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Abstract 
Mary J. Carroll 

Probing the Dynamics of Dihydrofolate Reductase with Small Molecule Inhibitors 
(Under the direction of Andrew L. Lee) 

 
 

 High-resolution protein crystal structures have served as the template from which to 

devise small molecule modulators of protein function through structure-based drug design for 

many decades.  However, protein function, such as ligand binding, dissociation and catalysis, 

necessitates structural flexibility of the macromolecule.  Protein dynamics are often ignored 

in structure-based design, largely due to limited information on protein flexibility in the 

presence of bound ligands (e.g., peptides or small molecules).  To gain insight into how 

protein dynamics are modulated by the binding of small molecule inhibitors, nuclear 

magnetic resonance spectroscopy has been used herein to characterize both fast and slow 

timescale motions in the pharmaceutical target protein Escherichia coli dihydrofolate 

reductase.  A series of inhibitors of the enzyme (antifolates) that cover a broad range of 

binding affinity have been studied while bound to the holoenzyme complex.  In the presence 

of two high-affinity inhibitors, dynamics appear to be essentially identical on both the fast 

and slow timescales.  Specifically, these two inhibitors decouple functional loop switching 

motions on the slow timescale.  One medium-affinity antifolate from the series is shown to 

be conformationally flexible while bound to the enzyme, eliciting a functional switching 

motion in a loop distal to its binding.  In considering the entire panel of eight antifolates (two 

of high affinity, one of medium affinity, and a homologous series five of reduced-affinity 
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antifolates), the rates of conformational switching of the enzyme on the slow timescale 

correlate well with ligand binding affinity and the kinetic rate of ligand dissociation.  Within 

the sites exhibiting slow motions, a consensus set of residues is identified to be sampling a 

novel and structurally identical excited state that differs from physiological complexes bound 

to folate-derived ligands.  This group of antifolate consensus residues is posited to serve as a 

mechanical initiator of ligand dissociation, an observation that may be quite prevalent in 

receptor-ligand interactions.  Fast timescale motions across the series of antifolate complexes 

studied also suggest a correlation of flexibility with ligand binding affinity and a possible 

linkage between motions on the fast and slow timescales.   
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Chapter 1 

 

Introduction 

 

1.1. The need for dynamics data in drug design   

 Structure-based drug design is predicated on the rigid receptor hypothesis, in which 

the target protein of interest in assumed to be a static entity.   Based on the static model of the 

target protein – likely a crystal structure –  small molecules with shape and size 

complementarities to a binding site are sought as modulators of the protein’s function.  

Computational approaches can be used to dock ligands in the binding site of interest and 

subsequently provide a score or rank for the binding interaction.  However, it is well 

documented that proteins are not static under physiological conditions.  Proteins are highly 

dynamic molecules in solution, breathing and flexing over a large timescale range from 

picoseconds to seconds.  While we are well aware that the target is mobile, flexibility of the 

protein target is often ignored in in silico drug design.  Two main reasons exist for the 

continued assumption of the rigid receptor hypothesis in computational methods: (i) the 

significant increase in computation time necessary for using an algorithm that incorporates 

protein target flexibility, and (ii) the lack of explicit experimental evidence for target 

plasticity, especially in ligand binding sites.  In silico drug design can fail to accurately 

predict ligand binding affinities and also can predict incorrect ligand binding poses, at least 
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partly due to the ignorance of target flexibility.  For example, in the case of thymidylate 

synthase binding to two inhibitors, computations predict incorrect binding poses and low 

scores for each inhibitor when using the other’s crystal structure as a guide (1).  By 

specifying flexibility in just three amino acid residues within the enzyme’s binding site, a 

range of possible structures was generated as input into the computation, leading to 

significant improvements in scoring of novel inhibitors.  This is just one example 

highlighting the importance of considering protein dynamics in structure-based drug design. 

 To apply knowledge of protein dynamics for improved structure-based drug design, 

an understanding of dynamics in receptor-ligand complexes is necessary.  Protein dynamics 

or flexibility has been acknowledged from the analysis of high resolution crystal structures of 

a protein in the absence and presence of ligand (e.g., peptide or small molecule).  The 

traditional view of ligand binding to receptor is based on size and shape complementaries: 

the lock and key description (2).  This description applies when the structure of the bound 

complex does not differ from that in the absence of ligand and assumes no flexibility in the 

protein target or ligand.  When structural differences are observed, flexibility has often been 

described by the ‘induced fit’ model, in which accommodation of the ligand is accomplished 

via distortion of the protein’s structure (3).  This apparent flexibility of the protein was 

thought to occur due to the binding of the ligand.  More recently, it has been shown that 

proteins pre-exist in an ensemble of conformations that are constantly interconverting (4).  

Some of these pre-existing conformations are binding competent.  Thus, ligand binds to that 

population of protein and causes a shift in the ensemble distribution towards stabilization of 

the binding competent conformation.  This process, termed ‘conformational selection,’ 

prevails in the literature today. 
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 The dynamic nature of proteins is implicit to function.  For example, an enzyme must 

bind its substrate, catalyze a chemical reaction, and release the product.  For the ligand 

binding and dissociation steps alone, significant flexibility must be present in the protein, as 

crystallography shows that 70-100% of ligand surfaces are buried when bound to the protein 

(5).  Numerous studies highlight the direct relationship between enzyme flexibility and 

catalysis (6, 7), as will be discussed in later sections.  Flexibility is of paramount importance 

in cell signaling, as the ‘message’ of ligand binding to an extracellular receptor must be 

relayed to the cytoplasm for a response to occur.  Additionally, the shuttling of ions in and 

out of the cell is highly dependent upon the flexibility of various channels in the cell 

membrane.  Thus, flexibility and dynamics are inherent to many classes of proteins, many of 

which are drug targets or implicated in disease states. 

 It is important to note that dynamics in receptor-ligand interactions can be observed 

in both the protein and the bound ligand.  A range of flexibility in the protein is possible, 

from several residues within the binding sites reorienting up to large scale conformational 

changes of loops or subdomains (8-10).  Flexibility can also be mutual, in that both the 

protein and the ligand change orientations to complement one another (8).  Ligand 

promiscuity, in which one small molecule binds to multiple proteins, can result due to the 

highly dynamic nature of ligand binding sites.  Some proteins have evolved great plasticity in 

ligand binding sites in order to perform a function, such as transport proteins and nuclear 

hormone receptors that bind a range of substrates (11).   

 Protein dynamics can also alter the kinetics of ligand binding and dissociation.  For 

example in kinases, the DFG loop is known to exist in both ‘in’ and ‘out’ conformations.  

Some ligands bind only to one of these two conformations while others can bind either.  The 
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ligands that bind only one conformation possess slow kinetic association rates, as a protein 

conformational change may be necessary for their binding (12).  Some inhibitors may require 

hydrophobic collapse of the protein about the ligand, such as in one acetylcholinesterase 

inhibitor, resulting in slow inhibition kinetics as the protein undergoes the required 

conformational change (13). 

 Laying the foundation of protein flexibility and its multifaceted relationship to ligand 

binding begs the question: how can protein dynamics or flexibility be harnessed to improve 

structure-based drug design?  One way in which flexibility can be useful is in the design of 

allosteric inhibitors.  Such inhibitors bind at sites distal to the active or traditional binding 

site, and likely function through propagation of some dynamic change to the active site.  The 

dynamic propagation may result in the protein being unable to bind its preferred substrate at 

the site distal to the inhibitor.  Another useful way to harness protein flexibility is in driving a 

new conformational change upon ligand binding to improve selectivity.  Instead of allowing 

the size and shape of the binding pocket seen by crystallography to dictate the size of the 

designed molecule, chemical additions to the ligand could be made to force structural 

changes in the protein to establish selectivity for that particular protein.  As drug resistant 

mutations likely change flexibility of a ligand binding site, an understanding of those 

dynamic changes could allow new ligands to be designed that are more complementary to 

such mobility.  Furthermore, the existence of a conformational ensemble under physiological 

conditions would allow for the targeting of conformations other than those on which we 

commonly focus (e.g., transient excited states).  Stabilizing a transient excited state with a 

small molecule could result in therapeutics that are quite distinct from those targeting the 

visible ground state.  Finally, and as illustrated earlier, information from detailed dynamics 
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studies could be incorporated into computational methods to improve our ability to predict 

binding conformations and affinities for ligands. 

 

1.2. Probing protein dynamics with NMR 

 While the need for incorporating or making use of protein dynamics in structure-

based drug design is evident, the literature lacks explicit examples of studies detailing protein 

target flexibility in the presence of small molecule inhibitors.  Multiple techniques exist for 

bridging this gap, including analysis of crystal structure temperature factors (B factors), 

fluorescence spectroscopy, molecule dynamics simulations, and NMR spectroscopy.  

Crystallographic B factors do provide information on the amplitude of motion at a particular 

site; however, they are not indicative of the motional timescale and also can vary due to static 

disorder instead of time-dependent motions.  Fluorescence studies are dependent upon the 

addition of a fluorescent probe or label, which not only limit what can be studied to sites 

proximal to the probe, but also can cause structural perturbations to the protein.  Molecular 

dynamics simulations, while very powerful, are typically only able to describe motions up to 

the nanosecond regime and also require experimental validation.  NMR spectroscopy is well-

suited for detailed studies of protein dynamics for several reasons.  Firstly, it provides atomic 

level information on flexibility.  In other words, dynamics data is collected on a per residue 

basis and affords a picture of flexibility both along the protein backbone and the variable side 

chains.  Secondly, it allows for the study of dynamics across a range of timescales (Figure 

1.1).   
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 Figure 1.1.  Dynamic motions in proteins occur over a broad range of timescales. 

 

The two most commonly studied dynamic timescales include the “slow” or microsecond-

millisecond (µs-ms) regime and the “fast” or picosecond-nanosecond (ps-ns) regime.  Slow 

timescale motions include such things as ligand binding and dissociation, catalysis, protein 

folding, and allosteric regulation.  As such, µs-ms motions are directly relevant for biological 

function (14).  Fast timescale motions are comprised of bond vibrations and librations, and 

although not always apparently related to biology, may “lubricate” or form a foundation for 

the slower, biologically important motions (15).  This study will focus primarily on µs-ms 

timescale dynamics in relation to ligand binding and dissociation (Chapters 2-4) with a 

smaller spotlight on ps-ns flexibility (Chapter 2 and 5).   

 Protein dynamics can be measured using what are called NMR spin relaxation 

experiments.  In these experiments, the magnetization of the sample is perturbed from 

equilibrium, and the signal is observed as magnetization returns to its equilibrium state.  The 

process by which non-equilibrium magnetization returns to equilibrium is called relaxation.   

Relaxation requires transitions between magnetic energy levels, stimulated by magnetic 

fields oscillating at the transition frequency (at or near the Larmor frequency of the nucleus).  
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The rate at which relaxation occurs depends on the likelihood of the nuclei experiencing the 

proper oscillating magnetic field.  These oscillating fields could be due to movement of the 

nuclei relative to one another or relative to the magnetic field of the magnet, making 

relaxation very sensitive to molecular motion.   

 NMR spin relaxation experiments report primarily on the relaxation of 15N and 13C 

nuclei.  The relaxation of these two nuclei on the ps-ns timescale is dominated by dipole-

dipole interactions and chemical shift anisotropy (CSA) (15).  Dipole-dipole relaxation 

results from the fluctuating magnetic field of two coupled nuclei as they rotate relative to the 

magnetic field of the magnet.  For example, in 15N relaxation, one considers a 1H-15N bond 

vector.  Relaxation of the 15N nucleus occurs due to fluctuations in the field of the 1H 

nucleus, resulting from molecular tumbling or structural changes of the protein.  This 

relaxation process is very dependent upon internuclear distance.  CSA relaxation occurs as a 

result of a nucleus experiencing a fluctuating magnetic field due to variations in the shielding 

of the magnetic field of the magnet, arising from anisotropy of the electronic orbitals.  While 

dipole-dipole and CSA relaxation mechanisms dominate, relaxation of transverse 

magnetization can also be affected by chemical or conformation exchange, as will be 

discussed in great detail in a later section.  In brief, if the nucleus under study samples 

different conformations, the chemical shift change experienced dephases transverse 

magnetization, increasing its rate of relaxation.   

 To gain an understanding of the rotational motions of a bond vector, the time-

dependent rotational correlation function must be defined.  The rotational correlation 

function describes the probability that a bond vector (e.g., 1H-15N bond of the backbone) will 

have the same position relative to the magnetic field of the magnet at a time t after its start at 
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time zero (15).  While this function always decays from 1/5 to zero (in solution) at infinite t, 

the shape of the correlation function provides information on motions of different time 

scales.  However, relaxation parameters are better understood in terms of frequencies instead 

of times; therefore, it is more instructive to consider the Fourier transformation of the 

correlation function, called the spectral density function (J(ω)).  The spectral density function 

is, in other words, a distribution of all motional frequencies experienced by the bond vector.  

By collecting NMR spin relaxation data, we are attempting to reconstruct the spectral density 

function, a formidable task.  As a decent approximation, we can evaluate its shape by 

determining the function at five different frequencies: J(0), J(ωX), J(ωH), J(ωH + ωX), and 

J(ωH – ωX).  To map the spectral density function, three relaxation parameters are determined 

by NMR, generally at two different static magnetic field strengths: R1 (longitudinal 

relaxation rate constant), R2 (transverse relaxation rate constant), and the NOE (nuclear 

Overhauser effect) (16).  These three relaxation parameters can be determined by an analysis 

of peak intensity differences.  How these relaxation parameters relate to the spectral density 

function are shown below for the case of 15N or 13C with a singly attached 1H (15): 
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and   =exR  conformational exchange broadening; 
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In the above equations, c and d are constants while γH and γX are the gyromagnetic ratios for 

1H and the heteronucleus. 

 Once the shape of the spectral density function has been mapped via the relaxation 

parameters determined from NMR experiments, a motional model is generally applied to 

interpret the molecular motions.  In this work, the Lipari-Szabo model-free formalism is used 

to evaluate the defined spectral density function.  The model-free formalism allows for the 

separation of global tumbling motions from internal motions or dynamics (17).  The idea 

behind this formalism is that internal motions of protein bond vectors are independent from 

the overall rotational tumbling of the protein, as internal motions are generally much faster 

than tumbling.  In addition, the rotational tumbling of the protein influences each individual 

bond vector in a predictable and sometimes identical manner (for proteins undergoing 

isotropic tumbling), whereas internal motions of the bond vectors are independent of one 

another.   

 If the global rotational tumbling time (τm) is known, the internal motions can be 

analyzed by fitting the relaxation data to the following equation: 
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where 111 −−− += em τττ  .     (1.9) 

The fitting yields two model-free parameters, S2 and τe, to be described below.  The above 

equation is solved in terms of a series of models (models 1-5) that are mathematical 
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expressions incorporating different assumptions about the timescales of internal motions or 

the presence of conformational exchange.  Although ‘models’ are being used in this 

approach, the formalism is considered ‘model-free’ in that no motional mechanism (i.e., 

diffusion in a cone, two-site jump) is assumed for the internal motions.  A summary of 

models 1-5 and the parameters fit on a per residue basis are provided in Table 1.1 (15).   

Model Parameters Fit Assumptions 
1 S2 τe << τm, no Rex 
2 S2, τe τe < τm/5, no Rex 
3 S2, Rex τe << τm 

4 S2, τe, Rex τe < τm/5 
5 S2

s, S
2
f, τs τf << τm, τs ≥ τm/5, no Rex 

 Table 1.1.  The five mathematical models of the model-free formalism. 

To determine τm for the model-free approach, a global grid search is performed by fitting the 

R1, R2, and NOE data to model 2 (18).  The grid search starts broad (e.g., 5-15 ns) and is 

narrowed (e.g., 10-11 ns) until the point lowest in error is found, taken as the best value for 

the global tumbling time.  Residues with elevated R2 values that are suspect of slower 

conformational exchange motions are removed from the analysis before grid searching 

begins.   

 Several new parameters describing the internal motion appear in the above table from 

the fitting procedure.  The first is S2, or the generalized order parameter.  This parameter 

describes the re-orientational amplitude of bond vector motion and ranges anywhere from 

zero to one.  An S2 value of one corresponds to a completely rigid N-H bond vector while a 

value of zero corresponds to a completely disordered or isotropic vector.  In studying 15N 

relaxation, this parameter is fit for every resolvable peak in a 2D NMR spectrum, or for each 

amide of the protein backbone.  A second parameter shown is τe, or the effective correlation 

time of motion of that studied amide bond vector.  There are certain assumptions about the 

value of τe, mainly that it is assumed to be much faster than τm.  A third parameter mentioned 
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is Rex.  This is an indication of elevated R2 values, suggestive of internal motions on the 

slower µs-ms timescale due to conformational exchange.  Finally, model 5 represents 

complex motions that can be decomposed into independent fast and slow components, 

sf SSS 222 = .       (1.10) 

Along with S2
f and S2

s comes fast and slow effective correlation times, τf and τs.  Because of 

the occurrence of Rex and the complex motions of model 5, models 3-5 report on internal 

motions of two timescales. 

 It turns out that for most well-folded proteins, the dynamic range of S2 values is 

relatively narrow.  What is more telling of protein flexibility is an analysis of dynamics along 

protein side chains, where flexibility is much more variable (Figure 1.2).   

 

 Figure 1.2.  Backbone (blue) and side-chain (red) order parameters for a representative ternary 
 complex of E. coli dihydrofolate reductase. 
 

In a similar manner to studying the flexibility of the backbone, ps-ns dynamics of methyl-

bearing side chains can be studied by using 2H relaxation experiments.  These experiments 

utilize fractionally deuterated protein, focusing on the quadrupolar relaxation of the CH2D 

methyl isotopomer (19).  The quadrupolar longitudinal (Dz) and transverse (Dy) relaxation 
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rates are measured from experiments developed by Kay and coworkers, the equations 

describing the relaxation processes are shown below (20): 
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where e2qQ is the quadrupolar coupling constant, set to 165 kHz.  Quadrupolar relaxation 

results from an electrostatic interaction between the quadrupolar moment of a nucleus (with a 

spin of ≥ 1) and the electric field gradient.  This mechanism is about 1-2 orders of magnitude 

more efficient than dipole-dipole or CSA contributions.  Thus, other forms of autorelaxation 

are considered negligible.  The model-free analysis of Dz and Dy relaxation rates yields S2
axis, 

the order parameter of the methyl side-chain symmetry axis, and τe,axis describing the 

effective internal correlation time.  Unlike S2 values for the protein backbone, S2
axis values 

are quite sensitive to perturbations such as mutation and ligand binding (21-25). 

 It is well accepted that, in solution, proteins can sample multiple conformations via 

thermal fluctuations.  Chemical or conformation exchange includes processes that alter the 

magnetic environment of the nuclei under study.  In the simplest case of chemical exchange, 

a dynamic equilibrium exists between two states, A and B: 

BA
f

r

k

k
⇔  .     (1.13) 

The forward conversion of A to B is dependent upon the forward rate constant, kf, while the 

reverse conversion of B to A depends on the reverse rate constant, kr.  Chemical exchange 

motions occur on the slow, or microsecond-millisecond (µs-ms) timescale and are detectable 

by 15N relaxation experiments and the model-free analysis (models 3 and 4) due to elevation 
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of R2 (15).  However, the R2 experiment conducted to fit model-free parameters actually 

serves to dampen or keep constant the effects of conformational exchange (26).  It is 

therefore important to not over-interpret the detection of Rex from model-free analysis.  

Instead, conformational exchange on the µs-ms timescale is better studied using R2 relaxation 

dispersion experiments (27).  As mentioned previously, R2 is the rate of transverse or spin-

spin relaxation primarily determined by fluctuations on the ps-ns timescale.  However, the 

presence of chemical exchange causes an apparent increase in R2 on a per residue basis.  15N 

Carr-Purcell-Meiboom-Gill (CPMG) R2 relaxation dispersion experiments allow for 

decomposition of R2 into Rex, the relaxation rate component due to conformational exchange, 

and R2
o, all the remaining contributions to transverse relaxation on the faster timescale (28): 

ex
o RRR += 22  .     (1.14) 

The overall rate of transverse relaxation (R2) is directly proportional to the half-height 

linewidth of resonances, and thus as Rex increases R2 values, resonances undergoing 

exchange experience line broadening.  For the assumption of a two-state exchange process, 

R2 depends on the exchange rate constant (kex), the populations of ground state A and excited 

state B (pA and pB), and the difference in chemical shift between states A and B (∆ω) (28).  

Thus, from these experiments, kinetic, thermodynamic and structural information, 

respectively, can be obtained to describe the sampling of a lowly populated substate. 

 Relaxation dispersion experiments are sensitive to minor substates sampled by 

proteins in solution, given that the minor substate is populated to at least 1% and chemical 

shift differences between the two states are large (29).  Therefore, these experiments can 

provide information on ‘invisible’ substates: those for which peaks cannot be detected in a 

HSQC or in other spin-relaxation experiments.  Contributions to R2 from Rex can be 
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suppressed by the application of an external B1 magnetic field: Rex decreases as the B1 field 

strength increases, as illustrated in Figure 1.3.   

 

 Figure 1.3.  Sample relaxation dispersion curve of a residue in dihydrofolate reductase.  Data at  
 700 and 500 MHz are shown in blue and red, respectively. 
 

The field strength of the applied B1 field is modulated by the frequency of applied 180° 

refocusing pulses during the CPMG (τCP – 180° pulse – τCP) train of the pulse sequence.  The 

frequency by which refocusing pulses are applied is controlled via the parameter τCP, or the 

delay between the 180° pulses.  Short values of τCP can suppress Rex completely while long 

values of τCP can partially affect Rex.  The data points in Figure 1.3 plateau at the intrinsic R2 

rate (R2
o) if Rex has been completely suppressed.  The effective rates of transverse relaxation 

(R2,eff) come from the conversion of peak intensities in the experiment to R2 values via the 

following equation (30): 

0
,2 ln

1

I

I

T
R eff −=  ,    (1.15) 

where T is the length of the total constant time relaxation period and I and I0 are the peak 

intensities in the presence and absence of the constant time CPMG period.  The data points in 

Figure 1.3 can be fit to the Carver-Richards equation in order to determine kex (the sum of kf 

and kr), pA and pB, ∆ω, and R2
o at each field (31): 
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 Relaxation dispersion experiments have been applied in studies attempting to 

correlate dynamics with enzyme function and catalysis, such as in RNase A and cyclophillin 

(7, 32).  Others have used these experiments to understand the sampling of folded and 

unfolded states of proteins in solution (33), as well as to describe the process of ligand 

binding (30, 34). 

 
1.3. Dihydrofolate reductase as a model system 

 
 Dihydrofolate reductase, or DHFR, is a small, monomeric enzyme that catalyzes the 

NADPH-dependent reduction of 7,8-dihydrofolate (H2F) to form 5,6,7,8-tetrahydrofolate 

(H4F) (Figure 1.4).   

 

 Figure 1.4.  The stereospecific reduction of dihydrofolate to tetrahydrofolate, catalyzed by DHFR. 
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H4F is a very important cofactor in the cell, as it carries one-carbon units that are ultimately 

used in biosynthetic pathways to produce thymidylate, purines, and methionine.  Because the 

intracellular pool of H4F is maintained solely by the action of DHFR, a successful way to 

control DNA replication and hence cell proliferation is by inhibiting the action of this 

enzyme.  For this reason, DHFR has been exploited as a drug target since the 1940s for 

treating diseases such as cancer, bacterial infections, and malaria (35).  Interestingly, small 

molecules that bound to DHFR were found to be effective against cancer before the enzyme 

had been identified.  These first DHFR inhibitors led to its subsequent discovery and 

extensive characterization at present. 

 

 Figure 1.5.  The catalytic cycle of dihydrofolate reductase.  Kinetic characterization results are 
 shown in red (36).  The general name of each complex and the conformation of the Met20 loop are 
 given in green and blue, respectively. 

 

Found across all organisms, DHFR is a ubiquitous enzyme.  While there is great 

structural similarity across species, sequence homology is much lower (< 30%) (37).  DHFR 

catalyzes the reduction of H2F to H4F, necessitating the cofactor NADPH.  The reaction is 

stereospecific, in which the 4-pro-R hydrogen of the reduced cofactor is transferred to C6 of 

the pteridine ring of H2F (37).  As DHFR binds two ligands, the order of binding and release 
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is very important, and the mechanism of catalysis can be described as ordered bi-bi in nature.  

To perform the full cycle, the enzyme uses five steps, depending on the ligands bound in its 

two binding sites, as shown in Figure 1.5.  The kinetics of the steps have been determined via 

fluorescence studies by Benkovic and coworkers (36).  Release of the product H4F, the rate-

limiting step of catalysis, occurs only after the oxidized cofactor (NADP+) dissociates and is 

replenished with reduced cofactor (NADPH).  Thus, DHFR never samples an apo-enzyme 

form physiologically.   

The Escherichia coli isoform of DHFR had been studied extensively by X-ray 

crystallography.  There are approximately fifty structures deposited in the Protein Data Bank 

(PDB), in which the enzyme has been crystallized both in different space groups and with a 

wide array of ligands (38-43).  Most of these structures show DHFR while bound to 

endogenous ligands or models thereof, such as the substrate, product, cofactor, and their 

derivatives.  Only a handful of structures possess substrate-competitive inhibitors within the 

active site, such as methotrexate (MTX) (42-44).  

 

 Figure 1.6.  The structure of E. coli DHFR, highlighting important structural features.  The 
 adenosine binding and loops subdomains are colored in wheat and gray, respectively. 
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DHFR consists of an eight-strand β-sheet motif surrounded by four α-helices.  The enzyme’s 

active site, where both cofactor and substrate bind, divides the protein into two subdomains:  

the adenosine binding and the loops subdomains (Figure 1.6).  The former is so named due to 

its close association with the adenosine of NADPH.  The latter subdomain is comprised of 

about fifty percent loops.  There are three highly flexible loops within this region, known as 

the Met20, the F-G, and G-H loops.  The two subdomains are able to move relative to one 

another due to hinge motions at Lys38 and Val88, known to widen or narrow the active site 

cleft (42). 

From the wealth of crystal structures, particularly a series of isomorphous structures 

of the five kinetic intermediates, a sequence of subdomain and loop movements have been 

tracked throughout the catalytic cycle (42).  The Met20 loop, which closes over the active 

site, has been observed to sample three different conformations crystallographically: closed, 

occluded, and open.  These conformations are stabilized by differential hydrogen bonding 

patterns.  When in the closed conformation, the Met20 loop packs tightly against the 

nicotinamide-ribose moiety of NADPH to position it near to the substrate, facilitating the 

hydride transfer event.  The closed conformation is found in the holoenzyme complex 

(E:NADPH) and in the reactive complex (E:NADPH:H2F).  Following the hydride transfer 

reaction, the Met20 loop undergoes a global conformational switch from closed to occluded.  

For this switch to occur, hydrogen bonds between the Met20 loop and the F-G loop must be 

broken, while new bonds between the Met20 loop and the G-H loop form to stabilize the 

occluded state.  Interestingly, the nicotinamide-ribose moiety of NADP+ is expelled from the 

active site when the loop is occluded, as the side chains of Met16 and Glu17 flip inwards to 

occupy its binding site.  The expulsion of nicotinamide could facilitate the loss of NADP+ 
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and rebinding of reduced NADPH.  DHFR’s Met20 loop is found in the occluded 

conformation in the complexes following hydride transfer and leading up to product release 

(E:NADP+:H4F, E:H4F, and E:NADPH:H4F).  The open Met20 loop conformation appears to 

be a composite of the closed and occluded states, considered an intermediate in the transition 

between the two.  This state appears to be stabilized by crystal contacts in certain space 

groups (42). 

Because crystallographic studies of DHFR set precedent for motions within the loops 

and subdomains of DHFR, NMR dynamics studies on the enzyme followed suit.  The apo-

enzyme exhibits high frequency backbone motions in the Met20 and associated F-G and G-H 

loops (45).  Such motion is seen in other complexes in which the Met20 loop is occluded 

(E:folate and E:DHNADPH:folate) (46, 47).  These ps-ns motions are attenuated when the 

Met20 loop assumes the closed conformation in response to the binding of ligands in the 

folate binding site or forming ternary complexes (47).  Side-chain dynamics studies on closed 

versus occluded complexes mirror these observations of backbone flexibility (48).  

Additionally, high frequency motions of the methyl-bearing side chains are observed in the 

F-G loop in the E:NADP+:folate Michaelis model complex (48).  More recent studies have 

focused on characterizing µs-ms timescale motions of DHFR in the complexes of the 

catalytic cycle (6, 49-51).  Interestingly, in the E:NADP+:folate complex, widespread µs-ms 

timescale motions have been observed, including a number of sites known to be chemical 

shift markers of the Met20 loop conformation.  Using relaxation dispersion experiments, a 

functional switching of the Met20 loop from closed to occluded in the excited state has been 

observed via a linear correlation between ∆ω fitted from relaxation dispersion experiments 

with the steady-state difference in chemical shift (∆δ) between Met20 loop closed and 
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occluded conformations (51).  Further efforts have characterized the energy landscape and 

associated dynamics throughout the catalytic cycle of the enzyme (6).  This study has 

revealed that the enzyme appears to function by a selective fit mechanism, where each 

intermediate of the catalytic cycle samples the following catalytic intermediate as a higher-

energy substate through slow timescale conformational changes.  The transiently sampled 

excited states become the major state as the enzyme moves forward in the cycle.  Very 

recently, the exquisite dynamic and thermodynamic sensitivity of DHFR to its bound ligand 

when the Met20 loop is occluded in nature has been reported (50).    

 

1.4. Antifolates: Substrate-competitive inhibitors of DHFR 

 Considering the function of DHFR as the sole producer of H4F for DNA replication 

and cell division purposes, inhibiting the activity of DHFR serves as a common route to 

treating diseases such as cancer, bacterial infections, and malaria.  Small molecule inhibitors 

which bind in the folate binding site of DHFR are more commonly referred to as antifolates.  

The aforementioned MTX, along with trimethoprim (TMP) and pyrimethamine are examples 

of clinically useful antifolates (Figure 1.7).   

 

 Figure 1.7.  Sample substrate-competitive inhibitors of DHFR. 
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Methotrexate, a classical antifolate, is highly similar in chemical structure to folic acid, 

differing only at two positions (i.e., 4-amino and N-10-methyl modifications).  The pteridine 

ring system of MTX likely contributes most of the interactions important to its high affinity 

for DHFR, in that its 2,4-diaminopyrimidine moiety forms several important hydrogen bonds 

to the enzyme (52).  Non classical pteridine analogs containing the 2,4-diaminopyrimidine 

core but lacking the p-aminobenzoylglutamate tail were thus explored as novel folate 

antagonists (53).  Given that quinazoline and pteridine ring systems are isosteric, lipophilic 

2,4-diaminoquinazoline compounds were found useful as antibacterial and antimalarial 

agents (54).  From this finding, 2,4-diaminotetrahydroquinzoline analogs were evaluated as 

antifolates (55, 56).  Even smaller in size and maintaining the important pharmacophore are 

the 2,4-diamino-5-benzylpyrimidine antifolates, of which TMP is the most commercially 

successful (57).  Recently, one high-affinity antifolate has been identified that does not 

contain the 2,4-diaminopyrimidine or quinazoline scaffolds (43).  Of these structurally 

similar classes of antifolates, some are species specific and others bind across species (58).  

For example, MTX targets human DHFR for treatment of leukemias and lymphomas; 

however, it also binds with a high affinity to E. coli DHFR (59, 60).  On the contrary, TMP is 

highly specific for bacterial forms of DHFR, and pyrimethamine to the P. falciparum isoform 

(57, 61). 

 Over the years, great synthetic efforts have focused on generating high affinity and 

species specific antifolates possessing the TMP scaffold to be used as antibacterial agents 

(62-74).  However, these inhibitors are prone to mutational drug resistance (75, 76).  One 

recent study aimed to overcome this problem by identifying novel E. coli DHFR antifolate 
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scaffolds via screening a large library of diverse compounds available commercially from 

Maybridge (77).  This group identified several novel chemical scaffolds that differed from 

the gold standard antibacterial folate antagonist TMP.  A number of hit compounds reported 

were of the quinazoline and tetrahydroquinazoline classes.  As discussed in later chapters, 

several of these antifolates have been chosen for study in this work, including one 

quinazoline compound and one tetrahydroquinazoline (Figure 1.7), expanded into a series of 

structurally similar compounds (Figure 1.8).  Of the novel scaffolds identified, only one 

compound was similar to TMP in its Ki value (MJC-7 in Figure 1.8).  Upon solving the 

structure of this novel inhibitor while bound to E. coli DHFR, it appears to sample a different 

part of the active site that TMP cannot access (43).  Therefore, it may show promise against 

resistance mutations.  New chemical scaffolds that inhibit the activity of DHFR would be 

useful, given the prevalence of drug resistant mutants limiting the use of antifolates in 

general (75, 76, 78).  Another approach would be to understand if dynamics of DHFR play a 

role in conferring resistance to small molecule inhibitors.  If so, inhibitors could be designed 

to target functional dynamics or to avoid flexible portions of the active site as a means to 

overcome such mutations. 

 Because DHFR has been extensively utilized as a drug target, we can take advantage 

of the wealth of published antifolates, their synthetic schemes, and their characterization data 

in the current study.  As will be described below, a series of antifolates has been chosen from 

the literature for this work.  Several of the series are commercially available (MTX, TMP, 

and trimetrexate), while the remainder have been prepared synthetically (Figure 1.8). 
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 Figure 1.8.  The series of antifolates chosen from the literature for this study. 

 

1.5. Synopsis of this work 

 It is clear that DHFR has been extensively characterized in the past, regarding its 

structure, dynamics, and ability to be inhibited by small molecules.  Where I can make new 

contributions to this system, and more relevantly to the realm of drug design, is by studying 

the impact of small molecule inhibitor binding and dissociation on DHFR’s dynamics.  More 

specifically, I am interested in how the flexibility of the enzyme differs when bound to a 

series of antifolates that cover a broad range of binding affinity (Figure 1.8).  In Chapter 2, I 

characterize the changes in slow and fast timescale dynamics that result upon the binding of 

the high-affinity antifolate TMP.  These data, in combination with data collected in the 

presence of MTX and in the absence of drug (data collected by Randall Mauldin) (79), 

provide an interesting set of observations to serve as reference points for the later chapters.  

TMP and MTX binding modulates dynamics of the holoenzyme identically on both 

timescales, despite differences in the chemical structure of the two inhibitors.  In Chapter 3, 
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the structure and slow timescale dynamics of DHFR in the presence of a novel reduced-

affinity quinazoline inhibitor are described (40).  Ironically, the X-ray crystal structure and 

solution NOE data identify two different binding poses for the quinazoline inhibitor.  These 

two binding conformations are rationalized by the presented slow timescale dynamics, which 

point to drug switching motions in the bound state.  In Chapter 4, an investigation of slow 

timescale dynamics for a series of structurally similar tetrahydroquinzoline compounds is 

presented (41).  These data, in combination with data described in Chapters 2-3, identify a 

consensus group of residues within the active site that exhibit slow timescale motions 

regardless of chemical structure or binding affinity of the bound antifolate.  I report that this 

group of residues samples a novel and identical excited state in the presence of all antifolates 

studied, and that the rate at which DHFR switches to this state is highly dependent on Ki and 

the kinetic off-rate (koff) of the ligands.  From this, I hypothesize that the excited state 

mediates dissociation of the inhibitors.  Finally, in Chapter 5, the beginning of a full-scale ps-

ns dynamics analysis in the presence of three reduced-affinity inhibitors from the series is 

presented.  Correlations between fast timescale dynamics and Ki are also apparent from these 

data, and a dynamics balancing act is suggested by comparing backbone and side-chain 

motions.  Altogether, these results bring to the forefront the importance of understanding 

protein dynamics and how they are modulated by small molecule inhibitors. 

  

 

 

            

 



 

Chapter 2 

 

Identical Modulation of Dynamics Results from High Affinity Antifolate 

Binding 

 

2.1. Introduction 

 In traditional structure-based drug design, high resolution protein crystal structures 

are used as a template from which to devise small molecules that are complementary to a 

particular binding site for modulating protein function.  However, under physiological 

conditions, proteins are highly dynamic and can sample a number of conformations.  Protein 

flexibility is ignored in drug design largely due to an inadequate understanding of how 

dynamics influence small molecule binding and dissociation (5).  While studies have 

characterized protein dynamics in the presence of endogenous ligands (i.e., substrate and 

product) (6, 7, 80), very few examples of explicit dynamics determinations in the presence of 

exogenous small molecules exist (81-85), and those studies in the literature generally focus 

on ps-ns flexibility of the protein backbone.  For this reason, we herein report the structure 

and dynamics of a common pharmaceutical target protein, Escherichia coli dihydrofolate 

reductase (DHFR), in the presence and absence of small molecule inhibitors.  NMR 

spectroscopy is well-suited for this study, as it provides information on protein structure in 
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solution and also allows for protein dynamics to be studied on multiple timescales with 

atomic level resolution. 

 

 Figure 2.1.  The chemical structures of trimethoprim and methotrexate.   

 

 The results presented in this chapter show the differences in dynamics that result 

upon binding of the high-affinity, clinically useful antifolate trimethoprim (TMP) to the 

E:NADPH holoenzyme complex (Figure 2.1).  The analysis of both µs-ms and ps-ns 

dynamics are presented for this complex (referred to as E:NADPH:TMP).  By themselves, 

these data are not very informative.  However, relative to the absence of inhibitor 

(E:NADPH) and in combination with data on a second ternary inhibited complex with 

methotrexate (MTX) (Figure 2.1), E:NADPH:MTX (collected by former Lee Lab graduate 

student, Randall Mauldin), these data afford an interesting picture of how high affinity 

antifolates modulate the dynamics of the enzyme (79).  Also, since all three of these studied 

complexes are contained within the Met20 loop closed conformation, this study allows for 

dynamics differences within the same structural state to be analyzed.  Past reports of DHFR 

dynamics have only focused on dynamics modulation between complexes exhibiting 

different loop conformations (6, 47, 48, 51).  Furthermore, this chapter serves as a reference 

point for the later chapters that will discuss the dynamic impact of reduced-affinity 

antifolates binding to the holoenzyme.  It was found that TMP and MTX, despite their 

differences in chemical structure, elicit nearly identical patterns of dynamics on both the fast 

and slow timescales.  Motions on the slow timescale are consistent with a decoupling of 
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motion in the Met20 loop and active site observed in physiological complexes, such as the 

E:NADPH holoenzyme.  Residues proximal to the drug binding site remain flexible in the 

presence of TMP and MTX; however, loop motions distal to the substrate binding site are 

quenched.  Unlike the slow motions concentrated within the active site, changes in fast 

timescale dynamics of the backbone and methyl-bearing side chains are dispersed across the 

entire protein.  Propagation of dynamic changes to sites in the adenosine binding subdomain 

distal to the substrate binding site is observed, affecting sites that are highly conserved and 

implicated in catalysis.  The results in this chapter, as well as complete analyses, were 

reported previously (79). 

 

2.2.  Materials and Methods 

2.2.1.  Protein Expression and Purification 

 DHFR was expressed in M9 minimal media supplemented with combinations of 

15NH4Cl, U-13C6-glucose, and 2H2O.  Following a 5-6 hour induction period, cells were 

harvested by centrifugation.  The cell pellet was resuspended in Lysis Buffer (20 mM sodium 

phosphate, 50 mM sodium chloride, 1 mM EDTA, 1 mM DTT, pH 7.0).  Cells were lysed 

via sonification, and DHFR was subsequently purified similar to previously published 

methods (86).  Briefly, cell lysate was loaded onto a MTX-agarose column that had been 

equilibrated with Lysis Buffer.  Following the loading stage, the column was washed (Lysis 

Buffer containing 750 mM NaCl) to remove molecules which bound non-specifically.  

DHFR was eluted from the affinity column with Elution Buffer (20 mM sodium borate, 750 

mM NaCl, 1 mM EDTA, 1 mM DTT, 5 mM folate, pH 9.5).  The concentrated eluent was 

then loaded onto a G-50 size exclusion column equilibrated with KPE Buffer (50 mM 
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potassium phosphate, 150 mM KCl, 1 mM EDTA, 1 mM DTT, pH 7.2) to remove excess, 

unbound folate.  Remaining bound folate was removed by dialysis of the concentrated G-50 

pool against KPE containing 5 M deionized urea.  DHFR was finally passed over a G-50 

column equilibrated with NMR Buffer (70 mM HEPES, 20 mM KCl, 1 mM EDTA, 1 mM 

DTT, pH 7.6).  The pool was concentrated, separated into aliquots for NMR experiments, 

flash frozen, lyophilized, and stored at 4 °C until use.   

 

2.2.2.  NMR Spectroscopy 

 NMR samples contained 1 mM isotopically labeled DHFR in NMR Buffer, 15 mM 

NADPH, 10 mM glucose-6-phosphate, 10 U glucose-6-phosphate dehydrogenase, 1.1-1.25 

mM TMP, and 10% D2O for spectrometer locking purposes.  All samples were protected 

from light and air exposure by containment in amber NMR tubes flame-sealed under argon.  

Stock solutions of TMP (1.4 mM) were prepared by prolonged stirring of the carefully 

weighed solid in NMR Buffer.  All NMR experiments were conducted at 298 K on Varian 

spectrometers equipped with room temperature (500 and 600 MHz) or cryogenic (500 MHz 

and 700 MHz) probes.  NMRPipe was used to process NMR data, and data visualization was 

accomplished with the combination of NMRDraw and NMRView (87, 88). 

 Standard triple-resonance experiments were used to complete the backbone and side-

chain resonance assignments of E:NADPH:TMP.  HNCACB, CBCA(CO)NH and HNCA 

experiments were used to assign the 1HN, 15N, 13Cα, and 13Cβ resonances of the backbone 

(89).  Residues that could not be assigned, likely due to chemical exchange, include D11 and 

A145.  Side-chain assignments for 1H and 13C methyl resonances were made using (H)CCH3-
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TOCSY and HMBC (90, 91).  Stereospecific assignments of leucine and valine methyl 

groups were determined using the method of Neri and coworkers (92).   

 Relaxation dispersion experiments were conducted on protonated E:NADPH:TMP at 

500 and 700 MHz using a 40 ms total constant time CPMG period (28).  Sixteen HSQC-like 

planes were collected by varying the interpulse delay, τCP, from 0.556 to 10 ms.  Two of 

these planes were duplicate measurements for error propagation purposes and one plane 

served as the reference (lacking the CPMG period).  Peak intensities were extracted using the 

nlinLS module of NMRDraw.   

 R1, R2, and {1H}- 15N NOE data were collected at 500 and 600 MHz using standard 

backbone relaxation experiments (16).  T1 sampling delay times were as follows: 49*, 139, 

254, 389*, 544, 709, 894, 1004*, and 1304 ms.  T2 sampling delay times were as follows: 

7.8*, 15.7, 23.5, 39.2*, 62.7, 78.3, 94.0, 109.6*, and 125.3 ms.  Dz and Dy data were collected 

at 600 and 700 MHz using the side-chain 2H relaxation experiments described by Kay and 

coworkers (20).  Dz sampling delay times were as follows: 4.15*, 10.9, 19.6, 30.0*, 41.8, 54.8, 

68.9, 84.1*, and 100.4 ms.  Dy sampling delay times were as follows: 0.7*, 2.1, 3.8, 5.9*, 8.3, 

10.9, 13.7, 16.8*, and 20.0 ms.  Three duplicate planes were collected for both 15N and 2H 

relaxation experiments for the purpose of error estimation, as denoted by an asterisk.   

 

2.2.3.  Relaxation Dispersion Analysis 

 A two-state model of exchange was assumed for motions on the µs-ms timescale.  

Residues for which R2,eff changed by more than 2 s-1 over the τcp range were considered for 

further analysis.  An F-test (α critical = 0.01) was used to identify residues with significant 

exchange, testing whether residues best-fit to the exchange model or to a model lacking 
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exchange (R2=R2
o).  Residues passing the F-test were fit using the Carver-Richards equation 

(equation 1.16) to determine kex, pA and pB, R2
o at both fields, and ∆ω (28, 31).  Errors in the 

fitted parameters were determined by Monte-Carlo simulations.  Residues undergoing slow 

timescale exchange can often move in a concerted fashion, with shared kex and pA values.  

DHFR is known to possess ligand-independent motions at regions containing residues 129-

134 and 155-159 (6, 79).  Exchange at these residues was also identified in the current study, 

but they were excluded from global analysis of the data.  Global fitting of the remaining 

residues was accomplished via the strategy of Kay and coworkers (30), in which the ratio of 

χ
 2

global/χ
2
local is used to identify residues that fit better locally and not within the group.   

 

2.2.4.  15N and 2H Relaxation Analyses 

 For ps-ns timescale motions, data were analyzed by the Lipari-Szabo model-free 

formalism (17).  The isotropic rotational tumbling time for E:NADPH:TMP was found to be 

10.7 ns/rad at 298 K.  Because rotational anisotropy can have a profound impact on model 

selection (93), the presence of anisotropy was analyzed in E:NADPH:TMP via the local Di 

method (94) using the in-house program qfit and Protein Data Bank (PDB) code 1RX3 for 

E:NADPH:MTX.  The Dpar/Dperp value for E:NADPH:TMP was found to be 1.13, and 

anisotropy was used in subsequent data fitting of backbone dynamics.  Using the in-house 

program relxn2.2, the backbone relaxation rates were fitted to the five models of the model-

free formalism.  Akaike’s information criterion was used to select the best fit motional model 

(95).  Side-chain relaxation rates were fit to model 2 with no application of rotational 

anisotropy to the data fitting procedure.   
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2.3.  Results and Discussion 

2.3.1.  Chemical shifts show structural similarity for E:NADPH:TMP and 
E:NADPH:MTX 
 
 Although the Protein Data Bank (PDB) contains approximately fifty crystal structures 

of E. coli DHFR, only a few structures possess bound antifolates in the substrate binding site 

(42-44).  For example, the crystal structure of E:NADPH:MTX (PDB ID 1RX3) has been 

solved (42), but E:NADPH:TMP has not.  What does exist is a solution structure for 

Lactobacillus casei E:NADPH:TMP (96).  Because the crystal structure of E. coli DHFR 

bound to reduced cofactor and TMP has not been solved, I characterized the structure of this 

complex via NMR.  This structure is expected to be quite similar to that of E:NADPH:MTX, 

given the similarity of the E. coli E:NADPH:MTX crystal structure with that of L. casei 

E:NADPH:TMP (RMSD = 1.43 Å).  Therefore, instead of solving the solution structure of E. 

coli E:NADPH:TMP, one can approach the question by first comparing differences in 

chemical shifts elicited by the two inhibitors.  A lack of significant differences in chemical 

shift could preclude the need to solve the structure of E:NADPH:TMP.  The site specific 

chemical shift perturbations (CSPs) as a result of TMP binding were calculated relative to the 

absence of inhibitor (E:NADPH:TMP – E:NADPH).  A box plot function in SigmaPlot was 

used to identify those CSPs that were considered to be outliers, and those residues are 

highlighted in Figure 2.2.  Most sites ‘sensing’ the ligand by a change in chemical shift are 

within the folate binding site, as would be expected.  Many of these sites considered CSP 

outliers are shared with the sites perturbed by MTX binding, suggesting structural changes 

are minimal (Figure 2.3) (79).   
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 Figure 2.2.  CSPs of E:NADPH:TMP relative to E:NADPH.  (A)  A box plot function was used to 
 identify significant outliers in CSPs upon TMP binding.  (B)  These outliers are highlighted in blue 
 colored spheres on the structure of DHFR. 
 

 

 Figure 2.3.  CSPs of E:NADPH:TMP and E:NADPH:MTX relative to E:NADPH. The line 
 represents an approximate threshold for significant chemical shift changes in both complexes. 
 

Interestingly, sites exhibiting significant CSPs in response to TMP or MTX do not localize to 

the Met20, F-G, or G-H loops.  This suggests that the Met20 loop conformation in 

E:NADPH:TMP is likely the same as that in E:NADPH:MTX. 

 For a more detailed analysis of Met20 loop structure in solution in the presence of 

TMP, additional CSPs can be calculated relative to model chemical shifts for known Met20 

loop conformations.  Wright and coworkers have carefully analyzed chemical shift 

differences between a complex known to possess a closed Met20 loop (E:NADP+:folate) and 

one known to exhibit an occluded Met20 loop (E:DHNADPH:folate) (97).  These chemical 

shifts have been deposited in the Biological Magnetic Resonance Bank (BMRB).  There are 

approximately twenty residues that report directly on the conformation of the Met20 loop, 



33 

based on this previous analysis.  Therefore, CSPs for E:NADPH:TMP relative to these two 

complexes have been calculated, specifically focusing on the residues known to be markers 

of the Met20 loop conformation, shown in Figure 2.4.   

 

 Figure 2.4.  CSPs of E:NADPH:TMP relative to model closed and occluded complexes.  Residues 
 highlighted in red are markers of the Met20 loop conformation. 
 
 
Of the twenty marker residues, only V13 and I94 have chemical shifts more similar to an 

occluded Met20 loop conformation.  This strongly suggests that the Met20 loop in the 

E:NADPH:TMP complex is closed in solution.  In support of this, a residual dipolar coupling 

(RDC) analysis (performed by Randall Mauldin) further suggests the prevalence of the 

closed conformation for the Met20 loop in the TMP ternary complex (79).  This was also the 

case for E:NADPH:MTX. 

 

2.3.2.  Decoupling of functional active site motions on the slow timescale 

 As discussed in section 1.3, DHFR is known to possess significant µs-ms timescale 

motions while bound to endogenous ligands, and such conformational excursions from the 

ground state step the enzyme through its catalytic cycle (6).  We wondered how these 

dynamics would be modulated by the binding of high affinity small molecule inhibitors, such 

as TMP and MTX.  15N CPMG relaxation dispersion experiments were used to identify µs-

ms motions in the E:NADPH:TMP complex.  The data were fitted to the Carver-Richards 
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equation to determine kex, pA and pB, and ∆ω for the sites with significant dispersion.  These 

data are presented in comparison to the absence of inhibitor (E:NADPH) and to the 

E:NADPH:MTX complex (6, 79).  In addition to motions observed in the ligand independent 

sites (128-134 and 157-158) (6), Rex was identified at the following residues in the presence 

of TMP: 7-10, 28-31, and 111-112 (Figure 2.5A).   

 

 Figure 2.5.  Rex in the presence and absence of TMP and MTX.  Backbone sites experiencing slow 
 timescale motions are identified by colored spheres for (A) E:NADPH:TMP, (B) E:NADPH:MTX, and 
 (C) E:NADPH. 
 

When compared to the sites with slow motion in the E:NADPH:MTX complex (Figure 

2.5B), TMP and MTX appear to elicit µs-ms motions at an essentially identical pattern of 

residues.  The consensus residues between the two ternary inhibitor complexes are residues 

8-9, 28-31, and 111-112.  MTX elicits detectable dynamics at Ile14 which is not observed in 

the presence of TMP.  It is worth noting that motions on this timescale are only detected in 

the loops subdomain of the enzyme. 

 Global fitting of kex and pA for the sites with slow motion was performed on 

E:NADPH:TMP and compared to the same analysis of E:NADPH:MTX.  It turns out that not 

only do the same sites exhibit slow motion in the presence of these two high affinity 

antifolates, but the rate of switching in the two are also identical.  Both complexes sample the 
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excited state to about 2% in solution.  The global rates of exchange were fit to 460 ± 170 (see 

Appendix 2.1) and 430 ± 150 s-1 for TMP and MTX, respectively.  This leads to the 

calculation of the forward rate of exchange, kconf, forward, of 10.6 ± 3.8 and 7.4 ± 2.7 s-1, 

respectively.  Therefore, TMP and MTX, despite differences in their chemical structures, 

elicit identical patterns of slow motions, both in the sites affected and the rates of switching.   

 It is instructive to compare this dynamic pattern due to drug binding to a reference 

state – the absence of inhibitor.  Such a comparison allows for an understanding of how 

DHFR’s dynamics are modulated by the two high affinity inhibitors.  Sites at which slow 

timescale motions are detected by relaxation dispersion experiment in E:NADPH are shown 

in Figure 2.5C.  Dynamics are observed at sites within the active site, the hinge region, and 

also in the F-G and G-H loops.  Interestingly, slow motions are present at G121, a marker for 

conformational exchange of the Met20 loop (51, 97).  It has been previously reported, 

however, that motion of the Met20 loop in the E:NADPH complex is not coherent between 

closed and occluded forms (6).  But, seeing motion at G121 indicates that the Me20 loop is 

not static.  In the presence of TMP or MTX, motion at G121 is quenched (black sphere in 

Figure 2.5A-B).  This suggests that these two high affinity inhibitors freeze motion of the 

Met20 loop when bound.  In general, both TMP and MTX quench µs-ms timescale motions 

in the enzyme, as evidenced by a decreasing number of sites with significant dispersion 

relative to E:NADPH.   

 The dynamic result of high-affinity antifolate binding to the holoenzyme appears to 

be a decoupling of active site and loop motions.  Rex is observed at residues within close 

contact to the bound inhibitors in the active site; however, the functional loop motions 

detected in E:NADPH and E:NADP+:folate are quenched.  DHFR can be considered a 
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dysfunctional, half-switching enzyme in the presence of TMP and MTX, as the rate of 

forward switching in these two inhibitor complexes is about the same as seen for 

physiological complexes, but switching is only observed for residues proximal to the drug 

binding site.   

 

2.3.3.  Highly similar ps-ns flexibility results upon TMP and MTX binding 

 Fast timescale flexibility of DHFR has been previously studied for complexes of the 

catalytic cycle, in which the enzyme is bound to endogenous ligands.  It was found that large 

differences in backbone and side-chain flexibility were only observed when comparing 

complexes with a closed Met20 loop relative to an occluded loop (47, 48).  No large 

differences were observed when two closed Met20 loop complexes were compared.  We 

were interested in determining if ps-ns dynamics were different in the case of ligand binding 

within the closed Met20 loop state.  Both backbone and methyl side-chain ps-ns dynamics 

have been characterized for the E:NADPH:TMP complex.  Backbone amide order 

parameters (S2) were probed by collecting 15N R1, R2 and {1H}- 15N NOE experiments at two 

fields and fitting the data to the model-free formalism.  An anisotropic diffusion tensor was 

used in the model selection process.  Side-chain order parameters (S2
axis) were probed with Dz 

and Dy experiments collected at two fields.  Similar to the slow timescale motions reported in 

section 2.3.2, ps-ns flexibility in E:NADPH:TMP will be presented in comparison to 

E:NADPH:MTX and the reference E:NADPH complex.   

 Site-specific differences in flexibility of the backbone and side chains (∆S2 and 

∆S2
axis) have been calculated relative to the absence of TMP (i.e., E:NADPH:TMP – 

E:NADPH).  A site is considered to have a significant change in flexibility if its ∆S2 or 
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∆S2
axis is greater than two times the error in the fitted model-free parameter.  Such sites are 

identified below in Figure 2.6, indicated in either blue (backbone) or red (side-chain) colored 

spheres.  Sites with significant changes in backbone dynamics include residues 33, 51, 73, 

134, and 159 (Appendix 2.2).  Changes in side-chain flexibility are noticed at residues 8, 28, 

36, 50, 60-62, 104, 107, and 115 (Appendix 2.3).  Thus for the binding of TMP, significant 

changes in flexibility are observed across the entire sequence of DHFR, both in the adenosine 

binding and loops subdomains.  This is different than the case of µs-ms motions, which were 

only observed within the loops subdomain.   

 

 Figure 2.6.  Significant differences in backbone and side-chain dynamics relative E:NADPH for (A) 
 E:NADPH:TMP and (B) E:NADPH:MTX.  Perturbed residues 67-69 of the adenosine binding loop are 
 colored magenta, while blue and red spheres indicate significant changes in backbone and side-chain 
 flexibility, respectively. 
 

The side-chain flexibility of β-sheet C (residues 60-62) is greatly perturbed by TMP binding, 

which is interesting given that these residues are outside of the binding pocket, highly 

conserved in DHFR, and important in a statistical coupling analysis (98).  Also, decreases in 

backbone flexibility that lie just below our stringent threshold of significance are observed 

for residues 67-69 of the adenosine binding loop (magenta loop), very distal to the active site.  

Many of these sites afflicted dynamically are highly conserved in DHFR and have been 

linked to promoting catalysis (98).  Because the binding of TMP within the active site 
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imparts changes in flexibility at many sites within the adenosine binding subdomain, a 

dynamic link between the active site and this subdomain is probable.  One might envision a 

path of dynamic changes that propagates from the active site where TMP binds up through α-

helix C, β-sheet C, β-sheet D, and ending at the adenosine binding loop.  Past reports of fast 

timescale dynamics have shown a similar propagation of dynamics that link two distal, 

coupled sites (21, 23). 

 In comparing the changes in ps-ns flexibility of TMP and MTX, a very similar pattern 

is observed, building on what was previously reported for the µs-ms timescale.  A core 

pattern of both changes in backbone and side-chain flexibility is observed for the two 

antifolates (residues 28, 33, 36, 50, 51, 60-62, 73, and 134), with only a few additional 

unique residues changing significantly in flexibility outside of this pattern.  Furthermore, it is 

interesting to note that most of these significant changes in flexibility (i.e., 

E:NADPH:antifolate – E:NADPH) are positive, indicating rigidification of DHFR upon the 

binding of these two inhibitors to the holoenzyme.  Therefore, not only do TMP and MTX 

quench motion on the slow timescale, but they also quench fast timescale motions.  The 

magnitudes of ∆S2 and ∆S2
axis relative to E:NADPH are even similar for E:NADPH:TMP and 

E:NADPH:MTX (∆S2 R = 0.74; ∆S2
axis R = 0.65), although not identical.  One final note to 

make regarding these observed changes in ps-ns dynamics is that these differences are 

observed within the same conformational state (closed Met20 loop).  Previous studies 

focused on how dynamics changed upon switching of the loop from closed to occluded (47, 

48).  Our study demonstrates that flexibility of DHFR can vary within a single state and that 

some of the differences observed between TMP and MTX binding may be the result of the 

binding of two structurally dissimilar antifolates.   
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2.4.  Concluding Remarks 

 Characterizing the changes in structure and dynamics that result upon the binding of 

the high-affinity antifolate TMP provide an interesting framework in which to interpret later 

results in Chapters 3-5.  TMP binding induced minimal structural changes in the enzyme 

relative to MTX binding.  Specifically, the Met20 loop appears to assume the closed 

conformation, similar to the absence of inhibitor and the presence of the structurally different 

inhibitor MTX.  The binding of TMP has quenched slow motion at several sites compared to 

the absence of inhibitor.  The pattern of slow timescale dynamics is essentially identical to 

that induced by MTX in both the identity of the sites affected and the rate of conformational 

exchange.  While residues within the active site are mobile, these two inhibitors appear to 

freeze motion of the Met20 loop that is observed in the absence of bound antifolates, thus 

decoupling the active site from the flexible loops.  Similarly on the fast timescale, TMP and 

MTX binding elicit changes in backbone and side-chain flexibility that are highly correlated 

in identity and magnitude.  Sites in both subdomains of DHFR are modulated, suggesting a 

dynamic link between the subdomains and the active site.  As many of the sites impacted by 

antifolate binding are highly conserved and implicated in catalysis, a link between ps-ns 

dynamics and function is suggested. 

   



 

Chapter 3 

 

Direct Detection of Structurally Resolved Dynamics in a Multi-
Conformation Receptor-Ligand Complex 

 

3.1.  Introduction 

High-resolution crystal structures have classically provided the information that 

drives structure-based drug design.  However, such structures are static models and are not 

representative of the dynamic nature of proteins under physiological conditions in vitro or in 

vivo.  Proteins undergo constant motions in solution (dynamics), and they can also flex their 

structures such that the time-averaged, ‘static’ coordinates change significantly (flexibility).  

Both complicate the process of structure-based drug design (5, 99) and hence are often 

ignored in the design of small molecule inhibitors (100).  This is one of the main reasons why 

prediction of binding affinities (and efficacies) is fraught with inaccuracies and drug design 

is dominated by an empirical approach.  Although computational methods are being 

developed to account for molecular dynamics in free energy calculations, dynamics can exist 

over a wide range of timescales, some of which are still inaccessible to those methods (101).  

We propose here that experimental determination of the dynamic properties of protein-small 

molecule complexes will speed the development of reliable methods to more accurately 

predict ligand binding affinities. 
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There are several ways in which knowledge of protein flexibility and/or dynamics can 

aid structure-based drug design, according to different views.  Flexibility is most commonly 

acknowledged from multiple crystal structures of the same protein bound to different ligands, 

in which the protein adopts different conformations (‘induced fit’).  This is now often viewed 

as reflecting the inherent flexibility in the absence of ligand (‘selected fit’).  A priori 

knowledge of flexible residues (e.g., from crystal structures) can be used to model active site 

conformational changes that might occur, even in a homologous protein, on binding a given 

small molecule (99).  Induced fit behavior is also seen from the ligand side:  minor changes 

to ligand structure can drastically affect its mode of binding, resulting in different 

orientations in the binding site (5, 101, 102).  The second view, orthogonal to induced and 

selected fit, recognizes that binding free energy is not restricted to arise only from non-

covalent bonding within the binding site.  For example, changes in the nature of the 

conformational ensemble can influence the overall entropy (22).  Thus, the dynamics of the 

whole system, both the free and bound states (of protein and ligand), become important.  

Third, as there is often a relationship between dynamics and function, drugs may be 

developed to inhibit (or activate) functional dynamics, as opposed to acting directly on the 

binding site (103).  This strategy figures prominently in the development of allosteric drugs 

(104, 105).  Finally, it has been proposed that dynamics play an important role in mediating 

drug resistance, as demonstrated in a recent study on the Bcr-Abl fusion kinase (106).  In 

principle, accounting for dynamics should improve prediction accuracy of binding affinities.  

This is underscored by the recent finding that 85% of the proteins with deposited structures 

have 1-3 “flexible” residues within their ligand binding pockets (10), and that most ligand 

receptors show an increase of atomic mobility for some ligand binding site atoms (107). 
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Given the large number of examples from crystallographic studies implicating 

conformational heterogeneity as an important consideration for small molecule design, it is 

surprising that relatively few studies have reported more direct characterizations of dynamics 

in complexes of small, drug-like molecules with their targets.  It stands to reason that 

accurate information on target and small molecule flexibility in solution should be gained to 

lay a foundation for developing more sophisticated methods that incorporate dynamics into 

drug design.  Here, we have identified a small molecule-target enzyme interaction that is 

inherently dynamic.  The target, E. coli dihydrofolate reductase (DHFR), is a popular target 

for drug design against microbial infections, and the human enzyme is the target for cancer 

chemotherapy agent methotrexate (108).  The bacterial enzyme bound to a quinazoline 

derivative (Figure 3.1) is shown here to exhibit conformational dynamics, both in the enzyme 

and the small molecule.  From NMR spectroscopy and X-ray crystallography, the compound 

was found to bind in an unorthodox orientation but switch internally to drive a dynamic 

conformational loop change in the protein.  The two methods used jointly are highly 

complementary, and both are necessary to develop a full, accurate picture of this small 

molecule complex. 

 

3.2.  Materials and Methods 

3.2.1.  Synthesis of Compound 1 

 Compound 1 was prepared in one step by the method patented previously by Singh 

and Gurney (109).  Characterization information can be found in Appendix 3.1. 

 

3.2.2.  Protein Expression and Purification 
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 Isotopically labeled wild-type Escherichia coli DHFR was over-expressed and 

purified as described previously in Chapter 2 (79).  For relaxation dispersion experiments, 

15N labeled and highly deuterated (~80%) protein was used.  Purified apo-DHFR was frozen 

in a dry ice and ethanol bath, lyophilized, and stored in a desiccator at 4 °C until use.   

 

3.2.3.  Ki Determination 

 Biochemical competition assays using a 96-well plate reader were used to determine 

the inhibition constant (Ki) for 1.  1 was added to a reaction of DHFR, NADPH, and 

dihydrofolate substrate, and depletion of NADPH was monitored by UV absorbance at 340 

nm (77).  The total reaction volume was 100 µL.   

 

3.2.4.  NMR Spectroscopy 

 NMR samples contained 1 mM isotopically labeled DHFR in NMR buffer (70 mM 

HEPES, 20 mM KCl, 1 mM EDTA, 1 mM DTT [pH 7.6]) along with 15 mM NADPH, 2.5 

mM 1, 10 mM glucose-6-phosphate, 10 units of glucose-6-phosphate dehydrogenase, and 

10% D2O.  All samples were protected from light and air exposure by containment in amber 

NMR tubes flame-sealed under argon.  Stock solutions of 1 were prepared in 10% D2O/90% 

H2O, and PULCON was used to determine the concentrations of stocks, relative to a tyrosine 

standard (110).  All NMR experiments were conducted at 298 K on Varian spectrometers 

equipped with room temperature (500 MHz) or cryogenic (500 MHz and 700 MHz) probes.  

NMRPipe was used to process NMR data, and data visualization was accomplished with the 

combination of NMRDraw and NMRView (87, 88).   
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Resonance assignments – Standard triple-resonance experiments were used to 

complete the backbone and side-chain resonance assignments of E:NADPH:1.  HNCACB, 

CBCA(CO)NH and HNCA experiments were used to assign the 1HN, 15N, 13Cα, and 13Cβ 

resonances of the backbone (89).  Residues that could not be assigned, likely due to chemical 

exchange, include W22, K38, T46, D87 and A145.  Side-chain assignments for 1Hα, 1Hβ, and 

1H and 13C methyl resonances were made using HBHA(CO)NH, (H)CCH3-TOCSY, and 

HMBC (90, 91).  Assignments from these experiments were sufficient for assigning the 

majority of protein-1 NOEs.  Stereospecific assignments of leucine and valine methyl groups 

were determined using the method of Neri and coworkers (92). 

 

3.2.5.  Relaxation Dispersion Analysis 

15N CPMG relaxation dispersion experiments were conducted on 15N-labeled and 

highly deuterated (>80%) DHFR at 500 and 700 MHz using cryogenic probes.  Collection 

and analysis of the data was completed as described previously (79).  Residues undergoing 

slow timescale exchange can often move in a concerted fashion, with shared kex and pA 

values.  DHFR is known to possess ligand-independent motions at regions containing 

residues 127-134 and 155-159 (in addition to the 37% of non-proline backbone residues 

mentioned in later the text) (6, 79).  Exchange at these residues was also identified in the 

current study, but they were excluded from global analysis of the data. 

 Relaxation dispersion global fitting – Due to the large number of residues 

experiencing µs-ms motion in E:NADPH:1, group fitting via the method of Mulder et al. was 

prohibitively impractical (30).  Instead, all non-ligand-independent sites were fitted together.  

Several residues had a χ2
global/χ

2
local ratio of > 2; therefore, the local fit ∆ω value for such 
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residues is reported.  The sign of ∆ω was determined from peak positions in HMQC and 

HSQC spectra (111). 

 Procedure for determining data included in correlations of ∆ω and ∆δ – For sites 

lining the solution-preferred binding pose of the thiophenyl group undergoing slow motion 

(35-37, 40, 50-52, 54, and 57), residues 51 and 54 were considered to not respond 

significantly to the movement of the thiophenyl ring, given ∆δ values of less than 0.4 ppm 

(51), and were excluded from the analysis.  Residue 35 displayed a disagreement in sign for 

∆ω and ∆δ and thus was excluded.  However, because the difference in frequency of the peak 

in the HSQC relative to the HMQC is quite small in magnitude, the reported sign of ∆ω may 

be reversed (111).  While of the same sign, ∆ω fitted for residue 36 was anomalously smaller 

than the calculated ∆δ.  This residue was excluded, given the excellent correlation of the five 

residues that remained (37, 40, 50, 52, and 57).  Similarly for the Met20 loop transition, 

residues with ∆δ values less than 0.4 ppm (33 sites) were considered to not respond 

significantly to the closed-to-occluded transition and were excluded from the analysis (51).  

Residues suspected to be experiencing changes in chemical shift as a result of multiple 

conformational changes (i.e. a combination of Met20 loop, cofactor or inhibitor motions) 

were also further excluded from the analysis (6 sites).  Several residues (27, 94, and 96) were 

initially thought to participate in this switching motion; however, upon sign determination for 

∆ω, these residues no longer fell on the line of best fit – totaling 9 sites with complex 

motions. 

 

3.2.6.  Residual Dipolar Coupling Analysis 
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While the crystal structure suggests that the Met20 loop is more closed than occluded 

in nature, further evidence that the Met20 loop is closed in solution in E:NADPH:1 was 

obtained by NMR.  Structural perturbation of the protein backbone was assessed using N-HN 

residual dipolar couplings (RDCs).  As described previously, DHFR was partially aligned in 

5% acrylamide via a 6 mm stretched gel alignment kit (79, 112).  IPAP-HSQC experiments 

were collected on the anisotropic (gel) sample and on an isotropic sample prepared from the 

same 15N-labeled protein stock solution.  The data were processed and analyzed as described 

previously (79).  1DNH coupling values were compared to PDB IDs 3KFY, 1RX3, and 1RX5 

to determine quality (Q) factors, excluding residues known to possess slow timescale 

motions (113). 

RDC values for E:NADPH:1 were compared to the crystal structures of 

E:NADPH:MTX and E:ddTHF.  The Q-factor for comparing 1DNH values to 1RX3 (Met20 

loop closed) was determined to be 0.42 while the comparison to 1RX5 (Met20 loop 

occluded) was 0.54, suggesting that the present ternary complex is more closed-like in 

solution.  Comparing the 1DNH values for E:NADPH:1 to its crystal structure (3KFY) led to a 

Q-factor of 0.40, similar to its agreement with 1RX3.  The basis for the relatively high Q-

factor is not entirely clear.  The mild disagreement could be due to the quality of the 

alignment, differences between the crystal and solution, or the inherent dynamic nature of the 

complex. 

 

3.2.7.  Intermolecular NOE Analysis 

 The bound conformation of 1 in E:NADPH:1 was determined using a 3D 13C F1-

edited, F3-filtered HMQC-NOESY experiment (114).  This experiment provides 
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intermolecular NOEs between 13C-labeled protein and unlabeled bound ligands.  

Interpretation was complicated by the presence of NOEs between the protein and both 

NADPH and 1.  A second NOESY spectrum was therefore also collected for the E:NADPH 

binary complex to make preliminary NOE assignments to cofactor.  Chemical shift 

assignments for the bound protons of 1 were confirmed from a 2D 15N,13C-filtered TOCSY 

experiment on a 1:1:1 complex of E:NADPH:1 (115).  There was no indication in the 

TOCSY or NOESY spectra of separate resonances for symmetric protons on the thiophenyl 

ring, consistent with symmetric ring flipping that is fast on the NMR timescale.  Amino acids 

expected to be within 5-6 Å of 1 for pose A include F31, T35, V40, I50, L54, R57, and I94.  

Those nearest to pose B include I14, M20, T46, S49, I94, G95, and G96.   

 

3.2.8. Protein Crystallization, Data Collection, and Refinement 

Preparation of the ternary complex – Three- and 1.5-fold molar excesses of NADPH 

and 1, respectively, were added to the apoenzyme when the concentration of DHFR was 

relatively dilute (~ 1 mg/mL).  The ternary complex was then concentrated down to 30 

mg/mL using a centrifugal concentration device.   

Crystallization conditions – The ternary complex was crystallized via microseeding 

by the hanging drop vapor diffusion method in a 24-well crystallization plate under the 

following conditions:  30 mg/mL DHFR, 20 mM imidazole at pH 8, 350 mM CaCl2, and 

29% PEG-6000.  The reservoirs of the plate contained 0.5 mL of mother liquor.  Each 

hanging drop was a mixture of 5 µL of the reservoir solution and 5 µL of the prepared ternary 

complex in 20 mM imidazole.  The crystals used in microseeding were grown under identical 

conditions.  Crystals were allowed to grow at room temperature in the absence of light for 3-
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5 days before harvesting.  The high concentration of PEG-6000 in the mother liquor was 

sufficient for cryoprotection of the crystals.  Upon addition of another 10 µL of the reservoir 

solution to each drop, mounted crystals were flash frozen in liquid nitrogen. 

Data collection – Diffraction data were collected in-house at UNC using a RU300 

rotating copper anode (Rigaku/MSC) and a Saturn 944+ CCD detector at ~100 K.  Data were 

processed using HKL2000 (116). 

 Structure determination – The structure of E:NADPH:1 was determined using 

molecular replacement.  The CCP4 program suite and the MR program Phaser (117) was 

used.  The search model was E. coli DHFR bound to NADP+ in the C2 space group (PDB ID 

1RA9).  It should be noted that the Met20 loop in the search model was not closed in 

conformation, reducing the bias to the final model for E:NADPH:1.  Manual model building 

was accomplished using Coot (118).  Final rounds of refinement used BUSTER (119).  Initial 

placement of the ligands was accomplished by examination of the fo-fc difference densities. 

While electron density for the thiophenyl ring is very weak, the placement of the substituent 

is stereochemically sound and accounts for positive density seen in the fo-fc maps used and 

there is no other position in the maps that would account for the ring.  The poor fits for the 

Met20 loop and the nicotinamide-ribose of NADPH could not be improved by repositioning, 

iterative omit maps trials with 2fo-fc or fo-fc difference maps.  Atomic coordinates have 

been deposited in the PDB with ID 3KFY. 

 

3.2.9.  Molecular Docking Calculation 

 The Induced Fit Docking (IFD, Schrodinger, LLC) protocol (120) was employed to 

predict the possible binding orientations of 1 within the E:NADPH:1 ternary complex.  This 
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approach takes both ligand and receptor flexibility into account by combing rigid receptor 

docking (Glide) (121) with protein structure prediction (Prime) (122) methods in an iterative 

and exhaustive way.  First, an ensemble of docking poses is generated into a rigid receptor 

using the softened potential.  Second the “induced” protein conformations for each ligand 

pose are sampled effectively.  At this point the algorithm considers side-chain flexibility and 

small-scale backbone motions within a 5 Å sphere of the co-crystallized ligand by default.  

Next the ligand is redocked into the low-energy induced-fit structures from the previous step.  

At the fourth step the protein/ligand complex is scored by accounting for both the docking 

energy (GlideScore), and receptor strain and solvation terms (Prime energy).  In the end, if 

the gap in composite scores between top ranked structures is below 0.2 (nearly isoenergetic 

solutions), the entire IFD protocol is repeated for the top-ranked receptor structures from the 

first round of IFD as a starting point.  During the calculation we employed the scoring 

function of the highest accuracy in Glide, the XP mode.  No NOE data were used as 

restraints to guide our docking process. 

Prior to the IFD calculation, the optimal protonation states for the ligand, receptor 

acidic/basic residues as well as histidine residues were determined.  The protein's hydrogen 

bond network has been optimized by means of a systematic, cluster-based approach while a 

restrained minimization was conducted by allowing hydrogen atoms to be freely minimized 

as well as sufficient heavy-atom movement to relax strained bonds, angles, and steric clashes.  

We examined the positions of co-crystallized water molecules carefully before their removal 

and retained two water molecules (HOH13, HOH148) close to the quinazoline moiety of the 

inhibitor because similar positions were also observed for co-crystallized water molecules in 

other DHFR crystal structures. 
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3.2.10.  koff Determination 

 Stopped-flow fluorescence assays – A competitive binding assay, as described 

previously, was used to determine koff for 1 from the E:NADPH:1 complex (36).  Briefly, 

E:NADPH:1 (20 µM DHFR, 400 µM NADPH, and 200 µM 1 in NMR Buffer) was 

preformed and loaded into the drive syringe of the stopped-flow housing of a Fluorolog 

spectrofluorometer (Jobin Yvon Horiba, Inc).  Methotrexate (MTX) (500 µM in NMR 

Buffer) was loaded in a second syringe.   Intrinsic tryptophan fluorescence was excited at 290 

nm while FRET emission (Trp to bound nicotinamide of NADPH) was monitored at 456 nm.  

Because MTX is a higher affinity inhibitor than 1, upon rapid mixing via the stopped-flow 

apparatus, MTX displaces 1, leading to a non-fluorescent ternary E:NADPH:MTX complex.  

The exponential decrease in fluorescence of E:NADPH:1 to E:NADPH:MTX is fit to 

determine koff for 1.  However, in the present experiment, no burst in FRET was observed 

upon mixing.  This suggests that koff for 1 is too slow to measure.  However, it is also 

possible that 1, being an excellent quencher of tryptophan fluorescence, forms a non-

fluorescent ternary complex which cannot be distinguished from the non-fluorescent 

E:NADPH:MTX complex.  Other inhibitors of DHFR with Ki values near 1 µM possess koff 

values of less than 1 s-1, and a series of inhibitors with widely varying binding affinities 

shows a strong correlation of increasing koff with increasing Ki (see Chapter 4) (41).  This 

suggests that 1 with a Ki of 120 nM would have a koff  << 1 s-1, in agreement with our 

finding.  By this, kon is estimated to be ~106 s-1. 
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3.3.  Results 

3.3.1.  Compound 1 is a high-affinity, competitive inhibitor of DHFR 

 In studying a larger panel of ~10 DHFR inhibitors, 5-(4-chlorophenylthio)-

quinazoline-2,4-diamine (compound 1, Figure 3.1) was identified as exhibiting interesting 

NMR line-broadening properties when bound in a ternary complex with DHFR and NADPH 

(referred to as E:NADPH:1). 

 

 Figure 3.1.  Structure of Compound 1 (5-(4-chlorophenylthio)-quinazoline-2,4-diamine). 
 

The number and identity of sites experiencing line broadening differed greatly from that 

observed in the absence of 1 (E:NADPH) (79).  Based on this, we decided to carry out a full 

structural and dynamic characterization of this complex.  Compound 1 was previously 

identified as a competitive inhibitor of E. coli DHFR from a high-throughput screen of 

50,000 small molecules (77).  Using a competition assay, 1 was confirmed to competitively 

inhibit DHFR with a Ki of 120 ± 9 nM. 

 

3.3.2.  Structural evidence of multiple conformations in E:NADPH:1 

 DHFR is one of the most thoroughly studied enzymes from both a structural and 

dynamic point of view (6, 39, 42, 108).  From these studies, it is known that the loops 

subdomain (Figure 3.2) is highly dynamic. 
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 Figure 3.2.  Structure of E. coli DHFR.  Important subdomains, loops, and ligand binding sites are 
 highlighted on a ternary complex of DHFR (PDB IDs 1RX3 and 1RX6 rendered using PyMOL.) 
 

As DHFR progresses through its catalytic cycle, the enzyme undergoes a functionally 

important conformational change in its Met20 loop (residues 9-24) from the ‘closed’ state 

prior to hydride transfer, to the ‘occluded’ state following hydride transfer and leading up to 

product release (42, 108).  Stabilizing hydrogen bonds between the Met20 and F-G (residues 

116-132) loops within the closed state are broken as the Met20 loop transitions to form new 

hydrogen bonds with the G-H (residues 142-150) loop in the occluded state.  In the occluded 

conformation, the side chains of M16 and E17 occupy the active site, forcing the 

nicotinamide of NADPH out into solvent. 

The structure of E:NADPH:1 in the P212121 space group was determined to a 

resolution of 2.1 Å (Appendix 3.2).  This structure is isomorphous to those determined 

previously (42), thus minimizing structural differences due to crystal packing artifacts and 

allowing for direct comparisons to be made.  Overall, it is very similar to the methotrexate 

(MTX) ternary complex, PDB ID 1RX3 (backbone rmsd = 0.33 Å).  However, some notable 

differences are observed relative to other ternary or closed complexes (42).  While the Met20 

loop is found primarily in the closed conformation (Figure 3.3A), electron density for some 

regions of the loop is quite poor, suggestive of mobility. 
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 Figure 3.3. The crystal structure of E:NADPH:1.  (A) The 2.1 Å resolution structure demonstrates 
 that the Met20 loop is primarily in the closed conformation.  NADPH is shown in cyan and 1 in 
 magenta. (PDB ID 3KFY rendered using PyMOL.)  (B) The 2Fo-Fc electron density for 1 is shown 
 with a cover radius of 3 Å to remove extraneous electron density that complicates this view (pose B).  
 Electron density on the 4-chlorophenyl group is a convolution of density of 1 and weak electron 
 density of nicotinamide.  (C) α-Helix C above the inhibitor binding site shifts away from the drug by 
 approximately 1 Å in E:NADPH:1 (grey) relative to 1RX3 (green). (D)  NOE and chemical shift data 
 suggest an alternative, ground state binding pose (pose A) for 1 in solution.   
 

In fact, residues 16-20 fit poorly to the density observed (Figure 3.4A).  Similarly, portions 

of NADPH and inhibitor have weak density, indicating that both cofactor and inhibitor 

sample multiple binding poses.  Electron density for the 2,4-diaminoquinazoline moiety of 1 

is well ordered, which overlays nicely with the corresponding moiety in MTX.  However, the 

thiophenyl substituent is much less well defined (Figure 3.3B and 3.4B).   
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 Figure 3.4.  Electron density maps for the Met20 loop and bound ligands.  (A) Residues 16-20 of  the 
 Met20 loop fit poorly to the observed density (shown in divergent stereo view).  (B) Divergent stereo 
 view of the electron density for 1.  (C) Well-ordered electron density is observed for the adenosine 
 and pyrophosphate portion of NADPH; however, the density for the nicotinamide-ribose is 
 much less well-defined.  
 

Inspection of the density led to the only feasible conclusion, namely, that the thiophenyl 

group samples a previously unobserved pose for E. coli DHFR in which it is oriented towards 

the nicotinamide binding pocket of the active site (Figure 3.3A-B).  Such a pose has been 

observed for an analogous inhibitor bound to C. albicans DHFR (123).  The binding pose of 



55 

1 was studied further via induced fit docking (120) against the E:NADPH:1 crystal structure, 

but with NADPH removed.  The lowest energy docking pose observed shows the thiophenyl 

bound within the nicotinamide binding site (Figure 3.5A).  A second thiophenyl pose is not 

observable from the electron density within the active site region, suggesting a sampling of 

an unknown number of additional poses.   

 

 Figure 3.5.  The outcome of Induced Fit Docking (IFD) of 1.  (A) The top-ranked docking pose of 
 1 in the absence of NADPH.  Protein coordinates were taken from the starting E:NADPH:1 crystal 
 structure. (B) Ten top-ranked docking poses are illustrated in stick model, with quinazoline moiety 
 in magenta and thiophenyl colored differently for each model.  Protein coordinates were taken 
 from the starting E:NADPH:1 crystal structure and rendered as ribbon. Local structural changes to 
 protein brought about by the IFD were omitted in both figures.   
 

Consistent with 1 and cofactor sampling the same binding site, the nicotinamide-

ribose moiety of NADPH samples multiple conformations.  As mentioned above, poor 

electron density for nicotinamide-ribose is observed within the active site (Figure 3.4C).  

Surprisingly, electron density from both nicotinamide and thiophenyl groups overlay in this 

pocket, showing that the calculated density must result from the sum of different 

conformational poses within the crystal.  Presumably, the nicotinamide-ribose group also 

samples a solvent exposed state, similar to that observed when the Met20 loop is occluded 

(e.g. bound to 5,10-dideazatetrahydrofolate) (42), to make room for the binding of 1’s 

thiophenyl ring. 
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To add structural insight into the ambiguities within the crystal structure, NMR 

chemical shifts within the Met20 loop were analyzed.  Nearly all residues within the Met20 

loop are broadened, suggesting conformational exchange (Appendix 3.3); yet, the chemical 

shift values are indicative of a closed Met20 loop (Figure 3.6).   

 

 Figure 3.6.  Chemical Shift Perturbations relative to closed and occluded chemical shifts.  (A) 1H-15N 
 HSQC of E:NADPH:1 recorded at 700 MHz.  Met20 loop resonances are labeled by residue 
 number.  In case of partial to complete overlap of resonances, lines are used to indicate resonance 
 assignments. (B) CSPs of E:NADPH:1 relative to Met20 closed and occluded shifts obtained from 
 the BMRB suggest that all marker residues have chemical shifts more similar to a closed Met20 loop 
 form, except V13.  However, the difference between closed and occluded for V13 is very  small (~0.06 
 ppm).  Met20 loop conformation marker residues are shown in red.  NADPH is abbreviated as NH.  
 (C) Chemical shift perturbations of E:NADPH:TMP relative to Met20 closed and occluded shifts 
 obtained from the BMRB.  Met20 loop conformation marker residues are shown in red.   
 

Chemical shift perturbations (CSPs) were calculated relative to model complexes with closed 

(E:NADP+:folate, access. no. 5470) or occluded (E:5,6-dihydroNADPH:folate, access. no. 

5471)  loops, using data deposited in the Biological Magnetic Resonance Bank (BMRB).  Of 

the nearly twenty resonances with 1HN and/or 15N chemical shifts sensitive to the 

conformation of the Met20 loop (i.e. ‘markers’) (97), only V13 possessed a shift more 
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similar to an occluded loop conformation (Figure 3.6B).  In other words, essentially all 

chemical shift markers indicate that the Met20 loop is primarily closed in E:NADPH:1.  

Furthermore, calculating CSPs for (E:NADPH:1 – E:NADPH) and (E:NADPH:trimethoprim 

(TMP) – E:NADPH) allowed for the identification of site-specific changes elicited by the 

two inhibitors (Figure 3.7A).   

 

 Figure 3.7.  CSPs of Inhibitor Binding.  (A) CSPs of E:NADPH:1 and E:NADPH:TMP relative to 
 E:NADPH.  Outliers, shown in blue, were identified using a standard box plot function.  (B) CSP 
 outliers upon the binding of 1, highlighted in blue spheres, do not localize to the Met20, F-G, or G-H 
 loops.  Significant CSPs are noted in α-helix C and β-sheet B above this helix, suggesting that 
 thiophenyl could bind in this region.  (C) Outliers upon the binding of TMP do not localize to the 
 Met20, F-G, or G-H loops, nor to α-helix C or β-sheet B. 
 

The Met20 loop of the E:NADPH holoenzyme complex is known to be predominantly closed 

in solution (6, 79).  Relative to this closed complex, no significant changes in chemical shift 

were observed for any residues within the Met20 or F-G loops in the presence of either 

inhibitor (Figure 3.7B-C).  The one outlier found in the G-H loop in binding both inhibitors is 

distal to the hydrogen bonds that form and break during Met20 loop switching motions.  

Since our previous analysis of the E:NADPH:TMP complex using residual dipolar couplings 

(RDCs) demonstrated that its Met20 loop is closed in solution, the current chemical shift 

comparisons indicate that the Met20 loop in E:NADPH:1 is predominantly closed (79).  This 

is further supported by measurements of RDCs for E:NADPH:1 (mentioned in 3.2.6). 
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Interestingly, CSPs upon binding of 1 are seen above the inhibitor binding site, in the 

C-terminus of helix C and residues 40 and 41 of β-strand B (Figure 3.7B).   Closer inspection 

of the crystal structure shows that, relative to E:NADPH:MTX, helix C is shifted about 1 Å 

away from the folate binding site (Figure 3.3C).  In addition, significant CSPs upon binding 1 

were not seen for the majority of residues lining the nicotinamide binding pocket.  This raises 

the possibility of a preferred binding pose for the thiophenyl ring of 1 in solution, in which 

the substituent could be pointing toward α-helix C above the folate binding site (Figure 

3.3D).  Such a pose has been observed for an analog of 1 when bound to C. albicans DHFR 

(PDB ID 1IA2), in which the active site is several angstroms wider than in E. coli (124). 

 

3.3.3.  Intermolecular NOEs reveal the bound inhibitor conformation 

 Given the suggestion from CSPs of a solution-preferred orientation of 1 different 

from the crystal structure, a 3D 13C-edited/filtered NOESY spectrum was collected on 

E:NADPH:1 to obtain intermolecular NOEs and determine the solution conformation of 1 

within the active site.  Five bound 1H chemical shifts of 1 (1-5 in Table 1) were observed to 

have NOEs to protein.  2D 15N,13C-filtered TOCSY showed that these five protons 

subdivided into two groups of J-coupled networks (Figure 3.8), corresponding to three 

signals for the quinazoline and two for the thiophenyl group (Table 1).  Strong and medium 

intensity NOEs to the quinazoline moiety were consistent with the crystal structure, 

implicating 1H(3), 1H(4), and 1H(5) signals as arising from quinazoline (Table 1).    
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DHFR 1H 

1H(1) 
 

1H(2) 
 

1H(3) 
 

1H(4) 
 

1H(5) 
 

A7 – 1Hβ - - - vw - 
M20 – 1Hε vw w m s s 
D27 – 1Hβ - - - w - 
           1Hα - - - vw - 
L28 – 1Hδ1

 - - s s s 
                

1Hδ2
 m - s s s 

F31 – 1Hβ
 w w - w - 

T35 – 1Hγ2
 w w - w - 

M42 – 1Hε
 m w - - - 

I50 – 1Hδ1
 s s - - s 

         1Hγ2 s m - - - 
L54 – 1Hδ1 s s - - - 
          1Hδ2 s m - - - 
I94 – 1Hδ1 m m - - - 
          1Hγ2

 w w - - - 

 
 Table 1.  Observed intermolecular NOEs for E:NADPH:1.  Abbreviations: very weak (vw), weak  (w), 
 medium (m), and strong (s).  Gray shading indicates residues expected to have medium to strong NOEs 
 to protons on the quinazoline moiety of 1.  Bound chemical shifts of 1 (denoted 1-5) are 7.5, 7.1, 7.3, 
 6.93, and 6.88 ppm, respectively. 
 

 

 Figure 3.8.  15N,13C-filtered TOCSY spectrum of E:NADPH:1.  The aromatic region of a 2D 
 15N,13C-filtered TOCSY experiment, in combination with the filtered NOE data, allowed for the 
 determination of the chemically unique protons of bound 1 and to distinguish between thiophenyl 
 (TP) and quinazoline (Q) protons. 
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For the thiophenyl substituent, two binding orientations were considered:  (A) bound 

above the substrate binding site, directed towards α-helix C, as suggested by CSPs 

perturbations (Figure 3.3D), or (B) bound within the nicotinamide site, as observed in the 

crystal structure (Figure 3.3B).  Amino acids expected to be within 5-6 Å of 1 in these two 

conformations were identified for poses A and B.  No pose B residues were observed to have 

NOEs to 1, except M20, whose side-chain is typically highly flexible (79).  By contrast, five 

pose A residues showed mostly strong and medium NOEs to 1H(1) and 1H(2) (Table 1, non-

shaded residues).  This solidified the chemical shift assignments of 1 and strongly suggested 

that in solution the thiophenyl group exists primarily pointed in the direction of α-helix C 

(Figure 3.3D).  Induced fit docking (120) against the E:NADPH:1 crystal structure in the 

presence of NADPH shows binding pose A to be the lowest energy conformation for the 

thiophenyl ring (Figure 3.5B).  The interproton distance patterns between receptor and the 

lowest energy docked conformation of 1 (Appendix 3.4) were found to agree well with most 

intermolecular NOEs in Table 1.   

 

3.3.4.  Extensive µs-ms motions in the E:NADPH:1 complex 

 What is the true nature of 1’s side-chain orientation if it appears well-positioned in 

solution and disordered in the crystal form?  Proteins exist in multiple conformations and 

thus there may be no single “correct” conformation for 1.  Protein motional dynamics occur 

over a broad range of timescales and include both small-scale bond rotations and large-scale 

conformational rearrangements (14, 125).  The latter often occur on the “slow”, or µs-ms 

timescale and have been implicated in the biological functions of proteins, including ligand 

binding and release, allosteric regulation, and catalysis-related events (6, 7, 51, 126).  Indeed, 
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µs-ms dynamics are critical for movement of DHFR through its catalytic cycle (6).  NMR 

relaxation studies of E:NADP+:folate, proposed as a surrogate for the reactive complex of 

DHFR, have shown that the Met20 loop closed-to-occluded switching event occurs in 

solution on the µs-ms timescale (39, 51). 

 For the E:NADPH:1 ternary complex, extensive µs-ms motion was detected by 15N 

Carr-Purcell-Meiboom-Gill (CPMG)-relaxation dispersion experiments.  These experiments 

allow for decomposition of the transverse relaxation rate R2 into Rex, the relaxation rate 

component due to slow timescale conformational exchange, and R2
o, the remaining 

contributions to transverse relaxation on a faster timescale (27).  Assuming a two-state 

exchange process, R2 depends on the exchange rate constant (kex), the populations of ground 

state A and excited state B (pA and pB), and the difference in chemical shift between states A 

and B (∆ω) (27).  Thus, kinetic, thermodynamic, and structural information, respectively, are 

potentially obtained to describe the dynamic sampling of two states. 

 Rex was identified at 55 residues in E:NADPH:1 (Figures 3.9A-B).  This is more 

extensive than any other reported complexes of DHFR.  Motions are observed only on the 

front face of the enzyme, seen throughout the active site (folate + nicotinamide binding site) 

and at many residues within the Met20 (8 sites), F-G (6 sites), and G-H loops (4 sites), 

including G121 which is an important marker of Met20 loop conformational switching (51).  

All 55 sites were grouped together for global fitting, yielding shared kex and pB values of 844 

± 59 s-1 and 2.6 ± 0.1 %, respectively (Appendix 3.5) (30).  As will be described further 

below, the overall pattern of residues is consistent with two coupled motions: (i) switching of 

the thiophenyl group from preferred pose A above the substrate binding site (Figure 3.3D), as 

supported by NOEs, to alternative pose B observed in the crystal structure and (ii) switching 
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of the Met20 loop from closed to occluded, in order to accommodate the multiple poses of 

the inhibitor’s thiophenyl moiety.  This model of structural dynamics reconciles the X-ray 

and NMR data, suggesting that the crystal structure captures a minor, transient state for the 

thiophenyl ring, whereas the NOEs and chemical shifts reflect the major state in solution.   

 

 Figure 3.9.  15N Relaxation Dispersion of E:NADPH:1.  (A) Relaxation dispersion curves 
 generated from 700 (closed circles) and 500 MHz (open circles) data are shown for several 
 residues.  Standard errors were determined by peak intensity analysis of duplicate experiments for 
 specific 1/τcp values.  (B) Residues that exhibit R2 dispersion are highlighted in colored spheres.  
 NADPH and 1 are shown in cyan and magenta sticks, respectively.  Thiophenyl poses A and B are 
 shown as dark and faded sticks, respectively.  (C)  Sites surrounding the thiophenyl moiety of 1 
 show a linear correlation of ∆ω to ∆δ for the loss of thiophenyl in the excited state, with a slope of 
 1.01 and R = 0.99 (green correlation and spheres in (B)).  The comparison of ∆ω to ∆δ for the sites 
 participating in Met20 loop switching motion fit to a line with a slope of 1.08 and R = 0.97 (black 
 correlation and spheres in (B)).  Errors in ∆ω were determined from Monte Carlo simulations in the 
 global fitting procedure. 
 

 

3.3.5.  Concerted small-molecule and receptor conformational switching 

 In contrast to our previous study of DHFR dynamics in the presence of MTX and 

TMP (79), a number of residues surrounding the solution-preferred pose of 1’s thiophenyl 
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group exhibit Rex.  These sites (residues 37, 40, 50, 52, and 57) were speculated to be 

undergoing exchange due to the switching of the thiophenyl from pose (A) above the 

substrate binding site to pose (B) within the nicotinamide binding site.  Therefore, an analysis 

of chemical shift changes was undertaken.  Dynamic chemical shift changes (∆ω) from the 

relaxation dispersion analysis were plotted against changes in single-state chemical shifts 

(∆δ).  Values of ∆δ representative of loss of inhibitor (E:NADPH – E:NADPH:1) for all 

residues experiencing slow motions were calculated using assignments of E:NADPH:1 and 

E:NADPH.  A correlation plot of ∆ω and ∆δ for 5 sites surrounding the thiophenyl group 

(green correlation in Figure 3.9C) yields a Pearson coefficient of 0.99, indicating a two-state 

motion of the thiophenyl from pose (A) in the ground state to a different pose in the excited 

state, likely pose B as is discussed below.  We interpret these to be motions occurring while 1 

is bound (i.e., not from dissociation) based on thermodynamic and kinetic grounds (see 

section 3.2.10), and also because residues surrounding the anchored quinazoline moiety do 

not show this correlation. 

 A similar chemical shift analysis was undertaken for the residues known to be 

markers of the closed-to-occluded transition of the Met20 loop (6, 51, 97).  Values of ∆δ for 

all residues experiencing slow motions were calculated using the deposited resonance 

assignments mentioned previously (E:DHNADPH:folate – E:NADP+:folate) (97).  The 

correlation of ∆ω and ∆δ for 13 sites (black correlation in Figure 3.9C) resulted in a Pearson 

coefficient of 0.97, indicating a concerted, two-state motion of the Met20 loop from closed to 

occluded in the E:NADPH:1 ternary complex.  Using the shared kex and pB values from the 

global fit, the switching motion of the Met20 loop and the movement of the thiophenyl group 

away from pose (A) occurs at a forward rate (kf) of 21.9 ± 1.6 s-1.  This rate translates into a 
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∆G†
f of 15.6 kcal/mol, and an overall ∆G of 2.2 kcal/mol for the transition from ground to 

excited states, based on the populations.  This value matches well with what has been 

observed previously by NMR for the transition, and also with what has been determined via 

simulation (127).   

 Because the two motions are coupled, we hypothesize that the excited state pose of 

the thiophenyl group is one in which it occupies the nicotinamide binding site (pose B). This 

pose was (i) observed in the crystal structure and is further supported by (ii) the poor electron 

density for both the nicotinamide of NADPH and the Met20 loop, (iii) the relaxation 

dispersion results, and (iv) induced fit docking of 1 to DHFR in the absence of NADPH 

(Figure 3.5A).  The combination of these results strongly suggests that, in the excited state, 

the thiophenyl ring of 1 occupies the nicotinamide binding site.  Regardless of the precise 

thiophenyl orientation in the excited state, it is clear that the binding of 1, unlike MTX and 

TMP (79), drives reversible Met20 loop switching from the closed to the occluded 

conformation.  Despite the fact that 1 is an inhibitor, from a mechanistic point of view 1 can 

be considered a ‘dynamics agonist’.  Upon binding (and thiophenyl insertion), 1 elicits a 

functional loop motion in a distal loop by competitively displacing nicotinamide, which 

allows adoption of the occluded conformation of the Met20 loop.  Met20 loop motion was 

previously detected in E:NADP+:folate (51); however, motion of folate was not observed.  

Direct observation of movement of a non-biological inhibitor while bound to its target has 

implications for drug design. 

 In summary, the E:NADPH:1 complex is presented as a highly dynamic complex on 

the µs-ms timescale.  Ligand, receptor, and cofactor are in a continuous state of shared 

conformational flux, with the ligand dynamics driving the cofactor and receptor dynamics.  
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The thiophenyl group of 1 prefers to bind at the upper end of the active site, but it also 

samples a higher energy pose in the nicotinamide binding pocket, which expels cofactor 

nicotinamide.  This, in turn, allows the Met20 loop to move between closed and occluded 

conformations.   

 

3.4.  Discussion 

 Protein flexibility and dynamics represent a complication to drug design that has just 

begun to attract major efforts to tackle this problem.  Although the problem is complex, one 

clear reason for this is that accurately characterized examples of receptor-ligand dynamics 

are needed from which to build upon, and such examples are essentially non-existent (5, 

101).  Here, we demonstrate that the ternary complex of DHFR, NADPH, and the drug-like 

compound 1 exists in at least two conformational states that are dynamically interconverting 

on a timescale of ~1 ms.  The structural, temporal, and population aspects of the dynamics 

were captured by use of crystallography and NMR.  This complex could therefore serve as a 

useful benchmark for the refinement and future development of modeling methods that 

incorporate receptor and ligand dynamics.  This should lead to improvements in predicting 

binding affinities and provide insight into targeting dynamics (103). 

The application of both NMR and crystallography was critical to reveal the true 

nature of this ligand-receptor complex.  The resultant picture of this dynamic complex is that, 

in solution, the dominant state (~97%) has DHFR in the closed conformation, with cofactor 

fully bound and thiophenyl of 1 directed towards helix C.  The minor state (~3%) has DHFR 

in the occluded conformation, nicotinamide-ribose of cofactor ejected into solvent, and 

thiophenyl inserted into the nicotinamide binding site.  These states represent actual 
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dynamics within the complex since dissociation is slow relative to these conformational 

changes.  Ligand structural heterogeneity has been observed previously in E. coli DHFR 

complexes.  A recent ternary crystal structure of DHFR complexed with a novel inhibitor (Ki 

= 11 nM) showed the inhibitor with diminished electron density for half of the molecule (43).  

A second structure with a shorter inhibitor corresponding to the anchored region of the first 

inhibitor also showed evidence for multiple conformations.  The second inhibitor has 

substantially reduced affinity, showing that even flexible portions of ligands can make large 

contributions to binding affinity (43). 

Despite the motion of this small molecule while bound to DHFR, the binding affinity 

of 1 for holoenzyme is still high.  Do the multiple binding poses of 1 limit its clinical 

potential?  It may be possible for drug resistant mutations to limit one binding pose while not 

affecting the other.  Thus, two dynamically sampled ligand binding poses for one drug could 

limit drug resistance if protein inhibition is preserved in either binding mode.  This was 

specifically observed in crystal structures of inhibitor TMC278 (rilpiverine) in complex with 

HIV-1 reverse transcriptase mutants (128).  In principle, 1 would be valuable as an inhibitor 

of trimethoprim (TMP) resistant strains of bacteria due to its sampling of a non-canonical 

binding pose within the active site.  Known mutations that confer TMP resistance would not 

affect the binding of the thiophenyl substituent of 1 within the nicotinamide binding site, as 

many of these mutations are concentrated in the folate binding site (76).   

The findings reported here, along with innumerable crystallographic studies, suggest 

that multiple ligand poses may be sampled more often than expected (11, 101).  This may be 

especially true for small, lipophilic ligands encountered in drug discovery.  In most instances 

of apparent single-mode binding, minor conformers that are actually sampled to a significant 
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extent would not be expected to crystallize or would lie below the noise threshold for NOE 

detection;  the only way to detect these conformers would be from NMR relaxation 

dispersion experiments (as reported here) or MD simulations (129, 130).  An important class 

of receptors for signal transduction and pharmaceuticals is that of the ligand activated G-

protein coupled receptors (GPCRs).  The degree of conformational flexibility and dynamics 

in these receptors is impressive (131) and likely to be more extensive than in DHFR.  

Germane to the results here, biophysical studies on the β2-adrenergic receptor (β2AR) show 

that agonist binding (at saturating levels) produces structural heterogeneity (132), rather than 

locking the receptor into a single conformation.  Thus, although it remains to be seen if single 

GPCR ligands adopt multiple bound configurations, dynamic receptor-ligand complexes are 

likely to be of broad relevance for understanding mechanisms of signal transduction and their 

perturbation by drugs (102).   

It is instructive to compare the dynamic characterization here to one of the only other 

target-drug systems characterized in detail by crystallography and NMR:  the Bcr-Abl fusion 

kinase in complex with the kinase inhibitor dasatinib (133).  Dramatic line-broadening was 

observed in the activation and P-loops of Bcr-Abl, suggesting allosteric loop switching 

motions.  Even though inhibitors imatinib and nilotinib stabilize different loop 

conformations, they also show some line-broadening in a few loops residues, although 

significantly less than in the dasatinib complex (133).  Further detail on the µs-ms timescale 

dynamics from relaxation dispersion experiments were not available.  We also note that 

dynamics in a small molecule was previously shown to exist on multiple timescales when 

bound to matrix metalloproteinease-1 (MMP-1) (82).  Thus, dynamics in both ligands and 

receptors clearly exist across very different classes of drug targets. 
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It has recently been suggested that many underexploited protein target classes are 

avoided due to the flexibility inherent to their function, such as ion channels and nuclear 

hormone receptors (5).  However, these more challenging targets are likely to become 

important in future drug design efforts, as we continue to exhaust the less complex targets.  

Identification of multiple ligand conformations and flexibility within the active site for the 

E:NADPH:1 complex is an example that stresses the importance of continuing efforts toward 

an understanding of protein dynamics and how they are modulated by small molecules.  

Given the scarcity of studies identifying specific ligand-induced protein flexibility, the results 

of this study may find use in the advancement of computational docking methods that include 

protein dynamics (100).  The transient, excited states detected in this approach could also be 

targeted and stabilized by small molecules, leading to new high-affinity modulators of 

protein function for disease treatment. 

 

 

 



 

Chapter 4 

 

Evidence for Dynamic Motion in Proteins as a Mechanism for Ligand 

Dissociation 

 

4.1.  Introduction 

 A long-sought goal in the biochemistry of receptor-ligand interactions is to gain an 

understanding of what molecular forces contribute to binding affinity and kinetics.  A 

fundamental question is how does dissociation occur once a ligand (e.g., peptide or small 

molecule) is bound to its receptor?  One model for dissociation is simple diffusion of ligand 

from the target.  A more mechanistic reasoning would be that something happens to 

physically disrupt the interaction between ligand and receptor, leading to ligand release or 

ejection.  Indeed, myoglobin requires structural deformations to bind and release oxygen 

(134, 135); however, this can be viewed as a special case since ligand is completely buried 

from solvent.  We postulate that protein structural fluctuations could be a more generally 

utilized mechanism for weakening intermolecular interactions and effectively “pushing” or 

“shearing” a ligand away from its receptor.  Experimental studies towards this question 

should benefit structure-based drug design and protein (enzyme) engineering.  From a 

biological perspective, because signal transduction is driven by countless cycles of ligand 

binding and release (136), insight into mechanisms of ligand release mechanisms could also 
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make possible the drawing of fundamental connections between internal protein dynamics 

and cell signaling.  

 To probe the intra- and intermolecular dynamics of protein and small molecule 

inhibitor complexes, we took a medicinal chemistry approach to relate basic ligand binding 

properties to dynamic motion in these complexes.  Enzymes are common pharmaceutical 

targets and exhibit considerable dynamics that are amenable to characterization by NMR 

relaxation dispersion (6, 137-141).  We characterized E. coli dihydrofolate reductase (DHFR) 

in complex with eight different antifolate inhibitors (three reported previously) spanning an 

affinity range of six orders of magnitude (40, 79).  Five tetrahydroquinazoline inhibitors were 

designed to bind with reduced affinity for the purpose of loosening the ligands to allow 

detection of rare motions related to ligand dissociation.  Different levels of switching motion 

on the µs-ms timescale were observed in each complex, although a cluster of residues around 

the active site exhibits identical motion in all eight of the complexes.  From the analysis of 

relaxation dispersion curves, the kinetics of conformational switching in DHFR were found 

to scale with both Ki and koff, though the conformational switching was always faster than 

koff.  These data implicate a common dynamic mechanism for ejection of ligands within this 

series, and suggest that internal protein motion may be a critical event for ligand dissociation 

in general.  The medicinal chemistry approach taken allows focused and methodical 

perturbations within the active site; this is in stark contrast to global systematic perturbations 

such as temperature variations or the addition of chemical denaturants.  Recent studies have 

linked conformational dynamics with catalytic timescales through coincidental values of rate 

constants (6, 7).  We show here – through use of a ligand series – that linkage can also be 

made for events on different timescales. 
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4.2.  Materials and Methods 

4.2.1.  Synthesis of the tetrahydroquinazoline series 

 Compound 3 (6-methyl-5,6,7,8-tetrahydroquinazoline-2,4-diamine) was prepared by 

a one-step condensation reaction, similar to that described previously (142).  Briefly, 

dicyandiamide (10.19 g, 0.12 moles) and 4-methylcyclohexanone (11.33 g, 0.10 moles) were 

combined in a round bottom flask fitted with a Dean-Stark trap and a condenser.  The 

reaction was heated in an oil bath at 180 °C for three hours.  Boiling water was added to the 

reaction as it was transferred to a separatory funnel for extraction.  The desired compound 

was extracted from the aqueous layer with hot chloroform.  The chloroform washes were 

dried over anhydrous magnesium sulfate before solvent was removed via rotary evaporation.  

A golden yellow liquid with white precipitate remained.  Additional white solid was 

precipitated via addition of hexanes to the yellow liquid.  The solid was isolated via filtration. 

 Similarly to 3, compounds 4 and 6 (7- or 5-methyl-5,6,7,8-tetrahydroquinazoline-2,4-

diamine, respectively) were prepared from dicyandiamide (10.19 g, 0.12 moles) and 3-

methylcyclohexanone (11.33 g, 0.10 moles).  Reverse-phase HPLC purification using a water 

and acetonitrile buffer system was used to separate the two products.  A combination of very 

small volumes of the mixture loaded per run along with a very shallow acetonitrile gradient 

was useful in accomplishing the separation.  To avoid isolation of a TFA-salt of each 

compound, NaOH base was added to the separate compound pools and each was treated with 

hot chloroform to extract the compounds free of TFA, which remains in the water layer.  

Extracts were dried over sodium sulfate and rotary evaporation was used to remove the 

chloroform to yield white powders for each compound.  A standard 2D 1H-1H NOESY 
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experiment was used to distinguish between the two methyl products: only in 6 would 

NOESY cross peaks between the methyl protons and the amine protons be observed.  In 

addition, the benzylic methine proton of 6 would be expected to be shifted further downfield 

(~2.7 ppm) than the methine of 4 (~1.3 ppm). 

 Analogously, 2 and 5 (8-methyl- and 5,6,7,8-tetrahydroquinazoline-2,4-diamine, 

respectively) were prepared from the combination of dicyandiamide (10.19 g, 0.12 moles) 

and 2-methylcyclohexanone (11.33 g, 0.10 moles) or cyclohexanone (9.91 g, 0.10 moles). 

The compounds were purified via HPLC and isolated via chloroform extraction to yield 

white powders.  Spectroscopic data for all five compounds is summarized in Appendix 4.1. 

 

4.2.2.  Ki determination 

 As described previously (section 3.2.3), biochemical competition assays using a 96-

well plate reader were used to determine the inhibition constant (Ki) for 2-6 (40, 77).  The 

decrease in absorbance at 340 nm was monitored over time in a 2D titration of inhibitor and 

substrate. 

 

4.2.3.  Protein expression and purification 

 Isotopically labeled wild-type E. coli DHFR was over-expressed and purified as 

described previously (section 2.2.1) (79).  Purified apo-DHFR was flash frozen, lyophilized, 

and stored in a desiccator at 4 °C until use.   

 

4.2.4.  NMR Spectroscopy 
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 For ternary inhibitor complexes, samples contained 1 mM DHFR in NMR buffer  (70 

mM HEPES, 20 mM KCl, 1 mM EDTA, 1 mM DTT [pH 7.6]), 15 mM NADPH, 2.5-10 mM 

antifolate (E:NADPH:2 – 10 mM; E:NADPH:3 – 2.5 mM, E:NADPH:4 – 8-10 mM; 

E:NADPH:5 – 10 mM; E:NADPH:6 – 10 mM), 10 mM glucose-6-phosphate, 10 U glucose-

6-phosphate dehydrogenase, and 10% D2O for spectrometer locking purposes.  All samples 

were protected from light and air exposure by containment in amber NMR tubes flame-

sealed under argon.  Stock solutions of 2-6 were prepared in 10% D2O/H2O and PULCON 

was used to determined the concentration of each stock, relative to either valine or 

trimethoprim standards (110).  NMR experiments were performed as described previously, 

using both room temperature (500, 600, and 700 MHz) and cryogenic (500 and 700 MHz) 

probes (40, 79).  NMRPipe was used to process NMR data, and data visualization was 

accomplished with the combination of NMRDraw and NMRView (87, 88). 

 Resonance assignments – Standard triple-resonance experiments were used to assign 

the backbone of the ternary complexes with compounds 3, 4, and 5.  E:NADPH:2 and 

E:NADPH:6 assignments were contingent upon knowledge of the first three ternary 

complexes.  Specifically, HNCACB and CBCA(CO)NH experiments collected at 700 MHz 

allowed for the assignment of 1HN, 15N, 13Cα, and 13Cβ resonances in these complexes (89).  

Common residues that could not be assigned include K38, T46, D87, and A145. 

 Chemical shift perturbations (CSPs) – To demonstrate that the solution conformation 

of the Met20 loop in each of the five complexes is predominantly closed, the approach 

described previously was used(40), in which CSPs were calculated for each complex relative 

to model Met20 loop closed (E:NADP+:folate, BMRB access. no. 5470) and occluded (E:5,6-

dihydroNADPH:folate, BMRB access. no. 5471) chemical shifts (97).  Of the ~20 
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resonances considered makers for the conformation of the Met20 loop in 1HN and/or 15N, all 

except V13 and I94 have chemical shifts more similar to a Met20 loop closed conformation 

(Fig. 4.4) consistent with our previously analysis of E:NADPH:1 (40). 

 Site-specific chemical shift perturbations (CSPs) that result upon binding of each 

inhibitor (E:NADPH:antifolate – E:NADPH) confirm the ligand orientations observed in the 

crystal structures.  The five inhibitors elicit both similar magnitudes of perturbations and 

patterns of residues affected (Fig. 4.5a), with mild differences observed due to the specific 

location of the methyl substituent on the THQ ring.  Using a box plot function, outlying CSPs 

were identified on a per residue basis for each inhibitor (Fig. 4.5b).  The majority of outliers 

are the same amongst the five ternary complexes, with one unique outlier in each complex 

due to the positioning of the methyl substituent (2 – F31, 3 – I50, and 4 – F31).  Additionally, 

one residue in each complex (light blue spheres in Fig. 4.5b) shows a perturbation in 

chemical shift, although not considered an outlier (2 – A29, 3 – G51, 4 – T35, and 6 – I94 is 

split in two).  E:NADPH:5 does not possess any unique outliers, which is not surprising as it 

lacks a methyl substituent.  The splitting of I94 in the presence of 6 may be due to switching 

motions of the protein and/or small molecule, or may also be due to the binding of both 

enantiomers of 6. 

 

4.2.5.  Relaxation dispersion analysis 

 15N CPMG relaxation dispersion experiments were conducted on highly deuterated 

(>80%) DHFR for the E:NADPH:2 and 4-6 complexes while protonated DHFR was used for 

E:NADPH:3.  Complexes with bound 2-4 were examined using a TROSY relaxation 

dispersion experiment at 700 MHz with a room temperature probe.  Data collection at 700 
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MHz for complexes with bound 5-6 utilized a cryogenic probe and the regular non-TROSY 

experiment. Collection and analysis of the data was completed as described previously (40, 

79). 

 As mentioned above, protonated DHFR was used for relaxation dispersion 

experiments on E:NADPH:3.  At the time this data was collected, deuteration was not a 

common technique used in our lab, and the data from using protonated protein was deemed 

sufficient for analysis and not recollected using deuteration.   It is possible, however, that 

additional residues with Rex would be detected in E:NADPH:3 if highly deuterated protein 

were to be used in preparation of the complex.  This could explain why an increase in the 

number of sites with slow motion is not seen in E:NADPH:3 relative to E:NADPH:MTX or 

E:NADPH:TMP (79). 

 Residues undergoing slow timescale exchange can often move together, or in a 

concerted fashion, with shared kex and pA values.  Aside from the residues used in group 

fitting (described below), DHFR is known to possess ligand-independent motions at regions 

containing residues 128-134 and 154-159 (30).  Exchange at these residues was also 

identified in the current study, but the sites were excluded from global analysis of the data.  

These C-terminal residues have been group fitted together, and indeed prove to be ligand-

independent in the case of bound inhibitors, as kex and pA are identical for all complexes 

studied (Appendix 4.10). 

 For global fittings, all residues exhibiting slow motion (excluding the C-terminal 

residues) were grouped together.  Residues found to have a significantly improved local fit 

relative to the global fit (i.e., having a χ2
global/χ

2
local ratio of >2) are reported with local ∆ω 

values.  In the case of E:NADPH:2 and E:NADPH:4, global fits of all residues together 
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would not converge.  Upon removal of four residues with increased local kex values (37, 50, 

54, and 58), group fitting for E:NADPH:4 converged and the residues appeared to fit together 

based on χ2 ratios.  This same approach for E:NADPH:2 resulted in convergence (40, 44, 48, 

50, 54, 57, 98, 115, and 119 removed); however, the residues did not group well together 

based on χ2 ratios.  Group fits for complexes with bound 2 and 4 are reported, but it should 

be noted that the fits were not conducted in the same fashion as for the rest of the series.  One 

interesting point to mention is that E:NADPH:2 and E:NADPH:4 resulted in equivalent 

group fitting for both the ‘slow’ and ‘fast’ moving sets of residues.  We speculate that the 

structural similarity of these two inhibitors may underlie why they appear to cause faster 

switching motions in DHFR.  Also, the possibility that both R and S enantiomers of these two 

inhibitor bind could also result in different switching than for the remainder of the series. 

 The increased number of residues experiencing backbone conformational exchange in 

the E:NADPH:6 complex are due in part to suspected motion of the Met20 loop.  Several 

residues within the F-G and G-H loops known to undergo reliable changes in chemical shift 

upon switching of the loop from closed to occluded have been observed to possess slow 

timescale motion in the presence of 6 (Fig. 4.8).  Although a crystal structure for 

E:NADPH:6 has not been determined, the structure of E:NADPH:3 serves as an excellent 

model (Fig. 4.3a).  If one envisions the methyl group positioned on C5 (instead of C6 in the 

structure), the methyl group likely comes within steric contact of the nicotinamide of 

NADPH in the active site.  Unlike the switching motion of 1 characterized previously (40), 

the methyl group on C5 does not sample an alternate binding pose that differs enough to 

move the group away from nicotinamide.  This proposed steric clash between nicotinamide 
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and the methyl group on C5 likely accounts for the significant reduction in binding affinity 

for 6 relative to the other tetrahydroquinazoline compounds. 

 The sign of ∆ω was determined from peak positions in HSQC and HMQC spectra 

(111).  Sign determination for ∆ω was completed on six of the eight ternary complexes 

(E:NADPH:2 and E:NADPH:4 excluded).  Given the strong pattern of ∆ω sign observed for 

the antifolate consensus residues (Fig. 4.11a), the signs for the complexes with 2 and 4 were 

assumed to agree with the pattern.  Additionally, the sign of ∆ω determined for the three 

other THQ compounds (3, 5-6) should be representative of 2 and 4.   Fitted parameters and 

the sign of ∆ω are summarized for each complex in Appendices 4.5-4.9. 

 In order to compare to the average ∆ω values fitted for the consensus antifolate 

residues with Rex, the sign of ∆ω was determined for the E:NADPH holoenzyme complex, as 

it has not been previously reported by Wright and colleagues (6).  In Figure 4.12, we report 

the sign for three sites in E:NADPH in comparison to our data on the current series of 

inhibitors.  The sign for D11 is not reported for E:NADPH because we have been unable to 

assign that residue.   

  
4.2.6.  Protein crystallization, data collection and structure determination 

 Crystals of E:NADPH:3, E:NADPH:4, and E:NADPH:5 were grown using similar 

conditions as described previously (40, 42, 43).   

 Crystallization conditions – For all three complexes, NADPH and inhibitor were 

present at three-fold molar excess relative to the concentration of DHFR.  Briefly, 

E:NADPH:3 was crystallized via the hanging drop vapor diffusion method under the 

following conditions:  20 mg/mL DHFR, 20 mM imidazole at pH 8, 300 mM CaCl2, and 

30% PEG-6000.  E:NADPH:4 was crystallized via the hanging drop vapor diffusion method 
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under the following conditions: 20 mg/mL DHFR, 20 mM imidazole at pH 8, 325 mM 

CaCl2, and 34% PEG-6000.  E:NADPH:5 was crystallized via the sitting drop vapor 

diffusion method under the following conditions:  10 mg/mL DHFR, 20 mM imidazole at pH 

8, 325 mM CaCl2, and 34% PEG-6000.  Each hanging or sitting drop was a mixture of 5 µL 

mother liquor and 5 µL of the prepared ternary complex in 20 mM imidazole.  Crystals were 

allowed to grow at room temperature for several days before harvesting.  The mother liquor 

contained a high concentration of PEG-6000, which was sufficient as a cryoprotectant.  To 

mount the crystals, 10 µL of mother liquor was added to the hanging or sitting drops.  

Mounted crystals were flash frozen in liquid nitrogen.   

 Data collection – Diffraction data were collected in-house at UNC using a RU300 

rotating copper anode (Rigaku/MSC) and Saturn 944+ CCD detector at ~100 K.  Data were 

processed using HKL2000 (116). 

 Structure determination – All three structures were determined using molecular 

replacement methods.  The CCP4 program suite and the MR program Phaser was used (117).  

The search model was E. coli DHFR bound to NADP+ in the C2 space group (PDB code 

1RA9).  This search model did not possess a Met20 loop closed conformation.  Manual 

model building was accomplished using Coot (118).  Final rounds of refinement used 

BUSTER and MOSFLM (119, 143).  The placement of ligands was accomplished via 

examination of fo-fc difference maps generated in the absence of ligand.  Atomic coordinates 

have been deposited in the PDB under access code 3R33, 3QYL, and 3QYO. 
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4.2.7.  Determination of koff 

 A stopped-flow fluorescence competitive binding assay, as described previously 

(section 3.2.10), was used to determine koff for 2-6 from the E:NADPH holoenzyme (36, 40).  

Briefly, E:NADPH:antifolate (20 µM DHFR, 400 µM NADPH, and 200 µM antifolate in 

NMR Buffer) was preformed and loaded into the drive syringe of the stopped-flow housing 

of a Fluorolog spectrofluorometer (Jobin Yvon Horiba, Inc).  Methotrexate (MTX) (400 µM 

in NMR Buffer) was loaded in a second syringe.   Intrinsic tryptophan fluorescence was 

excited at 290 nm while FRET emission (Trp to bound nicotinamide of NADPH) was 

monitored at 427 nm.  Because MTX is a higher affinity inhibitor than 2-6, upon rapid 

mixing via the stopped-flow apparatus, MTX displaces 2-6, leading to a non-fluorescent 

ternary E:NADPH:MTX complex.  The exponential decrease in fluorescence of 

E:NADPH:inhibitor to E:NADPH:MTX is fit to determine koff for 2-6 (Fig. 4.1) (36).  The 

experiments were repeated at a second MTX concentration (600 µM), as koff is independent 

of the concentration of the trapping ligand.  The reported koff values are the average of 

multiple runs at both MTX concentrations.  Reported errors are the standard deviations of all 

runs. 

 

 Figure 4.1.  Sample exponential decay curve from stopped-flow fluorescence experiments. 
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4.3.  Results 

4.3.1.  A series of structurally similar antifolates covers a range of Ki and koff 

 When studying the dynamics of DHFR in the presence of the high affinity (Ki ≤ 1 

nM) inhibitors methotrexate (MTX) and trimethoprim (TMP) (Fig. 4.2c), it was found that 

both inhibitors elicited essentially identical patterns of slow motion in the enzyme (79).  We 

wondered whether that same pattern of dynamics would be observed for any bound inhibitor 

to the same site, regardless of binding affinity or chemical structure.  To address this 

question, a series of substrate-competitive DHFR inhibitors, or antifolates (compounds 2-6), 

with Ki values greater than 1 nM were chosen to study while bound to the holoenzyme (Fig. 

4.2a).   

 

 Figure 4.2.  The series of reduced-affinity and previously characterized antifolates.  (a) Chemical 
 structures of the reduced-affinity antifolates.  (b)  The relationship between koff and Ki for the 
 series of reduced-affinity antifolates (R = 0.99).  (c)  Chemical structures of the previously 
 characterized antifolates –  methotrexate, trimethoprim, and 1. 
 

This series of five tetrahydroquinazoline-2,4,-diamine compounds is highly homologous.  

Compounds 2, 3, 4, and 6 are constitutional isomers and differ only in the placement of the 
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methyl substituent on the tetrahydroquinazoline (THQ) ring.  Inhibitor 5 lacks the methyl 

substituent entirely, but it serves as a reference in that it is not a racemic mixture.  

Compounds 3 and 4 were identified as competitive inhibitors of DHFR from a high-

throughput screen of 50,000 small molecules (77).  To complement these two reduced-

affinity antifolates, the previously unstudied compounds 2, 5, and 6 were synthesized.  We 

postulated that 2, 5, and 6 would have Ki values similar to those published for 3 and 4 on the 

basis of structural similarity.   

 
Cmpd Ki (µM) koff (s

-1) 
2 0.3 ± 0.03 0.76 ± 0.05 
3 0.8 ± 0.5 0.23 ± 0.01 
4 1 ± 0.7 1.49 ± 0.08 
5 7 ± 2 3.35 ± 0.27 
6 43 ± 16 19.37 ± 3.11 

 
 Table 1.  Binding affinities and kinetic off-rates for the series of THQ antifolates. 
 

 Ki values for the inhibitors were determined to confirm the previously determined 

values and establish values for the new compounds (77).  The Ki values covered a range of 

two orders of magnitude (0.3 – 43 µM) (Table 1).  Interestingly, while 2-4 have similar 

structures and Ki values, the structurally similar 6 has a 40-fold increase in Ki relative to 4, 

making 6 even weaker than 5, which has no methyl substituent.  Overall, the methyl 

substituent contributes positively to the binding affinity of the antifolates, resulting in the 

>10-fold increased Ki value of 5 relative to 2.  The further increased Ki of 6 relative to 2-5 is 

discussed in section 4.2.5.  From this analysis of binding affinities, it is clear that DHFR is 

very sensitive to minor changes in bound ligand structure. 

 Next, the binding kinetics for the series were determined.  The off-rate (koff) for each 

inhibitor was determined using competitive stopped-flow fluorescence measurements.  The 

series was found to span two orders of magnitude in koff (0.2 – 20 s-1), similar to the trend in 
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K i (Table 1).  In fact, the relationship between Ki and koff for these five antifolates is linear 

(Fig. 4.2b).  The calculated kinetic on-rates for the THQ series are similar, being 

approximately 3 x 105 – 3 x 106 M-1s-1.  In the context of the entire antifolate series (MTX, 

TMP, and 1-6), Ki scales by 106, koff scales by 105, and kon scales by 102.  Thus it follows that 

if binding affinity is equivalent to the ratio of koff/kon, and kon is the essentially the same for 

the ligand series, binding affinity is determined largely by the rate of dissociation.  Within 

the THQ series alone, the effect of koff on Ki is larger than kon, but not as dominant as when 

considering all eight antifolates. 

 

4.3.2.  Structural differences induced by the series are minimal 

 In characterizing the protein dynamics of a series of receptor-small molecule 

complexes, any structural differences must be considered, as large changes can underlie 

differences in observed dynamics.  Large structural changes in DHFR were not expected, 

given the chemical similarity of the antifolates.  High-resolution crystal structures were 

determined for E:NADPH:3, E:NADPH:4, and E:NADPH:5 in the P212121 space group (Fig. 

4.3a and Appendices 4.2-4.4).  As expected, the overall structures are highly similar (largest 

backbone rmsd = 0.28 Å).  The THQs bind in the folate binding pocket of DHFR, which 

forms a small crevice in the structure but is not closed off by the protein.  The 2,4-diamine 

moieties of 3-5 overlay closely to that of MTX (42, 44), although the orientation is slightly 

tilted such that the saturated ring of the THQs shift ~1 Å towards the side chain of Phe31.  

Subtle differences are observable at N23 in the Met20 loop, in helix C above the antifolate 

binding site, and in the loop that follows helix C.  The difference in orientation of helix C is 

particularly noteworthy.  Shifting of this helix was identified previously in the presence of a 
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highly flexible quinazoline inhibitor (1, Fig. 4.2c), and the shift was thought to occur in order 

to accommodate the bulky side chain of the inhibitor (40).   

 

 Figure 4.3.  High resolution crystal structures for the THQ series.  (a)  Overlay of the crystal 
 structures for E:NADPH:3 (blue), ENADPH:4 (teal), and E:NADPH:5 (maroon).  NADPH is 
 shown in cyan and bound antifolate in the colors designated per complex.  (b)  Expansion of the C-
 helix, now overlaying five inhibitor-bound complexes (E:NADPH:1 in dark grey and E:NADPH:MTX 
 in light grey).  PDB IDs are listed parenthetically. (c)  Differential puckering of the saturated ring in 
 the bound inhibitors, colored as in (a).   
 

In the present structures, helix C is shifted away from the antifolate binding site in the 

presence of 3, which is not surprising, as the methyl substituent on the THQ ring points in 

that direction.  This helix appears to be very plastic in order to broaden the substrate binding 

site to accommodate the binding of various ligands, as noted previously (42).  When 

overlaying the current three structures (PDB IDs 3R33, 3QYL, and 3QYO) with previously 

determined inhibitor complexes E:NADPH:1 and E:NADPH:MTX (PDB IDs 3KFY and 

1RX3), we find that the shifted positioning of helix C in E:NADPH:3 and E:NADPH:1 is the 

same while E:NADPH:4, E:NADPH:5 and E:NADPH:MTX represent the unshifted 

positioning (Fig. 4.3b).  This effect appears to be a consequence of bound ligand structure, as 

there is no correlation between the magnitude of C-helix shifting with Ki of the bound 

antifolate. 
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 Unlike the structure of E:NADPH:1 determined previously (40), the ternary 

complexes with 3, 4, and 5 show strong electron density within the Met20 loop.  The loop is 

modeled in the closed conformation, similar to that observed in the presence of MTX.  The 

closed Met20 loop conformation is also observed in solution for all five ternary complexes 

via analysis of NMR chemical shift perturbations (CSPs) (section 4.2.4 and Fig. 4.4).  In all 

three crystal structures, strong electron density is observed for NADPH and bound antifolates 

(Fig. 4.3c and Fig. 4.5a-b).   

 

 Figure 4.4.  Closed Met20 loop analysis for the THQ series of complexes.  CSPs of each 
 E:NADPH:antifolate complex relative to model closed (E:NADP+:folate) and occluded 
 (E:DHNADPH:folate) complexes.  Residues considered chemical shift markers of the conformation of 
 the Met20 loop are highlighted in red.  Closed red circles indicate that the E:NADPH:antifolate 
 complex is more similar to a closed Met20 loop in solution, while open red circles indicated that the 
 ternary complex is more similar to an occluded Met20 loop conformation.   
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 Figure 4.5.  Ligand electron density maps for E:NADPH:3-4.  (a)  Divergent stereoview of the 
 electron density map (2fo-2fc) for the binding of 3 in E:NADPH:3.  (b)  Similar to (a), the electron 
 density map (2fo-2fc) for the binding of 4 in E:NADPH:4.   
 

 

 Figure 4.6.  CSPs upon antifolate binding.  (a)  CSPs for each E:NADPH:antifolate complex 
 relative to the absence of inhibitor (E:NADPH).  (b)  A box plot function was used to identify 
 outlying CSPs in (a), and these outliers have been highlighted with colored spheres for each 
 complex.  Light blue spheres indicate sites with significant CSPs that lie below the outlier 
 threshold, yet are sensitive to small molecule inhibitor binding. 
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Ligand orientations are confirmed to be identical in solution by CSPs (Fig. 4.6a-b).  

Regarding the C6 methyl substituent of 3, it should be noted that electron density is observed 

for only one enantiomer (R) (Fig. 4.5a), suggesting that DHFR preferentially binds one 

enantiomer of the racemic mixture.  The binding of R is preferred over S because the S 

configuration could result in steric clash in the active site between the nicotinamide of 

NADPH and the methyl substituent of 3.  On the contrary, electron density in the 

E:NADPH:4 structure suggests that both R and S enantiomers of 4 bind (Fig. 4.5b). 

 In summary, no significant differences in structure are observed among these five 

ternary inhibited complexes.  A straightforward comparison of differential dynamics of 

complexes in this series is therefore possible. 

 

4.3.3.  Slow timescale dynamics structure-activity relationships 

 In recent years, proteins have been revealed as highly dynamic, especially in the case 

of enzymes (24, 42, 144-146).  In some cases dynamics has been linked with function (6, 22, 

138, 147-150).  While these motions occur over a broad timescale range, micro-millisecond 

(µs-ms) or “slow” timescale motions have been shown to correlate directly with biological 

function (6, 7, 126, 151).  The dynamics of DHFR on this timescale have been shown to 

occur as a sequence of loop motions important to catalytic function when bound to 

endogenous ligands (6).  In addition, interesting differences in slow motions are observed in 

“off-cycle” binary complexes compared to the “on-cycle” binary product complex, 

confirming the enzyme’s innate sensitivity to different ligands (50).  When in complex with 

inhibitors, DHFR still retains flexibility on the slow timescale, showing motional quenching 

when bound to MTX or TMP (79) and motional activation when bound to compound 1 (40). 
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Here, we report slow timescale dynamics of the five reduced-affinity DHFR:THQ 

complexes.  Together with the slow dynamics of three high-affinity inhibitor complexes (40, 

79), this set of data comprises a “dynamics structure-activity relationship” (DSAR) series.  In 

other words, this approach probes whether the dynamics of DHFR are sensitive to structural 

differences in small molecule ligands.  This set affords an opportunity to observe trends 

between dynamics and ligand binding activities.  Because the compounds of the series are 

highly similar in structure, some biophysical activities of the enzyme may be conserved and 

hence more easily recognized.  This DSAR approach is distinct from, yet complementary to, 

flexibility-activity relationships (FAR), which focuses on dynamics of the bound ligand as 

shown previously for peptide ligands of Pin1 (152). 

 For each of the five ternary complexes, µs-ms motion was detected by 15N Carr-

Purcell-Meiboom-Gill (CPMG)-relaxation dispersion experiments (28).  These experiments 

allow for the determination of Rex, a component of transverse relaxation due to 

conformational exchange processes that increases the intrinsic rate of R2.  Assuming a two-

state exchange process, these experiments provide kinetic, thermodynamic, and structural 

information about the transition: Rex depends on the exchange rate constant (kex), the 

populations of ground state A and excited state B (pA and pB), and the difference in chemical 

shift between states A and B (∆ω) (27).   

 In contrast to the high similarity of µs-ms dynamics that result upon MTX or TMP 

binding (79), the THQ inhibitors elicit a more heterogeneous distribution of sites showing Rex 

(Fig. 4.7).  There are, however, among the eight complexes, twelve consensus residues with 

slow motions regardless of the inhibitor bound (Fig. 4.11a).  Thus, the pattern of slow motion 

elicited by MTX and TMP is not restricted to high-affinity antifolates.  In addition to the 
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consensus ‘antifolate sites’, new motions are detected near the hinge region (residues 38 and 

88) and in α-helices C and F as Ki increases.  Although within the THQ series there appears 

to be no significant correlation between Ki and number of sites with Rex, as a whole this 

series has a greater amount of Rex compared with MTX and TMP, which bind with much 

higher affinity.  None of these motions in the series are suspected to be the result of 

association-dissociation cycles effects, as koff values are slow (Table 1) and complexes are 

saturated to ≥ 99.5%.   

 

 Figure 4.7.  Slow timescale dynamics for the reduced-affinity inhibitor series.  Sites along the 
 backbone with detectable µs-ms motion are highlighted in colored spheres for each complex, 
 ordered from left to right by increasing Ki value.  The number of residues with significant Rex is 
 given parenthetically.   
 

 The E:NADPH:6 complex has additional motions at Met20 loop switching markers, 

suggestive of a functional switch from closed to occluded (97).  However, only five sites 

show a correlation between ∆ω fitted from relaxation dispersion and ∆δ for closed-to-

occluded motion of the loop (Fig. 4.8; residues 12, 115, 118, 120, and 149).   
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 Figure 4.8.  Plot of ∆ω vs. ∆δ (occluded – closed) for Met20 loop marker residues in E:NADPH:6.  A 
 linear correlation is seen for the points in black (R = 0.99).  Points in cyan do not lie along this line, but 
 would be expected to if the correlation were very strong.   
 

While the loop appears to be mobile, its motion is not as clear and coherent as observed 

previously in the presence of 1 (13 sites in the correlation) (40).  We believe this Met20 loop 

motion to be the result of steric clash between nicotinamide of NADPH and the C5 methyl 

group of 6 within the active site (section 4.2.5).  Residues within the F-G and G-H loops are 

the best markers of Met20 loop switching (e.g., 115, 116, 118, 119, 120, 121, 122, 149, and 

150), not those within the Met20 loop itself.  It should be noted that, for the large part, the 

Met20 loop marker residues within the F-G and G-H loops are not observed to undergo µs-

ms motion in the presence of compounds 2-5 of the series (Appendices 4.5-4.9 and 4.11).  

Even the best examples of closed complexes (with bound MTX or TMP) exhibit exchange 

broadening at some of the marker residues.  In further support of E:NADPH:6 being different 

from the other complexes regarding its Met20 loop mobility, G121 is severely broadened in 

the presence of 6 but not for the remaining compounds of the series. 
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4.3.4.  Rate of conformational switching is correlated with Ki and koff 

 For the ternary complexes of 3, 5 and 6, global fits of kex for all residues with Rex 

range from 1000-1500 s-1, and pB is fixed at approximately 2% (Table 2).   

 
Cmpd kex (s

-1) pA (%) kconf,forward (s
-1) 

2a 1658.5 ± 167.7 95.9 ± 1.0 68.0 ± 7.6 
3 1041.4 ± 292.3 98 ± 0.5 20.8 ± 6.0 
4b 1841.2 ± 189.3 96.3 ± 2.2 68.1 ± 8.6 
5 1448.2 ± 422.8 97.9 ± 1.0 30.4 ± 9.2 
6 1514.9 ± 206.1 97.7 ± 1.1 34.8 ± 5.1 

 aSites were split into two groups.  The best fit for the slower group is given, despite the observation 
 that many sites possess high χ

2 ratios. 
 bSites were split into two groups.  The best fit for the slower group is given.  All residues ‘fit’ well 
 into this group based on χ 2 ratios. 
 
 Table 2.  Relaxation dispersion global fitted parameters for the series of THQ complexes. 
 

It follows that the forward rate of conformational exchange (kconf,forward) ranges from 20-35 s-1 

for this series.  Initial plots of kconf,forward versus Ki suggested a correlation for these three 

protein-inhibitor complexes.  To further test this correlation, kconf,forward and Ki for MTX, 

TMP, and 1 were added to the plot (40, 59, 79).  For these six complexes, covering six orders 

of magnitude in binding affinity, we find that kconf,forward scales exponentially with Ki (Fig. 

4.9a).  As binding affinity decreases (larger Ki), kconf,forward increases (Table 2).  

Unfortunately, global fitting for complexes 2 and 4 did not converge and thus are not further 

supportive of this trend, although an alternative fit for 4 was obtained (see section 4.2.5).  

Based on the exponential relationship between kconf,forward and Ki and the linear correlation 

between Ki and koff (Fig. 4.2b), kconf,forward vs. koff was plotted and found to scale exponentially 

(Fig. 4.9b) (52).   
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 Figure 4.9.  Internal motions vary with Ki and koff.  (a)  The forward rate of motion (kconf,forward) fit 
 from relaxation dispersion data for each complex varies exponentially with the Ki value for the 
 bound inhibitor (R = 0.97).  The open circle represents the best fit for E:NADPH:4.  (b) An 
 exponential correlation is also seen between kconf,forward and koff (R = 0.97).  Data points in red have 
 predicted koff values, as described in the text.  koff for TMP and 1 were calculated based on 
 estimated values for kon.  For 1, the average kon for the THQ series was used.  For TMP, because of 
 its greater similarity to MTX, kon was taken to be intermediate between MTX and the average 
 value for the THQ series.  The data point for E:NADPH:4 (unfilled circle) does not fall along this 
 exponential correlation, suggesting that this correlation may not always be predictive.  The dashed 
 curve represents what would be expected if the correlation were linear.   
 

We note that kconf,forward is always greater than koff by at least a factor of two for each 

complex, providing further evidence against kex resulting from association-dissociation 

cycles.  This scaling of kconf,forward and koff, with kconf,forward > koff, is highly suggestive of a 

mechanistic role for the ground-to-excited state conformational change in ligand release.  In 

Figure 4.9b, because koff for TMP and 1 are too slow for detection via the assay employed, 

they were calculated from Ki and their approximate kon value for the series.  The koff value for 

MTX was taken from the literature (52).  The best fitted kconf,forward for 4 has been included in 
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Figure 4.9b, even though global fitting was more challenging in this case; its position off the 

main correlation line suggests that additional factors may contribute to release for a particular 

ligand, even if it is part of a structurally constrained series.  Nevertheless, the fact that the 

remaining ligands fall on the line suggests that the millisecond structural fluctuations 

potentiate dissociation over the entire ligand series, including MTX and TMP. 

 A correlation between kconf,forward and koff is shown above.  A similar exponential 

relationship also exists between kconf,reverse and koff (R = 0.97) (Fig. 4.10a).  To a lesser degree 

is the agreement between kex and koff (R = 0.89) (Fig. 4.10b).   

 

 
 
 Figure 4.10.  The correlation of koff to (a) kconf,reverse and (b) kex.  Red circles for TMP and 1 
 indicate koff values calculated based on kon for the series.  The open circle indicates the best fit for 
 E:NADPH:4 despite a difference in the method of global fitting. 
 

4.3.5.  Antifolate complexes sample a structurally identical excited state 

 Relaxation dispersion experiments can also provide structural information about the 

excited state.  As mentioned previously, from data on the eight drug/inhibitor complexes, 

there are twelve consensus residues undergoing µs-ms motion irrespective of the inhibitor 

bound to the holoenzyme (Fig. 4.11a).   
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 Figure 4.11.  Antifolate consensus sites sample a structurally similar excited state.  (a)  The 
 twelve antifolate consensus sites are highlighted in yellow colored spheres.  (b) Dynamic ∆ω 
 values fitted from relaxation dispersion for these twelve sites cluster for each residue.  The eight 
 complexes are colored by the bound inhibitor, as indicated in the legend.  No bar is shown if that 
 residue did not exhibit significant slow motion while bound to a particular inhibitor.  Error bars 
 result from Monte Carlo simulations.   
 

These sites were initially identified from the least dynamic complexes, those with MTX or 

TMP bound (40, 79).  Here, we define a residue as a consensus site if slow motion is detected 

at that position (when assignable) in (a) ≥ 2/3 of the eight complexes (residues 8-11, 14, 29, 

31, 111-113), or (b) ≥ ½ of the complexes when ∆Rex is significant in the other half but lies 

just below our stringent requirement of 2 s-1 (residues 7 and 30).  The dynamic change in 

chemical shift (∆ω) at these consensus sites fitted from relaxation dispersions for each 

complex were analyzed.  For each individual residue, the fitted ∆ω parameter clusters around 

the same value, despite changes in chemical structure and binding affinity for the different 

inhibitors (Fig. 4.11b).  This clustering of ∆ω values indicates that the same excited state is 

being sampled by the consensus residues in each of the eight antifolate complexes.  This 

pattern of ∆ω values does not correlate with ∆ω fitted from previous studies of DHFR bound 

to physiological, folate-derived ligands (Fig. 4.12) (6) and hence is unique to the antifolates 

studied here.   
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 Figure 4.12.  Comparison of average fitted E:NADPH:antifolate ∆ω value to those fitted in 
 physiological complexes.  For the twelve consensus antifolate sites, an average fitted ∆ω value was 
 calculated along with the standard deviation in that fitted value.  Complexes that do not follow the 
 pattern of sign for ∆ω were excluded.  This average and standard deviation are plotted per residue 
 against ∆ω values fitted for physiological complexes studied previously.  An asterisk indicates that the 
 sign of ∆ω was not determined.  Note that the pattern of sign and values of ∆ω are distinct in the 
 presence of the antifolates relative to endogenous, folate-derived ligands.   
 

 In addition, because poor correlations between ∆ω fitted from the dispersion data and 

∆δ from chemical shift changes (E:NADPH – E:NADPH:antifolate) were observed for the 

consensus sites (Fig. 4.13), the antifolates appear to be bound in the excited state.  We 

propose that these residues sampling a novel excited state mediate dissociation of antifolate 

ligand.  This state is sampled at somewhat different rates, but the concerted motion of the 

consensus residues is conserved across these antifolate complexes.   

 We note that while these complexes share this common dynamic sampling, 

differences in slow motions remain among the different complexes (40, 79) (Fig. 4.7, 

Appendices 4.5-4.9).  Thus, this “shared” motion appears to be able to exist in the context of 

additional motions (or lack thereof) in other regions of the enzyme. 

 



95 

 

 Figure 4.13.  Dynamic chemical shift analyses.  (a-h) Attempts to correlate the loss of drug in the 
 excited state of the antifolate consensus residues in the presence of each studied inhibitor are 
 shown, where ∆ω is the dynamic 15N chemical shift change fitted from relaxation dispersion and ∆δ is 
 the steady-state difference (E:NADPH - E:NADPH:antifolate):  (a) E:NADPH:MTX, (b) 
 E:NADPH:TMP, (c) E:NADPH:1, (d) E:NADPH:2, (e) E:NADPH:3, (f) E:NADPH:4, (g) 
 E:NADPH:5, and (h) E:NADPH:6.  A line with a slope of 1 is drawn on each plot, demonstrating the 
 lack of correlation.  At most, two residues out of the twelve could suggest loss of drug in the 
 excited state. 
 

4.3.6.  Mechanism of ligand dissociation:  gating or ejection? 

 The scaling of the rate constant for forward conformational change with koff 

implicates a millisecond timescale motion in the mechanism for ligand dissociation.  At what 

point during the conformational sampling does release actually occur?  We can envision two 

different mechanisms for release.  The first is a “gating” model.  Upon transitioning to the 

excited state, ligand remains initially bound but is subject to release while the gate is open.  
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In this model, release might be dependent on sub-millisecond motions that essentially kick 

out the ligand or break non-covalent interactions through shearing motions.  Release from the 

open gate could also occur in a stochastic manner based on the overall strength of 

interactions.  For the specific 2,4-diaminopyrimidine series studied here, adding substituents 

beyond the second ring (e.g., methyls in THQ series, methoxy groups in TMP, etc.) could 

have a dual effect:  (i) these groups could serve to slow switching, as observed, due to 

stabilization of both ground and excited states, and (ii) by providing additional contacts to 

protein, these substituents would reduce the probability of stochastic release from the excited 

state, as observed (Fig. 4.11b, Table 2).  The second model is an “ejection” model.  Here, the 

actual act of switching would “throw” the ligand off the binding site.  In principle, ligand 

could also be released on the return conformational change back to the ground state.  For 

simple ejection behavior, matching of the conformational exchange rate with koff is expected.   

In the inhibitor series studied here, the fact that the efficiency of ejection decreases rapidly as 

the switching slows is discussed below. 

 

4.4.  Discussion 

 Here we show that, for a series of homologous antifolates binding to DHFR, binding 

affinity (K i) is determined largely by koff.  We also demonstrate that the rate of internal 

motions in the enzyme (kconf,forward) is related to both binding affinity and koff for the series of 

substrate competitive ligands.  The data suggest that DHFR samples an identical excited state 

in solution regardless of which particular antifolate is bound, and that this state is novel 

because it differs in structure from absence of ligand and from the excited states sampled by 

physiological complexes (Fig. 4.12).  It is also worth noting that the THQ complexes 
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undergo switching ~3 times faster than the physiological complexes.  Because ligand is still 

bound in the excited state and the rate of internal motion is correlated with koff, we propose 

that this excited state is en route to dissociation of inhibitor and is the primary determinant of 

koff.  

In previous work, connections between internal motions and protein activity have 

been drawn when an internal switching rate precisely matches a macroscopic rate constant (6, 

7).  We show here, through the use of a homologous ligand series, that such matching need 

not be required to mechanistically connect two functional events.  The “function” of ligand 

dissociation is fundamental in macromolecular interactions, and insights into what stimulates 

dissociation have potentially broad implications for manipulating biological systems.  The 

main insight revealed here is that dissociation can be driven by defined, protein internal 

motion, presumably at the interface, rather than by a fully stochastic process scaled by the 

overall strength of interaction.  This inference of motions driving dissociation might seem 

expected for a buried binding site in which a ‘lid’ must open for release; however, in this 

particular case, the ligand binding site is exposed, and yet dissociation appears to not be 

stochastic. 

 What is somewhat surprising from the correlation of kconf,forward to Ki or koff is that the 

relationship is log-linear.  In addition, DHFR is not productive at releasing inhibitors each 

time it reaches the excited state, as kconf,forward is always faster than koff.  Thus, the enzyme 

appears to be more efficient at release as the rate of internal motion increases. For the gating 

model (discussed above), this may be explained by a loss of substituents.  For the ejection 

model, we propose an alternate explanation. As inhibitors (in the series) bind with greater 

affinity (and longer residence times), the ~1 ms spent in the excited state is less efficient at 
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ejecting ligand, as if the slightly slowed switching introduces a molecular “stickiness” to the 

interaction.  To be effective, the motions must approach a critical frequency to weaken the 

intermolecular forces sufficiently to allow for ligand release.  Because the probability of 

release from the excited state is highly dependent on the time spent in the ground state (in a 

non-linear manner), there is a memory effect.  Hence, this is a high-resolution example of 

hysteresis, a well-known property of enzymes (59, 153).   

It is important to stress that any ligand bearing resemblance to the series or (or that 

binds to the same active site) should not necessarily obey the correlation in Figure 4.9b.  

Indeed, 2 and 4 do not (see section 4.2.5).  It is reasonable to expect that numerous 

mechanisms for ligand release could compete with one another, and some ligands may 

trigger specific mechanisms over others due to their chemical structure.  We have been 

fortunate here in using a panel of ligands that share a common mechanism that is distinct 

from release of folate-derived ligands.  It will be interesting to see whether other ligand series 

against different proteins show similarity in behavior as was observed here. 

 As mentioned previously, gaining an understanding of the molecular basis of koff has 

implications for structure-based drug design.  If protein dynamics are found to correlate with 

koff in other systems, this type of analysis may be useful in optimizing ligand residence times 

to meet the desired pharmaceutical modulation of disease states.  The DSAR methodology 

provides more than just a correlation between the rate of internal motions and koff – it also 

potentially provides structural information on residues sampling multiple conformations and 

even what the structure of the excited state(s) may be (154, 155).  This combined information 

would be useful in directing medicinal chemistry efforts toward modulating the stability of 

excited states that promote efficient ejection of inhibitors.   



 

Chapter 5 

 

Reduced-Affinity Antifolate Binding Alters ps-ns Dynamics within the 

Closed Conformation 

 

5.1.  Introduction 

 Proteins are structurally dynamic, existing in an ensemble of conformations in 

solution that are important for biological functions such as folding, ligand binding, and 

catalysis.  As mentioned previously, µs-ms protein dynamics have been directly linked to 

function.  While a relationship between ps-ns dynamics and protein function has been 

reported in only a few cases (25, 149, 150), it is thought that fast timescale motions may 

“lubricate” those motions on the slow timescale which are relevant to biology (15).  A 

systematic study of dynamics on both the slow and fast timescales for a model system known 

to possess slow motions important to function is necessary to implicate fast motions in slow, 

functional motions.  DHFR serves as an excellent system to probe for a relationship between 

slow and fast motions, as studies of complexes bound to endogenous ligands link its slow 

timescale motions to progression through the catalytic cycle (6, 51). 

 In addition to extensive characterization of µs-ms motions, the flexibility of DHFR on 

the ps-ns timescale has also been characterized previously within the context of the catalytic 

cycle.  An analysis of two complexes possessing the occluded Met20 loop conformation 
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showed significant backbone flexibility within the hinge region (residues 38 and 88), the 

adenosine binding loop (residues 67-69), and several sites in the Met20 and F-G loops (46, 

47).  Closure of the Met20 loop in the Michaelis model complex (E:NADP+:folate) results in 

quenching of ps-ns backbone flexibility within the Met20 and F-G loops, but an increase in 

flexibility is observed in the adenosine binding loop (47).  These observations of backbone 

dynamics are mirrored on the side chains, in which dynamics appear to be quenched upon the 

Met20 loop transitioning from occluded to closed (48).  From these studies, it was postulated 

that DHFR’s ps-ns timescale flexibility is dictated by the global conformation of the Met20 

loop (50, 108).   

 We are interested in studying whether dynamics change significantly within the same 

structural state (closed Met20 loop) upon binding a series of antifolates.  Given the 

correlation of DHFR slow motions with binding affinity and the kinetic rate of dissociation 

for antifolates shown in Chapter 4, we were also interested in looking for patterns of ps-ns 

motions that vary with Ki, with the possibility of drawing a connection between dynamics on 

the two timescales.  To expand upon the timescale range of dynamic modulation by reduced-

affinity antifolates, 15N and 2H spin relaxation experiments have been conducted.  Here we 

report an analysis of ps-ns timescale flexibility in DHFR while bound to NADPH and three 

reduced-affinity inhibitors from the series (1, 3, and 5 in Figure 1.8).  Together with data 

collected previously in the Lee Lab (section 2.3.3) (79, 156), the fast timescale dynamics of 

DHFR have been characterized for seven complexes, including the absence of inhibitor, five 

E:NADPH:antifolate complexes covering a Ki range of 106, and one mutant 

E:NADPH:antifolate complex.  The site specific changes in dynamics relative to the absence 

of inhibitor demonstrate that reduced-affinity inhibitors modulate dynamics differently than 
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observed for MTX and TMP binding.  While dynamics in the adenosine binding loop are 

perturbed in these reduced-affinity complexes, the magnitude of perturbation is less dramatic.  

Flexibility of the backbone and side chains appear to balance one another to maintain a 

constant level of flexibility across the binding affinity range of the series.  Two ternary 

complexes stand out as ps-ns dynamic anomalies, consistent with µs-ms motions.  The 

dataset suggests three dynamic groupings of complexes: (1) high-affinity antifolates, (2) 

reduced-affinity antifolates and mutant, and (3) highly skewed groups. 

 

5.2.  Materials and Methods 

5.2.1.  Protein Expression and Purification 

 Isotopically labeled DHFR was expressed and purified as described in 2.2.1.  Samples 

used for 2H relaxation experiments were made with uniform 15N and 13C labeling, as well as 

60% 2H, for which the percentage of D2O used in M9 preparation is approximately 60% to 

maximize the population of CH2D methyl isotopomers.   

 

5.2.2.  NMR Spectroscopy 

 NMR samples contained 1 mM isotopically labeled E. coli DHFR in NMR Buffer, 15 

mM NADPH, 2.5-10 mM antifolate (2.5 mM antifolate for E:NADPH:1 and E:NADPH:3, 10 

mM antifolate for E:NADPH:5), 10 mM glucose-6-phosphate, 10 units glucose-6-phosphate 

dehydrogenase, and 10% D2O for spectrometer locking purposes.  The concentrations of 

DHFR and NADPH were determined spectrophotometrically (36).  Stock solutions of the 

antifolates in 90% H2O/10% D2O were prepared and concentrations were determined by 

PULCON relative to tyrosine, valine, or trimethoprim standards (110).  All samples were 
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protected from light and air exposure by containment in argon-purged, flame-sealed, amber 

coated NMR tubes.   

 NMR experiments were conducted at 298 K on Varian spectrometers equipped with 

room temperature (500, 600, and 700 MHz) or cryogenic probes (700 MHz).  Backbone 

assignments for E:NADPH:1, E:NADPH:3, and E:NADPH:5 have been described previously 

in 3.2.4. and 4.2.4.  Assignments of side-chain methyl resonances were accomplished by use 

of the HCCH3-TOCSY experiment and the HMBC for methionine resonances at 600 MHz 

(90, 91).  Stereospecific methyl assignments for leucine and valine were determined via the 

method of Neri et al. (92).  Data were processed using NMRPipe while analyzed using 

NMRDraw and NMRView (87, 88).   

 As described previously in 2.2.2., standard backbone 15N R1, R2, and NOE 

experiments were conducted at 500 and 600 MHz to probe backbone flexibility in the studied 

complexes.  T1 sampling delay times were as follows: 49*, 139, 254, 389*, 544, 709, 894, 

1004*, and 1304 ms.  T2 sampling delay times were as follows: 7.8*, 15.7, 23.5, 39.2*, 62.7, 

78.3, 94.0, 109.6*, and 125.3 ms.  Side-chain flexibility was examined by conducting 2H Dz 

and Dy experiments at 600 and 700 MHz (for improved peak separation).  Dz sampling delay 

times were as follows: 4.15*, 10.9, 19.6, 30.0*, 41.8, 54.8, 68.9, 84.1*, and 100.4 ms.  Dy 

sampling delay times were as follows: 0.7*, 2.1, 3.8, 5.9*, 8.3, 10.9, 13.7, 16.8*, and 20.0 ms.  

Three duplicate planes were collected for both 15N and 2H relaxation, as indicated by 

asterisks, for the purpose of error estimation.  With the exception of 15N relaxation analysis 

of E:NADPH:5 (500 MHz only), two fields of data were acquired for both backbone and 

side-chain relaxation experiments for all three complexes.  As a result, E:NADPH:5 
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backbone relaxation data were fitted only to models 1-3 of the Lipari Szabo model-free 

formalism, to be described below. 

 

5.2.3.  Lipari-Szabo Model-Free Analysis 

 As described in 2.2.4., ps-ns 15N and 2H dynamics were characterized via the Lipari-

Szabo model-free formalism (17).  An anisotropic rotational diffusion tensor was fitted for all 

three new ternary complexes studied using the local Di method (94) and the crystal structure 

of E:NADPH:MTX (PDB ID 1RX3).  Because of the significant effect anisotropy can have 

on model selection (93), rotational anisotropy corrections (Dpar/Dperp ≈ 1.15) were used for all 

three complexes.  Backbone relaxation data were fit to all five model-free models in the case 

of E:NADPH:1 and E:NADPH:3, using Akaike’s information criterion to guide model 

selection (95).  However, because only three datasets were collected for E:NADPH:5, fitting 

to models 4 and 5 was not justified (more parameters to fit than datasets collected).  In the 

case of E:NADPH:5, the best fit model substitution for models 4 and 5 were models 3 and 2, 

respectively.  For all complexes, side-chain relaxation data were fitted to model 2 with no 

correction for rotational anisotropy.   

 

5.2.4.  Calculating Conformational Entropy 

 The conformational entropy of a protein can be perturbed significantly by changes 

such as temperature variations and ligand binding (22, 25, 157, 158).  Because NMR 

dynamics studies provide a measure of site-specific determination of flexibility or disorder, 

order parameters from spin-relaxation experiments can be converted into local entropy 

values, or conformational entropies (159, 160).  Side chain order parameters can be translated 
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into conformational entropy values using the method of Li and Bruschweiler (161).  This 

approach depends heavily on the amino acid type, as the number of side-chain dihedral 

angles is found in the conversion equation: 

( )[ ]NMRB SBfAMkS 21−+= ,    (5.1) 

 

where M is the number of side-chain dihedral angles, A and B are fitted parameters that 

depend on amino acid type groupings, and either 

( ) xxf =  or     (5.2) 

( ) ( )xxf log=  .    (5.3) 

In the current study, conformational entropies can be used to determine how ligand binding 

impacts the thermodynamic stability of DHFR on a site-specific level.  These values can 

possibly be related to inhibitor binding affinities or to the thermodynamics of binding 

determined by isothermal titration calorimetry (ITC).  For example, if ligand binding is 

entropically driven from ITC measurements, one could dissect the local conformational 

entropies to determine which sites in particular are responsible for the observed effect. 

 

5.3.  Results and Discussion 

5.3.1.  Analysis of backbone ps-ns dynamics for the series 

 Backbone dynamics have been fitted similarly for all three ternary inhibited 

complexes with bound 1, 3, and 5.  From the anisotropic rotation diffusion tensor and Lipari-

Szabo analyses, very similar rotational tumbling (τm) and anisotropic corrections have been 

found for the three complexes, extending to E:NADPH:TMP discussed in Chapter 2 (Table 

5.1). 
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Complex τm (ns) Dpar/Dperp 
E:NADPH:1 10.60 1.132* 
E:NADPH:3 10.77 1.144 
E:NADPH:5 10.55 1.181 
E:NADPH:TMP (reference) 10.69 1.132 

 * Monte-Carlo simulations from the qfit program jump between slightly prolate and oblate anisotropic 
 diffusion corrections.  The correction fitted from E:NADPH:TMP was thus used to approximate a 
 prolate diffusion tensor. 
 
 Table 5.1.  Rotational tumbling times and anisotropic diffusion corrections.  Relative to 
 E:NADPH:TMP presented in Chapter 2, the fitted tumbling time and anisotropic diffusion 
 parameters are given for three reduced-affinity complexes. 
 

The raw S2 values fit for the three complexes have been compared to each other and to 

several complexes studied previously in the Lee Lab (Table 5.2) (79, 156).  To make 

comparisons amongst the seven total complexes with characterized ps-ns backbone 

dynamics, correlation plots were made with the “reference complex” on the y-axis and the 

“comparison complex” on the x-axis.  A total of 63 reporters (out of 148 possible) were used 

for the correlation, where a reporter is a residue with measurable backbone dynamics in all 

seven complexes.  A line of best fit was found for the 63 backbone sites in the pair-wise 

comparisons shown below, with the R correlation value indicating how similar the compared 

order parameters are for each pair.  From the pair-wise comparisons, it is noted that the 

analyzed ternary complexes are equivalently dissimilar to the E:NADPH complex (R ≈ 0.75), 

indicating significant changes in order parameters upon binding of the small molecule 

inhibitors.  Additionally, the three newly presented complexes in this study (ENADPH:1, 

E:NADPH:3, and E:NADPH:5) are both quite similar to each other and surprisingly similar 

to the M42W mutant E:NADPH:MTX complex (R ≈ 0.92).  These three complexes are also 

well correlated dynamically with E:NADPH:TMP (R ≈ 0.93); however, E:NADPH:MTX is 

less like the reduced-affinity antifolate complexes along the backbone.  This highlights a 
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significant difference in raw S2 between wild-type E:NADPH:MTX and the M42W mutant of 

the complex, as noted previously (156). 

Reference complex Comparison complex R value 
E:NADPH:MTXa E:NADPHa 0.60 

E:NADPH:TMPa 0.76 
E:NADPH:TMP E:NADPH 0.79 
E:NADPH:1 E:NADPH 0.77 

E:NADPH:MTX 0.78 
E:NADPH:TMP 0.92 
E:NADPH:3 0.97 
E:NADPH:5 0.89 
M42W E:NADPH:MTXb 0.96 

E:NADPH:3 E:NADPH 0.76 
E:NADPH:MTX 0.81 
E:NADPH:TMP 0.94 
E:NADPH:5 0.92 
M42W E:NADPH:MTX 0.96 

E:NADPH:5 E:NADPH 0.75 
E:NADPH:MTX 0.82 
E:NADPH:TMP 0.91 
M42W E:NADPH:MTX 0.87 

 aComplexes studied and reported previously (79). 
 bComplex studied and reported previously (156). 
 

 Table 5.2.  Pair-wise comparisons of raw S2 values for seven DHFR complexes studied in the Lee 
 Lab. 
 

 Another interesting observation from the raw S2 values is the dynamics of residues 

67-69 in the adenosine binding loop.  We reported previously that MTX and TMP perturb the 

flexibility at these residues that are quite distal to the substrate binding site (79).  While S2 

values were perturbed, they were not considered significant by our strict criterion.  MTX and 

TMP cause a mild rigidification of the adenosine binding loop relative to the absence of drug, 

as seen by the increase in order parameters (Figure 5.1).   
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 Figure 5.1.  S2 values for residues 67-69 of the adenosine binding loop for all seven complexes, 
 arranged by ligand Ki values. 
 

With the addition of data on the reduced-affinity antifolate complexes and the M42W mutant, 

new patterns emerge.  The M42W E:NADPH:MTX and E:NADPH:1 complexes both cause 

an increase in flexibility at residues 67-69 (decreased S2).  S2 values in E:NADPH:3 are 

approximately equivalent to E:NADPH, suggesting that perhaps a certain binding affinity is 

needed to cause rigidification at these sites and 3 is below that threshold.  The apparent 

increase in S2 values in E:NADPH:5 is likely an artifact of model selection, in that model 5 

was not used in fitting due to having collected data at only one field strength.  Residues 67-

69 have been fit to model 5 in all other complexes studied.  Fitting to model 5 results in 

lower order parameters, as the reported S2 is calculated by multiplying the slow and fast order 

parameter components (see Equation 1.10). 

 Given the dissimilarity of these ternary inhibited complexes relative to the absence of 

drug (i.e., E:NADPH), differences in S2 were calculated to identify site-specific changes in 

flexibility upon ligand binding.  Perturbations in flexibility are considered significant when 

the difference in S2 is greater than two times the error in the fitted parameter.  These 
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calculated differences are shown below in Figure 5.2, with significant perturbations indicated 

by colored bars.  Overall, the changes in backbone dynamics are modest.  The sites with 

significant differences in backbone flexibility are highlighted on the structure of DHFR in 

Figure 5.3, shown relative to the three complexes reported on previously by our group. 

Figure 5.2.  Differences in S2 for the three ternary complexes relative to the absence of inhibitor.  Significant 
changes are noted at sites with colored bars. 
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 Figure 5.3.  Residues with significant changes in S2 for all DHFR complexes studied.  Significant 
 changes are highlighted with blue spheres and perturbed residues 67-69 of the adenosine binding loop 
 are colored magenta. 
 
 
Several interesting points can be made from the pattern of these differences in backbone 

flexibility.  Firstly, as reported previously, MTX and TMP binding dynamically perturb the 

same set of residues (79).  While there is a conservation of some of these residues in the case 

of the reduced-affinity antifolate complexes, for the most part, compounds 1, 3, and 5 cause 

changes in flexibility at different sites than the high-affinity inhibitors.  If the M42W 

E:NADPH:MTX and E:NADPH:1 complexes are excluded (considered anomalous for 

reasons to be described later), a general pattern is noticed for the remaining complexes: the 

number of sites with significant differences in flexibility increases with inhibitor Ki values.  

Of the sites with significant changes in flexibility for these four complexes, MTX and TMP 

binding causes rigidification at all sites perturbed, whereas a mix of increases (2 and 4 sites, 

respectively) and decreases (7 and 5 sites, respectively) in flexibility are noted for the 

binding of 3 and 5.  In other words, reduced-affinity inhibitors elicit a greater number of 
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small-scale changes in backbone flexibility.  The greater number of sites showing changes in 

backbone S2 correlates with the greater amount of µs-ms switching described in Chapter 4.  

This trend on the ps-ns timescale may possibly be due to the enzyme dynamically rejecting 

these weaker inhibitors.  For all backbone sites, it turns out that there is a exponential 

decrease (R = 0.95) in the average ∆S2 with Ki for the series (Figure 5.4).  Although the range 

of ∆S2 is small, this suggests that DHFR’s ps-ns timescale motions are sensitive to ligand 

binding affinities, as shown in Chapter 4 for µs-ms motions. 

 

 Figure 5.4.  The correlation of ∆S2 for antifolate binding.  Outlier E:NADPH:1 is shown in 
 magenta. 
 

E:NADPH:1 does not fit this correlation well, to be discussed in section 5.3.5.  One final note 

on the pattern of residues perturbed is that the M42W mutation confers significant changes in 

flexibility at an entirely different set of residues than the wild-type enzyme bound to MTX.  

This anomaly will be described in section 5.3.5.   

 Similar to the pair-wise correlations made between the seven complexes based on raw 

S2 values, correlations can be made based on the differences in S2 from E:NADPH (∆S2).  

The same 63 reporters with measurable order parameters mentioned previously have been 
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used for these correlation plots.  The pair-wise correlation coefficients are given below in 

Table 5.3.   

Reference complex Comparison complex R value 
E:NADPH:MTX E:NADPH:TMP 0.79 
E:NADPH:1 E:NADPH:MTX 0.59 
 E:NADPH:TMP 0.80 
 E:NADPH:3 0.92 
 E:NADPH:5 0.70 
 M42W E:NADPH:MTX 0.91 
E:NADPH:3 E:NADPH:MTX 0.72 
 E:NADPH:TMP 0.87 
 E:NADPH:5 0.80 
 M42W E:NADPH:MTX 0.88 
E:NADPH:5 E:NADPH:MTX 0.84 
 E:NADPH:TMP 0.74 
 M42W E:NADPH:MTX 0.58 

 
 Table 5.3.  Pair-wise comparisons of ∆S2 values for seven DHFR complexes studied in the Lee 
 Lab. 
 

The differences in dynamics relative to holoeznyme for two of the reduced-affinity antifolate 

complexes, E:NADPH:1 and 3¸ are highly similar  to the M42W E:NADPH:MTX complex.  

This is interesting, given that E:NADPH:1 and E:NADPH:3 are not highly correlated with 

the wild-type E:NADPH:MTX complex.  On the contrary, E:NADPH:5 is most similar to 

E:NADPH:MTX.  The correlation of backbone dynamics in the reduced-affinity antifolate 

ternary complexes with the M42W mutant complex is seen for both raw S2 and ∆S2 values. 

 

5.3.2.  Analysis of side-chain ps-ns dynamics for the series 

 Similar to the backbone dynamics discussed in the previous section, ps-ns timescale 

side-chain dynamics have been characterized for seven different DHFR complexes.  Three 

new reduced-affinity antifolate complexes are reported herein – holoenzyme bound to 1, 3, 

and 5 – and are compared to complexes on which we have reported previously (79, 156).  
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Correlation plots have been made for these data, using only methyl groups with measurable 

dynamics in all seven complexes (38 reporters out of 92 possible).  Correlation coefficients 

for the pair-wise comparisons of raw S2
axis values are given below in Table 5.4.   

Reference complex Comparison complex R value 
E:NADPH:MTXa E:NADPHa 0.96 

E:NADPH:TMPa 0.93 
E:NADPH:TMP E:NADPH 0.90 
E:NADPH:1 E:NADPH 0.88 

E:NADPH:MTX 0.82 
E:NADPH:TMP 0.82 
E:NADPH:3 0.85 
E:NADPH:5 0.82 
M42W E:NADPH:MTXb 0.86 

E:NADPH:3 E:NADPH 0.90 
E:NADPH:MTX 0.93 
E:NADPH:TMP 0.89 
E:NADPH:5 0.92 
M42W E:NADPH:MTX 0.91 

E:NADPH:5 E:NADPH 0.93 
E:NADPH:MTX 0.97 
E:NADPH:TMP 0.91 
M42W E:NADPH:MTX 0.96 

 aComplexes studied and reported previously (79). 
 bComplex studied and reported previously (156). 
 
Table 5.4.  Pair-wise comparisons of raw S2

axis values for seven DHFR complexes studied in the Lee Lab. 
 

All ternary inhibitor complexes agree with the dynamics of the holoenzyme to a similar 

degree (R ≈ 0.9).  This is interesting, given the greater variability in methyl side-chain order 

parameters relative to the backbone.  The similarity may be due to the greater dynamic range 

for side-chain order parameters.  E:NADPH:1 is less similar to the other complexes, as its R 

values are only in the range of 0.82-0.86.  Two of the three reduced-affinity antifolate 

complexes (with 3 and 5 bound) show high correlations with both wild-type and M42W 

mutant E:NADPH:MTX.  Recall that this similarity was also noted for backbone dynamics.   
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 Calculating the difference in S2
axis relative to the absence of inhibitor allows for the 

determination of site-specific changes in flexibility upon binding of the small molecule.  

Similar to the analysis of backbone dynamics, significant ∆S2
axis values must be greater than 

two times the error in the fitted parameter.  The calculated ∆S2
axis values are shown below in 

Figure 5.5 for the ternary complexes with bound 1, 3, and 5, where significant differences are 

highlighted with colored bars. 

 

 Figure 5.5.  Changes in S2
axis for three reduced-affinity antifolate complexes relative to E:NADPH.  

 Significant changes in flexibility are highlighted in colored bars. 
 

The majority of differences in side-chain flexibility upon inhibitor binding are positive, 

meaning a rigidification of ps-ns motions occurs.  Methyl groups with significant 
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perturbations in flexibility are highlighted on the structure of DHFR in Figure 5.6, and shown 

relative to previously studied complexes in the Lee Lab (79, 156). 

 

 Figure 5.6.  Significant changes in S2
axis are highlighted in red spheres for six ternary antifolate 

 complexes. 
 

Several interesting observations should be noted.  As mentioned in Chapter 2, the methyl 

sites perturbed by MTX and TMP binding are essentially identical.  In addition, I50 and I60 

undergo significant changes in flexibility relative to the holoenzyme regardless of the 

inhibitor bound.  In many cases, M16, L36, I61, and I115 are also perturbed.  Considering the 

number of methyl groups with changes in flexibility, fewer sites are perturbed as Ki 

increases.  Therefore, reduced-affinity inhibitors do not quench as much side-chain flexibility 

as those of high affinity.  This trend is opposite of what was observed along the protein 

backbone.  When the dynamics of all methyl groups are considered, an increase in the 

average ∆S2
axis is observed with increasing Ki (Figure 5.7).  So, although the number of 

residues with significant changes in S2
axis are fewer with reduced affinity, the magnitude of 
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∆S2
axis increases.  This is opposite of what was observed for ps-ns backbone dynamics, 

possibly suggesting that backbone and side-chain dynamics on this timescale compensate for 

one another. 

 

 Figure 5.7.  The correlation of ∆S2
axis upon antifolate binding to Ki for the series. 

 

 It is instructive to compare the ∆S2
axis values in a pair-wise fashion for all complexes 

studied (Table 5.5).  Similar to the analysis of backbone flexibility, only methyl sites with 

measurable dynamics in all seven complexes were used in the correlations (38 reporters out 

of 92 possible sites)  As noted previously (79), there is a correlation between the differences 

in dynamics caused by MTX and TMP binding (R = 0.6).  Therefore, not only are the same 

sites perturbed by these two inhibitors, but the magnitudes of perturbation are similar.  

E:NADPH:1 is not similar to any of the other complexes studied, which will be discussed 

further in section 5.3.5.  The reduced-affinity complexes with 3 and 5 bound are most similar 

to wild-type and M42W E:NADPH:MTX, as noted for the backbone correlations and also for 

the raw S2
axis values.  In fact, E:NADPH:5 is more similar to the M42W mutant than 

E:NADPH:MTX is to E:NADPH:TMP. 
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Reference complex Comparison complex R value 
E:NADPH:MTX E:NADPH:TMP 0.60 
E:NADPH:1 E:NADPH:MTX 0.10 
 E:NADPH:TMP 0.14 
 E:NADPH:3 0.29 
 E:NADPH:5 0.04 
 M42W E:NADPH:MTX 0.13 
E:NADPH:3 E:NADPH:MTX 0.55 
 E:NADPH:TMP 0.44 
 E:NADPH:5 0.47 
 M42W E:NADPH:MTX 0.39 
E:NADPH:5 E:NADPH:MTX 0.66 
 E:NADPH:TMP 0.43 
 M42W E:NADPH:MTX 0.66 

 
 Table 5.5.  Pair-wise comparisons of ∆S2

axis values for seven DHFR complexes studied in the Lee 
 Lab. 
 

 

5.3.3.  Conformational entropy analysis 

 Side-chain order parameters for the seven DHFR complexes have been used to 

calculate conformational entropies in a site-specific manner (161).  The average 

conformational entropy and standard deviation in the calculations are shown below in Figure 

5.8.  The greatest entropy values are observed for methionine methyl groups (residues 1, 16, 

42, and 92).  No large deviations in local entropies are seen across the protein sequence, 

which is not surprising as the correlations of raw S2
axis values were quite high for the series of 

complexes studied (Table 5.4).  This analysis of conformational entropy is incomplete at 

present; however, future work with this data will be discussed in section 6.5. 
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 Figure 5.8.  Average conformational entropies for the seven DHFR complexes.   
 

5.3.4.  A dynamics balancing act on the fast timescale 

 A summary of backbone and side-chain sites with significant changes in flexibility 

upon inhibitor binding are shown in Figure 5.9 for all six ternary complexes. 

 

 Figure 5.9.  The combined significant differences in S2 (blue) and S2
axis (red) relative to E:NADPH for 

 the six inhibitor complexes. 
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It is interesting to point out that the number of backbone and side chain sites perturbed 

remain constant (~15 sites) in the presence of MTX, TMP, 3, and 5.  This is not the case for 

the M42W mutant (24 sites) and E:NADPH:1 (23 sites).  Bringing together observations 

mentioned in sections 5.3.1-2, the data suggest that backbone and side chain dynamics on the 

ps-ns timescale may compensate for one another: (i) the number of sites with significant 

deviations in S2 increases with Ki with an overall decrease in the magnitude of rigidification 

versus Ki, and (2) the number of sites with significant deviations in S2
axis decreases with Ki 

with an overall increase in the magnitude of rigidification versus Ki.  This balancing act of 

ps-ns dynamics is contradictory to µs-ms dynamics, in which the number of sites with motion 

and the rate of motion increases with Ki.  The compensatory motions suggest that DHFR has 

evolved to maintain a constant level of flexibility on the fast timescale within the closed 

state.  From studying both backbone and side-chain dynamics across the series of inhibitors, 

we speculate that backbone dynamics correlate with kinetic movement of DHFR (increased 

flexibility with K i) while side-chain dynamics correlate with ligand binding thermodynamics 

(decreased flexibility with Ki). 

 

5.3.5.  The anomalous M42W E:NADPH:MTX and E:NADPH:1 complexes 

 As mentioned previously, the E:NADPH:1 and M42W E:NADPH:MTX complexes 

are dynamically different from the remainder of those studied.   Both complexes have about 

ten more backbone and side-chain sites that are significantly perturbed relative to E:NADPH.  

Additionally, both complexes show decreases in S2 at residues 67-69 of the adenosine 

binding loop.  Their differences from the rest of the series and from each other necessitate a 

description of these anomalies.   
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 In the M42W E:NADPH:MTX complex, a number of sites near to the site of 

mutation show differences in dynamics both along the backbone and side chains.  This 

observation is expected, given that methionine and tryptophan are structurally very different, 

likely resulting in local protein packing differences (in spite of minimal changes in backbone 

structure (156)).  Analysis of the changes in backbone flexibility in the M42W complex leads 

to a very surprising observation: all sites significantly perturbed relative to absence of 

inhibitor become more flexible.  On the contrary, the differences in S2 elicited by MTX are 

all rigidifications.  In addition to this, the change in S2 at residues 67-69 of the adenosine 

binding loop relative to E:NADPH is quite large in the M42W mutant –  a greater than 0.1 

reduction in S2 values (Figure 5.1).  Thus, the mutant complex causes a great increase in 

flexibility at the adenosine binding loop.  This effect is about equal and opposite of the 

rigidification at residues 67-69 caused by MTX binding to wild-type DHFR. 

 As was observed on the µs-ms timescale, the ps-ns dynamics of E:NADPH:1 are 

anomalous relative to the remainder of the inhibitor complexes studied herein.  Firstly, the 

binding of 1 increases flexibility in the adenosine binding loop.  Additionally, from the order 

parameter correlations made amongst the seven complexes, E:NADPH:1 was found to be 

less similar to the other complexes studied, particularly in side-chain flexibility.  In studying 

the structure and slow timescale dynamics of this complex, it was found that the bulky 

thiophenyl ring of 1 samples two different binding sites within the active site region of 

DHFR (40).  However, this substituent had a preferred binding orientation in solution, in 

which it was oriented in the substrate binding site and pointed toward helix-C and the loop 

following said helix.  Interestingly, ps-ns motions in this region show significant 

rigidification.  More specifically, all significant backbone perturbations from the absence of 
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drug are increases in S2, including V40 which closely contacts the thiophenyl ring in its 

solution-preferred pose.  Side chain rigidification is also seen in this region for L36, I50, and 

L54.  This is somewhat surprising since we know these sites are undergoing motion on the 

µs-ms timescale.  However, ps-ns dynamics studies only capture motions within the ground 

state of the conformational ensemble.  On this note, no residues within close vicinity of the 

solution-preferred thiophenyl binding pose were fit to models 3 or 4 during the Lipari-Szabo 

analysis.   

 

5.3.6.  Reduced-affinity antifolates dynamically mimic M42W mutation 

 When comparing the backbone and side-chain sites significantly perturbed by the 

binding of reduced affinity inhibitors 1, 3, and 5 relative to the M42W mutant (Figure 5.9), 

no great similarities are observed.  However, the pair-wise correlations of order parameters, 

both raw values and differences from the holoenzyme, suggest a similarity between the 

M42W mutant and the binding of reduced affinity antifolates.   

 

 Figure 5.10.  Correlation coefficients for comparing order parameters to M42W E:NADPH:MTX. 
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When comparing raw backbone S2 values, ternary complexes with TMP, 1, 3, and 5 agree 

well (R > 0.8) with the M42W mutant.  This similarity narrows to only E:NADPH:1 and 

E:NADPH:3 when comparing ∆S2 relative to the holoenzyme.  All six complexes have 

highly similar raw S2
axis values when compared to M42W E:NADPH:MTX.  The best 

agreement with the M42W complex when considering ∆S2
axis values is E:NADPH:5.   

 Considering the large discrepancy in ps-ns flexibility between M42W and wild-type 

E:NADPH:MTX, the reduced-affinity inhibitor complexes are better approximations to 

mimicking the mutation.  This leads to the possibility of whether the binding affinity of MTX 

to M42W is significantly reduced, similar to 3 and 5 for wild-type DHFR.  E:NADPH:3 and 

E:NADPH:5 are arguably the best matches dynamically to M42W E:NADPH:MTX.  The 

reverse is also true –  M42W E:NADPH:MTX is generally the best matched complex to both 

E:NADPH:3 and E:NADPH:5 compared to the other studied complexes.  This dynamic 

grouping of complexes with similar fast timescale dynamics is reiterated in slow timescale 

studies, in which the sites with Rex in E:NADPH:5 (Chapter 4) are highly similar to those 

identified in M42W E:NADPH:MTX (156).   

 

5.4.  Concluding Remarks 

 It has been previously suggested that the fast timescale dynamics of DHFR are 

invariable within the context of the same Met20 loop conformation (47, 48, 50).  This claim 

comes from analysis of backbone and side-chain order parameters on physiological 

complexes in either the Met20 loop closed or occluded conformation.  However, a systematic 

study of ps-ns dynamics in a series of complexes all within the same structural state has not 

been previously reported to question the above hypothesis.  From the data, it is clear that 
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DHFR does dynamically sense differences in bound ligand on the ps-ns timescale.  A 

different pattern of sites is perturbed dynamically by each antifolate, with only several sites 

in common amongst all studied complexes.  While the magnitudes of changes in flexibility 

are rather small, the effects appear to correlate with ligand binding affinity: (1) more sites 

with significant changes in backbone flexibility were observed with increasing Ki, (2) the 

magnitude of backbone rigidification decreases exponentially with Ki, (3) fewer sites with 

significant changes in side-chain flexibility were observed with increasing Ki, and (4) the 

magnitude of side-chain rigidification generally increases with increasing Ki.  Additionally, 

backbone flexibility at residues 67-69 of the adenosine binding loop are perturbed by the 

binding of small molecule antifolates, with higher affinity inhibitors causing the greatest 

quenching of motion.   

 From the initial analysis of the data presented, three functional dynamic groupings are 

suggested: (1) the MTX and TMP group, (2) the reduced-affinity antifolate and M42W 

mutation group, (3) the highly perturbed E:NADPH:1 group.  Group 1 is based on the high 

similarity in sites perturbed and the magnitude of perturbations caused by MTX and TMP 

binding, both along the backbone and side chains.  Group 2 is based on the dynamic 

similarity of reduced-affinity complexes with bound 3 and 5 relative to M42W 

E:NADPH:MTX (R value correlations tabulated in this chapter).  Group 3 represents the 

most anomalous complex, which differs greatly in both the identity of sites perturbed and the 

magnitude of perturbations, especially in ∆S2
axis.  These groupings are further supported on 

the slow timescale: Group 1 complexes show identical patterns of slow motions and rates of 

conformational exchange; Group 2 complexes are similar in the identity of flexible residues 

and have faster rates of exchange; The group 3 complex is very different on the slow 
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timescale, with widespread motions that are not present in the other studied antifolate 

complexes.  This similarity of complex groupings on the two timescales suggests a link 

between fast and slow motions in DHFR within the closed state. 

 

 



 

Chapter 6 

 

Outlook and Future Directions 

 

 In this study, we have taken a medicinal chemistry approach to probing the dynamics 

of dihydrofolate reductase when bound to inhibitors that cover a broad range of binding 

affinities.  Three main questions were to be addressed: (1) Would the dynamics of DHFR be 

affected by the chemical structure of bound ligands within the same conformational state, (2) 

would dynamics be modulated by the binding affinity of bound ligands, and as a result, (3) 

could we identify a link between internal motions of the enzyme and binding affinity or 

kinetics of binding?   

 Regarding question (1), we clearly demonstrate in Chapter 3 that the dynamics of 

DHFR are sensitive to bound ligand structure.  This case is extreme, in that the inhibitor itself 

is mobile; however, we show that widespread changes in µs-ms dynamics are evident in the 

presence of this particular small molecule.  Differences in motion depending on bound ligand 

are also reported in Chapter 4, where the binding of a series of tetrahydoquinazolines effects 

similar residues, but the pattern is not identical.  This point is also noted in Chapter 5, as ps-

ns dynamics vary with bound inhibitor.  These observations are in stark contrast to Chapter 2, 

in which TMP and MTX binding were shown to elicit essentially identical motions in DHFR.  

The main difference observed between TMP and MTX binding was on the fast timescale, 
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where inhibitor binding is ‘sensed’ at the same sites, but the correlation between the changes 

in flexibility is not very strong. 

 To probe point (2), the combination of data from Chapters 2-4 demonstrates that 

DFHR’s µs-ms dynamics are indeed sensitive to inhibitor binding affinity.  Particularly in 

Chapter 4, we bring together all of this data to show that a strong correlation exists between 

the rate of conformational switching in DHFR and the Ki of bound ligands across the entire 

series of inhibitors studied.  Although additional data and further data analysis is needed, the 

suggestion of a correlation between ps-ns dynamics and bound inhibitor Ki is reported in 

Chapter 5.  Here we observed a balancing act of backbone and side-chain flexibility and the 

thought of fast motions compensating for those on the slow timescale. 

 Question (3) is elegantly discussed in Chapter 4, in which we show that a structurally 

similar excited state is sampled by a common grouping of residues in DHFR in the presence 

of the series of small molecule inhibitors studied.  The structure was found to be novel, 

relative to the excited state of the same grouping of residues in physiological complexes 

(bound to folate-derived ligands).  Additionally, this excited state is sampled at different rates 

depending on the bound inhibitor, and this rate of conformational switching correlates well 

with both binding affinity and the kinetic dissociation rate of the ligands. 

 A number of questions for further probing come from this body of work, as discussed 

below. 

 

6.1.  Probing the utility of 1 against TMP-resistant bacterial strains 

 In Chapter 3, the 2,4-diaminoquinazoline compound 1 was shown to elicit µs-ms 

dynamics in DHFR consistent with its thiophenyl moiety inserting into the nicotinamide 
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binding site to a small degree in solution.  This excited state pose, also observed 

crystallographically and through use of molecular modeling techniques, is made possible by 

the concomitant switching of the Met20 loop from closed to occluded.  The excited state 

binding pose of 1’s thiophenyl moiety is novel for inhibitors of E. coli DHFR.  This binding 

pose was observed for an analogous inhibitor of L. casei DHFR, but unlike our results, it was 

found there to be the predominant binding pose based on strong electron density for both 

ligand and protein in the ternary complex (123).  Numerous studies have shown the existence 

of mutations within the substrate binding site that result in resistance to TMP (75, 76).  

Because 1 samples two different binding poses within the active site and is still a high 

affinity inhibitor, it would be interesting to examine whether 1 would be effective against 

mutations that confer TMP resistance.  As discussed in Chapter 3, the ability of a small 

molecule to sample multiple bound conformations has lead to overcoming drug resistance in 

several cases (e.g., HIV reverse transcriptase) (162).  Although 1 is not as high in affinity for 

DHFR as TMP, its sampling of a novel binding pose could prove useful against TMP-

resistant bacterial strains.  Mutations that confer resistance to anitfolates concentrate within 

the substrate binding site, not the cofactor binding site.  It is reasonable to believe that 

mutations within the nicotinamide binding site are unlikely to occur, as DHFR necessitates 

the binding of reduced cofactor for catalysis.   

 

6.2.  Expanding the correlation of kconf,forward to Ki and koff 

 The data presented in Chapter 4 show an exponential relationship between internal 

motions in DHFR and both Ki and koff.  This relationship appears to hold over a range of six 

and five orders of magnitude for Ki and koff, respectively.  However, only six points 
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constitute the correlation.  Several methods could be used to increase the number of data 

points.  Two related methods are global, systematic perturbations to the complexes: 

temperature variations and the use of chaotropic agents.  Since the stopped-flow assay 

described for koff determination is faster to perform that Ki assays, initial tests of varying 

temperature and the addition of urea have been conducted as part of this work, although the 

data has not been presented herein, to modulate koff.  My preliminary work with temperature 

variations (using compound 3 and 5) demonstrated slight modulations (~ 10% increase) in 

koff over the range of 25-30 °C.  Studies of koff in the presence of urea over a 0-2 M range 

(using compound 5) showed that koff could be increased up to 65% under such conditions.  

The combination of approaches, using increased temperature and urea can serve to double koff 

(using compound 5 at 35 °C and 2 M urea).  However, in conducting relaxation dispersion 

experiments on E:NADPH:5 at 35 °C in 2 M urea/NMR buffer, we find that degradation of 

DHFR occurs more rapidly and becomes significant over the four day course of data 

collection at 700 MHz.  Slow timescale motions were identified at residues very similar to 

what was reported in Chapter 4; however, global fitting of the data was challenging and 

yielded a vastly increased kconf,forward that was far from expected.  Therefore in the future, 

such an extreme change in conditions should be avoided.  Aiming to only mildly modulate 

koff via temperature and chaotropic agents is likely a wiser strategy.  The use of urea and 

increases in temperature both serve to increase koff.  One might also be interested in slowing 

dissociation, for which, decreases in temperature would be valuable.  For example, koff for 6 

could be decreased by lowering the temperature at which data is collected.  This change in 

condition would likely be better tolerated by DHFR than the extreme case presented above.  

Although not extending the dynamic range of the correlation, slowing koff for 6 could 
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contribute a data point between that of 5 and 6 under standard conditions on the kconf,forward 

versus koff plot. 

 A third method to increase the number of data points in the correlation of internal 

motions to binding affinity or off-rate is mutagenesis.  For example, one may choose to work 

with one inhibitor reported herein, but study that small molecule while bound to several 

DHFR mutants that increase or decrease Ki or koff.  Mutations are not as straight forward as 

other approaches, in that structural changes could result in the protein, and these structural 

changes could underlie differences in observed dynamics.  For example, the R44L mutant of 

DHFR has been reported to cause a six-fold increase in dissociation of H4F (163).  Although 

not presented herein, koff of 3 from R44L E:NADPH:3 was studied by stopped-flow 

fluorescence experiments.  The off-rate for 3 was found to be unchanged from wild-type 

DHFR.  It turns out that a number of chemical shift changes in E:NADPH:3 also occur upon 

mutation of R44L, suggestive of structural change.  In addition, it has been determined that 

the R44L mutation modulates kinetics of the catalytic cycle with possible differences in 

conformations sampled (163).  Thus, the reported increase in koff was calculated and not 

directly observed via competition experiments.  This example speaks to the issues that can be 

encountered when using mutagenesis as a biochemical tool, thus suggesting that this method 

of modulating koff should be attempted with caution.  In addition, the effect of a mutation on 

koff is not predictable whereas other suggestions mentioned (temperature and chaotropic 

agents) do provide a degree of expected modulation of Ki or koff. 

 A fourth method for increasing the number of points on the correlation plot would be 

to study different inhibitors, and not necessarily inhibitors that are highly similar in structure.  

The antifolates used in the study were of different structural classes, although still quite 



129 

similar in chemical structure (i.e., of the pteridine, pyrimidine, quinazoline and 

tetrahydroquinazoline classes, but all containing the 2,4-diaminopyrimidine pharmacophore).  

It would be interesting to expand the correlation by studying molecules with larger structural 

differences.  For example, MJC-7 shown in Figure 1.8 is structurally different than the 

antifolates used in the kconf,forward correlations.  This inhibitor would be interesting to study, 

although there are several issues with it: (1) it samples a novel portion of the active site and 

thus might result in structural changes that overlie changes in dynamics, and (2) it is a very 

high affinity inhibitor that doesn’t expand the dynamic range of the correlation.  

Trimextrexate or MJC-8 could be studied to add a data point in the correlation between TMP 

and 1, although they are structurally similar to compounds already used for the correlation.  

MJC-9 offers a somewhat different structure, but it is still of the pyrimidine class.  Triazole 

antifolates could pose as an interesting suggestion for a different class of inhibitor.  Since 

MTX and TMP are generally regarded as the highest affinity inhibitors of DHFR, antifolates 

with weaker Ki values would be helpful to expand the dynamic range of the correlation.  

Identifying poor inhibitors from the literature can be challenging. 

 

6.3.  Determining the structure of the novel excited state 

 In Chapter 4, fitting of relaxation dispersion data on the series of complexes studied 

yields essentially identical ∆ω values for a set of twelve residues within the active site 

region, regardless of the inhibitor bound.  We discussed previously that this state is of novel 

structure relative to the excited state sampled by complexes bound to folate-like ligands.  

Future work toward identifying the structure of the excited state sampled in the presence of 

antifolates would be interesting, as the novel excited state could be exploited in structure-
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based drug design.  Significant differences in the excited state structure could drive design of 

inhibitors that would destabilize such a conformation, thus increasing residence times of 

ligands.  Much effort by Kay and co-workers has been devoted to the issue of determining 

structures for excited states sampled in solution on the µs-ms timescale (154, 155).  

Following their work, we may be able to identify the structure of the novel excited state and 

compare it to the ground state.   

 If this group of antifolate consensus residues is indeed en route to inhibitor 

dissociation, perturbations to this small network would affect koff.  Therefore, an interesting 

perspective on future work would be to study mutations within the antifolate consensus 

group.  Assuming that the chosen mutations do not preclude antifolate binding, differences in 

both the rate of conformational exchange and the structure of the excited state could be 

expected.  Making mutations to each of consensus sites individually could even help to 

identify if one of the sites is the keystone of the correlation we observed. 

 

6.4.  How is product released from the occluded state? 

 The excited state structure sampled by ternary antifolate complexes differs from those 

sampled by physiological complexes, in particular the E:NADPH:H4F product release 

complex, suggesting that product release and antifolate dissociation occur via different 

mechanisms.  This is not entirely surprising, as all of the complexes studied herein are within 

the context of the Met20 loop closed conformation while the product release complex 

possesses the occluded conformation.  Based on the exact matching of kconf,forward for Met20 

loop switching in E:NADPH:H4F with kcat, it is highly possible that the Met20 loop actively 

participates in the dissociation of H4F (125).  In further support of differing mechanisms for 
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product and antifolate dissocation, only three residues within the antifolate consensus group 

also possess slow motion in the E:NADPH:H4F complex.  Of these three in common, 

residues 30 and 31 do show similar fits for ∆ω relative to the antifolate complexes.  

However, similar ∆ω fits are seen for other complexes in which ligand is bound within the 

substrate binding site (E:H4F and E:N+:H4F), suggesting these motions are connected to the 

occupancy of that binding site.  From this it is possible, however, for Met20 loop motion to 

be necessary for H4F release in conjunction with some causative motion within the antifolate 

consensus group.  This would suggest that the causative motion is all that is required for 

antifolate dissociation. 

 To approach answering the question of how product dissociation occurs, the 

methodologies described previously in section 6.1 would be useful.  Specifically, temperature 

variations, addition of chaotropic agents, and mutagenesis would be useful in modulating koff 

for H4F.  Some preliminary work towards this goal has been completed, although not 

reported herein. 

 

6.5.  Thorough analysis of ps-ns data 

 As mentioned in Chapter 5, ps-ns timescale flexibility of DHFR in the presence of 

reduced-affinity antifolates have only been characterized for complexes with 1, 3, and 5 

bound.  Thus, backbone and side-chain dynamics could be studied for the additional 

complexes with 2, 4, and 6 bound.  However, working with the data has been collected at 

present, a more thorough analysis is needed toward the idea of functional or dynamic 

groupings of complexes.  Parameters fitted from the Lipari-Szabo analysis should be 

analyzed for all complexes on a per residue and grouping of residues basis to look for 
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patterns that correlate with Ki.  This would point to sites, on an atomic level, that are 

perturbed by inhibitor binding in a predictable manner. 

 Side-chain order parameters can be converted into local entropy values based on the 

method described in Chapter 5 (161).  While this conversion has been done for all seven 

complexes discussed herein (E:NADPH bound to nothing, MTX, TMP, or 1-6, and M42W 

MTX), no comparisons or correlations in the data have been made.  Furthermore, the data are 

more meaningful when compared to data on the thermodynamics of ligand binding.  Some 

work with isothermal titration calorimetry (ITC) was performed as part of this work, but the 

results were not reliable or useful.  Thus, a serious collection of ITC data for inhibitor 

binding would be valuable to the study.  From ITC data, one can determine if ligand binding 

is entropically or enthalpically favored.  Given the great structural similarity of the series of 

ligands studied, particularly the THQ compounds, we expect binding to be driven entirely by 

either enthalpy or entropy, and not a mix of the two across the series.  Interestingly, local 

entropies calculated from side-chain order parameters can be compared to global entropy of 

binding from ITC.  This type of comparison could allow for the identification of sites directly 

involved in modulating the thermodynamics of inhibitor binding.   

 ITC data would be particularly valuable in the case of E:NADPH:1.  As described in 

Chapter 5, large increases in order parameters are observed for both backbone and side-chain 

sites.  This is in great contrast to the extensive motion observed on the slow timescale, 

reported in Chapter 3.  Thus, it appears that flexibility on the fast timescale decreases to 

compensate for the extreme slow motions.  This would be more definitively shown by 

looking at ITC data and conformational entropies calculated from S2
axis. 
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6.6.  Binding affinity and kinetics of  MTX binding to M42W DHFR 

 Randall Mauldin previously characterized the µs-ms and ps-ns timescale dynamics of 

M42W E:NADPH:MTX in the Lee Lab (156).  His results were compared directly to the 

wild-type E:NADPH:MTX complex.  Herein, I have compared his M42W data to wild-type 

complexes bound to inhibitors other than MTX.  It is interesting to note that slow motion was 

observed at two groupings of residues in M42W E:NADPH:MTX –  (1) the antifolate 

consensus sites, fitting to a slower rate of exchange, and (2) sites within helix C and loop 

proceeding this helix, fitting to a faster exchange rate.  The fitted ∆ω values for the antifolate 

consensus group are essentially identical to what is reported in Chapter 4 for the eight wild-

type inhibitor complexes studied.  Thus, it is tempting to add the M42W E:NADPH:MTX 

mutant as a point in the kconf,forward vs. Ki or koff plots.  Binding affinity and kinetics of binding 

studies for MTX and the M42W mutant have not been conducted, but would be useful for 

this study.  Based on the relationship between kconf,forward and Ki, one would expect MTX to 

have a Ki value of about 5 µM for M42W E:NADPH (kconf,forward = 30 s-1).  From this, it 

follows that koff for MTX from the mutant would be expected to be ~3 s-1.   

 Additionally, M42W E:NADPH:MTX ps-ns dynamics relative to wild-type 

holoenzyme and various ternary antifolate complexes are compared in Chapter 5.  Some 

correlations between wild-type complexes and Ki values have been made.  Although M42W 

E:NADPH:MTX appears to be an anomaly on this timescale, it would be interesting to know 

the Ki value for MTX for the purpose of making more meaningful correlations about patterns 

of backbone and side-chain flexibility.  This would especially useful if a large matrix of all 

DHFR dynamics data collected within the Lee Lab were to be constructed, as discussed 

below.  The speculated Ki and koff values for M42W could also explain why the mutant 
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E:NADPH:MTX complex appears so dynamically similar to E:NADPH:5 on both the fast 

and slow timescales. 

 

6.7.  An exclusive matrix of data toward multi-timescale correlations of motion 

 Taken together, the new data presented herein, in combination with the work of 

Randall Mauldin, represents a unique set of data that compares to what exists in the literature 

for only calmodulin (22, 24, 25, 158, 164, 165).  Because only ps-ns dynamics data have 

been published for calmodulin, our data is even more distinctive in that we have 

characterized µs-ms and ps-ns dynamics in the same system.  As mentioned previously, slow 

timescale motions are important to and implicated in biological function of proteins and 

enzymes.  It has been suggested that, while fast timescale motions are not directly relevant to 

function, they may lubricate or form a foundation for those motions that occur on the slow 

timescale (15).  We are in the unique position of being able to search for such a correlation 

between fast and slow motions.  For further analysis and drawing of correlations within the 

two timescales of motion or across timescales, one would ideally construct a large matrix 

with the data.  We envision this matrix would include information from general biochemistry 

studies (Ki, koff, ∆G, ∆H, and T∆S), slow timescale dynamics studies (kex, pA, pB, kconf,forward, 

kconf,reverse, and ∆ω) and fast timescale dynamics studies (S2, S2
axis, ∆S2, ∆S2

axis, Rex, τe, and 

τe,axis).  Related to demonstrating a correlation between fast and slow timescale dynamics, we 

may also be able to show functional and/or dynamic grouping of complexes.  This idea was 

introduced in Chapter 5, given the suggestion that reduced-affinity antifolates appear to 

dynamically mimic the M42W mutation, while being different from MTX and TMP 

responses and also from the response of binding 1.  The all-inclusive matrix of data could 
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link complexes functionally or dynamically on multiple timescales.  The approach could also 

link just subsets or groupings of residues in a similar manner across timescales.   



 

Appendices 

 

Chapter 2 

2.1.  15N Relaxation dispersion fitted parameters for E:NADPH:TMP. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
7 458.7 ± 165.2 2.3 ± 0.4 - 0.929 ± 0.251 7.60 
8a 1357.6 ± 362.5 2.7 ± 0.5 - 1.789 ± 0.237 6.90 
9 458.7 ± 165.2 2.3 ± 0.4 - 3.370 ± 0.677 9.67 
10 458.7 ± 165.2 2.3 ± 0.4 + 1.351 ± 0.570 16.6 
28 458.7 ± 165.2 2.3 ± 0.4 - 0.950 ± 0.207 18.6 
29 458.7 ± 165.2 2.3 ± 0.4 + 1.541 ± 0.431 12.2 
30 458.7 ± 165.2 2.3 ± 0.4 + 1.175 ± 0.913 9.27 
31 458.7 ± 165.2 2.3 ± 0.4 + 1.247 ± 0.273 9.74 
111 458.7 ± 165.2 2.3 ± 0.4 + 1.267 ± 0.324 12.5 
112 458.7 ± 165.2 2.3 ± 0.4 - 1.270 ± 0.312 8.33 

aLocal fit reported. 

 

2.2.  15N relaxation model-free parameters fit for the backbone of E:NADPH:TMP. 

Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

1          
2 0.8629 0.0129 14.60 13.70           1.82 
3 0.8628 0.0112 0.53 2.12           3.96 
4 0.8767 0.0155           0.70 0.45 1.27 
5 0.905 0.01 24.00 17.60           1.34 
6 0.9067 0.0175 3.29 8.96           1.50 
7 0.8301 0.0147 2.05 5.13           2.67 
8 0.8601 0.0133           1.01 0.36 1.57 
9 0.8401 0.0218           2.71 0.64 2.66 
10 0.871 0.0124           1.71 0.35 1.85 
11          
12 0.8658 0.0098 7.40 9.49           0.70 
13 0.8704 0.0092           0.70 0.25 1.37 
14 0.8838 0.0167 14.00 18.50           1.14 
15 0.8923 0.0111 0.11 1.27           8.69 
16 0.89 0.0085 5.54 7.98           1.58 
17 0.7953 0.0067 6.48 3.77               0.37 0.18 14.50 
18 0.8763 0.0129 1.96 5.26           1.27 
19 0.8627 0.0057 19.30 8.32           2.33 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

20 0.8314 0.0068 4.94 5.82           1.30 
21          
22          
23 0.8284 0.0388 14.70 18.50           2.48 
24 0.7969 0.0132 19.00 10.70           3.63 
25          
26 0.9057 0.0084 8.93 11.20           10.30 
27          
28 0.8989 0.0114 0.48 2.54           4.95 
29 0.916 0.0099 9.06 13.90           5.54 
30 0.8743 0.0126 14.80 14.50           1.03 
31 0.9189 0.0148 19.20 23.00           0.58 
32          
33 0.9021 0.0077 0.41 1.97           3.62 
34 0.953 0.0187 1860 22000 0.9035 0.1085   5.79 
35 0.877 0.01 2.84 6.00           2.96 
36 0.8735 0.0129           1.21 0.43 0.15 
37 0.8593 0.0136 25.40 15.60           3.82 
38 0.8289 0.0068 14.20 6.67           5.02 
39          
40 0.8787 0.01 7.67 9.91           2.00 
41 0.8223 0.0148           0.66 0.41 0.65 
42 0.9249 0.0091 2.02 6.08           4.52 
43 0.868 0.0102 1.07 3.45           5.86 
44 0.8694 0.012           0.92 0.28 0.33 
45 0.885 0.0122           1.85 0.31 3.03 
46 0.8436 0.0145           0.62 0.34 2.06 
47 0.8913 0.0125           0.67 0.30 1.95 
48 0.8688 0.0119           0.84 0.29 8.09 
49 0.8537 0.0069 8.43 7.44           1.70 
50 0.8907 0.0048 4.14 5.64           1.62 
51 0.8744 0.008 3.31 5.89           2.23 
52 0.8394 0.0055 18.70 6.85           2.00 
53          
54 0.8429 0.0115 6.23 8.04           1.80 
55          
56          
57 0.893 0.0068 0.08 0.76           9.97 
58 0.8042 0.0089 4.12 5.37           11.40 
59 0.8279 0.0209 2.21 5.36           1.33 
60 0.845 0.0088 4.95 6.89           0.37 
61 0.8776 0.0086 2.61 5.56           1.39 
62 0.8635 0.0094 20.60 12.10           1.05 
63 0.8682 0.0065 11.80 8.57           8.70 
64 0.8518 0.0141 8.82 9.66           0.44 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

65 0.8707 0.0078 10.50 8.92           0.78 
66          
67 0.7913 0.009 2100.00 152.00 0.6998 0.0103   2.61 
68 0.9323 0.0797 700.00 456.00 0.727 0.0276   0.30 
69 0.9152 0.0854 248.00 352.00 0.6794 0.0359   5.94 
70 0.7855 0.0339 6.55 10.30           3.19 
71 0.8737 0.009 3.57 6.15           11.10 
72 0.8532 0.0059 20.40 7.89           0.83 
73 0.8541 0.0089 3.98 6.12           5.00 
74 0.8171 0.0067 3.84 4.66           1.21 
75 0.8827 0.0075 2.09 4.82           2.85 
76 0.8361 0.0078 23.10 9.59           2.33 
77 0.9522 0.0202 46.40 20.40 0.9212 0.0231   8.26 
78 0.8945 0.0098 13.80 13.80           3.39 
79 0.8833 0.0059 0.04 0.45           25.10 
80 0.9057 0.0071 3.62 6.96           5.17 
81 0.9023 0.0052 12.40 9.53           4.71 
82 0.8602 0.009 18.50 12.20           2.24 
83 0.9039 0.0062 2.32 5.32           3.89 
84          
85 0.8558 0.0079 2.68 5.06           0.56 
86 0.8406 0.0063 0.97 2.42           3.53 
87 0.6693 0.0695 9.97 11.50           1.05 
88 0.774 0.0988 453.00 667.00 0.7649 0.0609   204.00 
89          
90          
91 0.8619 0.0133 2.25 5.76           3.53 
92 0.8832 0.0106 10.70 11.80           1.16 
93 0.85 0.0099 1.47 3.76           2.54 
94 0.8902 0.012 2.75 6.81           1.46 
95 0.8969 0.0076 13.10 11.80           1.02 
96 0.8498 0.0088 0.92 2.80           3.05 
97 0.8687 0.0109 22.10 14.80           0.53 
98 0.8934 0.0073 7.16 8.84           8.60 
99 0.8892 0.0074 16.00 11.90           1.99 
100          
101 0.8881 0.006 1.02 3.10           4.41 
102 0.8628 0.0071 0.96 2.82           5.84 
103 0.8372 0.0081 1.05 2.89           9.89 
104 0.8921 0.0071 17.50 12.50           5.04 
105          
106 0.899 0.0248 6580.00 43100.00 0.8669 0.4759   12.50 
107 0.8667 0.0064 10.80 8.85           5.55 
108 0.8729 0.0147 7.89 12.00           1.91 
109 0.8683 0.0129           0.66 0.40 0.34 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

110          
111 0.8473 0.0173 10.70 13.10           2.10 
112 0.8588 0.012 7.25 9.43           6.03 
113          
114          
115 0.8387 0.014 33.70 15.80           0.15 
116 0.8848 0.0084 1.30 3.87           10.20 
117 0.8118 0.0052 2.56 3.81           4.10 
118 0.7968 0.006 3.62 4.36           11.90 
119 0.7197 0.0108 20.00 6.26               0.52 0.26 1.86 
120 0.9366 0.0094 44.80 6.50 0.7996 0.006   34.70 
121 0.7515 0.0044 30.20 3.99           8.86 
122 0.8584 0.0127 17.50 15.30           1.34 
123 0.8414 0.0067 7.05 6.77           5.77 
124 0.7192 0.0561           3.18 1.59 4.69 
125 0.8788 0.0116 2.30 5.70           2.27 
126          
127          
128 0.5873 0.0092 37.10 3.03               3.84 0.26 5.15 
129 0.8438 0.0154 13.50 13.70           5.07 
130          
131 0.8107 0.0083 28.40 9.00           2.28 
132 0.8443 0.0082 22.40 10.20           5.14 
133          
134 0.8367 0.0084 13.90 9.45           0.56 
135          
136          
137 0.8446 0.0066 16.10 8.65           8.35 
138 0.8496 0.0068 20.70 7.98           13.40 
139 0.8252 0.0098 5.28 6.92           7.00 
140 0.912 0.017 35.70 18.60 0.901 0.0205   30.40 
141 0.8493 0.0087 7.61 7.60           2.59 
142 0.8045 0.0073 8.38 6.26           32.50 
143 0.9155 0.0179 67.00 11.30 0.8935 0.0178   12.10 
144 0.8449 0.0073 10.90 8.71           3.01 
145          
146 0.9224 0.0363 31.90 17.00 0.8703 0.0362   42.30 
147 0.8102 0.0067 12.40 5.97           7.24 
148 0.9137 0.0237 129.00 960.00 0.8893 0.0248   17.80 
149 0.8412 0.0075           1.07 0.20 8.87 
150 0.8303 0.0067 2.24 4.16           3.71 
151 0.9068 0.0083 3.40 6.99           8.87 
152 0.8502 0.011 1.71 4.28           6.18 
153 0.8622 0.0124 10.50 11.60           0.94 
154 0.8422 0.0124 0.02 0.22           10.80 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

155 0.8534 0.0138 6.60 9.51           1.46 
156          
157          
158 0.8478 0.0146 48.00 13.10               0.79 0.42 2.93 
159 0.9182 0.0467 420.00 667.00 0.8564 0.0167   64.30 

 

 

2.3.  2H relaxation model-free parameters fit for the side chains of E:NADPH:TMP. 

Methyl S2
axis S2

axis err τe τe err χ
2 

1CE 0.104 0.002 16.20 0.16 44.50 
2CD1 0.447 0.014 17.90 1.17 0.77 
2CG2      
4CD1      
4CD2 0.521 0.081 172.00 23.80 0.52 
5CD1 0.873 0.089 29.60 5.53 1.48 
5CG2 0.931 0.085 36.90 5.93 0.33 
6CB 0.929 0.104 60.90 9.05 1.39 
7CB 0.798 0.115 54.10 10.50 0.25 

8CD1 0.344 0.052 63.10 10.10 0.13 
8CD2      
9CB 0.832 0.472 52.20 343.00 0.52 

10CG1      
10CG2 0.64 0.115 28.60 7.95 0.48 
13CG1      
13CG2 0.627 0.205 109.00 43.80 1.55 
14CD1 0.798 0.053 7.71 2.94 0.01 
14CG2 0.856 0.055 27.30 3.28 2.17 
16CE 0.322 0.02 5.33 0.35 120.00 
19CB 0.937 0.041 21.60 1.64 2.88 
20CE 0.495 0.018 14.40 1.00 0.88 

24CD1      
24CD2 0.298 0.052 36.00 8.82 0.65 
26CB 0.914 0.101 51.50 8.41 2.24 

28CD1 0.595 0.059 36.80 5.18 0.11 
28CD2      
29CB      

35CG2 0.887 0.064 18.80 3.17 0.89 
36CD1 0.265 0.008 58.00 1.40 1.66 
36CD2 0.287 0.009 54.60 1.43 5.35 
40CG1 0.914 0.058 48.50 4.95 0.07 
40CG2 0.88 0.05 44.70 4.02 0.59 
41CD1 0.773 0.039 20.40 2.23 0.37 
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Methyl S2
axis S2

axis err τe τe err χ
2 

41CG2 0.866 0.034 31.90 2.19 0.04 
42CE 0.88 0.019 4.18 0.65 2.20 

46CG2      
50CD1 0.713 0.033 17.60 1.74 0.40 
50CG2 0.806 0.023 18.50 1.14 0.77 
54CD1 0.649 0.04 36.20 3.29 0.96 
54CD2      
60CD1 0.317 0.009 28.00 1.08 3.19 
60CG2 0.853 0.042 39.40 3.19 2.55 
61CD1 0.304 0.015 32.70 1.91 3.37 
61CG2 0.752 0.083 80.20 12.60 0.78 
62CD1 0.45 0.051 85.70 10.60 0.21 
62CD2 0.351 0.017 55.00 2.78 1.09 
68CG2      
72CG1      
72CG2 0.695 0.123 85.30 19.00 0.32 
73CG2 0.827 0.077 65.90 8.77 0.42 
75CG1 0.922 0.045 63.70 4.21 0.68 
75CG2 0.868 0.04 10.70 2.01 0.09 
78CG1 0.887 0.032 30.50 1.85 1.33 
78CG2 0.813 0.031 24.90 1.78 0.77 
81CB      

82CD1 0.614 0.018 25.60 1.30 1.84 
82CG2 0.815 0.026 31.50 1.59 0.41 
83CB      
84CB      

88CG1 0.786 0.031 23.10 2.01 0.28 
88CG2      
91CD1 0.735 0.014 8.63 1.36 1.37 
91CG2 0.822 0.037 31.20 2.75 0.47 
92CE 0.153 0.006 14.60 0.36 1.13 

93CG1 0.885 0.055 44.40 4.83 0.27 
93CG2 0.887 0.049 19.80 2.81 0.56 
94CD1      
94CG2      
99CG1 0.808 0.07 86.70 11.70 0.04 
99CG2 0.862 0.06 49.90 4.71 0.48 
104CD1 0.618 0.037 42.30 3.61 0.02 
104CD2      
107CB 0.756 0.07 80.20 10.30 1.68 

110CD1 0.815 0.232 67.70 21.00 1.12 
110CD2 0.658 0.115 34.20 10.10 0.65 
112CD1 0.284 1.775 220.00 542.00 0.91 
112CD2 0.956 0.114 15.20 5.68 0.84 
113CG2      



142 

Methyl S2
axis S2

axis err τe τe err χ
2 

115CD1 0.785 0.091 16.70 5.38 0.13 
115CG2 0.892 0.062 40.90 4.43 2.68 
117CB 1.056 0.472 83.70 298.00 1.26 

119CG1 0.418 0.019 54.00 2.53 0.18 
119CG2      
123CG2 0.818 0.059 25.80 3.27 0.44 
136CG1      
136CG2      
143CB 0.883 0.039 40.00 2.43 0.51 
145CB 0.862 0.023 44.60 1.44 0.98 

155CD1 0.805 0.036 13.10 1.50 1.40 
155CG2 0.84 0.048 33.00 3.24 0.36 
156CD1 0.357 0.018 32.10 1.90 0.39 
156CD2 0.352 0.017 34.80 1.89 1.45 

 

 

Chapter 3 

3.1.  Compound 1 characterization data. 

One dimensional 1H and 13C NMR data along with mass spectrometry confirmed the identity 

of 1.  1H NMR (300 MHz, DMSO-d6): δ 7.71 (bs, NH2), 7.52-7.47 (m, 1H), 7.38-7.33 (m, 

3H), 7.26-7.24 (m, 1H), 7.10-7.06 (m, 2H), and 6.27 (bs, NH2); 
13C NMR (75 MHz, DMSO-

d6): δ 161.7, 160.1, 155.5, 135.7, 132.2, 131.4, 131.2, 129.4, 128.9, 127.8, 126.8, and 110.7; 

MS (m/z): [M] + calcd. for C14H11ClN4S, 302.04, found, 303.0.   

 

3.2.  X-ray crystallography data collection and refinement statistics for E:NADPH:1.* 
 

 3KFY 
Data Collection  

Space Group P212121 

Cell Dimensions  
a, b, c (Å) 34.2, 44.9, 98.0 
α, β, γ (°) 90.0, 90.0, 90.0 

Resolution (Å) 2.08 
Rmerge(%) 0.026 (0.042) 
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I/σI 22.5 (3.8) 
Completeness (%) 93.7 (89.4) 
Redundancy 3.3 (2.8) 
  
Refinement  
Resolution Range (Å) 23.63-2.08 
No. reflections 8993 (449) 
Rwork / Rfree 0.1892/0.2442 
No. atoms  

Protein 1295 
Ligand/ion 54 
Water 136 

B-factors  
Protein 18.98 
Ligand/ion 38.29 
Water 26.31 

R.m.s. deviations  
Bond lengths (Å) 0.010 
Bond angles (°) 1.10 

Ramanchandran  
Residues in most favored regions 156 
Residues in additional allowed regions 1 
Residues in generously allowed regions 0 
Residues in disallowed regions 0 

* Dataset was collected from a single crystal. 
 

3.3.  Met20 loop residue intensity analysis 
 

Residue Description 
9 broadened 
10 broadened 
11 broadened; not analyzed due to spectral overlap 
12 not broadened 
13 not broadened 
14 broadened 
15 broadened; split into two resonances 
16 broadened 
17 broadened 
18 broadened 
19 broadened 
20 broadened 
21 proline; no 1HN resonance for analysis 
22 unassigned, likely due to broadening 
23 broadened; not analyzed due to spectral overlap 
24 broadened 
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3.4.  The hydrogen-hydrogen distance pattern between receptor and compound 1 in its 
lowest-energy bound conformation (pose A) calculated from Induced Fit Docking. 

 
Receptor 
residue 
number 

Receptor 
atom 
namea 

Distance to the 
benzopyrimidineb  (Å) 

  H12         H8          H9   
 

Distance to the phenyl ringb 
(Å) 

   H23       H24        H26        H27 

A7c HB  4.4       
M20 HE  4.7 5.6      

 HG 5.0 4.2 3.8      
 HB 4.6 5.9       

D27 HB  4.1       
 HA  5.6       

L28d HD1  5.5 5.5      
 HA     5.7    
 HB  5.5 5.8      
 HD2 5.0 3.3   4.8    
 HG  4.0       

W30 HE         
F31 HB     5.2    

 HD     3.9    
 HE     3.3 5.8 6.0  
 HZ      3.8 5.1  

K32 HG      5.9   
 HE      5.7   

T35 HG2         
M42 HE       4.4 5.8 
T46 HG1        5.7 

 HG2e       2.8 2.2 
W47 HA       4.3  

 HE3       5.2  
S49 HG       4.6  
I50 HG2      5.2 3.8 4.9 

 HD1       4.1  
 HG1       5.8  

L54 HD1        6.9 
 HD2     5.0 5.1 4.5 5.8 
 HG      5.4   

R57 HH1      5.7   
I94 HG2        6.0 

 HD1       3.1 5.0 
 HBe     5.0  5.1  
 HG1       3.9  
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aAssignments were completed only for 1Hα, 1Hβ, and terminal 1HMe resonances.  Additional side-chain 
and aromatic 1H resonances were not assigned.  For M20, 1Hβ assignment was not possible as the 
HBHA(CO)NH experiment read-out is on residue i+1 (P21 lacks backbone 1HN). 
bOnly the distances less than 6 Å are shown, except for L54.HD1 (marked in red) that has NOEs to 
protons on 1. In the case of methylene and methyl groups, only the closest H-H distance to 1 is 
reported.  Atom numbering scheme for 1 taken from crystal structure 3KFY. 
cGray shading indicates the specific residue/H atoms that have medium to strong NOEs to protons on 
the benzopyrimidine moiety of 1, as shown in Table 1. 
dGreen shading indicates the specific residue/H atoms that have NOEs to protons on the mobile phenyl 
ring of 1, as shown in Table 1. 
eUnable to assign the resonance, likely due to broadening from slow timescale exchange. 

 
 
3.5.  15N Relaxation dispersion fitted parameters for E:NADPH:1. 
 

Residue kex (s
-1) pB (%) ∆ω (ppm) χ

2 
6 843.59 ± 59.28 2.6 ± 0.1 -3.431 ± 0.319 17.9 
7a 843.59 ± 59.28 2.6 ± 0.1 -2.605 ± 0.240 6.07 
8 843.59 ± 59.28 2.6 ± 0.1 -3.220 ± 0.219 15.6 
9 843.59 ± 59.28 2.6 ± 0.1 3.287 ± 1.108 18.1 
10 843.59 ± 59.28 2.6 ± 0.1 -0.849 ± 0.139 5.97 
12a 843.59 ± 59.28 2.6 ± 0.1 0.986 ± 0.129 27.3 
14 843.59 ± 59.28 2.6 ± 0.1 2.310 ± 0.289 9.38 
16 843.59 ± 59.28 2.6 ± 0.1 -2.301b ± 0.210 16.6 
18 843.59 ± 59.28 2.6 ± 0.1 0.984 ± 0.213 9.74 
19 843.59 ± 59.28 2.6 ± 0.1 2.410b ± 0.203 22.4 
20 843.59 ± 59.28 2.6 ± 0.1 2.686 ± 0.212 24.0 
24a 843.59 ± 59.28 2.6 ± 0.1 -2.911 ± 0.553 7.90 
27 843.59 ± 59.28 2.6 ± 0.1 -1.574 ± 0.157 12.2 
29 843.59 ± 59.28 2.6 ± 0.8 -1.091 ± 0.167 13.5 
30 843.59 ± 59.28 2.6 ± 0.8 0.913 ± 0.271 4.79 
31 843.59 ± 59.28 2.6 ± 0.8 1.357 ± 0.164 13.3 
33 843.59 ± 59.28 2.6 ± 0.8 -1.187 ± 0.132 10.2 
34 843.59 ± 59.28 2.6 ± 0.8 -1.219 ± 0.165 12.1 
35 843.59 ± 59.28 2.6 ± 0.8 -0.595 ± 0.243 41.6 
36 843.59 ± 59.28 2.6 ± 0.8 -2.514 ± 0.282 13.4 
37c 843.59 ± 59.28 2.6 ± 0.8 -1.890 ± 0.147 9.58 
40c 843.59 ± 59.28 2.6 ± 0.8 3.574 ± 0.336 7.54 
41 843.59 ± 59.28 2.6 ± 0.8 -1.556b ± 0.270 13.0 
45a 843.59 ± 59.28 2.6 ± 0.1 1.346 ± 0.083 23.3 
48 843.59 ± 59.28 2.6 ± 0.1 1.349 ± 0.100 9.64 
50c 843.59 ± 59.28 2.6 ± 0.8 0.720 ± 0.235 14.3 
51 843.59 ± 59.28 2.6 ± 0.8 0.901 ± 0.135 40.3 
52c 843.59 ± 59.28 2.6 ± 0.8 -0.824 ± 0.151 15.5 
54 843.59 ± 59.28 2.6 ± 0.8 -0.960b ± 0.181 18.8 
57c 843.59 ± 59.28 2.6 ± 0.8 1.700 ± 0.081 50.1 
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Residue kex (s
-1) pB (%) ∆ω (ppm) χ

2 
60 843.59 ± 59.28 2.6 ± 0.8 -1.042 ± 0.093 14.7 
94 843.59 ± 59.28 2.6 ± 0.1 2.230b ± 0.311 9.57 
96 843.59 ± 59.28 2.6 ± 0.1 -1.937 ± 0.110 50.2 
97 843.59 ± 59.28 2.6 ± 0.1 3.457 ± 0.247 50.2 
98 843.59 ± 59.28 2.6 ± 0.1 -1.983 ± 0.152 4.60 
101 843.59 ± 59.28 2.6 ± 0.1 -1.314 ± 0.112 12.9 
103 843.59 ± 59.28 2.6 ± 0.1 1.002 ± 0.102 13.0 
104 843.59 ± 59.28 2.6 ± 0.1 0.818 ± 0.094 15.3 
111 843.59 ± 59.28 2.6 ± 0.8 1.194 ± 0.135 10.6 
112 843.59 ± 59.28 2.6 ± 0.8 -1.307b ± 0.197 18.9 
113 843.59 ± 59.28 2.6 ± 0.7 0.957 ± 0.114 5.76 
114 843.59 ± 59.28 2.6 ± 0.7 -0.882b ± 0.220 30.4 
115a 843.59 ± 59.28 2.6 ± 0.1 0.977b ± 0.333 11.5 
116a 843.59 ± 59.28 2.6 ± 0.1 -1.174 ± 0.091 41.7 
118a 843.59 ± 59.28 2.6 ± 0.1 -0.790b ± 0.074 24.5 
120a 843.59 ± 59.28 2.6 ± 0.1 1.968b ± 0.199 15.4 
121a 843.59 ± 59.28 2.6 ± 0.1 3.726 ± 0.253 54.3 
122a 843.59 ± 59.28 2.6 ± 0.1 1.101 ± 0.144 14.2 
123a 843.59 ± 59.28 2.6 ± 0.1 1.449 ± 0.145 13.2 
147 843.59 ± 59.28 2.6 ± 0.1 -0.746 ± 0.114 15.4 
148 843.59 ± 59.28 2.6 ± 0.1 -0.752 ± 0.102 11.1 
149a 843.59 ± 59.28 2.6 ± 0.1 2.402 ± 0.121 8.14 
150a 843.59 ± 59.28 2.6 ± 0.1 -0.853b ± 0.088 20.7 
153 843.59 ± 59.28 2.6 ± 0.7 -0.981b ± 0.344 63.3 
154 843.59 ± 59.28 2.6 ± 0.7 0.959b ± 0.288 17.5 

a Marker of Met20 loop closed-to-occluded conformational switching motion. 
b Residues for which χ2

global/χ
2
local > 2 (local fitted ∆ω reported). 

c Residues sensitive to loss of thiophenyl from preferred binding pose A. 
 

 

Chapter 4 

4.1.  Compound characterization data for 2-6.   

(A)  E:NADPH:2 

1H NMR (500 MHz, DMSO-d6): δ  5.94 (bs, NH2), 5.46 (bs, NH2), 2.46-2.41 (m, 1H), 2.23-

2.13 (m, 2H), 1.83-1.70 (m, 2H), 1.62-1.56 (m, 1H), 1.45-1.39 (m, 1H), 1.16-1.15 (d, 3H); 

13C NMR (125 MHz, DMSO-d6): δ 165.5, 162.7, 160.9, 100.4, 34.2, 30.4, 22.4, 20.1, 19.5; 

MS (m/z): [M] + calcd. for C9H14N4, 178.12, found, 179.0. 
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(B)  E:NADPH:3 

1H NMR (300 MHz, DMSO-d6): δ  5.97 (bs, NH2), 5.51 (bs, NH2), 2.42-2.34 (m, 3H), 1.77-

1.73 (m, 3H), 1.29 (m, 1H), and 1.03-1.01 (d, 3H); 13C NMR (75 MHz, DMSO-d6): δ 162.6, 

161.7, 160.9, 100.4, 31.1, 30.4, 28.7, and 21.8; MS (m/z): [M] + calcd. for C9H14N4, 178.12, 

found, 179.0.   

 

(C)  E:NADPH:4   

1H NMR (500 MHz, DMSO-d6): δ  6.04 (bs, NH2), 5.55 (bs, NH2), 2.42-2.38 (m, 1H), 2.32-

2.27 (m, 1H), 2.18-2.12 (m, 1H), 2.04-1.98 (m, 1H), 1.82-1.72 (m, 2H), 1.28-1.20 (m, 1H), 

0.98-0.96 (d, 3H); 13C NMR (125 MHz, DMSO-d6): δ 162.6, 161.1, 160.6, 100.6, 30.5, 28.2, 

22.5, 21.6, 21.5; MS (m/z): [M] + calcd. for C9H14N4, 178.12, found, 179.2.   

 
 
(D)  E:NADPH:5 

1H NMR (500 MHz, DMSO-d6): δ  5.93 (bs, NH2), 5.45 (bs, NH2), 2.35-2.33 (m, 2H), 2.19-

2.17 (m, 2H), and 1.66-1.65 (m, 4H); 13C NMR (125 MHz, DMSO-d6): δ 162.6, 161.9, 

160.8, 100.9, 31.3, 22.5, 22.3, 21.9; MS (m/z): [M] + calcd. for C8H12N4, 164.11, found, 

165.0.   

 
 
(E)  E:NADPH:6   

1H NMR (500 MHz, DMSO-d6): δ 6.00 (bs, NH2), 5.49 (bs, NH2), 2.72-2.69 (m, 1H), 2.35-

2.33 (m, 2H), 1.78-1.57 (m, 4H), 1.03-1.02 (d, 3H); 13C NMR (125 MHz, DMSO-d6): δ 
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162.3, 161.1, 160.5, 106.1, 31.2, 29.9, 24.9, 19.5, 17.3; MS (m/z): [M] + calcd. for C9H14N4, 

178.12, found, 179.3.   

 

4.2.  Data collection and refinement statistics for E:NADPH:3* 
 

 3R33 
Data Collection  

Space Group P212121 

Cell Dimensions  
a, b, c (Å) 34.1, 45.1, 97.7 
α, β, γ (°) 90.0, 90.0, 90.0 

Resolution 2.09 Å 
Rmerge(%) 0.033 (0.044) 
I/σI 27.9 (17.0) 
Completeness (%) 98.3 (98.9) 
Redundancy 4.8 (3.7) 
  
Refinement  
Resolution Range (Å) 15.32-2.09 
No. reflections 9261 (2470) 
Rwork / Rfree .1812/.2447 
No. atoms  

Protein 1343 
Ligand/ion 81 
Water 177 

B-factors  
Protein 9.61 
Ligand/ion 17.31 
Water 17.33 

R.m.s. deviations  
Bond lengths (Å) 0.009 
Bond angles (°) 1.15 

Ramanchandran  
Residues in most favored regions 156 
Residues in additional allowed regions 1 
Residues in generously allowed 
regions 

0 

Residues in disallowed regions 0 
 * Dataset was collected from a single crystal. 
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4.3.  Data collection and refinement statistics for E:NADPH:4* 
 

 3QYL 
Data Collection  

Space Group P212121 

Cell Dimensions  
a, b, c (Å) 33.9, 44.8, 97.8 
α, β, γ (°) 90.0, 90.0, 90.0 

Resolution 1.79 Å 
Rmerge(%) 0.123 (0.260) 
I/σI 15.5 (2.6) 
Completeness (%) 98.3 (89.3) 
Redundancy 9.2 (2.50) 
  
Refinement  
Resolution Range (Å) 27.02-1.79 
No. reflections 14401 (728) 
Rwork / Rfree .1749/.2088 
No. atoms  

Protein 1314 
Ligand/ion 77 
Water 198 

B-factors  
Protein 17.13 
Ligand/ion 16.36 
Water 26.89 

R.m.s. deviations  
Bond lengths (Å) 0.010 
Bond angles (°) 1.14 

Ramanchandran  
Residues in most favored region 156 
Residues in additional allowed regions 1 
Residues in generously allowed regions 0 
Residues in disallowed regions 0 

 * Dataset was collected from a single crystal. 
 
 
4.4.  Data collection and refinement statistics for E:NADPH:5* 
 

 3QYO 
Data Collection  

Space Group P212121 

Cell Dimensions  
a, b, c (Å) 34.0, 45.1, 97.8 
α, β, γ (°) 90.0, 90.0, 90.0 
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Resolution 2.09 Å 
Rmerge(%) 0.050 (0.056) 
I/σI 26.6 (13.2) 
Completeness (%) 99.6 (99.1) 
Redundancy 5.0 (3.9) 
  
Refinement  
Resolution Range (Å) 15.33-2.09 
No. reflections 9409 (1303) 
Rwork / Rfree .1651/.2359 
No. atoms  

Protein 1315 
Ligand/ion 68 
Water 203 

B-factors  
Protein 9.57 
Ligand/ion 11.21 
Water 18.72 

R.m.s. deviations  
Bond lengths (Å) 0.010 
Bond angles (°) 1.13 

Ramanchandran  
Residues in most favored regions 156 
Residues in additional allowed regions 1 
Residues in generously allowed regions 0 
Residues in disallowed regions 0 

 * Dataset was collected from a single crystal. 
 

4.5.  15N Relaxation dispersion fitted parameters for E:NADPH:2. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
8 1658.5 ± 167.7 4.1 ± 1.0 n.d.* 1.787 ± 0.217 17.5 
9 1658.5 ± 167.7 4.1 ± 1.0 n.d. 2.406 ± 0.384 12.8 
10 1658.5 ± 167.7 4.1 ± 1.0 n.d. 0.782 ± 0.118 15.6 
11 1658.5 ± 167.7 4.1 ± 1.0 n.d. 2.734 ± 0.488 8.80 
14 1658.5 ± 167.7 4.1 ± 1.0 n.d. 1.353 ± 0.167 6.93 
22a 1658.5 ± 167.7 4.1 ± 1.0 n.d. 1.983 ± 0.334 6.50 
36 1658.5 ± 167.7 4.1 ± 1.0 n.d. 0.554 ± 0.180 23.3 
40 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.657 ± 0.558 32.2 
44 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.761 ± 0.428 51.0 
48 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.849 ± 0.412 39.5 
50 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.932 ± 0.586 26.9 
54 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.735 ± 0.579 32.6 
57 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.815 ± 0.418 60.6 
98 4782.4 ± 845.4 4.7 ± 1.7 n.d. 1.261 ± 0.284 21.5 
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Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
111 1658.5 ± 167.7 4.1 ± 1.0 n.d. 0.835 ± 0.106 9.17 
113 1658.5 ± 167.7 4.1 ± 1.0 n.d. 0.782 ± 0.089 13.3 

115a,b 2765.4 ± 1125.1 2.0 ± 0.9 n.d. 1.519 ± 0.445 5.06 
119a,b 4137.4 ± 951.1 14.6 ± 4.9 n.d. 1.106 ± 0.223 10.2 

*n.d.  – Sign was not determined for these residues. 
aMarker of Met20 loop switching, based on closed-to-occluded 15N CSP (97). 
bLocal fit reported. 
 

4.6.  15N Relaxation dispersion fitted parameters for E:NADPH:3. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
8 1041.4 ± 292.3 2 ± 0.5 + 1.910 ± 0.500 7.94 
9 1041.4 ± 292.3 2 ± 0.5 - 2.787 ± 0.899 14.2 
11 1041.4 ± 292.3 2 ± 0.5 - 4.529 ± 2.006 12.6 

22a,b 2905.3 ± 965.4 3.7 ± 2.4 - 1.028 ± 0.388 18.8 
31 1041.4 ± 292.3 2 ± 0.5 + 1.305 ± 0.434 11.9 
111 1041.4 ± 292.3 2 ± 0.5 + 1.276 ± 0.345 7.34 
112 1041.4 ± 292.3 2 ± 0.5 - 1.339 ± 0.307 10.1 
119b 1041.4 ± 292.3 2 ± 0.5 - 0.686 ± 0.416 4.93 

aMarker of Met20 loop switching, based on closed-to-occluded 15N CSP (97). 
bLocal fit reported. 
 

4.7.  15N Relaxation dispersion fitted parameters for E:NADPH:4. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
8 1841.2 ± 189.3 3.7 ± 2.2 n.d.* 1.631 ± .0393 23.7 
9 1841.2 ± 189.3 3.7 ± 2.2 n.d. 2.353 ± 0.633 14.9 
11 1841.2 ± 189.3 3.7 ± 2.2 n.d. 2.794 ± 0.782 16.0 
14 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.114 ± 0.263 15.6 
22a 1841.2 ± 189.3 3.7 ± 2.2 n.d. 2.192 ± 0.582 10.8 
29 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.112 ± 0.272 12.4 
31 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.000 ± 0.249 8.91 
37 4885.3 ± 848.2 4.7 ± 1.4 n.d. 1.208 ± 0.240 12.1 
50 4885.3 ± 848.2 4.7 ± 1.4 n.d. 1.671 ± 0.296 20.6 
54 4885.3 ± 848.2 4.7 ± 1.4 n.d. 1.118 ± 0.213 57.8 
58 4885.3 ± 848.2 4.7 ± 1.4 n.d. 1.927 ± 0.265 48.3 
111 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.073 ± 0.254 26.3 
112 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.165 ± 0.266 21.4 
113 1841.2 ± 189.3 3.7 ± 2.2 n.d. 1.100 ± 0.277 21.0 

*n.d.  – Sign was not determined for these residues.  
aMarker of Met20 loop switching, based on closed-to-occluded 15N CSP (97). 
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4.8.  15N Relaxation dispersion fitted parameters for E:NADPH:5. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
8 1497.4 ± 384.9 2.1 ± 0.9 - 1.697 ± 0.350 9.48 
9 1497.4 ± 384.9 2.1 ± 0.9 - 3.208 ± 1.254 5.10 
10 1497.4 ± 384.9 2.1 ± 0.9 - 1.031 ± 0.251 11.7 
11 1497.4 ± 384.9 2.1 ± 0.9 - 3.738 ± 1.467 6.86 
22a 1497.4 ± 384.9 2.1 ± 0.9 - 2.303 ± 0.650 8.54 
29 1497.4 ± 384.9 2.1 ± 0.9 - 1.645 ± 0.606 13.2 
31 1497.4 ± 384.9 2.1 ± 0.9 + 1.180 ± 0.351 8.81 
36 1497.4 ± 384.9 2.1 ± 0.9 - 0.868 ± 0.446 6.39 
40 1497.4 ± 384.9 2.1 ± 0.9 - 1.625 ± 0.421 17.6 
48 1497.4 ± 384.9 2.1 ± 0.9 n.d.* 1.221 ± 0.282 11.9 
50 1497.4 ± 384.9 2.1 ± 0.9 + 1.532 ± 0.507 21.8 
54 1497.4 ± 384.9 2.1 ± 0.9 - 1.277 ± 0.618 17.3 
58 1497.4 ± 384.9 2.1 ± 0.9 - 1.110 ± 0.331 21.3 
96 1497.4 ± 384.9 2.1 ± 0.9 + 1.426 ± 0.350 32.4 
111 1497.4 ± 384.9 2.1 ± 0.9 + 1.612 ± 0.402 12.1 
112 1497.4 ± 384.9 2.1 ± 0.9 - 1.444 ± 0.292 11.9 
113 1497.4 ± 384.9 2.1 ± 0.9 n.d. 1.205 ± 0.355 7.98 

*n.d.  – Sign was not determined for these residues, likely due to spectral overlap. 
aMarker of Met20 loop switching, based on closed-to-occluded 15N CSP (97). 
 

4.9.  15N Relaxation dispersion fitted parameters for E:NADPH:6. 

Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm) χ

2 
7 1514.9 ± 206.0 2.3 ± 1.1 - 1.885 ± 0.382 42.8 
8 1514.9 ± 206.0 2.3 ± 1.1 - 2.356 ± 0.514 14.5 
10 1514.9 ± 206.0 2.3 ± 1.1 - 1.017 ± 0.443 16.8 
11 1514.9 ± 206.0 2.3 ± 1.1 - 4.676 ± 1.724 10.2 
12 1514.9 ± 206.0 2.3 ± 1.1 + 1.303 ± 0.274 24.8 
19 1514.9 ± 206.0 2.3 ± 1.1 - 0.814 ± 0.406 23.0 
30 1514.9 ± 206.0 2.3 ± 1.1 + 0.961 ± 0.562 12.5 
36 1514.9 ± 206.0 2.3 ± 1.1 + 1.516 ± 0.344 14.2 
37 1514.9 ± 206.0 2.3 ± 1.1 + 1.218 ± 0.340 15.0 
40 1514.9 ± 206.0 2.3 ± 1.1 - 1.922 ± 0.428 18.7 
45 1514.9 ± 206.0 2.3 ± 1.1 - 1.480 ± 0.320 29.0 
49 1514.9 ± 206.0 2.3 ± 1.1 + 0.927 ± 0.236 22.2 
54 1514.9 ± 206.0 2.3 ± 1.1 - 1.150 ± 0.313 26.2 
57 1514.9 ± 206.0 2.3 ± 1.1 - 1.447 ± 0.308 18.0 
59 1514.9 ± 206.0 2.3 ± 1.1 + 1.070 ± 0.360 11.9 
98 1514.9 ± 206.0 2.3 ± 1.1 - 1.776 ± 0.453 16.1 
104 1514.9 ± 206.0 2.3 ± 1.1 n.d.* 0.559 ± 0.517 8.29 
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Residue kex (s
-1) pB (%) ± ∆ω |∆ω| (ppm)  χ2 

111 1514.9 ± 206.0 2.3 ± 1.1 + 1.574 ± 0.347 26.1 
112 1514.9 ± 206.0 2.3 ± 1.1 + 1.923 ± 0.408 28.0 
115a 1514.9 ± 206.0 2.3 ± 1.1 + 1.474 ± 0.361 12.4 
116a 1514.9 ± 206.0 2.3 ± 1.1 + 1.198 ± 0.256 24.6 
118a 1514.9 ± 206.0 2.3 ± 1.1 - 1.645 ± 0.329 23.8 
120a 1514.9 ± 206.0 2.3 ± 1.1 + 2.383 ± 0.536 19.4 
142 1514.9 ± 206.0 2.3 ± 1.1 + 1.710 ± 0.374 22.2 
149a 1514.9 ± 206.0 2.3 ± 1.1 - 2.218 ± 0.568 11.5 

*n.d.  – Sign was not determined for this residue, likely due to spectra overlap. 
aMarker of Met20 loop switching, based on closed-to-occluded 15N CSP (97). 
 

4.10.  Relaxation dispersion global fitted parameters of the ligand-independent C-
terminal residues for all complexes. 
 

Compound kex (s
-1) pA (%) kconf,forward (s

-1) 
2 585.0 ± 132.2 97.5 ± 0.2 14.6 ± 3.3 
3 509.8 ± 51.3 97.4 ± 0.2 13.3 ± 1.4 
4 647.4 ± 58.4 97.5 ± 0.1 16.2 ± 1.5 
5 542.9 ± 113.8 97.3 ± 0.3 14.7 ± 3.1 
6 389.6 ± 47.3 96.6 ± 0.3 13.2 ± 1.7 

 

4.11.  Visually broadened residues in each THQ ternary complex. 

(A)  E:NADPH:2 
 

broadened severely broadened 
4, 6, 29, 30, 32, 35, 37, 46, 
59, 64, 68, 94, 122, 123 

7, 15, 17, 18, 23, 70, 97, 124 

 
 
(B)  E:NADPH:3 
 

broadened severely broadened 
10, 15, 17, 18, 27, 29, 30, 34, 
35, 36, 40, 41, 46, 50, 58, 68, 
92, 94, 95, 108, 122, 123,  

6, 7, 14, 23, 37, 59, 70, 87, 
124 

 
 
(C)  E:NADPH:4 
 

broadened severely broadened 
6, 7, 10, 15, 18, 27, 32, 33,  23, 30, 70, 124 
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34, 35, 36, 46, 47, 59, 68, 69, 
94, 97, 99, 123 

 
 
(D)  E:NADPH:5 
 

broadened severely broadened 
6, 7, 14, 15, 18, 30, 35, 46,  
47, 97, 103, 109, 123 

59, 68, 69, 70, 124 

 
 
(E)  E:NADPH:6 
 

broadened severely broadened 
34, 37, 103, 113 6, 9, 15, 18, 23, 31, 32, 46, 

68, 70, 87, 94, 95, 97, 121, 
122, 124, 148 

 

 

Chapter 5 

5.1.  15N Relaxation model-free analysis of E:NADPH:1. 

Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

2 0.8912 0.013 7.4 13     2.69 
3 0.8633 0.0108 11.0 8.9     7.81 
4 0.9009 0.013 4.0 7.9     1.58 
5 0.8896 0.0148 2.2 6.0     4.43 
6 0.8474 0.0449     2.67 1.06 1.07 
7 0.8287 0.0305 3.2 8.2     1.25 
8 0.829 0.0212 7.6 8.4   2.87 0.525 2.3 
9 0.8258 0.0371     2.11 0.972 2.91 
10 0.8451 0.0208     0.872 0.480 3.05 
12 0.8771 0.0157 15.2 14.9     6.89 
13 0.8954 0.0117 8.4 10.8     6.97 
14 0.9539 0.0356 87.6 317     1.49 
15 0.8871 0.0269 25.0 19.4   1.32 0.602 3.08 
16 0.8918 0.0195     1.20 0.440 1.75 
17 0.8347 0.0271     3.54 0.728 6.7 
18 0.9363 0.0261 21.5 37.3     6.59 
19 0.8474 0.0117 13.8 6.9   0.465 0.266 6.71 
20 0.8803 0.0176 59.8 21.8     7.69 
26 0.9035 0.0165 7.4 12.3     3.58 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

27 0.851 0.0274     1.11 0.610 4.13 
28 0.8867 0.2519 155 45.9     1.13 
29 0.8674 0.0251 44.9 19.6   1.27 0.576 0.52 
30 0.8901 0.019 0.2 1.4     8.42 
31 0.916 0.0233     1.11 0.521 2.51 
32 0.9019 0.0171     0.787 0.373 2.7 
33 0.9054 0.0155 14.9 18.8     2.78 
34 0.8995 0.0905 7.7E4 3.9E5     3.29 
35 0.8453 0.0182     1.01 0.388 0.82 
36 0.8802 0.0333     3.54 0.831 2.8 
37 0.9079 0.0287 137 281     1.52 
40 0.9286 0.0285 9.9 29.0     3.39 
41 0.8062 0.026     1.36 0.587 2.32 
42 0.9395 0.0113 8.0 1.4     3.44 
43 0.8941 0.0177 0.6 2.8     7.02 
44 0.8433 0.0134     1.56 0.301 6.38 
47 0.8901 0.0198     1.16 0.425 1.19 
48 0.8846 0.0195     0.798 0.421 2.84 
49 0.836 0.0117     0.698 0.255 3 
50 0.8659 0.0184 1.1 4.4     6.04 
51 0.8596 0.0147 14.1 12.7     5.59 
52 0.8713 0.0134 14.7 13.2     2.17 
54 0.8897 0.0179 3.8 8.7     3.54 
57 0.8972 0.0112 6.8 9.7     9.91 
58 0.8848 0.0251 19.5 26.3     3.54 
60 0.8479 0.0132 5.0 7.2     3.39 
61 0.8724 0.0112 2.0 4.4     4.74 
62 0.8739 0.0115 4.1 6.8     4.11 
63 0.86 0.0079 7.8 7.2     4.65 
64 0.851 0.0245     0.983 0.539 11.8 
65 0.8734 0.0086 16.2 8.7     6.61 
67 0.8061 0.0141 1870 175 0.6033 0.0116   15 
68 0.7571 0.0977 938 196 0.6933 0.0551   2.38 
69 0.7132 0.0221 753 79.6 0.6731 0.03   3.25 
70 0.7697 0.0418 5.6 8.3     0.39 
71 0.8694 0.0095 17.0 8.3     3.14 
72 0.8754 0.007 8.4 6.9     29.4 
73 0.8595 0.0143 4.1 6.8     3.3 
74 0.8149 0.0076 2.0 3.1     3.21 
75 0.8648 0.0117 3.3 5.0   0.502 0.272 3.96 
76 0.8358 0.0099 13.4 9.0     4.03 
77 0.8705 0.006 14.6 7.3     28.7 
78 0.9177 0.011 22.4 16.2     1.74 
79 0.8939 0.0072 5.7 6.9     13.3 
80 0.9035 0.0084 36.7 14.0     4.81 



156 

Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

81 0.8984 0.0056 14.2 8.4     7.25 
82 0.876 0.0096 20.2 12.6     5.02 
83 0.9218 0.0067 4.5 7.5     4.94 
84 0.9011 0.0059 8.4 8.1     9.98 
86 0.8556 0.0077 3.2 4.7     3.55 
88 0.6588 0.0058 1140 98.8 0.8596 0.0077   4.52 
90 0.8786 0.0089 6.4 8.3     1.99 
91 0.8489 0.0135 7.0 8.9     8.77 
92 0.8852 0.013 13.1 13.7     7.69 
93 0.8398 0.0117 1.9 3.9     2.17 
94 0.9147 0.0228 4.00E-3 4.9E-2     10.8 
95 0.9017 0.0306 44.9 30.9   2.44 0.746 1.21 
96 0.8834 0.0312     2.87 0.717 9.08 
97 0.8752 0.0417     2.88 0.942 15.3 
98 0.9118 0.0185 52.7 34.6     1.97 
99 0.8731 0.0143 3.1 5.7   0.683 0.318 4.5 
101 0.8894 0.0142 32.0 15.4   0.331 0.289 2.9 
103 0.8593 0.0099 3.5 5.9     4.41 
106 0.8525 0.0516 2.1E5 2.3E5     1.89 
107 0.8627 0.0063 22.8 8.1     8.65 
108 0.8453 0.0151 5.3 7.9     1.18 
111 0.8143 0.0259     1.38 0.587 2.4 
112 0.8564 0.0197     1.16 0.454 1.28 
113 0.8199 0.0194 4.1 6.6     2.12 
114 0.8419 0.0132 1.0 2.9     6.11 
115 0.8733 0.0182 5.5 9.5     1.12 
116 0.9001 0.0158 11.0 15.6     2.96 
117 0.7993 0.0082 2.5 3.7     2.07 
120 0.816 0.0121 2.2E4 8.4E4 0.0283 7.5431   0.26 
121 0.7459 0.0179 38.5 7.1   1.63 0.388 3.83 
122 0.8891 0.0228 31.5 120     3.49 
123 0.8517 0.0166 5.0 7.7     2.82 
124 0.8719 0.115 49.2 219     4.47 
125 0.884 0.0138 4.0 6.9     3.04 
127 0.7939 0.0069 5.6 4.4     4.23 
128 0.7517 0.0108 21.0 4.3   1.63 0.233 19.9 
129 0.8553 0.0192 2.3E5 7.7E5 0.644 0.5848   0.95 
131 0.8803 0.0639 676 279 0.9141 0.0474   5.79 
132 0.8382 0.008 21.0 7.2     5.81 
134 0.7952 0.013 18.2 6.2   0.665 0.307 3.23 
136 0.8723 0.0132 2.6 5.5     1.46 
137 0.85 0.0068 18.0 7.4     16.6 
138 0.8927 0.0312 9.1E4 1.9E5     1.27 
139 0.8185 0.0098 11.5 6.7     6 
140 0.8567 0.0128 9.7E5 4.6E6     1.9 



157 

Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

141 0.8253 0.0155     0.576 0.319 4.8 
142 0.849 0.0094 5230 2060 0.9076 0.1532   14.7 
143 0.8472 0.0129 1100 398 0.9497 0.0115   0.45 
144 0.8674 0.0091 4.4 5.9     4.85 
146 0.8447 0.0365 2.3E5 4.9E5     1.56 
147 0.8371 0.0109 2.5 4.3     1.9 
149 0.8523 0.0167     2.51 0.414 5.28 
150 0.8415 0.009 20.2 8.5     1.48 
151 0.9148 0.0089 7.6 10.1     0.76 
152 0.8501 0.0114 2.6 4.7     1.11 
153 0.8585 0.0125 1.7 4.0     1.89 
154 0.8583 0.0129 0.5 2.2     6.82 
155 0.8713 0.009 0.6 2.2     4.14 
156 0.8573 0.0128 8.1 8.4     2.59 
158 0.8701 0.0114 6.6 8.6     3.31 
159 0.8416 0.0106 1740 349 0.8791 0.0109   3.37 

 

5.2.  15N Relaxation model-free analysis of E:NADPH:3. 

Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

1          
2 0.893 0.0127 15.9 13.3     3.6 
3 0.8719 0.009 3.9 5.5     9.33 
4 0.8866 0.0095 3.7 6.2     5.56 
5 0.9022 0.0114 11.5 11.5     1.37 
6 0.8771 0.025     1.43 0.65 1.1 
7 0.8168 0.0155 5.0 7.0     0.86 
8 0.8507 0.0131     1.49 0.33 1.72 
9 0.8469 0.0179     2.73 0.48 1.89 
10 0.8419 0.012 16.3 6.9   1.38 0.29 5.11 
11 0.8888 0.0234     2.21 0.62 3.68 
12 0.841 0.0123 21.5 7.1   0.67 0.29 2.5 
13 0.8753 0.0078     0.57 0.20 2.1 
14 0.9302 0.0207 16.7 53.8     3.55 
15 0.9077 0.0114 14.7 12.6     3.92 
16 0.8893 0.0098 18.0 10.4     0.23 
17 0.8835 0.0184     2.14 0.48 2.84 
18 0.8709 0.0203 35.4 13.6   1.23 0.51 0.84 
19 0.8575 0.0051 5.0 3.9     14.1 
20 0.8334 0.008 22.0 6.6     3.43 
21          
22          
23          
24          
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

25          
26 0.9349 0.0085 3.3 6.8     24.1 
27 0.8948 0.0118 27.0 14.0     3.2 
28          
29 0.9234 0.0105 4.2 8.6     4.48 
30 0.8896 0.0111 2.7 5.4     1.34 
31 0.9166 0.0158     0.88 0.40 4.08 
32 0.905 0.0134     0.62 0.34 4.13 
33 0.8848 0.007 10.8 8.3     3.31 
34 0.8605 0.0092 4.7 6.1     1.47 
35 0.8849 0.0093 7.8 8.4     3.05 
36 0.8673 0.0116 20.4 10.3   1.10 0.31 2.17 
37 0.8702 0.0137 37.0 16.7     4.48 
38          
39          
40 0.8899 0.01 1.8 4.3     7 
41 0.8464 0.0095 3.7 5.1     0.5 
42 0.9039 0.0127 17.5 10.8   0.68 0.32 0.79 
43 0.8683 0.0104 13.5 8.3     5.36 
44 0.8686 0.0115     1.18 0.28 13.5 
45          
46          
47 0.8932 0.0128     0.51 0.29 2.61 
48 0.902 0.0127     0.92 0.30 1.71 
49 0.8512 0.0074 0.6 1.8     3.79 
50 0.817 0.0086 12.5 5.0   0.43 0.21 4.69 
51 0.839 0.0079 23.5 7.1     1.11 
52 0.8093 0.0068 24.3 3.7   0.27 0.16 1.53 
53          
54 0.8471 0.0145     1.20 0.38 3.4 
55          
56          
57 0.8898 0.0068 4.4 5.5     3.09 
58 0.8394 0.012 22.5 9.9     2.88 
59 0.817 0.0267 2.8 5.7     1.1 
60 0.8553 0.0086 3.0 4.5     1.52 
61 0.88 0.008 7.6 6.8     3.38 
62 0.8714 0.0089 12.0 8.4     4.46 
63 0.8633 0.0063 8.6 6.0     4.5 
64 0.8744 0.0137 1.8 4.1     2.97 
65 0.894 0.0195 8120.0 34700.0 0.9519 0.0547   6.01 
66          
67 0.8131 0.0091 2040.0 134.0 0.6781 0.0093   9.59 
68 0.8027 0.1096 1030.0 169.0 0.6757 0.0536   3.37 
69 0.7223 0.0165 909.0 85.9 0.7519 0.0218   2.08 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

70 0.7669 0.0672 21.3 22.1     0.86 
71 0.8712 0.0083 2.1 3.5     8.74 
72 0.8659 0.0054 9.7 5.1     16.8 
73 0.8555 0.0088 0.0 0.2     7.47 
74 0.8351 0.0067 6.9 4.7     3.01 
75 0.8547 0.0095     0.82 0.24 1.19 
76 0.8208 0.0071 24.8 5.9     2.24 
77 0.8825 0.005 6.6 5.2     4.93 
78 0.9183 0.0095 3.8 7.0     6.03 
79 0.8979 0.0057 2.8 4.3     8.35 
80 0.8998 0.0067 10.5 8.2     8.2 
81 0.9019 0.005 8.3 6.8     6.26 
82 0.865 0.0075 9.5 7.7     1.36 
83 0.9031 0.0054 23.5 9.6     17.3 
84 0.8904 0.0046 1.7 3.0     5.8 
85          
86 0.8481 0.0058 8.3 4.8     10.2 
87          
88 0.6416 0.004 1320.0 76.7 0.848 0.0055   9.77 
89          
90 0.8556 0.0062 2.6 3.8     2.12 
91 0.8243 0.0103 15.6 7.7     5.55 
92 0.866 0.0113     0.70 0.29 2.43 
93 0.8415 0.008 2.0 3.2     1.11 
94 0.8812 0.016 0.7 2.9     2.59 
95 0.9 0.0114 26.8 13.3     4.24 
96 0.7998 0.0101 1710.0 281.0 0.8799 0.0112   2.49 
97 0.9064 0.0131 3.3 6.7     5.16 
98 0.8817 0.0106     0.68 0.26 2.08 
99 0.8766 0.0098     0.75 0.23 7.72 
100          
101 0.8887 0.0059 0.5 1.8     6.93 
102 0.8384 0.0101 11.2 5.7   0.65 0.24 2.42 
103 0.8602 0.0072 6.4 6.2     6.69 
104 0.9005 0.0075 10.4 9.6     2.62 
105          
106 0.8546 0.024 17400.0 76500.0 0.1648 7.9739   1.2 
107 0.8597 0.0051 6.3 5.3     17.8 
108 0.8765 0.0121 5.0 7.5     3.64 
109 0.8768 0.0094     0.40 0.24 4.49 
110          
111 0.8578 0.0129 1.5 3.7     4.23 
112 0.8591 0.0152     0.69 0.37 2.88 
113          
114 0.8517 0.0098 8.6 6.5     1.28 
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Residue S2
s S2

s err τe (ps) τe err S2
f S2

f err Rex Rex err χ
2 

115 0.8518 0.011 14.3 8.6     3.2 
116 0.8925 0.0089 5.4 7.3     1.65 
117 0.7841 0.0074 9.1 3.5   0.61 0.17 7.27 
118 0.8073 0.0077 12.9 5.1     1.72 
119 0.7373 0.0128 17.4 4.7   1.57 0.30 5.5 
120 0.8183 0.0446 752.0 264.0 0.9194 0.0367   9.72 
121 0.8231 0.0402 429.0 166.0 0.9229 0.0379   19.9 
122 0.8658 0.013 9.3 9.2     2.13 
123 0.8364 0.0077 0.1 0.8     5.4 
124 0.8541 0.0478 6.0 25.3     2.04 
125 0.838 0.0144     0.73 0.35 2.72 
126          
127 0.8103 0.0325 1220.0 649.0 0.9571 0.0283   2.17 
128          
129 0.8795 0.0184 28.4 16.2     2.76 
130          
131 0.8307 0.0095 32.4 7.5     5.65 
132 0.8768 0.0248 862.0 601.0 0.9551 0.0178   3.97 
133 0.885 0.0105 28.2 7.9   0.78 0.26 4.67 
134 0.8348 0.008 21.8 6.5     0.97 
135          
136          
137 0.8473 0.0201 3610.0 11200.0 0.9577 0.0364   2.07 
138 0.8875 0.0043 8.0 4.4     4.95 
139 0.8182 0.0081 2.2 3.1     1.71 
140 0.8625 0.0104 2510.0 1260.0 0.9351 0.0116   4.94 
141 0.8573 0.0081 0.2 1.2     11.1 
142 0.8027 0.0081 19700.0 68300.0 0.2803 5.6227   8.83 
143 0.8556 0.0311 1140.0 811.0 0.9528 0.0274   3.6 
144 0.8565 0.0075 7.9 5.9     2.57 
145          
146 0.8282 0.0106 2160.0 1030.0 0.947 0.0091   1.63 
147 0.8092 0.0069 11.9 4.3     4.98 
148 0.8598 0.0291 953.0 483.0 0.9487 0.023   2.15 
149 0.8334 0.0084     2.37 0.21 6.54 
150 0.8404 0.0063 29.5 5.4     2 
151 0.9011 0.0065 0.2 1.3     3.16 
152 0.8627 0.0088 4.9 5.6     2.35 
153 0.8674 0.0097 7.0 6.7     6.47 
154 0.8479 0.01 9.3 6.3     1.23 
155 0.8567 0.0102 9.5 7.4     1.18 
156 0.869 0.0109 6.3 7.1     7.97 
157          
158 0.8625 0.0098 35.0 10.0     4.54 
159 0.8577 0.0083 1270.0 138.0 0.8815 0.009   6.24 
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5.3.  15N Relaxation model-free analysis of E:NADPH:5. 

Residue S2
f S2

f err τe (ps) τe err S2
s S2

s err Rex Rex err χ
2 

1          
2 0.8673 0.0271 13.2 19.5     1.07 
3 0.8598 0.0224 16.0 18.4     0.81 
4 0.8886 0.0229 22.3 26.0     0.38 
5 0.8813 0.0199 2.5 6.9     0.90 
6 0.9166 0.0365 46.9 189.0     0.31 
7 0.8335 0.0382 64.0 37.2     0.76 
8 0.8441 0.0283     1.03 0.55 0.44 
9 0.8549 0.0411     1.98 0.90 2.48 
10 0.8559 0.0192 9.9 12.4     2.31 
11 0.8636 0.052     2.39 1.12 0.04 
12 0.8079 0.0184 64.4 14.2     0.01 
13 0.8733 0.0144 35.2 16.0     0.70 
14 0.9295 0.0435 117.0 245.0     0.77 
15 0.9061 0.0251 5.6 13.9     1.15 
16 0.8623 0.0168 1.8 4.7     1.23 
17 0.877 0.0398     2.34 0.87 1.14 
18 0.8805 0.0309 0.3 1.9     3.32 
19 0.8412 0.0112 1.1 2.8     1.01 
20 0.8405 0.0166 1.7 4.3     1.48 
21          
22 0.6979 0.0243     2.53 0.54 3.14 
23 0.7187 0.0899 201.0 471.0     0.00 
24          
25          
26 0.8904 0.0172 7.3 11.7     1.48 
27          
28          
29 0.8978 0.019 43.4 30.9     0.91 
30 0.858 0.0247 5.3 10.8     0.29 
31 0.8996 0.0239 1.0 5.0     2.20 
32 0.8729 0.0241     0.95 0.51 0.14 
33 0.8784 0.0147 7.9 12.1     2.95 
34 0.8441 0.0194 35.7 18.0     0.23 
35 0.853 0.0225 29.7 20.7     0.19 
36 0.887 0.0221     0.53 0.50 4.45 
37 0.8548 0.032 71.5 43.4     0.94 
38 0.7858 0.0177     0.75 0.39 0.15 
39          
40 0.8947 0.0257 0.0 0.0     5.10 
41 0.8463 0.0231 16.4 16.8     0.11 
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Residue S2
f S2

f err τe (ps) τe err S2
s S2

s err Rex Rex err χ
2 

42 0.9096 0.0212 15.8 23.0     0.02 
43 0.9084 0.0232 27.3 92.8     0.57 
44 0.8323 0.0266     1.17 0.54 1.57 
45 0.8843 0.0227     0.94 0.45 9.27 
46 0.7718 0.029     1.31 0.58 0.45 
47 0.8956 0.018 7.2 12.7     2.20 
48 0.8419 0.023     1.09 0.46 8.57 
49 0.7991 0.0176     0.70 0.35 0.23 
50 0.898 0.0268     0.90 0.56 0.31 
51 0.8195 0.0153 25.6 12.8     0.60 
52 0.8056 0.0114 24.2 9.5     0.02 
53          
54 0.7925 0.0367     2.98 0.87 0.05 
55          
56          
57 0.8563 0.0173 40.3 20.1     0.00 
58 0.8685 0.0277 57.8 36.2     0.62 
59 0.8279 0.0486 100.0 151.0     0.13 
60 0.8285 0.0211 24.5 16.6     0.01 
61 0.8695 0.0195 4.5 9.1     0.70 
62 0.8698 0.0222 47.2 23.5     0.35 
63 0.8408 0.0155 13.4 12.1     0.92 
64 0.8456 0.029 6.2 10.7     0.08 
65 0.8591 0.0176 42.1 15.5     0.14 
66          
67 0.6814 0.0926 990.0 622.0     91.30 
68 0.6878 0.0822 361.0 638.0     5.88 
69 0.6521 0.0254 72.3 10.4     5.97 
70 0.7214 0.1233 53.2 349.0     0.37 
71 0.8802 0.0195 17.7 18.3     0.15 
72 0.8507 0.0127 11.8 10.3     3.19 
73 0.8341 0.0206 21.6 15.8     0.16 
74 0.8148 0.0155 3.9 6.3     1.90 
75 0.8638 0.0163 0.3 1.4     3.16 
76 0.8425 0.0175 18.9 15.8     0.86 
77 0.8892 0.011 2.4 5.4     3.23 
78 0.8813 0.021 4.7 10.7     4.21 
79 0.8738 0.0126 5.2 8.2     4.41 
80 0.8689 0.0154 9.7 12.1     0.01 
81          
82 0.8506 0.0174 3.3 7.5     0.74 
83 0.8948 0.014 33.0 22.7     0.02 
84 0.8722 0.0106 0.3 1.3     2.77 
85 0.8426 0.0147 1.7 4.3     0.97 
86 0.8356 0.0135 6.1 8.1     1.40 
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Residue S2
f S2

f err τe (ps) τe err S2
s S2

s err Rex Rex err χ
2 

87          
88 0.6035 0.0078 28.8 3.5     34.20 
89 
90          
91 0.837 0.0254 4.3 9.4     0.57 
92 0.8713 0.0209 6.3 12.2     0.55 
93          
94 0.8945 0.0284 0.6 3.7     2.81 
95 0.8831 0.0221     0.70 0.44 0.11 
96 0.8311 0.0258     36.17 1.21 0.02 
97 0.9557 0.0406 49.0 167.0     1.24 
98 0.8729 0.017 10.9 13.9     0.36 
99 0.8945 0.0166 6.3 11.1     0.56 
100 0.8609 0.0169     0.58 0.33 0.69 
101 0.8783 0.0144 35.0 19.8     0.63 
102 0.8408 0.016 8.4 10.3     0.84 
103 0.8534 0.0187 18.8 16.7     1.54 
104 0.8735 0.0153 5.2 9.5     0.35 
105          
106 0.8228 0.0162 33.2 13.8     0.06 
107 0.8596 0.0131 25.4 15.9     3.77 
108 0.8339 0.0292 49.4 29.2     0.00 
109 0.8761 0.0167 29.2 19.5     0.40 
110          
111 0.862 0.0302 3.9 10.6     1.16 
112 0.8322 0.0302     1.08 0.62 0.22 
113 0.8402 0.0319 25.4 17.2     0.00 
114 0.8588 0.0223 0.0 0.0     11.90 
115 0.8413 0.0252 11.5 14.7     1.02 
116 0.8621 0.0192 2.4 5.9     2.93 
117 0.7892 0.0146     0.38 0.28 4.46 
118 0.795 0.0163 21.3 11.0     0.21 
119 0.7189 0.0209     1.35 0.44 0.47 
120 0.7623 0.01 34.1 6.6     2.61 
121 0.7384 0.0096 42.6 5.9     0.11 
122 0.8578 0.0275 2.2 6.7     1.18 
123 0.8274 0.0183 0.2 0.9     3.44 
124 1.0299 1.6484 6900.0 81500.0     1.62 
125          
126          
127 0.7719 0.0116 20.8 7.1     1.34 
128          
129 0.8009 0.037 25.9 20.6     0.11 
130          
131 0.8033 0.0214 46.5 15.6     0.45 
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Residue S2
f S2

f err τe (ps) τe err S2
s S2

s err Rex Rex err χ
2 

132 0.8409 0.0156 56.5 14.6     0.13 
133 0.8322 0.0262     1.31 0.55 1.19 
134 0.8356 0.0176 1.6 4.2     1.30 
135          
136          
137 0.822 0.0123 18.9 9.8     6.15 
138          
139 0.8019 0.0188 2.6 5.0     1.35 
140 0.8196 0.0213 3.5 6.4     2.12 
141          
142 0.7897 0.015 27.1 8.1     6.99 
143 0.8292 0.0125 3.9 5.8     3.47 
144 0.8253 0.0148 2.5 4.9     0.44 
145          
146 0.8102 0.0162 9.8 8.6     0.35 
147 0.7944 0.0158 14.8 9.2     0.72 
148 0.8441 0.0206 9.8 11.7     1.00 
149 0.8331 0.0176     1.14 0.36 11.30 
150 0.8203 0.015 21.6 12.4     2.46 
151 0.9022 0.0155 7.2 11.3     1.39 
152 0.852 0.0211 10.2 12.8     0.00 
153 0.8528 0.0222 2.1 5.5     2.49 
154 0.8442 0.0226 3.3 7.2     0.78 
155 0.8606 0.0251 11.0 15.1     0.12 
156 0.834 0.0235 34.2 16.7     0.06 
157 0.8245 0.0191 41.4 14.1     0.05 
158 0.8189 0.0276     1.37 0.60 4.50 
159 0.8123 0.0156 22.4 12.4     15.60 

 

5.4.  2H Relaxation model-free analysis of E:NADPH:1. 

Methyl S2
axis S2

axis err τe τe err χ
2 

1CE 0.104 0.002 16.20 0.16 44.50 
2CD1 0.447 0.014 17.90 1.17 0.77 
2CG2      
4CD1      
4CD2 0.521 0.081 172.00 23.80 0.52 
5CD1 0.873 0.089 29.60 5.53 1.48 
5CG2 0.931 0.085 36.90 5.93 0.33 
6CB 0.929 0.104 60.90 9.05 1.39 
7CB 0.798 0.115 54.10 10.50 0.25 

8CD1 0.344 0.052 63.10 10.10 0.13 
8CD2      
9CB 0.832 0.472 52.20 343.00 0.52 
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Methyl S2
axis S2

axis err τe τe err χ
2 

10CG1      
10CG2 0.64 0.115 28.60 7.95 0.48 
13CG1      
13CG2 0.627 0.205 109.00 43.80 1.55 
14CD1 0.798 0.053 7.71 2.94 0.01 
14CG2 0.856 0.055 27.30 3.28 2.17 
16CE 0.322 0.02 5.33 0.35 120.00 
19CB 0.937 0.041 21.60 1.64 2.88 
20CE 0.495 0.018 14.40 1.00 0.88 

24CD1      
24CD2 0.298 0.052 36.00 8.82 0.65 
26CB 0.914 0.101 51.50 8.41 2.24 

28CD1      
28CD2 0.595 0.059 36.80 5.18 0.11 
29CB      

35CG2 0.887 0.064 18.80 3.17 0.89 
36CD1 0.265 0.008 58.00 1.40 1.66 
36CD2 0.287 0.009 54.60 1.43 5.35 
40CG1 0.914 0.058 48.50 4.95 0.07 
40CG2 0.88 0.05 44.70 4.02 0.59 
41CD1 0.773 0.039 20.40 2.23 0.37 
41CG2 0.866 0.034 31.90 2.19 0.04 
42CE 0.88 0.019 4.18 0.65 2.20 

46CG2      
50CD1 0.713 0.033 17.60 1.74 0.40 
50CG2 0.806 0.023 18.50 1.14 0.77 
54CD1 0.649 0.04 36.20 3.29 0.96 
54CD2      
60CD1 0.317 0.009 28.00 1.08 3.19 
60CG2 0.853 0.042 39.40 3.19 2.55 
61CD1 0.304 0.015 32.70 1.91 3.37 
61CG2 0.752 0.083 80.20 12.60 0.78 
62CD1 0.45 0.051 85.70 10.60 0.21 
62CD2 0.351 0.017 55.00 2.78 1.09 
68CG2      
72CG1 0.695 0.123 85.30 19.00 0.32 
72CG2 0.827 0.077 65.90 8.77 0.42 
73CG2      
75CG1 0.922 0.045 63.70 4.21 0.68 
75CG2 0.868 0.04 10.70 2.01 0.09 
78CG1 0.887 0.032 30.50 1.85 1.33 
78CG2 0.813 0.031 24.90 1.78 0.77 
81CB      

82CD1 0.614 0.018 25.60 1.30 1.84 
82CG2 0.815 0.026 31.50 1.59 0.41 
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Methyl S2
axis S2

axis err τe τe err χ
2 

83CB      
84CB      

88CG1      
88CG2 0.786 0.031 23.10 2.01 0.28 
91CD1 0.735 0.014 8.63 1.36 1.37 
91CG2 0.822 0.037 31.20 2.75 0.47 
92CE 0.153 0.006 14.60 0.36 1.13 

93CG1 0.885 0.055 44.40 4.83 0.27 
93CG2 0.887 0.049 19.80 2.81 0.56 
94CD1      
94CG2      
99CG1 0.808 0.07 86.70 11.70 0.04 
99CG2 0.862 0.06 49.90 4.71 0.48 
104CD1 0.618 0.037 42.30 3.61 0.02 
104CD2      
107CB 0.756 0.07 80.20 10.30 1.68 

110CD1 0.815 0.232 67.70 21.00 1.12 
110CD2 0.658 0.115 34.20 10.10 0.65 
112CD1 0.284 1.775 220.00 542.00 0.91 
112CD2 0.956 0.114 15.20 5.68 0.84 
113CG2      
115CD1 0.785 0.091 16.70 5.38 0.13 
115CG2 0.892 0.062 40.90 4.43 2.68 
117CB 1.056 0.472 83.70 298.00 1.26 

119CG1      
119CG2 0.418 0.019 54.00 2.53 0.18 
123CG2 0.818 0.059 25.80 3.27 0.44 
136CG1      
136CG2      
143CB 0.883 0.039 40.00 2.43 0.51 
145CB 0.862 0.023 44.60 1.44 0.98 

155CD1 0.805 0.036 13.10 1.50 1.40 
155CG2 0.84 0.048 33.00 3.24 0.36 
156CD1 0.357 0.018 32.10 1.90 0.39 
156CD2 0.352 0.017 34.80 1.89 1.45 

 

5.5.  2H Relaxation model-free analysis of E:NADPH:3. 

Methyl S2
axis S2

axis err τe τe err χ
2 

1CE 0.112 0.002 15.90 0.18 35.20 
2CD1 0.467 0.019 16.60 1.33 0.98 
2CG2      
4CD1 0.498 0.023 52.10 2.93 1.32 
4CD2 0.559 0.265 147.00 137.00 1.96 
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Methyl S2
axis S2

axis err τe τe err χ
2 

5CD1 0.759 0.13 29.70 9.95 0.36 
5CG2 0.868 0.186 48.20 35.80 2.43 
6CB 0.988 0.165 87.00 23.60 0.59 
7CB 0.872 0.14 72.00 18.60 0.56 

8CD1 0.246 0.043 67.20 8.30 0.43 
8CD2 0.189 0.01 40.30 1.50 9.11 
9CB 0.664 0.147 40.30 17.30 1.12 

10CG1 0.757 0.057 96.60 9.44 1.15 
10CG2 1.135 0.178 16.90 8.14 4.85 
13CG1      
13CG2 0.835 0.209 69.50 39.20 3.44 
14CD1 0.937 0.094 6.29 4.86 0.56 
14CG2      
16CE 0.35 0.006 5.61 0.23 15.10 
19CB 0.95 0.046 22.60 1.91 0.63 
20CE 0.323 0.032 13.20 0.76 0.36 

24CD1 0.149 0.095 75.20 21.40 1.13 
24CD2 0.282 0.036 37.00 4.92 0.24 
26CB 0.978 0.109 50.60 8.81 1.58 

28CD1 0.351 0.014 53.00 1.77 2.38 
28CD2 0.304 0.025 67.30 3.12 0.88 
29CB 0.98 0.042 38.00 2.27 0.81 

35CG2      
36CD1 0.279 0.006 53.00 0.88 12.50 
36CD2      
40CG1 0.892 0.104 53.80 8.94 0.54 
40CG2      
41CD1 0.823 0.061 20.20 3.38 0.92 
41CG2 0.8 0.054 36.90 3.98 1.29 
42CE 0.882 0.033 3.56 1.19 0.27 

46CG2 0.741 1.064 236.00 697.00 0.46 
50CD1 0.733 0.04 17.00 2.15 1.41 
50CG2      
54CD1      
54CD2 0.514 0.135 70.50 20.30 1.49 
60CD1 0.29 0.013 27.50 1.23 3.19 
60CG2 0.812 0.074 36.80 5.54 1.38 
61CD1 0.326 0.03 35.80 3.29 7.30 
61CG2 0.827 0.202 114.00 40.10 1.05 
62CD1 0.519 0.089 86.20 17.10 2.64 
62CD2 0.34 0.027 56.80 4.27 2.24 
68CG2      
72CG1 0.821 0.171 62.70 18.30 0.00 
72CG2 0.888 0.101 70.30 12.30 1.27 
73CG2 0.972 0.054 37.70 3.32 2.15 
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Methyl S2
axis S2

axis err τe τe err χ
2 

75CG1 0.815 0.068 69.40 7.89 0.40 
75CG2 0.909 0.064 14.80 2.96 0.49 
78CG1 0.841 0.05 32.60 2.95 1.69 
78CG2 0.785 0.044 26.20 2.49 1.76 
81CB 0.968 0.032 38.30 1.89 0.30 

82CD1 0.628 0.031 26.50 1.92 2.38 
82CG2 0.868 0.043 30.90 2.37 1.62 
83CB      
84CB 0.877 0.056 56.00 4.76 0.97 

88CG1      
88CG2 0.688 0.042 23.00 2.34 2.03 
91CD1 0.748 0.023 12.00 1.37 2.02 
91CG2 0.846 0.059 29.90 3.53 1.15 
92CE 0.195 0.009 16.30 0.96 0.92 

93CG1 0.91 0.095 51.60 8.54 1.41 
93CG2 0.961 0.079 21.00 3.86 0.50 
94CD1 0.759 0.102 25.20 5.88 0.18 
94CG2      
99CG1 0.824 0.095 73.70 14.30 0.72 
99CG2 0.561 0.043 45.70 5.75 2.68 
104CD1      
104CD2 0.539 0.05 33.80 4.93 0.68 
107CB 0.894 0.109 79.70 12.90 0.41 

110CD1 0.679 0.382 52.20 42.50 1.09 
110CD2 0.825 0.289 38.10 93.40 0.31 
112CD1 0.532 1.227 281.00 817.00 0.89 
112CD2 0.846 0.138 17.50 8.19 0.15 
113CG2 0.851 0.133 39.20 12.10 2.09 
115CD1 0.773 0.073 15.70 4.08 1.90 
115CG2 0.792 0.071 40.40 5.96 0.64 
117CB 1.092 0.206 71.10 26.70 0.04 

119CG1      
119CG2      
123CG2 0.84 0.084 30.70 5.39 0.07 
136CG1      
136CG2 0.694 0.041 60.10 4.66 2.38 
143CB 0.954 0.052 38.90 3.13 0.45 
145CB 0.888 0.036 43.40 2.33 2.33 

155CD1 0.865 0.054 11.80 2.30 3.56 
155CG2 0.933 0.077 29.40 4.48 0.01 
156CD1 0.353 0.024 33.40 2.69 2.87 
156CD2 0.377 0.02 35.50 2.19 1.83 
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5.6.  2H Relaxation model-free analysis of E:NADPH:5. 

Methyl S2
axis S2

axis err τe τe err χ
2 

1CE      
2CD1 0.41 0.014 19.7 1.05 0.77 
2CG2 0.792 0.04 21.8 2.55 0.34 
4CD1 0.549 0.022 53.2 3.05 0.71 
4CD2 0.548 0.095 124 28 0.11 
5CD1 0.81 0.083 28.4 6.65 0.20 
5CG2 0.737 0.087 38.4 6.14 1.79 
6CB 1.078 0.11 58.5 12.1 2.59 
7CB 1.099 0.13 61 14.2 0.92 

8CD1 0.217 0.033 78.9 8.24 0.32 
8CD2 0.177 0.008 41.1 1.34 0.62 
9CB 0.933 0.132 33.4 10.2 2.00 

10CG1 0.668 0.052 121 11.4 0.39 
10CG2 0.738 0.102 34.2 7.91 0.55 
13CG1      
13CG2 0.694 0.143 82.6 27 0.45 
14CD1 0.915 0.064 5.61 3.47 1.60 
14CG2      
16CE 0.336 0.013 5.77 0.316 1.48 
19CB 0.936 0.034 21 1.73 0.02 
20CE 0.211 0.012 17.5 0.463 1.91 

24CD1 0.189 0.061 58.1 13.2 0.22 
24CD2 0.297 0.027 35.5 3.87 0.09 
26CB 1 0.091 66.2 9.29 0.45 

28CD1 0.314 0.01 55.3 1.56 0.25 
28CD2 0.302 0.014 64.4 2.6 1.63 
29CB 1.01 0.032 37.9 2.12 0.26 

35CG2 0.857 0.072 24.3 4.39 0.06 
36CD1 0.259 0.005 54.5 0.894 0.39 
36CD2      
40CG1 0.891 0.068 44.3 6.05 0.25 
40CG2      
41CD1 0.798 0.049 22.9 3.06 2.38 
41CG2 0.912 0.05 35.3 3.62 0.35 
42CE 0.866 0.026 4.53 1.04 1.69 

46CG2      
50CD1 0.645 0.023 21.9 1.61 0.16 
50CG2 0.659 0.021 23.2 1.47 0.78 
54CD1 0.455 0.034 34.5 3.55 0.64 
54CD2 0.485 0.065 58.7 9.97 0.33 
60CD1 0.289 0.009 27 1.02 0.40 
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Methyl S2
axis S2

axis err τe τe err χ
2 

60CG2 0.895 0.066 33 5 0.23 
61CD1 0.32 0.022 35.2 2.66 1.52 
61CG2 0.886 0.144 104 26.7 1.60 
62CD1 0.427 0.07 85.9 16.6 0.39 
62CD2 0.3 0.024 58.4 4.34 1.96 
68CG2      
72CG1 0.809 0.107 60.6 13.8 0.48 
72CG2 0.817 0.076 59 8.72 0.49 
73CG2 0.859 0.04 36.9 3.01 0.30 
75CG1 0.844 0.056 81.3 8.74 5.20 
75CG2 0.936 0.052 10 2.84 0.48 
78CG1 0.872 0.041 28 2.56 0.81 
78CG2 0.858 0.038 25.1 2.3 0.84 
81CB 0.986 0.028 37.7 1.9 3.14 

82CD1 0.659 0.024 25.9 1.79 1.67 
82CG2 0.841 0.034 30.5 2.13 0.13 
83CB      
84CB      

88CG1      
88CG2 0.791 0.036 25.2 2.3 2.21 
91CD1 0.751 0.019 11.3 1.76 0.19 
91CG2 0.878 0.049 32.7 3.39 1.76 
92CE      

93CG1 0.961 0.071 42.3 6.41 0.29 
93CG2 0.906 0.059 19.6 3.18 0.18 
94CD1 0.777 0.059 16.8 3.7 0.61 
94CG2 0.941 0.097 59.2 12.6 0.51 
99CG1 0.85 0.079 62.2 11.7 0.01 
99CG2 0.725 0.058 40 6.6 0.13 
104CD1      
104CD2 0.544 0.042 39.6 4.78 0.06 
107CB 0.967 0.095 66.6 11.4 0.31 

110CD1 1.047 1.634 387 1370 0.13 
110CD2 0.682 0.149 26.6 19.5 1.18 
112CD1 0.461 0.406 89.1 146 0.45 
112CD2 0.878 0.101 13.4 6.96 1.64 
113CG2      
115CD1 0.702 0.045 21.4 3.11 1.21 
115CG2 0.86 0.06 38.4 4.9 0.60 
117CB 0.879 0.16 111 30.9 0.03 

119CG1      
119CG2      
123CG2 0.898 0.07 22.7 4.67 0.13 
136CG1 0.737 0.036 62.3 4.69 2.06 
136CG2      
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Methyl S2
axis S2

axis err τe τe err χ
2 

143CB 0.997 0.045 39.5 3.06 0.36 
145CB 0.859 0.031 43.2 2.33 0.72 

155CD1 0.803 0.041 13 2.13 1.22 
155CG2 0.9 0.06 28.5 3.95 0.03 
156CD1 0.337 0.026 32.1 3.19 1.15 
156CD2 0.365 0.017 35.1 2.09 0.41 
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