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Abstract

SOYOUNG KIM : More efficient estimators for case-cohort studies with
univariate and multivariate failure times
(Under the direction of Dr. Jianwen Cai)

Case-cohort study design is generally used to reduce cost in large cohort studies when

the disease rate is low. The case-cohort design consists of a random sample of the entire

cohort, named subcohort, and all the subjects with the disease of interest. When the rate

of disease is not low or the number of cases are not small, the generalized case-cohort

study which selects subset of all cases is used. In this dissertation, we study more efficient

estimators of multiplicative hazards models and additive hazards models for the traditional

case-cohort study as well as the generalized case-cohort study.

We first study more efficient estimators for the traditional case-cohort studies with rare

diseases. When several diseases are of interest, several case-cohort studies are usually con-

ducted using the same subcohort. When these case-cohort data are analyzed, the common

practice is to analyze each disease separately ignoring data collected in subjects with the

other diseases. This is not an efficient use of the data. In this study, we propose more

efficient estimators by using all available information. We consider both joint analysis of

the multiple diseases and separate analysis for each disease. We propose an estimating

equation approach with a new weight function. We establish that the proposed estimator

is consistent and asymptotically normally distributed. Simulation studies show that the

proposed methods using all available information gain efficiency. For comparing the effect

of the exposure on different diseases, tests based on the joint analysis are more powerful

than those based on the separate analysis assuming independence. We apply our proposed

method to the data from the Busselton Health Study.

We extend this approach to the stratified case-cohort design with non-rare diseases.
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We also consider the additive hazards regression model for the stratified case-cohort stud-

ies. Additive hazards model is more appropriate when risk difference is of interest. Risk

difference is more relevant to public health because it translates directly into the number

of disease cases that would be avoided by eliminating a particular exposure. We propose

an estimating equation approach for parameter estimation in additive hazards regression

model by making full use of available information. Asymptotic properties of the proposed

estimators were developed and simulation studies were conducted. We apply our proposed

methods to data from the Atherosclerosis Risk in Communities (ARIC) study.

iv



Acknowledgments

I would like to thank my dissertation advisor, Dr. Jianwen Cai for supporting me

during past three years. I have learned the lesson and gained the experience throughout my

dissertation research process. She has set an example of excellence as a researcher, mentor,

instructor, and role model.

I also would like to thank the committee members, Dr. David Couper, Dr. Ka He, Dr.

Wenbin Lu, Dr. Donglin Zeng, and Dr. Haibo Zhou for all of their guidance through this

process.

v



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Univariate failure time from cohort studies . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Cox proportional hazards model . . . . . . . . . . . . . . . . . . . 3

2.1.2 Additive hazards model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Multivariate failure time from cohort studies . . . . . . . . . . . . . . . . . . . 6

2.2.1 Multiplicative risk models . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Additive risk models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Case-cohort studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Case-cohort studies vs nested case-control studies . . . . . . . . . . . . 11

2.3.2 Univariate failure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Multivariate failure time . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 More efficient estimators for case-cohort studies with rare events . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Model definitions and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Estimation for univariate failure time . . . . . . . . . . . . . . . . . . . 24

3.2.2 Estimation for multivariate failure time . . . . . . . . . . . . . . . . . . 25

3.3 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Asymptotic properties of β̃M and Λ̃M0k(β̃
M , t) . . . . . . . . . . . . . . 26

vi



3.3.2 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Stratified case-cohort studies with nonrare events . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Model and estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Additive hazards model for stratified case-cohort design . . . . . . . . . . 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Estimation for univariate failure time . . . . . . . . . . . . . . . . . . . 105

5.2.2 Estimation for multivariate failure time . . . . . . . . . . . . . . . . . . 108

5.3 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Asymptotic properties of β̃IIG and Λ̃II0k(β̃
II
G , t) . . . . . . . . . . . . . . . 109

5.3.2 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Summary and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vii



List of Tables

3.1 Simulation result for a single disease outcome: β1 = log(2) = 0.693 . . . . . . 47

3.2 Simulation result for multiple disease outcomes: [β1, β2] = [0.1, 0.7] . . . . 48

3.3 Comparison between separate and joint analysis: β1 = log 2, Pr(∆ = 1)=0.2 48

3.4 Type I error and power (%) in separate and joint analyses: Pr(∆ = 1)=0.2 . 49

3.5 Analysis results for the Busselton Health Study . . . . . . . . . . . . . . . . . 51

4.1 Simulation result with a single disease outcome (K = 1): β1 = log(2) = 0.693 93

4.2 Simulation result with multiple disease outcomes (K = 2): β = [0.1, 0.7] . . . 95

4.3 Type I error and power (%) in separate and joint analyses: [η, ν] = [0.7,0.7] 96

4.4 Results for the effect of hs-CRP from the ARIC Study . . . . . . . . . . . . . 98

5.1 Simulation result for the traditional case-cohort study: K = 1, β1 = 0 . . . . . 131

5.2 Simulation result for the generalized case-cohort study: K = 1, β1 = 0 . . . . 132

5.3 Simulation result for the traditional case-cohort study: K = 2, β0 = 0.3 . . . . 133

5.4 Simulation result for the generalized case-cohort study: K = 2, β0 = 0.3 . . . 135

5.5 Analysis results for the effects of PTGS1 G/A+A/A versus G/G (×10−6) . . 138

viii



Chapter 1

Introduction

In large epidemiologic cohort studies, several thousands of subjects are usually followed

for many years and such studies can be expensive. Most of the cost and effort involve the

assembly of the covariate information for all cohort members. However, if the disease is rare,

much of the covariate information on disease free subjects is largely redundant [Prentice,

1986]. In order to reduce the high cost, Prentice [1986] proposed the case-cohort design.

Under the case-cohort study design, the covariate histories are collected only for subjects in

a randomly selected sample, named subcohort, from the entire cohort and all the cases (i.e.

the subjects with the event of interest). In this dissertation, we develop statistical methods

for case-cohort study design with univariate and multivariate failure time data.

One important advantage of the case-cohort study design is that the same subcohort can

be used for studying different diseases, whereas for other designs such as the nested case-

control design, new matching of cases and controls needs to be done for different diseases

[Wacholder et al., 1991; Langholz and Thomas, 1990].

For example, in the Busselton Health Study [Cullen, 1972] two case-cohort studies were

conducted. The purpose of this study is to investigate the effect of serum ferritin on coro-

nary heart disease and stroke, respectively. Serum ferritin was measured on a random

sample of the cohort as well as all subjects with coronary heart disease and/or stroke. The

existing methods do not use the covariate information collected on subjects with stroke

when studying the serum ferritin effect on coronary heart disease and vice versa. This is

not an efficient use of available resources and new statistical methods which use all available



exposure information is needed.

The case-cohort study design was originally proposed to reduce the cost in the cohort

study when the disease of interest is rare. Consequently, the traditional case-cohort sampling

involves all the cases (i.e. the subjects with the event of interest). In recent years, in order

to preserve the raw material collected in the study, case-cohort study design is also used

in situations when the disease is not rare. In such studies, it is not desirable to conduct

the traditional case-cohort studies which collect the expansive covariate information on all

cases. Sampling only a fraction of the cases is more practical [Breslow and Wellner, 2007;

Cai and Zeng, 2007; Kang and Cai, 2009]. Existing methods do not make the full use of

all available information about all diseases from the generalized case-cohort studies and a

correlate of the exposure available for all cohort members. It is desirable to develop new

statistical methods which use all available information.

There are two principal frameworks for modeling risks: the multiplicative and additive

risks model. Much work for the case-cohort studies were on multiplicative risks models

using proportional hazards models. However, the multiplicative risks model is not always

applicable in biomedical studies. Furthermore, the researchers could be interested in the

risk difference attributed to the exposure. The risk difference is more related to public

health since it translates directly into the number of disease cases that would be avoided by

eliminating a particular exposure [Kulich and Lin, 2000b]. Under such situation, the addi-

tive hazards model would be more appropriate. It will be important to develop statistical

methods for the additive hazards model using all available information from case-cohort or

generalized case-cohort studies.

In the next chapter, we will review the relevant literature in these areas.
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Chapter 2

Literature review

In this chapter, we review the literature on statistical methods for both univariate and

multivariate survival data from cohort studies, case-cohort studies, and case-control studies.

The rest of this chapter is organized as follows. We review literature on statistical methods

in cohort studies for univariate failure time in section 2.1 and multivariate failure time

in section 2.2. In section 2.3, we review literature on statistical methods for case-cohort

studies.

2.1 Univariate failure time from cohort studies

In subsection 2.1.1, we first review the Cox proportional hazards model, the most popular

model for survival analysis with a single failure time. We review the literature on survival

analysis for additive hazards models from cohort studies in subsection 2.1.2.

2.1.1 The Cox proportional hazards model

The Cox proportional hazards model [Cox, 1972] is the most commonly used method

in survival analysis to examine the relationship between the effects of covariates and the

failure time. The Cox proportional hazards model specifies the hazard rate for failure time

T for a given covariate vector Z. Specifically, the Cox model is given by

λ{t∣Z} = λ0(t)e
βT0 Z(t), (2.1)



where λ0(t) is an unspecified baseline hazard function and β0 is a p-dimensional fixed and

unknown parameter vector.

Let Ti be the failure time, Ci denote the potential censoring time, and Xi = min(Ti,Ci)

denote the observed time for subject i. Let Yi(t) = I(Xi ≥ t) be an at risk indicator and

∆i = I(Ti ≤ Ci) be failure indicator where I(.) is the indicator function for subject i. Let

Ni(t) = I(Xi ≤ t,∆i = 1) denote the observed counting process for failure for subject i.

Suppose that there are n independent subjects and τ denotes the end of study time.

The partial likelihood score function introduced by Cox [1975] is given by

U1(β) =
n

∑
i=1

{Zi(Xi) −
S(1)(β,Xi)

S(0)(β,Xi)
}∆i,

or equivalently using counting process form

U2(β) =
n

∑
i=1
∫

τ

0
Zi(u)dNi(u) − ∫

τ

0

S(1)(β,u)

S(0)(β,u)
dN̄i(u),

where

N̄i(t) =
n

∑
i=1

Ni(t), S(0)
(β, t) = n−1

n

∑
i=1

Yi(t)e
β′Zi(t), S(1)

(β, t) = n−1
n

∑
i=1

Yi(t)Zi(t)e
β′Zi(t).

The regression parameter β can be estimated by solving the score equation U2(β) = 0.

We denote the solution by β̂. Under some regularity conditions, β̂ has been shown to be

consistent and follow a normal distribution with mean β0 and covariance matrix Σ given by

Σ = ∫

τ

0
v(β0, t)s

(0)
(β0, t)λ0(t)dt,

where v(β0, t) = s
(2)(β0, t)/s

(0)(β0, t) − {s(1)(β0, t)/s
(0)(β0, t)}

⊗2, s(d)(β0, t) =

E[S(d)(β0, t)] for d = 0,1,2, and S(2)(β, t) = n−1
∑
n
i=1 Yi(t)Zi(t)

⊗2eβ
′Zi(t). The asymptotic

variance Σ can be estimated by Σ̂ = −{∂U2(β)/∂β∣β=β̂} [Andersen and Gill, 1982].

4



2.1.2 Additive hazards model

Another framework commonly used for regression with censored failure time is the addi-

tive hazards model. Much work has been conducted under the assumption of multiplicative

hazards models. However, epidemiologists often are interested in the risk difference. Risk

difference is another measure of association. It is very relevant to public health decisions,

because it translates directly to the expected number of disease cases that would be pre-

vented in the population by removing a certain exposure [Kulich and Lin, 2000b]. When

the risk difference is of interest, the additive hazards model is very useful.

The additive hazards model takes the following form:

λa(t;Z) = λa0(t) + β
′
a0Z(t), (2.2)

where Z(.) is a p-vector of possibly time-varying covariates, βa0 is a p-vector of regression

parameters, and λa0(t) is an unspecified baseline hazard function. The regression param-

eter of the additive hazards model represents the risk difference for one unit change in

the covariate while adjusting for the other covariates in the model. Lin and Ying [1994]

proposed estimators under model (2.2) and studied the asymptotic properties of the esti-

mators. Mimicking the partial likelihood score function for the proportional hazards model,

the estimating function to estimate βa0 in (2.2) is given by

Ua(β) =
n

∑
i=1
∫

τ

0
{Zi(t) − Z̄a(t)}{dNi(t) − Yi(t)β

′
aZi(t)dt} ,

where Z̄a(t) = ∑
n
j=1 Yj(t)Zj(t)/∑

n
j=1 Yj(t). The estimator β̂a is defined as the solution to

U(β) = 0 and takes the explicit form

β̂a = [
n

∑
i=1
∫

τ

0
Yi(t){Zi(t) − Z̄a(t)}

⊗2dt]

−1

[
n

∑
i=1
∫

τ

0
{Zi(t) − Z̄a(t)}dNi(t)] .

Under some regularity conditions, Lin and Ying [1994] showed the random vector

n−1/2(β̂a − β0) converges weakly to a p-variate normal distribution with mean zero and

5



with a covariance matrix which can be consistently estimated by A−1BA−1, where

A = n−1
n

∑
i=1
∫

τ

0
Yi(t) {Zi(t) − Z̄a(t)}

⊗2
dt and B = n−1

n

∑
i=1
∫

τ

0
{Zi(t) − Z̄a(t)}

⊗2
dNi(t).

Lin and Ying [1994] also proposed the estimator for the baseline cumulative hazard function:

Λ̂a0(β̂a, t) = ∫
t

0

∑
n
i=1{dNi(u) − Yi(u)β̂

′
aZi(u)du}

∑
n
j=1 Yj(t)

.

They also showed that n1/2{Λ̂a0(β̂, .) − Λ0(.)} converges weakly to a zero-mean Gaussian

process whose covariance function at (t, s)(t ≥ s) can be consistently estimated by

∫

s

0

n∑ni=1 dNi(u)

{∑
n
j=1 Yj(u)}

2
+C ′

(t)A−1BA−1C(s) −C ′
(t)A−1D(s) −C ′

(s)A−1D(t),

where C(t) = ∫
t

0 Z̄a(u)du and D(t) = ∫
t

0
∑
n
i=1{Zi(u)−Z̄a(u)}dNi(u)

∑
n
j=1 Yj(u)

.

2.2 Multivariate failure time from cohort studies

In section 2.2, we review the literature on survival analysis for multivariate failure time

data. Several approaches dealing with multiple failure times or recurrent event data have

been proposed. We review literature on statistical methods for multiplicative hazards mod-

els in subsection 2.2.1 and additive hazards models in subsection 2.2.2.

2.2.1 Multiplicative risk models

There are in general two types of commonly used models dealing with correlated failure

times: 1) marginal models, 2) frailty models. The marginal model approach does not

specify the form of the dependence among correlated failure times while the frailty model

approach formulates the exact nature of dependence among correlated failure times through

an unobservable random variable.

6



Marginal models

Several authors have studied marginal models. Wei et al. [1989] proposed semiparametric

methods for each marginal distribution of failure times with Cox-type proportional hazards

form.

Let Zik(t) = (Zi1k(t), . . . , Zipk(t))
′ be the covariate vector for the ith subject and the

kth failure type and βk = (β1k, . . . , βpk)
′ be the failure-specific regression parameter. Under

the failure-specific model, the hazard function for the ith subject and the kth failure type

is given by

λk{t∣Zik(t)} = λ0k(t)e
βkZik(t), (2.3)

where λ0k(t) is an unspecified baseline hazard function for k = 1, . . . ,K.

The kth failure-specific partial likelihood function [Cox, 1972, 1975] is

Lk(βk) =
n

∏
i=1

[
exp{β′kZik(Xik)}

∑l∈Rk(Xik) exp{β′kZlk(Xik)}
]

∆ik

,

whereRk(t) = {l ∶Xlk ≥ t} is the set of subjects at risk just prior to time t with respect to the

kth type of failure. The maximum partial likelihood estimator β̂k is defined as the solution

to the partial likelihood equation ∂ logLk(βk)/∂βk = 0 and they are generally correlated.

Under some regularity conditions, it is shown that β̂k is a consistent estimator for βk and

n1/2(β̂′1 −β
′
1, . . . , β̂

′
K −β′K) converges in distribution to a zero-mean normal random vector

with covariance matrix Q where

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11(β1, β1) ⋯ H1K(β1, βK)

⋮ ⋮

HK1(βK , β1) ⋯ HKK(βK , βK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

7



with

Hkl(βk, βl) = A
−1
k (βk)E{w1k(βk)w1l(βl)

′
}A−1

l (βl),

Ak(βk) = ∫
τ

0
vk(βk, t)s

(0)
k (βk, t)λ0k(t)dt,

vk(β, t) = s
(2)
k (β, t)/s

(0)
k (β, t) − {s

(1)
k (βk, t)/s

(0)
k (βk, t)}

⊗2,

s
(d)
k (β, t) = E[Y1k(t)Z1k(t)

⊗d exp{β′Z1k(t)}],

wik(βk) = ∫
∞

0
{Zik(t) − s

(1)
k (βk, t)/s

(0)
k (βk, t)}dMik(t), and

Mik(t) = Nik(t) − ∫
t

0
Yik(t)λik(u)du.

Spiekerman and Lin [1998] and Clegg et al. [1999] extended the models proposed by

Wei et al. [1989] to formulate the general form by allowing for exchangeable failure time

of each distinct failure type in the cluster. Suppose that there are J clusters, K distinct

failure types, each of which consists of L exchangeable failure times. Let Tjkl denote the

failure time and Cjkl the censoring time, and Xjkl = min (Tjkl,Cjkl) the observed time for

component l of disease k in cluster j. Let Yjkl(t) = I(Xjkl ≥ t) be an at risk indicator,

∆jkl = I(Tjkl ≤ Cjkl) be failure indicator where I(.) is the indicator function and Njkl(t) =

I(Xjkl ≤ t,∆jkl = 1) be the observed counting process for failure for component l of disease

k in cluster j. Specifically, the following model for the lth component of the kth type of

failure is considered:

λkl{t∣Zkl(t)} = λ0k(t)e
βT0 Zkl(t),

where λ0k(t)(k = 1, . . . ,K) are unspecified baseline hazard functions.

The pseudo-partial score function is given by

USL(β) =
J

∑
j=1

K

∑
k=1

L

∑
l=1
∫

τ

0
{Zjkl(u) −

S
(1)
k (β,u)

S
(0)
k (β,u)

}dNjkl(u),

where Zjkl is the covariate vector for the lth component of the kth failure type in the jth

cluster and S
(d)
k (β, t) = J−1

∑
J
j=1∑

L
l=1 Yjkl(t)Zjkl(t)

⊗deβ
′Zjkl(t) d = 0,1.

8



The maximum pseudo-partial-likelihood estimator β̂SL for β0 is defined as the solu-

tion to USL(β) = 0 and n1/2(β̂SL − β0) is shown to converge weakly to a p-variate nor-

mal vector with mean 0 and covariance matrix Ω = A−1BSLA
−1 where A = ∑

K
k=1Ak and

BSL = E[∫
τ

0 {Zjkl(u) −
S
(1)
k

(β0,u)

S
(0)
k

(β0,u)
}dMjkl(u)]

⊗2. In addition, Spiekerman and Lin [1998]

showed the uniform convergence and joint weak convergence of the Aalen-Breslow type

estimators for the cumulative baseline hazard functions Λ̂0k(t, β) where

Λ̂0k(t, β̂) = ∫
t

0

dN.k.(u)

nS
(0)
k (β̂, u)

.

Frailty models

Marginal model approaches are appropriate when the main interest is to estimate the

effects of risk factors while the correlation among failure times is considered as a nuisance.

However, when the correlation among failure times is of interest, an alternative approach

is needed. Frailty models have been proposed under such situation. Frailty model specifies

the intra-subject correlation explicitly through an unobservable random variable (frailty).

Specifically, the failure times given the frailty are assumed independent and the conditional

hazard given the frailty Wi is assumed to follow the following model:

λik(t∣Wi) =Wiλ0(t) exp{βT0 Zik(t)},

where Wi, i = 1, . . . , n, are assumed to be independent and follow a probability distribution

is often assumed for the frailty distribution. Other distributions such as the positive stable

distribution, the inverse Gaussian distribution, or the log-normal distribution have also been

proposed.

Frailty models have been studied by many authors. In approaches for nonparametric

maximum likelihood, Klein [1992] proposed the estimation of the frailty by using an EM

algorithm based on a partial likelihood. As an alternative of a partial likelihood, a penal-

ized likelihood procedure is used by Therneau and Grambsch [2000] who showed an exact

connection between the shared gamma frailty model and a penalized likelihood procedure.
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Ripatti and Palmgren [2000] generalized the results of Therneau and Grambsch [2000] by as-

suming the frailties from a log-normal distribution and thus they got a flexible specification

of variance components which can explain negative dependencies.

2.2.2 Additive risk models

The previous subsection discussed multiplicative hazards models. In this subsection, we

will review additive hazards models with multivariate failure time data from cohort studies.

When all the failure times are independent, several authors have studied additive hazards

models from cohort studies. Martinussen and Scheike [2002] and Lin et al. [1998] has applied

the additive hazards model to interval censored data. Moreover, the additive hazards model

has been applied to measurement error problems by Kulich and Lin [2000b], to frailty models

by Lin and Ying [1997], and to cumulative incidence rates by Shen and Cheng [1999].

For correlated or clustered data, marginal additive hazards models are proposed by Yin

and Cai [2004]. They proposed the additive hazards model

Λjki(t;Zjki) = λ0k(t) + β
′
0kZikl(t),

where Zjki(t) is a possibly time-varying covariate vector for failure type k of subject i in

cluster j. An estimating function for β0k is

UAk (β) =
J

∑
j=1

n

∑
i=1
∫

τ

0
{Zjki(t) − Z̄

A
k (t)}{dNjki(t) − Yjki(t)β

′Zjki(t)dt} ,

where Z̄Ak (t) =
∑
J
j=1∑

n
i=1 Yjki(t)Zjki(t)

∑
J
j=1∑

n
i=1 Yjki(t)

. The estimator β̂Ak is defined as the solution to UAk (β) =

0, which is given by

β̂Ak =

⎡
⎢
⎢
⎢
⎢
⎣

J

∑
j=1

n

∑
i=1
∫

τ

0
Yjki(t){Zjki(t) − Z̄

A
k (t)}⊗2dt

⎤
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎣

J

∑
j=1

n

∑
i=1
∫

τ

0
{Zjki(t) − Z̄

A
k (t)}dNjki(t)

⎤
⎥
⎥
⎥
⎥
⎦

.

Under some regularity conditions, n1/2(β̂A
′

1 − β′01, . . . , β̂
A′
K − β′0K)′ was shown to converge in

distribution to a zero-mean (p ×K)-dimensional normal random vector with a covariance
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vector DA
jk(β

′
0j , β

′
0k) = A

−1
j E[UA1j(β0j)U

A
1k(β0k)] A

−1
j where Aj = E[∑

L
l=1 ∫

τ
0 Y1jl(t){Z1jl(t)−

Z̄j(t)}
⊗2dt]. Under the working independence assumption, the baseline cumulative hazard

function for failure type k can be estimated by

Λ̂A0k(t; β̂k) = ∫
τ

0

∑
J
j=1∑

n
i=1{dNjki(u) − Yjki(u)β̂

A′
k Zjki(u)du}

∑
J
j=1∑

n
i=1 Yjki(u)

.

Under some regularity conditions, as n → ∞, n1/2[{Λ̂A01(t) − Λ01(t)}, . . . ,{Λ̂A0K(t) −

Λ0K(t)}] was shown to converge weakly to a zero-mean Gaussian random field. For a

specific subject with the covariate vector Z0(t), the cumulative hazard function can be es-

timated by Λ̂A(t; β̂Ak , Z0) = Λ̂A0k(t; β̂
A
k ) + ∫

t
0 β̂

A′
k Z0(u)du. To ensure monotonicity, a minor

modification was made, i.e. Λ̂∗
0k(t) = maxs≤t Λ̂A0k(s) for k = 1, . . . ,K. By similar arguments

as in Lin and Ying [1994], it can be shown that Λ̂∗
0k(t) and Λ̂A0k(t) are asymptotically

equivalent.

Pipper and Martinusse [2004] also considered marginal additive hazards models for clus-

tered data. By using Lin and Ying [1994]’s estimators, they provided estimating equations

for the regression parameters and association parameters for marginal additive hazards

models. Further, Yin [2007] developed a test for checking the additive structure using clus-

tered data. By relaxing the linear assumption about covariate effects, Zeng and Cai [2010]

proposed a general class of additive transformation risk models for clustered failure time

data.

2.3 Case-cohort studies

2.3.1 Case-cohort studies vs nested case-control studies

In large epidemiologic cohort studies, several thousands of subjects are followed and

thus such studies can be expensive. To reduce the cost in large cohort studies, several study

designs have been proposed. Among different sampling schemes, nested case-control study

design and case-cohort study design are widely used when the disease rate is low. In this

subsection, we will review the literature on nested case-control study design and case-cohort

study design.
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Thomas [1977] originally suggested nested case-control study design which involves se-

lection of a number of controls from those at risk at the failure time of each case. Prentice

and Breslow [1978] further developed the conceptual foundations of the nested case-control

design by deriving the conditional likelihood. However, there are some limitations in the

nested case-control studies: inefficiency for the alignment of each selected control subject

to its matched case and a strict application which involves the selection of a new set of

controls for each distinct disease category.

To address the problems, case-cohort study design was proposed by Prentice [1986] as

an alternative to the nested case-control study design. Case-cohort study design involves

selection of a random sample, named subcohort, and all cases. The subcohort constitutes

the comparison set of cases occurring at a range of failure times. The subcohort also provides

a basis for covariate monitoring during the course of cohort follow-up [Prentice, 1986].

Langholz and Thomas [1990] compared case-cohort studies with nested case-control

studies. They showed that the nested case-control approach is better than the case-cohort

study if there is moderate random censoring or staggered entry. It also has been shown

that case-cohort study design for a single disease outcome has higher efficiency than nested

case-control study design; however, the difference is very small. Compared to the nested

case-control studies, a major advantage of the case-cohort design is the ability to study

several disease outcomes using the same subcohort.

We will review the literature for case-cohort studies with univariate failure time in

subsection 2.3.2 and multivariate failure time in subsection 2.3.3.

2.3.2 Univariate failure time

Prentice [1986] proposed a case-cohort design and established asymptotic properties of

their proposed estimators. He considered a relative risk regression model [Cox, 1972]:

λ{t∣Z(u),0 ≤ u < t} = λ0(t)r{β
′
0Zi(t)}, (2.4)

where r(x) is a fixed function with r(0) = 1, β0 is a p-vector of regression parameters, and
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λ0(t) is a baseline hazard function.

Prentice [1986] proposed the pseudolikelihood function for estimation of the relative risk

parameter β0 in case-cohort studies given by

L̃(β) =
n

∏
i=1

⎛
⎜
⎝
rii/ ∑

l∈R̃(ti)

rli
⎞
⎟
⎠

∆i

where rli = Yl(ti)r{β
′
0Zl(ti)}, R̃(ti) = F (t) ∪ C̃, F (t) = {i∣Ni(t) ≠ Ni(t

−)}, and C̃ is a

random subcohort.

The maximum pseudolikelihood estimator β̃CC is defined as a solution to UCC(β̃) = 0

where

UCC(β) =
∂ log L̃(β)

∂β
=

n

∑
i=1

Ui(β) =
n

∑
i=1

∆i

⎛
⎜
⎝
cii − ∑

l∈R̃(ti)

bli/ ∑
l∈R̃(ti)

rli
⎞
⎟
⎠
,

bli = Yl(ti)Zl(ti)r
′{βTZl(ti)}, cli = blir

−1{βTZl(ti)}, and r′(u) = dr(u)/du. Under some

regularity conditions, Prentice [1986] reasoned that n−1/2UCC(β) converge weakly to a nor-

mal variate with mean zero and variance matrix A and that n1/2(β̃CC − β0) converges in

distribution to a normal variate with mean zero and variance matrix S = Ω−1AΩ−1 which

can be estimated by nI(β̃)−1Ṽ (β̃)I(β̃)−1 where

I(β) = −
∂2 log L̃(β)

∂β∂βT
,

Ṽ (β) =
n

∑
j=1

∆j{vjj + 2δ(tj) ∑
{k∣tk<tj}

∆kvkj},

vkj = −∑(
Bk + bjk − bik

Rk + rjk − rik
)

′

(cij −
Bj

Rj
) rijR

−1
j ,

Rj = ∑

l∈R̃(tj)

rlj , Bj = ∑

l∈R̃(tj)

blj , δ(t) = 0 if C̃ = R̃(t) and 1 otherwise.

An estimator of the baseline cumulative failure rate function Λ0(t) = ∫
t

0 λ0(u)du is

Λ̂0(t) = ñn
−1
∫

t

0
[
n

∑
i=1

Yi(u)r{β
′Zi(u)}]

−1dN̄(u)
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where N̄(t) = ∑ni=1Ni(t).

Self and Prentice [1988] proposed a slightly different estimator from Prentice [1986].

While the “comparison risk set” of Self and Prentice [1988] at time t included only all sub-

cohort members at risk at time t, Prentice [1986] added any subjects out of subcohort but

who were observed to fail at time t. Self and Prentice [1988] established asymptotic dis-

tribution theory for the pseudolikelihood estimators along with that for the corresponding

cumulative failure rate estimators by using a combination of martingale and finite pop-

ulation convergence results. Specifically, they considered the maximum pseudolikelihood

estimator β̃SP , defined as a solution to ∂ logL(β̃)/∂β = 0, where

log L̃(β) =
n

∑
i=1
∫

τ

0
log r{β′Zi(t)}dNi(t) − ∫

τ

0
log[∑

i∈C̃

Yl(t)r{β
′Zi(t)}]dN̄(t),

and C̃ is a random subcohort of size ñ. They also considered a natural estimator of the

cumulative baseline hazard function which is given by

Λ̃SP (t) = ñn
−1
∫

t

0
[∑

i∈C̃

Yi(u)r{β̃
′
SPZi(u)}]

−1dN̄(u).

Under some regularity conditions, they showed that β̃SP is a consistent estimator of β0 and

n−1/2Ũ(β0) converges in distribution to zero mean Gaussian process with covariance matrix

Σ(β0) +A(β0) where Σ(β) = − limn→∞ n
−1∂2 log L̃(β)/∂β2 is the variation associated with

the cohort and A(β) corresponds to the variation introduced by sampling the subcohort.

Therefore, n−1/2(β̃SP − β0) was shown to converge in distribution to a zero-mean Gaussian

random variable with covariance matrix Σ−1(β0) + Σ−1(β0)A(β0)Σ
−1(β0) by Taylor series

expansions. Moreover, n−1/2(β̃SP −β0) and n−1/2(Λ̃SP −Λ0) were shown to converge weakly

and jointly to Gaussian random variables with mean zero. They also proposed the estimator

of the limiting covariance matrix between n−1/2{Λ̃SP (u)−Λ0(u)} and n−1/2{Λ̃SP (t)−Λ0(t)}.

Self and Prentice [1988] showed that Prentice [1986]’s estimator β̃ and their estimator

β̃SP are asymptotically equivalent by showing that an individual’s contributions to S(1)

and S(0) are asymptotically negligible. Even though Prentice [1986]’s variance estimator
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is somewhat different from Self and Prentice [1988]’s one, two estimators converge to the

same form asymptotically.

Alternative variance estimators which can be computed easily using the existing software

are proposed since the variance estimators by Prentice [1986] and Self and Prentice [1988]

are complicated. Wacholder et al. [1989] developed bootstrap variance estimates. Barlow

[1994] proposed a robust estimator of the variance. By using time-varying weights, he

proposed a pseudolikelihood function which are different from those of Prentice [1986] and

Self and Prentice [1988]. The weight wi(t) of subject i at time t is defined as

wi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ifdNi(t) = 1

m(t)/m̃(t) if dNi(t) = 0 and i ∈ C̃

0 if dNi(t) = 0 and i /∈ C̃.

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where m(t) is the number of disease-free individuals in the cohort at risk at time t and m̃(t)

is the number of disease-free individuals in subcohort at risk at time t. The conditional

probability of failure at failure time tj is given by

pi(tj) =
Yi(tj)wi(tj)ri(tj)

∑
n
k=1 Yk(tj)wk(tj)rk(tj)

,

where ri(t) = exp{βT0 Zi(t)}. Prentice [1986]’s likelihood used an indicator function as a

weight, i.e., wi(t) = 1 if dNi(t) = 1 or i ∈ C̃, otherwise the weight is zero. Whereas Self

and Prentice [1988]’s likelihood used a denominator summed over subcohort members only,

Barlow [1994]’s pseudolikelihood preserved the correct expectation for the denominator at

each failure time.

The estimator β̂B proposed by Barlow [1994] is defined as the solution to the estimating

equation defined by the derivative of the logarithm of the pseudolikelihood ∑t∑i dNi(t)

log(pi(t)). The robust variance estimator using infinitesimal jackknife estimator is

ˆV ar(β̂B) = I−1
(β̂B)V̂ (β̂B)I−1

(β̂B) =
1

n
∑
i

êiêi,
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where êi = β̂− β̂−i and β̂−i is an estimate of β without observation i. Barlow [1994] proposed

to estimate êi by I−1(β̂)ĉi(τ) where I(β̂B) = ∑t∑i p̂i(t)[zi(t) − Ê(t)][zi(t) − Ê(t)]′ is the

information matrix, Ê(t) = ∑nk=1 p̂i(t)Zi(t) is the estimator for the conditional expectation

of the covariate at time t, and ĉi(τ) = ∫
τ

0 Yi(t)[dNi(t) − p̂i(t)][zi(t) − Ê(t)]dN̄(t) is the

estimated influence of an individual observation on the overall score for subject i at time τ .

Stratified case-cohort studies were discussed in Prentice [1986]. Borgan et al. [2000]

developed methods for analysis of such exposure stratified case-cohort samples. Suppose

that the baseline data are available for the full cohort and can be partitioned into Q strata.

A stratified relative risk regression model is considered:

λq{t∣Z(t)} = λ0q(t)r{β
T
q Z(t)}, q = 1, . . . ,Q.

A pseudolikelihood function for β over strata is

L̃q(β) =∏
tj

⎛

⎝

exp{β′Zij(tj)}wij(tj)

∑k∈R̃(tj)
Yk(tj) exp{β′Zk(tj)}wk(tj)

⎞

⎠
,

where tj is failure time, R̃(tj) is case-cohort set, and wij(tj) is weight for the case ij at

time tj . They proposed three types of estimators for the stratified case-cohort design:

I ∶ R̃(tj) = C̃,wk(tj) = ns(k)/ms(k),

II ∶ R̃(tj) = C̃ ∪ F,wk(tj) = n
0
s(k)/m

0
s(k) if k ∈ C̃/F,wk(tj) = 1 if k ∈ F,

III ∶ wk(tj) = ns(k)/ms(k), R̃(tj) = C̃ if ij ∈ C̃, R̃(tj) = C̃ ∪ ij/{Js(ij)} if ij /∈ C̃,

where C̃ is the subcohort set, F is a set of all cases, nl and ml are the number of subjects

in the cohort and subcohort in stratum l, respectively, n0
l and m0

l are the number of cases

in the cohort and subcohort in stratum l, respectively, and s(k) is the sampling stratum of

individual k. If the case occurs outside the subcohort, subcohort member Js(ij) swaps place

with the case so that the case ij is inside R̃(tj) while the “swapper” Js(ij) is removed from

this set. They showed that all of the proposed analysis methods were more efficient than

a randomly sampled case-cohort study. Breslow and Wellner [2007] generalized asymptotic
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results of Borgan et al. [2000] by using weighted likelihood estimation in two-phase stratified

sample.

Chen [2001b] proposed a unified approach which includes 1) nested case-control sam-

pling, 2) case-cohort sampling, and 3) classical case-control designs and allow the presence

of staggered entry. The estimating equation to cover three samplings is given by

UCh(β) =
n

∑
i=1
∫

τ

0
[Zi(t) −

∑
n
j=1wijZj(t) exp{β′Zj(t)}Yj(t)

∑
n
j=1wij exp{β′Zj(t)}Yj(t)

]dNi(t),

where wij is a weight function for the respective design. They also developed the weight

function based on estimating each missing covariate by a local average. Samuelsen et al.

[2007] extended the class of designs proposed by Chen [2001b] to accommodate stratified

designs.

All work that we discussed in this subsection so far was about proportional hazards mod-

els for case-cohort studies. Other type of models have also been studied. The accelerated

failure time model and the proportional odds regression model for case-cohort are proposed

[Kong and Cai, 2009; Chen, 2001a]. Kulich and Lin [2000a] applied additive hazards mod-

els to case-cohort studies. The model they considered is in the same form as (2.2). The

subcohort can be selected by Bernoulli sampling with arbitrary selection probabilities or

by stratified simple random sampling. Using Bernoulli sampling, they proposed a weighted

estimating function:

UH(β) =
n

∑
i=1

ρi∫
τ

0
{Zi(t) − Z̄H(t)}{dNi(t) − Yi(t)β

TZi(t)dt} ,

where Z̄H(t) =
∑
n
j=1 ρjYj(t)Zj(t)

∑
n
j=1 ρjYj(t)

and the weight function ρi has the following form: ρi =

∆i + (1 −∆i)ξiα̂
−1, and α̂ = ∑

n
i=1 ξi(1 −∆i)/∑

n
i=1(1 −∆i). The estimator β̂H is defined as a

solution to UH(β) = 0. An estimator for the cumulative baseline hazard function Λ0(t) is

Λ̂0H(t) = ∫
τ

0

∑
n
i=1 dNi(u)

∑
n
j=1 ρjYj(u)

− ∫

τ

0
β̂HZ̄H(u)du.

Under some regularity conditions, n1/2(β̂H − β0) was shown to converge in distribution
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to a zero-mean normal random vector with covariance matrix D−1
A (ΣA + ΣH)D−1

A , where

DA = E [∫
τ

0 {Z1(t)−e(t)}
⊗2Y1(t)dt], ΣA(β) = E [∫

τ
0 {Z1(t)−e(t)}

⊗2dN1(t)], ΣH(β) = E{(1−

α̃)α̃−1(1 − ∆1)[∫
τ

0 {Z1(t) − e(t)}dM1(t)]
⊗2}, e(t) = E{Z1(t)Y1(t)}/E{Y1(t)}, and Mi(t) =

Ni(t) − ∫
t

0 Yi(s)sΛ0(s) − ∫
t

0 β
T
0 Zi(s)Yi(s)ds. They also showed that n1/2(Λ̂0H(t) −Λ0H(t))

converges weakly on [0, τ] to a zero-mean Gaussian process whose covariance function at

(s, t) is

hT (s)D−1
A (ΣA +ΣH)D−1

A h(t) +R1(s, t) − h
T
(s)D−1

A R2(t) − h
T
(t)D−1

A R2(s),

whereR1(s, t) = E[{∆1+(1−∆1)/α̃} ∫
s

0 π
−1
0 (u)dM1(u) ∫

t
0 π

−1
0 (v)dM1(v)], R2(t) = E[∫

t
0 {Z1(u)−

e(u)}π−1
0 (u)dN1(u)], h(t) = ∫

t
0 e(u)du, and π0(u) = Pr(X1 ≥ t).

2.3.3 Multivariate failure time

Clustered failure time and multiple outcomes have been studied for the case-cohort

design. In this subsection, we will review the related literature.

Lu and Shih [2006] considered the clustered failure time data. Conventional case-cohort

studies for univariate failure time data cannot be directly applied to clustered failure time

data since failure times within a cluster are correlated. Lu and Shih [2006] considered

marginal proportional hazards model (2.4). Suppose there are J independent clusters, and

each cluster contains n correlated subjects. The estimating function proposed by Lu and

Shih [2006] is given by

ULS(β) =
J

∑
j=1

n

∑
i=1
∫

τ

0
[Zji(t) −ELS(β, t)dNji(t)] ,

where ELS(β, t) = S
(1)
LS (β, t)/S

(0)
LS (β, t), S

(d)
LS (β, t) = J−1

∑
J
j ∑

n
i=1HjHjiYji(t)e

{βTZji(t)}

×Zji(t)
⊗d, Hj indicates whether or not cluster j is selected into the subcohort, and Hji is the

indicator for subject (j, i) being sampled as a potential individual in the subcohort. β̃LS can

be estimated by solving ULS(β) = 0. Under some regularity conditions, β̃LS was shown to be

a consistent estimator of β0. They showed that n1/2(β̃LS −β0) converges in distribution to a
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normal distribution with mean zero and with covariance matrix A−1
LS(β0)ΩLS(β0)A

−1
LS(β0)

where ΩLS(β) consists of the variations associated with the cohort and subcohort sampling

and ALS(β) = − limJ→∞ ∂ULS(β)/∂β.

Zhang et al. [2011] extended Lu and Shih [2006]’s method by proposing Bernoulli sam-

pling and using different risk sets. Since information on all failures in the full cohort is

available, failures outside the subcohort can also contribute to the risk set for independent

subjects. Thus, they constructed the risk sets using the information in the subcohort as

well as the information collected on future deaths whereas Lu and Shih [2006] used only

subcohort subjects to construct the risk set.

Kang and Cai [2009] considered case-cohort studies with multiple disease outcomes. The

marginal hazards function [Cox, 1972] is assumed to follow the model:

λik{t∣Zik(t)} = Yik(t)λ0k(t)e
βT0 Zik(t),

where λ0k(t) is an unspecified baseline hazard function for disease outcome k. The pseudo-

partial likelihood score equation proposed by Kang and Cai [2009] is given by

ÛKC(β) =
n

∑
i=1

K

∑
k=1
∫

τ

0
{Zik(t) −

Ŝ
(1)
k (β, t)

Ŝ
(0)
k (β, t)

}dNik(t),

where Ŝ
(d)
k (β, t) = n−1

∑
n
i=1 ρik(t)Yik(t)Z

⊗d
ik (t)eβ

TZik(t) for d = 0,1 and 2, ρik(t) = ∆ik + (1−

∆ik)ξiα̂
−1
k (t), and α̂k(t) = ∑

n
i=1(1−∆ik)ξiYik(t)/{∑

n
i=1(1−∆ik)Yik(t)}. Moreover, Kang and

Cai [2009] proposed a weighted estimating equation approach for estimating the parameters

in the marginal hazards regression models for the multivariate failure time data from the

generalized case-cohort study with multiple disease outcomes. The weighted estimating

function follows as

ŨKC(β) =
n

∑
i=1

K

∑
k=1
∫

τ

0
wik(t){Zik(t) −

S̃
(1)
k (β, t)

S̃
(0)
k (β, t)

}dNik(t),

where S̃
(d)
k (β, t) = n−1

∑
n
i=1wik(t)Yik(t)Z

⊗d
ik (t)eβ

TZik(t) for d = 0,1 and 2 , wik(t) = (1 −

∆ik)ξiα̂
−1
k (t) + ∆ikξi + ∆ik(1 − ξi)ηikq̂

−1
k (t), q̂k(t) = ∑

n
i=1 ∆ik(1 − ξi)ηikYik(t)/{∑

n
i=1 ∆ik(1 −
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ξi)Yik(t)}, ηik is an indicator for subject i outside the subcohort by random sampling. The

estimator β̃KC is defined as solution to the equations ŨKC(β) = 0. A Breslow-Aalen-type

estimator of the baseline cumulative hazard function is Λ̃0k(β̃KC , t), where

Λ̃0k(β, t) = ∫
t

0

∑
n
i=1wik(u)dNik(u)

nS̃
(0)
k (β,u)

Under some regularity conditions, they showed that β̃KC is a consistent estimator of β0 and

n1/2(β̃KC − β0) is asymptotically normally distributed with mean zero and with variance

matrix in the form

ΣKC(β0) = A(β0)
−1

{Q(β0) +
1 − α

α
V1(β0) + (1 − α)

K

∑
k=1

pr(∆1k = 1)(
1 − qk
qk

)V2k(β0)}A(β0)
−1,

where

A(β) =
K

∑
k=1
∫

τ

0
vk(β, t)s

(0)
k (β, t)λ0k(t)dt,Q(β) = E{

K

∑
k=1

MZ̃,1k(β)}
⊗2,

V1(β) = var (
K

∑
k=1

(1 −∆1k)∫

t

0
[R1k(β, t) −

Y1k(t)E{(1 −∆1k)R1k(β, t)}

E{(1 −∆1k)Y1k(β, t)}
dΛ0k(t)]) ,

V2k(β) = var [dMZ̃,1k(β) − ∫
t

0
Y1k(t)

E{dMZ̃,1k(β)∣∆1k = 1, ξ1 = 0}

E{Y1k(t)∣∆1k = 1}
] ,

Z̃ik(β, t) = Zik(t) − ek(β, t),MZ̃,ik(β) = ∫
τ

0
Z̃ik(β, t)dMik(t),

Rik(β, t) = Yik(t)Z̃ik(β, t)e
βTZik(t).

Competing risks have also been considered for case-cohort studies with multiple dis-

eases. Sorensen and Andersen [2000] studied competing risks models for case-cohort studies

assuming proportional hazards models and considered correlation between estimated effects

of exposures on the different outcomes due to re-use of the same subcohort. By studying

competing risks data for case-cohort studies, the asymptotic correlation was established.

Despite progress of case-cohort studies for proportional hazards models with multiple

diseases outcomes, additive hazards models for the case-cohort design with multiple diseases

have been limited. The only reference is by Sun et al. [2004] which extended Kulich and Lin
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[2000a]’s method to competing risks analysis for the additive hazards model. Further study

on the additive hazards models for the case-cohort design with multiple diseases outcomes

is needed.

In this dissertation, we will study the following three topics: (1) more efficient estimators

for case-cohort studies, (2) Generalized case-cohort studies with multiple events, and (3)

Additive hazards models for traditional and generalized case-cohort studies. The proposal

is presented in the next chapter.
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Chapter 3

More efficient estimators for case-cohort
studies with rare events

3.1 Introduction

For large epidemiologic cohort studies, assembling some types of covariate information,

e.g. measuring genetic information or chemical exposures from stored blood samples, for all

cohort members may entail enormous cost. With cost in mind, Prentice [1986] proposed the

case-cohort study design, which requires covariate information only for a random sample

of the cohort, named the subcohort, as well as for all subjects with the disease of interest.

One important advantage of the case-cohort study design is that the same subcohort can

be used for studying different diseases, whereas for designs such as the nested case-control

design, new matching of cases and controls is needed for different diseases [Langholz and

Thomas, 1990; Wacholder et al., 1991].

Many methods have been proposed for case-cohort data under the proportional haz-

ards model. Prentice [1986] and Self and Prentice [1988] studied a pseudo-likelihood ap-

proach, which is a modification of the partial likelihood method [Cox, 1975] that weights

the contributions of the cases and subcohort differently. To improve the efficiency of the

pseudo-likelihood estimator, Chen and Lo [1999] and Chen [2001b] studied different classes

of estimating equations and used a local type of average as weight, respectively. Borgan

et al. [2000] proposed using time-varying weights, and Kulich and Lin [2004] developed a

class of weighted estimators by using all available covariate data for the full cohort. Breslow

and Wellner [2007] considered the semiparametric model using inverse probability weighted



methods with two-phase stratified samples. Various other semiparametric survival models

have also been modified to accommodate case-cohort studies [e.g. Chen, 2001a; Chen and

Zucker, 2009; Kong et al., 2004; Kulich and Lin, 2000a; Lu and Tsiatis, 2006].

Taking advantage of the case-cohort design, several diseases are often studied using the

same subcohort. In such situations, the information on the expensive exposure measure

is available on the subcohort as well as any subjects with any of the diseases of interest.

For example, in the Busselton Health Study, two case-cohort studies were conducted to

investigate the effect of serum ferritin on coronary heart disease and on stroke, respectively

[Knuiman et al., 2003]. Serum ferritin was measured on the subcohort, a random sample of

the cohort, as well as in all subjects with coronary heart disease and/or stroke. Typically,

the coronary heart disease analysis would not include any exposure information collected

on stroke patients not in the subcohort, and vice versa. In this paper, we develop more

efficient estimators for a single disease outcome, which can effectively use all available

exposure information. Because it is often of interest to compare the effect of a risk factor

on different diseases, we propose a more efficient version of the Kang and Cai [2009] test of

association across multiple diseases.

3.2 Model definitions and assumptions

Suppose that there are n independent subjects in a cohort study with K diseases of

interest. Let Tik denote the potential failure time and Cik denote the potential censoring

time for disease k of subject i. Let Xik = min(Tik,Cik) denote the observed time, ∆ik =

I(Tik ≤ Cik) the indicator for failure, and Nik(t) = I(Xik ≤ t,∆ik = 1) and Yik(t) = I(Xik ≥ t)

the counting and at-risk processes for disease k of subject i, respectively, where I(⋅) is the

indicator function. Let Zik(t) be a p × 1 vector of possibly time-dependent covariates for

disease k of subject i at time t. The time-dependent covariates are assumed to be external

[Kalbfleisch and Prentice, 2002]. Let τ denote the end of study time. We assume that Tik is

independent of Cik given the covariates Zik and follows the multiplicative intensity process

[Cox, 1972]

λik{t ∣ Zik(t)} = Yik(t)λ0k(t)e
βT0 Zik(t), (3.1)
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where λ0k(t) is an unspecified baseline hazard function for disease k of subject i and β0 is

p-dimensional vector of fixed and unknown parameters. Model (3.1) can incorporate disease-

specific effect model, λik{t ∣ Z
∗
ik(t)} = Yik(t)λ0k(t)e

βTk Z
∗
ik(t), as a special case. Specifically, we

define βT0 = (βT1 , . . . , β
T
k , . . . , β

T
K) and Zik(t)

T = [0Ti1, . . . ,0
T
i(k−1),{Z

∗
ik(t)}

T ,0Ti(k+1), . . . ,0
T
iK],

letting 0T be a 1 × p zero vector. Then we have βT0 Zik(t) = β
T
k Z

∗
ik(t).

Assume that there are ñ subjects in the subcohort. Let ξi be an indicator for subcohort

membership, i.e. ξi = 1 denotes that subject i is selected into the subcohort and ξi = 0

denotes otherwise. Let α̃ = pr(ξi = 1) = ñ/n denote the selection probability of subject

i into the subcohort. The covariates Zik(t) (0 ≤ t ≤ τ) are measured for subjects in the

subcohort and those with any disease of interest.

3.2.1 Estimation for univariate failure time

First, we consider the situation in which only one disease is of interest, but covariate

information is available for subjects with other diseases. In the Busselton Health study, for

example, this corresponds to the situation in which we are interested in the effect of serum

ferritin on coronary heart disease with additional serum ferritin measurements available on

subjects outside the subcohort who had stroke.

In this situation, the observable information is {Xik,∆ik, ξi, Zik(t),0 ≤ t ≤ Xik} when

ξi = 1 or ∆ik = 1, and is (Xik,∆ik, ξi) when ξi = 0 and ∆ik = 0 (k = 1, . . . ,K). If we are

interested in disease k and ignore the covariate information collected on subjects with other

diseases, we can use Borgan et al. [2000]’s estimator with time-varying weights. Specifically,

the estimator is the solution to

Ûk(β) ≡
n

∑
i=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
Ŝ

(1)
k (β, t)

Ŝ
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t) = 0, (3.2)

where Ŝ
(d)
k (β, t) = n−1

∑
n
i=1 ρik(t)Yik(t)Zik(t)

⊗deβ
TZik(t) for d = 0,1 and 2 with a⊗0 = 1,

a⊗1 = a, and a⊗2 = aaT , and the time-varying weight ρik(t) = ∆ik + (1 −∆ik)ξiα̂
−1
k (t) with

α̂k(t) = ∑
n
i=1 ξi(1 −∆ik)Yik(t)/{∑

n
i=1(1 −∆ik)Yik(t)}. Here α̂k(t), an estimator for the true

selection probability α̃, is the proportion of the sampled censored subjects for disease k
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among censored subjects who remain in the risk set at time t for disease k. This estimator

does not use the covariate information from subjects outside the subcohort who had other

diseases.

To use the collected covariate information on subjects who are outside the subcohort

and have other diseases, we consider the pseudo-partial likelihood score equations

Ũk(β) =
n

∑
i=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t) = 0, (3.3)

where

S̃
(d)
k (β, t) = n−1

n

∑
i=1

ψik(t)Yik(t)Zik(t)
⊗deβ

TZik(t) (d = 0,1,2),

ψik(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1 −
K

∏
j=1

(1 −∆ij)

⎫⎪⎪
⎬
⎪⎪⎭

+
K

∏
j=1

(1 −∆ij)ξiα̃
−1
k (t),

and α̃k(t) = ∑
n
i=1 ξi{∏

K
j=1(1 − ∆ij)}Yik(t)/∑

n
i=1{∏

K
j=1(1 − ∆ij)}Yik(t). Here α̃k(t) is the

proportion of sampled subjects among subjects who do not have any diseases and are

remaining in the risk set at time t. Our proposed weight for disease k is ψik(t) = 1 when

∆ij = 1 for some j, and ψik(t) = α̃−1
k (t) when ξi = 1 and ∆ij = 0 for all j (j = 1, . . . , k).

This weight takes the failure status of the other diseases into consideration, and thus our

proposed estimator will use the available covariate information for other diseases.

3.2.2 Estimation for multivariate failure time

For multivariate failure time data in case-cohort studies, Kang and Cai [2009] proposed

the pseudo-likelihood score equations

ÛM(β) ≡
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
Ŝ

(1)
k (β, t)

Ŝ
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t) = 0, (3.4)

with the corresponding solution denoted β̂M .

As with Borgan et al. [2000]’s estimator, when calculating the contribution of disease
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k in the estimating equation, the quantity Ŝ
(d)
k (β, t) does not use the covariate informa-

tion collected on subjects with other diseases outside the subcohort. In order to improve

efficiency, we consider the pseudo-likelihood score equations with new weights

ŨM(β) ≡
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t) = 0. (3.5)

When there is only a single disease of interest, i.e. K = 1, (3.5) reduces to (3.3). Let β̃M

denote the solution of equation (3.5). We estimate the baseline cumulative hazard function

for disease k using a Breslow–Aalen type estimator Λ̃M0k(β̃
M , t), where

Λ̃M0k(β, t) = ∫
t

0

∑
n
i=1 dNik(u)

nS̃
(0)
k (β,u)

. (3.6)

3.3 Asymptotic properties

3.3.1 Asymptotic properties of β̃M and Λ̃M
0k(β̃M , t)

Because the estimators for the univariate failure time are special cases of those for the

multivariate failure time, we present results only for the multivariate case. We make the

following assumptions:

(a) (Ti,Ci, Zi, i = 1, . . . , n) are independently and identically distributed, where

Ti = (Ti1, . . . , TiK)T , Ci = (Ci1, . . . ,CiK)T , and Zi = (Zi1, . . . , ZiK)T ;

(b) pr{Yik(t) = 1} > 0 for t ∈ [0, τ] , i = 1, . . . , n and k = 1, . . . ,K;

(c) ∣Zik(0)∣+ ∫
τ

0 ∣dZik(t)∣ <Dz <∞ for i = 1, . . . , n and k = 1, . . . ,K almost surely, where Dz

is a constant;

(d) for d = 0,1,2, there exists a neighborhood B of β0 such that s
(d)
k (β, t) are continuous

functions and supt∈(0,τ),β∈B ∥S
(d)
k (β, t)−s

(d)
k (β, t)∥→ 0 in probability, where S

(d)
k (β, t) =

n−1
∑
n
i=1 Yik(t)Zik(t)

⊗deβ
TZik(t);

(e) the matrix Ak(β0) = ∫
τ

0 vk(β0, t)s
(0)
k (β0, t)λ0k(t)dt is positive definite for k = 1, . . . ,K,

where vk(β, t) = s
(2)
k (β, t)/s

(0)
k (β, t) − ek(β, t)

⊗2 and ek(β, t) = s
(1)
k (β, t)/s

(0)
k (β, t);
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(f) for all β ∈ B, t ∈ [0, τ], and k = 1, . . . ,K, S
(1)
k (β, t) = ∂S

(0)
k (β, t)/∂β, and S

(2)
k (β, t) =

∂2S
(0)
k (β, t)/(∂β∂βT ), where S

(d)
k (β, t), d = 0,1,2 are continuous functions of β ∈ B

uniformly in t ∈ [0, τ] and are bounded on B × [0, τ], and s
(0)
k is bounded away from

zero on B × [0, τ];

(g) for all k = 1, . . . ,K, ∫
τ

0 λ0k(t)dt <∞; and

(h) limn→∞ α̃ = α, where α̃ = ñ/n and α is a positive constant.

We summarize the asymptotic results in the following theorems and provide the proofs

in Section 3.3.2.

Theorem 1. Under regularity conditions (a)–(h), β̃M converges in probability to β0 and

n1/2(β̃M −β0) converges in distribution to a mean zero normal distribution with covariance

matrix A(β0)
−1Σ(β0)A(β0)

−1, where

A(β) =
K

∑
k=1

Ak(β), Σ(β) = VI(β) +
1 − α

α
VII(β),

VI(β) = E {
K

∑
k=1

W1k(β)}

⊗2

, VII(β) = E {
K

∑
k=1
∫

τ

0
Ω1k(β, t)dΛ0k(t)}

⊗2

,

Wik(β) = ∫
τ

0
{Zik(t) − eik(β, t)}dMik(t),

Ωik(β, t) =
K

∏
j=1

(1 −∆ij)

⎡
⎢
⎢
⎢
⎢
⎣

Qik(β, t) −
Yik(t)E{∏

K
j=1(1 −∆1j)Q1k(β, t)}

E{∏
K
j=1(1 −∆1j)Y1k(t)}

⎤
⎥
⎥
⎥
⎥
⎦

,

Qik(β, t) = Yik(t){Zik(t) − ek(β, t)}e
βTZik(t).

The covariance matrix Σ(β0) consists of two parts: VI(β0) is a contribution to the

variance from the full cohort, and VII(β0) is due to sampling the subcohort from the full

cohort.

We summarize the asymptotic properties of the proposed baseline cumulative hazard

estimator Λ̃M0k(β̃
M , t) in the next theorem.

Theorem 2. Under regularity conditions (a)–(h), Λ̃M0k(β̃
M , t) is a consistent estimator

of Λ0k(t) in t ∈ [0, τ] and H(t) = {H1(t), . . . ,HK(t)}T = [n1/2{Λ̃M01(β̃
M , t) − Λ01(t)}, . . . ,

n1/2{Λ̃M0K(β̃M , t) −Λ0K(t)}]T converges weakly to the Gaussian process H(t) = {H1(t), . . . ,
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HK(t)}T in D[0, τ]K with mean zero and the following covariance function Rjk(t, s) be-

tween Hj(t) and Hk(s) for j ≠ k

Rjk(t, s)(β0) = E{η1j(β0, t)η1k(β0, s)} +
1 − α

α
E{ζ1j(β0, t)ζ1k(β0, s)},

where

ηik(β, t) = lk(β, t)
TA(β)−1

K

∑
m=1

Wim(β, t) + ∫
t

0

1

s
(0)
k (β,u)

dMik(u),

ζik(β, t) = lk(β, t)
TA(β)−1

K

∑
m=1
∫

τ

0
Ωim(β,u)dΛ0m(u)

+
K

∏
j=1

(1 −∆ij)∫

t

0
Yik(u)

⎡
⎢
⎢
⎢
⎢
⎣

eβ
TZik(u) −

E{∏
K
j=1(1 −∆1j)e

βTZ1k(u)Y1k(u)}

E{∏
K
j=1(1 −∆1j)Y1k(u)}

⎤
⎥
⎥
⎥
⎥
⎦

dΛ0k(u)

s
(0)
k (β,u)

,

and lk(β, t)
T
= −∫

t

0
ek(β,u)dΛ0k(u).

3.3.2 Proofs of Theorems

Under the assumptions in Section 3.3.1, we will provide the proofs for the main theorems.

We denote

S
(d)
k (β, t) = n−1

n

∑
i=1

Yik(t)Zik(t)
⊗deβ

TZik(t)

Wik(β) = ∫
τ

0
(Zik(t) − eik(β, t))dMik(t),

Mik(t) = Nik(t) − ∫
t

0
Yik(u)e

β0Zik(u)λ0k(u)du,

Ωik(β, t) =
K

∏
j=1

(1 −∆ij)

⎡
⎢
⎢
⎢
⎢
⎣

Qik(β, t) −
Yik(t)E[∏

K
j=1(1 −∆1j)Q1k(β, t)]

E[∏
K
j=1(1 −∆1j)Y1k(t)]

⎤
⎥
⎥
⎥
⎥
⎦

,

Qik(β, t) = Yik(t)(Zik(t) − ek(β, t))e
βZik(t)

∥f∥ = sup
t

∣f(t)∣, ∥d∥ = max
i

∣di∣, ∥D∥ = max
ij

∣Dij ∣

where f is a function, d is a vector, and D is a matrix.

The following lemmas play important roles for proving theorems.

lemma 1. Let Hn(t) and Wn(t) be two sequences of bounded process. If we assume that

the following conditions (1), (2), and (3) hold for some constant τ where
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(1) sup0≤t≤τ ∥Hn(t) −H(t) ∥→p 0 for some bounded process H(t),

(2) Hn(t) is monotone on [0, τ] and

(3) Wn(t) converges to zero-mean process with continuous sample paths, then

sup
0≤t≤τ

∥ ∫

t

0
{Hn(s) −H(s)}dWn(s) ∥→p 0, sup

0≤t≤τ
∥ ∫

t

0
Wn(s)d{Hn(s) −H(s)} ∥→p 0

The above lemma is a extension of lemma 1 from Lin et al. [2000]. To prove the

asymptotic properties for case-cohort studies, the following lemma will be used frequently

and is an extension of the proposition from Kulich and Lin [2000a] and details of proof is

given by Lemma 2 in Kang and Cai [2010].

lemma 2. Let Bi(t), i = 1, . . . , n be independent and identically distributed real-valued

random process on [0, τ] and denote random process vector, B(t) = [B1(t), . . . ,Bn(t)] with

EBi(t) ≡ µB(t), var Bi(0) < ∞, and var Bi(τ) < ∞. Let ξ = [ξ1, . . . , ξn] be random

vector containing ñ ones and n − ñ zeros with each permutation equally likely. Let ξ be

independent of B(t). Suppose that almost all paths of Bi(t) have finite variation. Then

n−1/2
∑
n
i=1 ξi{Bi(t) − µB(t)} converges weakly in l∞[0, τ] to a zero-mean Gaussian process,

and n−1
∑
n
i=1 ξi{Bi(t) − µB(t)} converges in probability to zero uniformly in t.

Since we select subcohort members by using simple random sampling without replace-

ment, the condition of random vector ξ of above lemma is satisfied. For finite sample

n < ∞, we can express µB(t) = n−1
∑
n
i=1Bi(t) and thus n−1/2

∑
n
i=1 ξi{Bi(t) − µBi(t)} =

n−1/2
∑
n
i=1 ξi{Bi(t) − n

−1
∑
n
i=1Bi(t)} = n

−1/2
∑
n
i=1{ξi −

ñ
n}Bi(t) = n

−1/2α̃∑ni=1{
ξi
α̃ − 1}Bi(t).

First, we consider the asymptotic properties of time-varying sampling probability es-

timator α̃k(t) = ∑
n
i=1 ξi{∏

K
j=1(1 − ∆ij)}Yik(t)/∑

n
i=1{∏

K
j=1(1 − ∆ij)}Yik(t) for true selection

probability α̃. For each k, it follows from the Taylor expansion series as

α̃−1
k (t) − α̃−1

= −
1

α∗(t)
2
{α̃k(t) − α̃},

where α∗(t) is on the line segment between α̃k(t) and α̃.

29



Set Bi(t) =
{∏

K
j=1(1−∆ij)}Yik(t)

∑
n
i=1{∏

K
j=1(1−∆ij)}Yik(t)

. Since ∏Kj=1(1−∆ij) and Yik(t) are bounded functions

in t, {∏
K
j=1(1 − ∆ij)}Yik(t) is also a bounded function and the finite sum of its has finite

variation. Thus, Bi(t) has finite variation

Also it is easy to show E[Bi(t)] = n
−1
∑
n
i=1Bi(t) = n

−1
∑
n
i=1

{∏
K
j=1(1−∆ij)}Yik(t)

∑
n
i=1{∏

K
j=1(1−∆ij)}Yik(t)

= n−1 =

µB , Var[Bi(0)] <∞, and Var[Bi(τ)] <∞. So,

α̃k(t) − α̃ =
∑
n
i=1 ξi(∏

K
j=1(1 −∆ij))Yik(t)

∑
n
i=1(∏

K
j=1(1 −∆ij))Yik(t)

−
n

∑
i=1

ξi
n

=
n

∑
i=1

ξi

⎡
⎢
⎢
⎢
⎢
⎣

(∏
K
j=1(1 −∆ij))Yik(t)

∑
n
i=1(∏

K
j=1(1 −∆ij))Yik(t)

−
1

n

⎤
⎥
⎥
⎥
⎥
⎦

=
n

∑
i=1

ξi [Bi(t) − µB]

We can express α̃k(t)− α̃ = ∑
n
i=1 α̃(

ξi
α̃ − 1)

(∏
K
j=1(1−∆ij))Yik(t)

∑
n
i=1(∏

K
j=1(1−∆ij))Yik(t)

, and thus n1/2(α̃−1
k (t)− α̃−1)

can be written as

α̃

α∗(t)
2
⋅

n

∑
n
i=1∏

K
j=1(1 −∆ij)Yik(t)

⋅ n−1/2
{
n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)} (3.7)

1
n ∑

n
i=1{∏

K
j=1(1−∆ij)}Yik(t) converges in probability uniformly to E[{∏

K
j=1(1−∆1j)}Y1k(t)]

by Glivenko-Cantelli lemma. Since {∏
K
j=1(1−∆ij)}Yik(t) is bounded and monotone function

in t, n−1/2{∑
n
i=1(

ξi
α̃ −1)∏Kj=1(1−∆ij)Yik(t)} converges weakly to zero-mean Gaussian process

in the view of lemma 2. This follows from lemma 2 that n−1{∑
n
i=1(

ξi
α̃ −1)∏Kj=1(1−∆ij)Yik(t)}

converges to zero in probability uniformly in t. Thus, α̃k(t) and α̃ converge to the same

limit uniformly in t. This ensures that α∗(t) also converges to the same limit as α̃ uniformly

in t.
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By Slutsky’s theorem and above results, (3.7) can be written as

n1/2
(α̃−1

k (t) − α̃−1
) =

1

α̃E(∏
K
j=1(1 −∆1j)Y1k(t))

n−1/2
⎧⎪⎪
⎨
⎪⎪⎩

n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)

⎫⎪⎪
⎬
⎪⎪⎭

+

⎡
⎢
⎢
⎢
⎢
⎣

α̃

α∗(t)
2
⋅

n

∑
n
i=1∏

K
j=1(1 −∆ij)Yik(t)

−
1

α̃E(∏
K
j=1(1 −∆1j)Y1j(t))

⎤
⎥
⎥
⎥
⎥
⎦

× n−1/2
⎧⎪⎪
⎨
⎪⎪⎩

n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

α̃E(∏
K
j=1(1 −∆1j)Y1k(t))

n−1/2
⎧⎪⎪
⎨
⎪⎪⎩

n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)

⎫⎪⎪
⎬
⎪⎪⎭

+ op(1) (3.8)

The above properties will be used in some proofs. Here is the proof of theorem 1.

The proof of Theorem 1 We first show the consistency of β̃M . Denote ŨMn = n−1ŨM .

By Taylor expansion series, β̃M can be written as

β̃M = β0 + [−
∂ŨMn (β0)

∂β0
]

−1

ŨMn (β0) + op(1) (3.9)

Based on the extension of Fourtz [1977], if the following conditions are satisfied

(I)
∂ŨMn (β)
∂βT

exists and is continuous in an open neighborhood B of β0,

(II)
∂ŨMn (β)
∂βT

is negative definite with probability going to one as n →∞,

(III) -
∂ŨMn (β)
∂βT

converges to A(β0) in probability uniformly for β in an open neighborhood

about β0,

(IV) ŨMn (β) converges to 0 in probability,

then, we can show that β̃M converges to β0 in probability. Note that

∂ŨMn (β)

∂βT
= −

1

n

n

∑
i=1

K

∑
k=1
∫

τ

0
Ṽk(β, t)dNik(t),

where Ṽk(β, t) =
S̃

(2)
k (β, t)S̃

(0)
k (β, t) − S̃

(1)
k (β, t)⊗2

S̃
(0)
k (β, t)2

. (3.10)
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Since
∂ŨMn (β)
∂βT

has the form (3.10) and each component, S̃
(d)
k (β, t) for d=0,1,2 are continuous,

(I) is satisfied.

In order to show that conditions (II) and (III) are satisfied, we first will show ∥ (−
∂ŨMn (β)
∂βT

)−

A(β) ∥ converge to zero in probability uniformly in β ∈ B as n→∞.

Let dMik(t) = dNik(t) − Yik(t)e
β0Zik(t)λ0k(t)dt. We have

∥ (−
∂ŨMn (β)

∂βT
) −A(β) ∥

= ∥
K

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t) + vk(β, t)}

1

n
d
n

∑
i=1

Nik(t) − ∫
τ

0
vk(β0, t)s

(0)
k (β0, t)λ0k(t)dt ∥

≤ ∥
K

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t)}

1

n
d
n

∑
i=1

Nik(t) ∥

+ ∥
K

∑
k=1
∫

τ

0
vk(β, t)

1

n
d
n

∑
i=1

Nik(t) − ∫
τ

0
vk(β, t)s

(0)
k (β, t)λ0k(t)dt ∥

≤ ∥
K

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t)}

1

n
d
n

∑
i=1

Nik(t) ∥

+ ∥
K

∑
k=1
∫

τ

0
vk(β, t)

1

n
d
n

∑
i=1

{Mik(t) + Yik(t)e
βTZik(t)Λ0k(t)} − vk(β, t)s

(0)
k (β, t)λ0k(t)dt ∥

Since S
(0)
k (β, t) = n−1

∑
n
i=1 Yik(t)e

βTZik(t), it follows that

∥ (−
∂ŨMn (β)

∂βT
) −A(β) ∥

≤ ∥
K

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t)}

1

n
d
n

∑
i=1

Nik(t) ∥ (3.11)

+ ∥
K

∑
k=1
∫

τ

0
vk(β, t)

1

n
d
n

∑
i=1

Mik(t) ∥ (3.12)

+ ∥
K

∑
k=1
∫

τ

0
vk(β, t){S

(0)
k (β, t) − s

(0)
k (β, t)}λ0k(t)dt ∥ (3.13)

We will show that each of three terms in above inequality converges to zero uniformly in

β ∈ B. First, the term in (3.11) will be shown to converges to zero in probability as n→∞.

To show this, first we need to show that

sup
t∈[0,τ]β∈B

∥ Ṽk(β, t) − vk(β, t) ∥→ 0 as n→∞ for k = 1, . . . ,K.
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Since Ṽk(β, t) is a function of S̃
(d)
k (β, t), d = 0,1,2, supt∈(0,τ),β∈B ∥S

(d)
k (β, t)−s

(d)
k (β, t)∥→p 0

based on condition (d), and s
(0)
k (β, t) is bounded away from zero base on condition (f), it

suffices to show that

sup
t∈[0,τ]β∈B

∥ S̃
(d)
k (β, t) − S

(d)
k (β, t) ∥→ 0 as n→∞ for k = 1, . . . ,K and d = 0,1,2.

Note that S̃
(d)
k (β, t) = n−1

∑
n
i=1ψik(t)Yik(t)Zik(t)

⊗deβ
TZik(t), where ψik(t) = 1 − (∏

K
j=1(1 −

∆ij)) +∏
K
j=1(1 −∆ij)ξiα̃

−1
k (t) for d = 0,1,2. One can write

S̃
(d)
k (β, t) − S

(d)
k (β, t)

= n−1
n

∑
i=1

{ψik(t) − 1}Yik(t)Zik(t)
⊗deβ

TZik(t)

=
1

n

n

∑
i=1

{1 − (
K

∏
j=1

(1 −∆ij)) +
K

∏
j=1

(1 −∆ij)ξiα̃
−1
k (t) − 1}Yik(t)Zik(t)

⊗deβ
TZik(t)

=
1

n

n

∑
i=1

{
K

∏
j=1

(1 −∆ij)ξiα̃
−1
k (t) − (

K

∏
j=1

(1 −∆ij))}Yik(t)Zik(t)
⊗deβ

TZik(t)

=
1

n

n

∑
i=1

(
ξi
α̃
− 1)

K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t)

+
1

n

n

∑
i=1

(α̃−1
k (t) − α̃−1

)ξi
K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t)

and then

∥ S̃
(d)
k (β, t) − S

(d)
k (β, t) ∥

≤ ∥
1

n

n

∑
i=1

(
ξi
α̃
− 1)

K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t) ∥ (3.14)

+ ∣α̃−1
k (t) − α̃−1

∣
1

n

n

∑
i=1

ξi
K

∏
j=1

(1 −∆ij)∣Zik(t)
⊗d

∣eβ
TZik(t)Yik(t) (3.15)

Based on condition (c), the total variation of ∏Kj=1(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t) is finite

on [0, τ]. By lemma 2, the term in (3.14) converges to zero in probability uniformly in

t. Since it was shown that (α̃−1
k (t) − α̃−1) converges to zero in probability uniformly in t

and 1
n ∑

n
i=1 ξi∏

K
j=1(1−∆ij)∣Zik(t)

⊗d∣eβ
TZik(t)Yik(t) converges to α̃E[∏

K
j=1(1−∆1j)∣Z1k(t)

⊗d∣
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×eβ
TZ1k(t)Y1k(t)] in probability uniformly in t, the term in (3.15) converges to zero in

probability uniformly. Thus, S̃
(d)
k (β, t)−S

(d)
k (β, t) converges to zero. Combining this result

with condition (d), we can show that

sup
t∈[0,τ],β∈B

∥ S̃
(d)
k (β, t) − s

(d)
k (β, t) ∥→ 0 as n→∞ for k = 1, . . . ,K and d = 0,1,2. (3.16)

Since s
(0)
k is bounded way from zero based by condition (f), we can also show that supt∈[0,τ],β∈B

∥ S̃
(0)
k (β, t)

−1
− s

(0)
k (β, t)

−1
∥→ 0 as n → ∞ for k = 1, . . . ,K. Combining these results,

Ṽk(β, t) converges to vk(β, t) in probability uniformly in t and β. Moreover, by Lenglart

inequality (Andersen and Gill [1982], p1115), there exists n0 such that for n ≥ n0 for any δ,

η > 0,

P [n−1N̄k(τ) > η] ≤
δ

η
+ P [∫

τ

0
S

(0)
k (β0; t)λ0k(t)dt > δ],

where N̄k(t) = ∑
n
i=1Nik(t).

Based on condition (d), P [∫
τ

0 S
(0)
k (β0; t)λ0k(t)dt > δ] converges to zero as n → ∞ for

δ > ∫
τ

0 s
(0)
k (β0; t)λ0k(t)dt and then limη↑∞ limn→∞ P [n−1N̄k(τ) > η] = 0. Therefore, the term

in (3.11) converges to zero in probability uniformly in β ∈ B as n→∞.

For the quantity in (3.12), ∫
τ

0 vk(β, t)
1
nd∑

n
i=1Mik(t) is a local square integrable martin-

gale. By the Lenglart inequality(Andersen and Gill [1982], p1115), it can be shown that,

for all δ, η > 0,

P [∥
1

n
∫

τ

0
{vk(β, t)}jj′M̄k(t)∥ > η] ≤

δ

η2
+ P [

1

n
∫

τ

0
{vk(β, t)}

2
jj′S

(0)
k (β; t)λ0k(t)dt > δ] ,

where M̄k(t) = ∑
n
i=1Mik(t) and subscript jj′ indicates (jj′) element of matrix vk(β, t).

Based on boundedness conditions (d), (f), and (g), the second term on right side in the

above inequality converges to zero in probability, uniformly in β ∈ B for any δ as n → ∞.

Then it follows that one on the left side converges to zero in probability, uniformly in β ∈ B

as n→∞. Hence, the quantity in (3.12) converges to zero in probability, uniformly in β ∈ B

as n→∞.
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Due to boundedness of supt,β {vk(β, t)} based on conditions (d) and (e), Λ0k(t) for k =

1, . . . ,K based on condition (g), and uniform convergence of S̃
(0)
k (β, t) to s

(0)
k (β, t), the term

in (3.13) converges to zero in probability uniformly in β ∈ B as n→∞. Therefore, all three

terms in (3.11), (3.12), and (3.13) converge to zero in probability uniformly. Consequently,

we have

−
∂ŨMn (β)

∂βT
→p A(β) as n→∞ uniformly in β ∈ B

and consequently (II) and (III) are satisfied.

To show that (IV) is satisfied, we will examine the asymptotic behavior of n−1/2ŨMn (β0).

We can decompose n−1/2ŨM(β0) into two parts such that

n−1/2ŨM(β0) = n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t)

= n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
S

(1)
k (β0, t)

S
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t) (3.17)

+ n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β0, t)

S
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t). (3.18)

The quantity in (3.17) is the pseudo partial likelihood score function for full cohort and can

be written as

(3.17) = n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t) −
S

(1)
k (β, t)

S
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMik(t)

= n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0
{Zik(t) − ek(β0, t)}dMik(t)

+ n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

ek(β0, t) −
S

(1)
k (β0, t)

S
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMik(t).

We can show that (3.17) was asymptotically equivalent to n−1/2
∑
n
i=1∑

K
k=1 Wik(β0) where

Wik(β) = ∫
τ

0 (Zik(t) − eik(β, t))dMik(t) (Spiekerman and Lin [1998], Clegg et al. [1999]).
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Since dMik(t) = dNik(t) − Yik(t)e
β0Zik(t)dΛ0k(t), (3.18) can decompose into two parts:

n−1/2
n

∑
i=1

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β0, t)

S
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNik(t)

=
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β0, t)

S
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

d{n−1/2
n

∑
i=1

Mik(t)} (3.19)

+ n−1/2
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β0, t)

S
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

n

∑
i=1

Yik(t)e
β0Zik(t)dΛ0k(t). (3.20)

Based on the assumed model, M1k(t), . . . ,Mnk(t) are identically independently dis-

tributed zero-mean random variables for fixed t. Mik(t) is of bounded variation since

M2
ik(0) < ∞ and M2

ik(τ) < ∞ are satisfied based on conditions (c) and (g). From the ex-

ample of 2.11.16 of Van Der Vaart and Wellner (1996, p215), n−1/2
∑
n
i=1Mik(t) converges

weakly to a zero-mean Gaussian process, say PMk(t).

To establish that PMk(t) has continuous sample paths, we will use Kolmogorov-Centsov

theorem. If conditions of Kolmogorov-Centsov theorem E[{PMk(t)−PMk(s)}
4] ≤D∗

z ∣t−s∣
2

and E[{PMk(t) − PMk(s)}
2] ≤ D̃z ∣t − s∣ for all t ≥ s are satisfied, then we can show that

PMk(t) has continuous sample paths. Note that E[{PMk(t) − PMk(s)}
2] = E[PMk(t)

2] -

2E[PMk(t)PMk(s)] + E[PMk(s)
2] = E[PMk(t)

2] - E[PMk(s)
2] due to E[PMk(t)PMk(s)]

= E[PMk(s)
2] for t ≥ s. Since E[PMk(t)

2] = E[n−1
∑
n
i=1Mik(t)

2] = E[Mik(t)
2] =

E[∫
t

0 Yik(u)e
βT0 Zik(u)λ0k(u)du], E[PMk(t)

2] - E[PMk(s)
2] = E[∫

t
s Yik(u)e

βT0 Zik(u)λ0k(u) du] ≤

eDzE[∫
t
s λ0k(u)du] = D̃z(Λ0k(t) − Λ0k(s)) based on condition (c) where D̃z = e

Dz . There

exists constant C such that Λ0k(t)−Λ0k(s) ≤ C(t− s) for t ≥ s since Λ0k(.) is differentiable

and λ0k(.) is bounded in [0, τ]. Thus E{PMk(t)−PMk(s)}
2 ≤ D̃cz(t−s) where D̃cz = D̃z×C.

For fixed t, PMk(t) is a zero-mean random normal variable. Then, PMk(t)−PMk(s) is also

a zero-mean random normal variable for fixed t and s. Consequently, {PMk(t) −PMk(s)}
2

is a random chi-square variable for fixed t and s. We can express E[{PMk(t)−PMk(s)}
4] =

Var{PMk(t) − PMk(s)}
2 + E{(PMk(t) − PMk(s))

2}2 = 3{E(PMk(t) − PMk(s))
2}2 due to

Var{PMk(t) −PMk(s)}
2 = 2E[{PMk(t) −PMk(s)}

2] from the property of chi-square distri-

bution. Therefore, E{PMk(t)−PMk(s)}
4 = 3{E(PMk(t)−PMk(s))

2}2 ≤D∗
z ∣t−s∣

2 for some

constant D∗
z . Since the two conditions are satisfied, it follows that PMk(t) has continuous
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sample paths from Kolmogorov-Centsov theorem.

Based on conditions (c), (d), and (f), there exists N∗ such that n > N∗ S
(1)
k (β, t) and

S
(0)
k (β, t) are of bounded variations and S

(0)
k (β, t) is bounded away from zero. Thus

S
(1)
k

(β,t)

S
(0)
k

(β,t)

is of bounded variation when n > N∗. By using f ′(x)/f(x) = [log f(x)]′ ≅ F ∗
1 (t) − F ∗

2 (t)

where F ∗
1 (t) and F ∗

1 (t) are bounded, monotone and nonnegative functions in t, it can

be written as
S
(1)
k

(β,t)

S
(0)
k

(β,t)
= Z∗

k1(t) − Z
∗
k2(t) where Z∗

k1(t) and Z∗
k2(t) are bounded, monotone

and nonnegative functions in t. Hence,
S
(1)
k

(β,t)

S
(0)
k

(β,t)
is a sum of two monotone functions in t.

Similarly, we can show that
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
is of bounded variation due to conditions (c) and (f)

and the result of (3.16) by the same manner. Moreover, we can write that
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
is also a

sum of two monotone functions in t. Based on condition (d) and the result of (3.16), it can

be shown that
S
(1)
k

(β,t)

S
(0)
k

(β,t)
and

S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
converge to the same limit uniformly. Thus, it follows

from lemma 1 that

K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β, t)

S
(0)
k (β, t)

−
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

n−1/2
n

∑
i=1

dMik(t)

=
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β, t)

S
(0)
k (β, t)

−
s
(1)
k (β, t)

s
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

n−1/2
n

∑
i=1

dMik(t)

−
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S̃
(1)
k (β, t)

S̃
(0)
k (β, t)

−
s
(1)
k (β, t)

s
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

n−1/2
n

∑
i=1

dMik(t)→ 0 as n→∞.

Therefore, the term in (3.19) converges to 0 in probability uniformly in t.

We have shown that n−1/2
∑
n
i=1Mik(t) converges weakly to a zero-mean Gaussian process

with continuous sample paths. To show that S̃
(d)
k (β, t) and S

(d)
k (β, t) converges to the same

limit in probability, we will show that n1/2{S
(d)
k (β, t)− S̃

(d)
k (β, t)} converges to a zero mean

37



Gaussian process. It can be expressed as

n1/2
{S

(d)
k (β, t) − S̃

(d)
k (β, t)}

= n−1/2
{
n

∑
i=1

Zik(t)
⊗deβ

TZik(t)Yik(t) −
n

∑
i=1

ψik(t)Zik(t)
⊗deβ

TZik(t)Yik(t)}

= n−1/2
{
n

∑
i=1

K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t)

−
n

∑
i=1

K

∏
j=1

(1 −∆ij)ξiα̃
−1
k (t)Zik(t)

⊗deβ
TZik(t)Yik(t)}

= n−1/2
n

∑
i=1

(α̃−1
− α̃−1

k (t))
K

∏
j=1

(1 −∆ij)ξiZik(t)
⊗deβ

TZik(t)Yik(t)

+ n−1/2
n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t)

= n−1
n

∑
i=1

⎧⎪⎪
⎨
⎪⎪⎩

1

α̃E(∏
K
j=1(1 −∆ij)Y1k(t))

1
√
n

⎧⎪⎪
⎨
⎪⎪⎩

n

∑
p=1

(
ξp

α̃
− 1)

K

∏
j=1

(1 −∆pj)Ypk(t)

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

× ξi
K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t)

+ n−1/2
n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t) + op(1) (by plugging in (4.6))

= n−1/2
n

∑
i=1

(
ξi
α̃
− 1) ⋅

∏
K
j=1(1 −∆ij)Yik(t)

E(∏
K
j=1(1 −∆1j)Y1k(t))

⎧⎪⎪
⎨
⎪⎪⎩

n−1
n

∑
p=1

ξp

α̃

K

∏
j=1

(1 −∆pj)Zpk(t)
⊗deβ

TZpk(t)Ypk(t)

⎫⎪⎪
⎬
⎪⎪⎭

+ n−1/2
n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Zik(t)
⊗deβ

TZik(t)Yik(t) + op(1).

Since n−1
∑
n
p=1

ξp
α̃ ∏

K
j=1(1 −∆pj)Zpk(t)

⊗deβ
TZpk(t)Ypk(t) converges to E(∏

K
j=1(1 −∆1j)

Z1k(t)
⊗deβ

TZ1k(t)Y1k(t)) in probability uniformly in t, it can be written as

n1/2
{S

(d)
k (β, t) − S̃

(d)
k (β, t)}

= n−1/2
n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)

×

⎧⎪⎪
⎨
⎪⎪⎩

Zik(t)
⊗deβ

TZik(t) −
E(∏

K
j=1(1 −∆1j)Z1k(t)

⊗deβ
TZ1k(t)Y1k(t))

E(∏
K
j=1(1 −∆1j)Y1k(t))

⎫⎪⎪
⎬
⎪⎪⎭

+ op(1) (3.21)

By lemma 2, n1/2{S
(d)
k (β, t)− S̃

(d)
k (β, t)} converges weakly to a zero-mean Gaussian process
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since we setBi(t) =∏
K
j=1(1−∆ij)Yik(t){Zik(t)

⊗deβ
TZik(t)−

E(∏
K
j=1(1−∆1j)Z1k(t)

⊗deβ
T Z1k(t)Y1k(t))

E(∏
K
j=1(1−∆1j)Y1k(t))

}

with Var(Bi(0)) < ∞ and Var(Bi(τ)) < ∞ . Consequently, S̃
(d)
k (β, t) and S

(d)
k (β, t) con-

verges to the same limit in probability.

To investigate the asymptotic properties of the quantity in (3.20), it can be decomposed

into two parts:

n−1/2
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β, t)

S
(0)
k (β, t)

−
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

n

∑
i=1

Yik(t)e
β0Zik(t)dΛ0k(t)

= n1/2
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β, t) − S

(0)
k (β, t) ⋅

S̃
(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(t)

= n1/2
K

∑
k=1
∫

τ

0
{S

(1)
k (β, t) − S̃

(1)
k (β, t)}dΛ0k(t) − {S

(0)
k (β, t) − S̃

(0)
k (β, t)}

S̃
(1)
k (β, t)

S̃
(0)
k (β, t)

dΛ0k(t)

= n1/2
K

∑
k=1
∫

τ

0
{S

(1)
k (β, t) − S̃

(1)
k (β, t)}dΛ0k(t)

− n1/2
K

∑
k=1
∫

τ

0
{S

(0)
k (β, t) − S̃

(0)
k (β, t)} ek(β, t)dΛ0k(t) + op(1) (3.22)

The last quantity in (3.22) holds since
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
converges to ek(β, t) in probability uni-

formly in t, n1/2{S
(d)
k (β, t) − S̃

(d)
k (β, t)} d = 0,1 converges weakly to a zero-mean Gaussian

process, and Λ0k(t) is bounded on t ∈ [0, τ].

Plugging the quantity in (3.21) into equation (3.22), we have

n−1/2
K

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S
(1)
k (β, t)

S
(0)
k (β, t)

−
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

n

∑
i=1

Yik(t)e
β0Zik(t)dΛ0k(t)

= n−1/2
K

∑
k=1

n

∑
i=1
∫

τ

0
(1 −

ξi
α̃
)
K

∏
j=1

(1 −∆ij)Yik(t)

× [Zik(t)e
βTZik(t) −

E(∏
K
j=1(1 −∆1j)Z1k(t)e

βTZ1k(t)Y1k(t))

E(∏
K
j=1(1 −∆1j)Y1k(t))

− {eβ
TZik(t) −

E(∏
K
j=1(1 −∆1j)e

βTZ1k(t)Y1k(t))

E(∏
K
j=1(1 −∆1j)Y1k(t))

}ek(β, t)]dΛ0k(t) + op(1)

= n−1/2
K

∑
k=1

n

∑
i=1
∫

τ

0
(1 −

ξi
α̃
)
K

∏
j=1

(1 −∆ij){Yik(t)[Zik(t) − ek(β, t)]e
βTZ1k(t)dΛ0k(t)
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− Yik(t) ⋅
E(∏

K
j=1(1 −∆1j)Y1k(t)[Z1k(t) − ek(β, t)]e

βTZ1k(t))

E(∏
K
j=1(1 −∆1j)Y1k(t))

dΛ0k(t)} + op(1)

= n−1/2
K

∑
k=1

n

∑
i=1
∫

τ

0
(1 −

ξi
α̃
)
K

∏
j=1

(1 −∆ij){Qik(β, t) −
Yik(t)E(∏

K
j=1(1 −∆1j)Q1k(β, t))

E(∏
K
j=1(1 −∆1j)Y1k(t))

}

× dΛ0k(t) + op(1) (3.23)

where Qik(β, t) = Yik(t)(Zik(t) − ek(β, t))e
βZik(t).

We have shown that the term in (3.17) is asymptotically equivalent to n−1/2
∑
n
i=1∑

K
k=1

Wik(β, t) and the term in (3.18) is asymptotically equivalent to n−1/2
∑
K
k=1∑

n
i=1 ∫

τ
0 (1 −

ξi
α̃ )∏

K
j=1(1 −∆ij){Qik(β, t) −

Yik(t)E(∏
K
j=1(1−∆1j)Q1k(β,t))

E(∏
K
j=1(1−∆1j)Y1k(t))

}dΛ0k(t).

Therefore, n−1/2ŨM(β0) is asymptotically equivalent to

n−1/2
n

∑
i=1

K

∑
k=1

Wik(β0) + n
−1/2

n

∑
i=1

K

∑
k=1
∫

τ

0
(1 −

ξi
α̃
)Ωik(β0, t)dΛ0k(t), (3.24)

where Ωik(β, t) =∏
K
j=1(1 −∆ij){Qik(β, t) −

Yik(t)E(∏
K
j=1(1−∆1j)Q1k(β,t))

E(∏
K
j=1(1−∆1j)Y1k(t))

} .

By Spiekerman and Lin [1998] and Clegg et al. [1999], the first term of (3.24) converges

weakly to a zero-mean normal vector with covariance matrix VI(β0) = E[∑
K
k=1W1k(β0)]

⊗2.

The second term of (3.24) is asymptotically zero-mean normal vector with covariance matrix

1−α
α VII(β0) =

1−α
α E [∑

K
k=1 ∫

τ
0 Ωik(β0, t)dΛ0k(t)]

⊗2
by Hájek [1960]’s central limit theorem for

finite sampling.

In addition, n−1/2
∑
n
i=1∑

K
k=1Wik(β0) and n−1/2

∑
n
i=1∑

K
k=1 ∫

τ
0 (1− ξi

α̃ )Ωik(β0, t)dΛ0k(t) are

independent since

Cov (n−1/2
n

∑
i=1

K

∑
k=1

Wik(β0), n
−1/2

n

∑
i=1

K

∑
k=1

(1 −
ξi
α̃
)∫

τ

0
Ωik(β0, t)dΛ0k(t))

= E {n−1
n

∑
i=1

K

∑
k=1

Wik(β0)
n

∑
i=1

K

∑
k=1

(1 −
ξi
α̃
)∫

τ

0
Ωik(β0, t)dΛ0k(t)}

= E {E (n−1
n

∑
i=1

K

∑
k=1

Wik(β0)
n

∑
i=1

K

∑
k=1

(1 −
ξi
α̃
)∫

τ

0
Ωik(β0, t)dΛ0k(t)∣F(τ))}

= E {n−1
n

∑
i=1

K

∑
k=1

Wik(β0)
n

∑
i=1

K

∑
k=1

E (1 −
ξi
α̃
∣F(τ))∫

τ

0
Ωik(β0, t)dΛ0k(t)} = 0,

where {F(t), t ≥ 0} is filtration.
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Combining all the above results, n−1/2ŨM(β0) converges weakly to zero-mean normal

vector with covariance matrix Σ(β0) = VI(β0) +
1−α
α VII(β0). Consequently, n−1ŨM(β0)

converges to zero in probability. Therefore, β̃M converges to β0 in probability and is a

consistent estimator of β0 by satisfying conditions (I), (II), (III), and (IV) (theorem 2 of

Fourtz [1977]).

In addition to the consistency of β̃M , it follows from Taylor expansion, it can be written

as

n1/2
(β̃M − β0) = [A(β0)]

−1n−1/2ŨM(β0). (3.25)

Therefore, n1/2(β̃M −β0) converges weakly zero-mean normal vector with covariance matrix

A(β0)
−1Σ(β0)A(β0)

−1.

The proof of Theorem 2 Note that

Λ̃M0k(β̃
M , t) = ∫

t

0

∑
n
i=1 dNik(u)

nS̃
(0)
k (β̃M , u)

= ∫

t

0

∑
n
i=1 dMik(u)

nS̃
(0)
k (β̃M , u)

+ ∫

t

0

S
(0)
k (β0, u)dΛ0k(u)

S̃
(0)
k (β̃M , u)

We can decompose n1/2{Λ̃M0k(β̃
M , t) −Λ0k(t)} into four parts:

n1/2
{Λ̃M0k(β̃

M , t) −Λ0k(t)}

= n1/2
∫

t

0

⎛

⎝

1

nS̃
(0)
k (β̃M , u)

−
1

nS̃
(0)
k (β0, u)

⎞

⎠
d
n

∑
i=1

Mik(u)

+ n1/2
∫

t

0

⎛

⎝

1

S̃
(0)
k (β̃M , u)

−
1

S̃
(0)
k (β0, u)

⎞

⎠
S

(0)
k (β0, u)dΛ0k(u)

+ n−1/2
∫

t

0

1

S̃
(0)
k (β0, u)

d
n

∑
i=1

Mik(u)

+ n1/2
∫

t

0

⎛

⎝

S
(0)
k (β0, u) − S̃

(0)
k (β0, u)

S̃
(0)
k (β0, u)

⎞

⎠
dΛ0k(u) (3.26)
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By Taylor expansion, it can be written as

1

S̃
(0)
k (β̃M , u)

−
1

S̃
(0)
k (β0, u)

= −
S̃

(1)
k (β∗, u)

S̃
(0)
k (β∗, u)2

(β̃M − β0)

where β∗ is on the line segment between β̃M and β0. Plugging into the first term in (3.26),

we have

∫

t

0

⎛

⎝
−
S̃

(1)
k (β∗, u)

S̃
(0)
k (β∗, u)2

⎞

⎠
(β̃M − β0){n

−1/2d
n

∑
i=1

Mik(u)} , (3.27)

where β∗ is on the line segment between β̃M and β0. Due to consistency of β̃M , β∗ also

converges to β0 in probability uniformly. Since S̃
(0)
k (β∗, u) and S̃

(1)
k (β∗, u) are of bounded

variations and S̃
(0)
k (β∗, u) is bounded away from 0,

S̃
(1)
k

(β∗,u)

S̃
(0)
k

(β∗,u)2
is of bounded variation and

can be written as sum of two monotone functions in t. In addition, it is shown consistency of

β̃M , weak convergence of n−1/2d∑ni=1Mik(u) to zero-mean Gaussian process with continuous

sample paths, and the uniform convergence of S̃
(0)
k (β∗, u) and S̃

(1)
k (β∗, u). Therefore, by

lemma 1, the quantity in (4.23) converges to zero in probability uniformly in t.

The second term in (3.26), by Taylor expansion series, can be written as

n1/2
∫

t

0

⎛

⎝
−
S̃

(1)
k (β∗, u)

S̃
(0)
k (β∗, u)2

⎞

⎠
(β̃M − β0)S

(0)
k (β0, t)dΛ0k(u)

Since β̃M and β∗ converge to β0 in probability uniformly in t, S̃
(0)
k (β∗, u) and S̃

(0)
k (β0, u)

converges to s
(0)
k (β0, t) in probability uniformly. Also, S̃

(1)
k (β∗, u) →p s

(1)
k (β0, t). Since

dΛ0k(u) is bounded, we can show that

n1/2
∫

t

0

⎛

⎝
−
S̃

(1)
k (β∗, u)

S̃
(0)
k (β∗, u)2

⎞

⎠
(β̃M − β0)S

(0)
k (β0, u)dΛ0k(u) = n1/2lk(β, t)

T
(β̃M − β0) + op(1),

where lk(β, t)
T = ∫

t
0 −ek(β,u)dΛ0k(u) and ek(β0, u) = s

(1)
k (β0, u)/s

(0)
k (β0, u).

Since S̃
(0)
k (β0, u) converges to s

(0)
k (β0, u) in probability uniformly and s

(0)
k (β0, u) is

bounded away from 0, we have S̃
(0)
k (β0, u)

−1 →p s
(0)
k (β0, u)

−1. In addition,n−1/2d∑ni=1Mik(u)
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converges to zero-mean Gaussian process with continuous sample paths. Hence, the third

term in (3.26) can be written as

∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2d
n

∑
i=1

Mik(u)} = ∫

t

0

1

s
(0)
k (β0, u)

{n−1/2d
n

∑
i=1

Mik(u)} + op(1)

Due to uniform convergence of S̃
(0)
k (β0, u)

−1 to s
(0)
k (β0, u)

−1 where s
(0)
k (β0, u) is bounded

away from 0 and plug (3.21) into the last term in (3.26), we have

n1/2
∫

t

0

⎛

⎝

S
(0)
k (β0, u) − S̃

(0)
k (β0, u)

S̃
(0)
k (β0, u)

⎞

⎠
dΛ0k(u)

=
1

√
n

n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)

× ∫

t

0
Yik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZik(u) −

E(∏
K
j=1(1 −∆1j)e

βTZ1k(u)Y1k(u))

E(∏
K
j=1(1 −∆1j)Y1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(u)

s
(0)
k (β0, u)

+ op(1)

Combining all the results, we have

n1/2
{Λ̃M0k(β̃

M , t) −Λ0k(t)}

= n1/2lk(β, t)
T
(β̃M − β0) + ∫

t

0

1

s
(0)
k (β0, u)

{n−1/2d
n

∑
i=1

Mik(u)}

+
1

√
n

n

∑
i=1

(1 −
ξi
α̃
)
K

∏
j=1

(1 −∆ij)∫

t

0
Yik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZik(u) −

E(∏
K
j=1(1 −∆1j)e

βTZ1k(u)Y1k(u))

E(∏
K
j=1(1 −∆1j)Y1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

×
dΛ0k(u)

s
(0)
k (β0, u)

+ op(1) (3.28)

Recall (3.25):

n1/2
(β̃M − β0)

= A(β0)
−1

{n−1/2
n

∑
i=1

K

∑
m=1

Wim(β0) + n
−1/2

n

∑
i=1

(1 −
ξi
α̃
)
K

∑
m=1
∫

τ

0
Ωim(β0, t)dΛ0m(t)} + op(1),

where Wik(β) = ∫
τ

0 {Zik(t) − ek(β, t)}dMik(t) and

Ωik(β, t) =∏
K
j=1(1 −∆ij){Qik(β, t) −

Yik(t)E(∏
K
j=1(1−∆1j)Q1k(β,t))

E(∏
K
j=1(1−∆1j)Y1k(t))

} .
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Using the above equation, we have

n1/2
{Λ̃M0k(β̃

M , t) −Λ0k(t)}

= n−1/2
n

∑
i=1

[

⎧⎪⎪
⎨
⎪⎪⎩

lk(β, t)
TA(β0)

−1
K

∑
m=1

Wim(β0) + ∫

t

0

1

s
(0)
k (β0, u)

dMik(u)

⎫⎪⎪
⎬
⎪⎪⎭

+ (1 −
ξi
α̃
){lk(β, t)

TA(β0)
−1

K

∑
m=1
∫

τ

0
Ωim(β0, t)dΛ0m(t)

+
K

∏
j=1

(1 −∆ij)∫

t

0
Yik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZik(u) −

E(∏
K
j=1(1 −∆1j)e

βTZ1k(u)Y1k(u))

E(∏
K
j=1(1 −∆1j)Y1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(u)

s
(0)
k (β0, u)

}]

+ op(1)

= n−1/2
n

∑
i=1

ηik(β0, t) + n
−1/2

n

∑
i=1

(1 −
ξi
α̃
)ζik(β0, t) + op(1),

where

ηik(β0, t) = lk(β, t)
TA(β0)

−1
K

∑
m=1

Wim(β0) + ∫

t

0

1

s
(0)
k (β0, u)

dMik(u) and

ζik(β0, t) = lk(β, t)
TA(β0)

−1
K

∑
m=1
∫

τ

0
Ωim(β0, t)dΛ0m(t)

+
K

∏
j=1

(1 −∆ij)∫

t

0
Yik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZik(u) −

E(∏
K
j=1(1 −∆1j)e

βTZ1k(u)Y1k(u))

E(∏
K
j=1(1 −∆1j)Y1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(u)

s
(0)
k (β0, u)

.

Let H(t) = (H(1)(t) + H(2)(t)) where H(1)(t) = (H
(1)
1 (t), . . . ,H

(1)
K (t))T , H(2)(t) =

(H
(2)
1 (t), . . . ,H

(2)
K (t))T , H

(1)
k (t)T = n−1/2

∑
n
i=1 ηik(β0, t), and H

(2)
k (t)T = n−1/2

∑
n
i=1(1 −

ξi
α̃ )ζik(β0, t). Then, by theorem 2 of Spiekerman and Lin [1998], H(1)(t) = (H

(1)
1 (t), . . . ,

H
(1)
K (t))T converges weakly to Gaussian process H(1)(t) = (H

(1)
1 (t), . . . , H

(1)
K (t))T whose

mean is zero and covariance functions betweenH
(1)
j (t) andH

(1)
k (s) is E{η1j(β0, t), η1k(β0, s)}

for t, s ∈ [0, τ] in D[0, τ]K .

We will show weak convergence of H(2)(t) to a zero-mean Gaussian process H(2)(t).

s
(0)
k (β, t) and E(∏

K
j=1(1−∆1j)Y1k(t)) are bounded away from zero, lk(β, t)

T , eβ
TZ1k(t)Y1k(t),

E(∏
K
j=1(1 − ∆1j)e

βTZ1k(t)Y1k(t)), and dΛ0k(t) are of bounded variations based on con-

ditions (b), (c), (d), and (f); A(β0) is positive definite based on (e). Hence, it fol-

lows from Cramer-Wold device and lemma 2 that the finite dimensional distribution of
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H(2)(t) is asymptotically same as that of H(2)(t) for any finite number of time point

(t1, . . . , tL). Moreover, we need to show H(2)(t) has tightness. It suffices to show the

marginal tightness of H
(2)
k (t) for each k since space D[0, τ]K is equipped with the uni-

form metric. By applying lemma 2, the marginal tightness follows to H
(2)
k (t). Combining

all the results, H(2)(t) = (H
(2)
1 (t), . . . ,H

(2)
K (t))T converges weakly to Gaussian process

H(2)(t) = (H
(2)
1 (t), . . . ,H

(2)
K (t))T whose mean is zero and covariance functions between

H
(2)
j (t) and H

(2)
k (s) is 1−α

α E{ζ1j(β0, t), ζ1k(β0, s)} for t, s ∈ [0, τ] in D[0, τ]K .

H(1)(t) and H(2)(s) are independent since

Cov(H(1)
(t),H(2)

(s))

= Cov(n−1/2
n

∑
i=1

ηik(β0, t), n
−1/2

n

∑
i=1

(1 −
ξi
α̃
)ζik(β0, s))

= E(n−1
n

∑
i=1

ηik(β0, t)
n

∑
i=1

(1 −
ξi
α̃
)ζik(β0, s))

= E(E{n−1
n

∑
i=1

ηik(β0, t)
n

∑
i=1

(1 −
ξi
α̃
)ζik(β0, s)∣F(t)})

= E(n−1
n

∑
i=1

ηik(β0, t)
n

∑
i=1

E{(1 −
ξi
α̃
)∣F(t)}ζik(β0, s))

= 0

Therefore, H(t) = (H(1)(t) +H(2)(t)) converges weakly to zero-mean Gaussian process

H(t) = (H(1)(t) + H(2)(t)) in D[0, τ]K whose covariance function between H
(2)
j (t) and

H
(2)
k (s) is E{η1j(β0, t), η1k(β0, s)} +

1−α
α E{ζ1j(β0, t), ζ1k(β0, s)}.

3.4 Simulations

We conducted simulation studies to examine the performance of the proposed methods

and to compare them with the Borgan et al. [2000] method for univariate outcomes and the

Kang and Cai [2009] method for multiple outcomes. We also compared separate analysis

with joint analysis. Suppose case-cohort studies have been conducted for diseases 1 and 2.

Then covariate information is collected for the subcohort and all the subjects with disease

1 and/or 2. We generated bivariate failure times from the Clayton–Cuzick model [Clayton
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and Cuzick, 1985] with the conditional survival function

S(t1, t2 ∣ Z1, Z2) = {exp{∫
t1
0 λ01(t) expβ1Z1 dt}/θ

+ exp{∫
t2
0 λ02(t) expβ2Z2 dt}/θ

−1}
−θ

,

where λ0k(t) and βk (k = 1,2) are the baseline hazard function and the effect of a covariate

for disease k, respectively, and θ is the association parameter between the failure times of the

two diseases. Kendall’s tau is τθ = (2θ + 1)−1. Smaller Kendall’s tau values represent lower

correlation between T1 and T2. Values of 0⋅1, 4, and 10 are used for θ, with corresponding

Kendall’s tau values 0⋅83, 0⋅11, and 0⋅05, respectively. We set the baseline hazard functions

λ01(t) ≡ 2 and λ02(t) ≡ 4. We consider the situation Z1 = Z2 = Z, where Z is generated from

a Bernouilli distribution with pr(Z = 1) = 0⋅5. Censoring times are simulated from a uniform

distribution [0, u], where u depends on the specified level of the censoring probability. We

set the event proportions of approximately 8% and 20% for k = 1, and 14% and 35% for

k = 2. The corresponding u values are 0⋅08 and 0⋅22, respectively, for β1 = 0⋅1; they are 0⋅06

and 0⋅16 for β1 = log 2. The sample size of the full cohort is set to be n = 1000. We create

the subcohort by simple random sampling and consider subcohort sizes of 100 and 200. For

each configuration, 2000 simulations were conducted.

In the first set of simulations, we consider the case that disease 1 is of primary interest.

We compare the performance of our proposed estimator with the estimator of Borgan et al.

[2000]. Table 3.1 summarizes the results. We see that both methods are approximately

unbiased. The average of the estimated standard error of the proposed estimator is close

to the empirical standard deviation, and the coverage rate of the 95% confidence interval is

close to the nominal level. As expected, the variation of the estimators in general decreases

as the subcohort size increases. Our proposed estimators have smaller variance relative to

the estimators of Borgan et al. [2000] in all cases. This shows that the extra information

collected on subjects with the other disease helps to increase efficiency. The efficiency gain

is larger in situations with larger event proportions, smaller subcohort sizes and lower cor-

relation. We also considered disease 2 with β2 = log 2 and conducted additional simulations

to compare our proposed estimator with those of Prentice [1986], Self and Prentice [1988],
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Table 3.1: Simulation result for a single disease outcome: β1 = log(2) = 0.693

Event Size of The proposed method Borgan et al.’s method

proportion subcohort τθ β̃1 SE SD CR β̂1 SE SD CR SRE

8% 100 0⋅83 0⋅706 0⋅32 0⋅32 94 0⋅705 0⋅33 0⋅33 94 1⋅04
0⋅11 0⋅718 0⋅31 0⋅32 94 0⋅719 0⋅33 0⋅33 94 1⋅07
0⋅05 0⋅708 0⋅32 0⋅32 94 0⋅705 0⋅33 0⋅33 94 1⋅06

200 0⋅83 0⋅715 0⋅28 0⋅28 95 0⋅716 0⋅28 0⋅28 95 1⋅02
0⋅11 0⋅704 0⋅28 0⋅28 95 0⋅705 0⋅28 0⋅29 95 1⋅03
0⋅05 0⋅697 0⋅28 0⋅27 95 0⋅698 0⋅28 0⋅28 95 1⋅05

20% 100 0⋅83 0⋅703 0⋅25 0⋅25 94 0⋅704 0⋅26 0⋅27 95 1⋅13
0⋅11 0⋅694 0⋅23 0⋅23 94 0⋅694 0⋅26 0⋅27 95 1⋅31
0⋅05 0⋅700 0⋅23 0⋅23 94 0⋅701 0⋅26 0⋅26 95 1⋅29

200 0⋅83 0⋅693 0⋅20 0⋅20 95 0⋅692 0⋅21 0⋅21 95 1⋅10
0⋅11 0⋅696 0⋅19 0⋅19 95 0⋅699 0⋅21 0⋅21 95 1⋅17
0⋅05 0⋅694 0⋅19 0⋅19 95 0⋅695 0⋅21 0⋅21 95 1⋅26

SE, average standard errors; SD, sample standard deviation; CR, coverage rate (%) of the
nominal 95% confidence intervals; SRE= SD2

c/SD2
p, sample relative efficiency, where SDc

and SDp are the sample standard deviation for the Borgan et al. [2000]’s method and the
proposed method, respectively.

Kalbfleisch and Lawless [1988], and Barlow [1994]. Similar results were obtained but are

not presented in the paper due to space limitations.

In the second set of simulations, we are interested in the joint analysis of the two diseases.

We fit the following models:

λik(t ∣ Zi) = Yik(t)λ0k(t)e
βkZi (k = 1,2; i = 1, . . . , n).

We compare the performance of the proposed estimator with the estimator of Kang and

Cai [2009]. Table 3.2 provides summary statistics for the estimator of β1 for different

combinations of event proportion, subcohort sample size, and correlation. The estimates

from both methods are nearly unbiased, and their estimated standard errors are close to

the empirical standard deviations. Our method is more efficient than that of Kang and

Cai [2009]. The efficiency gain is very limited when the event proportion is small. Higher

efficiency gains are associated with smaller subcohort sizes. Estimates for β2 are not shown

in Table 3.2, but the overall performance is similar to that of β1.

We also compared separate analysis of the two diseases with the joint analysis using the
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Table 3.2: Simulation result for multiple disease outcomes: [β1, β2] = [0.1, 0.7]

Event Size of The proposed method Kang & Cai’s method SRE

proportion subcohort τθ β̃M1 SE SD CR β̂M1 SE SD CR β̂1

[8%,14%] 100 0⋅83 0⋅099 0⋅31 0⋅30 95 0⋅101 0⋅32 0⋅31 95 1⋅07
0⋅11 0⋅101 0⋅30 0⋅30 95 0⋅098 0⋅32 0⋅32 95 1⋅13
0⋅05 0⋅109 0⋅30 0⋅31 94 0⋅111 0⋅32 0⋅33 94 1⋅11

200 0⋅83 0⋅106 0⋅26 0⋅27 95 0⋅105 0⋅27 0⋅27 95 1⋅04
0⋅11 0⋅096 0⋅26 0⋅26 94 0⋅096 0⋅27 0⋅27 94 1⋅05
0⋅05 0⋅098 0⋅26 0⋅27 94 0⋅098 0⋅27 0⋅27 94 1⋅05

[20%,35%] 100 0⋅83 0⋅098 0⋅23 0⋅24 94 0⋅094 0⋅26 0⋅27 94 1⋅24
0⋅11 0⋅099 0⋅22 0⋅22 94 0⋅097 0⋅26 0⋅26 95 1⋅42
0⋅05 0⋅095 0⋅22 0⋅22 94 0⋅101 0⋅26 0⋅27 95 1⋅44

200 0⋅83 0⋅103 0⋅19 0⋅19 94 0⋅104 0⋅20 0⋅21 95 1⋅19
0⋅11 0⋅098 0⋅18 0⋅18 95 0⋅097 0⋅20 0⋅20 95 1⋅29
0⋅05 0⋅098 0⋅18 0⋅18 95 0⋅100 0⋅20 0⋅20 96 1⋅31

SE, average standard errors; SD, sample standard deviation; CR, coverage rate (%) of the
nominal 95% confidence intervals; SRE= SD2

e/SD2
p, sample relative efficiency, where SDe

and SDp are the sample standard deviation for the Kang and Cai [2009]’s method and the
proposed method, respectively.

Table 3.3: Comparison between separate and joint analysis: β1 = log 2, Pr(∆ = 1)=0.2

Separate analysis
Size of The proposed weight Borgan at al.’s method

subcohort τθ β̃1 SE SD β̂1 SE SD

100 0⋅83 0⋅713 0⋅244 0⋅245 0⋅716 0⋅263 0⋅265
0⋅11 0⋅702 0⋅226 0⋅236 0⋅705 0⋅262 0⋅270
0⋅05 0⋅700 0⋅226 0⋅232 0⋅710 0⋅263 0⋅268

200 0⋅83 0⋅703 0⋅196 0⋅194 0⋅704 0⋅206 0⋅206
0⋅11 0⋅697 0⋅186 0⋅193 0⋅699 0⋅205 0⋅213
0⋅05 0⋅698 0⋅186 0⋅187 0⋅702 0⋅206 0⋅209

Joint analysis
Size of The proposed weight Kang and Cai’s method

subcohort τθ β̃M1 SE SD β̂M1 SE SD

100 0⋅83 0⋅711 0⋅243 0⋅245 0⋅713 0⋅262 0⋅264
0⋅11 0⋅701 0⋅226 0⋅235 0⋅701 0⋅261 0⋅267
0⋅05 0⋅700 0⋅225 0⋅231 0⋅707 0⋅262 0⋅266

200 0⋅83 0⋅703 0⋅195 0⋅194 0⋅703 0⋅205 0⋅205
0⋅11 0⋅696 0⋅186 0⋅193 0⋅697 0⋅205 0⋅212
0⋅05 0⋅698 0⋅186 0⋅187 0⋅700 0⋅205 0⋅209

SE, average standard errors; SD, sample standard deviation.
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Table 3.4: Type I error and power (%) in separate and joint analyses: Pr(∆ = 1)=0.2

Type I error (β1 = β2 = log 2) Power (β1 = 0⋅1, β2 = 0⋅7)
Size of Separate analysis Joint analysis Separate analysis Joint analysis

subcohort τθ P BR P KC P BR P KC

100 0⋅83 0⋅6 0⋅6 6⋅3 6⋅7 49 42 90 78
0⋅11 0⋅8 1⋅7 5⋅9 5⋅9 56 42 83 61
0⋅05 1⋅2 2⋅1 5⋅1 5⋅6 59 43 81 61

200 0⋅83 0⋅2 0⋅3 5⋅2 5⋅8 80 72 98 94
0⋅11 1⋅6 1⋅9 5⋅4 5⋅4 77 65 89 78
0⋅05 1⋅8 2⋅5 5⋅3 5⋅4 79 68 90 79

P, the proposed weight; BR, the method of Borgan et al. [2000]; KC, the method of Kang
and Cai [2009].

proposed method. Data were generated satisfying the following model:

λk(t ∣ Z1, Z2) = λ0k(t)e
βkZ+β3Z

∗
(k = 1,2),

where β1 represents the effect of Z on the risk of disease 1, β2 represents the effect of Z

on the risk of disease 2, and β3 represents the common effect of Z∗ for both diseases. We

set β1 = β2 = log 2 and β3 = 0⋅1. Table 3.3 summarizes the results for β1. The sample

standard deviations of Kang & Cai’s estimator in the joint analysis are slightly smaller

than Borgan’s estimator in the separate analysis. The sample standard deviations of the

proposed estimators are similar in the joint and separate analyses, and they are smaller

than Kang & Cai’s and Borgan’s estimators, respectively. Conclusions for the estimator of

β2 are similar. We also conducted hypothesis tests for H0 ∶ β1 = β2. Table 3.4 presents the

Type I error rates and power of the tests at the 0⋅05 significance level. The tests under

the separate analysis treat the two estimates, β̂1 and β̂2, as from two independent samples.

Type I error rates from separate analyses are much lower than 5% while those from the

joint analysis are close to 5%. The settings for power analysis are the same as before except

that β1 = 0⋅1 and β2 = 0⋅7. Tests based on the proposed methods are more powerful than

those based on Kang & Cai’s and Borgan’s methods, and the joint analysis produces more

powerful tests than the separate analysis.
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3.5 Data analysis

We apply the proposed method to analyze data from the Busselton Health Study [Cullen,

1972; Knuiman et al., 2003], conducted in the south-west of Western Australia, and intended

to evaluate the association between coronary heart disease and stroke and their risk factors.

General health information for adult participants was obtained by questionnaire every three

years from 1966 to 1981. This study population consists of 1612 men and women aged

40-89 who participated in 1981 and were free of coronary heart disease or stroke at that

time. Coronary heart disease event is defined as hospital admission, any procedure, or

death related to coronary heart disease. Stroke event is defined as hospital admission, any

procedure, or death from stroke. The outcomes of interest were time to the first coronary

heart disease event and time to the first stroke event. The event time for a subject was

considered censored if the subject was free of that event type by December 31, 1998 or lost

to follow-up during the study period.

One of the main interests of the study was to compare the effect of serum ferritin on

coronary heart disease with its effect on stroke. To reduce cost and preserve stored serum,

case-cohort sampling was used. Serum ferritin was measured for all the subjects with

coronary heart disease and/or stroke as well as those in the subcohort. We conduct a joint

analysis of the two diseases. In our analysis, the full cohort consists of 1210 subjects with

viable blood serum samples, which includes 174 subjects with only coronary heart disease,

75 with only stroke, and 43 with both diseases. The subcohort consisted of 334 disease-

free subjects, 61 with only coronary heart disease, 36 with only stroke, and 19 with both

diseases. The total number of assayed sera samples was 626. If a subject was censored and

free of both events at the censoring time, then the censoring times for the two disease events

were the same. Two subjects died due to both coronary heart disease and stroke, for whom

the times for both events were the same. No other subjects died at the first diagnosis of

either disease. For this study, it is reasonable to assume, as in the original study [Knuiman

et al., 2003], that censoring was conditionally independent of the event processes.
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Table 3.5: Analysis results for the Busselton Health Study

Proposed method Kang & Cai method

Variables β̃M SE HR 95% CI β̂M SE HR 95% CI

log(ferritin) on CHD 0⋅145 0⋅0897 1⋅16 (0⋅97, 1⋅38) 0⋅092 0⋅0949 1⋅10 (0⋅91, 1⋅32)
log(ferritin) on Stroke 0⋅172 0⋅1219 1⋅19 (0⋅93, 1⋅51) 0⋅186 0⋅1304 1⋅20 (0⋅93, 1⋅56)
Age 0⋅071 0⋅0069 1⋅07 (1⋅06, 1⋅09) 0⋅069 0⋅0070 1⋅07 (1⋅06, 1⋅09)
Triglycerides 0⋅239 0⋅0484 1⋅27 (1⋅16, 1⋅40) 0⋅232 0⋅0541 1⋅26 (1⋅13, 1⋅40)
BPT 0⋅423 0⋅1633 1⋅53 (1⋅11, 2⋅10) 0⋅408 0⋅1727 1⋅50 (1⋅07, 2⋅11)

CHD, coronary heart disease; BPT, Blood pressure treatment; SE, standard error; HR,
hazard ratio; CI, confidence interval.

We fit the following model

λk(t ∣ Z1, Z2, Z3, Z4) = λ0k(t)e
β1kZ1+β2kZ2+β3kZ3+β4kZ4 (k = 1,2),

where Z1, Z2, Z3, and Z4 denote the logarithm of serum ferritin level, age in years, triglyc-

erides in millimoles per liter, and whether subjects had blood pressure treatment, respec-

tively. We then tested H0 ∶ β21 = β22, β31 = β32, β41 = β42 based on the proposed method,

and the p-value is 0⋅138. Therefore, we fit the final model

λk(t ∣ Z1, Z2, Z3, Z4) = λ0k(t)e
β1kZ1+β2Z2+β3Z3+β4Z4 (k = 1,2).

Table 3.5 summarizes the results of the final fit. With a 1 unit increase in the logarithm

of the serum ferritin level, the hazard ratio for coronary heart disease risk is increased by

16% and for stroke risk by 19%. When we tested H0 ∶ β11 = β12, H0 was not rejected with

the p-value = 0⋅823. We also fit the same model using Kang and Cai [2009]’s method. The

standard errors for the effects of the logarithm of the serum ferritin level are slightly larger,

0⋅0949 for coronary heart disease and 0⋅1304 for stroke.

3.6 Concluding remarks

When disease rates are low, the efficiency gain of the proposed method is not large.

When the event rates are low, the number of cases is small, and consequently, the amount

of extra information is small. In the case of common diseases, sampling all cases in the
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traditional case-cohort design with multiple diseases limits applications [Breslow and Well-

ner, 2007]. Instead, a generalized case-cohort design [Cai and Zeng, 2007] in which cases

are sampled can be considered. Extending the proposed weights to this general case merits

further investigation.

In our proposed estimation framework, time-dependent covariates can be allowed. How-

ever, estimation generally requires one to know the entire history of time-dependent co-

variates. In many follow-up studies, this may not be true. One commonly used approach

for handling time-dependent covariates is to consider the last-value-carry-forward, but this

could introduce bias. A more sensible approach is to consider the joint modeling of survival

times and longitudinal covariates via shared random effects, which has not been studied for

case-cohort data.

When studying multiple diseases, different diseases may be competing risks for the same

subject. In a competing risks situation, a subject can only experience at most one event; in

the situation we considered, a subject can still experience the other events. Consequently, in

the competing risks situation, a subject is at risk for all types of events simultaneously and

will not be at risk for any other events as soon as one event occurs. Our approach in this

paper can be adapted to competing risks by modifying the at-risk process and the weight

function, but analysis will be based on the cause-specific hazards as studied in Sorensen

and Andersen [2000].

The current method is based on estimating equations, which improves the estimation

efficiency by incorporating a refined weight function for the risk set. However, it is not

semiparametric efficient. To derive the most efficient estimator, we need to specify the joint

distribution of the correlated failure times from the same subject and consider nonparamet-

ric maximum likelihood estimation based on the joint likelihood function for case-cohort

sampling. This may be very challenging, especially when expensive covariates are continu-

ous. This is an interesting topic which warrants future research.
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Chapter 4

Stratified case-cohort studies with nonrare
events

4.1 Introduction

Case-cohort study design is an economical means for large cohort studies since it can

be expensive to assemble covariate information for all cohort members [Prentice, 1986]. To

conduct case-cohort design, there are two sampling steps. First, a random sample from

the full cohort, named the subcohort, is selected via simple random sampling. Second, we

sample subjects having diseases of interest outside the subcohort. The covariate information

on the exposure is obtained for the subcohort members as well as sampled cases or failures.

In biomedical studies some covariate information is often available for all subjects in the

cohort such as age or gender and these covariate information could be used to define strata

variables. Under the situation, the subcohort can be selected via stratified random sampling

based on strata variables, which could lead to more powerful and efficient case-cohort study

than unstratified case-cohort study using simple random sampling of the subcohort [Borgan

et al., 2000]. Kulich and Lin [2004] and Samuelsen et al. [2007] proposed stratified case-

cohort design by using the covariate data outside the case-cohort sample and using local

averaging method, respectively.

For case-cohort studies with a single disease outcome as well as multivariate disease

outcomes, extensive progress has been made. From unstratified case-cohort data, Pren-

tice [1986] proposed a pseudo-likelihood approach, Self and Prentice [1988] proposed the

inference of a slightly modified pseudo-likelihood estimator, and Barlow [1994] developed a



robust estimator of the variance with a time-varying weight. For multivariate failure time

outcomes, Lu and Shih [2006] proposed estimation for case-cohort studies for clustered fail-

ure time. In order to be able to compare the effects of a risk factor on different diseases,

Kang and Cai [2009] developed the estimation procedure based on the joint analysis in

generalized case-cohort studies. By using stratum variables, stratified case-cohort design

with a single disease outcome has been studied [Borgan et al., 2000; Kulich and Lin, 2000a,

2004].

Aforementioned methods were considered in traditional case-cohort design when diseases

are infrequent. However, in many biomedical studies, the disease rate may not be low or the

number of cases is large. Under the situation, Cai and Zeng [2007] proposed the generalized

case-cohort design by selecting a subset of all cases or failures. When stratum variables are

available for all cohort members, Kang and Cai [2010] considered stratified generalized case-

cohort design by using stratified random sampling of the subcohort and cases. For example,

the Atherosclerosis Risk in Communities (ARIC) study is to investigate the association

between high-sensitivity C-reactive protein (hs-CRP) and incident diabetes events. Since

the disease rate of incident diabetes is 11.2% and frozen biologic specimen from which hs-

CRP can be measured should be conserved, selecting all subjects with incident diabetes is

prohibited. To preserve frozen biologic specimen and save cost, the generalized case-cohort

study was conducted by sampling a subset of diabetes cases. Based on age (≤ 55, > 55),

gender, and race, the subcohort and a subset of diabetes cases were selected via stratified

sampling.

When it is of interest to study the effect of one risk factor on multiple diseases, several

case-cohort studies were conducted separately. For example, another case-cohort study for

association between hs-CRP and incident coronary heart diseases (CHD) had been con-

ducted in the ARIC study [Ballantyne et al., 2004]. In this study, hs-CRP information was

available on the subcohort as well as all incident coronary heart diseases. When construct-

ing estimating equations for diabetes in generalized stratified case-cohort studies, hs-CRP

information for subjects collected from CHD cases was not used. This motivates us to con-

sider a different approach which can utilize all available exposure information in generalized
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stratified case-cohort studies.

In this paper, we develop estimation procedure for generalized stratified case-cohort

study design with a single disease outcome as well as multiple disease outcomes by using all

available exposure information. In section 4.2, we propose models and estimation procedures

for the proposed methods. Section 4.3 summarizes asymptotic properties to be proved for

the proposed estimators and section 4.4 reports some simulation results. In section 4.5,

we apply our proposed methods to data from the ARIC study. In section 4.6, concluding

remarks are provided.

4.2 Model and estimation

4.2.1 Model

Suppose that there are n independent subjects and K diseases of interest in a cohort

which can divided into L mutually exclusive strata using information available for all the

cohort members. Suppose that the total size of cohort n is partitioned into nl intervals for

l = 1, . . . , L. Let Tlik be the failure time, Clik the potential censoring time, and Zlik(t) be

a p × 1 possibly time-dependent covariates vector for disease k of subject i in stratum l.

Let Xlik = min(Tlik,Clik) denote the observed time, ∆lik = I(Tlik ≤ Clik) the indicator for

failure, Nlik(t) = I(Xlik ≤ t,∆lik = 1) the counting process for the observed failure time, and

Ylik(t) = I(Xlik ≥ t) the at risk indicator for disease k of subject i in stratum l, where I(.)

is the indicator function.

We assume that all the time-dependent covariates are external [Kalbfleisch and Prentice,

2002] and Tlik is independent of Clik for given possibly time-dependent covariates Zlik(t).

Let τ denote the end of study time. For disease k of subject i in stratum l, the hazard

function λlik(.) associated with Zlik(t) is given by

λlik{t∣Zlik(t)} = Ylik(t)λ0k(t)e
βT0 Zlik(t), (4.1)
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where λ0k(t) is an unspecified baseline hazard function for disease k of subject i in stra-

tum l and β0 is p-dimensional fixed and unknown parameters. Model(4.1) can incorpo-

rate disease-type-specific effect model λlik{t∣Z
∗
lik(t)} = Ylik(t) λ0k(t)e

βTk Z
∗
lik(t) as a special

case. Specifically, we define βT0 = (βT1 , . . . , β
T
k , . . . , β

T
K) and Zlik(t)

T = (0Tli1, . . . ,0
T
li(k−1),

{Z∗
lik(t)}

T ,0Tli(k+1), . . . ,0
T
liK) where 0T is 1 × p zero vector. We have βT0 Zlik(t) = β

T
k Z

∗
lik(t).

Since obtaining Z for all the subjects in the cohort can be very expensive, a generalized

case-cohort design is often used where a subcohort and a sample of disease cases from each

stratum are selected to measure Z’s values. Let Vik denote the discrete random variable

for indicating stratum for subject i with disease k. The stratum variable is assumed to be

independent of Tlik given Zlik(t) [Kulich and Lin, 2004].

Under generalized case-cohort design with stratified sampling, subjects in the subcohort

are assumed to be selected by stratified random sampling. Specifically, we select a fixed

size ñl subjects from nl subjects in stratum l into the subcohort by using simple random

sampling without replacement. Let the total size of the subcohort be ñ = ∑
L
l=1 ñl and α̃l =

Pr(ξli = 1) = ñl/nl be the selection probability of subject i in stratum l into the subcohort,

where ξli = 1 denotes that subject i in stratum l is selected into the subcohort and ξli = 0

denotes otherwise. After sampling the subcohort, stratified random samples of cases outside

of the subcohort for each disease outcome are drawn. Specifically, for disease k in stratum

l, we select m̃lk cases outside of the subcohort using simple random sampling without

replacement. Let γ̃lk = Pr (ηlik = 1∣∆lik = 1, ξli = 0) = m̃lk/(nlk − ñlk) denote the selection

probability of subjects among non-subcohort members with disease k in stratum l, where

ηlik is the indicator for whether subject i with disease k in stratum l among non-subcohort

members is sampled, nlk and ñlk denote the number of subjects with disease k in the cohort

and in the subcohort in stratum l, respectively. For k ≠ k′ or l ≠ l′, (ηl1k, . . . , ηlnlk) is

independent of (ηl′1k′ , . . . , ηl′nlk′); however, (ηl1k, . . . , ηlnlk) are correlated because of the

sampling scheme.
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4.2.2 Estimation

The observable information for subject i is (Xlik,∆lik, Zlik(t), Vik,0 ≤ t ≤ Xlik) when

ξli = 1 or ηlik = 1 and (Xlik,∆lik, Vik) when ξli = 0 and ηlik = 0 (k = 1, . . . ,K). If we ignore

the covariate information available for the sampled subjects with other diseases outside of

the subcohort, the relative risk parameter β0 can be estimated by the weighted estimating

equation, ÛKC(β) = 0 [Kang and Cai, 2010] where

ÛKC(β) =
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
wlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
Ŝ

(1)
k (β, t)

Ŝ
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNlik(t), (4.2)

Ŝ
(d)
k (β, t) = n−1

∑
L
l=1∑

nl
i=1wlik(t)Ylik(t)Zlik(t)

⊗deβ
TZlik(t) for d = 0,1 and 2 and wlik(t) is

a time-varying weight function which has the follow form: wlik(t) = (1 − ∆lik)ξliα̂
−1
lk (t) +

∆likξli+∆lik(1−ξli)ηlikγ̂
−1
lk (t), where α̂lk(t) = ∑

nl
i=1(1−∆lik)ξliYlik(t)/{∑

nl
i=1(1−∆lik)Ylik(t)},

γ̂lk(t) = ∑
nl
i=1 ∆lik(1 − ξli)ηlikYlik(t)/{∑

nl
i=1 ∆lik(1 − ξli)Ylik(t)}. Note that we can set K = 1

in (4.2) if we are interested in only one disease. If γ̂lk(t) for all k is 1, then the generalized

stratified case-cohort design is reduced to the traditional stratified case-cohort design whose

the weight function ρlik(t) = (1 −∆lik)ξliα̂
−1
lk (t) +∆lik.

Note that Ŝ
(d)
k (β, t) only uses the covariate information collected for the subcohort and

the subset of subjects with disease k outside of the subcohort. In other words, covariate

information collected on the subset of subjects with other diseases outside the subcohort

is ignored when calculating Ŝ
(d)
k (β, t) in the estimating equation. To make use of available

information about other diseases, we propose the proposed weight with two types of diseases

(i.e. K = 2). The key idea in the proposed weight function with two types of diseases is

that the weight for one type of the disease uses the covariate information collected on

the selected subjects with the other type of the disease. Specifically, subcohort subjects

without any disease (i.e. ∏2
j=1(1 −∆lij)ξli = 1) are weighted by α̃lk(t)

−1, the inverse of the

estimated selection probabilities, while subjects with disease 1 or disease 2 in the subcohort

(i.e. {1 −∏2
j=1(1 − ∆lij)}ξli = 1) are weighted by 1. To use the information collected on

the sampled subjects with disease 2, the sampled non-subcohort subjects with disease 1

(i.e. ∆li1(1 − ξli)ηli1 = 1) can be decomposed into two groups: those with only disease
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1 (i.e. ∆li1(1 − ∆li2)(1 − ξli)ηli1 = 1) and those with both disease 1 and disease 2 (i.e.

∆li1∆li2(1−ξli)ηli1 = 1). The sampled subjects in the first group (i.e. ∆li1(1−∆li2)(1−ξli) =

1) are weighted by γ̃l1k(t)
−1, the inverse of their estimated sampling probabilities. Similarly,

the sampled non-subcohort subjects with disease 2 can also be decomposed into two groups:

those with only disease 2 (i.e. ∆li1(1−∆li2)(1−ξli)ηli2 = 1) and those with both disease (i.e.

∆li1∆li2(1 − ξli)ηli2 = 1). Those with only disease 2 are weighted by γ̃l2k(t)
−1, the inverse

of their estimated sampling probabilities. For those sampled non-subcohort subjects with

both diseases, they can be weighted by either γ̃−1
l3k(t) or γ̃−1

l4k(t), the inverse of the estimated

sampling probability based on disease 1 and disease 2, respectively. We take the average

of ∆li1∆li2(1 − ξli)ηli1γ̃
−1
l3k(t) and ∆li1∆li2(1 − ξli)ηli2γ̃

−1
l4k(t) as the weight for this group.

Therefore, the proposed weight with two types of diseases has the following form:

πlik(t) = Π2
j=1(1 −∆lij)ξliα̃

−1
lk (t) + {1 −Π2

j=1(1 −∆lij)} ξli

+ ∆li1(1 −∆li2)(1 − ξli)ηli1γ̃
−1
l1k(t) + (1 −∆li1)∆li2(1 − ξli)ηli2γ̃

−1
l2k(t)

+
1

2
∆li1∆li2(1 − ξli)ηli1γ̃

−1
l3k(t) +

1

2
∆li1∆li2(1 − ξli)ηli2γ̃

−1
l4k(t), (4.3)

where

α̃lk(t) =
∑
nl
i=1 Π2

j=1(1 −∆lij)ξliYlik(t)

∑
nl
i=1 Π2

j=1(1 −∆lij)Ylik(t)
, γ̃l1k(t) =

∑
nl
i=1 ∆li1(1 −∆li2)(1 − ξli)ηli1Ylik(t)

∑
nl
i=1 ∆li1(1 −∆li2)(1 − ξli)Ylik(t)

γ̃l2k(t) =
∑
nl
i=1(1 −∆li1)∆li2(1 − ξli)ηli2Ylik(t)

∑
nl
i=1(1 −∆li1)∆li2(1 − ξli)Ylik(t)

, γ̃l3k(t) =
∑
nl
i=1 ∆li1∆li2(1 − ξli)ηli1Ylik(t)

∑
nl
i=1 ∆li1∆li2(1 − ξli)Ylik(t)

γ̃l4k(t) =
∑
nl
i=1 ∆li1∆li2(1 − ξli)ηli2Ylik(t)

∑
nl
i=1 ∆li1∆li2(1 − ξli)Ylik(t)

.

Note that if all cases outside the subcohort are selected, the weight functions in (4.28)

reduce to φlik(t) =∏
K
j=1(1 −∆lij)ξliα̃

−1
lk (t) + {1 −∏Kj=1(1 −∆lij)}.

Using the proposed weight functions in (4.28), we propose the following weighted esti-

mating functions for the estimation of the regression coefficient:

ŨG(β) =
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
S̃

(1)
k (β, t)

S̃
(0)
k (β, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNlik(t), (4.4)
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where S̃
(d)
k (β, t) = n−1

∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)Zlik(t)

⊗deβ
TZlik(t) for d = 0,1 and 2. The

solution to ŨG(β) = 0 is defined to be the estimator β̃G for the regression parameter β0.

A Breslow-Aalen type estimator of the baseline hazard cumulative hazard function is

Λ̃0k(β̃
G, t) which is given by

Λ̃0k(β, t) = ∫
t

0

∑
L
l=1∑

nl
i=1 πlik(u)dNlik(u)

nS̃
(0)
k (β,u)

.

4.3 Asymptotic properties

In this section, we summarize the asymptotic properties for the proposed methods. We

will show the asymptotic properties of the proposed estimator only for two types of diseases.

The other situations can be proved similarly. We make the following assumptions:

(a) {Tli,Cli, Zli}, i = 1, . . . , n and l = 1, . . . , L are independent and identically distributed

where Tli = (Tli1, . . . , TliK)T , Cli = (Cli1, . . . ,CliK)T , and Zli = (Zli1, . . . , ZliK)T ;

(b) P{Ylik(t) = 1} > 0 for t ∈ [0, τ] , i = 1, . . . , n, l = 1, . . . , L and k = 1,2;

(c) ∣Zlik(0)∣ + ∫
τ

0 ∣dZlik(t)∣ < Dz < ∞, i = 1, . . . , n, l = 1, . . . , L and k = 1,2 almost surely

and Dz is a constant;

(d) (Asymptotic stability) For d = 0,1,2, there exists a neighborhood B of β0 such that

s
(d)
k (β, t) are continuous functions and supt∈[0,τ],β∈B ∥S

(d)
k (β, t)−s

(d)
k (β, t)∥

p
Ð→ 0 where

S
(d)
k (β, t) = n−1

∑
L
l=1∑

nl
i=1 Ylik(t)Zlik(t)

⊗deβ
TZlik(t);

(e) The matrix Ak(β0) = ∫
τ

0 vk(β0, t)s
(0)
k (β0, t)λ0k(t)dt is positive definite for k = 1,2

where vk(β, t) = s
(2)
k (β, t)/s

(0)
k (β, t) − ek(β, t)

⊗2 and ek(β, t) = s
(1)
k (β, t)/s

(0)
k (β, t);

(f) (Asymptotic regularity) For all β ∈ B, t ∈ [0, τ], and k = 1,2, S
(1)
k (β, t) = ∂

∂βS
(0)
k (β, t),

and S
(2)
k (β, t) = ∂2

∂β∂β′
S

(0)
k (β, t), where S

(d)
k (β, t), d = 0,1,2 are continuous functions

of β ∈ B uniformly in t ∈ [0, τ] and are bounded on B × [0, τ], s
(0)
k is bounded away

from zero on B × [0, τ];

(g) (Finite interval) For all k = 1,2, ∫
τ

0 λ0k(t)dt <∞;
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To show the desired asymptotic properties for generalized case-cohort samples, the following

conditions are also needed:

(h) For all l = 1, . . . , L, limnl→∞ α̃l = αl, where α̃l = ñl/nl and α is a positive constant.

(i) limnl→∞ γ̃l1 = limnl→∞ γ̃l3 = γl1, limnl→∞ γ̃l2 = limnl→∞ γ̃l4 = γl2 where γ̃l1 = Pr[ηli1 =

1∣∆li1(1−∆li2) = 1, ξli = 0] = m̃l,10/(nl,10− ñl,10), m̃l,10 denotes the number of sampled

non-subcohort subjects in the lth stratum with only disease 1, but not disease 2 (i.e.

∆li1(1−∆li2) = 1), nl,10 and ñl,10 denote the number of subjects with only diseases 1,

but not disease 2 (i.e. ∆li1(1−∆li2) = 1) in the cohort and the subcohort in lth stratum,

respectively, γ̃l2 = Pr[ηli2 = 1∣(1 − ∆li1)∆li2 = 1, ξli = 0] = m̃l,01/(nl,01 − ñl,01), m̃l,01

denotes the number of sampled non-subcohort subjects in the lth stratum with only

disease 2, but not disease 1 (i.e. (1−∆li1)∆li2 = 1), nl,01 and ñl,01 denote the number

of subjects with only diseases 2, but not disease 1 (i.e. (1−∆li1)∆li2 = 1) in the cohort

and the subcohort in lth stratum, respectively, γ̃l3 = Pr[ηli1 = 1∣∆li1∆li2 = 1, ξli = 0] =

m̃l,111/(nl,11 − ñl,11), m̃l,111 denotes the number of non-subcohort subjects with both

disease 1 and disease 2 who are sampled with respect to disease 1 in the lth stratum,

nl,11 and ñl,11 denote the number of subjects with both diseases 1 and disease 2 in

the cohort and the subcohort in lth stratum, respectively, γ̃l4 = Pr[ηli2 = 1∣∆li1∆li2 =

1, ξli = 0] = m̃l,112/(nl,11 − ñl,11), m̃l,112 denotes the number of non-subcohort subjects

with both disease 1 and disease 2 who are sampled with respect to disease 2 in the

lth stratum, and γlk is a positive constant on (0,1] for all k = 1,2 and l = 1, . . . , L.

(j) limn→∞ nl/n=ql, where ql is a positive constant on (0,1) for all l = 1, . . . , L.

We summarize the asymptotic properties of β̃G in the following theorem.

Theorem 3. Under the regularity conditions (a)-(j), β̃G converges in probability to β0 and

n1/2(β̃G−β0) is asymptotically normally distributed with mean zero and with the covariance

matrix
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A(β0)
−1ΣG(β0)A(β0)

−1, where

A(β) =
2

∑
k=1

Ak(β), ΣG(β) =
L

∑
l=1

ql[VI,l(β) +
1 − αl
αl

VII,l(β) + (1 − αl)
2

∑
k=1

VIII,lk(β)],

VI,l(β) = El[
2

∑
k=1

Ql1k(β)]
⊗2,

VII,l(β)

= Varl[
2

∏
j=1

(1 −∆l1j)
2

∑
k=1
∫

τ

0
[Rl1k(β, t) −

Yl1k(t)El(∏
2
j=1(1 −∆l1j)Rl1k(β, t))

El(∏
2
j=1(1 −∆l1j)Yl1k(t))

]dΛ0k(t)],

VIII,lk(β)

= Pr(Θl10)
1 − γl1
γl1

Varl(Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl10, ξl1 = 0}

El{Yl1k(t)∣Θl10}
∣Θl10, ξl1 = 0)

+ Pr(Θl01)
1 − γl2
γl2

Varl(Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl01, ξl1 = 0}

El{Yl1k(t)∣Θl01}
∣Θl01, ξl1 = 0)

+
1

4
Pr(Θl11)

1 − γl1
γl1

Varl(Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl11, ξl1 = 0}

El{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0)

+
1

4
Pr(Θl11)

1 − γl2
γl2

Varl(Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl11, ξl1 = 0}

El{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0),

Qlik(β) = ∫
τ

0
{Zlik − ek(β, t)}dMlik(t),Θljk = {(∆l11 = j and ∆l12 = k)},

Rlik(β, t) = Ylik(t)[Zlik(t) − ek(β, t)]e
βTZlik(t).

Note that ΣG(β) consists of three parts. The first part VI,l(β) is a contribution to

the variance from the full cohort, the second part VII,l(β) and the last part VIII,lk(β) are

due to sampling the subcohort from the full cohort and due to sampling a portion of cases

in non-subcohort. For cohort studies, the second and last part vanish and their variance

is only first part VI,l(β). If traditional stratified case-cohort studies are conducted, then

the last part goes to zero and so the first and second parts are remained. For unstratified

generalized case-cohort studies (i.e. L = 1 and ql = 1), variance consists of VI,1(β), VII,1(β),

and VIII,1k(β).

We summarize the asymptotic property of the proposed baseline cumulative hazard

estimator Λ̃0k(β̃
G, t).

Theorem 4. Under the regularity conditions (a)-(j), Λ̃0k(β̃
G, t) is a consistent estimator of

Λ0k(t) in t ∈ [0, τ] and P (t) = [P1(t), P2(t)]
T = [n1/2(Λ̃01(β̃

G, t)−Λ01(t)), n
1/2(Λ̃02(β̃

G, t)−

Λ02(t))]
T converges weakly to the Gaussian process P(t) = {P1(t),P2(t)}

T in D[0, τ]K
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with mean zero and the following covariance function Pjk(t, s) between Pj(t) and Pk(s) for

j ≠ k.

Pjk(t, s)(β0) =
L

∑
l=1

ql[El{vl1j(β0, t)vl1k(β0, s)}

+
1 − αl
αl

El{ζl1j(β0, t)ζl1k(β0, s)} +El{ϕl1j(β0, t)ϕl1k(β0, s)}],

where

vlik(β, t) = lk(β, t)
TA(β)−1

2

∑
m=1

Qlim(β, t) + ∫
t

0

1

s
(0)
k (β,u)

dMlik(u),

ζlik(β, t) = lk(β, t)
TA(β)−1

2

∑
m=1
∫

τ

0
Ωlim(β,u)dΛ0m(u)

+
2

∏
j=1

(1 −∆lij)∫

t

0
Ylik(u){e

βTZlik(u) −
El(∏

K
j=1(1 −∆l1j)e

βTZl1k(u)Yl1k(u))

El(∏
K
j=1(1 −∆l1j)Yl1k(u))

}
dΛ0k(u)

s
(0)
k (β,u)

,

ϕlik(β, t) = lk(β, t)
TA(β)−1

2

∑
m=1

(1 − ξli)[∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)B
(1)
lim(β, t∣Θl10)

+(1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)B
(1)
lim(β, t∣Θl01) +

1

2
∆li1∆li2{(

ηli1
γ̃l1

− 1)B
(1)
lim(β, t∣Θl11)

+(
ηli2
γ̃l2

− 1)B
(1)
lim(β, t∣Θl11)}] + (1 − ξli)[∆li1(1 −∆li2)(

ηli1
γ̃l1

− 1)B
(2)
lik (β, t∣Θl10)

+(1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)B
(2)
lik (β, t∣Θl01) +

1

2
∆li1∆li2{(

ηli1
γ̃l1

− 1)B
(2)
lik (β, t∣Θl11)

+(
ηli2
γ̃l2

− 1)B
(2)
lik (β, t∣Θl11)}],

B
(1)
lik (β, t∣Θljm) = ∫

t

0

1

s
(0)
k (β,u)

[dMlik(u) − Ylik(u)
E{dMl1k(u)∣Θljm, ξli = 0}

E{Yl1k(u)∣Θljm}
],

B
(2)
lik (β, t∣Θljm) = Qlik(β) − ∫

t

0
Ylik(u)

E{dQl1k(β,u)∣Θljm, ξli = 0}

E{Yl1k(β,u)∣Θljm}
,

lk(β, t)
T
= −∫

t

0
ek(β,u)dΛ0k(u),Θljk = {∆li1 = j and ∆li2 = k}.

The proofs for Theorem 3 and 4 are provided in Appendix.

We summarize the asymptotic efficiency for unstratified case-cohort studies (i.e. L =

1) with two types of diseases (i.e. K = 2). Note that the covariance matrix for β̃G,
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A(β0)
−1ΣG(β0)A(β0)

−1 involves the first derivative of the weighted estimating functions

A(β0) and the asymptotic variance of the weighted estimating functions, ΣG(β0).

Theorem 5. Under the condition E[w2
111 − π

2
11]E[w2

112 − π
2
11] > (ρE[w111w112 − π

2
11])

2, the

asymptotic variance for our proposed method A(β0)
−1ΣG(β0)A(β0)

−1 is smaller than that

for Kang and Cai [2010]’s method, where

E1[w
2
111 − π

2
11] = (1 − α1)p2 [

1 + α1

α1
(1 − p1) +

3p1

4
{

1

γ11
+

1

γ12
} −

1

γ12
] ,

E1[w
2
112 − π

2
11] = (1 − α1)p1 [

1 + α1

α1
(1 − p2) +

3p2

4
{

1

γ11
+

1

γ12
} −

1

γ11
] ,

E1[w111w112 − π
2
11] = (1 − α1) [p1{1 −

1

γ11
} + p2{1 −

1

γ12
} + p1p2{

3

4
(

1

γ11
+

1

γ12
) − 1}] ,

ρ = Corr(Q111(β),Q112(β)), α1 = pr(ξ11 = 1), p1 = pr(∆111 = 1), p2 = pr(∆112 = 1),

γ11 = pr(η111 = 1∣∆111(1 − ξ11) = 1), γ12 = pr(η112 = 1∣∆112(1 − ξ11) = 1).

Specifically, smaller α1 induces larger (1+α1)/α1, which dominates other contributions

in E[w2
111−π

2
11]E[w2

112−π
2
11]. The quantity (ρE[w111w112−π

2
11])

2 depends on the selection

probability of a subset of cases γ11 and γ12 for fixed the disease rates p1 and p2. This indi-

cates that in situations where the subcohort size is smaller and the selected case proportion

is higher, the proposed method produce more efficient estimates over that of Kang & Cai’s

method.

If we consider the simple situation such as p1 = p2 = p, γ11 = γ12 = γ, and ρ = 1, specific

conditions to lead larger power are 0 < p < 2
3 , 1

2 −
3
4p < γ < 1 − 3

2p, 0 < α1 < γ(1 −
3
2p − γ)

−1.

4.3.1 Proofs of Theorems

Under the assumptions in Section 4.3, we will outline the proofs for the main theorems.

Before we prove theorems, we consider the asymptotic properties of time-varying sam-

pling probability estimator α̃lk(t) = ∑
nl
i=1 ξli[∏

2
j=1(1−∆lij)]Ylik(t)/∑

nl
i=1[∏

2
j=1(1−∆lij)]Ylik(t).

For each k, by the Taylor expansion series of α̃−1
lk (t) around α̃l,

α̃−1
lk (t) − α̃−1

l = −
1

α∗l (t)
2
{α̃lk(t) − α̃l}, (4.5)
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where α∗l (t) is on the line segment between α̃lk(t) and α̃l.

We can express α̃lk(t) − α̃l = ∑
nl
i=1 α̃l{

ξli
α̃l
− 1}

{∏
2
j=1(1−∆lij)}Ylik(t)

∑
nl
i=1(∏

2
j=1(1−∆lij))Ylik(t)

, and thus (4.5) can

be written as

n
1/2
l (α̃−1

lk (t) − α̃−1
l )

=
α̃l

α∗(t)2
⋅

nl

∑
nl
i=1∏

2
j=1(1 −∆lij)Ylik(t)

n
−1/2
l {

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)Ylik(t)}

By Glivenko-Cantelli lemma, n−1
l ∑

nl
i=1[∏

2
j=1(1 − ∆lij)]Ylik(t) converges in probability

uniformly to El[(∏
2
j=1(1−∆l1j))Yl1k(t)], where El[(∏

2
j=1(1−∆l1j))Yl1k(t)] is bounded away

from zero by condition (b). In view of lemma 2, n−1
l {∑

nl
i=1(

ξli
α̃l
− 1)∏2

j=1(1 − ∆lij)Ylik(t)}

converges to zero in probability uniformly in t since ∏2
j=1(1 − ∆lij)Ylik(t) is bounded and

monotone in t. Therefore, α̃lk(t) − α̃l =
∑
nl
i=1 α̃l{

ξli
α̃l
−1}{∏2

j=1(1−∆lij)}Ylik(t)

∑
nl
i=1(∏

2
j=1(1−∆lij))Ylik(t)

converges to zero in

probability uniformly in t. Thus, α̃lk(t) and α̃l converge to the same limit in probability

uniformly in t, which ensures α∗l (t) also converges to the same limit as α̃l. By Slutsky’s

theorem and above results, we get

n
1/2
l [α̃−1

lk (t) − α̃−1
l ] =

1

α̃lEl[∏
2
j=1(1 −∆l1j)Yl1k(t)]

n
−1/2
l

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)Ylik(t)

⎫⎪⎪
⎬
⎪⎪⎭

+
⎡
⎢
⎢
⎢
⎣

α̃l

α∗l (t)
2
⋅

nl

∑
nl
i=1∏

2
j=1(1 −∆lij)Ylik(t)

−
1

α̃lEl[∏
2
j=1(1 −∆l1j)Yl1j(t)]

⎤
⎥
⎥
⎥
⎦

× n
−1/2
l

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)Ylik(t)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

α̃lEl[∏
2
j=1(1 −∆l1j)Yl1k(t)]

n
−1/2
l

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)Ylik(t)

⎫⎪⎪
⎬
⎪⎪⎭

+ op(1) (4.6)

Due to the sampling of cases, we consider the asymptotic properties for time-varying sam-

pling probability estimators γ̃l1k(t), γ̃l2k(t), γ̃l3k(t), and γ̃l4k(t) in (4.3). For each k, by

Taylor expansion of γ̃l1k(t) around γ̃l1, it can be written as

γ̃−1
l1k(t) − γ̃

−1
l1 = −

1

γ∗l1(t)
2
(γ̃l1k(t) − γ̃l1), (4.7)
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where γ∗l1(t) is on the line segment between γ̃l1k(t) and γ̃l1. By similar arguments for α̃l,

(4.7) can be written as

n
1/2
l (γ̃−1

l1k(t) − γ̃
−1
l1 )

=
γ̃l1

γ∗l1k(t)
2

nl

∑
nl
i=1 ∆li1(1 −∆li2)(1 − ξli)Ylik(t)

n
−1/2
l

nl

∑
i=1

(1 −
ηli1
γ̃l1

)∆li1(1 −∆li2)(1 − ξli)Ylik(t).

By Glivenko-Cantelli lemma, n−1
l ∑

nl
i=1 ∆li1(1−∆li2)(1−ξli)Ylik(t) converges to (1−αl)El[∆l11

(1−∆l12)Yl1k(t)] which is bounded away from 0 based on condition (b). In view of lemma

2, n−1
l ∑

nl
i=1(1 −

ηli1
γ̃l1k

)∆li1(1 − ∆li2)(1 − ξli)Ylik(t) converges to 0 in probability uniformly

in t since ∆li1(1 − ∆li2)(1 − ξli)Ylik(t) is bounded and monotone function in t. Thus,

γ̃l1k(t) − γ̃l1 =
∑
nl
i=1 γ̃l1(

ηli1
γ̃l1

−1)∆l11(1−∆l12)Yl1k(t)

∑
nl
i=1 ∆l11(1−∆l12)Yl1k(t)

converges to zero in probability uniformly in

t. Hence, γ̃l1k(t) and γ̃l1 converge to same limit uniformly in t. This means that γ∗l1k(t)

also converges to same limit uniformly as γ̃l1. Combining above the results, it follows from

Slutsky’s theorem that

n
1/2
l (γ̃−1

l1k(t) − γ̃
−1
l1 )

=
1

γ̃l1(1 − αl)El[∆l11(1 −∆l12)Yl1k(t)]
n
−1/2
l {

nl

∑
i=1

(1 −
ηli1
γ̃l1k

)∆li1(1 −∆li2)(1 − ξli)Ylik(t)}

+ [
γ̃l1

γ̃2
l1k(t)

nl

∑
nl
i=1 ∆li1(1 −∆li2)(1 − ξli)Ylik(t)

−
1

γ̃l1(1 − αl)El[∆l11(1 −∆l12)Yl1k(t)]
]

×n
−1/2
l {

nl

∑
i=1

(1 −
ηli1
γ̃l1

)∆li1(1 −∆li2)(1 − ξli)Ylik(t)}

=
1

γ̃l1(1 − αl)El[∆l11(1 −∆l12)Yl1k(t)]

×n
−1/2
l {

nl

∑
i=1

(1 −
ηli1
γ̃l1

)∆li1(1 −∆li2)(1 − ξli)Ylik(t)} + op(1). (4.8)

Similarly, we can show that

n
1/2
l (γ̃−1

l2k(t) − γ̃
−1
l2 ) =

1

γ̃l2(1 − αl)El[(1 −∆l11)∆l12Yl1k(t)]

× n
−1/2
l {

nl

∑
i=1

(1 −
ηli2
γ̃l2

)(1 −∆li1)∆li2(1 − ξli)Ylik(t)} + op(1), (4.9)
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n
1/2
l (γ̃−1

l3k(t) − γ̃
−1
l3 ) =

1

γ̃l3(1 − αl)El[∆l11∆l12Yl1k(t)]

× n
−1/2
l {

nl

∑
i=1

(1 −
ηli1
γ̃l3

)∆li1∆li2(1 − ξli)Ylik(t)} + op(1), (4.10)

n
1/2
l (γ̃−1

l4k(t) − γ̃
−1
l4 ) =

1

γ̃l4(1 − αl)El[∆l11∆l12Yl1k(t)]

× n
−1/2
l {

nl

∑
i=1

(1 −
ηli2
γ̃l4

)∆1i∆li2(1 − ξli)Ylik(t)} + op(1). (4.11)

The above properties will be used in the proofs. The following is the proof of theorem 3.

Proof of Theorem 3

We first show the consistency of β̃G. Denote ŨGn = n−1ŨG. By Taylor expansion series,

β̃G can be written as

β̃G = β0 + [−
∂ŨGn (β0)

∂β0
]

−1

ŨGn (β0) + op(1) (4.12)

Based on the extension of Fourtz [1977], if (I), (II), (III),and (IV) conditions are satisfied

(I)
∂ŨGn (β)
∂βT

exists and is continuous in an open neighborhood B of β0

(II)
∂ŨGn (β)
∂βT

is negative definite with probability going to one as n →∞

(III) -
∂ŨGn (β)
∂βT

converges to A(β0) in probability uniformly for β in an open neighborhood

about β0

(IV) ŨGn (β) converges to 0 in probability

then, we can show that β̃G converges to β0 in probability. Note that

∂ŨGn (β)

∂βT
= −

1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)Ṽk(β, t)dNlik(t) where

Ṽk(β, t) =
S̃

(2)
k (β, t)S̃

(0)
k (β, t) − S̃

(1)
k (β, t)⊗2

S̃
(0)
k (β, t)2

. (4.13)

By continuity of each component in (4.13) and condition (f), (I) is satisfied.

In order to show that conditions (II),(III) are satisfied, we will show ∥ (−
∂ŨGn (β)
∂βT

) −

A(β) ∥ converges to zero in probability uniformly in β ∈ B as n → ∞, where A(β) =
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∑
2
k=1 ∫

τ
0 vk(β, t)s

(0)
k (β, t), λ0k(t)dt.

By Andersen and Gill [1982], it can be written as

∥ (−
∂ŨGn (β)

∂βT
) −A(β) ∥

= ∥
2

∑
k=1
∫

τ

0
Ṽk(β, t)

1

n
d
L

∑
l=1

nl

∑
i=1

πlik(t)Nlik(t) −
2

∑
k=1
∫

τ

0
vk(β0, t)s

(0)
k (β0, t)λ0k(t)dt ∥

≤ ∥
2

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t)}

1

n
d
L

∑
l=1

nl

∑
i=1

Nlik(t) ∥

+ ∥
2

∑
k=1
∫

τ

0
{Ṽk(β, t) − vk(β, t)}

1

n
d
L

∑
l=1

nl

∑
i=1

{πlik(t) − 1}Nlik(t) ∥

+ ∥
2

∑
k=1
∫

τ

0
vk(β, t)

1

n
d
L

∑
l=1

nl

∑
i=1

Mlik(t) ∥

+ ∥
2

∑
k=1
∫

τ

0
vk(β, t)

1

n
d
L

∑
l=1

nl

∑
i=1

{πlik(t) − 1}Mlik(t) ∥

+ ∥
2

∑
k=1
∫

τ

0
vk(β, t){S

(0)
k (β, t) − s

(0)
k (β, t)}λ0k(t)dt ∥ (4.14)

We can show that each term in (4.14) converges to zero uniformly in β ∈ B. To show that

the first term in (4.14) converges to zero in probability, we need to show that

sup
t∈[0,τ]β∈B

∥ Ṽk(β, t) − vk(β, t) ∥
p
Ð→ 0 as n→∞ for k = 1,2

which suffices to show that

sup
t∈[0,τ]β∈B

∥ S̃
(d)
k (β, t) − S

(d)
k (β, t) ∥→ 0 as n

p
Ð→∞ for k = 1,2 and d = 0,1,2

It can be written as

S̃
(d)
k (β, t) − S

(d)
k (β, t)

=
1

n

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Yik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(α̃−1
lk (t) − α̃−1

l )ξli
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)
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+
1

n

L

∑
l=1

nl

∑
i=1

(
ηi1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(γ̃−1
l1k(t) − γ̃

−1
l1 )ηli1∆li1(1 −∆li2)(1 − ξli)Zlik(t)

⊗deβ
TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l2

− 1) (1 −∆li1)∆li2(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(γ̃−1
l2k(t) − γ̃

−1
l2 )ηli2(1 −∆li1)∆li2(1 − ξli)Zlik(t)

⊗deβ
TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

1

2
(
ηli1
γ̃l3

− 1)∆li1∆li2(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

1

2
(γ̃−1
l3k(t) − γ̃

−1
l3 )ηli1∆li1∆li2(1 − ξli)Zlik(t)

⊗deβ
TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

1

2
(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

1

2
(γ̃−1
l4k(t) − γ̃

−1
l4 )ηli2∆li1∆li2(1 − ξli)Zlik(t)

⊗deβ
TZlik(t)Ylik(t) (4.15)

By using the result of (4.6), the first and the second terms in (4.15) can be written as

1

n

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Yik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(α̃−1
lk (t) − α̃−1

l )ξli
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

=
1

n

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Yik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(
1

α̃lEl[∏
2
j=1(1 −∆l1j)Yl1k(t)]

n−1
l

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
m=1

(1 −
ξlm
α̃l

)
2

∏
j=1

(1 −∆lmj)Ylmk(t)

⎫⎪⎪
⎬
⎪⎪⎭

× ξli
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Ylik(t) + op(1)

=
1

n

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)
Ylik(t)

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

× {n−1
l

nl

∑
m=1

ξlm
α̃l

2

∏
j=1

(1 −∆lmj)Ylmk(t)Zlmk(t)
⊗deβ

TZlmk(t)} + op(1).

By lemma 2, n−1
l ∑

nl
m=1

ξlm
α̃l
∏

2
j=1(1 −∆lmj)Ylmk(t)Zlmk(t)

⊗deβ
TZlmk(t) converges to
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El[∏
2
j=1(1 − ∆l1j)Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)] in probability uniformly in t. Thus, the first

and second terms are asymptotically equivalent to

1

n

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[∏

2
j=1(1 −∆l1j)Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

].

Similarly, the third and forth terms can be written as

1

n

L

∑
l=1

nl

∑
i=1

(
ηi1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

1

γ̃l1(1 − αl)El[∆l11(1 −∆l12)Yl1k(t)]

× n−1
l {

nl

∑
m=1

(1 −
ηlm1

γ̃l1
)∆lm1(1 −∆lm2)(1 − ξlm)Ylmk(t)}

× ηli1∆li1(1 −∆li2)(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t) + op(1)

=
1

n

L

∑
l=1

nl

∑
i=1

(
ηi1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Zlik(t)
⊗deβ

TZlik(t)Ylik(t)

+
1

n

L

∑
l=1

nl

∑
i=1

(1 −
ηli1
γ̃l1

)(1 − ξli)∆li1(1 −∆li2)
Ylik(t)

El[∆l11(1 −∆l12)Yl1k(t)]

× {n−1
l

nl

∑
m=1

∆lm1(1 −∆lm2)
(1 − ξlm)

(1 − αl)

ηlm1

γ̃l1
Ylmk(t)Zlmk(t)

⊗deβ
TZlmk(t)} + op(1)

It follows from lemma 2, n−1
l ∑

nl
m=1 ∆lm1(1 − ∆lm2)

(1−ξlm)

(1−αl)
ηlm1

γ̃l1
Ylmk(t)Zlmk(t)

⊗deβ
TZlmk(t)

converges to El[Yl1k(t)Zl1k(t)
⊗deβ

TZl1k(t)∣Θl10, ξ1l = 0] in probability uniformly in t. Thus,

the third and fourth terms can be written as

1

n

L

∑
l=1

nl

∑
i=1

(
ηi1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl10, ξ1l = 0]

El[Yl1k(t)∣Θl10]
] + op(1).

By using similar arguments, the fifth to the last terms can be written as

1

n

L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l2

− 1) (1 −∆li1)∆li2(1 − ξli)Ylik(t)
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× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl01, ξ1l = 0]

El[Yl1k(t)∣Θl01]
]

+
1

2n

L

∑
l=1

nl

∑
i=1

((
ηli1
γ̃l3

− 1) + (
ηli2
γ̃l4

− 1))∆li1∆li2(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl11, ξ1l = 0]

El[Yl1k(t)∣Θl11]
] + op(1).

Combining all the results, we have

n1/2
{S̃

(d)
k (β, t) − S

(d)
k (β, t)}

= n−1/2
L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[∏

2
j=1(1 −∆l1j)Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(
ηi1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl10, ξ1l = 0]

El[Yl1k(t)∣Θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l2

− 1) (1 −∆li1)∆li2(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl01, ξ1l = 0]

El[Yl1k(t)∣Θl01]
]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

(
ηli1
γ̃l3

− 1)∆li1∆li2(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl11, ξ1l = 0]

El[Yl1k(t)∣Θl11]
]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli)Ylik(t)

× [Zlik(t)
⊗deβ

TZlik(t) −
El[Yl1k(t)Zl1k(t)

⊗deβ
TZl1k(t)∣Θl11, ξ1l = 0]

El[Yl1k(t)∣Θl11]
] + op(1)

By lemma 2 and condition (h) and (i), for d = 0,1, and 2, n1/2{S̃
(d)
k (β, t) − S

(d)
k (β, t)}

converges weakly to zero-mean Gaussian process. Hence, S̃
(d)
k (β, t)−S

(d)
k (β, t) converges to

zero in probability uniformly in t based on the condition (d) and then it can be shown that

sup
t∈[0,τ]β∈B

∥ S̃
(d)
k (β, t) − s

(d)
k (β, t) ∥→ 0 as n→∞ for k = 1,2 and d = 0,1,2 (4.16)
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Combining all the results, Ṽk(β, t) converges to vk(β, t) in probability uniformly in t and β

since s
(0)
k (β, t) is bounded way from zero by condition (f).

By Lenglart inequality(Andersen and Gill [1982], p1115), there exists n0 such that for

n ≥ n0 for any δ, η > 0,

P [n−1N̄k(τ) > η] ≤
δ

η
+ P [∫

τ

0
S

(0)
k (β0; t)λ0k(t)dt > δ],

where N̄k(t) = ∑
L
l=1∑

nl
i=1Nlik(t).

Based on condition (d), P [∫
τ

0 S
(0)
k (β0; t)λ0k(t)dt > δ] converges to zero as n → ∞ for

δ > ∫
τ

0 s
(0)
k (β0; t)λ0k(t)dt and then limη↑∞ limn→∞ P [n−1N̄k(τ) > η] = 0. Therefore, the first

term in (4.14) converges to zero in probability, uniformly in β ∈ B as n→∞. It follows from

lemma 2 that the second and fourth terms in (4.14) can be shown to converge to zero in

probability uniformly in t.

The third term in (4.14), ∫
τ

0 vk(β, t)
1
nd∑

L
l=1∑

nl
i=1Mlik(t) is a local square integrable

martingale. By the Lenglart inequality(Andersen and Gill [1982], p1115), it can be shown

that for all δ, η > 0,

P [∥
1

n
∫

τ

0
{vk(β, t)}jj′M̄k(t)∥ > η] ≤

δ

η2
+ P [

1

n
∫

τ

0
{vk(β, t)}

2
jj′S

(0)
k (β; t)λ0k(t)dt > δ] ,

where M̄k(t) = ∑
L
l=1∑

nl
i=1Mlik(t) and subscript jj′ indicates (jj′) element of matrix vk(β, t).

Due to boundedness conditions (d),(f),and (g), the second term on right side of the above

inequality converges to zero in probability, uniformly in β ∈ B for any δ as n→∞. Then it

follows that one on the left side of inequality converges to zero in probability, uniformly in

β ∈ B as n→∞. Hence, the third term in (4.14) converges to zero in probability, uniformly

in β ∈ B as n→∞.

Due to the boundedness of supt,β {vk(β, t)}, Λ0k(t) for k = 1,2 based on conditions

(d),(e), and (g) and uniform convergence of S̃
(0)
k to s

(0)
k , the last term in (4.14) converges

to zero in probability uniformly β ∈ B as n → ∞. All five terms in (4.14) converge to zero
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in probability uniformly. Thus, by condition (e), we have

−
∂ŨGn (β)

∂βT
p
Ð→ A(β) as n→∞ uniformly in β ∈ B

and, consequently, (II) and (III) are satisfied.

If we show that n−1/2ŨGn (β) is asymptotically normally distributed, it can be shown

that ŨGn (β) converges to zero in probability. Then, (IV) also will be satisfied. Therefore,

we can show that β̃G converges to β0 in probability and is a consistent estimator of β0 by

satisfying (I),(II),(III), and (IV)( Fourtz [1977] theorem 2). We will show the asymptotic

properties of n−1/2ŨGn (β0). We can decompose n−1/2ŨG(β0) into two parts such that

n−1/2ŨG(β0) = n
−1/2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zik(u) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dNlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zik(u) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(u) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

Ylik(t)e
βT0 Zlik(t)dΛ0k(t) (4.17)

The second term in (4.17) vanishes to zero since it follows from condition (g) that

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

Ylik(t)e
βT0 Zlik(t)dΛ0k(t)

= n−1/2
L

∑
l=1

2

∑
k=1
∫

τ

0
{

nl

∑
i=1

πlik(t)Zlik(u)Ylik(t)e
βT0 Zlik(t)

−

nl

∑
i=1

πlik(t)
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

Ylik(t)e
βT0 Zlik(t)}dΛ0k(t)

= n−1/2
L

∑
l=1

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

S̃
(1)
k (β0, t) −

S̃
(1)
k (β0, t)

S̃
(0)
k (β0, t)

S̃(0)
(β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(t).

Then, it can be written as

n−1/2ŨG(β0) = n
−1/2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)
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= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

+
s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(πlik(t) − 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(πlik(t) − 1)

⎧⎪⎪
⎨
⎪⎪⎩

s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t) (4.18)

By Spiekerman and Lin [1998], it can be shown that the first part in (4.18) was asymp-

totically equivalent to n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1Qlik(β0).

Next we will show that the second and last terms in (4.18) converge to zero in probability,

uniformly in t. First, the second term in (4.18) can be written as

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

{n−1/2d
L

∑
l=1

nl

∑
i=1

Mlik(t)}

Note that Ml1k(t), . . . ,Mlnk(t) is identically and independently distributed zero-mean ran-

dom variables and n−1/2
∑
L
l=1∑

nl
i=1Mlik(t) is a sum of i.i.d. zero-mean random variables for

fixed t. Mlik(t) is of bounded variation since M2
lik(0) < ∞ and M2

lik(τ) < ∞ are satisfied

based on conditions (c) and (g). From the example of 2.11.16 of van der Vaart and Wellner

[1996](p215), n−1/2
∑
L
l=1∑

nl
i=1Mlik(t) converges weakly to a zero-mean Gaussian process, say

PMk(t).

To establish the existence of stochastic processes with continuous sample paths, we will

use Kolmogorov-Centsov theorem. If conditions of Kolmogorov-Centsov theorem E{PMk(t)−

PMk(s)}
4 ≤D∗

z ∣t−s∣
2 and E{PMk(t)−PMk(s)}

2 ≤ D̃z ∣t−s∣ for all t ≥ s are satisfied, then we

can show that PMk(t) has continuous sample paths. Since EPMk(t)
2 = E[n−1

∑
nl
i=1Mlik(t)

2]

= EMlik(t)
2 = E[∫

t
0 Yik(u)e

βT0 Zlik(u)λ0k(u)du], E{PMk(t) −PMk(s)}
2 = EPMk(t)

2 -

2EPMk(t)PMk(s) + EPMk(s)
2 =EPMk(t)

2 - EPMk(s)
2 = E[∫

t
s Yik(u)e

βT0 Zlik(u)λ0k(u)du] ≤

eDzE[∫
t
s λ0k(u)du] = D̃z(Λ0k(t) −Λ0k(s)) based on condition (c). There exists constant C
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such that Λ0k(t) − Λ0k(s) ≤ C(t − s) for t ≥ s since Λ0k(.) is differentiable and λ0k(.) is

bounded in [0, τ]. Thus E{PMk(t) −PMk(s)}
2 ≤ D̃cz(t − s). For fixed t, PMk(t) is random

normal variable. Therefore, we have E{PMk(t) − PMk(s)}
4 = Var(PMk(t) − PMk(s))

2 +

E{(PMk(t) −PMk(s))
2}2 = 3 {E(PMk(t) −PMk(s))

2}2 ≤D∗
cz ∣t − s∣

2.

Since two conditions are satisfied, it follows that PMk(t) has continuous sample path

from Kolmogorov-Centsov theorem. Based on conditions (c), (d), and (f), it can be shown

that S̃
(1)
k (β, t) and S̃

(0)
k (β, t) are of bounded variations and specially S̃

(0)
k (β, t) is bounded

away from zero. Thus
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
is of bounded variation and can be written as

S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
=

Gk1−Gk1 where both Gk1 and Gk2 are nonnegative, monotone functions in t, and bounded.

Therefore,
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
is the sum of two monotone functions. By the result in (4.16), it can be

shown that supt∈[0,τ]β∈B ∥
S̃
(1)
k

(β,t)

S̃
(0)
k

(β,t)
−
s
(1)
k

(β,t)

s
(0)
k

(β,t)
∥
p
Ð→ 0. By lemma 1, the second term in (4.18)

converges to zero in probability uniformly in t as n→∞.

By using similar arguments, the last term in (4.18) can be shown to converge to zero in

probability uniformly in t.

The third term in (4.18) can be decomposed such that

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(πlik(t) − 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(α̃−1

lk (t) − α̃−1
l )ξli

2

∏
j=1

(1 −∆lij)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1(1 −∆li2)(1 − ξl1)(

ηli1
γ̃l1

− 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1(1 −∆li2)(1 − ξl1)(γ̃

−1
l1k(t) − γ̃

−1
l1 )ηli1

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(1 −∆li1)∆li2(1 − ξl1)(

ηli2
γ̃l2

− 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(1 −∆li1)∆li2(1 − ξl1)(γ̃

−1
l2k(t) − γ̃

−1
l2 )ηli2

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)
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+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξl1)(

ηli1
γ̃l3

− 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξl1)(γ̃

−1
l3k(t) − γ̃

−1
l3 )ηli1

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξl1)(

ηli2
γ̃l4

− 1)

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξl1)(γ̃

−1
l4k(t) − γ̃

−1
l4 )ηli2

⎧⎪⎪
⎨
⎪⎪⎩

Zlik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dMlik(t)

(4.19)

By using the result in (4.6), the second term in (4.19) is asymptotically equivalent to

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(1 −
ξli
α̃l

)Ylik(t)
1

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

×

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
m=1

ξli
α̃l

2

∏
j=1

(1 −∆lmj)(Zlmk(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

)dMlmk(t)

⎫⎪⎪
⎬
⎪⎪⎭

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(1 −
ξli
α̃l

)Ylik(t)
1

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

×

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
m=1

ξli
α̃l

2

∏
j=1

(1 −∆lmj)(Zlmk(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

)(dNlmk(t) − Ylmk(t)e
βTZlmk(t)dΛ0k(t))

⎫⎪⎪
⎬
⎪⎪⎭

.

(4.20)

Since the term related with dNlmk(t) in (4.20) does not contribute to ∏2
j=1(1 −∆lmj), we

have

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)Ylik(t)
1

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

×

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
m=1

ξli
α̃l

2

∏
j=1

(1 −∆lmj)(Zlmk(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

)Ylmk(t)e
βTZlmk(t)dΛ0k(t)

⎫⎪⎪
⎬
⎪⎪⎭

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)Ylik(t)

×
El[∏

2
j=1(1 −∆l1j)Yl1k(t)Rl1k(t)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

dΛ0k(t) + op(1).

If follows from the result of (4.8) and lemma 2 that the fourth term in (4.19) can be written

75



as

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1(1 −∆li2)(1 − ξl1)ηli1

1

γ̃l1(1 − αl)El[∆l11(1 −∆l12)Yl1k(t)]

× n−1
l {

nl

∑
m=1

(1 −
ηlm1

γ̃l1
)∆lm1(1 −∆lm2)(1 − ξlm)Ylmk(t)}{Zlik(t) − ek(β0, t)}dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1(1 −∆li2)(1 −

ηli1
γ̃l1

)Ylik(t)

×
El[∆l11(1 −∆l12)(Zl1k(t) − ek(β0, t))dMl1k(t)]

El[∆l11(1 −∆l12)Yl1k(t)]
+ op(1)

By similar arguments, the sixth, eighth, and tenth terms are asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(1 −∆li1)∆li2(1 − ξli)(1 −

ηli2
γ̃l2

)Ylik(t)
El[dQl1k(β, t)∣Θl01, ξl1 = 0]

El[Yl1k(t)∣Θl01]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξli)(1 −

ηli1
γ̃l3

)Ylik(t)
El[dQl1k(β, t)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
∆li1∆li2(1 − ξli)(1 −

ηli2
γ̃l4

)Ylik(t)
El[dQl1k(β, t)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]
.

Combining all the results, the third term in (4.18) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)[Rlik(t)

− Ylik(t)
El[∏

2
j=1(1 −∆l1j)Yl1k(t)Rl1k(t)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]]

dΛ0k(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)[Qlik(β0) − ∫

τ

0
Ylik(t)

El[dQl1k(β0, t)∣Θl10, ξl1 = 0]

El[Yl1k(t)∣Θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)[Qlik(β0) − ∫

τ

0
Ylik(t)

El[dQl1k(β0, t)∣Θl01, ξl1 = 0]

El[Yl1k(t)∣Θl01]
]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1∆li2(
ηli1
γ̃l3

− 1)[Qlik(β0) − ∫

τ

0
Ylik(t)

El[dQl1k(β0, t)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]
]

+ n−1/2 1

2

L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1∆li2(
ηli2
γ̃l4

− 1)[Qlik(β0) − ∫

τ

0
Ylik(t)

El[dQl1k(β0, t)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]
]
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Therefore, n−1/2ŨG(β0) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

Qlik(β0)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(
ξli
α̃l

− 1)∫
τ

0

2

∏
j=1

(1 −∆lij){Rlik(t)

−
Ylik(t)El[∏

2
j=1(1 −∆l1j)Rl1k(t)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

}dΛ0k(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 − ξli){∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)[Qli1(β0)

− ∫

τ

0

Ylik(t)El[dQl1k(β, t)∣Θl10, ξl1 = 0]

El[Yl1k(t)∣Θl10]
]

+ (1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)[Qlik(β) − ∫
τ

0

Ylik(t)El[dQl1k(β0, t)∣Θl01, ξl1 = 0]

El[Yl1k(t)∣Θl01]
]

+
1

2
∆li1∆li2(

ηli1
γ̃l3

− 1)[Qlik(β0) − ∫

τ

0

Ylik(t)El[dQl1k(β0)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]
]

+
1

2
∆li1∆li2(

ηli2
γ̃l4

− 1)[Qlik(β) − ∫
τ

0

Ylik(t)E[dQl1k(β0)∣Θl11, ξl1 = 0]

El[Yl1k(t)∣Θl11]
]}. (4.21)

By Spiekerman and Lin [1998], it can be shown that the first term in (4.21) converges

to weakly to a zero-mean normal vector with covariance VI,l(β0) = El[∑
2
k=1Ql1k(β0)]

⊗2.

The second term in (4.21) is asymptotically zero-mean normal vector with covariance

matrix 1−αl
αl
VII,l(β0) =

1−αl
αl

Varl(∏
2
j=1(1−∆l1j)∑

2
k=1 ∫

τ
0 [Rl1k(β0, t)−

Yl1kE(∏
2
j=1(1−∆l1j)Rl1k(β0,t))

El(∏
2
j=1(1−∆l1j)Yl1k(t))

]

dΛ0k(t)) by Hájek [1960]’s central limit theorem for finite sampling.

It follows from Hájek [1960]’s central limit theorem for finite sampling and Cramer-

Wold devices that the third term to the last term in (4.21) converges to weakly a zero-mean

normal vector with covariance (1 − αl)∑
2
k=1 VIII,lk(β0) where

VIII,lk(β)

= Pr(Θl10)
1 − γl1
γl1

Var(Ql1k(β) − ∫
τ

0

Yl1k(t)E{dQl1k(β, t)∣Θl10, ξl1 = 0}

E{Yl1k(t)∣Θl10}
∣Θl10, ξl1 = 0)

+ Pr(Θl10)
1 − γl2
γl2

Var(Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl01, ξl1 = 0}

El{Yl1k(t)∣Θl01}
∣Θl10, ξl1 = 0)

+
1

4
Pr(Θl11)

1 − γl1
γl1

Var(Ql1k(β) − ∫
τ

0

Yl1k(t)E{dQl1k(β, t)∣Θl11, ξ1 = 0}

E{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0)

+
1

4
Pr(Θl11)

1 − γl2
γl2

Varl(Ql1k(β) − ∫
τ

0

Yl1k(t)E{dQl1k(β, t)∣Θl11, ξl1 = 0}

E{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0)
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since four components are independent.

In addition, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1Qlik(β0) and n−1/2

∑
L
l=1∑

nl
i=1∑

2
k=1(1 −

ξli
α̃l

) ∫
τ

0 ∏
2
j=1(1 −

∆lij)Llik(t)dΛ0k(t) where Llik(t) = Rlik(t) −
Ylik(t)El[∏

2
j=1(1−∆l1j)Rl1k(t)]

El[∏
2
j=1(1−∆l1j)Yl1k(t)]

are independent

since

Covl
⎛

⎝
n
−1/2
l

nl

∑
i=1

2

∑
k=1

Qlik(β0), n
−1/2
l

nl

∑
i=1

2

∑
k=1

(
ξli
α̃l

− 1)∫
τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dΛ0k(t)
⎞

⎠

= E

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

(
ξli
α̃l

− 1)∫
τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dΛ0k(t)
⎞

⎠

= E

⎧⎪⎪
⎨
⎪⎪⎩

E
⎛

⎝
n−1
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

(
ξli
α̃l

− 1)∫
τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dΛ0k(t)∣F(τ)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

= E

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

El ((
ξli
α̃l

− 1)∣F(τ))∫
τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dΛ0k(t)

⎫⎪⎪
⎬
⎪⎪⎭

= 0

By using similar arguments, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1Qlik(β0) and the third to the last term in

(4.21) are independent. Since ξli and ηlik for k = 1,2 are independent, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1(

ξli
α̃l
−

1) ∫
τ

0 ∏
2
j=1(1−∆lij)Llik(t)dΛ0k(t) and the third to the last term in (4.21) are independent.

Combining all the results, n−1/2ŨG(β0) converges weakly to zero-mean normal vector with

covariance matrix ΣG(β) where

ΣG(β) =
L

∑
l=1

ql{VI,l(β) +
1 − αl
αl

VII,l(β) + (1 − αl)
2

∑
k=1

VIII,lk(β)},

VI,l(β) = El[
2

∑
k=1

Ql1k(β)]
⊗2,

VII,l(β)

= Varl(
2

∏
j=1

(1 −∆l1j)
2

∑
k=1
∫

τ

0
[Rl1k(β, t) −

Yl1k(t)El(∏
2
j=1(1 −∆l1j)Rl1k(β, t))

El(∏
2
j=1(1 −∆l1j)Yl1k(t))

]dΛ0k(t)),

VIII,lk(β)

= Pr(Θl10)
1 − γl1
γl1

Varl[Ql1k(β) − ∫
τ

0

Yl1k(t)E{dQl1k(β, t)∣Θl10, ξl1 = 0}

El{Yl1k(t)∣Θl10}
∣Θl10, ξl1 = 0]

+ Pr(Θl01)
1 − γl2
γl2

Var[Ql1k(β) − ∫
τ

0

Yl1k(t)E{dQl1k(β, t)∣Θl01, ξl1 = 0}

El{Yl1k(t)∣Θl01}
∣Θl01, ξl1 = 0]

+
1

4
Pr(Θl11)

1 − γl1
γl1

Varl[Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl11, ξl1 = 0}

El{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0]

+
1

4
Pr(Θl11)

1 − γl2
γl2

Varl[Ql1k(β) − ∫
τ

0

Yl1k(t)El{dQl1k(β, t)∣Θl11, ξl1 = 0}

El{Yl1k(t)∣Θl11}
∣Θl11, ξl1 = 0].
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Hence, ŨG(β0) converges to zero in probability and, consequently, (IV) is satisfied. There-

fore, (I), (II), (III), and (IV) are satisfied, which implies that β̃G converges to β0 in probabi-

ilty by the extension of Fourtz [1977]. By consistency of β̃G and Talor expansion of ŨG(β0),

β̃G − β0 is asymptotically normally distributed with mean zero and with variance matrix

A−1ΣG(β0)A
−1 where A = ∑

2
k=1Ak.

Proof of Theorem 4 Note that

Λ̃II0k(β̃
G, t) = ∫

t

0

∑
nl
i=1 πlik(u)dNlik(u)

nS̃
(0)
k (β̃G, u)

= ∫

t

0

∑
nl
i=1 πlik(u)dMlik(u)

nS̃
(0)
k (β̃G, u)

+ ∫

t

0

S̃
(0)
k (β0, u)dΛ0k(u)

S̃
(0)
k (β̃G, u)

n1/2{Λ̃II0k(β̃
G, t) −Λ0k(t)} can be decomposed into five parts:

n1/2
{Λ̃II0k(β̃

G, t) −Λ0k(t)}

= n1/2
∫

t

0

⎛

⎝

1

nS̃
(0)
k (β̃G, u)

−
1

nS̃
(0)
k (β0, u)

⎞

⎠
d
L

∑
l=1

nl

∑
i=1

Mlik(u)

+ n1/2
∫

t

0

⎛

⎝

1

nS̃
(0)
k (β̃G, u)

−
1

nS̃
(0)
k (β0, u)

⎞

⎠
d
L

∑
l=1

nl

∑
i=1

{πlik(u) − 1}Mlik(u)

+ n1/2
∫

t

0

⎛

⎝

1

S̃
(0)
k (β̃G, u)

−
1

S̃
(0)
k (β0, u)

⎞

⎠
S̃

(0)
k (β0, u)dΛ0k(u)

+ ∫

t

0

1

S̃
(0)
k (β0, u)

d{n−1/2
L

∑
l=1

nl

∑
i=1

Mlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{πlik(u) − 1}dMlik(u)} (4.22)

By Taylor expansion, it can be written as

1

S̃
(0)
k (β̃G, u)

−
1

S̃
(0)
k (β0, u)

= −
S̃

(1)
k (β∗, u)T

S̃
(0)
k (β∗, u)2

(β̃G − β0)

where β∗ is on the line segment between β̃G and β0. Plugging into the first term in (4.22),

we have

∫

t

0

⎛

⎝
−
S̃

(1)
k (β∗, u)T

S̃
(0)
k (β∗, u)2

⎞

⎠
(β̃G − β0){n

−1/2d
L

∑
l=1

nl

∑
i=1

Mlik(u)} , (4.23)
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where β∗ is on the line segment between β̃G and β0. Due to consistency of β̃G, β∗ also

converges to β0 in probability uniformly. Since S̃
(0)
k (β∗, u) and S̃

(1)
k (β∗, u) are of bounded

variations and S̃
(0)
k (β∗, u) is bounded away from 0,

S̃
(1)
k

(β∗,u)T

S̃
(0)
k

(β∗,u)2
is of bounded variation

and can be written as sum of two monotone functions in t. In addition, we have shown

consistency of β̃G, weak convergence of n−1/2d∑Ll=1∑
nl
i=1Mlik(u) to zero-mean Gaussian

process with continuous sample paths, and the uniform convergence of S̃
(0)
k (β∗, u) and

S̃
(1)
k (β∗, u). Therefore, by lemma 1, (4.23) converges to zero in probability uniformly in t.

By similar arguments for the first term, the second term in (4.22) can be shown to

converges to zero in probability uniformly in t.

It follows from Taylor expansion that the third term in (4.22) can be written as

n1/2
∫

t

0

⎛

⎝
−
S̃

(1)
k (β∗, u)T

S̃
(0)
k (β∗, u)2

⎞

⎠
(β̃G − β0)S̃

(0)
k (β0, u)dΛ0k(u) (4.24)

Note that β̃G and β∗ converge to β0 in probability uniformly, S̃
(0)
k (β∗, u) and S̃

(0)
k (β0, u)

converge to s
(0)
k (β0, u) in probability uniformly where s

(0)
k (β0, u) is bounded away from

zero, S̃
(1)
k (β∗, u) converges to s

(1)
k (β0, t) in probability uniformly, and dΛ0k(u) is bounded.

It follows from the above results, (4.24) is asymptotically equivalent to

n1/2lk(β0, t)
T
(β̃G − β0),

where lk(β0, t)
T = ∫

t
0 −ek(β,u)dΛ0k(u) and ek(β0, u) = s

(1)
k (β0, u)/s

(0)
k (β0, u).

Since S̃
(0)
k (β0, u) converges to s

(0)
k (β0, u) in probability uniformly and s

(0)
k (β0, u) is

bounded away from 0, we have S̃
(0)
k (β0, u)

−1 p
Ð→ s

(0)
k (β0, u)

−1. In addition, n−1/2d∑Ll=1∑
nl
i=1

Mlik(u) converges to a zero-mean Gaussian process with continuous sample paths. Hence,

the fourth term in (4.22) is asymptotically equivalent to

∫

t

0

1

s
(0)
k (β0, u)

{n−1/2d
L

∑
l=1

nl

∑
i=1

Mlik(u)} .
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The last term in (4.22) can be written as

∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{πlik(u) − 1}dMlik(u)}

= ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(α̃lk(u)
−1
− α̃−1

l )ξli
2

∏
j=1

(1 −∆lij)}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(
ηli1
γ̃l1

− 1)(1 − ξli)∆li1(1 −∆li2)}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(γ̃l1k(u)
−1
− γ̃−1

l1 )ηli1(1 − ξli)∆li1(1 −∆li2)}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(
ηli2
γ̃l2

− 1)(1 − ξli)(1 −∆li1)∆li2}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{(γ̃l2k(u)
−1
− γ̃−1

l2 )ηli2(1 − ξli)(1 −∆li1)∆li2}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{
1

2
(
ηli1
γ̃l3

− 1)(1 − ξli)∆li1∆li2}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{
1

2
(γ̃l3k(u)

−1
− γ̃−1

l3 )ηli1(1 − ξli)∆li1∆li2}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{
1

2
(
ηli2
γ̃l4

− 1)(1 − ξli)∆li1∆li2}dMlik(u)}

+ ∫

t

0

1

S̃
(0)
k (β0, u)

{n−1/2
L

∑
l=1

nl

∑
i=1

{
1

2
(γ̃l4k(u)

−1
− γ̃−1

l4 )ηli2(1 − ξli)∆li1∆li2}dMlik(u)}(4.25)

Due to uniform convergence of S̃
(0)
k (β0, u)

−1 to s
(0)
k (β0, u)

−1 where s
(0)
k (β0, u) is bounded

away from zero, the asymptotic properties of (4.6), the first and second terms are asymp-

totically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)∫

t

0
Ylik(u){e

βTZlik(u)

−
E[∏

2
j=1(1 −∆1j)e

βTZlik(u)Yl1k(u)]

E[∏
2
j=1(1 −∆1j)Yl1k(u)]

} ⋅
dΛ0k(u)

s
(0)
k (β0, u)

.

By using uniform convergence of S̃
(0)
k (β0, u)

−1 to s
(0)
k (β0, u)

−1 where s
(0)
k (β0, u) is bounded
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away from zero and the asymptotic properties of (4.8), the third and fouth terms are

asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃1

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl10, ξ1 = 0]

El[Yl1k(u)∣θl10]
].

By similar arguments, the last term in (4.22) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)

× ∫

t

0
Ylik(u){e

βTZlik(u) −
El[∏

2
j=1(1 −∆1j)e

βTZlik(u)Yl1k(u)]

El[∏
2
j=1(1 −∆1j)Yl1k(u)]

} ⋅
dΛ0k(u)

s
(0)
k (β0, u)

+ n−1/2
L

∑
l=1

nl

∑
i=1

∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃l1

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl10, ξl1 = 0]

El[Yl1k(u)∣θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl01, ξl1 = 0]

El[Yl1k(u)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
∆li1∆li2(1 − ξli)(

ηli1
γ̃l3

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
∆li1∆li2(1 − ξli)(

ηli2
γ̃l4

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]

Combining all the results, we have

n1/2
{Λ̃II0k(β̃

G, t) −Λ0k(t)}

= n1/2lk(β0, t)
T
(β̃G − β0) + ∫

t

0

1

s
(0)
k (β0, u)

{n−1/2d
L

∑
l=1

nl

∑
i=1

Mlik(u)}

82



+ n−1/2
L

∑
l=1

nl

∑
i=1

[(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)

× ∫

t

0
Ylik(u){e

βTZlik(u) −
El[∏

2
j=1(1 −∆1j)e

βTZlik(u)Yl1k(u)]

El[∏
2
j=1(1 −∆1j)Yl1k(u)]

} ⋅
dΛ0k(u)

s
(0)
k (β0, u)

+ ∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃1

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl10, ξl1 = 0]

El[Yl1k(u)∣θl10]
]

+ (1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃2

− 1)

× ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl01, ξl1 = 0]

El[Yl1k(u)∣θl01]
]

+
1

2
∆li1∆li2(1 − ξli)(

ηli1
γ̃1

− 1)∫
t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]

+
1

2
∆li1∆li2(1 − ξli)(

ηli2
γ̃2

− 1)∫
t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]]

+ op(1)

Note that

n1/2
(β̃G − β0) = A(β0)

−1
[n−1/2

L

∑
l=1

nl

∑
i=1

2

∑
k=1

Qlik(β0)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(
ξli
α̃l

− 1)

× ∫

τ

0

2

∏
j=1

(1 −∆lij){Z̄lik(t) −
Ylik(t)El[∏

2
j=1(1 −∆1j)Z̄1k(t)]

E[∏
2
j=1(1 −∆1j)Yl1k(t)]

}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 − ξli){∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)

× [Qlik(β) − ∫
τ

0

Ylik(t)E[dQl1k(β, t)∣Θl10, ξl1 = 0]

E[Yl1k(t)∣Θl10]
]

+ (1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)[Qlik(β) − ∫
τ

0

Ylik(t)E[dQl1k(β, t)∣Θl01, ξl1 = 0]

E[Yl1k(t)∣Θl01]
]

+
1

2
∆li1∆li2(

ηli1
γ̃l3

− 1)[Qlik(β) − ∫
τ

0

Ylik(t)E[dQl1k(β)∣Θl11, ξl1 = 0]

E[Yl1k(t)∣Θl11]
]

+
1

2
∆li1∆li2(

ηli2
γ̃l4

− 1)[Qlik(β) − ∫
τ

0

Ylik(t)E[dQl1k(β)∣Θl11, ξl1 = 0]

E[Yl1k(t)∣Θl11]
]}] + op(1)
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Using the above equation, we have

n1/2
{Λ̃M0k(β̃

G, t) −Λ0k(t)}

= n−1/2
L

∑
l=1

nl

∑
i=1

⎧⎪⎪
⎨
⎪⎪⎩

lk(β0, t)
TA(β0)

−1
K

∑
m=1

Qlim(β0) + ∫

t

0

1

s
(0)
k (β0, u)

dMlik(u)

⎫⎪⎪
⎬
⎪⎪⎭

+ n−1/2
L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

){lk(β0, t)
TA(β0)

−1
K

∑
m=1
∫

τ

0
[Rlim(u)

−
Ylim(u)El[∏

2
j=1(1 −∆l1j)Rl1m(u)]

El[∏
2
j=1(1 −∆l1j)Yl1m(u)]

]dΛ0m(u)

+
2

∏
j=1

(1 −∆lij)∫

t

0
Ylik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZlik(u) −

El(∏
2
j=1(1 −∆l1j)e

βTZl1k(u)Yl1k(u))

El(∏
2
j=1(1 −∆l1j)Yl1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(u)

s
(0)
k (β0, u)

}

+ n−1/2
L

∑
l=1

nl

∑
i=1

[lk(β0, t)
TA(β0)

−1n−1/2
2

∑
m=1

(1 − ξli)

× {∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)[Qlim(β) − ∫
τ

0

Ylim(u)El[dQl1m(β0, u)∣Θl10, ξl1 = 0]

El[Yl1m(u)∣Θl10]
]

+ (1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)[Qlim(β) − ∫
τ

0

Ylim(u)El[dQl1m(β0, t)∣Θl01, ξl1 = 0]

El[Yl1m(t)∣Θl01]
]

+
1

2
∆li1∆li2(

ηli1
γ̃l3

− 1)[Qlim(β) − ∫
τ

0

Ylim(u)El[dQl1m(β0)∣Θl11, ξl1 = 0]

El[Yl1m(u)∣Θl11]
]

+
1

2
∆li1∆li2(

ηli2
γ̃l4

− 1)[Qlim(β0) − ∫

τ

0

Ylim(u)El[dQl1m(β0)∣Θl11, ξl1 = 0]

El[Yl1m(u)∣Θl11]
]}]

+ n−1/2
L

∑
l=1

nl

∑
i=1

[∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃l1

− 1)∫
t

0

1

s
(0)
k (β0, u)

× [dMlik(u) − Ylik(u)
El[dMlik(u)∣θl10, ξl1 = 0]

El[Yl1k(u)∣θl10]
]

+ (1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)∫
t

0

1

s
(0)
k (β0, u)

× [dMlik(u) − Ylik(u)
El[dMlik(u)∣θl01, ξl1 = 0]

El[Yl1k(u)∣θl01]
]

+
1

2
∆li1∆li2(1 − ξli)(

ηli1
γ̃l3

− 1)∫
t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]

+
1

2
∆li1∆li2(1 − ξli)(

ηli2
γ̃l3

− 1)∫
t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El[dMlik(u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]]

+ op(1)

= n−1/2
L

∑
l=1

nl

∑
i=1

νlik(β0, t) + n
−1/2

L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)ζlik(β0, t) + n
−1/2

L

∑
l=1

nl

∑
i=1

ϕlik(β0, t) + op(1)
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where

νlik(β, t) = lk(β, t)
TA(β)−1

K

∑
m=1

Qlim(β) + ∫
t

0

1

s
(0)
k (β,u)

dMlik(u),

ζlik(β, t) = lk(β, t)
TA(β)−1

×
2

∑
m=1
∫

τ

0
[Rlim(u) −

Ylim(u)El[∏
2
j=1(1 −∆l1j)Rl1m(u)]

El[∏
2
j=1(1 −∆l1j)Yl1m(u)]

]dΛ0m(u)

+
2

∏
j=1

(1 −∆lij)∫

t

0
Ylik(u)

⎧⎪⎪
⎨
⎪⎪⎩

eβ
TZlik(u) −

El(∏
2
j=1(1 −∆1j)e

βTZ1k(u)Yl1k(u))

El(∏
2
j=1(1 −∆1j)Yl1k(u))

⎫⎪⎪
⎬
⎪⎪⎭

dΛ0k(u)

s
(0)
k (β0, u)

,

ϕlik(β, t) = lk(β, t)
TA(β)−1

2

∑
m=1

(1 − ξli)[∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)B
(1)
lim(β, t∣Θl10)

+ (1 −∆li1)∆li2(
ηli2
γ̃l2

− 1)B
(1)
lim(β, t∣Θl01)

+
1

2
∆li1∆li2{(

ηli1
γ̃l3

− 1)B
(1)
lim(β, t∣Θl11) + (

ηli2
γ̃l4

− 1)B
(1)
lim(β, t∣Θl11)}]

+ (1 − ξli)[∆li1(1 −∆li2)(
ηli1
γ̃l1

− 1)B
(2)
lik (β, t∣Θl10) + (1 −∆li1)∆li2(

ηli2
γ̃l2

− 1)B
(2)
lik (β, t∣Θl01)

+
1

2
∆li1∆li2{(

ηli1
γ̃l3

− 1)B
(2)
lik (β, t∣Θl11) + (

ηli2
γ̃l4

− 1)B
(2)
lik (β, t∣Θl11)}]

B
(1)
lik (β, t∣Θljm) = ∫

t

0

1

s
(0)
k (β0, u)

[dMlik(u) − Ylik(u)
El{dMl1k(u)∣Θl10, ξli = 0}

El{Yl1k(u)∣Θljm}
]

B
(2)
lik (β, t∣Θljm) = Qlik(β) − ∫

t

0
Ylik(u)

El{dQl1k(β,u)∣Θljm, ξli = 0}

El{Yl1k(β,u)∣Θljm}
,

lk(β, t)
T
= −∫

t

0
ek(β,u)dΛ0k(u)

Let P (t) = (P (1)(t) + P (2)(t) + P (3)(t)) where P (1)(t) = (P
(1)
1 (t), P

(1)
2 (t))T , P (2)(t) =

(P
(2)
1 (t), P

(2)
2 (t))T , P (3)(t) = (P

(3)
1 (t), P

(3)
2 (t))T , P

(1)
k (t)T = n−1/2

∑
L
l=1∑

nl
i=1 νlik(β0, t),

P
(2)
k (t)T = n−1/2

∑
L
l=1∑

nl
i=1 ζlik(β0, t), and P

(3)
k (t)T = n−1/2

∑
L
l=1∑

nl
i=1ϕlik(β0, t). Then, by

theorem 4 of Spiekerman and Lin [1998], P (1)(t) = (P
(1)
1 (t), P

(1)
2 (t))T converges weakly

to a zero-mean Gaussian process P(1)(t) = (P
(1)
1 (t),P

(1)
2 (t))T and covariance functions

between P
(1)
j (t) and P

(1)
k (s) is ∑Ll=1 qlEl{νl1j(β0, t), νl1k(β0, s)} for t, s ∈ [0, τ] in D[0, τ]K .

We will show weak convergence of P (2)(t) to a zero-mean Gaussian process P(2)(t).

Note that s
(0)
k (β, t) and El(∏

2
j=1(1 −∆l1j)Yl1k(t)) are bounded away from zero, lk(β0, t)

T ,

eβ
TZlik(t)Ylik(t), El(∏

2
j=1(1−∆l1j)e

βTZl1k(t)Yl1k(t)), and dΛ0k(t) are of bounded variations

based on conditions (b), (c), (d), and (g); A(β0) is positive definite based on (e). Hence,
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it follows from Cramer-Wold device and lemma 2 that the finite dimensional distribution

of P (2)(t) is asymptotically same as that of P(2)(t) for any finite number of time point

(t1, . . . , tL). The next thing that we will show is that P (2)(t) has tightness. It suffices

to show the marginal tightness of P
(2)
k (t) for each k since space D[0, τ]K is equipped

with the uniform metric. By applying lemma 2, the marginal tightness follows to P
(2)
k (t).

Combining all the results, P (2)(t) = (P
(2)
1 (t), P

(2)
2 (t))T converges weakly to a zero-mean

Gaussian process P(2)(t) = (P
(2)
1 (t),P

(2)
2 (t))T and covariance functions between P

(2)
j (t)

and P
(2)
k (s) is ∑Ll=1 ql

1−αl
αl
El{ζl1j(β0, t), ζl1k(β0, s)} for t, s ∈ [0, τ] in D[0, τ]K .

Similarly, P (3)(t) can be shown to converge weakly to a zero-mean Gaussian process

where covariance function P
(3)
j (t) and P

(3)
k (s) is ∑Ll=1 qlEl{ϕl1j(β0, t), ϕl1k(β0, s)} where

El{ϕl1j(β0, t), ϕl1k(β0, s)}

= I(j = k)pr(Θl10)(
1 − γl1
γl1

)Covl[B
(2)
lik (β, t∣Θl10)B

(2)
lik (β, s∣Θl10)∣Θl10, ξl1 = 0]

+ I(j = k)pr(Θl01)(
1 − γl2
γl2

)Covl[B
(2)
lik (β, t∣Θl01)B

(2)
lik (β, s∣Θl01)∣Θl01, ξl1 = 0]

+ I(j = k)
pr(Θl11)

4
(
1 − γl1
γl1

)Covl[B
(2)
lik (β, t∣Θl11)B

(2)
lik (β, s∣Θl11)∣Θl11, ξl1 = 0]

+ I(j = k)
pr(Θl11)

4
(
1 − γl2
γl2

)Covl[B
(2)
lik (β, t∣Θl11)B

(2)
lik (β, s∣Θl11)∣Θl11, ξl1 = 0]

+ pr(Θl10)(
1 − γl1
γl1

)Covl[B
(2)
lij (β0, t∣Θl10), lk(β0, s)

TA(β0)
−1B

(1)
lij (β, s∣Θl10)∣Θl10, ξl1 = 0]

+ pr(Θl01)(
1 − γl2
γl2

)Covl[B
(2)
lij (β0, t∣Θl10), lk(β0, s)

TA(β0)
−1B

(1)
lij (β, s∣Θl10)∣Θl10, ξl1 = 0]

+
pr(Θl11)

4
(
1 − γl1
γl1

)Covl[B
(2)
lij (β0, t∣Θl11), lk(β0, s)

TA(β0)
−1B

(1)
lij (β, s∣Θl11)∣Θl11, ξl1 = 0]

+
pr(Θl11)

4
(
1 − γl2
γl2

)Covl[B
(2)
lij (β0, t∣Θl11), lk(β0, s)

TA(β0)
−1B

(1)
lij (β, s∣Θl11)∣Θl11, ξl1 = 0]

+ pr(Θl10)(
1 − γl1
γl1

)Covl[B
(2)
lik (β0, s∣Θl10), lj(β0, t)

TA(β0)
−1B

(1)
lik (β, t∣Θl10)∣Θl10, ξl1 = 0]

+ pr(Θl01)(
1 − γl2
γl2

)Covl[B
(2)
lik (β0, s∣Θl10), lj(β0, t)

TA(β0)
−1B

(1)
lik (β, t∣Θl10)∣Θl10, ξl1 = 0]

+
pr(Θl11)

4
(
1 − γl1
γl1

)Covl[B
(2)
lik (β0, s∣Θl11), lj(β0, t)

TA(β0)
−1B

(1)
lik (β, t∣Θl11)∣Θl11, ξl1 = 0]

+
pr(Θl11)

4
(
1 − γl2
γl2

)Covl[B
(2)
lik (β0, s∣Θl11), lj(β0, t)

TA(β0)
−1B

(1)
lik (β, t∣Θl11)∣Θl11, ξl1 = 0]

+
2

∑
m=1

[pr(Θl10)(
1 − γl1
γl1

)lk(β0, t)
TA(β0)

−1
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× Covl[B
(1)
lim(β, t∣Θl10),B

(1)
lim(β, s∣Θl10)]A(β0)

−1lj(β0, s)
T

+ pr(Θl01)(
1 − γl2
γl2

)lk(β0, t)
TA(β0)

−1

× Covl[B
(1)
lim(β, t∣Θl01),B

(1)
lim(β, s∣Θl01)]A(β0)

−1lj(β0, s)
T

+
pr(Θl11)

4
(
1 − γl1
γl1

)lk(β0, t)
TA(β0)

−1

× Covl[B
(1)
lim(β, t∣Θl11),B

(1)
lim(β, s∣Θl11)]A(β0)

−1lj(β0, s)
T

+
pr(Θl11)

4
(
1 − γl2
γl2

)lk(β0, t)
TA(β0)

−1

× Covl[B
(1)
lim(β, t∣Θl11),B

(1)
lim(β, s∣Θl11)]A(β0)

−1lj(β0, s)
T
].

By the conditional expectation arguments, all terms are mutually independent. There-

fore, P (t) = P (1)(t) + P (2)(t) + P (3)(t) converges to a zero-mean Gaussian process G(t) =

P(1)(t) +P(2)(t) +P(3)(t).

Proof of Theorem 5

We will compare the asymptotic variance for the proposed method and the existing

method. Consider the unstratified generalized case-cohort study (i.e. L = 1). From Theorem

3, the covariance matrix for β̃G involves the first derivative of the weighted estimating

functions, A(β0) and the asymptotic variance of the the weighted estimating functions,

ΣG(β0). The first derivative of the proposed weighted estimating functions, A(β0) is the

same as that of (4.2). Therefore, we only need to compare the asymptotic variance of

the proposed weighted estimating functions ŨG(β) with that of Kang & Cai’s weighted

estimating functions ÛKC(β). Note that n−1/2ŨG(β) can be decomposed into four parts:

= n−1/2
n1

∑
i=1

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Z1ik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dM1ik(t)

+ n−1/2
n1

∑
i=1

2

∑
k=1
∫

τ

0

⎧⎪⎪
⎨
⎪⎪⎩

s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dM1ik(t)

+ n−1/2
n1

∑
i=1

2

∑
k=1
∫

τ

0
(π1ik(t) − 1)

⎧⎪⎪
⎨
⎪⎪⎩

Z1ik(t) −
s
(1)
k (β0, t)

s
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dM1ik(t)

+ n−1/2
n1

∑
i=1

2

∑
k=1
∫

τ

0
(π1ik(t) − 1)

⎧⎪⎪
⎨
⎪⎪⎩

s
(1)
k (β0, t)

s
(0)
k (β0, t)

−
S̃

(1)
k (β0, t)

S̃
(0)
k (β0, t)

⎫⎪⎪
⎬
⎪⎪⎭

dM1ik(t) (4.26)
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Since the second and the fourth terms in (4.26) converge to zero in probability uniformly in

t, resepctively and the first term in (4.26) converges to the same limit as that for ÛKC(β),

we only need to compare asymptotic properties of the third term with the proposed weight

in (4.26) with that with the existing weight. Therefore, we will compare asymptotic variance

of the third term with the proposed weight with that with existing weight:

V ar [
n1

∑
i=1

2

∑
k=1
∫

τ

0
(w1ik(t) − 1) {Z1ik(t) − ek(t)}dM1ik(t)]

−V ar [
n1

∑
i=1

2

∑
k=1
∫

τ

0
(π1ik(t) − 1) {Z1ik(t) − ek(t)}dM1ik(t)]

It is sufficient to show the difference between the second moments since the first mo-

ment of E[∑
nl
i=1∑

2
k=1 ∫

τ
0 (wlik(t)− 1){Zlik(t)− ek(t)}dMlik(t)] and E[∑

n
i=1∑

2
k=1 ∫

τ
0 (πlik(t)−

1){Zlik(t) − ek(t)}dMlik(t)] are zero. Hence, we get

E [
n1

∑
i=1

2

∑
k=1
∫

τ

0
(w1ik(t) − 1) {Z1ik(t) − ek(t)}dM1ik(t)]

2

−E [
n1

∑
i=1

2

∑
k=1
∫

τ

0
(π1ik(t) − 1) {Z1ik(t) − ek(t)}dM1ik(t)]

2

(4.27)

Note that the weight functions w1ik(t) and π1ik(t) converge to time-invariant weights, w1ik

and π1i, respectively, where w1ik = (1 − ∆1ik)ξ1iα
−1
1 + ∆1ikξ1i + ∆1ik(1 − ξ1i)η1ikγ

−1
1k and

π1ik = Π2
j=1(1 − ∆1ij)ξ1iα

−1 + {1 − Π2
j=1(1 − ∆1ij)}ξ1i + ∆1i1(1 − ∆1i2)(1 − ξ1i)η1i1γ

−1
11 + (1 −

∆1i1)∆1i2(1 − ξ1i)η1i2γ
−1
12 +

1
2∆1i1∆1i2(1 − ξ1i)η1i1γ

−1
11 +

1
2∆1i1∆1i2(1 − ξ1i)η1i2γ

−1
12 .

Hence, (4.27) is asymptotically equivalent to

E [
2

∑
k=1

(w11k − 1)Q11k(t)]

2

−E [
2

∑
k=1

(π11 − 1)Q11k(t)]

2

= E[w2
111 − π

2
11]E[Q2

111(t)] +E[w2
112 − π

2
11]E[Q2

112(t)]

+ 2{E[w111w112 − π
2
11]}E[Q111(t)Q112(t)]

≥ 2
√

E[w2
111 − π

2
11]E[w2

112 − π
2
11]E[Q2

111(t)]E[Q2
112(t)]

+ 2{E[w111w112 − π
2
11]}E[Q111(t)Q112(t)],
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≥ 2
√

E[w2
111 − π

2
11]E[w2

112 − π
2
11]

√

E[Q2
111(t)]E[Q2

112(t)]

+ 2ρ{E[w111w112 − π
2
11]}

√

E[Q2
111(t)]E[Q2

112(t)]

= 2[
√

E[w2
111 − π

2
11]E[w2

112 − π
2
11] + ρ{E[w111w112 − π

2
11]}]

√

E[Q2
111(t)]E[Q2

112(t)].

Since
√
E[Q2

111(t)]E[Q2
112(t)] is always positive, our prposed weight is more efficient

than the existing weight if

[

√

E[w2
111 − π

2
11]E[w2

112 − π
2
11] + ρ{E[w111w112 − π

2
11]}] > 0

=

√

E[w2
111 − π

2
11]E[w2

112 − π
2
11] > −ρ{E[w111w112 − π

2
11]}

= E[w2
111 − π

2
11]E[w2

112 − π
2
11] > [ρ{E[w111w112 − π

2
11]}]

2.

To get the simple form of E[w2
111 − π

2
11], E[w2

112 − π
2
11], and [ρ{E[w111w112 − π

2
11]}], we

denote

ρ = Corr(Q111(t),Q112(t)), α1 = lim
n→∞

pr(ξ1i = 1),

p1 = lim
n→∞

pr(∆1i1 = 1), p2 = lim
n→∞

pr(∆1i2 = 1),

γ11 = lim
n→∞

pr(η1i1 = 1∣∆1i1(1 − ξ1i) = 1), γ12 = lim
n→∞

pr(η1i2 = 1∣∆1i2(1 − ξ1i) = 1).

Then we get

E[w2
111 − π

2
11]

=
1 − p1

α1
+ αp1 +

(1 − α1)p1

γ11
− [

(1 − p1)(1 − p2)

α1
+ α1{1 − (1 − p1)(1 − p2)}

+
(1 − α1)p1(1 − p2)

γ11
+

(1 − α1)p1p2

4γ11
+

(1 − α1)p2(1 − p1)

γ12
+

(1 − α1)p1p2

4γ12
]

=
p2 − p1p2

α1
− α(p2 − p1p2) +

(1 − α1)p1p2

γ11
−

(1 − α1)p1p2

4γ11

−
(1 − α1)(1 − p1)p2

γ12
−

(1 − α1)p1p2

4γ12

= (
1

α1
− α1)p2(1 − p1) + (1 − α1) [

3p1p2

4γ11
−
p2

γ12
+

3p1p2

4γ12
]

=
1

α1
{(1 − α1)(1 + α1)p2(1 − p1)} +

3(1 − α1)p1p2

4
{

1

γ11
+

1

γ12
} −

(1 − α1)p2

γ12
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= (1 − α1)p2 [
1 + α1

α1
(1 − p1) +

3p1

4
{

1

γ11
+

1

γ12
} −

1

γ12
] .

Similarly, E[w2
112 − π

2
11] can be written as

E[w2
112 − π

2
11] = (1 − α1)p1 [

1 + α1

α1
(1 − p2) +

3p2

4
{

1

γ11
+

1

γ12
} −

1

γ11
] .

Also, E[w111w112 − π
2
11] can be written as

E[w111w112 − π
2
11]

=
(1 − p1)(1 − p2)

α1
+ (1 − p1)p2 + p1(1 − p2) + α1p1p2 + (1 − α1)p1p2 − [

(1 − p1)(1 − p2)

α1

+ α1{1 − (1 − p1)(1 − p2)} +
(1 − α1)p1(1 − p2)

γ11
+

(1 − α1)p1p2

4γ11

+
(1 − α1)(1 − p1)p2

γ12
+

(1 − α1)p1p2

4γ12
]

= p1 + p2 − p1p2 − α1(p1 + p2 − p1p2) − (1 − α1) [
p1

γ11
−

3p1p2

4γ11
+
p2

γ12
−

3p1p2

4γ12
]

= (1 − α1) [p1 + p2 − p1p2 +
3p1p2

4
{

1

γ11
+

1

γ12
} −

p1

γ11
−
p2

γ12
]

= (1 − α1) [p1{1 −
1

γ11
} + p2{1 −

1

γ12
} + p1p2{

3

4
(

1

γ11
+

1

γ12
) − 1}]

Thus, we have

E[w2
111 − π

2
11]E[w2

112 − π
2
11] > [ρ{E[w111w112 − π

2
11]}]

2

= p1p2 [
1 + α1

α1
(1 − p1) +

3p1

4
{

1

γ11
+

1

γ12
} −

1

γ12
] [

1 + α1

α1
(1 − p2) +

3p2

4
{

1

γ11
+

1

γ12
} −

1

γ11
]

> ρ2
[p1{1 −

1

γ11
} + p2{1 −

1

γ12
} + p1p2{

3

4
(

1

γ11
+

1

γ12
) − 1}]

2

.

Therefore, if the condition E[w2
111−π

2
11]E[w2

112−π
2
11] > (ρE[w111w112−π

2
11])

2 is satisfied,

then the asymptotic variance for our proposed method is smaller than that for Kang and Cai

[2010]’s method. Specifically, smaller α1 induces larger (1+α1)/α1, which dominates other

contributions in E[w2
111 − π

2
11]E[w2

112 − π
2
11]. The quantity (ρE[w111w112 − π

2
11])

2 depends

on the selection probability of a subset of cases γ11 and γ12 for fixed the disease rates p1

and p2. This indicates that selecting small size of the subcohort and larger portion of cases
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improves the efficiency for Kang & Cai’s method.

4.4 Simulations

We conducted simulation studies to investigate the finite sample properties of the pro-

posed methods, compare it with Kang and Cai [2010]’s method, and compare the perfor-

mance of stratified sampling with unstratified sampling. Consider the situation that stratum

variables are available and two generalized case-cohort studies have been conducted for non-

rare disease 1 and nonrare disease 2, respectively. In this situation, covariate information are

collected for the subcohort and a portion of the subjects outside the subcohort with disease

1 and disease 2. We generated multivariate failure time data from Clayton-Cuzick model

(Clayton and Cuzick [1985]). The bivariate survival function for the bivariate survival time

(T1, T2) given (Zl1, Zl2) has the following form:

F (t1, t2∣Zl1, Zl2) = {S1(t1;Zl1)
−1/θ

+ S2(t2;Zl2)
−1/θ

− 1}−θ,

where λ0k(t) and βk k = 1,2 are the baseline hazard function and the effect of covariate

for disease k, respectively, θ is the association parameter between the failure times of the

two diseases, and Sk(t;Zl) = Pr(Tk > t∣Zlk) = e
− ∫

tk
0 λ0k(t)e

βkZlkdt. Exponential distribution

with failure rate λ0ke
βkZlk is considered for the marginal distribution of Tk k = 1,2. Two

failure times, T1 and T2 are independent as θ → ∞. The relationship between Kendall’s

tau, τθ, and θ is τθ =
1

2θ+1 . Smaller Kendall’s tau represents less correlation between T1

and T2. Values of 0.1, 0.67 and 4 are used for θ and the corresponding Kendall’s tau

is 0.83, 0.43 and 0.11, respectively. We set the baseline hazard function λ01 = 2 for the

first failure event type k = 1 and λ02 = 6 for the second failure event type k = 2. For

covariates, we consider the situation Zl1 = Zl2 = Z where Z is generated from Bernouilli

distribution with pr(Z = 1) = 0.5. To consider stratified subcohort sampling from two

strata defined by Vi, we define two parameters: η =Pr(V = 1∣Z = 1) and ν =Pr(V = 0∣Z = 0)

where η is sensitivity and ν is the specificity for Z. Unstratified sampling with same

probability, i.e., η = 0.5 and ν = 0.5 is a special case. Larger values η and ν values than 0.5
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indicate that V is highly correlated with Z. For stratified case-cohort studies, we set the

values [η, ν] = [0.7,0.7] and [η, ν] = [0.9,0.9] . Thus, a stratum variable is simulated with

Pr(V = 1) = (1 − ν)Pr(Z = 0) + ηPr(Z = 1) = 0.5. Censoring time is simulated from uniform

distribution [0, u] where u depends on the specified level of the censoring probability. We

set the event proportions of approximately 8% and 15% for k = 1 and 22% and 36% for k = 2.

The corresponding u values are 0.08 and 0.16, for β = 0.1; 0.06 and 0.11, for β = log(2).

The sample size of the full cohort is set to be n = 1000. We select the subcohort and

a subset of cases by unstratified sampling as well as stratified sampling and consider the

subcohort size of 200. We select the subcohort ñl = ñ × ql from each stratum. By using

simple random sampling, we select non-subcohort cases size of m̃lk = (nlk − ñlk) × γk for

k = 1,2 and l = 0,1. We consider the same sample size for two sets of event proportions.

For event proportion [8%,22%], γk is set to be [1,0.57]; for event proportion [15%,36%],

γk is set to be [0.53,0.44]. For each configuration, 2000 simulations were conducted.

In the first set of simulation, we consider the simulations of two stratified generalized

case-cohort studies with non-rare diseases. Our main interest is to estimate the effect of Z

on disease 1. We will examine the performance of our proposed estimator based on (4.4)

with K = 1 which uses the additional information collected on the sampled subjects with

disease 2 and compare the stratified sampling with the unstratified sampling. We will also

compare our results with those using Kang and Cai [2010]’s method for disease 1 which are

based on (4.2) with K = 1.

Table 4.1 summarizes the results. For different combinations of event proportion, the

subcohort sample size, correlation, and sampling methods, Table 4.1 shows the average of

the estimates for β2, the average of the proposed estimated standard error (SE), empirical

standard deviation (SD), and sample relative efficiency (SRE). The subscripts for SE, SD

refer to the proposed method (P) and Kang and Cai [2010]’s method (K). To compare the

stratified sampling with unstratified sampling, the sample relative efficiency in the proposed

method (SREp) is defined as SD2
p for unstratified sampling over SD2

p for stratified sampling.

The sample relative efficiency (SREk) in Kang and Cai [2010]’s method is defined as SD2
k

for unstratified sampling over SD2
k for stratified sampling. STR1 and STR2 represent
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Table 4.1: Simulation result with a single disease outcome (K = 1): β1 = log(2) = 0.693

Model The Proposed method Kang and Cai’s method

P2 γ̃2 τθ β̃G2 SEp SDp CRp SREp β̂2 SEk SDk CRk SREk SRE
UNS 22% 0.57 0.83 0.704 0.221 0.225 95 1.00 0.704 0.227 0.229 95 1.00 1.03

0.43 0.704 0.221 0.229 94 1.00 0.705 0.226 0.233 94 1.00 1.04
0.11 0.702 0.221 0.215 96 1.00 0.704 0.227 0.220 96 1.00 1.04

36% 0.44 0.83 0.706 0.193 0.194 95 1.00 0.701 0.199 0.197 95 1.00 1.03
0.43 0.697 0.193 0.195 94 1.00 0.698 0.199 0.200 94 1.00 1.04
0.11 0.696 0.192 0.194 96 1.00 0.699 0.199 0.199 96 1.00 1.05

STR1 22% 0.57 0.83 0.695 0.215 0.223 95 1.02 0.693 0.223 0.228 95 1.00 1.05
[η, ν] 0.43 0.707 0.216 0.214 95 1.14 0.709 0.223 0.217 96 1.15 1.03

= [0.7,0.7] 0.11 0.704 0.217 0.215 95 1.00 0.704 0.223 0.218 95 1.01 1.03
36% 0.44 0.83 0.702 0.189 0.192 95 1.02 0.696 0.197 0.195 95 1.02 1.04

0.43 0.697 0.190 0.186 95 1.11 0.697 0.197 0.192 95 1.08 1.07
0.11 0.700 0.189 0.185 95 1.09 0.702 0.197 0.194 96 1.05 1.09

STR2 22% 0.57 0.83 0.701 0.196 0.198 95 1.29 0.698 0.209 0.204 95 1.26 1.06
[η, ν] 0.43 0.703 0.200 0.193 96 1.40 0.703 0.209 0.196 97 1.41 1.03

= [0.9,0.9] 0.11 0.700 0.202 0.194 96 1.23 0.700 0.209 0.198 96 1.23 1.04
36% 0.44 0.83 0.706 0.174 0.165 97 1.38 0.703 0.191 0.171 97 1.33 1.08

0.43 0.694 0.179 0.167 97 1.36 0.694 0.192 0.172 97 1.35 1.06
0.11 0.700 0.182 0.167 97 1.35 0.699 0.192 0.173 97 1.32 1.08

SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the cov-

erage rate of the nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency;

SREp = SD2
p for unstratified sampling/SD2

p for stratified sampling, sample relative efficiency in

the proposed method; SREk = SD2
k for unstratified sampling/SD2

k for stratified sampling, sample

relative efficiency in Kang & Cai’s method; UNS, unstratified sampling; STR1, stratified sampling

with [η, ν] = [0.7,0.7]; STR2, stratified sampling with [η, ν] = [0.9,0.9].
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stratified sampling with sensitivity and specificity with [η, ν] = [0.7,0.7] [η, ν] = [0.9,0.9],

respectively.

From the results, we see that both methods are approximately unbiased. The average of

the proposed estimated standard error is close to the empirical standard deviation and the

range of the 95% confidence interval coverage rate is on 94%-97%. In general, the estimates

for stratified sampling of the subcohort and cases have smaller variance than those for

unstratified sampling. To compare the stratified sampling with unstratified sampling, all

the sample relative efficiency (SREp and SREk) for models with stratified sampling (STR1

and STR2) are more than 1, which indicates that stratified sampling is more efficient than

unstratified sampling. This shows that stratum variable available on all the subjects helps

to gain efficiency. When correlation between stratum variables and covariates is larger,

more efficiency gain is obtained. Also, estimated standard errors for the proposed method

are smaller than those for Kang and Cai [2010]’s method. From sample relative efficiency

(SRE), all SREs are larger than 1. Hence, our proposed method gains the efficiency. The

results for β1 are not shown, but they are similar with β2.

In the second set of simulations, we are interested in the joint modeling of the two

diseases (i.e. K = 2). These correspond to (4.2) for Kang and Cai [2010]’s method and

(4.4)) for the proposed method. We examine the performance of our proposed estimator and

compare it to those from Kang and Cai [2010]. Our main interests are to estimate the effect

of Z on disease 1 (β1) and disease 2 (β2) and compare them. Table 4.2 provides summary

statistics for the estimate of β1 for different combinations of event proportion, subcohort

sample size, correlation, and sampling methods. The simulation results suggest that the

estimates for both methods are approximately unbiased and their estimated standard errors

are close to the empirical standard deviations. The range of the coverage rate of the nominal

95% confidence interval is 94%-97%. All sample relative efficiency (SREp and SREk) for

models with stratified sampling (STR1 and STR2) are more than 1 which implies that

stratified sampling is more efficient than that of unstratified sampling and higher efficiency

gain is related with higher sensitivity and specificity. The variance for the propose method

are smaller than those for Kang and Cai [2010]’s method, which indicates that our proposed
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Table 4.2: Simulation result with multiple disease outcomes (K = 2): β = [0.1, 0.7]

Model P1 The Proposed method Kang and Cai’s method

[γ̃1, γ̃2] τθ β̃G2 SEp SDp CRpSREp β̂2 SEk SDk CRk SREk SRE
UNS [8%,22%] 0.83 0.710 0.201 0.205 95 1.00 0.706 0.206 0.208 95 1.00 1.03

[1,0.57] 0.43 0.705 0.202 0.201 96 1.00 0.703 0.206 0.204 95 1.00 1.03
0.11 0.706 0.201 0.206 94 1.00 0.707 0.206 0.209 95 1.00 1.03

[15%,36%] 0.83 0.712 0.178 0.185 94 1.00 0.704 0.182 0.188 94 1.00 1.04
[0.53, 0.44] 0.43 0.710 0.178 0.181 95 1.00 0.709 0.182 0.186 95 1.00 1.05

0.11 0.712 0.176 0.180 95 1.00 0.713 0.182 0.187 94 1.00 1.08
STR1 [8%,22%] 0.83 0.704 0.196 0.196 95 1.10 0.701 0.201 0.199 96 1.09 1.04
[η, ν] [1,0.57] 0.43 0.707 0.197 0.192 96 1.09 0.706 0.202 0.196 96 1.08 1.04

= [0.7,0.7] 0.11 0.700 0.196 0.198 94 1.09 0.700 0.201 0.203 95 1.07 1.05
[15%,36%] 0.83 0.716 0.175 0.174 95 1.13 0.709 0.181 0.177 95 1.13 1.04
[0.53, 0.44] 0.43 0.705 0.176 0.175 95 1.07 0.703 0.182 0.178 95 1.08 1.04

0.11 0.709 0.174 0.173 95 1.08 0.709 0.181 0.179 95 1.09 1.07
STR2 [8%,22%] 0.83 0.711 0.179 0.172 96 1.42 0.709 0.189 0.177 96 1.38 1.07
[η, ν] [1,0.57] 0.43 0.701 0.182 0.171 96 1.38 0.700 0.189 0.174 97 1.38 1.03

= [0.9,0.9] 0.11 0.698 0.183 0.174 96 1.40 0.697 0.189 0.177 96 1.39 1.04
[15%,36%] 0.83 0.705 0.164 0.155 97 1.42 0.701 0.179 0.161 97 1.37 1.08
[0.53, 0.44] 0.43 0.700 0.168 0.151 97 1.44 0.699 0.179 0.157 97 1.40 1.07

0.11 0.706 0.169 0.153 97 1.37 0.706 0.179 0.156 97 1.43 1.04
SE, the average of the estimates of standard error; SD, sample standard deviation; CR, the cov-

erage rate of the nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency;

SREp = SD2
p for unstratified sampling/SD2

p for stratified sampling, sample relative efficiency in

the proposed method; SREk = SD2
k for unstratified sampling/SD2

k for stratified sampling, sample

relative efficiency in Kang & Cai’s method; UNS, unstratified sampling; STR1, stratified sampling

with [η, ν] = [0.7,0.7]; STR2, stratified sampling with [η, ν] = [0.9,0.9].
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Table 4.3: Type I error and power (%) in separate and joint analyses: [η, ν] = [0.7,0.7]

Event Type I error (β1 = β2 = log 2) Power (β1 = 0.1, β2 = 0.7)
S J S J

proportion γ̃ τθ PR KC PR KC PR KC PR KC

[8%,22%] [1,0.57] 0.83 1.0 0.9 4.0 5.0 40 44 63 67
0.43 1.7 2.5 4.3 5.2 39 43 54 56
0.11 3.1 2.9 4.5 5.8 41 43 51 54

[15%,36%] [0.53, 0.44] 0.83 0.5 1.6 4.2 5.5 52 49 73 69
0.43 1.5 1.7 4.6 4.6 50 49 67 63
0.11 2.7 2.7 5.1 5.1 52 49 62 58

S, Separate analysis; J, Joint analysis; KC, Kang and Cai [2010]’s method; PR, proposed
method.

method are more efficient than those for Kang and Cai [2010]’s method.

We also conducted simulation studies to examine the Type I error rates and powers in

comparing the effect of the risk factor on the two diseases. We conducted the test based on

the joint analysis with stratified sampling with [η, ν] = [0.7,0.7] for the two diseases. We

also conducted tests using the coefficient estimate from separate analysis for each of the

two diseases assuming independence of the sample. Estimating equations (4.2) and (4.4)

with K = 1 are used for the separate analysis and estimating equations (4.2) and (4.4) with

K = 2 are used for the joint analysis. Table 4.3 summarizes the results for Type I error

rates and powers. Type I error rates are obtained by testing H0 ∶ β1 = β2 under setting

β1 = β2 = log(2) at the significant level .05. The settings for the simulation for the power

are the same as before except that β1 = 0.1 and β2 = 0.7. The tests under separate analysis

treat the two estimates, β̂1 and β̂2, as from two independent samples. The results indicate

that tests based on our proposed weight function are more powerful than those based on

Kang and Cai [2010]’s weight function and the powers of joint analysis are larger than those

based on the separate analysis. Note that Type I error rates of separate analysis are much

less than .05 while the joint analysis methods have Type I error rates close to .05.
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4.5 Data analysis

We applied the proposed method to a data set from the ARIC study which is a population-

based cohort study [Duncan et al., 2003; Ballantyne et al., 2004]. This study consists of

15,792 men and women 45 - 64 years of age from four U.S. communities recruited during

1987 to 1989. All subjects were followed for incident diabetes. The incident diabetes are

defined as a reported physician diagnosis, use of antidiabetes medications, a fasting (≥ 8

hours) glucose ≥ 7.0 mmol/l, or a nonfasting glucose of ≥ 11.1 mmol/l. Subjects are regarded

as censored if they are alive and event-free at the end of 1998 or lost to follow-up.

Our main interest is to investigate the association between high-sensitivity C-reactive

protein (hs-CRP), which is a biomarker of inflammation, and incident diabetes events. In

order to measure hs-CRP, a case-cohort study was conducted to reduce the cost and save

blood specimen. Hs-CRP is also available on subjects for incident coronary heart disease

(CHD) from another case-cohort study in the ARIC study [Ballantyne et al., 2004]. Using

available hs-CRP from another case-cohort, we excluded subjects with prevalent CHD and

prevalent diabetes at baseline, transient ischemic attach or stroke, had missing follow-up

visits; were minority race group; had no valid diabetes determination at follow-ups, missing

CHD information, and baseline measurements. The full cohort consist of 10,279 subjects.

To preserve frozen biologic specimens and reduce costs, generalized case-cohort design

is used by selecting a subset of incident diabetes events since the rate of diabetes during

follow-up is 11.2%. The subcohort and cases of incident diabetes are randomly selected via

stratified sampling where the strata variables are age at baseline (≤ 55 and > 55), sex, and

race (black and white). Age, gender, race, parental history of diabetes, hypertension, and

center are confounding factors and are adjusted in the model. The risk factor, hs-CRP, is

used as a categorical variables with 4 levels based on quartiles. In table 4.4, hs-CRP (C2),

hs-CRP (C3), and hs-CRP (C4) are indicator variables for hs-CRP values in the second,

third, fourth quartiles, respectively. The hs-CRP values in the first quartile is used as the

reference group in our analysis.

By using available hs-CRP information collected from subjects who have CHD, we can
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Table 4.4: Results for the effect of hs-CRP from the ARIC Study

Proposed method The existing method

Variables β̃Gk SE HR 95% CI β̂Gk SE HR 95% CI

hs-CRP(C4) 1.00 0.214 2.71 ( 1.78 , 4.12 ) 1.02 0.220 2.78 ( 1.80 , 4.28 )
hs-CRP(C2) 0.21 0.239 1.23 ( 0.77 , 1.97 ) 0.23 0.243 1.26 ( 0.78 , 2.02 )
hs-CRP(C3) 0.73 0.213 2.07 ( 1.36 , 3.14 ) 0.75 0.220 2.12 ( 1.38 , 3.26 )
Age 0.01 0.011 1.00 ( 0.98 , 1.03 ) 0.01 0.012 1.01 ( 0.98 , 1.03 )
African 0.56 0.278 1.74 ( 1.01 , 3.01 ) 0.55 0.287 1.73 ( 0.98 , 3.03 )
Male 0.31 0.120 1.37 ( 1.08 , 1.73 ) 0.33 0.131 1.40 ( 1.08 , 1.81 )
PHD 0.61 0.153 1.84 ( 1.36 , 2.48 ) 0.63 0.160 1.88 ( 1.37 , 2.57 )
HYP 0.56 0.155 1.75 ( 1.29 , 2.37 ) 0.56 0.161 1.75 ( 1.28 , 2.40 )
Center (F) 0.15 0.228 1.16 ( 0.74 , 1.82 ) 0.18 0.237 1.19 ( 0.75 , 1.90 )
Center (J) -0.11 0.325 0.89 ( 0.47 , 1.69 ) -0.09 0.334 0.92 ( 0.48 , 1.76 )
Center (M) -0.04 0.225 0.96 ( 0.62 , 1.49 ) -0.02 0.233 0.98 ( 0.62 , 1.56 )

hs-CRP, high-sensitivity C-reactive protein; PHD, parental history of diabetes; HYP, hy-
pertension; SE, standard error estimate; HR, hazard ratio estimate; CI, confidence
interval

apply our proposed method to this data set. The total sample size is 1,576 subjects including

572 noncases, 581 diabetes cases, 423 CHD cases. The subcohort size is 669 which consists

of 96 diabetes cases and 572 non-cases. To study the effect of hs-CRP for diabetes, we fit

the model using (4.1) and compare the results for the proposed method in (4.4) and Kang

and Cai [2010]’s method in (4.2) when K = 1.

Table 4.4 represents the estimates, standard errors, hazard ratios, 95% confidence in-

tervals for two methods. The hazard ratio comparing the fourth with the first hs-CRP

quartile group is 2.71 and confidence interval indicates that it is of statistical significance.

Moreover, the hazard ratio comparing the third with the first hs-CRP quartile group is also

statistically significant, but the hazard ratio for the second versus the first quartile group

is not statistically significant. The regression coefficient estimates for the proposed method

are similar with those for the existing method, but all the standard errors are smaller than

those of the existing method and consequently the 95% confidence intervals are narrower.

4.6 Concluding Remarks

We proposed more efficient estimators for stratified generalized case-cohort design than

those for [Kang and Cai, 2010] by using available stratum variables and exposure information
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for the other diseases. For a single disease outcome and multiple disease outcomes, weighted

estimating equations with the proposed weight function were proposed. We have shown that

our proposed estimators are consistent and asymptotically normally distributed under some

regularity conditions. The asymptotic relative efficiency of the proposed was derived and

we can calculate the efficiency gain in practice. Based on simulation results, our proposed

methods improve efficiency and stratified sampling of the subcohort and cases produces

more efficiency gain than unstratified sampling.

In this paper, we proposed the new weight function for the generalized case-cohort study

with two types of diseases. We can extend the general weight function with K diseases:

πlik(t) =
K

∏
j=1

(1 −∆lij)ξliα̃
−1
lk (t) +

⎧⎪⎪
⎨
⎪⎪⎩

1 −
K

∏
j=1

(1 −∆lij)

⎫⎪⎪
⎬
⎪⎪⎭

ξli

+ (1 − ξli)[ ∑
m∈M(1)

1

N(M)
{∏
j∈M

∆lij ∏
j′∈A−M

(1 −∆lij′)}ηlimγ̃
−1
l,jj′,k(t)],

where α̃lk(t) = ∑
nl
i=1∏

K
j=1(1−∆lij)ξliYlik(t)/∑

nl
i=1∏

K
j=1(1−∆lij)Ylik(t), A is set with {1,2, . . . ,

K}, M are all possible subsets of A except for ∅, N(M) is the number of elements in M ,

M(1) is one of elements in the set M and γ̃l,jj′,k(t) is the selection probability of cases

among non-subcohort members in each part. Therefore, the situation that there are K

diseases can be proved by using similar arguments.

In practice, full cohort size and the disease rates are fixed. Using the formula in Theorem

5, we can calculate the efficiency gain for different combinations of α1, γ11, and γ12. However,

if the conditions are not satisfied, variance for our proposed method could be smaller than

that for Kang and Cai [2010]. Therefore, our proposed method is not always efficient.

We need to derive the most efficient estimator by specifying the joint distribution of the

correlated failure times from the same subject. This would be worthwhile, especially for

data with expensive covariates. This could be interesting future research.

In some data, proportional hazard assumptions are not appropriate and some investi-

gators could be interested in another association between risk factor and disease outcomes.

Hence, alternatives of proportional hazard models are other types of models such as addi-

tive hazards models, proportional odds model, the accelerated failure time model, and the
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semiparametric transformation model. In addition to proportional hazards models, we can

adapt our approaches to the stratified case-cohort study with the above models.
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Chapter 5

Additive hazards model for stratified
case-cohort design

5.1 Introduction

There are two main principal frameworks to investigate the associations between risk

factors and the disease outcome: Cox [1972]’s proportional hazards model and the additive

hazards model. Most of the authors have studied multiplicative hazards models for relative

risk using proportional hazards models in which covariate effects can be expressed as hazard

ratios. However, the proportional hazards assumption might not be appropriate for some

data. In addition, epidemiologists are often interested in the risk difference attributed to

the exposure and the risk difference is useful in public health decision since it can translate

directly into the number of disease cases [Kulich and Lin, 2000b]. Therefore, additive

hazards models have been a useful and important alternative to Cox [1972]’s proportional

hazards model.

There are some work for additive hazards models. Lin and Ying [1994] proposed semi-

parametric estimation for univariate failure time data and studied asymptotic properties

of the estimators. Yin and Cai [2004] extended this approach to the multivariate failure

time data. By using Lin and Ying [1994]’s estimators, Pipper and Martinusse [2004] also

considered marginal additive hazards models for clustered data.

All the aforementioned work deals with all the subjects in the full cohort. In large cohort

studies, obtaining expensive covariate information on all members in the entire cohort could

be costly and it could be infeasible due to limited financial resource. In order to reduce cost,



the case-cohort study is proposed by Prentice [1986]. Under the case-cohort design, covariate

information can be collected only from the subcohort which is a random sample from whole

cohort and all the subjects who have diseases of interest. The important advantage for the

case-cohort study is that the same subcohort can be used when several types of diseases are

of interest [Wacholder et al., 1991].

A few methods for case-cohort studies with additive hazards models have been studied.

For univariate failure time, Kulich and Lin [2000a] applied additive hazards models to the

case-cohort study and derived the large-sample theory of the proposed estimators. Sun

et al. [2004] extended this approach to competing risks analysis in the case-cohort study.

For multiple disease events, Kang et al. [2012] proposed marginal additive hazards model

for case-cohort studies and consider stratified sampling for selection of the subcohort.

Taking advantage of the case-cohort design, several diseases are usually studied using

the same subcohort. In such situation, the information on the expensive exposure measure

are available on the subcohort as well as on any subjects with any of the diseases under the

study. For example, one of the goals in the Atherosclerosis Risk in Communities (ARIC)

study is to investigate the association between the genetic variation in PTGS1 and coronary

heart disease (CHD) as well as stroke and to compare the effects of the genetic variation

on CHD and stroke [Lee et al., 2008]. In this study, the case-cohort design with stratified

sampling for the subcohort are used. To examine the relationship between the genetic

variation and CHD as well as stroke, two case-cohort studies were conducted separately.

We are interested in examining the effect of PTGS1 on the CHD and stroke.

The genetic variation in PTGS1 was collected from the subcohort and all subjects with

CHD and/or stroke. Typically, when analysis for CHD was conducted, the available infor-

mation for stroke were ignored. This is not efficient use of the available information. In

addition, it is often of interest to compare the effects of risk factors on multiple diseases.

Kang et al. [2012] considered the joint modeling with additive hazards models. However,

they also did not fully use all the available information. These motivate us to consider a

more efficient estimator which uses all the available information for the additive hazards

model with stratified case-cohort design.
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In this paper, we propose estimation procedure in the additive hazards model for tra-

ditional and generalized stratified case-cohort design with univariate failure time as well

as multivariate failure time. In Section 5.2, we propose models and estimation procedures

for the proposed methods. Section 5.3 summarizes asymptotic properties for the proposed

estimators and Section 5.4 reports some simulation results. In Section 5.5, we analyze data

from the ARIC study by using the proposed method. Concluding remarks are provided in

Section 5.6.

5.2 Model

Suppose that a cohort study consists of n independent subjects with K diseases of

interest and can be divided into L mutually exclusive strata based on available information

V from all cohort members. Let Tlik denote the potential failure time and Clik the potential

censoring time for disease k of subject i within stratum l. We assume that Tlik is independent

of Clik given covariates. Let Zlik(t) be a p × 1 possibly time-dependent covariates vector

for diseases k of subject i within stratum l at time t. We assume that time-dependent

covariates are external; that is, they are not influenced by the disease processes [Kalbfleisch

and Prentice, 2002]. Let Xlik = min(Tlik,Clik) denote the observed time, ∆lik = I(Tlik ≤

Clik) the indicator for failure, Nlik(t) = I(Xlik ≤ t,∆lik = 1) the counting process, and

Ylik(t) = I(Xlik ≥ t) the at risk indicator for disease k of subject i within stratum l, where

I(.) is the indicator function. Let Vi denote a discrete random variable for subject i as a

stratum variable. The stratum variable is assumed to be independent of Tlik given Zlik(t),

i.e., Vi affects Tlik only through Zlik(t) [Kulich and Lin, 2004]. Let τ denote the end of

study time.

Consider the following additive hazards model for Tlik given Zlik(t)

λlik{t∣Zlik(t)} = λ0k(t) + β
T
0 Zlik(t), (5.1)

where λ0k(t) is an unspecified baseline hazard function for disease k of subject i and β0 is
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p-dimensional fixed and unknown parameters. Model (5.1) can incorporate disease-type-

specific effect model λik{t∣Z
∗
lik(t)} = λ0k(t)+β

T
k Z

∗
lik(t) as a special case. Specifically, we de-

fine βT0 = (βT1 , . . . , β
T
k , . . . , β

T
K) and Zlik(t)

T = (0Ti1, . . . ,0
T
i(k−1),{Z

∗
lik(t)}

T ,0Tli(k+1), . . . ,0
T
liK)

where 0T is a 1 × p zero vector. We have βT0 Zlik(t) = β
T
k Z

∗
lik(t).

First, we consider the traditional case-cohort design with stratified sampling and refer

to this design as traditional stratified case-cohort design. Suppose that the total size of

cohort n is partitioned into nl intervals for l = 1, . . . , L. Under traditional stratified case-

cohort design, we assume that subjects in the subcohort are selected by stratified random

sampling. Specifically, we select a fixed size ñl subjects from the nl subjects in stratum l into

the subcohort by using simple random sampling and the total subcohort size is ñ = ΣL
l=1ñl.

Let ξli be an indicator for subcohort membership for subject i in stratum l. Each

subject in stratum l has the same probability α̃l = Pr(ξli = 1) = ñl/nl into the subcohort.

Zlik(t)(0 ≤ t ≤ τ) are measured for subjects in the subcohort and those with any disease of

interest.

In many biomedical and clinical studies with common diseases or the large number of

cases, selecting all cases is not feasible due to limited resources. Under this situation, it

is appropriate to consider the stratified case-cohort design which has flexibility to select a

different portion of all cases among the non-subcohort members in a different stratum. We

refer to this design as generalized stratified case-cohort design.

Under the generalized stratified case-cohort design, after selection of subcohort, we

select a fixed number m̃lk of the type k disease cases among non-subcohort members in

stratum l by simple random sampling. Denote by m̃k = ΣL
l=1m̃lk the total size of the type

k disease cases. Let ηlik be the indicator for whether subject i in stratum l is sampled for

non-subcohort disease k. Let γ̃lk = Pr (ηlik = 1∣∆lik = 1, ξli = 0) = m̃lk/(nlk − ñlk) denote the

selection probability of subjects among non-subcohort members in stratum l with disease

k, where nlk and ñlk denote the number of disease k in the cohort and in the subcohort

within stratum l, respectively. Due to sampling scheme, the elements in (ηl1k, . . . , ηlnlk) are

correlated, however, (ηl1k, . . . , ηlnlk) is independent of (ηl′1k′ , . . . , ηl′nl′k′) for k ≠ k′ or l ≠ l′.
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5.2.1 Estimation for univariate failure time

Consider the situation with only one rare disease of interest, but with covariate infor-

mation available for subjects with other diseases. Under this situation, the observable

information is (Xlik,∆lik, ξli, Zlik(t),0 ≤ t ≤ Xlik, Vi) when ξli = 1 or ∆lik = 1 and is

(Xlik,∆lik, ξli, Vi) when ξli = 0 and ∆lik = 0. In the situation that covariate information

are not available for subjects with other diseases, Kulich and Lin [2000a] proposed the ad-

ditive hazards model for traditional case-cohort studies for a single disease using stratified

simple random sampling. For example, if we are interested in disease k and ignore the

covariate information collected on subjects with the other disease, the true regression pa-

rameter β0 in (5.1) can be estimated by solving the estimating equation [Kulich and Lin,

2000a]:

UAk (β) =
L

∑
l=1

nl

∑
i=1

ρik ∫
τ

0
{Zlik(t) − Z̄k(t)}{dNlik(t) − β

TZlik(t)Ylik(t)dt} = 0, (5.2)

where

Z̄k(t) =
∑
L
l=1∑

nl
i=1 ρlikZlik(t)Ylik(t)

∑
L
l=1∑

nl
i=1 ρlikYlik(t)

and ρlik = ∆lik + (1 −∆lik)ξliα̂
−1
lk with α̂lk = ∑

nl
i=1 ξli(1 −∆lik)/∑

nl
i=1(1 −∆lik). Here α̂lk, an

estimator for the true selection probability α̃, is the proportion of the sampled subjects

in the subcohort without disease k among all subjects in stratum l without disease k.

This approach for the weight function was first proposed by Kalbfleisch and Lawless [1988]

and Borgan et al. [2000] proposed the time-varying weight version ρlik(t) where ρlik(t) =

∆lik + (1 − ∆lik)ξliα̂
−1
lk (t) with α̂lk(t) = ∑

nl
i=1 ξli(1 − ∆lik)Ylik(t)/∑

nl
i=1(1 − ∆lik)Ylik(t). β̂ is

defined as the solution to (5.2) and has the following explicit form:

β̂A = [
L

∑
l=1

nl

∑
i=1

ρlik ∫
τ

0
{Zlik(t) − Z̄k(t)}

⊗2Ylik(t)dt]

−1 L

∑
l=1

nl

∑
i=1
∫

τ

0
{Zlik(t) − Z̄k(t)}dNlik(t),

where a⊗2 = aaT .

To make full use of collected covariate information on subjects with other diseases, we
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consider the following weighted estimating equation:

U Ik (β) =
L

∑
l=1

nl

∑
i=1
∫

τ

0
ψlik(t){Zlik(t) − Z̄

I
k(t)}{dNlik(t) − β

TZlik(t)Ylik(t)dt} = 0, (5.3)

where

Z̄Ik(t) =
L

∑
l=1

nl

∑
i=1

ψlik(t)Zlik(t)Ylik(t)/
L

∑
l=1

nl

∑
i=1

ψlik(t)Ylik(t)

and ψlik(t) is a possibly time-dependent weight function which has the following form:

ψlik(t) = {1 −
K

∏
j=1

(1 −∆lij)} +
K

∏
j=1

(1 −∆lij)ξliα̃
−1
lk (t) (5.4)

where α̃lk(t) = ∑
nl
i=1 ξi{∏

K
j=1(1−∆lij)}Ylik(t)/∑

nl
i=1{∏

K
j=1(1−∆lij)}Ylik(t). The explicit form

of β̃I which is defined by the solution of the estimating equation (5.3) is following:

β̃I = [
L

∑
l=1

nl

∑
i=1
∫

τ

0
ψlik(t){Zlik(t) − Z̄

I
k(t)}

⊗2Ylik(t)dt]

−1 L

∑
l=1

nl

∑
i=1
∫

τ

0
{Zlik(t) − Z̄

I
k(t)}dNlik(t).

In the situation that two case-cohort studies were conducted using the same subcohort for

disease 1 and disease 2, respectively, covariate information are available for the subcohort

members as well as subjects with disease 1 and/or disease 2. If we are interested in esti-

mating the covariate effect for disease 1, the time-varying weight function from the existing

method is ρli1(t) = ∆li1+(1−∆li1)ξliα̂
−1
1l (t) = 1 when ∆li1 = 1 and ρli1 = α̂

−1
l1 (t) when ∆li1 = 0

and ξli = 1, regardless of disease 2 information. Therefore, the existing weight function does

not use information collected on subjects with disease 2. On the other hand, our proposed

weight function for disease 1 is ψli1(t) = {1 −∏2
j=1(1 − ∆lij)} +∏

2
j=1(1 − ∆lij)ξliα̃

−1
1l (t) = 1

when ∆li1 = 1 or ∆li2 = 1 and ψli1(t) = α̃
−1
1l (t) when ∆li1 = 0, ∆li2 = 0, and ξli = 1. This

weight function takes disease 2 information into consideration. Note that α̃lk(t), which is an

estimator of the true sampling probability α̃, is the proportion of sampled subjects among

those who do not have any diseases in stratum l and are remaining in the risk set at time t.

When estimating the effect of risk factors on a disease, the proposed weight uses covariate
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information collected on subjects with other failure events.

Let Λ0k(t) = ∫
τ

0 λ0k(s)ds. We propose to estimate Λ0k(t) by a Breslow-Aalen type

estimator Λ̃I0k(β̃
I , t), where

Λ̃I0k(β, t) = ∫
τ

0

∑
L
l=1∑

nl
i=1ψlik(u){dNlik(u) − Ylik(u)β

TZlik(u)du}

∑
L
l=1∑

nl
i=1ψlik(u)Ylik(u)

. (5.5)

If the disease of interest is common, then the generalized case-cohort design is more

appropriate than the traditional case-cohort design. We can extend our approach to the

generalized stratified case-cohort design. We consider the following weight function πlik(t)

with two types of diseases (i.e. K = 2):

πlik(t) = Π2
j=1(1 −∆lij)ξliα̃

−1
lk (t) + {1 −Π2

j=1(1 −∆lij)} ξli

+ ∆li1(1 −∆li2)(1 − ξli)ηli1γ̃
−1
l1k(t) + (1 −∆li1)∆li2(1 − ξli)ηli2γ̃

−1
l2k(t)

+
1

2
∆li1∆li2(1 − ξli)ηli1γ̃

−1
l3k(t) +

1

2
∆li1∆li2(1 − ξli)ηli2γ̃

−1
l4k(t), (5.6)

where

α̃lk(t) =

nl

∑
i=1

Π2
j=1(1 −∆lij)ξliYlik(t)/{

nl

∑
i=1

Π2
j=1(1 −∆lij)Ylik(t)}

γ̃l1k(t) =

nl

∑
i=1

∆li1(1 −∆li2)(1 − ξli)ηli1Ylik(t)/{
nl

∑
i=1

∆li1(1 −∆li2)(1 − ξli)Ylik(t)}

γ̃l2k(t) =

nl

∑
i=1

(1 −∆li1)∆li2(1 − ξli)ηli2Ylik(t)/{
nl

∑
i=1

(1 −∆li1)∆li2(1 − ξli)Ylik(t)}

γ̃l3k(t) =

nl

∑
i=1

∆li1∆li2(1 − ξli)ηli1Ylik(t)/{
nl

∑
i=1

∆li1∆li2(1 − ξli)Ylik(t)}

γ̃l4k(t) =

nl

∑
i=1

∆li1∆li2(1 − ξli)ηli2Ylik(t)/{
nl

∑
i=1

∆li1∆li2(1 − ξli)Ylik(t)}.

For the generalized case-cohort data, we can construct the weighted estimating functions and

the estimator for the baseline cumulative hazard function by replacing the weight function

ψlik(t) with πlik(t) in (5.3). The explicit form of β̃IG which is defined by the solution of the
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estimating equation with a weight function πlik(t) is following:

β̃IG = [
L

∑
l=1

nl

∑
i=1
∫

τ

0
πlik(t){Zlik(t) − Z̄

I
k(t)}

⊗2Ylik(t)dt]

−1

×
L

∑
l=1

nl

∑
i=1
∫

τ

0
πlik(t){Zlik(t) − Z̄

I
k(t)}dNlik(t).

5.2.2 Estimation for multivariate failure time

Suppose that there are n = ΣL
l=1nl independent subjects with K diseases of interest.

Let independent failure time vector be Tli = (Tli1, . . . , Tlik) and the observed time vector

be Xli = (Xli1, . . . ,Xlik, ) i = 1, . . . , n. Thus, for subject i in stratum l complete observa-

tions are (Xlik,∆lik, ξli, Zlik(t),0 ≤ t ≤ τ, k = 1, . . . ,K,Vi) when ξli = 1 or ∆lik = 1 and

(Xlik,∆lik, ξi, k = 1, . . . ,K,Vi) when ξli = 0 and ∆lik = 0.

For traditional stratified case-cohort data with K rare diseases, we consider the esti-

mating equation

U II(β) =
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
ψlik(t){Zlik(t) − Z̄

I
k(t)}{dNlik(t) − β

TZlik(t)Ylik(t)dt} = 0, (5.7)

with ψlik(t) defined as in (5.4).

The estimator of the hazards regression parameter β0, β̃II , is defined as the solution to

(5.7) which has the following explicit form:

β̃II = [
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
ψlik(t){Zlik(t) − Z̄

I
k(t)}

⊗2Ylik(t)dt]

−1 L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
{Zlik(t) − Z̄

I
k(t)}dNlik(t).

Let Λ0k(t) = ∫
τ

0 λ0k(s)ds. A Breslow-Aalen type estimator of the baseline cumulative

hazard function is given by Λ̃II0k(β̃
II , t), where

Λ̃II0k(β, t) = ∫
τ

0

∑
L
l=1∑

nl
i=1ψlik(u){dNlik(u) − Yik(u)β

TZlik(u)du}

∑
L
l=1∑

nl
i=1ψlik(u)Ylik(u)

. (5.8)

Under the generalized case-cohort design, the estimating equation and estimator of the

baseline cumulative hazard function are the same as those in (5.7) and (5.8) replacing ψlik(t)
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by πlik(t) defined as in (5.6). The estimator β̃IIG has the explicit form:

β̃IIG = [
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
πik(t){Zlik(t) − Z̄

I
k(t)}

⊗2Ylik(t)dt]

−1

×
L

∑
l=1

nl

∑
i=1

K

∑
k=1
∫

τ

0
πlik(t){Zlik(t) − Z̄

I
k(t)}dNlik(t).

5.3 Asymptotic properties

5.3.1 Asymptotic properties of β̃IIG and Λ̃II
0k(β̃IIG , t)

In this section, we will study the asymptotic properties of the proposed methods. Since

the estimators for the univariate failure time are a special case of those for the multivariate

failure time and the traditional case-cohort study is a special case of the generalized case-

cohort study, we will only present the results for the multivariate case for the generalized

case-cohort study. We make the following assumptions:

(a) {Tli,Cli, Zli}, i = 1, . . . , n and l = 1, . . . , L are independent and identically distributed

where Tli = (Tli1, . . . , TliK)T , Cli = (Cli1, . . . ,CliK)T , and Zli = (Zli1, . . . , ZliK)T ;

(b) P{Ylik(t) = 1} > 0 for t ∈ [0, τ] , i = 1, . . . , nl, k = 1,2, and L = 1, . . . , L;

(c) ∣Zlik(0)∣ + ∫
τ

0 ∣dZlik(t)∣ < Dz <∞, i = 1, . . . , nl, k = 1,2, and L = 1, . . . , L almost surely

and Dz is a constant;

(d) The matrixAk is positive definite for k = 1,2 whereAk = ΣL
l=1qlEl(∫

τ
0 Yl1k(t){Zl1k(t)

⊗2−

[E{Yl1k(t)Zl1k(t)}/E{Yl1k(t)}]
⊗2}dt) where ql = limn→∞ nl/n;

(e) For all k = 1,2, ∫
τ

0 λ0k(t)dt <∞;

To show the desired asymptotic properties for generalized case-cohort samples, the following

conditions are also needed:

(f) For all l = 1, . . . , L, limn→∞ α̃l = αl, where α̃l = ñl/nl and αl is a positive constant.

(g) limn→∞ γ̃l1k = limn→∞ γ̃l3k = γl1, limn→∞ γ̃l2k = limn→∞ γ̃l4k = γl2 where γ̃l1k = Pr[ηli1 =

1∣∆li1 = 1,∆li2 = 0, ξli = 0] = m̃l10/(n1l0 − ñl10), m̃ljk denotes the number of sampled

109



diseased subjects in non-subcohort with (∆l1 = j and ∆l2 = k), nljk and ñljk denote

the number of subjects with diseases (∆l1 = j and ∆l2 = k) in the cohort and the

subcohort in stratum l, respectively, γ̃l2k = m̃l01/(nl01 − ñl01), γ̃l3k = m̃
l1
11/(nl11 − ñl11),

γ̃l4k = m̃2
l11/(nl11 − ñl11), and γlk is a positive constant on (0,1] for all k = 1,2 and

l = 1, . . . , L.

(h) limn→∞ nlk/nl = plk, where plk is a positive constant on [0,1] for all k = 1,2 and

l = 1, . . . , L.

(i) limn→∞ nl/n = ql, where ql is a positive constant on [0,1] for all l = 1, . . . , L.

The following theorems summarize the main results. Here is the asymptotic properties

for β̃IIG .

Theorem 6. Under the regularity conditions (a)-(i), β̃IIG converges in probability to β0 and

n1/2(β̃IIG −β0) converges in distribution to a mean zero normal distribution with covariance

matrix A(β0)
−1
∑
L
l=1 ΣGII(β0)A(β0)

−1, where

A(β) =
K

∑
k=1

Ak(β), ΣGII
(β) =

L

∑
l=1

ql[V
a
I,l(β) +

1 − αl
αl

V a
II,l(β) + (1 − αl)

2

∑
k=1

V a
III,lk(β)],

V a
I,l(β) = El[

2

∑
k=1

Ql1k(β)]
⊗2,

V a
II,l(β) = V arl

⎡
⎢
⎢
⎢
⎢
⎣

2

∏
j=1

(1 −∆lij)
2

∑
k=1
∫

τ

0
[Bl1k(β, t) − Ylik(t)

E[∏
2
j=1(1 −∆lij)Bl1k(β0, t)]

El[∏
2
j=1(1 −∆lij)Yl1k(t)]

dt]

⎤
⎥
⎥
⎥
⎥
⎦

,

V a
III,lk(β) = Pr[θl10]

1 − γl1
γl1

V arl [Ql1k(β) − ∫
τ

0
Yl1k(t)

El[dQl1k(β, t)∣θl10, ξl1 = 0]

El[Yl1k(t)∣θl10]
∣θl10, ξl1 = 0]

+Pr[θl01]
1 − γl2
γl2

V arl [Ql1k(β) − ∫
τ

0
Yl1k(t)

El[dQl1k(β, t)∣θl01, ξl1 = 0]

El[Yl1k(t)∣θl01]
∣θl01, ξl1 = 0]

+
Pr[θl11]

4
[
1 − γl1
γl1

+
1 − γl2
γl2

]V arl [Ql1k(β) − ∫
τ

0
Yl1k(t)

E[dQl1k(β, t)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
∣θl11, ξl1 = 0] ,

Qlik(t, β) = ∫
t

0
{Zlik(t) − ek(t)}dMlik(t),

Blik(t, β) = {Zl1k(t) − ek(t)}Yl1k(t)(λ0k(t) + β
TZlik(t)),

ek(t) =
∑
L
l=1 qlEl[Yl1k(t)Zl1k(t)]

∑
L
l=1 qlEl[Yl1k(t)]

, θljk = {∆li1 = j and ∆li2 = k}.
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Note that ΣGII
l (β0) consists of three parts. The first part V a

I,l(β0) is a contribution to

the variance from the full cohort, the second part V a
II,l(β0) is due to sampling subcohort

from the full cohort, and the last one V a
III,l(β0) is due to sampling a fraction of all cases.

If we select all cases, which is the traditional stratified case-cohort study, the last variance

goes to zero.

We summarize the asymptotic properties of the proposed baseline cumulative hazard

estimator Λ̃II0k(β̃
II
G , t) in the next theorem.

Theorem 7. Under the regularity conditions (a)-(i), Λ̃II0k(β̃
II
G , t) is a consistent estima-

tor of Λ0k(t) in t ∈ [0, τ] and G(t) = {G1(t), . . . ,GK(t)}T = [n1/2{Λ̃II01(β̃
II
G , t) − Λ01(t)},

n1/2{Λ̃II02(β̃
II
G (t)−Λ02(t))}]

T converges weakly to the Gaussian process G(t) = {G1(t),G2(t)}
T

in D[0, τ]K with mean zero and the following covariance function Gjk(t, s) between Gj(t)

and Gk(s) for j ≠ k.

Gjk(t, s)(β0) =
L

∑
l=1

ql[El{µl1j(β0, t)µl1k(β0, s)} +
1 − αl
αl

El{wl1j(β0, t)wl1k(β0, s)}

+ El{νl1j(β0, t)νl1k(β0, s)}],

where the explicit forms of µlik,wlik, and νlik(β, t) are given in Appendix.

The proof of Λ̃G0k(β̃
II
G , t) is provided in Appendix. The proof uses Taylor expansion,

Kolmogorov-Centsov theorem, weak convergence of the baseline cumulative hazard esti-

mator from full cohort studies with multivariate failure time, Hájek [1960]’s central limit

theorem for finite population sampling, and Cramer-Wold device.

5.3.2 Proofs of Theorems

Proof of Theorem 6

We first show the consistency of β̃IIG . Denote ŨGn = n−1
l Ũ

G. By Taylor expansion series,

β̃IIG can be written as

β̃IIG = β0 + [−
∂ŨGn (β0)

∂β0
]

−1

ŨGn (β0) + op(1) (5.9)
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Based on the extension of Fourtz [1977], if the following conditions are satisfied

(I)
∂ŨGn (β)
∂βT

exists and is continuous in an open neighborhood B of β0,

(II)
∂ŨGn (β)
∂βT

is negative definite with probability going to one as n →∞,

(III) -
∂ŨGn (β)
∂βT

converges to A(β0) in probability uniformly for β in an open neighborhood

about β0,

(IV) ŨGn (β) converges to 0 in probability,

then, we can show that β̃IIG converges to β0 in probability. One can write

−
∂ŨGn (β)

∂βT
=

1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t){Zlik(t) − Z̄

II
k (t)}Zlik(t)Ylik(t)dt

=
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)Ylik(t){Zlik(t)

⊗2
− Z̄IIk (t)Zlik(t)}dt

=
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)Ylik(t){Zlik(t)

⊗2
− Z̄IIk (t)⊗2

}dt (5.10)

Since (5.10) is constant with respect to β , (I) is satisfied. In order to show that (II)

and (III) are satisfied, we need to show uniform convergence of Z̄IIk (t) to ek(t) such that

supt∈[0,τ] ∥ Z̄
II
k (t) − ek(t) ∥

p
Ð→ 0 as n→∞ for k = 1,2. It is sufficient to show that

sup
t∈[0,τ]

∥ n−1
L

∑
l=1

nl

∑
i=1

πlik(t)Ylik(t)Zlik(t)
⊗d
− n−1

L

∑
l=1

nl

∑
i=1

Ylik(t)Zlik(t)
⊗d
∥
p
Ð→ 0as n→∞ for d = 0,1.

It can be written as

n−1
L

∑
l=1

nl

∑
i=1

πlik(t)Ylik(t)Zlik(t)
⊗d
− n−1

L

∑
l=1

nl

∑
i=1

Ylik(t)Zlik(t)
⊗d

= n−1
L

∑
l=1

nl

∑
i=1

[
ξli
α̃l

− 1]
2

∏
j=1

(1 −∆lij)Ylik(t)Zlik(t)
⊗d

− n−1
L

∑
l=1

nl

∑
i=1

[α̃−1
l − α̃lk(t)

−1
]ξli

2

∏
j=1

(1 −∆lij)Ylik(t)Zlik(t)
⊗d

+ n−1
L

∑
l=1

nl

∑
i=1

[
ηli1
γ̃l1k

− 1]∆li1(1 −∆li2)(1 − ξli)Ylik(t)Zlik(t)
⊗d
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− n−1
L

∑
l=1

nl

∑
i=1

[γ̃−1
l1 − γ̃l1k(t)

−1
]ηli1∆li1(1 −∆li2)(1 − ξli)Ylik(t)Zlik(t)

⊗d

+ n−1
L

∑
l=1

nl

∑
i=1

[
ηli2
γ̃l2

− 1](1 −∆li1)∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d

− n−1
L

∑
l=1

nl

∑
i=1

[γ̃−1
l2 − γ̃l2k(t)

−1
]ηli2(1 −∆li1)∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d

+ n−1
L

∑
l=1

nl

∑
i=1

1

2
[
ηli1
γ̃l3k

− 1]∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d

− n−1
L

∑
l=1

nl

∑
i=1

1

2
[γ̃−1
l3 − γ̃l3k(t)

−1
]ηli1∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d

+ n−1
L

∑
l=1

nl

∑
i=1

1

2
[
ηli2
γ̃l4

− 1]∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d

− n−1
L

∑
l=1

nl

∑
i=1

1

2
[γ̃−1
l4 − γ̃l4k(t)

−1
]ηli2∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d

Then, one can write

∥ n−1
L

∑
l=1

nl

∑
i=1

πlik(t)Ylik(t)Zlik(t)
⊗d
− n−1

L

∑
l=1

nl

∑
i=1

Ylik(t)Zlik(t)
⊗d
∥

≤ ∥ n−1
L

∑
l=1

nl

∑
i=1

[
ξli
α̃l

− 1]
2

∏
j=1

(1 −∆lij)Ylik(t)Zlik(t)
⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

[α̃−1
l − α̃lk(t)

−1
]ξli

2

∏
j=1

(1 −∆lij)Ylik(t)Zlik(t)
⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

[
ηli1
γ̃l1k

− 1]∆li1(1 −∆li2)(1 − ξli)Ylik(t)Zlik(t)
⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

[γ̃−1
l1 − γ̃l1k(t)

−1
]ηli1∆li1(1 −∆li2)(1 − ξli)Ylik(t)Zlik(t)

⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

[
ηli2
γ̃l2

− 1](1 −∆li1)∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

[γ̃−1
l2 − γ̃l2k(t)

−1
]ηli2(1 −∆li1)∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

1

2
[
ηli1
γ̃l3k

− 1]∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

1

2
[γ̃−1
l3 − γ̃l3k(t)

−1
]ηli1∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d
∥

+ ∥ n−1
L

∑
l=1

nl

∑
i=1

1

2
[
ηli2
γ̃l4

− 1]∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)
⊗d
∥
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+ ∥ n−1
L

∑
l=1

nl

∑
i=1

1

2
[γ̃−1
l4 − γ̃l4k(t)

−1
]ηli2∆li1∆li2(1 − ξli)Ylik(t)Zlik(t)

⊗d
∥ (5.11)

Based on condition (c), the total variation of∏2
j=1(1−∆lij)Ylik(t)Zlik(t)

⊗d, ∆li1(1−∆li2)(1−

ξli)Ylik(t)Zlik(t)
⊗d, (1−∆li1)∆li2(1−ξli)Ylik(t)Zlik(t)

⊗d, and ∆li1∆li2(1−ξli)Ylik(t)Zlik(t)
⊗d

are finite on [0, τ]. By applying lemma 2, the first, third, fifth, seventh, and ninth terms in

(5.11) converge to zero in probability uniformly in t.

Note that α̃−1
l − α̃lk(t)

−1 converges to zero in probability uniformly in t by lemma 2

since ∏2
j=1(1 − ∆lij)Ylik(t) is bounded variation and El[∏

2
j=1(1 − ∆l1j)Yl1k(t)] is bounded

away from zero. Similarly, γ̃−1
l1 − γ̃l1k(t)

−1, γ̃−1
l2 − γ̃l2k(t)

−1, γ̃−1
l3 − γ̃l3k(t)

−1, and γ̃−1
l4 − γ̃l4k(t)

−1

can be shown to converge to zero in probability uniformly in t, respectively. By lemma

2, 1
nl
∑
nl
i=1 ξli∏

2
j=1(1 − ∆lij)Ylik(t) ∥ Zlik(t)

⊗d ∥ converges to αEl[∏
2
j=1(1 − ∆l1j)Yl1k(t) ∥

Zl1k(t)
⊗d ∥] in probability uniformly in t. Thus, the second, fourth, sixth, eighth, and tenth

terms in (5.11) converge to zero in probability uniformly in t, respectively. Combining all the

above results, n−1(∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)Zlik(t)

⊗d−n−1
∑
L
l=1∑

nl
i=1 Ylik(t)Zlik(t)

⊗d) converges

to zero in probability uniformly in t as n→∞ for d = 0,1.

Since Ylik(t)Zlik(t)
⊗d is bounded variation based on condition (c), n−1

∑
L
l=1∑

nl
i=1 Ylik(t)

Zlik(t)
⊗d converges to ∑Ll=1 qlEl[Yl1k(t)Zlik(t)

⊗d]. Therefore, it can be shown that

sup
t∈[0,τ]

∥ n−1
L

∑
l=1

nl

∑
i=1

πlik(t)Ylik(t)Zlik(t)
⊗d
−

L

∑
l=1

qlEl[Yl1k(t)Zlik(t)
⊗d

] ∥
p
Ð→ 0 as n→∞ for d = 0,1.

Since ∑Ll=1 qlEl[Yl1k(t)] is bounded away from zero based on condition (b), Z̄IIk (t) can be

shown to converge to ek(t) in probability uniformly in t as n → ∞ for k = 1,2. One can

write

−
∂ŨGn (β)

∂βT
=

1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t)Ylik(t){Zlik(t)

⊗2
− Z̄IIk (t)⊗2

}dt

=
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
Ylik(t){Zlik(t)

⊗2
− Z̄IIk (t)⊗2

}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(πlik(t) − 1)Ylik(t){Zlik(t)

⊗2
− Z̄IIk (t)⊗2

}dt. (5.12)
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Note that the first term in (5.12) converges toA = ∑
L
l=1 qlEl[∑

2
k=1 ∫

τ
0 πl1k(t)Yl1k(t){Zl1k(t)

⊗2−

ek(t)
⊗2}dt] where ql = limn→∞ nl/n in probability as n →∞ by the uniform convergence of

Z̄IIk (t) to ek(t).

Now we will show that the second term converges to zero in probability uniformly in t.

The second term in (5.12) can be written as

1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
[α̃lk(t)

−1
− α̃−1

l ]ξli
2

∏
j=1

(1 −∆lij)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)Ylik(t){Zlik(t)
⊗2
− Z̄k(t)

⊗2
}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
[γ̃l1k(t)

−1
− γ̃−1

l1 ]ηli1(1 − ξli)∆li1(1 −∆li2)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli2
γ̃l2

− 1)(1 −∆li1)∆li2(1 − ξli)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
[γ̃l2k(t)

−1
− γ̃−1

l2 ]ηli2(1 − ξli)(1 −∆li1)∆li2Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

2n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli1
γ̃l3k

− 1)∆li1∆li2(1 − ξli)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

2n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
[γ̃l3k(t)

−1
− γ̃−1

l3 ]ηli1(1 − ξli)∆li1∆li2Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

2n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli)Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

+
1

2n

L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
[γ̃l4k(t)

−1
− γ̃−1

l4 ]ηli2(1 − ξli)∆li1∆li2Ylik(t){Zlik(t)
⊗2
− Z̄IIk (t)⊗2

}dt

(5.13)

By the uniform convergence of Z̄IIk (t) to ek(t), the first term in (5.13) is asymptotically

equivalent to n−1
∑
L
l=1∑

nl
i=1∑

2
k=1 ∫

τ
0 (

ξli
α̃l
−1)∏2

j=1(1−∆lij)Ylik(t){Zlik(t)
⊗2−ek(t)

⊗2}dt. Sim-

ilarly, the third term, the fifth term, seventh term, and ninth term in (5.13) are asymp-

totically equivalent to n−1
∑
L
l=1∑

nl
i=1∑

2
k=1 ∫

τ
0 (

ηli1
γ̃l1

−1)∆li1(1−∆li2)(1−ξli)Ylik(t){Zlik(t)
⊗2−

ek(t)
⊗2}dt, n−1

∑
L
l=1∑

nl
i=1∑

2
k=1 ∫

τ
0 (

ηli2
γ̃l2

−1)(1−∆li1)∆li2(1−ξli)Ylik(t){Zlik(t)
⊗2−ek(t)

⊗2}dt,

(2n)−1
∑
L
l=1∑

nl
i=1∑

2
k=1 ∫

τ
0 (

ηli1
γ̃l3k

−1)∆li1∆li2(1−ξli)Ylik(t){Zlik(t)
⊗2−ek(t)

⊗2}dt, and (2n)−1
∑
L
l=1
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∑
nl
i=1∑

2
k=1 ∫

τ
0 (

ηli2
γ̃l4

− 1)(1 − ξli)∆li1∆li2Ylik(t){Zlik(t)
⊗2 − ek(t)

⊗2}dt, respectively.

Based on condition (c), ∏2
j=1(1 − ∆lij)Ylik(t){Zlik(t)

⊗2 − ek(t)
⊗2}, ∆li1(1 − ∆li2)(1 −

ξli)Ylik(t){Zlik(t)
⊗2−ek(t)

⊗2}, (1−∆li1)∆li2(1−ξli)Ylik(t){Zlik(t)
⊗2−ek(t)

⊗2}, ∆li1∆li2(1−

ξli)Ylik(t){Zlik(t)
⊗2 − ek(t)

⊗2} are of bounded variations and they are independent and

identically distributed. It follows from lemma 2 that the first term, the third term, the

fifth term, seventh term, and ninth term can be shown to converge to zero in probability

uniformly in t, respectively.

Since α̃lk(t)
−1 − α̃−1

l , γ̃l1k(t)
−1 − γ̃−1

l1 , γ̃l2k(t)
−1 − γ̃−1

l2 , γ̃l3k(t)
−1 − γ̃−1

l3 , and γ̃l4k(t)
−1 − γ̃−1

l4

converge to zero in probability uniformly respectively and Z̄IIk (t) converges to ek(t) in

probability uniformly in t, we can show that the second, fourth, sixth, eighth, and tenth

terms converge to zero in probability uniformly in t respectively.

Combining all the results, we have

−
∂ŨGn (β)

∂βT
p
Ð→ A as n→∞

, and, thus, (II) and (III) are satisfied.

Now, n1/2ŨGn (β) can be decomposed into four parts:

n1/2ŨGn (β) = n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t){Zlik(t) − Z̄

II
k (t)}dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
πlik(t){Zlik(t) − ek(t) + ek(t) − Z̄

II
k (t)}dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
{Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
{πlik(t) − 1}{Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
{ek(t) − Z̄

II
k (t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
{πlik(t) − 1}{ek(t) − Z̄

II
k (t)}dMlik(t) (5.14)

Since the first term in (5.14) is the pseudo partial likelihood score function for the full likeli-

hood, it is asymptotically zero-mean normal with covariance VI,l(β0) = ∑
L
l=1 qlEl[∑

2
k=1Ql1k(β0)]

⊗2
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where Qlik(t, β) = ∫
t

0 {Zlik(t) − ek(t)}dMlik(t) [Yin and Cai, 2004].

The third term can be shown to converge to zero. Note that for fixed t, Ml1k(t), . . . ,Mlnk(t)

are identically and independent distributed zero-mean random variables and ∑
nl
i=1Mlik(t)

is sum of identically and independently distributed zero-mean random variables.

Since M2
lik(0) <∞ and M2

lik(τ) <∞ are satisfied based on condition (c) and (e), Mlik(t)

is of bounded variation and therefore it can be written as a difference of two monotone

functions in t. From the example of 2.11.16 of van der Vaart and Wellner [1996](p215),

n
−1/2
l ∑

nl
i=1Mlik(t) converges weakly to a zero-mean Gaussian process, say PM,lk(t).

To establish the existence of stochastic processes with continuous sample paths, we will

use Kolmogorov-Centsov theorem. If conditions of Kolmogorov-Centsov theorem E{PM,lk(t)−

PM,lk(s)}
4 ≤ C∗

z ∣t − s∣
2 and E{PM,lk(t) − PM,lk(s)}

2 ≤ C ∣t − s∣ for all t ≥ s are satisfied,

then we can show that PM,lk(t) has continuous sample paths. Note that EPM,lk(t)
2 =

E[n−1
l ∑

nl
i=1Mlik(t)

2] = EMlik(t)
2 = E[∫

t
0 Ylik(u)(λ0k(u)du+β

T
0 Zlik(u))du], and E{PM,lk(t)−

PM,lk(s)}
2 = EPM,lk(t)

2 - EPM,lk(s)
2= E[∫

t
s Ylik(u)(λ0k(u)du + β

T
0 Zlik(u))du]. Based on

condition (c), (e), λ0k(.) and βT0 Zlik(.) are of bounded variations on [0, τ]. Thus, it follows

from mean value theorem that there exists a constant C such that E[∫
t
s Ylik(u)(λ0k(u)du+

βT0 Zlik(u))du] ≤ C(t − s) for s ≤ t. Hence, E[{PM,lk(t) − PM,lk(s)}
2] ≤ C(t − s) and

E[PM,lk(t) − PM,lk(s)}
4] = Var(PM,lk(t) − PM,lk(s))

2 + E{(PM,lk(t) − PM,lk(s))
2}2 = 3

{E(PM,lk(t)−PM,lk(s))
2}2 ≤ C∗∣t−s∣2 for some constant C∗. Since two conditions are satis-

fied, it follows that PM,lk(t) has continuous sample path from Kolmogorov-Centsov theorem.

Based on conditions (b) and (c), it can be shown that n−1
∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)Zlik(t) and

n−1
∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t) are of bounded variations and specially n−1

∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)

is bounded away from zero. Thus Z̄IIk (t) is of bounded variation and can be written as

Z̄IIk (t) = Gk1 −Gk1 where both Gk1 and Gk2 are nonnegative, monotone functions in t, and

bounded. Therefore, Z̄IIk (t) is the sum of two monotone functions. By Lemma 1, the third

term in (5.14) converges to zero in probability uniformly in t as n→∞.

By similar arguments, the fourth term in (5.14) converges to zero in probability uni-

formly since πlik(t) − 1 is of bounded variation.
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Now, the second term in (5.14) can be written as

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
{πlik(t) − 1}{Zlik(t) − ek(t)}dMlik(t)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(α̃lk(t)

−1
− α̃−1

l )ξli
2

∏
j=1

(1 −∆lij){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(γ̃l1k(t)

−1
− γ̃−1

l1k)ηli1∆li1(1 −∆li2)(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ηli2
γ̃l2

− 1)(1 −∆li1)∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(γ̃l2k(t)

−1
− γ̃−1

l2k)ηli2(1 −∆li1)∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∫

τ

0
(
ηli1
γ̃l3k

− 1)∆li1∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∫

τ

0
(γ̃l3k(t)

−1
− γ̃−1

l3k)ηli1∆li1∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∫

τ

0
(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∫

τ

0
(γ̃l4k(t)

−1
− γ̃−1

l4k)ηli2∆li1∆li2(1 − ξli){Zlik(t) − ek(t)}dMlik(t)

(5.15)

Using the result of (4.6), the second term in (5.15) can be written as

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0

1

α̃lEl(∏
2
j=1(1 −∆l1j)Yl1k(t))

1

nl

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
m=1

(1 −
ξlm
α̃l

)
2

∏
j=1

(1 −∆lmj)Ylmk(t)

⎫⎪⎪
⎬
⎪⎪⎭

× ξli
2

∏
j=1

(1 −∆lij){Zlik(t) − ek(t)}dMlik(t) + op(1)

= n−1/2
L

∑
l=1

nl

∑
i=1

2

∏
j=1

(1 −∆lij)(1 −
ξli
α̃l

)

×
2

∑
k=1
∫

τ

0

Ylik(t)n
−1
l ∑

nl
m=1

ξlm
α̃l
∏

2
j=1(1 −∆lmj){Zlmk(t) − ek(t)}dMlmk(t)

El[∏
2
j=1(1 −∆l1j)Yl1k(t))]

+ op(1)
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It follows from Glivenko-Cantelli lemma and Lemma 2 that n−1
l ∑

nl
m=1

ξlm
α̃l
∏

2
j=1(1−∆lmj){Zlmk(t)−

ek(t)}dMlmk(t) can be written as

n−1
l

nl

∑
m=1

ξlm
α̃l

2

∏
j=1

(1 −∆lmj){Zlmk(t) − ek(t)}dMlmk(t)

= n−1
l

nl

∑
m=1

ξlm
α̃l

2

∏
j=1

(1 −∆lmj){Zlmk(t) − ek(t)}{dNlmk(t) − Ylmk(t)(λ0k(t) + β
T
0 Zlmk(t))dt}

= −n−1
l

nl

∑
m=1

ξlm
α̃l

2

∏
j=1

(1 −∆lmj){Zlmk(t) − ek(t)}Ylmk(t)(λ0k(t) + β
T
0 Zlmk(t))dt

→ −El[
2

∏
j=1

(1 −∆l1j){Zl1k(t) − ek(t)}Yl1k(t)(λ0k(t) + β
TZl1k(t))]dt

Since only censored observations contribute to this term, the last equality holds.

Therefore, the second term on the right-side of (5.15) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)
2

∑
k=1
∫

τ

0

Ylik(t)El[∏
2
j=1(1 −∆l1j)Blik(t, β)]

El[∏
2
j=1(1 −∆l1jYl1k(t))]

dt

whereBlik(t, β) = {Zlik(t)−ek(t)}Ylik(t)[λ0k(t)+β
TZlik(t)] and ek(t) =

∑
L
l=1 qlEl[Yl1k(t)Zl1k(t)]

∑
L
l=1 qlEl[Yl1k(t)]

.

The first term on the right-side of (5.15) is asymptotically equivalent to

−n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij){Zlik(t) − ek(t)}Ylmk(t)(λ0k(t) + β
T
0 Zlmk(t))dt

= −n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1
∫

τ

0
(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)Blik(t, β)dt

Combining these results, it can be shown that the first and second terms in (5.15) are

asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

2

∏
j=1

(1 −∆lij)(1 −
ξli
α̃l

)∫

τ

0

⎡
⎢
⎢
⎢
⎣
Blik(t, β) − Ylik(t)

El[∏
2
j=1(1 −∆l1j)Bl1k(t, β)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

⎤
⎥
⎥
⎥
⎦
dt

Using the result of (4.8), Glivenko-Cantelli lemma and Lemma 2, it can be shown that the
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fourth, the sixth, the eighth, and tenth terms in (5.15) are asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃l1

− 1)

× ∫

τ

0
Ylik(t)

El[{Zl1k(t) − ek(t)}dMl1k(t)∣θl10, ξl1 = 0]

El[Yl1k(t)∣θl10]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)

× ∫

τ

0
Ylik(t)

El[{Zl1k(t) − ek(t)}dMl1k(t)∣θl01, ξl1 = 0]

El[Yl1k(t)∣θl01]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1∆li2(1 − ξli)(
ηli1
γ̃l3

− 1)∫
τ

0
Ylik(t)

El[{Zl1k(t) − ek(t)}dMl1k(t)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1∆li2(1 − ξli)(
ηli2
γ̃l4

− 1)∫
τ

0
Ylik(t)

El[{Zl1k(t) − ek(t)}dMl1k(t)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
.

Combining all results, the term in (5.14) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

Qlik(t, β)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

2

∏
j=1

(1 −∆lij)(1 −
ξli
α̃l

)∫

τ

0

⎡
⎢
⎢
⎢
⎣
Blik(β0, t) − Ylik(t)

El[∏
2
j=1(1 −∆l1j)Bl1k(t, β)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

⎤
⎥
⎥
⎥
⎦
dt

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1(1 −∆li2)(1 −
ηli1
γ̃l1

) [Qlik(β) − ∫
τ

0
Ylik(t)

El[dQl1k(t, β)∣θl10, ξl1 = 0]

El[Yl1k(t)∣θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 −∆li1)∆li2(1 −
ηli2
γ̃l2

) [Qlik(β) − ∫
τ

0
Ylik(t)

El[dQl1k(t, β)∣θl01, ξl1 = 0]

El[Yl1k(t)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 −

ηli1
γ̃l3k

) [Qlik(β) − ∫
τ

0
Ylik(t)

El[dQl1k(t, β)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 −

ηli2
γ̃l4

) [Qlik(β) − ∫
τ

0
Ylik(t)

El[dQl1k(t, β)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
] (5.16)

By Hájek [1960]’s central limit theorem and conditions (c) and (f), the second term in (5.16)

is asymptotically zero-mean normal random variable with covariance matrix∑Ll=1 ql
1−αl
αl
VII,l(β0)

where

VII,l(β0) = V arl

⎡
⎢
⎢
⎢
⎢
⎣

2

∏
j=1

(1 −∆l1j)
2

∑
k=1
∫

τ

0
[Bl1k(β0, t) − Yl1k(t)

El[∏
2
j=1(1 −∆l1j)Bl1k(t, β0)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

]dt

⎤
⎥
⎥
⎥
⎥
⎦

.

It follows from Lemma 2 and Hájek [1960]’s central limit theorem that the third, fourth,
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and fifth terms are asymptotically zero-mean normal with covariance matrix ∑Ll=1 ql(1 −

αl)∑
2
k=1 VIII,lk(β0) where

VIII,lk(β0)

= Pr[θl10]
1 − γl1
γl1

V arl [Ql1k(β0) − ∫

τ

0
Yl1k(t)

El[dQl1k(t, β0)∣θl10, ξl1 = 0]

El[Yl1k(t)∣θl10]
∣θl10, ξl1 = 0]

+Pr[θl01]
1 − γl2
γl2

V arl [Ql1k(β0) − ∫

τ

0
Yl1k(t)

El[dQl1k(t, β0)∣θl01, ξl1 = 0]

El[Yl1k(t)∣θl01]
∣θl01, ξl1 = 0]

+
Pr[θl11]

4
[
1 − γl1
γl1

+
1 − γl2
γl2

]

× V arl [Ql1k(β0) − ∫

τ

0
Yl1k(t)

El[dQl1k(t, β0)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
∣θl11, ξl1 = 0] .

In addition, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1Qlik(β0) and n−1/2

∑
L
l=1∑

nl
i=1∑

2
k=1(1 −

ξli
α̃l

) ∫
τ

0 ∏
2
j=1(1 −

∆lij)Llik(t, β)dt where Llik(t) = Blik(t, β)−Ylik(t)
El[∏

2
j=1(1−∆l1j)Bl1k(t,β)]

El[∏
2
j=1(1−∆l1j)Yl1k(t)]

dt are independent

since

Covl
⎛

⎝
n
−1/2
l

nl

∑
i=1

2

∑
k=1

Qlik(β0), n
−1/2
l

nl

∑
i=1

2

∑
k=1

(
ξli

1 − α̃l
)∫

τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dMlik(t)
⎞

⎠

= El

⎧⎪⎪
⎨
⎪⎪⎩

n
−1/2
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

(
ξli

1 − α̃l
)∫

τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dMlik(t)
⎞

⎠

= El

⎧⎪⎪
⎨
⎪⎪⎩

E
⎛

⎝
n−1
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

(
ξli

1 − α̃l
)∫

τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dMlik(t)∣F(τ)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

= El

⎧⎪⎪
⎨
⎪⎪⎩

n−1
l

nl

∑
i=1

2

∑
k=1

Qlik(β0)

nl

∑
i=1

2

∑
k=1

E ((
ξli

1 − α̃l
)∣F(τ))∫

τ

0

2

∏
j=1

(1 −∆lij)Llik(t)dMlik(t)

⎫⎪⎪
⎬
⎪⎪⎭

= 0

By using same arguments, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1Qlik(β0) and the third to the last term in

(5.16) are independent. Since ξli and ηlik (k = 1,2) are independent, n−1/2
∑
L
l=1∑

nl
i=1∑

2
k=1(1−

ξli
α̃l

) ∫
τ

0 ∏
2
j=1(1−∆lij)Llik(t)dMlik(t) and the third to the last term in (5.16) are independent.

Therefore, n−1/2ŨG(β0) converges weakly to zero-mean normal vector with covariance
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matrix ΣG
II(β0) where

ΣG
II(β) =

L

∑
l=1

ql [VI,l(β) +
1 − αl
αl

VII,l(β) + (1 − αl)
2

∑
k=1

VIII,lk(β)] ,

VI,l(β) = El[
2

∑
k=1

Ql1k(β)]
⊗2,

VII,l(β) = V arl

⎡
⎢
⎢
⎢
⎢
⎣

2

∏
j=1

(1 −∆lij)
2

∑
k=1
∫

τ

0
[Bl1k(t, β) − Yl1k(t)

El[∏
2
j=1(1 −∆l1j)Bl1k(t, β)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

]dt

⎤
⎥
⎥
⎥
⎥
⎦

,

VIII,lk(β)

= Pr[θl10]
1 − γl1
γl1

V arl [Ql1k(β) − ∫
τ

0
Yl1k(t)

El[dQl1k(t, β)∣θl10, ξl1 = 0]

El[Yl1k(t)∣θl10]
∣θl10, ξl1 = 0]

+ Pr[θl01]
1 − γl2
γl2

V arl [Ql1k(β) − ∫
τ

0
Yl1k(t)

El[dQl1k(t, β)∣θl01, ξl1 = 0]

El[Yl1k(t)∣θl01]
∣θl01, ξl1 = 0]

+
Pr[θl11]

4
[
1 − γl1
γl1

+
1 − γl2
γl2

]

× V ar [Ql1k(β) − ∫
τ

0
Yl1k(t)

El[dQl1k(t, β)∣θl11, ξl1 = 0]

El[Yl1k(t)∣θl11]
∣θl11, ξl1 = 0] .

Therefore, ŨGn (β) converges to zero in probability and (iv) is satisfied.

Since all conditions (i), (ii), (iii) and (iv) are satisfied, β̃IIG is a consistent estimator of

β0 by an extension of Fourtz [1977]. By consistency of β̃IIG and Taylor expansion of ŨGII(β)

such as

ŨGn (β) = ŨGn (β0) +
∂ŨGn (β)

∂β
[β̃IIG − β0] + op(1),

n1/2(β̃IIG − β0) is asymptotically normally distributed with mean zero and with variance

matrix A−1ΣG
II(β0)A

−1 where A = ∑
2
k=1Ak.

Now, here is an outline for the proof of Theorem 7.

Proof of Theorem 7

Λ̃II0k(β̃
II , t) = ∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u){dNlik(u) − Ylik(u)β

TZlik(u)du}

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)
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We can decompose n1/2{Λ̃II0k(β̃
II , t) −Λ0k(t)} into three parts:

n1/2
{Λ̃II0k(β̃

II , t) −Λ0k(t)}

= n1/2
{Λ̃II0k(β̃

II , t) − Λ̃II0k(β0, t) + Λ̃II0k(β0, t) −Λ0k(t)}

= n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u){β0 − β̃

II}TZlik(u)du

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

+ n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u){dNlik(u) − Ylik(u)β0Zlik(u)du}

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

− n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)λ0k(u)

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

= n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u){β0 − β̃

II}TZlik(u)du

∑
nl
i=1 πlik(u)Ylik(u)

+ ∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u)dMlik(u)

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

]

= n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u){β0 − β̃

II}TZlik(u)du

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

+ n1/2
∫

t

0

∑
L
l=1∑

nl
i=1 dMlik(u)

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

+ n1/2
∫

t

0

∑
L
l=1∑

nl
i=1{πlik(u) − 1}dMlik(u)

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

. (5.17)

Due to the uniform convergence of Z̄IIk (t) to ek(t), the first term in (5.17) is asymptot-

ically equivalent to n
1/2
l (β̃II − β0)lk(t), where lk(t) = ∫

τ
0 −ek(u)du.

Note that [n−1
∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)]

−1 can be written as a sum of two monotone func-

tion in t, converges to [∑
L
l=1 qlEl[Yl1k(t)]]

−1 where ∑Ll=1 qlEl[Yl1k(u)] is bounded away from

zero, and n−1/2
∑
L
l=1∑

nl
i=1Mlik(t) converges to a zero-mean Gaussian process with continuous

sample path. By Lemma 1, the second term in (5.17) is asymptotically equivalent to

∫

t

0

1

∑
L
l=1 qlEl[Yl1k(t)]

d{n1/2
L

∑
l=1

nl

∑
i=1

Mlik(u)}.

The third term in(5.17) can be written as

∫

t

0

∑
L
l=1∑

nl
i=1{πlik(u) − 1}dMlik(u)

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

= n−1/2
∫

t

0

1

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

{
L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)dMlik(u)

+
L

∑
l=1

nl

∑
i=1

(α̃lk(t)
−1
− α̃−1

l )ξli
2

∏
j=1

(1 −∆lij)dMlik(u)
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+
L

∑
l=1

nl

∑
i=1

[(
ηli1
γ̃l1k

− 1)∆li1(1 −∆li2)(1 − ξli) + {γ̃l1k(t)
−1
− γ̃−1

l1 }ηli1∆li1(1 −∆li2)(1 − ξli)]dMlik(u)

+
L

∑
l=1

nl

∑
i=1

[(
ηli2
γ̃l2k

− 1)(1 −∆li1)∆li2(1 − ξli) + {γ̃l2k(t)
−1
− γ̃−1

l2 }ηli2(1 −∆li1)∆li2(1 − ξli)]dMlik(u)

+
L

∑
l=1

nl

∑
i=1

[
1

2
(
ηli1
γ̃l3k

− 1)∆li1∆li2(1 − ξli) + {γ̃l3k(t)
−1
− γ̃−1

l3 }ηli1∆li1∆li2(1 − ξli)]dMlik(u)

+
L

∑
l=1

nl

∑
i=1

[
1

2
(
ηli2
γ̃l4k

− 1)∆li1∆li2(1 − ξli) + {γ̃l4k(t)
−1
− γ̃−1

l4 }ηli1∆li1∆li2(1 − ξli)]dMlik(u)}. (5.18)

Since {n−1
∑
L
l=1∑

nl
i=1 πlik(t)Ylik(t)}

−1 converges to∑Ll=1 qlEl[Yl1k(u)]
−1, where∑Ll=1 qlEl[Yl1k(u)]

is bounded away from zero in probability uniformly, the first term in (5.18) is asymptotically

equivalent to n−1/2
∑
L
l=1∑

nl
i=1(1 −

ξli
α̃l

)∏
2
j=1(1 −∆lij) ∫

t
0
Ylik(t){λ0k(u)+β

T
0 Zlik(u)}du

∑
L
l=1 qlEl[Yl1k(u)]

.

By the result of (4.6), the second term in (5.18) can be written as

n−1/2
∫

t

0

1

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

L

∑
l=1

nl

∑
i=1

(α̃lk(t)
−1
− α̃−1

l )ξli
2

∏
j=1

(1 −∆lij)dMlik(u)

= n−1/2
∫

t

0

1

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

L

∑
l=1

nl

∑
i=1

(
1

α̃lEl[∏
2
j=1(1 −∆l1j)Yl1k(t)]

× n−1
l

⎧⎪⎪
⎨
⎪⎪⎩

nl

∑
m=1

(1 −
ξlm
α̃l

)
2

∏
j=1

(1 −∆lmj)Ylmk(t)

⎫⎪⎪
⎬
⎪⎪⎭

)ξli
2

∏
j=1

(1 −∆lij)dMlik(u)

= n−1/2
∫

t

0

1

∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)

L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)∫

t

0

1

El[∏
2
j=1(1 −∆l1j)Yl1k(u)]

× Ylik(u)n
−1
l

nl

∑
i=1

ξli
α̃l

2

∏
j=1

(1 −∆lij)(Ylik(t){λ0k(u) + β
T
0 Zl1k(u)}).

If follows from the uniform convergence of {n−1
∑
L
l=1∑

nl
i=1 πlik(u)Ylik(u)}

−1 to {∑
L
l=1 qlEl[Yl1k(u)]},

n−1
l ∑

nl
i=1

ξli
α̃l
∏

2
j=1(1−∆lij)Ylik(u) to El[∏

2
j=1(1−∆l1j)Yl1k(u)], n

−1
l ∑

nl
i=1

ξli
α̃l
∏

2
j=1(1−∆lij)Ylik(u)

βT0 Zl1k(u) to El[∏
2
j=1(1 − ∆l1j)Yl1k(u)β

T
0 Zl1k(u)] and Lemma 2 that the second term in

(5.18) is asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

(
ξli
α̃l

− 1)
2

∏
j=1

(1 −∆lij)

× ∫

t

0

Ylik(u)El[∏
2
j=1(1 −∆l1j)Yl1k(u){λ0k(u) + β

T
0 Zl1k(u)}]

El[∏
2
j=1(1 −∆l1j)Yl1k(u)]

⋅
du

∑
L
l=1 qlEl[Yl1k(u)]

.

Combining the above results, the first and second term on the right-hand side of (5.18)
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are asymptotically equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)

× ∫

t

0
Ylik(u)

⎡
⎢
⎢
⎢
⎣
βT0 Zlik(u) −

El[∏
2
j=1(1 −∆l1j)Yl1k(u)β

T
0 Zlik(u)]

El[∏
2
j=1(1 −∆l1j)Yl1k(u)]

⎤
⎥
⎥
⎥
⎦
⋅

du

∑
L
l=1 qlEl[Yl1k(u)]

.

Similarly, the third to the last term on the right-hand side of (5.18) are asymptotically

equivalent to

n−1/2
L

∑
l=1

nl

∑
i=1

(
ηli1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Y11k(u)]

[dMlik(u) − Ylik(u)
El[dMl1k(u)∣θl10, ξli = 0]

El[Yl1k(u)∣θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l2

− 1)(1 −∆li1)∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Y11k(u)]

[dMlik(u) − Ylik(u)
El[dMl1k(u)∣θl01, ξli = 0]

El[Yl1k(u)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
(
ηli1
γ̃l3

− 1)∆li1∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMl1k(u)∣θl11, ξli = 0]

El[Yl1k(u)∣θl11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMl1k(u)∣θl11, ξli = 0]

El[Yl1k(u)∣θl11]
] .

Note that n
1/2
l (β̃II − β0) is asymptotically equivalent to

A−1
{n−1/2

L

∑
l=1

nl

∑
i=1

2

∑
k=1

Qlik(t, β0)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)∫
τ

0
[Blik(t, β0) − Ylik(t)

El[∏
2
j=1(1 −∆lij)Bl1k(t, β0)]

El[∏
2
j=1(1 −∆l1j)Yl1k(t)]

]dt)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃l1

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl10, ξl1 = 1]

El[Yl1k(t)∣θl10]
]
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+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl01, ξ1 = 1]

El[Yl1k(t)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 − ξli)(

ηli1
γ̃l3k

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl11, ξl1 = 1]

El[Yl1k(t)∣θl11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 − ξli)(

ηli2
γ̃l4

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl11, ξl1 = 1]

El[Yl1k(t)∣θl11]
]}

Combining all the results, we have

n1/2
{Λ̃II0k(β̃

II , t) −Λ0k(t)}

= lk(t)
TA−1

{n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

Qlik(t, β0)

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

2

∏
j=1

(1 −∆lij)(
ξli
α̃l

− 1)∫
τ

0
[Blik(t, β0) − Ylik(t)

El[∏
2
j=1(1 −∆lij)Bl1k(t, β0)]

El[∏
2
j=1(1 −∆lij)Yl1k(t)]

]dt

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

∆li1(1 −∆li2)(1 − ξli)(
ηli1
γ̃l1

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl10, ξl1 = 1]

El[Yl1k(t)∣θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

(1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl01, ξl1 = 1]

El[Yl1k(t)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 − ξli)(

ηli1
γ̃l3k

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl11, ξl1 = 1]

El[Yl1k(t)∣θl11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

2

∑
k=1

1

2
∆li1∆li2(1 − ξli)(

ηli2
γ̃l4

− 1)

× [Qlik(t, β0) − ∫

τ

0
Ylik(t)

El[dQl1k(t, β0)∣θl11, ξl1 = 1]

El[Yl1k(t)∣θl11]
]}
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+ ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

d{n1/2
L

∑
l=1

nl

∑
i=1

Mlik(u)} + n
−1/2

L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)
2

∏
j=1

(1 −∆lij)

× ∫

t

0
Ylik(u)

⎡
⎢
⎢
⎢
⎣
βT0 Zlik(u) −

El[∏
2
j=1(1 −∆l1j)Yl1k(u)β

T
0 Zlik(u)]

El[∏
2
j=1(1 −∆l1j)Yl1k(u)]

⎤
⎥
⎥
⎥
⎦
⋅

du

∑
L
l=1 qlEl[Ylik(u)]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(
ηli1
γ̃l1

− 1)∆li1(1 −∆li2)(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMlik(t, β0)∣θl10, ξli = 0]

El[Yl1k(u)∣θl10]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

(
ηli2
γ̃l2

− 1)(1 −∆li1)∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMlik(β0, u)∣θl01, ξli = 0]

El[Yl1k(u)∣θl01]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
(
ηli1
γ̃l3k

− 1)∆li1∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlE[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMlik(β0, u)∣θl11, ξli = 0]

El[Yl1k(u)∣θ11]
]

+ n−1/2
L

∑
l=1

nl

∑
i=1

1

2
(
ηli2
γ̃l4

− 1)∆li1∆li2(1 − ξli)

× ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(u) − Ylik(u)
El[dMlik(β0, u)∣θl11, ξli = 0]

El[Yl1k(u)∣θl11]
]

+ op(1)

Therefore,

n1/2
{Λ̃II0k(β̃

II , t) −Λ0k(t)}

= n−1/2
L

∑
l=1

nl

∑
i=1

µlik(β0, t) + n
−1/2

L

∑
l=1

nl

∑
i=1

(1 −
ξli
α̃l

)wlik(β0, t) + n
−1/2

L

∑
l=1

nl

∑
i=1

νlik(β0, t) + op(1),

where

µlik(β, t) = lk(t)
TA−1

2

∑
m=1

Qlim(β) + ∫
t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

dMlik(u),

wlik(β, t) = lk(t)
TA−1

2

∑
m=1

2

∏
j=1

(1 −∆lij)

× ∫

τ

0
[Blim(u,β) −

Ylim(u)El[∏
2
j=1(1 −∆l1j)Bl1m(u,β)]

El[∏
2
j=1(1 −∆l1j)Yl1m(u)]

]du
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+
2

∏
j=1

(1 −∆lij)∫

t

0
Ylik(u){β

T
0 Zlik(u)

−
El[∏

2
j=1(1 −∆l1j)Yl1k(u)β

T
0 Zl1k(u)]

El[∏
2
j=1(1 −∆l1j)Yl1k(u)]

⋅
du

∑
L
l=1 qlEl[Yl1k(u)]

},

νlik(β, t) = lk(t)
TA−1

2

∑
m=1

ν
(1)
lim(β, t) + ν

(2)
lim(β, t),

ν
(1)
lik (β, t) = ∆li1(1 −∆li2)(1 − ξli)(

ηli1
γ̃l1

− 1)ν
(1)
lik,1(β, t)

+(1 −∆li1)∆li2(1 − ξli)(
ηli2
γ̃l2

− 1)ν
(1)
lik,2(β, t),

+
1

2
∆li1∆li2(1 − ξli)[(

ηli1
γ̃l3

− 1) + (
ηli2
γ̃l4

− 1)]ν
(1)
lim,3(β, t),

ν
(1)
lik,1(β, t) = Qlik(β, t) − ∫

τ

0
Ylik(t)

El[dQl1k(β, t)∣θl10, ξl1 = 1]

El[Yl1k(t)∣θl10]
,

ν
(1)
lik,2(β, t) = Qik(β, t) − ∫

τ

0
Yik(t)

El[dQl1k(β, t)∣θl01, ξl1 = 1]

El[Yl1k(t)∣θl01]
,

ν
(1)
lik,3(β, t) = Qlik(β, t) − ∫

τ

0
Ylik(t)

El[dQl1k(β, t)∣θl11, ξl1 = 1]

El[Yl1k(t)∣θl11]
,

ν
(2)
lik (β, t) = (1 − ξli){∆li1(1 −∆li2)(

ηli1
γ̃1k

− 1)ν
(2)
lik,1(β, t) + (1 −∆li1)∆li2(

ηli2
γ̃2k

− 1)ν
(2)
lik,2(β, t),

+
1

2
∆li1∆li2{(

ηli1
γ̃3k

− 1) + (
ηli2
γ̃4k

− 1)}ν
(2)
lik,3(β, t)},

ν
(2)
lik,1(β, t) = ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(β,u) − Ylik(u)
El[dMl1k(β,u)∣θl10, ξl1 = 0]

El[Yl1k(u)∣θl10]
],

ν
(2)
lik,2(β, t) = ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(β,u) − Ylik(u)
El[dMl1k(β,u)∣θl01, ξl1 = 0]

El[Yl1k(u)∣θl01]
],

ν
(2)
lik,3(β, t) = ∫

t

0

1

∑
L
l=1 qlEl[Yl1k(u)]

[dMlik(β,u) − Ylik(u)
El[dMl1k(β,u)∣θl11, ξl1 = 0]

El[Yl1k(u)∣θl11]
]

LetG(1)(t) = {G
(1)
1 (t),G

(1)
2 (t)}T whereG

(1)
k (t) = n−1/2

∑
L
l=1∑

nl
i=1 µlik(β, t), G

(2)(t) = {G
(2)
1 (t),

G
(2)
2 (t)}T whereG

(2)
k (t) = n−1/2

∑
L
l=1∑

nl
i=1(1−

ξli
α̃l

)wlik(β, t), andG(3)(t) = {G
(3)
1 (t),G

(3)
2 (t)}T

where G
(3)
k (t) = n−1/2

∑
L
l=1∑

nl
i=1 νlik(β, t) for k = 1,2.

Then, G(1)(t) converges weakly to a zero-mean Gaussian process, G(1)(t) = {G
(1)
1 (t),G

(1)
2 (t)}T

inD[0, τ]k where the covariance function between G
(1)
j (t) and G

(1)
k (s) is El[µl1j(t, β0), µl1k(s, β0)]

by theorem 2 of Yin and Cai [2004].

It can be shown that G(2)(t) converges weakly to a zero-mean Gaussian process G(2)(t) =

{G
(2)
1 (t),G

(2)
2 (t)} where covariance function G

(2)
j (t) and G

(2)
k (s) is 1−αl

αl
El[wl1j(β0, t),wl1k(β0, s)]

by Lemma 2, Cramer-Wold device and the marginal tightness of G
(2)
k (t) for each k.
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Similarly, G(3)(t) converges weakly to a zero-mean Gaussian process where covariance

function G
(3)
j (t) and G

(3)
k (s) is

(1 − αl)[(I(j = k)[Pr[θl10](
1 − γl1
γl1

)Covl[ν
(2)
l1k,1(β0, t), ν

(2)
l1k,1(β0, s)∣θl10, ξl1 = 0]

+ Pr[θl01](
1 − γl2
γl2

)Covl[ν
(2)
l1k,2(β0, t), ν

(2)
l1k,2(β0, s)∣θl01, ξl1 = 0]

+
1

4
Pr[θl11](

1 − γl1
γl1

+
1 − γl2
γl2

)Covl[ν
(2)
l1k,3(β0, t), ν

(2)
l1k,3(β0, s)∣θl11, ξl1 = 0]])

+ Pr[θl10](
1 − γl1
γl1

)Covl[ν
(2)
l1j,1(β0, t), lk(s)

TA−1ν
(1)
l1j,1(β0, t)∣θl10, ξl1 = 0]

+ Pr[θl01](
1 − γl2
γl2

)Covl[ν
(2)
l1j,2(β0, t), lk(s)

TA−1ν
(1)
l1j,2(β0, t)∣θl01, ξl1 = 0]

+
1

4
Pr[θl11](

1 − γl1
γl1

+
1 − γl2
γl2

)Covl[ν
(2)
l1j,3(β0, t), lk(s)

TA−1ν
(1)
l1j,3(β0, t)∣θl11, ξl1 = 0]

+ Pr[θl10](
1 − γl1
γl1

)Covl[ν
(2)
l1k,1(β0, s), lj(t)

TA−1ν
(1)
l1k,1(β0, s)∣θl10, ξl1 = 0]

+ Pr[θl01](
1 − γl2
γl2

)Covl[ν
(2)
l1k,2(β0, s), lj(t)

TA−1ν
(1)
l1k,2(β0, s)∣θl01, ξl1 = 0]

+
1

4
Pr[θl11](

1 − γl1
γl1

+
1 − γl2
γl2

)Covl[ν
(2)
l1k,3(β0, s), lj(t)

TA−1ν
(1)
l1k,3(β0, s)∣θl11, ξl1 = 0]

+
2

∑
m=1

(Pr[θl10](
1 − γl1
γl1

)lj(t)
TA−1Covl[ν

(1)
l1m,1(β0, t), ν

(1)
l1m,1(β0, s)∣θl10, ξl1 = 0]A−1lk(s)

+ Pr[θl01](
1 − γl2
γl2

)lj(t)
TA−1Covl[ν

(1)
l1m,2(β0, t), ν

(1)
l1m,2(β0, s)∣θl01, ξl1 = 0]A−1lk(s)

+ Pr[θl11](
1 − γl1
γl1

+
1 − γl2
γl2

)lj(t)
TA−1Covl[ν

(1)
l1m,3(β0, t), ν

(1)
l1m,3(β0, s)∣θl11, ξl1 = 0]A−1lk(s))]

By the conditional expectation arguments, all terms are mutually independent. Therefore,

G(t) = G(1)(t)+G(2)(t)+G(3)(t) converges to a zero-mean Gaussian process G(t) = G(1)(t)+

G(2)(t) + G(3)(t).

5.4 Simulations

We conducted simulation studies to examine the performance of the proposed methods

and compare the existing methods with the proposed methods. Correlated bivariate failure

time data were generated from Clayton-Cuzick model [Clayton and Cuzick, 1985]. The

bivariate survival function for the bivariate survival time (T1, T2) given (Zl1, Zl2) has the
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following form:

F (t1, t2 ∣ Zl1, Zl2) = {e
∫
t1
0
(λ01(t)+β0Zl1)dt

θ + e
∫
t2
0
(λ02(t)+β0Zl2)dt

θ − 1}−θ,

where λ0k(t) and βk, k = 1,2 are the baseline hazard function and the effect of covariate for

disease k, respectively, l is a dichotomous stratum variable, and θ is the parameter related

with correlation between the failure times of the two diseases. Smaller θ indicates higher

correlation between the two failure times T1 and T2. The relationship between Kendall’s

tau, τθ, and θ is τθ =
1

2θ+1 . For θ, we used values of 0.10, 0.67, and 4 and the corresponding

Kendall’s tau values are 0.83, 0.43, and 0.11, respectively. We set the baseline hazard

function λ01 = 2 for the first failure event type k = 1 and λ02 = 4 for the second failure event

type k = 2. The regression parameters are examined at β0 = 0 and 0.3.

We generate Z from Bernouilli distribution with pr(Z = 1) = 0.5 under the situation

Zl1 = Zl2 = Z. To consider stratified subcohort sampling from two strata defined by Vi, we

define two parameters: η =Pr(V = 1∣Z = 1) and ν =Pr(V = 0∣Z = 0) where η is sensitivity

and ν is the specificity for Z. Unstratified sampling with same probability, i.e., η = 0.5 and

ν = 0.5 is a special case. Larger values η and ν values than 0.5 indicate that V is highly

correlated with Z. For stratified case-cohort studies, we set the values [η, ν] = [0.7,0.7].

Thus, a stratum variable is simulated with Pr(V = 1) = (1− ν)Pr(Z = 0)+ ηPr(Z = 1) = 0.5.

Censoring times are generated from uniform distribution [0, u] where u depends on the

specified level of the censoring probability.

For simulations of the traditional case-cohort study, we set the event proportions of

approximately 8% and 20% for k = 1 and 14% and 35% for k = 2. For the simulations of

the generalized case-cohort study, the event proportions are considered as 15% and 25% for

k = 1 and 26% and 42% for k = 2 and we sample half of the cases outsides the subcohort,

[γ1, γ2] = [0.5,0.5]. The sample size of the full cohort is set to be n = 1000. For stratified

sampling, we consider the total subcohort size of 100 and 200 and select the subcohort

ñl = ñ × ql from each stratum. For each configuration, we conducted 2000 simulations.
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Table 5.1: Simulation result for the traditional case-cohort study: K = 1, β1 = 0

Event The Proposed weight Kulich and Lin’s method

S PR ñ τθ β̃I1 SEp SDp CRp β̂A1 SEk SDk CRk SRE SREp SREk
UN 8% 100 0⋅10 0⋅001 0⋅622 0⋅621 0⋅96 0⋅000 0⋅643 0⋅633 0⋅96 1⋅05 1⋅00 1⋅00

0⋅67 -0⋅005 0⋅610 0⋅623 0⋅95 -0⋅002 0⋅639 0⋅652 0⋅95 1⋅10 1⋅00 1⋅00
4 0⋅012 0⋅613 0⋅649 0⋅95 0⋅014 0⋅644 0⋅677 0⋅95 1⋅09 1⋅00 1⋅00

200 0⋅10 -0⋅005 0⋅527 0⋅536 0⋅95 -0⋅006 0⋅537 0⋅543 0⋅95 1⋅02 1⋅00 1⋅00
0⋅67 0⋅007 0⋅525 0⋅532 0⋅94 0⋅013 0⋅539 0⋅546 0⋅94 1⋅05 1⋅00 1⋅00

4 -0⋅002 0⋅523 0⋅523 0⋅95 0⋅004 0⋅538 0⋅542 0⋅95 1⋅07 1⋅00 1⋅00
20% 100 0⋅10 -0⋅001 0⋅485 0⋅505 0⋅95 -0⋅005 0⋅525 0⋅548 0⋅95 1⋅18 1⋅00 1⋅00

0⋅67 0⋅022 0⋅466 0⋅488 0⋅94 0⋅032 0⋅525 0⋅539 0⋅96 1⋅22 1⋅00 1⋅00
4 0⋅002 0⋅453 0⋅477 0⋅94 0⋅010 0⋅525 0⋅551 0⋅95 1⋅33 1⋅00 1⋅00

200 0⋅10 0⋅008 0⋅385 0⋅395 0⋅95 0⋅007 0⋅406 0⋅412 0⋅95 1⋅09 1⋅00 1⋅00
0⋅67 0⋅001 0⋅374 0⋅375 0⋅95 0⋅000 0⋅406 0⋅402 0⋅96 1⋅15 1⋅00 1⋅00

4 -0⋅007 0⋅367 0⋅375 0⋅95 -0⋅012 0⋅405 0⋅412 0⋅95 1⋅20 1⋅00 1⋅00
STR 8% 100 0⋅10 0⋅006 0⋅601 0⋅621 0⋅95 0⋅003 0⋅618 0⋅631 0⋅95 1⋅03 1⋅00 1⋅01

0⋅67 0⋅001 0⋅593 0⋅594 0⋅96 -0⋅002 0⋅617 0⋅620 0⋅96 1⋅09 1⋅10 1⋅10
4 -0⋅001 0⋅596 0⋅600 0⋅96 -0⋅003 0⋅621 0⋅626 0⋅96 1⋅09 1⋅17 1⋅17

200 0⋅10 -0⋅005 0⋅520 0⋅522 0⋅95 -0⋅004 0⋅528 0⋅528 0⋅95 1⋅02 1⋅05 1⋅06
0⋅67 0⋅021 0⋅515 0⋅521 0⋅95 0⋅021 0⋅526 0⋅534 0⋅95 1⋅05 1⋅04 1⋅05

4 -0⋅008 0⋅514 0⋅517 0⋅95 -0⋅006 0⋅526 0⋅529 0⋅95 1⋅05 1⋅02 1⋅05
20% 100 0⋅10 -0⋅007 0⋅470 0⋅480 0⋅95 -0⋅007 0⋅502 0⋅512 0⋅96 1⋅14 1⋅11 1⋅15

0⋅67 0⋅004 0⋅454 0⋅460 0⋅95 -0⋅004 0⋅503 0⋅507 0⋅96 1⋅21 1⋅12 1⋅13
4 -0⋅015 0⋅442 0⋅456 0⋅94 -0⋅009 0⋅503 0⋅509 0⋅96 1⋅25 1⋅09 1⋅17

200 0⋅10 -0⋅005 0⋅377 0⋅383 0⋅95 -0⋅004 0⋅394 0⋅405 0⋅94 1⋅12 1⋅06 1⋅03
0⋅67 -0⋅005 0⋅367 0⋅357 0⋅96 -0⋅005 0⋅393 0⋅377 0⋅97 1⋅12 1⋅10 1⋅14

4 -0⋅006 0⋅361 0⋅370 0⋅95 -0⋅005 0⋅392 0⋅403 0⋅95 1⋅19 1⋅03 1⋅04
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency; SREp, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREk, sample relative efficiency of Kulich and Lin’s estimators with unstratified sampling relative

to stratified sampling.
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Table 5.2: Simulation result for the generalized case-cohort study: K = 1, β1 = 0

Event The Proposed weight The existing method

S PR ñ τθ β̃IG1 SEp SDp CRp β̂G1 SEk SDk CRk SRE SREp SREk
UN 15% 100 0⋅10 -0⋅051 1⋅065 1⋅075 0⋅96 -0⋅047 1⋅085 1⋅104 0⋅95 1⋅06 1⋅00 1⋅00

0⋅67 0⋅000 1⋅040 1⋅047 0⋅95 -0⋅003 1⋅083 1⋅101 0⋅95 1⋅10 1⋅00 1⋅00
4 -0⋅004 1⋅030 1⋅052 0⋅95 -0⋅012 1⋅089 1⋅109 0⋅96 1⋅11 1⋅00 1⋅00

200 0⋅10 0⋅003 0⋅822 0⋅804 0⋅96 0⋅016 0⋅842 0⋅839 0⋅96 1⋅09 1⋅00 1⋅00
0⋅67 -0⋅021 0⋅815 0⋅823 0⋅95 -0⋅019 0⋅841 0⋅850 0⋅96 1⋅07 1⋅00 1⋅00

4 -0⋅003 0⋅810 0⋅803 0⋅96 0⋅002 0⋅842 0⋅840 0⋅95 1⋅09 1⋅00 1⋅00
25% 100 0⋅10 -0⋅004 0⋅953 0⋅990 0⋅94 0⋅003 0⋅969 1⋅008 0⋅94 1⋅04 1⋅00 1⋅00

0⋅67 -0⋅020 0⋅926 0⋅964 0⋅95 -0⋅010 0⋅971 1⋅014 0⋅95 1⋅11 1⋅00 1⋅00
4 0⋅005 0⋅888 0⋅919 0⋅95 0⋅002 0⋅973 0⋅998 0⋅95 1⋅18 1⋅00 1⋅00

200 0⋅10 0⋅001 0⋅714 0⋅707 0⋅96 -0⋅005 0⋅729 0⋅725 0⋅96 1⋅05 1⋅00 1⋅00
0⋅67 -0⋅008 0⋅703 0⋅729 0⋅95 -0⋅009 0⋅730 0⋅763 0⋅95 1⋅10 1⋅00 1⋅00

4 0⋅003 0⋅684 0⋅704 0⋅95 0⋅004 0⋅728 0⋅736 0⋅95 1⋅09 1⋅00 1⋅00
STR 15% 100 0⋅10 0⋅007 1⋅040 1⋅029 0⋅96 0⋅008 1⋅057 1⋅050 0⋅96 1⋅04 1⋅09 1⋅11

0⋅67 0⋅025 1⋅019 1⋅008 0⋅96 0⋅011 1⋅056 1⋅042 0⋅96 1⋅07 1⋅08 1⋅11
4 -0⋅022 1⋅006 0⋅992 0⋅96 -0⋅022 1⋅056 1⋅045 0⋅96 1⋅11 1⋅12 1⋅13

200 0⋅10 -0⋅014 0⋅808 0⋅803 0⋅96 -0⋅015 0⋅825 0⋅822 0⋅95 1⋅05 1⋅00 1⋅04
0⋅67 0⋅005 0⋅806 0⋅798 0⋅96 0⋅005 0⋅828 0⋅831 0⋅95 1⋅09 1⋅06 1⋅05

4 -0⋅002 0⋅800 0⋅795 0⋅95 0⋅004 0⋅827 0⋅830 0⋅95 1⋅09 1⋅02 1⋅02
25% 100 0⋅10 0⋅000 0⋅938 0⋅919 0⋅96 -0⋅003 0⋅954 0⋅937 0⋅96 1⋅04 1⋅16 1⋅16

0⋅67 0⋅038 0⋅913 0⋅899 0⋅95 0⋅033 0⋅954 0⋅951 0⋅95 1⋅12 1⋅15 1⋅14
4 0⋅000 0⋅875 0⋅831 0⋅96 0⋅000 0⋅949 0⋅922 0⋅96 1⋅23 1⋅22 1⋅17

200 0⋅10 0⋅017 0⋅705 0⋅678 0⋅96 0⋅019 0⋅720 0⋅695 0⋅96 1⋅05 1⋅09 1⋅09
0⋅67 -0⋅018 0⋅695 0⋅682 0⋅96 -0⋅017 0⋅720 0⋅711 0⋅95 1⋅09 1⋅14 1⋅15

4 0⋅002 0⋅679 0⋅665 0⋅96 0⋅002 0⋅719 0⋅705 0⋅96 1⋅13 1⋅12 1⋅09
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency; SREp, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREk, sample relative efficiency of the existing estimators with unstratified sampling relative to

stratified sampling.
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Table 5.3: Simulation result for the traditional case-cohort study: K = 2, β0 = 0.3

Event The Proposed weight Kang & Cai’s method

S PR ñ τθ β̃II SEp SDp CRp β̂A SEk SDk CRk SRE SREp SREk
UN [8%,14%] 100 0⋅10 0⋅320 0⋅803 0⋅829 0⋅95 0⋅317 0⋅815 0⋅835 0⋅96 1⋅02 1⋅00 1⋅00

0⋅67 0⋅280 0⋅757 0⋅781 0⋅96 0⋅283 0⋅777 0⋅793 0⋅96 1⋅03 1⋅00 1⋅00
4 0⋅301 0⋅740 0⋅765 0⋅95 0⋅297 0⋅764 0⋅784 0⋅95 1⋅05 1⋅00 1⋅00

200 0⋅10 0⋅311 0⋅647 0⋅653 0⋅95 0⋅311 0⋅654 0⋅655 0⋅95 1⋅01 1⋅00 1⋅00
0⋅67 0⋅323 0⋅599 0⋅603 0⋅95 0⋅322 0⋅610 0⋅610 0⋅95 1⋅02 1⋅00 1⋅00

4 0⋅298 0⋅580 0⋅595 0⋅95 0⋅298 0⋅593 0⋅603 0⋅95 1⋅03 1⋅00 1⋅00
[20%,35%] 100 0⋅10 0⋅292 0⋅680 0⋅700 0⋅95 0⋅295 0⋅694 0⋅714 0⋅95 1⋅04 1⋅00 1⋅00

0⋅67 0⋅300 0⋅632 0⋅645 0⋅95 0⋅297 0⋅663 0⋅665 0⋅95 1⋅06 1⋅00 1⋅00
4 0⋅323 0⋅596 0⋅610 0⋅94 0⋅319 0⋅643 0⋅645 0⋅95 1⋅12 1⋅00 1⋅00

200 0⋅10 0⋅307 0⋅514 0⋅533 0⋅94 0⋅309 0⋅521 0⋅538 0⋅94 1⋅02 1⋅00 1⋅00
0⋅67 0⋅309 0⋅476 0⋅498 0⋅95 0⋅309 0⋅493 0⋅513 0⋅94 1⋅06 1⋅00 1⋅00

4 0⋅311 0⋅445 0⋅462 0⋅94 0⋅316 0⋅472 0⋅488 0⋅94 1⋅12 1⋅00 1⋅00
STR [8%,14%] 100 0⋅10 0⋅286 0⋅772 0⋅797 0⋅95 0⋅285 0⋅781 0⋅802 0⋅95 1⋅02 1⋅08 1⋅08

0⋅67 0⋅325 0⋅724 0⋅749 0⋅95 0⋅327 0⋅738 0⋅759 0⋅95 1⋅03 1⋅09 1⋅09
4 0⋅302 0⋅706 0⋅710 0⋅96 0⋅300 0⋅723 0⋅720 0⋅96 1⋅03 1⋅16 1⋅19

200 0⋅10 0⋅292 0⋅628 0⋅637 0⋅95 0⋅292 0⋅632 0⋅640 0⋅95 1⋅01 1⋅05 1⋅05
0⋅67 0⋅302 0⋅580 0⋅578 0⋅95 0⋅301 0⋅587 0⋅583 0⋅95 1⋅01 1⋅09 1⋅09

4 0⋅282 0⋅562 0⋅569 0⋅95 0⋅281 0⋅570 0⋅580 0⋅95 1⋅04 1⋅09 1⋅08
[20%,35%] 100 0⋅10 0⋅324 0⋅655 0⋅650 0⋅96 0⋅325 0⋅664 0⋅663 0⋅96 1⋅04 1⋅16 1⋅16

0⋅67 0⋅302 0⋅610 0⋅601 0⋅95 0⋅304 0⋅632 0⋅629 0⋅95 1⋅10 1⋅15 1⋅12
4 0⋅292 0⋅576 0⋅598 0⋅94 0⋅289 0⋅611 0⋅637 0⋅95 1⋅13 1⋅04 1⋅03

200 0⋅10 0⋅315 0⋅497 0⋅490 0⋅95 0⋅317 0⋅502 0⋅496 0⋅96 1⋅02 1⋅18 1⋅17
0⋅67 0⋅310 0⋅460 0⋅458 0⋅95 0⋅311 0⋅472 0⋅478 0⋅95 1⋅09 1⋅19 1⋅15

4 0⋅301 0⋅431 0⋅445 0⋅95 0⋅300 0⋅450 0⋅469 0⋅94 1⋅11 1⋅08 1⋅09
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency; SREp, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREk, sample relative efficiency of the existing estimators with unstratified sampling relative to

stratified sampling.
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We first considered traditional case-cohort sample with a single disease but with co-

variates available on subjects with other diseases. We examine the the performance of our

proposed estimator and compare our results with those with the time-varying weight [Kulich

and Lin, 2000a]. Moreover, we compare the results of unstratified sampling with stratified

sampling using the proposed and Kulich and Lin [2000a] estimators, respectively. Table

5.1 reports the summary of β̃I1 and β̂A1 . For different combinations of β, event proportion,

subcohort sample size, and correlation, Table 5.1 shows the average of the estimates β̃I1 , the

average of the proposed estimated standard error (SE), empirical standard deviation (SD),

sample relative efficiency of the proposed estimators relative to estimators of Kulich and Lin

[2000a] (SRE), sample relative efficiency of proposed estimators with unstratified sampling

relative to with stratified sampling (SREp), and sample relative efficiency of estimators

of Kulich and Lin [2000a] with unstratified sampling relative to with stratified sampling

(SREk). The subscripts for SE, SD, SRE refer to the proposed method (P) and the existing

traditional case-cohort analysis for additive hazards models, Kulich and Lin [2000a] (K).

The simulation results suggest that both methods are approximately unbiased across the

setup for β = 0.3 with both event proportions (8% and 20%) and correlations (0.10, 0.67,

and 4). The average of the proposed estimated standard error is close to the empirical

standard deviation and it is smaller with lower correlation, larger event proportions or sub-

cohort size, as expected. The 95% confidence interval coverage rate ranges between 94%

and 97%. All the sample relative efficiency (SRE), defined as SD2
k/SD

2
p, are larger than 1

which indicates that the proposed estimates are more efficient than those from Kulich and

Lin [2000a]. This shows that the extra information collected on subjects with the other

disease helps to gain efficiency. In general, the efficiency is larger in situations with larger

event proportion, smaller subcohort size, and smaller correlation. Also, SREp and SREk

for stratified sampling are more than 1 suggesting that stratified sampling is more efficient

than unstratified sampling. However, when the disease rate is low and the subcohort size

is larger, the proposed method does not improve much efficiency.

In the second set of simulation, we are interested in the non-rare event and we sample half

of the cases outside the subcohort. We examine the performance of our proposed estimator
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Table 5.4: Simulation result for the generalized case-cohort study: K = 2, β0 = 0.3

Event The Proposed weight The existing method

S PR ñ τθ β̃IIG SEp SDp CRp β̂A SEk SDk CRk SRE SREp SREk
UN [15%,26%] 100 0⋅10 0⋅303 0⋅760 0⋅760 0⋅96 0⋅308 0⋅781 0⋅773 0⋅96 1⋅04 1⋅00 1⋅00

0⋅67 0⋅307 0⋅720 0⋅716 0⋅96 0⋅311 0⋅751 0⋅749 0⋅96 1⋅09 1⋅00 1⋅00
4 0⋅314 0⋅697 0⋅711 0⋅95 0⋅325 0⋅736 0⋅764 0⋅95 1⋅16 1⋅00 1⋅00

200 0⋅10 0⋅297 0⋅591 0⋅607 0⋅95 0⋅301 0⋅609 0⋅622 0⋅95 1⋅05 1⋅00 1⋅00
0⋅67 0⋅296 0⋅559 0⋅544 0⋅95 0⋅298 0⋅579 0⋅569 0⋅96 1⋅10 1⋅00 1⋅00

4 0⋅315 0⋅542 0⋅526 0⋅96 0⋅317 0⋅564 0⋅564 0⋅95 1⋅15 1⋅00 1⋅00
[25%,42%] 100 0⋅10 0⋅293 0⋅677 0⋅692 0⋅95 0⋅292 0⋅697 0⋅708 0⋅95 1⋅05 1⋅00 1⋅00

0⋅67 0⋅301 0⋅632 0⋅643 0⋅95 0⋅299 0⋅668 0⋅682 0⋅95 1⋅12 1⋅00 1⋅00
4 0⋅302 0⋅592 0⋅587 0⋅95 0⋅313 0⋅646 0⋅654 0⋅95 1⋅24 1⋅00 1⋅00

200 0⋅10 0⋅304 0⋅512 0⋅521 0⋅95 0⋅302 0⋅527 0⋅527 0⋅96 1⋅02 1⋅00 1⋅00
0⋅67 0⋅285 0⋅481 0⋅488 0⋅95 0⋅292 0⋅502 0⋅512 0⋅95 1⋅10 1⋅00 1⋅00

4 0⋅307 0⋅451 0⋅440 0⋅96 0⋅308 0⋅480 0⋅480 0⋅95 1⋅19 1⋅00 1⋅00
STR [15%,26%] 100 0⋅10 0⋅304 0⋅737 0⋅731 0⋅96 0⋅306 0⋅754 0⋅748 0⋅96 1⋅05 1⋅08 1⋅07

0⋅67 0⋅312 0⋅698 0⋅659 0⋅96 0⋅310 0⋅720 0⋅693 0⋅96 1⋅10 1⋅18 1⋅17
4 0⋅315 0⋅678 0⋅662 0⋅97 0⋅319 0⋅706 0⋅708 0⋅96 1⋅14 1⋅15 1⋅17

200 0⋅10 0⋅278 0⋅579 0⋅582 0⋅95 0⋅281 0⋅593 0⋅596 0⋅95 1⋅05 1⋅09 1⋅09
0⋅67 0⋅295 0⋅549 0⋅539 0⋅96 0⋅299 0⋅563 0⋅559 0⋅95 1⋅08 1⋅02 1⋅04

4 0⋅310 0⋅530 0⋅523 0⋅95 0⋅314 0⋅545 0⋅556 0⋅94 1⋅13 1⋅01 1⋅03
[25%,42%] 100 0⋅10 0⋅288 0⋅656 0⋅650 0⋅96 0⋅295 0⋅671 0⋅664 0⋅96 1⋅04 1⋅13 1⋅14

0⋅67 0⋅285 0⋅620 0⋅602 0⋅95 0⋅286 0⋅646 0⋅634 0⋅96 1⋅11 1⋅14 1⋅16
4 0⋅295 0⋅583 0⋅569 0⋅95 0⋅299 0⋅623 0⋅617 0⋅96 1⋅18 1⋅06 1⋅13

200 0⋅10 0⋅304 0⋅501 0⋅494 0⋅95 0⋅303 0⋅513 0⋅507 0⋅96 1⋅05 1⋅11 1⋅08
0⋅67 0⋅293 0⋅473 0⋅450 0⋅96 0⋅296 0⋅489 0⋅474 0⋅96 1⋅11 1⋅18 1⋅17

4 0⋅295 0⋅445 0⋅434 0⋅96 0⋅301 0⋅466 0⋅466 0⋅95 1⋅15 1⋅03 1⋅06
S, sampling; PR, proportion; UN, unstratified sampling; STR, stratified sampling; SE, the average

of the estimates of standard error; SD, sample standard deviation; CR, the coverage rate of the

nominal 95% confidence intervals; SRE = SD2
k/SD

2
p, sample relative efficiency; SREp, sample

relative efficiency of proposed estimators with unstratified sampling relative to stratified sampling;

SREk, sample relative efficiency of the existing estimators with unstratified sampling relative to

stratified sampling.
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and compare it to the existing method with a single disease outcome in the generalized

case-cohort study. Table 5.2 summarizes the results. Overall performance are similar to

Table 5.1: the unbiased estimates for β1, estimated standard errors close to the empirical

standard deviations, the 95% confidence interval coverage rate close to the nominal level.

All the sample relative efficiency (SRE) are more than 1 which implies that our proposed

method is more efficient than that of Kang et al. [2012]. Moreover, all the sample relative

efficiency of stratified sampling with unstratified sampling (SREp and SREk) are more than

1 which suggest that stratified sampling is more efficient than unstratified sampling.

In the third set of simulation, we consider the joint modeling of the two diseases for

case-cohort sample with the rare event. We examine the performance of our proposed

estimator and compare it to the existing method with multiple disease outcome. Table 5.3

provides summary statistics for β̃II and β̂A. We found that biases in the coefficient estimates

are small; estimated standard errors close to the empirical standard deviations; the 95%

confidence interval coverage rate ranges in 94% and 96%. All the sample relative efficiency

(SRE) with more than 1 indicates that our proposed method is more efficient than that

of the existing method. For stratified sampling design, all the sample relative efficiency of

both proposed and exiting estimators are more than 1. This shows that stratified sampling

for the subcohort improve the efficiency for the traditional case-cohort study with multiple

outcomes.

Table 5.4 summarizes the simulation results for the joint modeling of two non-rare

diseases. We used the selection probability of cases with 0.5 for each disease. Overall, the

performance is similar to Table 5.3. For the proposed estimator, sample relative efficiency

gain of stratified sampling relative to unstratified sampling ranges in 1% to 18%. For the

existing estimator, it ranges in 3% to 17%. They imply that estimators with stratified

sampling are more efficient than those with unstratified sampling.

5.5 Data Analysis

We applied the proposed method to data from the Atherosclerosis Risk in Communities

(ARIC) study [Lee et al., 2008]. This study is a longitudinal and population-based cohort
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study consisting of 15,792 men and women aged from 45 to 64 years recruited from four

US communities. For this analysis, the follow up for incident coronary heart disease (CHD)

event and incident stroke event is through 1998. Incident CHD event is defined as defi-

nite or probable myocardial infarction, electrocardiographic evidence of silent myocardial

infarction, definite CHD death, or coronary revascularization procedure. Incident stroke

was defined as a definite or probable ischemic stroke. We regarded the subject as censored

if he or she was free of that event type by December 31, 1998 or lost to follow-up during

the study.

The primary aim of this study was to investigate the association between PTGS1 poly-

morphisms and risk of incident CHD and stroke. Cyclooxygenase-derived prostaglandins

can be significant modifiers of risk of cardiovascular diseases event. It has been suggested

that variation in the genes encoding cyclooxygenase-derived prostaglandins (PTGS1) play

an important role of cardiovascular disease risk [Antman et al., 2005; Camitta et al., 2001;

Ulrich et al., 2002].

Using case-cohort design, genomic DNA genotyped for the polymorphisms in PTGS1

were available on all incident CHD, ischemic stroke cases, and the subcohort. The subcohort

was selected by using stratified sampling design with three stratum variables: age (≥ 55 or

< 55 years), gender, and race (Caucasian or African American). After excluding subjects

with missing genotype data and covaroates, a full cohort consisted of a total of 13,731

subjects which includes 900 subjects with only CHD, 188 subjects with only stroke, 61

subjects with both CHD and stroke. The subcohort involved 850 disease-free subjects, 72

subjects with only CHD, 15 subject with only stroke, and 7 subjects with both CHD and

stoke. The total size of assayed samples was 1,999. To adjust for confounding and other

risk factors, traditional and clinical covariates related to cardiovascular diseases are used:

age, gender, race, study center, current smoking status, diabetes, and hypertension.

In order to study the effects of genetic variation (PTGS1) on CHD as well as stroke,

we fit the model using (5.1). Since all cases for CHD and stoke are selected and we are

interested in comparing the risk effects on CHD and on stroke, we conduct the joint analysis

for traditional stratified case-cohort design.
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Table 5.5: Analysis results for the effects of PTGS1 G/A+A/A versus G/G (×10−6)

Proposed method Kang & Cai’s method

Variable β̃II SE P-value β̃ SE P-value

CHD PTGS1 2.52 2.94 0.196 2.47 2.94 0.201
African -10.95 6.68 0.051 -10.44 6.80 0.063
Age 0.69 0.18 < 0.001 0.69 0.18 < 0.001
Male 20.03 2.15 < 0.001 19.85 2.16 < 0.001
Center(F) -1.38 3.36 0.341 -1.61 3.37 0.317
Center(J) -1.94 7.29 0.395 -2.64 7.42 0.361
Center(M) -9.05 3.03 < 0.001 -9.00 3.05 < 0.001
Current smoking 12.93 2.61 < 0.001 12.89 2.63 < 0.001
Diabetes 22.67 5.32 < 0.001 23.27 5.46 < 0.001
Hypertension 15.43 2.75 < 0.001 15.55 2.78 < 0.001

Storke PTGS1 2.76 1.46 0.029 2.97 1.52 0.025
African 1.37 3.42 0.344 1.54 3.36 0.324
Age 0.33 0.07 < 0.001 0.34 0.07 < 0.001
Male 2.42 0.79 < 0.001 2.33 0.81 < 0.001
Center(F) -0.42 1.08 0.350 -0.48 1.14 0.337
Center(J) 0.59 3.70 0.437 0.24 3.68 0.474
Center(M) -0.48 0.96 0.310 -0.79 0.98 0.211
Current smoking 3.94 1.05 < 0.001 4.26 1.09 < 0.001
Diabetes 9.32 2.30 < 0.001 8.43 2.24 < 0.001
Hypertension 6.01 1.10 < 0.001 5.90 1.13 < 0.001
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Table 5.5 represents the results of additive hazards regression parameters estimates for

PTGS1 G/A+A/A versus G/G, estimated standard errors (SE), and P-values. We fit the

model allowing for different effects for CHD and stoke. The effects of PTGS1 on both CHD

and stroke are not statistically significant with P-value of 0.196 and 0.201, respectively. We

also fit the same model using Kang et al. [2012]’s method. Except for the standard errors

of African, Center (J) and diabetes on stroke, all the standard errors for the proposed

estimator are slightly smaller than those for the estimator of Kang et al. [2012].

5.6 Concluding remarks

By using the new weight function, we have proposed more efficient estimators for the

additive hazards model in stratified case-cohort design with rare and non-rare diseases. The

new weight functions incorporate the extra information for subjects with other diseases,

which can help to increase efficiency relative to existing methods. Moreover, stratified

sampling for the subcohort also improved the efficiency relative to unstratified sampling.

However, under the situation that the disease rate is low, the proposed method did not

improve much efficiency due to small amount of extra information.

In many biomedical and clinical studies, multiple case-cohort studies have been con-

ducted separately. Under the situation, covariate information collected on subjects with

the other diseases can be obtained and stratum variables are often available on all the co-

hort members. By using available information for subjects with other diseases and stratum

variables, we are able to estimate the risk effects more efficiently in additive hazards model

for case-cohort studies.

It would be worthwhile to consider models with different association between failure time

and risk factors. Therefore, we can adapt our approaches to other types of models such

as proportional odds model, the accelerated failure time model, and the semiparametric

transformation model by using all available information including stratum variables and

covariate information for other diseases. They are expected to improve efficiency.
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Chapter 6

Summary and Future Research

In this dissertation, we have studied more efficient statistical methods for case-cohort

studies with univariate and multivariate failure times. Specially, the following topics are

considered: 1) more efficient estimators for the traditional case-cohort study 2) stratified

case-cohort study with nonrare diseases, and 3) more efficient estimation in additive hazards

models for stratified case-cohort studies.

Case-cohort study design is generally used to reduce cost in large cohort studies. When

several diseases are of interest, several case-cohort studies are usually conducted using the

same subcohort. When these case-cohort data are analyzed, the common practice is to an-

alyze each disease separately ignoring data collected in subjects with the other diseases. In

addition, many baseline covariates are often available for the full cohort. Hence, the main

contribution of this dissertation is to provide statistical methods for case-cohort studies

which use all available information. We proposed new weights for both rare and nonrare

diseases. We developed weighted estimating equations with new weight functions for pa-

rameter estimation and studied the cumulative baseline hazard functions.

In Chapter 2.3.3, we considered case-cohort studies with rare diseases. In Chapter 3.6,

stratified case-cohort studies with nonrare diseases were considered. In Chapter 4.6, we

considered additive hazards models for stratified case-cohort studies.

The asymptotic properties of the proposed estimators were shown to be consistent and

asymptotically normally distributed under some regularity conditions. We investigated the

finite sample properties of the proposed methods and compared those with the existing



methods. The simulation results show that our proposed methods worked properly and

were more efficient than the existing methods. We applied our proposed methods to data

from the Busselton Health Study and the Atherosclerosis Risk in Communities study.

There are many directions that can be pursued in my future research.

First, I would like to extend the current methodology to competing risks. In the compet-

ing risks situation, a subject can only experience at most one event, while in the situation

we considered a subject can still experience the other events after experiencing one event.

Consequently, in the competing risks situation, a subject is at risk for all types of events

simultaneously and will not be at risk for any other events as soon as one event occurs.

I will adapt the approach in my dissertation to competing risks by modifying the at-risk

process and the weight function.

The second topic is to consider the joint modeling of survival time and longitudinal

covariates via shared random effects in case-cohort studies. Our current approaches can

allow the time-dependent covariates only when there are no missing data in covariates.

However, in many follow-up studies, the entire time-dependent covariate history is not

always available. I would like to investigate the joint modeling approach to address the

missing covariate data problem.

Last, I would like to apply our proposed approaches to case-cohort studies with models

including proportional odds model, the accelerated failure time model, and the semiparamet-

ric transformation model. In some data, the proportional or additive hazards assumption

may not always be true. Therefore, it is worthwhile to consider modeling association from

different aspects.
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