

 BROWSERS, PLATFORMS, AND MONITORS, OH MY!!
MAINTAINING COMPATIBILITY ON THE YELLOW BRICK ROAD OF WEB DESIGN

by
Harry Ahlas

A Master's paper submitted to the faculty
of the School of Information and Library Science

of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements

for the degree of Master of Science in
Information Science.

Chapel Hill, North Carolina

April, 2001

2

Harry Ahlas. Browsers, Platforms, and Monitors, Oh My!! Maintaining
Compatibility on the Yellow Brick Road of Web Design. A Master's paper for
the M.S. in I.S. degree. April, 2001. 63 pages. Advisor: Gary Marchionini

This study describes data collected regarding design decisions Web

developers make in order to make their interfaces and content compatible

across user environments. Qualitative data was gathered through interviews

with developers across the United States. Quantitative data was collected

through an examination of several Web sites’ source code.

Web content does not render the same in every environment. A site may

have an attractive interface when viewed through one browser while being

completely incomprehensible in another browser. Web developers face the

complex task of deciding what types of environments to design for. This

research explores the current trends and standards that developers

implement to achieve compatibility.

Headings:

World Wide Web — Accessibility

Information systems — Design

Internet

Electronic Commerce — Standards

3

Table of Contents

Problem Statement and Introduction…………..……………….. 4

Relevant Literature ………………………………………………. 6

Methodology ………………………………………………………17

The What, not the How ……………………………………….…..22

The Means ……………………………………………………….…24

Relevant Statistics …………………………………………………31

Cross-Examination …………………………………………….….43

Conclusion …………………………………………………………46

Appendix ……...………………………….………………….…….49

Bibliography ……………………………………………….………63

4

Problem Statement and Introduction

What strategies and reasoning do Web designers implement in order

to compensate for the countless combinations of computer platforms,

browsers, monitors, and plugins that the world utilizes?

One of my favorite Web sites is espn.com, where I can check up-to-

the-minute scores and updates on my favorite teams’ games. Over this past

summer, my work provided me with an older Macintosh computer that had

an early version of Netscape Navigator as its browser. I would periodically

check espn.com for scores and often I found that several of the site’s

Hypertext Markup Language (HTML) tables had broken so that the pages’

appearances were distorted. Much of the text was cut off. These miscues

were related to my computer’s improper handling of layers. I looked at the

source code and found that espn.com had attempted to make its site readable

on all platforms and browsers—particularly Navigator and Microsoft

Internet Explorer. Despite the site’s use of JavaScript to alleviate the

problems surrounding the different platforms and browsers, the pages still

looked funny.

 This problem of differences in platforms, browsers, versions, and

monitors is a difficult barrier to hurdle. I interviewed for a job at a prominent

Web design company in the Bay Area who kept telling me how important

browser/platform compatibility is to a good Web site. Later that day, I

5

checked out some of the sites the company had designed and noticed that an

HTML table on one of their sites had broken on my personal computer at

home (and my personal computer was much newer than the Macintosh at

work!).

 It is almost impossible for a Web site to look exactly the same on all

graphics-enabled browsers. Browsers are not the only elements of the client’s

machine that interpret Web pages’ appearances. The client’s operating

system as well as his monitor size and resolution also play a significant role

in the final appearance of a Web page. Furthermore, not all users have the

same plugins, namely the Flash player, which enables the use of fancy

motion graphics on Web pages; users without this plugin cannot view Flash

content. My research delved into this problem of interoperability and

analyzed how different Web sites address the issue. What are the various

methods that Web designers employ? What factors motivate their decisions?

There is no correct “by-the-book” method of designing complex and cross-

compatible Web sites; this research probed into the various methods and

evaluated patterns that designers follow.

6

Relevant Literature

In reading about browser and platform compatibility, I have found a

few significant problems. First, books related to my topic are often outdated.

Even the newest books seem to be behind the times. Because books relevant

to Web compatibility quickly become dated, much of the literature I cite

comes from an alternate source—Web resources. This leads to a couple other

problems. Web pages usually do not have dates and their content can be

inaccurate. Additionally, Web authors often do not cite their sources well

nor do they thoroughly discuss their methods.

For these readings, I sought out a variety of views with different types

of books and articles. The readings provided me with a solid foundation for

understanding the problems that Web designers have with browser and

platform compatibility. Several of the authors I read seemed to ignore my

question entirely, which made the reading even more interesting. Knowing

that respected authors in the large field of Internet studies ignore

compatibility reinforced my desire to research the subject. What follows is a

review of various readings relevant to my research.

One of the first topics Holzschlag (1998) discusses is cross-browser

and cross-platform design issues. While her writing on these considerations

is not entirely comprehensive, she makes the extra effort to stress their

important role in good Web design. Because her discussion of the different

platforms and browsers is concise and not extremely detailed, it serves as a

good general introduction to the potential problems that can result from the

7

neglection of browser and platform compatibility. Her strength comes in

clearly listing the general potential problems with compatibility. For

instance, she lists the major platforms—PC, Macintosh, and UNIX—as well

as some of the minor (but still important) platforms—VMS, Sun/SGI, and

Linux (note that in 1998 Linux was considered minor). Holzschlag also

touches on the differences between using HTML text versus graphical text

(i.e. saving text as GIFs), and how they play into browser and platform

compatibility.

By far the most important part of her work for my purposes is a very

thorough “Cross-Browser Tag and Attribute Support Table” which pits the

various up-to-date HTML tags on one axis against the three major browsers.

Here is an example of one line of the table:

 HTML Internet Explorer Netscape HTML
 Tag: Versions: Navigator: Lynx: versions: Author:

<APPLET> *3/4 *2/4 * *3+/4 W3C

 (145)

This format is easy to read and a very helpful reference for someone looking

to see what HTML tags work with what browsers.

There are two limitations to Holzshlag’s work. First, her Tag and

Attribute Support Table focuses only on three different browsers, leaving out

statistical columns for other significant browsers. Second, she fails to state

how she attained the data for the table, making it difficult to judge its

reliability and validity. I had to personally contact her to find out that she

collected the data from the World Wide Web Consortium (W3C).

8

Niederst’s work (1996) is a more simplistic look at Web design issues.

While her book is good for looking into simple cross-browser and cross-

platform facts, its content is too outdated to apply directly to my work (as you

will see, however, this does not mean that her book is not worth reading!).

Four years is an eternity on the Internet, and I suspect that four years from

now my Master’s thesis will too be more of an historical artifact than a

technical guide. For instance, she favors the Mosaic browser, which is

presently very sparsely used, as her main browser example. Moreover,

Neiderst’s writing only applies to HTML 2.0, which does not even include

tags for supplying a page’s body background color, an absolutely necessary

feature for almost all of today’s Web designers.

Still, there are several positive contributions made by this book as

well as the other outdated literature on the topic. First and foremost, this

book provides a historical perspective on why and how the different

browsers evolved the ways they did. There seems to be such a rush with the

latest books that these historical perspectives on the evolution of browsers

are left out until the Internet’s escalation slows to enough of a non-chaotic

pace that historians can catch up with this growth. For this reason, I will not

discard literature on this subject simply because it may be obsolete. Instead, I

can utilize this older information to understand the past perspectives of

designers. Newer books rarely discuss issues of the past, perhaps because

their readers are only interested in the latest and most up-to-date design

techniques. Furthermore, Niederst provides basic HTML information that

newer books tend to skip over, such as how different browsers and operating

9

systems display font sizes in <H1> tags. It is amazing how the older books

provide a basic foundation for my research in a way that the newer books

have not made available.

So far I have uncovered two types of books for my research: new

books with solid, accurate information (Holzshlag 1998); and older books

with outdated information, but with historical perspectives that cannot be

easily found in newer books. Vitanza (1998) and Sinclair (1999) provide us

with another type of book: newer text that has out-of-date, inaccurate

information and little or no important historical perspective.

Sinclair’s work is a 500-page book that discusses all types of Web

typography that only has one paragraph regarding browser compatibility. It

states how Webmasters have only partial control over the way their content

is presented. This book failed in the same way that Vitanza’s book fails;

almost complete disregard for my subject.

 Vitanza (1998) has little grasp on the importance of operating system

compatibility issues and only enough of a grasp of browser compatibility

issues to generalize it into two vague sentences. Here are two examples of

problems I have with his work: 1) he does not discuss the Internet Explorer

browser, despite the fact that this book was published in 1998; 2) he claims

that using the HTML code is more efficient at creating a text-indent on

a Web page than using a GIF image. Furthermore, he denigrates graphic

designers who use the GIF method, stating that their HTML skills are

inadequate because they do not know how to use . In actuality, the GIF

method provides much more consistency between browsers: a GIF indent on

10

Netscape will look much more like a GIF indent on Internet Explorer than an

 will look on the two. Clearly, this author is ignorant of the issues I

intend to discuss in my research.

Interoperability has not become a crucial element of Web design until

fairly recently. The fact that books such as that of Sinclair and Vitanza exist

illustrates the importance of my research. Even Web “experts” have a lot to

learn about this growing industry.

Stephanie Redman (1999) covers Web Design from a creative

standpoint. She focuses on how to make pages look attractive, and strays

from the inevitable technical jargon that designers must use. She discusses

Web colors in as much detail as Vitanza talks about writing, only Redman

seriously acknowledges the importance of paying attention to browser and

platform compatibility. She does not delve far into the compatibility subject

matter; instead, she leaves it up to the reader to learn about it from other

sources:

Do you know every difference between every version of every
browser with regard to every Java, JavaScript, ActiveX, animated GIF,
table layout, frame design, download method, XML, SGML, PC vs.
Mac display/load/transfer consideration? Neither do the experts.
(16)

She also reminds the reader that even if you do know these differences, they

change all the time and are nearly impossible to keep up with. Her concise

contribution to my research is short but sweet. Redman illustrates an

important point that I must consider in my data collection and analysis—in

choosing a particular compatibility scheme, do designers consider the advent of

future technologies? Perhaps some designers choose a particular

11

interoperability method because it will likely work with future multimedia

technologies that their sites may implement. Is there a danger of choosing a

method that will not work with certain technologies that will soon become

standard (such as Flash or XML)?

A more detailed work, Jones (1997), is one of the most helpful of all

the readings I found. He supplies a full chapter on browser support

especially regarding Cascading Style Sheets (CSS). Furthermore, he talks

about future issues with CSS. Jones also supplies a significant amount of

history about Style Sheets and browser issues, which ties in nicely with

Neiderst (1996). He also uses concrete examples to support his work. For

instance, he provides an actual list of problems with CSS on Internet Explorer

3.0—the list was actually created by Microsoft.

More importantly, Jones points out some of the techniques that

designers use to solve browser (and platform) compatibility problems. He

suggests using “dynamic, database-driven content” that can easily be created

on the fly for delivery to any browser through “Browser Sensing.” Browser

Sensing involves detecting what browser type the client is using to create

Web pages customized for the client’s particular browser. Additionally,

Jones presents another option for compatibility: “Hybrid Web Design,”

which I will discuss in detail later. He offers a question that I hope to help

answer in my research: Who takes advantage of these options in dealing with

compatibility?

The World Wide Web Consortium (W3C 2000) provides additional

depth in the use of Cascading Style Sheets (CSS), differentiating its role in

12

Web design versus the role of HTML. The author emphasizes that designers

should use HTML only to structurally mark up their Web pages. Often,

designers try to control their sites’ layouts using HTML—doing so can lead to

cross-compatibility problems. The W3C states that CSS should be used for

layouts because it provides consistency that HTML alone cannot achieve.

The W3C article is very basic, providing the reader with a concise

overview of the interactivity between HTML and CSS. It makes solid

arguments about general points. On the other hand, it does not attempt to

discuss the particulars of CSS that Jones details. Also, it fails to compensate

for Web clients whose browsers do not understand CSS.

Mulder and Brandt (1999) present a helpful and more detailed article

on browser and platform compatibility. The article’s best asset comes in the

form of a table that presents browsers and platforms versus various Web

technologies. The Y-axis of the table hosts almost every browser available,

dividing them between platforms. For instance, Internet Explorer 5.0 has

three different rows on the Y-axis (one for PC, one for Mac, and one for

Unix). It includes data for PC, Mac, Unix, Linux, Television (WebTV),

NextStep, and OS/2. The X-axis hosts columns that are reminiscent of

Holzshlag’s table, only with more generalized entities. Instead of having

columns for each individual HTML tag, this table has 13 columns with data

for technologies other than HTML such as Java, plug-ins, Style Sheets, and

XML. The table illustrates which technologies work in which environments.

This table will be very helpful in studying more general decisions that

designers make: Is it worth it to use CSS? Furthermore, The authors do a solid

13

job of explaining four major compatibility problems: offset, canvas size, text

size, and form elements. In general, the work of Mulder and Brandt is a great

reference for designers.

Once again, however, the accuracy of the research is somewhat

questionable because the methodology is never made clear by the authors.

Also, the main table could have been more detailed and gone into the

particular tags that Holzshlag analyzes.

The HTML Goodies design site, authored by Joe Burns (No Date),

targets a less-skilled audience than Mulder and Brandt. He takes a much

different approach at browser compatibility and ignores platform

compatibility for the most part. Burns looks at the different offerings between

browsers as an advantage. As opposed to saying, Avoid doing X because not all

the browsers support it, Burns’s attitude is more like If you use Internet Explorer,

you can do X and it’s really cool! Burns’s methodology is good because he goes

through each step with the reader. His approach presents a good perspective

on what the different browsers can do, but this information is not especially

helpful for my purposes because it does not deal with how to address

compatibility issues.

Siciliano and Boles (2000) focus on interoperability significantly more

than Burns. While their work focuses primarily on Dynamic HTML

(DHTML, *technically defined as the use of HTML, CSS, and JavaScript on

any given Web page) techniques, it supplies good insight on how to deal

with browser compatibility that can be related to all types of Web design, not

simply DHTML. While it fails to discuss platform issues, it does provide a

14

cross-browser compatibility checklist as well as a very important chart

entitled “The Pain Meter” by Scott Isaacs. The chart is a cost-benefit analysis

of the choices designers can make in creating Web sites. On the one hand, a

designer can make a highly interactive, graphics-heavy site which can be

very attractive for the user; on the other hand, such a site requires a

significant amount of extra effort in order to be compatible to the various

browsers, and often the technology will not be usable on many browser

types: “If you want advanced features, be prepared for a LOT of work to get

pages readable by weaker browsers.”

The concepts Boles and Siciliano discuss are very significant to my

research. Although the “Pain Meter” is hardly empirical, its value for my

purposes is great in establishing different levels of technology for use on the

Internet.

In a lecture by Isaacs (No Date), he illustrates several aspects of

DHTML and the surrounding compatibility issues. Much of the lecture is not

directly relevant to my research, but he makes an important reference to

what Jones discussed. Isaacs makes the important point that requests in

“Browser Detecting” should be checked on the server side, rather than the

client.

Several Web development sites provide articles explaining

interoperability techniques. Anderson and Kunicki (2000), supply many

useful notes about minor cross-browser HTML problems. For instance,

Netscape displays text input boxes very differently from Internet Explorer.

Netscape renders the size of an input field using the browser’s default fixed

15

width font value as a guide while Internet Explorer uses the HTML’s current

font size as a guide. Usually this will not create a significant error; perhaps

the two browsers will render the text boxes with only a few pixels of

difference between them. However, it is possible that an entire table could

crash on itself if the table’s width cannot accommodate one of the two text

boxes.

Another Web site I found particularly useful in learning tidbits of

cross-environment problems and solutions was webreference.com. Shiran

(2001) explains many interoperability solutions—mostly with JavaScript —

for a plethora of problematic situations. He divides his brief articles into

easy-to-find tips to facilitate the design of cross-compatible sites through

JavaScript. Although he does not encompass other mechanisms for

compatibility, his work on JavaScript is solid and he seems to be an authority

on the JavaScript aspect of compatibility. Shiran focuses not only on

Netscape and Internet Explorer problems, but also investigates issues with

Macintosh and Windows differences.

Steinman (1998) focuses on DHTML compatibility across browsers.

He presents solutions not unlike those of Shiran, but disregards operating

system issues for the most part. On the other hand, he gives a solid

discussion of CSS and compatibility.

The Macromedia Web site (no Date) provides a convenient article on

how to detect whether or not a client has the Flash plugin on his/her

browser. The article is easy to follow, but the product of the text is

disappointing. The solutions provided by Macromedia are somewhat

16

inefficient, as they require an extremely large amount of code in several

languages in order to assure the adequate detection of Flash.

The preliminary readings helped me in several ways. First, they

provided me with a solid awareness of the prime concerns regarding the

interoperability of Web sites. Mulder and Brandt (1999) and Holzshlag (1998)

have authoritative tables that are easy to reference. Second, the older

resources present a unique historical perspective that the newer resources do

not discuss. This historical perspective has helped me understand the

evolution of the different browsers available for use on the Web. Finally,

several readings have introduced me to technologies that can be used as a

solution to compatibility issues, particularly Shiran’s articles and Jones’s

(1997) discussion of CSS.

17

Methodology

For my research I attained both qualitative and quantitative data.

Quantitative data came from my own analysis of a variety of Web sites,

selected at random. The sites were all available on the World Wide Web; I

reviewed no intranet sites, as intranet designers have considerably less issues

to deal with regarding interoperability. I gathered qualitative data through

interviews of Web content managers, developers, and designers, chosen by

opportunistic sampling. In this section, I will go over these two aspects of

my methodology and explain how the qualitative data is useful for

interpreting the quantitative statistics.

Quantitative Aspect

I collected quantitative data from three different locations. The first

was a Windows environment that supported Internet Explorer 5.5, Opera,

and Netscape Navigator versions 3.04 Gold, 4.72, and Netscape 6. The

second was a Macintosh environment with Internet Explorer 5 and Netscape

4.74. The last environment was a Unix platform utilizing the Lynx browser. I

studied a total of 75 sites for quantitative data. I browsed the Yahoo Web

site’s general categories to randomly select 45 of the sites (roughly 3 sites

from each of the Yahoo categories). I also reviewed 5 sites created by people

I interviewed. The other 25 I selected out of my own scrutiny and personal

Web experience. I chose larger sites such as cnet.com and gm.com that I felt

deserved recognition in this research.

18

There are several types of data that I sought from each site I

examined. I collected the data by seeking answers to the following four

questions: (1) What method(s)—if any—does each site employ in addressing

interoperability issues?; (2) In what environments do the site’s method(s) work and

in what environments do they not work?; (3) Who does the site cater to and how

large of an audience does the site have?; (4) W hat does the site offer? Services,

academic info, business info, sales? For the second question, one could argue

that the term work cannot be considered a quantitative type of data. For this

research, I will deem the term to mean I think that the site’s designer or content

manager is satisfied with its appearance in this particular environment. This call

requires me to use common sense and design rationale. I will point out any

ambiguous sites where it is not clear whether or not the site works.

The most crucial part of the analysis was evaluating the first two

quantitative questions I discussed earlier. The other two questions are be

used to give a fuller meaning to the first questions. In analyzing the data, I

placed the results from each site into a spreadsheet. The spreadsheet

revealed design trends with compatibility issues for the sites I examined.

Additionally, I used the spreadsheet to search for patterns that may occur. I

expected to find that sites with smaller audiences tend to pay less attention to

compatibility.

There was one major problem that I faced in the data collection. It is

difficult to tell whether or not a particular site has database-driven content. It

is safe to assume that most large-scale sites with constantly updated

information utilize some sort of mechanism to generate HTML on the fly,

19

where the server adds pre-made templates to the content. I initially had

hoped to come up with a statistic that revealed what percentage of these

database-driven sites also used server-side user agent detection to generate

cross-compatible content. Unfortunately, I was unable to determine such a

statistic. However, several of my interview subjects suggested that whatever

that statistic may presently be, server-side detection is on the rise. They felt

that many large-scale sites are beginning to follow the trend of using server-

side detection along with database-driven content to generate interoperable

HTML. I will discuss this mechanism in greater detail later.

Qualitative Aspect

Interviews were the source of qualitative data for my research. I

conducted 11 interviews with subjects from two main locations: the

Raleigh/Chapel Hill/Durham Triangle area as well as the San

Francisco/Oakland/San Jose Bay Area. Most of the interviews were

conducted face-to-face and a few were conducted over the phone. I

contacted one interviewee entirely by email, as she gathered data from

several sources within her Web department and sent their answers directly to

me.

I used the interviews to further supplement the quantitative statistics.

Although they covered the same basic questions as the quantitative statistics,

the interviews were more in-depth than the hand-gained statistics.

Interviewees were asked why they use the compatibility method(s) they do,

20

which could not be deciphered by myself through quantitative data analysis

alone. See the appendix for more information as to the specifics of the interviews.

Additionally, interviews afforded me the opportunity to ask my own

how-to questions that I had difficulties discovering answers to on my own.

Where my literature review failed in providing me necessary information,

my interview subjects succeeded with solid explanations. The primary

example that springs to mind is the problem of using JavaScript to detect the

client’s use of Flash on Internet Explorer in a Macintosh environment. I had

known that there was a problem with that sort of detection, but it was great

to have a face-to-face source explain the actual reason why the problem

exists.

 Using both qualitative and quantitative methods for this research

solidified my work, protecting me from potential biases that I might have

encountered had I relied on only one of the two methods for all my data

collection. If I were to have focused solely on interviews, then I would risk

the possibility that an interviewee may alter facts about his/her company X

in order to make X look good. Because I had a relatively small number of

interviews, I might have assumed that most companies like X use the same

strategy because of its success. This would have been a huge mistake. If I

used quantitative data collection to check the interview facts, I could tell if X

truly is the norm or not.

Similarly, quantitative statistics alone are easy to misinterpret. I

might assume that X and all its competing companies use a particular

strategy in order to save time when in reality the companies may actually be

21

using the strategy because it reduces work on their server. Using the two

methods together considerably strengthens my thesis as they cross-check

each other (no pun intended).

22

The What, not the How

The problem of making Web pages’ appearances consistent is not a

new one. With time, more and more browser types have become popular

and maintaining consistency in presenting information on the Web has

become all the more difficult. Designers have a wide variety of options in

choosing what methods they use to address this problem. The number of

these options also seems to increase as technology grows. As a result of these

changes in technology and browser versions, it has become all but impossible

to nail down a guideline or set of rules for designing fully compatible Web

sites.

This research is not an attempt to create a standardized guideline;

rather, my goal is to tie together the multitude of loose ends that have been

created by the wide variety of environments in which Web pages can be

viewed. The loose ends I refer to include the strategies that Web designers

employ. Tying together these loose ends will serve as an initial step toward

establishing rough guidelines for cross-compatible Web design. There is but

one simple a priori rule that serves as the foundation of my own research: the

more complex one’s Web site is, the more difficult it is for one to make the site cross-

compatible.

I realized early on in my research that the academic world has not yet

solidly established itself in the field of Web interoperability. Consequently,

this paper aims to serve as a pillar of foundation for further research in the

area. Hence, I have chosen to sacrifice some detail in favor of a larger

23

breadth for the scope of my work. An entire paper could be written solely on

the use of JavaScript as a solution to interoperability problems. This paper,

however, tackles a much wider scope including other solutions in addition to

JavaScript.

At the conclusion of each interview I conducted I asked the subject for

any comments s/he might have on my research. One of the interviewees

said that he was very interested in my topic, but most of the questions I had

asked him seemed “a little Internet 101,” meaning that the questions I had

asked were rather novice. Taken slightly aback, I responded by explaining

that if I had gone into each meticulous facet of every type of interoperability

solution, I would be writing a one thousand page doctoral dissertation and

not a fifty-page masters thesis! The point here is that this paper serves as a

foundation from which other academics can delve further into the topics I

have exposed. My research is more of a 2001 “State of the Union” address for

the Web, generalizing the what of interoperability, than it is a detailed manual

explaining how to make Web content cross-compatible.

24

The Means

My research has brought forth five general ways to achieve cross-

compatibility. They are not mutually exclusive, and in fact they are

frequently intertwined with one another to achieve a solution. This section

provides a brief overview of each method:

• Star Wars-Safe
• 4.0 Standard
• Hybrid Web design
• Server side detection
• Client side detection
• Cascading Style Sheets

Star Wars-Safe

Creating Web pages using simple HTML makes a site accessible to the

largest audience while keeping maintenance undemanding on the content

creators. This tactic includes the use of basic, clear-cut HTML that all

browsers can understand and avoids newer, complicated HTML that might

be browser-specific or unreadable by older browsers. DHTML and CSS,

unreadable in several environments, are not included. The use of text-based

images is o.k. so long as the corresponding alt values adequately substitute

for the images in text-only browsers. The same simple HTML works in all

environments, regardless of what user-agent the client is viewing from.

Uncomplicated JavaScript functions (such as image rollovers) can be

included as long as they do not corrupt the page when viewed in older

environments. For instance, if a site has a mouse rollover function that

25

creates a significant graphical change on the screen, the graphical change

may not be viewable on some browsers.

The site that I felt best employed this strategy was the official site of

the Star Wars movie series, starwars.com. The site is visually attractive, and

the same HTML works safely across environments. It uses simple JavaScript

rollovers, but the rollovers do not affect the site’s rendering in older

environments. For the duration of this paper, I will use the term Star Wars-

safe to reference those simple HTML pages which are safely viewable cross-

environment. I inadvertently coined the term as I collected my data—

whenever I found a site that effectively utilized simple cross-environment

HTML, I noted that the site was “safe, like Star Wars.”

For the most part, Star Wars-safe sites are usable on browsers

designed for disabled users. However, they are not necessarily strictly

compliant with the Americans with Disabilities Act (ADA) Web standard.

4.0 Standard

While Star Wars-safe sites attempt to accommodate the largest user

base possible, 4.0 Standard sites concern themselves only with Internet

Explorer 4+ and Netscape 4+ image-enabled browser users. Additionally,

they cross-check their work only on Macintosh and Windows operating

systems. By checking for Windows/Mac/IE4+/NN4+ compatibility, 4.0

Standard sites maintain anywhere from 90 - 99% interoperability with their

Web audience. These sites often use DHTML as well as text-based images in

their interface, which can leave pages unreadable by Personal Digital

26

Assistants (PDAs) and older or text-based browsers. Many 4.0 Standard

designers, such as Z Promotion and Design, build sites on the premise that

“the audience is usually IE and Netscape 4.”

Hybrid Web Design

Star Wars-safe and 4.0 Standard sites will generally create one version

of each Web page that the sites make available for Web users. Hybrid Web

sites, on the other hand, will have two or more versions of documents within

the site (Jones 1997, 78). At minimum, these sites have two versions of their

home page. For example, a hybrid home page might have one version

designated for 4.0 Standard clients and one for lower-level users (3.0 or less

browsers). Some hybrid sites host two versions of every page, which makes

content editing quite tedious because every edit made to the content must be

carried out twice. At most, a hybrid site will have two or more duplications

of the entire site where each duplication is created for a particular user agent.

The key advantage to hybrid Web strategy is that a designer can feel

fairly confident that her work will be cross-compatible. I once employed this

tactic at a Web site I used to work for, where over 90% of the user base was

made up of Windows/Internet Explorer 5.5 clients. We wanted a DHTML

solution to spice up the home page, but did not want to leave the small

percentage of lower-level clients with a dysfunctional interface. The DHTML

solution we came up with worked only on Internet Explorer in a Windows

environment, which meant that any other users would be left with jumbled

interfaces. As a result, we decided to create a DHTML home page for

27

Windows/Internet Explorer users and an alternate DHTML-free home page

for all the other users, using JavaScript detection to send them to the alternate

page. It served as a good hybrid Web example.

Server Side Detection

If a content provider wishes to utilize hybrid Web design, she must

first know what kind of user agent the client is. One way to attain such

information about the client is through server side detection. When the user

types a URL into his browser, the browser sends an http request to the URL’s

host server. Within that request exists information about the client, namely

what kind of operating system, browser and version the client is running.

The server can then reply with a document compatible for that type of user

agent, provided that the content producers have made the site’s content

compatible for that client type.

There are several ways to perform server side detection, and I will not

attempt to be at all comprehensive in describing them. To keep it simple, the

server can be programmed to complete the duty in a wide variety of

computer languages, depending on which ones the server supports. Many

sites possess more than one page that needs detection (for instance, the

personal example I mentioned earlier needed detection on only one page, for

the rest of the site was 4.0 Standard). If the whole site is in fact hybrid, then

the site’s developer has four options in remembering the type of user agent

(also known as maintaining state):

28

1) To maintain state, she can choose to repeatedly detect the user
agent every time the user requests a page.

2) She can maintain state by sending out a cookie to the browser
in the reply. In this case, the server reads the cookie, as
opposed to the userAgent, portion of the reply to decipher
the client.

3) She can include hidden attributes in a form in the reply’s
HTML thus designating the user agent. This tactic would
be used effectively in content dominated by forms.

4) Probably least effective, the developer can customize all the
page’s hyperlinks to have Common Gateway Interface
(CGI) methods included in their URLs. In most cases, this
fourth option is unnecessarily complex. To no surprise, I
did not find one site that employed CGI to maintain state
of the user agent.

Client Side Detection

The other way of detecting what kind of environment from which the

user is viewing the Web site occurs on the client side. Whereas several

different mechanisms are used for server side detection, by far the most

popular means of client side detection is performed through JavaScript. Most

browsers understand JavaScript, making its use very reliable.

There are two major ways of using client side detection to achieve

compatibility. The first is done entirely on the client side, with no help from

the server. The client requests a document, and the server returns a

document that is pre-armed for multiple environments. For this example, let

us assume that the developer is designing for 4.0 Standard compatibility and

uses JavaScript as the ammunition. She wants to have layered DHTML that

works in both Internet Explorer and Netscape Navigator. This is a

compatibility problem because Netscape, Netscape 6, and Internet Explorer

4+ understand elements within a document differently. As a solution, she

29

uses JavaScript to detect the browser and version. She employs different

JavaScript commands when accessing the elements according to the browser

type. If the client is Internet Explorer, the JavaScript executes a command

using document.all to reference an element. If the client is Netscape Navigator

4+, the JavaScript command includes document.layers to reference the element.

The DTHML document’s elements are then accessible in both Explorer and

Netscape. Many other browsers, however, are not compatible with this

solution.

Should the designer want the content to be accessible to other types of

user agents (such as Lynx users) without the jumbled DHTML meddling

with the interface, she can additionally use a second method of client side

detection, combining JavaScript with hybrid Web design. This strategy

requires two versions of the page: one, an enhanced version of the JavaScript-

armored DHTML page described above; two, a Star Wars-safe version of the

same content. Upon the request, the client receives the enhanced DHTML

page. The enhancement uses a new JavaScript function to detect the user

agent before the page has fully loaded. If the browser is not Netscape 6,

Internet Explorer 4+, or Netscape Navigator 4+ then the user is transported

to a Star Wars-safe version of the same page. Otherwise, the user remains on

the DHTML page. This solution provides good interoperability, but requires

significantly more content management to maintain hybrid Web content.

30

Cascading Style Sheets

 The last general category of achieving compatibility regards the use

of Cascading Style Sheets. Sites of this type are Star Wars-safe for the most

part, but additionally include style sheets to provide consistency across

environments. They avoid JavaScript and any other technologies that may

produce cross-compatibility problems. The key advantage of designing CSS

content is that even if a browser does not support CSS, the page will usually

render much more nicely than a DHTML page in a pre-DHTML browser.

CSS pages are not as widely compatible as Star Wars-safe pages, but they

service a much larger audience without the significant problems that might

occur with the use of DHTML in older browsers.

The methods described above are intentionally generalized. There are

countless other smaller-scaled tactics that can be employed to make a site

compatible. For instance, when creating a colored table with text inside it, a

designer should probably not keep the table’s background a dark color and

the text within the table a light color (assuming that the body of the Web

page has a light background color). Should a client who uses an older

browser that does not render table backgrounds visit the page, then the text

will be difficult to see, as it will blend in with the body’s color. Analysis of

strategies like these can be found around the Web at your own peril;

however, such details are beyond the scope of this paper.

31

Relevant Statistics

Quantitative data collection revealed several present trends in Web

design. To salvage some sort of explanation for these trends, I used the

knowledge I attained through my subject reading as well as the interviews I

conducted. Serving as the culmination of my research, this section examines

ten general issues and design decisions regarding interoperability on the

Web:

The Star Wars-safe strategy
Flash
Client side detection
CSS
Hybrid Web design
Server side detection
The Macintosh platform
3.0 and lower level browsers
Monitor size
Text only browsers

The Force is Strong in this One

Over one quarter of the sites I examined (27%) consisted of simple

HTML that worked satisfactorily across environments, fulfilling the Star

Wars-safe requirement. Not surprisingly, these sites tended to have large

user bases with consistently large hit counts. Having a Star Wars-safe site for

large Web presences like yahoo.com and hotmail.com is beneficial in several

ways. First, the simplicity of their sites makes them accessible to virtually all

user agents. Second, they have a reduced load on their servers because the

content they send to their clients is minimal. They include less images and

JavaScript, having text instead. This lowers the kilobytes of information that

32

pass through the server during each response. Furthermore, I assume that

they do not employ server side detection because that too would further

strain their already-busy machines.

I presume that most of the other Star Wars-safe sites with smaller user

bases elected to use this method in order to keep their site design and

maintenance simple, avoiding the difficulties associated with more

complicated compatibility options. One of my interview subjects manages a

site that gets around a half million hits a week. In explaining his rational for

maintaining only one site for all his clients, he exclaimed, “I’ve only got four

people to work with!” He simply did not have the manpower to design a

hybrid site that could send customized pages to different users. He felt the

Star Wars-safe solution was his best option.

His site’s implementation is a loose rendition of the Star Wars-safe

description in the sense that while it is usable in virtually all environments, it

caters toward 4.0 and above Internet Explorer and Netscape users running

Windows. He continued to explain his rational by citing his site’s WebTrend

report, which provides data about the site’s visiting clients (attained through

the server logs). Over 80% of his clients were viewing from the same browser

and platform—Internet Explorer on Windows—and over 95% of users were

on a minimum version of 4.0 on Internet Explorer or Netscape on Windows.

Having such a distinguishable user base allowed him to make the site

optimal for these users. At the same time, the site makes sure that no content

is too complex for weaker browsers by excluding style sheets and DHTML.

Lower-level clients might have an inferior rendering of the site’s pages, but

33

none of the content will be lost or confusing due to dysfunctional style sheets

or DHTML.

When I asked him about the disregard for the “other” users, as

minimal as it was, he defended himself by stating that his site is a marketing

site, and that the types of clients the site is marketing to are expected to have

good browsers.

Who can You Flash?!

Another marketing site, nsync.com, demonstrates the implementation

of a similar idea. Most of the NSync site is entirely Flash-based, leaving non-

Flash users without content. Perhaps the exclusion of weaker browsers can

be used as an elitist strategy. If a lower-level client without the Flash plugin

visits nsync.com, the user may understand a hidden message not entirely

unlike this: Flash is hip and so is NSync. If you are hip, then you will have Flash

and you will be cool enough to listen to NSync.

Of all the sites I viewed, I deemed 27% of them as marketing sites and

found that over half of all the marketing sites employed a significant amount

of Flash in their content (the Flash sites made up 15% of the total number of

sites I researched and every Flash site, not coincidentally, was a marketing

site). I define marketing sites as sites that serve as marketing tools much more

than as typical information services (e.g. search portals). Only half of the

Flash sites provided an alternative for non-Flash users. More often than not,

that alternative to using Flash came in the form of a page consisting solely of

34

a hyperlink from which to download Flash, clearly eliminating a large

number of users from being able to view content!

The senior developer at eluxury.com, a site that relies heavily on

Flash, clarified that his clients were “a higher level audience” and that his

users mostly have newer computers that come equipped with Flash.

Nevertheless, eluxury uses a combination of client and server side detection

to maintain usability for non-Flash users. Every time a user requests a page,

the response includes a JavaScript function that detects the presence of the

Flash plugin. If the plugin exists, then a cookie is set on the client. The next

time the client makes a request, the server examines the cookie to determine

whether or not to include Flash in the next response. The response is

generated on the fly so that the server decides what to incorporate into the

database-driven HTML. If the cookie says that the user has the Flash plugin,

then the server includes Flash in the response. Otherwise, the server includes

additional HTML content to replace the Flash segments that would not be

compatible with a non-Flash client. This is an example of a logical solution

that works fairly well but requires a significant amount of programming on

the back end. Many Web sites, such as the marketing site mentioned earlier,

cannot afford to include such a solution. Other sites may choose not to

implement this solution because it would only service a small market share.

There is a significant problem in Flash detection that deserves

mention here. According to many of the developers I interviewed, there is

not an efficient means of detecting Flash on Internet Explorer in a Macintosh

environment. Several Web sites attempt to use JavaScript to write code in

35

Visual Basic (VB is a Microsoft language) that detects Flash. I will not dive

into the technicalities behind this JavaScript/VB combination, but I noted

two sites that attempted to utilize the two languages in order to detecting

Flash. I showed their code to one of my subjects and he was certain that they

would not successfully detect Flash in all environments. At the time of this

writing, eluxury was attempting to write such a code that would successfully

detect Flash in all Mac/Internet Explorer environments.

Other Client Side Detection

More than half of the Flash sites I studied used JavaScript to detect the

plugin, making up 8% of all the sites I reviewed. One quarter of the total

number of sites used some sort of client side detection to make their pages

more compatible. There are too many combinations of patterns to discuss

here, but the most popular was a simple script that detected if the client was

running Netscape Navigator or Internet Explorer. Only one site went so far

as to detect Opera and WebTV. Usually the IE/Netscape code was used to

make DHTML interoperable. Almost every case of detection would serve the

purpose of properly accessing elements (see the elements discussion earlier),

as Internet Explorer and Netscape have slight differences in how they

position CSS elements within the browser window.

Not Everyone has Style

A surprisingly low 27% of the sites I reviewed utilized style sheets.

According to Sparklejet, a design company that relies heavily on their use,

36

style sheets can reach almost all of your Web audience when used properly.

By properly, he alludes to the use of cross-browser CSS only, and straying

from the temptation of applying cool effects that are browser-specific in

nature. He cited that the five following environments make up 99% of most

Web audiences:

Windows Macintosh Unix
IE 4 IE 5 NN 4
IE 5
NN 4

The proper use of style sheets will render compatible pages in all these

environments, which seems to be a successful solution.

The one problem that I found with regard to cross-compatible style

sheets regards using the text-decoration attribute for hyperlinks when the

user’s mouse hovers above the link. If hyperlinks are styled to have no

underline in their normal state, but underlines when they are hovered,

inconsistencies occur between the two major browsers. Internet Explorer

renders the code normally. Netscape, on the other hand, underlines the text

regardless of whether or not the user hovers the mouse over it. Nearly half of

the CSS sites used the underline-only-on-hover mechanism for hyperlinks.

The acceptance of this particular error in consistency has become something

of an industry standard.

Static Hybrid Architecture

Considering the difficulties associated with maintaining multiple

forms of the same content, it comes at no surprise that very few of the sites I

37

visited maintained some form of a hybrid structure—a mere 13%. Most of

these sites had only one hybrid page. None of the designers I spoke with felt

that hybrid design was a logical solution for compatibility. Usually, sites that

utilized hybrid design were Flash sites. The rock band, Megadeth, has a flash

site that is completely hybrid, providing content for both Flash and non-Flash

viewers. The probable reason that the site is able to use this sort of design is

because the content changes are few and relatively simple to update.

Maintenance probably requires a very minimal number of staff members.

Obviously, the smaller a site’s size, the easier it is to create hybrid content.

Server Side Activity

With the exception of small/medium-sized Web presences such as

megadeth.com, it appears as though hybrid design is only efficient if the

multiple content is generated on-the-fly from a single content creation

mechanism. Small sites do not have large enough user bases to consider

employing such a mechanism. Large-scale sites, however, can use it,

provided they have the manpower. “Database-driven pages are an

intelligent solution,” stated a representative from the Fluid design company,

“but they result in fairly large time costs on the development-implementation

side of things.” The eluxury example I cited earlier is a good example of on-

the-fly content generation.

Server side detection and generation will become more prevalent in

the near future. WebslingerZ, a design group, strongly advocates the use of

on-the-fly generation for their larger customers. They estimate that 75% of

38

their new development is done with Cocoon, a server side Java/XML

(Extensible Markup Language) application. Cocoon facilitates content

maintenance, as each Web page on a site requires only a single XML file.

From the XML file, Cocoon parses together a Web page that is customized for

each individual client, depending on the client’s environment (Apache 2001).

The growing popularity of remote Internet connections—particularly

with the rise of the Personal Digital Assistant (PDA)—will inevitably make

server side detection and page generation a more attractive option for Web

sites in the next few years. Additionally, devices for disabled Web surfers are

becoming more popular. The disabled are a somewhat untapped reservoir of

potential clients on the Internet, and I am confident that many more

commercial sites will soon use server technology to appropriate compatible

Web content for these users. Furthermore, client side detection is not usable

in many lower-level browsers, so reliable detection can only take place on the

server side. An efficient solution for PDA and disabled users is achievable

only through server side detection and database-driven content generation.

S.--‘O.S.’!

Only one of the sites I reviewed was not usable in a Macintosh

environment, suggesting a solid awareness of Macintosh-related

compatibility problems. Either designers stray from using code that is

problematic on the Macintosh or they take precautions to ensure good

usability on the platform. On occasion, designers may have reason to ignore

the Macintosh platform, depending upon who their user base is. For

39

example, ea.com (EA Sports) recently released a new site that offers video

games for Windows users. The games do not work on Macintosh, so the site

sends Macintosh users to a page explaining that the site caters to Windows

users. A developer at EA informed me that they are presently converting

their games to Macintosh format and that they will soon be making the site

Macintosh-compatible as well.

Where the Wild Things Are

Many of the sites I examined broke down in lower level

environments. 17% of all the sites were seriously dysfunctional on 3.0

browsers. Usually these pages had JavaScript error messages upon loading.

Most other sites tended to have minor problems, such as jagged table borders

or text that leaked outside of their intended realm. One subject I interviewed

explained that “people viewing through older browsers are used to seeing

messed up pages, so [having poor lower level renders] is o.k.”

Monitor Solutions

It is interesting to first note that none of the people I interviewed

discussed solutions to problems with monitor resolution. They seem to take

the same reasoning on this issue as they do with regard to older browser

users: people who have poor resolution are used to seeing pages with strange color

rendering.

There are, however, two general ways to address the wide variety of

monitor size that users have. First, designers can opt to create Web pages

40

that are small enough to fit into most windows without requiring the user to

scroll from side to side to view all the page’s content. 61% of the sites I

viewed had set table widths. The width sizes on these sites varied from 468

pixels to 860 pixels. The median width was 651 pixels and the average was

675 pixels. The designers I spoke to agreed that the industry standard on

what size to use was constantly growing. The past couple years a safe mark

would be sizing a page at around 600 pixels. Now, as users tend to have

larger monitors, designers have chosen to increase that number. Most of the

designers I spoke with now design for a minimum width of 700 pixels. The

developers at Tatu now design for 700 pixel wide screens. HyperArts used to

design for a 640 pixel width, but have also graduated to 700 pixels. The

following is a histogram depicting the various sizes I found in my data

collection:

Fixed Web Page Widths

1

3

5

7

12

14

4

0

5

10

15

<600 600-649 650-699 700-749 750-799 800-849 >850

Pixel Values

N
um

be
r o

f S
ite

s

41

The second means of attaining screen size interoperability is a little

more complex, requiring more intricate compatibility testing during

development: designers can employ a percentage width for their sites.

Through this technique, the tables on the site adjust in size according to the

client’s available screen size. One great advantage of Flash is that it can be

rendered according to percentage widths so that a Flash presentation can

occupy the client’s entire window. Including these Flash-designed sites, 38%

of all the sites I examined utilized percentage widths.

Two of the Web sites I reviewed had significant problems on a 780

pixel wide screen, where content was not viewable and scrolling had been

disallowed by the sites.

Font Size Problems

Sites are often troubled by browsers’ options of increasing the user’s

font size. Most of the problems occur when the user elects to increase

Netscape Navigator’s font size two or more times above the default size.

Although increased font size can lead to knotty renderings on Internet

Explorer as well, it is less of a problem than on Netscape. 23% of the total

sites faced interface problems when font size was increased. 10% of these

problems were major, leading to significant site disruption and some loss of

usability. Usually the major problems occurred on Netscape.

Many designers disregard the font size problem. Sparklejet noted

that there are many users out there who do not understand browser logistics

well—the company assumes that users will not change their settings. Tatu

42

often designs with a larger font size ahead of time to insure that the site will

not break should the user select larger font sizes. HyperArts specifies font

tags at “-1” in order to safely keep the sizes small so that tables will not

break. Of all the questions I asked the interviewees, questions about font size

problems were the most difficult for them to answer. A designer at

WebslingerZ said that the company usually “bites its tongue” and lets the

client have the option of using larger font sizes. The font size issue is truly

frustrating because it can turn an attractive Web site into a mush of chaos

with the click of a button.

Lynx to the Past

For the most part, the Internet giants with large user bases (such as

Yahoo) maintain sites that are very accessible to text-only browsers.

However, nearly one out of every three (29%) of all the sites I viewed was

useless when viewed through a text-only browser. Many more of the sites

were very difficult to navigate in a text-only environment. Design standards

seem to allow for the neglection of such browsers on small- to medium-sized

sites because they make such a small percentage of the user agents on the

Web.

43

Cross-Examination

It appears as though most designers have a solid knowledge of basic

compatibility principles. At the very least, they know to cross check their

work on the latest Internet Explorer and Netscape Navigator versions. All of

the sites I visited worked in the two major environments, Windows Internet

Explorer 5 and Netscape Navigator 4.7. How do designers decide which

environments to their Web pages should work in? This question is usually

answered with simple math. The key part of the equation is figuring out who

the site’s audience is.

Who is Your Audience?

There are a couple conclusions that I reached with regard to how

designers choose which environments to support. Large-scale sites tend to

cater to as wide a user base as possible and usually employ Star Wars-safe

tactics. Suppose that yahoo.com found that 99% of its users had 4.0 browsers

and thus decided to employ DHTML throughout their Web site. This

would leave 1% of the users without accessible content. This would be a

terrible business decision because 1% of yahoo.com’s user base is a

tremendous number of people. To ignore such a large number of users would

surely result in a significant decrease in hits and probably a drop in income.

Smaller sites can usually get away with designing for 4.0 Standard

compatibility because ignoring 1% of their users will probably not

significantly affect their financial situation. It is often more important for

44

these sites to have a more attractive interface than it is to cater to the lower-

level users. Whatever size the site, a cost-benefit analysis should be

performed in order to decide what is best for the site. WebslingerZ noted

that target audiences vary greatly and that significant effort must be made to

find out who that audience is before making design decisions. Server logs

should be analyzed periodically to maintain an understanding of the

audience’s diversity.

On occasion, a company might be fortunate enough to have a specific

user base. The developer from Z Production and Design pointed out a

possible scenario: if you are designing for a venture capitalist, then you can

probably feel safe about creating a 4.0 Standard site. Obviously a venture

capitalist probably would opt not to invest in a company who is still running

Mosaic to view the Web!

Cross-Check

Once a developer knows who to cater to, the developer must figure

out a means of checking compatibility across environments. Sfgate.com is a

large site that chooses to create pages accessible to as many users as possible.

The site uses simple HTML with style sheets. Sfgate employs a three person

Quality Assurance Group to cross-check all content across several

environments. A source at sfgate explained that viewing content through

Opera on Linux is a good primary option in checking content for errors. She

commented that the Opera/Linux combination was great for picking pages

apart because “everything breaks there!”

45

Sfgate’s Quality Assurance Group was the most elaborate cross-

checking scheme I encountered in my interviews. Most of the design

companies I interviewed checked their work for 4.0 Standard compatibility,

making sure to have both Macintosh and Windows machines available for

cross-checks. The larger Web sites tended to pay more attention to smaller

monitor sizes and lower-level users. None of the designers had started to

consider 6.0 browsers in their designs. Netscape 6 is still a relatively new

browser and Internet Explorer 6 is still in beta at the time of this writing.

46

Conclusion

All the designers I spoke with agreed that in the past year or two, the

creation of interoperable Web content has become much easier as more and

more users have 4.0 or greater browsers. “It’s getting better all the time!”

exclaimed one subject when I asked him about possible trends in

compatibility. Today, most Web sites can get away with providing 4.0

Standard sites. In mid-April of 2001, just prior to the completion of this

paper, the Star Wars designers rebuilt their site. Starwars.com is now a 4.0

Standard site that breaks significantly on older browsers (no longer is it Star

Wars-safe!). This illustrates how quickly compatibility standards evolve on

the Internet. Presently, a vast amount of larger sites opt for the 4.0 Standard.

However, I think that two factors will play large roles in determining

future compatibility standards: Flash and PDAs. Should Flash continue to

increase in popularity, compatibility will become less of an issue. With a

Flash site, the prime concern regards whether or not the user has the plugin,

and without that problem, many designers would have a much easier time

worrying about interoperability.

On the other hand, if PDAs continue to skyrocket in popularity,

compatibility will become a huge issue once again, because PDA content is

rendered so differently than content in typical browsers. PDAs could

potentially send compatibility back into the dark ages as it was a few years

ago.

47

Another noteworthy factor is the increase in disabled users on the

Internet. Technological innovations have made the Internet much more

accessible to them. Because their browsers render pages more like text-only

browsers and PDAs, they cannot access a large amount of Web content.

Inevitably, larger Web sites will soon need to provide a resolution to the

problem of accessibility for both disabled and PDA users.

Throughout this paper I have advocated the use of server side

detection to generate customized database-driven content, if a Web presence

can afford it. Hugh Cayless, a lead developer for the University of North

Carolina-Chapel Hill, is one of many to claim that XML is presently the best

option—and will continue on to be the future standard—for generating

HTML content from the server on the fly, appropriately customized for each

user. As discussed earlier, a single XML file can be parsed into different

HTML formats, using style sheets (XSL) to customize a Web page’s interface

for each individual client. XML keeps maintenance simple, requiring only

one XML file for each page of content. A site using XML need only create

one XSL file for each type of user environment. This file can be used for

every page on the site to appropriately organize content for each user.

Content maintenance is kept to a minimum and more importantly, template

changes to the Web site must only occur once for each XSL file. Constantly

growing in popularity, XML is a first-rate solution that all large Web

presences should consider implementing to achieve maximum

interoperability.

48

At any rate, there is a fact which all designers, developers, and

managers seem to agree upon: knowing who visits a site is the most crucial

step in deciding how cross-compatible a site should be. Once a manager can

identify her audience, she can start making decisions about what

environments her Web site should cater to.

49

Appendix

The following pages include AA-IRB consent and approval information.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Bibliography

Anderson, Joel & Chris Kunicki. (No Date). More real world Cross-Browser HTML
Development. WebTechniques. [On-line]. Available:
http://www.webtechniques.com/archives/2000/08/kunicki/ [2001, Jan. 24].

Apache. (2001). Cocoon. [On-line]. Available: http://xml.apache.org/cocoon/ [2001,
Mar. 31].

Boles, David & Siciliano, Rachael A. [2000]. Writing Cross-Browser Dynamic HTML. Cnet.
[On-line]. Available: http://www.builder.com/Programming/Dhtml [2000, Oct.
17].

Burns, Joe. (No Date). HTML Goodies. [On-line] Available:
http://www.HTMLgoodies.com [2000, Oct. 7].

Holzschlag, Molly E. (1998). Web by Design. Alameda: Sybex.
Isaacs, Scott. (No Date). Cross-Browser DHTML Authoring. Inside DHTML. [On-Line].

Available: http://www.insidedhtml.com/writeOnce/talk1/start.htm [2000, Oct.
14].

Jones, Joseph R. (1997). Cascading Style Sheets. New York: MIS:Press.
Macromedia. (No Date). Using JavaScript to Detect Flash Player. [On-line]. Available:

http://www.macromedia.com/software/flash/ [2001, Jan. 23].
Mulder, Steve and Michael Brandt. (1999). Sizing up the Browsers. Wired Digital. [On-

line]. Available:
http://www.hotwired.lycos.com/webmonkey/reference/browser_chart/
[2000, Oct. 7].

Niederst, Jennifer. (1996). Designing for the Web: Getting Started in a New Medium.
Sebastopol: O'Reilly & Associates.

Redman, Stephanie A. (1999). Taking the Leap into New Media. Cincinnati: F&W.
Shiran, Yehuda. (2001). Doc JavaScript’s Tip of the Day Archives. WebReference.com. [On-

line]. Available: http://www.docjs.com [2001, Feb 11, 2001].
Sinclair, Joseph T. (1999). Typography on the Web. San Diego: Academic Press.
Steinman, Dan. (1998). The Dynamic Duo—Cross-Browser Dynamic HTML. [On-line].

Available: http://www.dansteinman.com/dynduo/ [2001, Feb. 12].
Vitanza, Victor J. (1998). Writing for the World Wide Web. Needham Heights: Allyn &

Bacon.
W3C. (2000). User Interface Domain. World Wide Web Consortium. [On-Line]. Available:

http://www.w3.org/MarkUp/ [2000, Nov. 27].

http://www.docjs.com/
http://www.dansteinman.com/dynduo/

	Star Wars-Safe
	Hybrid Web Design
	The Force is Strong in this One
	Who can You Flash?!
	Other Client Side Detection
	Not Everyone has Style
	Font Size Problems
	Lynx to the Past
	Cross-Examination
	Who is Your Audience?
	Cross-Check
	Appendix

	Bibliography

