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Abstract 

YETIAN CHEN:  Spatial Motif Discovery in Papain-like Cysteine Protease Family 

(Under the direction of Alexander Tropsha) 

 

Spatial motifs, which are amino acid packing patterns, occur frequently within a 

set of proteins with some common specific functions and features. In this study, we report 

the application of a novel frequent subgraph mining algorithm to retrieve conserved 

spatial motifs from protein 3D structures of Papain-like cysteine protease family. Each of 

the frequent spatial motifs we identified were found highly specific to the PCP family, 

measured by P-value<10-49. And we showed that the combination of these family specific 

motifs can discriminate between the PCP family members and the background (a non-

redundant subset of PDB) with very good sensitivity and predicative accuracy. These 

spatial motifs were found to cover either structurally important or functionally important 

sites, such as the catalytic dyad and the hydrophobic pocket that determines the substrate 

specificity. A PROSITE-like consensus sequence pattern assembled by mapping these 

structural motifs to sequence level identifies the PCP sequences in Swiss-Prot database 

with 100% precision and good recall. These suggest that structurally and functionally 

specific amino acid packing patterns or motifs can be discovered by computational and 

statistical geometry analysis of protein structures and used to annotate protein structures 

and sequences.  
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I. INTRODUCTION 

 

The importance of protein local structural similarity for protein classification 

and annotation 

 
A central principal of modern structural biology is that a protein's function is 

determined by its structure. This has been studied experimentally by protein scientists 

using physical analytical methods such as X-ray crystallography and NMR as well as by 

computational chemists using a variety of simulation and statistical approaches. Recent 

improvements in structural biology techniques have made structural characterization 

more easily achieved. This has led to the emergence of a worldwide program termed 

Structural Genomics, which aims to solve the structures for all proteins as a means to 

understand function [1,2,4]. This effort has resulted in a rapid increase in the number of 

proteins for which the 3D structures is known. The Protein Data Bank (PDB, [3]), a 

public on-line protein-structure repository, contains over 50,000 entries (April, 2008) and 

the number is still growing exponentially. Thus, methods to annotate proteins through 

structure are thus now of growing importance. 

There are a number of methods in current use for classifying and annotating 

proteins through structure. For the most part, they rely on detecting some structural 

similarity between the target protein and a structure of known function in the PDB. 

Traditionally, structural comparison is largely based on detecting the global similarity of 

a pair of protein structures. This has been implemented in many structural classification 
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systems such as SCOP [5], CATH [6] and DALI [7]. The main emphasis of these works 

has been on the comparison of protein folds by alignment of large portions of protein 

structures to locate maximal lengths of superimposable main chain [8]. The fold 

similarity between two protein structures, even in the absence of obvious sequence 

similarity, can imply common ancestry, which in turn can suggest details as to function. 

However, it is also possible for such remote homologues to have different functions. This 

phenomenon now is known as divergent evolutions [9, 10]. For example, TIM-barrel, 

functioning as a generic scaffold, catalyzes 15 different enzymatic functions. Each of 

these enzymatic functions has the active sites located at different areas of the common 

scaffold [11]. The subtle differences at these substructures might not be easily 

differentiated by the global comparison approaches. Conversely, a type of function can 

adopt totally different folds. For example, the carbonic anhydrases (EC number 4.2.1.1) 

are associated with two different folds [12], but they have exactly the same active sites.  

Obviously, the structural comparison relying on global alignment fails to detect these 

similarities. Moreover, a large portion of the protein structures solved by the ongoing 

structural genomics projects represent a new fold [13], making functional insights from 

fold comparison impossible.    

An alternative approach for classifying protein structures is based on detection of 

more local patterns, without any requirement for similarity in fold. A limited 20 letter 

amino acid alphabet means that nature is restricted in the choice of atoms for active or 

binding sites, even proteins perform different functions [14]. Optimal tertiary 

combinations of a group of amino acids can arise convergently [14], such as proteins with 

the Ser/His/Asp catalytic triad (subtilisin, trypsin, lipases etc, see [15]). Other examples 
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include various amino acid combinations around metal binding sites, and recently the 

folding nuclei of proteins [16, 17]. Identification of such sequence order independent 

patterns can suggest functional or mechanistic details, and can aid the design of novel 

regulators of function by analogy. It is also provides important insights into the nature of 

convergent evolution.  

The need for developing more versatile and faster local pattern discovery tool  

 

The past few yeas have witnessed the development of highly sophisticated 

methods for comparison and identification of such substructural features. These include 

manual identifications of many specific types of site or motifs and more general 

investigations into small motifs in protein structures. Wallace et al [15] derived tertiary 

structure templates for the Ser/His/Asp catalytic triad and demonstrated how such 

templates could be used to search for novel examples of know side-chain patterns. Poter 

et al [18] manually compiled a library of enzyme active-site templates (called Catalytic 

Site Atlas) based on information from literature sources. Each of such templates consists 

of between two and five residues. Laskowski et al [19] then demonstrated how these 

templates could be used for functional prediction although the rate of false positive 

matches is unsatisfactory in some cases where the template consists of very few residues. 

Russell [14] developed an algorithm that can automatically uncover side-chain patterns 

common to two protein structures, which allows identification of more complicated local 

patterns. Recently, Wangikar P. et al [20] expanded this idea to allow comparison of a 

group of proteins via objective and automated graph theoretic approach. In their method, 

a protein is modeled as a graph in which the vertices are the functional atoms from the 
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side-chains of the amino acid. An edge exists between two vertices if they are within a 

certain distance. A structural pattern is a complete sub-graph. Common structural patterns 

are extracted from a group of graphs by subgraph mining technique. They demonstrated 

that this technique could be used to identify the functional sites in protein families. 

However, to reduce the computation complexity, both of the two methods exclude the 

amino acid types that are found to have low probability of being present in functional 

sites. As a result, both of them will miss patterns that are conserved due to structural 

stability so that these methods may be of very limited use. 

  To facilitate the pattern discovery in protein structures, Singh R et al. [23] 

introduced a computational geometry technique known as Delaunay Tessellation (DT, 

and its variants) to model protein structures as contact graphs. Compared to distance-

based graph representation used by Wangikar P. et al [20], DT-based graph 

representation substantially reduces the graph density of protein structures, thereby 

reduces the computation complexity. On the other hand, our colleagues J. Huan and Prof. 

Wei Wang developed a novel subgraph mining algorithm which affords faster and more 

accurate identification of common patterns from a group of graphs [29, 30, 31].  To 

assess the performance of these techniques in recognizing conserved residue packing 

patterns in protein structural families or functional families and test the feasibility of 

using these patterns in protein annotation, I chose Papain-like Cysteine Protease family, a 

typical SCOP family which has been well studied in literature from SCOP version 1.67 to 

do a case study. 
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Papain-like cysteine protease family 

 
Papain-like cysteine protease family (PCP, SCOP ID: 54002) comprises a group 

of papain-related proteases sharing a remarkably conserved two-domain structure: an N-

terminal domain and a C-terminal domain. The active site comprising a catalytic dyad 

Cys-His is located at the V-shape active site cleft extending along the interface between 

two domains [50]. The left (L-) domain dominated by three α-helices and the right (R-) 

domain is based on a β-barrel motif. Papain-like cysteine proteases are the most abundant 

among the cysteine proteases [51].The enzymes, most of which are endopeptidases, 

consist of papain and related plant proteinases such as chymopapain, caricain, bromelain, 

actinidin, ficin, and aleurain, and the lysosomal cathepsins B, H, L, S, C and K [51].Most 

of these proteases have substrate specificity at the S2 site, which forms a hydrophobic 

pocket and prefer a Phenylalanine at the corresponding site of the substrate peptide [50].  

 

Using the contact graph representation of protein structure and the frequent 

subgraph mining algorithm, a handful of local patterns or spatial motifs were located for 

the PCP family. The result showed that each of these frequent spatial motifs is 

statistically linked to the PCP family, measured by a hyper-geometric distribution. It is 

also showed that a combination of these motifs can discriminate between the structures of 

family members and background with over high sensitivity and predictive accuracy. By 

mapping the residues covered by these motifs to the structure, these residues are shown to 

perform significantly biological functions such as forming the active sites and the 

hydrophobic pocket that is important to the substrate specificity. Furthermore, a 

PROSITE-like sequence pattern derived from the structural motifs can identify the PCP 
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sequences in Swiss-Prot database with precision of 100% and recall of 92.8%, suggesting 

that the structure-derived sequence patterns characteristic of protein families or classes 

can be used as queries in mining sequences as well.  
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Figure 2. Illustration of AD. A 4-tuple of points is 
almost-Delaunay with threshold ε, if, by 
perturbing all points in the set by at most ε, the 
circumscribing sphere can become empty. A 4-
tuple of points is AD(ε)  if e is the minimum 
threshold. Green Delaunay is AD(0); Red is 
AD(ε).  

 
 
Figure 1. Voronoi/Delaunay tessellation in 2D 
space (Voronoi polyhedra – blue dashed line, 
Delaunay simplices - solid line). All the points in a 
blue polyhedron are closest to the central red point. 
Modified from [49]  

 
 

 

II. METHODOLOGY 

 

Graph Representation of Protein Structures 

 
We construct graphs whose vertices represent the amino acids, using the 

coordinates of Cα atoms and labeling by residue type. Two types of edge may connect 

residues: a peptide edge that connects two residues that are adjacent in the primary 

sequence, or a proximity edge that connects two (non-bonded) residues identified as 

spatial neighbors in the 3D space based on the almost-Delaunay (AD) edges of parameter 

ε (default 0.1 Å) [32]. 

 

The definition of Almost-Delaunay edges is derived from the Delaunay 

tessellation [23], which is dual to the Voronoi diagram. The Voronoi diagram is a 
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mathematical model used to divide space into regions so that all the points in each region 

are closest to the same point (Figure 1).  

The Delaunay tessellation (DT) is dual to the Voronoi diagram, i.e., it connects 

points in neighboring regions of the Voronoi diagram [21]. For any set of points, these 

structures give a unique set of nearest neighbors. The property of recognizing the nearest 

neighbors in any high dimensional space has brought wide applications of the Delaunay 

tessellation into diverse fields [22].  When applied to a collection of points representing 

amino acid residues of a structure, DT generates an aggregate of space-filling, irregular 

tetrahedral, or simplices. Each Delaunay simplex defines objectively and uniquely four 

nearest neighbor residues as vertices of the tetrahedron. Naturally, the entire aggregate 

could be regarded as a network of contacts between residues thereby forming a connected 

graph [23, 24, 25]. Researches using DT-represented protein structures to study the 

protein stability and protein motions have implied strong applicability of DT for 

modeling protein structures [26, 27]. However, standard Delaunay tessellation still has 

some drawbacks when applied to protein structure modeling since protein structure 

coordinates are imprecise [28]. The errors are introduced during the experiment, 

differences between experimental methods or conditions, and actual motions within the 

protein. In presence of these noises, the set of nearest neighbors can change, being 

different for any two measurements of the coordinates in the same structure. To solve this 

problem, almost-Delaunay edges are defined by relaxing the empty sphere property to 

say that a pair of points p and q is joined by an almost-Delaunay edge with parameter ε, if 

by perturbing all points by at most ε, p and q can be made to lie on an empty sphere 

(Figure 2). Equivalently, one looks for a shell of width 2ε, formed by concentric spheres, 
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so that p and q are on the outer sphere, and all points are outside the inner sphere [28].  

Various values of the parameter ε correspond to different allowed perturbations or 

motions: 0.1 – 0.25 Ǻ would model decimal inaccuracies in the PDB coordinates or small 

vibrations, and 0.5 – 0.75 Ǻ would model perturbations due to coarser motions. The 

protein graphs constructed with the almost-Delaunay edges are termed AD graphs. 

Mathematically, the Delaunay Tessellation graph of a protein is a subgraph of AD graph 

of the same protein. AD based graph representation of protein structure are more robust 

in recognizing the naturally physical interaction between two residues in protein structure 

allowing identification of more family specific packing motifs.  

Additionally, to add geometric constraints to the graph representation of protein 

structures, a pair of nearby non-contact residues is connected by a distance edge. To 

reduce complexity, distance edges longer than 12.5 Å are normally eliminated from the 

graphs. To distinguish edges connecting residues with different inter-atom distances, 

every edge in a structural graph (contact edge or distance edge) is labeled by the distance 

of the Cα atoms of the two residues it connects; the distance is further discretized into 

bins to accommodate noise (Table 1). The width of such bins is commonly referred to as 

the distance tolerance, and popular choices are 1 Å [44], 1.5 Å [45], and 2 Å [46]. In our 

system, we choose the median number 1.5 Å, which empirically delivers patterns with 

good geometric conservation. When we perform graph matching, we require that 

matching nodes have the same label and matching edges have the same type (contact or 

distance edges) and edge label. By enforcing these matching conditions, we guarantee 

that the spatial motifs reported by our system have well defined residue identity 

composition and three dimensional shapes. 
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Table 1. Edge label by discretizing distance between Cα atoms of two residues into bins 

(The distance unit is Å) 
d≤4  4<d≤5.5 5.5<d≤7 7<d≤8.5 8.5<d≤10 10<d≤11.5 11.5<d 

1 2 3 4 5 6 7 

 

Mining Frequent Spatial Motifs From Protein Structure Graphs 

 
In our study, a protein structure is represented with an undirected graph, the 

problem of finding conserved local packing patterns in protein families becomes the 

identification of recurrent subgraphs from a group of labeled graphs, which is a widely 

studied subject, termed subgraph mining.  

We define a labeled graph G as five element tuple G=(V, E,ΣV ,ΣE, λ), where V is 

a set of vertices or nodes and E⊆V × V is a set of undirected edges. ΣV and ΣE are 

disjoint sets of vertex and edge labels, respectively, and λ is a function that assigns labels 

to vertices and edges: V → ΣV and E → ΣE. We assume that a total ordering is defined on 

the labels in ΣV ∪ ΣE. 

G’ = (V’,E’) is a subgraph of G, denoted by G’⊆G, if vertices V’⊆V , and edges 

E’⊆  (E ∩ (V’× V’)), i.e. E’ is a subset of the edges of G that join vertices in V’. A 

fundamental part of our method is to find an occurrence of a graph H within another 

graph G. To make this more precise, we say that H occurs in G if we can find an 

isomorphism between graph H = (VH, EH, ΣV , ΣE, λH) and some subgraph of G =(VG, EG, 

ΣV ,ΣE, λG). An isomorphism from H to the subgraph of G defined by vertices V ⊆  VG is a 

bijection between vertices f: VH → V that preserves edges and edge/node labels.  
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In this study, we restrict ourselves to fully interconnected subgraphs: cliques. A 

clique is a graph where each node have degree n-1 where n is the size (number of nodes) 

of c and the degree of a node is defined as the number of edges incident with it. For 

example, the graph Q in Figure 3(a) is a clique since all its nodes have degree 2 while S is 

not. In protein structure graphs, a clique corresponds to a spatial motif with all inter-

residue distances computed. The reason we focus on cliques is that the identified spatial 

motifs have very strict geometry.  

Given a graph database GD which is a set of graphs, we define the support of a 

clique as the fraction of graphs in GD in which the clique occurs. We choose a threshold 

0 < σ ≤ 1, and define the clique to be frequent if and only if its support is at least σ. Note 

that while one clique may occur many times within a single graph, for the purposes of 
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Figure 3. Basic concept of Subgraph mining. (a): 
Examples of three labeled graphs (referred to as a graph 
database). The labels of the nodes are specified within 
the circle and the labels of the edges are specified along 
the edge. The mapping q1 → p2, q2 → p1, q3→ p3 
represents an induced subgraph isomorphism from graph 
Q to P. (b): All the frequent induced subgraphs with 
support σ ≥ 2/3 for the graph database. (Modified from 
[29]) 

(a) 

(b) 

A1       A2           A3                 A4                    A5 
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support, these counts as only one occurrence. The problem of Frequent Clique Mining is 

to identify all frequent cliques for a graph database GD. Figure 3(b) shows all cliques 

which appear in at least two graphs in the graph database shown in Figure 3(a). If we use 

support threshold σ = 2/3, all five cliques will be reported to users. If we increase σ to 3/3, 

only the A1, A2, A3 will be reported. 

Since our method reports all the frequent cliques, some cliques are subgraphs of 

other cliques and these include much redundant information. Thus, we select to report the 

maximal cliques. That means no one of the reported cliques is a subgraph of other cliques. 

For example, in Figure 3(b), only A5 will be reported because other cliques are subgraphs 

of A5 if support σ = 2/3 is given.  

 

Algorithm Description 

 

The core software FFSM executable 1.0 (Fast Frequent Subgraph Mining) was 

developed by Jun Huan, Wei Wang, Jan Prins et al. at Department of Computer Science, 

University of North Carolina at Chapel Hill and distributed through webpage at 

http://www.cs.unc.edu/~huan/FFSM.html. 

The algorithm details are described in [29,30,31]. 

 

Statistical Significance of the Spatial Motif in the Family 

 
To establish the statistical significance, any subgraphs that are frequent in a SCOP 

family are checked against the background dataset. We determine the statistical 
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significance of a spatial motif by measuring a P-value, defined by the following hyper-

geometric distribution. 

| | | | | |

| |
| |

| |

F M F

k T k
P value

M

T

−  
  −  − =

 
 
 

   (Equation 1) 

Here, M is a collection of representative proteins, selected from all known structures in 

PDB; T is a subset of proteins (T⊆M), in which a particular spatial motif occurs; F, a 

subset of proteins (F⊆M), standing for the structures family select to establish the 

statistical significance. |F|, |M|, |T| is the cardinality of F, M, T, respectively. Thus, P-

value is the probability of observing a particular motif containing proteins K = F∩T with 

size at least k. For example, if a motif occurs in every member of a family F and in no 

proteins outside F (i.e. K = F = T) for a large family F, we would estimate that this motif 

is specifically associated with the family; the statistical significance of such case is 

measured by a P-value close to zero. Based on the Bonferroni correction for multiple 

independent hypotheses [47], 0.001/|C|, where |C| is the set of categories, is used as the 

default threshold to measure the significance of the P-value of individual test. Since the 

total number of SCOP families is 2327, a good starting point of P-value upper bound is 

10-7. 

 

Experiment Setup and dataset cleaning 

 
The protein structure dataset of Papain-like cysteine protease family (PCP, SCOP 

ID: 54002) was selected from SCOP version 1.67. To avoid the inclusion of many nearly 

identical structures that would bias the family composition and also invoke the worst case 
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exponential behavior of subgraph mining, a list of PCP protein structures was created so 

that the pair-wise sequence identities between any two protein chains are no more than 

90%. Furthermore, the structures in the list had better than 3 Ǻ resolution and R-factor at 

most 1.0. This preprocessing resulted in 27 PCP protein structures with pair-wise 

sequence identity ranging from 13~60% (Table 2). In the preliminary study, I noted that 

mutations and chemical modifications are extensively present in these crystal structures 

and these alternations always locate at the functionally important residues. Since our 

subgraph mining is to search for the motifs with unique residue compositions among 

these structures, these mutations or chemical modifications will lead to missing of some 

motifs that are usually functionally important. Hence, I made some corrections to the 

PDB files: the irregular residue names from chemical modifications were corrected to the 

normal residue names; the mutated amino acids were changed back to the native ones 

(Table 2). Here we assumed that these do not make any structural changes to the original 

proteins. And since the Cα atoms are used as the nodes in current graph representation, 

this preprocessing would not change the residue positions in the original protein 

structures. Each of these structures was converted to a labeled graph based on almost-

Delaunay edges of parameter ε (default 0.1 Ǻ). Nodes in the graph represent Cα atoms of 

each residue, labeled by the residue type. The edge between any pair of residues is 

labeled by the distance of the Cα atoms of the two residues it connects. The distance is 

further discretized into bins to accommodate noise (see Table 1 for the discretization). 

The resulting group of graphs was submitted to the Fast Frequent Subgraph Mining 

(FFSM v1.0) running on the Baobab cluster computing platform (baobab.isis.unc.edu). A 

number of common subgraphs were reported given a certain occurrence threshold (the 
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required number of occurrences). Then these graphs, termed motifs, were checked against 

a dataset of 6500 representative proteins from CulledPDB for occurrence. The motifs 

appeared in more than 5% of these background proteins (nonspecific motifs) were 

eliminated. 

Table 2. The Papain-like Cysteine proteases used for mining motifs 

PDBID Chain Remark PDBID Chain Remark 

1cqd a  1qdq a  

1gec e  2cb5 a CYS73SER 

1gmy a  1mem a  

1cs8 a CYS25OCS 1yal _ CYS25SCH,CYS117SCH 

1the a  1deu a  

1jqp a  8pch a  

1cv8 _  1m6d a  

1me4 a  1khq a  

1k3b bc  2act _  

3gcb _ CYS73ALA 1ppo _  

1dki a CYS47SER 1nqc a  

1iwd a  1fh0 a  

1s4v a  1o0e a  

1pxv a CYS243ALA    
The “chain” column specifies the chains in the PDB files that were used for 
mining. The Remark column records the mutations or chemical 
modifications within the protein structures. 

 

Derivation of sequence patterns from spatial motifs 

 

Since our structural motifs discovered by subgraph mining are conserved in terms 

of residue identity, they may also be used to derive sequence patterns if these residues are 

also ordered at sequence level in family structures (Fig 4, sequence ordered motif).  

For example, taking residue identities into account, an elementary packing motif M 

comprising four residues can be generally defined as the four nearest neighbor residues 

separated by three sequence distances as in the following PROSITE-like regular 

expression:  
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M: = { aai aaj aak aal; d1, d2, d3} 

In this formulation, i, j, k, and l are residue numbers in a protein sequence; the sequence 

distance d1=j-i, d2=k-j, and d3=l-k.  For each equivalent motif in family structures, the 

residue names of aai aaj aak aal are identical, but the values of d1, d2, d3 may vary among 

different structures. In this case, we can define a consensus sequence pattern  

m= aai (d1) aaj (d2) aak (d3) aal,  

which is similar to the patterns defined in PROSITE. d1, d2, d3 could be a range to allow 

the variance.  

For example, we assume the motifs in the four protein structures in Figure 4 are {H, C, Q, 

S;7, 15, 30}, {H, C, Q, S; 5, 16, 27}, {H, C, Q, S; 6, 16, 26} and {H, C, Q, S; 7, 16, 28}, 

respectively. Then the consensus sequence pattern could be defined as 

H(5,7)C(15,16)Q(26,30). (5,7) means that the sequence distance between residue H and 

C could be any number between 5 and 7 (including 5 and 7).   

 

 

Figure 4. Derivation of sequence pattern from sequence ordered spatial motifs 
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III. RESULTS 
 

The frequent spatial motifs identified are highly specific to the Papain-like 

cysteine protease family.  

 
Motifs were identified using different support values, starting from the most strict 

value of σ =27/27 (meaning that we defined the patterns or motifs to be frequent if they 

occur in all 27 structures) (Figure 5). It was showed that no common motif was located 

for more than 23 of these 27 structures. By lowering the support value, one motif was 

found for σ=23/27, 3 motifs found for σ=22/27, 14 motifs found for σ=21/27, 29 motifs 

found for σ=20/27, 74 found motifs for σ=19/27 and 166 motifs was identified for 

σ=18/27. Table 3 documents the number of frequent motifs and the residues covered by 

these motifs in the 27 structures of Papain-like cysteine protease family with support σ 

=18/27, 19/27, 20/27, 21/27, 22/27, respectively. To test the uniqueness of PCP family’s 

spatial motifs and evaluate the feasibility of using these motifs for family membership 

inference, we examined the frequency of these motifs in the background for each given 

support value σ, as described in the Methodology section. It was showed that for any 

support value we sampled (σ =18/27, 19/27, 20/27, 21/27 or 22/27), almost all 

background proteins have fewer motifs than the minimum found in any family member 

(Fig 6(a), 6(b), 6(c), 6(d) and 6(e)). For instance, when σ = 20/27, at most 29 frequent 

motifs were found contained in at least 20 members of the family. Except three proteins 

(1cv8, 1pxv and 1dki), each PCP protein contains at least 14 of such motifs, while in 
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proteins outside the family (6500 proteins from culled PDB list, less than 90% identity), 

no one contains more than 2 of such 29 motifs (Fig 6(c)). To evaluate the statistical 

significance of family membership inference using these family-specific motifs, ROC 

curves were drawn to show specificity vs. sensitivity of the inference using the spatial 

motifs derived under different support (Fig 7). These ROC curves show that these motifs 

are very specific signatures of PCP family and can effectively discriminate between the 

family members and the background. For example, using the 29 motifs derived under the 

support value σ =20/27, if we set the cutoff value to be 14, which means a protein 

structure should be predicted as an member of the PCP family when it is found to contain 

at least 14 of those 29 motifs, the sensitivity of the prediction is over 88% while the 

accuracy is 100%.  

Furthermore, Table 4 documents the composition of 29 motifs (with support σ 

=20/27), each of which consists of four or five residues. In addition, the P-value 

(equation 1) for each motif is smaller than 10-49, which indicates that each of the motifs 

we found is highly linked to the PCP family.   

The frequent motifs are either functionally or structurally important. 

 
We further investigated the spatial distribution of the residues covered by these 

motifs, by mapping them in the structure of a PCP protein, 1CQD, shown in Fig 8. Here 

we studied the 29 motifs derived using support σ = 20/27. We observed that most of these 

residues are mainly located at the interface of the N-terminal and C-terminal domains, 

which is where the active site is located. Cys27 and His161 form the catalytic dyad, and 

several residues (Gln21, Asn181, Ser182, Trp183) near the catalytic center are known 

interact with the catalytic triad [39] and are detectable as motifs. Included in the covered 
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residues also are those (Gly25, Trp28, Phe30, and Gly68) that form a hydrophobic pocket 

stabilizing the substrates and hence important to substrate specificity of the enzyme [39]. 

We also observed a pair of cysteines identified forming a disulfide bond (Cys24-Cys65). 

According to the literature [39], this disulfide bond may be crucial for the stability or 

folding of PCP family proteins.  

Interestingly, the most frequent motif Q21-C27-H161-S182 (family frequency 

κ=23) contains the catalytic dyad Cys27-H161. Fig 9(a) and Fig 9(b) compare this motif 

in two PCP structures 1cqd and 3gcb, between which the pair-wise sequence identity is 

only 13%. This motif is showed to have very conserved geometry shape in the family. 

Furthermore, together with other three frequent motifs (C27-H161-S182-W183, Q21-

C27-S182-W183 and N181-S182-W183-G191), it forms a six-residue packing network 

(Fig 10(a)), which captures the feature of the amino acids and hydrogen-bonding network 

(Fig 10(b)) in the active site of Papain-like cysteine proteases [39]. 

In summary, these results confirm that the clusters of functionally or structurally 

important residues have highly conserved geometry and indicate that our method to find 

frequent spatial motifs can identify these residues, and the geometric features of the 

packing patterns.  

 

Outliers are found to be inactive zymogen forms or complexed with inhibitors.  

 
In our study, three members of the family (1dki, 1cv8 and 1pxv) were found to 

contain none of such conserved motifs. We investigated these outliers case by case. 1dki 

is the crystal structure of the zymogen form of virulence factor SpeB from streptococcus. 

In this structure, a part of the N-terminal prosegment interacts with the active region so 
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that the local structure is perturbed [40]. 1pxv is the PCP-like protease Staphopain 

complexed with its inhibitor Staphostain. The inhibitor directly contacts with the active 

region and changes the structure substantially [41]. 1cv8 is the crystal structure of a thiol 

protease from Staphylococcus Aureus V-8 with the E-64 inhibitor, which substantially 

disturbs the conformation in the active region of the protease [42]. Hence, the reason for 

being unable to identify the conserved spatial motifs in outliers is that the conserved local 

structure has been substantially changed due to interaction with other proteins or factors.  

Based on those observations on Papain-like cysteine protease family, we are convinced 

that our subgraph mining approach is applicable to find family specific motifs for SCOP 

protein families.  We also noted that outliers were usually non-active protein structures 

with disturbed local structures (usually functional important). This indicates in future 

motif mining we should carefully analyze the dataset and expect the need for manual 

curation.  

 

The PROSITE-like sequence pattern derived from structural motifs can 

identify the PCP sequences with 100% precision.  

 
We derived PROSITE-like sequence pattern from the frequent spatial motifs 

using the 29 motifs as described in the Methodology section, and used the pattern to 

search for Swiss-Prot database. The three outliers were excluded from the consideration. 

After comparing these motifs in the remaining 24 structures, a consensus sequence 

pattern “Q-x(5)-C-x(132,170)-H-x(16,24)-N-S-W-x(4)-G-x(2)-G” was assembled using 

motifs Q21-C27-H161-S182, N181-S182-W183-G191 and S182-W183-G188-G191. 

According to Swiss-Prot, there is a total of 169 class one Papain-like Cysteine protease 



 21 

[50]. Mining for the 178,772 sequences in Swissprot with this pattern, we have identified 

157 out of the 169 Papain-like Cysteine protease sequences and nothing else. In other 

words, the precision of our method, which is defined in our context as the ratio of the 

number of true positives in our identified sequences and the total number of identified 

sequences, is 100% and the recall of our method, which is defined as the ratio of the 

number of true positives in our identified sequences and the total number of papain-like 

Cysteine protease in Swissprot is 92.8%.  
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Motif identification at different support threshold
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Figure 5. . Motif identification at different support value 

 

 

 

(18/27, 166) 

(19/27, 74) 

(20/27, 29) 

(21/27, 14) 
(22/27, 3) (23/27, 1) 

Fig 5. Motif identification at different support value. The support values used here are σ 
= 27/27, 26/27, 25/27, 24/27, 23/27, 22/27, 21/27, 20/27, 19/27, 18/27, respectively. The 
coordinate vale for each data points is indicated.    
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Table 3 Numbers of frequent motifs and the residues covered by all these motifs in each of the 27 
structures from PCP family 

 PCP 

# motifs 
(σ=18/27
) 

# of 
residues 

# motifs 
(σ=19/27
) 

#of 
residues 

# motif 
(σ=20/27
) 

#of 
residues 

# motif 
(σ=21/27
) 

#of 
residues 

# motif 
(σ=22/27
) 

# of 
residues 

1 1cqd 166 28 74 23 29 19 14 12 3 6 

2 1iwd        166 26 74 22 29 23 14 12 3 6 

3 1s4v         166 26 74 22 29 19 14 12 3 6 

4 1yal         166 27 74 23 29 19 14 12 3 6 

5 1khq      166 31 74 27 29 18 14 12 3 6 

6 1fh0         166 26 74 22 29 19 14 12 3 6 

7 1o0e        166 26 74 22 29 19 14 12 3 6 

8 1cs8        163 28 72 23 29 18 14 12 3 6 

9 1ppo       161 27 73 23 29 20 14 12 3 6 

10 1me4       160 25 71 21 29 19 14 12 3 6 

11 1qdq       158 24 71 24 29 18 14 12 3 6 

12 1mem        157 22 72 22 29 18 14 12 3 6 

13 1the         155 20 71 20 28 19 13 12 3 6 

14 1gmy       150 19 66 19 28 17 14 12 3 6 

15 1m6d       148 26 70 22 27 17 13 11 3 6 

16 1gec         111 28 55 24 24 20 13 11 3 6 

17 1nqc      99 24 53 20 24 16 13 11 3 6 

18 8pch       98 26 43 21 21 19 11 11 2 5 

19 2act       98 30 56 26 21 19 10 12 1 4 

20 1deu      82 23 44 18 20 12 12 11 3 6 

21 1jqp         74 24 36 20 15 17 8 11 3 6 

22 1k3b        68 26 38 21 14 14 8 10 1 4 

23 2cb5        38 16 25 14 14 17 7 10 3 6 

24 3gcb     13 13 7 11 14 9 8 8 3 6 

25 1cv8        2 5 1 4 0 0 0 0 0 0 

26 1dki        1 4 0 0 0 0 0 0 0 0 

27 1pxv        0 0 0 0 0 0 0 0 0 0 
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Distribution of 166 spatial motifs (support = 18/27) in PCP family and in the Background
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Distribution of 74 spatial motifs (support =19/27) in PCP family and in the backgound
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Fig 6(a) 

Fig 6(b) 

Totally 6645 proteins, data 
over 500 is not shown. 
 

Totally 6645 proteins, data 
over 300 is not shown. 
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Distribution of 29 spatial motifs (support =20/27) in PCP family and in the background
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Distribution of 14 spatial motifs (support = 21/27) in PCP family and in the background
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Fig 6(c) 

Fig 6(d) 

Totally 6645 proteins, data 
over 300 is not shown. 
 

Totally 6645 proteins, data 
over 300 is not shown. 
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Distribution of 3 spatial motifs (support =22/27) in PCP family and in background
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Figure 6. Distribution of PCP’s frequent spatial motifs in the background and within the family 

 

 

 

Fig 6. Distribution of PCP’s frequent spatial motifs in the background and 
within the family.  
(a). support σ =18/27, totally 166 motifs identified; in the background, one 
protein contains 4 motifs, 5 proteins contains 3 motifs, 21 proteins contain 2 
motifs, and 299 proteins contain 1 motif;  
(b). support σ =19/27, totally 74 motifs identified; in the background, 6 
proteins contains 2 motifs, 159 protein contains 1 motif, 21 proteins contain 
2 motifs, and 299 proteins contain 1 motif; support σ =19/27;  
(c). support σ =20/27, totally 29 motifs; in the background, 1 protein contains 
2 motifs, 36 proteins contain 1 motif. 
(d). support σ =21/27, totally 14 motifs; in the background, 15 protein 
contains 1 motif;  
(e). support σ =22/27, totally 3 motifs; in the background, 4 proteins are 
found to contain 1 of such motifs. 

Fig 6(e) 

Totally 6645 proteins, data 
over 150 is not shown. 
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ROC curves for PCP family inference at different number of motifs
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Figure 7. ROC curves for PCP family inference at different number of motifs 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. ROC curves for PCP family inference at different number of 
motifs. Sensitivity is calculated as the True Positive Rate (TPR), 1-
specificity is calculated as False Positive Rate (FPR). 
 



 28 

 

Table 4 Frequent spatial motifs identified in Papain-like cysteine protease family 
(ID:54002) N:27, σ:20/27 

Motif Composition κ δ Motif Composition κ ∆ Motif Composition Κ δ 

1 HCQS 23 3 11 WCSQ 21 0 21 WHCQS 20 0 

2 FSQC 22 3 12 WSFC 21 2 22 WFCSQ 20 0 

3 FQCG 22 10 13 WWGS 21 1 23 WFCQG 20 0 

4 WHCS 21 0 14 WHCQ 21 0 24 WFCG 20 0 

5 WCQG 21 0 15 SGQN 20 3 25 HCSS 20 2 

6 WGNS 21 3 16 WFQG 20 0 26 WHGC 20 2 

7 WGSG 21 3 17 SGCC 20 1 27 HCSG 20 9 

8 WFCS 21 2 18 FQCG 20 2 28 WGFQ 20 7 

9 WFCQ 21 0 19 WFSQ 20 7 29 WWGG 20 4 

10 HCQG 21 6 20 CCGG 20 4         
N: total number of structures included in the data set. σ: the support threshold used to obtain frequent 
spatial motifs. Composition: the sequence of one-letter residue codes for the motif. κ: the actual support 
value of a motif in the family. δ: the background frequency of the motif. The P-values for all the motif are 
smaller than 10-49. The motifs were sorted by their actual support values in descending order. The bold 
HCs indicate the catalytic dyad. 
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Figure 8. Spatial distribution of residues found in 29 motifs within protein 1CQD 

 

 

 

 

 

 

 

 

 

 
 

Cys65 

Cys24 

Fig 8. Spatial distribution of residues found in 29 motifs within protein 1CQD. 
The residues in catalytic dyad CYS27-HIS161 are connected by a black dotted 
line and important surrounding residues GLN21, ASN181, SER182, and 
TRP183 are labeled, these residues are drew in Licorice representation. The 
residues forming hydrophobic pocket are drew in CPK method colored in purple. 
The disulfide formed between Cys24 and Cys65 is in yellow.  
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                               (a)                                                          (b)    

 

(c) 

Figure 9. Illustration of motif HCQS 

 

 

 

 

 

 

 

 

Fig 9. Illustration of motif Q21-C27-H161-S182 in PCP members 1CQD (a), 
3GCB (b) and in a background protein 1LJ8 (c). The four amino acids are shown 
in Licorice representation, and labeled by the residue name. Edges are drawn in 
blue dotted line to connect the Ca atoms of each pair of residues, the lengths (in 
angstrom) of the edge is indicated.  
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(a) (b) 

Figure 10. . Comparison of a motif cluster  with the hydrogen-bonding network at the active 
site in a PCP protein 1CQD. 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. Comparison of the motif cluster (a) with the hydrogen-bonding network 
(b) at the active site in a PCP protein 1CQD. (a) A cluster of motifs at the active 
site. The six amino acids are shown Licorice representation, and labeled by the 
residue name. Edges are drawn in blue dotted line to connect the Ca atoms of 
residues, the lengths (in angstrom) of these edges are indicated. (b) The amino 
acids and hydrogen-bonding network of the active site in 1CQD (modified from 
[39]).  
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(a) (b) 

Figure 11. Example of a motif (GCCG) with multiple occurrences within one structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Example of a motif (GCCG) with multiple occurrences within one 
structure. (a) motif GLY64-CYS65-CYS24-CLY25 in PCP protein 1CQD; (b) 
motif GLY64-CYS65-CYS22-GLY23 and GLY207-CYS206-CYS156-GLY157 
in PCP structure 2ACT. Residues forming the motifs are shown in shown 
Licorice representation, and labeled by the residue name.  
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IV. CONCLUSION AND DISCUSSION 
 

In this study, we report the application of a novel frequent subgraph mining 

algorithm to retrieve conserved spatial motifs from protein 3D structures of Papain-like 

cysteine protease family. Each of the frequent spatial motifs we identified were found 

highly specific to the PCP family, measured by P-value<10-49. And we also showed that 

the combination of these family specific motifs can discriminate the PCP family members 

and the background with very good sensitivity and predicative accuracy. By mapping the 

residues covered by these motifs to the structure, these residues are shown either 

structurally important or functionally important, such as forming the active sites and the 

hydrophobic pocket that is important to the substrate specificity. A PROSITE-like 

sequence pattern assembled by using these structural motifs can identify the PCP 

sequences in Swiss-Prot database with 100% precision and good recall. These suggest 

that structurally and functionally specific amino acid packing patterns or motifs can be 

discovered by computational and statistical geometry analysis of protein structures and 

used to annotate novel protein structures. Certainly, we need to further validate this by 

applying the method to more protein structural or functional families.  

Since our method uses 2D graphs to represent the three dimensional protein 

structures, it certainly would miss some features of 3D objects. One of the features that 

our method is not able to identify is chirality. Fig 9 gives such an example. Fig 9(a) and 

Fig 9(b) compare the conserved four-residue motif HCQS in two different PCP structures. 
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These two tetrahedrons could be superimposed onto each other perfectly. Fig9(c) shows 

the occurrence of this motif in a background protein 1LJ8. This instance of the motif, 

which is an enantiomer of those in PCP structures, is still accepted as a match by our 

method. Thus, our method couldn’t discriminate between the enanntiomers.  

Furthermore, difficulties and problems are found through the case study on PCP 

family. Since the frequent subgraph mining algorithm relies on sampling the local 

structural features, the method is quite sensitive to the small perturbations in the local 

structure which result from interacting with other proteins (such as inhibitor) and crystal 

packing, etc. Since the PDB database contains many structures of inactive forms that 

always have locally structural change in the conserved region, it poses much trouble to 

systematic analysis of the PDB database with our method. Additionally, the mutations 

and chemical modifications that extensively exist in the PDB structures also bring to the 

automatic analysis a big challenge.  

In summary, the results from the case study on PCP family suggest that that 

structurally and functionally specific amino acid packing patterns or motifs can be 

uncovered by computational and statistical geometry analysis of protein structures. These 

protein family specific motifs can be used to recognize the family members. In future 

studies, we will apply the approach to protein families defined by various protein 

structural and functional categories such as SCOP, Enzyme classification, DNA-binding 

proteins etc. The accumulation of significant motifs characteristic of known protein 

functional and structural families will aid the annotation of protein structures resulting 

from structural genomics projects, as well as facilitate our understanding the role of 

protein local structures in protein function and protein evolution. 
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