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Abstract

SOYOUNG KIM : More efficient estimators for case-cohort studies with
univariate and multivariate failure times
(Under the direction of Dr. Jianwen Cai)

Case-cohort study design is generally used to reduce cost in large cohort studies when
the disease rate is low. The case-cohort design consists of a random sample of the entire
cohort, named subcohort, and all the subjects with the disease of interest. When the rate
of disease is not low or the number of cases are not small, the generalized case-cohort
study which selects subset of all cases is used. In this dissertation, we study more efficient
estimators of multiplicative hazards models and additive hazards models for the traditional
case-cohort study as well as the generalized case-cohort study.

We first study more efficient estimators for the traditional case-cohort studies with rare
diseases. When several diseases are of interest, several case-cohort studies are usually con-
ducted using the same subcohort. When these case-cohort data are analyzed, the common
practice is to analyze each disease separately ignoring data collected in subjects with the
other diseases. This is not an efficient use of the data. In this study, we propose more
efficient estimators by using all available information. We consider both joint analysis of
the multiple diseases and separate analysis for each disease. We propose an estimating
equation approach with a new weight function. We establish that the proposed estimator
is consistent and asymptotically normally distributed. Simulation studies show that the
proposed methods using all available information gain efficiency. For comparing the effect
of the exposure on different diseases, tests based on the joint analysis are more powerful
than those based on the separate analysis assuming independence. We apply our proposed
method to the data from the Busselton Health Study.

We extend this approach to the stratified case-cohort design with non-rare diseases.
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We also consider the additive hazards regression model for the stratified case-cohort stud-
ies. Additive hazards model is more appropriate when risk difference is of interest. Risk
difference is more relevant to public health because it translates directly into the number
of disease cases that would be avoided by eliminating a particular exposure. We propose
an estimating equation approach for parameter estimation in additive hazards regression
model by making full use of available information. Asymptotic properties of the proposed
estimators were developed and simulation studies were conducted. We apply our proposed

methods to data from the Atherosclerosis Risk in Communities (ARIC) study.
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Chapter 1

Introduction

In large epidemiologic cohort studies, several thousands of subjects are usually followed
for many years and such studies can be expensive. Most of the cost and effort involve the
assembly of the covariate information for all cohort members. However, if the disease is rare,
much of the covariate information on disease free subjects is largely redundant [Prentice,
1986]. In order to reduce the high cost, Prentice [1986] proposed the case-cohort design.
Under the case-cohort study design, the covariate histories are collected only for subjects in
a randomly selected sample, named subcohort, from the entire cohort and all the cases (i.e.
the subjects with the event of interest). In this dissertation, we develop statistical methods
for case-cohort study design with univariate and multivariate failure time data.

One important advantage of the case-cohort study design is that the same subcohort can
be used for studying different diseases, whereas for other designs such as the nested case-
control design, new matching of cases and controls needs to be done for different diseases
[Wacholder et al., 1991; Langholz and Thomas, 1990].

For example, in the Busselton Health Study [Cullen, 1972] two case-cohort studies were
conducted. The purpose of this study is to investigate the effect of serum ferritin on coro-
nary heart disease and stroke, respectively. Serum ferritin was measured on a random
sample of the cohort as well as all subjects with coronary heart disease and/or stroke. The
existing methods do not use the covariate information collected on subjects with stroke
when studying the serum ferritin effect on coronary heart disease and vice versa. This is

not an efficient use of available resources and new statistical methods which use all available



exposure information is needed.

The case-cohort study design was originally proposed to reduce the cost in the cohort
study when the disease of interest is rare. Consequently, the traditional case-cohort sampling
involves all the cases (i.e. the subjects with the event of interest). In recent years, in order
to preserve the raw material collected in the study, case-cohort study design is also used
in situations when the disease is not rare. In such studies, it is not desirable to conduct
the traditional case-cohort studies which collect the expansive covariate information on all
cases. Sampling only a fraction of the cases is more practical [Breslow and Wellner, 2007;
Cai and Zeng, 2007; Kang and Cai, 2009]. Existing methods do not make the full use of
all available information about all diseases from the generalized case-cohort studies and a
correlate of the exposure available for all cohort members. It is desirable to develop new
statistical methods which use all available information.

There are two principal frameworks for modeling risks: the multiplicative and additive
risks model. Much work for the case-cohort studies were on multiplicative risks models
using proportional hazards models. However, the multiplicative risks model is not always
applicable in biomedical studies. Furthermore, the researchers could be interested in the
risk difference attributed to the exposure. The risk difference is more related to public
health since it translates directly into the number of disease cases that would be avoided by
eliminating a particular exposure [Kulich and Lin, 2000b]. Under such situation, the addi-
tive hazards model would be more appropriate. It will be important to develop statistical
methods for the additive hazards model using all available information from case-cohort or
generalized case-cohort studies.

In the next chapter, we will review the relevant literature in these areas.



Chapter 2

Literature review

In this chapter, we review the literature on statistical methods for both univariate and
multivariate survival data from cohort studies, case-cohort studies, and case-control studies.
The rest of this chapter is organized as follows. We review literature on statistical methods
in cohort studies for univariate failure time in section 2.1 and multivariate failure time
in section 2.2. In section 2.3, we review literature on statistical methods for case-cohort
studies.

2.1 Univariate failure time from cohort studies

In subsection 2.1.1, we first review the Cox proportional hazards model, the most popular
model for survival analysis with a single failure time. We review the literature on survival

analysis for additive hazards models from cohort studies in subsection 2.1.2.

2.1.1 The Cox proportional hazards model

The Cox proportional hazards model [Cox, 1972] is the most commonly used method
in survival analysis to examine the relationship between the effects of covariates and the
failure time. The Cox proportional hazards model specifies the hazard rate for failure time

T for a given covariate vector Z. Specifically, the Cox model is given by

M ZY = Mo(t)e 20, (2.1)



where A\g(t) is an unspecified baseline hazard function and fy is a p-dimensional fixed and
unknown parameter vector.

Let T; be the failure time, C; denote the potential censoring time, and X; = min(7;, C;)
denote the observed time for subject i. Let Y;(t) = I(X; > t) be an at risk indicator and
A; = I(T; < C;) be failure indicator where I(.) is the indicator function for subject . Let
N;i(t) = I(X; < t,A; = 1) denote the observed counting process for failure for subject i.
Suppose that there are n independent subjects and 7 denotes the end of study time.

The partial likelihood score function introduced by Cox [1975] is given by

0= 52050 - G

or equivalently using counting process form

Ua(6) = Ef Zi(wydNi(u) - [ g(o)gg,wdm(u),

where
Ni(t) = Y Ni(t), SO(B,t) =n ' Y Yi(0)e” A0, SW(B, ) =t Y1) Zi()e A O,
=1 =1 i=1

The regression parameter § can be estimated by solving the score equation Us(3) = 0.
We denote the solution by /3 Under some regularity conditions, /3’ has been shown to be

consistent and follow a normal distribution with mean 3y and covariance matrix 3 given by
== [ 080,05 (B0, )No(0)
0

where v(f,t) = 5 (80, 1)/s (Bo, ) = {5 (B0, )/ (B0, 1)}®2, s(D(Bo, 1) =
E[S@(By,t)] for d = 0,1,2, and S (B,t) = n~ ' T, Yi(t) Zi(t)®%# %) The asymptotic
variance Y can be estimated by 3 = —{8U2(5)/06|B:B} [Andersen and Gill, 1982].



2.1.2 Additive hazards model

Another framework commonly used for regression with censored failure time is the addi-
tive hazards model. Much work has been conducted under the assumption of multiplicative
hazards models. However, epidemiologists often are interested in the risk difference. Risk
difference is another measure of association. It is very relevant to public health decisions,
because it translates directly to the expected number of disease cases that would be pre-
vented in the population by removing a certain exposure [Kulich and Lin, 2000b]. When
the risk difference is of interest, the additive hazards model is very useful.

The additive hazards model takes the following form:
)\a(t; Z) = )‘aO(t) + ﬁz,zOZ(t)a (22)

where Z(.) is a p-vector of possibly time-varying covariates, 3,0 is a p-vector of regression
parameters, and A\, (t) is an unspecified baseline hazard function. The regression param-
eter of the additive hazards model represents the risk difference for one unit change in
the covariate while adjusting for the other covariates in the model. Lin and Ying [1994]
proposed estimators under model (2.2) and studied the asymptotic properties of the esti-
mators. Mimicking the partial likelihood score function for the proportional hazards model,

the estimating function to estimate (40 in (2.2) is given by
Uu(8) = Y, [ {Z:8) - Zu)}{anu(t) - Vi) 8, Zi(t)dt}
i=1

where Z,(t) = X5, Y;(t)Z;(t)/ X}, Y;(t). The estimator f3, is defined as the solution to

U(B) =0 and takes the explicit form

n - B ® “lrag T _
5a:[;/0 Yi(){Zi(t) - Za(t)} th] [Zlfo {Zi(t) = Za() }dNi () | -

Under some regularity conditions, Lin and Ying [1994] showed the random vector

nY Q(Ba — fo) converges weakly to a p-variate normal distribution with mean zero and



with a covariance matrix which can be consistently estimated by A"'BA~!, where

A:n‘léfoTY;(t){Zi(t)—Za(t)}®2dt and B:n_léfoT{Zi(t)—Za(t)}mdNi(t).

Lin and Ying [1994] also proposed the estimator for the baseline cumulative hazard function:

A t 31 {dN;(u) - Yi(u) B Zi(u)du
AaO(/Baat) — f Zz—l{ ( )n ( )6 ( ) }
0 -1 Y;(t)
They also showed that n'/2{A.0(5,.) = Ag(.)} converges weakly to a zero-mean Gaussian

process whose covariance function at (¢, s)(¢ > s) can be consistently estimated by

sn Yyt dN;(u)

) oy FO DA BATICE) - C (047 D(s) - C()A7 D),

where C(t) = fot Zo(u)du and D(t) = fot Zy:l{zigy);%g))}dm(u)_

2.2 Multivariate failure time from cohort studies

In section 2.2, we review the literature on survival analysis for multivariate failure time
data. Several approaches dealing with multiple failure times or recurrent event data have
been proposed. We review literature on statistical methods for multiplicative hazards mod-

els in subsection 2.2.1 and additive hazards models in subsection 2.2.2.

2.2.1 Multiplicative risk models

There are in general two types of commonly used models dealing with correlated failure
times: 1) marginal models, 2) frailty models. The marginal model approach does not
specify the form of the dependence among correlated failure times while the frailty model
approach formulates the exact nature of dependence among correlated failure times through

an unobservable random variable.



Marginal models

Several authors have studied marginal models. Wei et al. [1989] proposed semiparametric
methods for each marginal distribution of failure times with Cox-type proportional hazards
form.

Let Zii(t) = (Zirk(t), ..., Zipr(t))" be the covariate vector for the ith subject and the
kth failure type and By = (Bik, - - -, Bpk)’ be the failure-specific regression parameter. Under
the failure-specific model, the hazard function for the ith subject and the kth failure type

is given by
Me{t Zin (£) } = Aow(£)e™: 70, (2.3)

where Agi(t) is an unspecified baseline hazard function for k=1,..., K.

The kth failure-specific partial likelihood function [Cox, 1972, 1975] is

AV

Li(Be) = ﬁ exp { By Zik (Xik) } ,
i1 L Z1ery (x40) €XP A B Zik (Xik) }

where Ry (t) = {l: Xjx >t} is the set of subjects at risk just prior to time ¢ with respect to the
kth type of failure. The maximum partial likelihood estimator Bk is defined as the solution
to the partial likelihood equation 0log Lk (Bk)/08k = 0 and they are generally correlated.
Under some regularity conditions, it is shown that Bk is a consistent estimator for 3 and
nl/Q(B’l -B1,. .. ,B’K - %) converges in distribution to a zero-mean normal random vector

with covariance matrix () where

Hi1(B1,61) - Hix(B1,Bk)
Q= : : ;

Hi1(Br, 1) - Hrk(Bk,BK)



with

Hi(Br: Br) = Ay (Be) E{win(Be)wu(B) YA (By),

4B = [ (B 05 (B ) dor(t)t

vk(B,8) = s (B, 1) /50 (B,1) = {51 (B 1) 5 (Bro 1)} 2,
ss(B,1) = E[Y1(£) Zu()® exp { ' Zui (1)},

win(8) = [ {Zi(®) =5 B/ (B, O}AMin (1), and
A@Mw:A%ﬁ)—A;EMw&“uMM

Spiekerman and Lin [1998] and Clegg et al. [1999] extended the models proposed by
Wei et al. [1989] to formulate the general form by allowing for exchangeable failure time
of each distinct failure type in the cluster. Suppose that there are J clusters, K distinct
failure types, each of which consists of L exchangeable failure times. Let T} denote the
failure time and Cjj; the censoring time, and Xz = min (T}, Cjri) the observed time for
component [ of disease k in cluster j. Let Yjy(t) = I(X;p > t) be an at risk indicator,

A = I(Tji < Cjy) be failure indicator where I(.) is the indicator function and N (t) =
I(X i <t,Ajp = 1) be the observed counting process for failure for component [ of disease
k in cluster j. Specifically, the following model for the [th component of the kth type of

failure is considered:
)\kl{t|Zk’l(t)} = )\Ok(t)eﬁgzkl(t)7

where A\ox(t)(k =1,..., K) are unspecified baseline hazard functions.
The pseudo-partial score function is given by
S (8,u)

J K
USL(5)=;]§ Z/ {Zjm(u) - O )}dekl(u)7

where Zj1; is the covariate vector for the /th component of the kth failure type in the jth

cluster and SV (8,¢) = TV Sy SF Vi (6) Zi(8)®%eP Zm® d = 0,1.



The maximum pseudo-partial-likelihood estimator BSL for By is defined as the solu-
tion to Usz(8) = 0 and n'/?(Bsr, — Bo) is shown to converge weakly to a p-variate nor-
mal vector with mean 0 and covariance matrix Q = A"'Bgr A™! where A = ZkK:l Aj and
Bsr = E[fy {Zjn(u) - W}dM]kl(u)] . In addition, Spiekerman and Lin [1998]

showed the uniform convergence and joint weak convergence of the Aalen-Breslow type

estimators for the cumulative baseline hazard functions Aok(t, B) where

dN . ( u)

Frailty models

Marginal model approaches are appropriate when the main interest is to estimate the
effects of risk factors while the correlation among failure times is considered as a nuisance.
However, when the correlation among failure times is of interest, an alternative approach
is needed. Frailty models have been proposed under such situation. Frailty model specifies
the intra-subject correlation explicitly through an unobservable random variable (frailty).
Specifically, the failure times given the frailty are assumed independent and the conditional

hazard given the frailty W; is assumed to follow the following model:

Xi (EW3) = Wido(t) exp {B] Zin(t)},

where W;, i =1,...,n, are assumed to be independent and follow a probability distribution
is often assumed for the frailty distribution. Other distributions such as the positive stable
distribution, the inverse Gaussian distribution, or the log-normal distribution have also been
proposed.

Frailty models have been studied by many authors. In approaches for nonparametric
maximum likelihood, Klein [1992] proposed the estimation of the frailty by using an EM
algorithm based on a partial likelihood. As an alternative of a partial likelihood, a penal-
ized likelihood procedure is used by Therneau and Grambsch [2000] who showed an exact

connection between the shared gamma frailty model and a penalized likelihood procedure.



Ripatti and Palmgren [2000] generalized the results of Therneau and Grambsch [2000] by as-
suming the frailties from a log-normal distribution and thus they got a flexible specification

of variance components which can explain negative dependencies.

2.2.2 Additive risk models

The previous subsection discussed multiplicative hazards models. In this subsection, we
will review additive hazards models with multivariate failure time data from cohort studies.

When all the failure times are independent, several authors have studied additive hazards
models from cohort studies. Martinussen and Scheike [2002] and Lin et al. [1998] has applied
the additive hazards model to interval censored data. Moreover, the additive hazards model
has been applied to measurement error problems by Kulich and Lin [2000b], to frailty models
by Lin and Ying [1997], and to cumulative incidence rates by Shen and Cheng [1999].

For correlated or clustered data, marginal additive hazards models are proposed by Yin

and Cai [2004]. They proposed the additive hazards model
Njri (6 Zjki) = Mok (t) + Bop Zira (t),

where Zjj;(t) is a possibly time-varying covariate vector for failure type k of subject i in

cluster j. An estimating function for Sy is

J n T N
UNCIEDIDY /0 {Zj1i(t) = Zg () }H{dNjri(t) - Yina (D) B Zni(t)dt}

j=li=1

- ST S Vi (£) Ziki (£)
here Z{A(t) = SLy=L I S
where k( ) Z‘}-]=1 Y Yii(t)

0, which is given by

. The estimator B,f is defined as the solution to U}(8) =

J

J n T -
Bt = [Z > [0 Yiki (O Zjwi(t) - Z/?(t)}@dt] [
=1l

J
=1

é[OT{iji(t) - Z2 () }dNj (1) |-

. . . 3 / A !/ .
Under some regularity conditions, n'/ 2B - Bops- - ,61’3 - B{x)" was shown to converge in

distribution to a zero-mean (p x K)-dimensional normal random vector with a covariance

10



vector D4 (80, B86,) = A7 LU (Boj) Uiy (Bor)] A" where Aj = E[Y fi Yiju(t){ Zu(t) -
Z;(t)}®2dt]. Under the working independence assumption, the baseline cumulative hazard

function for failure type k can be estimated by

M= [ 21 2 (N () = Vs (05 Zy ()}
0 Yie1 2ie1 Yiki(u)

Under some regularity conditions, as n — oo, n'2[{Ag(t) - A01(t)},--~,{A64K(t) -
Aor(t)}] was shown to converge weakly to a zero-mean Gaussian random field. For a
specific subject with the covariate vector Zy(t), the cumulative hazard function can be es-
timated by AA(t;B,?,ZO) = Ag‘k(t;ﬁ,‘f) + fot Bk/Zo(u)du. To ensure monotonicity, a minor
modification was made, i.e. Ask(t) = maXs<t Ag‘k(s) for k=1,...,K. By similar arguments
as in Lin and Ying [1994], it can be shown that f\gk(t) and Aék(t) are asymptotically
equivalent.

Pipper and Martinusse [2004] also considered marginal additive hazards models for clus-
tered data. By using Lin and Ying [1994]’s estimators, they provided estimating equations
for the regression parameters and association parameters for marginal additive hazards
models. Further, Yin [2007] developed a test for checking the additive structure using clus-
tered data. By relaxing the linear assumption about covariate effects, Zeng and Cai [2010]
proposed a general class of additive transformation risk models for clustered failure time

data.

2.3 Case-cohort studies

2.3.1 Case-cohort studies vs nested case-control studies

In large epidemiologic cohort studies, several thousands of subjects are followed and
thus such studies can be expensive. To reduce the cost in large cohort studies, several study
designs have been proposed. Among different sampling schemes, nested case-control study
design and case-cohort study design are widely used when the disease rate is low. In this
subsection, we will review the literature on nested case-control study design and case-cohort

study design.

11



Thomas [1977] originally suggested nested case-control study design which involves se-
lection of a number of controls from those at risk at the failure time of each case. Prentice
and Breslow [1978] further developed the conceptual foundations of the nested case-control
design by deriving the conditional likelihood. However, there are some limitations in the
nested case-control studies: inefficiency for the alignment of each selected control subject
to its matched case and a strict application which involves the selection of a new set of
controls for each distinct disease category.

To address the problems, case-cohort study design was proposed by Prentice [1986] as
an alternative to the nested case-control study design. Case-cohort study design involves
selection of a random sample, named subcohort, and all cases. The subcohort constitutes
the comparison set of cases occurring at a range of failure times. The subcohort also provides
a basis for covariate monitoring during the course of cohort follow-up [Prentice, 1986].

Langholz and Thomas [1990] compared case-cohort studies with nested case-control
studies. They showed that the nested case-control approach is better than the case-cohort
study if there is moderate random censoring or staggered entry. It also has been shown
that case-cohort study design for a single disease outcome has higher efficiency than nested
case-control study design; however, the difference is very small. Compared to the nested
case-control studies, a major advantage of the case-cohort design is the ability to study
several disease outcomes using the same subcohort.

We will review the literature for case-cohort studies with univariate failure time in

subsection 2.3.2 and multivariate failure time in subsection 2.3.3.

2.3.2 Univariate failure time

Prentice [1986] proposed a case-cohort design and established asymptotic properties of

their proposed estimators. He considered a relative risk regression model [Cox, 1972]:

MHZ(w),0 <u <t} = \(O)r{B,Z:(D)}, (2.4)

where r(z) is a fixed function with r(0) = 1, By is a p-vector of regression parameters, and

12



Ao(t) is a baseline hazard function.
Prentice [1986] proposed the pseudolikelihood function for estimation of the relative risk

parameter [ in case-cohort studies given by

Ay
LB =TT|ra/ X
i=1 1eR(t:)
where 75 = Yi(t:)r{B5Z1(t:)}, R(t;) = F(t) uC, F(t) = {i|N;(t) = N;(t7)}, and C is a
random subcohort.
The maximum pseudolikelihood estimator Bc¢ is defined as a solution to UCC(B) =0

where

Ucc(B) = 81%2(6) = Zn:Ui(ﬁ) -3 A; (Cn’ - > byl > Tli)v
i=1 =1 1eR(t;) 1eR(t;)
b = Yi(t:) Zy(t)r"{BT Z)(t:)}, cu = bur BT Zi(t;)}, and 7'(u) = dr(u)/du. Under some
regularity conditions, Prentice [1986] reasoned that n~Y 2Ucc(B) converge weakly to a nor-
mal variate with mean zero and variance matrix A and that n'/ Q(BCC - Bo) converges in
distribution to a normal variate with mean zero and variance matrix S = Q' AQ~! which

can be estimated by nI(8)"'V(5)I(3)~" where

0*log L(B)
I(B8) = T opapT
‘N/(ﬁ) = ZAJ{Ujj+25(tj) Z Akvkj},
7=1 {k‘tk<t]’}
By +bjx — i\’ B; -1
B 3 (L I PR P
Ukj Z(Rk"'rjk_rik) (Cj Rj Tj J
R; = > my, Bj= > by, 06(t)=0 if C=R(t) and 1 otherwise.

lE"i(tj) l€7§,(tj)

An estimator of the baseline cumulative failure rate function Ag(t) = fot Ao(u)du is

Aoty =™t (32 Vi(w)r (8 Zi(w)] N ()
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where N (t) = X7, N;(t).

Self and Prentice [1988] proposed a slightly different estimator from Prentice [1986].
While the “comparison risk set” of Self and Prentice [1988] at time ¢ included only all sub-
cohort members at risk at time ¢, Prentice [1986] added any subjects out of subcohort but
who were observed to fail at time ¢. Self and Prentice [1988] established asymptotic dis-
tribution theory for the pseudolikelihood estimators along with that for the corresponding
cumulative failure rate estimators by using a combination of martingale and finite pop-
ulation convergence results. Specifically, they considered the maximum pseudolikelihood

estimator Bgp, defined as a solution to dlog L(5)/83 = 0, where
log () = 3, [ logr{(BZ()}aN:(1) ~ [ loal X Vi(t)r {5 Z(1)} AN (1),
i=1 0 0 icC

and C is a random subcohort of size 7. They also considered a natural estimator of the

cumulative baseline hazard function which is given by

Rsp(t) =i [T Vitwr{Bsp ()] dN (u).
1eC

Under some regularity conditions, they showed that Bgp is a consistent estimator of 8y and
n 120 (Bo) converges in distribution to zero mean Gaussian process with covariance matrix
>(Bo) + A(Bo) where X(8) = —lim, 0o n 0% log L() /052 is the variation associated with
the cohort and A(B) corresponds to the variation introduced by sampling the subcohort.
Therefore, n~Y 2( B sp — Po) was shown to converge in distribution to a zero-mean Gaussian
random variable with covariance matrix $71(89) + X71(80) A(Bo) X (Bo) by Taylor series
expansions. Moreover, n~Y/ 2(ng - Bp) and n Y 2([&3 p—1Ng) were shown to converge weakly
and jointly to Gaussian random variables with mean zero. They also proposed the estimator
of the limiting covariance matrix between n~/2{Agp(u)-Ag(u)} and n™/2{Agp(t)-Ao(t)}.

Self and Prentice [1988] showed that Prentice [1986]’s estimator 3 and their estimator
Bgp are asymptotically equivalent by showing that an individual’s contributions to S

and S(© are asymptotically negligible. Even though Prentice [1986]’s variance estimator

14



is somewhat different from Self and Prentice [1988]’s one, two estimators converge to the
same form asymptotically.

Alternative variance estimators which can be computed easily using the existing software
are proposed since the variance estimators by Prentice [1986] and Self and Prentice [1988]
are complicated. Wacholder et al. [1989] developed bootstrap variance estimates. Barlow
[1994] proposed a robust estimator of the variance. By using time-varying weights, he
proposed a pseudolikelihood function which are different from those of Prentice [1986] and

Self and Prentice [1988]. The weight w;(t) of subject i at time ¢ is defined as

1 ifdN;(t) = 1
wi(t) =1 m(t)/m(t) if dN;(t)=0andieC
0 if dN;(t)=0and i¢C.

where m(t) is the number of disease-free individuals in the cohort at risk at time ¢ and m(t)
is the number of disease-free individuals in subcohort at risk at time ¢. The conditional
probability of failure at failure time ¢; is given by

Yi(ty)wi(ty)ri(ty)
Y1 Yi(ty)we (t)rr(ty)’

pi(t)) =

where 7;(t) = exp {8l Z;(t)}. Prentice [1986]s likelihood used an indicator function as a
weight, i.e., wi(t) = 1 if dN;(t) = 1 or i € C, otherwise the weight is zero. Whereas Self
and Prentice [1988]’s likelihood used a denominator summed over subcohort members only,
Barlow [1994]’s pseudolikelihood preserved the correct expectation for the denominator at
each failure time.

The estimator ﬁ 5 proposed by Barlow [1994] is defined as the solution to the estimating
equation defined by the derivative of the logarithm of the pseudolikelihood ¥, ¥; dN;(t)
log(pi(t)). The robust variance estimator using infinitesimal jackknife estimator is

Var(35) = I (Bp)V (Bp) T (Bp) = - Y éiés,

7
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where €; = B - ﬁ_i and ﬁ_i is an estimate of 8 without observation i. Barlow [1994] proposed
to estimate é; by 171 (3)é; () where I(8g) = ¥, X, pi(t)[2i(t) — E(t)][zi(t) — E(t)] is the
information matrix, E(t) = X%, pi(t)Zi(t) is the estimator for the conditional expectation
of the covariate at time ¢, and é&(7) = [; Yi(t)[dNi(t) — pi(¢)][=(¢t) - E(t)]dN(t) is the
estimated influence of an individual observation on the overall score for subject 7 at time 7.

Stratified case-cohort studies were discussed in Prentice [1986]. Borgan et al. [2000]
developed methods for analysis of such exposure stratified case-cohort samples. Suppose
that the baseline data are available for the full cohort and can be partitioned into @ strata.

A stratified relative risk regression model is considered:

AAHZ ()} = Xog(DT{BL Z(t)}q=1,...,Q.

A pseudolikelihood function for 8 over strata is

[:q(ﬁ) = H

tj

exXp {5,217 (tj)}wij (tj)
Yer(y) Ye(ti) exp{ ' Zx(t;) bwi (t;) ’

where t; is failure time, R(t;) is case-cohort set, and wj,; (t;) is weight for the case i; at

time ¢;. They proposed three types of estimators for the stratified case-cohort design:

I R(t) = Cowe(t;) = nay/Mes(r)s
IT : R(t;) = CUF,w(t)) = ”S(k)/mg(k) if ke C\F,wy(t;)=1if keF,

IIT = wi(ty) = ngy /msry, R(t)) = C if ij € O, R(t;) = Cui\{Jy, } if ij ¢ C,

where C is the subcohort set, F' is a set of all cases, n; and m; are the number of subjects
in the cohort and subcohort in stratum [, respectively, n? and m? are the number of cases
in the cohort and subcohort in stratum [, respectively, and s(k) is the sampling stratum of
individual k. If the case occurs outside the subcohort, subcohort member Js(i;) swaps place
with the case so that the case i; is inside ﬁ(tj) while the “swapper” Jy ;) is removed from
this set. They showed that all of the proposed analysis methods were more efficient than

a randomly sampled case-cohort study. Breslow and Wellner [2007] generalized asymptotic
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results of Borgan et al. [2000] by using weighted likelihood estimation in two-phase stratified
sample.

Chen [2001b] proposed a unified approach which includes 1) nested case-control sam-
pling, 2) case-cohort sampling, and 3) classical case-control designs and allow the presence

of staggered entry. The estimating equation to cover three samplings is given by

n w2y (1) exp {825 (1)}Y; (1)
¥ wiy exp {B'Z; (0)}Y; (1)

Uen(8) = zl [ [zxt) z AN (1),

where w;; is a weight function for the respective design. They also developed the weight
function based on estimating each missing covariate by a local average. Samuelsen et al.
[2007] extended the class of designs proposed by Chen [2001b] to accommodate stratified
designs.

All work that we discussed in this subsection so far was about proportional hazards mod-
els for case-cohort studies. Other type of models have also been studied. The accelerated
failure time model and the proportional odds regression model for case-cohort are proposed
[Kong and Cai, 2009; Chen, 2001a]. Kulich and Lin [2000a] applied additive hazards mod-
els to case-cohort studies. The model they considered is in the same form as (2.2). The
subcohort can be selected by Bernoulli sampling with arbitrary selection probabilities or
by stratified simple random sampling. Using Bernoulli sampling, they proposed a weighted

estimating function:

U (8) = 321 | {20 - Zu(0)) {aNt0) - (o) 8" Zi(0e).

Ti-1pY;(8)Z;(1)
Yo p5Y;(1)

Ai+(1-A)&a™ and @ =31, &(1-A)/ X% (1 - A;). The estimator By is defined as a

where Zg(t) = and the weight function p; has the following form: p; =

solution to Uy () = 0. An estimator for the cumulative baseline hazard function Ag(t) is

A _ [T ELdNi(w) T
hontt) = [ TS~y P

Under some regularity conditions, nt/ X B 11 — o) was shown to converge in distribution
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to a zero-mean normal random vector with covariance matrix DAI(E A+TE H)DAI, where
D = E[J{{Zi(8)-e(®)}**Y1())dt], Ta(8) = E [J{Z1(£)-e(£)}2dN1 (1)), B (8) = E{(1-
a)a (1 - Ay {Z0(t) - e() }dML()]%%}, e(t) = E{Z1(1)Y1()}/ E{V1(1)}, and M;(t) =
Ni(t) - [OtY;(s)sAo(s) - jot T Z;(s)Yi(s)ds. They also showed that n'/2(Agg (t) - Aor ()
converges weakly on [0, 7] to a zero-mean Gaussian process whose covariance function at

(s,t) is
RT ()DL (24 + ) DA h(t) + Ri(s,t) — hT (s)D ' Ra(t) — T (t)D 3 Ra(s),

where Ry (s,t) = E[{A1+(1-A1)/a} [ 75" (w)d My (u) fi 7t (v)dMi(v)], Ra(t) = B[ fy {Z1(u)~
e(u)}mgt (w)dN1(u)], h(t) = fote(u)du, and mo(u) = Pr(Xy > t).

2.3.3 Multivariate failure time

Clustered failure time and multiple outcomes have been studied for the case-cohort
design. In this subsection, we will review the related literature.

Lu and Shih [2006] considered the clustered failure time data. Conventional case-cohort
studies for univariate failure time data cannot be directly applied to clustered failure time
data since failure times within a cluster are correlated. Lu and Shih [2006] considered
marginal proportional hazards model (2.4). Suppose there are J independent clusters, and
each cluster contains n correlated subjects. The estimating function proposed by Lu and

Shih [2006] is given by
J n T
Us(8) =% Y. [T 12:5(0) - Bus(8,0dN;(1)],
j=li=1

where Brs(8,6) = 513 (8,0)/S19(5,1), S{9(8,1) = 7 £ Sty HyHjYa(p)el# 21

iji(t)‘X’d, Hj indicates whether or not cluster j is selected into the subcohort, and Hj; is the
indicator for subject (j,4) being sampled as a potential individual in the subcohort. BLs can
be estimated by solving U s(/3) = 0. Under some regularity conditions, Brs was shown to be

a consistent estimator of fy. They showed that n'/?(31s—By) converges in distribution to a
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normal distribution with mean zero and with covariance matrix A7%(680)2rs(80)Az%(Bo)
where Q5(3) consists of the variations associated with the cohort and subcohort sampling
and Ars(f) = -limj.e OULs(5)/08.

Zhang et al. [2011] extended Lu and Shih [2006]’s method by proposing Bernoulli sam-
pling and using different risk sets. Since information on all failures in the full cohort is
available, failures outside the subcohort can also contribute to the risk set for independent
subjects. Thus, they constructed the risk sets using the information in the subcohort as
well as the information collected on future deaths whereas Lu and Shih [2006] used only
subcohort subjects to construct the risk set.

Kang and Cai [2009] considered case-cohort studies with multiple disease outcomes. The

marginal hazards function [Cox, 1972] is assumed to follow the model:
Aot Zie (£)} = Yigo(£) Aok (£) €0 26 (),

where Ao (%) is an unspecified baseline hazard function for disease outcome k. The pseudo-

partial likelihood score equation proposed by Kang and Cai [2009] is given by

a(1)
Ore(®) =33 [T (Zu) - A(O)EZ ’ ;}szk(t)

i=1k=1
where glgd)(ﬁ,t) =ntyn, plk(t)Ylk(t)Z@’d(t)eﬁ Zik@) for d = 0,1 and 2, pip(t) = Ay + (1 -
Agg)&idy (1), and g (1) = Tty (1= Ak )& Yk (8) [{X71 (1= Aig) Vi (t) }. Moreover, Kang and
Cai [2009] proposed a weighted estimating equation approach for estimating the parameters
in the marginal hazards regression models for the multivariate failure time data from the
generalized case-cohort study with multiple disease outcomes. The weighted estimating

function follows as

- n Ko7 W (5,1
Dre(3) =23 [ wiZutt) = g5 Z AN k(D)

i=1 k=1

where S( )(B, t) =ntyr 1wlk(t)ﬁk(t)Z‘.gd(t)eBTZ"k(t) for d = 0,1 and 2 , wi(t) = (1 -

Aip)&ibit (1) + A& + N (1= &)mandy, (1), Gr(t) = N (1 = & )marYir (8) {1 Aar(1 -
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&)Y (t)}, mi is an indicator for subject i outside the subcohort by random sampling. The
estimator fx¢ is defined as solution to the equations Ugc(8) = 0. A Breslow-Aalen-type

estimator of the baseline cumulative hazard function is AOk(B Kkc,t), where

A _ t Z?: wzk(u)szk(U)
Aor(B;t) = fo 1n§,50)(»3au)

Under some regularity conditions, they showed that 5’ Kk 18 a consistent estimator of 5y and
nt/ Q(BKC - Bo) is asymptotically normally distributed with mean zero and with variance

matrix in the form

l-«o

Src(Bo) = A(Bo) ™ {Q(ﬁo) + Vi(Bo) + (1 - Oé)kipT(Auc = 1)(1 — )VQk(/BO)} A(Bo) 7,
=1

« qk

where

K ,r 0 K
AB) = Y [T o805 (8020 Q) = E{Y. My, ()%,
k=1 k=1

Yie(O)E{(1 - A1) Rix(B,1)}

E{(1-A)Y1i(8,t)}
E{dMz,,(B)| A1k = 1,61 = 0}]
Evu(dn=1 |
Ziu(B.8) = Zu()=en(8,0. Mz (B) = [ Z(80)AM (1)

le(IB, t) = }/Zk(t)sz(,B, t)eﬂTsz(t)

K t
W) = var(30- 800 [ Rucen- (0.
k=1

Var(8) = var[dMZ,lkw)— IR0

Competing risks have also been considered for case-cohort studies with multiple dis-
eases. Sorensen and Andersen [2000] studied competing risks models for case-cohort studies
assuming proportional hazards models and considered correlation between estimated effects
of exposures on the different outcomes due to re-use of the same subcohort. By studying
competing risks data for case-cohort studies, the asymptotic correlation was established.

Despite progress of case-cohort studies for proportional hazards models with multiple
diseases outcomes, additive hazards models for the case-cohort design with multiple diseases

have been limited. The only reference is by Sun et al. [2004] which extended Kulich and Lin
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[2000a]’s method to competing risks analysis for the additive hazards model. Further study
on the additive hazards models for the case-cohort design with multiple diseases outcomes
is needed.

In this dissertation, we will study the following three topics: (1) more efficient estimators
for case-cohort studies, (2) Generalized case-cohort studies with multiple events, and (3)
Additive hazards models for traditional and generalized case-cohort studies. The proposal

is presented in the next chapter.
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Chapter 3

More efficient estimators for case-cohort
studies with rare events

3.1 Introduction

For large epidemiologic cohort studies, assembling some types of covariate information,
e.g. measuring genetic information or chemical exposures from stored blood samples, for all
cohort members may entail enormous cost. With cost in mind, Prentice [1986] proposed the
case-cohort study design, which requires covariate information only for a random sample
of the cohort, named the subcohort, as well as for all subjects with the disease of interest.
One important advantage of the case-cohort study design is that the same subcohort can
be used for studying different diseases, whereas for designs such as the nested case-control
design, new matching of cases and controls is needed for different diseases [Langholz and
Thomas, 1990; Wacholder et al., 1991].

Many methods have been proposed for case-cohort data under the proportional haz-
ards model. Prentice [1986] and Self and Prentice [1988] studied a pseudo-likelihood ap-
proach, which is a modification of the partial likelihood method [Cox, 1975] that weights
the contributions of the cases and subcohort differently. To improve the efficiency of the
pseudo-likelihood estimator, Chen and Lo [1999] and Chen [2001b] studied different classes
of estimating equations and used a local type of average as weight, respectively. Borgan
et al. [2000] proposed using time-varying weights, and Kulich and Lin [2004] developed a
class of weighted estimators by using all available covariate data for the full cohort. Breslow

and Wellner [2007] considered the semiparametric model using inverse probability weighted



methods with two-phase stratified samples. Various other semiparametric survival models
have also been modified to accommodate case-cohort studies [e.g. Chen, 2001a; Chen and
Zucker, 2009; Kong et al., 2004; Kulich and Lin, 2000a; Lu and Tsiatis, 2006].

Taking advantage of the case-cohort design, several diseases are often studied using the
same subcohort. In such situations, the information on the expensive exposure measure
is available on the subcohort as well as any subjects with any of the diseases of interest.
For example, in the Busselton Health Study, two case-cohort studies were conducted to
investigate the effect of serum ferritin on coronary heart disease and on stroke, respectively
[Knuiman et al., 2003]. Serum ferritin was measured on the subcohort, a random sample of
the cohort, as well as in all subjects with coronary heart disease and/or stroke. Typically,
the coronary heart disease analysis would not include any exposure information collected
on stroke patients not in the subcohort, and vice versa. In this paper, we develop more
efficient estimators for a single disease outcome, which can effectively use all available
exposure information. Because it is often of interest to compare the effect of a risk factor
on different diseases, we propose a more efficient version of the Kang and Cai [2009] test of

association across multiple diseases.

3.2 Model definitions and assumptions

Suppose that there are n independent subjects in a cohort study with K diseases of
interest. Let T;; denote the potential failure time and C;; denote the potential censoring
time for disease k of subject i. Let X = min(7Tj, C;i) denote the observed time, Ay, =
I(T; < Cy,) the indicator for failure, and Ny (t) = [( X, <, Ajr, = 1) and Yip(t) = I( Xy > t)
the counting and at-risk processes for disease k of subject i, respectively, where I(-) is the
indicator function. Let Z;;(t) be a p x 1 vector of possibly time-dependent covariates for
disease k of subject i at time ¢. The time-dependent covariates are assumed to be external
[Kalbfleisch and Prentice, 2002]. Let 7 denote the end of study time. We assume that Ty is
independent of Cj given the covariates Z;;, and follows the multiplicative intensity process
[Cox, 1972]

Nt | Zin(£)} = Y (£) dow (1) 71, (3.1)
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where A\gi(t) is an unspecified baseline hazard function for disease k of subject i and fy is
p-dimensional vector of fixed and unknown parameters. Model (3.1) can incorporate disease-
specific effect model, \jp{t | Z.(t)} = }Qk(t))\(]k(t)eﬁl?z;k(t), as a special case. Specifically, we
define I = (ﬂf,...,ﬁg,...,ﬁ]() and Z;,(t)T = [0, ... z(k‘ 1) AZ k(t)}T Oz(kﬂ),...,O;-rK],
letting 07 be a 1 x p zero vector. Then we have B¢ Zi(t) = 8L Z5.(t).

Assume that there are nn subjects in the subcohort. Let & be an indicator for subcohort
membership, i.e. & = 1 denotes that subject ¢ is selected into the subcohort and & = 0
denotes otherwise. Let & = pr(§ = 1) = n/n denote the selection probability of subject
i into the subcohort. The covariates Z;;(t) (0 < ¢t < 7) are measured for subjects in the

subcohort and those with any disease of interest.

3.2.1 Estimation for univariate failure time

First, we consider the situation in which only one disease is of interest, but covariate
information is available for subjects with other diseases. In the Busselton Health study, for
example, this corresponds to the situation in which we are interested in the effect of serum
ferritin on coronary heart disease with additional serum ferritin measurements available on
subjects outside the subcohort who had stroke.

In this situation, the observable information is {X;x, Ajk, &, Zix(t),0 < t < Xy} when
& =1or Ay =1, and is (X, Ajk, &) when & =0 and Ay, =0 (k=1,...,K). If we are
interested in disease k and ignore the covariate information collected on subjects with other
diseases, we can use Borgan et al. [2000]’s estimator with time-varying weights. Specifically,

the estimator is the solution to

M (5,1)

Ukw)si_ilfj{ Z) = 25

}dNik(t) -0, (3.2)

where §Igd)(5,t) = n 'Y pin(8) Vi (t) Zig (1) e BTZix(®) for d = 0,1 and 2 with a®° = 1,

a®1

= a, and a®? = aa’, and the time-varying weight p;,(t) = Ay, + (1 - Aik)fidlgl(t) with
ap(t) =21 & (1= D) Yie () /{X1 (1 = Ak ) Yie () }. Here Gy (t), an estimator for the true

selection probability &, is the proportion of the sampled censored subjects for disease k
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among censored subjects who remain in the risk set at time ¢ for disease k. This estimator
does not use the covariate information from subjects outside the subcohort who had other
diseases.

To use the collected covariate information on subjects who are outside the subcohort

and have other diseases, we consider the pseudo-partial likelihood score equations

_ norr 5(8.1)
Ur(B) = Z; fo {Zz’k(t) - %}dl\fik(t) =0, (3.3)

where

SDB,1) = ot S ()Y Zin()® A O (4=0,1,2),
=1
K K
Yi(t) = {1 - 1—11(1 - Aij)} + 1—[1(1 ~ A&t (t),
Jj= J=

and (1) = Lty G{TTIS (1 = Aij)}Yir(8)/ SR {15 (1 - Aij)}Yie(t). Here @i (t) is the
proportion of sampled subjects among subjects who do not have any diseases and are
remaining in the risk set at time ¢. Our proposed weight for disease k is 1;;(t) = 1 when
A;j =1 for some j, and ¥, (t) = a’;l(t) when § =1 and Aj; =0 forall j (j=1,...,k).
This weight takes the failure status of the other diseases into consideration, and thus our

proposed estimator will use the available covariate information for other diseases.

3.2.2 Estimation for multivariate failure time

For multivariate failure time data in case-cohort studies, Kang and Cai [2009] proposed

the pseudo-likelihood score equations

58,1
50 ,1)

75)=33 [ T{Z- (1) - }dN- (t) =0 (3.4)
= 0 ik ik =Y, .
i=1k=1

with the corresponding solution denoted BM .

As with Borgan et al. [2000]’s estimator, when calculating the contribution of disease
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k in the estimating equation, the quantity §lgd)(6,t) does not use the covariate informa-
tion collected on subjects with other diseases outside the subcohort. In order to improve

efficiency, we consider the pseudo-likelihood score equations with new weights

(1)
=3y [T { Zult) - %}dww:o. 35)

i=1k=1

When there is only a single disease of interest, i.e. K =1, (3.5) reduces to (3.3). Let M
denote the solution of equation (3.5). We estimate the baseline cumulative hazard function

for disease k using a Breslow—Aalen type estimator A (,8 ,t), where

A(B.t) = f Zsl(gj(\;’“ (), (3.6)

3.3 Asymptotic properties

3.3.1 Asymptotic properties of 3™ and A (BM t)

Because the estimators for the univariate failure time are special cases of those for the
multivariate failure time, we present results only for the multivariate case. We make the

following assumptions:

(a) (T;,Cy,Z;,i=1,...,n) are independently and identically distributed, where
T = (T, ..., Tix)", Ci= (Ca,...,Cig)", and Zi = (Zun, ..., Zirc)";

(b) pr{Yi(t)=1}>0for te[0,7] ,i=1,...,nand k=1,..., K;

(¢) [Z(0)|+ [y |dZi(t)] < Dy < oo fori=1,...,nand k=1,..., K almost surely, where D,

is a constant;

(d) for d =0,1,2, there exists a neighborhood B of y such that s]gd)(ﬁ,t) are continuous
functions and supy(o.r) ges ||S,§d)(ﬁ, t)- slid)(ﬂ, t)| — 0 in probability, where S’lgd)(ﬁ, t) =

nh Y Vi (8) Zag ()P Zin (),

(e) the matrix Ax(Bo) = [ Uk(ﬁo,t)s,(co)(ﬁo,t))\()k(t)dt is positive definite for £ =1,..., K,
where v(8,) = si) (8,8) /51 (B,1) - ex(8,)%2 and e (B,1) = 5. (8,1)/s” (8, 1);
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(f) for all Be B, te[0,7], and k = 1,..., K, S (B,1) = 05V (8,1)/08, and S (B,t) =
82520)(ﬁ,t)/(0586T), where S,Ed)(ﬁ,t), d = 0,1,2 are continuous functions of 5 € B
uniformly in ¢ € [0,7] and are bounded on B x [0, 7], and s,go) is bounded away from

zero on B x [0,7];
(g) forall k=1,...,K, [ Aok(t)dt < o0; and
(h) lim,— e & = o, where & = n/n and « is a positive constant.

We summarize the asymptotic results in the following theorems and provide the proofs

in Section 3.3.2.

Theorem 1. Under regularity conditions (a)-(h), B™ converges in probability to By and

nl/Q(BM - Bo) converges in distribution to a mean zero normal distribution with covariance

matriz A(Bo) " E(Bo)A(Bo) ™, where

1-

«

aVH(ﬁ)7

AB) = 3 AB), () = Vi) +
! K ®2 K - ®2
i) -p{ X)) Vi -3 [Maueomeo)
k=1 k=1
Wa(8) = [ {Zun() - ean(B,0)}dMun (1),

Yir () E{TTS (1 - A1) Qui(B,1)}
E{ITS, (1 Ayy)Yae(t)} 7

Qin(B,1) = Yie(){ Zin(t) — ex (B, 1) e Zix®)

sz(ﬁ7 t) -

K
Qix(B,t) = H(l - Ayj)

The covariance matrix X(fp) consists of two parts: Vi(f8y) is a contribution to the
variance from the full cohort, and Vi7(5p) is due to sampling the subcohort from the full
cohort.

We summarize the asymptotic properties of the proposed baseline cumulative hazard

estimator Aé\g M t) in the next theorem.

Theorem 2. Under regularity conditions (a)-(h), A BM ) is a consistent estimator
of Aoi(t) in t € [0,7] and H(t) = {H1(t),...,Hg ()} = [0/ AP (B, 1) - Aor(t)}, ...,

nY2{AN(BM 1) — Aox (t)}]7 converges weakly to the Gaussian process H(t) = {Hi(t),. ..,
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Hic(t)}T in D[0,7]5 with mean zero and the following covariance function R ;i (t,s) be-

tween H;(t) and Hy(s) for j+k

Rk (t,5)(Bo) = E{n1;(Bo,t)mr(Bo,s)} + ! ;aE{Clj(BOa t)C1x(Bo, 8) }
where
me(B) = (B.OTAR) " S Wan(But) + [ M)
1 ) 9 o) m 9 0 S](CO) (67,&) 7. 9

K T
G (0,0 =80T AE)T 3 [ Ui (5, w)dom ()

stz EAIS (1= A1))e 20V ()} ] dAgy(u)
E{TT1 (1= A1j)Yir(w)} $98,u)

(&

K t
10 20) [V

and 16,0 =~ [ ex(5,u)dAow(w).

3.3.2 Proofs of Theorems

Under the assumptions in Section 3.3.1, we will provide the proofs for the main theorems.

We denote

— L T
S (B,1) =t Y. Yir (1) Zug (1) %P )
=1

War(B) = [ (Zau(t) - (8, 0)dMin(2),
M (t) :Nikz(t)_[OtYik(u)eﬁozik(u)/\ok(u)dua

Yz‘k(t)E[HjI;U - Ay;)Q1k(6,1)]
E[TTE (1= Agy)Yie(®)]
Qit(B,1) = Yir (1) (Zin(t) — e (B, 1)) 4

I/1=suplf ()], |d] = max]di], D] =max|Ds;|

Q’Lk(ﬁv t) -

i

K
Qi(B,t) = q(l - Ajj)
o

where f is a function, d is a vector, and D is a matrix.

The following lemmas play important roles for proving theorems.

lemma 1. Let H,(t) and Wy (t) be two sequences of bounded process. If we assume that

the following conditions (1), (2), and (3) hold for some constant T where
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(1) supgeier || Hn(t) = H(t) || =p O for some bounded process H(t),
(2) Hn(t) is monotone on [0,7] and

(8) Wy (t) converges to zero-mean process with continuous sample paths, then

¢ t
sup || [ {Hn(s) = H(s)} dWn(s) =0, sup | [ Wy(s)d{Hn(s) = H(s)} =50
o<t<r 0 o<t<r 0

The above lemma is a extension of lemma 1 from Lin et al. [2000]. To prove the
asymptotic properties for case-cohort studies, the following lemma will be used frequently
and is an extension of the proposition from Kulich and Lin [2000a] and details of proof is

given by Lemma 2 in Kang and Cai [2010].

lemma 2. Let B;(t), i = 1,...,n be independent and identically distributed real-valued
random process on [0,7] and denote random process vector, B(t) = [B1(t),. .., By(t)] with
EB;(t) = pp(t), var B;(0) < oo, and var B;(1) < oco. Let & = [&1,...,&,] be random
vector containing n ones and n —n zeros with each permutation equally likely. Let & be
independent of B(t). Suppose that almost all paths of B;(t) have finite variation. Then
n~ Y23 &{Bi(t) - pp(t)} converges weakly in 1°[0,7] to a zero-mean Gaussian process,

and n~ L Y, E{Bi(t) - up(t)} converges in probability to zero uniformly in t.

Since we select subcohort members by using simple random sampling without replace-
ment, the condition of random vector & of above lemma is satisfied. For finite sample
n < oo, we can express pg(t) = n' Y%, Bi(t) and thus n 2 Y%, &{Bi(t) - up,(t)} =
n P EBi(t) —n T S Bi()) = PR (G - By Bi(t) = A S {5 - 1) B ().

First, we consider the asymptotic properties of time-varying sampling probability es-
timator ay(t) = Xy ﬁi{Hszl(l - Aij)}Y;k(t)/Z?:l{Hj[il(l - Ayj)}Yir(t) for true selection

probability &. For each k, it follows from the Taylor expansion series as

1

Al —a) = -
Qg (t) oz*(t)Z

{dk‘(t) - &}7

where o, (t) is on the line segment between ay(t) and a.
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{HjKl(l A”)}Y;k(t)
Zfl{l_[ 1(1 Az])}sz(t)

in t, {H S1(1 = Ayj)}Yik(t) is also a bounded function and the finite sum of its has finite

Set B;(t) = Since H t1(1-A;;) and Yji(t) are bounded functions

variation. Thus, B;(t) has finite variation

{HjKl(l Al])}}/lk(t) _ n—l —
=1 an{n 1(1 Az])}sz(t)

Also it is easy to show E[B;(t)] =n"t X%, Bi(t) =n~t 30

up , Var[B;(0)] < oo, and Var[B;(7)] < c0. So,
~ N S G (1-A)Ya(H) &g
ty-a = ! Yy
() -a i=1(nj:1(1 =) Yik(t) ; n
(TS (1 - Ay))Yi(t) 1

. S (TS (1= Ag)) Yir(2) n

& [Bi(t) - us]

'M3

Il
—_

(2

M:

.
Il
—_

(IS, (1-A45)) ik (¥)

1/2(~-1 a1
Z?:l(l'[jfil(l—Aij))}qk(t)’andthusn (a5 (t) - )

We can express ai(t) —a =1, d(% -1)

can be written as

el - 23 S T - ALY,
O‘*(t)2 ?=1H£1(1—Aij)Yik(t) {;(1 d)jI:Il(l Aij) Y (1)} (3.7)

n =1 {H L1 (1-Ay;)}Yir(t) converges in probability uniformly to E[{H L (1-Ag) Y k()]
by Glivenko-Cantelli lemma. Since {H L1 (1-A4;)}Yik(t) is bounded and monotone function
int, n”Y2{2" ( % -1) Hj:l (1-Ay;)Yir(t)} converges weakly to zero-mean Gaussian process
in the view of lemma 2. This follows from lemma 2 that n*I{Z?:l( -1) H L (1-A45)Yie(t) }
converges to zero in probability uniformly in ¢. Thus, & (¢) and & converge to the same

limit uniformly in ¢. This ensures that «.(t) also converges to the same limit as & uniformly

in t.
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By Slutsky’s theorem and above results, (3.7) can be written as

2067108 - a7t 1 o172 ~q i o ALY
@O-6 - A {;(1 DIl Awmk(t)}

a n 1

’ [m(lt)2 ‘ o Hjlil(l - Aj)Yir(t) ) @E(Hsz1(1 - Ay)Y15(t))

x U2 {Z;(l - EZ) 11(1 - Azg)sz(t)}

- 1 n—1/2"_§K_“4
aE (T (1 - Avy)Yik(t)) {;(1 d)le(l Aw)sz(t)}

+ op(1) (3.8)

The above properties will be used in some proofs. Here is the proof of theorem 1.
The proof of Theorem 1 We first show the consistency of 3. Denote UM = n=1TUM,
By Taylor expansion series, BM can be written as

90 (Bo)

-1
8—%] 0 (80) + 0p(1) (3.9)

BM=50+[

Based on the extension of Fourtz [1977], if the following conditions are satisfied

8~M
) Lo

exists and is continuous in an open neighborhood B of fy,

(11) 2Ua B

o537 is negative definite with probability going to one as n — oo,

(III) - U (8)

7 converges to A(Bp) in probability uniformly for 8 in an open neighborhood

about Gy,
(IV) UM (3) converges to 0 in probability,

then, we can show that BM converges to By in probability. Note that

8(7,]1\/[(,8) B 10 K T
W"E;lkzlfo Vi (B, 1) AN (1),

57 (8.05" (8.1) - 5,V (8.0)**

where Vi(8,t) = §]go)(ﬁ o

(3.10)
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Since 2228 pas the form (3.10) and each component, S (d)(ﬁ t) for d=0,1,2 are continuous
85T . p ' Mk ) Pl )

(I) is satisfied.

In order to show that conditions (II) and (III) are satisfied, we first will show || (—%)—
A(B) || converge to zero in probability uniformly in 5 € B as n — oo.

Let dM;p,(t) = dNyj,(t) — Y (£) %% Ny, (t)dt. We have

oU," (8)
I (—W

K~ _ n .
S 12 [T 0 (8.0 +ok(5.0) 1d 3 Nt) = [Tk B 1 Aok |

) - AB) |

K T o 1. 2»
<Y [T - w80} ~d Y Nu®) |
k=1 i=1
K ,r n .
D R O R R S CRRar]
K T L
<1y [T - 080} =d Y Na®) |
k=1 i=1

K T n T
1Y [T o8 0)dY Ma() + Vi (1) O g (1)) = (8. )5 (8,00 Mo (1) |
k=10 =1

Since S,go)(,B,t) =ntyr, Yik(t)eBTZik(t), it follows that

TTM
12— a9)
K T 1 2
< 1Y [ TG B0} d Y Na(®) | (3.11)
k=1 i=1
K T n
Y ARCRED R OY (312)
K rr
e 1y [ B0 (8.0 - 5030 ot | (3.13)
k=1

We will show that each of three terms in above inequality converges to zero uniformly in
B € B. First, the term in (3.11) will be shown to converges to zero in probability as n — oc.

To show this, first we need to show that

sup || Va(B,t) —vk(B,t) |[» 0 asn—>oo fork=1,..., K.
te[0,7]BeB
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Since V4 (3,1) is a function of 5.7 (8,1),d = 0,1,2, supre(or) ges |SL” (8,1) = stV (B, )| = 0
based on condition (d), and s, )(ﬁ t) is bounded away from zero base on condition (f), it

suffices to show that

sup || §,§d)(,8,t) —Slgd)(ﬂ,t) [0 asn—>oo fork=1,...,K and d=0,1,2.
te[0,7]BeB

Note that StV (8,) = 0™ S0y ik (8) Vi (£) Zig (£) 24P 7@ where i, () = 1 - (T, (1 -
Aj)) + 1'[]-:1(1 - Aij)&agt(t) for d=0,1,2. One can write

g]id)(ﬂ,t) _Slgd)(ﬁat)

= Y () - D Ya() Zan (1) A0
i=1

3

- - (H(l Azy))+n(1 Ay)éia 1(t)—1}Kk(t)Z¢k(t)®deﬁTZik(t)

z:l 7=1

3

(1= A& (1) - ([T(1 - i) Yir() Zan ()1 70
7=1

K T
)H (1 Aij) Zun (1) 2Oy, (1)

SR
M=
=

~
Il
—_

{]

(o

> (@ (1) - ofl)an(l i) Zan(8)®4e® Ze Oy (1)

7=1

I
—_

I
S |-
M=
sz

~.
Il
—_

+
S|
M3

~.
Il
—_

and then

159 (8,8) - D (8,1) |

&\ r
< 123 (2 -1)T10 - 8 ZaP e 5Oy | (3.14)
i=1 V& j=1
n K
s a0 - a1 - Ap)lZa)™e A OV (3.15)
i=1  j=1

Based on condition (c), the total variation of H (1= A Zig (1) B BT Zis(®yy, (1) is finite
n [0,7]. By lemma 2, the term in (3.14) converges to zero in probability uniformly in

t. Since it was shown that (akl(t) a~1) converges to zero in probability uniformly in ¢

and L Y7, & Hj:l(l—Aij)|Zik(t)®d|eBTZ““(t)Y}k(t) converges to dE[szl(l—Alj)|Z1k(t)®d|
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xeﬁTZlk(t)Ylk(t)] in probability uniformly in ¢, the term in (3.15) converges to zero in
probability uniformly. Thus, §,§d)(ﬁ )-8 ,gd)(ﬁ ,t) converges to zero. Combining this result

with condition (d), we can show that

sup | SD(8,6) - 5P (B,t) [»0asn > oo for k=1,...,K and d=0,1,2. (3.16)
te[0,7],8eB

. (0)
Since Sk

is bounded way from zero based by condition (f), we can also show that sup;[o -1 g5
I :S’v,go)(ﬁ,t)_l - s,io)(ﬁ,t)_l |- 0 asn —> oo for k=1,...,K. Combining these results,
Vi(8,t) converges to vg(3,t) in probability uniformly in ¢ and 3. Moreover, by Lenglart
inequality (Andersen and Gill [1982], p1115), there exists ny such that for n > ng for any 0,

n>0,
Pl Ny(r) > ) < 4 P SE (Bor)hor (1)t > 5),
n

where Ni(t) = X7, N (t).

Based on condition (d), P[/, Séo)(ﬁo;t))\()k(t)dt > §] converges to zero as n — oo for
6> [ slio)(ﬁo; t) Aok (t)dt and then lim,eo limy,—co P[0~ Ng(7) > n] = 0. Therefore, the term
in (3.11) converges to zero in probability uniformly in 8 € B as n - oo.

For the quantity in (3.12), f; vk (5, t)%d Y1 Mir(t) is a local square integrable martin-
gale. By the Lenglart inequality(Andersen and Gill [1982], p1115), it can be shown that,

for all 6, n >0,

P [ B 0) MO >n] s 5o P [ (8,015 B0t > 6.

where My, (t) = ¥, My, (t) and subscript jj indicates (jj') element of matrix vy(3,t).
Based on boundedness conditions (d), (f), and (g), the second term on right side in the
above inequality converges to zero in probability, uniformly in S € B for any § as n — oo.
Then it follows that one on the left side converges to zero in probability, uniformly in 5 € B
as n — oco. Hence, the quantity in (3.12) converges to zero in probability, uniformly in 3 € B

as 1 — 00.
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Due to boundedness of sup, 5 {vx(3,t)} based on conditions (d) and (e), Agr(t) for k =
1,..., K based on condition (g), and uniform convergence of §,§0) (B,t) to s,(;)) (B,t), the term
in (3.13) converges to zero in probability uniformly in 5 € B as n — co. Therefore, all three
terms in (3.11), (3.12), and (3.13) converge to zero in probability uniformly. Consequently,
we have

90 (8)
0BT

-, A(B) asn — oo uniformly in 5 € B

and consequently (II) and (III) are satisfied.
To show that (IV) is satisfied, we will examine the asymptotic behavior of n=/2TM ().

We can decompose n/2TM (By) into two parts such that

n ~(1
nPOM(B) = n_l/Zi;gfoT{Zik(t)—%}d%km
S (8o, t)
S (B, t)
{s,ﬁ”(ﬁo,t) SCD

SIEO) (507t) ) §IEO) (/807t)

=1 k=1

172 i i fOT {Zik(t) - }dNZ-k(t) (3.17)

+

1=1 k=1

}dN,-k(t). (3.18)

The quantity in (3.17) is the pseudo partial likelihood score function for full cohort and can

be written as

K Si(8.1)
)3 () = 2k D g
(5:17) i1 k=1 fo {Zk(t) Séo)(ﬁo,t)}de(t)

n K

_ n—l/QZZ/OT{Zik(t)—ek(ﬁo,t)}dMik(t)

=1 k=1
S (Bo, )

n_l/QiiﬁT{ek(ﬁo,t) —}dMlk(t)

i=1k=1 Séo)(ﬂo, t)

+

We can show that (3.17) was asymptotically equivalent to n~1/2 Y Zle Wir(By) where

Wir(B) = Jo (Zin(t) - eix(B,t))dM;1,(t) (Spiekerman and Lin [1998], Clegg et al. [1999]).
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Since dMj(t) = ANy (t) - Yi (£) 0% dA gy (¢), (3.18) can decompose into two parts:

n K T S(l)(ﬂo t) §(1)(BO t)
-1/2 k 7Tk ~ VAN (t
! Eﬁﬁ{ﬁ%&m %me} 0

[ Sé“<ﬁw>_§,9></ao,t>} S a0}
ey {S£°><ﬁo,t) CorEm) U (3.19)

K

; T [800 1)  5P (B0 & ,
o l/zglfo {SZO)(BOJ)_gzo)(ﬁo,t)};nk(t)eﬂozmmd/\%(t)- (3.20)

Based on the assumed model, My (t),..., Myx(t) are identically independently dis-
tributed zero-mean random variables for fixed ¢. M, (t) is of bounded variation since
M?2(0) < 0o and M2 (7) < oo are satisfied based on conditions (c) and (g). From the ex-
ample of 2.11.16 of Van Der Vaart and Wellner (1996, p215), n~'/2 ¥ | M;;(t) converges
weakly to a zero-mean Gaussian process, say Py ().

To establish that Py (¢) has continuous sample paths, we will use Kolmogorov-Centsov
theorem. If conditions of Kolmogorov-Centsov theorem E[{Pasx(t) - Park(5)}*] < D |t - 5|2
and E[{Pai(t) - Par(s)}2] < D.|t — 5| for all ¢t > s are satisfied, then we can show that
Pk (t) has continuous sample paths. Note that E[{Pa(t) — Park(s)}?] = E[Pass(t)?] -
2E[Park (1) Park(s)] + E[Pui(s)?] = E[Park(t)?] - E[Par(s)?] due to E[Pask(t)Pask(s)]
= E[Pur(s)?] for t > s. Since B[Py (1)?] = E[n~t 0 My (t)?] = B[ M (t)?] =
By Yir(u)e 280 Nog (u)du], B[Par ()] - E[Pars(s)*] = B[S, Y (w)es 7+ 2o (u) du]
eDZE[f: Moe(u)du] = D, (Agr(t) — Agr(s)) based on condition (c) where D, = eP=. There
exists constant C' such that Agk(t) — Aor(s) < C(t—s) for t > s since Agx(.) is differentiable
and Ao () is bounded in [0,7]. Thus E{Pazx(t) - Pas(s)}* < Dez(t—s) where D, = D, xC.
For fixed t, Ppx(t) is a zero-mean random normal variable. Then, Py (t) — Pasr(s) is also
a zero-mean random normal variable for fixed ¢ and s. Consequently, {Pasi(t) — Pari(s)}?
is a random chi-square variable for fixed ¢t and s. We can express E[{P(t) - Par(s) 1] =
Var{Pay(t) = Park(s)}? + E{(Pun(t) = Puw(s))*}? = 3{E(Park(t) - Pun(s))?}? due to
Var{Pa(t) = Pak(s)}* = 2B[{Pasr(t) - Pasr(s)}?] from the property of chi-square distri-
bution. Therefore, E{Pasx(t) - Park(5)}* = 3{E(Pasx(t) - Par(s))?}? < D} |t s|? for some

constant D. Since the two conditions are satisfied, it follows that Py (t) has continuous
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sample paths from Kolmogorov-Centsov theorem.

Based on conditions (c), (d), and (f), there exists N* such that n > N* S,il)(ﬁ,t) and
S GR))
.7 (8.)
is of bounded variation when n > N*. By using f'(z)/f(z) = [log f(x)]" = F}(t) - F5 (t)

S Igo) (B,t) are of bounded variations and S Igo) (B,t) is bounded away from zero. Thus

where Fy'(t) and Fy(t) are bounded, monotone and nonnegative functions in ¢, it can
80 (8.1)
S0 (8:1)

be written as = 73, (t) = Z74(t) where Z},(t) and Z},(t) are bounded, monotone

. L s (8.t)
and nonnegative functions in ¢. Hence, S50
k )

g(1)
Similarly, we can show that ?go)zgg is of bounded variation due to conditions (c) and (f)
k k)
5 (8.t)

and the result of (3.16) by the same manner. Moreover, we can write that 5
k I

sum of two monotone functions in ¢. Based on condition (d) and the result of (3.16), it can

SB g S B
© and

Sy, (B:t) S (Bit)

from lemma 1 that

is a sum of two monotone functions in t.

is also a

be shown that converge to the same limit uniformly. Thus, it follows

n M2 dM(t)

i=1

(s (8,1) s,i”w,t)}
SOs,1)  §0s,1)

{S“)(ﬁ 1) if)(ﬁ,w}

125 dM;(t
96,0 Oen)" &0
S0t ,i”(ﬁ,w}

SOs,t) (8,1

n
nl? Y dM;(t) >0 as n— .
i=1
Therefore, the term in (3.19) converges to 0 in probability uniformly in ¢.
We have shown that n~1/2 M. (t) converges weakly to a zero-mean Gaussian process
with continuous sample paths. To show that S,gd)( B,t) and S,gd)( B,t) converges to the same

limit in probability, we will show that n'/2{S ,gd)(ﬂ ) — §,§d)(ﬂ ,t)} converges to a zero mean
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Gaussian process. It can be expressed as

2 {si0(8,1) - 817 (8,1)}

P {z Zip()*'” 2OV () - 3 wik(t)zm(n@deﬁ%%k(t)}

i=1 i=1

n K
”_1/2{2 [T(1- Az‘j)Zik(t)®d€’BTZ““(t)Y}k(t)
io1j=1

K
1f[ (1 - Aij)&sds (8) Zin (1) 2% 760y, (1))

|
uMs

S - gt (1) T101 - A6 Zu ()1 20y, (1)

J=1

K
_1/22(1 51 H (1- Aij)Zik(t)@’deﬂTZik(t)Yik(t)

+

n 1 K
nIZ{ {Z( 1)1j11(1—Apj)ka(t)}}

OéE(H 1(1 Azy)Ylk(t))

K
X H 1- Azg)sz )®deﬁTZik(t)}/ik(t)

n~ 12 2(1 - %) [1(1 - Ay) Zi(£)®%” 2+ Y, (£) + 0,(1) (by plugging in (4.6))

N
i=1 j=1

ey A8V [ 6 184,57 Z (D)

= Z(d 1) BT (1= A0y Yae () p;d]g(l Apj) Zpk(t) Yyi(t)

+ -1/22(1 5Z)H(1 Aij) Zigs(£)2% 7 DYy (£) + 0,(1).

j=1

Since n! P 1 2 jlil(l - Api)Z, k(t)@’deﬁ (MY, (t) converges to E(HJ 1(1-Ay5)

Zlk(t)®deﬁTzlk(t)Y1k(t)) in probability uniformly in ¢, it can be written as

nt2 L5 (5,1) - 50 (8.))
n . K
e %) T1(1 - Ag)Yar(t)
=1

j=1
x {Zk(t)@deﬁTZik(t)_E(Hj[il(l Avy) Zig (1) 2Dy (1))

E(IT5 (1 - A1) Yig(t))

} +0,(1) (3.21)

By lemma 2, nl/Q{S,id)(B, t) —§,gd)(6, t)} converges weakly to a zero-mean Gaussian process
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Zix(t) _ E(HjK:I(1_Alj)Zlk(t)(gd@ﬁTZlk(t)Ylk(t)) }
E(TT}S, (1-A15) Y1k (1))

with Var(B;(0)) < oo and Var(B;(7)) < oo . Consequently, S",gd)(ﬁ,t) and S,gd)(ﬁ,t) con-

since we set B;(t) = H C(1-2i))Yir () { Zir (1) ®e BT

verges to the same limit in probability.
To investigate the asymptotic properties of the quantity in (3.20), it can be decomposed

into two parts:

& (s S8t
! mkzlfo {s]&)(,@ 1 S0, }ZY (Dbt
: ©) (g,

K ( )
12 ™) (1) 40 5, (B0
= n k;l L Sk (th) Sk (ﬁvt) S'IEO) (_Bjt)}dAOk(t)

K r B V(8,1)
> L8060 - 5060} daat) - {s17(8.0) - 5 (8.0)) fZO)(ﬁ o hor(®)

9

K T ~
- 3 {560 - 5.0 dran®)

K ,r B
2y [T{8 (8.0 - S (8.0)} en(8.0)dA0k(1) + 0p(1) (3.22)
k=1
i N S 2)) . e
The last quantity in (3.22) holds since g’(“o)(ﬁ’t) converges to ex(f,t) in probability uni-
k )

formly in ¢, nI/Z{Slgd)(B,t) - glgd)(ﬁ,t)} d = 0,1 converges weakly to a zero-mean Gaussian
process, and Agg(t) is bounded on ¢ € [0, 7].

Plugging the quantity in (3.21) into equation (3.22), we have

B K T S(l) Bat S(l) B "
' mkzlfo {SIEO)EB t; s«% t;}zy (£)e 2 dAoy (1)

2y 3 [fa-d )H<1 A)Yiu(t)
k=11=1
BT, (1- Avy) Zu(£)e? 2Dy (t))
E(TTE (1 - Ayy)Yie(t))
BT (1- Ay)e? 2 0¥ (1))
E(H (1—A1j)Y1k(t))
- wey S [T )1‘[(1 i) (Yie(D) [ Zin (1) - ex(8,0)]% O gy (1)

k=11=1

x [ Zi(t)e? Znt)

{7 Zin® _ Yer(8,6)]dAox (t) + 0p(1)
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E(TTE, (1 - Aj)Yi ([ Zik(t) - ex(B. 1)) 7@y

E(HFl(l_Alj)Ylk(t)) dBor(t)} + 0p(1)

Yir(t) -

‘ K f E 1 A ’
12 kzl Z; [ (1- ) 11(1 - A ){Qir(8,1) - k(t;(lfln 1(11( Aljl)]))/lciz];)()ﬁ t))}
o (3.23)

where Qu(8,1) = Yix(1)(Zu(1) — ex(8,1))e? 710,
We have shown that the term in (3.17) is asymptotically equivalent to n-1/2 n ZkK: )

Wir(5,t) and the term in (3.18) is asymptotically equivalent to n~1/2 Zle Y fo (1 -

: Yir BT, (1-A1))Qui (B.1))
6 )H 1(1 AZ]){QZk(B7t) - d E(HJK:JI(II—AUl)JYlkEf)) }dAOk(t)

Therefore, n 12TM () is asymptotically equivalent to

2 Z Z Wik(Bo) +n'/? Z Z f (1= =) (Bo, t)dAox(1), (3.24)

i=1k=1 i=1k=1

Yir () E(IT15, (1-A15) Qi (B,t))
where sz(ﬁvt) = ijil(l - A’U){sz(ﬁvt) - = E(HJK:l(ll—AUl)JYlkz:)) }

By Spiekerman and Lin [1998] and Clegg et al. [1999], the first term of (3.24) converges
weakly to a zero-mean normal vector with covariance matrix V7(8o) = E[XK, Wix(5o)]®?
The second term of (3.24) is asymptotically zero-mean normal vector with covariance matrix
1?70“/]1(50) = 1?T°‘E [Zszl Jo Qir(Bo, t)dAOk(t)]®2 by Héajek [1960]’s central limit theorem for
finite sampling.

In addition, n~/2 > Zle Wir(Bo) and n~1/2 > Zsz1 fOT(l - %)Qik(ﬁo, t)dAok(t) are

independent since

Cov (

K i T
> Wa(o).n 23 > (1- & o [ Qikwo,t)dAOk(t))

i=1k=1

B ) n n K _é T A
= n Z k(ﬁo)z Z(l ~)f sz(ﬁOat)dAOk(t)
i=1 i=1k=1
K n K
= E{E( Z zk(/BO)ZZ(l__)/ sz(ﬂmt)dAOk(t)l}-(T))}
k=1 i=1 k=1

M=

Wir(Bo) i

i=1

”MN “M3 ?MN nM:

- {nli B(1-47 (T>)/079ik(ﬁo,t)dA0k(t)}:o,

i=1

Ed
Il

1

where {F(t),t >0} is filtration.
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Combining all the above results, n 12gM (Bo) converges weakly to zero-mean normal
vector with covariance matrix X(8y) = Vi(Bo) + %ij(ﬁo). Consequently, n~ UM (5y)
converges to zero in probability. Therefore, gM converges to [y in probability and is a
consistent estimator of Sy by satisfying conditions (I), (II), (III), and (IV) (theorem 2 of

Fourtz [1977]).
In addition to the consistency of ﬁNM , it follows from Taylor expansion, it can be written

as

n'2(BM ~ Bo) = [A(Bo) ' PTM (Bo). (3.25)

Therefore, nt/ X pM - Bo) converges weakly zero-mean normal vector with covariance matrix

A(Bo) rE(Bo) A(Bo) .

The proof of Theorem 2 Note that

M TP dNg(u) [t ER dM(u)  rt S (Bo,u)dAok(u)
A0 = f nSO(BM ) fo n9,50><BM,u>+f0 SO (3M )

We can decompose n1/2{A (BM,t) = Agi(t)} into four parts:

n PR (BMt) - Aok (1)}
_ oz [ 1 1
- nt 2f0 (ng(o)( ) S(O)(ﬁ u))dZMzk(u)
1

12 [t 1
t [0 (S“)(BM w) 80 (Bo,u)

_1i2 1
! S<°)<ﬁo,u>dZM”“(“)

n1/2f (Séo)(ﬁo,u)—sé)(ﬂo,u)
0 gIS:O)(IBO’U)

)Sé‘”(ﬁo,u)dm(u)

) dAor () (3.26)
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By Taylor expansion, it can be written as

I S-S At
SOBM wy  SO(Bg,u) 5B, u)?

(BM - Bo)

where 3* is on the line segment between M and f3y. Plugging into the first term in (3.26),

we have

t 3(1)(6*’u) ~ iy n
fo (—W) (BM - ) {n 1 242 Mik(u)}, (3.27)

where 8* is on the line segment between M and S;. Due to consistency of AM, 3* also

converges to g in probability uniformly. Since glgo)(ﬁ*, u) and Slgl)(ﬁ*,u) are of bounded
SV (8 )
S (87 )
can be written as sum of two monotone functions in ¢t. In addition, it is shown consistency of

variations and 5’,20)(5*, u) is bounded away from 0, is of bounded variation and
ﬁNM , weak convergence of n Y24 >y My (u) to zero-mean Gaussian process with continuous
sample paths, and the uniform convergence of S’,go)(ﬂ*,u) and S,El)(ﬁ*,u). Therefore, by
lemma 1, the quantity in (4.23) converges to zero in probability uniformly in ¢.

The second term in (3.26), by Taylor expansion series, can be written as

T S CDR

w2 [ ((’;)— (B™ = Bo)S{” (B, t)dAor(u)
Sk (B*vu)

Since M and B* converge to B in probability uniformly in ¢, S,go)(ﬁ*,u) and S’Igo)(ﬁo,u)

converges to s,io)(ﬁo,t) in probability uniformly. Also, S,gl)(ﬁ*,u) —P s,(:)(ﬁo,t). Since

dAok(u) is bounded, we can show that

5,(1) * ~ -
e (_5—5))((5* "u;z) (3" - B0)SO (o, u)dhos(w) = nM1(8.0)(BY - o) + 0, (1),
k U

where 1;,(3,t)T = /Ot —ep(B,u)dAog(u) and eg(Bo,u) = slgl)(ﬂo,u)/s,go)(ﬂo,u).
Since S’IEO)(BO,U) converges to s,(go)(ﬁo,u) in probability uniformly and s,(co)(ﬁo,u) is

bounded away from 0, we have 5’150) (Bo,u)™t =P s,io) (Bo,u)” L. In addition,n " /2d X7, My (u)
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converges to zero-mean Gaussian process with continuous sample paths. Hence, the third

term in (3.26) can be written as

t 1 _ n t 1 B n
fo W{” 1/2‘121\4m(u)} = fo —{n 1/2d;Mik(U)}+0p(1)

507“’) i=1 S[(gO) (/807u)

Due to uniform convergence of 5”,20) (Bo,u) ! to s](go) (Bo,u)™ where s,(co) (Bo,w) is bounded

away from 0 and plug (3.21) into the last term in (3.26), we have

/2 ft (Séo)(ﬁo,u) —520)(50,11)
0 S (Bo,u)

- LSa-9Ta-ay
Vi a’ i ’

X ft Yir(u) {eﬂTZik(u) _ E(Hjlil(lK_ Alj)eﬂTZM(u)Ylk(“))} Ci)AOk(u)
’ E(TT0 (1= A1) Yik(u)) 59 (8o, u)

)dAOk(U)

+0p(1)
Combining all the results, we have

n PR (BM 1) - Ao (1)}

= 280 (B - )+ [
n k 0 '/0 S,go)(ﬂo,u)
RPN ! sz BTG (1= Ay)e” 250 ()
— S U-HT[A-Ay) [ Yilu (W) _

’ \/ﬁ;( 54)]1:[1( j)fo #l ){e BT (1 - Agy)Yig(u))
dAor(u)

x —————+0,(1 3.28
5,(60)(ﬁ07u) * ( ) ( )

{n1/2d zn: Mzk(u)}
i=1

Recall (3.25):

n'2(BM - By)
B ~ n K ~ n & K T
= A(Bo) l{n VY Y Wan(Bo) +n 2y -0 Y [ ﬂim(ﬂo,wdAOm(t)}wp(l),
i=1 (O |

i=1m=1

where Wi (83) = [ {Zir(t) — ex(B,t)} dM;;,(t) and

Yir ()BT (1-A15)Quk (B,t))
Quk(8,) = THja (1= A {Qu(B:) ~— etz vy
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Using the above equation, we have

a2 R (BM 1) - Aor(2)}
1

= n_1/22|:{lk(ﬁ t)TA(ﬁo)_ Z VVzm(ﬁO) WdMlk(u)}

i=1 Sy, Bo, u
+ (1——){lk(57t)TA(5o)lz -, Qum (B o (1)

E(IT5 (1 - Alj)eﬁTZ““(")Ylk(u))} dAoy(u)
E(TTj5 (1 - Ayy)Yig(u) ss(Bo,u)

K t T

+ H(l_Aij)/ Yie(u){e” 7
j=1 0

+ op(1)

= n_l/QiTh‘k;(ﬁoat) 1/22(1— .)Cik(ﬁo’t)JrOp(l)’

=1
where

L S
0 5By, u)

G = (BTG S, [ Qo o (1)
m=1

nik(ﬂ()vt) = lk(67t)TA(BO) Z Wzm(ﬂ(}) dMZk(u) and

ﬁ(l - Aj) fth‘k(u) {e’gTZik(U) B Q- Alj)@BTZ”“(“)Ym(U))} dAok(u)
je1 0

E(H S (1= A1) Yig(u)) s,(go)([i’o,u)'

Let H(t) = (HO(t) + HA(t)) where HO(t) = (HV(¢),..., HO )T, HO(1) =
HP@),... . HD )T, BO M = n V2L niw(Bo.t), and HP (DT = n 23, (1 -
£)¢ik(Bo,t). Then, by theorem 2 of Spiekerman and Lin [1998], HO(¢) = (H(¢),...,
H[((l)(t))T converges weakly to Gaussian process H(t) = (H%l)(t), e Hg)(t))T whose
mean is zero and covariance functions between ’Hj(l) (t) and H,(gl) (s)is E{ni;(Bo,t),mr(Bo,s)}
for t,s € [0,7] in D[0,7]¥

We will show weak convergence of H®)(t) to a zero-mean Gaussian process H ) (t).

)(5 t) and E(H ' (1-A1;) Y1, (t)) are bounded away from zero, Iy (3,t)7, 6TZlk(t)Y1k(t)
E(szl(l - Alj)eﬂTZ”“(t)Ylk(t)), and dAgx(t) are of bounded variations based on con-
ditions (b), (c), (d), and (f); A(By) is positive definite based on (e). Hence, it fol-

lows from Cramer-Wold device and lemma 2 that the finite dimensional distribution of
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H®(t) is asymptotically same as that of H*)(¢) for any finite number of time point
(t1,...,t). Moreover, we need to show H)(t) has tightness. It suffices to show the
marginal tightness of H ,52)(15) for each k since space D[0,7]% is equipped with the uni-
form metric. By applying lemma 2, the marginal tightness follows to H. ,52)(15). Combining
all the results, H®)(t) = (HI(Q)(t),...,HI({Q)(t))T converges weakly to Gaussian process
HO(t) = (HiQ)(t),...,Hg)(t))T whose mean is zero and covariance functions between
7-[§2)(t) and ’H,E:Q)(s) is =2 FE{¢1;(Bo.t), 1k(Bo, 8)} for t, s € [0,7] in D[0,7]*.
HM () and H®(s) are independent since

Cov(HM (), H®)(s5))

= Cov(n™'/? imk(ﬁo, t),n"1/? i(l - %)Cik(ﬁO, 5))
=1 =1

B! inik<ﬁ0,t> i(l =56k (Bors))

= BB Sma(0.0) 3201 - )0, IF(0)))

= B Yo (00.0) Y (1 SIF0)) G (0.5)

=0

Therefore, H(t) = (HM (t) + H®(t)) converges weakly to zero-mean Gaussian process
H(t) = (HD () + HP(¢)) in D[0,7]¥ whose covariance function between 7—[;2)(15) and
;" () s B{mj (5o, t).me(Bo, 9)} + L2 E{G1;(Bo. ), Cue (o, 9)}-

3.4 Simulations

We conducted simulation studies to examine the performance of the proposed methods
and to compare them with the Borgan et al. [2000] method for univariate outcomes and the
Kang and Cai [2009] method for multiple outcomes. We also compared separate analysis
with joint analysis. Suppose case-cohort studies have been conducted for diseases 1 and 2.
Then covariate information is collected for the subcohort and all the subjects with disease

1 and/or 2. We generated bivariate failure times from the Clayton—Cuzick model [Clayton
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and Cuzick, 1985] with the conditional survival function

)

-6
S(ti,ta | Z1,22) = {exp{fotl X1 (1) exp A0 | ooy (o Aoz (1) exp?272 dt) 6 _1}

where A\oi(t) and Si (k = 1,2) are the baseline hazard function and the effect of a covariate
for disease k, respectively, and @ is the association parameter between the failure times of the
two diseases. Kendall’s tau is 79 = (20 + 1), Smaller Kendall’s tau values represent lower
correlation between T and T5. Values of 0-1, 4, and 10 are used for 6, with corresponding
Kendall’s tau values 0-83, 0-11, and 0-05, respectively. We set the baseline hazard functions
Ao1(t) =2 and A\g2(t) = 4. We consider the situation Z; = Z5 = Z, where Z is generated from
a Bernouilli distribution with pr(Z = 1) = 0-5. Censoring times are simulated from a uniform
distribution [0, u], where u depends on the specified level of the censoring probability. We
set the event proportions of approximately 8% and 20% for k = 1, and 14% and 35% for
k = 2. The corresponding u values are 0-08 and 0-22, respectively, for 51 = 0-1; they are 0-06
and 0-16 for By = log2. The sample size of the full cohort is set to be n = 1000. We create
the subcohort by simple random sampling and consider subcohort sizes of 100 and 200. For
each configuration, 2000 simulations were conducted.

In the first set of simulations, we consider the case that disease 1 is of primary interest.
We compare the performance of our proposed estimator with the estimator of Borgan et al.
[2000]. Table 3.1 summarizes the results. We see that both methods are approximately
unbiased. The average of the estimated standard error of the proposed estimator is close
to the empirical standard deviation, and the coverage rate of the 95% confidence interval is
close to the nominal level. As expected, the variation of the estimators in general decreases
as the subcohort size increases. Our proposed estimators have smaller variance relative to
the estimators of Borgan et al. [2000] in all cases. This shows that the extra information
collected on subjects with the other disease helps to increase efficiency. The efficiency gain
is larger in situations with larger event proportions, smaller subcohort sizes and lower cor-
relation. We also considered disease 2 with 85 = log2 and conducted additional simulations

to compare our proposed estimator with those of Prentice [1986], Self and Prentice [1988],
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Table 3.1: Simulation result for a single disease outcome: (1 =1log(2) = 0.693

Event Size of The proposed method Borgan et al.’s method
proportion subcohort T i SE SD CR 531 SE SD CR SRE
8% 100 0-83 0706 032 032 94 0705 033 033 94 104

0-11 0v18 031 032 94 0719 033 033 94 107

0-05 0708 032 032 94 0705 033 033 94 106

200 0-83 0715 028 028 95 0716 028 028 95 102
0-11 0-704 028 028 95 0705 028 029 95 103

0-05 0697 028 027 95 0698 028 028 95 105

20% 100 0-83 0703 025 025 94 0704 026 027 95 113
0-11 0694 023 023 94 0694 026 027 95 1.31

0-05 0700 023 023 94 0701 026 026 95 129

200 0-83 0693 020 020 95 0692 021 021 95 110
0-11 0696 019 019 95 0699 021 021 95 117

0-05 0694 019 019 95 0695 021 021 95 126

SE, average standard errors; SD, sample standard deviation; CR, coverage rate (%) of the
nominal 95% confidence intervals; SRE= SD(QJ/SDZQ), sample relative efficiency, where SD,
and SD,, are the sample standard deviation for the Borgan et al. [2000]’s method and the
proposed method, respectively.

Kalbfleisch and Lawless [1988], and Barlow [1994]. Similar results were obtained but are
not presented in the paper due to space limitations.
In the second set of simulations, we are interested in the joint analysis of the two diseases.

We fit the following models:
Nik(t| Zi) = YD) Aok (e (k=1,2; i=1,...,n).

We compare the performance of the proposed estimator with the estimator of Kang and
Cai [2009]. Table 3.2 provides summary statistics for the estimator of f; for different
combinations of event proportion, subcohort sample size, and correlation. The estimates
from both methods are nearly unbiased, and their estimated standard errors are close to
the empirical standard deviations. Our method is more efficient than that of Kang and
Cai [2009]. The efficiency gain is very limited when the event proportion is small. Higher
efficiency gains are associated with smaller subcohort sizes. Estimates for 82 are not shown
in Table 3.2, but the overall performance is similar to that of (.

We also compared separate analysis of the two diseases with the joint analysis using the
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Table 3.2: Simulation result for multiple disease outcomes: [f1, f2] = [0.1, 0.7]

Event Size of The proposed method Kang & Cai’s method SRE
proportion subcohort 7, /Y SE SD CR B SE SD CR pj
[8%,14%] 100 0-83 0099 031 030 95 0101 032 031 95 1.07

0-11 0-101 030 030 95 0098 032 032 95 113

0-05 0109 030 031 94 0111 032 033 94 111

200 0-83 0-106 026 027 95 0105 027 027 95 1.04
0-11 0096 026 026 94 0096 027 027 94 105

0-05 0098 026 027 94 0098 027 027 94 105

[20%, 35% ] 100 0-83 0098 023 024 94 0094 026 027 94 124
0-11 0099 022 022 94 0097 026 026 95 142

0-05 0095 022 022 94 0101 026 027 95 144

200 0-83 0103 019 019 94 0104 020 021 95 119
0-11 0098 0-18 018 95 0097 020 020 95 129

0-05 0-098 018 018 95 0100 020 020 96 1.31

SE, average standard errors; SD, sample standard deviation; CR, coverage rate (%) of the
nominal 95% confidence intervals; SRE= SD? /SDZ%, sample relative efficiency, where SD,
and SD,, are the sample standard deviation for the Kang and Cai [2009]’s method and the
proposed method, respectively.

Table 3.3: Comparison between separate and joint analysis: 51 =log2, Pr(A =1)=0.2

Separate analysis
Size of The proposed weight Borgan at al.’s method
subcohort 7y Bl SE SD Bl SE SD
100 0-83 0-713 0244 0-245 0-716 0-263 0-265
0-11 0-702 0226 0-236 0-705 0-262 0-270
0-05 0-700 0-226 0-232 0-710 0-263 0-268
200 0-83 0-703 0196 0-194 0-704 0-206 0-206
0-11 0-697 0-186 0-193 0-699 0-205 0-213
0-05 0-698 0186 0-187 0-702 0-206 0-209
Joint analysis
Size of The proposed weight Kang and Cai’s method
subcohort 7y pM SE SD pM SE SD
100 0-83 0-711 0243 0-245 0-713 0-262 0-264
0-11 0-701 0226 0-235 0-701 0-261 0-267
0-05 0-700 0225 0-231 0-707 0-262 0-266
200 0-83 0-703 0195 0194 0-703 0-205 0-205
0-11 0-696 0-186 0-193 0-697 0-205 0-212
0-05 0-698 0186 0-187 0-700  0-205 0-209
SE, average standard errors; SD, sample standard deviation.
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Table 3.4: Type I error and power (%) in separate and joint analyses: Pr(A =1)=0.2

Type I error (81 = B2 =log?2) Power (1 = 0-1, B3 = 0-7)
Size of Separate analysis Joint analysis Separate analysis Joint analysis

subcohort 7y P BR P KC P BR P KC
100 0-83 06 0-6 6-3 6-7 49 42 90 78
0-11 08 1.7 59 5-9 56 42 83 61

006 12 21 51 5-6 59 43 81 61

200 0-83 02 0-3 5-2 5-8 80 72 98 94
011 16 19 5-4 5-4 7 65 89 78

0-05 18 2:5 5-3 5-4 79 68 90 79

P, the proposed weight; BR, the method of Borgan et al. [2000]; KC, the method of Kang
and Cai [2009].

proposed method. Data were generated satisfying the following model:

Ne(t ] Z1, Z2) = Ao ()eZ+332° (= 1,2),

where (1 represents the effect of Z on the risk of disease 1, By represents the effect of Z
on the risk of disease 2, and 3 represents the common effect of Z* for both diseases. We
set B1 = B2 = log2 and 3 = 0-1. Table 3.3 summarizes the results for 5;. The sample
standard deviations of Kang & Cai’s estimator in the joint analysis are slightly smaller
than Borgan’s estimator in the separate analysis. The sample standard deviations of the
proposed estimators are similar in the joint and separate analyses, and they are smaller
than Kang & Cai’s and Borgan’s estimators, respectively. Conclusions for the estimator of
B9 are similar. We also conducted hypothesis tests for Hy: 51 = B2. Table 3.4 presents the
Type I error rates and power of the tests at the 0-05 significance level. The tests under
the separate analysis treat the two estimates, Bl and Bg, as from two independent samples.
Type I error rates from separate analyses are much lower than 5% while those from the
joint analysis are close to 5%. The settings for power analysis are the same as before except
that 81 = 0-1 and (2 = 0-7. Tests based on the proposed methods are more powerful than
those based on Kang & Cai’s and Borgan’s methods, and the joint analysis produces more

powerful tests than the separate analysis.
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3.5 Data analysis

We apply the proposed method to analyze data from the Busselton Health Study [Cullen,
1972; Knuiman et al., 2003], conducted in the south-west of Western Australia, and intended
to evaluate the association between coronary heart disease and stroke and their risk factors.
General health information for adult participants was obtained by questionnaire every three
years from 1966 to 1981. This study population consists of 1612 men and women aged
40-89 who participated in 1981 and were free of coronary heart disease or stroke at that
time. Coronary heart disease event is defined as hospital admission, any procedure, or
death related to coronary heart disease. Stroke event is defined as hospital admission, any
procedure, or death from stroke. The outcomes of interest were time to the first coronary
heart disease event and time to the first stroke event. The event time for a subject was
considered censored if the subject was free of that event type by December 31, 1998 or lost
to follow-up during the study period.

One of the main interests of the study was to compare the effect of serum ferritin on
coronary heart disease with its effect on stroke. To reduce cost and preserve stored serum,
case-cohort sampling was used. Serum ferritin was measured for all the subjects with
coronary heart disease and/or stroke as well as those in the subcohort. We conduct a joint
analysis of the two diseases. In our analysis, the full cohort consists of 1210 subjects with
viable blood serum samples, which includes 174 subjects with only coronary heart disease,
75 with only stroke, and 43 with both diseases. The subcohort consisted of 334 disease-
free subjects, 61 with only coronary heart disease, 36 with only stroke, and 19 with both
diseases. The total number of assayed sera samples was 626. If a subject was censored and
free of both events at the censoring time, then the censoring times for the two disease events
were the same. Two subjects died due to both coronary heart disease and stroke, for whom
the times for both events were the same. No other subjects died at the first diagnosis of
either disease. For this study, it is reasonable to assume, as in the original study [Knuiman

et al., 2003], that censoring was conditionally independent of the event processes.
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Table 3.5: Analysis results for the Busselton Health Study

Proposed method Kang & Cai method
Variables By SE HR 95%CI By SE HR 95% CI
log(ferritin) on CHD  0-145 0-0897 1-16 (0-97, 1-38) 0-092 0-0949 1-10 (0-91, 1-32)
log(ferritin) on Stroke 0-172 0-1219 1-19 (0-93, 1-51) 0-186 0-1304 1-20 (0-93, 1-56)
Age 0-071 0-0069 1.07 (1-06, 1-09) 0-069 0-0070 1-07 (1-06, 1-09)
Triglycerides 0-239 00484 1-27 (1-16, 1-40) 0-232 0-0541 1-26 (1-13, 1-40)
BPT 0423 0-1633 1-53 (1-11, 2-10) 0-408 0-1727 150 (1-07, 2-11)

CHD, coronary heart disease; BPT, Blood pressure treatment; SE, standard error; HR,
hazard ratio; CI, confidence interval.

We fit the following model
MNe(t| 21, Za, Z3, Z4) = )\Ok(t)€51kZ1+52kZ2+53k23+54kZ4 (k=1,2),

where Z1, Zs, Zs, and Z4 denote the logarithm of serum ferritin level, age in years, triglyc-
erides in millimoles per liter, and whether subjects had blood pressure treatment, respec-
tively. We then tested Hy : Bo1 = Ba2, 831 = P32, 841 = B2 based on the proposed method,

and the p-value is 0-138. Therefore, we fit the final model
Ne(t| Zy, Zo, Z3, Zy) = )\Ok(t)651k21+ﬁ2Z2+ﬁ323+54Z4 (k=1,2).

Table 3.5 summarizes the results of the final fit. With a 1 unit increase in the logarithm
of the serum ferritin level, the hazard ratio for coronary heart disease risk is increased by
16% and for stroke risk by 19%. When we tested Hy : 811 = S12, Hp was not rejected with
the p-value = 0-823. We also fit the same model using Kang and Cai [2009]’s method. The
standard errors for the effects of the logarithm of the serum ferritin level are slightly larger,

0-0949 for coronary heart disease and 0-1304 for stroke.

3.6 Concluding remarks

When disease rates are low, the efficiency gain of the proposed method is not large.
When the event rates are low, the number of cases is small, and consequently, the amount

of extra information is small. In the case of common diseases, sampling all cases in the
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traditional case-cohort design with multiple diseases limits applications [Breslow and Well-
ner, 2007]. Instead, a generalized case-cohort design [Cai and Zeng, 2007] in which cases
are sampled can be considered. Extending the proposed weights to this general case merits
further investigation.

In our proposed estimation framework, time-dependent covariates can be allowed. How-
ever, estimation generally requires one to know the entire history of time-dependent co-
variates. In many follow-up studies, this may not be true. One commonly used approach
for handling time-dependent covariates is to consider the last-value-carry-forward, but this
could introduce bias. A more sensible approach is to consider the joint modeling of survival
times and longitudinal covariates via shared random effects, which has not been studied for
case-cohort data.

When studying multiple diseases, different diseases may be competing risks for the same
subject. In a competing risks situation, a subject can only experience at most one event; in
the situation we considered, a subject can still experience the other events. Consequently, in
the competing risks situation, a subject is at risk for all types of events simultaneously and
will not be at risk for any other events as soon as one event occurs. Our approach in this
paper can be adapted to competing risks by modifying the at-risk process and the weight
function, but analysis will be based on the cause-specific hazards as studied in Sorensen
and Andersen [2000].

The current method is based on estimating equations, which improves the estimation
efficiency by incorporating a refined weight function for the risk set. However, it is not
semiparametric efficient. To derive the most efficient estimator, we need to specify the joint
distribution of the correlated failure times from the same subject and consider nonparamet-
ric maximum likelihood estimation based on the joint likelihood function for case-cohort
sampling. This may be very challenging, especially when expensive covariates are continu-

ous. This is an interesting topic which warrants future research.

52



Chapter 4

Stratified case-cohort studies with nonrare
events

4.1 Introduction

Case-cohort study design is an economical means for large cohort studies since it can
be expensive to assemble covariate information for all cohort members [Prentice, 1986]. To
conduct case-cohort design, there are two sampling steps. First, a random sample from
the full cohort, named the subcohort, is selected via simple random sampling. Second, we
sample subjects having diseases of interest outside the subcohort. The covariate information
on the exposure is obtained for the subcohort members as well as sampled cases or failures.

In biomedical studies some covariate information is often available for all subjects in the
cohort such as age or gender and these covariate information could be used to define strata
variables. Under the situation, the subcohort can be selected via stratified random sampling
based on strata variables, which could lead to more powerful and efficient case-cohort study
than unstratified case-cohort study using simple random sampling of the subcohort [Borgan
et al., 2000]. Kulich and Lin [2004] and Samuelsen et al. [2007] proposed stratified case-
cohort design by using the covariate data outside the case-cohort sample and using local
averaging method, respectively.

For case-cohort studies with a single disease outcome as well as multivariate disease
outcomes, extensive progress has been made. From unstratified case-cohort data, Pren-
tice [1986] proposed a pseudo-likelihood approach, Self and Prentice [1988] proposed the

inference of a slightly modified pseudo-likelihood estimator, and Barlow [1994] developed a



robust estimator of the variance with a time-varying weight. For multivariate failure time
outcomes, Lu and Shih [2006] proposed estimation for case-cohort studies for clustered fail-
ure time. In order to be able to compare the effects of a risk factor on different diseases,
Kang and Cai [2009] developed the estimation procedure based on the joint analysis in
generalized case-cohort studies. By using stratum variables, stratified case-cohort design
with a single disease outcome has been studied [Borgan et al., 2000; Kulich and Lin, 2000a,
2004].

Aforementioned methods were considered in traditional case-cohort design when diseases
are infrequent. However, in many biomedical studies, the disease rate may not be low or the
number of cases is large. Under the situation, Cai and Zeng [2007] proposed the generalized
case-cohort design by selecting a subset of all cases or failures. When stratum variables are
available for all cohort members, Kang and Cai [2010] considered stratified generalized case-
cohort design by using stratified random sampling of the subcohort and cases. For example,
the Atherosclerosis Risk in Communities (ARIC) study is to investigate the association
between high-sensitivity C-reactive protein (hs-CRP) and incident diabetes events. Since
the disease rate of incident diabetes is 11.2% and frozen biologic specimen from which hs-
CRP can be measured should be conserved, selecting all subjects with incident diabetes is
prohibited. To preserve frozen biologic specimen and save cost, the generalized case-cohort
study was conducted by sampling a subset of diabetes cases. Based on age (< 55, > 55),
gender, and race, the subcohort and a subset of diabetes cases were selected via stratified
sampling.

When it is of interest to study the effect of one risk factor on multiple diseases, several
case-cohort studies were conducted separately. For example, another case-cohort study for
association between hs-CRP and incident coronary heart diseases (CHD) had been con-
ducted in the ARIC study [Ballantyne et al., 2004]. In this study, hs-CRP information was
available on the subcohort as well as all incident coronary heart diseases. When construct-
ing estimating equations for diabetes in generalized stratified case-cohort studies, hs-CRP
information for subjects collected from CHD cases was not used. This motivates us to con-

sider a different approach which can utilize all available exposure information in generalized
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stratified case-cohort studies.

In this paper, we develop estimation procedure for generalized stratified case-cohort
study design with a single disease outcome as well as multiple disease outcomes by using all
available exposure information. In section 4.2, we propose models and estimation procedures
for the proposed methods. Section 4.3 summarizes asymptotic properties to be proved for
the proposed estimators and section 4.4 reports some simulation results. In section 4.5,
we apply our proposed methods to data from the ARIC study. In section 4.6, concluding

remarks are provided.

4.2 Model and estimation

4.2.1 Model

Suppose that there are n independent subjects and K diseases of interest in a cohort
which can divided into L mutually exclusive strata using information available for all the
cohort members. Suppose that the total size of cohort n is partitioned into n; intervals for
l=1,...,L. Let Ty be the failure time, Cj;; the potential censoring time, and Zj;;(¢) be
a p x 1 possibly time-dependent covariates vector for disease k of subject ¢ in stratum .
Let Xy, = min(Tyk, Cpir) denote the observed time, Ay = I(Ty, < Chix) the indicator for
failure, Ny (t) = I( Xk < t, Ayx = 1) the counting process for the observed failure time, and
Yiie(t) = I( Xy, > t) the at risk indicator for disease k of subject i in stratum [, where I(.)
is the indicator function.

We assume that all the time-dependent covariates are external [Kalbfleisch and Prentice,
2002] and Ty is independent of Cy;, for given possibly time-dependent covariates Zy(t).
Let 7 denote the end of study time. For disease k of subject i in stratum [, the hazard

function A\ (.) associated with Zj(t) is given by

Nkt Ziik (t) } = Wik(t)/\Ok(t)eﬁgz“’“(t), (4.1)
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where A\gr(t) is an unspecified baseline hazard function for disease k of subject i in stra-
tum [ and fy is p-dimensional fixed and unknown parameters. Model(4.1) can incorpo-
rate disease-type-specific effect model N\ {t|Z};,.(t)} = Yiir(t) )\Ok(t)eﬁgzl*ik(t) as a special
case. Specifically, we define 8] = (Bf,...,ﬁ,?,...,,@%;) and Zyp ()T = (0?;1,...,05%_1),
{Zl’;k(t)}T,Og(kH), ..., 08 ) where 07 is 1 x p zero vector. We have B¢ Zyx(t) = 8L Z5,.(¢).

Since obtaining Z for all the subjects in the cohort can be very expensive, a generalized
case-cohort design is often used where a subcohort and a sample of disease cases from each
stratum are selected to measure Z’s values. Let Vj; denote the discrete random variable
for indicating stratum for subject ¢ with disease k. The stratum variable is assumed to be
independent of Ty given Zj;x(t) [Kulich and Lin, 2004].

Under generalized case-cohort design with stratified sampling, subjects in the subcohort
are assumed to be selected by stratified random sampling. Specifically, we select a fixed
size n; subjects from n; subjects in stratum [ into the subcohort by using simple random
sampling without replacement. Let the total size of the subcohort be 7 = Zszl n; and qp =
Pr(&; = 1) = ny/n; be the selection probability of subject i in stratum [ into the subcohort,
where &;; = 1 denotes that subject ¢ in stratum [ is selected into the subcohort and &; = 0
denotes otherwise. After sampling the subcohort, stratified random samples of cases outside
of the subcohort for each disease outcome are drawn. Specifically, for disease k in stratum
[, we select my. cases outside of the subcohort using simple random sampling without
replacement. Let J; = Pr (mux = 1Ak = 1,&5 = 0) = myg/(ny, — 7yx) denote the selection
probability of subjects among non-subcohort members with disease k in stratum [, where
Nk 1s the indicator for whether subject ¢ with disease k in stratum [ among non-subcohort
members is sampled, n;;, and 7, denote the number of subjects with disease k in the cohort
and in the subcohort in stratum [, respectively. For k # k' or [ # I, (Miks - - Minyk) 18
independent of (nyixs, ..., Mm,k); however, (Mg, ..., Mn,k) are correlated because of the

sampling scheme.
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4.2.2 Estimation

The observable information for subject i is (X, Ak, Ziik (), Vi, 0 < t < Xj) when
i =1 or mx = 1 and (Xyik, Agik, Vie) when &; =0 and my, =0 (k= 1,..., K). If we ignore
the covariate information available for the sampled subjects with other diseases outside of
the subcohort, the relative risk parameter 8y can be estimated by the weighted estimating

equation, UKC(B) =0 [Kang and Cai, 2010] where

R L ng K T S(l)(ﬁ,t)
UKC(ﬁ):;;k;fo wyir (1) {Zuk(t)—m}df\ﬁm(t), (4.2)

g,gd)(ﬁ,t) =n! Zlel PO wlik(t)Ylik(t)Zlik(t)®def5TZ“k(t) for d = 0,1 and 2 and wy(t) is
a time-varying weight function which has the follow form: wy(t) = (1 - Alik)flid[kl(t) +
A€+ A (1=&)marAp (), where ug (t) = S0 (1= Ay )& Yo (0 /{0 (1= Apige ) i (8) },
A () = X0 A (1= &) miane Yo (8) /{27 Auin(1 = &) Yiar(t) }. Note that we can set K = 1
in (4.2) if we are interested in only one disease. If 4y, (t) for all k is 1, then the generalized
stratified case-cohort design is reduced to the traditional stratified case-cohort design whose
the weight function pyx(t) = (1 - Alik)glidl_kl (t) + Ay

Note that S ,Ed)(ﬂ ,t) only uses the covariate information collected for the subcohort and
the subset of subjects with disease k outside of the subcohort. In other words, covariate
information collected on the subset of subjects with other diseases outside the subcohort
is ignored when calculating S,id)(ﬁ ,t) in the estimating equation. To make use of available
information about other diseases, we propose the proposed weight with two types of diseases
(i.e. K =2). The key idea in the proposed weight function with two types of diseases is
that the weight for one type of the disease uses the covariate information collected on
the selected subjects with the other type of the disease. Specifically, subcohort subjects
without any disease (i.e. H?zl(l - Ayij)&i = 1) are weighted by ar(t)7h, the inverse of the
estimated selection probabilities, while subjects with disease 1 or disease 2 in the subcohort
(ie. {1- H?zl(l - Ayij)}&i = 1) are weighted by 1. To use the information collected on
the sampled subjects with disease 2, the sampled non-subcohort subjects with disease 1

(ie. Ap1(1=&)min = 1) can be decomposed into two groups: those with only disease
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1 (ie. Apr(1=Ap2)(1-&)ma = 1) and those with both disease 1 and disease 2 (i.e.
A1 Aya(1-&;)mi1 = 1). The sampled subjects in the first group (i.e. Ay (1-Ay2)(1-E;) =
1) are weighted by 4;1%(#) ™!, the inverse of their estimated sampling probabilities. Similarly,
the sampled non-subcohort subjects with disease 2 can also be decomposed into two groups:
those with only disease 2 (i.e. Ay1(1—Ay2)(1-&;)mu2 = 1) and those with both disease (i.e.
A1 Ao (1 = &) = 1). Those with only disease 2 are weighted by 72 (¢) ™!, the inverse
of their estimated sampling probabilities. For those sampled non-subcohort subjects with
both diseases, they can be weighted by either 5} (¢) or 9,5 (t), the inverse of the estimated
sampling probability based on disease 1 and disease 2, respectively. We take the average
of Apy1Apa(1 - &i)miﬁﬁ}c(t) and Ay Ao (1 - fli)migﬁfl:&f(t) as the weight for this group.

Therefore, the proposed weight with two types of diseases has the following form:

I (1= Ayg) &g () + {1 - T, (1 - Ayj) } &

+ Aur (1= Q) (1= &) maFnk ) + (1= A1) Ao (1 = &) miaFiog (1)

k(1)

1 o 1 -
+ §Ali1Ali2(1 — &) (t) + §AmAli2(1 — &) Mo (1), (4.3)
where
() = S T2 (1 = Ay Yian(t) sn(t) = S A (1= Agi2) (1= &) Vi (1)
Y T2 (1= Agij) Yiar (1) Yt Apin (1= Apo) (1= &) Yiar (1)
Sk (1) = St (1= Apin) Ao (1 = &) mii2Yian (t) Sy = S A Asia(1 = &) Yiik (t)
2 h n ) 3 = n

S (1= Agin) Ao (1 = &) Yiar () Tt Avin Ao (1 = &) Yiar (1)

S (t) = Yty Auin Aua (1 = &) minYin (1)

ity A Avia (1 = &) Yiir (1)

Note that if all cases outside the subcohort are selected, the weight functions in (4.28)
reduce to gf)lik(t) = HjK:1(1 - Alij)glidl_kl (t) + {1 - HjK:1(1 - Alzg)}
Using the proposed weight functions in (4.28), we propose the following weighted esti-

mating functions for the estimation of the regression coefficient:

B L ng K . g(l)(,@,t)
UG(ﬁ):;;];/O Wlik(t){Zlik(t)_%}dl\]ﬁk(t)v (4.4)
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where $\”(8,t) = n™' SE, T mak(8) Vi (1) Zuaw (8) 2% 4i#® for d = 0,1 and 2. The
solution to UG( B) =0 is defined to be the estimator Y for the regression parameter f.
A Breslow-Aalen type estimator of the baseline hazard cumulative hazard function is

Aok(BG,t) which is given by

- t Yl S ke (u)d Ny ()
A ,t) = — .
ok(B3,1) [0 25O (5, )

4.3 Asymptotic properties

In this section, we summarize the asymptotic properties for the proposed methods. We
will show the asymptotic properties of the proposed estimator only for two types of diseases.

The other situations can be proved similarly. We make the following assumptions:

(a) {Ty,Cu, Z1i},i=1,...,nand [ = 1,..., L are independent and identically distributed
where Tj; = (Tyi1, .., Tix)"s Cii = (Ciat, - -, Cii)", and Zy; = (Zaa, - ., Ziic)

(b) P{Yir(t)=1}>0forte[0,7],i=1,...,n,0l=1,...,Land k=1,2;

(¢) [Z1ik(0)| + [y |dZi(t)| < D. < o0, i=1,...,n,1=1,...,L and k = 1,2 almost surely

and D, is a constant;

(d) (Asymptotic stability) For d = 0, 1,2, there exists a neighborhood B of 3y such that
s,gd)(ﬁ, t) are continuous functions and supyo ;] 58 HS’IEd)(ﬁ, t) - slid)(ﬁ, t)| & 0 where

SE7(B.1) =07 Rl S Yiaw () Ziae (1) Zn(0;

(¢) The matrix Ax(6o) = [y vk(,Bo,t)slgo)(ﬂo,t)kok(t)dt is positive definite for k = 1,2
where v, (8,1) = 50 (8,) /51 (8,1) - ex(8,1)®2 and ex(8,1) = s (8,1)/sL” (B.1):

(f) (Asymptotic regularity) For all 5 e B, t€[0,7], and k = 1,2, S,gl)(ﬁ,t) = %S]go)(ﬁ,t),

and S,?)(B,t) = %;5,5120)(6,15), where S,E,d)(ﬁ,t), d =0,1,2 are continuous functions

of 8 € B uniformly in t € [0,7] and are bounded on B x [0, 7], SI(CO) is bounded away

from zero on B x [0, 7];

(g) (Finite interval) For all k =1,2, [," Aox(t)dt < oo;
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To show the desired asymptotic properties for generalized case-cohort samples, the following

conditions are also needed:
(h) Foralll=1,...,L, limy,, e & = o, where &; = 7y/n; and « is a positive constant.

(1) limy, oo Y1 = limy, oo i3 = Vi1, My w00 Vi = limy, w0 Y4 = Yi2 Where 41 = Prlny =
1A (1-Apz) =1,&; = 0] = my 10/ (10 —7.10), .10 denotes the number of sampled
non-subcohort subjects in the /th stratum with only disease 1, but not disease 2 (i.e.
A1 (1= Ayg) = 1), ng10 and 7,19 denote the number of subjects with only diseases 1,
but not disease 2 (i.e. Ay1(1-Ay2) =1) in the cohort and the subcohort in [th stratum,
respectively, J;2 = Prlmue = 1{(1 = Ay1)Aue = 1,&; = 0] = myo1/(ni,01 = Mu01), Mu01
denotes the number of sampled non-subcohort subjects in the Ith stratum with only
disease 2, but not disease 1 (i.e. (1-Ay;1)Apu2 =1), nyo1 and 791 denote the number
of subjects with only diseases 2, but not disease 1 (i.e. (1-Ay1)Ay2 = 1) in the cohort
and the subcohort in Ith stratum, respectively, 43 = Pr[n;1 = 1A Aue = 1,§,; = 0] =
my 111/ (11 — 1), My111 denotes the number of non-subcohort subjects with both
disease 1 and disease 2 who are sampled with respect to disease 1 in the [th stratum,
n,11 and 7717 denote the number of subjects with both diseases 1 and disease 2 in
the cohort and the subcohort in [th stratum, respectively, 314 = Pr[nuo = 1|Au1 Ao =
1,&; = 0] =my 112/ (n11 —7,11), My 112 denotes the number of non-subcohort subjects
with both disease 1 and disease 2 who are sampled with respect to disease 2 in the

Ith stratum, and 7y is a positive constant on (0,1] for all k=1,2 and [ =1,..., L.
(j) limy— e my/n-q;, where ¢ is a positive constant on (0,1) for all [ =1,..., L.
We summarize the asymptotic properties of BG in the following theorem.

Theorem 3. Under the regularity conditions (a)-(j), B converges in probability to By and
nt/ 2(BG - Bo) is asymptotically normally distributed with mean zero and with the covariance

matric
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A(Bo) 2 (Bo)A(Bo) L, where

2 L N 2
A(B) = Ar(B), Ba(B) =Y. ailViu(B) + ! Wini(B) + (1 =) Y Virrw(8)],
P i i

2
Vii(B) = El[kz Quk(8)]**
|

Viri(8)
2 2 7 Vi (8 Er(TT521 (1 - Apj) Rk (B,1))
- 1- Aps Rur(B.t) - dAor(D)],
arz[jl:ll( lu)k;fo [Ruk(B,1) BTt (1= Do)V () JdAor(t)]
Virrie(B)
= Pr(@uo)l L Var(Qur(8) - f Yau(t Elggl,llfk((ﬁt)gfﬁm&l 0}|@l107511:0)

Yir(t) Et{dQux (B, 1)|O01, &1 =
E{Yiur(t)|©:101 }
Yir(t) Er{dQux(8,1)|O11, &1 =
E{Yur(t)|©n1}

12 ™ Y (6) E{dQui (5, 1)|01, &1 =
Var(Qur(B) - fo Vs (D10}

Quik(B) = foT{Zzz‘k — e (B, 1) ydMyir(t), Opr = {(Any = § and Appa = k),

Rin(8,t) = Vi (D) [ Zun (1) — e (B, 1)) 2 D).

1 0
+ PT(@lm) }|91017§z1 =0)

Vm’z(@nk(ﬁ) /

+ }lpr(@lll)

L Var(Qur(8) - fo 0 1©111,&11 = 0)

1 1-
+ ZPT(@ln)

0
}|@lll7§l1 = 0)7

Note that ¥g(3) consists of three parts. The first part V;;(3) is a contribution to
the variance from the full cohort, the second part Vi ;(/5) and the last part Vi x(5) are
due to sampling the subcohort from the full cohort and due to sampling a portion of cases
in non-subcohort. For cohort studies, the second and last part vanish and their variance
is only first part V7,;(8). If traditional stratified case-cohort studies are conducted, then
the last part goes to zero and so the first and second parts are remained. For unstratified
generalized case-cohort studies (i.e. L =1 and ¢; = 1), variance consists of V7 1(5), Vir.1(5),
and Virr1x(5).

We summarize the asymptotic property of the proposed baseline cumulative hazard

estimator AOk(BG, t).

Theorem 4. Under the regularity conditions (a)-(j), Ao (B, 1) is a consistent estimator of
Ao(t) int€[0,7] and P(t) = [Pi(t), Pa(t)]" = [n'/2(Ao1(BY, 1) - Ao1(t)), n /2 (o2 (B, 1) -
Ao (t)]T converges weakly to the Gaussian process P(t) = {P1(t), Po(t)}! in D[0,7]X
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with mean zero and the following covariance function Pj(t,s) between P;(t) and Py(s) for

j*k.

ij(ta 8)(60)

L

Y- all Er{vi; (Bo, t)vik(Bo, s)}
i-1

1- (8%

E{G1(Bo,t)Cr(Bo. )} + Er{ein;(Bo, t)einr(Bo,s)}H,
where

0k (B.0) = LADTAB) Y, Qun(B0) + [ M (1)

lik 5 k ) = lim ) 0 SIE;O)(B?’LL) lik )

2 o7
Gur(5:0) = (@ DTAB) T X [ i (5, w)dom (w)

2 t oy BT (1= Apy)e® 2@ Y (u)) - dAgr (u
+H(1—Am')f0 Vi (w){e? Zun) = d 0 (1)

B (1= Aj)Yie(@) 5@ (8,u)’
2 .
eur(8,t) = (B TAB) T Y (1 - &) [ A (1 - Ali?)(gllzll - 1)Bl(i1n)1(ﬁ’t|@”0)
m=1

i 1 i
+(1- Am)Alz'z(gllj - 1)B(<1) (8,t1©501) + éAmAm{(?ul - 1)B(~1) (8,t1©111)

lim lim

<’7;§ DBXY (8,4011) 1] + (1 - &) [Au (1 - Alﬂ)(gﬁ - 1)B)(8,1|0110)

i 1 i
+(1- Am)Azz‘Q(?Zyllj - 1)3&)(5»“@101) + éAlﬂAm{(?ZYllll - 1)Bl(ii)(ﬁ,t|@l11)

o2 1)B§ii)(ﬁ,t|@z11)}]a
N2

—a LMk (u) - le‘k(U)E{dM”k(uN@Um’gli =0}

(1)
Bllk‘ (/85 t|el]m) / (()) (5, ) E{}/}lk(u”@l]m}

],

B® E{dQui(B,u)|Om, &i = 0}
lzk (67t|@ljm) lek(ﬁ) [ }/lzk( ) E{Yélk(/@auﬂgl]m} )

(80T =~ [ en(Bw)dhon(w), Ok = (i = and Ay = k).

The proofs for Theorem 3 and 4 are provided in Appendix.
We summarize the asymptotic efficiency for unstratified case-cohort studies (i.e. L =

1) with two types of diseases (i.e. K = 2). Note that the covariance matrix for 3¢,

62



A(Bo) r2a(Bo)A(By) ! involves the first derivative of the weighted estimating functions

A(By) and the asymptotic variance of the weighted estimating functions, ¥ (8y).

Theorem 5. Under the condition E[w?); - 73 |E[w}s - 7%,] > (pE[winiwi12 — 73 ])?, the
asymptotic variance for our proposed method A(Bo) 'Xq(B80)A(Bo)t is smaller than that
for Kang and Cai [2010]’s method, where

10&1

(1=p)+ S+ )= — .
711 Y12 Y12

3 1 1
Lamp+ By,
Y11 Y12 711

Ei[winwiie - m5] = (1- 041)[}71{1——}+p2{1——}+plp2{ (—+L)—1}]
Yt Y12

p = Corr(Qu11(B),Qu2(B)), o1 = pr(&i1 = 1), p1 = pr(Ai11 = 1), p2 = pr(Aqiz = 1),

i1 = pr(mir = YA11(1 - &) = 1), vi2 = pr(nuie = 1|A112(1 - &11) = 1).

3 1 1 1
El[w%n 7T11] (1- al)pQ[ p1 ]

El[w%m 7T11] (1- 061)2?1[

Specifically, smaller a; induces larger (1 + «;)/aq, which dominates other contributions
in E[w},; - 7%, ]E[w}, —7%;]. The quantity (pE[w111w112—73])? depends on the selection
probability of a subset of cases y11 and 712 for fixed the disease rates p; and po. This indi-
cates that in situations where the subcohort size is smaller and the selected case proportion
is higher, the proposed method produce more efficient estimates over that of Kang & Cai’s
method.

If we consider the simple situation such as p; = pa = p, 711 = 712 = 7, and p = 1, specific

conditions to lead larger power are 0 < p < %, % - %p <y<1- %p, O<ag <vy(1- %p -y

4.3.1 Proofs of Theorems

Under the assumptions in Section 4.3, we will outline the proofs for the main theorems.
Before we prove theorems, we consider the asymptotic properties of time-varying sam-
pling probability estimator day(t) = X1, fli[H?ﬂ (1-Dgij) Y () ] 20 [H?d (1-A4i) 1Yk (2).

For each k, by the Taylor expansion series of &l‘kl(t) around q;,

Gl (1) - apt - *ét)g{auk(t) ~a, (4.5)
@
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where «; () is on the line segment between & (t) and &;.

{TT5_; (1-A4ij)}Yiar (2)
‘:ll(H?:l(l_Alij))Ylik(t) ’

We can express ag(t) —da; = 3. 10[1{2; 1} and thus (4.5) can

be written as

G ORES

o n nol2 Szz
o (1 T T (1= ) Vi) {zzl( )H(l A iae(1))

By Glivenko-Cantelli lemma, n;* Z?il[H?=1(1 — Ai;j)Yiik(t) converges in probability
uniformly to El[(H?:l(l—A”j))Yllk(t)], where El[(H?:l(l—Allj))Yllk(t)] is bounded away
from zero by condition (b). In view of lemma 2, nl_l{Z?:ll(% -1) H?zl(l - Ayij)Yie(t) }

converges to zero in probability uniformly in ¢ since I_IJ2 1(1 = Aij)Yiir(t) is bounded and

T a {5“ DHIT2, (1-0i) Yiar (8)
- (H 21 (1=Dyi5)) Yian ()

probability uniformly in ¢. Thus, d;(t) and 071 converge to the same limit in probability

monotone in ¢t. Therefore, ayx(t) — q; = converges to zero in

uniformly in ¢, which ensures «; (t) also converges to the same limit as &;. By Slutsky’s

theorem and above results, we get

1/2 1 art 1 —1/2 &li
[agp (1) =y ] G T2 (1~ Do) Yire(0)] {Z(l l)gH1(1 Am)lek(t)}

+ [ o ™ - ! ]
af (1) XL T (1= M) Yiae(t) @ Bi[TT50 (1= Apy) Yig (1)]
. nl_l/Q{i_;(l 2110~ Amm(w}

1

= = ] _1/2{2(1—&Z)H(1 Alz])YEzk( )}

A B [TT52, (1 - Apy) Yine(t) oo
v op(1) (4.6)

Due to the sampling of cases, we consider the asymptotic properties for time-varying sam-
pling probability estimators j1x(t), Ji2x(t), Fi3k(t), and Y4k () in (4.3). For each k, by

Taylor expansion of 4;15(t) around 41, it can be written as

Fur(®) =it = - (B () = 1), (4.7)

1
* 2
'Yll(t)
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where 7}; () is on the line segment between 7;1(t) and 7;;. By similar arguments for ay,

(4.7) can be written as

P ERL ) -

- '7” i n 12 1—77”1A1 1 - Auo) (1= &4)Yiir(2).
/yllk(t) Zz lAlll(l Al'L2)(1 fll)iflzk(t) K 7,2;( ) ll( l2)( gl) lk()

By Glivenko-Cantelli lemma, n; ! St Ayt (1-Agin) (1-&5) Yir (t) converges to (1-aq) Ej[ Ay

(1-Ap2)Yk(t)] which is bounded away from 0 based on condition (b). In view of lemma

2, Nyt Y (1 = ZL)Ay (1 - Aya) (1 - &) Yig(t) converges to 0 in probability uniformly

itk

in ¢ since Ayq(1 = Aypo)(1 = &) Yir(t) is bounded and monotone function in ¢. Thus,
N . PN ’711(7%1;11 “1) A1 (1-A12) Y1k ()
’y”k(t) T = Yib A (1-Ag12) Yiak ()

converges to zero in probability uniformly in

t. Hence, 415(t) and ;1 converge to same limit uniformly in ¢. This means that |, ()
also converges to same limit uniformly as 7;;. Combining above the results, it follows from

Slutsky’s theorem that

2,
n (AL () - 3t

1 71/2 _ My
7l1(1 al)El[Alll(l AllQ)nlk(t)] {ZZ;(]- 711 )Alzl(l Ale)(l glz)}/lzk(t)}

Vi ny B 1
" [’Yﬁk(t) Y A (1= D) (1= &) Vi (1) A (1 — o) Ey[ A (1= Api2) Yie(t)] ]

an_l/z {Zl:(l _ Z/llzll )Alil(l — AliQ)(l - §lz)lek(t)}

i1
1
) (1 =) Ey[Api (1 - Ap2) Yie(t)]
xny {i(l - 2;11 ) A1 (1= Ayia) (1 - flz‘)le‘k(t)} +op(1). (4.8)
iz

Similarly, we can show that

1
F2(1 = a) B[ (1 = Api) An2Yig(t) ]

_1/2{2(1 nlzZ)(l A1) A (1 - g[z)Yle(t)}-i‘Op(l) (4.9)

=1

1" ik (8) = 1)

X
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1
A3(1 = ap) B[ Api A2 Yiw(t)]

ng .
x n[l/Q{Z(l—lel;;)AmAliz(l—&i)le’k(t)}+0p(1)v (4.10)
=1

! Gk () = 35

1
(1 = o) B[ A1 Ai2Yix(t)]

x nl_l/z{z_;(l—Zyl;j)AliAliQ(l_flz‘)Ylik(t)}+0p(1)‘ (4.11)

n P (R () = 3t

The above properties will be used in the proofs. The following is the proof of theorem 3.
Proof of Theorem 3
We first show the consistency of B%. Denote ﬁf =n~'U%. By Taylor expansion series,

B% can be written as

90 (Bo)

-1
S| 0E ) 0,1 (112)

BG=50+[

Based on the extension of Fourtz [1977], if (I), (II), (III),and (IV) conditions are satisfied

i7G
(1) E)U#ﬁ) exists and is continuous in an open neighborhood B of f

i7G
(IT) %ﬁ” is negative definite with probability going to one as n — oo

(I1I) —% converges to A(Bp) in probability uniformly for 8 in an open neighborhood

about [y
(IV) US(B) converges to 0 in probability
then, we can show that 8¢ converges to 5y in probability. Note that

~ L ny 2 T o~
ﬁlgnﬁ(Tﬁ) :_%;;kﬂfo ik (t) Vi (B, ) d Ny (t) where
52,05 5,0 -303,0°

5O (3, t)2

Vi(B,t) = (4.13)

By continuity of each component in (4.13) and condition (f), (I) is satisfied.
In order to show that conditions (II),(IIT) are satisfied, we will show || (—%) -

A(B) || converges to zero in probability uniformly in 5 € B as n — oo, where A(fS) =
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St Jy ve(8. 05 (B,1). Aow()d.
By Andersen and Gill [1982], it can be written as

77G
-2 - a0 |
2 r L m 2 -
= | k;fo Vk(ﬂ,t)%d;;mik(tﬂ\fzm(t)—];fo (B0, 1)t (Bos t) Aow (£)dt |
2 T 1 Lo
1Y [T - (B0} d Y Y Nt |
k=1 I=114=1
2 T o 1 L.
e Y [ T8~ (B0} a3 Y man(t) = D Nian(1) |
k=1 l=11=1
2 T 1 L n
IS [ o053 Mia) |

2 T 1 L n
Y [ (B Y Y ma®) - 1 Mia(1) |
k=1

I=1=1

2 T
F Y [0 (6,0 - 5 6.0 k(D) | (4.14)
k=1

We can show that each term in (4.14) converges to zero uniformly in 8 € B. To show that

the first term in (4.14) converges to zero in probability, we need to show that

sup || Vi(B,8) —vp(B,t) | 2> 0 asn— oo for k=1,2
te[0,7]BeB

which suffices to show that

sup || g,gd)(ﬂ,t) —S,Ed)(ﬁ,t) |- 0 as n oo for k= 1,2and d =0,1,2
te[0,7]BeB

It can be written as

g]gd)(ﬁ7t) _Slgd)(ﬂvt)

1 & &li 2 d BT Z..(t
= =2 (~_ - 1) [T - Auj) Zug (£)®%? 2y, (1)
T i=1i=1 ‘M j=1
1 L ng o 1 2 o BTZ. )
+ 522(0% (t) = a7 )& [T(1 = Auj) Ziaw (1) %€ 2+ Y 5(¢)
i-1i-1 i
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3

M=

(% - 1) Apir (1= Do) (1= 15) Zuage (8) 2% 2k Dy (1)
1

+

T

)
3T

)

(’Yluc(t) A i A (1= Do) (1 = &) Zua (£) % B2y, ()

M LM
21

+

(7’77[;22 1) (1= Auin) Aviz(1 - &) Zuaw (£)®%™ Zx Oy (1)

~
Il
—_
.
Il
—_

3

(%2k(t) A a1 = A Aga (1 - §lz)Zzzk(t)®d5 Zun Oy ()

+
M=
E

+

M=

i Ty
(le; - 1) A Asin(1 = &) Ziar (1) % 2Dy (1)

~
1]
—_
~.
1]
—_

g

(B3 (t) = Vg )mi1 Avin Az (1 - &) Zuae (1) ®% 2Dy, (1)

M=
1

3

M=

(Zl;j B 1) A Ao (1 = &) Ziae (8) e 2D Y0 (1)

~
1l
—
.
Il
—_

3

ik (1) = 3 miz Auit Ariz (1~ &) Zuaw (8) 2% Zix O (1) (4.15)

M=

3l 3l 3l 3|~ 3l 3l 3l 3
I
I

NI~ NI~ NI~ N~

~
1]
—_
~.
1]
—_

By using the result of (4.6), the first and the second terms in (4.15) can be written as

L (& 2 ®d BT Zyi (t)
g; 2 (Otl )U 1 Ah] lek(t) lik Yk(t)
1 L ny o o ‘
L ZZ 1(0%1@) - M) 1—{(1 - Alz‘j)le’k(t)®d€BTth(t)Ylikz(t)
=11= j=
1 & & : ®d 5 Zy(t)
= ;Z (__1)1—[ (1= Auij) Zuin(t) kY (t)
l=1l=1 =1
1 L 1 -1 < glm
t - (~ n ) (1 Alm )Yimk(t)
"121:1 GBI (1= Auy)Yar(1)] {mZ::l H !

o L

x &zH(l Duij) Zi (8) 2P 2Oy () + 0, (1)
i1

- lii(@—l)l—l(l—A ) Zuin (£)2%” 2y (1)
M 1i=1 N ol tig) “lik lik
1 & &ii Yiir(t)
=DIDNCEEO) | (CEW.Y
=PI l)ﬂ( ) BT A T D]
8 % o H(l At ) it (8) Zigmie (£) 22" Zmn (D) 4 6, (1).

7=1

By lemma 2, n; Sl Sm T ?zl(l - Almj)Ylmk(t)Zlmk(t)@’de’BTZlmk(t) converges to

mlal
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El[szzl(l - Allj)Yllk(t)lek(t)®deﬁTZ“k(t)] in probability uniformly in ¢. Thus, the first

and second terms are asymptotically equivalent to

L ny 2
1 Z Z (@ — 1) Ij[l(l = Ayij)Yiir(t)

21i=1
T
[ Zup(t)2heP 2 ) _ BT (1 - Apy) Yk () Ziag (2) @ 70k (0)] !
Ey[TT5 (1= Auy) Yiw(t)]
Similarly, the third and forth terms can be written as
1 &2 (na ®d_AT Zu (1)
-3 Z (— - 1) A1 (1= Do) (1= &) Zii (£) %7 21\ Y 0 (t)
T -14=1 \1
1 &y 1
+ —
n zz;@z; An(1 - o) E[Ani (1 - Apg)Yie(t)]
X { Z (1 - nlml )Alml(l AlmQ)(l glm)}/}mk(t)}
x 1A (1 - Ali2)(1 - fli)Zh’k(t)M@ﬁ Zik Y () + 0p(1)
1 L n i .
= =>> (2 - 1) Asir (1= Do) (1= &) Zu (1) ®% 2Dy (1)
nl 14=1 \ 1
_ it Yiir(t)
+ - 1-&)Au(1-Ay,
zz;; )( i) Buan( 2) E[ A (1 - Apn2)Yie(t)]
- 1 m m
x {ng*t Z Alm1(1—Azm2)((1 5; )) DLy e (8) Ziie (£) 202" Zmi ()} 1 0,,(1)
m=1

It follows from lemma 2, n;t Y7 Ay (1 - AlmQ)((ll %T)) n;;’il Vit () Ziyme (£) 2% Zim (2)

converges to E) [Yllk(t)lek(t)®deﬁTZ”k(t)|9110, &1 = 0] in probability uniformly in ¢. Thus,

the third and fourth terms can be written as

1 Lo ni1
- 2 Z (_ — 1) Alil(l - AliZ)(l - €li)leik(t)
N Z14=1 \11

57 zi(ty . BalYue(t) Zng(1)®%e BT 2080010, €11 = 0 ]]
Ei[Y1%(t)|On0]

x [ Zu(t)®%e +0p(1).

By using similar arguments, the fifth to the last terms can be written as

L i % (72”2 - 1) (1= Agin) Apia (1 = &§5) Yir (t)
=1

n 11\ N2
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Ey[Yik(t) Ziag (£)®%e? 20800401, &1 = 0]
Ei[Yix(t)©101]

L n
I (L (”“2—1))AMAZZ2<1 &:)Yiur (1)
i=1

2n =1 i3

% [Zlik(t)®de’8TZ”’“(t) _

]

Ey[Yik(t) Ziai (£)®%P 20800y, & = 0]
E[Yk(t)O11]

x [ Zyin(t)®%e?" Zuik(®) _ 1+ 0p(1).

Combining all the results, we have

wHE0 (30 - 51060}
2
n71/2 Z Z (5“ _ ) 1:[ 1 Alij)ylik(t)

1=11i=1
BT} (1 - A1) Yk (£) Zing (8) @ 2k ()]

T
x [ Zyn(t)®%? Ziik(t) _ ]
Ey[TT51 (1= Auy) Yar(t)]
+ n_1/222<7711 )Am(l Aui) (1= &i) Yair(t)
I=14=1 \ 711
T
y [Zl.k(t)we/ﬂzuk(t)_El[Yuk(t)an(t)@deﬁ Z“k(t)|@l10751l=0]]
' Ey[Y(t)On0]
+ 2 Z Z (nm ) (1= Ain) Avio(1 = &4) Yik (1)
1=1i=1 \ V2
< [Zugg(£)®eB" Zir®) _ Ey[Yik(t) Zuai (1) 24P 2160|041, € = O]]
‘ E[Yi1x(t)|©101]
,1/21 L M1
i n ZZ( ~1) A a1 - €0)Yin (1)
25\ s
< [Zugg(£)®heB" Zir®) _ Ey[Yiu(t) Zuag (£)2%” 200010y, & = 0]]
’ Ey[Yi,(t)|©01]
_1/21 L N2
‘o zz( ~1) A Ao (1 - €0)Yin (1)
23\ 4
®d BT Zi1k(t) =
o [Zun(t)P0eE Zntt) _ Ey[Yiug(t) Zngk(t)®e ©111, &u 0]] +op(1)

E[Yie(t)|©n1]

By lemma 2 and condition (h) and (i), for d = 0,1, and 2, nl/Q{glgd)(B,t) - S,id)(ﬂ,t)}
converges weakly to zero-mean Gaussian process. Hence, §,§d)(ﬁ ) — S]E,d)(ﬁ ,t) converges to

zero in probability uniformly in ¢ based on the condition (d) and then it can be shown that

sup || §,§d)(,8,t) - s,gd)(ﬁ,t) |- 0asn—oofor k=1,2and d=0,1,2 (4.16)
te[0,7]BeB
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Combining all the results, Vk(ﬁ t) converges to vg(3,t) in probability uniformly in ¢ and
since s, )(ﬁ t) is bounded way from zero by condition (f).
By Lenglart inequality(Andersen and Gill [1982], p1115), there exists ng such that for

n > ng for any 4, n >0,
-1 J T (0) (.
P[n™'Ni(1) >n] < ; +P[ |57 (Boit) dow(t)dt > 8],

where N (t) = Zl L2 Niaw(t).

Based on condition (d), P[f; Slgo)(ﬂg;t))\ok(t)dt > §] converges to zero as n — oo for
6> fy 5,&0)(60; t) Aok (t)dt and then lim,eo limy, 0o P[n"*Ni(7) > 1] = 0. Therefore, the first
term in (4.14) converges to zero in probability, uniformly in 8 € B as n — oo. It follows from
lemma 2 that the second and fourth terms in (4.14) can be shown to converge to zero in
probability uniformly in ¢.

The third term in (4.14), [, vx(8,t) le L2 My (t) is a local square integrable
martingale. By the Lenglart inequality(Andersen and Gill [1982], p1115), it can be shown
that for all §, n >0,

Plis [ {vkw,t)}ﬂka()nm] P2 [T .01 80 (Bt > 6],

where My (t) = Y X, My (t) and subscript jj indicates (jj') element of matrix vy (83, t).

Due to boundedness conditions (d),(f),and (g), the second term on right side of the above
inequality converges to zero in probability, uniformly in 8 € B for any § as n - co. Then it
follows that one on the left side of inequality converges to zero in probability, uniformly in
B € B as n — oo. Hence, the third term in (4.14) converges to zero in probability, uniformly
in 8eB asn— oo.

Due to the boundedness of sup; g {v(8,t)}, Aox(t) for k = 1,2 based on conditions
(d),(e), and (g) and uniform convergence of S(O) to S(O) the last term in (4.14) converges

to zero in probability uniformly 5 € B as n - oo. All five terms in (4.14) converge to zero
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in probability uniformly. Thus, by condition (e), we have

8U (B) X
opT

— A(S) asn — oo uniformly in e B

and, consequently, (IT) and (III) are satisfied.

If we show that n~!/ 2@? (B) is asymptotically normally distributed, it can be shown
that US(B) converges to zero in probability. Then, (IV) also will be satisfied. Therefore,
we can show that ¢ converges to ; in probability and is a consistent estimator of Sy by
satisfying (I),(II),(III), and (IV)( Fourtz [1977] theorem 2). We will show the asymptotic

properties of n=2T5 (o). We can decompose n /2T () into two parts such that

L n T §(1)(/80 t)
1/2 G n -1/2 o () - k ’ )
U (/3 ) ;;kzl‘/o\ lzk(t) {sz( ) §]£0)(/80,t)}leZk(t)
ap Ll 51" (Bo.t)
= ZZ;ZZ;]; _[ ﬂ-lzk(t){ zk’( ) S(O) (/80 )}dMlzk(t)
2 ( ) T
+ n_1/2 Z Z Z [ lek(t) {lek(u) ~(0) (50, )}leik(t)eﬂo Zlik(t)dAOk(t) (417)
I=11=1k=1 ( 0, )

The second term in (4.17) vanishes to zero since it follows from condition (g) that

L n ( )(ﬁ ) i
,1/2 Tl t ZZ t —0’ Yl t ﬁ() Z“k(t)dA t
' ZZIZIkZI‘[ ““(){ t(t) = 5O (50, )} iin(t)e ok ()
= _1/222f {Zlek(t)lek(U)i/lzk(t)eBO Zyik (1)
I1=1k=1
< (1)(50, t)

- X hk<>~(0) ( )m(t)ﬂzlw(”}mek(t)
0,1t

(1)
e 50 (1) — 2k 0D 5o g }dA N
ZZ;kZ:lf { §,§O)(ﬁo,t) (/60 ) Ok( )

Then, it can be written as

_ L n 2 T "57(1)(50 t)
120G (By) = n~ 12 k() 4 Zie(8) = 2222 g (t
n (Bo) =n Z;z;;fo 1ik ( ){ 1i (t) S,go)(ﬂo,t)} ik (t)
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By Spiekerman and Lin [1998], it can be shown that the first part in (4.18) was asymp-
totically equivalent to n~'/2 >k, >l Y2, Quir(Bo)-
Next we will show that the second and last terms in (4.18) converge to zero in probability,

uniformly in ¢. First, the second term in (4.18) can be written as

2 [s80(Bos) §,§”<ﬁo,t)} b
- d My (t
kz—:lfo {8120)(50@ 5‘}20)(60,75) e I;Z; )

Note that Mjy(t), ..., My, (t) is identically and independently distributed zero-mean ran-
dom variables and n /2 Zlel Yt Mk (t) is a sum of i.i.d. zero-mean random variables for
fixed t. M (t) is of bounded variation since M7, (0) < oo and M7, (7) < oo are satisfied
based on conditions (c¢) and (g). From the example of 2.11.16 of van der Vaart and Wellner
[1996](p215), n~1/2 ZlL:1 Yt My (t) converges weakly to a zero-mean Gaussian process, say
Pk (t).

To establish the existence of stochastic processes with continuous sample paths, we will
use Kolmogorov-Centsov theorem. If conditions of Kolmogorov-Centsov theorem E{Py(t)—
Pare(s)}* < DX |t—s?> and E{Pi(t) - Parr(s)}? < D.|t—s| for all t > s are satisfied, then we
can show that Py () has continuous sample paths. Since EPy(t)* = E[n™' ©1, My (¢)?]
— EMyir(t)? = B[y Yir (w)e® 26 Xy (u)du], BE{Pasi(t) - Pasr(s)}> = EPui(t)? -
2E P (1) Pari(s) + EPari(s)? =EPari(t)? - EPar(s)? = B[ [/ Yig (u)e 26 Aoy (w)du] <

eDZE[fSt Mo (w)du] = D, (Ao (t) = Aop(s)) based on condition (c). There exists constant C'
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such that Agk(t) — Aor(s) < C(t—s) for t > s since Agg(.) is differentiable and Ao (.) is
bounded in [0,7]. Thus E{Px(t) = Parr(s)}? < De.(t - 5). For fixed t, Ppsi(t) is random
normal variable. Therefore, we have E{Pyx(t) - Par(s)}* = Var(Pask(t) — Pari(s))? +
E{(Pur(t) = Park(s))*}? = 3 {E(Pui(t) = Park(s))?}> < D[t - s

Since two conditions are satisfied, it follows that Pz, (%) has continuous sample path
from Kolmogorov-Centsov theorem. Based on conditions (c), (d), and (f), it can be shown

that glgl)(ﬁ,t) and 5150)(ﬁ,t) are of bounded variations and specially §,§O)(/B,t) is bounded

SSCHO . . 5 (5,t)
away from zero. Thus —f; is of bounded variation and can be written as Z =

Sy (B:t) Sy (Bit)
G1— Gp1 where both Gg; and Ggs are nonnegative, monotone functions in ¢, and bounded.

S (8,1
58,1

Therefore, is the sum of two monotone functions. By the result in (4.16), it can be

sV@h Ve
S0 s ()
converges to zero in probability uniformly in ¢ as n — oo.

shown that supyo r1se5 |l |2 0. By lemma 1, the second term in (4.18)
By using similar arguments, the last term in (4.18) can be shown to converge to zero in
probability uniformly in ¢.

The third term in (4.18) can be decomposed such that

L n; 2 T (1)
-1/2 (0 = 1) Z () - M dMp;(t
n ;;k;,/(; (7le( ) ){ lk( ) Sl(g())(ﬁ()ﬂf) lk( )
L ng 2 2 (1)
_ 2NN T A (S oy S (Bort) .
= n ;;;L ]1:[1(1 Ah])(dl 1){lek(t) SIEO) ﬂ()?t dMlzk(t)
L n 2 T 2 (1) t)
-1/2 At (1) — a ), 1 - Ayj) A Zin(t ~ Sk P00 (Bo. d My (T
+ n ;;l;lfo (G () -a hHg jI:II( lj){ 1k (t) 900 1k (1)
L n 2 r , (1) t
+ n‘lﬂéi;;/o Ahl(l—Alz‘z)(l—ﬁll)(Zyl;ll - 1){Zlik(t) - %}‘ﬂwﬁk(t)
L n; 2 T (1)
+ n‘l/zlE;EkZI/O Alz’l(l_AliQ)(l_fll)(’?l_l%c(t)_:Yl_ll)nlil{zlik(t)_%}Cﬂwﬁk(ﬂ
—1i=1k= Sk \P0s
L ny 2 T . (1) t
+ nl/zl;i;k;fo (1= Apin)Aua(1 —&1)(2;22 -1) {le’k(t) - %}dﬂ/f“k(t)
L n; 2 T (1)
+ n_l/ZlZZkZ](; (1_Alil)Alw(l_fll)(:)/l_Qk(t)_:)/1_21)7712'2{Zlik(t)_Sk (ﬁo’t)}dMlik(t)
i |

8,(,30)(507 t)

=1
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ny 9]
nt2- Ly Z > Z ] A1 Aga(1 - &1)(%1 -1) {lek(t) - %} d My (t)

+
235k 0, L
LSS [T A A1 - ) () - i {th(w - (1)(50’”}%%@)
z 14=1k=1 (0)(50,15)
_1/21 Mi2 (1)(50, t)
+ Z Z Z f A Ao (1 - fll)( ~1){ Zr(t) - ROYPER d M (t)
s s | v (Bo,t)
,1/21 T ' ) _ o a1 ‘ ) ( )(BOa ) )
+ Z Z Z / A1 A (1= &1) (Fiar (t) = Yig Iz | Ziir (1) — (0) dM;;(t)
P | 0,t)

(4.19)

By using the result in (4.6), the second term in (4.19) is asymptotically equivalent to

_ 71/2 l _ glz 1

;ZZMZJ L1~ 2001 - £7is() BT (1 Ay Vi (0]

( )
% -1 flz (ﬁ()’t)
{ mZ:: & ]I_Il(l Almj) Zlmk(t) (0) (ﬂg,t) )dMlmk(t)}

L n 2
IS ANy "1 = Ay )(1 - @ | 1
= Z; Z Z::l /0- ]1:[1(1 Alz])(l dl )lek(t) EZ[H?=1(1 _ Allj)Yllk(t)]

& G B ' _ Sl(cl)(/BO’t) _ BT Zimi (1)

x ang Y, =TT = D) (Zime(t) — ) (@Nin(8) = Vi (t)e dAoi(t)) 1 -

m=1 Q1 j=1 s (Bo,t)

(4.20)

Since the term related with dNj,;(t) in (4.20) does not contribute to 1'[?:1(1 - Apmj), we

have

L n; 2
n‘l/ZZZZf H(l Am)(g“—l)m(t) o
I=1i=1k=1

= Ey[TT520 (1 = Agry) Yie(t)]
55 (Bo. 1)
53 (Bo,t)
o112 Lo T2 &ui
> Z /0 1_11(1 - Alij)(d_l — 1) Y3 (1)
i

I=1i=1 k=1
Ey[TT7. (1 = ) Yo () Rk ()]
EyTT50 (1 = Agg)Yiaw(t)]

X

ng 2
{ Z é:— H (1= Ay ) (Zimr(t) - )Ylmk(t)eﬂTZlmk(t)dAOk(t)}

dAoi(t) + 0p(1).

If follows from the result of (4.8) and lemma 2 that the fourth term in (4.19) can be written
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as

_ a2y 1

- 12121;;1/ B (1= D) (1~ @)t == e p e

x {Z(l n,l;lnl)Alml(l Aprn2) (1 = & ) Y (2 )}{Zlik(t)_ek(/@Oat)}dMlik(t)
m=1

W35S [ (1= 81 - B

i=1i=1 =1
E[ A (1 - Apa2) (Zie(t) - er(Bo, t))dMuk(t)]
E[Apni(1-Ap2)Yiue(t)]

+op(1)

By similar arguments, the sixth, eighth, and tenth terms are asymptotically equivalent to

L ng 2 T . —
12 AR A (1 &) (1 - M2y E[dQuk(8,1)|Oi01,&1 = 0]
! ;;kzlf (1= Beaa) a1 = &) %2) e (1) Ey[Yi1x(t)|O101]

L n

o121 T A A1 - &,)(1 - Ty Ey[dQuk(B,t)|©n1,&n = 0]
’ 121121];1/ t1 iz~ &) Vi3 i (1) Ey[Yig(t)|©n1]
L n 2 T . —
o121 Mgt Auin(1— € (1 T2 )y, Ey[dQuk(8,1)On1,&n = 0].
’ ;;1;1 / stBuia(l - Ge)(T Yia i (1) Ey[Yn,(t)|©n1]

Combining all the results, the third term in (4.18) is asymptotically equivalent to

‘WZZZf 1'[(1 Am)(g“ 1)[Ru (1)

l=11=1k=1

B 01
R YN S R
+ ”_I/QZ;];@—AM)AW 2;22 [ink(ﬁo)—fo Ylik(t)El[ng[(gi;Z‘)?éizﬁﬂ _0]]
: ”zliiéﬂmﬂw’ﬁfi—1>[@u-k<ﬂo>—fJwEl[d%fééi;ii'ﬁétiﬁ”””

L n 2 X T —
P RS E A3 - Dl - T via( SR
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Therefore, n=/20 G(By) is asymptotically equivalent to

L n 2

_I/QZZ > Quir(bo)
=14=1k=1
e RS [TTI0- A Rty
I1=11=1k=1

Yiae (8) E4[TT5, (1 - Allj)Rllk( )]
B Ey[TT5 (1= Auy) Yis(t)] Jihor(1)

. n-l/QZZZZ(l &) { A (1 - Am)(”l“ - D[Qui1(Bo)

[=17=1k=1
~ f Yiir (1) E[dQur (8, 1)|O110, &1 = 0]
0 E[Yi1x(1)|©110]

+ (1- Am)Alzz(nm 1)[Q”k(ﬂ)_[o

]

T Vi () E [dQuix (Bo, 1)©101, &1 = 0]
Ei[ Y11 (t)©:01]

1 ma ' 7 Y ()E[dQuik(B0)|On1, & = 0]
- A2 - 1)[Quis) - || EOT ]

LN , 7 Y ()E[dQuk(80) O, &n = 0]
¢ pmd(EE - D[Qu®) - Bva@e. ) a2

]

By Spiekerman and Lin [1998], it can be shown that the first term in (4.21) converges
to weakly to a zero-mean normal vector with covariance V7 ;(8o) = El[Zizl Qur(B0)]®?

The second term in (4.21) is asymptotically zero-mean normal vector with covariance
matrix 20V (o) = S22 Vany (T2 (1-Any) 3oy Jo [Riuk(fo, 1)~ g iG-S (6))

EZ(H?:I(I_AZIJ')Yllk(t))
dAOk(t)) by Héjek [1960]’s central limit theorem for finite sampling.

It follows from Héjek [1960]’s central limit theorem for finite sampling and Cramer-
Wold devices that the third term to the last term in (4.21) converges to weakly a zero-mean

normal vector with covariance (1 - o) Zizl Vrirrik(Bo) where

Virrk(53)
1- Yiur (1) E{dQu1x(B,1)|O110, &1 =
- PO E(Viue(0)Ono)
Yiur(t) Er{dQur(B,1)|O01, &1 =
Ei{Yix(t)|©:01}
Yiur(t) E{dQu1x(5,1)|O111,&1 =
E{Ynx(t)|©n1}
Yiur (1) E{dQu1x(B,1)|O111,&1 =
E{Ynx(t)|©n1}

Var(Quk(ﬂ) [ 0 |©110,&11 = 0)

1 - 0
+ Pr(©p0) }|91107fl1 =0)

Var(Quk(ﬂ) - [

1 1
+ —Pr(@lll)

0
1 }|@l117€l1 =0)

Var(Qzuc(ﬁ) /

0
}|®l117§l1 =0)

+ iPr(@lll)l Varl(Qllk‘(B) /
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since four components are independent.

In addition, n V2 Yk, ¥ 22 Quik(Bo) and n Y2yl v 2 (1 - fh) Jo T (1 -

Yy (O B [T12., (1-A1 ) Ry1k (¢
Avij) Lk (t)d Aok (t) where Lyg(t) = Rir(t) - lk;l)[l{?[ﬂzlim;iflfk(lﬁ;}( )

are independent

since

Cov (nl 12 ZZlek fo), 1/222(&1 1)/ H(l Alzg)lek(t)dAOk(t))

i=1k=1 i=1k=1

n; 2 -
E{”l_l Zle(ﬁo)ZZ(&Z 1)/() U(l_Alij)Llik(t)dAOk(t))

i=1 1=1 k=1

Ed
—_

=1 1=1 k=

E{E(n[liéj@m(ﬁo ii €h—l)/ H(l Alw)lek(t)dAOk(tN}—(T))}

2

n; 2 ng
E{nl_lgkz_:lQlik(ﬁo)ZZ ( &Z 1)|7:(T))/ H(l Alzy)lek(t)dAOk(t)}:

By using similar arguments, n~/2 ZlL:l PO 22:1 Qix(Bp) and the third to the last term in
(4.21) are independent. Since &;; and ny;;, for k = 1,2 are independent, n~1/2 ZZL:1 Y 22:1 (%’—
1) [y H?zl(l — Ayij) Liir (t)dAor (t) and the third to the last term in (4.21) are independent.
Combining all the results, n 120 & (By) converges weakly to zero-mean normal vector with

covariance matrix g () where

S6(8) = S a{Via(B) + 2V () + (1-a) S Vinran(8)),
=1 k=1

2
Vi(8) = B[ Y Qui(B)]®2,
P

Viri(B8)
2 2T Yiur (8) Er(IT52, (1 = Apy) Rur(B, 1))
= \/ 1“[& ] }% 5 - dA- t 9
arl(jl:[l( 11])’;[) [Ruk(B,t) (o (1 Ay V(1)) JdAor(t))
Virrie(B)
= Pr(@uo) 1- Y1 Varl [Qllk(ﬁ) _ AT Yllk(t)E{ECj?}l%I;:é,)Tgl@lél}o, fu = 0} ]9110,&1 _ O]

7 Yok (8) E{dQuik (8, £)[O101, &1 = 0} O, & = 0]
E{Y1x(t)|©:01} ’
Y (6) E{dQur(B,1)|0111, &1 =
E{Yr(t)©n1}
Yiur(8) E{dQur(B,1)0111, &1 =
E{Yr(t)©n1}

1
+ Pr(001)

— e Var[Qur(8) - fo

1

1 0
+ Zpr(@m) }191117511 = 0]

o Var[Qui(8) - /OT

1
+ —Pr(©1)

0
1 }191117511 =0].

L Var[Qui(8) - fOT
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Hence, U G(ﬁo) converges to zero in probability and, consequently, (IV) is satisfied. There-
fore, (I), (II), (IIT), and (IV) are satisfied, which implies that 5% converges to By in probabi-
ilty by the extension of Fourtz [1977]. By consistency of 3 and Talor expansion of U% (o),
B = By is asymptotically normally distributed with mean zero and with variance matrix
A1Y6(B0)A™! where A = Z%zl Ap.

Proof of Theorem 4 Note that

ity Tk (u)d Ny (u) ¢ 30 mak (w)d Mg, () ¢ 5 (8o, u)dAox ()
aG ¢ i=1 _ i=1 k
0 [ e h e h 80 G

n2{AI(BY,t) - Agr(t)} can be decomposed into five parts:

n P REL(BY 1) - Aok(t)}

t 1 1 Lo
= n1/2 = = lzk(u)
) n50 (3¢, u) 05 (By.u) R
t 1 1 L
+ n'/? — ik (w) = 13 Mg, ()
/0 nSéO)(ﬂG,u) nS()(Bg,u) ;;
t 1 1 -
+ nlf? 0 = - = )5(0)(50710)61/\%(“)
) 53¢ ) 50 (B0,w)
[ ™33 M ()
0 5‘“”(50, w) = i
t
—r Y 3 (i () = 1ydMig(w)) (4.22)
) S(O)(ﬁo,U) zZZ
By Taylor expansion, it can be written as
1 1 S CANT) L
S S CAD iy RPN

0@ ) 59600y 55, )

where 3* is on the line segment between 3% and fy. Plugging into the first term in (4.22),

we have

tf Vg AT\ L m
Ji (_M)(ﬁc_m{n1/2dzzMM(u)}, (4.23)

S,EO)(B*,u)2 I=14=1
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where 8 is on the line segment between B% and B;. Due to consistency of BC. B* also

converges to By in probability uniformly. Since S’Igo) (B*,u) and S’Igl)(ﬁ*,u) are of bounded
508 )"
SRICEOE
and can be written as sum of two monotone functions in ¢. In addition, we have shown

variations and S,go)(ﬁ*,u) is bounded away from 0, is of bounded variation
consistency of BE weak convergence of n~12q Zlel Z?zll Miix(u) to zero-mean Gaussian
process with continuous sample paths, and the uniform convergence of glgo)(ﬁ*,u) and
S ,gl)(/B *,u). Therefore, by lemma 1, (4.23) converges to zero in probability uniformly in ¢.

By similar arguments for the first term, the second term in (4.22) can be shown to
converges to zero in probability uniformly in ¢.

It follows from Taylor expansion that the third term in (4.22) can be written as

&(1) o+ T

G A VI

o ( EOpm ) (5 - 30) S (5o, w)dAaw(u) (1.21)
0 Sk (6*77“")

Note that 8¢ and 8* converge to 8y in probability uniformly, g,go)(ﬁ*,u) and géo)(ﬁo,u)

converge to s]io)(ﬁo,u) in probability uniformly where s]io)(ﬁo,u) is bounded away from

Zero, S’Igl)(ﬁ *,u) converges to S]gl)(ﬁg,t) in probability uniformly, and dAg;(u) is bounded.

It follows from the above results, (4.24) is asymptotically equivalent to
nl/Qlk(B()v t)T(BG - 50)7

where I1,(Bo, )T = fot —ep(B,u)dAok(u) and eg(By,u) = s,(gl)(ﬁo,u)/s](co)(ﬁo,u).

Since S’Igo)(ﬁg,u) converges to s,(go)(ﬁo,u) in probability uniformly and s,(co)(ﬁo,u) is
bounded away from 0, we have Slgo)(ﬁo,u)’l LA slgo)(ﬁo,u)’l. In addition, n~/2d Zlel PO
Mk (u) converges to a zero-mean Gaussian process with continuous sample paths. Hence,
the fourth term in (4.22) is asymptotically equivalent to

[Ot L {n_l/Qdi 5" Mlik(u)} .

s,(go)(ﬁo,u) I=1i=1
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The last term in (4.22) can be written as

L L n
! W{n-lﬂ > 3 i) = 1M ()}

Bo, 1) &

- st G 1)}2[<1—A1ij>}dMZik<u>}
A m{n*” > i_z:{@k(u) L& ﬂ(l Auig) My ()}
JA m -1/2;;«7’“—1)(1 60) At (1~ Avig)}d M (w))
[ m{n“ > i_zll{wmurl 5 i (1= ) Avia (1 - Avia) M (w))
JA tW -WZZMZIH”“Q D)(1 - &0)(1 = M) Ario}dMige ()}
fotm{w”;;«m(u)1—m;)m(l—@-)(1—Am)Am}de)}
fotm{ -1/2;;{ 5 (A~ 1)(1- ) M A d M (1))

t 1 _ LN 1 .
fo W{n 1/2;;{5(%%@) Y 3 min (1 = &) Ay Agin }d Mg, (u) }

fot; *1/222{ (71“2—1)(1 &) A1 Ao yd My (u) }

S,go)(ﬁo,u) I=1i=1
L s - 1 - &) Ay Apin ydM, 4.25
fo S”lgo)(ﬁo,u){ ;;{ (A (w) ™ = A a2 (1 = &) Apin Ao bdMyir (u) } (4.25)

Due to uniform convergence of Slgo) (Bo,u)~t to s,(CO) (Bo,u)~! where s,(co) (Bo, u) is bounded
away from zero, the asymptotic properties of (4.6), the first and second terms are asymp-

totically equivalent to

*WZZa—f“)H(l Auig) [ Via(u) (e )

I=1:=1
B E[I1 jzl(l—Alj)BB Z“k(u)Yllk(u)] dAOk(u)
E[H?:l(l - Alj)}/llk’(u)] (0) (ﬁ()vu)

By using uniform convergence of 5’,50)(@3, u)! to s,(co)(ﬁo, )~ where 55 )(Bo,u) is bounded
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away from zero and the asymptotic properties of (4.8), the third and fouth terms are

asymptotically equivalent to

2SS A (1= A (1 - &) (5 1)

I=11=1

L i ) — Vi (o) PLAMain ()00, €1 = O]
/0 SI(CQ)(BO’U) [dMix(u) = Yiig(u) FaYiar (0)l0m0] ].

By similar arguments, the last term in (4.22) is asymptotically equivalent to

S f“)H(l Auy)

1=11i=1
, “As DB Ziir(u)
5 \[t}/'lik(u){eﬁTZlik(u) 3 l[ 3:1(12 Al])e th(U)] . ((10[}0/?(“)
El[njzl(l_Alj)}/llk(u)] Sk (/307111)
L ng X
o IS A (1= D) (1 - &) (1L 1)
iI=1i=1 n
t 1 Ey[dMir(w)|0110,&n = 0]
——|dMj; -Y
fO s(o)(ﬂo, )[ k() = Vi (u) E[ Y1k (w)|010] ]
+ n’l/ZZi(l Agn)Auz(1 - flz)(nm -1)
1=11i=1
t 1 l[szik(U)|95017&1 =0]
. [dMy(u) - Yy
fo s\ (8o, u )[ ) = Vi) Ey[Yiax (u)|0101] ]
+ 71/2226 AlzlAlz2(1 glz)(mll - 1)
1=11i= 1
t 1 Ey[dMi,(uw)|0i11,6n = 0]
——[dMj; -Y
fo s (4, u)[ (1) = ik () Ey[Yinx(u)|0i1] ]
+ _I/QZZI: 5 Au1Aua(1 - &z)(nm 1)
I1=11= 1
t 1 Ey[dMir(w)|0111, &1 = 0]
. [dMy(u) - Y
fo Séo)(ﬁo,u)[ (1) = Vi (u) Ey[Yire(w)|6i11] ]

Combining all the results, we have

n P {REL(BY, 1) - Aok(t)}

L n
= 0B, ) (B - o) + [ W{ AR Y Mii u>}
S 0, U

I=11=1
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L ny
n 2SS 5“)Hu Auj)

1=14=1

. 2 (1= Ay)eB Ziin(w)y, dA
[ Vi (u) (e Zunt) _ B Ey[T1 ]_1(2 15)€ nk(w)] (O)Ok(u)
0 E[TT5.0 (1 = A1) Yirg(u)] s (Bo,u)

+ A (1= Q) (1 - Eli)(nfﬂ -1)
g4l

+

X

Ey[d My (u)]0110, &1 = 0]

t 1
« A —[dMl,k(u) - }/lzk(u) El[}/ilk(u)wllo]

s (8o, u)
(1= D) Ao (1 - &) (2 _q)
Y2

t 1 4 v oo ElldMiig (w)|0i01, € = 0]
fo Séo)(ﬂ07u)[dMllk(u) Yiie () Ey[Yie(u)|001]

1 Ey[dMir(w)|6i11, &1 = 0]

1 i1 , 7
+ EAlilAlz?(l_&li)( = ) 0 m[dMlzk(U) }/lzk(u) Ez[Y21k(U)|‘9111]

! [dMyx(u) = Yig(u) Ey[dMyi (u)|6i11, € = 0]

1 i
+ §Ali1Ali2(1 - £li)(n~l 2-1)

0 3(0)(507 w) Ey[Yiix(uw)|0i11]

+ 0p(1)
Note that

L n; 2

n'/2(6% - By) = A(Bo) ™ ZIZ;ZQM(%)
-1/2 Lo 2 glz 1 _ _
bR
T 2 _ Vi (8) B[ T30 (1 = A15) Z1x(1)]

x fo (1= Auj){ Ziie(t) - Y M (t)
=1

E[szzl(l ~ Aqy)Ye(t)]

L n; 2 Mt
+ 2 ZZ Z(l—SZi){Azil(l—Aliz)(f -1)
i1 ik

oy [ B o0

v o(1- Azl‘l)AliQ(Zlej - D[Qun(8) - fo ' m’“(t)E[g%f:g’)%%“g“ =9,

+ gomdunCE - DiGu(n - [T S =0
RS B 7
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Using the above equation, we have

1/2{A F(BY,t) - Aok ()}

_1/2 Z Zl: {lk(ﬁ()? t)TA(BO)_ Z lem(ﬁO) f (0)

I=113=1

szz‘k(U)}

, U

S 50 30 A ) 55 [ i)

i=1i=1
Ylim(u)El[H?ﬂ(l = Auj) R (u)]
EyTT5. (1 = Auy) Yiim ()]

1dAom (w)

Ey(TT50 (1 - Apy) Yiae(u)

2 t o BT (1= Apy)e? 2@y (w)) dA
H(l—Azij)fO Yiir () {eBTZ“’“( ) J=1 J 0k (1) }
j=1

(8o, u)
/2 i% [1k(Bo, )T A(Bo) M2 z(l—ai)

1=14=1 m=1
™ Yiim () Ei[dQ11m (Bo, u)[O110, &1 = 0]
Ei[Yi1m (w)|©110]
Yiim (u)Ei[dQi1m (B0, 1)|O101, 1 = 0]

{Au (1 - Aga)(

]

D) Qun(9) - [

(1- Am)Am(mZ2 - D[Qum(8) - f Ei[Yi1m (t)[O01] ]
1 i1 hm(u)El[dQllm(ﬁoﬂ@lllafll = ]
§Alz1Alz2( - D[Quim(8) - _/ Ei[Yiim (w)|O11] )

. o Yiim (0)Ei[dQ11m (50)[O111,§n = 0]
EAMAM( - D)[Qiim(Bo) - / El[Yg1m(U)|®lll] 1

1

L ny
2SS A (L= Ao) (- &ML —qy [ L
n ;g i1 ( 12) (1= &) i 1) o 5(0)(ﬁ0,u)

Ey[dM(w)|6110,&n = 0]
E[Yiur(w)|610]

(1 Alzl)Ale(l &z)(z/llzj 1)—/0t

[d Mg (w) = Vi (u)

__1
S](CO)(BO,U)
Ey[dMyx(uw)|0101,&1 = 0]
Ez[Ynk(U)Wlm]
L 1 . . Ey[dMyx(w)|011,&1 = 0]
§A111Al22(1 flz)(~ ) 0 —3(0)(50 u)[dMlzk(U) }/lzk:(u) El[}/llk(u)lelll]

1 Ey[dMyi(u)|0111,§n = 0]
——[dMy; -Y;
Sl(fo)(ﬁovu)[ I k(u) l k(u) El[Yllk(U)WZH]

[d Mg (u) = Vi (u)

1 i t
S Ai(1-g) (22 - [

i3 0
op(1)

L ny L L ny
n NS vk (Bost) + 02 Y Z(l - @)Qm(ﬁo,t) +n 23S G (Bo, t) + 0p(1)

l=114=1 [=1:=1 l=114=1
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where

ik (5,1) = (8, )T A(B) z@hmm [ dMiaw),

(0) (B,u)
Gir(B:t) = (B, 1) T A(B) ™
2 o _nim(u)El[H§:1(1—Auj)Rllm(U)]
g 77;1-[0 (Riim () El[ngzl(l_Allj)Yzlm(u)]

BT, (1 - Agj)e® 26 Y0(u)) | dAgy(u)
N u BT Zyin (u) _ Ok
U(l Auz) f i) { El(H‘—l(l A1) Yiig(u)) }slﬁo)(ﬂo,u)’

our(B,t) = (B, )TA(B) ! Z (T-&)[Am (1~ Am)(mZl - 1)31(@2(5,75@110)

m=1

+ (1- Am)Am(gl;j - 1)31(12(5%@101)

]dAOm(u)

1 i i
5B {(T0 - DB (5.110m) + (22 - DB (5.110m))]
i3 Y4

+ (1-&a)[An (1~ Am)(zyl;ll - 1)31(;)(5,t|9110) +(1- Alil)AliZ(Z;;; - 1)31(2-?(5,75@101)

1 i i
+ EAmAm{(?zl - - 1)Bl(i3€)(5775|@l11) + (Zyllj ~1)B)(8,t1011)}]
E{dMj11,(u)|Oq10,&i = 0}
E{Yix(u)|Opim}

E{dQur(B,u)|Ojm, & = 0}
El{Yni(B,u)|Opm}

Bl(zlk)(/B’t|@ljm) f [dMuk(U) - Yy (u)

(0)(50 u)
Bl(jg)(ﬁ’ﬂ@ljm) = Qur(B) - fo Yiir ()

(B07 == [["en(8,u)dhok(v)

Let P(t) = (PO (t) + PA(t) + PA)(1)) where PO (1) = (PN (1), PV (4))7, PO (¢) =
(P2 (@) P ()T, PO0) = (P (0). P (0)T, BV ()T =7 Sy S v (o).
PAWT = n P EE T Gar(Bo ), and BP0 = n72 T B pur(Bo, ). Then, by
theorem 4 of Spiekerman and Lin [1998], P()(t) = (Pl(l)(t),PQ(I)(t))T converges weakly
to a zero-mean Gaussian process P (t) = (Pl(l)(t),Pél)(t))T and covariance functions
between Pj(l)(t) and Plgl)(s) is ZZL:1 aEr{vin;(Bo,t), vik(Bo,s)} for t,s € [0,7] in Do, 1%

We will show weak convergence of P(*)(t) to a zero-mean Gaussian process P (t).
Note that s,go)(ﬁ,t) and El(ngl(l - Ay1;)Yiik(t)) are bounded away from zero, I(8o,t)7,
B 2y (1), EZ(H?ZI(l - Allj)eﬁTZ“k(t)Y}lk(t)), and dAgg(t) are of bounded variations

based on conditions (b), (c¢), (d), and (g); A(By) is positive definite based on (e). Hence,
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it follows from Cramer-Wold device and lemma 2 that the finite dimensional distribution
of P)(t) is asymptotically same as that of P(*)(t) for any finite number of time point
(t1,...,t). The next thing that we will show is that P(®)(¢) has tightness. It suffices
to show the marginal tightness of P,EZ) (t) for each k since space D[0,7]¥ is equipped
with the uniform metric. By applying lemma 2, the marginal tightness follows to P]52)(t).
Combining all the results, P (t) = (PI(Q)(t),PQ(Q)(t))T converges weakly to a zero-mean
Gaussian process P2 (t) = (Pl(Q)(t),PQ(Z)(t))T and covariance functions between 73](2)(15)
and P (s) is BF) a5 Bi{Guy(Bost), Guk(Bo. )} for t,s € [0,7] in D[0, 7]

Similarly, (3)(75) can be shown to converge weakly to a zero-mean Gaussian process

where covariance function 79](.3)(15) and Plgs)(s) is Zlel aEi{en;(Bo,t), viik(Bo,s)} where

Ei{¢11;(Bost), ik (Bo, s)}

) 1-
= I(j = K)pr(©no) (— 1) Cou [ B (8, 10110) B (B, 5|0110)O110, &1 = 0]

+ I(j=Fk)pr(©p1) L

ov[ B! ik (8, t|9101)Blzk (B,510101)|8101, &1 = 0]

, r(© 1-
w16 =P ) Cou B (5.6 B (5. 0O, 61 =0

) r(© 1-
M R LALIY ) Cou B3 (6,110m) B3 (5. 0/ Ous 1 =0]

+ pr(9110)( )COUZ[Bh] (Bo,t|©110) 1k (Bo, s) " A(Bo)” 131(2?(573|@l10)|91107£l1 =0]

+ p"(@lm)(T)CO u[ B} g 2) (80, t10120); 1k (B0, $)TA(Bo)~ 131(2?(6’5|@llo)|6110>£l1:0]

r(© 1-
e 2O (L2000 0o B2 o o) o )T AG0) B (5.l iBuns & =0

pr(@m)(l —’le)
4 12

u[B (Bo. t1011) 1k (B, )" A(Bo) " B (8, 51001110011, €1 = 0]

oul[ B (8o, 510110), 1 (Bos )T A(Bo) " B (8, H10110)|O110, &1 = 0]

+ (@) “)o u[B2) (B0, 51010), 13(Bo, )T A(Bo) " BY (8, 10110)Or10, 1 = 0]

+ p?"(@“”(1 0y Cou[BE (Bo, 510u1), (o, t) " A(Bo) " BE (8, 410011)0111, 1 = 0]

4 m
© 1-
o 2rOm) —E)Coul By (Bo, 510 13 (o,t) ABo) ™ Byl (5,10111)]Ons 1 = 0]

— ) (Bos 1) A(Bo) !

2 1
+ EI[PT(GUO)(
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x Covl[ma(ﬁ,ﬂ@lw) BY (8, 510010)]A(Bo) " (Bo, s)T
+ (@) (2 ”)zkwo, )T A(Bo) ™

x  Cou hm(ﬁ t|9101) B (8,50101)]A(Bo) " 1(Boy s)T

. Pr(i)ln) ( 1 ;’m Vi (o, )T A(Bo) !

x  Coy| hm(ﬁ t©11), Blzm(5,5|@l11)]A(IB0) 1;(Bo, )"

. pr((jm) ( 1 ;%2 Vi (o, )T A(Bo) !

x Cou lzm(ﬁ t©11), Blzm(ﬂ73|@l11)]A(/80) '1;(Bo,s)"].

By the conditional expectation arguments, all terms are mutually independent. There-
fore, P(t) = P (t) + PA)(t) + PG)(t) converges to a zero-mean Gaussian process G(t) =
PU(t) + PO (1) + PO(1).

Proof of Theorem 5

We will compare the asymptotic variance for the proposed method and the existing
method. Consider the unstratified generalized case-cohort study (i.e. L =1). From Theorem
3, the covariance matrix for 8¢ involves the first derivative of the weighted estimating
functions, A(fBy) and the asymptotic variance of the the weighted estimating functions,
Yc(Bo). The first derivative of the proposed weighted estimating functions, A(fy) is the
same as that of (4.2). Therefore, we only need to compare the asymptotic variance of
the proposed weighted estimating functions UG(B) with that of Kang & Cai’s weighted

estimating functions T¥¢(8). Note that n=/2U% () can be decomposed into four parts:

n-1/2 Z Z [ {lek(t) - %} d My (1)

i=1k=1 0,t

n~1? % 22: /T {Skl)(ﬁmt) B ﬁél)(ﬂo,t)}dMuk(t)

' i=1 k=1 0 S(O)(ﬁ(bt) S(O)(ﬁovt)
+ _I/QZZf (m1ir(t) - 1){Z12k(t) (1)(/807 )}dMlik(t)
i=1 k=1 (0)(50, t)
(1) (1)
+ —1/22 Z [ (e (1) = 1){ 3 (Bost) _ ik (Bo’t)}dMuk(t) (4.26)

Y(Bo,t) 5 (Bo,t)

i=1k=1
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Since the second and the fourth terms in (4.26) converge to zero in probability uniformly in
t, resepctively and the first term in (4.26) converges to the same limit as that for UX¢(8),
we only need to compare asymptotic properties of the third term with the proposed weight
in (4.26) with that with the existing weight. Therefore, we will compare asymptotic variance

of the third term with the proposed weight with that with existing weight:

ny 2

Var [Z Z / (wiik(t) = 1) { Z1ix(t) — er(t) } dMy(t )]

=1 k=1
ny 2

_Var I:Z Z AT(Wlik(t) - 1) {lek(t) — 6k(t)} thk(t)]

i=1k=1

It is sufficient to show the difference between the second moments since the first mo-

ment of E[Z?:ll Z%:l fOT(wlik(t) - 1){Zlik:(t) - ek(t)}dMlik(t)] and E[ ?=1 Ei;l fOT(ﬂ'lik(t) -
D{Z1ix(t) — ex(t) }dMy;(t)] are zero. Hence, we get

ny 2 2
E[ / (wiak(t) = 1) { Z1ix(t) — ex(t) } dMyip (2 )]

zlkl

ni T 2
-E [Z i fo (mia(t) = 1) {Z1ak(t) - ex(t)} dMlik(t)] (4.27)

i=1 k=1

Note that the weight functions wy;;(t) and ;1 (t) converge to time-invariant weights, wy
and my;, respectively, where wy;, = (1 - Alik)fliafl + Aqip€ri + Aqip(1 - fu)mikyl_kl and
ik = H?:1(1 - Ay)éat + {1 - H?:1(1 = Avi) Yri + Apin (1= Ayi2) (1 = E)mag + (1 -
A1) Avi(1 = &)miarts + 38101 A1i2(1 = &) mait + 381 Avi2(1 = &) M2 is -

Hence, (4.27) is asymptotically equivalent to

2

B33t - 1)Q11k(t)]2 B[ S - D)
Bl ) EQh ()] + Eluts - 7 E(G(0)
+ 2{Elwinwis - 71 ]} E[Qu11 (1) Qua(t)]
> 2\/Bluwdy, - Elwl, - 74 1 B[Q (D]ELQh, (1)

+ 2{E[winwiiz - 71} E[Q111 (1) Q112(1)],
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v

+

2\ E[w?y, - 2 1E[wh, - 72 IV EQ3, (DE[Q2,(1)]

2p{ E[winwinz - 74 11 ELQ, ()1 E[Q%,(1)]

2[\/E[w%11 -2 |E[w?), - 73] + p{ E[win1w112 - W%ﬂ}]\/E[ i (O]E[QT,(1)]-

Since \/E[Q%,(t)]E[Q?5(t)] is always positive, our prposed weight is more efficient

than the existing weight if

[\/E[U)%H - W%I]E[’UJ%Q - 71'%1] + p{E[’wlnwng - 7'('%1]}] >0

\/E[w%n - ﬂ-%l]E[w%lZ - 77%1] > —p{E[winiwiiz - 77%1]}

E[w%n - W%l]E[w%w - Wfl] > [p{E[win1wii2 — W%l]}]2'

To get the simple form of E[w?, - 73], E[lw?y - 73], and [p{E[wii1wi12 - 73]}], we

denote

Then we get

p = Corr(Quu1(t), Quia(t)), o = lim pr(&y; = 1),
p1L= nh_{{)lo pr(Ayn=1), p2= T}l_{g) pr(Aye =1),

Y11 = 7%1_{{)10 pr(niin = 1A (1 -&) =1), y12= 711_{1;10 pr(niiz = 1|A12(1 - &1;) = 1).

E[w%n - W%l]

(I-a)pi [(1 —p1)(1-p2)
Y11 Qg

+op1 + +an{l = (1-p1)(1-p2)}

(1-a1)p1(1-p2) . (1-o1)p1p2 N (I-a1)p2(1-p1) . (1-o1)p1p2

P2 —p1p2

Y11 411 712 412
(1-a)pipz (1 -a1)pip2
71 411

—ap2 —p1p2) +

(1-a))A-p)p2  (1-ai)pips

(- anp(i=p) + (1-an) |
aq

ail{a ~ar)(L+ar)pa(l-p1)} +

Y12 412

3pip2 P2 N Splpz]
dvii 2 e

3(1-ai)pip2, 1 1 (1-01)p2
SRS 0/ Y P NS

4 Y11 Y12 Y12
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1+ 3 1 1 1
= (- an)pe| () + P+ ) -

4 "y 20 M2

Similarly, E[w?,, — 7%;] can be written as

1

E[w%lz 7T11] (1- Oél)pl[ 4 9

Also, Flwiiiwii2 — W%l] can be written as

Elwinwiie - Wfl]
(I-p1)(1-p2)

3 1 1 2
> 02[171{1—E}me{l—%}ﬂ?lp?{;l(g+—)—1}] .

then the asymptotic variance for our proposed method is smaller than that for Kang and Cai
[2010)’s method. Specifically, smaller a; induces larger (1 + «1)/a1, which dominates other
contributions in E[w};; - 73 |E[w}s — 731]. The quantity (pE[wii1wii2 — 73 ])* depends
on the selection probability of a subset of cases 11 and 715 for fixed the disease rates pq

and po. This indicates that selecting small size of the subcohort and larger portion of cases

Y12

90

+(1-p1)p2 +p1(1—p2) + aapip2 + (1 — 1) p1p2 —

_]'

Hi-p) - B -],

[(1 -p1)(1-p2)

aq aq
1-aq)pi1(1-ps 1-o1)pip2
oa{1= (1= pr)(1 - oy} + Lm0l op2) (17 01)
Y1 411
(1-a)(A-p)p2 , (1-a1)pip2
Y12 412
3 3
p1+p2—pip2 —aq(p1 +p2 —pip2) - (1 —a1) [— _ bz P2 M]
M1 4y Mz 472
3 1 1
(1-a1) [p1 +p2—pip2 + plp?{— +—}- L p—z]
4 "y M2 M1 M2
1 1 3. 1 1
(1-an|pil-—}+pll- ) spima{{ (o + =) - 1]
Y11 Y12 4 v 72
Thus, we have
E[wiy; - 51 1E[wiy - 7111 > [p{E[winiwiiz - 71,1}
1+ o 3p1 1 1 1+ o 3p2 1
pipa [ (L) + Ty [ 1 R
m1 Yi2T M2 4 "y M2

1

)

711

Therefore, if the condition E[w};; -7} |E[wis—731] > (pE[wii1wi12—73])? is satisfied,



improves the efficiency for Kang & Cai’s method.

4.4 Simulations

We conducted simulation studies to investigate the finite sample properties of the pro-
posed methods, compare it with Kang and Cai [2010)’s method, and compare the perfor-
mance of stratified sampling with unstratified sampling. Consider the situation that stratum
variables are available and two generalized case-cohort studies have been conducted for non-
rare disease 1 and nonrare disease 2, respectively. In this situation, covariate information are
collected for the subcohort and a portion of the subjects outside the subcohort with disease
1 and disease 2. We generated multivariate failure time data from Clayton-Cuzick model
(Clayton and Cuzick [1985]). The bivariate survival function for the bivariate survival time

(T1,T>) given (Z1, Zi2) has the following form:
F(t1,t2| 211, Ziz) = {81 (t1; Znn) M7 + Sa(ta; Zio) ™% - 1377,

where A\oi(t) and S k = 1,2 are the baseline hazard function and the effect of covariate
for disease k, respectively, 6 is the association parameter between the failure times of the
two diseases, and Si(t; Z;) = Pr(Ty > t|Z;) = e~ Jo* Nor(B)e ke, Exponential distribution
with failure rate Agre® %% is considered for the marginal distribution of T} k = 1,2. Two
failure times, 71 and 7> are independent as 8 — oo. The relationship between Kendall’s

1

tau, 79, and 0 is 79 = 557

—- Smaller Kendall’s tau represents less correlation between T}

and T5. Values of 0.1, 0.67 and 4 are used for ¢ and the corresponding Kendall’s tau
is 0.83, 0.43 and 0.11, respectively. We set the baseline hazard function A\y; = 2 for the
first failure event type k = 1 and Ag2 = 6 for the second failure event type k = 2. For
covariates, we consider the situation Z;; = Zjo = Z where Z is generated from Bernouilli
distribution with pr(Z = 1) = 0.5. To consider stratified subcohort sampling from two
strata defined by V;, we define two parameters: n =Pr(V =1|Z =1) and v =Pr(V =0|Z = 0)
where n is sensitivity and v is the specificity for Z. Unstratified sampling with same

probability, i.e., n = 0.5 and v = 0.5 is a special case. Larger values n and v values than 0.5
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indicate that V' is highly correlated with Z. For stratified case-cohort studies, we set the
values [n,v] =[0.7,0.7] and [n,v] = [0.9,0.9] . Thus, a stratum variable is simulated with
Pr(V=1)=(1-v)Pr(Z=0)+nPr(Z =1) =0.5. Censoring time is simulated from uniform
distribution [0,u] where u depends on the specified level of the censoring probability. We
set the event proportions of approximately 8% and 15% for k = 1 and 22% and 36% for k = 2.
The corresponding u values are 0.08 and 0.16, for 5 =0.1; 0.06 and 0.11, for 8 = log(2).

The sample size of the full cohort is set to be n = 1000. We select the subcohort and
a subset of cases by unstratified sampling as well as stratified sampling and consider the
subcohort size of 200. We select the subcohort 7; = 72 x ¢; from each stratum. By using
simple random sampling, we select non-subcohort cases size of My, = (g — Tyx) X Yy, for
k=1,2 and [ =0,1. We consider the same sample size for two sets of event proportions.
For event proportion [8%,22%], v is set to be [1,0.57]; for event proportion [15%,36%],
vk is set to be [0.53,0.44]. For each configuration, 2000 simulations were conducted.

In the first set of simulation, we consider the simulations of two stratified generalized
case-cohort studies with non-rare diseases. Our main interest is to estimate the effect of Z
on disease 1. We will examine the performance of our proposed estimator based on (4.4)
with K = 1 which uses the additional information collected on the sampled subjects with
disease 2 and compare the stratified sampling with the unstratified sampling. We will also
compare our results with those using Kang and Cai [2010]’s method for disease 1 which are
based on (4.2) with K = 1.

Table 4.1 summarizes the results. For different combinations of event proportion, the
subcohort sample size, correlation, and sampling methods, Table 4.1 shows the average of
the estimates for (2, the average of the proposed estimated standard error (SE), empirical
standard deviation (SD), and sample relative efficiency (SRE). The subscripts for SE, SD
refer to the proposed method (P) and Kang and Cai [2010]’s method (K). To compare the
stratified sampling with unstratified sampling, the sample relative efficiency in the proposed
method (SRE)) is defined as S Dz for unstratified sampling over S Dg for stratified sampling.
The sample relative efficiency (SREj) in Kang and Cai [2010]’s method is defined as SD?

for unstratified sampling over SD,% for stratified sampling. STR1 and ST R2 represent
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Table 4.1: Simulation result

with a single disease outcome (K =1): ;1 =log(2) =0.693

Model
Py

gp!

To

The Proposed method
SD, CR,SRE, [

by

SE,

Kang and Cai’s method
SDy CRy SRE), SRE

SEj

UNS 22%

36%

STR1 22%

36%

STR2 22%

36%

0.57

0.44

0.57

0.44

0.57

0.44

0.83
0.43
0.11
0.83
0.43
0.11
0.83
0.43
0.11
0.83
0.43
0.11
0.83
0.43
0.11
0.83
0.43
0.11

0.704
0.704
0.702
0.706
0.697
0.696
0.695
0.707
0.704
0.702
0.697
0.700
0.701
0.703
0.700
0.706
0.694
0.700

0.221
0.221
0.221
0.193
0.193
0.192
0.215
0.216
0.217
0.189
0.190
0.189
0.196
0.200
0.202
0.174
0.179
0.182

0.225
0.229
0.215
0.194
0.195
0.194
0.223
0.214
0.215
0.192
0.186
0.185
0.198
0.193
0.194
0.165
0.167
0.167

95
94
96
95
94
96
95
95
95
95
95
95
95
96
96
97
97
97

1.00
1.00
1.00
1.00
1.00
1.00
1.02
1.14
1.00
1.02
1.11
1.09
1.29
1.40
1.23
1.38
1.36
1.35

0.704
0.705
0.704
0.701
0.698
0.699
0.693
0.709
0.704
0.696
0.697
0.702
0.698
0.703
0.700
0.703
0.694
0.699

0.227
0.226
0.227
0.199
0.199
0.199
0.223
0.223
0.223
0.197
0.197
0.197
0.209
0.209
0.209
0.191
0.192
0.192

0.229
0.233
0.220
0.197
0.200
0.199
0.228
0.217
0.218
0.195
0.192
0.194
0.204
0.196
0.198
0.171
0.172
0.173

95
94
96
95
94
96
95
96
95
95
95
96
95
97
96
97
97
97

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.15
1.01
1.02
1.08
1.05
1.26
1.41
1.23
1.33
1.35
1.32

1.03
1.04
1.04
1.03
1.04
1.05
1.05
1.03
1.03
1.04
1.07
1.09
1.06
1.03
1.04
1.08
1.06
1.08

SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the cov-
erage rate of the nominal 95% confidence intervals; SRE = SD?/SD?
SRE, = SDg for unstratified sampling/SDg for stratified sampling, sample relative efficiency in
the proposed method; SRE} = SD% for unstratified sampling/SDz for stratified sampling, sample
relative efficiency in Kang & Cai’s method; UNS, unstratified sampling; ST R1, stratified sampling

p?

with [n,v] =[0.7,0.7]; STR2, stratified sampling with [, ] =[0.9,0.9].
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stratified sampling with sensitivity and specificity with [n,v] = [0.7,0.7] [n,v] = [0.9,0.9],
respectively.

From the results, we see that both methods are approximately unbiased. The average of
the proposed estimated standard error is close to the empirical standard deviation and the
range of the 95% confidence interval coverage rate is on 94%-97%. In general, the estimates
for stratified sampling of the subcohort and cases have smaller variance than those for
unstratified sampling. To compare the stratified sampling with unstratified sampling, all
the sample relative efficiency (SRE, and SRE},) for models with stratified sampling (ST R1
and STR2) are more than 1, which indicates that stratified sampling is more efficient than
unstratified sampling. This shows that stratum variable available on all the subjects helps
to gain efficiency. When correlation between stratum variables and covariates is larger,
more efficiency gain is obtained. Also, estimated standard errors for the proposed method
are smaller than those for Kang and Cai [2010]’s method. From sample relative efficiency
(SRE), all SRESs are larger than 1. Hence, our proposed method gains the efficiency. The
results for 81 are not shown, but they are similar with (s.

In the second set of simulations, we are interested in the joint modeling of the two
diseases (i.e. K = 2). These correspond to (4.2) for Kang and Cai [2010]’s method and
(4.4)) for the proposed method. We examine the performance of our proposed estimator and
compare it to those from Kang and Cai [2010]. Our main interests are to estimate the effect
of Z on disease 1 (f1) and disease 2 (f2) and compare them. Table 4.2 provides summary
statistics for the estimate of 8y for different combinations of event proportion, subcohort
sample size, correlation, and sampling methods. The simulation results suggest that the
estimates for both methods are approximately unbiased and their estimated standard errors
are close to the empirical standard deviations. The range of the coverage rate of the nominal
95% confidence interval is 94%-97%. All sample relative efficiency (SRE, and SRE},) for
models with stratified sampling (STR1 and ST R2) are more than 1 which implies that
stratified sampling is more efficient than that of unstratified sampling and higher efficiency
gain is related with higher sensitivity and specificity. The variance for the propose method

are smaller than those for Kang and Cai [2010]’s method, which indicates that our proposed
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Table 4.2: Simulation result with multiple disease outcomes (K =2): = [0.1, 0.7]

Model Py The Proposed method Kang and Cai’s method
(31, 72] w BY SE, SD,CR,SRE, [, SE. SDj CRySRE) SRE
UNS [8%,22%]  0.83 0.710 0.201 0.205 95 1.00 0.706 0.206 0.208 95 1.00 1.03
[1,0.57] 0.43 0.705 0.202 0.201 96 1.00 0.703 0.206 0.204 95 1.00 1.03
0.11 0.706 0.201 0.206 94 1.00 0.707 0.206 0.209 95 1.00 1.03
[15%,36%] 0.83 0.712 0.178 0.185 94 1.00 0.704 0.182 0.188 94 1.00 1.04
[0.53, 0.44] 0.43 0.710 0.178 0.181 95 1.00 0.709 0.182 0.18 95 1.00 1.05
0.11 0.712 0.176 0.180 95 1.00 0.713 0.182 0.187 94 1.00 1.08
STR1 [8%,22%] 0.83 0.704 0.196 0.196 95 1.10 0.701 0.201 0.199 96 1.09 1.04
[n,v] [1,0.57] 0.43 0.707 0.197 0.192 96 1.09 0.706 0.202 0.196 96 1.08 1.04
=[0.7,0.7] 0.11 0.700 0.196 0.198 94 1.09 0.700 0.201 0.203 95 1.07 1.05
[15%,36%] 0.83 0.716 0.175 0.174 95 1.13 0.709 0.181 0.177 95 1.13 1.04
[0.53,0.44] 0.43 0.705 0.176 0.175 95 1.07 0.703 0.182 0.178 95 1.08 1.04
0.11 0.709 0.174 0.173 95 1.08 0.709 0.181 0.179 95 1.09 1.07
STR2 [8%,22%] 0.83 0.711 0.179 0.172 96 1.42 0.709 0.189 0.177 96 1.38 1.07
[n,v] [1,0.57] 0.43 0.701 0.182 0.171 96 1.38 0.700 0.189 0.174 97 1.38 1.03
={0.9,0.9] 0.11 0.698 0.183 0.174 96 1.40 0.697 0.189 0.177 96 1.39 1.04
[15%,36%] 0.83 0.705 0.164 0.155 97 1.42 0.701 0.179 0.161 97 1.37 1.08
[0.53,0.44] 0.43 0.700 0.168 0.151 97 1.44 0.699 0.179 0.157 97 1.40 1.07
0.11 0.706 0.169 0.153 97 1.37 0.706 0.179 0.156 97 1.43 1.04

SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the cov-
erage rate of the nominal 95% confidence intervals; SRE = SD,%/SDI%,
SRE, = SDg for unstratified sampling/SDg for stratified sampling, sample relative efficiency in
the proposed method; SRE} = SD% for unstratified sampling/SDz for stratified sampling, sample

relative efficiency in Kang & Cai’s method; UNS, unstratified sampling; ST R1, stratified sampling

with [n,v] =[0.7,0.7]; STR2, stratified sampling with [, ] =[0.9,0.9].
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Table 4.3: Type I error and power (%) in separate and joint analyses: [n,v]=[0.7,0.7]

Event Type I error (81 = B2 =log?2) Power (81 =0.1, 52 =0.7)
S J S J

proportion ~ 7 PR KC PR KC PR KC PR KC
[8%,22%] [1,0.57] 0.83 1.0 0.9 4.0 5.0 40 44 63 67
043 1.7 25 43 5.2 39 43 54 56

0.11 3.1 29 4.5 5.8 41 43 51 54

[15%,36%] [0.53,0.44] 0.83 0.5 1.6 4.2 5.5 52 49 73 69
043 1.5 1.7 46 4.6 50 49 67 63

011 2.7 27 5.1 5.1 52 49 62 58

S, Separate analysis; J, Joint analysis; KC, Kang and Cai [2010]’s method; PR, proposed

method.

method are more efficient than those for Kang and Cai [2010]’s method.

We also conducted simulation studies to examine the Type I error rates and powers in
comparing the effect of the risk factor on the two diseases. We conducted the test based on
the joint analysis with stratified sampling with [n,v] = [0.7,0.7] for the two diseases. We
also conducted tests using the coefficient estimate from separate analysis for each of the
two diseases assuming independence of the sample. Estimating equations (4.2) and (4.4)
with K =1 are used for the separate analysis and estimating equations (4.2) and (4.4) with
K =2 are used for the joint analysis. Table 4.3 summarizes the results for Type I error
rates and powers. Type I error rates are obtained by testing Hy : f1 = B2 under setting
B1 = B2 =log(2) at the significant level .05. The settings for the simulation for the power
are the same as before except that 81 =0.1 and B3 =0.7. The tests under separate analysis
treat the two estimates, Bl and Bg, as from two independent samples. The results indicate
that tests based on our proposed weight function are more powerful than those based on
Kang and Cai [2010]’s weight function and the powers of joint analysis are larger than those
based on the separate analysis. Note that Type I error rates of separate analysis are much

less than .05 while the joint analysis methods have Type I error rates close to .05.
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4.5 Data analysis

We applied the proposed method to a data set from the ARIC study which is a population-
based cohort study [Duncan et al., 2003; Ballantyne et al., 2004]. This study consists of
15,792 men and women 45 - 64 years of age from four U.S. communities recruited during
1987 to 1989. All subjects were followed for incident diabetes. The incident diabetes are
defined as a reported physician diagnosis, use of antidiabetes medications, a fasting (> 8
hours) glucose > 7.0 mmol/l, or a nonfasting glucose of > 11.1 mmol/l. Subjects are regarded
as censored if they are alive and event-free at the end of 1998 or lost to follow-up.

Our main interest is to investigate the association between high-sensitivity C-reactive
protein (hs-CRP), which is a biomarker of inflammation, and incident diabetes events. In
order to measure hs-CRP, a case-cohort study was conducted to reduce the cost and save
blood specimen. Hs-CRP is also available on subjects for incident coronary heart disease
(CHD) from another case-cohort study in the ARIC study [Ballantyne et al., 2004]. Using
available hs-CRP from another case-cohort, we excluded subjects with prevalent CHD and
prevalent diabetes at baseline, transient ischemic attach or stroke, had missing follow-up
visits; were minority race group; had no valid diabetes determination at follow-ups, missing
CHD information, and baseline measurements. The full cohort consist of 10,279 subjects.

To preserve frozen biologic specimens and reduce costs, generalized case-cohort design
is used by selecting a subset of incident diabetes events since the rate of diabetes during
follow-up is 11.2%. The subcohort and cases of incident diabetes are randomly selected via
stratified sampling where the strata variables are age at baseline (< 55 and > 55), sex, and
race (black and white). Age, gender, race, parental history of diabetes, hypertension, and
center are confounding factors and are adjusted in the model. The risk factor, hs-CRP, is
used as a categorical variables with 4 levels based on quartiles. In table 4.4, hs-CRP (C2),
hs-CRP (C3), and hs-CRP (C4) are indicator variables for hs-CRP values in the second,
third, fourth quartiles, respectively. The hs-CRP values in the first quartile is used as the
reference group in our analysis.

By using available hs-CRP information collected from subjects who have CHD, we can
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Table 4.4: Results for the effect of hs-CRP from the ARIC Study

Proposed method The existing method
Variables %%  SE  HR 95% CI B¢ SE  HR 95% CI
hs-CRP(C4) 1.00 0.214 271 (1.78,4.12) 1.02 0220 278 (1.80,4.28)
hs-CRP(C2) 0.21 0.239 123 (0.77,197) 0.23 0.243 126 (0.78,2.02)
hs-CRP(C3) 0.73 0.213 2.07 (136,3.14) 0.75 0220 212 (1.38,3.26)
Age 0.01 0.011 1.00 (0.98,1.03) 0.01 0.012 1.01 (0.98,1.03)
African 0.56 0278 1.74 (1.01,301) 0.55 0.287 1.73 (0.98,3.03)
Male 031 0.120 1.37 (1.08,1.73) 033 0.131 1.40 (1.08,1.81)
PHD 0.61 0.153 1.84 (1.36,248) 0.63 0.160 1.88 (1.37,2.57)
HYP 0.56 0.155 1.75 (1.29,237) 056 0.161 1.75 (1.28,2.40)
Center (F) 0.15 0228 1.16 (0.74,182) 0.18 0.237 1.19 (0.75,1.90)
Center (J) -0.11  0.325 0.89 (0.47,169) -0.09 0.334 0.92 (0.48,1.76)
Center (M) -0.04 0.225 096 (0.62,1.49) -0.02 0.233 0.98 (0.62,1.56)

hs-CRP, high-sensitivity C-reactive protein; PHD parental history of diabetes; HYP, hy-
pertension; SE, standard error estimate; HR, hazard ratio estimate; CI, confidence
interval

apply our proposed method to this data set. The total sample size is 1,576 subjects including
572 noncases, 581 diabetes cases, 423 CHD cases. The subcohort size is 669 which consists
of 96 diabetes cases and 572 non-cases. To study the effect of hs-CRP for diabetes, we fit
the model using (4.1) and compare the results for the proposed method in (4.4) and Kang
and Cai [2010]’s method in (4.2) when K = 1.

Table 4.4 represents the estimates, standard errors, hazard ratios, 95% confidence in-
tervals for two methods. The hazard ratio comparing the fourth with the first hs-CRP
quartile group is 2.71 and confidence interval indicates that it is of statistical significance.
Moreover, the hazard ratio comparing the third with the first hs-CRP quartile group is also
statistically significant, but the hazard ratio for the second versus the first quartile group
is not statistically significant. The regression coefficient estimates for the proposed method
are similar with those for the existing method, but all the standard errors are smaller than

those of the existing method and consequently the 95% confidence intervals are narrower.

4.6 Concluding Remarks

We proposed more efficient estimators for stratified generalized case-cohort design than

those for [Kang and Cai, 2010] by using available stratum variables and exposure information
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for the other diseases. For a single disease outcome and multiple disease outcomes, weighted
estimating equations with the proposed weight function were proposed. We have shown that
our proposed estimators are consistent and asymptotically normally distributed under some
regularity conditions. The asymptotic relative efficiency of the proposed was derived and
we can calculate the efficiency gain in practice. Based on simulation results, our proposed
methods improve efficiency and stratified sampling of the subcohort and cases produces
more efficiency gain than unstratified sampling.

In this paper, we proposed the new weight function for the generalized case-cohort study

with two types of diseases. We can extend the general weight function with K diseases:

K
ik (t H (1= Ayij)&idyy, (t)+{1 [](1- Alm)}flz

7=1

+ (A=) Y C TT (= 2 Ymim i 1 ()],

meM (1) N(M) jeM jleA-M

where q(t) = ¥ T1 1(1 ANiii)&iYie(t)] Xy K (1 — ;i)Y (t), Ais set with {1,2
K}, M are all possible subsets of A except for @, N(M) is the number of elements in M,
M(1) is one of elements in the set M and 7 ;s () is the selection probability of cases
among non-subcohort members in each part. Therefore, the situation that there are K
diseases can be proved by using similar arguments.

In practice, full cohort size and the disease rates are fixed. Using the formula in Theorem
5, we can calculate the efficiency gain for different combinations of oy, 711, and v12. However,
if the conditions are not satisfied, variance for our proposed method could be smaller than
that for Kang and Cai [2010]. Therefore, our proposed method is not always efficient.
We need to derive the most efficient estimator by specifying the joint distribution of the
correlated failure times from the same subject. This would be worthwhile, especially for
data with expensive covariates. This could be interesting future research.

In some data, proportional hazard assumptions are not appropriate and some investi-
gators could be interested in another association between risk factor and disease outcomes.
Hence, alternatives of proportional hazard models are other types of models such as addi-

tive hazards models, proportional odds model, the accelerated failure time model, and the
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semiparametric transformation model. In addition to proportional hazards models, we can

adapt our approaches to the stratified case-cohort study with the above models.
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Chapter 5

Additive hazards model for stratified
case-cohort design

5.1 Introduction

There are two main principal frameworks to investigate the associations between risk
factors and the disease outcome: Cox [1972]’s proportional hazards model and the additive
hazards model. Most of the authors have studied multiplicative hazards models for relative
risk using proportional hazards models in which covariate effects can be expressed as hazard
ratios. However, the proportional hazards assumption might not be appropriate for some
data. In addition, epidemiologists are often interested in the risk difference attributed to
the exposure and the risk difference is useful in public health decision since it can translate
directly into the number of disease cases [Kulich and Lin, 2000b]. Therefore, additive
hazards models have been a useful and important alternative to Cox [1972]’s proportional
hazards model.

There are some work for additive hazards models. Lin and Ying [1994] proposed semi-
parametric estimation for univariate failure time data and studied asymptotic properties
of the estimators. Yin and Cai [2004] extended this approach to the multivariate failure
time data. By using Lin and Ying [1994]’s estimators, Pipper and Martinusse [2004] also
considered marginal additive hazards models for clustered data.

All the aforementioned work deals with all the subjects in the full cohort. In large cohort
studies, obtaining expensive covariate information on all members in the entire cohort could

be costly and it could be infeasible due to limited financial resource. In order to reduce cost,



the case-cohort study is proposed by Prentice [1986]. Under the case-cohort design, covariate
information can be collected only from the subcohort which is a random sample from whole
cohort and all the subjects who have diseases of interest. The important advantage for the
case-cohort study is that the same subcohort can be used when several types of diseases are
of interest [Wacholder et al., 1991].

A few methods for case-cohort studies with additive hazards models have been studied.
For univariate failure time, Kulich and Lin [2000a] applied additive hazards models to the
case-cohort study and derived the large-sample theory of the proposed estimators. Sun
et al. [2004] extended this approach to competing risks analysis in the case-cohort study.
For multiple disease events, Kang et al. [2012] proposed marginal additive hazards model
for case-cohort studies and consider stratified sampling for selection of the subcohort.

Taking advantage of the case-cohort design, several diseases are usually studied using
the same subcohort. In such situation, the information on the expensive exposure measure
are available on the subcohort as well as on any subjects with any of the diseases under the
study. For example, one of the goals in the Atherosclerosis Risk in Communities (ARIC)
study is to investigate the association between the genetic variation in PTGS1 and coronary
heart disease (CHD) as well as stroke and to compare the effects of the genetic variation
on CHD and stroke [Lee et al., 2008]. In this study, the case-cohort design with stratified
sampling for the subcohort are used. To examine the relationship between the genetic
variation and CHD as well as stroke, two case-cohort studies were conducted separately.
We are interested in examining the effect of PTGS1 on the CHD and stroke.

The genetic variation in PTGS1 was collected from the subcohort and all subjects with
CHD and/or stroke. Typically, when analysis for CHD was conducted, the available infor-
mation for stroke were ignored. This is not efficient use of the available information. In
addition, it is often of interest to compare the effects of risk factors on multiple diseases.
Kang et al. [2012] considered the joint modeling with additive hazards models. However,
they also did not fully use all the available information. These motivate us to consider a
more efficient estimator which uses all the available information for the additive hazards

model with stratified case-cohort design.
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In this paper, we propose estimation procedure in the additive hazards model for tra-
ditional and generalized stratified case-cohort design with univariate failure time as well
as multivariate failure time. In Section 5.2, we propose models and estimation procedures
for the proposed methods. Section 5.3 summarizes asymptotic properties for the proposed
estimators and Section 5.4 reports some simulation results. In Section 5.5, we analyze data
from the ARIC study by using the proposed method. Concluding remarks are provided in

Section 5.6.

5.2 Model

Suppose that a cohort study consists of n independent subjects with K diseases of
interest and can be divided into L mutually exclusive strata based on available information
V from all cohort members. Let T};; denote the potential failure time and Cj;;, the potential
censoring time for disease k of subject ¢ within stratum [. We assume that Tj;;, is independent
of Cj given covariates. Let Zj,(t) be a p x 1 possibly time-dependent covariates vector
for diseases k of subject ¢ within stratum [ at time t. We assume that time-dependent
covariates are external; that is, they are not influenced by the disease processes [Kalbfleisch
and Prentice, 2002]. Let Xj;x = min(7};k, Clix) denote the observed time, Ay = (T <
Chik) the indicator for failure, Nyjx(t) = I(Xyx < t,Ayx = 1) the counting process, and
Yiie(t) = I( Xy > t) the at risk indicator for disease k of subject ¢ within stratum [, where
I(.) is the indicator function. Let V; denote a discrete random variable for subject i as a
stratum variable. The stratum variable is assumed to be independent of Ty given Zj;i(t),
i.e., V; affects Ty, only through Zj;(¢t) [Kulich and Lin, 2004]. Let 7 denote the end of
study time.

Consider the following additive hazards model for Ty given Zj;x(t)

Nkt Zuire (£)} = Mow (t) + BS Zua (1), (5.1)

where Agi(t) is an unspecified baseline hazard function for disease k of subject i and fy is

103



p-dimensional fixed and unknown parameters. Model (5.1) can incorporate disease-type-
specific effect model i {2}, (1)} = Aok (t) + 8L Z;;,.(t) as a special case. Specifically, we de-
fine A1 = (ﬁf,,ﬂg,,ﬁ};) and Zy(t)T = (031,...,Oggk_l),{lek(t)}T,Olj;(kH),...,Olqu
where 07 is a 1 x p zero vector. We have 88 Z.(t) = BL Z7:, (1)

First, we consider the traditional case-cohort design with stratified sampling and refer
to this design as traditional stratified case-cohort design. Suppose that the total size of
cohort n is partitioned into n; intervals for [ = 1,..., L. Under traditional stratified case-
cohort design, we assume that subjects in the subcohort are selected by stratified random
sampling. Specifically, we select a fixed size 7n; subjects from the n; subjects in stratum [ into
the subcohort by using simple random sampling and the total subcohort size is n = EZLZ 1y

Let &; be an indicator for subcohort membership for subject ¢ in stratum [. Each
subject in stratum [ has the same probability a; = Pr(§; = 1) = ny/n; into the subcohort.
Z1i(t)(0 < t < 7) are measured for subjects in the subcohort and those with any disease of
interest.

In many biomedical and clinical studies with common diseases or the large number of
cases, selecting all cases is not feasible due to limited resources. Under this situation, it
is appropriate to consider the stratified case-cohort design which has flexibility to select a
different portion of all cases among the non-subcohort members in a different stratum. We
refer to this design as generalized stratified case-cohort design.

Under the generalized stratified case-cohort design, after selection of subcohort, we
select a fixed number My, of the type k disease cases among non-subcohort members in
stratum [ by simple random sampling. Denote by m; = Elelrhlk the total size of the type
k disease cases. Let m;; be the indicator for whether subject ¢ in stratum [ is sampled for
non-subcohort disease k. Let Jjx = Pr (nux = 1/Aux = 1,&; = 0) = myx/(nyx — nyx) denote the
selection probability of subjects among non-subcohort members in stratum [ with disease
k, where ny, and 7y, denote the number of disease k in the cohort and in the subcohort
within stratum [, respectively. Due to sampling scheme, the elements in (91, . . ., in,k) are

correlated, however, (i1, ..., Min,k) is independent of (ny1xr,. .., My, e) for k# k" or 1+ 1.
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5.2.1 Estimation for univariate failure time

Consider the situation with only one rare disease of interest, but with covariate infor-
mation available for subjects with other diseases. Under this situation, the observable
information is (X, Auks &> Zik(t),0 < t < Xy, Vi) when & = 1 or Ay = 1 and is
(Xiiks Avik €13, Vi) when &; = 0 and Ay = 0. In the situation that covariate information
are not available for subjects with other diseases, Kulich and Lin [2000a] proposed the ad-
ditive hazards model for traditional case-cohort studies for a single disease using stratified
simple random sampling. For example, if we are interested in disease k and ignore the
covariate information collected on subjects with the other disease, the true regression pa-

rameter [y in (5.1) can be estimated by solving the estimating equation [Kulich and Lin,

2000a]:
L ng T B
UL B) =2 pik ./o {Z1ir(t) = Z1,(£) H{dNuro(t) = BT Zyaw (8) Vi (t)dt} = 0, (5.2)
i=1i=1
where

S i S puik Zian () Yia (t)

Zi(t) =
Zlel Z?:ll Puik Y1k (t)

and pip = A + (1= App) &gy with dy, = ¥ &i(1 = M)/ X (1= Ayig). Here éyy, an
estimator for the true selection probability &, is the proportion of the sampled subjects
in the subcohort without disease £ among all subjects in stratum [ without disease k.
This approach for the weight function was first proposed by Kalbfleisch and Lawless [1988]
and Borgan et al. [2000] proposed the time-varying weight version pjx(t) where py(t) =
At + (1= M) &gt (t) with G (t) = 20 (1= M) Vi (1)) 204 (1 = Agi) Yar (). B s

defined as the solution to (5.2) and has the following explicit form:

~ L mn T _ -1 ny r ~
BA = [Z > Plik / {Zar(t) - Z’f(t)}@QYlik(t)dt] 5 / {Z1(t) = Zp (1) }d Ny (),
I=114=1 0 i3 Jo

where a®? = aa” .

To make full use of collected covariate information on subjects with other diseases, we
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consider the following weighted estimating equation:

L n

Ul =>> fOT Ve (O Zua(t) = ZE@) Hd N () = B Zyare (1) Vi (t)dt} =0, (5.3)
i=1i1
where
L n; ng
Zi(t) = 23 ik (t) Zuare () Yiaw (£) | Z > ik (8) Yiir (1)
=1t =i

and Yy (t) is a possibly time-dependent weight function which has the following form:
K K .
P (t) = {1 = TT(1 = Auij)} + [T(L = Ay &udiy () (5.4)
j=1 j=1

where Oflk( ) z 1£Z{H 1(1 Alz])}}/lzk(t)/z {H 1(1 Al’b])})/llk(t) The eXphClt form

of B! which is defined by the solution of the estimating equation (5.3) is following:

L nl B _
B - [ > [ () Zun() - Zk<t>}®2m<t>dt] > [ {Zu(t) = ZL (1) N (1)

I=11=1

In the situation that two case-cohort studies were conducted using the same subcohort for
disease 1 and disease 2, respectively, covariate information are available for the subcohort
members as well as subjects with disease 1 and/or disease 2. If we are interested in esti-
mating the covariate effect for disease 1, the time-varying weight function from the existing
method is py1(t) = Alz‘1+(1—Alz‘1)§lidIll(t) =1 when Ay; =1 and pyq = dl_ll(t) when A1 =0
and &; = 1, regardless of disease 2 information. Therefore, the existing weight function does
not use information collected on subjects with disease 2. On the other hand, our proposed
weight function for disease 1 is y;1(t) = {1 - H?zl(l - Auj)}+ H?zl(l - Ayj)éuag(t) = 1
when Ay =1 or Ao =1 and oy (t) = &Ill(t) when Ay =0, Ayo =0, and &; = 1. This
weight function takes disease 2 information into consideration. Note that @ (¢), which is an
estimator of the true sampling probability &, is the proportion of sampled subjects among
those who do not have any diseases in stratum [/ and are remaining in the risk set at time ¢.

When estimating the effect of risk factors on a disease, the proposed weight uses covariate
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information collected on subjects with other failure events.
Let Aok(t) = [; Aok(s)ds. We propose to estimate Agy(¢) by a Breslow-Aalen type

estimator Aék(éf, t), where

(5.5)

. T S5 S i (w) {d Ny (w) = Vi (w) BT Zyage () du}
AI ,t _ =1 £s3=1 )

If the disease of interest is common, then the generalized case-cohort design is more
appropriate than the traditional case-cohort design. We can extend our approach to the
generalized stratified case-cohort design. We consider the following weight function 7 (t)

with two types of diseases (i.e. K =2):

I, (1 = Ayij) iy () + {1 -T15_, (1 - Ayij) } &
+ A (1= D2 (1= &D)mian A (8) + (1= Aut) Auin(1 = &) maaian (1)

1 o 1 o
+ EAmAm(l ~ &) i A (1) + EAzuAm(l — &) (1), (5.6)

mik(t)

where

Gt = SSIPL (1 - Ay )anYian (/13 T2 (1 - Ay Vi (D)}
i=1 i=1

Fuk(t) = % Ay (1= Agg)(1 - &i)ﬁlilyhk(t)/{% At (1= Ag2) (1 = &) Y () }
i=1 i=1

Fak(t) = Zl:(l = Ayin) Ay (1 - fli)melik(t)/{i(l = Ay ) Duiz(1 - &) Yiar (1) }
i=1 =1

Yz (t) = Zl: Ayin Ao (1 = &i)mi Yiik (t)/{zl A Ariz (1= &) Yiar (1) }
i=1 =1

Far(t) = Zl Apir Ao (1 = &i)mi2Yiik (t)/{zl A Az (1= &) Yiir (1) }-
i=1 =1

For the generalized case-cohort data, we can construct the weighted estimating functions and
the estimator for the baseline cumulative hazard function by replacing the weight function

Yk (t) with 7, (¢) in (5.3). The explicit form of Bé which is defined by the solution of the
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estimating equation with a weight function m;;(¢) is following:

Lnl -1

o= |35 7w 0)120a0) - 2400 o)

I=11=1

L nl
> [ (O Zun(t) - ZL(®) AN ().
l 1i=1

5.2.2 Estimation for multivariate failure time

Suppose that there are n = EZL: 17y independent subjects with K diseases of interest.
Let independent failure time vector be T}; = (Tj;1,...,Tx) and the observed time vector
be Xy; = (Xu1,--+, Xpik,) @ = 1,...,n. Thus, for subject ¢ in stratum [ complete observa-
tions are (Xyk, Ak, &iys Z1ik(t),0 <t <1k =1,...,K,V;) when §; =1 or Ay, =1 and
(Xiiks Apigs Ein bk =1,..., K, V;) when &; =0 and Ay =0

For traditional stratified case-cohort data with K rare diseases, we consider the esti-
mating equation

L n K

U5 =235 [ O Zie(®) - ZLON Nk - 57 Zus(O¥in e} =0, (57)
(4

with 1y (t) defined as in (5.4).
The estimator of the hazards regression parameter (o, Bl I is defined as the solution to

(5.7) which has the following explicit form:

L v K ,r - Lo K -
= [Z > f Vi (1) { Zik (t) - Zlg(t)}éwylik(t)dt] I f {Ziik (1) = Zi(£) }ANyir (t).
1=1i=1k=1"0 I=1i=1k=170
Let Agx(t fo Aok (8)ds. A Breslow-Aalen type estimator of the baseline cumulative

hazard function is given by AOk(,BI I t), where

(5.1 = f AP wz@k(u){thk(U) Y%k(u)ﬁTZlik(u)dU}_

(5.8)
21:1 Z':1 wlzk(u)}/lzk(u)

Under the generalized case-cohort design, the estimating equation and estimator of the

baseline cumulative hazard function are the same as those in (5.7) and (5.8) replacing ¢y ()
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by ik (t) defined as in (5.6). The estimator Bg has the explicit form:

1

# - 253 [ w00 - Aoy
I=1i=1k=1
L n K T _
< 20 [ M Z(®) - ZLO YN o).
l=11=1k=1

5.3 Asymptotic properties

5.3.1 Asymptotic properties of B(I;] and Aéé(ﬁg,t}

In this section, we will study the asymptotic properties of the proposed methods. Since
the estimators for the univariate failure time are a special case of those for the multivariate
failure time and the traditional case-cohort study is a special case of the generalized case-
cohort study, we will only present the results for the multivariate case for the generalized

case-cohort study. We make the following assumptions:

(a) {11, Cy, Zy;},i=1,...,nand [ = 1,..., L are independent and identically distributed

where Tj; = (Thi1, - - -, Tiix )", Cri = (Chity -, Ciic), and Zy; = (Zu1, - -+ Zuie) s
(b) P{Yx(t)=1}>0for te[0,7],i=1,...,n, k=1,2,and L =1,...,L;

(¢) |Zuk(0)] + [y |dZy(t)| < D; <00, i=1,...,m;, k=1,2, and L =1,..., L almost surely

and D, is a constant;

(d) The matrix Ay, is positive definite for k = 1,2 where Ay = S5, i Ey ([ Yo (){Zis(t)®?

[E{Yi1k(t) Zuaw (8) } E{Y1r(t)}]®? }dt) where g = limy, o0 1 /n;

(¢) For all k=1,2, [ Aox(t)dt < oo;

To show the desired asymptotic properties for generalized case-cohort samples, the following

conditions are also needed:
(f) Foralll=1,...,L, lim,e &y = oy, where &; = n;/n; and g is a positive constant.
(8) iMoo Y11k = limy oo 13k = Vi1, iMy 0o Yi2k = My oo Yiak = 12 Where Jp1p = Prn =

1A = 1,A452 = 0,&; = 0] = my10/(n1i0 — 710), My ik denotes the number of sampled
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diseased subjects in non-subcohort with (A;; = j and Ay = k), nyj, and 7, denote
the number of subjects with diseases (A;; = 7 and Ajp = k) in the cohort and the
subcohort in stratum I, respectively, Ji2r = M01/ (o1 = 701), Y3k = MY /(11 — g11),

Yk = ﬁﬁn/(nm - ny11), and 7y is a positive constant on (0,1] for all k£ = 1,2 and
(h) limy, oo nig/ny = pik, where py is a positive constant on [0,1] for all £ = 1,2 and

(i) limy—e ny/n = q;, where g is a positive constant on [0,1] for all I =1,..., L.

The following theorems summarize the main results. Here is the asymptotic properties

for Bg

Theorem 6. Under the regularity conditions (a)-(i), Bg converges in probability to By and

nl/z(ﬁg - Bo) converges in distribution to a mean zero normal distribution with covariance

matriz A(Bo) ™ ity B (B0)A(Bo) ™", where

K L N 2
A =2 AB), S9E) = S alVi®) + Vi) + (=00 3 Vit(8))

2
Vi(B) = E; [1;—:1 Qur(8)]%2,

Vir.(8) =Var

2 .
ﬁ(l - Ayij) 22: fOT[Buk(ﬁ, t) = Yi(t) il G All])Bllk(ﬂojt)]dt]‘ ,
j=1 k=1

EyTT5. (1 = Agg) Yar(1)]

1- - B[d D00, &1 = 0
Vitru(B) = Prifno] %?”Vm“l [Quk(ﬁ) - fo Yie(t) d Q&?glk()l)f;?lf]n ]|91107§l1 =0]
1 - T Ey[dQux(8,1)]0101, &1 = 0] ~
+Pr[601] o Var [an(ﬁ) - fo Yie(t) Eu[Y e (8 601 0101, & —0]
A e an Quus) - [T vinto PR T 0]

Quelt8) = [ {Zs(0) - ex(0)}dMia (),

Buir(t, B) = { Zun(t) — ex ()} (t) Mo (t) + BT Zu (),
SE @B [Yik(t) Zing(t)]
S aE[Yik(t)]

ex(t) = s Ok = {Au1 =7 and Ayg = k}.
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Note that X¢7(8y) consists of three parts. The first part Vi1 (Bo) is a contribution to
the variance from the full cohort, the second part VIaLl(ﬁo) is due to sampling subcohort
from the full cohort, and the last one V7 I,l(ﬁo) is due to sampling a fraction of all cases.
If we select all cases, which is the traditional stratified case-cohort study, the last variance
goes to zero.

We summarize the asymptotic properties of the proposed baseline cumulative hazard

estimator AJL(BL,) in the next theorem.

Theorem 7. Under the regularity conditions (a)-(i), AL(BL,t) is a consistent estima-
tor of Aox(t) in t € [0,7] and G(t) = {Gi(t),...,Gr ()} = [n*{AJ{(BH 1) - A (D)},
Y AL (BE (1) -Ao2(t)) 11T converges weakly to the Gaussian process G(t) = {G1(t), Ga (1)}
in D[0, 7% with mean zero and the following covariance function G;i(t,s) between G;(t)

and G(s) for j k.

LB (Bo. i (o)

L

Gik(t,s)(Bo) = ZZQZ[EZ{MZU(ﬁo,t)Muk(Bo,S)}+
=1

Ei{vin;(Bo, t)vink(Bo, s) }H,

+

where the explicit forms of g, Wik, and vk (5,t) are given in Appendiz.

The proof of f\OGk(BéI ,t) is provided in Appendix. The proof uses Taylor expansion,
Kolmogorov-Centsov theorem, weak convergence of the baseline cumulative hazard esti-
mator from full cohort studies with multivariate failure time, Hajek [1960]’s central limit

theorem for finite population sampling, and Cramer-Wold device.

5.3.2 Proofs of Theorems

Proof of Theorem 6
We first show the consistency of Bg . Denote [77? = nl’lfj G. By Taylor expansion series,

ﬁg can be written as

_9US (Bo)

-1
55, ] U3 (Bo) + 0p(1) (5.9)

= |
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Based on the extension of Fourtz [1977], if the following conditions are satisfied

TG
(1) 8%"5? ) exists and is continuous in an open neighborhood B of Sy,

77G
(IT) 8%’%? ) is negative definite with probability going to one as n — oo,

(I1I) —8%2;5 ) converges to A(fp) in probability uniformly for § in an open neighborhood

about [y,

(IV) US(B) converges to 0 in probability,

then, we can show that Bg converges to By in probability. One can write

r7G L n
—aU”—(Tﬂ) lZZZ f i (1){ Zuin (t) = Z{ (£} Zyaw () Yiar, ()t
op T 21i=1k=1
Lo (7 ®2 I
= = Z/ i (0) Y2 (0){ Z1awe () ®% = Z3," () Zyane (¢) 3t
1= k=170
Lo (7 ®2  SI1,,\®2
- =3 Y > [T man Y OZa®® - Z 0 (5.10)
N 1i=1k=1

Since (5.10) is constant with respect to 8, (I) is satisfied. In order to show that (II)
and (III) are satisfied, we need to show uniform convergence of Z}1(t) to ej(t) such that

SuPero,7] |l ZH(t) - ex(t) |20 as n — oo for k =1,2. It is sufficient to show that

ny L ny
S[Ulp] | n~ Z S ik (8) Vi () Ziar ()24 = 07 303" Vi (8) Zyare ()24 || 2> Oas n — oo for d = 0, 1.
te[0,r i=1i=1 i=1i=1

It can be written as

L n L n
0SS ma () Yian () Ziae ()2 = 0730 S Vi (8) Ziae ()

l=11%=1 l=11:=1

L n . 2
n S S _ H (1 = Ayij) Vi (£) Zan (£)

=11 U
-1 Lo ~-1 2 d
- n [a;" - ap(t)™ H (1 = D) Yiire (1) Zuin (1) ®
i=1i=1 j=1
M ®d
+ n ZZ[:YM = 1A (1= Agin) (1 = &) Yaiir (t) Zyin (1)
1=1i=1
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+

+

+

L ng

S AR = A () T i A (1= Agio) (1= ) Yiar () Zyar (1) ®°
l1=11i=1

_122 7,7;;22 —1](1 = Ayin) Ao (1 = &) Yiar () Zyan (1)
[=11=1

L n
S S At = Aok (8)  Imin (1= Aun) Az (1 - &) Yiar () Ziar (1)
i=1i=1

nty Z 1[ T _ 1) A1 Avia(1 = &) Vi () Zar (1) ®?

ISiim1 2 Visk
L ny

nty Z (35— 13 (1) " i A Avia (1 = &) Yiaw (1) Zyage (8) 7
1=11i= 1

n—lizl[”’”—uA Asin(1 = &) Vi (8) Ziae ()%
- lil lzZ( élz) lzk() lzk()

1=14=1 2" Y
L ng

n 'y Z [3a = 14 (1) iz i Ao (1 = €43) Yiaw (1) Zyige (8) 2
l1=11i= 1

Then, one can write

IA

”z i (O Yior (0 Zuan (0% = 1735 Vi (6) Zun (0% |
1=1 [=11i=1

ng 2

3-8 - 1)1 - A Vi) 2 (0% |

J=1

i

ny 2
Z a6 [T - Awy) Yie () Zuan (1) ||

j=1

L
|| n—lzz[”’“ 1801 (1= Dyin) (1 = &) Vi (8) Zisw (1) 2% |

1=143=1 Y1k
1 LU 1 1 d
I > > 0 = k()™ I A (1 = Apio) (1= &) Yiar () Ziaro (8) 7 ||
1=114=1
_122 mlf - 1 1 Alzl)AhQ(l ng)Yzzk(t)lek(t)®d ”

1
(32" = A2 (1) iz (1 = A ) Apin (1 = &) Yiaw (8) Zuae (£)® |
1

Mo
M:

Int
i

Il
—_

i

Lomi
[% ~ 1) A1 Asio(1 = &) Yiir (8) Zua ()7 |

~
I
—

3
i
: i

(35" = Ak (1) ™ i A Ao (1 = €3) Yiar (8) Zyar () ® ||

3,
i

i
o
.
i
A
N = N =

[ZZZ — 1] Auia(1 = &) Yiie (£) Zian (£)° |

:
M=
M:

~
Il
—_
~
1l
—
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L ny

+ oty Z (32" = Fak () T2 Dt Ao (1 = &3) Vi (6) Zuwe () | (5.11)
I=11= 1

Based on condition (c), the total variation of l_[?:l(1—Alz‘j)Ylik(t)Zlik(t)®d, A (1-Ay0)(1-
&) Yiik (£) Z1i (1), (1=A4in ) Aio (1-E16) Yiar (8) Zaw (£) ¢, and A Ao (1-€5) Yiir () Zuie (1)
are finite on [0,7]. By applying lemma 2, the first, third, fifth, seventh, and ninth terms in
(5.11) converge to zero in probability uniformly in ¢.

Note that @' - d;(t)™! converges to zero in probability uniformly in ¢ by lemma 2
since HJ 1(1 = Ay;)Yiik(t) is bounded variation and El[H _1 (1= Apy)Yie(t)] is bounded
away from zero. Similarly, il_l ()71, ﬁl_Q o ()71, 7yl_3 A3k (t)71, and 11_41 ()7t
can be shown to converge to zero in probability uniformly in t, respectively. By lemma
2, o T & T (1= Qi) Yiae(8) || Zuan(£)®? || converges to aBy[TTi- (1~ Auy)Yur(t) |
lek(t)w |] in probability uniformly in ¢. Thus, the second, fourth, sixth, eighth, and tenth
terms in (5.11) converge to zero in probability uniformly in ¢, respectively. Combining all the
above results, n™' (27, S ik (1) Yiir (t) Ziae (8) 2=n"1 Sy 1) Yiar(t) Zian (8)®?) converges
to zero in probability uniformly in ¢ as n - oo for d =0, 1.

Since Yiik(t) Zyir (t)®¢ is bounded variation based on condition (c), n~' ¥F, Yt Vi (t)

Ziir ()% converges to YF, ¢ B[ Yk (t) Zir(t)®?]. Therefore, it can be shown that

ny
S[up] | n” ZZ?TM )Viar (£) Zyage ()2 - ZQZEl [Viur(t) Ziin(t)®?] | 0 as n > oo for d = 0,1.
te[0,7 =114=1 =1

Since Zlel qE[Yi1,(t)] is bounded away from zero based on condition (b), Z,gf(t) can be
shown to converge to ex(t) in probability uniformly in ¢ as n - oo for k = 1,2. One can

write

oUS (B) ~ Lo 2 ' ‘ (\®2  FIT @2
2 - lzllkzl fo Tk (8) Vi (0 Zui (1) ®2 = ZLT (1) %% }dit

M=
M

| Y Zun (0% - 2 (1))t

1

M=
M

S 3= 3
[y
i
L
=~
i

[ @ = DY {20 - 21 (e, (5.12)

1

—
1l
—_
.
1l
—_
bl
1l
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Note that the first term in (5.12) converges to A = Zszl qlEl[Zizl fOT Tk () Yiue (1) Zy15 (1) ®2 -
er(t)®%}dt] where q; = lim,, .o, 7;/n in probability as n — co by the uniform convergence of
ZH (1) to ex(t).

Now we will show that the second term converges to zero in probability uniformly in .

The second term in (5.12) can be written as

[oT (% -1) ﬁ(l = D) i () { Zuan ()% = Zii1 (£) %%}t

S|
M=
N
Mw

l=1i=1k=1 J=1
1 n, 2 T B o 2 _

+ - > f [ ()™ - 67" & [T(1- A Yiar (O Zue (1) ®* = Z{T (£)® }dt
=1 k=170 j=1
1 EE S (7, ma 82 _ 7 ()82

+ = > [ (= = DA (1= D) (1= &) Yair (D) Zuaw (8)®° = Z,(£) 7 }dt
Ni1im1k=170 M

3

T[%lk(t)_l — A1 Tmin (1= &) Ain (1 = Agao) Vi () { Zuare (£) %% - Z{' (¢)®2 it

+
SRS
3

+
SEE
M IMs IMs DM IMs
T D
% c%

(% ~1)(1 - Agit) Asia (1 &) Yia () { Zuan (1) 22 - ZH ()2}t

3

+
S~
N

I

s L

Eonl

o L
c\

T[%%(t)_l ~ A mi2 (1= &) (1 = Apin) Ao Yiir (1) { Zuar (1) ®2 = ZL (£)®% )t

1 L ! T i _
+ = f (L 1) Ay Ain (1 = ) Vi (D] Zuae (£)®2 = ZFT (1) %}t
2n 736370 Yisk
1 L n;g 2 T B . 3
+ %Z Z/o (3136 (1)~ = A i (1 = &) A Ao Yaie () Ziaw (1) ®2 = Z} (£)®2}at
i1 i1 ko1
1 L& 7 o ®2  SIT[,\®2
+ = Zf (— = 1) Au1 Ao(1 = &) Y () { Z1in (8)°7 = 2,7 (¢) " }dt
2n 795170
1 L2 T 1 1 ®2  FII/;\®2
+ %Z Zfo (Fiar (6) ™ = Vg 12 (1 = &) Ay Ao Yiar (1) Z1ar (£)® = Z3,7 (1) ®° i
i-1i=1k

1l
—_

(5.13)

By the uniform convergence of Z}7(t) to ey (t), the first term in (5.13) is asymptotically
equivalent to n™! Y, POV Y2, fOT(%— 1) H?zl(1—Alij)Ylik(t){Zlik(t)‘g’Q—ek(t)®2}dt. Sim-
ilarly, the third term, the fifth term, seventh term, and ninth term in (5.13) are asymp-
totically equivalent to n™! o, ¥, Y7, fof(glff = 1) Auin (1= Apin) (1= &) Yiar (0){ Zuae (£) % -
ex(t)®2}dt, nt o ST YR fo (B2 —1) (1= Agin) Avia(1-6) Yiar (8){ Zuar (£) 2% — e (1) ®2 }dit,

"2
(2n) " Sl T S Jo (E=1) At Ao (1-63) Vi () { Zuar (1) 2 =ex (1) * }dt, and (2n) ™' T,

115



i lo (F2-1)(1- &) A1 Ao Yiik (1) { Z1ir () ®2 = ey ()2} dt, respectively.

Based on condition (c), szl( — N )ik (O{ Z0ik (1) 8% = e (£)®2}, A (1 - Apo)(1 -
&) Viir (D) { Zuar (£) 2 = e () ®?}, (1= A1) Aria(1-&5) Y () { Zian (1) %% = €5 (£) 22}, Agir Agip (1-
&)Y (1) { Z1in ()®? — €1, (t)®2} are of bounded variations and they are independent and
identically distributed. It follows from lemma 2 that the first term, the third term, the
fifth term, seventh term, and ninth term can be shown to converge to zero in probability
uniformly in ¢, respectively.

Since ay ()™ =, A ()™ = A0t A2k ()7 =gy k()7 =g and Fuar ()7 - A5
converge to zero in probability uniformly respectively and Z}/(¢) converges to ex(t) in
probability uniformly in ¢, we can show that the second, fourth, sixth, eighth, and tenth
terms converge to zero in probability uniformly in ¢ respectively.

Combining all the results, we have

_OUS(B) »
TopT

2 Aasn— oo

, and, thus, (II) and (III) are satisfied.

Now, nl/Qﬁg(ﬁ) can be decomposed into four parts:

L?’Ll

n'?US(B) = _1/212121;;ffmik<t>{zhk<t>—Zé%t)}szm(t)
L ng 2

SR IDY 0 k(D Zuak (1) - ex(t) + ex(t) = Z8 (1) }dMya (1)
I1=11=1k=1
2
_ gl kzl fo {Zui (£) = €5 (£) YdMyr (1)
+ _1/2 Z 22: {lek t) - 1}{lek(t) - ek(t)}dMlzk(t)
2
LRI "{en(t) - ZE () YdMia(1)

Lon 2
+ Py Zf {man(t) = 1Hex(t) = Zi' () }dMyar (t) (5.14)
=1 i1 k=1

Since the first term in (5.14) is the pseudo partial likelihood score function for the full likeli-

hood, it is asymptotically zero-mean normal with covariance V7 () = ZlL: 10 E [Zi:l Qur(Bo)]®?
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where Qur(t, 8) = [y { Zux(t) — ex(t) }dMyx(t) [Yin and Cai, 2004].

The third term can be shown to converge to zero. Note that for fixed ¢, My (), ..., My (t)
are identically and independent distributed zero-mean random variables and Z?:ll My (t)
is sum of identically and independently distributed zero-mean random variables.

Since M2, (0) < oo and M7, (7) < oo are satisfied based on condition (c) and (e), My;x(t)
is of bounded variation and therefore it can be written as a difference of two monotone
functions in ¢. From the example of 2.11.16 of van der Vaart and Wellner [1996](p215),
nl_l/2 Yot Mix(t) converges weakly to a zero-mean Gaussian process, say Pas,i(t).

To establish the existence of stochastic processes with continuous sample paths, we will
use Kolmogorov-Centsov theorem. If conditions of Kolmogorov-Centsov theorem E{Pps 1 (t)-
Prrak(s)}t < Cx|t - s|* and E{Parx(t) = Parix(s)}? < C|t - s| for all t > s are satisfied,
then we can show that Py, (t) has continuous sample paths. Note that EPJ\/[,”@(t)2 =
E[n; ' 1 My ()] = EMy(t)? = B[ fy Yir(w) ok (w)du+ 55 Zy(w) ) due], and E{ Py, () -
Prrake(s)}? = EPyn(t)? - EPak(s)?= E[fst Vi (w) ok (w)du + BL Zyix (w))du]. Based on
condition (c), (), Aor(.) and 8L Zyx(.) are of bounded variations on [0,7]. Thus, it follows
from mean value theorem that there exists a constant C' such that E[ [, st Yiir (w) (Aok (uw)du +
B¢ Zyik(u))du] < C(t - s) for s < t. Hence, E{Park(t) - Parar(s)}?] < C(t - s) and
E[Parir(t) = Parar(s)}*] = Var(Paran(t) = Parar(s))? + E{(Parie(t) - Pari(s))*}? = 3
{E(Par(t) - Parir(s))?}? < C*|t-s|? for some constant C*. Since two conditions are satis-
fied, it follows that Py ;(t) has continuous sample path from Kolmogorov-Centsov theorem.
Based on conditions (b) and (c), it can be shown that n* ZZL:1 S e (6) Yia (8) Zyax (t) and
n Yk, Y i (t) Yiig (t) are of bounded variations and specially ™! >k, Yoty ik (8) Yiar (1)
is bounded away from zero. Thus Z,gl (t) is of bounded variation and can be written as
Z,gl(t) = Gg1 — G where both G and G are nonnegative, monotone functions in ¢, and
bounded. Therefore, Z}7(t) is the sum of two monotone functions. By Lemma 1, the third
term in (5.14) converges to zero in probability uniformly in ¢ as n — oco.

By similar arguments, the fourth term in (5.14) converges to zero in probability uni-

formly since 71 (¢) — 1 is of bounded variation.
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Now, the second term in (5.14) can be written as

3
L
S
M=
3
Mm

fo {man(t) = 1H{ Ziar(t) — ex(t) d My, (t)

~
1l
—_
.
1l
—_
bl
1l
-

L ng

= 0Py 22: (@ -1 12[(1 = D) Ziiw (t) — ex(t) pd My, (t)
I=1i=1k=1~0 j=1
L n

+ n? Z 22: (alk(t) ~a & ﬁ(l = A ) Zuan(t) — ex(t) }d My (t)

j=1

N

Il

T

-

I

r

B

Il

o
\ 5

L ng 2 .

b 2SS Ty A (1= M) (1 - €0){ Zuik (1) — e (1) }AMiar (1)
=1i=1k=170 1
L n;g 2

+ ”_1/22 Zf Gk ()™ = k) min Aun (1= Api2) (1 =€) Zuan (1) — ex (1) Yd My ()
1=1i=1k=170

-1/2 O M2 A A ‘ ) ‘

b Y S5 [T S 1) (1 - M)A (T - 60 Zin(8) - en(t) }dMiae (1)
I=1i=1k=170 72
L n;y 2

+ 2y Z[ Aok (1) ™ = Az )iz (1 = Apin) Apin (1 = E){ Ziar () — ex (1) yd My, (t)
i=1i=1k=1"0

L n 2 1 T ;
+ Y 3 /0 (L 1) Ay Apia (1 = §){ Zu(£) = ex (£) }d M (£)
1=1i=1k=1 i3k
L n 2 1 T
+ o2 DI / (T3 (8) ™" = Ars) it Avin Aviz (1 = &) { Zuan (t) — e () b M (t)
i=1i=1 k=1 2 J0
L ng 2 1 T ;
+ oYY 3 /0 (12 _ 1) Ay Agin (1 - §i){ Ziir(t) — ex(t) ydMyr(t)
I=1i=1k=1 V4
L n 2 1 T
+ Yy 2 /0 (Fare () ™" = A ) mi2 A Ao (1 = &) { Zuan (t) — e () Y M (t)

I
o
-

i

o
T
o

(5.15)

Using the result of (4.6), the second term in (5.15) can be written as

4/2%% : fo ! . {Z(l—&m)l_[(l AlmJ)Ylmk(t)}

SEEJo aB(IT (1 - Apy)Ya(t ) | A Qo

x & 12[(1 = D) { Ziik (1) — ex(t) }d Mk (t) + 0p(1)
k]

12 & fl
= Y S TIA - -2
l=1=1j=1
2 /T k(' Ty %TH?=1(1—Azmj){Zlmk(t)—6k(f)}dMlmk(t) v on(1)
X O
w1 7o EZ[H?:1(1—Al1j)Y11k(t))] g
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It follows from Glivenko-Cantelli lemma and Lemma 2 that nl‘l e m H?:I(l—Almj){Zlmk(t)—

m=1 &

er(t) }dMjmi(t) can be written as

' Z &m H(l A ) Zimk (1) — ex (1) }dMimp (1)

= Z &m H(l At ) { Zimi (t) = ex(£) HdNum (8) = Yo (8£) Aok () + B3 Zimi () )dit}

7=1

- IZ%HGNW%MWMMMM%MMWMWﬁ

m=1

- —El[n(l = M) Zan(t) - en(t) Yk (t) Mok (t) + B Zi(t))]dt
j=1

Since only censored observations contribute to this term, the last equality holds.

Therefore, the second term on the right-side of (5.15) is asymptotically equivalent to

12 @_ Yiak(8) By [T1721 (1 = Apy) Bui(t, 8)]
;;H“AW DE/ BT (1 - Ay Yig(t)] «

L
where By (1, 8) = { Zuu(t) ~ex(8)Yian () Dhor (8) +87 Zia(1)] and e (¢) = ZEg= ST 0],

The first term on the right-side of (5.15) is asymptotically equivalent to

12 L n 2 glz

—nTEY Y / e 1) H(l N Ziin (8) = ek (£) }Yimi (8) (Mo (8) + B0 Zimi (£))dt
1

I=11=1k=
L

-1/2 o, 2 glz
= —-n EZ;E/ a, 1)H(1 Al@])Blzkz(t 5)dt

1

Combining these results, it can be shown that the first and second terms in (5.15) are

asymptotically equivalent to

B le(l—Allj)Bllk(taﬁ)]:Idt
E[IT1? (1-Ap;)Yiue(t)]

n_mz:giﬁ 1= Ayy)(1- glz)f [Blzk(t B) = Yiir(t)

Using the result of (4.8), Glivenko-Cantelli lemma and Lemma 2, it can be shown that the
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fourth, the sixth, the eighth, and tenth terms in (5.15) are asymptotically equivalent to

1 2

L n ‘
w5 A (1= Ai) (1) (5 - )

Ei[{Z1k(t) - ex(t) }dMi11(t)]0110, §11 = 0]
JRC Bk (Dlfno]

_1/2 Z Z Z(l Alzl)Alz2(1 &Z)(mﬂ B 1)

[=11=1k=1
Ey[{Znx(t) - ex(t )}dMuk(t)Wlm,fn =0]
f Vi (1) Ey[Yi1x(t)|0101]
L

ny 2 T _ —
-1/2 ApyApia(1— &) (1L — Y, Ey[{Znk(t) - ex(t) }d Mg (8)[0111, &1 = 0]
n ;;k; i1 Au2(1-§ )(’713 1)/0 1k (1) BiYig (D10 ]

L n 2 T _ —
_1/2 A Aro (1 — £y Mi2 _ i E{Znx(t) - ex(t) }dMuy($)[0n1,&n = 0]'
n ;Z;k; i1 Aua(1 551)(%4 1)f0 Yiir(t) FulY e (D)0 ]

X

+

X

+

+

Combining all results, the term in (5.14) is asymptotically equivalent to

n‘lﬂéiﬂlﬂi@zm(t,ﬂ)
. nlﬂlill kil ]liu_mij)a—fh) I [Bhk(ﬂo,w Vi (1) ggﬁ;it;f:ﬁgﬁt)ﬁ])]]dt
R son 2o [ o
¢S R s 22w - [[Dia B =]
O oITNIE AWy CH
IR o Ay T T

By Héjek [1960]’s central limit theorem and conditions (c) and (f), the second term in (5.16)
is asymptotically zero-mean normal random variable with covariance matrix Zl 1 i VI 1.1(Bo)

where

2 _ )
Vira(Bo) = Var ElIT54(1 Allj)Bllk(tvﬁo)]]dt].

2
1:[(1 Aqy) Z[ [Buur(Bo, 1) = Yy (2) El[H 1 (1= Apn)Yie(t)]

It follows from Lemma 2 and Héjek [1960]’s central limit theorem that the third, fourth,
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and fifth terms are asymptotically zero-mean normal with covariance matrix Zlel q(l -

) Y21 Virrw(Bo) where

Virrk(Bo)

P e [Quu) - [ ey B =0
E[dQux(t, Bo)lbio1,&n = 0]

Ey[Yiur(£)]0101]

+Pr[0101] Stk Var [Qm(ﬂo) - fOT Yk (t)

Pr(6 1- 1-
+ 7“[ l11][ Vi1 4 712]
4 Vi1 Y2

x Var [Qllk(ﬁo)——/oﬁryllk(t)

6101, &1 = 0]

E[dQui(t, Bo)l0n1,&n = 0]
Ey[Yie(t)]0011]

011,80 = 0] :

In addition, n Y2 Yk, ¥ 22 Quik(Bo) and n Y2yl v 2 (1 - fh)fo M., (1-

1-A B t,5
Ayij) Ly (t, B)dt where Ly (t) = Bir(t, 8) - th(t) lzl;i(l K;li))l/jf:(t)])]dt are independent

since

2
Coy, (nl 12 ZZlek(/BO) n—1/222( 5h~ )f H(l Alzg)lek(t)dMlzk(t))

i=1k=1 i=1k=1

Sy 8 & &, &
= Eiin, ZZle‘k(ﬂo)ZZ )[ H(l Ayij) Luar () d Myir (1)

i=1k=1 i=1k

& 2 gll
ZZ(I &l)[ H(l All])lek(t)dMlzk(t)u:(T))}

=1 k=1

n; 2
= E {E (nl_l > Quk(bo)
=1 k=1

i=1k=1 1=1k=1

2
n; 2 n; 2 -
= El{nl_l > Quir(Bo) ZE((l & (T))fo Hl(l—Alij)Lzz'k(t)dMlik(t)}=0
i

By using same arguments, n1/2 Zlel Z?:ll Zi;l Q1ix(Bo) and the third to the last term in
(5.16) are independent. Since &;; and ny (k = 1,2) are independent, n~1/2 Zlel POV Zizl(l—
Su ) N H 1(1=Ayij) Lk (t)d My (t) and the third to the last term in (5.16) are independent.

Therefore, n~ /20U G(Bo) converges weakly to zero-mean normal vector with covariance
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matrix X% (o) where

L B 2
=G(8) = >a |:Vl,l(/8) + Lo Vira(B) + (1 =) Y. Virrw(B) |,
=1 k=1

2
Vii(B) = EI[Z Qui(8)]®?

Vira(B) = Var fl(l Ah;)Z/ [Buk(t, 8) = Yiur(t)

Ey[IT5-(1 = Auy) Bug(t, 8)]
2 ]dt 9
EyTT520 (1 = Apy) Yir(t)]

Virrie(B)
B - [T Ey[dQui(t, B)|0110, &1 = 0] _
= Pr(0no] 5 Var [Quk(ﬁ) .[o Yie(t) EulY ik (8 o] 0110, &1 = 0]
+ PT[@[Ol] 1- Yia Varl [Qllk(ﬁ) - AT }/llk(t) El[del%]ngl;f()lff;ll(;jll - O] |0l017 fll = O:|

PT[Zln][l —n 1—’712]
i vi2
< Var [sz(ﬁ) _ /OTYllkz(t) Ey[dQuk(t, B)|0n1,&n = 0]

Ei[Yie(t)]0i11]

011,80 = 0] -

Therefore, US () converges to zero in probability and (iv) is satisfied.
Since all conditions (i), (ii), (iii) and (iv) are satisfied, 5L is a consistent estimator of
Bo by an extension of Fourtz [1977]. By consistency of B(I;I and Taylor expansion of U& ()

such as

U (B)

07(8) = 0 (6 + =

[/8 BO] + Op(1)>
nt/ Z(Bg - Bp) is asymptotically normally distributed with mean zero and with variance
matrix A‘lE%(BO)A_l where A = 22:1 Ag.

Now, here is an outline for the proof of Theorem 7.

Proof of Theorem 7

H(BH t) = /‘t ZlL:1 Z?:ll ik (w) {d Ny (u) - Ylik(u)/BTZlik(u)du}
RV 0 Sr e ma(w) Y (u)
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We can decompose n1/2{1~X6£(/6~’H,t) — Aor(t)} into three parts:

n' KB, 1) — Aor (1)}

= n"P{AGL(B" ) - gk (Bo.t) + Mg (Bo.t) — Aok(t)}

= pl/? ft Sy 2 ma(u) Yie (w){Bo - BT Zyige(u) du
0 S S mi (w) Yige ()

Y ft iy 20 man () {d Nk (w) = Yige (w) Bo Zyaw (w) du}
0 Y S mak (w) Yig (u)

Y ft Y %Zl it (w) Yiag (w) Aok (u)
0 Y1 2ty mig (w) Yie (u)

= 2 /t S T i (w) Vi (w){Bo = B3 Zyak (u)du + [t Sity Loty e (w)d Mg, (u)
0 ity miig (w) Yiig () 0

S 2w (w) Yigg ()

/2 ft Zl 1 Z mzk(U)lek(U){ﬁo - 5II}Tlek(u)du + /2 t ZIL:1 Z?:ll dMi(w)
0

SE e ma(w) Y (u) 0 Yy M mk (u) Vi (u)

+ i/ ft ZZL=1 Z;le{:lzk(u) - 1}dMlik(u).
0 Yit1 2ty mak (w) Yir (w)

Due to the uniform convergence of Z}!(t) to ex(t), the first term in (5.17) is asymptot-

ically equivalent to nll/Q(ﬁNH - Bo)lk(t), where l(t) = [, —er(u)du.

Note that [n ! SE, S 70 (£) Vi (£)]7! can be written as a sum of two monotone func-
I=1 £sj=1

tion in ¢, converges to [Zle QFE[Yik(t)]]7 where Zlel Q@ E[Yik(u)] is bounded away from

zero, and n~ 4?2 ZZL: 1 Z?:ll M (t) converges to a zero-mean Gaussian process with continuous

sample path. By Lemma 1, the second term in (5.17) is asymptotically equivalent to

¢ 1 2
JA {233 Mige(u)}.

0 Y qE[Yir(t)] 1=1i=1

The third term in(5.17) can be written as

ft Y Y {mak (w) = 1d My (w)
0 S o mak (w) Yig (u)

=t tz“z : 55 —5“>H<1 Ay )dMigh (u)

Wsz(u)lek(U) I=14=1

L ny
Z Z @lk(t) - al 1)511 H(l Ahj)thk(u)
1=1i=1
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+ 0y [(mll—l)Am(l Auin) (1= &) + (k)™ = A" Ymin Auin (1 = Apin) (1 = &) 1dMyr.(u)

I=1i=1 Nk
L ny .
+ > [(%7;: = 1)(1 = Aun) Ay (1= &) + {2 () ™" = A2 dmaz (1 = Apin ) Asin(1 = &) 1d Moz (w)
i1 i1
L n 1 ; y ~ o
+ [5(%7;32 — 1) Ay Ao (1 = &) + Ak ()™ = iz mar Avi Asin (1 - &) 1dMyie (w)
i-1i=1
L ng 1 ; ~ - .
+ 0y [5(;7;41 = 1) A Ao (1= &) + {Fuan ()™ = Fia i v Ao (1 = &) 1dMyi(w) . (5.18)
I1=11=1

Since {n~! Zl 1 Z 1™k (8) Vi () 1 ! converges to Zl 1 qlEl[Yllk(u)] , where Zlel aE[Yig(u)]

is bounded away from zero in probability uniformly, the first term in (5.18) is asymptotically

. _ n i Yiie () {0k (@) +8T Zyi1 (w) Ydu
equivalent to 12 Sy B (1= ) T2 (1= Ayy) fy 1Ol B Auld,

By the result of (4.6), the second term in (5.18) can be written as

L n

. ¢ 1 i
n 1/2/0 ST > > (auk(t)” 1_O‘l1)§lz]1_[1(1 Avij)dMiir.(u)

o (w) Y (w) (=113

_ 1y t 1 L n 1
! /0 S 2 mak (u) Yig (u) z; z‘;( A B [TT5 (1 - Apy) Yiue(t)]
2

x njl { S (- f“”) 1‘[(1 Azm]mmk(ﬂ})fh [T(1 = Aug)dMigr.(u)
m=1

7=1
1
E H?:l(l = Ayiy)Yie(u)]

B 12 t 1 L n ‘fll 2 ~ - t
- n f S z;z;a 1)U(1 Al”)fo

i=1 lek(u)}/lzk(u)

9 nmuom1§:@110,szxEMUMA%uo+5§zwuon

l]l

If follows from the uniform convergence of {n~* Zl Lz mzk(u)YM(u)}_1 to {ZZL:1 aE[Yig(uw)]},

JEE T2 (1-Agi) Y (w) to By [T (1-Ap) Yig (u)], nf P 7, % 51 (1A ) Vi (u)

1=1 qy

BE Zy1.(u) to El[Hg:l(l - Allj)Yllk(u)ﬁnglk(u)] and Lemma 2 that the second term in

(5.18) is asymptotically equivalent to

4”225“1HU1AW>

1=11=1
/t Ylik(u)El[szl(l = A1) Yo () { ok (w) + BE Zig(w) }] ' du
0 EyIT5-1 (1= Apy)Yig(u)] S @B Yir(u)]

Combining the above results, the first and second term on the right-hand side of (5.18)
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are asymptotically equivalent to

2
_1/222(1 &Z H (1-Ay;)

I=11=1
EIT5, (1- Azu)Yllk(U)ﬁoTZuk(u)]] ‘ du
BT (1 - Apy)Yie(u)] S aBEYae(u)]

fot Yiir(w) [ﬁoTZzz‘k(u) -

Similarly, the third to the last term on the right-hand side of (5.18) are asymptotically

equivalent to

L ng )
n ! > Z(@ - DA (1= Au2)(1 - &)

I=1i=1 1
t 1 Ey[dMi1(w)|0r10, &5 = 0]]
dM’L 7
[ ZzL1qlE’z[Y11k(U)][ () = Vi) Ey[Yur(w)l0no]
1=11=1
t 1 Ey[dMyy(w)|0o1, &1 = 0]]
dM;; -Y
f ZlLl(HEl[Yllk(u)] [ () = Vi) Ey[Yak(u)[6r01]
¥ -1/222 (”“1 ~ 1) A Ay (1 - &)
1=11i= 1
t 1 Ey[dMiy(w)|0n, & = 0]]
dMjy; -Y
f ZzL1€JzEz[ zm(U)][ o) = V(1) Ey[ Yok (u)|0n1]
" 71/222 (’7“2 - 1) A Aria (1 - &)
I1=11i= 1
t 1 Ey[dMi(w)|0r, & = 0]]
X dMZ - Yl .
[0 S qlEz[Yuk(u)][ (1) = Vi ()

Ey[Yie(u)|0i1]

Note that nll/ 2(31 T'— By) is asymptotically equivalent to

L n;g 2
AT TS S Qui(t, Bo)
I=1i=1k=1
~ L n; 2 2 1_A7,)B (taﬁo)]
1/2 A flz_ Ey[TT5-.( 1ij ) Buik
PSS ST - Aw) (- ) Bt o) ~ Yiae(®) B0 Anrne)
L n; 2 .
+ n_l/QZ > A (1- Am)(l—fli)(zyl;ll—l)

~
]
—_
<.
Il
—_
o

[y

E[dQui(t, Bo)l0no,&n = 1]]

x [sz (t, o) - f Viae(H) = Ey[Yiuk(£)|6r10]
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L n;g 2

NSNS (- M) Ao (1 - flz)(nm—l)

I1=1i=1k=1
[dQuk(taﬁo)thfl =1]
[Quk(t,ﬁo) - [0 Yiik(t) EVir (D) 001 ]

-1/2 SERe! Nii1
n ZZZ§AZi1Ali2(1_§li)(~ -1)
I=1i=1k=1 i3k

Ey[dQux(t, Bo)|0n1, & = 1]]
E[ Yk (t)|0111]

-1/2 Ll M2
n ZZZ§A“1AM2(1_§M}(~ -1)
=1i=1 k= Hia

E[dQux(t, Bo)lOn1,&n = 1] ]}
E[ Yk (t)|0111]

+

X

+

X

[QZik(taﬁo)—/o-TYlik(t)

+

X

[Quk(taﬂo)—[oTYlik(t)

Combining all the results, we have

n2 RSB 1) - Ao (1)}
L n; 2

= ()T A 1{n*1/2lZZ;kZ Qui(t, Bo)
117 1
ny T 2 — ..
£ P iZiﬁ(l D)) [ (Bt o) - V() ma L~ B il 1)
1=11=1k=1 :
ny 2

EyTT51 (1 = D) Yiw(t)]

l

PSS A (1 M) (1 &) (1 1)

P
, _ . [dQllk(t750)|91107§l1 =1]
x  [Qur(t, Bo) / Yiir () OIS
L n

eSS S (1 A A - &)(Z2-1)

1=1i=1 k=1
X , _ A [dQllk(taﬂo)Wmhﬁll =1]
[Quir(t, Bo) /0 Yiir (1) B (O]

-1/2 Ll N1
+ n T Y SN A (1 - &) (=~ 1)
11 i=1 o1 2 i3k

E[dQux(t, Bo)|0in1, & = 1]
E[Yinr(t)|0n1]

-1/2 CNAEAS | M2
+ o YN Y SN Ap(1 - &) (= - 1)
ISi-1ka1 2 V4

E[dQux(t, Bo)l0in1,&n = 1]
E[Yini(t)|0n1]

]

]

x [le’k(tvﬁo)_](;TYlik(t)

x [Quk(taﬁo)—/oTYzm(t)

I
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- : A S My ()} 42 551 5“ 12[(1—A”j)

0TI aE[Yie(u)] I=14=1 I=1i=1 =1
t B2, (1- Auj)Yllk(u)ﬁoTZlik(U)]] du
X Yz TZi - J .
fo ik (1) [BO k(1) B30 (1 = Aggj) Yo (u)] Y B [Yi(w)]

L n )
2 > Z(@ D) A (1= Ap2) (1= &)

+
1=1i=1 1
t 1 Ey[dMy(t, 5o)|0no, & = 0]]
X dMy; -Y;
h S aE Yo (u)] [ (1) = Yiak (W)= )]
+ _1/222(7”;22 1)(1 Alzl)AlZQ(l élz)
1=11i=1
¢ 1 Ey[dMir(Bo, w001, &5 = 0]]
X dMl - Y,L
b zflqlEz[mwn [ (1) = Yiak () =y C)lfron]
+ o ZZ 1(?11 - 1) A1 Ao (1 - &)

ISii1 2 sk

dMyi (u) = Yiir, () Ey[dMi (Bo, w01, & = 0]]

: 1
" f ZlLlfﬂE[Yuk(U)][ Ey[Yig(u)|611]

e Z Z (2“2 ~ 1) A1 Ayia (1 - &)

llzl

+

dMyix(uw) = Yigr(u)

5 [t 1 [ Ey[dM(Bo, u)|6in, & = 0]]
0 Yr B [Yik(uw)] E[ Yk (u)|011]

+ op(1)

Therefore,

n 2NN (BT, ) = Ao (t)}

L n
=n I/QZZMM(/BOJ)+”_1/222(1—@ Ywi (B, t) + 072 Y3 vk (Bost) + 0p(1),

I=11=1 1=11=1 1=11=1

where

puir (B, t) = L ()T AT ZZ: Quim(B) + [t : dM;ix(u)
e T o YL B [Yiar(w)] " 7

2 2
win(B,t) =(®)TAT Y 11 - Awy)

m=1j=1
Yzim(u)El[ngl(l - A1) Biim (u, 8)]
Ei[TT5-1(1 = Apj) Yiin (u)]

x _/OT[Blim(u’/B) - ]du
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2 t
T10- 805 | Yiaew{55 2w

Ey[TT50 (1= D) Yo (w) B3 Zin(u)] . du )
E[TT52 (1= Auy) Yig(u)] Y aE[Yie(w)] ™

vk (B, 1) = ()T A~ i v (8,8) + v (8,1),
m=1

v (B8,t) = A (1 - Agi) (1 - fli)(gl;ll - 1)’/1(1-21(5,”

+(1 = Ayin ) Apa(1 - &i)(?;l;j - 1)Vl($c),2(5,t)7

1 7 ()
""_AlilAliQ(l _gli)[(yzl L1+ (771 2-1)] 1(123(/&0’
Vi3 Vi4 ’

1[dQuik(8,t)10110, & = 1]
Ei[Yie(t)]0110] ’

Ey[dQuk(B,1)|0101,6n = 1]

Ei[Yie(t)]0101] ’

(1) A Ty o EldQui (8, )01, &n = 1]
Vi (5:0) = Qua(8.0) = [ Vi () S e,

v (8,) = (1 - &) { A (1 - Am(’"“—n v (B,1) + (1= M) Aria(22 — 1), (8,1),
Y2k ’

(60 = Qua(5.0) - [ Vi)™

V2 (8.0 = Qu(B.0) - [T V()

+_Ali1Ali2{(7le; -1)+ (7112 - 1)}%223(570},

@) 1 e v, Ey[dMi1x(8,u)|0110,&n = 0]
Vlzk 1(57 t) / Zl ] CJlE [ llk(u)] [ l’Lk(B? U) lzk(u) El[Yllk(U)|9110] ’
@) _ 1 M v () BLAMuk (B, W) o1, €1 = 0]
Vi (1) / Y aE Yo (u)] LM (5] =i () Ey[Yir(w)[001] ’
(2) 1 Ey[dMypg(8,u)01, &1 = 0]

D= [ ST [y i (B ) = Yin () S

Let GO () = {GV (1), GV (4)}T where GV (1) = n V2 SF ¥ (B, 1), G () = (G2 (#),
G (1)} where G2 (1) =n Y2 £ 1 (1- 8 ywir(B,1), and GO (1) = {GP (1), GSV (1)}
where G\¥ (£) = n V2 0F | S vy (B, ) for k=1,2.

Then, G (t) converges weakly to a zero-mean Gaussian process, G(P (t) = {gfl) (1), 9’51) (t)yr
in D[0,7]* where the covariance function between g](.l) (t) and g,gl) (s) is Ey[pu1;(t, Bo), paik(s, Bo)]
by theorem 2 of Yin and Cai [2004].

It can be shown that G(?)(¢) converges weakly to a zero-mean Gaussian process G (t) =
{gf) (1), 952) (t)} where covariance function g]@ (t) and g,f) (s)is 1;—‘;”El [wi1;(Bo,t), wink(Bo, s)]

by Lemma 2, Cramer-Wold device and the marginal tightness of Gl(f)(t) for each k.
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Similarly, G(3)(t) converges weakly to a zero-mean Gaussian process where covariance

function g§3)(t) and QS)(S) is

1 _
Yol (Bost). v, (Bo. )60, = 0]

(I-a)[(L(j =k)[Pr[tno](

1-
+ Pr[elm]( %312 )COU![VI(121372(ﬁQ,t), Vl(12]272(6075)|91017€l1 = 0]

1 1- 1-
+ Prlon (% + =) Coulvyg) o (Bo,6). Vi1 o (B0, 9)l6un. € = 01])
i V2
1-

+ Pr{Ono)(— 1) Coulv) (B, ) lk(s)T A7) (Bo. 1)|Brro. €1 = 0]

1-

+ Prigon)(— %) CoulwE), (G, 1), l(s) " AT v, (o, )l61on. & = 0]

1 1
v Prlom]( I+ ) ol (B0, ), () AT (o, Ol a1 = 0]

1
+ Prfno)( w” )Coulwyry, (Bo.s). ()T A ) (Bo. 8|01, &n = 0]

+ Pr[elm](l,y YCou[vi) (8o, ), ()T A7 ), (Bo, $)lfror. &1 = 0]

1 1- 1-
b S Pr{Bn ) (— 2+ —2)Couv) 4 (Bo,5). 1 (1) A ) (Bo, $)l6ur, & = 0]

4 Vi1 V2
2
1- _ _
+ S (Prfnol( W?“)zj(t)TA lCovl[Vllml(ﬁo,t) yllml(ﬁo,s)wm,g” = 0]A7 1 (s)
m=1

1- _ _
+ Pr6io]( %Zm)lj(t)TA LCou[v)) o (Bo.t), vt 5(Bos $)lbror. &1 = 0JA™ 11 (s)

1- 1- _ .
+ Pr(om]( %17” N %Z”)zj(t)TA o) (Bost)s v, 5(Bo, $)l6u1, € = 014 14 (s))]

By the conditional expectation arguments, all terms are mutually independent. Therefore,
G(t) = GV () +GP (1) +G®)(t) converges to a zero-mean Gaussian process G(t) = G () +
G () +G® ().

5.4 Simulations

We conducted simulation studies to examine the performance of the proposed methods
and compare the existing methods with the proposed methods. Correlated bivariate failure
time data were generated from Clayton-Cuzick model [Clayton and Cuzick, 1985]. The

bivariate survival function for the bivariate survival time (73,7T%) given (Zj1, Zj2) has the
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following form:

fotl(*m(t)wozll)dt fotz(Aoz(t)JrﬁoZzg)dt
0

F(tl,tg | le,Zlg) = {6 0 +e - 1}_0,

where \gx(t) and B, k = 1,2 are the baseline hazard function and the effect of covariate for
disease k, respectively, [ is a dichotomous stratum variable, and 6 is the parameter related
with correlation between the failure times of the two diseases. Smaller 6 indicates higher

correlation between the two failure times 77 and 75. The relationship between Kendall’s

_1

597+ For 0, we used values of 0.10, 0.67, and 4 and the corresponding

tau, 79, and 6 is 7y =
Kendall’s tau values are 0.83, 0.43, and 0.11, respectively. We set the baseline hazard
function Ag; = 2 for the first failure event type k =1 and Ag2 = 4 for the second failure event
type k = 2. The regression parameters are examined at 5y = 0 and 0.3.

We generate Z from Bernouilli distribution with pr(Z = 1) = 0.5 under the situation
Zy1 = Zip = Z. To consider stratified subcohort sampling from two strata defined by V;, we
define two parameters: 1 =Pr(V =1|Z = 1) and v =Pr(V = 0|Z = 0) where 7 is sensitivity
and v is the specificity for Z. Unstratified sampling with same probability, i.e., 7 = 0.5 and
v = 0.5 is a special case. Larger values 1 and v values than 0.5 indicate that V is highly
correlated with Z. For stratified case-cohort studies, we set the values [n,v] = [0.7,0.7].
Thus, a stratum variable is simulated with Pr(V =1) = (1-v)Pr(Z =0)+nPr(Z =1) =0.5.
Censoring times are generated from uniform distribution [0,u] where u depends on the
specified level of the censoring probability.

For simulations of the traditional case-cohort study, we set the event proportions of
approximately 8% and 20% for k£ = 1 and 14% and 35% for k = 2. For the simulations of
the generalized case-cohort study, the event proportions are considered as 15% and 25% for
k =1 and 26% and 42% for k = 2 and we sample half of the cases outsides the subcohort,
[v1,72] = [0.5,0.5]. The sample size of the full cohort is set to be n = 1000. For stratified
sampling, we consider the total subcohort size of 100 and 200 and select the subcohort

ny =n x q from each stratum. For each configuration, we conducted 2000 simulations.
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Table 5.1: Simulation result for the traditional case-cohort study: K =1, 51 =0

Event The Proposed weight Kulich and Lin’s method
S PR n m sl SE, SD, CR, pd  SE, SD, CRy SRE SRE, SREj
UN 8% 100 0-10 0-001 0-622 0621 096 0-000 0643 0633 096 105 1-00 1-00
0-67 -0-005 0610 0623 095 -0-002 0639 0652 095 1-10 1-00 1-00
4 0012 0613 0649 095 0014 0644 0677 095 1-09 1-00 1-00
200 0-10 -0-005 0-527 0-536 095 -0-006 0-537 0-543 095 1-02 1-00 1-00
0-67 0-007 0-525 0-532 094 0-013 0539 0546 094 1-05 1-00 1-00
4 -0002 0523 0523 095 0004 0538 0-542 095 1-07 1-00 1-00
20% 100 0-10 -0-001 0485 0-505 0-95 -0-005 0-525 0-548 095 1-18 1-00 1.00
0-67 0022 0466 0488 094 0032 0525 0-539 096 1-22 1.00 1-00
4 0002 0453 0477 094 0010 0525 0551 095 1-33 1-00 1-00
200 0-10 0-008 0-385 0-395 095 0-007 0406 0412 095 1-09 1-00 1-00
0-67 0-001 0374 0375 095 0-000 0406 0402 096 1-15 1-00 1-00
4 -0-007 0367 0375 095 -0-012 0405 0412 095 120 1-00 1-00
STR 8% 100 0-10 0-006 0601 0-621 095 0-003 0-618 0631 095 1.03 1-00 1-01
0-67 0001 0593 0594 096 -0-002 0617 0620 096 1-09 1-10 1-10
4 -0001 0596 0600 096 -0-003 0621 0626 096 1-09 1-17 1-17
200 0-10 -0-005 0-520 0-522 0-95 -0-004 0-528 0-528 095 1-02 105 1-06
0-67 0021 0515 0521 095 0021 0526 0-534 095 1-05 1.04 1-05
4 -0-008 0514 0517 095 -0-006 0-526 0-529 095 1-05 1-02 1.05
20% 100 0-10 -0-007 0-470 0-480 0-95 -0-007 0-502 0512 096 1-14 111 1-15
0-67 0004 0454 0460 095 -0-004 0-503 0-507 096 1-21 112 1-13
4 -0-015 0442 0456 094 -0-009 0-503 0509 096 125 1-09 1.17
200 0-10 -0-005 0-377 0-383 0-95 -0-004 0-394 0405 094 1-12 1.06 1-03
0-67 -0-005 0-367 0-357 096 -0-005 0-393 0377 097 1.12 1.10 114
4 -0006 0361 0370 095 -0-005 0-392 0403 095 1-19 1-.03 1.04
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the
nominal 95% confidence intervals; SRE = SD,%/SDI%, sample relative efficiency; SRE,, sample
relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;
SREj, sample relative efficiency of Kulich and Lin’s estimators with unstratified sampling relative
to stratified sampling.
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Table 5.2: Simulation result for the generalized case-cohort study: K =1, 81 =0

Event The Proposed weight The existing method

S PR n m ﬁél SE, SD, CR, p¢  SE, SDp CRy SRE SRE, SREj
UN 15% 100 0-10 -0-051 1-065 1075 096 -0-047 1085 1-104 095 1-06 1-00 1-00
0-67 0000 1-040 1-047 0-95 -0-003 1.083 1-101 095 1-10 1-00 1-00

4 -0-004 1.030 1.052 095 -0-012 1089 1109 096 1-11 1-00 1-00

200 0-10 0-003 0-822 0804 096 0016 0-842 0-839 096 1-09 1-00 1-00

0-67 -0-021 0-815 0-823 095 -0-019 0-841 0-850 096 1-07 1-00 1-00

4 -0-003 0810 0-803 096 0002 0-842 0-840 095 1-09 1-00 1.00

25% 100 0-10 -0-004 0953 0-990 0-94 0003 0-969 1-008 094 1-04 1-00 1.00

0-67 -0-020 0926 0964 095 -0-010 0971 1.014 095 1-11 1.00 1-00

4 0005 0888 0919 095 0002 0973 0998 095 118 1-00 1-00

200 0-10 0-001 0714 0707 096 -0-005 0-729 0-725 096 1-05 1-00 1-00

0-67 -0-008 0703 0729 095 -0-009 0-730 0-763 095 1-10 1-00 1-00

4 0003 0684 0704 095 0004 0728 0736 095 1-09 1-00 1.00

STR 15% 100 0-10 0-007 1040 1-029 096 0-008 1.057 1.050 096 1-04 1-09 1-11
0-67 0025 1019 1-008 096 0-011 1.056 1.042 096 1-07 1-.08 1-11

4 -0-022 1.006 0992 096 -0-022 1056 1045 096 111 112 113

200 0-10 -0-014 0-808 0-803 0-96 -0-015 0-825 0-822 095 105 100 1-04

0-67 0005 0806 0798 096 0-005 0-828 0-831 095 1-09 1.06 1-05

4 -0-002 0800 0795 095 0004 0-827 0830 095 1-09 1-02 1.02

25% 100 0-10 0-000 0938 0919 0-96 -0-003 0-954 0937 096 1-04 116 116

0-67 0038 0913 0899 095 0033 0954 0951 095 1-12 115 114

4 0000 0875 0831 096 0000 0949 0922 096 123 122 1.17

200 0-10 0017 0705 0678 096 0-019 0720 0695 096 1-05 1.09 1-09

0-67 -0-018 0695 0682 096 -0-017 0-720 0-711 095 1-09 1-.14 115

4 0002 0679 0665 096 0002 0719 0705 096 1-13 1-12 1.09
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the
nominal 95% confidence intervals; SRE = SD,%/SDI%, sample relative efficiency; SRE,, sample
relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;
SREy, sample relative efficiency of the existing estimators with unstratified sampling relative to
stratified sampling.
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Table 5.3: Simulation result for the traditional case-cohort study: K =2, 8y =0.3

Event The Proposed weight Kang & Cai’s method
S PR n T B SE, SD, CR, 4 SE, SD, CRy SRE SRE, SREj
UN [8%,14%] 100 0-10 0-320 0-803 0-829 095 0-317 0-815 0-835 096 1.02 1.00 1-00
0-67 0-280 0-757 0-781 096 0283 0-777 0793 096 1-03 1-00 1-00
4 0301 0740 0765 095 0297 0764 0784 095 1.05 1-00 1-00
200 0-10 0-311 0-647 0653 095 0-311 0654 0655 095 1-01 1-00 1-00
0-67 0-323 0599 0-603 095 0-322 0610 0610 095 102 1-00 1-00
4 0298 0-580 0-595 095 0298 0-593 0-603 095 1-03 1-00 1-00
[20%,35%] 100 0-10 0-292 0680 0-700 095 0295 0694 0714 095 1-04 1-00 1-00
0-67 0-300 0-632 0645 095 0297 0663 0665 095 106 1-00 1-00
4 0323 0596 0610 094 0319 0643 0645 095 112 1-00 1-00
200 0-10 0-307 0-514 0-533 094 0-309 0521 0538 0-94 1-02 1-00 1-00
0-67 0-309 0476 0498 095 0-309 0493 0-513 094 1.06 1-00 1-00
4 0311 0445 0462 094 0316 0472 0488 094 1-12 1-00 1-00
STR [8%,14%] 100 0-10 0-286 0-772 0-797 095 0285 0-781 0-802 095 1-02 108 108
0-67 0-325 0724 0749 095 0327 0738 0759 095 1-03 109 1-09
4 0302 0706 0-710 096 0-300 0-723 0720 096 1-03 1-16 1-19
200 0-10 0-292 0-628 0-637 095 0292 0632 0640 095 1-01 1-05 1-05
0-67 0-302 0-580 0-578 095 0-301 0-587 0-583 095 1-01 109 1-09
4 0282 0562 0569 095 0281 0-570 0-580 095 1-04 1-09 1-08
[20%,35%] 100 0-10 0-324 0655 0650 0-96 0-325 0664 0663 096 1-04 1-16 1-16
0-67 0-302 0610 0-601 095 0-304 0632 0629 095 1-10 1-15 1-12
4 0292 0576 0598 094 0289 0-611 0637 095 1-13 1-04 1-03
200 0-10 0-315 0497 0490 095 0-317 0502 0496 096 1.02 118 1-17
0-67 0-310 0460 0458 095 0-311 0472 0478 095 1-09 119 1-15
4 0301 0431 0445 095 0-300 0450 0469 094 1-11 1-08 1-09

S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD,%/SDI%, sample relative efficiency; SRE,, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREy, sample relative efficiency of the existing estimators with unstratified sampling relative to

stratified sampling.
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We first considered traditional case-cohort sample with a single disease but with co-
variates available on subjects with other diseases. We examine the the performance of our
proposed estimator and compare our results with those with the time-varying weight [Kulich
and Lin, 2000a]. Moreover, we compare the results of unstratified sampling with stratified
sampling using the proposed and Kulich and Lin [2000a] estimators, respectively. Table
5.1 reports the summary of B{ and Bf‘ For different combinations of 3, event proportion,
subcohort sample size, and correlation, Table 5.1 shows the average of the estimates /5’{ , the
average of the proposed estimated standard error (SE), empirical standard deviation (SD),
sample relative efficiency of the proposed estimators relative to estimators of Kulich and Lin
[2000a] (SRE), sample relative efficiency of proposed estimators with unstratified sampling
relative to with stratified sampling (SRE,), and sample relative efficiency of estimators
of Kulich and Lin [2000a] with unstratified sampling relative to with stratified sampling
(SREg). The subscripts for SE, SD, SRE refer to the proposed method (P) and the existing
traditional case-cohort analysis for additive hazards models, Kulich and Lin [2000a] (K).
The simulation results suggest that both methods are approximately unbiased across the
setup for 5 = 0.3 with both event proportions (8% and 20%) and correlations (0.10, 0.67,
and 4). The average of the proposed estimated standard error is close to the empirical
standard deviation and it is smaller with lower correlation, larger event proportions or sub-
cohort size, as expected. The 95% confidence interval coverage rate ranges between 94%
and 97%. All the sample relative efficiency (SRE), defined as SD3 /SD]%, are larger than 1
which indicates that the proposed estimates are more efficient than those from Kulich and
Lin [2000a]. This shows that the extra information collected on subjects with the other
disease helps to gain efficiency. In general, the efficiency is larger in situations with larger
event proportion, smaller subcohort size, and smaller correlation. Also, SRE, and SRE;
for stratified sampling are more than 1 suggesting that stratified sampling is more efficient
than unstratified sampling. However, when the disease rate is low and the subcohort size
is larger, the proposed method does not improve much efficiency.

In the second set of simulation, we are interested in the non-rare event and we sample half

of the cases outside the subcohort. We examine the performance of our proposed estimator
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Table 5.4: Simulation result for the generalized case-cohort study: K =2, 5y =0.3

Event The Proposed weight The existing method
S PR n Ty g SE, SD, CR, 4 SE, SD, CRy SRE SRE, SREj
UN [15%,26%] 100 0-10 0-303 0-760 0-760 0-96 0-308 0-781 0-773 096 1.04 1.00 1-00
0-67 0-307 0-720 0-716 096 0-311 0-751 0749 096 1-09 1-00 1-00
4 0314 0697 0711 095 0325 0736 0764 095 1.16 1-00 1-00
200 0-10 0-297 0-591 0-607 0-95 0-301 0609 0622 095 1-05 1-00 1-00
0-67 0296 0-559 0-544 095 0298 0-579 0-569 096 1-10 1-00 1-00
4 0315 0542 0526 096 0-317 0-564 0-564 095 1-15 1-00 1-00
[25%,42%] 100 0-10 0-293 0677 0-692 095 0-292 0697 0-708 0-95 1-05 1-00 1-00
0-67 0-301 0632 0643 095 0299 0668 0682 095 1-12 1-00 1-00
4 0302 0592 0587 095 0313 0646 0654 095 124 1-00 1-00
200 0-10 0-304 0-512 0-521 095 0-302 0-527 0527 096 1-02 1-00 1-00
0-67 0-285 0481 0488 095 0292 0-502 0-512 095 110 1-00 1-00
4 0307 0451 0440 096 0-308 0-480 0480 095 1-19 1-00 1-00
STR [15%,26%] 100 0-10 0-304 0-737 0-731 096 0306 0754 0748 096 1.05 1-08 107
0-67 0-312 0698 0659 096 0-310 0-720 0693 096 1-10 1-18 1-17
4 0315 0678 0662 097 0319 0706 0-708 096 1-14 1-15 1-17
200 0-10 0-278 0-579 0-582 095 0281 0-593 0-596 095 1-05 1-09 1-09
0-67 0295 0-549 0-539 096 0299 0-563 0-559 095 1-08 1-02 1-04
4 0310 0530 0-523 095 0-314 0-545 0556 094 1-13 1-01 1-03
[25%,42%] 100 0-10 0-288 0656 0-650 096 0295 0671 0664 096 1-04 1-13 1-14
0-67 0-285 0620 0-602 095 0-286 0-646 0634 096 1-11 1-14 1-16
4 0295 0583 0569 095 0299 0623 0617 096 1-18 1-06 1-13
200 0-10 0-304 0-501 0494 095 0-303 0-513 0-507 096 1-05 1-11 1-08
0-67 0293 0473 0450 096 0296 0489 0474 096 1-11 118 1-17
4 0295 0445 0434 096 0301 0466 0466 095 115 1-03 1-06

S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD,%/SDI%, sample relative efficiency; SRE,, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREy, sample relative efficiency of the existing estimators with unstratified sampling relative to

stratified sampling.
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and compare it to the existing method with a single disease outcome in the generalized
case-cohort study. Table 5.2 summarizes the results. Overall performance are similar to
Table 5.1: the unbiased estimates for 51, estimated standard errors close to the empirical
standard deviations, the 95% confidence interval coverage rate close to the nominal level.
All the sample relative efficiency (SRE) are more than 1 which implies that our proposed
method is more efficient than that of Kang et al. [2012]. Moreover, all the sample relative
efficiency of stratified sampling with unstratified sampling (SRE,, and SREj) are more than
1 which suggest that stratified sampling is more efficient than unstratified sampling.

In the third set of simulation, we consider the joint modeling of the two diseases for
case-cohort sample with the rare event. We examine the performance of our proposed
estimator and compare it to the existing method with multiple disease outcome. Table 5.3
provides summary statistics for Bl T'and BA. We found that biases in the coefficient estimates
are small; estimated standard errors close to the empirical standard deviations; the 95%
confidence interval coverage rate ranges in 94% and 96%. All the sample relative efficiency
(SRE) with more than 1 indicates that our proposed method is more efficient than that
of the existing method. For stratified sampling design, all the sample relative efficiency of
both proposed and exiting estimators are more than 1. This shows that stratified sampling
for the subcohort improve the efficiency for the traditional case-cohort study with multiple
outcomes.

Table 5.4 summarizes the simulation results for the joint modeling of two non-rare
diseases. We used the selection probability of cases with 0.5 for each disease. Overall, the
performance is similar to Table 5.3. For the proposed estimator, sample relative efficiency
gain of stratified sampling relative to unstratified sampling ranges in 1% to 18%. For the
existing estimator, it ranges in 3% to 17%. They imply that estimators with stratified

sampling are more efficient than those with unstratified sampling.

5.5 Data Analysis

We applied the proposed method to data from the Atherosclerosis Risk in Communities

(ARIC) study [Lee et al., 2008]. This study is a longitudinal and population-based cohort
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study consisting of 15,792 men and women aged from 45 to 64 years recruited from four
US communities. For this analysis, the follow up for incident coronary heart disease (CHD)
event and incident stroke event is through 1998. Incident CHD event is defined as defi-
nite or probable myocardial infarction, electrocardiographic evidence of silent myocardial
infarction, definite CHD death, or coronary revascularization procedure. Incident stroke
was defined as a definite or probable ischemic stroke. We regarded the subject as censored
if he or she was free of that event type by December 31, 1998 or lost to follow-up during
the study.

The primary aim of this study was to investigate the association between PTGS1 poly-
morphisms and risk of incident CHD and stroke. Cyclooxygenase-derived prostaglandins
can be significant modifiers of risk of cardiovascular diseases event. It has been suggested
that variation in the genes encoding cyclooxygenase-derived prostaglandins (PTGS1) play
an important role of cardiovascular disease risk [Antman et al., 2005; Camitta et al., 2001;
Ulrich et al., 2002].

Using case-cohort design, genomic DNA genotyped for the polymorphisms in PTGS1
were available on all incident CHD, ischemic stroke cases, and the subcohort. The subcohort
was selected by using stratified sampling design with three stratum variables: age (> 55 or
< 55 years), gender, and race (Caucasian or African American). After excluding subjects
with missing genotype data and covaroates, a full cohort consisted of a total of 13,731
subjects which includes 900 subjects with only CHD, 188 subjects with only stroke, 61
subjects with both CHD and stroke. The subcohort involved 850 disease-free subjects, 72
subjects with only CHD, 15 subject with only stroke, and 7 subjects with both CHD and
stoke. The total size of assayed samples was 1,999. To adjust for confounding and other
risk factors, traditional and clinical covariates related to cardiovascular diseases are used:
age, gender, race, study center, current smoking status, diabetes, and hypertension.

In order to study the effects of genetic variation (PTGS1) on CHD as well as stroke,
we fit the model using (5.1). Since all cases for CHD and stoke are selected and we are
interested in comparing the risk effects on CHD and on stroke, we conduct the joint analysis

for traditional stratified case-cohort design.
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Table 5.5: Analysis results for the effects of PTGS1 G/A+A/A versus G/G (x1079)

Proposed method Kang & Cai’s method

Variable g SE  P-value 8 SE  P-value
CHD PTGS1 2.52 2.94 0.196 2.47 2.94 0.201
African -10.95 6.68 0.051 -10.44 6.80 0.063
Age 0.69 0.18 <0.001 0.69 0.18 <0.001
Male 20.03 2.15 <0.001 19.85 2.16 <0.001
Center(F) -1.38 3.36 0.341 -1.61 3.37 0.317
Center(J) -1.94 7.29 0.395 -2.64 742 0.361
Center(M) -9.05 3.03 <0.001 -9.00 3.05 <0.001
Current smoking 12.93 2.61 <0.001 12.89 2.63 <0.001
Diabetes 22.67 5.32 <0.001 23.27 546 <0.001
Hypertension 1543 2.75 <0.001 15.55 2.78 <0.001
Storke PTGS1 2.76  1.46 0.029 2.97 1.52 0.025
African 1.37 3.42 0.344 1.54 3.36 0.324
Age 0.33 0.07 <0.001 0.34 0.07 <0.001
Male 242 0.79 <0.001 2.33 0.81 <0.001
Center(F) -0.42  1.08 0.350 -0.48 1.14 0.337
Center(J) 0.59 3.70 0.437 0.24 3.68 0.474
Center(M) -0.48 0.96 0.310 -0.79  0.98 0.211
Current smoking 3.94 1.05 <0.001 426 1.09 <0.001
Diabetes 9.32 230 <0.001 8.43 224 <0.001
Hypertension 6.01 1.10 <0.001 590 1.13 <0.001
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Table 5.5 represents the results of additive hazards regression parameters estimates for
PTGS1 G/A+A/A versus G/G, estimated standard errors (SE), and P-values. We fit the
model allowing for different effects for CHD and stoke. The effects of PTGS1 on both CHD
and stroke are not statistically significant with P-value of 0.196 and 0.201, respectively. We
also fit the same model using Kang et al. [2012]’s method. Except for the standard errors
of African, Center (J) and diabetes on stroke, all the standard errors for the proposed

estimator are slightly smaller than those for the estimator of Kang et al. [2012].

5.6 Concluding remarks

By using the new weight function, we have proposed more efficient estimators for the
additive hazards model in stratified case-cohort design with rare and non-rare diseases. The
new weight functions incorporate the extra information for subjects with other diseases,
which can help to increase efficiency relative to existing methods. Moreover, stratified
sampling for the subcohort also improved the efficiency relative to unstratified sampling.
However, under the situation that the disease rate is low, the proposed method did not
improve much efficiency due to small amount of extra information.

In many biomedical and clinical studies, multiple case-cohort studies have been con-
ducted separately. Under the situation, covariate information collected on subjects with
the other diseases can be obtained and stratum variables are often available on all the co-
hort members. By using available information for subjects with other diseases and stratum
variables, we are able to estimate the risk effects more efficiently in additive hazards model
for case-cohort studies.

It would be worthwhile to consider models with different association between failure time
and risk factors. Therefore, we can adapt our approaches to other types of models such
as proportional odds model, the accelerated failure time model, and the semiparametric
transformation model by using all available information including stratum variables and

covariate information for other diseases. They are expected to improve efficiency.
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Chapter 6

Summary and Future Research

In this dissertation, we have studied more efficient statistical methods for case-cohort
studies with univariate and multivariate failure times. Specially, the following topics are
considered: 1) more efficient estimators for the traditional case-cohort study 2) stratified
case-cohort study with nonrare diseases, and 3) more efficient estimation in additive hazards
models for stratified case-cohort studies.

Case-cohort study design is generally used to reduce cost in large cohort studies. When
several diseases are of interest, several case-cohort studies are usually conducted using the
same subcohort. When these case-cohort data are analyzed, the common practice is to an-
alyze each disease separately ignoring data collected in subjects with the other diseases. In
addition, many baseline covariates are often available for the full cohort. Hence, the main
contribution of this dissertation is to provide statistical methods for case-cohort studies
which use all available information. We proposed new weights for both rare and nonrare
diseases. We developed weighted estimating equations with new weight functions for pa-
rameter estimation and studied the cumulative baseline hazard functions.

In Chapter 2.3.3, we considered case-cohort studies with rare diseases. In Chapter 3.6,
stratified case-cohort studies with nonrare diseases were considered. In Chapter 4.6, we
considered additive hazards models for stratified case-cohort studies.

The asymptotic properties of the proposed estimators were shown to be consistent and
asymptotically normally distributed under some regularity conditions. We investigated the

finite sample properties of the proposed methods and compared those with the existing



methods. The simulation results show that our proposed methods worked properly and
were more efficient than the existing methods. We applied our proposed methods to data
from the Busselton Health Study and the Atherosclerosis Risk in Communities study.

There are many directions that can be pursued in my future research.

First, I would like to extend the current methodology to competing risks. In the compet-
ing risks situation, a subject can only experience at most one event, while in the situation
we considered a subject can still experience the other events after experiencing one event.
Consequently, in the competing risks situation, a subject is at risk for all types of events
simultaneously and will not be at risk for any other events as soon as one event occurs.
I will adapt the approach in my dissertation to competing risks by modifying the at-risk
process and the weight function.

The second topic is to consider the joint modeling of survival time and longitudinal
covariates via shared random effects in case-cohort studies. Our current approaches can
allow the time-dependent covariates only when there are no missing data in covariates.
However, in many follow-up studies, the entire time-dependent covariate history is not
always available. I would like to investigate the joint modeling approach to address the
missing covariate data problem.

Last, I would like to apply our proposed approaches to case-cohort studies with models
including proportional odds model, the accelerated failure time model, and the semiparamet-
ric transformation model. In some data, the proportional or additive hazards assumption
may not always be true. Therefore, it is worthwhile to consider modeling association from

different aspects.
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