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ABSTRACT 
 

IRENE M. BASKERVILLE-ABRAHAM: Molecular Dosimetry of 1,2 Guanine-Guanine 
Intrastrand Cross Links of Cisplatin by Ultra Performance Liquid Chromatography 

Tandem Mass Spectrometry 
(Under the direction of James A. Swenberg and Stephen G. Chaney) 

 
 Cisplatin has been extensively studied as an antitumor agent since the 

late 1960s.  However the mode of action for the efficacy and adverse effects 

of cisplatin are poorly understood.  It was previously believed that the 

cisplatin1,2 intrastrand guanine-guanine [CP-d(GpG)] cross link was likely 

responsible for much of the cytotoxic actions of the compound.  But current 

techniques prevented accurate and specific adduct quantification using 

pharmacologically relevant concentrations of cisplatin. Therefore, the 

development of a highly sensitive and specific method to measure the CP-

d(GpG) cross link was begun.  Using this technique, this dissertation aimed to 

study the role of CP-d(GpG) in acquired resistance and different genetic 

profiles.  

The developed mass spectrometry method is able to measure 3.7 

adducts per 108 nucleotides using 25 µg of DNA per injection. Preliminary 

results indicated that the method was sensitive enough to quantify adducts in 

ovarian carcinoma cells using as little as 12.5 µM cisplatin.  It was also able to 

quantify adducts the kidney, liver and colon tissues of mice that had been 
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given 7 mg/kg cisplatin by i.p. injection.  Our hypothesis was that the density 

of CP-d(GpG) cross links would serve as a useful biomarker for efficacy 

and/or toxicity of cisplatin.  Research was conducted to understand CP-

d(GpG) formation in ovarian carcinoma cell lines as well as in 8 inbred strains 

of mice. 

Results indicate that the dose response relationship for adduct 

formation in our isogenic cisplatin sensitive and resistant cell lines remains 

linear, when using lower more pharmacologically relevant doses of cisplatin. 

In mice, adducts were most concentrated in the kidney.  Of the 8 inbred 

strains tested the C57BL/6J mice were the most sensitive and FVB/NJ least 

sensitive to cisplatin treatment.   Toxicity, as determined by histopathology, 

did not correlate with CP-d(GpG) molecular dosimetry.  However, this lack of 

correlation may be due to the design of the mouse study, as such many 

suggestions for future animal studies are given.  Based on reported 

concentrations of platinum DNA adducts clinical samples, the sensitivity and 

specificity of our method could provide additional insight as to the role of CP-

d(GpG) adduct formation in cancer patients being treated with cisplatin.  
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CHAPTER 1 

INTRODUCTION 

 

1.1  Significance 

 Cis-diamminedichloroplatinum(II) (cisplatin) is a widely used 

chemotherapeutic agents (Figure 1.1).  Cisplatin (CP) is an inorganic compound in 

which the platinum atom is bound to two amine groups and has two chloride leaving 

groups.  This compound undergoes a non-enzymatic conversion in physiologic 

solutions to active derivatives via displacement of leaving groups.  This leads to the 

formation of mono, inter- and intra-strand DNA adducts.  The formation of these CP-

DNA adducts is believed to be necessary for the anticancer activity of platinum 

drugs.  Of DNA adducts formed, the intrastrand cross links are the most prevalent, at 

over 95% (1,2).  These intrastrand cross links are formed at the N7 position of 

adjacent AGs or GGs (Figure 1.2).  The repair of these DNA adducts occurs 

primarily by the nucleotide excision repair (NER) pathway (3).  Replication and 

transcription are inhibited upon the binding of these agents to DNA.  Each 

compound also forms adducts with glutathione, proteins and other nucleophiles (4-

6).  The DNA adducts are recognized by both high mobility group (HMG)-domain and 

damage recognition proteins.  The HMG-domain proteins specifically recognize 1, 2 

intrastrand DNA cross links of cisplatin adducts (7,8) and inhibit their repair, leading 

to increased drug efficacy (9).  
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The mode of action for the efficacy and adverse effects are poorly 

understood.  Current research postulates that the target of these compounds is DNA 

and the resulting cytotoxicity of these agents causes cell death, via apoptosis or 

necrosis.  If cell death does not occur, unrepaired adducts may lead to mutations, 

which can initiate secondary cancers.  Many studies have been performed regarding 

platinum resistance and its relationship with genetic polymorphisms, alterations in 

gene expression and protein levels (10-13).  Another aspect that needs to be 

considered is the idea of repair of adducts versus the tolerance of adducts.  Most 

studies of resistance mechanisms do not make comparisons between cells lines on 

a per-adduct basis.  Therefore, one cannot discriminate between differences due to 

decreased uptake/increase repair and a real difference in gene expression in 

response to an equal number of adducts.  In the case of tolerance, a reduction in 

cytotoxicity or increased dose at which a cytotoxic endpoint becomes apparent is 

observed in comparison to equivalent measurements in the absence of the tolerance 

mechanism of interest.  However, there is not a sensitive and specific method 

allowing investigators to discriminate between alterations caused by inter-individual 

differences in gene/protein expression and adduct burden.  The development of 

biomarkers to determine tissue-specific molecular dosimetry during various 

chemotherapeutic treatments will lead to a more complete understanding of both 

therapeutic and adverse effects.  This will support the refinement of therapeutic 

regimens and appropriate individualized treatment protocols.  Our research provides 

a sensitive and specific way to quantify these adducts that will enhance 

pharmacogenomic data that are indexed to the adduct burden achieved in either 
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tumor tissue or surrogate markers such as circulating lymphocytes.  Ultimately this 

will lead to more efficacious, less toxic individualized targeted therapies, and provide 

improved indicators of prognosis. 

 

1.2  DNA, the Primary Cellular Target 

 When entering the body by i.v., the high concentration of chloride ions (100 

mM) suppresses hydrolysis and maintains cisplatin in a nonreactive state.  The 

limiting factor for accumulating platinum in cells is its concentration.  It was once 

believed that the uptake of cisplatin was not saturable and was only by passive 

diffusion.  While passive diffusion still plays a role in cisplatin uptake, recent 

research suggest that carrier mediated transport may occur in some cell types.  

Once inside the cell, the diminished chloride ion concentration (~20 mM) allows 

hydrolysis to occur, resulting in an active aquated form, which reacts readily with 

cellular targets. 

 Proteins, RNA, and DNA are among the cellular components that react with 

cisplatin.  Studies of the effects of platinum compounds upon these components 

were performed to gain more insight as to the primary target of cisplatin.  One study 

used HeLa cells in conjunction with a colony forming assay to examine the amount 

of platinum bound to macromolecules (14).  A calculation was performed utilizing a 

set amount of platinum bound for DNA, RNA and proteins versus the number of 

platinum atoms bound in the surviving cells.  The study showed that 22 platinum 

atoms were bound per DNA molecule compared to one Pt per 8 mRNA, one per 30 

rRNA, one per 1500 tRNA, and one per 1500 protein molecules.  Another study 
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using HeLa cells was performed with 195Pt-radiolabeled cisplatin showing that as 

little as 1 out of 3x105 protein molecules and 1 out of 1000 RNA molecules 

contained a platinum atom (15).  However, in DNA they observed that nine platinum 

atoms were bound per molecule.  This experimental evidence supports the generally 

accepted belief that DNA is the primary target of cisplatin in cells.   

 

1.3  DNA Adduct Formation 

 With DNA established as the primary target of cisplatin in cells, investigators 

next investigated the binding interaction to characterize the adducts formed.  

Because platinum compounds that are ineffective as therapeutic agents only bind 

monofunctionally, protein-DNA, intra-, and inter-strand cross links were thought to be 

important for biological activity because of their bifunctional conformation.  To gain 

more insight, Fitchtinger-Schepman performed an enzymatic digestion of salmon 

sperm DNA followed by chromatographic separation of the products and NMR 

analysis to identify the major DNA adducts of cisplatin (16).  The major products 

were 1,2-intrastrand cross links involving adjacent bases, with cis-

[Pt(NH3)2{d(GpG)}] or CP-d(GpG) comprising 47-50% of the adducts formed and cis-

[Pt(NH3)2{d(ApG)}] or CP-d(ApG) comprising another 23-28%.  Additionally, 8-10% 

of the digested products contained 1,3-intrastrand cross links involving non-adjacent 

guanines (CP-GNG) and interstrand adducts, and another 2-3% of the products 

were due to the monofunctional binding to guanine.  In each case, platinum was 

bound to the N7 atom of purine bases.  Eastman performed a similar study using 

DNA modified by [3H]-[Pt(en)Cl2], which was believed to have a similar adduct profile 
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to cisplatin and found 65% CP-d(GpG), 25% CP-d(ApG), and 6% CP-GNG adducts 

(17).  

 These in vitro experiments provided evidence that the 1,2-intrastrand adducts 

were the major adducts formed by cisplatin.  The DNA adduct formation was then 

examined in cells using immunochemical assays. Some studies have attempted to 

correlate the level of intrastrand adducts to treatment response.  In one such study, 

lymphocytes taken from cancer patients treated with cisplatin displayed a similar 

adduct profile to the in vitro studies (18).   

 To aid in the determination of clinical relevance of cisplatin DNA adducts, one 

should also consider its clinically ineffective isomer, transplatin (TP), which forms 

different types of DNA cross links.  Each compound forms bifunctional DNA adducts 

that bind to the N7 positions of guanine and adenine.  However, due to its 

stereochemistry, transplatin is unable to form 1,2-intrastrand d(GpG) or d(ApG) 

adducts.  Enzymatic digestion studies of DNA treated with transplatin show the 

formation of 50% dG-TP-dC, 40% dG-TP-dG, and 10% dG-TP-dA (19).  Thus, 

treatment with transplatin leads to the formation of 1,3-intrastrand and interstrand 

cross links.  Cisplatin binding to DNA is kinetically controlled.  As mentioned 

previously, a chloride ligand hydrolyzes when cisplatin enters cells, forming cis-

[Pt(NH3)2Cl(H20)]+ or monoaquated cisplatin.  This hydrolysis reaction is the rate 

limiting step for DNA binding, with a half life of ~2h.  Monoaquated cisplatin then 

binds to an N7 atom of a guanine base, which displaces the water molecule (t1/2~0.1 

h), forming a monofunctional adduct.  Closure of the monofunctional adduct to form 

a bifunctional adduct involves hydrolysis of the second chloride ligand, with a half life 
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of ~2h.  If we once again compare cisplatin to transplatin, we find that the first 

hydrolysis step and binding to DNA to form monofunctional adducts occurs at a 

similar rate.  Therefore, a different rate of closure to form the bifunctional adduct by 

hydrolysis of the 2nd chloride ligand taken together with its inability to form 1,2 

intrastrand cross links, may explain the difference in adduct formation and therefore 

biological activity between these isomers.  Studies on this subject are at odds, some 

suggest rates to be similar (t1/2~3 h) (20), while others argue that transplatin forms 

bifunctional adduct much more slowly (t1/2>24 h) (21).  Differences in study design, 

such as the length of DNA duplex and the concentration of platinum adducts, can 

affect the rate of closure.  Overall, this implies that the slow formation of interstrand 

and 1,3 intrastrand cross links combined with the inability of transplatin to form 1,2-

intrastrand cross links, play a large role in its difference in clinical efficacy. 

 The processes just described suggest that the 1,2 intrastrand adducts of 

cisplatin may be important to its anticancer activity.  These major adducts are 

formed both in vitro and in vivo.  Furthermore, the clinically ineffective transplatin 

cannot form these cross links.  Also previously mentioned was the positive 

correlation of the level of these cisplatin adducts to treatment response.  Numerous 

studies have shown CP-d(GpG) as the most prevalent cisplatin DNA adduct.  

Therefore, our studies have focused on developing a method to quantify the 1,2 

guanine-guanine DNA adduct of cisplatin to aid in the determination of the role it 

may play in the cisplatin anticancer mechanism. 
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1.4  Rationale for Development of New Mass Spectrometric Method 

Our research is based upon the premise that DNA is the intracellular target of 

cisplatin chemotherapy.  Therefore the formation of 1,2- intrastrand DNA adducts is 

an important component of the mode of action.  The development of a specific and 

sensitive mass spectrometric method will provide crucial molecular dosimetry data 

and allow better understanding of the mode of action for these compounds.  Studies 

have attempted to evaluate the role of Pt-DNA adducts in vivo; however, the 

sensitivity and specificity of the methods limited the quality of data obtained. 

Common methods used to measure Pt-DNA adducts include antibody probes, 32P 

post labeling, atomic absorption spectroscopy, inductively coupled plasma mass 

spectrometry, and electrospray ionization mass spectroscopy.   

 

1.4.1  Antibody Probe Based Methods 

There are several assays utilizing antibody probes to determine the level of 

platinum adducts.  However these assays are often cross reactive and have a non-

linear dose response, making accurate quantitation of specific adducts difficult.  The 

first immunoassay for the detection of cisplatin adducts was a radioimmunoassay 

(22).  However experiments with carcinogen-DNA antisera exhibited a 10- to 100-

fold increase in sensitivity when utilized in ELISA, therefore to gain sensitivity, a new 

study was performed using an antibody elicited against cisplatin modified DNA in an 

ELISA inhibition assay (23-25).  In this study, a polyclonal antibody was used to 

detect total cisplatin adducts formed in vivo and cited a lower limit of detection 

(LLOD) of 0.2-0.3 fmol total platinum adducts/µg DNA.  However, once the authors 
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compared their data to similar studies performed with lower concentrations of 

cisplatin and atomic absorption spectroscopy (AAS) to measure total Pt, they 

postulated that their antibody may not detect all of the platinum associated with DNA 

in vivo.  This was due to the ELISA assay showing lower adduct levels (0.27 and 10 

fmol/µg DNA) as compared to AAS (10-45 fmol of Pt per µg DNA).  Later, a 

comparison by Fitchtinger-Schepman of two different ELISA assays to determine 

cisplatin-DNA adducts in the blood cells of cisplatin-treated cancer patients would 

show more shortcomings of the Poirier designed antibody (26).  While Poirier et al 

had determined the adducts in native DNA with an antiserum raised against highly 

modified cisplatin DNA, Fichtinger-Schepman et al. assayed the various adducts 

after chromatography of enzymatically digested DNA samples using antibodies 

raised against synthetic haptens mimicking the Pt-containing digestion products 

(25,26).  When identical human samples were analyzed by both methods, 14-300-

fold higher adduct levels were found with the Fichtinger-Schepman method and AAS 

further confirmed the results of the Fichtinger-Schepman assay (26).  As mentioned 

previously, AAS showed a difference of up to a factor of 1000 in the original Poirier 

study, further emphasizing the importance of carefully selecting an appropriate 

antibody.  Furthermore, when Fitchtinger-Schepman used the Poirier method to 

analyze samples modified to a level similar to that of cisplatin-treated patients, no 

adducts could be detected.  Next, a monoclonal antibody to detect DNA modification 

by cisplatin and carboplatin in vivo and in vitro was published in 1991 (27).  This 

assay cited quantitation of cisplatin-induced DNA adducts at 3 nmol Pt/g DNA or 1 pt 

adduct per 106 bases when using ICR4 (the monoclonal antibody) in a competitive 
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ELISA assay.  This method could detect below this level, but cross-reactivity of 

unmodified DNA sequences complicated quantitation.  Terheggen et al attempted to 

design antibodies (NKI-A68, A10, A39) which detect specific cis-DDP DNA adducts 

(CP-d(ApG), CP-d(GpG) and CP-dGMP), as well as one against total cisplatin 

modified DNA (NKI-A59) to aid the studies of binding of cisplatin to cellular DNA 

(28).  The antibodies for individual adducts were deemed suitable for platinum-DNA 

adduct analysis of digested DNA in ELISA assays.  However, the cross reactivity of 

these antibodies prevent specific quantitation of any one of these adducts.  Several 

other investigator developed monoclonal and polyclonal antibodies in an attempt to 

gain more sensitivity and specificity (29-31).  As technology changed, investigators 

moved from using their antibodies in comparative ELISA to techniques involving 

microscopy (32).  One group was able to design an antibody with high sensitivity to 

cisplatin-DNA adduct involving adjacent guanine residues, however immuno-

recognition was influenced by the surrounding DNA sequence (33).  Most recently, 

Liedert et al. used monoclonal antibodies (Mab R-C18 and R-B3) to recognize Pt-

d(GpG) and Pt-d(ApG) using an immuno-cytological assay.  Their assay quantifies 

drug induced lesion in individual cell nuclei (34).  While their method may be useful 

for histological studies, cross reactivity of this antibody still prevents specific 

quantification of individual cisplatin DNA adducts. 

 

1.4.2  32P Postlabeling Based Methods 

In 1990 Mustonen and Hemmiki published their application of a 32P-postlabeling 

technique to detect DNA adducts formed by cisplatin and other methylating agents 
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(35).  This method did not differentiate between the individual cisplatin adducts and 

was used in vitro. Four years later, Hemmiki and Forsti modified this method to 

enable the detection of cisplatin adducts in platinated calf thymus DNA (36). Next in 

1995, Blommaert and Saris developed a sensitive version of 32P-postlabeling that 

allowed the detection of the in vitro and in vivo bifunctional intrastrand crosslinks, Pt-

d(ApG) and Pt-d(GpG) of cisplatin and carboplatin (37).  This method added strong 

cation exchange chromatography after the enzymatic digestion of platinated DNA to 

separate the DNA adducts from unplatinated products.  Because the platinated 

dinucleotides were poor substrates for polynucleotide kinase, the samples were 

deplatinated with cyanide.  After excess cyanide was removed using Sep-pak C18 

cartridges, the resulting dinucleotide monophosphates, d(GpG) and d(ApG), were 

postlabeled.  The detection limit of this assay was 1 adduct per 107 nucleotides 

using 10 µg of DNA.  This procedure was found to have good correlation with other 

methods, such as AAS and ELISA, for platinum DNA adduct detection in vitro and in 

vivo with both cis- or carboplatin (37).  This group then studied the formation of 

platinum DNA adduct in vitro in calf thymus DNA and in cell culture using cisplatin, 

lobaplatin, and oxaliplatin through comparison of AAS and their new sensitive 32P-

postlabeling method (38).  They found that cisplatin formed a substantially higher 

rate of adducts in comparison to lobaplatin and oxaliplatin.  However, no conclusions 

could be reached as to the cytotoxicicty of the Pt-d(GpG) and Pt-d(ApG) adducts 

because their ratios in ovarian carcinoma (A2780) cells were not significantly 

different for any of the platinum compounds.  Welters et al. published an 

improvement to the Blommaert and Saris method in 1997 (39).  Their improvements 
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included the addition of TpT as an internal standard, which had equally efficient 32P-

labeling as GpG and ApG.  This internal standard was added immediately after 

isolation of the Pt-adducts from digested DNA samples.  Another improvement was 

to adjust the pH of the DNA digests to ~3 prior to strong cation exchange 

chromatography to assist in the isolation of the Pt-adduct on the basis of a positive 

charge.  They also decreased the amount of cyanide used for deplatination therefore 

removing the interference with the labeling step.  This method was used to 

determine adduct levels in cisplatin-treated DNA, DNA from cisplatin-treated cultured 

cells, tumor xenografts from cisplatin-treated mice, and from white blood cells and 

tumor tissues from cisplatin-treated patients.  Samples with high levels of adducts 

showed significant correlation with atomic absorption spectroscopy while those with 

low levels showed correlation with specific antibodies used in an ELISA assay (39).  

Further improvements by this group increased the sensitivity to 87 and 53 amol per 

µg DNA (40). 

 In the late 1990s, several groups started to use this method to determine 

platinum DNA adduct formation in clinical studies.  Because the response to cisplatin 

therapy was assumed to be related to the formation of platinum DNA adducts, 

Welters et al. decided to measure platinum adducts prior to therapy using 32P-

postlabeling after ex vivo cisplatin treatment of head and neck squamous cell 

carcinoma (HNSCC) xenografts and of tumor biopsies from patients with HNSCC 

and testicular cancer (41).  They observed that higher adduct levels during the one 

hour exposure to 10 to 80 µM cisplatin were associated with better responses.  

During the following five hour drug free incubation only adducts in the testicular 
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cancer samples persisted, which is of interest since platinum therapy is curative for 

testicular cancer.  These results show analysis of DNA adducts following ex vivo 

drug treatment to be one possibility for a predictive assay for patients who may 

undergo platinum based therapy.  Another group used 32P-postlabeling to test the 

predictive value of cisplatin-DNA adduct levels in HNSCC patients treated with 

cisplatin and concurrent radiation (42).  Adducts were quantified in normal and tumor 

tissues.  Adduct levels were correlated with treatment outcome.  Patients with higher 

GG adduct levels (>median) in primary tumor had significantly better disease free 

survival (DFS) than patients with lower (< or = median) adduct levels (p = 0.02).  For 

overall survival (OS), a non-significant trend was observed; again in favor of patients 

with higher adduct levels (p = 0.06).  Therefore in this study, cisplatin-DNA adduct 

formation in primary tumor appears to be predictive for DFS in HNSCC.  Recently, 

this group used 32P-postlabeling to show the lack of a correlation of formation of 

cisplatin-DNA adducts between normal (WBC and buccal cells) and tumor (biopsy) 

tissue (43).  This suggests that cisplatin-DNA adducts can be used as a predictive 

test in anticancer platinum therapy, if the correct tissue is used.  It would be of 

interest to see if normal tissue (other than WBC or buccal cells) could be used 

effectively for a predictive test.  For instance, animal studies could be performed to 

learn whether tumor and normal tissue from the same organ type form and retain 

cisplatin-DNA adducts to the same extent or not. 

In summary, the 32P-postlabeling shows a high level of sensitivity for CP-

d(ApG) and CP-d(GpG) adducts, which has made it useful for determining platinum 

adduct levels in clinical studies.  However, it is a time consuming method and 
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requires the use of radioactivity.  Additionally, there are several possible sources of 

error in this method.  First, the internal standard used in this method is added late in 

sample preparation and is not platinated or structurally identical to measured adduct. 

Furthermore, adducts must be deplatinated before labeling, causing possible loss of 

adducts (37,40,44).  Finally, there is no structural confirmation of the platinated 

adduct, which may lead to over or under estimation of adducts.  This method has 

shown good correlation to atomic absorption spectroscopy and antibody probe 

based assays, which are both less sensitive than this method. 

 

1.4.3  Methods Measuring Total Platinum 

1.4.3.a  Atomic Absorption Spectroscopy  

Atomic absorption spectroscopy (AAS) has long been used to determine the 

amount of total platinum in a given sample.  A recent PubMed search of cisplatin 

and atomic absorption spectroscopy resulted in over 300 papers.  In 1976, Litterst et 

al. used AAS to study distribution of a single i.v. dose of cisplatin in female beagle 

dogs (45).  Platinum concentration was measured in the plasma, bile, urine, as well 

as sixteen tissues.  This was one of the first in vivo studies of pharmacokinetics of 

cisplatin.  The data from this study suggested that cisplatin bound tightly to plasma 

albumin, was rapidly excreted through the urine, and stayed bound longer in the 

kidney, liver, ovary, and uterus.  

AAS requires a large amount of DNA and/or high concentration of platinum 

for determination of total platinum and therefore is not sensitive enough for use with 

most clinical samples (46-50).  As mentioned previously, Fitchtinger-Schepman et al. 
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found the following distribution of cisplatin adducts: CP-d(GpG) 47-50% , CP-d(ApG) 

23-28%, CP-GNG 8-10%, and 2-3% were due to monofuctional binding to guanine 

(16).  Calculations using these ratios are used with AAS to obtain estimates of 

individual adduct formation.  Furthermore, the high concentration of platinum 

sometimes required researchers to assume a linear extrapolation in order to 

correlate molecular dose and effect in experiments using more biologically relevant 

concentrations of cisplatin.   

Another PubMed search of cisplatin, atomic absorption spectroscopy and 

adducts led to papers showing the AAS method in comparison to new methods, 

such as ELISA, 32P-postlabeling, HPLC-ICP-MS, in which each can measure 

individual platinum adducts.  One example is a paper by Welters et al, in which they 

were studying the pharmacodynamics of cisplatin in head and neck cancer using 

AAS and 32P-postlabeling (51).  Sensitivity to cisplatin was correlated with total 

platinum and CP-DNA adduct levels were determined in vivo in xenografted tumor 

tissues in mice and in vitro in cultured tumor cells of HNSCC.  They found significant 

correlations between total platinum levels, measured by AAS, and tumor response to 

cisplatin therapy in vivo and in vitro.  However, sensitivity of the in vivo tumors did 

not coincide with the corresponding cell lines.  Interestingly, a significant correlation 

was found between the CP-d(ApG) levels and sensitivity to cisplatin both in vitro and 

in vivo, using 32P-postlabeling.  These correlations suggest that the CP-d(ApG) 

adduct is responsible for cytotoxicity in this model system.  It would be interesting to 

revisit this study with our method to see if the observed correlation remains or if it 

was possibly due to an overestimation of CP-d(ApG) adducts by 32P-postlabeling. 
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1.4.3.b Inductively Coupled Plasma Mass Spectrometry  

Inductively coupled plasma mass spectrometry (ICP-MS) measures total 

platinum with higher sensitivity than AAS, allowing its application to clinical samples.  

One group has reported an ability to approach the sensitivity of the 32P-postlabeling 

method using ICP-MS (52).  However, they further reported that this level of 

sensitivity could not be obtained with the addition of HPLC speciation, which is 

necessary for quantification of the individual adducts.  Previously, a capillary HPLC-

ICP-MS method was reported to measure CP-d(GpG) adducts specifically; this 

method reported a limit of quantitation (LOQ) of ~ 1 adduct per 106 nucleotides, 

however it lacked adequate sensitivity to measure samples treated with <500 µM 

cisplatin (53).  Mutagenesis assays using <10 µM cisplatin have been reported in the 

literature (54).  Therefore, greater sensitivity is needed to ensure direct comparisons 

of the formation and/or persistence of individual cisplatin adducts and the induction 

of mutations.  During the development of the UPLC-HESI-MS-MS method we found 

that for ICP-MS to be effectively used for trace analysis (< 1 ppb) or measurement of 

cisplatin adducts (<20 picomoles or <6 per 106 nucleosides) a clean room and ultra 

sensitive mode must be utilized.  While both AAS and ICP-MS technologies are 

useful in screening for DNA adducts, measurements of the distribution of mono CP 

adducts, inter- or intra- strand CP-cross links would allow the correlation of specific 

CP adducts with biological effects.  
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1.4.4  Liquid Chromatography Electrospray Ionization Mass Spectrometry  

Liquid chromatography electrospray ionization mass spectrometry (LC-ESI-

MS) measurement of DNA adducts provides structural confirmation of the analyte 

during analysis, without extensive labor or use of radioactivity.  There are several 

reports of LC-MS methods for platinum-DNA intrastrand adducts; however, each 

published report lacks an internal standard, which is essential for accurate and 

reproducible quantification (55, 56).  An internal standard is an important tool for 

mass spectrometry.  Our laboratory uses stable isotope labeled compounds for 

internal standards.  Using stable isotopes allows the use of a standard that has an 

identical chemical structure to the analyte of interest, the only difference being an 

increased final mass.  We then use our internal standard to add a known amount of 

adduct prior to each sample work-up and therefore have a control for error or loss in 

processing.   During mass spectrometric quantitation, the internal standard has an 

identical fragmentation pattern and retention time as the analyte. 

In summary, the most recent antibody assay is able to detect CP-d(GpG) or 

CP-d(ApG) in individual cells, however cross reactivity prevents this from being a 

specific method for adduct quantification.  32P-postlabeling is very sensitive and can 

quantify specific platinum DNA adducts with a limit of detection of 1 adduct per 108 

nucleotides.  However its use of radioactivity, lack of internal standard and inability 

to provide structural conformation limit its usefulness.  Atomic absorption 

spectroscopy measures only total platinum and requires large amounts of DNA 

and/or a high concentration of platinum for consistent quantification.  ICP-MS also 

measures total platinum and is more sensitive than AAS with a limit of detection of 1 
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adduct per 106 nucleotides.  However optimal sensitivity requires the use of a clean 

room.  Finally, previously published LC-MS methods for platinum DNA adducts have 

not utilized an internal standard.  Due to the technical limitations listed for each 

method, previously obtained data on cisplatin distribution and formation of 

intrastrand CP cross links in vivo may be insufficient to draw valid conclusions.  To 

advance our understanding of the formation and distribution of cisplatin cross links in 

different organs and within tissues (tumor vs. non-tumor) a stable isotope dilution 

mass spectrometry method was established for the accurate quantification of 

cisplatin derived 1,2 intrastrand cross links. 

 

1.5  Potential Role of Platinum-DNA Cross Links upon Acquired Resistance 

Currently, the complete mechanism leading to acquired resistance of cisplatin 

is not known.  However, the generally accepted intracellular mechanisms leading to 

cisplatin acquired resistance include: increased detoxification by thiols (e.g. 

glutathione, metallothionein), improved repair of and tolerance to nuclear lesions, 

and increased uptake/decreased efflux (diminished accumulation) of cisplatin.  Using 

our UPLC-MS/MS method to quantitate CP-d(GpG) adducts, we can further study 

the mechanism related to the improved repair and tolerance to these nuclear 

lesions.   

The ability to measure the density of specific adducts, using doses of cisplatin 

that are closer to those being used in the clinic will provide stronger rationale during 

the elucidation of the mode of action for efficacy and resistance.  We chose to focus 

our in vitro studies upon ovarian carcinoma resistance.  A review by Helm and 
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States tells us that most women are not diagnosed until the disease has already 

metastasized from the ovaries and ovarian cancer is associated with an overall 5 

year survival of little more than 50% (57).  Cisplatin has been the most effective 

therapy of ovarian cancer for the last 4 decades.  Women with intrinsically resistant 

tumors have a very poor prognosis.  Even though the majority of patients initially 

respond to platinum chemotherapy, many will ultimately develop disease that 

acquires resistance to cisplatin.  

Several models, other than ovarian carcinoma, exist for the study of cisplatin 

resistance.  Therefore in this section, we present selected studies, which use 

platinum DNA adduct formation as one endpoint.  One group treated sensitive and in 

vitro acquired resistance human small-cell lung carcinoma cells lines for 4 hours with 

166-500 µM cisplatin (58).  They found a correlation between resistance factor and 

level of glutathione.  Also, a dose-related trend was observed for the level of Pt-DNA 

binding, Pt-GG adduct content and amount of interstrand cross links.  Atomic 

Absorption Spectroscopy was utilized to determine the amount of total platinum, as 

well as the amount of CP-GG adduct after digestion and separation by Mono Q 

column, that required 1x107 and 5x107  cells, respectively, for quantitation.  Their 

overall conclusion was that a glutathione-induced decrease of reactive platinum in 

resistant cells was responsible for the lower net platination and therefore reduced 

toxic Pt-DNA adduct formation.  In 1996, Johnson et al treated sensitive and 

resistant human hepatoma cell lines for 4 hours using 0-200 micromolar cisplatin 

(59).  When comparing cisplatin efflux, total Pt-DNA adduct and interstrand cross 

link formation they found decreased intracellular accumulation to be the major 
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cisplatin resistance mechanism for hepatoma cells.  Vendrik et al studied cisplatin 

sensitivity and resistance in tumor and kidney tissues from LOU/M rats, in which an 

IgM immunocytoma cell line was grown (60).  These rats were treated intravenously 

with 1mg/kg cisplatin.  After 24 hours they noted a significant decrease in platinum 

content and in adducts of tumors, but not in the kidney.  However, once the results 

were corrected for dilution due to continued tumor growth after the initial dosing, it 

was determined that the mechanism of resistance was not likely due to differential 

CP uptake or efficiency of adduct formation/repair.  While the authors, during their 

investigation excluded several possible mechanisms, they did not suggest a specific 

mechanism for resistance in their model system.  Most recently, Fokkema et al. 

studied this phenomena using human germ cell and small-cell lung cancer cell lines, 

which were either sensitive, intrinsically resistant or had acquired resistance (61).  In 

this study, platinum-DNA adducts were measured immunohistochemically using an 

antibody that recognized CP-d(GpG) and the interstrand cross links.  Analysis of the 

data showed no differences in initial Pt-DNA adduct levels between any of the cell 

lines.  This suggests that the platinum resistance in these cell lines is based on 

adduct tolerance or increased repair.  Looking at all of these studies, one can see 

why there has been no agreement as to the cause of cisplatin resistance.  It may be 

that the mechanism of resistance is different based on tissue and/or tumor type.  

Several studies have shown that expression of genes, such as ERCC1 and 

BRCA1, which affect the repair of Pt-DNA adducts, is altered in cells with differing 

resistance to platinum chemotherapeutics (62-66).  One such study measured Pt-

DNA adducts as well as ERCC1 expression in resistant human carcinoma cell lines 
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after treating with lactacystin, a selective inhibitor of the ubiquitin pathway and 

degradation of proteins by the proteasome (67).  Treatment with lactacystin 

increased cisplatin toxicity, enhanced DNA platination and decreased repair of 

cisplatin-DNA adducts.  Also, lactacystin dramatically reduced the steady-state 

mRNA expression and the rate of transcription of the DNA repair gene ERCC1.  This 

response to lactacystin ultimately shows that ERCC1 and BRCA1 expression is 

likely to be higher with increased cisplatin resistance.  However in each of these 

studies, atomic absorption was used to measure repair/removal of Pt-DNA adducts.  

As previously discussed this technique measures total platinum and is not sensitive 

enough for use at clinically relevant levels of treatment.  Therefore, newer 

techniques would be required to quantify platinum DNA-adduct formation in order to 

test this hypothesis through clinical studies.  Many proteomic studies of platinum 

resistance in gynecologic cancer have also been performed (68-70).  In these cases, 

correlations of proteins such as ALD1 and PCNA (using mRNA expression) and 

resistance have been made, but without taking into account Pt-DNA adduct 

formation or repair.  To elucidate the role of Pt-DNA adduct formation in acquired 

resistance to CP, we have measured Pt-DNA adducts formed at various doses and 

time points in ovarian carcinoma cell lines selected for their sensitivity (A2780) or 

cell culture acquired resistance (A2780/CP70) to platinum therapy.  
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1.6  Potential Role of Platinum-DNA Cross Links upon Genetic Response to 

Cisplatin 

1.6.1  Genetics and Cisplatin 

Because the human population is genetically diverse, it is possible for 

individuals to have different responses to pharmaceutical agents.  One such genetic 

difference is a polymorphism, or multiple alleles of a gene within a population, which 

can express different phenotypes.  In our case, examples of phenotypes could be 

sensitivity or resistance to cisplatin treatment.  Patterns of single nucleotide 

polymorphisms (SNPs) can be used to identify haplotypes or sets of closely linked 

genetic markers present on one chromosome, which tend to be inherited together.  

Haplotype mapping can then be used to find quantitative trait loci (QTLs) or regions 

of DNA that are associated with a particular phenotypic trait.  These QTLs can be 

used to identify candidate genes, which may be responsible for a phenotype.  

Through techniques such as QTL mapping and gene expression profiling, 

pharmacogenomics researchers are studying drug related phenotypes, so that 

personalized medicine becomes a reality.   

 SNPs of several genes, such as ERCC1, BRCA and GST-P1, have been 

suggested to have an effect on the efficacy of cisplatin therapy.  In one study, cell 

lines from people of European or African descent were used to identify genetic 

variants and gene expression contributing to cisplatin-induced cytotoxicity (71).  

Using their whole genome approach, they found 17 representative SNPs that 

contributed to cisplatin-induced cytotoxicity by affecting expression of 26 gene in 

both populations.  Even though SNPs are being identified, QTL mapping has not 
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been widely done for cisplatin.  A literature search yielded only two papers in this 

area.  One used yeast as a model system to study the genetic variation in the 

cysteine biosynthesis pathway (72).  The other paper used lymphoblastoid cells, 

which they ultimately found to be unsuitable for use in QTL mapping (73).  In the 

latter study, their determination that lymphoblastoid cells are not suitable is of 

concern because the HapMap project is comprised mostly of this cell type.  

 

1.6.2  Total Body Distribution Animal Studies 

Only two total body distribution studies have been identified which use 

cisplatin. These studies performed with mice or dogs use radiolabeled cisplatin or 

measured total platinum by atomic absorption spectroscopy and have shown the 

highest concentration of cisplatin in the kidney (74, 75).  This is not surprising 

because of the nephrotoxicities that have been observed during treatment, as well 

as the kidney being the major excretory organ for this compound.  However, in these 

studies high amounts of cisplatin were also observed in the liver, even though no 

significant liver toxicity was reported (74, 75).  This may be due to the high 

concentration of glutathione and other thiols in the liver, which may bind cisplatin as 

a mechanism of detoxification.  There were also measureable levels of platinum 

found in other tissues, including the gastrointestinal tract.  

 

1.6.3  Clinical Studies---Pharmacogenetics 

Variability of individuals in the toxicity and efficacy of chemotherapeutic 

agents has been observed in the clinic (76-78).  Dr. Haider Ali, under the direction of 
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Dr. David Threadgill, has developed a model to study these phenomena using a 

panel of 8 strains of inbred mice and 7 chemotherapeutic agents, one of which is 

cisplatin.  Accurate quantification of Pt-DNA adducts is needed to understand the 

relationship between adduct accumulation and gene expression.  As mentioned in 

the previous section, animal distribution studies show the highest concentration of 

cisplatin in the kidney, show high levels in the liver and were able to detect some 

platinum in the gastrointestinal tract.  Therefore in our study, we have used liver, 

colon and kidney of the same murine strains to determine the molecular dosimetry of 

intrastrand CP-d(GpG) cross links.  The ultimate goal being to directly correlate the 

burden of Pt-d(GpG) adducts in tissues using our assay to the gene expression data 

previously obtained using the same study design.  This comparison will allow the 

discrimination between species-to-species differences in DNA damage response 

and in biodistribution of cisplatin. 

 

1.7  OBJECTIVE OF DISSERTATION RESEARCH 

Platinum chemotherapeutics are used in the treatment of lymphoma, ovarian 

carcinoma, breast and colorectal cancer.  Cisplatin is an effective anti-cancer agent.   

However, its use is hindered by adverse effects and the development of resistance.  

The mode of action for the efficacy and adverse effects are poorly understood.  

Cisplatin is known to bind to cellular nucleophiles, such as DNA and proteins.  

Binding to DNA results in the formation of intra- and interstrand cross links, which 

are repaired to some extent by nucleotide excision repair.  The goal of this work is to 
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study the role of cisplatin-DNA intrastrand cross links in acquired resistance and 

different genetic profiles.  

The 1,2 guanine-guanine intrastrand adduct is the most prevalent adduct 

formed when DNA is reacted with cisplatin.  Many studies have examined the role of 

cisplatin adducts upon toxicity, however the methods available often measured total 

platinum instead of directly quantifying individual adducts.  Furthermore, these 

methods required more sensitivity to enable data collection during experiments that 

utilize moderate to low doses of cisplatin.  Our hypothesis is that the density of 

intrastrand CP-d(GpG) cross links will serve as a useful biomarker for efficacy and/or 

toxicity of cisplatin. 

 

1.7.1  Specific Aims 

1. To develop an ultra sensitive and specific mass spectrometry method for 

characterization and quantification of the cisplatin 1,2 d(GpG) intrastrand adduct. 

2.  To determine the relationship between acquired resistance and formation and 

persistence of the CP-d(GpG) adducts using sensitive (A2780) and resistant (CP70) 

ovarian carcinoma cell lines. 

3.  To determine the density of CP-d(GpG) adducts in kidneys, livers, and colons 

obtained from eight strains of inbred mice.  
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FIGURES 

 

 

Figure 1.1 

Chemical Structure of Cisplatin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26

Figure 1.2 

Platinum-DNA Cross Links of Cisplatin. 
Underlined bases indicate bound cisplatin.  
 

1,2 Intrastrand GG [CP-d(GpG)] 
          TTAGGTCTCT 

AATCCAGAGT 
 
 

1,2 Intrastrand AG [CP-d(ApG)] 
TCTAGTTCTA 
 AGATCAAGAT 

 
 

1,3 Intrastrand GG (CP-GNG) 
TCTGTGCAAC 
AGACACGTTG 

 
 

Interstrand GG (dG-CP-dG) 
TTGATCATAT 
AACTTGTATA 
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CHAPTER 2 

 

DEVELOPMENT OF AN ULTRA PERFORMANCE LC/MS METHOD TO QUANTIFY 
CISPLATIN 1,2 INTRASTRAND GUANINE-GUANINE ADDUCTS 

 

This paper has been published and therefore is reproduced with permission 

from [Baskerville-Abraham IM, Boysen G, Troutman JM, Mutlu E, Collins L, deKrafft 

KE, Lin W, King C, Chaney SG, Swenberg JA. Development of an Ultra 

Performance LC/MS Method to Quantify Cisplatin 1,2 Intrastrand Guanine-Guanine 

Adducts. Chem. Res. Toxicol. Article ASAP, DOI: 10.1021/tx800481j]  Copyright 

[2009] American Chemical Society.  All method development, adduct quantification 

and cell culture experiments mentioned herein were performed by Irene M. 

Baskerville-Abraham.  

 

2.1  Abstract 

Platinum chemotherapeutic agents have been widely used in the treatment of 

cancer.  Cisplatin was the first of the platinum based chemotherapeutic agents and 

therefore has been extensively studied as an anti-tumor agent since the late 1960s. 

Because this agent forms several DNA adducts, a highly sensitive and specific 

quantitative assay is needed to correlate the molecular dose of individual adducts 

with the effects of treatment.  An ultra performance liquid chromatography tandem 

mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine 
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intrastrand cisplatin adducts [CP-d(GpG)], using 15N10 CP-d(GpG) as an internal 

standard, was developed.  The internal standard was characterized by MS/MS and 

its concentration was validated by ICP-MS.  Samples containing CP-d(GpG) in DNA 

were purified by enzyme hydrolysis , centrifugal filtration and HPLC with         

fraction collection prior to quantification by UPLC-MS/MS  in the selective reaction 

monitoring (SRM) mode (m/z 412.5 248.1 for CP-d(GpG); m/z 417.5 253.1 for 

[15N10] CP-d(GpG)).  Recovery of standards was >90% and quantification was 

unaffected by increasing concentrations of calf thymus DNA.  This method utilizes 

25 µg of DNA per injection.  The limit of quantification was 3 fmol or 3.7 adducts per 

108 nucleotides, which approaches the sensitivity of the 32P postlabeling method for 

this adduct.  These data suggested that this method is suitable for in vitro and in vivo 

assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. 

Subsequently the method was applied to studies using ovarian carcinoma cell lines 

and C57BL/6J mice to illustrate that this method is capable of quantifying CP-

d(GpG) adducts using biologically relevant systems and doses. The development of 

biomarkers to determine tissue-specific molecular dosimetry during treatment will 

lead to a more complete understanding of both therapeutic and adverse effects of 

cisplatin and carboplatin.  This will support the refinement of therapeutic regimes 

and appropriate individualized treatment protocols. 

 

2.2  Introduction 

Platinum chemotherapeutics are used in the treatment of many types of 

cancer including breast, ovarian carcinoma, colorectal and metastatic cancers. The 
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first generation of platinum chemotherapeutics, cis-diamminedichloroplatinum II 

(cisplatin), is an effective treatment for several cancers.  The anticancer activity of 

cisplatin is attributed in part to the formation of inter- and intrastrand cross links in 

DNA, which inhibit gene transcription and DNA replication, thereby blocking protein 

synthesis and cell proliferation (1-3).  Unfortunately, cisplatin treatments have been 

accompanied by several side effects, such as neuropathy, gastrointestinal and renal 

toxicity. Recently, capacity for repair of cisplatin adducts has been linked to the 

severity of peripheral neuropathy in patients (4). Additionally, the development of 

cisplatin resistance prevents its use in some cancer patients.   

Cisplatin is an inorganic compound in which the platinum atom is bound to 

two amine groups and has two chloride leaving groups.  Cisplatin undergoes a non-

enzymatic conversion in physiologic solutions to active derivatives via displacement 

of chloride leaving groups (5). The activated cisplatin binds to DNA forming mono 

adducts, which ultimately form inter- and intrastrand cross linking DNA adducts.    

The cisplatin derived 1,2 guanine-guanine intrastrand [CP-d(GpG)] cross links are 

the most prevalent, compromising ~65% of the adducts formed in vivo (5-8). Since 

DNA adducts are excellent biomarkers for internal dose, many researchers have 

attempted to evaluate the role of Pt-DNA adducts in vivo.   Common methods used 

to measure Pt-DNA adducts include antibody probes, 32P postlabeling, atomic 

absorption and mass spectrometry.  Unfortunately, antibody based assays are prone 

to false positives due to cross reactivity and have a non-linear responses (9-11) and 

32P postlabeling methods, while able to detect as little as 0.087 fmol adduct per µg 

DNA, are labor intensive, utilize radioactivity and both methods do not provide 
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structural confirmation of adducts (12,13).  Atomic absorption spectroscopy 

measures total platinum, but lacks sufficient sensitivity for routine clinical application 

(14-18). Inductively coupled plasma mass spectrometry (ICP-MS) also measures 

total platinum with higher sensitivity, allowing application to clinical samples. One 

group has reported an ability to approach the sensitivity of the 32P postlabelling 

method using ICP-MS. However, they further reported that this level of sensitivity 

cannot be obtained with the addition of HPLC speciation, which is necessary for 

quantification of the individual, adducts. (19). Previously, a capillary HPLC-ICP-MS 

method was reported to measure CP-d(GpG) adducts specifically; this method 

reported a LOQ of ~ 1 adduct per 106 nucleotides, which is insufficient to measure 

samples treated with <500 µM cisplatin. (20).  Reported in the literature are 

mutagenesis assays with <10 µM cisplatin; therefore, greater sensitivity is needed to 

ensure direct comparisons of the formation and/or persistence of individual cisplatin 

adducts and the induction of mutations. LC-MS provides structural confirmation of 

the DNA adducts, without extensive labor or the use of radioactivity.  There are 

some reports of LC-MS methods for platinum-DNA intrastrand adducts; however, 

each published report lacks an internal standard, which is essential for accurate and 

reproducible quantification (21,22).  

Our method utilizes an internal standard and approaches the sensitivity of the 

32P postlabeling method with a limit of quantification (LOQ) of 0.12 fmol CP-d(GpG) 

per µg DNA or 3.7 adducts per 108 nucleotides, requiring only 25 µg of DNA on 

column.  To advance the understanding of the formation and distribution of cisplatin 

DNA lesions in vitro and in vivo, we report the development of a highly sensitive 
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stable isotope dilution mass spectrometry method for the accurate quantification of 

CP-d(GpG) cross links. 

 

2.3  Experimental Procedures 

Caution: Cisplatin is carcinogenic and should thus be handled in an approved 

laboratory fume hood, and personal protective equipment (i.e., gloves and lab coat) 

should be worn.  

 

2.3.1  Chemicals    

Unless otherwise stated, all chemicals and enzymes were purchased from 

Sigma-Aldrich (St. Louis, MO).  All solvents were HPLC grade and were purchased 

from Fisher Scientific (Pittsburgh, PA), along with Gentra PureGene components for 

DNA isolation.   The unlabeled oligonucleotide was prepared by Operon (Huntsville, 

Alabama). The heavy labeled oligonucleotide used in the synthesis of the internal 

standard was made by Silantes GmbH (Munich, Germany).  Reagents for cell 

culture studies were purchased from GIBCO Invitrogen (Carlsbad, California), with 

the exception of the Fetal Bovine Serum, which was purchased from Sigma-Aldrich 

(St. Louis, MO).   

 

2.3.2 Preparation of CP-d(GpG) Analyte Standard  

 An analyte standard was synthesized for optimization and standardization 

during method development.  All platination reactions were carried out with 40 mM 

aquated derivatives of the platinum complex obtained by overnight stirring in the 
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dark at room temperature of a solution containing cisplatin and 1.98 equivalents of 

silver nitrate.  Solution was then filtered through a 0.2 µm Gelman Acrodisk CR 

PTFE syringe filter (Fisher), and 10 µL aliquots stored at -80° C.  Immediately before 

each experiment, an aliquot of cisplatin solution was thawed at 50° C for 10 min and 

diluted (1:40 volume ratio) with HPLC water, taking care to avoid light exposure. 

Diluted aquated cisplatin and 2'-deoxyguanylyl (3',5')-2'-deoxyguanosine (4:1 molar 

ratio) were incubated at 37° C for 24 h. 

HPLC clean-up was performed using an Agilent 1100 HPLC with a 

Phenomenex Clarity 3µ Oligo-RP (100x4.6mm) column and a Hewlett Packard 

1040A photodiode array detector.  A gradient of 100 mM triethylamine acetate 

(TEAA) (Buffer A1) and 100% methanol (Buffer B) was operated at 1 mL/min, 

starting at 0% B with linear increases to 30% B by 15 min and 70% B by 16 min, 

followed by a decrease to 0% B by 17 min and a 3 min column re-equilibration. All 

peaks thought to contain cisplatin cross links were collected and aliquots were 

characterized by UV on a Thermo BioMate 5.  Standards were quantified using the 

extinction coefficient for d(GpG) (ε260=21, 600) (23,24). The stock solutions were 

stored in 10 mM ammonium acetate pH 4 at -20° C. Dilutions of the stock were 

made in 10 mM ammonium acetate for MS analyte standard curves.  

Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to 

confirm the concentration of standards that had been estimated from the UV 

absorbance and extinction coefficient.  Samples of 10 to 96 pmol, as measured by 

UV, were diluted to 4 mL in 2% nitric acid in HPLC water for measurement by ICP-

MS.   
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The analytical standards were characterized by LC-MS as follows:  a 

Phenomenex Luna 3µ C18(2) column (2.0x150 mm) was operated using a linear 

gradient of 10 mM ammonium acetate plus 0.1% acetic acid (pH 4.5) (Buffer A2) to 

50% methanol (Buffer B) over 28 min and returning to 0% methanol at 30 min. The 

positive and negative full scan electrospray mass spectra (m/z 100-1000) were 

acquired on a Finnigan TSQDeca ion trap mass spectrometer.  

 

2.3.3 Preparation of 15N10 CP-d(GpG) Internal Standard 

An internal standard was synthesized to ensure accurate and precise 

quantification of cisplatin adducts.  To determine appropriate ratios of incubation 

times for platination, an unlabeled oligonucleotide was purchased from Operon with 

the sequence ACTGGTCATGGTACTGGT. Once optimal conditions were 

established, Silantes was contracted to synthesize a 15N fully labeled oligonucleotide 

of the same sequence.  15N labeling was confirmed by mass spectrometry after 

enzymatic hydrolysis.  This 15N labeled oligo was rehydrated in HPLC water for a 

final concentration of 0.55 nmol /µL.  To make the internal standard, 60 nM of the 

oligo was reacted with aquated cisplatin in HPLC water utilizing a drug to oligo molar 

ratio of 24:1 at 37 °C for 72 h in the dark.  

To separate the adducted nucleotide from the surrounding unmodified 

nucleosides, the samples next underwent an enzymatic hydrolysis based upon the 

method previously reported by Eastman (25).  Briefly, 50 µg aliquots of platinated 

oligo, 320 µL of 50mM sodium acetate/10mM magnesium chloride and 0.02 kunitz 

unit of DNase I were incubated for 4h at 37 °C, next 2 units of nuclease P1 were 
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added and incubation continued for 16-20h. Finally 41µL 1M Tris-HCl pH 9 and 5 

units alkaline phosphatase were added and incubation continued for 4h, followed by 

Microcon-3 spin columns (Millipore) to remove enzymes. All incubations were 

performed in the dark. Sample enrichment and characterization were performed as 

described above for the analyte CP-d(GpG). After concentration was determined by 

UV and confirmed by ICP-MS, 500 µL aliquots containing 100 fmol per µL in buffer 

A2 were stored at -80° C for use as internal standard (Table 1).   

 

2.3.4 Platination and Preparation of Calf Thymus DNA 

 Calf thymus DNA (ctDNA) was used to validate the UPLC-MS/MS method.  

Sigma ctDNA was rehydrated to 1 mg/mL aliquots and stored at -20° C.  ctDNA (150 

µg) was reacted with 100 nM aquated cisplatin and brought to a total volume of 1mL 

in deionized H2O at 37 °C for 24 h.  DNA was enzymatically digested in the same 

manner as the internal standard.  Because of the increased number of samples, 

solid phase extraction columns were initially used for sample enrichment instead of 

HPLC.  

Solid phase extraction (SPE) clean-up was performed using both strong 

cation exchange (SCX) and C18 columns. After enzymatic hydrolysis, samples were 

adjusted to pH 3 by the addition of 0.8 vol 50 mM HCl.  Next, LiChrolut SCX columns 

(VWR) were placed on a vacuum manifold, conditioned with two additions each of 1 

mL water, 1 mL methanol, and 1 mL water, and then equilibrated with 1 mL 50 mM 

Tris HCl pH 3.  The samples were applied to the columns, which were then washed 

four times with 2 mL 5 mM sodium formate pH 6.  Platinated adducts were then 
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eluted with two additions of 0.5 mL 250 mM ammonium hydroxide.  To remove salt 

prior to MS analysis, Maxi-Clean 300 mg C18 cartridges (Alltech) were utilized. First, 

the eluent was adjusted to pH 7 by addition of 130 µL 50 mM HCl.  Next, the C18 

cartridges were conditioned and equilibrated using two additions of  2 mL water, 2 

mL methanol, 2 mL 10 mM ammonium acetate.  The pH adjusted sample was then 

applied to the column, which was washed with three additions of 2 mL 10 mM 

ammonium acetate. Platinum adducts were eluted with two additions of 0.5 mL 10 

mM ammonium acetate in 50% methanol.  After solid phase extraction, enriched 

samples were dried via centrifugal lyophilization.  Samples were rehydrated using 10 

mM ammonium acetate pH 4 in 10% methanol, placed in vials for analysis, dried 

once again by centrifugal lyophilization and finally brought to identical running 

volumes through the addition of 40 µL 10 mM ammonium acetate pH 4.  Samples 

were then either stored at -80° C or immediately placed in the MS injector tray to 

begin adduct quantification.  During method development, we found that the CP-

d(GpG) adduct is most stable under specific conditions.  Unsuccessful attempts 

were made to perform loop injections using purified CP-d(GpG) with water and 

methanol as buffers.  It was ultimately determined that CP-d(GpG) was the most 

stable with a salt containing buffer at a between pH 4-4.5.  We achieved this using 

10mM ammonium acetate with 0.1% glacial acetic acid in place of water as a 

storage and running buffer.  Because of limited recovery during SPE (~20%), it was 

determined that HPLC with fraction collection was more suitable for sample 

purification after enzyme hydrolysis.   The changes in pH and multiple buffers 

required the use of strong cation exchange SPE followed by a C18 cartridge to 
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remove sodium salt prior to MS quantification. This may have affected the stability of 

the adduct, thereby reducing the overall recovery by SPE. 

 CP-d(GpG) was purified from DNA hydrolysate by HPLC fractionation utilizing 

an Agilent 1200 system consisting of a G1312B binary pump SL, a G1379B 

degasser, a G1316B thermostatted column compartment SL, a G1215C diode array 

SL, a G1367C/G1330B thermostatted high performance autosampler SL, and a 

G1364C/G1220B analytical scale fraction collector to separate adducts from 

unmodified nucleosides.  Therefore, a Phenomenex Clarity 3µ Oligo-RP (100x4.6 

mm) column, 10 mM ammonium acetate in 0.1% glacial acetic acid (Buffer A2) and 

methanol (Buffer B) were operated with a linear gradient for 30% B over 20 min, 

then to 70% B in 2 min and finally decreasing 0% B in 1 min and re-equilibration for 

2 min prior to the next injection.  Fractions containing platinum adducts were 

collected from 6.85 min to 8.85 min. Fractions were dried via centrifugal 

lyophilization and rehydrated using a mix of 50/50 Buffer A2 and B, placed in MS 

vials, and once again dried by centrifugal lyophilzation. Samples were either stored 

at -20° C or immediately rehydrated in 40 µL Buffer A2 for UPLC tandem mass 

spectrometric analysis.   

 

2.3.5 UPLC-MS/MS Method 

Quantitative LC-MS/MS data were obtained using a Waters Acquity UPLC 

coupled to a Thermo Finnigan TSQ Quantum Ultra triple-quadrupole mass 

spectrometer.  A heated electrospray ionization (HESI) interface was operated in 

positive ionization mode.   The analyzer was operated in selective reaction 
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monitoring (SRM) mode, monitoring the loss of phosphate, two deoxyriboses and 2 

amines from CP-d(GpG) (m/z 412.5 to 248.1, z=2) and [15N5]-CP-d(GpG) IS (m/z 

417.5 to 253.1, z=2). Samples were kept at 4° C during analysis, and the sample 

injection volume was 20 µL. An HSS T3 (2.1 mm x 100 mm; 1.8 µm) UPLC column 

(Waters) was conditioned with aqueous 0.1% glacial acetic acid (A3) and methanol 

(B) at a flow rate of 200 µL/min.  Cisplatin adducts were eluted with a linear gradient 

of 1-10% B over 10 min, then to 50% B in 1 min, followed by a 3 min re-equilibration 

at 1% B.  The LC flow was diverted to waste for the first 4 min of the gradient.  

Instrument conditions were optimized for maximum signal of CP-d(GpG) by direct 

infusion and on column injections of analyte standard.  MS settings were as follows: 

electrospray voltage ( 3000 V), capillary temperature (285 °C), HESI temperature 

(250 °C), sheath and auxiliary gas pressures (35 and 30 arbitrary units), collision 

energy ( 25 V), and Q2 collision gas pressure (1.5 mTorr).  

 

2.3.6  Quantification 

Analyte standard or 50 µg of platinated DNA was spiked with 500 fmol of 

Internal Standard and enzymatically hydrolyzed as described in the analyte standard 

section.  Samples were then processed by solid phase extraction columns or HPLC 

and prepared for MS quantification as described in the calf thymus DNA section. 

 

2.3.7  Inductively Coupled Plasma Mass Spectrometry 

Aliquots of analyte and/or internal standard using 10 to 96 pmol CP-d(GpG) 

were brought to a final volume of 4 mL in 2% nitric acid.  A Varian 820-MS 
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Inductively Coupled Plasma-Mass Spectrometer was used to determine Pt 

concentration.  Samples were introduced via a concentric glass nebulizer with a free 

aspiration rate of 0.4 mL/min, a Peltier-cooled double pass glass spray chamber, 

and a quartz torch.  A peristaltic pump carried samples from a SPS3 autosampler 

(Varian) to the nebulizer.  All standards and samples were in 2% nitric acid, 

prepared with milliQ water.  Prior to each experiment, optimization of the 

instrument’s operating parameters was performed using a tuning solution 

(Spectropure, Arlington, TX) diluted to 5 ppb each of Ba, Be, Ce, Co, In, Pb, Mg, Tl, 

and Th.  Ion optics and plasma parameters were optimized to maximize sensitivity 

while minimizing interferences.  Pt standards were prepared by serial dilution of a 

solution containing 10 ppm Pt (Inorganic Ventures Inc., Lakewood, NJ).  A four-point 

calibration curve was made over a concentration range of 0.5-8 ppb Pt.  The two 

most abundant isotopes of Pt were monitored, 194Pt (33.0% abundance) and 195Pt 

(33.8% abundance).  A 200 ppb dilution of the tuning solution was used for 

monitoring 115In as the internal standard.  Data acquisition was done using peak 

hopping with a dwell time of 50 ms, one point per peak, 20 scans/replicate, and five 

replicates per sample.   

 

2.3.8  Treatment of Ovarian Carcinoma Cells 

Human ovarian carcinoma cell lines A2780 and A2780/CP70 were graciously 

provided by Dr. Thomas C. Hamilton (Fox Chase Cancer Center). The parent cell 

line A2780 is sensitive to cisplatin, while the A2780/CP70 line exhibits stable 

cisplatin resistance developed from chronic exposure to increasing concentrations of 
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cisplatin as described previously (26). Cells were maintained as monolayers in RPMI 

1640 medium supplemented with 10% fetal bovine serum (heat inactivated), 2 µM L-

glutamine, insulin (0.25 units/mL), penicillin (100 units/mL), streptomycin (100 

µg/mL), and amphotericin B (0.25 µg/mL) at 37° C and 5% CO2.   

 In both the dose-response and time-course studies, 2 x 106 cells were plated 

in T175 flasks and allowed to grow for three days.  The growth medium was 

removed and cells were rinsed twice with PBS before serum-free medium plus 12.5-

250 µM cisplatin or PBS was applied.  After 1 h incubation, the cisplatin-containing 

medium was removed and the cells for the dose response were trypsinized and 

collected.  Cells for the time-course assay were rinsed with PBS and complete 

medium reapplied for an additional 3 or 7 h before trypsinization and collection.  

DNA was isolated from cells with the Gentra PureGene cell kit, as recommended by 

the manufacturer. 

 

2.3.9  Study Conditions for C57BL/6J Mice 

Male C57BL/6J mice (n=3) were injected i.p. with 7 mg/kg cisplatin.  On days 

1 and 3 after injection, the mice were euthanized by carbon dioxide anoxia; portions 

of the kidney, liver, and colon were snap-frozen and stored in a –80° C freezer, after 

removing sections for histopathology.  Numerical scale of histology scoring and 

description is as follows:  0= absent or no significant lesions (NSL), 1= Minimal 

lesions (<5%), 2= Mild lesions (5-25%), 3= Moderate lesions (25-50%), 4= 

Marked/severe lesions (>50%). 
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We used the FDA’s dose calculator (http://www.fda.gov/cder/cancer/animalframe.htm) 

to better understand how the cisplatin dose in our mouse study (7 mg/kg) relates to 

a low human dose (50 mg/m2) received in the clinic.  Using an adult mouse weighing 

20 g, the total dose at 7 mg/kg cisplatin received would be 0.14 mg, which is equal 

to 21.11 mg/m2.  Conversely, a dose of 50 mg/m2 would require 0.33 mg or 16.58 

mg/kg. 

 

2.3.10  DNA Isolation from Tissues 

DNA was extracted using Gentra PureGene kit reagents with a significantly 

modified protocol. Because of reduced amount of colon tissue available for 

processing, all volumes in the procedure below were reduced by half when isolating 

DNA from this tissue.  Briefly, frozen kidney (400 mg), liver (400 mg) or colon tissue 

(150 mg) were thawed in 6 mL ice-cold phosphate-buffered saline (PBS, pH 7.4). 

The tissue samples were homogenized with a Tehran homogenizer (Wheaton 

Instruments, Millville, NJ). After centrifugation at 1000 g for 15 min, the pellet was 

washed with 6 mL homogenization buffer. The nuclear fraction was collected by 

centrifugation and was reconstituted in 6 mL cell lysis buffer. Proteinase K (400 

U/mL, 150 μL) was added to the sample and incubated overnight at 4° C.  The 

following morning, samples were placed on ice. Proteins were then extracted by the 

addition of 2 mL protein precipitation solution followed by centrifugation at 2000 g for 

10 min and the collection of the supernatant. Nucleic acids were precipitated from 

the supernatant using 6 mL isopropanol. The nucleic acids were collected by 

centrifugation, rinsed with 6 mL of 70% ethanol, and allowed to air dry.  The nucleic 
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acid pellet was reconstituted in 6 mL cell lysis solution supplemented with RNAse A 

(0.8 KeU/mL, 27 µL) to digest RNA.  After 30 min incubation at 37° C, another 

protein precipitation was performed and supernatant collected.  DNA was 

precipitated using 6 mL isopropanol, collected by centrifugation and rinsed with 70% 

ethanol.  The DNA was resuspended in 400 µL HPLC grade water and its 

concentration and purity estimated by UV spectrometry. The DNA solution was 

stored at –80° C until CP-d(GpG) adduct analysis.  

 

2.4  Results 

2.4.1  Characterization of the CP-d(GpG) Analyte Standard 

The cisplatin 1,2 intrastrand guanine-guanine adduct (CP-dGpG) was 

characterized by UV and MS. Analyte standards were examined for purity after 

synthesis using full scan and SRM MS to ensure correct derivatization of our 

compound. Quantification of adducts was performed using a Waters Acquity UPLC 

coupled to a Thermo Finnigan TSQ Quantum Ultra MS.  Standard curves using the 

synthesized analyte and internal standards were run using the UPLC-MS/MS 

method shown in Scheme 2.1. 

Negative and positive ionization efficiencies were evaluated because CP-

d(GpG) adducts exist in solution as zwitterions caused by the negative phosphate 

and positive amine groups. The examination showed better ionization in the positive 

ion mode.  Also a platinum specific isotopic cluster consisting of 5 (2 major and 3 

minor) isotopes aided product identification (Figure 2.1). The MS/MS scans were 

originally performed in the positive ionization mode using several transitions to 
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account for the loss of the dRibpdRib moiety as well as one or two amines ([M-

dRibpdRib-NH2]+ or [M-dRibpdRib-2NH2]+ ) in both its singlet (m/1 824.0 to 513.1 or 

497.2) and doublet (m/2 412.5 to 256.5 or 248.1) states.  Figure 2.2 shows a 

representative chromatogram in which we measured both the singlet and doublet 

charge states.  Through the comparison of peak areas, it was determined that 

MS/MS quantification of the CP-d(GpG) adducts was most sensitive using the 

doublet charge state.  Additionally, the optimal fragmentation involved the loss 

dRibpdRib and two amines ([M-dRibpdRib-2NH2]+ ;analyte m/z 412.5 to 248.1).   

 

2.4.2  Synthesis and Characterization of 15N CP-d(GpG) Internal Standard 

An unlabeled oligonucleotide with identical sequence to the 15N labeled 

oligonucleotide was used in the determination of platination efficiency (as confirmed 

by 32P gels, data not shown) to ensure optimal synthesis of final 15N CP-dGpG 

adducts. Next, the internal standard was characterized in the same manner as the 

analyte. Figure 2.3 shows a positive MS full scan of the unlabeled internal standard 

after digestion and SPE clean-up.  After conditions of adduct synthesis had been 

optimized the 15N CP-d(GpG) internal standard was prepared accordingly. As 

expected, the internal standard was most sensitive in the doubly charged state 

(internal standard m/z=417.5) and shares the same optimal fragmentation as the 

analyte ([M-dRibpdRib-2NH2]+; internal standard m/z=417.5 to 253.1). 
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2.4.3  Method Accuracy and Precision 

A calibration curve was run using various concentrations of analyte standards 

and constant amount of 500 fmol internal standard.  Method precision was first 

assessed by processing four replicates of known concentrations of analyte standard 

by solid phase extraction.  Intraday precision (r2=0.99) was determined using 0, 5, 

10, 50, 100 fmol CP-d(GpG). Interpreparation precision (r2=0.99) was determined 

using replicates processed on separate days and run by MS on different days.  

Interday precision (r2=0.99) was determined using replicates processed on the same 

day and run by MS on different days. The limit of detection (LOD) was determined 

using solution of authentic standard CP-d(GpG).  The limit of detection with a signal 

to noise of >2 was 1 fmol CP-d(GpG)  per injection, therefore the limit of 

quantification (LOQ) was set to be 3 times the limit of detection (3 fmol CP-d(GpG) 

per injection) with a signal to noise of >6. Initially, UV measurements were used to 

determine the concentration of the analyte and internal standard.  ICP-MS was used 

to validate the platinum adduct concentration obtained by UV. Final standard 

concentrations were adjusted by a factor of 1.3 based upon ICP-MS data.  Table 2.1 

shows a comparison of the data obtained by each method. To determine the effect 

of DNA concentration on the quantification of CP-d(GpG), 0-200 µg calf thymus DNA 

was added to samples containing 100 fmol analyte and 500 fmol internal standard, 

and processed through the method. No effect of DNA concentration on the 

quantification of CP-d(GpG) was observed (data not shown).  Recovery experiments 

were also performed using 35, 140, and 700 fmol analyte standard when using the 

SPE sample enrichment process vs. no SPE enrichment.  Sample recovery with 
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SPE enrichment was ~20%, data not shown.  Later additional recovery experiments 

were performed using analyte standard prepared using HPLC with fraction collection 

vs. no HPLC enrichment.  Sample recovery increased to   > 90%, data not shown. 

 

2.4.4  Quantification of CP-d(GpG) in Calf Thymus DNA 

This method was validated using platinated calf thymus DNA that was diluted 

with blank calf thymus DNA.  Aliquots of 0, 25, 50, and 100 µg platinated calf thymus 

DNA were placed in eppendorf tubes with 500 fmol internal standard and the 

corresponding amounts of blank calf thymus DNA was added to bring the total 

amount per tube to 100 µg.  These samples were processed through the hydrolysis 

method using HPLC clean-up and total adducts were quantified by UPLC-MS/MS.  

As expected, a linear response was observed (Figure 2.4). 

 

2.4.5  Dose Response of Cisplatin Adducts in Ovarian Carcinoma Cells 

An isogenic pair of ovarian carcinoma cell lines (A2780 and CP70) which 

were originally created to mimic the process of acquired cisplatin resistance was 

used in our validated assay.  We observed a two fold difference between the 

sensitive A2780 and resistant CP70 cell lines, which was in line with previous 

estimates of relative adduct amounts in those two cell lines  (Figure 2.5)(27). 

 

2.4.6  Determination of CP-d(GpG) Adducts in Mouse Tissues 

The C57BL/6J mouse strain was used to demonstrate CP-d(GpG) 

accumulation in vivo after an i.p. injection with 7 mg/kg cisplatin.  Three days post 



 53

injection, the greatest amount of adducts were observed in the kidney, followed by 

the liver and colon (Table 2.2). In the same mice, histopathology slides of the kidney 

showed marked tubular nephrosis/apoptosis with moderate tubular 

vacuolation/degeneration, while the liver showed moderate centrilobular fatty change 

and the colon showed minimal crypt cell necrosis/apoptosis (Table 2.3). 

 

2.5  Discussion 

2.5.1  Method Development and Validation 

During the development of this method it was necessary to modify the sample 

clean-up procedure after enzymatic hydrolysis from solid phase extraction to HPLC.  

SPE was preferred because it allowed for a higher throughput processing of 

samples, and allowed several types of platinated adducts to be collected 

simultaneously.  However, increased recovery was important when considering our 

limit of detection as well as the reduced amount of adduct that may be formed when 

studying lower and biologically relevant doses of cisplatin.  Changing the method to 

utilize an HPLC clean-up with an autosampler and fraction collector, increased 

recovery from 20% to >90%.   

Atomic absorption has often been used to determine total platinum adduct 

levels in both in vitro and in vivo studies. ICP-MS, which like atomic absorption 

measures total platinum, has been reported to be more sensitive than atomic 

absorption (19). The oligonucleotide used for the synthesis of the internal standard 

was designed to form only the CP-d(GpG) adduct, unlike in vivo where other 

adducts such as CP-d(ApG) may also be formed during DNA platination.  To 
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validate the concentration of analyte and internal standard used in our assay, ICP-

MS was employed.  Using normal conditions, the lowest amount of CP-d(GpG) that 

could be measured was  11.3 pmol or 0.6 ppb Pt resulting in a relative standard 

deviation (RSD) of 5.6%.  To decrease error, 42.2 pmol or 2.1 ppb Pt was necessary 

for the RSD to decrease to 1.9%. Thus, we feel that 2.1 ppb represents the lower 

level for precise determination of CP-d(GpG) by ICP-MS.   

A capillary LC-MS/MS method for CP-d(GpG) adduct quantification was 

previously developed in our laboratory, which utilized an internal standard with a 

chemical structure close to, but not identical to that of the CP-d(GpG) adduct.  While 

it allowed the use of 10-fold less DNA than atomic absorption, the limit of 

quantification for this method was 3 pmol. Therefore, sensitivity needed to be 

improved 20- to 25- fold to determine the levels of platinum adducts in cell culture at 

physiologically relevant doses of cisplatin. Our current method has increased 

sensitivity by 1000-fold with a limit of quantification of 3 fmol.  The use of UPLC-

MS/MS in the SRM mode, coupled with the utilization of a chemically identical stable 

isotope internal standard, provides a higher level of specificity and accuracy of 

quantification than previous methods.    

 

2.5.2  Quantification of CP-d(GpG) in vitro and in vivo 

The method was applied to measure the formation of CP-d(GpG) in treated 

calf thymus DNA, as well as the accumulation of CP-d(GpG) adducts in ovarian 

carcinoma  cell lines (A2780, CP70) and in mice.  In treated calf thymus samples 

diluted with blank calf thymus DNA, a linear response was observed as expected.  
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Consequently, a study using an in vitro cell culture model allowed further insight as 

to whether this method could be used to determine CP-d(GpG) adducts at 

biologically relevant concentrations of cisplatin.  

The cisplatin sensitive A2780 and resistant CP70 cell lines had been shown 

to have a two-fold difference in adduct formation, but this determination was 

obtained when treated with >250 µM cisplatin (27), because previous methods were 

unable to measure specific platinum adducts at more biologically relevant levels of 

cisplatin and/or doses that allowed cells to continue to proliferate.  Investigators 

have commonly used adduct data obtained using toxic, but not necessarily 

pharmacologically relevant doses of cisplatin, and have assumed a linear 

relationship when making their conclusions.   The present UPLC-MS/MS method 

allowed analysis of CP-d(GpG) at more pharmacologically relevant doses and has 

shown that the dose response relationship remains linear at these lower doses of 

cisplatin.   

The studies were then extended to the analysis of CP-d(GpG) adduct levels 

in C57BL/6J mice that had received i.p. injections of  7 mg/kg, which is  ~21 mg/m2 

cisplatin.  Histopathology of the kidney, liver and colon showed treatment related 

effects and the method was able to quantify CP-d(GpG) adducts formed in those 

tissues on days 1 and 3. Reed et al. reported up to 0.248 fmol per microgram 

cisplatin intrastrand adducts [CP-d(GpG) and CP-d(ApG)] in blood samples obtained 

from testicular cancer patients which had been treated with 40mg/m2 cisplatin for 5 

days (28). If we assume that 75% of these adducts are CP-d(GpG) based upon the 

ratios of total cisplatin DNA adducts as reported by Fichtinger-Schepman we would 
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be able to quantify most of these adducts using our method (8).  More recently, 

Brouwers et al used ICP-MS to determine platinum levels in DNA extracts of 

peripheral blood cells from gastric cancer patients treated with 60 mg/m2 cisplatin 

during a 4 h infusion.  They were able to detect 0.182-16.6 fmol platinum per 

microgram DNA (19,29).  When measuring these same samples using 32P-

postlabelling they found 0.161-14.1 fmol CP-d(GpG) and 0-1.78 fmol CP-d(ApG) 

adducts per microgram DNA.  Together these data would suggest that our method 

would be able to quantify adducts in tissues obtained from patients undergoing 

cisplatin based chemotherapy. Recently, several groups have been using systems 

biology and functional genomics to gain information about inter-individual differences 

in drug toxicity (30-32). Studies are currently underway to link our DNA adduct 

results in mice with phenotypic anchoring of genomic data across multiple strains of 

mice. 

 

2.5.3  UPLC-MS/MS Method 

Cisplatin is an effective treatment for cancer, however due to neuropathy, 

gastrointestinal and renal toxicity, research has been performed to make less toxic 

analogues. One analogue, carboplatin, has more tolerable toxicity and has been 

shown to be comparable therapeutically in some cancers, while cisplatin was 

therapeutically superior in others (33). Because of the decreased toxicities, 

carboplatin is currently more commonly used in chemotherapeutic regimes. Both 

cisplatin and carboplatin bind to DNA and ultimately form chemically identical DNA 
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cross links.   Therefore, this assay can be used to detect the 1,2 guanine-guanine 

adducts formed by either compound.   

The 1,2 intrastrand guanine-guanine and adenine-guanine adducts comprise 

over 90% of the total adducts formed by cisplatin exposure (8,34). This method can 

also be expanded to include quantification of the 1,2 adenine-guanine adduct. 

However, this method is not suitable for the measurement of all cisplatin DNA 

adducts.  For instance, the 1,3 intrastrand guanine-guanine adduct and the 

interstrand guanine-guanine adduct once separated from the DNA backbone cannot 

be differentiated by mass spectrometry and therefore a different methodology would 

be needed for those adducts.  

In summary, the presented UPLC-MS/MS method has a limit of quantification 

of 0.12 fmol CP-d(GpG) per µg DNA or 3.7 adducts per 108 nucleotides.  This level 

of sensitivity approaches or equals that of 32P-postlabeling methods (13,35).  We 

have shown that we are able to measure adducts formed in vitro and in vivo at 

doses of cisplatin that are more relevant for use during biological studies of cisplatin 

instead of high dose toxicity studies previously required for adduct quantitation. As 

mentioned in the introduction, there have been several other methods developed to 

measure platinum-DNA adducts.  None of the previously published methods 

included an internal standard. During our studies we utilized 500 fmol IS based on 

our initial method development and cell culture studies, at which time in vivo adduct 

values were not certain.   In future clinical studies lower IS amounts could be used.  

Our internal standard has an identical chemical structure to our analyte of interest 

and differs by 10 mass units because of the stable isotope labeling of the guanines. 
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The use of an internal standard is necessary to correct for error that can be caused 

during sample preparation or due to differences in equipment sensitivity between 

runs.  Our method is the first to use a stable isotope labeled internal standard for 

mass spectrometric quantification of cisplatin-DNA adducts.   
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FIGURES 

 

 

 

 

 

 

 

Figure 2.1 MS Isotope Simulation of CP-d(GpG) 

There are three major masses for this adduct due to isotopes. 
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Figure 2.2   Representative SRM Ion Chromatograms comparing the Use of Singly 
(m/1) vs. Doubly (m/2) Charged State  

 
Representative SRM ion chromatograms comparing the use of singly (m/1) vs. 
doubly (m/2) charged state during MS/MS analysis of CP-d(GpG) analyte (A and B) 
and internal standards (C and D).  A and C show MS/MS fragmentation in the singly 
charged state, while B and D show MS/MS fragmentation in the doubly charged 
state.  The chromatogram has been cropped as no other quantifiable peaks are 
observed. 
 



 61

 

 

 

 

450 500 550 600 650 700 750 800 850

m/z

807.1

497.2

513.1

708.1

824.0

100

80

70

60

50

40

30

20

10

0

R
el

at
iv

e 
A

bu
nd

an
ce

 [%
]

m/z 807

m/z 513, 497

[M+H]+= 824

m/z 708

m/z 807

m/z 513, 497

[M+H]+= 824

m/z 708

450 500 550 600 650 700 750 800 850

m/z

807.1

497.2

513.1

708.1

824.0

100

80

70

60

50

40

30

20

10

0

R
el

at
iv

e 
A

bu
nd

an
ce

 [%
]

100

80

70

60

50

40

30

20

10

0

100

80

70

60

50

40

30

20

10

0

R
el

at
iv

e 
A

bu
nd

an
ce

 [%
]

m/z 807

m/z 513, 497

[M+H]+= 824

m/z 708

m/z 807

m/z 513, 497

[M+H]+= 824

m/z 708

 

 

Figure 2.3   Full scan positive ion MS spectrum m/z 450 – 850  
 
Full scan positive ion MS spectrum m/z 450 – 850 showing the in source 
fragmentation of CP-d(GpG).  The main ions observed were [M-NH2]+ m/z 807.1, [M- 
dRibpdRib-NH2]+ m/z 497.2, [M- dRibpdRib]+ m/z 513.1, and [M-deoxyribose]+ m/z 
708.1. All fragment ions contained the Pt characteristic isotopic profile.  
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                                    SCHEMES 

 

 

 

 

 

 
Scheme 2.1   Preparation and quantification of CP-d(GpG) adducts by UPLC-

MS/MS.   
 

Cisplatin treated DNA is isolated.   Next, internal standard is added and enzyme 
hydrolysis is performed.  Following hydrolysis, solid phase extraction or HPLC 
enrichment separates the platinated adduct from nucleosides, enzymes and 
sodium salts.  Finally, the CP-d(GpG) adduct is quantified by UPLC-MS/MS. 
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TABLES 

 

 

 

 

 

          
  pmol CP-d(GpG) ppb Pt pmol CP-d(GpG) ICP-MS 

Sample 
type [UV] ICP-MS [ICP-MS]  %RSD 
IS 13 0.7 13.2 5.5 

AS 1 9.6 0.6 11.3 5.6 
AS 2 57.6 2.1 42.2 1.9 
AS 3 96 3.5 72.6 1.5 

  *n=3    
 

Table 2.1  Validation of Standard Concentrations by UV and ICP-MS.  
 

Samples were prepared in triplicate for ICP-MS I n 2% nitric acid based upon 
initial UV concentrations. 
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BL6 1 

(fmol/ µg DNA) 
BL6 2 

(fmol/ µg DNA) 
BL6 3 

(fmol/ µg DNA) 
Average 

(fmol/ µg DNA) 

Kidney 53 57 67 59±7 
Liver 21 22 16 20±3 
Colon 3 6 5 5±2 

 

Table 2.2  Quantification of CP-d(GpG) in C57BL/6J mice Three Days post i.p. 
injection of 7mg/kg Cisplatin 
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  BL6 1 BL6 2 BL6 3 
Liver    
 - hepatic necrosis 0 0 0 
 - centrilobular fatty change 3 3 2 
 - inflammation 0 0 0 
Colon    
 - crypt necrosis/apoptosis 1 1 1 
Kidney    
 - tubular nephrosis/apoptosis 4 4 3 
 - tubular vacuolation/degeneration 3 3 2 
 - tubular mineralization 2 0 2 
 - inflammation  0 0 0 

                              0 = absent or no significant lesions 
                              1= minimal lesions 
                              2= mild lesions 
                              3= moderate lesions 
                              4= marked lesions 

 

Table 2.3  Histopathology of C57BL/6J Mice Three Days post i.p. injection of 7mg/kg 
Cisplatin 
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CHAPTER 3 

STRAIN DIFFERENCES IN TOXICITY AND MOLECULAR DOSIMETRY 
FOLLOWING CISPLATIN ADMINISTRATION TO MICE 

 

3.1  Introduction 

Cisplatin was approved for clinical use in the late 1970s and remains an 

efficacious chemotherapeutic agent.  However, it does not work for every person or 

for every cancer.  Some patients who undergo platinum-based chemotherapy have 

intrinsic or acquired resistance to treatment.  Several of the hypotheses regarding 

the development of resistance to cisplatin chemotherapy have been discussed in the 

introduction of this thesis.  Our goal for this study was to evaluate strain differences 

in cisplatin toxicity and molecular dose of cisplatin adducts using the UPLC-MS/MS 

biomarker developed in Chapter 2.  In this way we can use CP-d(GpG) as a 

biomarker to determine the molecular dose of cisplatin adducts, allowing us to 

distinguish  between strain differences in which genetics affects sensitivity to Pt-DNA 

adducts from strain-related differences in the pharmacokinetics and 

pharmacodynamics of cisplatin.  Information about CP-d(GpG) adduct burden in 

specific tissues and strains may be essential for interpretation of gene expression 

studies aimed at ultimately identifying a phenotypic marker for cisplatin sensitivity.  

This information coupled with quantitative trait loci mapping and the sequencing of 

the human genome, could provide valuable information about why some individuals 
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are more responsive to platinum based chemotherapy and ultimately help 

researchers to design more individualized therapies for patients.   

 Because there has been variability in observed toxicity and efficacy of 

chemotherapeutic agents when used in the clinic, the major goal of 

pharmacogenomics is to develop individualized therapies for patients.  Dr. Haider 

Sayed Ali, under the direction of Dr. David Threadgill, developed a model to study 

these phenomena using a panel of 8 strains of inbred mice and 7 chemotherapeutic 

agents, one of which was cisplatin.  Evaluations of gene expression profiling using 

RNA from the liver and colon of each strain have been completed.  The gene 

expression study did not include an evaluation of the kidney, histopathology or 

molecular dosimetry endpoints.  The UPLC-HESI-MS/MS method to quantitate CP-

d(GpG) adducts was applied to DNA from tissues of these eight inbred strains of 

mice to gain further understanding of the relationships between adduct accumulation 

and toxicity.   

Previous tissue distribution studies used radiolabeled cisplatin or measured 

total platinum by atomic absorption spectroscopy and have shown the highest 

concentration of cisplatin in the kidney (1,2).  This is not surprising because of the 

nephrotoxicities that have been observed during treatment in the clinic, as well as 

the kidney being the major excretory organ for this compound.  High amounts of 

cisplatin were also observed in the liver, even though no significant liver toxicity was 

reported (1,2).  This may be due to the high concentration of glutathione and other 

thiols in the liver, which may bind cisplatin as a mechanism of detoxification.  Anti-

neoplastic agents such as cisplatin can also cause toxicity in the gastrointestinal 
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tract due to the rapid turnover of cells in this region.  A few studies have reported 

toxicity and/or the formation of cisplatin adducts in the intestine after cisplatin 

treatment (2-4).  Intestinal damage can be tracked through the observation of 

reduction in crypt cell survival as shown in Rebillard et al (4).   Measureable 

concentrations of platinum have also been found in the gastrointestinal tract during 

body distribution studies in rodents and dogs after cisplatin treatment (1, 2). Due to 

the presence of platinum or adducts, coupled with the nephro and gastrointestinal 

related toxicities, we chose to use liver, colon and kidney of the same murine strains 

to determine the molecular dosimetry of intrastrand CP-d(GpG) cross links.  Here we 

evaluate whether the CP-d(GpG) adducts were a suitable biomarker for toxicity, as 

determined by histopathology.  

  

3.2  Materials and Methods 

3.2.1  Study Conditions 

Male inbred mice of eight different strains (FVB/NJ, C3H/HEJ, 129S1/SvImJ, 

A/J, BALB/CJ, C57BL/6J, BTBR T+ TF/J and DBA/2J ; n=3) were injected i.p. with 7 

mg/kg cisplatin by Dr. Haider Ali.  The use of inbred mice in this study allows each 

strain to genetically represent one individual. On days 1 and 3 after injection, the 

mice were euthanized by carbon dioxide anoxia; portions of the kidney, liver, and 

colon were snap-frozen and stored in a –80° C freezer, after removing sections for 

histopathology.  Numerical scale of histology scoring and description was as follows:  
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0= absent or no significant lesions (NSL), 1= minimal lesions (<5%), 2= mild lesions 

(5-25%), 3= moderate lesions (25-50%), 4= marked/severe lesions (>50%). 

We used the FDA’s dose calculator1 to compare the cisplatin dose in our 

mouse study (7 mg/kg) to a low human dose (50 mg/m2) received in the clinic.  

Using an adult mouse weighing 20 g, the total dose at 7 mg/kg cisplatin received 

would be 0.14 mg, which is equal to 21.11 mg/m2 in humans.  Conversely, a dose of 

50 mg/m2 would require 0.33 mg or 16.58 mg/kg in mice. 

 

3.2.2  DNA Isolation from Tissues 

DNA was extracted from frozen kidney (400mg), liver (400mg) or colon tissue 

(150mg) using Gentra PureGene reagents with a modified protocol, as described in 

Chapter 2. Because of reduced amount of colon tissue available for processing, all 

volumes in the procedure were reduced by half when isolating DNA from this tissue.  

The DNA solution was stored at –80° C until CP-d(GpG) adduct analysis. 

 

3.2.3  UPLC-MS/MS Method   

Quantitative LC/MS/MS data were obtained using a Waters Acquity UPLC 

coupled to a Thermo Finnigan TSQ Quantum Ultra triple-quadrupole mass 

spectrometer.  A heated electrospray ionization (HESI) interface was operated in 

positive ionization mode.  The analyzer was operated in single reaction monitoring 
                                                        
1http://www.fda.gov/cder/cancer/animalframe.htm 
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(SRM) mode, monitoring the loss of phosphate, two deoxyriboses and 2 amines 

from CP-d(GpG) (m/z 412.5 to 248, z=2) and [15N5]-CP-d(GpG) IS (m/z 417.5 to 253, 

z=2). Samples were kept at 4° C during analysis, and the sample injection volume 

was 20 µL. An HSS T3 (2.1 mm x 100 mm; 1.8 µm) UPLC column (Waters) was 

conditioned with aqueous 0.1% glacial acetic acid (A3) and methanol (B) at a flow 

rate of 200 µL/min.  Cisplatin adducts were eluted with a linear gradient of 1-10% B 

over 10 min, then to 50% B in 1 min, followed by a 3 min re-equilibration at 1% B.  

The LC flow was diverted to waste for the first 4 min of the gradient.  Instrument 

conditions were optimized for maximum signal of CP-d(GpG) by direct infusion and 

on column injections of analyte standard.  MS settings were as follows: electrospray 

voltage (3000 V), capillary temperature (285 °C), HESI temperature (250 °C), sheath 

and auxiliary gas pressures (35 and 30 arbitrary units), collision energy (25 V), and 

Q2 collision gas pressure (1.5 mTorr).  

 

3.2.4  Quantification 

50 µg of platinated murine DNA from each mouse tissue was spiked with 500 

fmol of Internal Standard.  Next, to separate the adducted nucleotide from the 

surrounding unmodified nucleosides, the samples underwent an enzymatic 

hydrolysis based upon the method previously reported by Eastman (5) as described 

in Chapter 2.  The samples were transferred to MS vials, dried by centrifugal 

lyophilzation and rehydrated in 100 µl 10 mM ammonium acetate in 0.1% glacial 

acetic acid (Buffer A2).  CP-d(GpG) was purified from DNA hydrolysate by HPLC 
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fractionation as described in Chapter 2. Samples were either stored at -20° C or 

immediately rehydrated in 40 µL Buffer A2 for UPLC tandem mass spectrometric 

analysis.   

 

3.3  Results 

3.3.1  Distribution of CP-d(GpG) Adducts in Eight Inbred Mouse Strains 

In two experiments, the trend for distribution of CP-d(GpG) was kidney 

>liver>colon across all strains (Figures 3.1-3.3).  Because the range of overall 

adduct levels in the kidney of the different strains ranged from 5-60 fmol CP-d(GpG) 

per ug DNA in the 1st experiment and 8-27 fmol CP-d(GpG) per ug DNA in the 2nd 

experiment we analyzed the data further to gain a better understanding of the 

apparent variability.  Statistics was performed to identify any significance of CP-

d(GpG) molecular dosimetry by strain, tissue or days after dosing.  An ANOVA for 

each experiment showed a strain and tissue related significance for the first 

experiment (C57BL/6J p=0.0001, DBA/2J p=0.002, kidney p=0.0001, liver p=0.003) 

and a tissue but no strain related significance for the second experiment (kidney 

p=0.0001 and liver p=0.03). 

Due to small numbers of animals and differences between experiments 1 and 

2, limited conclusions can be drawn. In terms of increased or decreased total CP-

d(GpG) adducts by tissue and strain for experiment 2 as compared to experiment 1, 

we see the following trends in Figure 3.3.  For C57BL/6J and DBA/2J, the adduct 

levels were lower in the second experiment for both day 1 and day 3 and for every 
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organ studied.  For FVB/NJ and 129S1/SvImJ, the adduct levels were higher in the 

colon in the second experiment for both day 1 and 3, while other tissues had no 

change.  While for C3H/HEJ, A/J and BALB/CJ mice the results were mixed. 

Next examining the data to determine within an experiment the increase or 

decrease in CP-d(GpG) from day 1 to 3, we observe the following trends.  For 

FVB/NJ mice, the kidney was found to increase in both experiments.  C3H/HEJ 

mice, had a decrease in liver adducts in the first experiment.  A/J mice, had an 

increase in colon adducts in the second experiment.  BALB/CJ mice, experienced a 

decrease in kidney and liver adducts in the first experiment, while the colon adducts 

increased in the second experiment.  C57BL/6J mice had an increase in kidney 

adducts in the second experiment.  Finally, DBA/2J mice had an increase in colon 

adducts in the first experiment.  Otherwise, there were no observed changes in CP-

d(GpG) adducts from day 1 to 3, in either experiment.   

  It is important to note that the colon specimens from FVB/NJ, C3H/HEJ, 

129S1/SvImJ, A/J, and BALB/CJ that were collected with experiment 1 were 

processed together with the tissues from experiment 2.  This knowledge, added to 

the data summarized above as well as the overall colon tissue concentrations of CP-

d(GpG) as shown in Figure 3.3.3 suggests that the variability observed between 

experiments is likely due to either a change in the dosing solution or mouse colony’s 

treatment of a pinworm infestation during the 1st experiment, not in our methodology 

for adduct determination as described in Chapter 2.   
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3.3.2  Histological Observations 

Tables 3.1 and 3.2 contain the cumulative histology scores for all strains in 

each experiment. Figure 3.4 compares histology lesions to concentration of CP-

d(GpG) adducts on day three of both experiments, while Figure 3.5 shows histology 

examples of controls and observed kidney and colon damage caused by cisplatin 

treatment.  The terms and total scores per group used to describe the severity of 

histological lesions in this section are: 0=no significant lesions (NSL), 1-3=minimal 

lesions (<5%), 4-6=mild lesions (5-25%), 7-9=moderate lesions (25-50%), 10-

12=marked lesions (>50%). 

Control animal tissues were only collected for histology during the second 

experiment.  Overall scoring of slides was similar in both experiments, but with 

stronger kidney effects observed in the 2nd experiment.  One exception to this was 

DBA/2J mice which had less overall damage in the 2nd experiment.  However, all 

strains in both experiments showed evidence of nephrotoxicity on day 3.  Another 

difference in histology between the two experiments was the presence of minimal 

liver lesions in the C3H/HEJ mice on day 1 and moderate liver lesions due to 

centrilobular fatty change in the C57BL/6J mice on day three of the first experiment.  

Otherwise the liver had no lesions associated with treatment in either experiment on 

either day.  Because there was minimal toxicity observed in the liver due to 

treatment the following paragraphs will be limited to descriptions of the kidney and 

colon histology.    

In the first experiment (Table 3.1), only three strains showed any significant 

kidney lesions related to treatment 24 hours after dosing. On day one, the 
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129S1/SvImJ, C57BL/6J had minimal lesions due to tubular 

vacuolation/degeneration, BTBR T+ TF/J mice had minimal lesions due to 

apoptosis/necrosis, while DBA/2J mice developed mild kidney lesions due to tubular 

vacuolation/degeneration.  By day three, all strains had developed a minimal to 

moderate level of kidney lesions due to apoptosis/necrosis with some instances of 

tubular vacuolation/degeneration and in each case the severity of lesions had 

increased from the level observed on day 1.  Three strains (A/J, C3H/HEJ, FVB/NJ) 

had minimal apoptotic/necrotic lesions, two (129S1/SvImJ, BALB/CJ) mild 

apoptotic/necrotic lesions and 3 (C57BL/6J, BTBR T+ TF/J, DBA/2J ) moderate 

apoptotic/necrotic lesions with some tubular vacuolation/degeneration.  In 

experiment two (Table 3.2) histologic changes due to treatment were observed for 

the DBA/2J mice at a minimal level on day 1 for the kidney due to tubular 

vacuolation/degeneration, none of the other strains showed any significant kidney 

lesions on day one.  By day three all strains had mild to moderate severity of kidney 

apoptotic/necrotic lesions, with three strains (129S1/SvImJ, A/J, BALB/CJ) showing 

minimal tubular mineralization.  One strain (129S1/SvImJ) had moderate 

apoptotic/necrotic lesions with mild tubular vacuolation/degeneration and minimal 

tubular mineralization, one strain (C57BL/6J) had marked apoptotic/necrotic lesions 

while all other strains had mild apoptotic/necrotic kidney lesions.  Comparing the two 

experiments to one another in terms of kidney lesions, a lower severity was 

observed in experiment two on day 1, however on this day in both experiments 

DBA/2J mice had the greatest damage.  If we then compare the two experiments on 

day three, we see that in experiment one there was less severe kidney damage 
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overall and that only the strain with the greatest severity of kidney lesions 

(C57BL/6J) also has the most severe lesions in experiment two. Control kidneys for 

experiment two showed no significant lesions.   

In the colon on day one of the first experiment, four strains (129S1/SvImJ, 

BALB/CJ, BTBR T+ TF/J, DBA/2J) had minimal apoptotic/necrotic lesions and four 

strains (A/J, C57BL/6J, C3H/HEJ, FVB/NJ) had mild apoptotic/necrotic lesions.  By 

day three, two strains (A/J, FVB/NJ) remained mild; all others had minimal colon 

apoptotic/necrotic lesions.  On day one of the second experiment, one strain 

(C57BL/6J) was mild while all others had minimal apoptotic/necrotic lesions.  By day 

three, two strains (A/J, FVB/NJ) were mild and all others had minimal 

apoptotic/necrotic lesions.  Comparing the severity of these lesions across 

experiments, we see that on day three the A/J and FVB/NJ mice had mild 

apoptotic/necrotic colon lesions in both experiments while all other strains were 

minimally affected.  In experiment one we see two strains (C57BL/6J, C3H/HEJ) 

decrease in severity from day one to three while all others maintain their level of 

severity.  In experiment two we see one strain (C57BL/6J) decrease and two strains 

(A/J, FVB/NJ) increase in severity from day one to three while all others maintain 

their level of severity.  There was an observable increase in lesions on day 1 

compared to controls in the colon of all strains, except FVB/NJ.  A/J, C57BL/6J and 

FVB/NJ appeared to be the most sensitive to colon lesions in both experiments. All 

observed colon lesions were diagnosed as necrosis or apoptosis in the crypt. No 

lesions were apparent in the villi. In control colons, one strain (FVB/NJ) showed 

minimal lesions; all others had no significant lesions.  
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3.4  Discussion 

Histology endpoints of apoptosis/necrosis (all tissues) and tubular 

vacuolation/degeneration (kidney) were important aspects of our study because they 

allowed observation of differences in the toxicity and concentration of platinum 

adducts. While adducts were observed to be highest in the most damaged tissue, no 

overall correlation could be found between increased/decreased histological lesions 

and changes in adduct distribution (Figure 3.4).  Furthermore, there was 

considerable variability between experiments.  Therefore, the data from the two 

experiments could not be combined to increase the sample size. Because colon 

DNA of most strains (excluding C57BL/6J and DBA/2J) from the first experiment 

were processed and quantified with the tissues obtained for the second experiment, 

the observed variability does not appear to be with the UPLC-MS/MS assay.  It is 

possible that the variability comes from some factor associated with the dosing of 

the animals.  Several important issues were identified that need to be considered in 

future studies.   

 This study design contained several confounders that affect the analysis of 

the results. First, because the dose was given by i.p. injection, we cannot be sure of 

the actual dose received by the mice.  One study shows error rates of 11-12% when 

a trained professional performs a one man i.p. injection, due to misplaced injections 

that were most often partly injected into the lumen of the intestine (6).  Second, 

during necropsy we noticed that the mice in the second experiment appeared much 

sicker than those from the first experiment.  Also, one mouse died and several were 

close to death by day three in the 2nd experiment.  The histology slides also show 
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more apoptosis/necrosis in the 2nd experiment than the first.  One variable that 

changed from the first experiment to the second was the stock solution of cisplatin 

used for dosing.  The first experiment used cisplatin that had been used previously 

for the dosing of the mice for the gene expression study, while in the second 

experiment a new solution of cisplatin was prepared. Therefore, there may have 

been differences in the preparation of the stock solution for each mouse experiment, 

which could have affected the potency of the cisplatin solutions. Based upon our 

histology data, the newer cisplatin may have been more potent than the cisplatin 

used in dosing the 1st experiment, leading to the observed increased toxicity in the 

2nd experiment which manifested as more apoptosis and necrosis.   

What is poorly understood is the lower molecular dose of the DNA cross links 

in the second experiment. One possible explanation could be the increased cell loss 

due to necrosis, resulting in less adduct being available for quantification in the 

tissues. This explanation would not, however, be the case for liver, as necrosis was 

minor in that tissue. Dosing solution preparation and animal dosing was not 

performed in or by our laboratory.  Therefore, another explanation could be that 

changes in stock solution preparation led to differences in relative amounts of intact 

and aquated cisplatin in the first and second stock solutions, which would affect the 

percent platinum incorporation into cellular DNA and protein.   Jones et al has shown 

aquated cisplatin to be 3 times as nephrotoxic as cisplatin itself in rats (7). In his 

experiments, the aquated form of cisplatin was prepared by placing cisplatin in 

water, which was then allowed to stand at room temperature for two weeks.  Since 

the dosing solution used for the first experiment was what remained from previous 
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dosing of animals for the gene expression study, these conditions could have been 

unknowingly reproduced.  For the second experiment, the previous stock dosing 

solution was gone.  Therefore, new cisplatin was ordered and a new solution made 

immediately before dosing.  This by itself could have caused a greater formation of 

aquated cisplatin, leading to the greater amount of DNA adducts in the first 

experiment. Alternatively, preparation of the cisplatin in a saline and then non-saline 

solution could cause similar differences.    

 One factor unrelated to dosing that may have affected the study was the 

infestation of pinworms in the mouse facility during the first experiment. It is possible 

that the medication given to eradicate the outbreak affected the interaction of 

cisplatin in those mice. In this case, the pinworm treatment may have protected 

against kidney toxicity, while increasing overall adduct formation.  When examining 

this possibility, it is also possible that the pinworm treatment caused the liver toxicity 

observed in the first experiment, as no liver toxicity occurred in the second 

experiment. 

With all of this taken into account, based upon both the histology and CP-

d(GpG) data obtained in these experiments, the C57BL/6J mice appear to be the 

most sensitive and FVB/NJ least sensitive with respect to the adduct burden and 

toxicity in the kidney. It is possible that formation and/or repair of CP-d(GpG) 

adducts could be strain specific.  But due to the lack of correlation of adduct 

formation between our two experiments, we are unable to conclusively make such a 

determination. Furthermore, because of the lack of correlation between 

histopathology and adduct burden, it is possible that the CP-d(GpG) adduct may not 
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be the adduct driving toxicity. Since the highly toxic interstrand cross links have been 

primarily linked to cytotoxicity in dividing cells, it is more likely that the primary 

adducts resulting in kidney toxicity are Pt-protein or Pt-membrane lesions (8).  

However, it is also possible with a more carefully designed study that the CP-d(GpG) 

adduct burden and histology would correlate.  

We could find no consistent difference in adduct concentration for day 1 

versus day 3. In some strains adducts increased, while in others adduct levels 

decreased with time. This is of concern because one would expect a decrease in 

platinum DNA adducts between days one and three due to repair and cell death.  

This study does offer the first reported measurement of CP-d(GpG) adducts in the 

kidney, liver and colon of mice. While our method was able to detect adducts in all 

tissues of all strains, with an n=3 statistical outliers could not be eliminated, therefore 

a larger sample size will be necessary to confirm if observed trends are significant in 

either experiment. For greater statistical power the sample size for a study of this 

type should be at least 6 or optimally 9 mice per group. Additionally because of the 

confounders noted in this report, dosimetry, histology and gene expression studies 

should all be done in a single experiment.  

 Our newly developed method for the quantification of CP-d(GpG) 

adducts was sensitive enough to measure adducts formed using biologically relevant 

doses of cisplatin.  In this study, the dose of cisplatin given is equivalent to ~21 

mg/m2
, which is less than half of a typical clinical low dose of cisplatin.  Using the 

molecular dosimetry of these adducts in the kidney we have found the C57BL/6J 

and 129S1/SvImJ strains to be most sensitive and the FVB/NJ strain to be the least 
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sensitive.  However, these designations did not match histopathology scoring. If we 

had been able to use our biomarker to identify sensitive and resistant strains of 

mice, we could have begun looking at the previously obtained gene expression data 

for genes that match the trends observed with the adduct data. Such a correlation 

between adduct burden and gene expression, might have allowed researchers to 

discriminate between species-species differences in DNA damage response and in 

the biodistribution of cisplatin. One confounder to using the previously obtained gene 

expression data is that the kidney was not one of the organs collected for gene 

expression analysis. Because of the nephrotoxic actions of cisplatin, this tissue 

should be included in future combined molecular dosimetry/gene array studies of 

cisplatin. Future genomic studies can be performed to search for haplotypes or gene 

expression patterns that may be associated with cisplatin-sensitive or resistant 

phenotypes.   

A study of this nature has been shown to be of use in understanding 

acetaminophen toxicity.  Heinloth et al. showed gene expression perturbations at 

subtoxic doses of acetaminophen that may have indicated low level cellular injury in 

the liver that was not detected by histopathology or clinical chemistry (9).  When they 

increased the dose of acetaminophen to a toxic level the same genes showed a 

more exaggerated response, leading to the belief that gene expression profiling can 

be used to identify markers of low level cellular injury. Another study used oxidative 

stress biomarkers to provide phenotypic anchors for gene expression profiling of 

acetaminophen-induced oxidative stress (10).  
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In our case, the profiling could be used to detect markers that precede the 

development of resistance to cisplatin treatment.  For the best ultimate translation of 

this and future mouse studies to the clinic, a larger sample size is required to ensure 

proper identification of alleles and a definite phenotypic classification.  Additionally, 

because of the inconsistencies between our experiments we conclude that 

phenotypic markers must be determined using the same animals for both 

biomarkers and gene expression and using larger numbers of animals per group. To 

reduce the size of a study that would follow our suggested model, one could focus 

upon the strains found to be most sensitive (C57BL/6J) and resistant (FVB/NJ) to 

cisplatin kidney toxicity in our experiments.  Because the mode of action for cisplatin 

is not well understood, a complex system of cellular molecular pathways is likely to 

be playing a role in an individual’s response to cisplatin-based chemotherapy.  With 

properly designed pharmacogenomic studies combined with systems biology, 

individualized medicine is on the horizon. However, it is also clear that a high degree 

of consistency must be required in the dosing and evaluation of endpoints.   
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Figure 3.5  Kidney histology slide pictures. 

The top panel contains an example of control kidney shown at multiple 
magnifications.  The bottom panel contains representative slides showing 
each level of damage observed in our study.   1=minimal lesions; 2=mild 
lesions; 3=moderate lesions; 4= marked lesions 
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. 

Figure 3.6  Colon histology slide pictures 

The top panel shows an example of control colon at multiple magnifications. 
The bottom panel contains representative slides showing each level of 
damage observed in our study.   1=minimal lesions; 2=mild lesions  
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TABLES 

 

Tissue Time 
in 

days 

129S1/ 
SvImJ 

A/J BALB/ 
cJ 

C57BL/ 
6J 

BTBR 
T+ 

TF/J 

C3H/ 
HEJ 

DBA/ 
2J  

FVB/ 
NJ 

1  0,1c 0 0 0,2a,3c 1 0 0,6c 0 

K
id

ne
y 

3 5 3 5 9,2c,4d 9 3 3,8c 1,2c 

1 0 1* 0 0, 2a 2* 1 0 0 

Li
ve

r 

3 0 0 0 0, 8b 6* 0 2* 2* 

1 3 4 2 6 3 4 3 4 

Se
pt

em
be

r H
is

to
lo

gy
 S

co
re

s 

C
ol

on
 

3 3 5 3 3 3 3 3 4 

n=3; *= time of death or unrelated to treatment; a= lymphocytes/plasma cells chronic lesion not 
related to treatment; b=centrilobular fatty change; c= tubular vacuolation/degeneration; d= tubular 
mineralization 

 

Table 3.1  Histopathology scoring of September (1st) cisplatin mouse experiment. 

Scores are reported here as the composite of three animals individual histology 
scores.  Description of numerical score is as follows: 0= absent of no significant 
lesions, 1-3=minimal lesions (<5%), 4-6=mild lesions (5-25%), 7-9=moderate lesions 
(25-50%), 10-12=marked/severe lesions (>50%).  In the above table, the first 
number refers to necrosis/apoptosis in tissue and following number(s) indicate other 
damage as indicated by superscript letters.  
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n=3; *= time of death or unrelated to treatment; a= lymphocytes/plasma cells chronic lesion not 
related to treatment; b=centrilobular fatty change; c= tubular vacuolation/degeneration; d= tubular 
mineralization; ± = only one section of colon on histology slide for one animal;  # = autolysis of one 
animal’s tissue 

 

Table 3.2  Histopathology scoring of December (2nd) cisplatin mouse experiment. 

Scores are reported here as the composite of three animals’ individual histology 
scores.  Time in days of 0 is for control animals.  Description of numerical score is as 
follows: 0= absent of no significant lesions, 1-3=minimal lesions (<5%), 4-6=mild 
lesions (5-25%), 7-9=moderate lesions (25-50%), 10-12=marked/severe lesions 
(>50%).  In the above table, the first number refers to necrosis/apoptosis in tissue 
and following number(s) indicate other damage as indicated by superscript letters.  
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

We have developed a sensitive and specific method to quantify cisplatin 1,2 

guanine-guanine intrastrand cross links by tandem mass spectrometry.  The 

sensitivity of this method is comparable to the 32P postlabeling method, which was 

the most sensitive method for the quantification of individual cisplatin derived 

adducts. None of the previously published methods included an internal standard. 

The use of an internal standard is necessary to correct for error that can be caused 

during sample preparation or due to differences in equipment sensitivity between 

runs.  Our method has the benefit of an internal standard, provides structural 

confirmation of adducts, and does not require the use of radioactivity.  Both cisplatin 

and carboplatin form chemically identical platinum adducts, therefore this assay can 

be used to detect the Pt-d(GpG) adduct for both agents.  Important advances and 

conclusions gained during the development of our method are summarized in the 

following list. 

1. Our method is the first to use a stable isotope-labeled internal standard 

during mass spectrometric quantification of cisplatin-DNA adducts. 

2. Our method has a limit of quantification (LOQ) of 0.12 fmol CP-d(GpG) per 

µg DNA or 3.7 adducts per 108 nucleotides, requiring only 25 µg of DNA on 

column. 
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3. We have shown that we are able to measure adducts formed in vitro and in 

vivo at biologically relevant doses of cisplatin.   

As discussed in Chapter 2, studies using peripheral blood cells of humans 

treated with cisplatin detected up to 0.25 fmol cisplatin intrastrand adducts per µg 

DNA in patients with testicular cancer and 0.16-14.1 fmol CP-d(GpG) per µg DNA in 

patients with gastric cancer (1,2). CP-d(GpG) adduct levels have been reported 

using 32P postlabeling to be 4-5 times higher in primary head and neck squamous 

cell carcinoma (HNSCC) tumors than in peripheral blood cells or buccal cells 

obtained after intravenous or intraarterial administration of 100-150 mg/m2 cisplatin 

(3). Therefore, our limit of quantification should be sufficient to measure cisplatin 

guanine-guanine adducts as a surrogate marker of dose using peripheral blood cells 

or directly in biopsied samples in a clinical setting. This highly sensitive and specific 

method could then be utilized in clinical studies to monitor adduct levels to provide a 

better understanding of cisplatin detoxification prior to Pt-DNA adduct formation and 

cisplatin-DNA adduct repair.  Clinical samples that could be measured by this 

method include lymphocytes, buccal cells, and other tissues obtained during biopsy 

from patients which have received either cisplatin or carboplatin therapy.  

Furthermore, with some modifications this method could be used also to quantify the 

Pt-d(ApG) adduct, allowing the detection of ~95% of all formed platinum adducts.  

In our mouse study using ~21 mg/m2 cisplatin, we were able to measure 

adducts one and three days after dosing.  A normal clinical dose of cisplatin is 50-

100 mg/m2, which suggests that we would be able to detect adducts several days 

after treatment in tissues of patients treated with cisplatin or carboplatin therapy. 
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Using our newly developed UPLC-MS/MS method, we determined the molecular 

dosimetry of cisplatin intrastrand guanine-guanine adducts after 24 and 72 hours in 

the kidney, liver and colon.  The literature shows that platinum levels are the highest 

in the tumor, kidney, and liver following treatment. Since these studies measured 

total platinum, we were interested in measuring the CP-d(GpG) to see whether the 

kidney or the liver was the most affected site.   

As we show in chapter 3, the molecular dosimetry data obtained were 

analyzed to determine if there was a strain, tissue or time point at which there was a 

significant increase or decrease in CP-d(GpG) adduct concentration. Using these 

characteristics, our initial plans were to identify cisplatin sensitive and resistant 

phenotypes which would ultimately be used to search the microarray data for 

affected genes.  The correlation of the aforementioned cisplatin dosimetry with gene 

expression data could provide insight about genes or polymorphisms in the human 

population that may cause a cancer patient to be sensitive or resistant to cisplatin 

treatment.  In the following paragraphs, we will use our experiences from this 

research to suggest ways to appropriately design and implement combined 

dosimetry and gene expression studies, which will provide better data to allow these 

correlations.  This knowledge one day could allow patients undergo genetic testing 

prior to treatment that would determine the optimal therapies for that individual.   

Because our first molecular dosimetry study had a small sample size (n=3) 

another study of the same size was performed to strengthen our data.  However, 

there was considerable variability between the two molecular dosimetry studies.  

Therefore, the data from the studies could not be combined to increase our sampling 
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size. Because of confounding factors such as, mice in the 1st study undergoing 

treatment for a pinworm infestation and fresh cisplatin used for the 2nd but not the 1st 

study, it is difficult to make direct comparisons of Pt-DNA adduct levels and histology 

data between the studies. The range of overall adduct levels in the kidney, the most 

affected tissue, of the different strains was 5-60 fmol CP-d(GpG) per µg DNA in the 

1st study and 8-27 fmol CP-d(GpG) per µg DNA in the 2nd study. Furthermore, the 

levels of organ toxicity observed through histopathology analysis were different 

within strains between studies.  These factors taken together invalidate the use of 

the current dosimetry data set for correlation with the microarray data, in which 

pooled RNA was obtained from a different set of animals.  

Another study with a larger number of animals of similar age and weight, and 

the use of verified dosing solutions would provide a more consistent and reliable 

data set for analysis. Likewise, the optimal design for a study involving both 

microarray and molecular dosimetry data collection would include the use of the 

same set of animals; this would ensure that increases or decreased observed in the 

array data would be directly comparable to cisplatin adduct molecular dosimetry.  

Also, since it is common practice for those employing microarray techniques to pool 

RNA to ensure an appropriate amount for analysis, for this type of study DNA from 

the same animals should also be pooled to ensure data will later be directly 

comparable. It should be noted that we have shown that the UPLC-MS/MS method 

has enough sensitivity to quantitate adducts from individual mice in tissues such as 

the colon from which a limited amount (<100 µg) of DNA can be isolated.  The time 

points in the microarray study of 1, 3 and 7 days after dosing were selected based 
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on a colon cancer model and the time it takes cells to go from “the crypt to the tip”.  

By the 7th day of treatment, the colon crypt cells would have been shed from the villi 

and the repair of CP-d(GpG) adducts in the kidney and liver was expected to be 

complete.  Also, preliminary data from the microarray study were available which 

suggested tissues would be destroyed or the animals would be dead from treatment 

by the 7th day.  Therefore, the studies we performed only collected data at the 1 and 

3 day time points.  However, in a study that combines these techniques measuring 

adducts on the 7th day should be considered.  This would allow to the study to follow 

intended the “tip to crypt” study design and determine adduct levels on day 7, 

providing a more complete analysis using the corresponding gene expression data.   

Because of the necessity of pooling three animals per sample for the 

microarray portion of the study and to use enough animals for optimal statistical 

analysis, an n=9 x 3 (21) would be required for each time point (controls, 1, 3, 7 day) 

and each strain (8) for a total of 672 animals.  Even more animals may be required 

so that sufficient RNA and DNA can be isolated from the same tissues for analysis 

by both methods, making this a very large and expensive study.  Alternatively, one 

could narrow the study to only include those strains most likely sensitive (BL6) and 

resistant (FVB) to cisplatin treatment, as determined during our molecular dosimetry 

studies.  

Next, to more accurately mimic the manner in which patients are treated with 

cisplatin, a mini-pump allowing infusion of cisplatin over a longer time period and 

hydration pre- and post- dosing would be preferable to bolus i.p. injections. Using 

this mini-pump infusion of cisplatin with adequate hydration, it would be interesting to 
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see if there is a shift from the kidney having the highest concentration of CP-d(GpG) 

adducts. In our study design, the liver may develop an increased concentration of 

CP-d(GpG) adducts, if the kidney toxicity was reduced in this manner. Also, using 

that method of drug delivery combined with hydration, one would not expect the 

mice to be as sick (or in some cases dead) on day 3, since these outcomes were 

believed to be due to kidney failure.  Conclusions from our animal study are 

summarized in the following list. 

1. In both animal studies, the trend for distribution of CP-d(GpG) across all 

strain tissues was kidney>liver>colon. 

2. While adducts were observed to be highest in the kidney, no overall 

correlation could be found between increased/decreased lesions in tissues 

and factors such as time after dosing or mouse strain. This may be due to the 

variability between our two studies.  

3. Therefore, another study with a larger number of animals is needed to 

identify a sensitive or resistant phenotype using molecular dosimetry and 

microarray data obtained from the same set of animals. 

 

As discussed in the introduction, several studies have compared platinum 

based DNA adducts obtained from normal vs. tumor tissue.  These studies are not 

consistent in whether or not there is a correlation between adduct levels in normal 

tissues and survival or response to treatment.  However, in each of these studies the 

“normal” tissues utilized are lymphocytes or buccal cells and the tumor tissue is 

obtained from biopsied tissue.  This is generally done because there are limitations 
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to the human tissues one can obtain for research.  However, it would be of interest 

to see if there is a correlation between normal and tumor adduct concentrations 

when the same tissue type is used.  Such studies could be performed in animals.  

However as we learned during our animal study, great care must be taken when 

designing an animal study to ensure that the data obtained is consistent and of use 

when performing data analysis. 
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