed with their

2-year counterpart.
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Spread Is Tight but Widens Significantly in Late 2008

The bid-ask spread is another useful indicator that supplements our characterization of liquidity in this market.
An analysis of the inside spread shows that, for all three securities considered, the spread is quite tight, with
an average of slightly above one tick.® The tight spread around the small minimum allowable price movement
suggests a very liquid market. Its time series behavior - with the inside spread widening significantly and
consistently across the three notes in late 2008 — is also consistent with the pattern in market depths that
points to a large liquidity drop at the height of the crisis. The 5-year note exhibits the most extreme peak in
this period, followed by the 10-year. The spread returns to a level of just over one tick again in 2009 (see

Figure 4.2).

Trading Volume Does Not Drop Until Late 2008

In contrast to the drop in market depth — a measure of the ex ante liquidity supply — that happens right at
the beginning of the crisis in August 2007, actual trading volume is on the rise during the first half of the
crisis (see graphs (a) and (b) in Figure 4.1, where trading volume is depicted by the dash line). It is only after
Lehman’s failure that we observe a major slide in trading volume which continues largely until the end of
2008, when both market depth and trading activity seem to almost vanish altogether. From that point on, they

improve and move together.

Volatility Shoots Up During Crisis

As can be seen from Table 4.1, price volatility roughly doubles during the crisis for all three securities.
However, only the 2-year note’s volatility returns close to its pre-crisis level, whereas volatilities for the two
longer term notes remain higher than they were before the crisis. This evidence again supports the finding
that the 2-year note is the most liquid and resilient among the three securities considered. Across the best five
tiers in the book, price volatility is slightly higher for the outer tiers.

Graphs (c¢) and (d) in Figure 4.1 provide a closer look into the time series trends in the inside tier’s price
volatility. In the second quarter of 2007, price volatility is already rising and shoots to a new elevated level on
August 9, 2007 — when the crisis is widely believed to start. It keeps increasing and reaches its peak around

the time of Lehmans bankruptcy, after which it gradually declines and almost reverts back to its pre-crisis

8The tick size for the 2- and 5-year notes is one 128th of a point. It is one 64th of a point for the 10-year.
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level. Price volatility at the inside tier closely resembles the trend in trading activity (as shown in graphs (a)
and (b) in the same figure). Active trading intensifies the price discovery process and it is thus not surprising
to see trading volume and price volatility moving closely together. For brevity, we do not show in this figure
the price volatility at other tiers as they exhibit similar time series trends as just described.

For the depth volatility variable, Table 4.1 shows that the inside tier stands out as having significantly
higher depth volatility than the outer tiers. This is a natural result since liquidity at the first tier inherits an
additional source of randomness from trading. This randomness does not pertain to order execution alone.
The pick-off risk inherent in posting orders at the inside tier may require more intense order management and
modification activities. We also observe an increase in the volatility of depth during the crisis period, but at a
more moderate rate than that of price uncertainty, and a weak post-crisis recovery. Since the depth volatility

measure has been standardized by the depth level, it looks reasonably comparable across the three securities.

Liquidity and Volatility Exhibit Clear Intradaily Patterns

Figure 4.3 shows the intraday patterns of market liquidity and volatility measures at the first tier over five-
minute intervals.” Since the patterns are quite consistent across securities, and across different price tiers for
the same security, we show here only the 2-year note and only the first tier.

Depth in the book builds up in the morning, reaches its peak shortly before noon and gradually declines
from there, especially after 15:00. There are major dips in depth shortly before 8:30, 10:00 and 13:00.
Trading is most active in the morning hours and shows distinct jumps immediately after the drops in market
depth described above. There is also a mild peak at 15:00, after which trading diminishes. The peak at 15:00
coincides with the pricing of fixed income indices and hence likely reflects increased trading demand by
investment managers who are seeking to rebalance their portfolios, while minimizing tracking errors relative
to the indices.

Price volatility is also generally higher in the morning, and fades off toward the end of the day. This is
very different from the well-documented U-shape pattern of volatility in equity markets: high around opening
and toward market closing. Instead, in the Treasury market, price volatility closely tracks the pattern of

trading activity, which peaks in the morning and falls off gradually after 15:00.

“While previous studies have examined the intraday patterns of bid-ask spreads and price volatility in this market (e.g., Fleming and
Remolona (1997), Fleming and Remolona (1999)), we believe our intraday analysis of depth and depth volatility is novel.
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The volatility of liquidity exhibits a less clear intraday pattern than its price volatility counterpart, but
also peaks at the 8:30 and 10:00 time marks. We see volatility spikes slightly lagging liquidity drops around

the key time marks above, and in addition around 14:15.

Depths Disappear Immediately Before Announcements

The spikes at certain times documented in the intraday patterns of liquidity and volatility coincide with the
release times of major economic announcements: 1) macroeconomic announcements released at 8:30, 2)
macroeconomic announcements released at 10:00, 3) announcements of Treasury auction results shortly
after 13:00, and 4) announcements of the Federal Open Market Committee’s rate policy decision around
14:15 (“FOMC announcements”).'% For a complete list of major announcements, their frequency and time of
release, see Appendix A.

To differentiate market behavior around these announcements, we separate days with each of the above
news categories from days with no major news and examine the intraday patterns of liquidity and volatility
on the news versus no-news days, as in earlier studies.!! As evident in graphs (a)-(d) of Figure 4.4, in the
short time window before an announcement, market depths largely disappear, especially depth at the first tier,
but then immediately return to the book after the announcement has been released. This finding is consistent
with the evidence documented in Fleming and Remolona (1999) and Fleming and Piazzesi (2005) that dealers
often withdraw quotes before announcements due to inventory risk concerns.

An important observation is that on the days with FOMC rate decision announcements, the order book
thins out rather gradually, starting from shortly before noon until reaching the minimum just before 14:15.
The order book then refills in the next half hour or so and converges to its no-news day level. This pattern
differs from that for other announcements, for which limit orders are cleared from the book just shortly

before the announcement time. The anticipation leading up to FOMC announcements suggests that market

10 Announcements after scheduled meetings, which occur eight times per year, were made at about 14:15 during our sample period.
Announcements after unscheduled meetings, of which there were two in 2008, do not have a standard announcement time.

""'We define “no news” days as days without any of the major announcements as listed in Appendix A. For the news days, we
separately examine announcements released at a particular time (e.g., 8:30), but include days with announcements released at
other times (e.g., 10:00). We therefore observe announcement patterns around the other release times (e.g., around 10:00 on 8:30
announcement days), although typically not as strong as those associated with the release time being examined.
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participants consider monetary policy decision announcements so important to the market that they refrain

from taking positions in the order book well before the announcement comes out.!?

Trading and Volatility Jump Immediately After Announcements

Graphs (e)-(h) of Figure 4.4 document the intraday patterns in trading activity around major announcements,
and graphs (i)-(1) the patterns in short-term price volatility. Trading activity and price volatility both spike in
the five-minute window following announcements. The market is bustling during this short time window
with the limit order book filling up, trading demand surging and price discovery intensifying. The market
then gradually works its way back to the no-news day pattern in the next hour or so, reflecting the time it
takes for disagreement over an announcement’s implications to be resolved. These graphs once again show

that trading activity and price volatility are highly related.

4.3 A New Class of Dynamic Limit Order Book Models

The evidence presented in the preceding section shows that Treasury market depth can sometimes have zero
or low values (e.g., at the peak of the crisis, or immediately before economic announcements). The average
frequency of low values of depth, i.e., depth being equal to 1 (the minimum order size on BrokerTec) or O,
equals 4% for the inside price tier (bid and ask) for both the 5- and 10-year notes across our full sample, and
is naturally much higher on certain days. Likewise, realized volatility at the five-minute frequency is often
zero. For the 2-year note, the realized volatility of price equals zero for 22% of the sample observations,
regardless of tier, and is again much higher on numerous days.

In our search for a modelling framework that can accommodate zero or low values with a realistic
probability distribution and integrate the dynamics of market depth and volatility in one, the multiplicative
error model is particularly fitting. In this section, we start with a description of a general MEM formulation
proposed in Engle (2002) and explain how this model choice is novel for the Treasury limit order book. We
then specify the details of our model, as well as our measurement of volatility. Lastly, we discuss practical

issues with the model estimation.

2Fleming and Piazzesi (2005) find that uncertainty about the exact announcement time leads to a protracted reduction in liquidity.
However, this only explains the decline about five minutes before and not two hours before such events.
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4.3.1 Multiplicative Error Model for nonnegative Valued Processes

The general formulation of an MEM model is as follows. Let X; be a nonnegative time series of interest. Its

dynamics is modelled as:

Xy = e, 4.1
Et‘%tfl ~ D(l, T,Z)), (42)
P q
pe o= wH > i+ Y Bz, (4.3)
i=1 =1

where ;1 presents the information set at time ¢ — 1, ¢; is the multiplicative error with a conditional
distribution D having unit mean and defined on nonnegative support, and z; are weakly exogenous variables.
The persistence of X is captured by > 2 | a; + Z?Zl Bj. The model can be estimated with the exponential

quasi log likelihood function
T

InL(X;6) =— Z [ln,ut + jj:] . (4.4)

t=1

The asymptotic properties of the QML estimator have been established in Engle (2002). Hautsch (2012)
notes that Newey and West (1987) standard errors are robust not only against distributional misspecification
but also against dynamic misspecification in the MEM errors.

The general vector MEM is specified similarly. Let X; be a K-dimensional process with nonnegative

components. The dynamics of X; are specified as follows:

X, = moe, (4.5)
6t’%t‘—l ~ D(17 2)7 (46)
p q
o= wty AXeit) B, 4.7)
i=1 j=1

where © indicates the element-by-element product, p,, €;, w are Kx1 vectors and X, A;, B; are KxK
matrices.

To explain our technical contribution, it is worth elaborating on the key difficulties of the standard linear
Gaussian framework — usually adopted among current limit order book models — in modeling nonnegative

variables like market depth. In the simplest form, such a framework specifies the dynamics of a variable X}
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as Xy = ¢ + €. As discussed in Engle (2002), the requirement that the conditional mean is positive means
that the corresponding error term has to be no more negative than the mean to ensure the nonnegativity of X;.
Accordingly, the range of the error term changes with every observation, presenting a difficulty to estimation.
Second, even if log(X;) is used to avoid the nonnegativity issue, researchers run into the problem of exact
zero values at which log(X;) is not defined. Therefore, taking the log is not a solution when zeros are valid
observations. It is also not a solution when small values are common, as the log-linear model would imply an
extreme event probability to these values.

With its multiplicative error structure, the MEM formulation ensures the nonnegativity of X; as long as
the conditional error distribution has a unit mean and nonnegative support, for which there are many possible
candidates. The structure allows us to model market depth and volatility directly, and assigns reasonable
probability to low values of these variables. This is important for the Treasury market because, as we saw
earlier, the order book thinned out substantially during the crisis period and low values of depth are common
immediately prior to important economic announcements. Furthermore, during quiet times, high frequency
realized volatility is often zero. Therefore, if we are to model liquidity and volatility in one framework,
that framework should be able to accommodate zero or very small values of the dependent variables with
appropriate probability distributions.

Additionally, the GARCH-type nature of the multiplicative error model allows us to effectively capture
the persistence of market depths. The persistence in the limit order book at intraday frequencies has been
documented in the prior literature, see for example Biais et al. (1995). Intuitively, depths queue at different
price levels in the book waiting to be executed by coming trades. Over a short time interval, say five minutes,
we do not expect these queues to vary substantially, especially in the outer tiers, which are not reached until
trades or order cancellations exhaust liquidity at the first tier.

The ability of multiplicative error models to capture the nonnegativeness and persistence of a dynamic
process gives this class of models an important place in the finance literature, since many financial series
possess these properties. Important applications of this framework in finance include the modeling of
conditional trade duration (see Engle and Russell (1998)), volatility, trading volume and intensities (see
Manganelli (2000)), volatility, average trade sizes, trading costs and number of trades (see Hautsch and
Jeleskovic (2008)), and absolute returns, daily range and realized volatility (see Engle and Gallo (2006)).
However, despite it being a valuable tool for modeling nonnegative valued processes, we have not seen an

application of this framework among limit order book models.
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The closest work to ours, in terms of modeling framework, is by Hautsch and Jeleskovic (2008). That
paper provides a review of the technique and applies it to the modeling of the dynamics of volatility and
trade characteristics using order book data from the Australian Stock Exchange, but not the evolution of limit
order depths — our modeling object of interest. On the other hand, while the paper by Russell and Kim (2010)
models precisely this object, it adopts a different approach. Specifically, for both the buy and sell side, they
model the total market depth on the given side and combine it with an estimated distribution of the depth
across price levels. Their model therefore never predicts zero depth at any individual price level, a scenario
that could plausibly happen in this market as previously discussed. Our newly introduced class of order book
models based on the multiplicative error structure allows us to model the evolution separately for each price
tier, be able to predict economically sensible possibilities, and uncover interesting insights into the dynamics

of liquidity in this important market.

4.3.2  Model Specification

We specify a joint MEM model of order (1,1) for three variables — market depth, price volatility, and depth
volatility — as formulated in equations 4.5 - 4.7. The model is estimated separately for each of the best five
price levels on both sides of the market, resulting in 10 systems of equations in total. Following Engle and
Gallo (2006), we assume a diagonal variance covariance matrix for the error terms, acknowledging that there
can be a loss of efficiency if this assumption is false. We capture the possible interdependence among the
variables by allowing a fully parameterized coefficient matrix A, and restrict matrix B to be diagonal. We
then estimate the model equation-by-equation using exponential quasi log likelihood function as specified in
equation 4.4 and compute Newey-West standard errors for our estimates. To avoid the overnight effect, we
reinitialize the conditional mean of each variable at the beginning of each day, using the average over the
7:00 - 7:55 period of that day, and estimate the model using data from 8:00 through 17:00.

To fix notation, for each of the five price tiers on each side of the market, the vector X consists of depth
(D, or X (1)), realized volatility of price (RV P, or X (2)) and realized volatility of depth (RV D, or X (3)).

The dynamics of X are modelled at a five-minute frequency, indexed by ¢, as:!?

¥More precisely, the time interval ¢ is the product of day d and time of day j where d = 1,2, ..., D with D being the total number
of days in the sample, and j = 1, 2, ..., J with J being the total number of five-minute intervals in a day. In this study, J = 120
for a typical trading day, and J < 120 for those days when the bond market closes early.
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In the above equations, Z allows for other potential explanatory variables to enter the dynamics of X.
This enables a wide range of specifications designed to explore crisis effects, announcement effects, effects
of price changes and any possible asymmetry between positive and negative changes via the so called news
impact curve, the role of liquidity demand, and last but not least, effects of flights to safety on Treasury

liquidity and volatility.

4.3.3 Measurement of Volatility

In this study, we use two volatility measures. One is the volatility of price, and the other is the volatility of

depth. Each of the measures is described below.

Volatility of Price

To measure price uncertainty, we use the realized volatility of price for each of the five price levels on both
sides of the market (RV P). Beside its simplicity in computation, the main advantage of this measure of
volatility, as discussed by Andersen et al. (1999), is that it is effectively error- and model-free. For each
five-minute interval and for each price tier, the realized volatility is computed as the square root of the sum of

the squared second-to-second price changes:

300

> (AP (4.9)

ki=1

RVP, =

where A Py, denotes the one-second price change at second k; of the five-minute interval ¢. Since prices are
reported in 256ths of one percent of par, this volatility of price inherits the same unit of measurement.

We note that this is a measure of total volatility comprised of both transitory and permanent components.
We use this measure as we focus on the short-term dynamic interactions of volatility and liquidity in order to

predict their evolution throughout a trading day at high frequency. It is important to note that this measure of
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volatility is based on intraday prices and not yields. The mapping of price changes to yield changes differs
over time due to changes in coupon rates and time to maturity. At an intra-daily frequency, such as the
five-minute frequency used in this study, the difference between the two methods of calculating volatility
should be negligible.

Beyond the intraday boundary, however, the difference between volatility computed from prices and that
from yields can magnify. Additionally, the trend in volatility over the sample period documented earlier could
change if volatility were computed differently. For comparison, we plot in Figure 4.5 the monthly average of
our five-minute price volatility over the sample period, together with a measure of volatility based on daily
yields.'* The latter volatility measure is computed for each month as the square root of the realized variance
for the month. The realized variance is the sum of all squared daily yield (absolute) changes in that month.

As Figure 4.5 demonstrates, our measure of price volatility closely tracks the volatility of yields, except
that it is more variable than the latter given that it is based on higher frequency data. They both document an

elevation in uncertainty during the crisis period, peaking around the time of the Lehman Brothers bankruptcy.

Volatility of Depth

To measure liquidity uncertainty, we introduce the notion of realized depth volatility for each of the five price

levels on both sides of the market (RV D), which we compute in a similar way to RV P:

300

> (ADy,)?, (4.10)

k=1

RV Dy =

where A Dy, denotes the one-second depth change at second k; of the five-minute interval ¢. The realized
volatility computation requires that the one-second depth change series be a martingale difference sequence.
To check the robustness of our RV D measure with respect to this assumption, we use an autoregressive
specification at various lag lengths to estimate the time-varying drift of depth changes and then compute RV D
as the five-minute sum of squared residuals of one-second depth changes.!> The resulting RV D measures are
very similar to the initial RV D computed from raw one-second depth changes, providing support for its use

in our subsequent analysis. We also examine the auto-correlation function of the one-second depth changes

“Daily on-the-run Treasury yields for the 2-, 5- and 10-year maturities are from Bloomberg.

5We also experimented with various other specifications, such as including a constant drift or allowing for linear dependence via
ARMA models.
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and find them to exhibit no significant serial correlation. Finally, depth in the limit order book can change due
to trade execution, limit order submissions, modifications and cancellations. Therefore, our RV D measure
captures the extent of liquidity supply and demand imbalances in the order book.

Our realized volatility of depth measure complements well the realized price volatility in enhancing
our understanding of the various sources of uncertainty in the market. On the one hand, the volatility of
liquidity is closely related with the volatility of price. When the book is fluctuating actively, the resulting
temporary order imbalances induce increased short-run price volatility (see Handa and Schwartz (1996)). This
is particularly likely to happen with a thin book. For example, a market order can create a large imbalance
causing the price to change, or sweep more than one tier’s depth causing the price queues to move forward.
In that case, we would expect the volatility of depth and volatility of price to move together and leave similar
effects on liquidity supply. On the other hand, for a deep book, it is possible for the depth to change without
an accompanying change in price. Accordingly, examining the volatility of depth and whether it helps to
predict the subsequent level of liquidity provides understanding not possible with the volatility of price alone.

For our empirical model estimation, we standardize our liquidity volatility measure by the corresponding
market depth at the beginning of each five-minute interval to remove the scale effect, making this effectively

a measure of volatility relative to the size of the limit order book.

4.3.4 Diurnal Pattern Adjustment

As shown earlier, our variables of interest, namely depth, volatility variables and trading volume, exhibit clear
diurnal patterns, making it necessary to remove such seasonality before the models can be estimated. We
choose a non-parametric method to adjust for this intraday pattern by dividing the relevant variable at a given
time interval by the average for that time interval, essentially assuming a multiplicative seasonality effect.
For example, market depth observed at the end of the 9:15-9:20 interval on a given day is adjusted by the
level of depth typically observed at that time.

We are careful to account for the different levels of depths and volatility across the pre-crisis, crisis and
post-crisis periods by using three sets of intraday averages corresponding to the three sub-sample periods, as
opposed to just one set of overall sample averages. In addition, we compute these sets of intraday averages
from days without any important public announcements concerning FOMC rate decisions, macroeconomic
conditions or Treasury auctions to avoid distorting the typical intraday seasonality with markedly different

patterns observed on days with such announcements.
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For depth variables, we favor the median as the average statistic in the seasonality adjustment to avoid
possible distortion caused by extreme depth values on the seasonally-adjusted depths. For all other variables,

we use the mean instead of the median as the latter can be zero at certain quiet intervals of the day.

4.4 Empirical Analysis

In this section, we present and discuss the dynamics of depth and volatility as revealed by our MEM-based
class of models. Given the qualitative similarity in findings and for brevity, we report here the results for the

2-year note only.

4.4.1 The Baseline Model

We first estimate the baseline model as specified in equation (4.8) with no covariates and present the results
in Table 4.5. The table has three panels: the top one for liquidity dynamics, the middle for price volatility
dynamics, and the bottom for depth volatility dynamics. We flag those coefficients that are not significantly

different from O based on the 5% significance threshold with an asterisk *. We discuss each panel in turn.

Liquidity Dynamics

As expected, order book depth exhibits a high level of persistence, as represented by the sum « + 3 being
close to 1. In addition, depths at the best bid and ask prices are negatively impacted by price volatility,
whereas depths at outer tiers tend to increase with volatility. This may reflect the unwillingness of market
participants to supply depth at the first tier for fear that their orders will be adversely executed in a volatile
market. Yet, at the same time, higher volatility may help increase the probability of execution for limit orders
at outer tiers, making the option inherent in these orders more valuable for the limit order traders. Therefore,
during volatile times, depth could move away from the first tier and toward the outer tiers.

The negative linkage between price volatility and depth at the first tier is also consistent with the evidence
documented by many previous studies, including Naes and Skjeltorp (2006), that an increased level of trading
is often associated with moments of high price volatility. More active trading could deplete liquidity in the
book that is not subsequently replenished fast enough, especially if potential liquidity suppliers hesitate to

supply liquidity to a volatile market. The shrinkage of liquidity following a rise in volatility is also in line
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with a proposition put forth by Caballero and Kurlat (2008) that when asset price volatility rises, the risk of
illiquidity rises.

The variability of order book depth also shows a significant effect on the subsequent level of depth.
Following intervals of active movements in the book, liquidity supply becomes more plentiful. This is
intuitive, whether one interprets the volatility of depths as representative of supply uncertainty (e.g., that
associated with increased order modifications/cancellations), or as a sign of a strong demand for liquidity
(e.g., that associated with increased trading activity). In the former interpretation, the uncertainty of supply
may increase the payoffs to those who can actually provide liquidity, thus encouraging them to supply more.
Similarly, if it is the strong demand for trading that induces frequent movements of liquidity, the demand
would increase compensation for liquidity provision and subsequently invite more depth. This finding

supports Biais et al. (1995)’s conclusion that more liquidity is supplied when it is valuable to the marketplace.

Price Volatility Dynamics

We see evidence of price volatility clustering, although not to the same extent as the clustering of depths.
More importantly, lower depth at any tier predicts a subsequent increase in price volatility, consistent with
Parlour and Seppi (2008)’s assessment that prices are more volatile in thin markets, as the lack of liquidity
hinders the price discovery process, causing more uncertainty about the security value. This evidence is also
consistent with the idea that depth is withdrawn in advance of expected price changes (e.g., macroeconomic
announcements). That is, causality may be reversed, with expected volatility leading to lower depth.

The liquidity-volatility feedback loop at the inside price tier on both sides of the market isolates the effect
of adverse execution risk on dealers’ liquidity supply decision. This dynamic interaction could help explain
episodes of liquidity and volatility feeding on each other and exacerbating a bad shock that could originate
from either the liquidity side or the volatility side. The liquidity drop and the heightened volatility during the
recent financial crisis as shown in Figure 4.1 is a good example. Our evidence provides empirical support for
the theory of liquidity crashes put forth by Cespa and Foucault (2012), although the focus of their theory is
on the liquidity-volatility feedback among multiple assets. Here we provide evidence that this theory is also
at work for one asset.

Let us turn to the role of depth uncertainty on price uncertainty. The different sign of the effect for the
first tier, as compared to the rest of the book, deserves some close attention. Increased volatility of depth at

the first tier predicts lower price volatility, while the opposite is true for other tiers. Apparently, depth at the
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first tier changes in large part due to trading, but depths at the other tiers change mostly by order addition,
modification, or cancellation. So in the former case, if we associate the high volatility of depth with active
trading in the market, it is understandable how price volatility can be subsequently reduced. The latter case,
however, is a better reflection of supply uncertainty on the part of liquidity providers, which arguably means

they are also uncertain about security value, explaining the accompanied increase in price volatility.

Depth Volatility Dynamics

The volatility of liquidity also exhibits clustering at price levels behind the market. At the inside tier, the
persistence is quite low, adding to our discussion earlier that the liquidity volatility measure at this tier
seems to be closely related with trading activity in the market. Next, increasing liquidity level can predict
a subsequent decrease in liquidity volatility relative to the size of the book, but we note that this effect
is typically small at the first tier. Finally, price uncertainty is positively related with liquidity uncertainty,
although we believe the mechanism is again different between the first tier and the other tiers. At the inside
bid and ask, high price uncertainty is associated with increased trading that induces greater variability of
depth. For outer price tiers, the fluctuation of depths is often the result of limit order submission, modification,

or cancellation activities, which also tend to intensify when price is volatile.

4.4.2 Announcement Effects

Prior literature on the Treasury market response to economic news, such as Fleming and Remolona (1999),
Balduzzi et al. (2001), and Green (2004), has documented strong patterns of liquidity and volatility around
economic announcements. The analysis of intraday patterns of depths and volatilities in this study further
confirms that depths largely disappear from the order book immediately prior to an economic announcement,
but quickly return thereafter. Both trading activity and volatility are high following an announcement. To
formally test these patterns, we estimate an MEM model with pre-announcement and announcement time
dummies for each of the three dependent variables indexed by ¢ (where ¢ = 1, 2, 3 corresponding to depth,

price volatility, depth volatility respectively). The specification is as follows:

Mgi) =w; + aiXt(i)l + &-ui’fl + Z Vth@l + O1prenews2,_; + Oaprenewsl, ; + Oznews;_1, (4.11)
J#
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where prenews?2 is the dummy for the second-to-last five-minute interval before an announcement, prenews1
is the dummy for the five-minute interval before an announcement, and news is the dummy for the five-minute
interval containing the announcement release. Since these dummies enter the equations with a lag, 61, 62 and
03 in fact capture the pre-announcement, announcement and post-announcement effects respectively on the
liquidity and volatility variables.

As shown in Table 4.6, market depths decline significantly across the top five price levels in the five-
minute interval before an announcement, but then increase by a larger magnitude in the announcement
interval, reflecting the fast refilling of order book depth once an announcement is released. Depths in
the post-announcement five-minute interval continue to show some further increase but the effects start to
subside. On the other hand, both measures of volatility are already at elevated levels in the pre-announcement
interval, consistent with the withdrawal of orders from the book causing greater fluctuation of prices and
depths. The announcement interval witnesses the peak in volatilities, especially the volatility of depth, that
come about with the refilling of limit orders and the surge in trading activities following the news arrival.
In the five-minute interval following an announcement, both depth and price volatilities are significantly
lower, suggesting that the most intense price discovery and order book activities happen within a very short
time window. Depth and price volatilities remain high in the next thirty minutes or so, as compared to

non-announcement days, but the peak has passed.

4.4.3 Dynamics During Crisis

To explore whether any of the above dynamics change during the recent crisis, we estimate a specification
that incorporates a crisis period dummy, allowing it to have both intercept and interactive effects. For i =

1, 2, 3 corresponding to depth, price volatility, and depth volatility respectively, the specification is as follows:

p! = wit XD By + 372X+ 01DC,y + faprenews2,
J#i
+0sprenewsl, ; + O4news;_1 + 05DCt,1Xt(Z_)1 + 06DCt,1u§Z_)1, (4.12)

where DC' is the dummy for the crisis period, defined to be from August 9, 2007 through June 30, 2009,
prenews? is the dummy for the second-to-last five-minute interval before an announcement, prenewsl1 is

the dummy for the five-minute interval before an announcement, and news is the dummy for the five-minute
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interval containing the announcement release. With this specification, 6 is the estimate for the level effect
of the crisis, while 5 and 64 collectively show the effect of the crisis on the persistence of each dependent
variable. The pre-announcement, announcement and post-announcement effects are captured by 6, 03 and 0,4
respectively, as in the earlier specification with announcement effects (Equation (4.11)).

Table 4.7 shows the model estimates. The pre-announcement, announcement and post-announcement
effects remain qualitatively similar to those previously documented. Depth is lower during the crisis period,
consistent with evidence presented up to this point. A surprising observation is that price volatility is also
lower, contradicting the model-free descriptive analysis performed earlier. We suspect that outliers in price
volatility during the crisis period may skew our seasonality adjustment factors upward (as these are based on
the mean), resulting in lower than expected diurnally-adjusted price volatility.

The key observation from this table is that depth and price volatility tend to be more persistent during
the crisis period. The immediate implication of the higher degree of persistence is that bad shocks to these
variables take longer to fade away. Considering the negative depth-price volatility feedback loop documented

earlier, this finding illustrates how this negative feedback effect can intensify in a crisis.

4.4.4  Limit Order Book Dynamics and the News Impact Curve

In this section, we build a model that captures any asymmetric response of liquidity, price volatility and
liquidity volatility to the changing value of the securities, in the spirit of the news impact curve technique
introduced by Nelson (1991) for GARCH models. This original framework is designed to allow the conditional
variance process of a given asset’s returns to respond asymmetrically to positive and negative price changes.
The question we want to address is whether the movement in the best bid-ask midpoint has any bearing on
the dynamics of the order book. The data shows that the distance between any two adjacent price levels in the
order book is almost always one tick, so the movement in the best bid-ask midpoint is a good indicator of the
overall ups and downs of order book prices.

We specify the news impact curve (“NIC”) as:
NIC; = 01|Ret| + 02| Ret¢|1 ret<o, (4.13)

where Retgq " is defined as the five-minute return (annualized log return) of the best bid-ask midpoint. This

functional form for the N IC particularly suits our needs as the N IC will enter the dynamics of depths and
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volatilities as a positive covariate. With this specification, the coefficient §; captures the effect of changing
price on the dynamics of order book liquidity and volatility, while the coefficient 5, if significantly different
from zero, will indicate an asymmetric response of liquidity and volatility to negative price changes.

We start with a simple specification that has only the NI, shown in Table 4.8. We note that the results
on other variables of the model are qualitatively the same as those obtained with the baseline specification.
Key findings, such as the negative liquidity-volatility feedback loop at the first tier, and the association of
greater depths with subsequently lower volatility of both depth and price, remain. We therefore focus our
discussion in this section on the N IC coefficients.

The results show that depth generally responds to price movements, although the response is not uniform
across all price tiers. The asymmetric coefficient 6 is also mostly significant, implying that negative price
movements impact limit order book depth differently. Second, with regard to price volatility, it seems that
large price movements predict a subsequent increase in price volatility, regardless of the direction. There
is no evidence for an asymmetric response of price volatility to positive versus negative price changes. We
hypothesize that many dealers submit orders on both sides of the market, i.e., perform a market-making
function, so the direction of the price change does not have much of an impact on the price uncertainty, only
the magnitude does. Large price swings may be indicative of important news that intuitively could result
in an increased divergence of opinions among market participants. Lastly, concerning depth volatility, we
document a significant news impact curve function (both the magnitude and asymmetric effects) only up to
the second or third tier. Beyond that, value changes do not seem to matter.

We also estimate a specification with the NI1C controlling for announcement effects. Although not

reported here, the results are consistent with our basic findings.

4.4.5 Effect of Liquidity Demand

In this section, we examine the effect of liquidity demand, as indicated by the volume of market orders, on
the limit order book. First and foremost, trading provides the means for price discovery and accordingly is
expected to affect price volatility. Trading consumes depth in the book, can stimulate additional liquidity
supply (e.g., Biais et al. (1995)), or can change the distribution of depths across price levels. Typically we
would expect a negative impact due to the consumption effect, but the stimulus effect might also come into

play. Nevertheless, either effect would have the same impact on the volatility of depth.
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As shown in Table 4.9, the estimated effect of trading volume (f3) on subsequent market depth is positive,
especially for tiers at or near the market, suggesting that liquidity is supplied at a faster rate than it is consumed
and supporting to some extent the hypothesis that trading demand might help attract additional liquidity
supply. As expected, the variability of depth increases with trading volume, but this effect shows up at the
first tier only.

In addition, trading activity does not significantly affect subsequent price volatility at the first tier, but
rather increases price volatility only at other tiers. This result still holds after we control for announcement
effects. The empirical facts documented earlier, with first tier price volatility and trading volume exhibiting
strikingly similar patterns over time and over the course of a trading day, can be relied upon in interpreting
the model estimates. Apparently, trading and price volatility at the inside tier are contemporaneously related
so that once we control for lagged volatility, lagged trading volume has little incremental explanatory power.
Beyond the first tier, however, trading volume still shows its relevance in predicting subsequent price volatility,

indicating that the effect of trading activity travels to the outer tiers’ price volatility with a lag.

4.5 Liquidity and Volatility During Flights to Safety

We now turn to an analysis of the Treasury market during flight-to-safety episodes. Prior research mainly
focuses on understanding the motives of such flights, e.g., whether investors are seeking the high quality
and/or high liquidity of Treasury securities. Evidence seems to favor the liquidity motive for flights. For
example, Beber et al. (2009) show that euro-area bond investors chase liquidity rather than credit quality
during times of market stress. Likewise, Longstaff (2004) documents a liquidity premium in Treasury
securities, as large of 15% of their values. However, the question of whether the sought-after liquidity is
actually there when it is needed the most remains. Addressing this question is the main objective of this

section.

4.5.1 Identification of Flights to Safety

We first describe how flights to safety are identified. It is widely observed, and agreed, that a flight to safety
occurs when investors withdraw in droves from risky asset markets and move to safe/liquid asset markets. A
common flight to safety is the flow out of equity markets and into the Treasury market. Such a flight is often

accompanied by an extreme negative equity return concurrent with an extreme positive Treasury return. This
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is the basis for the identification of flight-to-safety episodes proposed by Baele et al. (2012) - an approach
that we adopt in this study.

Specifically, let 7 and rg be the daily return on the relevant on-the-run Treasury note and the S&P 500
index respectively.!® o7 and o correspond to their sample return volatility. The flight-to-safety dummy,

FTS is defined as:

FTS =1,,< wop * Lrp>kor (4.14)

where £ is the parameter for the severity of the flight.

We examine three different levels of k, i.e., 1, 1.5, 2 — which we will refer to as “light”, “moderate” and
“severe” flights. Appendix B shows the dates of these flights, as well as the total count of flights for each
security and each severity level. With 1,124 trading days in the sample period from January 2006 through the
second quarter of 2010, the light, moderate and severe flights occur on approximately 6%, 2-3% and 0.8-1.2%
of the days respectively. The last quarter of 2008 contains a disproportionately large number of flights. In
particular, the majority of the severe flights happen in the aftermath of the Lehman bankruptcy, especially
on September 15, 29 and October 6 of 2008 when severe flights to safety occur in all three securities. The
identification of moderate FTS episodes in the 2- and 5-year notes also picks up August 9, 2007, which marks
the beginning of the crisis.

It is worth noting that using the returns on the 5- and 10-year notes helps identify slightly more FT'S
episodes than when the 2-year note returns are used. Light and moderate flights tend to happen most frequently
with the 5-year note, whereas for severe flights, the 10-year note returns pick up the highest frequency of
such episodes. One possible explanation is that the Fed lowered rates to the zero bound, thereby anchored the

2-year, creating a more stable pattern for the shorter maturity. Indeed, flights to the 2-year note seem to occur

mostly in the earlier period of the sample which is less affected by the zero bound.

'We use the daily on-the-run “dirty” prices for the 2-, 5- and 10-year notes from Bloomberg in computing the relevant daily Treasury
return for the identification of flights. It is worth noting that there is a discontinuity in price of any given on-the-run Treasury note
series on those days when a security goes off-the-run and a new issue becomes on-the-run. To take care of these discontinuities, we
first compute daily returns separately for each issue, and then splice together the returns over only the on-the-run period of each
issue. The notes are on-the-run from the day following their auction through the day of the following auction (for that maturity).
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4.5.2 How Different Are Flight-to-Safety Days?

We compare order book depth, trading volume, price volatility and depth volatility on FTS days with non-FTS
days and find them to be markedly different. The comparison across the three Treasury notes sheds light onto
which one is affected by these episodes the most. For the discussion below, we use moderate FTS days, i.e.,
days when the Treasury return exceeds 1.5 times its sample volatility and the S&P 500 return falls below -1.5
times its sample standard deviation.

In terms of trading volume, the average daily figure for the 2-year note on FTS days is over $57 billion
whereas the number on non-FTS days is only nearly $34 billion. On a typical non-FTS day, selling pressure
dominates buying pressure, with a net selling volume of $652 million. This reverses to an average net buying
volume of $945 million on FTS days. Likewise, the number of trades is almost double the typical non-FTS
level, and the reversal in the net number of trades is more dramatic than is the case with the volume of
trades.!” The average trade size, being 4.35 on FTS days as compared to 4.65 on other days, suggests that
market participants submit smaller sized orders than usual on FTS days.

The 5- and 10-year notes also have higher trading volume on FTS compared to non-FTS days, but to
a lesser extent than the 2-year note. As with the 2-year note, we observe net selling pressure in the 5- and
10-year notes on non-FTS days, about $465 and $321 million respectively. However, both notes show changes
on FTS days that are less dramatic than those for the 2-year note. For the 10-year note, net volume reverses
(as with the 2-year note) so that there is net buying averaging $338 million on FTS days. For the 5-year note,
net selling is weaker on FTS days, averaging $222 million, but net volume remains negative.

Differences between FTS and non-FTS days for the 5- and 10-year notes are more striking when we look
at the number of trades as opposed to trading volume, as is the case with the 2-year note. That is, the overall
increase in activity is greater on FTS days when looking at the number of trades, and the net number of trades
flips from negative (i.e., net selling pressure) on non-FTS days, to positive (i.e., net buying pressure) on FT'S
days for the 5- as well as the 10-year note.

These pieces of evidence together suggest that there is a higher level of trading demand on FTS days,
particularly on the buy side, as we would expect to be the case when the Treasury market absorbs the flow of

investors fleeing risky asset markets. The differences are especially striking when looking at the number of

We note that the number of trades is not the same as the number of market orders. When a market order is executed against multiple
limit orders, the system records each of them as one trade. Thus a market order can correspond to multiple trades. Nevertheless,
the number of trades and volume of trades collectively provide a complete picture of trading activity in the market.
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trades, suggesting that order sizes are smaller on FTS days. The 2-year note appears to be especially affected
by flights to safety.

Even more striking evidence from our analysis is that market depth, representing the ex ante liquidity
supply (or the willingness to provide liquidity), is much lower on FTS days, as shown in Figure 4.6. In
particular, the order book for the 5- and 10-year notes on FTS days thins out to a greater extent than that for
the 2-year note. This lack of willingness to post limit orders spreads over all price tiers, and not just the first
tier where depth could naturally be lower if the trading rate exceeded the limit order submission rate.

We in turn examine the behavior of volatility to understand better how the book on FTS days could
thin out so much. Both volatility measures are much higher on FTS days, especially price volatility. The
evidence seems supportive of our conjecture that, despite the strong demand for liquidity, dealers become
more conservative with their liquidity supply on FTS days when the market is highly volatile. They provide
less depth to reduce adverse execution risk and allow themselves increased flexibility to respond to the highly

volatile market conditions on these days.

4.5.3 Liquidity and Volatility Dynamics and Flights to Safety

We now turn to our econometric framework to explore whether the dynamics of liquidity and volatility change
on FTS days. In particular, we allow for the FTS dummy to affect both the level as well as the persistence of
liquidity and volatility. For this section, we use a univariate MEM specification for each of the liquidity and
volatility variables in order to expose the FTS effect cleanly on each variable’s dynamics. Specifically, each

variable’s conditional mean equation takes the following form:

e =w+aXi1+ Bu—1 +cFTS; + coFTS; X1 + cgFTSppi—1.

Under this specification, the coefficient c captures the level effect of FTS, while c,, and cg captures the
change in the dynamics of the modelled variable. We estimate this equation for market depth (presented in
Table 4.3) and price volatility (presented in Table 4.4) for each security and each of the three levels of FTS
severity corresponding to three thresholds adopted for « (1, 1.5, 2).

In general, flights seem to have more of an effect on the dynamics than the level, given that the depth
series have been diurnally adjusted to remove intraday regularities. c,, is the coefficient on the interaction

between the relevant FTS dummy and the past market depth, hence it captures the marginal impact of news
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on market depth on FTS days. ¢, is mostly negative and significant, suggesting that on those days when
flights occur, the immediate past realization of market depth has lower predictive value for depth at the
next interval. On the other hand, cg tend to be somewhat positive on these days, essentially indicating that
market participants place greater importance on the historical path of market depth than on just its most
recent realization in predicting the next level of market depth. Therefore, while the persistence of depths on
FTS days does not significantly differ from that on non-FTS days, the composition has changed that gives
less weight to the impact of news on market depth. With respect to the level effects, the 2-year note shows a
somewhat lower depth level on FTS days, especially at the inside bid and ask, whereas the evidence is more
mixed with the other two notes.

We now describe the effects of flights on price volatility. Consistent with evidence presented earlier,
the level of price uncertainty is significantly higher on flight-to-safety days, although statistical significance
seems to diminish with the severity of flights — a direct consequence of a much lower number of observations
with the most severe flights to safety. Examining the effects of flights on the dynamics of volatility via the
estimates for c,, and cg, we can see that the news impact coefficient c, is usually not significantly different
from that on non-flight days, except for the positive news impact on volatility at some outer price tiers. The
other coefficient cg often has opposite sign to c,. Similar to the evidence with depth, we also find that while
volatility does not exhibit a significantly different level of persistence on flight-to-safety days, there has been
a shift in the relative importance of the news impact coefficient on volatility especially at some of the outer

price tiers.

4.6 Conclusion

In this study, we propose a new class of dynamic order book models for the purpose of exploring the micro
dynamics of depth, price volatility and depth volatility in the interdealer market for the 2-, 5- and 10-year
U.S. Treasury notes. Our models are based on the multiplicative error framework introduced by Engle (2002).
This class of models offers important advantages that are highly suited to the modeling of the Treasure limit
order book. Zero or very low values of market depths are not uncommon, particularly around economic
announcements and during the crisis. Likewise, intraday volatility is often zero during quiet times of the day.
The MEM guarantees the prediction of nonnegative depths and volatility measures and allows us to integrate

liquidity and volatility into a unified framework from which their dynamic interactions can be studied. It also
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goes beyond the log linear framework in that it allows for more flexible and realistic probability distributions.
Additionally, by modeling the limit order book in a similar fashion to asset price volatility models, we can
capitalize on the vast literature in the latter to tailor our model specifications in ways that can capture the
dynamics between liquidity and volatility as closely as possible.

In addition to the novel use of the MEM framework to model the dynamics of the limit order book, we
also introduce the notion of realized volatility of depth, which is parallel in concept to realized volatility of
price. Furthermore, apart from testing market microstructure hypotheses, our proposed class of models can
be used for the purpose of forecasting liquidity and managing liquidity risk.

Our empirical analysis examines market depth and volatility around economic announcements, through
the crisis and during flight-to-safety episodes. Consistent with earlier studies on the impact of economic
announcements, we document an important stylized fact that depths tend to disappear before announcements
but return shortly thereafter, together with a surge in trading activity and a jump in price volatility which takes
an hour or so to fade away. We offer additional facts about the Treasury market over the crisis not previously
documented, that is, the order book thins out substantially over the crisis, coupled with an elevated level of
price volatility, although trading activity does not decline substantially until the second half of the crisis.

Our models’ key finding is that price volatility and depth at the first price tier exhibit a negative
relationship, which runs in both directions. This negative feedback effect becomes more pernicious during
the crisis when both of these variables are evidently more persistent. This helps explain spells of liquidity
deteriorating as volatility increases, and conversely, liquidity improving as volatility decreases, especially
observed during the crisis. Last but not least, our study of the Treasury market during flights to safety shows
that market depth is substantially lower despite the higher demand for trading on these days. The inflows of
trading interest and the accompanied rise in price uncertainty may necessitate greater market monitoring and

reduce dealers’ incentive to supply liquidity via limit orders.
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Table 4.3: Liquidity Dynamics With Flight-to-Safety Effect

Ask5
Ask4
Ask3
Ask2
Askl
Bidl
Bid2
Bid3
Bid4
Bid5

Ask5
Ask4
Ask3
Ask2
Askl1
Bidl

Bid2
Bid3

Bid4
Bid5

Ask5
Ask4
Ask3
Ask2
Askl
Bidl

Bid2
Bid3

Bid4
Bid5

2-Year Treasury Note

5-Year Treasury Note

10-Year Treasury Note

C Cq Cp H C Cq ca H C Cq Cp
Panel A: Flight-to—Safety Dummy Based on x = 1
—-0.003* -0.119  0.098 0.000*  -0.076  0.049
-0.009  -0.101 0.093 0.003*  -0.067  0.054 || —0.002* -0.086  0.065
—0.004* -0.072  0.060 || —0.001* —0.022* 0.008* 0.001* —0.039* 0.014*
0.003* —0.035* 0.009* 0.014 —0.037* —0.009* || 0.004* —0.046* 0.020*
-0.021  -0.045 0.035
-0.014  -0.043  0.005* 0.006*  -0.037 —0.025* || —0.004* —0.022* -0.029
—0.001* -0.087  0.067 0.004*  -0.048 0.018* 0.001*  -0.046  0.022*
—0.002*  -0.068  0.052 0.003* —0.038* 0.004* 0.006* —0.038* 0.005*
—0.004*  -0.060  0.047* | —0.000* -0.077  0.043* 0.002*  -0.068  0.041*
-0.007  -0.084  0.073 || —0.000* -0.077  0.043 || —0.005* -0.083 0.067
Panel B: Flight-to—Safety Dummy Based on x = 1.5
0.002*  -0.096  0.066* -0.012  -0.086  0.067 0.004*  -0.080  0.034*
—0.006* -0.085 0.077* || —0.004* -0.076  0.042* | —0.005* -0.109  0.082
—0.008* -0.087  0.085 0.004* —0.025* —0.007* || 0.003* —0.063* 0.023*
0.014  0.037* —0.074* || 0.013 -0.060  0.007* 0.010* —0.062* 0.013*
—0.007* —0.005* —0.006* || —0.001* -0.041 —0.020* || 0.007* —0.033* -0.055
-0.020  -0.091 0.057 0.010*  —0.030* -0.049 || —0.002* -0.036 —0.045*
—-0.003* -0.090  0.070* 0.012 —0.042* —-0.010*| 0.004* -0.068  0.027*
0.002* —0.066* 0.040* || —0.006* -0.075  0.048*
—0.005* —0.066* 0.057* || —0.005* -0.069  0.036* || —0.001* -0.101 0.064
—-0.006* -0.120  0.108 || —0.004* -0.083  0.048* | —0.006* -0.117  0.088
Panel C: Flight-to—Safety Dummy Based on x = 2
0.006*  -0.155  0.086* || —0.010* —0.083* 0.035* 0.011* —0.046* —0.038*
-0.010  -0.164  0.143 0.004*  -0.163  0.071* || —0.006* -0.101  0.066*
—0.009* -0.103  0.091* || —0.000* —0.020* —0.028*| 0.013* —0.050* —0.038*
0.009* —0.061* —0.016*|| 0.027 —0.088* —0.050* || 0.016* —0.096* 0.015*
-0.031  -0.066  0.032* 0.031*  -0.130 —0.078* || 0.070* -0.074 —0.168*
-0.037  -0.113 0.090 0.173  —0.068* -0.412 0.008*  -0.108 —0.027*
—-0.004* -0.116  0.083* 0.044 —0.043* -0.147 0.007*  -0.100  0.034*
0.003* —0.100* 0.055* 0.007* —0.088* —0.000* || 0.011* —0.066* —0.009*
—0.001* —0.001* —0.031*| 0.009* -0.146  0.035* 0.009* —0.065* —0.011*
—-0.009* -0.154  0.134 0.029 —0.072* —0.091* || —0.002* -0.106  0.052*

This table shows estimates for the model of market depth with a flight-to-safety effect for the 2-, 5- and 10-year Treasury notes:
pe =w+aXe—1 4+ PBut—1 +cFTS, + coa FTS: Xe—1 4 cgFT Sy pe—1. FT'S is the flight-to-safety dummy, and equal to 1 if the

S&P return falls below —« times its sample standard deviation while the Treasury note return exceeds ~ times the latter’s sample

standard deviation. Estimation is based on five-minute snapshots of BrokerTec limit order book over the period 2006-2010Q2. (*)

denotes insignificance at the 5% level.
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Table 4.4: Volatility Dynamics With Flight-to-Safety Effect

Ask5
Ask4
Ask3
Ask2
Askl1
Bidl

Bid2
Bid3

Bid4
Bid5

Ask5
Ask4
Ask3
Ask2
Askl1
Bidl
Bid2
Bid3
Bid4
Bid5

Ask5
Ask4
Ask3
Ask2
Askl1
Bidl

Bid2
Bid3

Bid4
Bid5

2-Year Treasury Note

5-Year Treasury Note

10-Year Treasury Note

C Cq Cp Cc Cq Cp C Cq cs
Panel A: Flight-to-Safety Dummy Based on x = 1
0.098 0.023* —0.018*| 0.194 0.074 -0.172 | —0.018* 0.077  0.002*
0.110 0.019* —0.019*| 0.076  0.035* —0.046* | 0.012* 0.068 —0.022*
0.123  0.006* —0.013* | 0.059 0.024* —0.015*| 0.036* 0.045* —0.018*
0.140  0.022* —0.037*| 0.081 0.060* —0.065*| 0.019*  0.058* —0.021*
0.117 0.009* —0.015*| 0.117 0.050* —0.090* | 0.082  0.039* —0.053*
0.165 0.019* —0.061*| 0.105 0.049* —0.080*| 0.124  0.005* —0.056*
0.111  0.096 -0.130 0.128  0.046*  -0.103
0.145 0.016" —0.044* | 0.056* 0.005* —0.001*| 0.100  0.004* —0.038*
0.125 0.021* —-0.037*|0.029* 0.035* —0.014*| 0.063* 0.072 —0.077*
0.097 0.021* —0.027*|0.026* 0.080 —0.058*| 0.048* 0.087 -0.074
Panel B: Flight-to-Safety Dummy Based on x = 1.5
0.052* 0.002*  0.046* | 0.161 0.007* —0.058* | —0.008* 0.115 —0.020*
0.102 0.021* 0.009* | 0.070 —0.039* 0.050* | 0.024* 0.061* 0.001*
0.160 0.038* —0.042*| 0.101 —0.011* 0.004* | 0.039* 0.017* 0.034*
0.123  0.040* —0.022* | 0.082* 0.079* —0.074*| —0.006* 0.049* 0.027*
0.151 0.020* —0.025* | 0.106* 0.026* —0.044*| 0.110* 0.024* —0.034*
0.152  0.009* —0.022*| 0.137 0.060* —0.096*| 0.220 —0.007* —0.088*
0.174 0.020* —0.043* | 0.110* 0.157 -0.161 0.227  0.046* —0.146*
0.174 —0.013* —0.016* | 0.052* —0.037* 0.060* 0.206  0.004* —0.087*
0.091 0.016*  0.006* |0.050* 0.084 —0.064*| 0.060* 0.086* —0.067*
0.065* 0.024*  0.003* |0.040* 0.112 —0.090" | 0.054* 0.101 —0.067*
Panel C: Flight-to-Safety Dummy Based on x = 2
0.067* 0.026"  0.048* | 0.241 —0.010* —0.050* | —0.037* 0.115* 0.011*
0.086* 0.040*  0.023* |0.074* —0.085* 0.117 | —-0.036* 0.225 —0.103*
0.201  0.092* —0.082* | 0.157* —0.026* 0.017* | 0.053*  0.027* 0.031*
0.139* 0.121* —-0.079*|0.057* 0.062* —0.017*|—0.049* 0.100* 0.022*
0.165* 0.054* —0.038*|0.078* —0.020* 0.033* | 0.099* 0.029* —-0.011*
0.137* 0.004* 0.013* | 0.242 0.024* —0.113*| 0.317 —0.006* —0.137*
0.139* 0.014*  0.003* | 0.261  0.197 -0.269 | 0.373*  0.015* —0.195*
0.177* —0.010* 0.007* |0.039* —0.060* 0.119 0.327 —0.003* —0.147*
0.083* 0.050*  0.000* |0.033* 0.086* —0.034"| 0.064* 0.052* —0.026*
0.039* 0.024*  0.034* |0.008* 0.104* —0.035"| 0.082*  0.075* —0.048*

This table shows estimates for the model of realized price volatility with a flight-to-safety effect for the 2-, 5- and 10-year Treasury
notes: py = w + aXi—1 + Bui—1 + c FT St + coa FTS: X¢—1 + cgFT S pue—1. FT'S is the flight-to-safety dummy and equal to 1
if the S&P500 return falls below —« times its sample standard deviation while the Treasury note return exceeds ~ times the latter’s
sample standard deviation. Estimation is based on five-minute snapshots of BrokerTec limit order book over the period 2006-2010Q2.

(*) denotes insignificance at the 5% level.
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Figure 4.1: Daily Liquidity and Volatility at First Price Tier of 2-Year Treasury Note
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This figure shows the 2-year Treasury note’s daily average market depth, total trading volume, price volatility and depth volatility at

the first price tier, using BrokerTec order book data over the period 2006-2010Q2. Two vertical dotted lines mark the beginning

(August 9, 2007) and ending (June 30, 2009) of the crisis. The series are smoothed using a 5-day moving average for better viewing

of the trend.
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Figure 4.6: Liquidity and Volatility on FTS and non-FTS days
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This figure shows average market depth, price volatility and depth volatility at a five-minute frequency, on days with a flight to safety
(“FTS” — light colored bars) and days without such an episode (“nonFTS” — dark colored bars), using BrokerTec order book data
over the period 2006-2010Q2. Flights are identified by a large positive return on the Treasury note and a large negative return on the
S&P500 index, based on a 1.5 standard deviation threshold.
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CHAPTER 5

VOLATILITY AND LIQUIDITY SPILLOVERS DURING THE EURO AREA SOVEREIGN DEBT
CRISIS

5.1 Introduction

Financial market linkages across countries are important to study, especially in times of crisis. While these
linkages facilitate better capital flows across borders, they also make it easier for shocks in one market to
spread to others in times of market stress. The recent euro area sovereign debt crisis provides an interesting
setting to study the issue of financial market connectedness and cross-country spillovers. Countries in this
area share the same currency (the euro), are subject to the same monetary policy making body (the European
Central Bank, henceforth ECB), and operate in a highly coordinated fiscal and economic environment.
Although the crisis started from imprudent fiscal behavior in Greece, contagion exacerbated the crisis in other
countries and spreaded instability across financial markets, as the ECB’s Vice President Constancio once
remarked (see Constancio (2012)). This source of contagion risk is the main focus of the paper.

Specifically, we examine the extent of shock transmission across euro area sovereign bond markets
during the crisis period of 2010-2012 to answer the following questions. Which source of shocks, liquidity
or volatility, is more prominent during this period? Which country, or countries, are the main “exporters”
of shocks that threaten the stability of the region? The answers to these questions are not obvious, because
the crisis did not arise from a single country. Instead, problems of different natures showed up in different
member countries at different times and deepened the crisis as it progressed.! In this paper, we consider
contagion as extreme spillovers of shocks in the sense of Allen and Gale (2000), and measure spillovers in
the spirit of Diebold and Yilmaz (2014).

We focus on sovereign bond markets in our study of shock transmission during the eurozone crisis for

several reasons. First, government bond markets are among the key financial markets affected by a crisis of

"For example, the root cause of the crisis in Greece is fiscal imprudence, whereas Italy experiences a combination of fiscal and
political difficulties. For Spain, it is mainly a banking crisis.
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sovereign credit risk, because bond yields reflect investors’ assessment of a given sovereign’s creditworthiness.
Secondly, government bonds are an important asset class for investment and hedging purposes. Their liquidity
and volatility conditions therefore have important implications for portfolio and risk management. Importantly,
government bond markets serve as an important channel of monetary policy transmission. Sovereign bonds
are among the most important classes of collateral that can be pledged at the ECB for access to liquidity
facilities. Therefore, they can have a direct impact on the level of aggregate funding liquidity and credit
intermediation.> The ECB’s active and direct interventions to address the malfunctioning of the secondary
market during the crisis speak volume about the importance of these instruments.

We consider jointly volatility and liquidity spillovers because the volatility-liquidity relation during
market crises is an important concern for market participants and policy makers. That is, the potential
feedback effect between illiquidity and high volatility can be detrimental. A volatile market increases
inventory risk for liquidity providers, and thus can discourage them from supplying liquidity to the market.
Conversely, without sufficient liquidity supply to absorb trading demands, price can deviate significantly
from the underlying value, resulting in higher price volatility.

From a methodological standpoint, modeling jointly the dynamics of volatility and liquidity in multiple
markets permits more insights. Beyond quantifying the extent of shock transmission across countries and
identifying systemically important country(ies), we can learn more. In particular, we can delineate the relative
magnitude of spillovers through volatility versus liquidity channels and track them over time. Therefore,
we can characterize empirically which source of shock tends to propagate more intensely across borders, or
how spillovers evolve with market events. In addition, within each bond market, the framework allows us to
analyze quantitatively the feedback relationship between volatility and liquidity, and determine if and when
one might dominate the other. The vast literature on asset pricing has shown liquidity and volatility to be
important pricing factors. Thus, an understanding of how these factors dynamically respond to each other can
shed more light on the dynamics of bond yields.

Using daily measures of volatility and liquidity constructed from intraday data on bonds issued by
Belgium, France, Germany, Italy, the Netherlands, and Spain, we find that the shock transmission across
borders during the crisis appears more liquidity-driven than volatility-driven. Moreover, Italy is the main

exporter of both volatility and liquidity shocks to the others, demonstrating its systemic role among euro area

Indeed, Corradin and Rodriguez-Moreno (2014) document a monetary funding premium embedded in euro-denominated sovereign
bonds during the 2008-2013 period.
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bond markets. By virtue of being the largest bond market and the third largest economy in the eurozone, the
dynamics of the Italian bond market can affect other countries in a significant way that none of the other
markets can replicate. In addition, we show that this transmission occurs more strongly through the liquidity
channel.

The paper contributes to a large literature on spillovers and contagion during the European sovereign
debt crisis. Claeys and Vasicek (2014) examine and measure bilateral spillovers using euro area bond yields
and find that spillover has increased substantially since 2007. However, the increase in spillover is mostly
due to larger sized shocks, and not to a significant change in the transmission mechanism. De Santis (2014)
shows that spillover effects from Greece are among the major forces underlying developments in euro area
government bond yields in recent years. De Grauwe and Ji (2013) show that the surge in government bond
yields during the 2010-2011 crisis is disconnected from underlying fiscal developments, except for Greece.
Instead, the surge reflects a negative self-fulfilling market sentiment — one of the possible channels for the
propagation of negative shocks.

Mink and de Haan (2013) suggest another channel for contagion, the “wake up call” hypothesis, whereby
the Greek crisis prompts the market to scrutinize more closely the viability of other periphery countries. The
authors also find that only bailout news relating to the Greek crisis affects European banks’ returns, leading
them to conclude that the market does not worry about a Greek default per se but relies on bailout news to
discern how the European authorities combat the financial crisis. Arghyrou and Kontonikas (2012) document
the changing composition of the sources of contagion and examine the role of shifting country-specific market
expectations. Bai et al. (2012) study the possible contagion channels during the crisis and conclude that the
contagion is predominantly through the fundamental credit risk channel and not through the liquidity risk
channel.

Previous papers have measured spillovers among key market variables in the euro area during the crisis.
For example, Calice et al. (2013) model the spillover between liquidity and credit risk for countries in the area.
Alter and Beyer (2014) measure the spillovers among sovereigns, among banks, from sovereigns to banks,
and from banks to sovereigns during the crisis. Based on a generalized impulse response analysis (“GIRF”)
derived from a VAR model using sovereign and bank CDS spreads, the authors find that spillovers increase
prior to key events and policy interventions. In particular, the sovereign-bank spillovers trend upwards during
periods of distress, suggesting intensifying feedback loops between euro area banks and sovereigns. Adopting

a similar modeling approach based on a factor-augmented VAR model and a GIRF-based forecast error
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variance decomposition, Claeys and Vasicek (2014) focus on the transmission of shocks across yields of 16
European Union countries.

Surprisingly, despite the numerous studies on the European sovereign debt crisis, not much work is
devoted to the issue of volatility and liquidity spillovers across euro area sovereign bond markets. Instead,
the literature generally places a greater emphasis on the sovereign CDS markets, the interactions between
liquidity and credit risks, or the effects of news or key events on euro area government bond yields to
examine spillovers in event study analyses. Even among studies that rely on econometric methods to quantify
spillovers as responses to shocks, the focus is mostly on yields (e.g., Claeys and Vasicek (2014)). We argue
that, by examining bond market volatility and liquidity — two important determinants of bond yields — we can
learn about bond market linkages at a more fundamental level than that by looking at comovement in yields
only.

There are a variety of methods proposed in the literature for the testing and measurement of spillovers
and contagion. Forbes and Rigobon (2002) focus on cross-market correlations in times of crisis (for a review
of work viewing contagion as the effect of contemporaneous movements across countries, see Dungey et al.
(2005, 2006)). Some recent papers have relied on copula-based approaches to model the tail dependence
among variables of interest (e.g., Rodriguez (2007)), on the basis that structural breaks in tail dependence are
symptomatic of contagion. Another branch of the literature measures contagion and spillovers as dynamic
responses to shocks. Engle et al. (2012b) model volatilities of eight East Asian countries using a multiplicative
error model, and measure volatility spillovers via impulse responses to shocks emanating from each country.

In the linear class of models, Diebold and Yilmaz (2014, 2009) develop spillover measures based on a
forecast error variance decomposition of VAR models. Diebold and Yilmaz (2014) propose to estimate the
chosen VAR model on a rolling basis to obtain the time-varying dynamics of spillover measures. Parsimony
and the simplicity in computing time-varying spillover estimates are appealing features of this VAR-based
framework. Parsimony is an important consideration when one has a large number of variables to model.
Accordingly, we follow this approach but with an important deviation. That is, instead of assuming a certain
variable ordering for the variance decomposition (as in Diebold and Yilmaz (2009)), or using an ordering-
invariant GIRF-based approach (as in Diebold and Yilmaz (2014)), we estimate the spillover measures for a

large number of permutations of variable orderings and take the average. This way, we avoid making ex-ante
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assumptions about the causal ordering of variables, while at the same time sidestep the issue of extreme
identification assumptions implicit in the GIRF-based approach.?

The paper is organized as follows. Section 5.2 describes the data, explains the measurement of bond
market volatility and liquidity, and provides background information on the European sovereign debt crisis.
Section 5.3 presents the general framework to estimate liquidity and volatility dynamics, from which to
construct spillover measures. In Section 5.4, we provide a full-sample analysis of volatility and liquidity
spillovers among the six bond markets considered. We also discuss the effects of variables capturing market
conditions on liquidity and volatility dynamics. Next, we show in Section 5.5 the multiple layers of spillovers

and how they evolve over the 2010-2012 crisis period. Section 5.6 concludes the paper.

5.2 Data

5.2.1 European Sovereign Bond Markets

The main dataset for this analysis is the intraday trade and quote data from MTS. The MTS is the largest
electronic interdealer trading platform for European fixed income securities, including government, quasi-
government and covered bonds.* The sample period is 2010-2012, which covers almost completely the euro
area sovereign debt crisis.’

While data are available for all euro area countries, we focus on the six largest and most active markets,
namely Belgium, France, Germany, Italy, the Netherlands and Spain.® These are the major economies in the
area, contributing roughly 87% to the total euro area’s GDP. As of the end of 2012, over 5,515 billion euros

of these sovereign bonds are outstanding, making up 90% of the euro area government bond market size.

Furthermore, trading in bonds issued by these six countries, especially Italy, accounts for 94% of total trading

3For a critique of the generalized impulse response function in VAR models, see Kim (2012).
4Cheung et al. (2005) and Darbha and Dufour (2013) describe in detail the microstructure of the MTS platform.
54/1/2011 is excluded from the sample due to missing quote data. The earliest quote across all bonds on this date occurred at 13:30.

®While the origin of the crisis can be traced back to Greece, Ireland and Portugal, there is almost no trading activity in Greek, Irish
and Portuguese bonds in the later part of the sample period. We are primarily interested in spillovers that occur through financial
market linkages. The inactivity in a given market means that this linkage is not available to transmit shocks to or receive from other
countries. As a result, these countries are not included in the analysis.
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activity on MTS during the 2010-2012 period. Given their sizes and economic importance, these countries

provide a quite complete picture of the euro area for the analysis.’

5.2.1.1 Bond Market Volatility

We compute realized variance from intraday quoted prices of benchmark coupon bonds issued by the six
sovereigns. Trading prices are not usable for this purpose since most bonds are traded only a few times a day,
except for Italian bonds. On the other hand, the quoted prices are binding and are available throughout the
trading day, so they present a good alternative to trading prices.

Specifically, the daily realized variance (RV') of a given bond is calculated as:

N
RV, = (AY;:)?, (5.1)

i=1
where AY} ; = py; — pii—1 is the change in the log mid-quote for the interval 7 on day ¢, and N is the number
of intraday intervals per day. The trading hours on MTS are from 8:00 to 17:30 Central European Time.

In computing RV;, we need to choose a sampling frequency, i.e., the time interval between p; ;1 and
Dt.i- As discussed in Andersen et al. (2013), a five-minute sampling frequency is often adequate as it offers a
reasonable balance between retaining the richness of the data and keeping the microstructure noise component
in check. To compensate for the information loss from not using the highest available frequency of data
(one-second frequency), we sub-sample the estimator at the one-minute interval. This involves picking a
different starting minute during the first five minutes of the day to sample five—minute returns. This gives five
five-minute return series. We compute daily RV based on each of the five series and finally take the average
of the five computed RV ’s.®

From daily realized variance of individual bonds, we compute the aggregate realized variance for a given
bond market by averaging across all bonds issued by the same sovereign. Bonds with less than one year to
maturity are excluded. We report several descriptive statistics of realized volatility (square root of realized
variance) by country in Panel A of Table 5.1. The mean annualized volatility is between 6-7% for Germany,

France and the Netherlands, compared with the 9-10% volatility in Belgium and Italy and 13% in Spain. The

"For an overview of the euro area government bond markets, and key information about the six selected markets, see Appendix C

8This type of estimator has been advocated in Andersen et al. (2011), Ghysels et al. (2010) and Ghysels and Sinko (2011). These
papers show that this RV estimator performs on par with, and often better than the more complex RV estimators.
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high mean volatility of the latter three countries appears driven by some extreme values. If we look at the
median, these countries appear to be much more similar in terms of volatility: all except Spain are in the

6-7% range. Other distributional statistics confirm that the Spanish bond market is the most volatile.

5.2.1.2 Market Liquidity

We measure market liquidity for each individual bond on a given day by the time-weighted relative bid-ask

spread, expressed as a fraction of the mid-quote (in basis points):

K-1

. 1 (A — Bi)
Lig= —— Tii1 — T3 10000 5.2
q TK _ Tl ;( k+1 k)05 < (Ak + Bk) X 3 ( )

where T}, is the time of the k" quote update, A;, and By, are the best ask and bid quotes at time T}, and K
is the total number of quote updates of the day. A higher bid-ask spread indicates a lower level of market
liquidity.

A number of studies have found the bid-ask spread to be the most important measure of bond market
liquidity (e.g., Fleming (2003); Beber et al. (2009); and Favero et al. (2010)). In addition, since MTS market
share is uneven across countries and there are multiple venues in which bonds can be traded, quantity-based
measures of liquidity using MTS data might not be comparable across the countries.” The bid-ask spread, on
the other hand, is a liquidity measure that is based on prices and not quantities. Because we can expect MTS
prices to be largely consistent with those prevailing at other trading venues, the bid-ask spread is arguably
least subject to the issue of uneven coverage discussed above. To measure the aggregate liquidity level for a
given country, we average the daily liquidity measures across all bonds issued by that country, excluding
bonds with less than one year to maturity.

Descriptive statistics of liquidity are presented in Panel B of Table 5.1. The German and Dutch bond
markets have quite similar level of market liquidity. On average, the bid-ask spread as a fraction of the
mid-quote is about 13 bps (mean) or 12 bps (median). Over the sample period, this measure of liquidity

never exceeds 60 bps for either market. On the other end, the relative bid-ask spread of Spanish bonds is

°It is particularly noted that trading activity in German government bonds is quite low on MTS, because these bonds are also
traded actively elsewhere, such as German stock exchanges, international electronic trading platforms and also in the over-the-
counter (OTC) market. The total trading volume in German Treasuries on MTS in 2012 is 52.7 billion euros, which is roughly
1% of the total market trading volume of nearly 5,400 billion euros (http://www.deutsche-finanzagentur.de/en/
institutional/secondary-market/).
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nearly six times larger, with a mean and median of 73 bps and 59 bps respectively, and a maximum of 487
bps. Nevertheless, this is still lower than the largest illiquidity reading of the Italian market: 667 bps! The

liquidity distribution is highly skewed, especially for Belgium, Italy and Spain.

5.2.2 Market Variables

Beside bond market data, we also collect data capturing market developments during the sample period. Most
of the data items are obtained from Datastream, unless otherwise indicated. We use these variables to control

for market wide factors that might affect volatility and liquidity across bond markets.

* Daily sovereign credit default swap (CDS) spreads: These are obtained from Bloomberg. We use
the spreads for the 5-year maturity, which is widely considered to be the most liquid segment of the
sovereign CDS market. Thus, the spreads are least subject to the CDS market’s liquidity effects. These

CDS spreads provide market-based measures of credit quality of the six countries.

* Daily series of the 5-year iTraxx Financials Senior index: This is a CDS index comprising of the most
liquid 25 financial names in Europe (senior subordination). This reflects the aggregate credit risk level
of the financial sector. To the extent that banks are a major group of players in the government bond
markets, in both market making and trading capacities, their viability is expected to have an effect on

bond market liquidity and volatility.

* Daily 3-month Euribor and EOIS rates: The difference between these rates reflects the cost of unsecured
borrowing for banks over the risk free rate. It captures the willingness of banks to lend to each other

and is thus often used as a measure of funding condition.

* Daily yields on AAA-rated and BAA-rate corporate bond indices: The difference between these two

series provides a market-based assessment of the aggregate default risk in the economy.

* Daily series for the VSTOXX: This is the implied volatility of options on STOXX, a major stock
market index in the eurozone. This series serves as a proxy for the aggregate risk aversion specific to

the eurozone.

* Daily series for the VIX: This is the implied volatility of options on the S&P 500 index, obtained

from the Chicago Board Options Exchange website. This has been widely used as a proxy for global
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systemic risk factor. Given that the US market closes after the European market, the VIX series is

lagged by one day when it is used as an explanatory variable.

5.2.3 The European Sovereign Debt Crisis

This section describes major developments during the euro area sovereign debt crisis in order to provide a
background essential for the subsequent analysis on spillovers in the paper. Figure 5.1 offers an overview of
key market developments. The top panel plots the 10-year benchmark yield spreads of five countries relative
to Germany’s 10-year benchmark yield. The middle panel shows the evolution of sovereign credit risk of the
six countries in consideration. The bottom panel documents the ECB’s interventions in the bond market.'?
We identify and mark on the plots five event dates around which large spikes in yields and CDS premia
occurred.

The first corresponds to May 10, 2010 (vertical line (1)), which marks the beginning of the Greek
crisis. On this date, the ECB announced the SMP in an effort to restore bond market’s stability. The second
system-wide jump in yields occured in August 2011, when the market grew increasingly concerned about
Italy’s ability to service its public debts and complicated political environment. On August 8, 2011, the ECB
reactivated its SMP (vertical line (2)). During that week, the ECB purchased the largest amount in the history
of the program.

The political turmoil in Italy continued into the fourth quarter of 2011, ultimately resulting in a change
of government on November 26, 2011 (vertical line (3)). As the markets reacted to this news, bond prices
were considerably depressed and yields reached a new height. Another episode of yield jumps occurred when
Standard and Poor’s downgraded the credit ratings of France, Italy and Spain on January 13, 2012 (vertical
line (4)). Shortly after this date, Fitch also downgraded the credit ratings of Belgium, Italy and Spain. From
this point, the yields on French, Belgian and Dutch bonds declined gradually toward the end of 2012. On the
contrary, the Italian and Spanish yields continued to experience one more episode of severe stress in June

and July of 2012, when Spain struggled with a banking crisis. The euro group granted financial assistance to

"°During the European sovereign debt crisis, the ECB implements a number of additional measures complementing its regular
liquidity operations. These complementary measures include outright interventions in public and private debt markets via the
so-called Securities Market Programme (“SMP”’) and the Covered Bonds Purchase Programme. Of direct relevance to the sovereign
bond markets is the SMP. The only publicly available source of information on the SMP operations is the ECB’s weekly financial
statements, which state the total amount of purchases over a given week (without further details on the timing and the targeted
country/maturity of the operations). We manually compile a weekly series of SMP amounts from these statements. We thank
Olivier Vergote at the ECB for providing helpful instructions in compiling this series.
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Spain’s banking sector on July 20, 2012. However, only until the ECB President’s statement on July 26, 2012
of the ECB’s commitment to do “whatever it takes to preserve the euro” that the pressure on the Italian and
Spanish yields seemed to ease (vertical line (5)).

As shown in the last panel of Figure 5.1, the ECB’s outright operations in the secondary markets for
sovereign bonds of the periphery countries concentrated in May-June 2010 and August-December 2011, with
the two largest purchases undertaken at the peak of the Greek crisis and Italian crisis. The program, which
concluded in January 2012, acquired about 218 billion euros. Only until early 2013 that the ECB published
the country composition of its SMP bond holdings. Italian bonds account for roughly 47%, followed by
Spain (20%), Greece (16%), Portugal (11%) and Ireland (6%). Based on proprietary data on individual SMP
purchases, Ghysels et al. (2013) show that these purchases are successful at reducing bond yield volatility in
participating countries.

Examining the plots over the whole sample period, we can observe clearly that the pressures on yields
and CDS spreads in May 2010 around the Greek crisis appear much less serious than those prevailing around
the crises in Italy and Spain in late 2011. These two countries also account for the largest shares of the ECB’s
bond market intervention program.

Bond market volatilities and liquidity levels closely follow the above events. Figure 5.2 shows the euro
area bond market volatility over the sample period from 2010 to 2012. The figure reveals that the German,
Dutch and French bond markets are much less volatile than the markets for Italian, Belgian and Spanish
bonds. The scale used for plotting volatilities of the countries in the latter group is three times larger than
that for the former. There was a clear jump in volatility across markets at the break out of the Greek crisis
on May 10, 2010. The markets seemed to calm down shortly afterward, with a brief increase in volatility
in Belgium, Italy and Spain in late 2010, around the time of Ireland’s bailout package. Nevertheless, the
markets remained rather stable until the summer of 2011, when concerns over the spreading of the crisis to
Italy and Spain became apparent. The change of government in Italy in November 2011 led to significant
volatility increases across the markets. Most notably, Italy and Spain saw volatilities exceeding the 100%
p-a. level. Volatility in France and especially Belgium also increased significantly around this time, reaching
45% and over 70% respectively. After these peaks, the markets still experienced one more brief round of
heightened volatility in the middle of 2012 as Spain coped with its banking crisis.

The time-series evolution of liquidity follows that of volatility closely. As shown in Figure 5.3, there are

clear episodes of extreme illiquidity for the most volatile group of countries (Belgium, Italy and Spain). The
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first of such episodes occurred at the breakout of the Greek crisis in May 2010, when the bid-ask spread in
the Spanish bond market reached nearly 400 basis points for the first time, more than five times larger than
the typical level of 73 bps. The second wave of illiquidity occurred around the time of the crisis in Ireland in
November 2010. The next and also the most serious spell of market-wide illiquidity came in the summer
of 2011 and remained until the end of that year. Notably, the bid-ask spread on Italian bonds shot to an
unprecedented level of nearly 700 bps in early December 2011, while that for Spanish, Belgian and French
bonds reached nearly 500, 200 and 120 bps respectively. The Spanish bond market experienced another major
spike in illiquidity in July 2012, before seeing improvement in liquidity toward the end of 2012. Interestingly,
other countries’ liquidity did not seem to be significantly affected this time.

It is easy to see that the liquidity patterns correspond closely to episodes of heightened volatility and
periods of distress in Greece, Ireland, Italy, and Spain discussed earlier. Formally, the correlation between
liquidity and volatility in a given bond market is high, ranging between 0.63 for the Spanish market to 0.79 for
the Italian market. This high degree of correlation indicates that modeling only volatilities, or only liquidity
measures, will be incomplete. Considering them jointly enables us to disentangle which of the two is the
more important source of variation in the market. The next section describes the model and how the various

spillover indicators are computed.

5.3 Model

To measure spillovers and assess the degree of connectedness among the major euro area bond markets,
we adopt the VAR-based approach by Diebold and Yilmaz (2014). The VAR model is a standard and
parsimonious framework to model a large network of interconnected variables. Thus, it is a natural choice
for the analysis in this paper, in which we seek to model the dynamic interactions among liquidity and
volatility of six bond markets. The availability of high frequency data allows us to directly measure volatility
at the daily frequency. This is a great advantage, allowing us to avoid potential mis-specification concerns
if volatility were to be estimated parametrically from daily returns. Furthermore, we can model realized
volatility jointly with liquidity in one convenient and unified framework. In this section, we describe details

of the VAR model used, some key modeling considerations, and how spillovers are measured.
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5.3.1 Modeling Dynamic Interdependencies

Consider a vector of n variables of interests, denoted by Y3, that follows a linear vector autoregression:

Y, =C+ zp:Athfj + € (5.3)
j=1

In particular, to fix ideas, we take Y; to be a vector of daily logged realized variances and daily logged relative
bid-ask spreads of six bond markets in the euro area, namely Germany (DE), France (FR), the Netherlands
(NL), Belgium (BE), Italy (IT) and Spain (ES). Our objective is two-fold: 1) to disentangle the mutual
feedback effects between volatility and liquidity within each bond market (“intra-country spillover”) and 2)
quantify the effect of spillovers from one market to other markets (“inter-country spillover”). This requires
measuring the effects of shocks of one variable on another variable at various horizons, which is commonly
achieved by a forecast error variance decomposition.

From the estimated VAR model, the h-step forecast error is:
Yien — Yt+h|t =entVien1+ Vo p o+ ..+ Yy q641, (5.4)
where ¥ is the j-lag MA coefficient matrix in the MA(oo) representation of the VAR model:
Y, =C+ e+ Vie1 + Voo + ...
The variance of the h-step forecast error in equation (5.4) is:
Vi = Q+ U QU] + UoQUs + ..+ U, 1 Q) (5.5)

where Q) = E(e.€}). Orthogonalization of shocks follows Sims (1980)” recursive method, assuming that the
j-shock has contemporaneous effects on only variables placed after it in the ordering.!! That is, ¢; = Auy,

where A is a lower triangular matrix capturing contemporaneous effects and u; is a vector of orthogonalized

"Diebold and Yilmaz (2014) use the generalized forecast error variance decomposition to produce spillover measures that are not
sensitive to the variable ordering. The limitations of this approach are discussed in Kim (2012). We instead opt for using the
standard recursive orthogonalization procedure, but implement an additional step to robustify our spillover measures, which will be
discussed in greater details in the subsequent subsection.
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residuals. Thus, Q@ = AY A’, where X is the variance of u;. Performing the Cholesky factorization on the
matrix €2, i.e., Q = PP’ (and thus P = AXY 2), we can decompose the forecast error variance V}, in equation

(5.5) into contributions by each of the orthogonalized residuals Vh(j ), forj=1,...,n:

V=Y v,
j=1

where

VAP = piply + Wapipy W+ WopiplyWh + .+ Up_1pp Wy,

and p; is the 4t column of matrix P. The percentage contribution of the j-variable to the forecast error

variance of the ¢-variable is thus: ‘
Ciyi =100 x 22
I Vi (i, 1)
The above calculation results in a n x n matrix of bilateral spillovers (n = 12), in which the (4, j)
element is C_,;. Intuitively, C;_,; measures the extent to which the jth shock drives the variation in the 7"

variable at a given horizon h, i.e., the extent of shock transmission from j to ¢ at the horizon h.

5.3.2 Effects of General Market Conditions

To account for the possibility that developments in the macroeconomic environment might explain some of
the comovement of volatility and liquidity across the sovereign bond markets in consideration, we augment
the VAR model with the following control variables.

First is the common trend in credit quality of these sovereigns. The commonly used proxy for credit
quality of a country is the CDS premium on its sovereign debts. A principal component analysis on the CDS
premia of the six countries reveals that the first principle component (SovPC'1) explains over 91% of the
total variation. We use PC'1 as a control variable in the VAR model, instead of the six individual CDS series,
realizing that it has captures sufficiently the common trend in sovereign credit risk that might affect the bond
markets’ liquidity and volatility. The model is also leaner this way.

Next, we include changes in the iTraxx-Financial index to proxy for funding condition (F'und). iTraxx-
Financial index is an index of CDS on 25 financial firms in Europe. The financial sector plays a key role

in intermediating and supplying credit, so their viability has a first order effect on the funding condition in

156



the euro area. Another proxy for funding condition is the cost of credit (C'C'), as measured by the difference
between the 3-month Euribor and the EOIS rate.

To control for aggregate risk factors, we include the following variables. First, we use default spread
(Def Spr), which is the yield difference between AAA-corporate and BAA-corporate bond indices, to capture
the aggregate credit risk level in the economy. Secondly, the implied volatility of options on the STOXX
index, VSTOX X, serves as a proxy for regional risk aversion. Lastly, we include the VI X to control for
movements in global risk factor beyond those pertaining to the euro area.

The model includes both contemporaneous and one-lag effects of these variables to account for possible

delay in the bond markets’ reaction to these time-varying market conditions. Thus, the model estimated is:

p
Y, =C+ ) AYrj+BoXe+ BiXe +e, (5.6)
j=1

where X; = [SovPC1, Fund, CC, DefSpr,VSTOXX,VIX]'.

5.3.3  Spillover Measures

After estimating the model and performing the variance decomposition as outlined earlier, we obtain a 12 x 12
bilateral spillover matrix. From this table, we classify spillovers into two major categories: 1) intra-country
spillovers, and 2) inter-country spillovers. To facilitate a clearer description of spillover measures in this
section, we introduce a different set of indexing notations. Let ¢ be the country index, with ¢ € {DE, FR, NL,
BE, IT, ES}, L and V denote liquidity and volatility respectively, and an arrow (—) indicate the direction of
variance contribution. We now discuss each spillover category in detail.

Intra-country spillovers reflect the extent to which liquidity shocks are transmitted to volatility, and vice
versa, within the same bond market. These intra-country dynamics reveal which source of shocks tends to
dominate a given market, and are measured by the elements C. ;. v and C. vy 1, in the spillover matrix.

On the other hand, inter-country spillovers measure the extent of shock transmission across borders. To
assess the systemic importance of each country, we compute the following directional spillover measures
capturing the extent of shocks sent and received by each country in the same fashion as Diebold and Yilmaz

(2014):
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1. Spillovers Received:

INC,L = Z (Cc*,LHc,L + Cc*,V%c,L) ) (57)
c*#c
INC,V = Z (Cc*,L%c,V + Cc*,Vﬁc,V) . (58)
c*#c
2. Spillovers Sent:
OUTC,L = Z (CQL—)C*,L + Cc,L—>c*,V) ) (59)
c*#c
OUTC,V = Z (CC,V—>C*,L + Cc,V—)c*,V) . (510)
c*#c
3. Net Spillovers Sent:
NET.; = OUT, — IN,, (5.11)
NET,y = OUT,y — IN,y. (5.12)

Notice that each of the above directional spillover measures is the sum of liquidity-related and volatility-
related variance shares. The separation of liquidity variables from volatility variables permits a more granular

view about which source of shocks is the main driver of a country’s systemic importance.

5.3.4 Measuring Time-Varying Spillovers

Based on the above framework, we can study the time-varying dynamics of spillovers among these countries
by estimating the VAR model on a rolling basis and computing the corresponding spillover measures, as
suggested in Diebold and Yilmaz (2014). For implementation, we need to choose the length of each rolling
window and the rolling frequency.

For the window size, we follow Diebold and Yilmaz (2014) and use a window of 100 days. This choice
balances between having reliable model estimates (preferring a longer window) and being able to quickly
pick up changes in spillover (preferring a larger number of shorter windows). Different from Diebold and
Yilmaz (2014), we choose to roll the estimation at the weekly frequency, from one Friday to the next (or

Thursday if Friday is a holiday), instead of the daily frequency. This results in a weekly series of spillover
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estimates, each of which is based on market dynamics over the 100 days up to the end of the corresponding
week. For the 2010-2012 period, the first available spillover estimate corresponds to the week ending on May
28, 2010.

To keep the time-series analysis of spillovers tractable, we compute the following aggregate spillover
indices and examine their behavior over time. Note that the time reference (at the weekly frequency) for these

indices is suppressed.

1. Total spillover index. This measures the average contribution of shocks from all other variables, or the

average extent to which a given variable is driven by others:

12

1
TotalS = = Do (5.13)
J=1 \i#j
2. Intra-country spillover. This is a component of the total spillover index that captures only the spillover
between liquidity and volatility of the same bond market. The intra-country spillover is calculated as:
1
IntraS = — Z (Cc,L—w,V + Cc,V—w,L) . (5.14)

12

C
3. Inter-country spillover. This is the other component of the total spillover index that shows the extent of

spillovers received from external countries. It can be calculated as:

InterS = TotalS; — IntraS;. (5.15)

The inter-country spillover index can be further decomposed into four sub-indices based on the type of
shocks received from and sent to the other countries: 1) volatility to volatility spillover (“V2V), 2) volatility
to liquidity spillover (“V'2L”), 3) liquidity to liquidity spillover (“L2L"), and 4) liquidity to volatility spillover
(“L2V™):
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[

Vav = 6 %: Covoev | (5.16)

VoL=-> | Y Covoer |, (5.17)
c* e

L2L = 6 Z; Cotser | (5.18)

L2V = (1;2 %: Cortsev | - (5.19)

5.3.5 Modeling Considerations

Lag order The selection of the lag length p is based on the AIC and BIC, which suggest 2 and 1 respectively,
using the full data sample. We choose 1 lag to reduce the risk of overfitting, especially when it comes to

estimating the model on a shorter rolling window.

Forecasting horizon for forecast error variance decomposition We choose a forecasting horizon of 10
days (or two weeks) ahead. A similar choice is made by Diebold and Yilmaz (2014) who use a 12-day
forecasting horizon in their study of volatility spillovers across major financial stocks. Alter and Beyer (2014)
use a five-day horizon for their impulse response analysis in studying sovereign and bank CDS spillovers.
For risk management, too long a forecasting period can reduce the forecast’s usefulness because the forecast
error might be too large. On the other hand, if the forecasting horizon is too short, we might not be able to

capture the long run effect of a shock.

Variable Ordering The paper computes variance contributions of shocks orthogonalized by Sims (1980)
recursive method, which depend on how variables are ordered in the system. Instead of assuming a specific
ordering and letting the results depend on the chosen ordering, we robustify the variance contributions by
averaging across multiple permutations of variable ordering. This is similar to the approach suggested by
KloBner and Wagner (2012) to overcome the ordering-dependent problem. A common alternative to the
ordering issue is to use Pesaran and Shin (1998)’s generalized impulse response approach, as employed in
Diebold and Yilmaz (2014). However, as discussed in Kim (2012), this approach relies on extreme identifying

assumptions that might provide misleading inferences.
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Given that the model has 12 variables, the number of all possible variable orderings is too large (12!),
making the variance decomposition of all orderings not computationally practical. This necessitates the
choice of a subset of orderings to work with. A logical start is to vary the ordering by country. For each
country ordering, the liquidity and volatility variables of a given country are placed together. With six
countries, there are 720 country orderings in total. We then vary the ordering of liquidity and volatility within
each country. Specifically, we first perform the variance decomposition with liquidity preceding volatility for
each country. We then repeat the exercise, but reverse the within-country ordering for volatility to appear
first. This results in 1,440 orderings over which the Cholesky decomposition is done. The resulting 12 x 12

spillover matrix contains the variance contributions averaged across 1,440 orderings.

5.4 Full Sample Analysis of Spillovers

This section provides an analysis of the spillover effects among the six major euro area bond markets for
the full sample period of 2010-2012. However, to facilitate a better understanding of the dynamics among
variables in the system, we start first with a discussion of the model estimates and the effects of the general

market conditions.

5.4.1 Model Estimates
5.4.1.1 Feedback Effects

Estimates of the feedback parameters are provided in Table 5.3, where each column shows the effects of
lagged variables on the variable indicated in the column heading. The diagonal of the table contains all
autoregressive coefficients. They are significant and positive, providing evidence of liquidity and volatility
clustering. Liquidity is particularly persistent in four markets, i.e., NL, BE, IT, and ES, with a coefficient
estimate ranging between 0.78 and 0.87, whereas DE and FR show a moderate persistence level. Volatility
persistence is lower, mostly below the 0.5 level.

Off-diagonal estimates capture the feedback mechanisms among variables in the system. It is immediately
apparent from the table that most of the feedback effects occur due to liquidity. This can be seen from the top
half of the table where many of the feedback coefficients of liquidity are significant. On the contrary, in the

bottom half of the table where we present the feedback effects of volatility, most coefficients are insignificant.
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5.4.2  Effects of Market Conditions

The coefficient estimates for explanatory variables capturing market conditions are reported in Table 5.4.
We observe that two variables are particularly important. Firstis V.ST'O X X, the regional risk factor. The
coefficient estimate for this factor is positive and significant in all liquidity equations, indicating that an
increase in the euro area’s aggregate risk level is associated with an immediate increase in illiquidity (or
decrease in liquidity) in the bond markets. Interestingly, once we control for this regional risk factor, the
global risk factor — proxied by the USV I X —is mostly insignificant, suggesting that liquidity reacts mainly
to euro area specific developments. Another noteworthy observation is that V.STOX X does not affect
volatility as strongly as it does to liquidity: significantly positive coefficients are seen for Belgium and Spain
only. For Germany and the Netherlands, this effect comes with a lag. The results seem to suggest that the
eurozone stock market volatility transmits to bond markets rather through the liquidity channel than the
volatility channel.

The second important determinant is ¢1'raxx F'in, a proxy for the aggregate credit risk of the financial
sector. A deterioration in the financial sector’s viability makes the bond markets more volatile. This is an
intuitive result, because the financial sector is a key group of players in the bond markets with respect to
market making, trading, and investing activities. Surprisingly, however, it is not a major determinant of
liquidity, except in the Italian and Spanish markets, where the financial sector’s decreased credit worthiness
translates to a decrease in liquidity. It seems that liquidity is mainly driven by the eurozone stock market
volatility as discussed above, and to a lesser extent, by the funding cost (F'inC'ost) and aggregate credit risk
level (DefSpr).

Perhaps the most surprising result is that movements in sovereign credit quality have little effects on bond
market liquidity and volatility. It appears that sovereign credit risk has been reflected in other aggregate market
indicators discussed above and accordingly has low incremental explanatory power. The only significant
effects are observed for the German bond market, where an increase in the overall sovereign credit risk of
major euro area sovereigns is associated with an increase in liquidity and decrease in volatility. This evidence
resonates well with a flight-to-safety hypothesis. Germany maintains its AAA credit rating through the euro
area sovereign debt crisis and has traditionally served a safe haven role in the area. Accordingly, when the
credit quality of other euro area countries deteriorates, it is reasonable to observe greater liquidity coming to

this market, and a lower level of uncertainty with regards to German-issued securities. Nevertheless, this
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explanation does not help explain the puzzling negative coefficient of sovereign credit risk on Spanish bond
market volatility.

Overall, the evidence presented in this subsection highlights an important finding that most aggregate
market conditions affect the bond markets through the liquidity channel. Moreover, these effects generally oc-
cur contemporaneously rather than with a lag, indicating that the bond markets incorporate new developments

quickly.

5.4.2.1 Correlation of Liquidity and Volatility Innovations

In Table 5.5, we show the contemporaneous correlation matrix of the model residuals (¢;). The model
residuals exhibit a high degree of correlation. Most correlation coefficients are in the 0.4-0.7 range. Although
the residual correlation coefficients are lower than those observed among the original variables (as shown in
Table 5.2), the results show a significant degree of commonality of volatility and liquidity innovations among
the bond markets. This is consistent with Chordia et al. (2005) who document that liquidity and volatility

shocks in bond and stock markets are driven to a large extent by common factors.

5.4.3 Volatility and Liquidity Spillovers
5.4.3.1 Bilateral Spillovers

The full spillover matrix is presented in Table 5.6. The (i, j) element of the matrix indicates the variance
contribution by the variable in column j to the variable in row 7. We observe several strong cross-country
linkages. First are the volatility linkages among Germany, the Netherlands and France, ranging between 9%
and 21%. In particular, German bond volatility explains 21% variation in Dutch bond volatility and receives
18% variance contribution in return. Secondly, liquidity of the Italian and Spanish bond markets are also
closely connected, explaining respectively 16% and 14% of the variation in the other. Importantly, liquidity
shocks emanating from the Italian market are the second most important source of liquidity variation in the
other markets beside their own liquidity shocks.

Each number on the diagonal reflects the extent to which a variable is driven by its own shocks, and is
evidently the largest source of variation for each of the variables considered. Own shocks account for 31-43%

of volatility variation and 25-40% of liquidity variation. The remaining portion of variation is attributable to
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other variables and is split into own country effects (referred to as “intra-country spillovers”) and inter-country

spillovers.

5.4.3.2 Intra-Country Spillovers

Intra-country spillovers reflect the strength of the inter-dependency between volatility and liquidity in a
given bond market. These measures are reported in Table 5.7. For Germany, the Netherlands and France,
liquidity innovations contribute little to volatility dynamics, and vice versa: all variance shares are below
5.2%, and are relatively balanced between liquidity and volatility. On the other hand, Belgium, Italy and
Spain show a markedly greater degree of liquidity-volatility connectedness, ranging between 14% and 20%
for liquidity-induced variation and between 8% and 10% for volatility-induced variation. For example,
liquidity variation in the Italian market contributes nearly 20% to its volatility variation and receives 10%
in return. Importantly, liquidity exerts greater influence on volatility than vice versa, as shown by the net
liquidity spillovers between 7% to 10%, indicating that liquidity is the more important source of variation

within each of these markets.

5.4.3.3 Inter-Country Spillovers

We quantify cross-country spillovers in Table 5.8. The first panel, labeled “Received From Others”, shows
the proportions of variation receive from outside countries. These inward spillovers are split into the sources
of shocks, namely “Vol” (the total variance share by external volatility shocks) and “Liq” (the total variance
share by external liquidity shocks). Consider first volatility variables. External volatility shocks contribute
between 21% to 40% to variation of volatility in a given market, while external liquidity shocks account for
another 16-27%. In total, shocks from the outside generally explain at least half of volatility fluctuation in a
market. Nevertheless, as shown in the second panel labeled “Sent to Others”, each market also sends out
a considerable amount of volatility shocks to others, affecting both their volatility and liquidity variation.
In particular, German bond volatility plays a major role in the other markets’ volatilities: its variance
contributions sum up to 47%, exceeding the volatility spillovers it receives from others. This makes Germany
a net exporter of volatility shocks. Another net exporter of volatility is Italy. The remaining four countries,
on the other hand, are net recipients of the volatility transmission.

With respect to liquidity, the magnitude of shocks sent and received across borders is larger that what

is observed for volatility shocks. For example, inward spillovers from external liquidity shocks are in the
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37-51% range (compared to the 21-40% range for inward volatility spillovers), and outward spillovers of
shocks to foreign liquidity are between 24% and 72% (compared to the 17-47% range for outward volatility
spillovers). The outward liquidity spillover range would have been 24-48% without Italy. Italy’s liquidity
fluctuation is the major source of liquidity variation in others, accounting for an aggregate variance share
of 72%. On balance, the three crisis-related countries, namely Belgium, Italy and Spain, are sending more
liquidity shocks than received, making them net exporters of liquidity shocks. Germany, on the other hand,
is the largest net recipient of liquidity shocks from its neighbors. This is not withstanding the observation
that liquidity shocks also affect foreign markets’ volatility, although this cross-country liquidity-volatility
connection tends to be weaker and balanced with the corresponding reciprocal spillover effects.

Overall, the results just presented above clearly demonstrate Italy’s systemic role among sovereign bond
markets in the euro area. Liquidity shocks from Italy overwhelmingly propagate the major euro area bond
markets, in addition to its net export of volatility spillovers. Furthermore, liquidity is generally the more
dominant source of spillovers across borders. The strong cross-country liquidity linkages are consistent with
evidence of liquidity commonality documented in Chordia et al. (2005).

Our own findings with regard to the effects of market conditions and those documented in Pelizzon et al.
(2013) provide some helpful insights to explain the important role of liquidity. These authors find that market
liquidity in Italy is significantly driven by external market conditions, including sovereign credit risk. It
appears that these factors first drive liquidity fluctuations in the Italian bond market, which in turn affect
volatility and propagate to other bond markets through both volatility and liquidity channels, with the latter

channel being more prominent.

5.5 The Dynamics of Spillovers

The previous section focuses on identifying the major forces underlying the inter-connection of euro area
bond markets over the full sample period. The result shows that, Italy is the major net sender of both liquidity
and volatility shocks to the other five countries. To complement the full sample analysis, we examine how
spillover effects evolve over time through the crisis. In particular, does the full-sample spillover effects
previously documented prevail throughout the whole period, or just show up significantly at some brief

moments in time?
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We start with a discussion of the trend in the total spillover index, which measures the overall degree of
inter-dependency among the bond markets considered. This discussion also describes the two components
making up the total spillover index, namely the intra-country spillover and inter-country spillover. We then
decompose the inter-country spillover effects by the source and destination of shocks into four sub-indices:
1) liquidity to liquidity, 2) liquidity to volatility, 3) volatility to liquidity, and 4) volatility to volatility. Finally,
we analyze the dynamics of spillovers into and out of the Italian bond market, given its systemic importance

among bond markets in the euro area.

5.5.1 Trends in Aggregate Spillovers

Figure 5.4 shows the time series plot of the total spillover index, together with its two components reflecting
intra-country and inter-country spillover effects. The total spillover index indicates the average extent to
which a variable is driven by all other variables in the system. The intra-country spillover measures the
average degree of inter-dependency between liquidity and volatility within the same bond market. On the
other hand, the inter-country spillover measures the average extent of spillover a country receives from the
other countries. We also mark on the figure the five important dates discussed in the data section, namely: (1)
May 10, 2010, (2) August 8, 2011, (3) November 16, 2011, (4) January 13, 2012, and (5) July 26, 2012.

The total spillover index exhibits several episodes of increased inter-dependencies among the markets,
but it is generally trending down over the sample period. The index starts at roughly 80% in late May 2010,
and finishes at about 55% at the end of 2012. Note that the high level at the beginning of the indices reflects
the effects of the Greek crisis. It is followed by three more occasions of rising spillovers - evidence of
contagion in the area. The first occurs in late November 2010, around the time that Ireland sought financial
assistance (November 21, 2010), thereby renewing concerns over a widening crisis. Interestingly, the crisis in
Portugal in April 2011 does not seem to affect the overall degree of shock transmission among the countries
in consideration.

The second episode of contagion occurs in the summer of 2011, when it was apparent that the crisis
could soon spread to two of the larger economies in the area, namely Italy and Spain, prompting the ECB
to reactivate the SMP. The total spillover index exceeds the 70% level and stays between 70-80% for the
rest of 2011 before declining to around 60% in early 2012. The degree of shock transmission among the
six bond markets increases one more time in June and July of 2012 amid the banking crisis in Spain and a

growing fear of a possible breakup of the eurozone. However, this upward trend in spillovers is soon reversed
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following the ECB President’s statement to do “whatever it takes to preserve the euro”. The markets appear
to calm down and spillovers of shocks lessen after this assurance.

The figure also reveals that it is mainly the inter-country spillover component that drives the time series
trend in the total spillover index discussed above. The within-country feedback dynamics between liquidity
and volatility remain quite stable at around 10% over the sample period. Crisis events appear to affect only
the cross-country spillovers. This finding confirms that the increased total spillover around these events
is mainly attributable to increased shock transmission across borders (evidence of contagion) and not to

increased inter-dependency within the same market.

5.5.2 Inter-Country Shock Transmission: A Decomposition

We now examine the dynamics of inter-country spillovers at a deeper level, which helps decipher the major
source of shocks that permeates the euro area bond markets. Figure 5.5 plots the four types of cross-country
spillover effects: 1) volatility to volatility (“V2V”), 2) liquidity to volatility (“L2V”), 3) volatility to liquidity
(“V2L”), and 4) liquidity to liquidity (“L2L").

Visual inspection of the indices reveals that liquidity shock transmission is the main driver of cross-
country spillovers. The L2L index is above all other three indices for almost all of the sample period.
Importantly, the contagion relating to the Italian crisis in the summer of 2011 is heavily liquidity-driven, as
shown by a dramatic increase in the L2L index.

The transmission of volatility shocks accounts for the second largest portion of cross-country spillovers.
Initially, the V2V index appears comparable with the L2L index, and both are fluctuating around the 40% level.
But after 2010, the extent of liquidity shock transmission far exceeds that of volatility shock transmission. In
other words, the contagion associated with the Greek crisis is driven roughly equally by liquidity and volatility
forces, but the contagion associated with the later phase of the crisis can be characterized as liquidity-driven.

The other two cross-type spillover indices (L2V and V2L) appear weaker, generally between 10-30%.
They measure how strongly external liquidity shocks drive a bond market’s volatility, and similarly, how
strongly external volatility shocks drive a bond market’s liquidity. Despite being weaker, these cross-type
spillovers also increase around times of crisis (e.g., the Greek and Irish crises in 2010, the Italian crisis in
the later half of 2011, and the Spanish crisis in the middle of 2012), thereby contributing to the spreading of

shocks across borders.
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5.5.3 The Dynamics of Italy’s Systemic Role

As the full sample analysis has shown, Italy is the main exporter of both volatility and liquidity shocks to
other markets. Given its systemic importance, we now provide a close-up analysis of the spillovers into and
out of Italy over time. We first look at the extent to which foreign shocks affects Italy’s liquidity (“Liquidity
Shocks Received”) or volatility (“Volatility Shocks Received”) and plot them in the negative half in Figure
5.6. In the positive half, we show the extent to which Italian bond market liquidity and volatility drive other
markets by the lines “Liquidity Shocks Sent” and “Volatility Shocks Sent” respectively.

Interestingly, external shocks affect Italian bond market’s volatility and liquidity rather equally, and this
influence is quite stable over the sample period. Roughly 50% of the variation in liquidity or volatility is due
to shocks in the other markets.

On the other hand, liquidity and volatility fluctuations in the Italian market have markedly greater effects
on the other countries. This is observed for most of the sample period, indicating that Italy is a consistent
net exporter of shocks to others. In particular, between August and November of 2011 — the peak of the
Italian crisis — the extent of liquidity shock transmitted from Italy to the other markets is about three times
the reciprocal effect. Volatility transmission is also twice as large going from Italy than to Italy. This major
increase in shock transmission from Italy, especially that of liquidity, is the major force underlying the
increase in the overall cross-country liquidity spillovers. We did not observe the same magnitude of shock

transmission in the remaining markets, including Spain, even though it is also a country in crisis.

5.6 Conclusion

In this paper, we examine the transmission of liquidity and volatility shocks across six major bond markets in
the euro area during the 2010-2012 sovereign credit crisis. We model liquidity and volatility jointly in a linear
VAR model with additional variables to control for the common trends in sovereign credit risk, financial
sector’s credit risk, funding tightness, overall default risk, and regional and global risk factors. Spillovers are
measured based on the forecast error variance decomposition of the model. Apart from a full sample analysis
of the spillover effects, we also examine their dynamics throughout the crisis period using rolling estimates.

Our main findings can be summarized as follows. First, variables capturing the aggregate market
conditions affect the bond markets mainly through the liquidity channel. Furthermore, most of the feedback

effects within the system are due to liquidity. In addition, Italy is the main exporter of both liquidity shocks
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and volatility shocks to others. Germany also contributes net volatility shocks to the system, albeit at a much
smaller scale than that by Italy. However, the German bond market receives considerable liquidity spillovers
from the other countries, most notably, Italy.

The time series variation of spillovers shows that the degree of shock transmission among the major euro
area bond markets increases around major crisis events. Examining multiple layers of spillovers, we find that
liquidity is the main source of shocks transmitted across borders. Moreover, the liquidity shock transmission
is largely originated from Italy, especially in the summer of 2011 when the crisis over Italy’s swelling public
debt intensified. Being the largest bond market and third largest economy in the area, the crisis in Italy has
important implications for the overall crisis in the eurozone. This is illustrated by the sizable amount of
spillovers Italy transmits to other major bond markets in the area.

The results in this paper highlight the importance of liquidity to euro area bond market dynamics. We
show that liquidity not only explains a significant portion of market dynamics, but also reveals strong spillover
effects — often stronger than volatility spillover effects. This is consistent with the liquidity commonality
that has been documented for various asset classes and markets. It also suggests that incorporating liquidity
effects into a traditional volatility spillover framework is insightful as it allows for a better understanding of

the sources of shocks that get transmitted across borders during a crisis.
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Table 5.1: Descriptive Statistics of Volatility and Liquidity
Mean  Min P25 Median P75 Max

A. Market Volatility (% p.a.)

Germany 6.01 240 4.65 5,52 7.01 18.08
Netherlands  6.37 247  4.65 5.69 747 19.72
France 6.77 235 437 5.67 7.63 45.00
Belgium 945 203 439 6.61 10.68 74.17
Italy 991 250 487 6.89 11.00 127.16
Spain 13.15 289 643 9.67 1532 149.15

B. Market Liquidity (bps)
Germany 13.89 8.78 11.40 12.81 15.12  59.00
Netherlands 13.24  6.17  8.90 11.90 1498 56.94

France 2425 10.39 14.70 19.13  27.83 119.04
Belgium 4033  7.32 21.69 29.46 44.25 267.65
Italy 42.62 1149 18.96 3097 47.26 667.43
Spain 72778 11.38 34.18 58.59 9276 487.11

This table presents descriptive statistics of volatility and liquidity of six Euro-area bond markets, based on MTS intraday quote data
for the period 2010-2012. Volatility is the square root of the annualized realized variance (RV') of each bond market (average of
daily RV’s of individual bonds issued by that country, excluding bonds with less than one year to maturity). Each bond’s daily RV
is computed as the daily sum of squared five-minute log mid-quote returns, and annualized by a factor of 250. The liquidity measure
for each country is the average of daily liquidity measures across all bonds issued by that country, excluding bonds with less than one
year to maturity. Daily liquidity of each individual bond is measured by the time-weighted relative bid-ask spread as a fraction of

mid-quote.
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Table 5.7: Intra-Country Spillovers

Country Liq — Vol Vol — Liq Net Spillover

DE 2.5 5.1 -2.6
NL 4.3 33 0.9
FR 52 35 1.7
BE 18.2 7.9 10.3
IT 19.6 10.4 9.2
ES 14.0 7.5 6.5

The table shows the extent to which liquidity drives volatility (“Liq — Vol” column) and conversely, the extent to which volatility
drives liquidity (“Liq — Vol” column) within each bond market considered. The last column (“Net Spillover”) shows liquidity’s net
variance contribution to volatility. These figures are based on 10-day forecast error variance decomposition of the VAR(1) model of
liquidity and volatility of six bond markets, i.e., Germany (DE), France (FR), the Netherlands (NL), Belgium (BE), Italy (IT) and
Spain (ES), with market condition variables, as specified in equation (5.6). A market’s liquidity is the average liquidity level across
all coupon bonds in that market, where each bond’s liquidity is measured by the daily time-weighted average bid-ask spread as a
fraction of mid-quote. A market’s volatility is measured by the logged average of realized variances of all coupon bonds in that
market. A bond’s daily variance is the daily sum of squared five-minute returns. Daily liquidity and volatility measures are computed
from the MTS intraday quote data for the 2010-2012 period.

Table 5.8: Inter-Country Spillovers
Received from Others Sent to Others Net Sent to Others

Vol Liq Total | Vol Liq Total | Vol Liq Total

VolDE 384 164 548 1 47.0 1677 63.7 | 8.6 0.3 8.9
VoINL 40.0 17.5 5751354 99 454 | 45 75 -121
VolFR 345 214 55.9 1 30.1 11.7 418 | -44 -9.7 -14.1
VolBE 20.5 19.1 396 | 17.1 142 313 | -34 -48 -83
VolIT 241 254 495|294 254 548 | 52 0.1 53
VolES 255 272 526 | 240 170 410| -1.5 -10.1 -11.6

LigDE 13.2 47.2 604 | 133 240 374 | 0.1 -232 -23.1
LigNL 143 45.0 593|175 332 507 | 32 -11.7 -8.6
LigFR 20.2 51.0 71.1 | 19.1 416 60.7 | -1.1  -93 -104
LigBE 15.1 369 52.0 | 22.6 404 63.0| 7.6 35 11.0
LigIT 16.1 37.6 53.6 | 31.8 71.6 103.5 | 158 34.0 4938
LigES 162 41.7 57.8 1225 484 709 | 63 6.8 13.1

The table shows the spillovers received from other countries (“Received from Others” panel), the spillovers sent to other countries
(“Sent to Others” panel) and the net spillover effects (“Net Sent to Others”). Each panel shows separately the contributions by
volatility (“Vol”) and liquidity (“Liq”) components, and reports the sum of them in the column “Total”. These spillover measures are
computed as in equations (5.7)-(5.11). They are based on 10-day forecast error variance decomposition of the VAR(1) model of
liquidity and volatility of six bond markets, i.e., Germany (DE), France (FR), the Netherlands (NL), Belgium (BE), Italy (IT) and
Spain (ES), with market condition variables, as specified in equation (5.6). A market’s liquidity is the average liquidity level across
all coupon bonds in that market, where each bond’s liquidity is measured by the daily time-weighted average bid-ask spread as a
fraction of mid-quote. A market’s volatility is measured by the logged average of realized variances of all coupon bonds in that
market. A bond’s daily variance is the daily sum of squared five-minute returns. Daily liquidity and volatility measures are computed
from the MTS intraday quote data for the 2010-2012 period.
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Figure 5.1: The Euro Area Sovereign Debt Crisis
10Y Yield Spread (%)
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This figure shows the time series variation in: (top panel) 10-year benchmark yield spreads (over German 10-year benchmark yield),

(middle panel) sovereign CDS spreads, and (bottom panel) the European Central Bank’s Securities Market Programme activity.
Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3) 11/16/2011 (change of government in Italy), (4) 1/13/2012
(S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012 (ECB President’s statement to do “whatever it takes to

preserve the euro”).
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Figure 5.4: Dynamics of Total Spillover Among Key European Government Bond Markets
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This figure presents the weekly total spillover index and its two components (intra-country and inter-country spillover indices). These
spillover indices are based on 10-day forecast error variance decomposition of the VAR(1) model of liquidity and volatility of six
bond markets (Germany, France, the Netherlands, Belgium, Italy and Spain) with market condition variables, as specified in equation
(5.6). The model is estimated on a weekly rolling basis, with a window size of 100 days. The indices are computed as in equations
(5.13)-(5.15). Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3) 11/16/2011 (change of government in Italy), (4)
1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012 (ECB President’s statement to do “whatever it
takes to preserve the euro”). Daily liquidity and volatility measures are computed from MTS bond market intraday quote data for the
period 2010-2012.
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Figure 5.5: The Sources of Shocks that Travel Across Borders
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This figure shows four inter-country spillover sub-indices classified by the source of shocks (volatility or liquidity) and destination of
spillovers (volatility or liquidity). These spillover indices are based on 10-day forecast error variance decomposition of the VAR(1)
model of liquidity and volatility of six bond markets (Germany, France, the Netherlands, Belgium, Italy and Spain) with market
condition variables, as specified in equation (5.6). The model is estimated on a weekly rolling basis, with a window size of 100
days. The indices are computed as in equations (5.16)-(5.19). Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3)
11/16/2011 (change of government in Italy), (4) 1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012
(ECB President’s statement to do “whatever it takes to preserve the euro”). Daily liquidity and volatility measures are computed
from MTS bond market intraday quote data for the period 2010-2012.
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Figure 5.6: The Systemic Role of Italy
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This figure shows the degree of spillovers sent (plotted above the zero line) and spillovers received (plotted below the zero line)
by the Italian bond market. The “Liquidity Shocks Sent” line shows the extent to which Italy’s bond market liquidity affects the
other markets, while the “Liquidity Shocks Received” shows the extent to which it is reciprocally affected by other markets. The
“Volatility Shocks Sent” line shows the extent to which Italy’s bond market volatility affects the other markets, while the “Volatility
Shocks Received” shows the extent to which it is reciprocally affected by other markets. Spillovers are measured based on 10-day
forecast error variance decomposition of the VAR(1) model of liquidity and volatility of six bond markets (Germany, France, the
Netherlands, Belgium, Italy and Spain) with market condition variables, as specified in equation (5.6). The model is estimated
on a weekly rolling basis, with a window size of 100 days. Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3)
11/16/2011 (change of government in Italy), (4) 1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012
(ECB President’s statement to do “whatever it takes to preserve the euro”). Daily liquidity and volatility measures are computed
from MTS bond market intraday quote data for the period 2010-2012.
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APPENDIX A
ECONOMIC ANNOUNCEMENTS

A.1 Macroeconomic Announcements

The macroeconomic announcements we consider are those classified as "Market Moving” indicators by
Bloomberg: 1) Employment Report, 2) Consumer Price Index, 3) Durable Goods Orders, 4) GDP, 5) Housing
Starts, 6) Initial Jobless Claims, 7) Personal Income and Outlays, 8) Producer Price Index, 9) Retail Sales,
10) Trade Balance, 11) Industrial Production, 12) Existing Home Sales, 13) ISM Manufacturing, 14) New

Home Sales, and 15) Philadelphia Fed Survey.

Time Announcement Frequency
8:30  Employment Report Monthly
8:30  Consumer Price Index (MoM) Monthly
8:30  Durable Goods Orders Monthly
8:30  GDP QoQ (Annualized) Quarterly
8:30  Housing Starts Monthly
8:30  Initial Jobless Claims Weekly

8:30  Personal Income and Outlays Monthly
8:30  Producer Price Index (MoM) Monthly

8:30  Retail Sales Monthly
8:30  Trade Balance Monthly
9:15  Industrial Production Monthly
10:00 Existing Home Sales Monthly
10:00 ISM Manufacturing Monthly
10:00 New Home Sales Monthly

10:00 Philadelphia Fed. (after 2008) Monthly

12:00  Philadelphia Fed. (before 2008) Monthly

A.2 Monetary Policy Announcements

The monetary policy announcements included in our analysis are FOMC rate decision announcements. Such
announcements typically occur after regularly scheduled FOMC meetings, of which there are eight per year.
In addition, there were rate changes announced after unscheduled meetings on two occasions during our

sample period, on January 22, 2008 and October 8, 2008.



A.3 Treasury Auction Result Announcements

The Treasury auction results we consider are those for the 2-, 5-, 10- and 30-year fixed principal Treasury
securities. Auction results are announced shortly after the auction close on auction dates for a given security.
The 2- and 5-year notes are newly issued every month. The 10-year note is newly issued every quarter, with
reopenings in the following month and — since November 2008 — two months. Starting in May 2009, the
30-year bond is also on a quarterly issuance cycle with two reopenings. For the 2006-2008 period, the 30-year

bond was newly issued once a year with irregular reopenings.
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APPENDIX B
FLIGHT-TO-SAFETY EPISODES DURING 2006-2010Q2 PERIOD

Date

02/27/2007
03/13/2007
07/26/2007
08/03/2007
08/09/2007
08/28/2007
09/07/2007
10/19/2007
11/01/2007
11/07/2007
11/19/2007
11/21/2007
11/26/2007
12/11/2007
01/04/2008
01/08/2008
01/15/2008
01/17/2008
01/25/2008
02/05/2008
02/29/2008
03/06/2008
03/14/2008
03/19/2008
04/11/2008
05/07/2008
06/06/2008
06/11/2008
06/26/2008
07/02/2008
07/09/2008
07/24/2008
07/28/2008
08/07/2008
08/25/2008
09/04/2008
09/09/2008
09/15/2008
09/17/2008
09/29/2008
10/02/2008
10/06/2008
10/15/2008
10/21/2008

Light FTS Moderate FTS Severe FTS
2-Year 5-Year 10-Year 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year

X X X X X X X
X X
X X X
X X X X X
X X X X X
X X
X X X
X X X X
X X X X X X
X X X X
X X X
X X X
X X X
X X X X X X
X

X
X X X
X X X X X
X X X
X X X X X X
X X X X X X
X X X
X X
X X X X X X
X X X
X X
X X X X X X
X X
X X X X
X
X X X
X X X
X X X
X X X
X X X
X X X
X X X X X X X
X X X X X X X X X
X X X
X X X X X X X X X
X X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X

continued on next page



Table B.1 — continued from previous page
Light FTS Moderate FTS Severe FTS

Date 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year

10/22/2008 X X X X X X X
10/24/2008 X
11/12/2008 X
11/14/2008
11/17/2008
11/19/2008
11/20/2008
12/01/2008
12/04/2008
12/09/2008
12/11/2008
12/18/2008
01/09/2009
01/12/2009
01/14/2009
02/10/2009
02/17/2009
02/27/2009
03/02/2009
03/05/2009
03/30/2009
04/14/2009
04/20/2009
05/11/2009 X
06/15/2009

06/22/2009 X
07/02/2009
08/17/2009
10/01/2009
10/30/2009
02/04/2010
04/16/2010
04/27/2010 X
04/30/2010

05/04/2010

05/06/2010 X
05/14/2010

05/20/2010

06/04/2010 X
06/22/2010

06/29/2010

No. of FTS days 64 74
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22 33 29 9 11 14

This table presents flights to safety (FTS) over the period 2006-2010Q2. Flights are identified by a large positive return on the
Treasury note and a large negative return on the S&P500 index. Light FTS episodes are based on a 1 standard deviation threshold,
moderate FTS on a 1.5 standard deviation threshold and severe FTS on a 2 standard deviation threshold.
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APPENDIX C
OVERVIEW OF THE EUROPEAN GOVERNMENT BOND MARKET

C.1 Market Overview

The analysis in this paper is based on intraday trade and quote data from MTS. This is the main electronic
interdealer (IDB) trading platform for European fixed income securities, including government, quasi-
government and covered bonds. MTS consists of multiple domestic platforms and a pan—European trading
platform EuroMTS. Only those bonds that have attained the benchmark status are traded on EuroMTS in
addition to their domestic platform. Nevertheless, most trading activity in a specific bond tends to occur on
the relevant domestic platform (roughly 90% on average). Various estimates indicate that MTS has about
35-40% market share in terms of the daily number of trades across all IDB platforms in Europe, but the

market share of MTS in a specific country can vary. Table C.1 below provides an overview of this market.

Table C.1: European Bond Market

DE FR NL BE AT FI IT ES PT  GR IE
2006 51 129 33 46 14 11 60 113 20 2 5

No. Bonds 2010 61 186 58 52 16 11 65 140 20 28 13
: 2011 63 182 63 67 16 11 74 148 19 26 11
2012 65 176 68 78 17 13 74 145 20 25 11

2006 6.64 9.40 7.36 5.93 790  4.04 692 1036 534 495 648

Maturit 2010 617 1039 6.65 543 861 517 6.49 969 562 663 592
y 2011 596 1025 6.95 6.31 818  5.98 6.33 953 542 654 620
2012 621  10.03 776 6.71 768  7.06 5.87 918 459 1518 574

2006 3.60 1.41 3.17 1.96 419 402 321 095 312 430 347

Counon 2010 273 0.94 3.32 1.75 401 301 3.11 0.89 295 426  3.89
oupo 2011 2.57 0.93 3.15 1.46 402 350 3.16 089  3.15 424 419
2012 2.39 0.87 3.01 1.22 388 285 3.20 0.89 283 242 446

2006 4.36 8.26 3.83 533 478 540 3.18 535 371 453 476

e 2010 4.09 6.53 474 476 528 484 3.56 560 362 431 295
g 2011 4.16 7.05 4.81 5.88 573 351 3.68 579 386 503 452
2012 431 7.66 479 6.62 596 3.83 3.87 621 385 164 5.0

2006 146 41 161 150 131 286 1462 45 491 207 182

Volume 2010 74 50 196 289 48 85 875 67 247 58 85
u 2011 55 69 258 198 73 231 744 47 40 6 22
2012 46 68 216 242 60 175 501 38 23 1 9

2006 23 5 11 17 15 31 270 5 56 23 21

No. Trades 2010 11 6 16 30 7 10 153 8 31 15 11
: S 011 9 9 2 21 11 27 123 7 6 5 7
2012 9 10 21 26 11 22 95 7 5 1 3

Ave. Issue (mil. euros) 11,909 11,884 14,118 12,072 10,198 5,658 13,694 12,836 7,315 5,573 8,173

The table reports the monthly average number of bonds by year and country, and average bond characteristics. Volume is the average
monthly trading volume per bond in million euros. No. Trades is the average number of trades per bond. Figures for 2006 are based
on data for October, November and December 2006. The sample includes benchmark sovereign bonds only. Bonds with less than
90-day to maturity are excluded. The resulting sample has 801 unique bond codes.



Figure C.1 shows trading activities by country. We observe that the bulk of trading activity occurs in
Italian bonds, followed by trading activity in bonds issued by France, Netherlands, Spain, Belgium and
Germany. We note in particular that trading activity on German government bonds is quite low. This is
because these bonds are also traded actively elsewhere (German stock exchanges, numerous international
electronic trading platforms and also in the over-the-counter (OTC) market), in contrast to bonds issued by
other countries, which are mostly traded on MTS (see Cheung, de Jong and Rindi, 2005). The total trading
volume in German Treasuries on MTS in 2012 is 52.7 billion euros, which is roughly 1% share of the total
market trading volume of nearly 5,400 billion euros.! Nevertheless, the quality of German government bond
prices is no doubt the best among fixed income securities in European capital markets, primarily due to a
highly liquid futures market. The futures market is more liquid and larger than the cash market, ensuring fair
market prices of German government bonds.

Figure C.2 plots trading activity throughout a trading day for each of the bond markets. Interestingly, the
intraday trading pattern is quite similar across countries. The peak in trading activity occurs in the morning
between 10:00 and 11:00. After 11:00, trading level remains quite stable through the rest of the trading day,

except for a slight increase around 15:00.

C.2 Relevant Statistics for Six Select Countries

The analysis focuses on the six largest bond markets in the Euro-area, both in terms of the amount outstanding
as well as daily trading volume. These countries also account for 87% of Euro-area total GDP. Table C.2

provides several important statistics for these countries for background information.

"http://www.deutsche-finanzagentur.de/en/institutional/secondary-market/
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Table C.2: Country Statistics

Rating Downgrades 2010-2012

S&P  Moody’s Fitch

Belgium: 11/25/11 12/16/11  1/27/12

France: 1/13/12

Italy: 9/11/11 10/5/11  10/7/11
1/13/12 2/13/12  1/27/12

Spain: 4/28/10 9/30/10  5/28/10

10/13/11 3/10/11  7/7/11
1/13/12  10/18/11  1/27/12
4/26/12  2/13/12  6/7/12

Sovereign Bond Outstanding (million euros)

Belgium
France
Germany
Italy
Netherlands
Spain

6-Country Total

Euro-area Total
6-Country % Share

364,815
1,365,452
1,116,223
1,638,724

341,759

688,231

5,515,204

6,152,907
89.6%

Country GDP (million euros)

Belgium
France
Germany
Italy
Netherlands
Spain

6-Country Total

Euro-area Total
6-Country % Share

375,852
2,032,297
2,666,400
1,566,912

599,338
1,029,002

8,269,800

9,483,173
87%

MTS Trading Volume 2010-2012 (million euros)

Belgium
France
Germany
Italy
Netherlands
Spain

6-Country Total

Euro-area Total
6-Country % Share

241,886
278,028
117,851
1,227,959
283,653
222,742

2,372,118

2,535,709
94%
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Figure C.1: Trading Activity By Country
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Source: MTS data 2010-2012. Figure shows trading volume by country, and reflects trading in benchmark bonds only.
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Figure C.2: Intraday Pattern of Trading Activity
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Source: MTS data 2010-2012. Figure shows trading volume by half hour interval throughout a trading day as a fraction of daily

trading volume for each country, and reflects trading in benchmark bonds only.
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