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ABSTRACT

Giang Nguyen: The High Frequency Economics of Government Bond Markets
(Under the Direction of Eric Ghysels)

This dissertation is a collection of four essays examining different aspects of government bond markets,

with a special focus on the US Treasury securities. The first is a study of the microstructure of BrokerTec, the

larger of the two electronic interdealer trading platforms for US Treasury securities, providing institutional

background essential for subsequent studies. We characterize empirically market activities and the price

discovery process. We show that both limit orders and trades affect prices, and that these effects are greater

around monetary policy announcements. Contrary to previous findings pertaining to equity markets, we find

that iceberg orders, which allow traders to hide liquidity, are not used frequently, even around volatile times.

The second essay examines a frequently used channel of hidden liquidity – the workup protocol. We

ask whether trading activities during workups contain any private information and leave harmful effects on

uninformed traders. We find that workup activities account for a significant portion of market liquidity not

ex ante observable, but they tend to be less informative than transparent trades. We show that workups are

used more often, but contain relatively less information, around volatile times, indicating that workups tend

to be used as a channel to guard against adverse price movements, rather than as a channel to hide private

information.

In the third essay, we propose a novel model to study jointly the intraday dynamics of liquidity and price

risks, two important determinants of bond yields. We show that liquidity declines sharply during the 2008

crisis and on flight–to–safety days, accompanied by increased price volatility. Our model reveals a negative

feedback effect between liquidity and volatility, and that each becomes more persistent during the crisis.

The fourth study provides an international perspective by studying the propagation of liquidity and

volatility shocks during the 2010-2012 sovereign debt crisis across major euro-area bond markets, namely

Belgium, France, Germany, Italy, the Netherlands, and Spain. We show that liquidity is generally the more

important source of shocks transmitted across the borders, and this transmission largely originates from Italy

and around the Italian crisis.
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CHAPTER 1

INTRODUCTION

This dissertation is a collection of four essays on the high–frequency economics of government bond

markets, with a special focus on the market for securities issued by the U.S. Government. Currently, the total

outstanding amount of US Treasury securities exceeds $11 trillion. This market serves many vital roles in the

financial system, not only in the U.S. but also around the globe with foreign countries holding nearly half of

all Treasuries outstanding. The securities’ creditworthiness and sheer liquidity make them a main instrument

of monetary policy, a key store of value, a crucial source of collateral for financial transactions and a pricing

benchmark for other financial assets.

The need to understand market dynamics in this important market at increasingly high frequencies arises

from recent trends in trading. Since the Securities and Exchange Commission (SEC) authorized electronic

markets in 1998, speed competition and technological advancements have turned the trading environment into

one highly automated by computer algorithms and in which even a few milliseconds can affect the trading

outcome (e.g., the Flash Crash of May 2010). The past few years have seen a growing body of literature

seeking to further our knowledge of the new high speed trading environment. However, most research

addresses equities markets. The Treasury market, despite its vital roles, remains much less studied, in part

due to data availability (or lack thereof). The dissertation helps bridge this gap by providing a comprehensive

analysis of this market along several dimensions of great interest to market participants, policy makers and

academic researchers.

The first essay provides a detailed examination of an electronic trading platform for US Treasury

securities, the BrokerTec platform (the larger of the two electronic interdealer trading platforms). Our

findings suggest a level of liquidity on the BrokerTec platform that is improving over time and markedly

greater than that found by other studies using data from the period before trading in these Treasury securities

went electronic.
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Importantly, we examine the price impact of not only trades but also of order book activities not previously

available for the Treasury market. In fact, given the sheer amount of limit order book activities in comparison

to trades, there is a lot to be learned about how these activities affect price dynamics. Furthermore, limit

orders are often considered as supplying liquidity and market orders consuming it. Accordingly, our study

can delineate the response of price to shocks in liquidity supply from that to shocks in liquidity demand. and

show that limit orders as well as trades affect prices. In particular, the price impacts are found to be greater

around monetary policy announcements, an important type of information events in this market.

In addition, we shed lights on the use of iceberg orders to hide liquidity in this fixed income market, an

analysis not heretofore possible for Treasury securities. Several of our findings are consistent with the equity

market evidence, but more importantly, we contribute evidence novel to the U.S. Treasury market. We find

that iceberg orders are used much less often than in other markets examined in the literature. Furthermore,

contrary to some earlier evidence on iceberg orders in equity markets, we find that Treasury traders are less

likely to use iceberg orders when they post more aggressively priced limit orders, or when the market is more

volatile, precisely when traders need greater protection.

The puzzling lack of popularity of iceberg orders contrasts sharply with the high usage of the workup

protocol, an alternative mechanism to hide liquidity. This is the main subject of the second study. We examine

this protocol and ask whether trading activities induced by this protocol, which generally account for more

than half of market liquidity, are motivated by private information.

The contribution of this work extends beyond a study of a specific microstructure feature of the U.S.

Treasury market. First, the workup mechanism is essentially a dark pool trading mechanism. Our study

provides the first set of evidence on dark pool trading in a fixed income market setting. It is therefore a timely

addition to the literature on dark pool trading and the current discussion among researchers and policy makers

on the effects and implications of dark pool activities on market quality and welfare. We find that volatility

tends to generate more workups, but that those workups tend to be less informative, suggesting the value of

this dark pool mechanism in protecting traders against adverse price movements. In general, the amount of

private information hidden in this Treasury dark pool is quite small, easing concerns that the dark pool could

harm less informed traders.

Secondly, our work helps inform the current debate on market design response to high frequency trading.

High frequency trading, or computer-driven trading in general, has increased significantly over the last few

years – a trend dubbed “rise of the machines” in Chaboud et al. (2013). There is a continual need to devise

2



new market design features to keep up with changing trends in trading, and to understand the implications of

those features. The BrokerTec market design with the workup protocol fits neatly into this discussion via

an interesting mix of continuous auction (the limit order book) and periodic call auctions (workups). Our

empirical results readily provide a glimpse of the implications of such a market feature on price discovery

and trading patterns.

With the first two studies providing a micro foundation for our understanding of the trading environment

in the US Treasury market, the third study aims to understand the dynamics of liquidity and volatility, two

important determinants of Treasury securities values. To this end, we propose a new class of econometric

models to capture jointly the dynamics of liquidity and volatility at a high frequency interval (i.e., five-

minute). Our models address several interesting questions for the US Treasury market. Is liquidity supply

available when it is needed most? How is liquidity supply driven by uncertainty and other market factors, and

conversely, does the supply of liquidity have any role in dampening or magnifying volatility in the market?

How do the dynamics of the Treasury limit order book differ around the time of economic announcements,

through the recent financial crisis, and during flight-to-safety episodes? Most of the previous studies use data

prior to the 2008 crisis period, leaving market dynamics during the crisis – the most serious to hit the global

economy since the Great Depression – much less understood.

We show that liquidity posted in the order book is lower on flight-to-safety days, when liquidity is

especially needed. However, a high level of trading activity is also observed on those days, along with an

elevated level of price uncertainty. These patterns collectively suggest that liquidity providers monitor the

market more closely on these days and refrain from using limit orders to passively supply liquidity to the

market. In general, price volatility and liquidity supply at the best price tier are negatively interrelated and

each becomes more persistent during the crisis. This dangerous combination provides a great illustration to

models of liquidity crashes (for example, Cespa and Foucault (2012)) in that bad shocks to either volatility or

liquidity can intensify the negative feedback effect, leading to liquidity crashing while volatility spiking up.

Our models also provide consistent evidence with the earlier literature that depth is withdrawn immediately

before important economic announcements but then quickly gets refilled once the announcement is released,

accompanied by a surge in trading activity and price uncertainty.

If the third essay focuses solely on the interaction between volatility and liquidity within the same bond

market, namely the market for US Treasury securities, the final essay provides an international perspective by

studying shock transmission across multiple bond markets. Shock propagation during a crisis is a particular
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concern for policy makers. The euro area sovereign debt crisis provides a valuable opportunity to study bond

market linkages and spillover effects. In addition, with some of the bond markets in the area being among the

largest in the world, only after the US and Japan markets, the findings of this study complement nicely what

we have learned from the US government bond market.

We first measure spillovers via a forecast error variance decomposition of a vector autoregressive model,

which captures jointly the dynamics of liquidity and volatility in the government bond markets of Belgium,

France, Germany, Italy, the Netherlands, and Spain. The model controls for common trends in sovereign

credit risk, financial sector credit risk, funding conditions, aggregate default risk, and proxies for regional and

global risk aversion. As in the US Treasury market, liquidity and volatility in these euro area bond markets are

closely inter-related, but we show that liquidity is generally the stronger force driving this inter-relationship.

We further show that liquidity is more responsive to macroeconomic developments and also the more

important source of shocks transmitted across borders during the euro-area sovereign bond crisis. Our

framework permits an assessment of the systemic role of each bond market during the crisis. The evidence

consistently points to Italy as the sole net sender of liquidity shocks to other countries in the region.

Furthermore, this transmission is greatest around the Italian crisis, as compared to that around the crisis

associated with the other smaller sized periphery countries (i.e., Greece, Ireland, Portugal and Spain).
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CHAPTER 2

THE MICROSTRUCTURE OF A US TREASURY ECN

2.1 Introduction

Since the early 2000’s, trading in the U.S. Treasury securities market has migrated from voice-assisted

brokers to fully electronic platforms (Mizrach and Neely (2006)). For the most recently auctioned securities

in particular, the transition has been nearly complete, with nearly all interdealer trading now taking place via

one of two electronic communications networks, BrokerTec and eSpeed (Barclay et al. (2006)). BrokerTec

accounts for about 60% of trading activity (based on comparison with earlier studies using data from eSpeed).

This chapter assesses the microstructure of the U.S. Treasury securities market using tick data from

BrokerTec. It is the first paper to closely study a U.S. Treasury market electronic communications network

(ECN) and one of the first to analyze any fixed income market ECN.1 Many previous papers have examined

the microstructure of the Treasury market using data from GovPX, which consolidates data from voice-

assisted brokers.2 The migration of bond trading to the electronic platforms (which do not contribute to

GovPX) has sharply reduced GovPX coverage of the interdealer market, as noted by Boni and Leach (2004)

and others. The breadth of the BrokerTec tick data allows us to provide a comprehensive analysis of the

market’s microstructure as orders enter and leave the order book, and characterize market liquidity beyond

1Campbell and Hendry (2007) examine price discovery in the 10-year note using transactions data from BrokerTec. Mizrach and
Neely (2006) estimate bid-ask spreads and market impact using transactions data from eSpeed. Additional studies examine the
euro area sovereign debt market using data from MTS (e.g., Cheung et al. (2005), Menkveld et al. (2005), and Beber et al. (2009)).
In addition, since the first draft of this chapter, there are several studies that look at different aspects of this market, including
Dungey et al. (2013) for trade duration on eSpeed, Engle et al. (2012c) for intraday dynamics of market liquidity and volatility on
BrokerTec, and Fleming and Nguyen (2013) for the order flow segmentation induced by the workup protocol on BrokerTec and the
informational content of workup and non-workup trades.

2Fleming (1997) characterizes intraday liquidity, Fleming and Remolona (1997), Fleming and Remolona (1999), Balduzzi et al.
(2001), Huang et al. (2002), and Fleming and Piazzesi (2005) look at announcement effects, Fleming (2002) examines the
relationship between issue size and liquidity, Fleming (2003), Brandt and Kavajecz (2004), Green (2004), and Pasquariello and
Vega (2007) assess the information content of trades, Goldreich et al. (2005) gauge the relationship between liquidity and value, and
Brandt et al. (2007), Campbell and Hendry (2007), and Mizrach and Neely (2008) compare the information content of trades in spot
and futures markets.
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the inside tier for the first time. This is an important improvement, as the BrokerTec data shows that the inside

tier depth is often not greatest in the book, and accounts for only a small fraction of the book’s total depth.3

In addition, electronic trading facilitates greater speed of order manipulation and execution, permits an

increased role for computer-driven and automated trading processes, and enables better market information

collection, dissemination and processing. Coupled with the rise in electronic trading is a newly emergent

trend in high frequency and/or algorithmic trading, the so-called “rise of the machines” (Chaboud et al.

(2013)). Therefore, there is a great interest in understanding this new market structure and its level of trading

activity and market liquidity from both academic and practitioner points of view.

Using tick data from 2010 to 2011, we characterize trading activity and liquidity on the BrokerTec

platform for the on-the-run 2-, 3-, 5-, 7-, 10-, and 30-year Treasury securities.4 Our findings suggest a level

of liquidity on the BrokerTec platform that is improving over time and markedly greater than that found by

earlier studies using data from GovPX. Since BrokerTec’s inception, trading activity has grown many folds,

e.g., starting at below $5 billion per day in 2001 to between $30-40 billion per day in 2011 for the 5- and

10-year notes. Over the 2010-2011 period, inside bid-ask spreads for maturities of five years or less average

less than 1/100th of one percent. An average of over $300 million is available on the platform at the best

price on either side for the 2-year note, $80 million for the 3-year note and in the $30 million range for each

of the three remaining notes. There are even greater amounts available at the adjacent price tiers. Across the

whole book, there is about $2.4 billion on each side for the 2-year note, $700 million for the 3-year note, and

around $400 million for the 5- and 10-year notes.

Besides being the first to provide a comprehensive picture of a U.S. Treasury ECN, we make two further

contributions. First, while previous studies have assessed price impact using GovPX trade data (e.g. Fleming

(2003), Brandt and Kavajecz (2004), and Green (2004)), we examine the price impact of not only trades but

also of order book activities not previously available for the Treasury market. In fact, given the sheer amount

of limit order book activities in comparison to trades, there is a lot to be learned about how these activities

affect price dynamics. Furthermore, limit orders are often considered as supplying liquidity and market orders

consuming it. Accordingly, it is important to delineate the response of price to shocks in liquidity supply

from that to shocks in liquidity demand.

3This fact has also been documented for equity limit order markets (e.g., Biais et al. (1995)).

4On-the-run securities are the most recently auctioned securities of a given maturity

6



We first calculate the permanent price impact of trades following the framework in Hasbrouck (1991a).

We then extend this model to include limit order flow, separately for the bid and ask sides. Our work builds

upon earlier studies of equity markets that incorporate order book information into the market impact function

(e.g., Engle and Patton (2004), and Mizrach (2008)). A recent paper by Hautsch and Huang (2012a) uses a

vector error correction model to analyze the dynamics of the limit order book for select NASDAQ stocks, and

compute the price impact of orders of different types, sizes, and levels of price aggressiveness. They show

that limit orders also have significant market impact.

We find that the price impact of trades on BrokerTec is quite small, but increases in maturity of the

securities considered, ranging from 0.006/256th for the 2-year note to 0.450/256th for the 30-year bond per

$1 million buyer-initiated volume. Equivalently, it takes about $182 million in signed trading volume to

move the price of the 2-year note by 1/256th of one percent of par, whereas the required volume is only $2.2

million to move the price of the 30-year bond by the same amount. Moreover, limit order activities affect

prices, and play an especially large role in the price dynamics of longer-dated maturities. Accounting for

the impact of limit order activities on trading activities and price dynamics, the price impact of trades is

about 9-14% lower for the 2-, 5-, 10-, and 30-year securities, and 26% and 40% lower for the 3- and 7-year

notes, respectively. Our analysis also shows that trades and especially limit orders have a larger price impact

immediately following Federal Open Market Committee (FOMC) rate decision announcements.

Another contribution lies in our analysis of hidden liquidity in the form of iceberg orders. The ability to

enter “iceberg” orders (partially hidden orders) on the BrokerTec platform allows analyses not heretofore

possible for Treasury securities.5 Hidden orders in equity markets have been examined by Harris (1996),

Aitken et al. (2001), Hasbrouck and Saar (2002), Anand and Weaver (2004), Tuttle (2006), De Winne and

D’Hondt (2007a), De Winne and D’Hondt (2007b), Bessembinder et al. (2009), Pardo and Pascual (2012),

and Hautsch and Huang (2012b), among others. We add to this literature by providing the first analysis of

iceberg orders in the trading of Treasury securities. In particular, we study traders’ order submission decision

and explore whether certain order characteristics as well as prevailing market conditions might help predict

the likelihood as well as the extent of hidden size of an iceberg order.

Several of our findings are consistent with the equity market evidence. For example, the use of hidden

depth increases with order size and the prevailing bid-ask spread, intuitively highlighting the benefit of hidden

5Iceberg orders are not used on eSpeed, the other electronic platform for trading U.S. Treasury securities, leaving BrokerTec the only
venue to study traders’ choice with respect to such hidden orders.
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orders as a mechanism to prevent information leakage and mitigate adverse selection risk. Additionally, when

there is lower prevailing depth or lower likelihood of future orders whose display size will take precedence

over the current hidden size, hidden orders tend to be used more often, as the cost of using them in terms of

execution probability is lower.

Perhaps more valuable is our contribution of findings that are novel to the U.S. Treasury market. We

find that iceberg orders are used much less often than in other markets examined in the literature. Typically

iceberg orders account for less than 2% of order flow in the Treasury market, compared to 18% for stocks on

Euronext-Paris (Bessembinder et al. (2009)), and 9% for 30 German blue chip stocks on Deutsche Borse’s

Xetra platform (Frey and Sandas (2012). Furthermore, contrary to the evidence documented in Bessembinder

et al. (2009) that traders are more likely to use iceberg orders when they select a more aggressive limit order

price, Treasury traders are generally less likely to do so for quote improving orders, except for the less liquid

7- and 30-year securities.

Another interesting finding of our work is that volatility and hidden order usage are negatively linked. At

first blush, the finding seems counter-intuitive, as it suggests that the more volatile the market, the less likely

that hidden orders will be used, precisely when traders need greater protection. However, if we place this

finding in the context of the Treasury market, in which there exists another mechanism for order exposure

management, namely the workup protocol, we can better understand how it could be the case for this market.

The workup protocol gives market participants the ability to workup order sizes if and when desired, whereas

iceberg orders can be adversely executed when the market is moving so fast that traders cannot cancel

soon enough. As documented in Fleming and Nguyen (2013), workups tend to be used more frequently in

more volatile times, undermining the popularity of iceberg orders. Likewise, hidden orders are used less

often around the release of key macroeconomic reports, FOMC rate decision announcements, and Treasury

auctions. These are moments when the market is eagerly waiting for and trading on the newly released

announcements, so priority in the order queues seems to be an important consideration.

Overall, our work highlights how the electronic market for trading in U.S. Treasury securities differs

from its voice-assisted precedent and from other markets studied in the literature. Comparing with the

voice-assisted trading system, the electronic market facilitates a much greater frequency and volume of trades

and limit order activities, resulting in greater competition for liquidity provision and thus lower bid-ask

spreads and market impact. Comparing with other market setups, the high level of market liquidity and the
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presence of the more preferred protocol to manage order exposure in this market are likely related to the lower

usage of iceberg orders and the seemingly greater importance of execution probability in traders’ decisions.

The chapter proceeds as follows. Section 2.2 describes the structure of the interdealer Treasury market.

Section 2.3 describes the BrokerTec data, characterizing trading activity and liquidity in the market. Section

2.4 presents the VAR model of returns and trades, and discusses a number of specifications and the resulting

estimates of the price impact of trades. In Section 2.5, we add order book information to the model and

quantify the price impact of limit orders. Section 2.6 presents our analysis of hidden orders. Section 2.7

concludes.

2.2 Market Structure

The secondary market for U.S. Treasury securities is a multiple dealer, over-the-counter market. The

predominant market makers are the primary government securities dealers those dealers with a trading

relationship with the Federal Reserve Bank of New York. The dealers trade with the Fed, their customers,

and one another. The core of the market is the interdealer broker (IDB) market, which accounts for nearly all

interdealer trading. Trading in the IDB market takes place 22-23 hours per day during the week, although we

find that slightly over 90% of trading occurs during New York hours, roughly 07:00 to 17:30 Eastern time

(comparable with what Fleming (1997) finds using GovPX data).

Until 1999, nearly all trading in the IDB market for U.S. Treasury securities occurred over the phone via

voice-assisted brokers. Voice-assisted brokers provide dealers with proprietary electronic screens that post

the best bid and offer prices called in by the dealers, along with the associated quantities. Quotes are binding

until and unless withdrawn. Dealers execute trades by calling the brokers, who post the resulting trade price

and size on their screens. The brokers thus match buyers and sellers, while ensuring anonymity, even after a

trade. In compensation for their services, brokers charge a fee.

The migration from voice-assisted to fully electronic trading in the IDB market began in March 1999

when Cantor Fitzgerald introduced its eSpeed electronic trading platform. Cantor spun eSpeed off in a

December 1999 public offering. After many ownership changes, eSpeed merged with BGC Partners, an

offshoot of the original Cantor Fitzgerald. In 2013, eSpeed was purchased by NASDAQ OMX Group.

In June 2000, BrokerTec Global LLC, a rival electronic trading platform, began operations. BrokerTec

had been formed the previous year as a joint venture of seven large fixed income dealers. BrokerTec was
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acquired in May 2003 by ICAP PLC. Mizrach and Neely (2006) describe the migration to electronic trading

in greater detail, and Mizrach and Neely (2011) provide a summary of the evolution of the microstructure in

the Treasury market.

2.2.1 The Electronic Platforms

BrokerTec and eSpeed are fully automated electronic trading platforms where buyers are matched to sellers

without human intervention. A comparison of BrokerTec trading activity with that of eSpeed reported in Luo

(2010) and Dungey et al. (2013) shows that BrokerTec accounts for around 60% of electronic interdealer

trading in the on-the-run 2-, 5-, and 10-year notes and slightly above 50% for the 30-year bond.

The brokers provide electronic screens which display the best bid and offer prices and associated

quantities. On BrokerTec, for example, a manual trader can see five price tiers and corresponding total size

for each tier on each side of the book, plus individual order sizes for the best 10 bids and offers. For computer-

based traders, the complete order book information is available. Traders enter limit orders or hit/take existing

orders electronically. As with the voice brokers, the electronic brokers ensure trader anonymity, even after a

trade, and charge a small fee for their services.

The BrokerTec platform operates as an electronic limit order market. Dealers send in orders that can be

aggressive (market orders) or passive (limit orders), but they must all be priced. The minimum order size is

$1 million par value. Dealers can enter aggressive orders at a price worse than the current best price. This is

typically the case when dealers need to trade a large quantity for which the limit order quantity at the best

price is not sufficient. The order will first exhaust all depth, both displayed and hidden, at better price levels

until it reaches the originally stated price. Therefore, large aggressive orders can be executed at multiple

prices. However, the incidence of market orders walking up or down the book is very small (below 0.5%).

This is likely due to the large amount of depth usually available at the best price tier, and the ability to work

up volume at a given price point.

The BrokerTec platform allows traders to enter iceberg orders, whereby a trader can choose to show

only part of the amount he is willing to trade. As trading takes away the displayed portion of an iceberg

order, the next installment of hidden depth equal to the pre-specified display size is then shown. This process

continues until trading completely exhausts the iceberg order. It is not possible to enter iceberg orders with

zero displayed quantity; that is, limit orders cannot be completely hidden.
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The priority of execution of limit orders is based on price, display status and time. That is, limit orders

with better prices have higher priority of execution. Displayed limit orders in the same price queue are

executed on a first in, first out basis. Once all displayed depth at a particular price level is exhausted, hidden

depth at that same price – if there is any – is then shown and executed.

Beside iceberg orders, the electronic brokers have retained the workup feature similar to the expandable

limit order protocol of the voice-assisted brokers, but with some important modifications.6 On BrokerTec,

the most important change is that the right-of-first-refusal – previously given to the original parties to the

transaction – has been eliminated, giving all market participants immediate access to workups. All trades

consummated during a workup are assigned the same aggressive side as the original market order.7 For a

detailed analysis of workup activity in this market, see Fleming and Nguyen (2013).

2.2.2 The Voice-Assisted Brokers: GovPX

Most previous research on the microstructure of the Treasury market has used data from voice-assisted

brokers, as reported by GovPX, Inc. GovPX receives market information from IDBs and re-disseminates

the information in real time via the internet and data vendors. Information provided includes the best bid

and offer prices, the quantity available at those quotes, and trade prices and volumes. In addition to the

real-time data, GovPX sells historical tick data, which provides a record of the real-time data feed for use by

researchers and others.

When GovPX started operations in June 1991, five major IDBs provided it with data, but Cantor

Fitzgerald did not, so that GovPX covered about two-thirds of the interdealer market. Over time, the number

of brokers declined due to mergers, and a new non-contributing electronic broker (BrokerTec) was formed.

By the end of 2004, GovPX was receiving data from three voice-assisted brokers, but neither eSpeed nor

BrokerTec, even though nearly all trading of on-the-run securities had migrated to these fully electronic

brokers. After ICAP’s purchase of GovPX in January 2005, ICAP’s voice brokerage unit was the only

brokerage entity reporting through GovPX.

6Boni and Leach (2004) provided a thorough explanation of this feature in the voice-assisted trading system. This feature allows a
Treasury market trader whose order has been executed to have the right-of-first-refusal to trade additional volume at the same price.
As a result, the trader might be able to have his market order fulfilled even though the original quoted depth is not sufficient. That is,
the quoted depth is expandable.

7For a detailed description of the workup process on the BrokerTec platform, see “System and Method for Providing Workup Trading
without Exclusive Trading Privileges”, U.S. Patent number US8,005,745B1, dated August 23, 2011.
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2.3 Data

Our analysis is based on tick data from the BrokerTec platform. The database provides a comprehensive

record of every trade and order book change over the BrokerTec system for the on-the-run 2-, 3-, 5-, 7-

and 10-year Treasury notes as well as the 30-year Treasury bond. We choose to focus on the period from

January 2, 2010 to December 31, 2011. This is the most recent period for which we have available data. It is

a sufficiently long sample period for a microstructure study, and relatively distanced from the 2007-2009

financial crisis, so that our analysis can provide an up-to-date characterization of the market’s microstructure

in a typical trading environment. For market dynamics during the crisis period, see Engle et al. (2012c).

2.3.1 Data Processing

From BrokerTec’s detailed record of every trade and order book change, time-stamped to the millisecond, we

process the data into two main parts: the trade data and the order book data. The trade data include price,

quantity, and whether a trade was seller-initiated (a “hit”) or buyer-initiated (a “take”). It should be noted that

BrokerTec records the execution of a market order against multiple limit orders, as well as further matches

during workups, as separate trade records. We aggregate these multiple trade records that belong to the same

workup as one market transaction for the following reasons. First, treating the individual trade records as

separate and distinct trades would artificially inflate the serial correlation in both trade initiation and signed

trade flow and might compromise econometric modeling and inferences. Furthermore, our aggregation

permits a more precise analysis of market order submission and the price impact of market orders, the size

of which is better measured by the total volume exchanged during a trade and its associated workup. Our

treatment is in line with BrokerTec’s workup patent document which states that a workup is conceptually a

“single deal extended in time”. Nevertheless, the aggregation is not without cost in that it will sometimes

overestimate the market order size.

The second part of the data concerns the limit order book, which we recreate from order book changes

on a tick-by-tick basis, saving as much of the richness of the data as is practical. Each order book change

record specifies the price, quantity change, shown and total quantities for that order, whether the order is a

bid or an ask, and the reason for the change. The book can be changed as a result of limit order submission,

modification, cancellation or execution against market orders. The order book data provide a view of the

Treasury market far more detailed than that provided by GovPX data. In particular, our processed dataset

12



not only tells us the best bid and offer and associated sizes at any given time, but also the depth available

outside of the first tier. Moreover, we see the number of individual orders comprising the quantities available

at particular prices. In addition, we are able to discern what quantities were visible to market participants at

the time and what quantities were hidden.

Over our sample of 500 trading days in 2010 and 2011, BrokerTec intermediated almost $63 trillion in

trading of on-the-run coupon securities, or $125.6 billion per day. The activity involved nearly 6 million

transactions (each comprised of one or more trades), or almost 12,000 per day. Moreover, there were roughly

2.4 billion order book changes at the first five price tiers alone for these securities over our sample period,

amounting to over 4.7 million order book ticks per day.

2.3.2 Trends in Trading Activity

To provide a historical perspective of trading activity on the BrokerTec platform since its beginning in the

early 2000’s, Figure 2.1 plots the average daily trading volume by year for the respective on-the-run coupon

securities. As can be observed from the figure, there has been a sharp increase in trading activity over time,

especially in the first seven years of the platform’s history before the financial crisis intensified in late 2008.

For the 10-year note, for example, average daily trading volume grew from $2.9 billion in 2001 to a level

over ten times larger in 2007 and, except for 2009, has remained above $30 billion since. Another interesting

observation is that the 2-year note – which used to be the most actively traded security with an average daily

trading volume of nearly $50 billion in 2008 – has seen lower activity since the crisis as the short rate has

stayed at the zero bound. This contrasts with the post-crisis recovery observed in other securities. In 2010

and 2011, the 5-year note is the most actively traded, closely followed by the 10-year note. Trading in the

other on-the-run securities is far below the level of the 2-, 5- and 10-year notes, although trading in the 3-year

note rose quickly between late 2008 and 2011.

Focusing on the most recent years of 2010 and 2011, Table 2.1 reports average daily trading volume,

trading frequency and trade size for each security. The table shows that trading in the 5- and 10-year notes is

most frequent, with over 3,000 transactions per day, on average. The 5-year note is the most actively traded in

terms of volume, with a daily trading volume exceeding $36 billion. The 30-year bond is also quite frequently

traded with nearly 2,000 transactions per day, but each trade is of much smaller size than that of the other

securities, so that its total daily trading volume of nearly $6 billion is far below the others. On the other hand,
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the 2-year note has the lowest trading intensity, but the largest average trade size, nearly ten times larger than

that of the 30-year bond.

2.3.3 Liquidity Around the Clock

Figure 2.2 plots average BrokerTec trading volume by half-hour interval over the round-the-clock trading day

for our six notes and bonds. To make the intraday patterns comparable across securities, we standardize the

half-hour volume figures by the total daily volume of the relevant security. The findings are very consistent

with what Fleming (1997) finds using GovPX data from 1994, and the patterns are strikingly similar across

the six securities. Trading activity is extremely low during Tokyo trading hours (roughly 18:30 or 19:30

the previous day to 03:00 Eastern time), then picks up somewhat during morning trading hours in London.

Trading then rises sharply during morning trading hours in New York, peaking between 08:30 and 09:00,

and then peaking locally between 10:00 and 10:30. Trading reaches a final local peak between 14:30 and

15:00 and then tapers off by 17:30. This pattern is probably largely explained by scheduled macroeconomic

announcements (most of which are made at 08:30 and 10:00), the hours of open outcry Treasury futures

trading (08:20 to 15:00), and the pricing of fixed income indices at 15:00.

2.3.4 Spreads

The most basic measure of the bid-ask spread is the quoted spread. The inside quoted spread, st, is defined as

the gap between the best (lowest) ask price, pat , and the best (highest) bid price, pbt , i.e.:

st = pat − pbt .

The middle column of Table 2.2 shows the average inside bid-ask spread in multiples of tick size of the

relevant security.8 Spread is generally increasing in maturity, from 1.03 128ths (2.06 256ths) at the 2-year

maturity to 2.66 64ths (10.64 256ths) at the 30-year maturity. The 10-year note, however, has a narrower

spread than the 7-year note. An interesting feature of the BrokerTec spreads is that they are quite close to the

tick size for all of the notes (but not the 30-year bond), suggesting that the minimum tick increment may

be constraining. Comparing to earlier studies using GovPX data, BrokerTec spreads are generally narrower.

8The tick size for the 2-, 3-, and 5-year securities is 1/128th of one percent of par and that for the 7-, 10- and 30-year securities is
1/64th of one percent of par.
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Fleming (2003), for example, reports average bid-ask spreads of 0.39 32nds (3.12 256ths) for the 5-year note

and 0.78 32nds (6.24 256ths) for the 10-year note, whereas the corresponding BrokerTec spreads are 1.18

128ths (2.36 256ths) and 1.15 64ths (4.60 256ths) respectively for these securities.9

Providing new information on how market depth is spaced along the price dimension beyond the inside

tier, Table 2.2 shows the average price distance between adjacent price levels up to the fifth level in the book.

All of the securities except for the 30-year bond have tightly populated order books at the first five price

levels: adjacent depths are roughly one tick apart, although they get slightly wider further away from the

inside tier.

To supplement the information provided in Table 2, we show in Figure 2.3 the frequency distributions of

inside spreads for the six securities. Immediately apparent from the figure is the high degree of clustering of

inside spreads at one tick, except for the 30-year bond whose distribution is more spread out at wider spread

levels and peaks at two ticks. In particular, nearly 97% of inside spreads for the 2-year note are 2/256ths,

another 3% are 4/256ths, and the negligible remainder is split between 0/256ths and above 4/256ths. Zero

spreads, or “locked” markets, are possible, albeit infrequent, because prices exclude the brokerage fee, and

because passive limit orders at the same price are not automatically executed against one another.

2.3.5 Market Depth

As a limit order market, liquidity on BrokerTec is supplied by limit orders submitted by market participants.

Table 2.3 reports the total visible quantity of limit orders available on average at the best price level, the best

five price levels, and across all price levels on each side of the market. Market depth is generally declining

in maturity, greatest at the 2-year and lowest at the 30-year segment. At the inside price tier, there is about

$300 million available on either side for trading in the 2-year note. It is interesting to observe that while

being the most actively traded, the 5- and 10-year notes’ market depth is on the lower end, averaging $26-31

million, suggesting a higher replenishment rate of liquidity to meet the high trading activity level. The inside

depths reported here greatly exceed average depths on GovPX reported by earlier studies. For the 2-year note,

for example, Fleming (2003) reports average depth on GovPX at the first tier of just $25 million (averaging

across the bid and ask side).

9Note that the prices in both databases do not reflect brokerage fees. Such fees are proprietary, and can vary by customer and with
volume, but are unquestionably lower for the electronic brokers than the voice-assisted brokers.
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In addition, earlier studies using GovPX data are limited to the inside tier, leaving market liquidity

beyond the first tier unknown. As Table 2.3 shows, market liquidity away from the first tier is substantial,

several orders of magnitude larger than that available at the inside tier. Collectively across the best five tiers

on each side, there is over $1.5 billion market depth for the 2-year note, about $470 million for the 3-year

note, in the range of $210-280 million for each of the 5-, 7- and 10-year note, and $28 million for the 30-year

bond. The first five tiers account for about 55-79% of total market depth for the notes and 47% of total market

depth for the bond. That is, the first five tiers collect a disproportionally large amount of depth, given that

there are typically around 16-18 price tiers on each side (slightly higher for the 5- and 10-year notes). The

maximum number of price levels on one side during our sample ranges from 43 for the 30-year bond (on the

bid side) to 101 for the 2-year note (on the ask side).

While depth in the book concentrates among the best five tiers, the inside tier is not the one with the

greatest depth. To learn more about the depth distribution in the book away from the inside tier, we display a

depth histogram of the order book in Figure 2.4. The figure illustrates again that order book depth outside the

first tier is considerable. A notable feature of the depth distribution patterns is that there is consistently more

quantity available at the second and third price tiers (and even fourth and fifth for some securities) than the

first. The available quantity generally peaks at the second tier on both the bid and ask sides for the notes, and

at the third tier for the bond. Depth then declines monotonically as one moves further away from the inside

quotes. Biais et al. (1995) also find depth lower at the first tier than the second tier, but find similar depths at

the second through fifth tiers.

2.3.6 Hidden Depth

In addition to information on visible depth at the best five tiers, Figure 2.4 also shows information on hidden

depth. Hidden depth is only a small share of total depth at each price tier on average. The first tier has

proportionally more hidden depth than other tiers. Among the securities, the 30-year bond has a greater share

of depth that is hidden from view.

Next, we examine more closely the extent of hidden depth at the inside tier as well as across all tiers, and

report the results in Table 2.4. The column “Full Sample” shows the percentage of hidden depth calculated

across all five-minute snapshots over the whole sample period, representing an unconditional estimate of the

extent of hidden depth. We then compute the percentages over only those snapshots when there is positive

hidden depth (column “Hidden>0”). The percentages of those snapshots with positive hidden depth are
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reported in column “% of Obs.”. These numbers indicate the probability of having hidden depth in the order

book at any given time.

Since the results are quite similar between the bid and the ask side (although the numbers on the ask side

are slightly lower), we discuss the findings for the bid side only. We find that on the bid side, hidden depth as

a share of total depth at the inside tier is roughly in the vicinity of 10% for the 2-, 3-, 5-, and 10-year notes.

The extent of hidden depth is particularly low at the 7-year maturity (just under 4%). In contrast, the share of

hidden depth for the 30-year bond is far larger, about 23%. In terms of how likely it is for the inside tier to

have hidden depth, the 2-year note is at the top with a 45% probability, followed by a nearly 25% probability

for the 3-year. When there is hidden depth, the percentage hidden can be quite high, and in the extreme case

of the 30-year bond, the average percentage reaches nearly 70%. The 7-year remains at the lower extreme in

terms of both the extent and the likelihood of having hidden depth. When analyzing the overall percentages

of hidden depth across the whole book, the numbers are much smaller, indicating that depth outside the first

tier contains relatively less hidden depth. This finding is consistent with the belief that there is a greater need

to hide exposure of orders closer to the market.

2.4 Price Impact of Trades

In this section, we quantify the price impact of trades as the long run cumulative response of price to a unit

shock in trades, following Hasbrouck (1991a). This framework allows us to approximate the permanent price

impact of trades that incorporates any delayed response and that is not contaminated by transitory effects.

Accordingly, it provides a measure for the informational content of trades in this market.

Specifically, we estimate a structural VAR model with five lags for a vector of endogenous variables that

consist of return and trade-related variables. We measure returns as changes in the best bid-ask midpoint, i.e.,

rt = mt −mt−1, where t indexes transaction time, and mt is the midpoint prevailing at the end of the tth

transaction. We let Xt denote trade-related variables (Xt can be a vector), so that the general structural VAR

model is:

B0

 rt
Xt

 =
5∑
j=1

Bj

 rt−j
Xt−j

+

ur,t
uX,t

 ,
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where ut is the structural innovation vector. The matrix B0 captures the comtemporaneous effects within

the endogenous variable vector. We will explain the chosen direction of contemporaneous effects when we

present specific model estimates in subsequent subsections. The model is estimated by Seemingly Unrelated

Regressions (SUR).

Based on the estimated dynamics of return and trade-related variables, we then compute the impulse

response function (IRF) to a unitary shock in trade, that is,

∂rt+h
∂Xt

.

We compute the IRF out to 50 transactions after the shock (h = 50).10 The permanent price impact is

approximated by the cumulative return over this horizon.

We consider a number of specifications so as to gain a deeper understanding of how trading affects

price dynamics, such as the extent to which trade direction contributes to price impact, both by itself and in

conjunction with trade size. We present each specification and the corresponding price impact estimates in

turn below.

2.4.1 Baseline Specification

We begin the estimation of market impact with a bivariate VAR of return and order flow qt. We consider two

alternative measures of order flow. The first is the direction of trade initiation xt with a buy order signed +1

and a sell order signed -1. Trade initiation is recorded in the BrokerTec dataset, so all trades are classified

properly. The second is the signed volume xtVt where Vt is the actual volume of the tth transaction.

In an ECN like BrokerTec, we can be sure that transactions, as well as the sequence of events associated

with each transaction, are recorded in the proper order. That is, a market order arrives, executes against

available limit orders on the opposite side, and the order book subsequently updates to reflect the transaction

just taking place. This supports the identifying assumption that order flow contemporaneously affects return,

but not vice versa. Accordingly, the model specification is:

1 −α1,2

0 1


rt
qt

 =
5∑
j=1

Bj

rt−j
qt−j

+

ur,t
uq,t

 , (2.1)

10Visual inspection of the IRF indicates that the 50-tick horizon is sufficiently long for the IRF to stabilize.
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where Bj are (2× 2) matrices. We estimate model (2.1) separately for qt = xt and qt = xtVt.

The permanent price impact estimates from model (2.1) are reported in Table 2.5. Under the column

titled “Trade Direction” is the price response across maturities to a buyer-initiated trade (i.e., computed

from the specification with trade initiation), while the column “Signed Trade Volume” shows the response

to a $1 million shock in buyer-initiated trade flow (i.e., computed from the specification with signed trade

volume). The price impact rises with maturity, except for the 7-year note which has a higher price impact

than the 10-year note in the model using signed trade volume. A buy market order results in a permanent

price increase, ranging from 0.357/256th for the 2-year note to 2.921/256th for the 30-year bond.

Since transaction size varies across maturities, a better cross securities comparison may be obtained by

looking at the price impact per $1 million shock in the order flow of the respective securities. A $1 million

increase in buyer-initiated trade flow moves the 2-year note’s price by 0.006/256th, or alternatively, it takes

about $363 million increase in buyer-initiated transaction volume to move the price by one tick (or 2/256th).

The 30-year bond is much less liquid: a $1 million shock in the buyer-initiated order flow permanently

increases the price by 0.450/256th, or equivalently, only $8.9 million is needed to move the price by one tick

(or 4/256th).

2.4.2 Separate Effects of Trade Direction and Size

In the spirit of Hasbrouck (1991a), we also estimate a specification that incorporates both trade direction and

size in order to explore their respective market impact:


1 −α1,2 −α1,3

0 1 0

0 0 1



rt

xt

xVt

 =
5∑
j=1

Bj


rt−j

xt−j

xVt−j

+


ur,t

ux,t

uxV,t

 . (2.2)

Based on the model estimates, we compute the permanent price impact of trade direction and the marginal

market impact of trade size beyond the minimum size.

We report the results in Table 2.6. The first column shows the price impact of a minimum-sized trade ($1

million), which ranges from 0.271/256th for the 2-year note to 2.378/256th for the 30-year bond. From here,

price impact increases directly with trade size. Essentially, this specification disentangles the price impact of

trade into two separate components: a “fixed” component due to trade initiation and a “variable” component
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that scales directly with the volume of the trade. For example, for a $100 million buyer-initiated transaction

in the 10-year note, the buy direction increases price by 1.033/256th, and the $99 million increment in trade

size from the $1 million minimum increases price by an additional 3.265/256th, for a total price impact of

4.298/256th.

To entertain the possibility that the price impact of trade size does not increase linearly in trade size

beyond the minimum size, we explore a further specification that allows for the non-linearity of trade size by

incorporating signed trade volume squared in the system, as in Hasbrouck (1991a). Specifically,
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. (2.3)

We plot the permanent price impact calculated from this model for varying trade sizes in Figure 2.5. It is

clear from the figure that price impact is increasing in trade size. The concavity of the price impact function

of the notes is quite mild, almost visually indistinguishable from linearity for the notes, especially the 2-year

note whose price impact is already very small. Only the 30-year bond demonstrates a pronounced concavity

in the price impact function. Parameter estimates (not shown) reveal that the squared trade size variable

has a significant and negative contemporaneous effect on mid-quote return for all notes and bonds, but the

magnitude is overwhelmed by the positive effects of trade direction and size. This suggests that a very large

trade size is required for the concavity effect of price impact to kick in. We are able to see the concavity of

the price impact function for the 30-year bond as trade size in this bond is typically very small ($3 million).

2.4.3 Asymmetric Effects of Buys and Sells

We extend the baseline specification in equation (2.1) to explore if there is any asymmetry in the price impact

between buyer-initiated and seller-initiated trades. Saar (2001), for example, motivates theoretically an

asymmetric response to buyer- and seller-initiated block trades. The model we estimate is:
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0 0 1



rt
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 , (2.4)
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where V B and V S are the buy and sell transaction volume respectively. For buyer-initiated transactions,

V Bt is equal to the transaction volume and V St = 0 (and vice versa for seller-initiated transactions).

The permanent price impact estimates are reported in Table 2.7. The estimates are quite similar in

magnitude to the baseline estimates. In addition, there is little evidence to suggest that the market responds

asymmetrically to buy versus sell trade initiation.

2.4.4 Asymmetric Effects on the Bid and Ask

Econometric modeling of the order book by Engle and Patton (2004) has stimulated interest in models which

allow for a possibly asymmetric price impact on the bid and ask. Escribano and Pascual (2006) provide a

detailed review of empirical evidence showing that bid and ask quotes do not adjust symmetrically after a

trade. However, most prior evidence of such asymmetry is documented for equity markets. We explore if this

asymmetry also prevails in the Treasury market.

We follow Escribano and Pascual (2006)’s generalization of Hasbrouck (1991a)’s structural model. The

model allows bid and ask prices to follow separate stochastic processes, but imposes a vector error correction

mechanism through the spread. That is, bid and ask prices can follow different dynamics but cannot deviate

too much from each other given the spread. Buy and sell volumes are also separated to allow for their price

effects to differ. This more flexible specification allows us to explore asymmetries, if any, in the market

effects of buyer- versus seller-initiated transactions on bid versus ask prices. Escribano and Pascual (2006)’s

generalization leads to the following structural vector error correction representation:
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, (2.5)

where γ is a 4× 1 vector of error correction coefficients, s is the bid-ask spread, and β(L) are matrices of

autoregressive coefficients. The data also support a more parsimonious specification of the AR structure in

which bid (ask) prices depend only upon lagged bid (ask) prices, and buys (sells) depend only upon changes

in the ask (bid) prices:
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β(L) =



β1,1(L) 0 β1,3(L) β1,4(L)

0 β2,2(L) β2,3(L) β2,4(L)

0 β3,2(L) β3,3(L) β3,4(L)

β4,1(L) 0 β4,3(L) β4,4(L)


.

The system of dynamic structural equations (2.5) is estimated using SUR to allow for the possible

correlation among the error terms. Indeed, as shown in Escribano and Pascual (2006), they have common

components and therefore cannot be treated as mutually uncorrelated. Based on the model estimates, we

compute the impulse response function of bid and ask prices to a unitary shock in buy (or sell) trades by

forecasting this dynamic system over a 50-tick horizon following the shock. Before the shock, the system is

assumed to be at rest with constant bid and ask prices, no trades and zero spread.

Table 2.8 reports the cumulative impact after 50 transactions following a $1 million shock to buyer-

initiated transaction volume (on the bid and ask prices), and similarly a $1 million shock to seller-initiated

transaction volume (on the bid and ask prices) in that order. The evidence presented in this table again

suggests that there is little difference in the impact on bid price versus ask price induced by the same shock

to order flow. Likewise, prices appear to respond similarly to a buyer-initiated order flow shock versus a

seller-initiated one. In addition, the magnitudes of the price impact estimates remain quite similar to the

baseline estimates, further highlighting the lack of asymmetry in the price impact of trades in this market.

2.5 Price Impact of Limit Orders

Given that the order book information is observable by market participants, the decision to place a trade

and its size can be influenced by activities in the book. As reported earlier, there are about 4.7 million

order book changes in the best five tiers alone, overwhelmingly outnumbering trading activity (about 12,000

transactions per day across the six securities). Theoretically, Boulatov and George (2013) suggest the concept

of “informed liquidity provider”, that is, informed traders can also be on the supply side, as opposed to the

common assumption that informed traders merely consume liquidity. If so, relevant information might also be

present in the limit order flow. Empirically, Mizrach (2008) shows that excluding this order book information

is likely to overstate the market impact of trades. Hautsch and Huang (2012a) document significant price

impact of limit orders for select NASDAQ stocks. We now extend our specification to incorporate information
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on limit order activities. We first estimate the price impact of trades and limit orders unconditionally. We

then examine the price impact of both trades and limit orders following FOMC announcements in order to

shed light on how price discovery varies with the information environment.

2.5.1 Price Impact of Limit Orders

We modify our specification (2.4) by adding the visible inside bid and ask net order flow between trades:
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where lb, the bid limit order flow, is the volume of limit buy orders submitted to (positive) or cancelled from

(negative) the first tier between trades, i.e., between the (t−1) and t transactions. Similarly, la is the ask limit

order flow. The measurement timing of the endogenous variables supports the direction of contemporaneous

effects from limit order flow to trade flow to return in the above specification.

The measurement of limit order flow variables warrants some further discussion. Because our model

already incorporates the effects of trades directly, we explicitly exclude order book changes caused by

execution from our limit order flow measures. Specifically, the net flow of limit orders on each side of the

market is computed as the difference between the quantity of new order submissions and that of cancellations

from the last trade until immediately before the current trade. Our resulting measures of limit order flow

account for the non-trade related change in liquidity supply in the market. As a result, our model can capture

the dynamic interactions of liquidity demand (trade flow), liquidity supply (limit order flow) and price

revisions. The model then allows for delineating the price impact of liquidity supply change from the price

impact of liquidity demand change, a novel feature of our empirical exercise.11

11Hautsch and Huang (2012a) measure the price impact of limit orders by modeling the limit order book as a co-integrating vector
comprised of price and depth up to the third level in the limit order book. Our model has a similar spirit in that it also incorporates
limit order information in the vector of variables of interest, but focuses on the trading process and the price dynamics as affected
by both trading and limit order activities.
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We analyze the permanent price impact of trades and limit order activities by computing the cumulative

price response to a shock vector that is zero everywhere except for the relevant order flow variable which

has a unitary shock. The estimates are reported in Table 2.9. In line with the evidence on the impact of limit

orders for equity markets (e.g., Hautsch and Huang (2012a)), our results show that limit order activity also

leaves a permanent impact on price, although the impact is of smaller magnitude than that of trades. For

example, a $1 million increase in bid limit order volume permanently raises the best bid-ask midpoint by

0.001/256th, 0.014/256th, and 0.035/256th for the 2-, 5- and 10-year notes. This implies that an increase in

bid depth of $1.85 billion, $144 million and $113 million is required to raise the best bid-ask midpoint of the

respective notes by one tick. In the less liquid 30-year bond, it takes as little as an $11.5 million increase in

the bid limit order flow to raise the midpoint by one tick.

Additionally, the price impact of limit orders is higher for longer-maturity securities, both in magnitude

as well as in comparison with the corresponding price impact of trades. For the 2-year note, the price impact

of limit orders is about one fifth the impact of market orders of equal volume. A similar comparison for the

10-year note shows that limit orders have effects that are roughly two-thirds the corresponding impact of

trades. For the 30-year bond, limit orders have almost as large effects as market orders.

The results also show that including information on order book depth affects market impact estimates. In

particular, across all securities, trades now show smaller price impact estimates than those estimated from

earlier specifications without limit order flow (as in Tables 2.5 and 2.7). These results suggest that ignoring

limit order activity overstates the price impact of trades by 9-14% for the 2-, 5-, 10- and 30-year securities.

The extent of overestimation is particularly acute for the 3- and 7-year notes: 27% and 40% respectively.

2.5.2 Market Impact Following FOMC Announcements

As our price impact estimates are based on all transactions over our sample period, one question that can

naturally arise is whether price impact varies by the information environment. For example, Green (2004)

shows that the information content of trades increases following macroeconomic announcements. We explore

this question by choosing FOMC announcements as an exemplified information event around which to

study the extent to which price impact might differ. FOMC announcements are key information events for

the formation of Treasury prices, precipitating high price volatility, high trading volume, and wide bid-ask
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spreads (Fleming and Piazzesi (2005)).12 The idea is to quantify price impact using only limit orders and

transactions that take place during a short period following FOMC announcements, and compare with that

computed during the same time window on non-FOMC days. The choice of the window and the “control”

sample is discussed below.

During our sample period, there are 16 announcements following FOMC meetings, three of which

occurred at about 12:30, and the rest of which occurred around 14:15. We collect the exact time at which the

announcements reached the market, using the timestamp of the first news report appearing in Bloomberg. We

focus on the 90-minute intervals after these announcements. In order to avoid the effect of price jumps that

typically occur at announcement times without requiring trades, as documented in Fleming and Remolona

(1999), we start the post-announcement window two minutes following the actual announcement times. We

choose the same time window on the five days preceding and five days following each FOMC announcement

to serve as the non-announcement counterpart, effectively controlling for the time-of-day effect and general

market conditions.

We estimate model (2.6) using data in the post-announcement window on FOMC days and in the

comparable window on non-FOMC days. The corresponding market impact estimates are reported in Panel A

and B respectively in Table 2.10. Two important results can be observed. First, market impact is pervasively

higher following FOMC announcements. The market impact of a buyer-initiated trade is about 20-40% larger

than in the same time interval on non-FOMC days, except for the 10-year note and 30-year bond where

the price impact is slightly weaker on FOMC days. The increase in price impact of seller-initiated trades

following FOMC announcements varies more widely across securities, ranging from about 5% for the 7-year

note to over 100% for the 3-year note.

Secondly, and perhaps more strikingly, limit order flows have a much greater impact after FOMC

announcements than during the comparable time window on non-FOMC days. For example, for the 2-year

note, the price impact of limit order flow to the bid side is about triple the non-FOMC price impact, and

that to the ask side increases nearly five fold. Accordingly, limit order flows become nearly as important

as, or occasionally even more important than, trade flows in the price discovery process following FOMC

announcements.

12Gao and Mizrach (2013) show that price impact in the equity market rose substantially following regularly scheduled Permanent
Open Market Operations during the Federal Reserve’s first large-scale asset purchase program.
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In order to address the concern that our comparable sample, which includes both the five days before and

five days after each of the FOMC announcements, may be contaminated by the effect of these announcements,

we alternatively include in the non-FOMC sample only the five days preceding each of the announcements.

The results are qualitatively similar. Furthermore, we check the robustness of our estimates by varying the

starting time of the window between two and five minutes after announcement times, as well as using a

shorter window of 60 minutes. These sensitivity analyses all confirm the results obtained above.

2.6 Hidden Orders

The preceding price impact analysis characterizes market liquidity as observable by market participants.

However, traders on the BrokerTec platform have the option to submit iceberg, or partially hidden, orders.

The hidden quantity represents a source of liquidity that is not known to the marketplace until and unless it is

later revealed in trade executions. From the perspective of the hidden order traders, this type of order helps

them manage their order exposure, reducing information leakage and front running.

To gain a more complete understanding of this market, we explore the pattern of iceberg order usage

on BrokerTec and examine the effects of order characteristics and market conditions on the likelihood and

hidden size of iceberg orders. Given the sheer amount of data at the order level, we choose to work with

newly submitted orders to the first tier only, and for a subset of trading days in the sample, in order to keep

our analysis computationally manageable. Specifically, of the 500 trading days in the sample, we randomly

select 100 days for analysis.

2.6.1 Descriptive Analysis of Hidden Orders

Hidden order usage and some basic features of orders, whether completely transparent or partially hidden,

are shown in Table 2.11. The number of order submissions per day varies across securities. For the 5-, 7- and

10-year notes, there are over 145,000 orders submitted to the first tier per day, on average. The 2- and 3-year

notes have over 60,000 orders per day, and the 30-year bond has the lowest number of orders at 38,000 per

day. While order submission activity is quite high, most of the order flow is completely visible – only about

2% or less of orders are iceberg orders. This is much lower than the extent of hidden order usage in other

markets. For example, Bessembinder et al. (2009) report that iceberg orders on average account for 18% of

order flow for stocks on Euronext-Paris.
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There are several additional observations of interest from this table. First, iceberg orders tend to be

several orders of magnitude larger than normal orders. For example, an average iceberg order in the 10-year

note is about $11.6 million, whereas an average visible order is only $1.4 million. This finding helps reconcile

the low percentage of iceberg orders with the much higher percentage of hidden depth residing in the book at

any given point in time. That is, iceberg orders, while used sparingly, tend to hide a large quantity, so the

hidden depth proportion tends to be higher.

Secondly, iceberg orders tend to be more price-aggressive, as the percentage of orders placed inside the

prevailing spread is higher among iceberg orders than completely visible orders. This is especially the case

with the 30-year bond with over 53% of iceberg orders that are price-improving. Contributing to this result is

the fact that the bid-ask spread for the 30-year bond is typically much wider than the spread for the notes,

making it easier to undercut the best price.

Thirdly, the arrival rate of similar limit orders around the time of order submission shows some noticeable

differences between visible and iceberg orders. Iceberg orders tend to be used when similar limit orders

arrive more slowly. Given the priority rule favoring displayed depth, the hidden part of an iceberg order has

lower priority than the displayed depth of future limit orders at the same price point. Accordingly, the higher

the expected arrival rate of future competition, the less likely the use of iceberg orders.

2.6.2 Determinants of Hidden Orders

We proceed to analyze factors that might contribute to the likelihood of hidden orders in a multivariate

framework. The order-level data from BrokerTec allows us to examine hidden orders directly as they enter

the limit order book. This provides for a clean analysis of factors that might be driving the exposure choice.

We employ a logistic model to predict the likelihood that an incoming limit order contains some hidden

size, building upon the approach in De Winne and D’Hondt (2007b) and Bessembinder et al. (2009). The

dependent variable is a binary variable that takes the value of 1 if the order is an iceberg order, and 0

otherwise.

Findings in the literature help guide our selection of explanatory variables. First, in Bessembinder et al.

(2009) and references therein, the price aggressiveness of an order has been shown to affect the use of hidden

orders. That is, more aggressively priced orders are more likely to be iceberg orders. Since our study is

concerned with only the orders coming to the first tier of the book, we measure price aggressiveness by IMP ,

an indicator variable for whether the order is improving the current best price on the relevant side.
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The next explanatory variable is SIZE, the total size of the order (logged and standardized by its daily

mean and standard deviation). This variable relates to the benefits and costs of order exposure as articulated in

Harris (1997). Traders choose to expose their orders in order to attract potential counterparties who otherwise

may not have known about the existence of such trading interest. However, exposing their trading interest,

especially when such interest is large, can reveal useful information about trading intention and potential

future price impact. Such exposure can provide free trading options to other market participants who may

then take actions detrimental to the exposing traders. Accordingly, large traders may find it useful to hide

part of their orders from the market.

Another possible factor in hidden order usage, as suggested by Moinas (2010), is that informed traders

may use hidden orders to mitigate information leakage. As a result, it is predicted that hidden orders are more

likely when adverse selection risk is higher. Following Bessembinder et al. (2009), we use the bid-ask spread

SPR (measured in basis points of the bid-ask midpoint) as a proxy for the degree of adverse selection and

test whether a wider bid-ask spread is associated with a greater probability of an iceberg order and a greater

hidden size. Empirically, results reported in Bessembinder et al. (2009) support this prediction for a sample

of Euronext-Paris stocks during April 2003.

Furthermore, the state of the order book has been shown to affect the choice of order exposure. Buti

and Rindi (2013) argue that uninformed liquidity suppliers use hidden orders to reduce picking-off risk

and discourage undercutting in liquidity provision. This has several implications for iceberg order usage

concerning the level of depth and price volatility in the order book.

On the one hand, a higher level of prevailing depth on the same side (especially relative to the order

size and the prevailing depth on the opposite side) indicates a lower probability of a new limit order being

picked off. That is, the greater depth queueing in front of the incoming order provides a greater protection

against adverse execution of such order. This in turn reduces the need to use an iceberg order. On the other

hand, fully displaying the order size and adding to the already high level of prevailing depth can potentially

induce future order submitters to undercut and post price-improving orders instead of joining the current

price queue. As a result, higher prevailing depth may lead to a higher probability of hidden order. Therefore,

while prevailing depth on the same side, DSAME, is argued to be an important determinant of hidden order

usage, whether it is negatively or positively linked with hidden order usage is an empirical question.

Moreover, as documented in De Winne and D’Hondt (2007b), the order book imbalance (positive-valued

if the book is heavier on the same side as the order) decreases the likelihood of an iceberg order. Thus, it

28



appears that the relative magnitude of same side depth and opposite side depth also matters in explaining

hidden order usage. Our model includes prevailing depth on the opposite side of the market, DOPP , to

explore this conjecture.

Besides the effect of depth, the degree of market volatility increases the risk of adverse execution of limit

orders, thereby making hidden orders more useful in helping traders manage their order exposure and reduce

the chance of being picked off. We measure this risk by V OLA, the prevailing five-minute realized volatility

of one-second returns based on the best bid-ask midpoint.

In addition, there is abundant empirical evidence suggesting that the level of trading activity and the

rate of limit order arrival in the market helps explain the use and extent of hidden orders (for example, see

Bessembinder et al. (2009), De Winne and D’Hondt (2007b), Aitken et al. (2001), and references therein). In

particular, Aitken et al. (2001) argue that a higher trading activity level indicates a lower expected time-to-

execution of limit orders, thereby reducing the need to hide part of a limit order as a way to mitigate the free

trading option inherent in limit orders. If this argument applies, we expect to see a negative link between

trading activity, as captured by NTRANS – the number of transactions over the last five minutes – and

hidden order usage.

On the contrary, during periods when limit orders on the same side are slow to arrive, the threat of future

(displayed) limit orders taking priority over the hidden portion is lessened, resulting in higher likelihood of

hidden order usage. The expected arrival rate of similar limit orders is measured by WAIT , the average

inter-order duration (in seconds) for the last three limit orders on the same side.

Finally, we include several dummy variables to account for potential differences in the order expo-

sure choice around the announcement of important news and overnight trading hours.13 In particular,

PRENEWS and POSTNEWS are indicator variables for whether the order is submitted within the

five-minute time window before and after an announcement. OFFHR is an indicator variable that is equal

to 1 if the order is submitted outside the New York trading hours of 7:00 to 17:30.

Our model is estimated using data on all order submissions on the 100 randomly selected days. We

note that continuous explanatory variables (namely SIZE, SPR, DSAME, DOPP , V OLA, WAIT ,

NTRANS) are standardized by the corresponding daily mean and standard deviation so that they are

comparable across days. Table 2.12 presents the model parameter estimates along with the odds ratios. Since

13We consider the same set of key macroeconomic reports, FOMC rate decisions and Treasury auction results as in Engle et al.
(2012c)

29



continuous variables in the model are demeaned and variance-rescaled by daily statistics, the odds ratios

correspond to a one standard deviation change in the relevant variable.

As shown by the significantly negative coefficients for IMP for four out of the six securities (the 2-, 3-,

5-, and 10-year notes), price-improving orders are less likely to contain hidden volume, after controlling for

other factors believed to affect hidden order usage. This result is opposite to that reported in De Winne and

D’Hondt (2007b) and Bessembinder et al. (2009). By achieving price priority with a price-improving order,

the order submitter seems to indicate an eagerness for faster execution and the result suggests that the trader

prefers to display the full order size so as not to lose the priority to future orders that join the queue at the

new price. However, this is not the case for the 7- and 30-year securities, which are traded much less actively,

and for which orders are hence less likely to lose priority to future orders.

Consistent with the prior literature, we find that large orders are more likely to be partially hidden,

because posting a large order may give away information to the market as suggested by Harris (1997). A one

standard deviation increase in the logged order size is associated with more than twice the odds of the order

having hidden size. Furthermore, comparing the odds ratios across explanatory variables shows that order

size is uniformly the most important driver of the hidden order decision.

With regard to adverse selection risk, we find that hidden orders are more likely when the bid-ask spread

is wider for all of the notes, in line with the prediction by Moinas (2010) and the empirical evidence reported

in Bessembinder et al. (2009). A one standard deviation increase in the prevailing spread is associated with a

roughly 10% increase in the odds of hidden size. The 30-year bond is an exception, in which the bid-ask

spread has a negative effect on the likelihood of an iceberg order. That is, when the spread is wide, liquidity

providers seem to prefer to submit a fully displayed order rather than an iceberg order, possibly to achieve

faster execution in order to earn the spread. As documented earlier, the 30-year bond has a markedly wider

spread, on average, and is much less liquid than the notes (i.e., lower trading volume and lower standing

depth), indicating a lower degree of competition for liquidity provision. Accordingly, although a wider

spread makes it easier for an order to be front-run, the front-running risk is probably not substantial, thereby

reducing the need to use iceberg orders. While this finding is somewhat unexpected, the same effect has been

documented by De Winne and D’Hondt (2007b) for non-marketable limit orders for the majority of their

sample of 40 stocks on Euronext.

The prevailing depth on the same side as the incoming order has a significantly negative effect on the

probability of hidden volume across all securities, except for the 2-year note. This finding provides support
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for the hypothesis that an order is less likely to have hidden volume if the prevailing depth is high, since the

plentiful depth on the same side provides a reassuring signal that orders on that side are less subject to being

picked-off. In addition, Treasury securities have very tight spreads, providing less scope for undercutting,

so that the opposite effect of depth on iceberg order usage relating to undercutting risk is less pronounced.

Even for the 30-year bond, whose wider bid-ask spread makes undercutting easier, this risk is evidently not

a large concern for traders. However, depth on the opposite side is generally also negatively related with

iceberg order usage, suggesting that the likelihood of an iceberg order is lower when the standing order book

is deeper.

Interestingly, the consistently negative coefficients on volatility across maturities do not support the-

oretical predictions of a positive relationship discussed earlier. We suspect that, when prices are moving

fast, Treasury traders refrain from using hidden orders altogether since they have an alternative mechanism,

namely the workup protocol, to protect themselves from adverse price movements. That mechanism affords

them complete control over how much to bid/offer based on changing market conditions, as opposed to

making a firm commitment over the total quantity they want to bid/offer, even if part of that commitment is

hidden from view. In fact, Fleming and Nguyen (2013) show that workups are utilized more in volatile times.

The rates of limit order arrivals, as captured by the average wait time between recent same-side orders,

show expected effects on hidden order usage. Specifically, a longer wait time suggests a slower arrival rate

for future orders, and thus, the threat of the order’s hidden volume losing priority to future orders is lessened.

The positive and significant coefficients on WAIT across securities support this hypothesis. In contrast,

there is mixed evidence as to the effect of trading rates, NTRANS, on hidden order choice. It is negative for

the 3- and 7-year notes, but positive for the 5-, 10- and 30-year securities and insignificant for the 2-year note.

Importantly, there is consistent evidence that hidden orders are used less often around announcement

times. This appears to be the period when the market is geared up to receive and then incorporate the

news. Accordingly, the lower priority of hidden volume may make hidden orders less attractive around these

moments. Lastly, we find that hidden orders are more likely during the overnight trading hours.

2.6.3 Determinants of Hidden Volume

Conditional on the choice to partially hide an order’s volume, the next natural step is to explore how hidden

volume is determined. For this purpose, we regress the hidden size (logged) of hidden orders on the same set

of explanatory variables in the hidden order choice model, and report the results in Table 2.13. To facilitate
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interpretation, we also report the exponential of parameter estimates so that one can see the effect of each

explanatory variable directly on the hidden size, as opposed to logged hidden size.

A few key observations from this table are in order. First, SIZE continues to be a key driver of hidden

orders: the larger the size, the larger the hidden volume. A one standard deviation increase in the logged

order size is associated with an increase in the hidden size ranging from 47% for the 30-year bond to 140%

for the 2-year note. IMP also appears to play an important role in the extent of volume hidden: those hidden

orders placed inside of the spread have about 3-10% higher hidden volume than similar hidden orders that are

not price-improving. In addition, the PRENEWS and POSTNEWS variables are generally negative,

suggesting that hidden orders placed around announcement times tend to have lower hidden volume, in

addition to the earlier reported evidence that these hidden orders are less likely around these times. The

effects of other variables on hidden volume are less determinative and vary across securities, suggesting that

these variables matter more to the choice of hidden orders than the extent of hidden volume once the choice

has been made.

2.7 Conclusion

The microstructure of the U.S. Treasury securities market has changed markedly in recent years, with trading

activity migrating from voice-assisted brokers to fully electronic brokers. We use tick data from one of these

platforms, BrokerTec, to reassess market liquidity. We find that the market is notably more liquid than earlier

reports based on GovPX data, and that there has been an increase in liquidity over time, except for the crisis

period. In addition, our work offers the first look into market liquidity beyond the inside tier. We show that

market liquidity concentrates more heavily at the price tiers immediately behind the market, and that the first

five tiers collect over half of the total market liquidity in the order book at any given point in time.

We formally quantify the price impact of trading and limit order book activities. The price impact of

trades on BrokerTec is quite small but generally increasing in maturity. Baseline estimates based on the

specification with price dynamics and trading activities suggest that it takes $182 million in signed trading

volume to move the price of the 2-year note by 1/256th of one percent of par, but only slightly over $2 million

to move the price of the 30-year bond by the same amount. Accounting for the impact of limit order activities

on trading activities and price dynamics, we find that limit order flow itself affects prices, and is especially

important in the price dynamics of longer-dated maturities. We also find that part of the price impact of trades
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initially estimated from the model of trade flow alone can be attributed to limit order activities: including limit

order activities reduces the price impact of trades by about 9-40%, on average, for the on-the-run securities.

Finally, price impact is larger following FOMC announcements, particularly that of limit orders.

We find that iceberg orders are used sparingly in the Treasury market. However, the hidden portion

of these iceberg orders is several orders of magnitude larger than the displayed part, thus occupying a

proportionately larger portion of depth residing in the order book at any point in time. We find that the use of

hidden depth increases with the order size and the prevailing bid-ask spread, highlighting the benefit of hidden

orders as a mechanism to prevent information leakage and mitigate adverse selection risk. Additionally, when

there is lower prevailing depth or lower likelihood of future orders whose display size will take precedence

over the current hidden size, hidden orders tend to be used more often, as the cost of using them in terms

of execution probability is lower. These results are generally in line with the evidence reported for other

markets.

However, we also find a number of results in this market that have not been documented elsewhere.

Unlike Bessembinder et al. (2009), we find that traders are less likely to use iceberg orders when their orders

are price improving, except for the less liquid 7- and 30-year securities. Considering that this market is highly

liquid, in which the inside spread is restrained at one tick the majority of the time, opportunities to undercut

the market are limited and thus, whenever such opportunities are present, execution probability seems to take

on greater importance. The extent of iceberg order usage in this highly liquid market is also much smaller

than what has been documented in the literature for equity markets. In this regard, our findings actually

support the evidence from equity markets that hidden order usage is lower for the more liquid stocks.

Another interesting departure from both theoretical predictions and previous empirical evidence is that

volatility and hidden order usage are negatively linked. At first blush, the finding seems counter-intuitive, as

it suggests that the more volatile the market, the less likely that hidden orders will be used, precisely when

traders need greater protection. However, if we place this finding in the context of the Treasury market,

in which there exists another mechanism for order exposure management, namely the workup protocol,

we can better understand how it could be the case for this market. Recall that the workup protocol gives

market participants the ability to workup order sizes if and when desired, whereas iceberg orders can be

adversely executed when the market is moving so fast that traders cannot cancel soon enough. Empirically,

workups tend to be used more frequently in more volatile times, undermining the popularity of iceberg orders.

Likewise, hidden orders are used less often around the release of key macroeconomic reports, FOMC rate
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decision announcements, and Treasury auctions. These are moments when the market is eagerly waiting for

and trading on the newly released announcements, so priority in the order queues seems to be an important

consideration.

Overall, our study highlights how the electronic market for trading in U.S. Treasury securities differs

from its voice-assisted precedent and from other markets studied in the literature. Comparing with the

voice-assisted trading system, the electronic market facilitates a much greater frequency and volume of trades

and limit order activities, resulting in greater competition for liquidity provision and thus lower bid-ask

spreads and market impact. Comparing with other market setups, the high level of market liquidity and the

presence of the more preferred workup protocol to manage order exposure in this market are likely related to

the lower usage of iceberg orders and the seemingly greater importance of execution probability in traders’

decisions.

34



Table 2.1: Trading Activity

Maturity Trading Volume Trade Frequency Average Trade Size

2-Year 26,354 934 28.2
3-Year 16,204 1,297 12.5
5-Year 36,262 3,052 11.9
7-Year 9,640 1,500 6.4
10-Year 31,462 3,066 10.3
30-Year 5,705 1,921 3.0

The table reports daily averages of trading volume, trade frequency, and average trade size for on-the-run Treasury coupon securities

on the BrokerTec platform, for the period 2010-2011. Volume and trade size are reported in millions of dollars. Multiple order

matchings (including during workups) associated with the arrival of an aggressive order are aggregated as a single trade.
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Table 2.3: Limit Order Book Depth

First Tier First 5 Tiers All Tiers

Bid Ask Bid Ask Bid Ask

2-Year 308 300 1,561 1,538 2,422 2,355
3-Year 82 81 474 467 715 684
5-Year 31 31 278 275 465 443
7-Year 37 36 236 236 301 297
10-Year 26 26 213 211 393 376
30-Year 3 3 28 28 59 59

The table reports average depth on BrokerTec at the first tier, the first five tiers, and across all tiers. The statistics are computed from

five-minute snapshots of the limit order book for the respective securities for the hours 07:00-17:30 over the period 2010-2011.

Depth is reported in millions of dollars.
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Table 2.4: Unconditional and Conditional Percentage of Hidden Depth

Bid Ask

Full Sample Hidden > 0 % of Obs. Full Sample Hidden > 0 % of Obs.

A: At First Tier

2-Year 10.2 16.8 45.4 8.2 15.3 39.4
3-Year 9.0 25.1 24.5 7.1 23.4 21.6
5-Year 12.2 38.7 19.7 10.6 37.7 18.1
7-Year 3.9 27.3 10.7 3.4 25.3 10.0
10-Year 11.9 38.6 19.1 10.7 38.5 17.3
30-Year 22.9 68.5 13.8 22.2 69.9 12.7

B: Across All Tiers

2-Year 5.4 6.0 85.7 4.1 5.0 77.5
3-Year 5.8 7.7 69.5 4.3 6.7 58.7
5-Year 10.2 11.9 80.2 7.3 9.4 72.7
7-Year 3.1 7.2 39.8 2.7 6.5 38.7
10-Year 10.4 11.6 85.2 8.8 10.2 80.1
30-Year 17.8 21.7 73.8 14.9 19.2 69.2

The table reports the percentage of depth that is hidden at the first tier (panel A) and across all tiers (panel B). Column “Full Sample”

shows the percentage of hidden depth based on all observations, while column “Hidden > 0” shows the percentage of hidden depth

based on observations with positive hidden depth only. The percentage of observations with positive hidden depth is reported in

column “% of Obs’. The statistics are computed from five-minute snapshots of BrokerTec’s limit order book for the respective

securities for the hours 07:00-17:30 over the period 2010-2011.
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Table 2.5: Baseline Price Impact of Trades

Trade Direction Signed Trade Volume

2-Year 0.357 0.006
3-Year 0.486 0.017
5-Year 0.708 0.028
7-Year 1.302 0.078
10-Year 1.340 0.066
30-Year 2.921 0.450

The table reports 50-tick cumulative price impact of trades using a bivariate VAR(5) model of trade and return (based on the best

bid-ask midpoint), with two alternative measures for the trade variable: 1) trade direction (1 for buys and -1 for sells), and 2) signed

trade volume (positive for buys and negative for sells). Cumulative price impact is in 256ths of one percent of par. Estimation is

based on BrokerTec data for the period 2010-2011.
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Table 2.6: Separate Price Impact of Trade Direction and Size

Trade Direction $1M Increment

2-Year 0.271 0.003
3-Year 0.390 0.008
5-Year 0.571 0.013
7-Year 1.132 0.031
10-Year 1.033 0.033
30-Year 2.738 0.093

The table reports 50-tick cumulative price impact of trade direction (buy) and size separately, using a trivariate VAR(5) model of

return (based on the best bid-ask midpoint), trade direction and signed trade volume. Trade direction is 1 for buys and -1 for sells.

Signed trade volume is the volume of trade, signed positive for buys and negative for sells. Cumulative price impact is in 256ths of

one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.7: Price Impact of Buyer-Initiated versus Seller-Initiated Trades

Buy Sell

2-Year 0.006 -0.005
3-Year 0.017 -0.016
5-Year 0.028 -0.027
7-Year 0.081 -0.075
10-Year 0.066 -0.065
30-Year 0.435 -0.464

The table reports 50-tick cumulative price impact of buyer-initiated versus seller-initiated trades using a VAR(5) model of buy trade

volume, sell trade volume and return (based on the best bid-ask midpoint). Cumulative price impact is in 256ths of one percent of par.

Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.8: Bid and Ask Price Impact of Buys and Sells (VECM)

Buy Sell

Bid Price Ask Price Bid Price Ask Price

2-Year 0.005 0.005 -0.005 -0.005
3-Year 0.016 0.016 -0.016 -0.016
5-Year 0.029 0.029 -0.028 -0.028
7-Year 0.081 0.081 -0.077 -0.076
10-Year 0.068 0.068 -0.068 -0.067
30-Year 0.451 0.449 -0.483 -0.485

The table reports 50-tick cumulative bid and ask price impact of buyer-initiated versus seller-initiated trades using a VECM(5)

model of bid and ask price revisions, buy trade volume and sell trade volume, with the bid-ask spread as the error correction term.

Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.9: Price Impact of Trades and Limit Orders

Buy Trade Sell Trade Bid Limit Order Ask Limit Order

2-Year 0.0052 -0.0049 0.0011 -0.0011
3-Year 0.0132 -0.0131 0.0078 -0.0053
5-Year 0.0245 -0.0236 0.0139 -0.0119
7-Year 0.0592 -0.0544 0.0285 -0.0275
10-Year 0.0579 -0.0570 0.0353 -0.0341
30-Year 0.3986 -0.4258 0.3491 -0.2801

The table reports 50-tick cumulative price impact of trades and limit orders using a VAR(5) model of buy trade volume, sell trade

volume, bid limit order flow, ask limit order flow and return (based on the best bid-ask midpoint). The limit order flow variables

are measured as the total volume of limit orders submitted to the inside tier between trades, net of modifications/cancellations.

Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for the period 2010-2011.
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Table 2.10: Price Impact of Trades After FOMC Announcements

Buy Trade Sell Trade Bid Limit Order Ask Limit Order

A: On FOMC Days
2-Year 0.0049 -0.0069 0.0018 -0.0024
3-Year 0.0153 -0.0264 0.0176 -0.0083
5-Year 0.0258 -0.0283 0.0150 -0.0248
7-Year 0.0749 -0.0592 0.0567 -0.0281
10-Year 0.0504 -0.0702 0.0587 -0.0508
30-Year 0.1925 -0.5242 0.5640 -0.4224

B: On Non-FOMC Days
2-Year 0.0037 -0.0042 0.0006 -0.0005
3-Year 0.0123 -0.0121 0.0058 -0.0032
5-Year 0.0210 -0.0237 0.0096 -0.0121
7-Year 0.0512 -0.0564 0.0276 -0.0289
10-Year 0.0541 -0.0576 0.0300 -0.0285
30-Year 0.2134 -0.2732 0.2828 -0.2976

The table reports 50-tick cumulative price impact of trade and limit order flow after 16 scheduled FOMC announcements over the

period 2010-2011 (Panel A), and compare with similarly calculated price impact of trade and limit order flow over the same time

interval on 5 days preceding and 5 days following these announcements (Panel B). The price impact estimates are based on a VAR(5)

model of return (based on the best bid-ask midpoint), buy volume, sell volume, net limit order flow to the inside bid, and net limit

order flow to the inside ask. Cumulative price impact is in 256ths of one percent of par. Estimation is based on BrokerTec data for

the 90-minute window that begins 2 minutes after the announcement time of each FOMC announcement. The announcement times

are collected from Bloomberg.
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Table 2.11: Descriptive Statistics of Normal versus Iceberg Orders
2-Year 3-Year 5-Year

Normal Iceberg Normal Iceberg Normal Iceberg

Percent Placed Inside Spread 1.18 2.57 2.40 4.58 2.74 10.25
Total Size ($M) 4.4 13.5 2.5 8.8 1.6 8.8
Hidden Size ($M) 0.0 9.4 0.0 6.1 0.0 6.7
Spread (cents/$100) 0.8 0.9 0.9 1.0 0.9 1.0
Same Size Depth ($M) 246 227 65 66 36 34
Opposite Size Depth ($M) 264 210 88 59 32 29
Inter-Order Duration (secs) 2.4 5.0 2.1 5.2 0.9 2.3
Past Realized Vol. (ann.) 0.03 0.03 0.06 0.05 0.09 0.08
Past Trading Rate (#Trades/5min) 8 7 12 10 24 21
Past Trading Volume ($M/5min) 292 228 183 141 369 323

No. of Orders Per Day 62,497 1,244 69,159 1,018 172,152 1,454

7-Year 10-Year 30-Year

Normal Iceberg Normal Iceberg Normal Iceberg

Percent Placed Inside Spread 2.04 8.91 2.93 15.98 16.83 53.26
Total Size ($M) 1.5 5.3 1.4 11.6 1.2 7.1
Hidden Size ($M) 0.0 3.7 0.0 9.3 0.0 5.8
Spread (cents/$100) 1.9 2.2 1.8 2.0 4.6 4.8
Same Size Depth ($M) 39 38 29 27 5 3
Opposite Size Depth ($M) 34 34 26 25 3 3
Inter-Order Duration (secs) 1.0 3.0 1.0 3.4 3.9 11.7
Past Realized Vol. (ann.) 0.14 0.13 0.18 0.16 0.30 0.27
Past Trading Rate (#Trades/5min) 13 12 23 20 18 16
Past Trading Volume ($M/5min) 92 89 311 262 57 52

No. of Orders Per Day 145,062 759 151,719 767 38,211 432

The table reports descriptive statistics based on limit orders submitted to the first tier of the order book on the BrokerTec platform on
100 days randomly selected from the 500 trading days spanning the sample period 2010-2011. Past realized volatility, trading rate
and trading volume are calculated over the five minute interval before each order submission. Inter-order duration is the prevailing
average wait time between orders on the same side, measured in seconds and averaged over the previous three orders on the same
side. Past realized volatility is the square root of the past five-minute realized variance computed as the five-minute sum of squared
one-second log midquote returns and annualized by a factor of 288×250 (288 five-minute intervals per day and 250 trading days per
year).
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Figure 2.1: Trading Activity Over Time

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

10

20

30

40

50

A
ve

ra
ge

 D
ai

ly
 T

ra
di

ng
 V

ol
um

e 
($

 B
ill

io
n)

 

 
2−Y
3−Y
5−Y
7−Y
10−Y
30−Y

The figure shows average daily trading volume by year in billions of dollars from 2001 through 2011 for on-the-run Treasury coupon

securities on the BrokerTec platform. The 2007 and 2008 figures for the 3-year note are based on data through August 2007 and

from November 2008 respectively, due to the suspended issuance of this note between August 2007 and November 2008. The 2009

figure for the 7-year note is based on data from February 2009, when this note was reintroduced.
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Figure 2.2: Round-the-Clock Trading Activity
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The figure shows the fraction of daily total trading volume by half-hour interval for on-the-run Treasury coupon securities on the

BrokerTec platform, based on data for the period 2010-2011. Times are Eastern time and indicate start of half-hour interval.
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Figure 2.3: Frequency Distribution of Inside Spread
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The figure shows the frequency distribution of the inside spread (measured in number of ticks) on BrokerTec. The tick size for the 2-,

3- and 5-year maturities is 1/128th of one percent of par, and that for the 7-, 10- and 30-year maturities is 1/64th of one percent of par.

The numbers are computed from five-minute snapshots of BrokerTec’s limit order book for the respective securities for the hours

07:00-17:30 over the period 2010-2011.
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Figure 2.5: Non-linear Price Impact of Trade Size
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The figure plots the permanent price impact (y-axis) for different buyer-initiated trade sizes (x-axis). The permanent price impact

of a given trade size is the cumulative price change (measured in 256ths of one percent of par) over a 50-tick horizon following

the trade. This is based on a VAR(5) model of return (based on the best bid-ask midpoint), trade direction, signed trade volume

and signed trade volume squared. Trade direction is 1 for buys and -1 for sells. Signed trade volume is the volume of trade, signed

positive for buys and negative for sells. Signed trade volume squared is the squared volume of trade, signed positive for buys and

negative for sell. Estimation is based on BrokerTec trade data for the period 2010-2011.
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CHAPTER 3

DARK POOL TRADING IN THE US TREASURY MARKET

3.1 Introduction

The ability to hide trading intention is important and valuable to market participants. As Harris (1997) writes:

“the art of trading lies in knowing when and how to expose trading interest.” Many trading venues provide

features that enable market participants to manage their exposure, ranging from hidden orders to dark pools.

The BrokerTec platform, one of two interdealer electronic trading platforms for U.S. Treasury securities,

is one such place where traders can conceal the extent of their trading interest. One way they can do this is

through iceberg orders. An iceberg order is a limit order that displays only a portion of the order quantity,

called the display size, with the rest invisible to the market. The hidden quantity is revealed only gradually to

the market as the displayed size is fully executed and the next installment becomes visible.

A second way traders can conceal the extent of their trading interest is through the workup process. A

workup is a protocol that automatically opens after the execution of each market order. During the workup

window, any interested market participants can transact additional volume at the same price established by

the initial execution, as long as counter trading interest exists. Workups thus provide traders the option to

submit orders of smaller size than desired, and then to increase the size when the workup opportunity opens.

It is intriguing to observe that iceberg orders are used sparingly in this market as compared to workups,

even though the former has higher execution priority. On average, less than 5% of transactions involve

execution against iceberg orders, whereas volume expansion through the workup protocol happens 49-56%

of the time for the on-the-run 2-, 5- and 10-year notes and nearly 40% of the time for the 30-year bond.

The economic significance of the workup protocol is demonstrated not only by its frequent usage, but

also by the magnitude of the expanded volume. On average, worked-up trading volume accounts for 43-56%

of total daily trading volume, depending on the security being traded. In transactions with a workup, the

worked-up dollar volume accounts for over 60% of total transaction volume. Collectively, these statistics

show that the workup protocol uncovers a significant amount of market liquidity that is not ex ante observable
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to market participants. More importantly, the workup feature relates to a salient fact about the Treasury limit

order book: market orders rarely walk up or down the book, at least for the on-the-run securities examined in

this chapter.

The fact that a significant portion of market liquidity is only revealed during the workup process, while

the price is fixed, raises an important question about its role in the price formation process. Does this portion

of order flow carry information? If so, how does it compare to the “transparent” part (i.e., the execution

of the initiating market order)? Up until now, the literature on price discovery of U.S. Treasury securities,

such as Brandt and Kavajecz (2004), Green (2004), Pasquariello and Vega (2007), and others, has been

concerned only with the informational role of generic order flow. Implicitly, it is assumed that the trade

flow is homogeneous and that the portion transacted in the pre-workup stage has the same impact on price

dynamics as that in the workup phase.

The theoretical literature on dark trading suggests that this is not the case. For example, Zhu (2014)

argues that the different execution probability of orders in transparent versus dark venues for informed versus

uninformed traders likely steers informed traders to the transparent venue and uninformed traders to the dark

venue. In contrast, Ye (2012) predicts that informed traders are more likely to hide their information in the

dark, thereby reducing price discovery. Although arriving at opposing predictions, both models suggest that

the information content of the transparent and dark parts of trading is different as a result of how informed

traders optimize their exposure strategy to exploit their information advantage.

It is also not realistic to study the information role of trades in this market without recognizing or

appreciating that the workup feature is an integral part of the trading process and a useful device for order

exposure management. Accordingly, it can alter traders’ optimization outcomes and decisions, as compared to

a hypothetical market setup in which this option is not available. For example, aside from choosing between

market and limit orders, traders also have choices over the exposure of their trading intention. If it is a limit

order, the submitter can 1) display the full order size, 2) submit the full order size but hide part of it from

view (i.e., submit an iceberg order), or 3) submit a smaller sized order and wait to expand the order size if and

when the order is executed and the workup is open. Likewise, if it is an aggressive order, the available choices

are: 1) submit the full sized market order for immediate execution, 2) submit a smaller sized market order and

hope to increase the volume in the ensuing workup, or 3) wait for a workup at the right price to trade. The

fact that workups are used so frequently in this market speaks for its importance in traders’ decision making.
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The workup protocol, by providing traders with an option to expand order size beyond the initially

submitted level, can be beneficial to informed traders in multiple ways. For example, an informed trader

may choose to submit a limit order of less than the intended quantity to minimize information free-riding

by others, knowing that he has the opportunity to increase the size when the order is aggressed against (i.e.,

executed by a market order). These are the “informed liquidity providers” as discussed in Boulatov and

George (2013). Alternatively, an impatient informed trader with a large trading interest may submit a market

order small enough to execute at the best price, and then search for further counter trading interest during the

subsequent workup at the same price, without having to walk deeper into the book.

The informativeness of the workup order flow, however, also depends on the actions of the uninformed.

If they behave in the sense of Zhu (2014), or if they are reactive traders who act upon the lead of others as

described in Harris (1997), the uninformed are more likely to trade in the workup stage, thereby reducing the

informativeness of workup order flow. Likewise, the uninformed can participate in the market on the liquidity

provision side, and thus volume expansion of limit orders during workups is not necessarily information

motivated.

Given the mixed guidance from theory, the informativeness of workup order flow in practice is an open

question. Our work in this chapter aims to address this question and thereby provide a more complete picture

of the price formation process of U.S. Treasury securities. We do this by separating order flow into the

trade initiation (or “transparent”) part and the workup (or “dark”) part, and quantifying how these respective

components contribute to price discovery.

Based on transaction data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities from the BrokerTec

platform over the period 2006-2011, we find that workup order flow is informative, albeit less informative

than trade initiation order flow. Workup order flow is most informative for the 2-year note, explaining about

17% of the total variation of the efficient price update. The 5- and 10-year counterparts explain between 7-8%

of the variation of the efficient price. It is only 1%, however, for the 30-year bond, indicating that traders in

this maturity segment do not opt for the workup as a channel to exploit their information advantage. Price

discovery in the 30-year segment is most attributable to public information, which accounts for over 80%

of the variation of the efficient price update. Our analysis also illustrates the importance of recognizing the

information segmentation of order flow due to the workup protocol. We show that the impact of actively

initiating a trade and the share of trade-related information are underestimated if one does not consider the

segmentation.
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Except for the 2-year note where the workup order flow is slightly more informative, our information

share analysis generally supports the predictions of Zhu (2014) in that the transparent part of order flow is

more informative than the dark part. Our evidence is also consistent with Comerton-Forde and Putnins (2013)

who study dark trading and price discovery of stocks traded on the Australian Stock Exchange and find that

the order flow that migrates to the dark is less informed, but not completely uninformed. Intuitively, informed

traders with a short-lived information advantage may choose to initiate a trade and realize their information

advantage quickly, since the potential of not finding a counter-party during the workup can make the workup

option costly (e.g., forgone information value). This is strongly supported by our result that the transparent

(or “lit”) part of the order flow becomes relatively more informationally important on high volatility days,

when adverse price movements could fasten the expiry of information.

Although less informative than the trade initiation flow, the workup process is responsible for the

discovery of a significant portion of market liquidity and plays a non-trivial role in price discovery. It is

therefore important to understand what factors might predict the use of a workup following a market order

execution and the extent of the volume expansion. We employ a logistic regression model for the probability

of a workup as a function of hypothesized determinants, including prevailing order book depth on the same

side, spread, depth on the opposite side, price volatility and a set of control variables. We employ a Tobit

model censored at the zero lower bound to capture the effects of the same set of explanatory variables on

workup volume, since volume is zero for non-workup transactions and strictly positive for those with a

workup. We find that, in general, a workup is more likely and expands greater volume when the market

is deep, upon the discovery of hidden orders, and around the times of high trading intensity, volatility and

workup activity. Outside New York trading hours, workups occur less frequently and discover less volume.

Despite workups being an unusual and economically important trading feature in the U.S. Treasury

market, academic research specifically on the workup process and its implications on market participants’

trading strategies is limited. The paper closest to ours is Boni and Leach (2004) who investigate the workup

protocol using GovPX data for October 1997. At that time, interdealer trading was still conducted over a

network of voice-assisted interdealer brokers (IDB). GovPX collected and disseminated market data from five

such IDBs. Each of the IDBs maintained its own limit order book, facilitated trades and mediated quantity

negotiations beyond the quoted depth. Boni and Leach hence characterize this market as one in which limit
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orders are “expandable”.1 They find that this expandability option helps limit order traders reduce costs

associated with information leakage and adverse execution of stale limit orders.

Dungey et al. (2013) account for the workup feature in their model of trading intensity on eSpeed, the

other electronic trading platform. They find that the duration of a workup significantly fastens the arrival of

the next market order. They interpret this result in light of Easley and O’Hara (1992)’s theory that market

participants infer the presence of informed traders by the time between trading events. They thus suggest that

workups provide information to the market.

Adding to this literature, our work is the first to consider the segmented order flow due to the workup

protocol and formally quantify the informativeness of the dark trade flow in comparison with that of the

transparent trade flow in a well defined microstructure model of the dynamics of price and order flow. We

therefore provide a more complete picture of how the trading process with the embedded workup feature – a

distinctive microstructure feature of secondary trading in U.S. Treasury securities – affects the price formation

process of these securities.

Furthermore, we extend the model used by Boni and Leach by exploring and controlling for a wider

range of potential determinants of workups as suggested by the literature on dark pool trading and hidden

liquidity. The extension is also valuable because the workup protocol as prevailing on BrokerTec differs

considerably from its historical precedent as studied in Boni and Leach, making it important to reevaluate the

workup protocol under its current structure.

Our contribution goes beyond a study of a specific microstructure feature of the U.S. Treasury market

in two important ways. First, this work is a timely addition to the literature on dark pool trading. There is

currently an active discussion among researchers and policy makers on the effects and implications of dark

pool activities on market quality and welfare (see for example Degryse et al. (2014)). On the one hand, the

existence of undisplayed liquidity compromises pre-trade transparency and can potentially harm less informed

1BrokerTec’s workup protocol differs from that of voice-assisted brokers in several ways. First, quantity negotiation on BrokerTec is
governed by a set of precise rules stipulating the window of opportunity for workup trades, replacing the role of human brokers in
going back and forth between counterparties working up the size of a trade. Second, as explained by Boni and Leach, with the
voice-assisted brokers, when a limit order on an IDB’s book is aggressed by a market order, the IDB gives the limit order’s submitter
the right-of-first-refusal to provide additional liquidity, even when there are other limit orders at the same price in the book. This
exclusivity was completely eliminated on BrokerTec in early 2006, making workups immediately open to all market participants
following the original trade(s) on a first come, first served basis (source: “System and Method for Providing Workup Trading
without Exclusive Trading Privileges”, patent number US 8,005,745 B1, dated August 23, 2011). Furthermore, the expanded volume
can come from either the aggressive or passive side during a workup so that the workup is no longer confined to expanding only
limit orders. Recently, BrokerTec instituted a new rule that allows for a workup to terminate prematurely if there is sufficient trading
interest at a better price point (source: “System and Method for Providing Workup Trading”, patent number US 7,831,504 B1, dated
November 9, 2010).

57



traders. On the other hand, supporters of dark pool trading mechanisms point to greater market liquidity and

better execution quality for trades, especially for large trades that can be executed without causing negative

price impact. Complicating matters, dark pools come in many forms. It is therefore important to understand

these various types of dark pools in different market setups and how their specific operationalization might

affect trading behavior and patterns.

The workup process in the Treasury market resembles a crossing network, a common form of dark pool.2

As in a crossing network, workup trades are matched on a first come, first served basis at a reference price

derived from the initial marketable order execution. While a crossing network is a common form of dark

pool used in many equity trading venues, not much is known about this form of dark pool in a fixed income

market setting. We find that volatility tends to generate more workups, but that those workups tend to be

less informative, suggesting the value of this crossing network in protecting traders against adverse price

movements. In general, the amount of private information hidden in this Treasury dark pool is quite small,

easing concerns that the dark pool could harm less informed traders.

The second direction in which our findings might be valuable is in the area of market design response

to high frequency trading. High frequency trading, or computer-driven trading in general, has increased

significantly over the last few years – a trend dubbed “rise of the machines” in Chaboud et al. (2013). This

has spurred debate on whether the competition for speed has resulted in socially wasteful investments in

trading technology. Budish et al. (2014) argue that a continuous limit order book is a flawed market design in

the face of increased high frequency trading. They propose frequent batch auctions as a way to eliminate

technical arbitrage opportunities prevailing at very high frequency and to slow down the arms race. Whether

this is a feasible proposal is outside the scope of our work, but the important takeaway from this discussion is

that there is a continual need to devise new market design features to keep up with changing trends in trading,

and to understand the implications of those features.

The BrokerTec market setup fits right into this discussion via its unique design. Its market structure

features an interesting mix of continuous auction (the limit order book) and periodic call auctions (workups).

2Buti et al. (2011b) characterize dark pools as having “limited or no pre-trade transparency, anonymity and derivative pricing.” The
workup process has precisely these characteristics. First, the workup process enables execution of additional trading interest not
observed by market participants before each transaction. Second, all trades through interdealer brokers in the Treasury market are
anonymous. During the allowable workup time window, market participants can send in orders, which are then matched by the
system. Any unmatched volume is held in the system waiting for subsequent counter trading interest in the workup. Third, the
price for these workup executions derives from the execution of the initial market order that triggers the workup. We thank Joel
Hasbrouck for this insight.
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These periodic call auctions open and close after every marketable order execution, allowing for the discovery

of additional liquidity. This can potentially help slow down activities of high frequency traders and give other

traders an opportunity to trade at a given price point. Viewed from this angle, the workup protocol might be

one possible design response to high frequency traders and the arms race discussed above. Our empirical

results readily provide a glimpse of the implications of such a market feature on price discovery. Even though

price is fixed during workups, activities during the workup window do contribute to price discovery, mostly

by trades that expand the aggressive side. Nevertheless, the extent of this contribution is small in comparison

to that of initiating trades that lead to workups.

The chapter is organized as follows. Section 3.2 describes the workup process in detail, discusses

the data used for the analysis and presents key stylized facts concerning workups. Section 3.3 presents a

microstructure model for the dynamics of segmented order flow and price, and analyzes the price impact

and informativeness of the respective components of order flow. In Section 3.4, we model and discuss the

dependence of workup probability and workup volume on market condition variables. Finally, Section 3.5

summarizes our key empirical findings and concludes the chapter.

3.2 The Workup Process

3.2.1 Market Overview

This chapter focuses on the interdealer trading segment of the secondary market for U.S. government

securities.3 Trading in this segment, especially in the on-the-run securities, occurs mostly on two electronic

trading platforms, BrokerTec and eSpeed (Barclay et al. (2006)). Comparing BrokerTec trading statistics with

those reported by other studies using eSpeed data (e.g., Dungey et al. (2013) and Luo (2010)), we observe a

greater market share for BrokerTec across all four securities considered.4 Dunne et al. (2011) compare price

3In this interdealer market, the majority of participants are Treasury securities dealers, some of whom are primary dealers with
obligations to participate in Treasury securities auctions. We use the term “dealers” interchangeably with “traders” and “market
participants”, even though there are other participants in the market such as hedge funds.

4Comparison of BrokerTec and eSpeed activity for the same sample periods and trading hours shows that the market share of
BrokerTec ranges between 57% to slightly over 60% for the 2-, 5- and 10-year notes. The market share in the 30-year bond is
slightly lower, but it is still over 50%.
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discovery on the two platforms using non-contiguous data for 2002, 2004 and 2005 and conclude that more

price discovery takes place in the more active but less transparent BrokerTec platform.5

Both BrokerTec and eSpeed operate as electronic limit order markets with no designated market maker.

Liquidity supply comes from the limit order book, which is a collection of limit orders at various price levels

submitted by market participants. Execution of orders follows the price and time priority rule. Our empirical

analysis is based on BrokerTec data and our discussion of how the market works is for the BrokerTec platform.

In submitting limit orders, market participants can choose to display order size either partially (iceberg

orders) or completely. If the former, the rest of the order size is not observable by other market participants.

As the displayed portion is exhausted through trading, the next installment of the order quantity becomes

displayed. This process continues until the total order quantity is completely executed. It is noted that the

hidden portion of an iceberg order takes precedence over the displayed part of orders queuing behind it at the

same price level.6

Traders demanding liquidity can send in market orders. Market orders must be priced. That is, beside the

order quantity and whether it is a purchase or sale, traders must specify a price.7 When a market order arrives,

it is matched with one or more limit orders standing on the opposite side at that price (or better), starting

with the displayed depth before executing against any hidden depth. For example, consider a market order

to buy $100 million at a price of 25580 when there is $30 million available at the best ask price of 25578

and another $100 million at 25580.8 The first $30 million of the order will be matched with limit sell orders

at 25578. Assuming there is no hidden depth at that price, the remaining $70 million will be executed at

25580. If a limit sell order is an iceberg order, then upon the execution of the displayed portion, the next

portion becomes visible and available for execution. Continuing with the above example, assume that there is

$15 million hidden depth at the best ask price of 25578. The market order will be executed as follows: $45

million at 25578 ($30 million displayed + $15 million hidden), and $55 million at 25580.

5These authors note that eSpeed does not have hidden orders, whereas BrokerTec allows such orders and is thus considered as having
less pre-trade transparency.

6This is different from other market setups in which the hidden part of an iceberg order goes to the end of the queue when it becomes
visible.

7In essence, they are marketable limit orders. In this chapter, we use the terms “market orders”, “marketable orders” and “aggressive
orders” interchangeably.

8In the BrokerTec database, prices are stored in 256th’s of one percent of par value. The prices used in the example translate to
99.9140625 (25578/256) and 99.921875 (25580/256).
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The execution of a market order is just the beginning of a transaction. Once all possible matches have

been made (against displayed and hidden depth in the book, if any), the market then enters into a workup

process during which additional volume at the same price can be transacted, until there is no further trading

interest. Using the example above, once the original buy order execution of $100 million is complete, the

workup protocol opens at the last price of 25580. As described in one of BrokerTec’s patent documents

relating to the workup protocol, the whole process is conceptually “a single deal extended in time”.9 The

protocol is discussed in greater detail in the next subsections.

Finally, it is worth noting that BrokerTec charges a fee for order execution, and that this fee is trader-

specific and not order-type specific.10 That is, a trader is charged the same fee whether his order is a limit or

a market order, and whether his order is executed in the pre-workup or workup stage. Therefore, for each

trader, the fee is not a consideration when it comes to the choice of order type and exposure. However, traders

with different levels of trading activity might be subject to different fee structures.

3.2.2 The Workup Process

The workup is a distinctive feature of trading in U.S. Treasury securities. The process automatically opens

after each market order execution, giving all market participants the chance to transact additional quantity at

the last price. The ability to transact additional quantity during the workup process thus enables traders to

submit orders of smaller size than their desired quantity, and then expand the quantity during the workup.

The workup protocol therefore offers a higher degree of control over if and when to trade the additional

needed quantity, whereas iceberg orders are subject to the risk of being adversely executed before the order

submitters have a chance to modify or cancel. However, the cost for the traders hoping to expand volume in a

workup is that the incremental quantity they expect to transact may not materialize if counter trading interest

is lacking. Thus, for those who need immediate execution, non-execution risk can be a major deterrent to

using workups.

Historically, the workup process consisted of two distinct phases: 1) the private phase, which gave an

exclusive right of first refusal to the original parties to the transaction, and 2) the public phase, which is open

to all other market participants. However, in 2006, the private phase was replaced by a public phase, making

9“System and Method for Providing Workup Trading”, U.S. Patent No. 7,831,504 B1, dated November 9, 2010.

10The exact fees are proprietary and we do not have information on these fees.
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the workup a double-public process. As a result, a transaction will progress straight to the first public workup

phase after all possible matches with the limit order book have been completed. During this phase, additional

trading interest can come from either side of the market, and these extra trades are conducted on a first come,

first served basis.

The first public workup phase is open for a pre-specified duration (it was 4 seconds from early 2006 until

July 2011 when the duration was shortened to 3 seconds). If there is no trading interest, the workup process

automatically expires at the end of this duration. However, if and when a new execution occurs during this

time window, the second public phase commences and a new duration opens up. It is then re-settable each

time a new execution occurs. This protocol allows the workup to last as long as there is trading interest at

the same price point, or to terminate after a predetermined time period if no such interest exists so that the

market can move forward.

All trades during a workup – triggered by the initial execution of a market order – are executed at the

same price as that of the original market order. As the extra liquidity discovered during the workup process at

a given price is not known to the market ex ante, the workup process can be likened to a dark pool trading

mechanism. More precisely, it resembles a crossing network, in which the last price serves as the reference

price for the execution of additional trades during the workup.

We treat the whole process from the initial execution to the expiration of the ensuing workup as a single

transaction. Each transaction can involve multiple trades or order matches. For example, a market order can

execute against multiple (smaller sized) limit orders. Each of these executions is recorded separately in the

database and is referred to as a trade, an order match, or an execution. We refer to those trades (or matches)

that happen before the workup as pre-workup trades. Other interchangeable terms for “pre-workup trades”

include “transparent trades”, “lit trades”, “normal trades”, and “non-workup trades”. Those that occur during

the workup phase are referred to as workup trades or “dark trades”.

3.2.3 The BrokerTec Data

The tick data from BrokerTec contains records of all market activity, from limit order submission, cancellation,

and modification, to matching with incoming market orders, time-stamped to the millisecond. We extract

information on all trading activity from this raw, comprehensive database. There is a flag each time a market

order arrives. Once automatic order matching with the limit order book completes, another flag indicates the
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commencement of the workup phase. Finally, when the workup expires, it is also flagged in the database. As

a result, we are able to identify the complete sequence of activities pertaining to each transaction.

The trade direction of the original market order, i.e., whether the aggressive side is a buy or a sell, is

also recorded, thus providing unambiguous signing of all pre-workup trades. The signing of trades executed

during the workup process warrants some further discussion. BrokerTec considers these trades as an extension

(time-wise and volume-wise) of the original execution. Hence, workup trades occur at the same price and

follow the same trade direction as that of the original execution, even though they can arise from either side

of the market. For example, if the original aggressive side is a buy, then the buy side remains the aggressive

side in the workup, and the sell side is the passive side. Therefore, there is no confusion as to the signing of

workup trades.

After identifying the sequence of activities for each transaction, we aggregate information for the

transaction, separately for the pre-workup and workup phases. In particular, we count the number of trades as

well as the total dollar volume exchanged in each respective phase. Furthermore, if there is execution against

the displayed portion of an iceberg order resulting in the exposure of new depth, we mark the transaction as

involving execution against an iceberg order.

The transaction data is then combined with the limit order book snapshots prevailing just before and

after each transaction. The limit order book is reconstructed from the raw BrokerTec data by cumulating

changes to the order book from the beginning of each trading day. Combining the limit order book data with

the transaction data provides a complete picture of the market at each transaction, facilitating our empirical

analysis of factors that are related to workup activities.

Our sample covers the period from 2006 to 2011. We focus the study on the on-the-run 2-, 5-, 10- and

30-year fixed principal securities. The on-the-run 3- and 7-year notes are excluded from our analysis due to

discontinuity in issuance. Issuance of the 3-year note was suspended between May 2007 and November 2008.

Issuance of the 7-year note was suspended between April 1993 and February 2009. We do not have access to

comparable tick data for any other Treasury securities.
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3.2.4 Univariate Analysis of Workup Activities

3.2.4.1 Trading and Workup Activities

An overview of market trading activity is presented in Table 3.5. Panel A shows the average daily total trading

volume and number of transactions. The 2-, 5- and 10-year notes have comparable trading volume in the

$30-35 billion range. This far exceeds the average of $5 billion in daily trading volume for the 30-year bond.

The number of transactions per day varies across securities, from the low 1,000’s range for the 2- and 30-year

securities to over 2,600 for the 5- and 10-year notes. It follows that trading in the 2-year note tends to occur

in much larger size than is the case for other securities.

We find that market participants utilize the workup protocol in 49-56% of transactions for the notes, but

only 39% of transactions for the 30-year bond. The workup share of dollar volume happens to be similar to

the share of transactions with workups, ranging from 48-56% for the notes, but only 43% for the bond.

To complement the sample average statistics on workups, we further examine the time series trend of the

use of workups in Figure 3.1. There is a modest increase in the use of workups from early 2006 until late

2008, when the workup shares of transactions and order flow drop before partially bouncing back in early

2009. The patterns have been fairly stable since then, except for a sharp decline in workups for the 2-year

note, to about 40% in the second half of 2011. Also evident from the figure is that workups in the 30-year

bond happen less frequently that they do in the notes, but expand proportionally greater volume when they do

occur.

Table 3.5, Panel A also reports the probability of transacting against an iceberg order for comparison, and

illustrates that workups are used much more frequently in this market. The chance of hitting/taking an iceberg

order is only around 4%, which is less than one tenth the probability of having a workup. Additionally, the

workup protocol, in providing traders with the opportunity to expand transaction volume at a given price,

likely contributes to the finding that transactions in these securities almost never execute at multiple prices,

beside the fact that the market is often very deep relative to the size of most market orders.

Further details at the transaction level, with and without workups, are presented in Panels B and C

respectively. We discuss first the transactions with workups (Panel B). This panel shows that the 2-year note

has the largest dollar volume per transaction when there is a workup, at about $42 million. This is more than

double the size of a transaction in the 5- or 10-year notes and about eight fold the size of a typical transaction
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in the 30-year bond. The number of trades per transaction is just below 10 for the notes and about 4 for the

30-year bond. Roughly two thirds of trades occur in the workup phase.

Panel C shows that transactions without workups tend to be much smaller in size, in terms of both

dollar volume and trade count, than those with workups. Moreover, transactions without workups tend to be

somewhat smaller than even just the pre-workup portions of transactions with workups. For example, the

2-year note’s average transaction size without a workup is about $12 million, compared with a $16 million

pre-workup size and $42 million total size for transactions with a workup. This is consistent with Harris

(1997)’s reasoning that small traders are usually not concerned with exposure issues, and importantly, the

small size is of little interest to other traders. Small trades can also be absorbed more easily by outstanding

limit orders. Consequently, small market orders are more likely to be executed without a workup.

Finally, it is useful to compare workups on BrokerTec with those on eSpeed as reported in Dungey et al.

(2013) for the period from January 2006 to October 2006. BrokerTec’s greater market share in terms of

total trading volume masks the fact that trading is slightly less frequent on BrokerTec, but that an average

transaction has a much greater size.11 The likelihood of workups is a few percentage points higher on

BrokerTec than on eSpeed. However, BrokerTec workups typically discover a slightly smaller proportion of

transaction volume. Accordingly, the overall share of workup volume does not differ greatly between the two

platforms.

3.2.4.2 Intradaily Pattern of Workup Usage

Figure 3.2 plots the probability of workup over the course of a typical trading day, from 18:30 of the previous

day to 17:30 of the current day (Eastern Time – ET).12 The figure shows that workups are most active

between 8:30 and 15:00. Outside of New York hours, workup activity is markedly lower, with a mild increase

occurring around the start of London trading at 3:00.

The lower workup usage in the overnight hours may be related to the low overall level of activity during

the overnight hours (e.g., Fleming (1997), Fleming et al. (2014)). The workup protocol requires more active

11Our comparison shows that an average transaction in the 2-, 5- or 10-year note is over 40% larger on BrokerTec than on eSpeed,
while that in the 30-year bond is about 14% larger.

12Fleming (1997) provides a description of the global trading day in U.S. Treasury securities. It starts at 8:30 local time in Tokyo,
which is 18:30 EST (or 19:30 EDT) the previous day (Japan has not adopted daylight saving time). Trading then passes on to
London at 8:00 local time, i.e., 3:00 ET. New York trading then starts at 7:30 and continues until 17:30. Statistics for the hour from
18:30-19:30 of the previous day are based on the periods over which the U.S. is on standard time.
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monitoring of market activity and exercise of judgment on the part of traders, which are less likely to occur

during these hours. Moreover, workups during the off hours are less likely to be filled due to lower market

participation and hence lower chance of meeting counter trading interest.

3.2.4.3 Workups and Order Flow

There are further interesting stylized facts relating to trading and workups. Table 3.2 reports several pairwise

correlations of interest. First, the signed order flow imbalance, measured by net order flow as a percentage

of total order flow for each day, is only weakly related with workup usage, with the absolute correlation

coefficient under 0.05 for three out of four securities. However, the absolute order imbalance shows a much

stronger correlation with the use of workups: except for the 30-year bond, the correlation coefficient is in the

negative 0.2-0.3 range. That is, we tend to see relatively more workup activities on days when the market

is balanced than when it is one-sided, whereas the direction of the imbalance does not matter much. This

observation can be interpreted in light of Sarkar and Schwartz (2009)’s notion of market sidedness as an

indication of asymmetric information, as informed traders tend to collect on one side of the market. If so,

they are more likely to initiate trades to exploit their information advantage quickly, as opposed to trade in

workups or post expandable limit orders.

Secondly, workups tend to be used relatively more frequently on more volatile days. This is illustrated by

the strong positive correlation coefficients across the four securities, ranging from 0.26 for the 30-year bond

to 0.54 for the 2- and 10-year notes. Finally, we also observe positive first order auto-correlation in workup

activities, consistent with a liquidity externality effect of workup trades as predicted by Buti et al. (2011a).

Specifically, increased workup activities imply that it is relatively easier to find counter trading interest in

workups, thereby increasing the execution probability, and hence attractiveness, of workup orders.

3.2.4.4 Direction of Workup Volume Expansion

Given the current workup setup on BrokerTec, any trader from either side can join an open workup. Accord-

ingly, volume can be expanded from either the limit order book side, or the aggressive side of the transaction.

It is informative to examine the direction of volume expansion in a workup because it is ultimately linked

to the degree of pre-trade transparency with respect to liquidity: the level of available liquidity market

participants can see before a trade versus what actually shows up in the trade. Moreover, workup volume

expansion from the aggressive side suggests the extent to which other traders follow the lead of the initial
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aggressive trader. It provides an indication for the amount of inactive trading interest which gets revealed only

when someone else has initiated a trade. Most importantly, the ability to work up volume on either side of a

transaction is one of the key features that differentiates BrokerTec’s workup protocol from its voice-assisted

predecessor.13

Figure 3.3 provides an analysis of the mix of workups with respect to the direction of workup volume

expansion. We classify workups into three categories: 1) expanding volume on the aggressive side only, 2)

expanding volume on both sides, and 3) expanding volume on the passive side (or both). Specifically, if a

transaction’s total volume is not greater than the available depth, all of the workup trades must have come

from the aggressive side (category 1). If, instead, a transaction’s total volume is greater than the available

depth, the limit order book must have been expanded during the workup. Whether or not the aggressive side

is also expanded can be determined by examining the pre-workup volume. If the pre-workup volume is less

than the available depth, it is clear that the workup also expands the aggressive side (category 2). However, if

the pre-workup trades completely wipe out the available depth, it is less clear whether the aggressive side is

also expanded during the workup, although the passive side is certainly expanded (category 3). Accordingly,

the sum of categories 1 and 2 provides a lower bound for the fraction of workups that expand the aggressive

side, whereas the sum of categories 2 and 3 equals the percentage of workups that involve expansion on the

passive side.

As can be seen from the figure, there is a cross-maturity variation in the direction of workup volume

expansion. For the 2-year note, the majority of workups (at least 73%) expands the aggressive side, including

the 53% of workups that expand only the aggressive side. Workups that expand the passive side occur 47% of

the time. On the other end of the maturity spectrum, for the 30-year bond, workups mostly expand the limit

order book (78%). Instances where only the aggressive side is expanded account for only 22% of workups.

The 5- and 10-year notes are in the middle, with nearly 40% of workups expanding the aggressive side only,

23% expanding both sides, and another nearly 40% expanding the passive side or both.

These statistics show that aggressive workups are common for the notes (especially the 2-year) but not

for the 30-year bond. In addition, workup trades often come from both sides within a given transaction,

13This is also where BrokerTec’s workup protocol differs from eSpeed’s. As described in one of eSpeed’s patent documents, a
market order needs to be sufficiently large to exhaust all displayed passive orders at the best price in order to trigger a workup,
during which the initial parties to the trade are granted the right of first refusal (source: “Systems and Methods for Trading”, patent
application publication number US 2004/0210512 A1, dated October 21, 2004). That is, small-sized market orders do not trigger
workups and thus the volume expansion on only the aggressive side is not possible under eSpeed’s workup protocol.
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accounting for 20% or more of workups in the notes. Taken together, the evidence demonstrates how the

workup protocol on BrokerTec’s electronic trading platform differs markedly from the earlier workup protocol

described in Boni and Leach (2004).

In order to see if the workup mix is sensitive to different times of day and market conditions, we also

analyze the direction of workup volume expansion over different trading hours, on volatile days versus

tranquil days, and on days with extreme net order inflow versus net order outflow. In general, the patterns are

similar and thus, for brevity, not reported. One notable finding from our sensitivity analysis is that traders

in the notes tend to expand limit orders more often on extremely volatile days. Together with the evidence

documented earlier that workups are used more frequently on volatile days, this finding is consistent with

Boni and Leach (2004)’s conclusion that limit order expandability is helpful to limit order traders as it helps

them reduce pick-off risk and information leakage associated with posting large limit orders during volatile

times.

3.3 Informational Value of Workup Trades

We proceed to specify a microstructure model for the dynamics of price and order flow, built upon the general

framework described in Hasbrouck (2007). The notable feature of our model is that it accounts explicitly for

the segmentation of order flow due to the workup feature, as theory suggests that the transparent and dark

components of order flow likely have different information values. From this model, we derive a structural

VAR representation in (irregular) trade time to be estimated using the data. We then discuss the empirical

implementation and findings of the model.

3.3.1 A Microstructure Model of Price and Trade

Let t index the tth market order. We distinguish events occurring during the pre-workup and workup phases

of the tth transaction by the subscripts t− and t+ respectively. Pt− denotes the best bid ask midpoint (logged)

observed as of the tth transaction, and mt− the unobservable efficient price. Let LTt− be the signed volume

of pre-workup (or “lit”) trading, and (DTt+) the signed volume of workup (or “dark”) trading. Both volume

variables are positive if the tth transaction is a buy, and negative if it is a sell.
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The basic building blocks of the model are:

mt− = mt−−1 + wt− (3.1)

Pt− = mt− + cLTt− (3.2)

LTt− = v1,t− + β1v1,t−−1 (3.3)

wt− = u−t + λ1v1,t− + λ2v2,t+−1 (3.4)

DTt+ = v2,t+ + β2v2,t+−1 + α1v1,t− + α2u
−
t (3.5)

where the efficient price mt− is specified to follow a random walk as in equation (3.1). wt− is the efficient

price increment and the subscript t− indicates that the price updating takes place with the execution of

the tth market order, but before the workup begins. The observed price Pt− , as expressed in equation

3.2, consists of the permanent component mt− as well as a component reflecting trading frictions (cLTt−).

Since workup trades are conducted at the price determined in the pre-workup trading round, Pt− depends

contemporaneously on the lit trade flow LTt− but not on the dark trade flow DTt+ .

To allow for the positive auto-correlation of transaction sign as predicted by theory (for example, Parlour

(1998)) and observed in the data, a MA(1) model is specified for the lit trade flow as in equation (3.3), where

v1,t− is a white noise process and captures the pre-workup trade innovation. Likewise, equation (3.5) for

the dark trade flow DTt+ has an MA(1) error structure with the error term v2,t+ . However, it also includes

the contemporaneous effect of the innovation in lit trade flow v1,t− that precedes and initiates the workup

process, as well as public information that arrives at the time of the trade ut− .

Equation (3.4) models the efficient price increment wt− as consisting of both a public information

component ut− that is unrelated to trade and a trade-related private information component. The latter

component consists of non-public information inferred from the lit trade flow, as well as the lagged dark

trade flow. While workup trades have no immediate price implication as they are executed at an established

price, traders can observe the workup trade flows after each transaction and update their belief about the

fundamental security value in subsequent transactions. Therefore the dark trading innovation enters the

efficient price increment equation with a lag. Finally, the model’s innovation terms, namely ut− , v1,t− and

v2,t+ are assumed to be uncorrelated.
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From this point, we simplify the notation by suppressing the plus and minus superscripts of t. With this

setup, we can derive a VMA(2) for Yt ≡
[
LTt 4Pt DTt

]T
with an error vector εt, where εt relates to the

model’s exogenous variables through the following expression: εt = B

[
v1,t ut v2,t

]T
, with:

B =


1 0 0

λ1 + c 1 0

α1 α2 1

 . (3.6)

Assuming invertibility condition, a VAR representation (of infinite order) exists for Yt with the error

vector εt and a covariance matrix Ω ≡ Var(εt). The matrix B accordingly captures the contemporaneous

dynamic structure of the model. It is a lower triangular matrix, reflecting our key assumption with respect

to the causal ordering in the model. Specifically, the ordering goes from pre-workup trades to price update

and finally to workup trades (which also corresponds to the way we intentionally stack up the vector Yt).

Price revision following the pre-workup trade variable reflects the commonly adopted assumption in the

literature that traders watch order flow to update their beliefs about the fundamental value of a security. That

the pre-workup trade variable and price revision precede the workup trade variable in the ordering is natural

given the way the workup process works: a market order (i.e., pre-workup, or originating, trade) must arrive

and execute against standing limit orders before the workup process opens at the established price point.

Formulated this way, the model implies that the price revision incorporates two sources of information:

1) public information unrelated to trades (ut), and 2) private information inferred from the contemporaneous

trade flow innovation (v1,t) and the previous workup trade flow innovation (v2,t−1). The role of private and

public information in the process of price formation in the U.S. Treasury bond market has been well studied in

the literature (e.g., Pasquariello and Vega (2007)). Our model goes one step further by delineating the sources

of private information and quantifying the informational importance of workup trade activities separately

from the information content of initiating a market order. For comparison, we also estimate a standard model

of the price impact of trades with only the generic transaction volume, which we refer to as the “bivariate”

model (as opposed to our “trivariate” model).
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3.3.2 Permanent Price Impact of Trades

The VAR representation discussed in the previous section can be fit to the data and the permanent price impact

of the respective components of order flow can be evaluated. For empirical implementation, we estimate a

structural VAR(5) model. Given the assumed ordering discussed earlier, the structural dynamics (i.e., the

matrix B as well as the structural variance σ2u, σ
2
v1 , and σ2v2) can be fully identified.

The long-run cumulative response of price provides a measure of the permanent price impact which is

attributable to information and not transitory liquidity effects (see Hasbrouck (1991b)). In other words, it

corresponds to the increment in the efficient price wt:

E [4Pt +4Pt+1 + ...|εt] = Ψ∞,P εt (3.7)

We approximate Ψ∞,P by computing the cumulative impulse response function (IRF) out to a sufficiently

long horizon over which the price response has stabilized and any transitory effects have washed out. As

is standard in the literature, we compute the IRF for price from the estimated VAR model by forecasting

the system recursively forward to the chosen horizon, assuming that the system is initially at rest, i.e., all

variables are set to 0 except for the shocked variable. Inspection of the path of the estimated IRFs indicates

that a horizon of 50 transactions provides a reasonable approximation of the permanent price impact Ψ∞,P .

The price impact is measured with units in hundredths of a percent of par value (basis points), which is

equivalent to cents per $100 par value. The model is estimated separately for each day in our sample.

Figure 3.4 plots the average cumulative change in price up to 25 transactions following an initial $1

billion shock in trade volume initiated from the buy side. The figure shows clearly that the transparent part of

order flow has a much greater price impact than the dark part for most securities. The only exception is in

the 2-year note, where the impact of the pre-workup and workup trade flows is comparable. The figure also

shows that the cumulative price response largely settles by the fifth transaction.

The estimated permanent price impact per $1 billion shock is reported in Table 3.3. The table shows

the mean and the 95% range of the time series of the daily price impact estimates separately for pre-workup

trade flow (under the “Lit Trades” column) and workup trade flow (under the “Dark Trades” column). The

mean impact is monotonically increasing in maturity, and this pattern applies to both the pre-workup and

workup trade flow. At the shorter end, the 2-year note price increases by merely 3.7 bps if the trading volume

during the pre-workup phase increases by $1 billion. In sharp contrast, the same shock, if it occurs in the
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30-year bond, induces a permanent increase of nearly 400 bps, about a hundred times larger. With respect to

workup trade flow, the differential in the price impact between the two maturity ends is not as extreme: 51

bps for the 30-year versus 3 bps for the 2-year. In between, the 5- and 10-year notes exhibit a more moderate

difference: the price impact of the latter is slightly more than twice that of the former. The ranges of price

impact estimates for lit and dark trade flow also generally respect the ordering by maturity just discussed,

except for the 30-year bond where a much wider range is observed.

Finally, it is useful to look at the variation over time of the price impact to gain an understanding of how

market liquidity has evolved. Figure 3.5 plots the 20-day moving average of price impact over the sample

period. Considering first the price impact of initiating a market order, one can see a significant increase

during the crisis period (from August 2007 to June 2009), with the sharpest increases (to about four to eight

times larger than the pre-crisis level) occurring in late 2008. This is consistent with the patterns of market

depth and bid-ask spreads, other measures of market liquidity, shown in Engle et al. (2012a), in suggesting

that the market was markedly less liquid during the crisis.

The price impact of workup trades also varies significantly over time, albeit less so than the price impact

of pre-workup trades, with a mild increase during the crisis period. There is thus roughly a doubling of price

impact from the pre-crisis level to the peak of the crisis for the 5-, 10-, and 30-year securities, versus a four-

to six-fold increase for the pre-workup trades. For the 2-year note, there is roughly a quadrupling of price

impact at the peak of the crisis for the workup trades, versus a roughly eight-fold increase for the pre-workup

trades. The differential response during the crisis means that the 2-year note’s price impact estimates for

pre-workup and workup trades, which are similar for the pre-crisis period, separate out during the crisis.

Taken together, the evidence indicates that initiating a trade produces a greater impact than waiting to trade

the same quantity during a workup, and that this gap is more pronounced during times of crisis.

3.3.3 Information Content of Workup Trades

To evaluate the informational value of workup trades, we follow the information share framework as

introduced in Hasbrouck (1991b) and applied widely in subsequent studies of price discovery. Conceptually,

the information share of a variable measures the extent to which its variation contributes to the variance of

the efficient price update wt. From equation (3.7), this variance can be approximated by:

σ̃2w = Ψh,PΩΨT
h,P (3.8)

72



Given the structure of the system, it is easy to show that the right-hand side of equation (3.8) is a linear

combination of σ2u, σ
2
v1 , and σ2v2 . Each of these terms can then be expressed as a percentage of σ2w and

is referred to as the “Hasbrouck information share” of the relevant variable. Specifically, the percentage

attributable to σ2u indicates the extent to which public information drives the variation in the efficient

price update, whereas those attributable to σ2v1 and σ2v2 quantify the contribution of non-public information

revealed through the trade flows during the pre-workup and workup phases respectively. The information

share statistics thus allow us to disentangle the information structure and determine the degree of private

information being conveyed in workups in comparison to that conveyed through the normal/visible trade

flows.

The information share estimates are reported in Table 3.4. We observe that the informativeness of the lit

trade flow is quite consistent across all four securities, ranging on average between 15% and 19%. At the

95% upper bound, this part of order flow explains about 30% or more of the total variation in the efficient

price innovations for each of the 2-, 10-, and 30-year securities, and about 26% for the 5-year note.

In contrast, there is a much wider range for the informational value of workup trades across maturities.

On the one hand, the dark trade flow of the 2-year note drives about 17% of the variation in the efficient

price – slightly higher than the contribution of the lit trade flow. On the other hand, there is almost no private

information revealed by the workup trade flow for the 30-year bond (1%). Even the 95% upper bound for

the bond is only about 5%. In between, the 5- and 10-year notes are quite similar in terms of workup trade

informativeness, with average contributions of 7 and 8% respectively, and corresponding 95% upper bounds

of 18% and 21%.

Despite the importance of trade flow, the table also shows that public information is nonetheless the

main driver of the variation in the efficient price. For the 5- and 10-year notes, the average contribution of

public information to the price discovery process is between 73-77%, with a 95% range of roughly 60-90%.

The 30-year bond has a slightly higher public information share, with a mean of 82% and a 95% range

between 69% and 94%. The 2-year note shows a slightly lower public information share, averaging 67%

and ranging between 42% and 88%. That is, trade flow is most informative at the short maturity end and

least informative at the long maturity end. Moreover, the breakdown between lit and dark trades shows that

this overall differential between public information and trade-related information is explained mainly by the

differential in the informativeness of workups.
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The time series of the information shares, presented in Figure 3.6, show that the informativeness of the lit

trade flow appears rather stable over time, with a slight increase toward the end of the sample period. On the

other hand, the informational role of the dark trade flow changes more appreciably over time, most notably

among the notes. The information share of workup trades trended down through much of 2007 and 2008,

before rebounding in 2009. The information share of workup trades for the 2-year note settled at a new higher

level after 2009, whereas the share remained similar or lower than pre-crisis levels for the 5- and 10-year

notes, respectively.

3.3.4 Information Structure on Special Days

We now analyze the information structure on days of special interest. We specifically look at days with

important announcements, days when the market is highly volatile, and days when the market experiences

extreme buying pressure – an indicator of a possible flight-to-safety. Table 3.5 documents this analysis. Under

each security, there are three columns: Lit Trades, Dark Trades and Public Information. Different from Table

3.4 where we report the raw information shares of lit and dark trades, in this table, the respective shares are

standardized by the total trade-related information share, i.e., these two columns add up to 100%. This makes

it easier to see the relative informational importance of lit versus dark trade flow. The private versus public

information split can be gauged by examining the public information share reported in the third column for

each security.

3.3.4.1 Announcement Days

In Table 3.5, Panel A, we compare non-announcement days to days with announcements of: 1) FOMC

rate decisions, 2) important macroeconomic releases, and 3) auction results.14 These announcements have

been shown to be important to Treasury price formation (see Fleming and Remolona (1997), Balduzzi et al.

(2001), Green (2004), Pasquariello and Vega (2007) and references therein). For each of these announcement

types, we compare the relative informativeness of the lit and dark trade flow on announcement days with that

estimated on days when none of these three announcement types occurs.

Interestingly, there is no major change in the private information structure on announcement days, as

compared to non-announcement days. That is, the mix of information content of lit and dark trade flow

14See Appendix A for the list of announcements considered.
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remains quite similar across different announcement types (including no announcement). However, the

trade flow collectively has relatively less information value on FOMC and macroeconomic announcement

days. This result is intuitive, because there is a greater amount of public information arriving on these

announcement days which can move prices without requiring trades, as shown in Fleming and Remolona

(1999) and other studies.

3.3.4.2 Volatile Days

Table 3.5, Panel B shows a comparison of the information structure on highly volatile days against days

with low volatility (based on the 95th and 5th percentiles of the volatility distribution). We first focus on the

private information mix. Consistently across all four securities, the pre-workup trade flow – the lit part – is

relatively more informative on high volatility days. It is helpful to tie this result to an earlier stylized fact

that workups are used more on volatile days, and, particularly for the notes, more often expand the quoted

depth. We interpret these results collectively as indicating that: 1) information is short-lived in volatile times,

necessitating fast execution and 2) the increased incidence of quoted depth expansion reflects how liquidity

providers (not necessarily informed) use the workup option to guard against adverse execution of their orders.

It is also interesting to see that public information takes on a greater role in price discovery when

the market is highly volatile, as compared to when the market is tranquil. That trades are relatively less

informational when price is highly volatile is to be expected, because the variance of the efficient price

update is a linear combination of the variances of return and the two order flow variables. When price

fluctuates greatly, this variability dominates the variance of the efficient price update, leaving a lesser role for

trade-related information in the price formation process. An intuitive way to think about this result is that

noisier public information makes it harder for market participants to interpret trade flow patterns and discern

value-relevant information.

3.3.4.3 Days with Extreme Net Order Flow

In Table 3.5, Panel C, we compare the information structure on days with high net inflows and high net

outflows (based on the 95th and 5th percentiles of the distribution of net order flow). Net order flow, if

positive, suggests a possible flight-to-safety into Treasury securities (see Beber et al. (2009)), whereas strongly

negative net order flow suggests a flight out of Treasury securities. The results show that the 2- and 10-year

notes do not exhibit a statistically significant change in the information structure between flights into and
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out of Treasuries. In contrast, the lit order flow of the 5- and 30-year securities becomes relatively more

informative on days with high flows into the market, compared to flows out of the market. However, the shift

is fairly small in magnitude. Furthermore, most securities show a similar public information share between

high inflow and high outflow days. Overall, the nature of the flows in the market does not seem to alter

substantially the information structure and workup characteristics.

3.3.5 Comparison with Standard Model of Price Impact of Trades

Our analysis in the previous section illustrates that delineating the trade flow into the pre-workup and workup

components permits a more complete understanding of how the different layers of the trading process

convey non-public information and affect price dynamics. One of the key findings is that trade flow is not

homogeneous. A $1 million trade initiated in the pre-workup stage generally results in a greater price impact

and carries more information than when the same trade occurs in the workup stage.

As a result, if we model only the trade volume variable without considering its respective components, we

may underestimate the price impact of a market order, since the lower impact of the workup component pulls

down the estimate for the whole transaction size. In addition, omitting the possible endogenous interaction of

workup and pre-workup activity might underestimate the overall informativeness of order flow. To formally

see this, we estimate a bivariate VAR(5) of trade flow and return, and compute the permanent price impact as

well as the information share of transaction volume. The comparison to the trivariate results is provided in

Table 3.6.

Panel A illustrates that for the 5-, 10- and 30-year securities the price impact of a lumped-together (or

“generic”) trade estimated from the bivariate model is much smaller than the price impact of a market order

of the same size estimated from the trivariate model (about half the magnitude). At the same time, Panel B

shows that the price impact of a generic trade is higher than the price impact of a trade occurring during a

workup.

For the 2-year note, the estimated price impact of a generic trade is not only lower than the estimated

price impact of a market order (Panel A), but also lower than the price impact of a workup trade (Panel B). As

discussed earlier, workup activity in the 2-year note is generally as informative as pre-workup trading activity.

Failure of the bivariate model to capture the endogenous dynamics between workups and trade initiation

featured in our trivariate model results in a lower price impact estimate than that of workups for the 2-year

note.
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In addition, as shown in Panel C, the bivariate model attributes less information value to order flow.

Our tests of the hypothesis that the information share of trades in the model of segmented order flow is

not higher than that implied by the bivariate model are rejected for three of the four securities considered.

This is because the bivariate model does not capture and attribute adequately the different contributions and

variations in the respective components of the overall order flow. More importantly, as discussed above, the

dynamic interaction between pre-workup and workup order flow is absent in the bivariate model, implying a

lower information role of order flow than is the case when this dynamic interaction is taken into account.

Economically, it is important to recognize that the workup option is an integral part of the trading process

in the Treasury interdealer market. It is undoubtedly factored into the trading decisions of dealers, since

they can choose to trade immediately by submitting a market order, or wait to trade in a workup. Factors

such as liquidity need, degree of impatience and/or possession of short- versus long-lived information might

contribute to the segmentation of order flow, as dealers balance faster execution with higher price impact.

Treating this market as one where such a workup option is not available and trade flow is homogeneous may

give rise to a less than accurate characterization of the trading process and how trading affects price dynamics.

3.3.6 Is Direction of Workup Expansion Informationally Relevant?

As discussed earlier, the workup protocol on the BrokerTec electronic platform differs from the voice-assisted

protocol described in Boni and Leach (2004) in that workup volume can originate from either side, as opposed

to just expanding the limit order book. The analysis performed up to this point has considered all workup

volume to be equal, but additional insight may be gained by examining whether the direction of volume

expansion during a workup matters to price discovery. Our results show that this is indeed informationally

relevant.

To proceed, we estimate an expanded VAR model in which the workup trade flow (DT ) is replaced

by three workup trade flow types (DT1, DT2, and DT3). These are workups that expand volume on: 1)

the aggressive side (DT1), 2) both sides (DT2), and 3) the passive side (DT3).15 The vector of endogenous

variables is now Yt ≡
[
LTt 4Pt DT1,t DT2,t DT3,t

]T
. To check whether the relative importance

of each of these workup trade flow types is sensitive to the VAR variable ordering, we also report the

results based on an alternative ordering in which the different workup trade flow categories are reversed,

15See subsection 3.2.4.4 for a detailed description of this classification.
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i.e., Yt ≡
[
LTt 4Pt DT3,t DT2,t DT1,t

]T
. From the estimated VAR, we compute the information

share for each of the variables in the system as described earlier, and report them in Table 3.7. For brevity,

the information shares of lit trades and public information are not shown as they are quite similar to the

previously reported results.

The results indicate that workup volume coming from the aggressive side contributes significantly more

to price discovery. For example, the information share of workups that expand the aggressive side averages

13% for the 2-year note, compared with the 6% information share of workups that expand both sides and the

1% information share of workups that expand the passive side. Interestingly, this pattern holds even for the

30-year bond, where workups mainly expand the passive side. A comparison of the two orderings shows that

the results are not ordering sensitive.

To see whether the information contribution of each type of workup order flow is commensurate with its

share of volume (shown in Figure 3.3), we rescale the three information shares so that they add up to 100%.

The rescaled numbers indicate the relative contribution of each workup type to the total informativeness

of workup order flow. We use the mean information shares based on the first variable ordering for this

calculation, but the result is similar for the other ordering. The relative information contribution of aggressive

workups is 63.9%, 64.1%, 64.1%, and 64.2% respectively for the 2-, 5-, 10- and 30-year securities. These

percentages are consistently higher than the volume share of aggressive workups, which are 53%, 38%, 29%

and 22%. That is, aggressive workups are disproportionately more informative than the other two workup

types.

3.4 Determinants of Workup Trades

As the previous section shows, trading activity that takes place during the workup stage has a non-trivial role

in the price discovery process. Additionally, workups take place in more than half of transactions and account

for a large share of volume transacted in this market. Collectively, these findings provide a motivation for our

subsequent analysis exploring the determinants of the workup option and the extent of volume transacted

during this phase. Being able to predict the likelihood and extent of a workup upon the arrival of the next

market order, based on prevailing market conditions, can be valuable to market participants in making trading

decisions.
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In order to identify workup determinants, it is important to understand workup benefits and costs. The

most natural cost of waiting to transact in a workup is the risk of non-execution and perhaps the loss of private

information advantage, since counter trading interest may not exist in a workup. Therefore, variables that

correlate with non-execution risk or the perishability of private information are expected to be negatively

associated with workup usage and workup volume.

On the other hand, the obvious benefit of the workup protocol is that traders have more flexibility with

what to do with their trading intention, including not doing anything at all if the market moves unfavorably.

This provides an important advantage over iceberg orders, since the hidden part of an iceberg order may get

executed adversely before the trader has a chance to modify or cancel. Furthermore, the ability to expand

volume during workups can be valuable to those traders with a large trading interest. By submitting an initial

small sized order, those traders can avoid causing adverse price impact that could have resulted had they

submitted the full-sized large order altogether.

The use of workups therefore reflects a trade-off among non-execution risk, increased control over one’s

trading activities, and the ability to avoid adverse price impact. We thus model the probability of workup

(i.e., whether or not a transaction has a workup), as well as the magnitude of the workup volume, with the

following explanatory variables capturing this trade-off:

• DepthSame: prevailing inside depth on the same side of the transaction (logged).

• DepthOpp: prevailing inside depth on the opposite side of the transaction (logged).

• PretradeSpr: prevailing relative spread in basis points
(

10, 000 PA−PB
(PA+PB)/2

)
.

• MoSize: pre-workup volume of the transaction (i.e., the volume transacted before the workup start)

(logged).

• HdRevealed: whether trading activities during the pre-workup stage have revealed any iceberg orders.

• AveDurLast5: average transaction duration (in seconds) in the last five minute interval (logged).

• Vola5Min: volatility as measured by the high low range of the logged mid-quote over the last five

minute interval, capturing the level of volatility immediately before the transaction.

• PctWkup5Min: percentage of transactions with a workup in the last five minute interval, to control for

the possible liquidity externality of workup activities as predicted by Buti et al. (2011a)’s model.
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• PctWkupV5Min: percentage of volume expanded during workups (conditional on workup usage) in the

last five minute interval. This is another control for the liquidity externality.

• Tokyo trading hour dummy: equals 1 if the transaction starts during the period from 18:30 EST (or

19:30 EDT) the previous day to 3:00 ET.

• London trading hour dummy: equals 1 if the transaction starts during the period from 3:00 ET to 7:30

ET.

We employ a logistic regression model for the probability of workup, in which the dependent variable

equals 1 for those transactions with workup, and 0 otherwise. For the extent of volume expansion during

a workup, we estimate a Tobit model in which the dependent variable is the workup volume, and those

transactions with no workup are censored at zero. The model estimates are presented in Table 3.8. Given the

large number of observations, most of the coefficient estimates are significant at the 5% level. Only those

coefficients that are not significant are marked with an asterisk. We discuss each determinant below.

First, the prevailing depth on the same side is positively related with both the probability of workup and

the magnitude of workup volume. This supports the argument that a higher level of depth, indicative of longer

time to execution for the marginal limit order, might encourage traders with trading interest on the same

side to opt for the immediate execution opportunity offered by the workup. This finding is enhanced by the

negative relationship between prevailing spread and the likelihood of workup.16 A tighter spread (the spread

is often 1 tick in this market) makes it harder to post limit orders inside the spread, while simultaneously

reducing the cost to trade at the workup price (i.e., the forgone spread). Thus, the choice of immediate

execution becomes more attractive, despite it being at a worse price than that of a limit order price. Both of

these findings provide empirical support for Buti et al. (2011a)’s model of dark pool trading strategies in limit

order markets.

Our finding concerning the effect of depth on the opposite side provides some insight into what matters

more to traders when the market is shallow on the opposite side. Theoretically, the effect of opposite side

depth on the likelihood and extent of a workup can go either way. On the one hand, the model by Buti et al.

(2011a) shows that lower depth on the opposite side to absorb incoming orders can result in more adverse

price impact for incoming trades. If so, the workup protocol can be valuable as it gives traders an option to

16Note that once the workup choice is made, the effect of prevailing spread on the extent of volume expansion during the workup is
mixed: negative for the 2- and 10-year securities, but positive for the 5- and 30-year securities.
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start with a smaller sized order and expand the size in a workup without bearing significant market impact.

On the other hand, lower depth on the opposite side may be a sign that trading interest on that side is lacking.

This can reduce the execution probability of trades in a workup, resulting in a lower likelihood of successful

matching during the workup window. Even if a workup does occur, the workup quantity is likely to be lower.

Our empirical evidence of a positive relationship for most securities supports the latter argument; that

is, non-execution risk appears to be a more important consideration than the adverse price impact concern.

The only exception is the 2-year note, for which we observe a negative effect of opposite side depth on the

likelihood of a workup. Recall that the transaction size in the 2-year note is often much larger than that for

other securities. Accordingly, the adverse price impact associated with the lack of opposite standing depth

might become a more important concern, thereby encouraging greater usage of workups. As for workup

quantity, the effect of opposite side depth is also positive for all securities, providing additional support for

the non-execution risk hypothesis.

Next, the initial size of a transaction is positively associated with the likelihood of workup (as shown by

the positive coefficients for pre-workup volume across securities, except for the 30-year bond). This provides

direct empirical support of Harris (1997)’s argument that there might be inactive traders in the market who

only take action based on the actions of others. A larger volume transacted during the pre-workup phase

is more likely to ignite interest from otherwise inactive traders. Another possible explanation is that large

initial volume is perceived by the market to be associated with large liquidity demand. This may induce

the expansion of the quoted depth during the workup beyond the level observed just before the trade – an

idea that finds empirical support in Boni and Leach (2004). Interestingly, once a workup is taking place,

the additional volume transacted may increase or decrease with the pre-workup volume depending on the

security. For example, it is positive for the 2- and 30-year securities but negative for the 5- and 10-year notes.

Another aspect of pre-workup trading – the revelation of hidden depth – can also predict higher workup

usage and volume expansion. The revelation informs market participants that there is a hidden liquidity pool in

addition to the initially observed depth and that workup trades have a greater chance of being filled/absorbed.

We further find that price volatility, measured over the 5-minute time window leading to each transaction,

is positively related with workup activities. This is consistent with Boni and Leach (2004)’s finding using

GovPX data under a protocol in which workups expand the limit order book only. Intuitively, when the

market is volatile, the risk of adverse execution of limit orders increases, thereby motivating a greater reliance
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on workups because the protocol allows traders greater control over when and how much to trade, or even not

to trade at all.

Moreover, since the workup protocol can be likened to a crossing network, we can also borrow theoretical

insights from that literature for a better understanding of our empirical volatility finding. Ye (2012) suggests

a linkage between security value uncertainty and the choice of trading in the crossing network as opposed to

the transparent exchange. Specifically, uncertainty increases both the price impact of trades on the exchange

and the non-execution probability in the crossing network, but the net effect is that the crossing network is

comparatively more beneficial for the informed traders. As a result, Ye predicts that crossing network usage

should increase in value uncertainty. Our finding concerning the effect of volatility is generally in line with

this prediction, as well as empirical evidence in Ready (2012) for a cross section of the 500 largest NASDAQ

stocks from 2005 to 2007.

Our result also shows that the speed of trading in the market significantly increases the likelihood of a

workup, as well as the magnitude of worked-up volume. In light of Easley and O’Hara (1992) and Dufour

and Engle (2000), high trading intensity is likely reflective of information arrival, and thus, inactive trading

interest can be activated and revealed in a workup following the lead of market order traders. Furthermore,

the positive coefficients for the prevailing level of workup activity support Buti et al. (2011a)’s argument that

dark pool liquidity begets dark pool liquidity, as a higher level of workup activity signals an increased chance

of finding counter-party trading interest and successful execution of workup orders.

Finally, the probability of workup and extent of worked up volume are both significantly lower outside

New York trading hours, even after having controlled for the level of trading activity through the previously

discussed covariates. This seems to be consistent with the hypothesis that workups are used less in the

overnight hours when there are fewer traders in the market. There is simply a lower chance of meeting with a

counter-party in a workup, or being able to ignite inactive trading interest, when there are not many traders at

their desks.

3.5 Conclusion

This chapter studies the workup protocol, a distinctive and frequently used trading feature in the U.S. Treasury

securities market. Given its importance in discovering a large portion of market liquidity, we examine its

role in the price formation process, and distinguish it from the information value of non-workup trades that
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initiate workups. We find that workup trade flow generally contains less information than its transparent

counterpart, but that its role is not trivial. In addition, it is the aggressive side workups that account for most

of the information value of workup trade flow. Workups that expand the limit order book as described in Boni

and Leach (2004) are far less informative.

Furthermore, we find that workups occur more frequently around volatile times, when the incidence

of workups expanding the pre-trade limit order book also increases for all three notes, suggesting that the

workup protocol is helpful to limit order traders in managing their trading interest. Additionally, workups are

more likely when the market is more liquid (e.g., greater market depth and tighter bid-ask spreads) or trading

more active. Interestingly, lit order flow becomes more informationally relevant on highly volatile days,

supporting the belief that traders with better information are more likely to initiate trades and exploit their

information before adverse price movements can render the information less valuable. Taken together, the

evidence seems to suggest that workups are used more as a channel for liquidity providers to guard against

adverse price movements, than as a channel to hide private information.

Our findings provide important implications for research into the price discovery of U.S. Treasury

securities. Consistent with theory, we document that the different layers of order flow have different

information content. Intuitively, given the option of trading in a workup, a trader who chooses to initiate a

trade (as opposed to wait for a workup) conveys a stronger signal to the market than otherwise would be

the case in a hypothetical market setup where such a workup option does not exist. Therefore, the act of

initiating a trade should contribute more to information discovery than the act of trading in a workup. We

show that, without considering this segmentation, the price impact so estimated can underestimate the impact

of initiating a trade and the share of non-public information flow.

Beyond the literature on price discovery in financial markets, our research adds to two important areas of

research, namely dark pool trading and security market design. The workup protocol in essence is a dark

pool mechanism and provides a valuable opportunity for examining how such a mechanism operates in a

fixed income market setting. We show that in the market for U.S. Treasury securities, dark pool trades are

only mildly informative and that they tend to occur more often at more volatile times, highlighting the benefit

of this mechanism in protecting traders against large price swings. While equity dark pools have recently

come into the spotlight for the potential of compromising market quality and fairness, our evidence indicates

that this is not a major concern for this fixed income market, one that is populated mostly by sophisticated

market participants (i.e., government securities dealers).
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With respect to security market design, the workup protocol presents an interesting case study of a

continuous limit order market combined with periodic call auctions. This is a timely contribution to the

current discussion on the market design response to the trend in high frequency trading. With increasing high

frequency trading activity across markets, continuous limit order market design has shown certain limitations

(e.g., encouraging an arms race in trading technology). Naturally, these limitations invite further research into

alternative market design features and necessitate an understanding of possible implications of such features.

In this direction, our work readily offers empirical implications on trading patterns, exposure choice and price

discovery in a continuous limit order market enhanced with periodic auctions.
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Table 3.1: Summary Statistics of Trading and Workup Activities

2-Year 5-Year 10-Year 30-Year

PANEL A: DAY-LEVEL STATISTICS

Volume ($B) 33.5 34.0 29.3 4.7
Pre-workup % 51.8 43.6 45.5 57.3
Workup % 48.2 56.4 54.5 42.7

Number of Transactions 1,224 2,679 2,642 1,464
% with Workup 49.0 56.2 55.2 39.1
% with Iceberg Order Match 4.2 4.3 4.4 3.9
% Executed at Multiple Prices 0.0 0.2 0.2 0.5

PANEL B: TRANSACTION-LEVEL STATISTICS (WITH WORKUP)

Transaction Size ($M) 41.8 18.6 16.4 5.4
Pre-workup 15.6 6.0 5.5 1.9
Workup 26.2 12.7 10.9 3.5

Number of Trades 9.9 8.7 8.6 3.9
Pre-workup 3.2 2.9 3.0 1.4
Workup 6.7 5.8 5.6 2.5

PANEL C: TRANSACTION-LEVEL STATISTICS (WITHOUT WORKUP)

Transaction Size ($M) 11.9 4.6 4.2 1.7
Number of Trades 2.4 2.1 2.2 1.3

PANEL D: SAMPLE SIZE

Number of Transactions 1,836,812 4,017,905 3,946,216 2,197,471
Number of Trading Days 1,501 1,501 1,494 1,501

This table provides summary statistics of trading activity in the on-the-run 2-, 5-, 10-, and 30-year Treasury securities on the

BrokerTec platform. The sample period is 2006-2011. A transaction refers to a complete sequence of order executions that starts

with the arrival of a market order and ends when the workup initiated by the original market order completes. A trade refers to a

single paired order matching. There is no data available for the 10-year note on seven days during the sample period (August 3-7,

10-11, 2009). Numbers reported in Panel A are daily averages. Numbers in Panels B and C are averages across all transactions with

and without workups respectively.
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Table 3.2: Correlations of Workup and Order Flow Variables

2-Year 5-Year 10-Year 30-Year

Daily Signed Order Imbalance & Workup Usage 0.048 0.169 0.043 0.043
Daily Absolute Order Imbalance & Workup Usage -0.297 -0.266 -0.206 -0.081
Daily Volatility & Workup Usage 0.541 0.380 0.540 0.256
Workup Autocorrelation 0.110 0.084 0.089 0.063
Workup Volume Autocorrelation 0.098 0.120 0.136 0.114

This table shows correlations of workup and trading variables for the on-the-run 2-, 5-, 10-, and 30-year Treasury securities on the

BrokerTec platform. The sample period is 2006-2011. A transaction refers to a complete sequence of order executions that starts

with the arrival of a market order and ends when the workup initiated by the original market order completes. Daily signed order

imbalance is buy volume minus sell volume, standardized by the day’s total trading volume. Daily absolute order imbalance is the

absolute order imbalance standardized by the day’s total trading volume. Daily volatility is the average five-minute realized volatility

of the bid-ask midpoint (logged) for each day. Workup usage is the percentage of transactions with workups for each day. The

workup and workup volume autocorrelation coefficients are computed based on transaction-level data.
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Table 3.3: Permanent Price Impact of Segmented Order Flow

Lit Trades Dark Trades

2-Year
Mean 3.70 3.19
95% Range Lower Bound 0.76 0.88
95% Range Upper Bound 13.59 8.57

5-Year
Mean 21.88 7.54
95% Range Lower Bound 5.23 2.59
95% Range Upper Bound 59.42 15.44

10-Year
Mean 48.16 18.04
95% Range Lower Bound 11.02 6.24
95% Range Upper Bound 129.36 34.00

30-Year
Mean 397.97 50.60
95% Range Lower Bound 113.59 -61.24
95% Range Upper Bound 938.46 203.19

This table reports the permanent price impact (in basis points per $1 billion buyer-initiated volume) of pre-workup trades (“Lit

Trades”) versus workup trades (“Dark Trades”). The estimates derive from a VAR(5) model of pre-workup trade flow, return and

workup trade flow. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the

period 2006-2011. Observations outside the [7:00-17:30] time window are excluded. The model is estimated separately for each day.

The mean and 95% range are computed from the time series of daily price impact estimates.
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Table 3.4: Share of Trade and Non-Trade Related Information
Trade Related Information Public

Lit Trades Dark Trades Information

2-Year
Mean 15.23 17.48 67.28
95% Range Lower Bound 3.52 3.01 41.72
95% Range Upper Bound 30.67 38.67 87.73

5-Year
Mean 16.09 6.72 77.19
95% Range Lower Bound 6.07 0.54 63.19
95% Range Upper Bound 26.35 17.82 91.08

10-Year
Mean 18.52 8.21 73.28
95% Range Lower Bound 7.83 0.67 59.11
95% Range Upper Bound 30.10 21.19 86.53

30-Year
Mean 16.66 1.05 82.29
95% Range Lower Bound 5.66 0.00 68.69
95% Range Upper Bound 29.95 5.13 93.73

This table reports the information share (%) of pre-workup trades (“Lit Trades”), workup trades (“Dark Trades”), and non-trade-

related information (“Public Information”). The estimates derive from a VAR(5) model of pre-workup trade flow, return and workup

trade flow. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the period

2006-2011. Observations outside the [7:00-17:30] time window are excluded. The model is estimated separately for each day. The

mean and 95% range are computed from the time series of daily information share estimates.
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Table 3.6: Informational Content of Segmented versus Generic Order Flow

2-Year 5-Year 10-Year 30-Year

PANEL A: PRICE IMPACT OF $1 BILLION PRE-WORKUP VOLUME

Model with Segmented Trade Flow 3.70 21.88 48.16 397.97
Model with Generic Trade Flow 2.74 11.34 25.94 181.00
p-value of paired sample t-test (right tail) <0.001 <0.001 <0.001 <0.001

PANEL B: PRICE IMPACT OF $1 BILLION WORKUP VOLUME

Model with Segmented Trade Flow 3.19 7.54 18.04 50.60
Model with Generic Trade Flow 2.74 11.34 25.94 181.00
p-value of paired sample t-test (left tail) 1.000 <0.001 <0.001 <0.001

PANEL C: INFORMATION SHARE OF TRADES

Model with Segmented Trade Flow** 32.72% 22.81% 26.72% 17.71%
Model with Generic Trade Flow 26.64% 22.76% 26.39% 14.45%
p-value of paired sample t-test (right tail) <0.001 0.201 <0.001 <0.001

This table compares the price impact and informational content of order flow estimated by our trivariate VAR model, which considers

separately the pre-workup and workup order flow, with those estimated by a standard bivariate VAR model, which considers the

generic order flow without segmentation. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury

securities over the period 2006-2011. ** This is the combined information share of pre-workup and workup trades.

90



Table 3.7: Information Share of Workup Trades by How Workup Volume Arises

Ordering 1 Ordering 2

Mean 95% LB 95% UB Mean 95% LB 95% UB

2-Year
Aggressive 12.96 2.18 31.18 13.47 2.25 31.97
Both 6.20 0.52 16.31 5.88 0.39 15.84
Passive 1.13 0.00 5.96 0.95 0.00 4.98

5-Year
Aggressive 6.55 1.29 14.41 6.81 1.35 14.87
Both 3.09 0.16 8.72 2.99 0.13 8.68
Passive 0.58 0.00 3.05 0.43 0.00 2.61

10-Year
Aggressive 7.72 1.59 16.30 8.05 1.66 16.92
Both 3.73 0.23 10.47 3.56 0.21 10.18
Passive 0.59 0.00 3.10 0.42 0.00 2.40

30-Year
Aggressive 1.97 0.01 7.10 2.00 0.01 7.13
Both 0.67 0.00 3.19 0.64 0.00 3.13
Passive 0.43 0.00 2.42 0.42 0.00 2.42

This table reports the % information share of workups classified by how workups expand volume: 1) the aggressive side only, 2) both

sides, and 3) the passive side. The estimates derive from a VAR(5) model of pre-workup trade flow, return and three categories of

workup trade flow. For brevity, information shares of pre-workup trades and public information flow are not reported. Estimation is

based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities over the period 2006-2011. Observations

outside the [7:00-17:30] time window are excluded. Ordering 1 columns show the information share based on a variable ordering of

Aggressive, Both, and Passive. Ordering 2 columns show the information share based on a variable ordering of Passive, Both, and

Aggressive.
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Figure 3.1: Workup Activity over Time
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This figure shows the monthly share of transactions with workups (upper plot) and monthly share of volume transacted in workups

(lower plot). The numbers are first calculated daily for the on-the-run 2-, 5-, 10- and 30-year Treasury securities on the BrokerTec

platform and then averaged across days by month. The sample period is 2006-2011.
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Figure 3.2: Intraday Pattern of Workup Probability
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This figure shows the pattern of workup usage over the global trading day (Eastern Time). The plot starts at 18:30 of the previous day

and ends at 17:30 of the current day. The numbers are first calculated for a given interval and day for the on-the-run 2-, 5-, 10- and

30-year Treasury securities on the BrokerTec platform and then averaged across days. The sample period is 2006-2011.
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Figure 3.3: Which Side Do Workups Expand?
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This figure shows the percentages of workups that expand volume on: 1) the aggressive side only, 2) both sides, and 3) the passive

side. A workup expands only the aggressive side if the total transaction volume (pre-workup and workup volume combined) is

not greater than the depth posted in the limit order book immediately before the transaction. A workup expands both sides if the

pre-workup volume is less than the posted depth, but the total transaction volume exceeds the posted depth. A workup expands

the passive side if the pre-workup trades exhaust the posted depth. This expansion of the passive side includes instances where the

aggressive side is also expanded during the workup. The percentages are first calculated daily for the on-the-run 2-, 5-, 10-, and

30-year Treasury securities on the BrokerTec platform and then averaged across days. The sample period is 2006-2011.
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Figure 3.4: Cumulative Impulse Response of Price to Trade
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This figure plots the cumulative midpoint return (in basis points) in response to a $1 billion shock to pre-workup and workup trading

volume respectively, based on a VAR(5) model of return and segmented order flow. Estimation is first done daily based on BrokerTec

data for the on-the-run 2-, 5-, 10- and 30-year Treasury securities and then averaged across days. The sample period is 2006-2011.

Observations outside the [7:00-17:30] time window are excluded from model estimation.
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Figure 3.5: Permanent Price Impact of Trade
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This figure plots the 20-day moving average of the price impact of $1 billion buyer-initiated volume transacted during pre-workup

versus workup phases. The price impact measures are first computed daily from a VAR(5) model of return and trade flows, and then

averaged over rolling 20-day intervals. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and 30-year Treasury

securities over the period 2006-2011. Observations outside the [7:00-17:30] time window are excluded from model estimation.
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Figure 3.6: Information Share of Pre-Workup and Workup Order Flow
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This figure plots the 20-day moving average of the information share of pre-workup versus workup order flow, using Hasbrouck

(1991b)’s information share approach. The information share measures are first computed daily from a VAR(5) model of return and

trade flows, and then averaged over rolling 20-day intervals. Estimation is based on BrokerTec data for the on-the-run 2-, 5-, 10- and

30-year Treasury securities over the period 2006-2011. Observations outside the [7:00-17:30] time window are excluded from model

estimation.
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CHAPTER 4

INTRADAY DYNAMICS OF VOLATILITY AND LIQUIDITY IN THE US TREASURY MARKET

4.1 Introduction

Interest in the dynamics of market liquidity and volatility in the U.S. Treasury securities market stems from

the market’s many vital roles. Because of their liquidity, Treasury securities are commonly used to price

and hedge positions in other fixed-income securities and to speculate on the course of interest rates. The

securities’ creditworthiness and liquidity also make them a key instrument of monetary policy and a crucial

source of collateral for financing other positions. These same attributes make Treasury securities a key store

of value, especially during times of crisis.

The flight-to-liquidity premium in Treasury bond prices documented by Longstaff (2004) is a good

example of how the plentiful liquidity in the Treasury market is valued by investors. This poses several

interesting questions for the U.S. Treasury market. Is liquidity supply available when it is needed most? How

is liquidity supply driven by uncertainty and other market factors, and conversely, does the supply of liquidity

have any role in dampening or magnifying volatility in the market? How do the dynamics of the Treasury

limit order book differ during flight-to-safety episodes?

A dynamic model for liquidity and its interrelation with volatility is highly useful for addressing these

questions and exploring other microstructure issues of interest. With the availability of intraday data on the

limit order book of Treasury securities in the interdealer market, the model can be cast in high frequency time

intervals, and can accordingly convey rich and insightful information about the micro behavior of liquidity

and volatility in this market.

Our study contributes to the extensive literature on price formation and liquidity in the U.S. Treasury

market. This strand of literature includes Fleming and Remolona (1999), Balduzzi et al. (2001), Huang

et al. (2002), Fleming (2003), Brandt and Kavajecz (2004), Green (2004), Fleming and Piazzesi (2005),

Goldreich et al. (2005), Mizrach and Neely (2007), Pasquariello and Vega (2007), Fleming and Mizrach

(2009), Jiang et al. (2011), and many others. However, most of the extant studies use data prior to the 2008
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crisis period, leaving market dynamics during the crisis – the most serious to hit the global economy since

the Great Depression – less documented.

Being a safe haven for investors, the role of the Treasury market during flight-to-safety episodes is

particularly important. An active literature studying the flight-to-safety phenomenon has provided (1) a

number of theoretical models (see for example, Vayanos (2004) and Brunnermeier and Pedersen (2009)) and

(2) related empirical evidence (see for example, Longstaff (2004), Goyenko and Sarkissian (2008), Baele

et al. (2010), Baur and Lucey (2009), Beber et al. (2009), Bansal et al. (2010), and Baele et al. (2012)). While

these studies provide great insights into the potential determinants of flight-to-safety episodes, such as the

elevated level of risk, the changing risk aversion of investors, the tightening of margin requirements, and so

on, little attention has been paid to how the destination of such flights – the Treasury market – is affected by

the actions of those investors seeking safe haven. Our work aims to fill this gap by documenting the behavior

of liquidity and volatility during such episodes and by providing an econometric model to isolate the effect of

flights to safety on this benchmark market.

Our study is related to papers that have documented asset pricing anomalies that arose during the financial

crisis. Fleckenstein et al. (2010) show that a significant mispricing arose during the crisis between Treasury

bonds and inflation-swapped TIPS issues with replicating cash flows. Musto et al. (2011) document a large

and systematic mispricing during the crisis between notes and bonds with identical cash flows. Hu et al.

(2011) show that “noise” in Treasury security prices rose sharply during the crisis. Our work also documents

the unusual market behavior during the crisis, but by directly assessing market liquidity. Moreover, while

the previously mentioned pricing anomalies are shown to have arisen largely among less traded Treasury

securities, our study identifies liquidity declines in the most actively traded Treasury securities.

Our study is also relevant for the general market microstructure literature on price discovery. Price

incorporates news and converges to fundamental value through the trading process. The availability of

liquidity is critical to that process and therefore modelling the evolution of liquidity can complement and

further our knowledge on the dynamics of asset prices. Although equity limit order books have been studied

extensively, studies on Treasury limit order books remain scant in comparison. There is no a priori reason

to expect empirical findings from equity markets to hold up in the Treasury market. Informed trading is

important in equity markets, but less so in the Treasury market, which is driven more by macroeconomic

conditions and, in particular, monetary policy decisions and macroeconomic data releases. As a result, the
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dynamics of price and liquidity in this market could potentially differ from that documented for equity

markets.

While market liquidity can be measured in many ways, we focus on market depth – a direct measure of

the quantity of securities available for purchase and sale. Henceforth, we will use the two terms liquidity and

depth interchangeably.1 It is useful to note that the distinction between liquidity supply and demand may not

be clear in limit order markets. In their comprehensive survey of the limit order book literature, Parlour and

Seppi (2008) describe how investors with a demand for liquidity may choose to post aggressive limit orders

rather than market orders. Such limit orders have the flavor of both supply and demand. Therefore, while the

liquidity available in the order book (on both sides) is often considered representative of the liquidity supply,

some of this liquidity could potentially come from demanders of liquidity who happen to have more patience

to wait for their orders to be executed at better prices than those who submit market orders for immediate

execution. In this study, we adopt the traditional approach of considering limit orders as the supply side and

market orders as the demand side.

We propose a new joint model of liquidity and volatility based on the multiplicative error model (hereafter

“MEM”) formally introduced in Engle (2002). There are important features of the U.S. Treasury market that

make this modelling choice superior to the standard linear Gaussian framework adopted in many previous

empirical models of the limit order book.2 First, it has been shown that depth tends to disappear prior to

economic news announcements (e.g., Fleming and Remolona (1999) and Fleming and Piazzesi (2005)).

This study also documents a large liquidity drop in the fall of 2008. Therefore, the model must be able to

accommodate zero or small values of depth with a reasonable probability mass. Secondly, both market depth

and volatility are nonnegative variables, but under a linear Gaussian framework their predictions are not

guaranteed to be nonnegative. Even if log transformation is used to avoid the nonnegativity issue, researchers

run into the problem of exact zero values at which the logged depth or volatility is not defined. The log

linear framework is also problematic for predicting small values of depth as these are implicitly treated as

1Market depths (in plural) refer to depth at multiple price tiers, while market depth (singular) refers to the depth at a particular price
tier.

2For example, Ahn et al. (2001) use a regression framework to study the dynamics of the number of limit orders posted. Likewise,
Næs and Skjeltorp (2006) regress trade size and number of transactions on volatility to document the existence of a volume-volatility
relationship in the Norwegian equity market. Härdle et al. (2009) propose a dynamic semiparametric factor approach to modelling
liquidity supply, combining nonparametric factor decomposition for the order curve’s spatial structure with VAR for time variations
of factor loadings. Other studies similar in their use of VAR include Danielsson and Payne (2010) and Hautsch and Huang (2009),
among others. Ranaldo (2004) uses an ordered probit regression framework to analyze how the state of the limit order book affects
order submission strategy.
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extreme events whereas empirical evidence tells us that small values of depth are not uncommon. The new

class of models we suggest can easily handle spells of near-zero (and positive valued) liquidity. Lastly, our

MEM-based model enjoys the benefit of modelling directly the variables of interest, not their log-transformed

counterparts, which can be convenient in interpretation and forecasting.

The key insight from our model choice is that we make empirical limit order book models look much like

asset price volatility models. This has several advantages. First, we can readily borrow many specifications

and modelling strategies from the vast volatility literature. For example, we can study the effect of news via

so called news impact curves, see e.g., Engle and Ng (1993). Second, we can easily study the interactions of

volatility and limit order book dynamics within a well understood and unified framework. Third, nonnegativity

of depth – and obviously volatility – is guaranteed within the MEM specification. This rules out nonsensical

predictions and therefore addresses many of the issues discussed in the previous paragraph.

The cross-fertilization of insights from the volatility literature to that of limit order books goes beyond

modelling strategies – it also pertains to measurement. In the past decade, the notion of so-called realized

(price) volatility has been extensively studied (see the recent survey by Barndorff-Nielsen and Shephard

(2007)). We introduce the notion of limit order book depth realized volatility – which measures the variability

of liquidity using high frequency data. Namely, our modelling strategy consists of taking five-minute

snapshots of the book as well as measuring one-second changes in the book. The latter allows us to compute

for every five-minute interval the realized quadratic variation at all levels of the limit order book.3 This

provides us with a measure of liquidity risk, similar to the quadratic variation measure widely used in the

volatility literature to characterize price risk. Thanks to this new measure of realized depth volatility, we can

study the impact of liquidity uncertainty on the level of liquidity. Needless to say, the realized depth volatility

is obviously also a nonnegative process. Hence, our modelling strategy is perfectly suited to include this new

measure as well.

Using limit order book data for the 2-, 5- and 10-year U.S. Treasury notes over the period from 2006 to

the end of the second quarter of 2010, our class of models identifies several key findings. First, the order

book exhibits clustering in all three variables of interest: depth, price volatility, and liquidity volatility (except

liquidity volatility at the first tier). More importantly, there is a negative feedback loop between market

depth and price uncertainty at the inside bid and ask. For other price levels however, depths tend to lower

3Technically speaking the limit order book, unlike high frequency returns, is not a martingale difference sequence. We provide
several robustness checks with respect to the drift specification.
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subsequent price uncertainty but the reverse effect is not present. Submitting orders to the inside queues

subjects dealers to adverse execution risk and thus, when price is volatile, it is easy to see why dealers tend

to cut back on supplying liquidity at the best bid and ask. There is room for modification or cancellation

of orders behind the market when price moves unfavorably, so price volatility is less of a concern in the

decision to supply depth at the outer tiers. In contrast to the negative interaction between liquidity and price

uncertainty, we find that an increased level of depth uncertainty tends to bring out more depth, and this is

consistent across all price levels. This evidence seems to suggest that liquidity supply tends to increase when

it is more valuable to the marketplace, consistent with the findings in Biais et al. (1995).

Examining the dynamics of depth and volatility during the crisis period, we find that both become

more persistent during the crisis. This dangerous combination provides a great illustration to models of

liquidity crashes (for example, Cespa and Foucault (2012)) in that bad shocks to either volatility or liquidity

can intensify the negative feedback effect, leading to liquidity crashing while volatility spiking up. Our

models also provide consistent evidence with the earlier literature that depth is withdrawn immediately

before important economic announcements but then quickly gets refilled once the announcement is released,

accompanied by a surge in trading activity and price uncertainty. Furthermore, the news impact curve – a

concept standard in the volatility literature but novel in a limit order book context – shows evidence of an

asymmetric response of market depth to negative price changes, whereas price volatility does not seem to

discriminate between price increases and decreases. Price volatility instead appears sensitive to the magnitude

of the value change only. The fact that many dealers take part on both sides of the market, and large price

moves may be indicative of important events around which divergences of opinion often rise, could explain

this behavior.

Our analysis of the Treasury market during flights to safety contributes new evidence to the discussions

of this phenomenon. In particular, the ex ante liquidity supply, namely the limit order book, is substantially

lower on flight days – those days when liquidity is especially needed. However, a high level of trading activity

is also observed on those days, along with an elevated level of price uncertainty. These patterns collectively

suggest that liquidity providers monitor the market more closely on these days and refrain from using limit

orders to passively supply liquidity to the market.

The chapter is organized as follows. Section 4.2 presents stylized facts on trading, liquidity and volatility

in the U.S. Treasury market. These stylized facts provide the motivation for our modelling approach based on

the multiplicative error framework, which we discuss in Section 4.3. Practical issues with model estimation
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and the measurement of volatility are also covered in this section. In Section 4.4, we present and discuss

the empirical dynamics of Treasury liquidity and volatility as estimated by our proposed class of models.

We then provide an analysis of the Treasury market during flight-to-safety episodes in Section 4.5. Finally,

Section 4.6 concludes.

4.2 The U.S. Treasury Market – Some Stylized Facts

U.S. Treasury securities are debt instruments sold by the U.S. government through public auctions and

subsequently traded in the secondary market. The secondary market is structured as a multi-dealer, over-

the-counter market, in which the dealers trade with their customers, the Federal Reserve Bank of New York,

and one another. Interdealer trading prior to 1999 was based on a network of voice-assisted brokers. Fully

electronic trading started in 1999 with the introduction of the eSpeed platform, followed by the BrokerTec

platform in 2000. Mizrach and Neely (2006) estimate that the BrokerTec platform accounts for about 61

percent of all interdealer trading activity.

There are no clearly defined trading hours for this market. Instead, trading spans 22-23 hours per day

during the week, commencing around the start of the trading day in Tokyo and fading off with the end of

the trading day in New York. During these hours, dealers send in their orders, have their orders executed,

or modify or cancel existing orders. Each order specifies the quantity and price, whether it is for purchase

or sale, and whether the order is aggressive.4 Limit orders, when submitted, are queued in the order book

according to the price and time priority rules until executed or cancelled. Although trading spans almost the

entire day, trading outside of the New York trading hours is sparse, so we limit our analysis to between 7:00

and 17:00 Eastern time.

4.2.1 Data Description

Our analysis is based on order book data from the BrokerTec platform. All order messages sent to this

platform are captured and time-stamped to the millisecond. The order book snapshot data is constructed by

accumulating these order changes at the corresponding price tiers from the beginning of the trading day. This

results in a tick-by-tick dataset with market depths measured in millions of dollars (par value), and prices

4Aggressive, or market, orders are executed immediately against best available limit orders on the opposite side of the market.
Passive, or limit, orders are queued in the limit order book at the corresponding price level. All orders, whether aggressive or passive,
need to specify both quantity and price. Best limit orders on opposite sides with the same price are not automatically executed.
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reported in 256ths of a point, where a point equals one percent of the par value. We focus our attention on

the on-the-run 2-, 5- and 10-year notes, as these are the most actively traded Treasury securities. The 2- and

5-year notes are newly issued every month, while the 10-year note comes out every quarter with reopenings

in the following month and – since November 2008 – two months.5

Our sample period is January 2, 2006 to June 30, 2010, and thus covers the financial markets crisis of

2008-2009, as well as a period before the crisis. We date the start of the crisis to August 9, 2007, when BNP

Paribas announced that it could not value assets in three of its investment funds (see Boyd (2007)).6 There is

no clear ending date to the crisis, so we mark the end with the NBER’s end-of-recession date of June 2009.

For our empirical analysis, we choose to work with the five-minute snapshot data, supplemented by the

one-second snapshot data needed for the computation of the realized volatility measures The five-minute

snapshot data are extracted from the tick data described above by taking the last observation of each five-

minute interval between 7:00 and 17:00. This results in 120 observations per day, except for those days with

an early market close. For such days, we discard data after the recommended closing time.7 The one-second

snapshot data is extracted from the tick data in the same fashion. Although the data is available tick-by-tick,

our choice of the five-minute interval is to avoid data errors (e.g., erroneous order messages that enter and

exit the book in split seconds) and microstructure noise inherent in ultra-high frequencies. The interval is

also long enough for sufficient movements in the book, so that meaningful predictions can be made.

We focus our analysis on the best five price tiers on each side of the market. First, we know from Biais

et al. (1995) that liquidity is not concentrated at the inside tier. Second, the five-minute sampling implies that

depth at different tiers is relevant for the future evolution of the limit order book. We choose to look at five

tiers, which mirrors what market participants can see.

5We apply the following filters to the data. Since we are exclusively looking at recently issued on-the-run securities, and Treasury
securities are issued at a price close to par value, then prices have to be in the vicinity of 25,600 (par value). We adopt a range
of 20,000 - 30,000 to remove outliers, a filter that is narrow enough to remove obvious price errors, but conservative enough to
still capture valid but extreme prices. For depth variables, we adopt a filter of $10 billion of par value for each price tier, which is
roughly one-third the size of the typical issue in our dataset.

6Note that the Business Cycle Dating Committee of the National Bureau of Economic Research (NBER) considers December 2007
as the start of the recession (http://www.nber.org/cycles.html). However, for the purpose of modelling liquidity in the
Treasury market, the earlier date at which the crisis started in the money markets is more appropriate.

7Information on recommended early closes in the bond market is from the Securities Industry and Financial Markets Associa-
tion and is posted here: http://www.sifma.org/uploadedfiles/research/statistics/statisticsfiles/
misc-us-historical-holiday-market-recommendations-sifma.pdf.
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4.2.2 Some Stylized Facts

In this section, we document a number of stylized facts pertaining to the 2-, 5- and 10-year notes, with

particular focus on their time series behavior through the most recent financial crisis, as well as their patterns

around macroeconomic announcements.

Market Depths Decline Sharply During Crisis

As shown in Table 4.1, prior to the crisis, the average depth at the best price tier for the 2-year note is over

$400 million. It plummets to roughly one fifth this level during the crisis period. Coming out of the crisis, the

market recovers somewhat, but remains far below the pre-crisis level. Similar trends can be observed for the

5- and 10-year notes: the pre-crisis average depth at the best price tier is about $72 million, before dropping

to a level slightly above $20 million during the crisis. However, unlike the partial recovery observed with the

2-year note, liquidity does not seem to improve much after the crisis for the 5- and 10-year notes. Note that

Treasury issue sizes have steadily increased over the sample period. So the decline in liquidity we observe

during the crisis is not attributable to a declining issue size.

Another observation of interest is that average market depth is highest at the second tier and gradually

declines over the subsequent tiers. This is consistent with the finding of Fleming and Mizrach (2009) using

BrokerTec data from January 2005 to February 2006. That liquidity is not concentrated at the inside tier is

also documented by Biais et al. (1995) using order book data for stocks on the Paris Bourse. They attribute

this finding to the fact that trading consumes liquidity at the front line.

To see the trend in Treasury market depth throughout the crisis period more closely, we graph daily

averages of depth in Figure 4.1 for the 2-year note (solid line). Graphs on the left are for the inside ask and on

the right for the inside bid. Whether on the bid or ask side, market depth starts to decline sharply in mid 2007,

providing evidence of mounting pressures in the Treasury market at the onset of the crisis. Liquidity drops

sharply again in the fall of 2008 following Lehman Brothers’ bankruptcy. Depth then bottoms out towards

the end of 2008 and then improves fairly steadily from there. Depths at other tiers as well as the total depth

across the best five price tiers have the same time series pattern. The 5- and 10-year notes exhibit very similar

trends (not shown), although their recovery following the crisis is not as strong as what is observed with their

2-year counterpart.
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Spread Is Tight but Widens Significantly in Late 2008

The bid-ask spread is another useful indicator that supplements our characterization of liquidity in this market.

An analysis of the inside spread shows that, for all three securities considered, the spread is quite tight, with

an average of slightly above one tick.8 The tight spread around the small minimum allowable price movement

suggests a very liquid market. Its time series behavior - with the inside spread widening significantly and

consistently across the three notes in late 2008 – is also consistent with the pattern in market depths that

points to a large liquidity drop at the height of the crisis. The 5-year note exhibits the most extreme peak in

this period, followed by the 10-year. The spread returns to a level of just over one tick again in 2009 (see

Figure 4.2).

Trading Volume Does Not Drop Until Late 2008

In contrast to the drop in market depth – a measure of the ex ante liquidity supply – that happens right at

the beginning of the crisis in August 2007, actual trading volume is on the rise during the first half of the

crisis (see graphs (a) and (b) in Figure 4.1, where trading volume is depicted by the dash line). It is only after

Lehman’s failure that we observe a major slide in trading volume which continues largely until the end of

2008, when both market depth and trading activity seem to almost vanish altogether. From that point on, they

improve and move together.

Volatility Shoots Up During Crisis

As can be seen from Table 4.1, price volatility roughly doubles during the crisis for all three securities.

However, only the 2-year note’s volatility returns close to its pre-crisis level, whereas volatilities for the two

longer term notes remain higher than they were before the crisis. This evidence again supports the finding

that the 2-year note is the most liquid and resilient among the three securities considered. Across the best five

tiers in the book, price volatility is slightly higher for the outer tiers.

Graphs (c) and (d) in Figure 4.1 provide a closer look into the time series trends in the inside tier’s price

volatility. In the second quarter of 2007, price volatility is already rising and shoots to a new elevated level on

August 9, 2007 – when the crisis is widely believed to start. It keeps increasing and reaches its peak around

the time of Lehmans bankruptcy, after which it gradually declines and almost reverts back to its pre-crisis

8The tick size for the 2- and 5-year notes is one 128th of a point. It is one 64th of a point for the 10-year.
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level. Price volatility at the inside tier closely resembles the trend in trading activity (as shown in graphs (a)

and (b) in the same figure). Active trading intensifies the price discovery process and it is thus not surprising

to see trading volume and price volatility moving closely together. For brevity, we do not show in this figure

the price volatility at other tiers as they exhibit similar time series trends as just described.

For the depth volatility variable, Table 4.1 shows that the inside tier stands out as having significantly

higher depth volatility than the outer tiers. This is a natural result since liquidity at the first tier inherits an

additional source of randomness from trading. This randomness does not pertain to order execution alone.

The pick-off risk inherent in posting orders at the inside tier may require more intense order management and

modification activities. We also observe an increase in the volatility of depth during the crisis period, but at a

more moderate rate than that of price uncertainty, and a weak post-crisis recovery. Since the depth volatility

measure has been standardized by the depth level, it looks reasonably comparable across the three securities.

Liquidity and Volatility Exhibit Clear Intradaily Patterns

Figure 4.3 shows the intraday patterns of market liquidity and volatility measures at the first tier over five-

minute intervals.9 Since the patterns are quite consistent across securities, and across different price tiers for

the same security, we show here only the 2-year note and only the first tier.

Depth in the book builds up in the morning, reaches its peak shortly before noon and gradually declines

from there, especially after 15:00. There are major dips in depth shortly before 8:30, 10:00 and 13:00.

Trading is most active in the morning hours and shows distinct jumps immediately after the drops in market

depth described above. There is also a mild peak at 15:00, after which trading diminishes. The peak at 15:00

coincides with the pricing of fixed income indices and hence likely reflects increased trading demand by

investment managers who are seeking to rebalance their portfolios, while minimizing tracking errors relative

to the indices.

Price volatility is also generally higher in the morning, and fades off toward the end of the day. This is

very different from the well-documented U-shape pattern of volatility in equity markets: high around opening

and toward market closing. Instead, in the Treasury market, price volatility closely tracks the pattern of

trading activity, which peaks in the morning and falls off gradually after 15:00.

9While previous studies have examined the intraday patterns of bid-ask spreads and price volatility in this market (e.g., Fleming and
Remolona (1997), Fleming and Remolona (1999)), we believe our intraday analysis of depth and depth volatility is novel.
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The volatility of liquidity exhibits a less clear intraday pattern than its price volatility counterpart, but

also peaks at the 8:30 and 10:00 time marks. We see volatility spikes slightly lagging liquidity drops around

the key time marks above, and in addition around 14:15.

Depths Disappear Immediately Before Announcements

The spikes at certain times documented in the intraday patterns of liquidity and volatility coincide with the

release times of major economic announcements: 1) macroeconomic announcements released at 8:30, 2)

macroeconomic announcements released at 10:00, 3) announcements of Treasury auction results shortly

after 13:00, and 4) announcements of the Federal Open Market Committee’s rate policy decision around

14:15 (“FOMC announcements”).10 For a complete list of major announcements, their frequency and time of

release, see Appendix A.

To differentiate market behavior around these announcements, we separate days with each of the above

news categories from days with no major news and examine the intraday patterns of liquidity and volatility

on the news versus no-news days, as in earlier studies.11 As evident in graphs (a)-(d) of Figure 4.4, in the

short time window before an announcement, market depths largely disappear, especially depth at the first tier,

but then immediately return to the book after the announcement has been released. This finding is consistent

with the evidence documented in Fleming and Remolona (1999) and Fleming and Piazzesi (2005) that dealers

often withdraw quotes before announcements due to inventory risk concerns.

An important observation is that on the days with FOMC rate decision announcements, the order book

thins out rather gradually, starting from shortly before noon until reaching the minimum just before 14:15.

The order book then refills in the next half hour or so and converges to its no-news day level. This pattern

differs from that for other announcements, for which limit orders are cleared from the book just shortly

before the announcement time. The anticipation leading up to FOMC announcements suggests that market

10Announcements after scheduled meetings, which occur eight times per year, were made at about 14:15 during our sample period.
Announcements after unscheduled meetings, of which there were two in 2008, do not have a standard announcement time.

11We define “no news” days as days without any of the major announcements as listed in Appendix A. For the news days, we
separately examine announcements released at a particular time (e.g., 8:30), but include days with announcements released at
other times (e.g., 10:00). We therefore observe announcement patterns around the other release times (e.g., around 10:00 on 8:30
announcement days), although typically not as strong as those associated with the release time being examined.
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participants consider monetary policy decision announcements so important to the market that they refrain

from taking positions in the order book well before the announcement comes out.12

Trading and Volatility Jump Immediately After Announcements

Graphs (e)-(h) of Figure 4.4 document the intraday patterns in trading activity around major announcements,

and graphs (i)-(l) the patterns in short-term price volatility. Trading activity and price volatility both spike in

the five-minute window following announcements. The market is bustling during this short time window

with the limit order book filling up, trading demand surging and price discovery intensifying. The market

then gradually works its way back to the no-news day pattern in the next hour or so, reflecting the time it

takes for disagreement over an announcement’s implications to be resolved. These graphs once again show

that trading activity and price volatility are highly related.

4.3 A New Class of Dynamic Limit Order Book Models

The evidence presented in the preceding section shows that Treasury market depth can sometimes have zero

or low values (e.g., at the peak of the crisis, or immediately before economic announcements). The average

frequency of low values of depth, i.e., depth being equal to 1 (the minimum order size on BrokerTec) or 0,

equals 4% for the inside price tier (bid and ask) for both the 5- and 10-year notes across our full sample, and

is naturally much higher on certain days. Likewise, realized volatility at the five-minute frequency is often

zero. For the 2-year note, the realized volatility of price equals zero for 22% of the sample observations,

regardless of tier, and is again much higher on numerous days.

In our search for a modelling framework that can accommodate zero or low values with a realistic

probability distribution and integrate the dynamics of market depth and volatility in one, the multiplicative

error model is particularly fitting. In this section, we start with a description of a general MEM formulation

proposed in Engle (2002) and explain how this model choice is novel for the Treasury limit order book. We

then specify the details of our model, as well as our measurement of volatility. Lastly, we discuss practical

issues with the model estimation.

12Fleming and Piazzesi (2005) find that uncertainty about the exact announcement time leads to a protracted reduction in liquidity.
However, this only explains the decline about five minutes before and not two hours before such events.

110



4.3.1 Multiplicative Error Model for nonnegative Valued Processes

The general formulation of an MEM model is as follows. Let Xt be a nonnegative time series of interest. Its

dynamics is modelled as:

Xt = µtεt, (4.1)

εt|=t−1 ∼ D(1, ψ), (4.2)

µt = ω +

p∑
i=1

αixt−i +

q∑
j=1

βjµt−j + c′zt−1, (4.3)

where =t−1 presents the information set at time t − 1, εt is the multiplicative error with a conditional

distribution D having unit mean and defined on nonnegative support, and zt are weakly exogenous variables.

The persistence of Xt is captured by
∑p

i=1 αi +
∑q

j=1 βj . The model can be estimated with the exponential

quasi log likelihood function

lnL(X; θ) = −
T∑
t=1

[
lnµt +

Xt

µt

]
. (4.4)

The asymptotic properties of the QML estimator have been established in Engle (2002). Hautsch (2012)

notes that Newey and West (1987) standard errors are robust not only against distributional misspecification

but also against dynamic misspecification in the MEM errors.

The general vector MEM is specified similarly. Let Xt be a K-dimensional process with nonnegative

components. The dynamics of Xt are specified as follows:

Xt = µt � εt, (4.5)

εt|=t−1 ∼ D(1,Σ), (4.6)

µt = ω +

p∑
i=1

AiXt−i +

q∑
j=1

Bjµt−j , (4.7)

where � indicates the element-by-element product, µt, εt, ω are Kx1 vectors and Σ, Ai, Bj are KxK

matrices.

To explain our technical contribution, it is worth elaborating on the key difficulties of the standard linear

Gaussian framework – usually adopted among current limit order book models – in modeling nonnegative

variables like market depth. In the simplest form, such a framework specifies the dynamics of a variable Xt
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as Xt = µt + εt. As discussed in Engle (2002), the requirement that the conditional mean is positive means

that the corresponding error term has to be no more negative than the mean to ensure the nonnegativity of Xt.

Accordingly, the range of the error term changes with every observation, presenting a difficulty to estimation.

Second, even if log(Xt) is used to avoid the nonnegativity issue, researchers run into the problem of exact

zero values at which log(Xt) is not defined. Therefore, taking the log is not a solution when zeros are valid

observations. It is also not a solution when small values are common, as the log-linear model would imply an

extreme event probability to these values.

With its multiplicative error structure, the MEM formulation ensures the nonnegativity of Xt as long as

the conditional error distribution has a unit mean and nonnegative support, for which there are many possible

candidates. The structure allows us to model market depth and volatility directly, and assigns reasonable

probability to low values of these variables. This is important for the Treasury market because, as we saw

earlier, the order book thinned out substantially during the crisis period and low values of depth are common

immediately prior to important economic announcements. Furthermore, during quiet times, high frequency

realized volatility is often zero. Therefore, if we are to model liquidity and volatility in one framework,

that framework should be able to accommodate zero or very small values of the dependent variables with

appropriate probability distributions.

Additionally, the GARCH-type nature of the multiplicative error model allows us to effectively capture

the persistence of market depths. The persistence in the limit order book at intraday frequencies has been

documented in the prior literature, see for example Biais et al. (1995). Intuitively, depths queue at different

price levels in the book waiting to be executed by coming trades. Over a short time interval, say five minutes,

we do not expect these queues to vary substantially, especially in the outer tiers, which are not reached until

trades or order cancellations exhaust liquidity at the first tier.

The ability of multiplicative error models to capture the nonnegativeness and persistence of a dynamic

process gives this class of models an important place in the finance literature, since many financial series

possess these properties. Important applications of this framework in finance include the modeling of

conditional trade duration (see Engle and Russell (1998)), volatility, trading volume and intensities (see

Manganelli (2000)), volatility, average trade sizes, trading costs and number of trades (see Hautsch and

Jeleskovic (2008)), and absolute returns, daily range and realized volatility (see Engle and Gallo (2006)).

However, despite it being a valuable tool for modeling nonnegative valued processes, we have not seen an

application of this framework among limit order book models.
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The closest work to ours, in terms of modeling framework, is by Hautsch and Jeleskovic (2008). That

paper provides a review of the technique and applies it to the modeling of the dynamics of volatility and

trade characteristics using order book data from the Australian Stock Exchange, but not the evolution of limit

order depths – our modeling object of interest. On the other hand, while the paper by Russell and Kim (2010)

models precisely this object, it adopts a different approach. Specifically, for both the buy and sell side, they

model the total market depth on the given side and combine it with an estimated distribution of the depth

across price levels. Their model therefore never predicts zero depth at any individual price level, a scenario

that could plausibly happen in this market as previously discussed. Our newly introduced class of order book

models based on the multiplicative error structure allows us to model the evolution separately for each price

tier, be able to predict economically sensible possibilities, and uncover interesting insights into the dynamics

of liquidity in this important market.

4.3.2 Model Specification

We specify a joint MEM model of order (1,1) for three variables – market depth, price volatility, and depth

volatility – as formulated in equations 4.5 - 4.7. The model is estimated separately for each of the best five

price levels on both sides of the market, resulting in 10 systems of equations in total. Following Engle and

Gallo (2006), we assume a diagonal variance covariance matrix for the error terms, acknowledging that there

can be a loss of efficiency if this assumption is false. We capture the possible interdependence among the

variables by allowing a fully parameterized coefficient matrix A, and restrict matrix B to be diagonal. We

then estimate the model equation-by-equation using exponential quasi log likelihood function as specified in

equation 4.4 and compute Newey-West standard errors for our estimates. To avoid the overnight effect, we

reinitialize the conditional mean of each variable at the beginning of each day, using the average over the

7:00 - 7:55 period of that day, and estimate the model using data from 8:00 through 17:00.

To fix notation, for each of the five price tiers on each side of the market, the vector X consists of depth

(D, or X(1)), realized volatility of price (RV P , or X(2)) and realized volatility of depth (RVD, or X(3)).

The dynamics of X are modelled at a five-minute frequency, indexed by t, as:13

13More precisely, the time interval t is the product of day d and time of day j where d = 1, 2, ..., D with D being the total number
of days in the sample, and j = 1, 2, ..., J with J being the total number of five-minute intervals in a day. In this study, J = 120
for a typical trading day, and J < 120 for those days when the bond market closes early.
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µ
(1)
t = (ω1 + α1X

(1)
t−1 + β1µ

(1)
t−1) + γ2X

(2)
t−1 + γ3X

(3)
t−1 + θ′Zt−1,

µ
(2)
t = (ω2 + α2X

(2)
t−1 + β2µ

(2)
t−1) + γ1X

(1)
t−1 + γ3X

(3)
t−1 + θ′Zt−1,

µ
(3)
t = (ω3 + α3X

(3)
t−1 + β3µ

(3)
t−1) + γ1X

(1)
t−1 + γ2X

(2)
t−1 + θ′Zt−1. (4.8)

In the above equations, Z allows for other potential explanatory variables to enter the dynamics of X.

This enables a wide range of specifications designed to explore crisis effects, announcement effects, effects

of price changes and any possible asymmetry between positive and negative changes via the so called news

impact curve, the role of liquidity demand, and last but not least, effects of flights to safety on Treasury

liquidity and volatility.

4.3.3 Measurement of Volatility

In this study, we use two volatility measures. One is the volatility of price, and the other is the volatility of

depth. Each of the measures is described below.

Volatility of Price

To measure price uncertainty, we use the realized volatility of price for each of the five price levels on both

sides of the market (RV P ). Beside its simplicity in computation, the main advantage of this measure of

volatility, as discussed by Andersen et al. (1999), is that it is effectively error- and model-free. For each

five-minute interval and for each price tier, the realized volatility is computed as the square root of the sum of

the squared second-to-second price changes:

RV Pt =

√√√√ 300∑
kt=1

(4Pkt)2, (4.9)

where4Pkt denotes the one-second price change at second kt of the five-minute interval t. Since prices are

reported in 256ths of one percent of par, this volatility of price inherits the same unit of measurement.

We note that this is a measure of total volatility comprised of both transitory and permanent components.

We use this measure as we focus on the short-term dynamic interactions of volatility and liquidity in order to

predict their evolution throughout a trading day at high frequency. It is important to note that this measure of
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volatility is based on intraday prices and not yields. The mapping of price changes to yield changes differs

over time due to changes in coupon rates and time to maturity. At an intra-daily frequency, such as the

five-minute frequency used in this study, the difference between the two methods of calculating volatility

should be negligible.

Beyond the intraday boundary, however, the difference between volatility computed from prices and that

from yields can magnify. Additionally, the trend in volatility over the sample period documented earlier could

change if volatility were computed differently. For comparison, we plot in Figure 4.5 the monthly average of

our five-minute price volatility over the sample period, together with a measure of volatility based on daily

yields.14 The latter volatility measure is computed for each month as the square root of the realized variance

for the month. The realized variance is the sum of all squared daily yield (absolute) changes in that month.

As Figure 4.5 demonstrates, our measure of price volatility closely tracks the volatility of yields, except

that it is more variable than the latter given that it is based on higher frequency data. They both document an

elevation in uncertainty during the crisis period, peaking around the time of the Lehman Brothers bankruptcy.

Volatility of Depth

To measure liquidity uncertainty, we introduce the notion of realized depth volatility for each of the five price

levels on both sides of the market (RVD), which we compute in a similar way to RV P :

RVDt =

√√√√ 300∑
kt=1

(4Dkt)
2, (4.10)

where4Dkt denotes the one-second depth change at second kt of the five-minute interval t. The realized

volatility computation requires that the one-second depth change series be a martingale difference sequence.

To check the robustness of our RVD measure with respect to this assumption, we use an autoregressive

specification at various lag lengths to estimate the time-varying drift of depth changes and then computeRVD

as the five-minute sum of squared residuals of one-second depth changes.15 The resulting RVD measures are

very similar to the initial RVD computed from raw one-second depth changes, providing support for its use

in our subsequent analysis. We also examine the auto-correlation function of the one-second depth changes

14Daily on-the-run Treasury yields for the 2-, 5- and 10-year maturities are from Bloomberg.

15We also experimented with various other specifications, such as including a constant drift or allowing for linear dependence via
ARMA models.
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and find them to exhibit no significant serial correlation. Finally, depth in the limit order book can change due

to trade execution, limit order submissions, modifications and cancellations. Therefore, our RVD measure

captures the extent of liquidity supply and demand imbalances in the order book.

Our realized volatility of depth measure complements well the realized price volatility in enhancing

our understanding of the various sources of uncertainty in the market. On the one hand, the volatility of

liquidity is closely related with the volatility of price. When the book is fluctuating actively, the resulting

temporary order imbalances induce increased short-run price volatility (see Handa and Schwartz (1996)). This

is particularly likely to happen with a thin book. For example, a market order can create a large imbalance

causing the price to change, or sweep more than one tier’s depth causing the price queues to move forward.

In that case, we would expect the volatility of depth and volatility of price to move together and leave similar

effects on liquidity supply. On the other hand, for a deep book, it is possible for the depth to change without

an accompanying change in price. Accordingly, examining the volatility of depth and whether it helps to

predict the subsequent level of liquidity provides understanding not possible with the volatility of price alone.

For our empirical model estimation, we standardize our liquidity volatility measure by the corresponding

market depth at the beginning of each five-minute interval to remove the scale effect, making this effectively

a measure of volatility relative to the size of the limit order book.

4.3.4 Diurnal Pattern Adjustment

As shown earlier, our variables of interest, namely depth, volatility variables and trading volume, exhibit clear

diurnal patterns, making it necessary to remove such seasonality before the models can be estimated. We

choose a non-parametric method to adjust for this intraday pattern by dividing the relevant variable at a given

time interval by the average for that time interval, essentially assuming a multiplicative seasonality effect.

For example, market depth observed at the end of the 9:15-9:20 interval on a given day is adjusted by the

level of depth typically observed at that time.

We are careful to account for the different levels of depths and volatility across the pre-crisis, crisis and

post-crisis periods by using three sets of intraday averages corresponding to the three sub-sample periods, as

opposed to just one set of overall sample averages. In addition, we compute these sets of intraday averages

from days without any important public announcements concerning FOMC rate decisions, macroeconomic

conditions or Treasury auctions to avoid distorting the typical intraday seasonality with markedly different

patterns observed on days with such announcements.
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For depth variables, we favor the median as the average statistic in the seasonality adjustment to avoid

possible distortion caused by extreme depth values on the seasonally-adjusted depths. For all other variables,

we use the mean instead of the median as the latter can be zero at certain quiet intervals of the day.

4.4 Empirical Analysis

In this section, we present and discuss the dynamics of depth and volatility as revealed by our MEM-based

class of models. Given the qualitative similarity in findings and for brevity, we report here the results for the

2-year note only.

4.4.1 The Baseline Model

We first estimate the baseline model as specified in equation (4.8) with no covariates and present the results

in Table 4.5. The table has three panels: the top one for liquidity dynamics, the middle for price volatility

dynamics, and the bottom for depth volatility dynamics. We flag those coefficients that are not significantly

different from 0 based on the 5% significance threshold with an asterisk ∗. We discuss each panel in turn.

Liquidity Dynamics

As expected, order book depth exhibits a high level of persistence, as represented by the sum α+ β being

close to 1. In addition, depths at the best bid and ask prices are negatively impacted by price volatility,

whereas depths at outer tiers tend to increase with volatility. This may reflect the unwillingness of market

participants to supply depth at the first tier for fear that their orders will be adversely executed in a volatile

market. Yet, at the same time, higher volatility may help increase the probability of execution for limit orders

at outer tiers, making the option inherent in these orders more valuable for the limit order traders. Therefore,

during volatile times, depth could move away from the first tier and toward the outer tiers.

The negative linkage between price volatility and depth at the first tier is also consistent with the evidence

documented by many previous studies, including Næs and Skjeltorp (2006), that an increased level of trading

is often associated with moments of high price volatility. More active trading could deplete liquidity in the

book that is not subsequently replenished fast enough, especially if potential liquidity suppliers hesitate to

supply liquidity to a volatile market. The shrinkage of liquidity following a rise in volatility is also in line
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with a proposition put forth by Caballero and Kurlat (2008) that when asset price volatility rises, the risk of

illiquidity rises.

The variability of order book depth also shows a significant effect on the subsequent level of depth.

Following intervals of active movements in the book, liquidity supply becomes more plentiful. This is

intuitive, whether one interprets the volatility of depths as representative of supply uncertainty (e.g., that

associated with increased order modifications/cancellations), or as a sign of a strong demand for liquidity

(e.g., that associated with increased trading activity). In the former interpretation, the uncertainty of supply

may increase the payoffs to those who can actually provide liquidity, thus encouraging them to supply more.

Similarly, if it is the strong demand for trading that induces frequent movements of liquidity, the demand

would increase compensation for liquidity provision and subsequently invite more depth. This finding

supports Biais et al. (1995)’s conclusion that more liquidity is supplied when it is valuable to the marketplace.

Price Volatility Dynamics

We see evidence of price volatility clustering, although not to the same extent as the clustering of depths.

More importantly, lower depth at any tier predicts a subsequent increase in price volatility, consistent with

Parlour and Seppi (2008)’s assessment that prices are more volatile in thin markets, as the lack of liquidity

hinders the price discovery process, causing more uncertainty about the security value. This evidence is also

consistent with the idea that depth is withdrawn in advance of expected price changes (e.g., macroeconomic

announcements). That is, causality may be reversed, with expected volatility leading to lower depth.

The liquidity-volatility feedback loop at the inside price tier on both sides of the market isolates the effect

of adverse execution risk on dealers’ liquidity supply decision. This dynamic interaction could help explain

episodes of liquidity and volatility feeding on each other and exacerbating a bad shock that could originate

from either the liquidity side or the volatility side. The liquidity drop and the heightened volatility during the

recent financial crisis as shown in Figure 4.1 is a good example. Our evidence provides empirical support for

the theory of liquidity crashes put forth by Cespa and Foucault (2012), although the focus of their theory is

on the liquidity-volatility feedback among multiple assets. Here we provide evidence that this theory is also

at work for one asset.

Let us turn to the role of depth uncertainty on price uncertainty. The different sign of the effect for the

first tier, as compared to the rest of the book, deserves some close attention. Increased volatility of depth at

the first tier predicts lower price volatility, while the opposite is true for other tiers. Apparently, depth at the
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first tier changes in large part due to trading, but depths at the other tiers change mostly by order addition,

modification, or cancellation. So in the former case, if we associate the high volatility of depth with active

trading in the market, it is understandable how price volatility can be subsequently reduced. The latter case,

however, is a better reflection of supply uncertainty on the part of liquidity providers, which arguably means

they are also uncertain about security value, explaining the accompanied increase in price volatility.

Depth Volatility Dynamics

The volatility of liquidity also exhibits clustering at price levels behind the market. At the inside tier, the

persistence is quite low, adding to our discussion earlier that the liquidity volatility measure at this tier

seems to be closely related with trading activity in the market. Next, increasing liquidity level can predict

a subsequent decrease in liquidity volatility relative to the size of the book, but we note that this effect

is typically small at the first tier. Finally, price uncertainty is positively related with liquidity uncertainty,

although we believe the mechanism is again different between the first tier and the other tiers. At the inside

bid and ask, high price uncertainty is associated with increased trading that induces greater variability of

depth. For outer price tiers, the fluctuation of depths is often the result of limit order submission, modification,

or cancellation activities, which also tend to intensify when price is volatile.

4.4.2 Announcement Effects

Prior literature on the Treasury market response to economic news, such as Fleming and Remolona (1999),

Balduzzi et al. (2001), and Green (2004), has documented strong patterns of liquidity and volatility around

economic announcements. The analysis of intraday patterns of depths and volatilities in this study further

confirms that depths largely disappear from the order book immediately prior to an economic announcement,

but quickly return thereafter. Both trading activity and volatility are high following an announcement. To

formally test these patterns, we estimate an MEM model with pre-announcement and announcement time

dummies for each of the three dependent variables indexed by i (where i = 1, 2, 3 corresponding to depth,

price volatility, depth volatility respectively). The specification is as follows:

µ
(i)
t = ωi + αiX

(i)
t−1 + βiµ

(i)
t−1 +

∑
j 6=i

γjX
(j)
t−1 + θ1prenews2t−1 + θ2prenews1t−1 + θ3newst−1, (4.11)
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where prenews2 is the dummy for the second-to-last five-minute interval before an announcement, prenews1

is the dummy for the five-minute interval before an announcement, and news is the dummy for the five-minute

interval containing the announcement release. Since these dummies enter the equations with a lag, θ1, θ2 and

θ3 in fact capture the pre-announcement, announcement and post-announcement effects respectively on the

liquidity and volatility variables.

As shown in Table 4.6, market depths decline significantly across the top five price levels in the five-

minute interval before an announcement, but then increase by a larger magnitude in the announcement

interval, reflecting the fast refilling of order book depth once an announcement is released. Depths in

the post-announcement five-minute interval continue to show some further increase but the effects start to

subside. On the other hand, both measures of volatility are already at elevated levels in the pre-announcement

interval, consistent with the withdrawal of orders from the book causing greater fluctuation of prices and

depths. The announcement interval witnesses the peak in volatilities, especially the volatility of depth, that

come about with the refilling of limit orders and the surge in trading activities following the news arrival.

In the five-minute interval following an announcement, both depth and price volatilities are significantly

lower, suggesting that the most intense price discovery and order book activities happen within a very short

time window. Depth and price volatilities remain high in the next thirty minutes or so, as compared to

non-announcement days, but the peak has passed.

4.4.3 Dynamics During Crisis

To explore whether any of the above dynamics change during the recent crisis, we estimate a specification

that incorporates a crisis period dummy, allowing it to have both intercept and interactive effects. For i =

1, 2, 3 corresponding to depth, price volatility, and depth volatility respectively, the specification is as follows:

µ
(i)
t = ωi + αiX

(i)
t−1 + βiµ

(i)
t−1 +

∑
j 6=i

γjX
(j)
t−1 + θ1DCt−1 + θ2prenews2t−1

+θ3prenews1t−1 + θ4newst−1 + θ5DCt−1X
(i)
t−1 + θ6DCt−1µ

(i)
t−1, (4.12)

where DC is the dummy for the crisis period, defined to be from August 9, 2007 through June 30, 2009,

prenews2 is the dummy for the second-to-last five-minute interval before an announcement, prenews1 is

the dummy for the five-minute interval before an announcement, and news is the dummy for the five-minute

120



interval containing the announcement release. With this specification, θ1 is the estimate for the level effect

of the crisis, while θ5 and θ6 collectively show the effect of the crisis on the persistence of each dependent

variable. The pre-announcement, announcement and post-announcement effects are captured by θ2, θ3 and θ4

respectively, as in the earlier specification with announcement effects (Equation (4.11)).

Table 4.7 shows the model estimates. The pre-announcement, announcement and post-announcement

effects remain qualitatively similar to those previously documented. Depth is lower during the crisis period,

consistent with evidence presented up to this point. A surprising observation is that price volatility is also

lower, contradicting the model-free descriptive analysis performed earlier. We suspect that outliers in price

volatility during the crisis period may skew our seasonality adjustment factors upward (as these are based on

the mean), resulting in lower than expected diurnally-adjusted price volatility.

The key observation from this table is that depth and price volatility tend to be more persistent during

the crisis period. The immediate implication of the higher degree of persistence is that bad shocks to these

variables take longer to fade away. Considering the negative depth-price volatility feedback loop documented

earlier, this finding illustrates how this negative feedback effect can intensify in a crisis.

4.4.4 Limit Order Book Dynamics and the News Impact Curve

In this section, we build a model that captures any asymmetric response of liquidity, price volatility and

liquidity volatility to the changing value of the securities, in the spirit of the news impact curve technique

introduced by Nelson (1991) for GARCH models. This original framework is designed to allow the conditional

variance process of a given asset’s returns to respond asymmetrically to positive and negative price changes.

The question we want to address is whether the movement in the best bid-ask midpoint has any bearing on

the dynamics of the order book. The data shows that the distance between any two adjacent price levels in the

order book is almost always one tick, so the movement in the best bid-ask midpoint is a good indicator of the

overall ups and downs of order book prices.

We specify the news impact curve (“NIC”) as:

NICt = θ1|Rett|+ θ2|Rett|1Ret<0, (4.13)

where RetS,it is defined as the five-minute return (annualized log return) of the best bid-ask midpoint. This

functional form for the NIC particularly suits our needs as the NIC will enter the dynamics of depths and
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volatilities as a positive covariate. With this specification, the coefficient θ1 captures the effect of changing

price on the dynamics of order book liquidity and volatility, while the coefficient θ2, if significantly different

from zero, will indicate an asymmetric response of liquidity and volatility to negative price changes.

We start with a simple specification that has only the NIC, shown in Table 4.8. We note that the results

on other variables of the model are qualitatively the same as those obtained with the baseline specification.

Key findings, such as the negative liquidity-volatility feedback loop at the first tier, and the association of

greater depths with subsequently lower volatility of both depth and price, remain. We therefore focus our

discussion in this section on the NIC coefficients.

The results show that depth generally responds to price movements, although the response is not uniform

across all price tiers. The asymmetric coefficient θ2 is also mostly significant, implying that negative price

movements impact limit order book depth differently. Second, with regard to price volatility, it seems that

large price movements predict a subsequent increase in price volatility, regardless of the direction. There

is no evidence for an asymmetric response of price volatility to positive versus negative price changes. We

hypothesize that many dealers submit orders on both sides of the market, i.e., perform a market-making

function, so the direction of the price change does not have much of an impact on the price uncertainty, only

the magnitude does. Large price swings may be indicative of important news that intuitively could result

in an increased divergence of opinions among market participants. Lastly, concerning depth volatility, we

document a significant news impact curve function (both the magnitude and asymmetric effects) only up to

the second or third tier. Beyond that, value changes do not seem to matter.

We also estimate a specification with the NIC controlling for announcement effects. Although not

reported here, the results are consistent with our basic findings.

4.4.5 Effect of Liquidity Demand

In this section, we examine the effect of liquidity demand, as indicated by the volume of market orders, on

the limit order book. First and foremost, trading provides the means for price discovery and accordingly is

expected to affect price volatility. Trading consumes depth in the book, can stimulate additional liquidity

supply (e.g., Biais et al. (1995)), or can change the distribution of depths across price levels. Typically we

would expect a negative impact due to the consumption effect, but the stimulus effect might also come into

play. Nevertheless, either effect would have the same impact on the volatility of depth.
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As shown in Table 4.9, the estimated effect of trading volume (θ3) on subsequent market depth is positive,

especially for tiers at or near the market, suggesting that liquidity is supplied at a faster rate than it is consumed

and supporting to some extent the hypothesis that trading demand might help attract additional liquidity

supply. As expected, the variability of depth increases with trading volume, but this effect shows up at the

first tier only.

In addition, trading activity does not significantly affect subsequent price volatility at the first tier, but

rather increases price volatility only at other tiers. This result still holds after we control for announcement

effects. The empirical facts documented earlier, with first tier price volatility and trading volume exhibiting

strikingly similar patterns over time and over the course of a trading day, can be relied upon in interpreting

the model estimates. Apparently, trading and price volatility at the inside tier are contemporaneously related

so that once we control for lagged volatility, lagged trading volume has little incremental explanatory power.

Beyond the first tier, however, trading volume still shows its relevance in predicting subsequent price volatility,

indicating that the effect of trading activity travels to the outer tiers’ price volatility with a lag.

4.5 Liquidity and Volatility During Flights to Safety

We now turn to an analysis of the Treasury market during flight-to-safety episodes. Prior research mainly

focuses on understanding the motives of such flights, e.g., whether investors are seeking the high quality

and/or high liquidity of Treasury securities. Evidence seems to favor the liquidity motive for flights. For

example, Beber et al. (2009) show that euro-area bond investors chase liquidity rather than credit quality

during times of market stress. Likewise, Longstaff (2004) documents a liquidity premium in Treasury

securities, as large of 15% of their values. However, the question of whether the sought-after liquidity is

actually there when it is needed the most remains. Addressing this question is the main objective of this

section.

4.5.1 Identification of Flights to Safety

We first describe how flights to safety are identified. It is widely observed, and agreed, that a flight to safety

occurs when investors withdraw in droves from risky asset markets and move to safe/liquid asset markets. A

common flight to safety is the flow out of equity markets and into the Treasury market. Such a flight is often

accompanied by an extreme negative equity return concurrent with an extreme positive Treasury return. This
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is the basis for the identification of flight-to-safety episodes proposed by Baele et al. (2012) - an approach

that we adopt in this study.

Specifically, let rT and rE be the daily return on the relevant on-the-run Treasury note and the S&P 500

index respectively.16 σT and σE correspond to their sample return volatility. The flight-to-safety dummy,

FTS is defined as:

FTS = 1rE<−κσE ∗ 1rT>κσT (4.14)

where κ is the parameter for the severity of the flight.

We examine three different levels of κ, i.e., 1, 1.5, 2 – which we will refer to as “light”, “moderate” and

“severe” flights. Appendix B shows the dates of these flights, as well as the total count of flights for each

security and each severity level. With 1,124 trading days in the sample period from January 2006 through the

second quarter of 2010, the light, moderate and severe flights occur on approximately 6%, 2-3% and 0.8-1.2%

of the days respectively. The last quarter of 2008 contains a disproportionately large number of flights. In

particular, the majority of the severe flights happen in the aftermath of the Lehman bankruptcy, especially

on September 15, 29 and October 6 of 2008 when severe flights to safety occur in all three securities. The

identification of moderate FTS episodes in the 2- and 5-year notes also picks up August 9, 2007, which marks

the beginning of the crisis.

It is worth noting that using the returns on the 5- and 10-year notes helps identify slightly more FTS

episodes than when the 2-year note returns are used. Light and moderate flights tend to happen most frequently

with the 5-year note, whereas for severe flights, the 10-year note returns pick up the highest frequency of

such episodes. One possible explanation is that the Fed lowered rates to the zero bound, thereby anchored the

2-year, creating a more stable pattern for the shorter maturity. Indeed, flights to the 2-year note seem to occur

mostly in the earlier period of the sample which is less affected by the zero bound.

16We use the daily on-the-run “dirty” prices for the 2-, 5- and 10-year notes from Bloomberg in computing the relevant daily Treasury
return for the identification of flights. It is worth noting that there is a discontinuity in price of any given on-the-run Treasury note
series on those days when a security goes off-the-run and a new issue becomes on-the-run. To take care of these discontinuities, we
first compute daily returns separately for each issue, and then splice together the returns over only the on-the-run period of each
issue. The notes are on-the-run from the day following their auction through the day of the following auction (for that maturity).
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4.5.2 How Different Are Flight-to-Safety Days?

We compare order book depth, trading volume, price volatility and depth volatility on FTS days with non-FTS

days and find them to be markedly different. The comparison across the three Treasury notes sheds light onto

which one is affected by these episodes the most. For the discussion below, we use moderate FTS days, i.e.,

days when the Treasury return exceeds 1.5 times its sample volatility and the S&P 500 return falls below -1.5

times its sample standard deviation.

In terms of trading volume, the average daily figure for the 2-year note on FTS days is over $57 billion

whereas the number on non-FTS days is only nearly $34 billion. On a typical non-FTS day, selling pressure

dominates buying pressure, with a net selling volume of $652 million. This reverses to an average net buying

volume of $945 million on FTS days. Likewise, the number of trades is almost double the typical non-FTS

level, and the reversal in the net number of trades is more dramatic than is the case with the volume of

trades.17 The average trade size, being 4.35 on FTS days as compared to 4.65 on other days, suggests that

market participants submit smaller sized orders than usual on FTS days.

The 5- and 10-year notes also have higher trading volume on FTS compared to non-FTS days, but to

a lesser extent than the 2-year note. As with the 2-year note, we observe net selling pressure in the 5- and

10-year notes on non-FTS days, about $465 and $321 million respectively. However, both notes show changes

on FTS days that are less dramatic than those for the 2-year note. For the 10-year note, net volume reverses

(as with the 2-year note) so that there is net buying averaging $338 million on FTS days. For the 5-year note,

net selling is weaker on FTS days, averaging $222 million, but net volume remains negative.

Differences between FTS and non-FTS days for the 5- and 10-year notes are more striking when we look

at the number of trades as opposed to trading volume, as is the case with the 2-year note. That is, the overall

increase in activity is greater on FTS days when looking at the number of trades, and the net number of trades

flips from negative (i.e., net selling pressure) on non-FTS days, to positive (i.e., net buying pressure) on FTS

days for the 5- as well as the 10-year note.

These pieces of evidence together suggest that there is a higher level of trading demand on FTS days,

particularly on the buy side, as we would expect to be the case when the Treasury market absorbs the flow of

investors fleeing risky asset markets. The differences are especially striking when looking at the number of

17We note that the number of trades is not the same as the number of market orders. When a market order is executed against multiple
limit orders, the system records each of them as one trade. Thus a market order can correspond to multiple trades. Nevertheless,
the number of trades and volume of trades collectively provide a complete picture of trading activity in the market.
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trades, suggesting that order sizes are smaller on FTS days. The 2-year note appears to be especially affected

by flights to safety.

Even more striking evidence from our analysis is that market depth, representing the ex ante liquidity

supply (or the willingness to provide liquidity), is much lower on FTS days, as shown in Figure 4.6. In

particular, the order book for the 5- and 10-year notes on FTS days thins out to a greater extent than that for

the 2-year note. This lack of willingness to post limit orders spreads over all price tiers, and not just the first

tier where depth could naturally be lower if the trading rate exceeded the limit order submission rate.

We in turn examine the behavior of volatility to understand better how the book on FTS days could

thin out so much. Both volatility measures are much higher on FTS days, especially price volatility. The

evidence seems supportive of our conjecture that, despite the strong demand for liquidity, dealers become

more conservative with their liquidity supply on FTS days when the market is highly volatile. They provide

less depth to reduce adverse execution risk and allow themselves increased flexibility to respond to the highly

volatile market conditions on these days.

4.5.3 Liquidity and Volatility Dynamics and Flights to Safety

We now turn to our econometric framework to explore whether the dynamics of liquidity and volatility change

on FTS days. In particular, we allow for the FTS dummy to affect both the level as well as the persistence of

liquidity and volatility. For this section, we use a univariate MEM specification for each of the liquidity and

volatility variables in order to expose the FTS effect cleanly on each variable’s dynamics. Specifically, each

variable’s conditional mean equation takes the following form:

µt = ω + αXt−1 + βµt−1 + c FTSt + cαFTStXt−1 + cβFTStµt−1.

Under this specification, the coefficient c captures the level effect of FTS, while cα and cβ captures the

change in the dynamics of the modelled variable. We estimate this equation for market depth (presented in

Table 4.3) and price volatility (presented in Table 4.4) for each security and each of the three levels of FTS

severity corresponding to three thresholds adopted for κ (1, 1.5, 2).

In general, flights seem to have more of an effect on the dynamics than the level, given that the depth

series have been diurnally adjusted to remove intraday regularities. cα is the coefficient on the interaction

between the relevant FTS dummy and the past market depth, hence it captures the marginal impact of news

126



on market depth on FTS days. cα is mostly negative and significant, suggesting that on those days when

flights occur, the immediate past realization of market depth has lower predictive value for depth at the

next interval. On the other hand, cβ tend to be somewhat positive on these days, essentially indicating that

market participants place greater importance on the historical path of market depth than on just its most

recent realization in predicting the next level of market depth. Therefore, while the persistence of depths on

FTS days does not significantly differ from that on non-FTS days, the composition has changed that gives

less weight to the impact of news on market depth. With respect to the level effects, the 2-year note shows a

somewhat lower depth level on FTS days, especially at the inside bid and ask, whereas the evidence is more

mixed with the other two notes.

We now describe the effects of flights on price volatility. Consistent with evidence presented earlier,

the level of price uncertainty is significantly higher on flight-to-safety days, although statistical significance

seems to diminish with the severity of flights – a direct consequence of a much lower number of observations

with the most severe flights to safety. Examining the effects of flights on the dynamics of volatility via the

estimates for cα and cβ , we can see that the news impact coefficient cα is usually not significantly different

from that on non-flight days, except for the positive news impact on volatility at some outer price tiers. The

other coefficient cβ often has opposite sign to cα. Similar to the evidence with depth, we also find that while

volatility does not exhibit a significantly different level of persistence on flight-to-safety days, there has been

a shift in the relative importance of the news impact coefficient on volatility especially at some of the outer

price tiers.

4.6 Conclusion

In this study, we propose a new class of dynamic order book models for the purpose of exploring the micro

dynamics of depth, price volatility and depth volatility in the interdealer market for the 2-, 5- and 10-year

U.S. Treasury notes. Our models are based on the multiplicative error framework introduced by Engle (2002).

This class of models offers important advantages that are highly suited to the modeling of the Treasure limit

order book. Zero or very low values of market depths are not uncommon, particularly around economic

announcements and during the crisis. Likewise, intraday volatility is often zero during quiet times of the day.

The MEM guarantees the prediction of nonnegative depths and volatility measures and allows us to integrate

liquidity and volatility into a unified framework from which their dynamic interactions can be studied. It also
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goes beyond the log linear framework in that it allows for more flexible and realistic probability distributions.

Additionally, by modeling the limit order book in a similar fashion to asset price volatility models, we can

capitalize on the vast literature in the latter to tailor our model specifications in ways that can capture the

dynamics between liquidity and volatility as closely as possible.

In addition to the novel use of the MEM framework to model the dynamics of the limit order book, we

also introduce the notion of realized volatility of depth, which is parallel in concept to realized volatility of

price. Furthermore, apart from testing market microstructure hypotheses, our proposed class of models can

be used for the purpose of forecasting liquidity and managing liquidity risk.

Our empirical analysis examines market depth and volatility around economic announcements, through

the crisis and during flight-to-safety episodes. Consistent with earlier studies on the impact of economic

announcements, we document an important stylized fact that depths tend to disappear before announcements

but return shortly thereafter, together with a surge in trading activity and a jump in price volatility which takes

an hour or so to fade away. We offer additional facts about the Treasury market over the crisis not previously

documented, that is, the order book thins out substantially over the crisis, coupled with an elevated level of

price volatility, although trading activity does not decline substantially until the second half of the crisis.

Our models’ key finding is that price volatility and depth at the first price tier exhibit a negative

relationship, which runs in both directions. This negative feedback effect becomes more pernicious during

the crisis when both of these variables are evidently more persistent. This helps explain spells of liquidity

deteriorating as volatility increases, and conversely, liquidity improving as volatility decreases, especially

observed during the crisis. Last but not least, our study of the Treasury market during flights to safety shows

that market depth is substantially lower despite the higher demand for trading on these days. The inflows of

trading interest and the accompanied rise in price uncertainty may necessitate greater market monitoring and

reduce dealers’ incentive to supply liquidity via limit orders.
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Table 4.3: Liquidity Dynamics With Flight-to-Safety Effect

2-Year Treasury Note 5-Year Treasury Note 10-Year Treasury Note

c cα cβ c cα cβ c cα cβ

Panel A: Flight–to–Safety Dummy Based on κ = 1
Ask5 −0.003∗ -0.119 0.098 0.000∗ -0.076 0.049
Ask4 -0.009 -0.101 0.093 0.003∗ -0.067 0.054 −0.002∗ -0.086 0.065
Ask3 −0.004∗ -0.072 0.060 −0.001∗ −0.022∗ 0.008∗ 0.001∗ −0.039∗ 0.014∗

Ask2 0.003∗ −0.035∗ 0.009∗ 0.014 −0.037∗ −0.009∗ 0.004∗ −0.046∗ 0.020∗

Ask1 -0.021 -0.045 0.035
Bid1 -0.014 -0.043 0.005∗ 0.006∗ -0.037 −0.025∗ −0.004∗ −0.022∗ -0.029
Bid2 −0.001∗ -0.087 0.067 0.004∗ -0.048 0.018∗ 0.001∗ -0.046 0.022∗

Bid3 −0.002∗ -0.068 0.052 0.003∗ −0.038∗ 0.004∗ 0.006∗ −0.038∗ 0.005∗

Bid4 −0.004∗ -0.060 0.047∗ −0.000∗ -0.077 0.043∗ 0.002∗ -0.068 0.041∗

Bid5 -0.007 -0.084 0.073 −0.000∗ -0.077 0.043 −0.005∗ -0.083 0.067
Panel B: Flight–to–Safety Dummy Based on κ = 1.5

Ask5 0.002∗ -0.096 0.066∗ -0.012 -0.086 0.067 0.004∗ -0.080 0.034∗

Ask4 −0.006∗ -0.085 0.077∗ −0.004∗ -0.076 0.042∗ −0.005∗ -0.109 0.082
Ask3 −0.008∗ -0.087 0.085 0.004∗ −0.025∗ −0.007∗ 0.003∗ −0.063∗ 0.023∗

Ask2 0.014 0.037∗ −0.074∗ 0.013 -0.060 0.007∗ 0.010∗ −0.062∗ 0.013∗

Ask1 −0.007∗ −0.005∗ −0.006∗ −0.001∗ -0.041 −0.020∗ 0.007∗ −0.033∗ -0.055
Bid1 -0.020 -0.091 0.057 0.010∗ −0.030∗ -0.049 −0.002∗ -0.036 −0.045∗

Bid2 −0.003∗ -0.090 0.070∗ 0.012 −0.042∗ −0.010∗ 0.004∗ -0.068 0.027∗

Bid3 0.002∗ −0.066∗ 0.040∗ −0.006∗ -0.075 0.048∗

Bid4 −0.005∗ −0.066∗ 0.057∗ −0.005∗ -0.069 0.036∗ −0.001∗ -0.101 0.064
Bid5 −0.006∗ -0.120 0.108 −0.004∗ -0.083 0.048∗ −0.006∗ -0.117 0.088

Panel C: Flight–to–Safety Dummy Based on κ = 2
Ask5 0.006∗ -0.155 0.086∗ −0.010∗ −0.083∗ 0.035∗ 0.011∗ −0.046∗ −0.038∗

Ask4 -0.010 -0.164 0.143 0.004∗ -0.163 0.071∗ −0.006∗ -0.101 0.066∗

Ask3 −0.009∗ -0.103 0.091∗ −0.000∗ −0.020∗ −0.028∗ 0.013∗ −0.050∗ −0.038∗

Ask2 0.009∗ −0.061∗ −0.016∗ 0.027 −0.088∗ −0.050∗ 0.016∗ −0.096∗ 0.015∗

Ask1 -0.031 -0.066 0.032∗ 0.031∗ -0.130 −0.078∗ 0.070∗ -0.074 −0.168∗

Bid1 -0.037 -0.113 0.090 0.173 −0.068∗ -0.412 0.008∗ -0.108 −0.027∗

Bid2 −0.004∗ -0.116 0.083∗ 0.044 −0.043∗ -0.147 0.007∗ -0.100 0.034∗

Bid3 0.003∗ −0.100∗ 0.055∗ 0.007∗ −0.088∗ −0.000∗ 0.011∗ −0.066∗ −0.009∗

Bid4 −0.001∗ −0.001∗ −0.031∗ 0.009∗ -0.146 0.035∗ 0.009∗ −0.065∗ −0.011∗

Bid5 −0.009∗ -0.154 0.134 0.029 −0.072∗ −0.091∗ −0.002∗ -0.106 0.052∗

This table shows estimates for the model of market depth with a flight-to-safety effect for the 2-, 5- and 10-year Treasury notes:

µt = ω + αXt−1 + βµt−1 + c FTSt + cαFTStXt−1 + cβFTStµt−1. FTS is the flight-to-safety dummy, and equal to 1 if the

S&P return falls below −κ times its sample standard deviation while the Treasury note return exceeds κ times the latter’s sample

standard deviation. Estimation is based on five-minute snapshots of BrokerTec limit order book over the period 2006-2010Q2. (*)

denotes insignificance at the 5% level.
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Table 4.4: Volatility Dynamics With Flight-to-Safety Effect

2-Year Treasury Note 5-Year Treasury Note 10-Year Treasury Note

c cα cβ c cα cβ c cα cβ

Panel A: Flight-to-Safety Dummy Based on κ = 1
Ask5 0.098 0.023∗ −0.018∗ 0.194 0.074 -0.172 −0.018∗ 0.077 0.002∗

Ask4 0.110 0.019∗ −0.019∗ 0.076 0.035∗ −0.046∗ 0.012∗ 0.068 −0.022∗

Ask3 0.123 0.006∗ −0.013∗ 0.059 0.024∗ −0.015∗ 0.036∗ 0.045∗ −0.018∗

Ask2 0.140 0.022∗ −0.037∗ 0.081 0.060∗ −0.065∗ 0.019∗ 0.058∗ −0.021∗

Ask1 0.117 0.009∗ −0.015∗ 0.117 0.050∗ −0.090∗ 0.082 0.039∗ −0.053∗

Bid1 0.165 0.019∗ −0.061∗ 0.105 0.049∗ −0.080∗ 0.124 0.005∗ −0.056∗

Bid2 0.111 0.096 -0.130 0.128 0.046∗ -0.103
Bid3 0.145 0.016∗ −0.044∗ 0.056∗ 0.005∗ −0.001∗ 0.100 0.004∗ −0.038∗

Bid4 0.125 0.021∗ −0.037∗ 0.029∗ 0.035∗ −0.014∗ 0.063∗ 0.072 −0.077∗

Bid5 0.097 0.021∗ −0.027∗ 0.026∗ 0.080 −0.058∗ 0.048∗ 0.087 -0.074
Panel B: Flight-to-Safety Dummy Based on κ = 1.5

Ask5 0.052∗ 0.002∗ 0.046∗ 0.161 0.007∗ −0.058∗ −0.008∗ 0.115 −0.020∗

Ask4 0.102 0.021∗ 0.009∗ 0.070 −0.039∗ 0.050∗ 0.024∗ 0.061∗ 0.001∗

Ask3 0.160 0.038∗ −0.042∗ 0.101 −0.011∗ 0.004∗ 0.039∗ 0.017∗ 0.034∗

Ask2 0.123 0.040∗ −0.022∗ 0.082∗ 0.079∗ −0.074∗ −0.006∗ 0.049∗ 0.027∗

Ask1 0.151 0.020∗ −0.025∗ 0.106∗ 0.026∗ −0.044∗ 0.110∗ 0.024∗ −0.034∗

Bid1 0.152 0.009∗ −0.022∗ 0.137 0.060∗ −0.096∗ 0.220 −0.007∗ −0.088∗

Bid2 0.174 0.020∗ −0.043∗ 0.110∗ 0.157 -0.161 0.227 0.046∗ −0.146∗

Bid3 0.174 −0.013∗ −0.016∗ 0.052∗ −0.037∗ 0.060∗ 0.206 0.004∗ −0.087∗

Bid4 0.091 0.016∗ 0.006∗ 0.050∗ 0.084 −0.064∗ 0.060∗ 0.086∗ −0.067∗

Bid5 0.065∗ 0.024∗ 0.003∗ 0.040∗ 0.112 −0.090∗ 0.054∗ 0.101 −0.067∗

Panel C: Flight-to-Safety Dummy Based on κ = 2
Ask5 0.057∗ 0.026∗ 0.048∗ 0.241 −0.010∗ −0.050∗ −0.037∗ 0.115∗ 0.011∗

Ask4 0.086∗ 0.040∗ 0.023∗ 0.074∗ −0.085∗ 0.117 −0.036∗ 0.225 −0.103∗

Ask3 0.201 0.092∗ −0.082∗ 0.157∗ −0.026∗ 0.017∗ 0.053∗ 0.027∗ 0.031∗

Ask2 0.139∗ 0.121∗ −0.079∗ 0.057∗ 0.062∗ −0.017∗ −0.049∗ 0.100∗ 0.022∗

Ask1 0.165∗ 0.054∗ −0.038∗ 0.078∗ −0.020∗ 0.033∗ 0.099∗ 0.029∗ −0.011∗

Bid1 0.137∗ 0.004∗ 0.013∗ 0.242 0.024∗ −0.113∗ 0.317 −0.006∗ −0.137∗

Bid2 0.139∗ 0.014∗ 0.003∗ 0.261 0.197 -0.269 0.373∗ 0.015∗ −0.195∗

Bid3 0.177∗ −0.010∗ 0.007∗ 0.039∗ −0.060∗ 0.119 0.327 −0.003∗ −0.147∗

Bid4 0.083∗ 0.050∗ 0.000∗ 0.033∗ 0.086∗ −0.034∗ 0.064∗ 0.052∗ −0.026∗

Bid5 0.039∗ 0.024∗ 0.034∗ 0.008∗ 0.104∗ −0.035∗ 0.082∗ 0.075∗ −0.048∗

This table shows estimates for the model of realized price volatility with a flight-to-safety effect for the 2-, 5- and 10-year Treasury

notes: µt = ω + αXt−1 + βµt−1 + c FTSt + cαFTStXt−1 + cβFTStµt−1. FTS is the flight-to-safety dummy and equal to 1

if the S&P500 return falls below −κ times its sample standard deviation while the Treasury note return exceeds κ times the latter’s

sample standard deviation. Estimation is based on five-minute snapshots of BrokerTec limit order book over the period 2006-2010Q2.

(*) denotes insignificance at the 5% level.
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Figure 4.1: Daily Liquidity and Volatility at First Price Tier of 2-Year Treasury Note
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(b) Bid: Depth & Trade Volume
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(d) Bid: Depth & Price Vol.
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(e) Ask: Depth & Depth Vol.
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(f) Bid: Depth & Depth Vol.

This figure shows the 2-year Treasury note’s daily average market depth, total trading volume, price volatility and depth volatility at

the first price tier, using BrokerTec order book data over the period 2006-2010Q2. Two vertical dotted lines mark the beginning

(August 9, 2007) and ending (June 30, 2009) of the crisis. The series are smoothed using a 5-day moving average for better viewing

of the trend.
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Figure 4.3: Intraday Patterns of Liquidity and Volatility at First Price Tier of 2-Year Treasury Note
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(b) Bid: Depth & Trade Volume
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(e) Ask: Depth & Depth Vol.
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(f) Bid: Depth & Depth Vol.

This figure shows the 2-year Treasury note’s intraday patterns of market depth, price volatility and depth volatility at the first price

tier, using BrokerTec order book data over the period 2006-2010Q2.
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Figure 4.6: Liquidity and Volatility on FTS and non-FTS days
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(b) 2Y: Price Volatility
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(c) 2Y: Depth Volatility
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(d) 5Y: Depth
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(e) 5Y: Price Volatility
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(f) 5Y: Depth Volatility
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(g) 10Y: Depth
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(h) 10Y: Price Volatility

Bid5 Bid4 Bid3 Bid2 Bid1 Ask1 Ask2 Ask3 Ask4 Ask5
0

5

10

15

20

25

Price Tier

D
ep

th
 V

ol
at

ilit
y

 

 
Non FTS
FTS

(i) 10Y: Depth Volatility

This figure shows average market depth, price volatility and depth volatility at a five-minute frequency, on days with a flight to safety

(“FTS” – light colored bars) and days without such an episode (“nonFTS” – dark colored bars), using BrokerTec order book data

over the period 2006-2010Q2. Flights are identified by a large positive return on the Treasury note and a large negative return on the

S&P500 index, based on a 1.5 standard deviation threshold.
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CHAPTER 5

VOLATILITY AND LIQUIDITY SPILLOVERS DURING THE EURO AREA SOVEREIGN DEBT
CRISIS

5.1 Introduction

Financial market linkages across countries are important to study, especially in times of crisis. While these

linkages facilitate better capital flows across borders, they also make it easier for shocks in one market to

spread to others in times of market stress. The recent euro area sovereign debt crisis provides an interesting

setting to study the issue of financial market connectedness and cross-country spillovers. Countries in this

area share the same currency (the euro), are subject to the same monetary policy making body (the European

Central Bank, henceforth ECB), and operate in a highly coordinated fiscal and economic environment.

Although the crisis started from imprudent fiscal behavior in Greece, contagion exacerbated the crisis in other

countries and spreaded instability across financial markets, as the ECB’s Vice President Constancio once

remarked (see Constancio (2012)). This source of contagion risk is the main focus of the paper.

Specifically, we examine the extent of shock transmission across euro area sovereign bond markets

during the crisis period of 2010-2012 to answer the following questions. Which source of shocks, liquidity

or volatility, is more prominent during this period? Which country, or countries, are the main “exporters”

of shocks that threaten the stability of the region? The answers to these questions are not obvious, because

the crisis did not arise from a single country. Instead, problems of different natures showed up in different

member countries at different times and deepened the crisis as it progressed.1 In this paper, we consider

contagion as extreme spillovers of shocks in the sense of Allen and Gale (2000), and measure spillovers in

the spirit of Diebold and Yilmaz (2014).

We focus on sovereign bond markets in our study of shock transmission during the eurozone crisis for

several reasons. First, government bond markets are among the key financial markets affected by a crisis of

1For example, the root cause of the crisis in Greece is fiscal imprudence, whereas Italy experiences a combination of fiscal and
political difficulties. For Spain, it is mainly a banking crisis.
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sovereign credit risk, because bond yields reflect investors’ assessment of a given sovereign’s creditworthiness.

Secondly, government bonds are an important asset class for investment and hedging purposes. Their liquidity

and volatility conditions therefore have important implications for portfolio and risk management. Importantly,

government bond markets serve as an important channel of monetary policy transmission. Sovereign bonds

are among the most important classes of collateral that can be pledged at the ECB for access to liquidity

facilities. Therefore, they can have a direct impact on the level of aggregate funding liquidity and credit

intermediation.2 The ECB’s active and direct interventions to address the malfunctioning of the secondary

market during the crisis speak volume about the importance of these instruments.

We consider jointly volatility and liquidity spillovers because the volatility-liquidity relation during

market crises is an important concern for market participants and policy makers. That is, the potential

feedback effect between illiquidity and high volatility can be detrimental. A volatile market increases

inventory risk for liquidity providers, and thus can discourage them from supplying liquidity to the market.

Conversely, without sufficient liquidity supply to absorb trading demands, price can deviate significantly

from the underlying value, resulting in higher price volatility.

From a methodological standpoint, modeling jointly the dynamics of volatility and liquidity in multiple

markets permits more insights. Beyond quantifying the extent of shock transmission across countries and

identifying systemically important country(ies), we can learn more. In particular, we can delineate the relative

magnitude of spillovers through volatility versus liquidity channels and track them over time. Therefore,

we can characterize empirically which source of shock tends to propagate more intensely across borders, or

how spillovers evolve with market events. In addition, within each bond market, the framework allows us to

analyze quantitatively the feedback relationship between volatility and liquidity, and determine if and when

one might dominate the other. The vast literature on asset pricing has shown liquidity and volatility to be

important pricing factors. Thus, an understanding of how these factors dynamically respond to each other can

shed more light on the dynamics of bond yields.

Using daily measures of volatility and liquidity constructed from intraday data on bonds issued by

Belgium, France, Germany, Italy, the Netherlands, and Spain, we find that the shock transmission across

borders during the crisis appears more liquidity-driven than volatility-driven. Moreover, Italy is the main

exporter of both volatility and liquidity shocks to the others, demonstrating its systemic role among euro area

2Indeed, Corradin and Rodriguez-Moreno (2014) document a monetary funding premium embedded in euro-denominated sovereign
bonds during the 2008-2013 period.
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bond markets. By virtue of being the largest bond market and the third largest economy in the eurozone, the

dynamics of the Italian bond market can affect other countries in a significant way that none of the other

markets can replicate. In addition, we show that this transmission occurs more strongly through the liquidity

channel.

The paper contributes to a large literature on spillovers and contagion during the European sovereign

debt crisis. Claeys and Vasicek (2014) examine and measure bilateral spillovers using euro area bond yields

and find that spillover has increased substantially since 2007. However, the increase in spillover is mostly

due to larger sized shocks, and not to a significant change in the transmission mechanism. De Santis (2014)

shows that spillover effects from Greece are among the major forces underlying developments in euro area

government bond yields in recent years. De Grauwe and Ji (2013) show that the surge in government bond

yields during the 2010-2011 crisis is disconnected from underlying fiscal developments, except for Greece.

Instead, the surge reflects a negative self-fulfilling market sentiment – one of the possible channels for the

propagation of negative shocks.

Mink and de Haan (2013) suggest another channel for contagion, the “wake up call” hypothesis, whereby

the Greek crisis prompts the market to scrutinize more closely the viability of other periphery countries. The

authors also find that only bailout news relating to the Greek crisis affects European banks’ returns, leading

them to conclude that the market does not worry about a Greek default per se but relies on bailout news to

discern how the European authorities combat the financial crisis. Arghyrou and Kontonikas (2012) document

the changing composition of the sources of contagion and examine the role of shifting country-specific market

expectations. Bai et al. (2012) study the possible contagion channels during the crisis and conclude that the

contagion is predominantly through the fundamental credit risk channel and not through the liquidity risk

channel.

Previous papers have measured spillovers among key market variables in the euro area during the crisis.

For example, Calice et al. (2013) model the spillover between liquidity and credit risk for countries in the area.

Alter and Beyer (2014) measure the spillovers among sovereigns, among banks, from sovereigns to banks,

and from banks to sovereigns during the crisis. Based on a generalized impulse response analysis (“GIRF”)

derived from a VAR model using sovereign and bank CDS spreads, the authors find that spillovers increase

prior to key events and policy interventions. In particular, the sovereign-bank spillovers trend upwards during

periods of distress, suggesting intensifying feedback loops between euro area banks and sovereigns. Adopting

a similar modeling approach based on a factor-augmented VAR model and a GIRF-based forecast error

146



variance decomposition, Claeys and Vasicek (2014) focus on the transmission of shocks across yields of 16

European Union countries.

Surprisingly, despite the numerous studies on the European sovereign debt crisis, not much work is

devoted to the issue of volatility and liquidity spillovers across euro area sovereign bond markets. Instead,

the literature generally places a greater emphasis on the sovereign CDS markets, the interactions between

liquidity and credit risks, or the effects of news or key events on euro area government bond yields to

examine spillovers in event study analyses. Even among studies that rely on econometric methods to quantify

spillovers as responses to shocks, the focus is mostly on yields (e.g., Claeys and Vasicek (2014)). We argue

that, by examining bond market volatility and liquidity – two important determinants of bond yields – we can

learn about bond market linkages at a more fundamental level than that by looking at comovement in yields

only.

There are a variety of methods proposed in the literature for the testing and measurement of spillovers

and contagion. Forbes and Rigobon (2002) focus on cross-market correlations in times of crisis (for a review

of work viewing contagion as the effect of contemporaneous movements across countries, see Dungey et al.

(2005, 2006)). Some recent papers have relied on copula-based approaches to model the tail dependence

among variables of interest (e.g., Rodriguez (2007)), on the basis that structural breaks in tail dependence are

symptomatic of contagion. Another branch of the literature measures contagion and spillovers as dynamic

responses to shocks. Engle et al. (2012b) model volatilities of eight East Asian countries using a multiplicative

error model, and measure volatility spillovers via impulse responses to shocks emanating from each country.

In the linear class of models, Diebold and Yilmaz (2014, 2009) develop spillover measures based on a

forecast error variance decomposition of VAR models. Diebold and Yilmaz (2014) propose to estimate the

chosen VAR model on a rolling basis to obtain the time-varying dynamics of spillover measures. Parsimony

and the simplicity in computing time-varying spillover estimates are appealing features of this VAR-based

framework. Parsimony is an important consideration when one has a large number of variables to model.

Accordingly, we follow this approach but with an important deviation. That is, instead of assuming a certain

variable ordering for the variance decomposition (as in Diebold and Yilmaz (2009)), or using an ordering-

invariant GIRF-based approach (as in Diebold and Yilmaz (2014)), we estimate the spillover measures for a

large number of permutations of variable orderings and take the average. This way, we avoid making ex-ante
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assumptions about the causal ordering of variables, while at the same time sidestep the issue of extreme

identification assumptions implicit in the GIRF-based approach.3

The paper is organized as follows. Section 5.2 describes the data, explains the measurement of bond

market volatility and liquidity, and provides background information on the European sovereign debt crisis.

Section 5.3 presents the general framework to estimate liquidity and volatility dynamics, from which to

construct spillover measures. In Section 5.4, we provide a full-sample analysis of volatility and liquidity

spillovers among the six bond markets considered. We also discuss the effects of variables capturing market

conditions on liquidity and volatility dynamics. Next, we show in Section 5.5 the multiple layers of spillovers

and how they evolve over the 2010-2012 crisis period. Section 5.6 concludes the paper.

5.2 Data

5.2.1 European Sovereign Bond Markets

The main dataset for this analysis is the intraday trade and quote data from MTS. The MTS is the largest

electronic interdealer trading platform for European fixed income securities, including government, quasi-

government and covered bonds.4 The sample period is 2010-2012, which covers almost completely the euro

area sovereign debt crisis.5

While data are available for all euro area countries, we focus on the six largest and most active markets,

namely Belgium, France, Germany, Italy, the Netherlands and Spain.6 These are the major economies in the

area, contributing roughly 87% to the total euro area’s GDP. As of the end of 2012, over 5,515 billion euros

of these sovereign bonds are outstanding, making up 90% of the euro area government bond market size.

Furthermore, trading in bonds issued by these six countries, especially Italy, accounts for 94% of total trading

3For a critique of the generalized impulse response function in VAR models, see Kim (2012).

4Cheung et al. (2005) and Darbha and Dufour (2013) describe in detail the microstructure of the MTS platform.

54/1/2011 is excluded from the sample due to missing quote data. The earliest quote across all bonds on this date occurred at 13:30.

6While the origin of the crisis can be traced back to Greece, Ireland and Portugal, there is almost no trading activity in Greek, Irish
and Portuguese bonds in the later part of the sample period. We are primarily interested in spillovers that occur through financial
market linkages. The inactivity in a given market means that this linkage is not available to transmit shocks to or receive from other
countries. As a result, these countries are not included in the analysis.
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activity on MTS during the 2010-2012 period. Given their sizes and economic importance, these countries

provide a quite complete picture of the euro area for the analysis.7

5.2.1.1 Bond Market Volatility

We compute realized variance from intraday quoted prices of benchmark coupon bonds issued by the six

sovereigns. Trading prices are not usable for this purpose since most bonds are traded only a few times a day,

except for Italian bonds. On the other hand, the quoted prices are binding and are available throughout the

trading day, so they present a good alternative to trading prices.

Specifically, the daily realized variance (RV ) of a given bond is calculated as:

RVt =
N∑
i=1

(4Yt,i)2, (5.1)

where4Yt,i = pt,i−pt,i−1 is the change in the log mid-quote for the interval i on day t, and N is the number

of intraday intervals per day. The trading hours on MTS are from 8:00 to 17:30 Central European Time.

In computing RVt, we need to choose a sampling frequency, i.e., the time interval between pt,i−1 and

pt,i. As discussed in Andersen et al. (2013), a five-minute sampling frequency is often adequate as it offers a

reasonable balance between retaining the richness of the data and keeping the microstructure noise component

in check. To compensate for the information loss from not using the highest available frequency of data

(one-second frequency), we sub-sample the estimator at the one-minute interval. This involves picking a

different starting minute during the first five minutes of the day to sample five–minute returns. This gives five

five-minute return series. We compute daily RV based on each of the five series and finally take the average

of the five computed RV ’s.8

From daily realized variance of individual bonds, we compute the aggregate realized variance for a given

bond market by averaging across all bonds issued by the same sovereign. Bonds with less than one year to

maturity are excluded. We report several descriptive statistics of realized volatility (square root of realized

variance) by country in Panel A of Table 5.1. The mean annualized volatility is between 6-7% for Germany,

France and the Netherlands, compared with the 9-10% volatility in Belgium and Italy and 13% in Spain. The

7For an overview of the euro area government bond markets, and key information about the six selected markets, see Appendix C

8This type of estimator has been advocated in Andersen et al. (2011), Ghysels et al. (2010) and Ghysels and Sinko (2011). These
papers show that this RV estimator performs on par with, and often better than the more complex RV estimators.
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high mean volatility of the latter three countries appears driven by some extreme values. If we look at the

median, these countries appear to be much more similar in terms of volatility: all except Spain are in the

6-7% range. Other distributional statistics confirm that the Spanish bond market is the most volatile.

5.2.1.2 Market Liquidity

We measure market liquidity for each individual bond on a given day by the time-weighted relative bid-ask

spread, expressed as a fraction of the mid-quote (in basis points):

Liq =
1

TK − T1

K−1∑
k=1

(Tk+1 − Tk)
(Ak −Bk)

0.5× (Ak +Bk)
× 10000, (5.2)

where Tk is the time of the kth quote update, Ak and Bk are the best ask and bid quotes at time Tk, and K

is the total number of quote updates of the day. A higher bid-ask spread indicates a lower level of market

liquidity.

A number of studies have found the bid-ask spread to be the most important measure of bond market

liquidity (e.g., Fleming (2003); Beber et al. (2009); and Favero et al. (2010)). In addition, since MTS market

share is uneven across countries and there are multiple venues in which bonds can be traded, quantity-based

measures of liquidity using MTS data might not be comparable across the countries.9 The bid-ask spread, on

the other hand, is a liquidity measure that is based on prices and not quantities. Because we can expect MTS

prices to be largely consistent with those prevailing at other trading venues, the bid-ask spread is arguably

least subject to the issue of uneven coverage discussed above. To measure the aggregate liquidity level for a

given country, we average the daily liquidity measures across all bonds issued by that country, excluding

bonds with less than one year to maturity.

Descriptive statistics of liquidity are presented in Panel B of Table 5.1. The German and Dutch bond

markets have quite similar level of market liquidity. On average, the bid-ask spread as a fraction of the

mid-quote is about 13 bps (mean) or 12 bps (median). Over the sample period, this measure of liquidity

never exceeds 60 bps for either market. On the other end, the relative bid-ask spread of Spanish bonds is

9It is particularly noted that trading activity in German government bonds is quite low on MTS, because these bonds are also
traded actively elsewhere, such as German stock exchanges, international electronic trading platforms and also in the over-the-
counter (OTC) market. The total trading volume in German Treasuries on MTS in 2012 is 52.7 billion euros, which is roughly
1% of the total market trading volume of nearly 5,400 billion euros (http://www.deutsche-finanzagentur.de/en/
institutional/secondary-market/).
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nearly six times larger, with a mean and median of 73 bps and 59 bps respectively, and a maximum of 487

bps. Nevertheless, this is still lower than the largest illiquidity reading of the Italian market: 667 bps! The

liquidity distribution is highly skewed, especially for Belgium, Italy and Spain.

5.2.2 Market Variables

Beside bond market data, we also collect data capturing market developments during the sample period. Most

of the data items are obtained from Datastream, unless otherwise indicated. We use these variables to control

for market wide factors that might affect volatility and liquidity across bond markets.

• Daily sovereign credit default swap (CDS) spreads: These are obtained from Bloomberg. We use

the spreads for the 5-year maturity, which is widely considered to be the most liquid segment of the

sovereign CDS market. Thus, the spreads are least subject to the CDS market’s liquidity effects. These

CDS spreads provide market-based measures of credit quality of the six countries.

• Daily series of the 5-year iTraxx Financials Senior index: This is a CDS index comprising of the most

liquid 25 financial names in Europe (senior subordination). This reflects the aggregate credit risk level

of the financial sector. To the extent that banks are a major group of players in the government bond

markets, in both market making and trading capacities, their viability is expected to have an effect on

bond market liquidity and volatility.

• Daily 3-month Euribor and EOIS rates: The difference between these rates reflects the cost of unsecured

borrowing for banks over the risk free rate. It captures the willingness of banks to lend to each other

and is thus often used as a measure of funding condition.

• Daily yields on AAA-rated and BAA-rate corporate bond indices: The difference between these two

series provides a market-based assessment of the aggregate default risk in the economy.

• Daily series for the VSTOXX: This is the implied volatility of options on STOXX, a major stock

market index in the eurozone. This series serves as a proxy for the aggregate risk aversion specific to

the eurozone.

• Daily series for the VIX: This is the implied volatility of options on the S&P 500 index, obtained

from the Chicago Board Options Exchange website. This has been widely used as a proxy for global
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systemic risk factor. Given that the US market closes after the European market, the VIX series is

lagged by one day when it is used as an explanatory variable.

5.2.3 The European Sovereign Debt Crisis

This section describes major developments during the euro area sovereign debt crisis in order to provide a

background essential for the subsequent analysis on spillovers in the paper. Figure 5.1 offers an overview of

key market developments. The top panel plots the 10-year benchmark yield spreads of five countries relative

to Germany’s 10-year benchmark yield. The middle panel shows the evolution of sovereign credit risk of the

six countries in consideration. The bottom panel documents the ECB’s interventions in the bond market.10

We identify and mark on the plots five event dates around which large spikes in yields and CDS premia

occurred.

The first corresponds to May 10, 2010 (vertical line (1)), which marks the beginning of the Greek

crisis. On this date, the ECB announced the SMP in an effort to restore bond market’s stability. The second

system-wide jump in yields occured in August 2011, when the market grew increasingly concerned about

Italy’s ability to service its public debts and complicated political environment. On August 8, 2011, the ECB

reactivated its SMP (vertical line (2)). During that week, the ECB purchased the largest amount in the history

of the program.

The political turmoil in Italy continued into the fourth quarter of 2011, ultimately resulting in a change

of government on November 26, 2011 (vertical line (3)). As the markets reacted to this news, bond prices

were considerably depressed and yields reached a new height. Another episode of yield jumps occurred when

Standard and Poor’s downgraded the credit ratings of France, Italy and Spain on January 13, 2012 (vertical

line (4)). Shortly after this date, Fitch also downgraded the credit ratings of Belgium, Italy and Spain. From

this point, the yields on French, Belgian and Dutch bonds declined gradually toward the end of 2012. On the

contrary, the Italian and Spanish yields continued to experience one more episode of severe stress in June

and July of 2012, when Spain struggled with a banking crisis. The euro group granted financial assistance to

10During the European sovereign debt crisis, the ECB implements a number of additional measures complementing its regular
liquidity operations. These complementary measures include outright interventions in public and private debt markets via the
so-called Securities Market Programme (“SMP”) and the Covered Bonds Purchase Programme. Of direct relevance to the sovereign
bond markets is the SMP. The only publicly available source of information on the SMP operations is the ECB’s weekly financial
statements, which state the total amount of purchases over a given week (without further details on the timing and the targeted
country/maturity of the operations). We manually compile a weekly series of SMP amounts from these statements. We thank
Olivier Vergote at the ECB for providing helpful instructions in compiling this series.
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Spain’s banking sector on July 20, 2012. However, only until the ECB President’s statement on July 26, 2012

of the ECB’s commitment to do “whatever it takes to preserve the euro” that the pressure on the Italian and

Spanish yields seemed to ease (vertical line (5)).

As shown in the last panel of Figure 5.1, the ECB’s outright operations in the secondary markets for

sovereign bonds of the periphery countries concentrated in May-June 2010 and August-December 2011, with

the two largest purchases undertaken at the peak of the Greek crisis and Italian crisis. The program, which

concluded in January 2012, acquired about 218 billion euros. Only until early 2013 that the ECB published

the country composition of its SMP bond holdings. Italian bonds account for roughly 47%, followed by

Spain (20%), Greece (16%), Portugal (11%) and Ireland (6%). Based on proprietary data on individual SMP

purchases, Ghysels et al. (2013) show that these purchases are successful at reducing bond yield volatility in

participating countries.

Examining the plots over the whole sample period, we can observe clearly that the pressures on yields

and CDS spreads in May 2010 around the Greek crisis appear much less serious than those prevailing around

the crises in Italy and Spain in late 2011. These two countries also account for the largest shares of the ECB’s

bond market intervention program.

Bond market volatilities and liquidity levels closely follow the above events. Figure 5.2 shows the euro

area bond market volatility over the sample period from 2010 to 2012. The figure reveals that the German,

Dutch and French bond markets are much less volatile than the markets for Italian, Belgian and Spanish

bonds. The scale used for plotting volatilities of the countries in the latter group is three times larger than

that for the former. There was a clear jump in volatility across markets at the break out of the Greek crisis

on May 10, 2010. The markets seemed to calm down shortly afterward, with a brief increase in volatility

in Belgium, Italy and Spain in late 2010, around the time of Ireland’s bailout package. Nevertheless, the

markets remained rather stable until the summer of 2011, when concerns over the spreading of the crisis to

Italy and Spain became apparent. The change of government in Italy in November 2011 led to significant

volatility increases across the markets. Most notably, Italy and Spain saw volatilities exceeding the 100%

p.a. level. Volatility in France and especially Belgium also increased significantly around this time, reaching

45% and over 70% respectively. After these peaks, the markets still experienced one more brief round of

heightened volatility in the middle of 2012 as Spain coped with its banking crisis.

The time-series evolution of liquidity follows that of volatility closely. As shown in Figure 5.3, there are

clear episodes of extreme illiquidity for the most volatile group of countries (Belgium, Italy and Spain). The
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first of such episodes occurred at the breakout of the Greek crisis in May 2010, when the bid-ask spread in

the Spanish bond market reached nearly 400 basis points for the first time, more than five times larger than

the typical level of 73 bps. The second wave of illiquidity occurred around the time of the crisis in Ireland in

November 2010. The next and also the most serious spell of market-wide illiquidity came in the summer

of 2011 and remained until the end of that year. Notably, the bid-ask spread on Italian bonds shot to an

unprecedented level of nearly 700 bps in early December 2011, while that for Spanish, Belgian and French

bonds reached nearly 500, 200 and 120 bps respectively. The Spanish bond market experienced another major

spike in illiquidity in July 2012, before seeing improvement in liquidity toward the end of 2012. Interestingly,

other countries’ liquidity did not seem to be significantly affected this time.

It is easy to see that the liquidity patterns correspond closely to episodes of heightened volatility and

periods of distress in Greece, Ireland, Italy, and Spain discussed earlier. Formally, the correlation between

liquidity and volatility in a given bond market is high, ranging between 0.63 for the Spanish market to 0.79 for

the Italian market. This high degree of correlation indicates that modeling only volatilities, or only liquidity

measures, will be incomplete. Considering them jointly enables us to disentangle which of the two is the

more important source of variation in the market. The next section describes the model and how the various

spillover indicators are computed.

5.3 Model

To measure spillovers and assess the degree of connectedness among the major euro area bond markets,

we adopt the VAR-based approach by Diebold and Yilmaz (2014). The VAR model is a standard and

parsimonious framework to model a large network of interconnected variables. Thus, it is a natural choice

for the analysis in this paper, in which we seek to model the dynamic interactions among liquidity and

volatility of six bond markets. The availability of high frequency data allows us to directly measure volatility

at the daily frequency. This is a great advantage, allowing us to avoid potential mis-specification concerns

if volatility were to be estimated parametrically from daily returns. Furthermore, we can model realized

volatility jointly with liquidity in one convenient and unified framework. In this section, we describe details

of the VAR model used, some key modeling considerations, and how spillovers are measured.

154



5.3.1 Modeling Dynamic Interdependencies

Consider a vector of n variables of interests, denoted by Yt, that follows a linear vector autoregression:

Yt = C +

p∑
j=1

AjYt−j + εt (5.3)

In particular, to fix ideas, we take Yt to be a vector of daily logged realized variances and daily logged relative

bid-ask spreads of six bond markets in the euro area, namely Germany (DE), France (FR), the Netherlands

(NL), Belgium (BE), Italy (IT) and Spain (ES). Our objective is two-fold: 1) to disentangle the mutual

feedback effects between volatility and liquidity within each bond market (“intra-country spillover”) and 2)

quantify the effect of spillovers from one market to other markets (“inter-country spillover”). This requires

measuring the effects of shocks of one variable on another variable at various horizons, which is commonly

achieved by a forecast error variance decomposition.

From the estimated VAR model, the h-step forecast error is:

Yt+h − Ŷt+h|t = εt+h + Ψ1εt+h−1 + Ψ2εt+h−2 + ...+ Ψh−1εt+1, (5.4)

where Ψj is the j-lag MA coefficient matrix in the MA(∞) representation of the VAR model:

Yt = C + εt + Ψ1εt−1 + Ψ2εt−2 + ...

The variance of the h-step forecast error in equation (5.4) is:

Vh = Ω + Ψ1ΩΨ′1 + Ψ2ΩΨ′2 + ...+ Ψh−1ΩΨ′h−1, (5.5)

where Ω = E(εtε
′
t). Orthogonalization of shocks follows Sims (1980)’ recursive method, assuming that the

j-shock has contemporaneous effects on only variables placed after it in the ordering.11 That is, εt = Aut,

where A is a lower triangular matrix capturing contemporaneous effects and ut is a vector of orthogonalized

11Diebold and Yilmaz (2014) use the generalized forecast error variance decomposition to produce spillover measures that are not
sensitive to the variable ordering. The limitations of this approach are discussed in Kim (2012). We instead opt for using the
standard recursive orthogonalization procedure, but implement an additional step to robustify our spillover measures, which will be
discussed in greater details in the subsequent subsection.
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residuals. Thus, Ω = AΣA′, where Σ is the variance of ut. Performing the Cholesky factorization on the

matrix Ω, i.e., Ω = PP ′ (and thus P = AΣ1/2), we can decompose the forecast error variance Vh in equation

(5.5) into contributions by each of the orthogonalized residuals V (j)
h , for j = 1, ..., n:

Vh =
n∑
j=1

V
(j)
h ,

where

V
(j)
h = pjp

′
j + Ψ1pjp

′
jΨ
′
1 + Ψ2pjp

′
jΨ
′
2 + ...+ Ψh−1pjp

′
jΨ
′
h−1,

and pj is the jth column of matrix P . The percentage contribution of the j-variable to the forecast error

variance of the i-variable is thus:

Cj→i = 100×
V

(j)
h (i, i)

Vh(i, i)
.

The above calculation results in a n × n matrix of bilateral spillovers (n = 12), in which the (i, j)

element is Cj→i. Intuitively, Cj→i measures the extent to which the jth shock drives the variation in the ith

variable at a given horizon h, i.e., the extent of shock transmission from j to i at the horizon h.

5.3.2 Effects of General Market Conditions

To account for the possibility that developments in the macroeconomic environment might explain some of

the comovement of volatility and liquidity across the sovereign bond markets in consideration, we augment

the VAR model with the following control variables.

First is the common trend in credit quality of these sovereigns. The commonly used proxy for credit

quality of a country is the CDS premium on its sovereign debts. A principal component analysis on the CDS

premia of the six countries reveals that the first principle component (SovPC1) explains over 91% of the

total variation. We use PC1 as a control variable in the VAR model, instead of the six individual CDS series,

realizing that it has captures sufficiently the common trend in sovereign credit risk that might affect the bond

markets’ liquidity and volatility. The model is also leaner this way.

Next, we include changes in the iTraxx-Financial index to proxy for funding condition (Fund). iTraxx-

Financial index is an index of CDS on 25 financial firms in Europe. The financial sector plays a key role

in intermediating and supplying credit, so their viability has a first order effect on the funding condition in
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the euro area. Another proxy for funding condition is the cost of credit (CC), as measured by the difference

between the 3-month Euribor and the EOIS rate.

To control for aggregate risk factors, we include the following variables. First, we use default spread

(DefSpr), which is the yield difference between AAA-corporate and BAA-corporate bond indices, to capture

the aggregate credit risk level in the economy. Secondly, the implied volatility of options on the STOXX

index, V STOXX , serves as a proxy for regional risk aversion. Lastly, we include the V IX to control for

movements in global risk factor beyond those pertaining to the euro area.

The model includes both contemporaneous and one-lag effects of these variables to account for possible

delay in the bond markets’ reaction to these time-varying market conditions. Thus, the model estimated is:

Yt = C +

p∑
j=1

AjYt−j +B0Xt +B1Xt−1 + εt, (5.6)

where Xt = [SovPC1, Fund,CC,DefSpr, V STOXX,V IX]′.

5.3.3 Spillover Measures

After estimating the model and performing the variance decomposition as outlined earlier, we obtain a 12×12

bilateral spillover matrix. From this table, we classify spillovers into two major categories: 1) intra-country

spillovers, and 2) inter-country spillovers. To facilitate a clearer description of spillover measures in this

section, we introduce a different set of indexing notations. Let c be the country index, with c ∈ {DE, FR, NL,

BE, IT, ES}, L and V denote liquidity and volatility respectively, and an arrow (→) indicate the direction of

variance contribution. We now discuss each spillover category in detail.

Intra-country spillovers reflect the extent to which liquidity shocks are transmitted to volatility, and vice

versa, within the same bond market. These intra-country dynamics reveal which source of shocks tends to

dominate a given market, and are measured by the elements Cc,L→c,V and Cc,V→c,L in the spillover matrix.

On the other hand, inter-country spillovers measure the extent of shock transmission across borders. To

assess the systemic importance of each country, we compute the following directional spillover measures

capturing the extent of shocks sent and received by each country in the same fashion as Diebold and Yilmaz

(2014):
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1. Spillovers Received:

INc,L =
∑
c∗ 6=c

(Cc∗,L→c,L + Cc∗,V→c,L) , (5.7)

INc,V =
∑
c∗ 6=c

(Cc∗,L→c,V + Cc∗,V→c,V ) . (5.8)

2. Spillovers Sent:

OUTc,L =
∑
c∗ 6=c

(Cc,L→c∗,L + Cc,L→c∗,V ) , (5.9)

OUTc,V =
∑
c∗ 6=c

(Cc,V→c∗,L + Cc,V→c∗,V ) . (5.10)

3. Net Spillovers Sent:

NETc,L = OUTc,L − INc,L, (5.11)

NETc,V = OUTc,V − INc,V . (5.12)

Notice that each of the above directional spillover measures is the sum of liquidity-related and volatility-

related variance shares. The separation of liquidity variables from volatility variables permits a more granular

view about which source of shocks is the main driver of a country’s systemic importance.

5.3.4 Measuring Time-Varying Spillovers

Based on the above framework, we can study the time-varying dynamics of spillovers among these countries

by estimating the VAR model on a rolling basis and computing the corresponding spillover measures, as

suggested in Diebold and Yilmaz (2014). For implementation, we need to choose the length of each rolling

window and the rolling frequency.

For the window size, we follow Diebold and Yilmaz (2014) and use a window of 100 days. This choice

balances between having reliable model estimates (preferring a longer window) and being able to quickly

pick up changes in spillover (preferring a larger number of shorter windows). Different from Diebold and

Yilmaz (2014), we choose to roll the estimation at the weekly frequency, from one Friday to the next (or

Thursday if Friday is a holiday), instead of the daily frequency. This results in a weekly series of spillover
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estimates, each of which is based on market dynamics over the 100 days up to the end of the corresponding

week. For the 2010-2012 period, the first available spillover estimate corresponds to the week ending on May

28, 2010.

To keep the time-series analysis of spillovers tractable, we compute the following aggregate spillover

indices and examine their behavior over time. Note that the time reference (at the weekly frequency) for these

indices is suppressed.

1. Total spillover index. This measures the average contribution of shocks from all other variables, or the

average extent to which a given variable is driven by others:

TotalS =
1

12

12∑
j=1

∑
i 6=j

Cj→i

 . (5.13)

2. Intra-country spillover. This is a component of the total spillover index that captures only the spillover

between liquidity and volatility of the same bond market. The intra-country spillover is calculated as:

IntraS =
1

12

∑
c

(Cc,L→c,V + Cc,V→c,L) . (5.14)

3. Inter-country spillover. This is the other component of the total spillover index that shows the extent of

spillovers received from external countries. It can be calculated as:

InterS = TotalSt − IntraSt. (5.15)

The inter-country spillover index can be further decomposed into four sub-indices based on the type of

shocks received from and sent to the other countries: 1) volatility to volatility spillover (“V 2V ”), 2) volatility

to liquidity spillover (“V 2L”), 3) liquidity to liquidity spillover (“L2L”), and 4) liquidity to volatility spillover

(“L2V ”):
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V 2V =
1

6

∑
c

∑
c∗ 6=c

Cc∗,V→c,V

 , (5.16)

V 2L =
1

6

∑
c

∑
c∗ 6=c

Cc∗,V→c,L

 , (5.17)

L2L =
1

6

∑
c

∑
c∗ 6=c

Cc∗,L→c,L

 , (5.18)

L2V =
1

6

∑
c

∑
c∗ 6=c

Cc∗,L→c,V

 . (5.19)

5.3.5 Modeling Considerations

Lag order The selection of the lag length p is based on the AIC and BIC, which suggest 2 and 1 respectively,

using the full data sample. We choose 1 lag to reduce the risk of overfitting, especially when it comes to

estimating the model on a shorter rolling window.

Forecasting horizon for forecast error variance decomposition We choose a forecasting horizon of 10

days (or two weeks) ahead. A similar choice is made by Diebold and Yilmaz (2014) who use a 12-day

forecasting horizon in their study of volatility spillovers across major financial stocks. Alter and Beyer (2014)

use a five-day horizon for their impulse response analysis in studying sovereign and bank CDS spillovers.

For risk management, too long a forecasting period can reduce the forecast’s usefulness because the forecast

error might be too large. On the other hand, if the forecasting horizon is too short, we might not be able to

capture the long run effect of a shock.

Variable Ordering The paper computes variance contributions of shocks orthogonalized by Sims (1980)’

recursive method, which depend on how variables are ordered in the system. Instead of assuming a specific

ordering and letting the results depend on the chosen ordering, we robustify the variance contributions by

averaging across multiple permutations of variable ordering. This is similar to the approach suggested by

Klößner and Wagner (2012) to overcome the ordering-dependent problem. A common alternative to the

ordering issue is to use Pesaran and Shin (1998)’s generalized impulse response approach, as employed in

Diebold and Yilmaz (2014). However, as discussed in Kim (2012), this approach relies on extreme identifying

assumptions that might provide misleading inferences.

160



Given that the model has 12 variables, the number of all possible variable orderings is too large (12!),

making the variance decomposition of all orderings not computationally practical. This necessitates the

choice of a subset of orderings to work with. A logical start is to vary the ordering by country. For each

country ordering, the liquidity and volatility variables of a given country are placed together. With six

countries, there are 720 country orderings in total. We then vary the ordering of liquidity and volatility within

each country. Specifically, we first perform the variance decomposition with liquidity preceding volatility for

each country. We then repeat the exercise, but reverse the within-country ordering for volatility to appear

first. This results in 1,440 orderings over which the Cholesky decomposition is done. The resulting 12× 12

spillover matrix contains the variance contributions averaged across 1,440 orderings.

5.4 Full Sample Analysis of Spillovers

This section provides an analysis of the spillover effects among the six major euro area bond markets for

the full sample period of 2010-2012. However, to facilitate a better understanding of the dynamics among

variables in the system, we start first with a discussion of the model estimates and the effects of the general

market conditions.

5.4.1 Model Estimates

5.4.1.1 Feedback Effects

Estimates of the feedback parameters are provided in Table 5.3, where each column shows the effects of

lagged variables on the variable indicated in the column heading. The diagonal of the table contains all

autoregressive coefficients. They are significant and positive, providing evidence of liquidity and volatility

clustering. Liquidity is particularly persistent in four markets, i.e., NL, BE, IT, and ES, with a coefficient

estimate ranging between 0.78 and 0.87, whereas DE and FR show a moderate persistence level. Volatility

persistence is lower, mostly below the 0.5 level.

Off-diagonal estimates capture the feedback mechanisms among variables in the system. It is immediately

apparent from the table that most of the feedback effects occur due to liquidity. This can be seen from the top

half of the table where many of the feedback coefficients of liquidity are significant. On the contrary, in the

bottom half of the table where we present the feedback effects of volatility, most coefficients are insignificant.
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5.4.2 Effects of Market Conditions

The coefficient estimates for explanatory variables capturing market conditions are reported in Table 5.4.

We observe that two variables are particularly important. First is V STOXX , the regional risk factor. The

coefficient estimate for this factor is positive and significant in all liquidity equations, indicating that an

increase in the euro area’s aggregate risk level is associated with an immediate increase in illiquidity (or

decrease in liquidity) in the bond markets. Interestingly, once we control for this regional risk factor, the

global risk factor – proxied by the USV IX – is mostly insignificant, suggesting that liquidity reacts mainly

to euro area specific developments. Another noteworthy observation is that V STOXX does not affect

volatility as strongly as it does to liquidity: significantly positive coefficients are seen for Belgium and Spain

only. For Germany and the Netherlands, this effect comes with a lag. The results seem to suggest that the

eurozone stock market volatility transmits to bond markets rather through the liquidity channel than the

volatility channel.

The second important determinant is iT raxxFin, a proxy for the aggregate credit risk of the financial

sector. A deterioration in the financial sector’s viability makes the bond markets more volatile. This is an

intuitive result, because the financial sector is a key group of players in the bond markets with respect to

market making, trading, and investing activities. Surprisingly, however, it is not a major determinant of

liquidity, except in the Italian and Spanish markets, where the financial sector’s decreased credit worthiness

translates to a decrease in liquidity. It seems that liquidity is mainly driven by the eurozone stock market

volatility as discussed above, and to a lesser extent, by the funding cost (FinCost) and aggregate credit risk

level (DefSpr).

Perhaps the most surprising result is that movements in sovereign credit quality have little effects on bond

market liquidity and volatility. It appears that sovereign credit risk has been reflected in other aggregate market

indicators discussed above and accordingly has low incremental explanatory power. The only significant

effects are observed for the German bond market, where an increase in the overall sovereign credit risk of

major euro area sovereigns is associated with an increase in liquidity and decrease in volatility. This evidence

resonates well with a flight-to-safety hypothesis. Germany maintains its AAA credit rating through the euro

area sovereign debt crisis and has traditionally served a safe haven role in the area. Accordingly, when the

credit quality of other euro area countries deteriorates, it is reasonable to observe greater liquidity coming to

this market, and a lower level of uncertainty with regards to German-issued securities. Nevertheless, this
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explanation does not help explain the puzzling negative coefficient of sovereign credit risk on Spanish bond

market volatility.

Overall, the evidence presented in this subsection highlights an important finding that most aggregate

market conditions affect the bond markets through the liquidity channel. Moreover, these effects generally oc-

cur contemporaneously rather than with a lag, indicating that the bond markets incorporate new developments

quickly.

5.4.2.1 Correlation of Liquidity and Volatility Innovations

In Table 5.5, we show the contemporaneous correlation matrix of the model residuals (εt). The model

residuals exhibit a high degree of correlation. Most correlation coefficients are in the 0.4-0.7 range. Although

the residual correlation coefficients are lower than those observed among the original variables (as shown in

Table 5.2), the results show a significant degree of commonality of volatility and liquidity innovations among

the bond markets. This is consistent with Chordia et al. (2005) who document that liquidity and volatility

shocks in bond and stock markets are driven to a large extent by common factors.

5.4.3 Volatility and Liquidity Spillovers

5.4.3.1 Bilateral Spillovers

The full spillover matrix is presented in Table 5.6. The (i, j) element of the matrix indicates the variance

contribution by the variable in column j to the variable in row i. We observe several strong cross-country

linkages. First are the volatility linkages among Germany, the Netherlands and France, ranging between 9%

and 21%. In particular, German bond volatility explains 21% variation in Dutch bond volatility and receives

18% variance contribution in return. Secondly, liquidity of the Italian and Spanish bond markets are also

closely connected, explaining respectively 16% and 14% of the variation in the other. Importantly, liquidity

shocks emanating from the Italian market are the second most important source of liquidity variation in the

other markets beside their own liquidity shocks.

Each number on the diagonal reflects the extent to which a variable is driven by its own shocks, and is

evidently the largest source of variation for each of the variables considered. Own shocks account for 31-43%

of volatility variation and 25-40% of liquidity variation. The remaining portion of variation is attributable to
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other variables and is split into own country effects (referred to as “intra-country spillovers”) and inter-country

spillovers.

5.4.3.2 Intra-Country Spillovers

Intra-country spillovers reflect the strength of the inter-dependency between volatility and liquidity in a

given bond market. These measures are reported in Table 5.7. For Germany, the Netherlands and France,

liquidity innovations contribute little to volatility dynamics, and vice versa: all variance shares are below

5.2%, and are relatively balanced between liquidity and volatility. On the other hand, Belgium, Italy and

Spain show a markedly greater degree of liquidity-volatility connectedness, ranging between 14% and 20%

for liquidity-induced variation and between 8% and 10% for volatility-induced variation. For example,

liquidity variation in the Italian market contributes nearly 20% to its volatility variation and receives 10%

in return. Importantly, liquidity exerts greater influence on volatility than vice versa, as shown by the net

liquidity spillovers between 7% to 10%, indicating that liquidity is the more important source of variation

within each of these markets.

5.4.3.3 Inter-Country Spillovers

We quantify cross-country spillovers in Table 5.8. The first panel, labeled “Received From Others”, shows

the proportions of variation receive from outside countries. These inward spillovers are split into the sources

of shocks, namely “Vol” (the total variance share by external volatility shocks) and “Liq” (the total variance

share by external liquidity shocks). Consider first volatility variables. External volatility shocks contribute

between 21% to 40% to variation of volatility in a given market, while external liquidity shocks account for

another 16-27%. In total, shocks from the outside generally explain at least half of volatility fluctuation in a

market. Nevertheless, as shown in the second panel labeled “Sent to Others”, each market also sends out

a considerable amount of volatility shocks to others, affecting both their volatility and liquidity variation.

In particular, German bond volatility plays a major role in the other markets’ volatilities: its variance

contributions sum up to 47%, exceeding the volatility spillovers it receives from others. This makes Germany

a net exporter of volatility shocks. Another net exporter of volatility is Italy. The remaining four countries,

on the other hand, are net recipients of the volatility transmission.

With respect to liquidity, the magnitude of shocks sent and received across borders is larger that what

is observed for volatility shocks. For example, inward spillovers from external liquidity shocks are in the

164



37-51% range (compared to the 21-40% range for inward volatility spillovers), and outward spillovers of

shocks to foreign liquidity are between 24% and 72% (compared to the 17-47% range for outward volatility

spillovers). The outward liquidity spillover range would have been 24-48% without Italy. Italy’s liquidity

fluctuation is the major source of liquidity variation in others, accounting for an aggregate variance share

of 72%. On balance, the three crisis-related countries, namely Belgium, Italy and Spain, are sending more

liquidity shocks than received, making them net exporters of liquidity shocks. Germany, on the other hand,

is the largest net recipient of liquidity shocks from its neighbors. This is not withstanding the observation

that liquidity shocks also affect foreign markets’ volatility, although this cross-country liquidity-volatility

connection tends to be weaker and balanced with the corresponding reciprocal spillover effects.

Overall, the results just presented above clearly demonstrate Italy’s systemic role among sovereign bond

markets in the euro area. Liquidity shocks from Italy overwhelmingly propagate the major euro area bond

markets, in addition to its net export of volatility spillovers. Furthermore, liquidity is generally the more

dominant source of spillovers across borders. The strong cross-country liquidity linkages are consistent with

evidence of liquidity commonality documented in Chordia et al. (2005).

Our own findings with regard to the effects of market conditions and those documented in Pelizzon et al.

(2013) provide some helpful insights to explain the important role of liquidity. These authors find that market

liquidity in Italy is significantly driven by external market conditions, including sovereign credit risk. It

appears that these factors first drive liquidity fluctuations in the Italian bond market, which in turn affect

volatility and propagate to other bond markets through both volatility and liquidity channels, with the latter

channel being more prominent.

5.5 The Dynamics of Spillovers

The previous section focuses on identifying the major forces underlying the inter-connection of euro area

bond markets over the full sample period. The result shows that, Italy is the major net sender of both liquidity

and volatility shocks to the other five countries. To complement the full sample analysis, we examine how

spillover effects evolve over time through the crisis. In particular, does the full-sample spillover effects

previously documented prevail throughout the whole period, or just show up significantly at some brief

moments in time?
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We start with a discussion of the trend in the total spillover index, which measures the overall degree of

inter-dependency among the bond markets considered. This discussion also describes the two components

making up the total spillover index, namely the intra-country spillover and inter-country spillover. We then

decompose the inter-country spillover effects by the source and destination of shocks into four sub-indices:

1) liquidity to liquidity, 2) liquidity to volatility, 3) volatility to liquidity, and 4) volatility to volatility. Finally,

we analyze the dynamics of spillovers into and out of the Italian bond market, given its systemic importance

among bond markets in the euro area.

5.5.1 Trends in Aggregate Spillovers

Figure 5.4 shows the time series plot of the total spillover index, together with its two components reflecting

intra-country and inter-country spillover effects. The total spillover index indicates the average extent to

which a variable is driven by all other variables in the system. The intra-country spillover measures the

average degree of inter-dependency between liquidity and volatility within the same bond market. On the

other hand, the inter-country spillover measures the average extent of spillover a country receives from the

other countries. We also mark on the figure the five important dates discussed in the data section, namely: (1)

May 10, 2010, (2) August 8, 2011, (3) November 16, 2011, (4) January 13, 2012, and (5) July 26, 2012.

The total spillover index exhibits several episodes of increased inter-dependencies among the markets,

but it is generally trending down over the sample period. The index starts at roughly 80% in late May 2010,

and finishes at about 55% at the end of 2012. Note that the high level at the beginning of the indices reflects

the effects of the Greek crisis. It is followed by three more occasions of rising spillovers - evidence of

contagion in the area. The first occurs in late November 2010, around the time that Ireland sought financial

assistance (November 21, 2010), thereby renewing concerns over a widening crisis. Interestingly, the crisis in

Portugal in April 2011 does not seem to affect the overall degree of shock transmission among the countries

in consideration.

The second episode of contagion occurs in the summer of 2011, when it was apparent that the crisis

could soon spread to two of the larger economies in the area, namely Italy and Spain, prompting the ECB

to reactivate the SMP. The total spillover index exceeds the 70% level and stays between 70-80% for the

rest of 2011 before declining to around 60% in early 2012. The degree of shock transmission among the

six bond markets increases one more time in June and July of 2012 amid the banking crisis in Spain and a

growing fear of a possible breakup of the eurozone. However, this upward trend in spillovers is soon reversed
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following the ECB President’s statement to do “whatever it takes to preserve the euro”. The markets appear

to calm down and spillovers of shocks lessen after this assurance.

The figure also reveals that it is mainly the inter-country spillover component that drives the time series

trend in the total spillover index discussed above. The within-country feedback dynamics between liquidity

and volatility remain quite stable at around 10% over the sample period. Crisis events appear to affect only

the cross-country spillovers. This finding confirms that the increased total spillover around these events

is mainly attributable to increased shock transmission across borders (evidence of contagion) and not to

increased inter-dependency within the same market.

5.5.2 Inter-Country Shock Transmission: A Decomposition

We now examine the dynamics of inter-country spillovers at a deeper level, which helps decipher the major

source of shocks that permeates the euro area bond markets. Figure 5.5 plots the four types of cross-country

spillover effects: 1) volatility to volatility (“V2V”), 2) liquidity to volatility (“L2V”), 3) volatility to liquidity

(“V2L”), and 4) liquidity to liquidity (“L2L”).

Visual inspection of the indices reveals that liquidity shock transmission is the main driver of cross-

country spillovers. The L2L index is above all other three indices for almost all of the sample period.

Importantly, the contagion relating to the Italian crisis in the summer of 2011 is heavily liquidity-driven, as

shown by a dramatic increase in the L2L index.

The transmission of volatility shocks accounts for the second largest portion of cross-country spillovers.

Initially, the V2V index appears comparable with the L2L index, and both are fluctuating around the 40% level.

But after 2010, the extent of liquidity shock transmission far exceeds that of volatility shock transmission. In

other words, the contagion associated with the Greek crisis is driven roughly equally by liquidity and volatility

forces, but the contagion associated with the later phase of the crisis can be characterized as liquidity-driven.

The other two cross-type spillover indices (L2V and V2L) appear weaker, generally between 10-30%.

They measure how strongly external liquidity shocks drive a bond market’s volatility, and similarly, how

strongly external volatility shocks drive a bond market’s liquidity. Despite being weaker, these cross-type

spillovers also increase around times of crisis (e.g., the Greek and Irish crises in 2010, the Italian crisis in

the later half of 2011, and the Spanish crisis in the middle of 2012), thereby contributing to the spreading of

shocks across borders.
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5.5.3 The Dynamics of Italy’s Systemic Role

As the full sample analysis has shown, Italy is the main exporter of both volatility and liquidity shocks to

other markets. Given its systemic importance, we now provide a close-up analysis of the spillovers into and

out of Italy over time. We first look at the extent to which foreign shocks affects Italy’s liquidity (“Liquidity

Shocks Received”) or volatility (“Volatility Shocks Received”) and plot them in the negative half in Figure

5.6. In the positive half, we show the extent to which Italian bond market liquidity and volatility drive other

markets by the lines “Liquidity Shocks Sent” and “Volatility Shocks Sent” respectively.

Interestingly, external shocks affect Italian bond market’s volatility and liquidity rather equally, and this

influence is quite stable over the sample period. Roughly 50% of the variation in liquidity or volatility is due

to shocks in the other markets.

On the other hand, liquidity and volatility fluctuations in the Italian market have markedly greater effects

on the other countries. This is observed for most of the sample period, indicating that Italy is a consistent

net exporter of shocks to others. In particular, between August and November of 2011 – the peak of the

Italian crisis – the extent of liquidity shock transmitted from Italy to the other markets is about three times

the reciprocal effect. Volatility transmission is also twice as large going from Italy than to Italy. This major

increase in shock transmission from Italy, especially that of liquidity, is the major force underlying the

increase in the overall cross-country liquidity spillovers. We did not observe the same magnitude of shock

transmission in the remaining markets, including Spain, even though it is also a country in crisis.

5.6 Conclusion

In this paper, we examine the transmission of liquidity and volatility shocks across six major bond markets in

the euro area during the 2010-2012 sovereign credit crisis. We model liquidity and volatility jointly in a linear

VAR model with additional variables to control for the common trends in sovereign credit risk, financial

sector’s credit risk, funding tightness, overall default risk, and regional and global risk factors. Spillovers are

measured based on the forecast error variance decomposition of the model. Apart from a full sample analysis

of the spillover effects, we also examine their dynamics throughout the crisis period using rolling estimates.

Our main findings can be summarized as follows. First, variables capturing the aggregate market

conditions affect the bond markets mainly through the liquidity channel. Furthermore, most of the feedback

effects within the system are due to liquidity. In addition, Italy is the main exporter of both liquidity shocks
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and volatility shocks to others. Germany also contributes net volatility shocks to the system, albeit at a much

smaller scale than that by Italy. However, the German bond market receives considerable liquidity spillovers

from the other countries, most notably, Italy.

The time series variation of spillovers shows that the degree of shock transmission among the major euro

area bond markets increases around major crisis events. Examining multiple layers of spillovers, we find that

liquidity is the main source of shocks transmitted across borders. Moreover, the liquidity shock transmission

is largely originated from Italy, especially in the summer of 2011 when the crisis over Italy’s swelling public

debt intensified. Being the largest bond market and third largest economy in the area, the crisis in Italy has

important implications for the overall crisis in the eurozone. This is illustrated by the sizable amount of

spillovers Italy transmits to other major bond markets in the area.

The results in this paper highlight the importance of liquidity to euro area bond market dynamics. We

show that liquidity not only explains a significant portion of market dynamics, but also reveals strong spillover

effects – often stronger than volatility spillover effects. This is consistent with the liquidity commonality

that has been documented for various asset classes and markets. It also suggests that incorporating liquidity

effects into a traditional volatility spillover framework is insightful as it allows for a better understanding of

the sources of shocks that get transmitted across borders during a crisis.
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Table 5.1: Descriptive Statistics of Volatility and Liquidity

Mean Min P25 Median P75 Max

A. Market Volatility (% p.a.)
Germany 6.01 2.40 4.65 5.52 7.01 18.08
Netherlands 6.37 2.47 4.65 5.69 7.47 19.72
France 6.77 2.35 4.37 5.67 7.63 45.00
Belgium 9.45 2.03 4.39 6.61 10.68 74.17
Italy 9.91 2.50 4.87 6.89 11.00 127.16
Spain 13.15 2.89 6.43 9.67 15.32 149.15

B. Market Liquidity (bps)
Germany 13.89 8.78 11.40 12.81 15.12 59.00
Netherlands 13.24 6.17 8.90 11.90 14.98 56.94
France 24.25 10.39 14.70 19.13 27.83 119.04
Belgium 40.33 7.32 21.69 29.46 44.25 267.65
Italy 42.62 11.49 18.96 30.97 47.26 667.43
Spain 72.78 11.38 34.18 58.59 92.76 487.11

This table presents descriptive statistics of volatility and liquidity of six Euro-area bond markets, based on MTS intraday quote data

for the period 2010-2012. Volatility is the square root of the annualized realized variance (RV ) of each bond market (average of

daily RV ’s of individual bonds issued by that country, excluding bonds with less than one year to maturity). Each bond’s daily RV

is computed as the daily sum of squared five-minute log mid-quote returns, and annualized by a factor of 250. The liquidity measure

for each country is the average of daily liquidity measures across all bonds issued by that country, excluding bonds with less than one

year to maturity. Daily liquidity of each individual bond is measured by the time-weighted relative bid-ask spread as a fraction of

mid-quote.
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Table 5.7: Intra-Country Spillovers

Country Liq→ Vol Vol→ Liq Net Spillover

DE 2.5 5.1 -2.6
NL 4.3 3.3 0.9
FR 5.2 3.5 1.7
BE 18.2 7.9 10.3
IT 19.6 10.4 9.2
ES 14.0 7.5 6.5

The table shows the extent to which liquidity drives volatility (“Liq→ Vol” column) and conversely, the extent to which volatility

drives liquidity (“Liq→ Vol” column) within each bond market considered. The last column (“Net Spillover”) shows liquidity’s net

variance contribution to volatility. These figures are based on 10-day forecast error variance decomposition of the VAR(1) model of

liquidity and volatility of six bond markets, i.e., Germany (DE), France (FR), the Netherlands (NL), Belgium (BE), Italy (IT) and

Spain (ES), with market condition variables, as specified in equation (5.6). A market’s liquidity is the average liquidity level across

all coupon bonds in that market, where each bond’s liquidity is measured by the daily time-weighted average bid-ask spread as a

fraction of mid-quote. A market’s volatility is measured by the logged average of realized variances of all coupon bonds in that

market. A bond’s daily variance is the daily sum of squared five-minute returns. Daily liquidity and volatility measures are computed

from the MTS intraday quote data for the 2010-2012 period.

Table 5.8: Inter-Country Spillovers

Received from Others Sent to Others Net Sent to Others

Vol Liq Total Vol Liq Total Vol Liq Total

VolDE 38.4 16.4 54.8 47.0 16.7 63.7 8.6 0.3 8.9
VolNL 40.0 17.5 57.5 35.4 9.9 45.4 -4.5 -7.5 -12.1
VolFR 34.5 21.4 55.9 30.1 11.7 41.8 -4.4 -9.7 -14.1
VolBE 20.5 19.1 39.6 17.1 14.2 31.3 -3.4 -4.8 -8.3
VolIT 24.1 25.4 49.5 29.4 25.4 54.8 5.2 0.1 5.3
VolES 25.5 27.2 52.6 24.0 17.0 41.0 -1.5 -10.1 -11.6

LiqDE 13.2 47.2 60.4 13.3 24.0 37.4 0.1 -23.2 -23.1
LiqNL 14.3 45.0 59.3 17.5 33.2 50.7 3.2 -11.7 -8.6
LiqFR 20.2 51.0 71.1 19.1 41.6 60.7 -1.1 -9.3 -10.4
LiqBE 15.1 36.9 52.0 22.6 40.4 63.0 7.6 3.5 11.0
LiqIT 16.1 37.6 53.6 31.8 71.6 103.5 15.8 34.0 49.8
LiqES 16.2 41.7 57.8 22.5 48.4 70.9 6.3 6.8 13.1

The table shows the spillovers received from other countries (“Received from Others” panel), the spillovers sent to other countries

(“Sent to Others” panel) and the net spillover effects (“Net Sent to Others”). Each panel shows separately the contributions by

volatility (“Vol”) and liquidity (“Liq”) components, and reports the sum of them in the column “Total”. These spillover measures are

computed as in equations (5.7)-(5.11). They are based on 10-day forecast error variance decomposition of the VAR(1) model of

liquidity and volatility of six bond markets, i.e., Germany (DE), France (FR), the Netherlands (NL), Belgium (BE), Italy (IT) and

Spain (ES), with market condition variables, as specified in equation (5.6). A market’s liquidity is the average liquidity level across

all coupon bonds in that market, where each bond’s liquidity is measured by the daily time-weighted average bid-ask spread as a

fraction of mid-quote. A market’s volatility is measured by the logged average of realized variances of all coupon bonds in that

market. A bond’s daily variance is the daily sum of squared five-minute returns. Daily liquidity and volatility measures are computed

from the MTS intraday quote data for the 2010-2012 period.
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Figure 5.1: The Euro Area Sovereign Debt Crisis
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This figure shows the time series variation in: (top panel) 10-year benchmark yield spreads (over German 10-year benchmark yield),

(middle panel) sovereign CDS spreads, and (bottom panel) the European Central Bank’s Securities Market Programme activity.

Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3) 11/16/2011 (change of government in Italy), (4) 1/13/2012

(S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012 (ECB President’s statement to do “whatever it takes to

preserve the euro”).
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Figure 5.4: Dynamics of Total Spillover Among Key European Government Bond Markets

Q1−10 Q2−10 Q3−10 Q4−10 Q1−11 Q2−11 Q3−11 Q4−11 Q1−12 Q2−12 Q3−12 Q4−12 Q1−13
0

20

40

60

80

100

S
p

ill
o

v
e

r 
In

d
e

x

(1) (2) (3) (4) (5)

 

 

Total

Inter−Country

Intra−Country

This figure presents the weekly total spillover index and its two components (intra-country and inter-country spillover indices). These

spillover indices are based on 10-day forecast error variance decomposition of the VAR(1) model of liquidity and volatility of six

bond markets (Germany, France, the Netherlands, Belgium, Italy and Spain) with market condition variables, as specified in equation

(5.6). The model is estimated on a weekly rolling basis, with a window size of 100 days. The indices are computed as in equations

(5.13)-(5.15). Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3) 11/16/2011 (change of government in Italy), (4)

1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012 (ECB President’s statement to do “whatever it

takes to preserve the euro”). Daily liquidity and volatility measures are computed from MTS bond market intraday quote data for the

period 2010-2012.
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Figure 5.5: The Sources of Shocks that Travel Across Borders
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This figure shows four inter-country spillover sub-indices classified by the source of shocks (volatility or liquidity) and destination of

spillovers (volatility or liquidity). These spillover indices are based on 10-day forecast error variance decomposition of the VAR(1)

model of liquidity and volatility of six bond markets (Germany, France, the Netherlands, Belgium, Italy and Spain) with market

condition variables, as specified in equation (5.6). The model is estimated on a weekly rolling basis, with a window size of 100

days. The indices are computed as in equations (5.16)-(5.19). Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3)

11/16/2011 (change of government in Italy), (4) 1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012

(ECB President’s statement to do “whatever it takes to preserve the euro”). Daily liquidity and volatility measures are computed

from MTS bond market intraday quote data for the period 2010-2012.
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Figure 5.6: The Systemic Role of Italy
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This figure shows the degree of spillovers sent (plotted above the zero line) and spillovers received (plotted below the zero line)

by the Italian bond market. The “Liquidity Shocks Sent” line shows the extent to which Italy’s bond market liquidity affects the

other markets, while the “Liquidity Shocks Received” shows the extent to which it is reciprocally affected by other markets. The

“Volatility Shocks Sent” line shows the extent to which Italy’s bond market volatility affects the other markets, while the “Volatility

Shocks Received” shows the extent to which it is reciprocally affected by other markets. Spillovers are measured based on 10-day

forecast error variance decomposition of the VAR(1) model of liquidity and volatility of six bond markets (Germany, France, the

Netherlands, Belgium, Italy and Spain) with market condition variables, as specified in equation (5.6). The model is estimated

on a weekly rolling basis, with a window size of 100 days. Vertical lines mark (1) 5/10/2010 (SMP1), (2) 8/8/2011 (SMP2), (3)

11/16/2011 (change of government in Italy), (4) 1/13/2012 (S&P credit rating downgrades for France, Italy and Spain), (5) 7/26/2012

(ECB President’s statement to do “whatever it takes to preserve the euro”). Daily liquidity and volatility measures are computed

from MTS bond market intraday quote data for the period 2010-2012.
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APPENDIX A

ECONOMIC ANNOUNCEMENTS

A.1 Macroeconomic Announcements

The macroeconomic announcements we consider are those classified as ”Market Moving” indicators by

Bloomberg: 1) Employment Report, 2) Consumer Price Index, 3) Durable Goods Orders, 4) GDP, 5) Housing

Starts, 6) Initial Jobless Claims, 7) Personal Income and Outlays, 8) Producer Price Index, 9) Retail Sales,

10) Trade Balance, 11) Industrial Production, 12) Existing Home Sales, 13) ISM Manufacturing, 14) New

Home Sales, and 15) Philadelphia Fed Survey.

Time Announcement Frequency
8:30 Employment Report Monthly
8:30 Consumer Price Index (MoM) Monthly
8:30 Durable Goods Orders Monthly
8:30 GDP QoQ (Annualized) Quarterly
8:30 Housing Starts Monthly
8:30 Initial Jobless Claims Weekly
8:30 Personal Income and Outlays Monthly
8:30 Producer Price Index (MoM) Monthly
8:30 Retail Sales Monthly
8:30 Trade Balance Monthly

9:15 Industrial Production Monthly

10:00 Existing Home Sales Monthly
10:00 ISM Manufacturing Monthly
10:00 New Home Sales Monthly
10:00 Philadelphia Fed. (after 2008) Monthly

12:00 Philadelphia Fed. (before 2008) Monthly

A.2 Monetary Policy Announcements

The monetary policy announcements included in our analysis are FOMC rate decision announcements. Such

announcements typically occur after regularly scheduled FOMC meetings, of which there are eight per year.

In addition, there were rate changes announced after unscheduled meetings on two occasions during our

sample period, on January 22, 2008 and October 8, 2008.



A.3 Treasury Auction Result Announcements

The Treasury auction results we consider are those for the 2-, 5-, 10- and 30-year fixed principal Treasury

securities. Auction results are announced shortly after the auction close on auction dates for a given security.

The 2- and 5-year notes are newly issued every month. The 10-year note is newly issued every quarter, with

reopenings in the following month and – since November 2008 – two months. Starting in May 2009, the

30-year bond is also on a quarterly issuance cycle with two reopenings. For the 2006-2008 period, the 30-year

bond was newly issued once a year with irregular reopenings.
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APPENDIX B

FLIGHT-TO-SAFETY EPISODES DURING 2006-2010Q2 PERIOD

Light FTS Moderate FTS Severe FTS

Date 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year

02/27/2007 X X X X X X X
03/13/2007 X X
07/26/2007 X X X
08/03/2007 X X X X X
08/09/2007 X X X X X
08/28/2007 X X
09/07/2007 X X X
10/19/2007 X X X X
11/01/2007 X X X X X X
11/07/2007 X X X X
11/19/2007 X X X
11/21/2007 X X X
11/26/2007 X X X
12/11/2007 X X X X X X
01/04/2008 X
01/08/2008 X
01/15/2008 X X X
01/17/2008 X X X X X
01/25/2008 X X X
02/05/2008 X X X X X X
02/29/2008 X X X X X X
03/06/2008 X X X
03/14/2008 X X
03/19/2008 X X X X X X
04/11/2008 X X X
05/07/2008 X X
06/06/2008 X X X X X X
06/11/2008 X X
06/26/2008 X X X X
07/02/2008 X
07/09/2008 X X X
07/24/2008 X X X
07/28/2008 X X X
08/07/2008 X X X
08/25/2008 X X X
09/04/2008 X X X
09/09/2008 X X X X X X X
09/15/2008 X X X X X X X X X
09/17/2008 X X X
09/29/2008 X X X X X X X X X
10/02/2008 X X X X X X X X
10/06/2008 X X X X X X X X X
10/15/2008 X X X X X X X X
10/21/2008 X X X X

continued on next page



Table B.1 – continued from previous page
Light FTS Moderate FTS Severe FTS

Date 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year 2-Year 5-Year 10-Year

10/22/2008 X X X X X X X
10/24/2008 X
11/12/2008 X X X X
11/14/2008 X X X
11/17/2008 X
11/19/2008 X X X X X X
11/20/2008 X X X X X X
12/01/2008 X X X X X X X
12/04/2008 X X X X
12/09/2008 X X X
12/11/2008 X X
12/18/2008 X X
01/09/2009 X X
01/12/2009 X
01/14/2009 X X
02/10/2009 X X X X X X X X
02/17/2009 X X X X X X X
02/27/2009 X X
03/02/2009 X X X X X X X X
03/05/2009 X X X X X
03/30/2009 X
04/14/2009 X X
04/20/2009 X X X
05/11/2009 X X X
06/15/2009 X
06/22/2009 X X X
07/02/2009 X
08/17/2009 X X
10/01/2009 X X X X X
10/30/2009 X X X X X
02/04/2010 X X X
04/16/2010 X X
04/27/2010 X X X
04/30/2010 X
05/04/2010 X X
05/06/2010 X X X X X X
05/14/2010 X X
05/20/2010 X X X X X
06/04/2010 X X X X X X X
06/22/2010 X
06/29/2010 X

No. of FTS days 64 74 69 22 33 29 9 11 14

This table presents flights to safety (FTS) over the period 2006-2010Q2. Flights are identified by a large positive return on the
Treasury note and a large negative return on the S&P500 index. Light FTS episodes are based on a 1 standard deviation threshold,
moderate FTS on a 1.5 standard deviation threshold and severe FTS on a 2 standard deviation threshold.
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APPENDIX C

OVERVIEW OF THE EUROPEAN GOVERNMENT BOND MARKET

C.1 Market Overview

The analysis in this paper is based on intraday trade and quote data from MTS. This is the main electronic

interdealer (IDB) trading platform for European fixed income securities, including government, quasi-

government and covered bonds. MTS consists of multiple domestic platforms and a pan–European trading

platform EuroMTS. Only those bonds that have attained the benchmark status are traded on EuroMTS in

addition to their domestic platform. Nevertheless, most trading activity in a specific bond tends to occur on

the relevant domestic platform (roughly 90% on average). Various estimates indicate that MTS has about

35-40% market share in terms of the daily number of trades across all IDB platforms in Europe, but the

market share of MTS in a specific country can vary. Table C.1 below provides an overview of this market.

Table C.1: European Bond Market
DE FR NL BE AT FI IT ES PT GR IE

No. Bonds

2006 51 129 33 46 14 11 60 113 20 22 5
2010 61 186 58 52 16 11 65 140 20 28 13
2011 63 182 63 67 16 11 74 148 19 26 11
2012 65 176 68 78 17 13 74 145 20 25 11

Maturity

2006 6.64 9.40 7.36 5.93 7.90 4.04 6.92 10.36 5.34 4.95 6.48
2010 6.17 10.39 6.65 5.43 8.61 5.17 6.49 9.69 5.62 6.63 5.92
2011 5.96 10.25 6.95 6.31 8.18 5.98 6.33 9.53 5.42 6.54 6.20
2012 6.21 10.03 7.76 6.71 7.68 7.06 5.87 9.18 4.59 15.18 5.74

Coupon

2006 3.60 1.41 3.17 1.96 4.19 4.02 3.21 0.95 3.12 4.30 3.47
2010 2.73 0.94 3.32 1.75 4.01 3.01 3.11 0.89 2.95 4.26 3.89
2011 2.57 0.93 3.15 1.46 4.02 3.50 3.16 0.89 3.15 4.24 4.19
2012 2.39 0.87 3.01 1.22 3.88 2.85 3.20 0.89 2.83 2.42 4.46

Age

2006 4.36 8.26 3.83 5.33 4.78 5.40 3.18 5.35 3.71 4.53 4.76
2010 4.09 6.53 4.74 4.76 5.28 4.84 3.56 5.60 3.62 4.31 2.95
2011 4.16 7.05 4.81 5.88 5.73 3.51 3.68 5.79 3.86 5.03 4.52
2012 4.31 7.66 4.79 6.62 5.96 3.83 3.87 6.21 3.85 1.64 5.09

Volume

2006 146 41 161 150 131 286 1462 45 491 207 182
2010 74 50 196 289 48 85 875 67 247 58 85
2011 55 69 258 198 73 231 744 47 40 6 22
2012 46 68 216 242 60 175 501 38 23 1 9

No. Trades

2006 23 5 11 17 15 31 270 5 56 23 21
2010 11 6 16 30 7 10 153 8 31 15 11
2011 9 9 22 21 11 27 123 7 6 5 7
2012 9 10 21 26 11 22 95 7 5 1 3

Ave. Issue (mil. euros) 11,909 11,884 14,118 12,072 10,198 5,658 13,694 12,836 7,315 5,573 8,173

The table reports the monthly average number of bonds by year and country, and average bond characteristics. Volume is the average
monthly trading volume per bond in million euros. No. Trades is the average number of trades per bond. Figures for 2006 are based
on data for October, November and December 2006. The sample includes benchmark sovereign bonds only. Bonds with less than
90–day to maturity are excluded. The resulting sample has 801 unique bond codes.



Figure C.1 shows trading activities by country. We observe that the bulk of trading activity occurs in

Italian bonds, followed by trading activity in bonds issued by France, Netherlands, Spain, Belgium and

Germany. We note in particular that trading activity on German government bonds is quite low. This is

because these bonds are also traded actively elsewhere (German stock exchanges, numerous international

electronic trading platforms and also in the over-the-counter (OTC) market), in contrast to bonds issued by

other countries, which are mostly traded on MTS (see Cheung, de Jong and Rindi, 2005). The total trading

volume in German Treasuries on MTS in 2012 is 52.7 billion euros, which is roughly 1% share of the total

market trading volume of nearly 5,400 billion euros.1 Nevertheless, the quality of German government bond

prices is no doubt the best among fixed income securities in European capital markets, primarily due to a

highly liquid futures market. The futures market is more liquid and larger than the cash market, ensuring fair

market prices of German government bonds.

Figure C.2 plots trading activity throughout a trading day for each of the bond markets. Interestingly, the

intraday trading pattern is quite similar across countries. The peak in trading activity occurs in the morning

between 10:00 and 11:00. After 11:00, trading level remains quite stable through the rest of the trading day,

except for a slight increase around 15:00.

C.2 Relevant Statistics for Six Select Countries

The analysis focuses on the six largest bond markets in the Euro-area, both in terms of the amount outstanding

as well as daily trading volume. These countries also account for 87% of Euro-area total GDP. Table C.2

provides several important statistics for these countries for background information.

1http://www.deutsche-finanzagentur.de/en/institutional/secondary-market/
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Table C.2: Country Statistics
Rating Downgrades 2010-2012

S&P Moody’s Fitch
Belgium: 11/25/11 12/16/11 1/27/12
France: 1/13/12
Italy: 9/11/11 10/5/11 10/7/11

1/13/12 2/13/12 1/27/12
Spain: 4/28/10 9/30/10 5/28/10

10/13/11 3/10/11 7/7/11
1/13/12 10/18/11 1/27/12
4/26/12 2/13/12 6/7/12

Sovereign Bond Outstanding (million euros)
Belgium 364,815
France 1,365,452
Germany 1,116,223
Italy 1,638,724
Netherlands 341,759
Spain 688,231

6-Country Total 5,515,204

Euro-area Total 6,152,907
6-Country % Share 89.6%

Country GDP (million euros)
Belgium 375,852
France 2,032,297
Germany 2,666,400
Italy 1,566,912
Netherlands 599,338
Spain 1,029,002

6-Country Total 8,269,800

Euro-area Total 9,483,173
6-Country % Share 87%
MTS Trading Volume 2010-2012 (million euros)
Belgium 241,886
France 278,028
Germany 117,851
Italy 1,227,959
Netherlands 283,653
Spain 222,742

6-Country Total 2,372,118

Euro-area Total 2,535,709
6-Country % Share 94%
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Figure C.1: Trading Activity By Country
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Source: MTS data 2010-2012. Figure shows trading volume by country, and reflects trading in benchmark bonds only.
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Figure C.2: Intraday Pattern of Trading Activity
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Source: MTS data 2010-2012. Figure shows trading volume by half hour interval throughout a trading day as a fraction of daily

trading volume for each country, and reflects trading in benchmark bonds only.
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