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Abstract

EMILY BRALEY: Eigencone Problems for Odd and Even Orthogonal Groups

(Under the direction of Prakash Belkale)

In this work, we consider the eigenvalue problem for the even and odd orthogonal

groups. We give an embedding of SO(2n+1) ⊂ SO(2n+2) and consider the relationship

between the intersection theories of homogeneous spaces for the two groups. We introduce

the deformed product in cohomology, know as the BK-product, as a technical tool.
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Background and Introduction

Dating back to the nineteenth century, questions were asked about the eigenvalues

of sums of Hermitian and real symmetric matrices. The classical Hermitian eigenvalue

problem can be stated as follows:

Question 0.0.1. Given n× n Hermitian matrices A and B with eigenvalues α = (α1 ≥

. . . ≥ αn) and β = (β1 ≥ . . . ≥ βn) respectively, what are the possible eigenvalues γ of a

Hermitian matrix C = A+B?

A conjectural solution of the problem was given by Horn in 1962 [Hor62]. The

development of the problem will be discussed in Section (0.1). We can generalize the

Hermitian eigenvalue problem to an arbitrary complex semisimple algebraic group.

LetG be a connected simple complex algebraic group with maximal compact subgroup

K and maximal torus H. Let k and h be the Lie algebras of K and H respectively. K

acts on k via the adjoint action, and the orbits of this adjoint action are parameterized

by the positive Weyl chamber in h. The analogue of the Hermitian eigenvalue problem

is the problem of characterizing the conjugacy class of a sum C = A + B, given the

conjugacy classes of A,B ∈ k. The eigencone of a group G is the set of such conjugacy

classes, and it will be defined in (0.1.6). Notice that for G = SL(n), its maximal compact

subgroup is the special unitary group SU(n). Traceless skew-Hermitian matrices form

the Lie algebra su(n), so this case specializes to the original statement of the Question

(0.0.1).

In order to understand the relationship between the eigencone of SO(2n+ 1) and

the eigencone of SO(2n+2), it is necessary to understand recent work that has been

done on an analogous comparison of the eigencone of Sp(2n) (resp SO(2n+1)) with the



eigencone of SL(2n) (resp. SL(2n + 1)), where embeddings are induced from diagram

automorphisms. In this introduction, the work comparing these eigencones is put in

its proper context by explaining the genesis and the recent history of research done on

eigencone problems. In Section (0.1) a historical background to the eigencone problems is

given and recent work that has been done on eigencone problems is described. In Section

(0.2) we explain the techniques from intersection theory and connections to Schubert

calculus used to prove the desired results for the eigencones. In Section (0.3) we state

the comparison results for Sp(2n) ⊂ SL(2n) and SO(2n+1) ⊂ SL(2n+1), and give a

thumbnail sketch of the main body of the dissertation, introducing the setting for the

comparison of the eigencones of SO(2n+1) and SO(2n+2).

0.1. Historical Context

In 1912, H. Weyl [Wey12] studied the conditions on a triple of eigenvalues that

must be satisfied for the triple to appear as the eigenvalues of Hermitian matrices C =

A + B. It wasn’t until 1962 that A. Horn [Hor62] undertook a systematic study of

the inequalities that α, β, and γ must satisfy. Horn conjectured that a particular set of

index sets, parameterizing the Hermitian matrices, would give both the necessary and

sufficient conditions for a triple (α, β, γ) to arise. In 1998, A. Klyachko [Kly98] used

geometric invariant theory to connect the Hermitian eigenvalue problem with intersection

theory. In fact, Klyachko’s result made the important connection between the Saturation

Conjecture and Schubert calculus for this homology of the Grassmannian. W. Fulton

gives a summary of the work in a survey paper [Ful00].

Klyachko’s result was generalized by B. Berenstein and R. Sjamaar [BS00] who gave

a list of inequalities which characterize the space of eigenvalues. Then, A. Knuston and

T. Tao [KT99] established the Saturation conjecture using a combinatorial argument

with honeycombs. Together the works of Berenstein and Sjamaar, and Knuston and Tao

proved Horn’s conjecture, but the list of inequalities at that time were over-determined.
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Following these works, others began working on generalizations of the Hermitian eigen-

value problem for arbitrary groups. Belkale [Bel06] determined an irredundant system

as proved by Knuston, Tao, and Woodward [KTW04].

Then, P. Belkale gave a geometric proof of Horn’s conjecture [Bel07]. In his work,

Belkale used the fact that for general Schubert varieties intersecting in a point, they

intersect transversally there by Kleiman’s transversality. Conversely, one can determine

if general Schubert varieties intersect by a tangent space calculation. In section (0.3) we

state the eigencone comparison results for Sp(2n) ⊂ SL(2n) and SO(2n+1) ⊂ SL(2n+1)

addressed by Belkale-Kumar [BK10].

0.1.1. Classical Work. Recall the Hermitian eigenvalue problem: If A, B, and C are

n by n Hermitian matrices, we denote eigenvalues of A by

α : α1 ≥ α2 ≥ . . . ≥ αn

and similarly denote by β and γ the eigenvalues of B and C respectively. We can formally

ask the question:

Question 0.1.1. What α, β, and γ can be the eigenvalues of n by n Hermitian matrices

A, B, and C, with C = A+B?

The survey paper by Fulton [Ful00] describes the classical work on this problem.

Initially, the approach was to take the diagonal matrix A = D(α), with diagonal entries

α1, . . . , αn, and similarly B = D(β), and look for the eigenvalues of

D(α) + UD(β)U∗,

as U varies over the unitary group U(n). Another approach is to fix A and take B

small, regarding C as a deformation of A. Neither of these approaches play a role in the

discussion to follow, but are useful in initially understanding conditions on the eigenvalues

that must be satisfied.
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The most obvious condition is the trace condition:

(0.1)
n∑
i=1

γi =
n∑
i=1

αi +
n∑
i=1

βi.

H. Weyl gave other necessary conditions as early as 1912:

(0.2) γi+j−1 ≤ αi + βj whenever i+ j − 1 ≤ n.

It was not until 1950 that V.B. Lidskii gave geometric conditions for α, β, and γ.

Viewing (α1, . . . , αn) as a point in Rn, Lidskii showed that γ must be in the convex hull

of α+ βσ, where σ varies over the symmetric groups Sn. Shortly thereafter H. Wielandt

showed that this geometric condition is equivalent to the inequalities

(0.3)
∑
i∈I

γi ≤
∑
i∈I

αi +
r∑
i=1

βi,

for all I subset of [n] = {1, . . . , n} of cardinality r, and all r < n. All other necessary

inequalities are of the form

(0.4)
∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj,

for I, J, and K subsets of [n] of cardinality r < n. We will see later that it is convenient

to write these index sets is increasing order:

I = {i1 < i2 < . . . < ir},

and will assume this convention from here on out.

0.1.2. Horn’s conjecture. A. Horn undertook a systematic study of inequalities of

the form (0.4). In 1962, Horn conjectured that a particular subset of triples (I, J,K)

for which the inequalities in (0.4) hold along with the trace condition (0.1), would give

both necessary and sufficient conditions for a triple (α, β, γ) to arise as the eigenvalues

of Hermitian matrices A, B, and C = A+B. Horn gave a recursive formula to describe

the subset of triples (I, J,K), which we will describe now.
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Let Un
r be the following set of triples, where I, J,K ⊂ [n] are of cardinality r:

Un
r :=

{
(I, J,K)|

∑
i∈I

i+
∑
j∈J

j =
∑
k∈K

k +
r(r + 1)

2

}
.

Definition 0.1.2. Define a subset Hn
r ⊂ Un

r , which we will call Horn’s triples:

Hn
r :=

{
(I, J,K) ∈ Un

r | for all p < r and all (F,G,H) ∈ Hr
p ,∑

f∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh +
p(p+ 1)

2

}
.

Conjecture 0.1.3. Horn’s Conjecture: A triple (α, β, γ) occurs as the eigenvalues of n×n

Hermitian matrices A, B, and C, with C = A + B, if and only if
∑
γi =

∑
αi +

∑
βi

and the inequalities (0.4) hold for every (I, J,K) ∈ Hn
r for all r < n.

0.1.3. Connections to representation theory and the saturation problem. An

irreducible, finite-dimensional representation of the complex general linear group, GL(n),

is characterized by its highest weight which is a weakly decreasing sequence of integers:

α = (α1 ≥ α2 ≥ . . . ≥ αn).

We denote the irreducible representation with highest weight α by V (α). From represen-

tation theory we know that GL(n,C) is reductive, meaning that any finite-dimensional

holomorphic representation decomposes into a direct sum of irreducible representations.

The number of times that a given irreducible representation V (γ) appears in the sum

is independent of the decomposition. In particular, the tensor product V (α) ⊗ V (β)

decomposes into a direct sum of representations V (γ).

Define cγα,β to be the number of copies of V (γ) in an irreducible decomposition of

V (α)⊗ V (β). The question of interest in this situation is:

Question 0.1.4. When does V (γ) occur in V (α)⊗ V (β), i.e., when is cγα,β > 0?

In 1934, Littlewood and Richardson gave a combinatorial formula for the numbers

cγα,β and they became known as the Littlewood-Richardson coefficients. The answer to
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question (0.1.4) is that for some N , cNγNα,Nβ > 0 if and only if
∑
γi =

∑
αi +

∑
βi and

the inequalities (0.4) hold for all triples (I, J,K) ∈ Hn
r and all r < n. Equivalently,

cNγNα,Nβ > 0 if and only if there is a triple of n by n Hermitian matrices A, B, and

C = A + B, with eigenvalues α, β, and γ. The Littlewood-Richardson coefficients

also appear as the structure coefficients for multiplication in the cohomology ring of the

Grassmannian. In fact, they count the number of points in the intersection of Schubert

varieties, as we will see in Lemma (0.2.1).

Conjecture 0.1.5. Saturation Conjecture: If there exists N > 0 such that

cNγNα,Nβ > 0, then cγα,β > 0.

0.1.4. Algebraic groups. To generalize the Hermitian eigenvalue problem to complex

algebraic groups, we first establish notation. Let G be a semi-simple algebraic group

with maximal compact subgroup K. We denote the Lie algebras of G and K by g and

k respectively. Recall that K acts on k by the adjoint action, and we parameterize the

orbits of the action by elements from the positive Weyl chamber h+.

The goal of the generalized Hermitian eigenvalue problem is to describe the conjugacy

classes of C = A + B, given the conjugacy classes of A,B ∈ k. There is a bijection

c : h+ −→ k/K where K acts on k by the adjoint action.

We define the eigencone for any s ≥ 1:

Definition 0.1.6. For a positive integer s, the eigencone of G is defined as the cone:

Γ(s,G) :={(h1, . . . , hs)∈(h+)s| ∃(k1, . . . , ks)∈ks, s.t.
s∑
j=1

kj =0, c−1(kj)=hj ∀j ∈ [s]}.

The eigencone, which is a convex polyhedral cone, is the main object of study in

the generalization of the of the Hermitian eigenvalue problem. The eigenvalue problem

is to describe the system {(h1, . . . , hs) ∈ (h+)s} such that (h1, . . . , hs) ∈ Γ(s,G). In the

next section, we recall a generalization of Klyachko’s result from [BS00] which gives a

description of the eigencone as a space of linear inequalities in (h+)s.
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0.2. Schubert Calculus and Intersection Theory

We begin by recalling the intersection theory for the ordinary Grassmannian. The

Grassmannian Gr(r, n), is the variety of r-dimensional subspaces of Cn of dimension

r(n−r). A complete flag on Cn is an ascending chain of subspaces Fi where dim(Fi) = i:

F• := 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = Cn.

For any index set Aα = {a1 < . . . < ar} of cardinality r ∈ [n], we define the shifted

Schubert cell

(0.5)

ΩAα(F•) := {X ∈ Gr(r, n)| for any l ∈ [r] and any al ≤ b < al+1, dim(X ∩ Fb) = l}

where we set a0 = 0 and ar+1 = n + 1. It’s closure in Gr(r, n), denoted ΩAα(F•), is an

irreducible subvariety of Gr(r, n) of dimension
∑

(ai − i).

Define σAα = [ΩAα(F•)] to be the cycle class inH2|α|(Gr(r, n)), where α is the partition

defined by setting αi = n− r+ i− ai. To simplify notation, let σAα = σα. The classes σα

form a Z basis for the cohomology H∗(Gr(r, n)). It follows that for any two partitions α

and β, there is a unique expression

(0.6) σα · σβ =
∑

dγα,βσγ,

for integers dγα,β, summing over all γ with
∑
γi =

∑
αi +

∑
βi.

Let ξ denote the partition consisting of the integer n− r repeated r times. Note that

we can identify the top class in cohomology of Gr(r, n) with Z:

H2r(n−r)(Gr(r, n)) = Z · σξ.

This bring us to an important fact from intersection theory:

Lemma 0.2.1. For complete flags F k
• in general position on Cn, where 1 ≤ k ≤ 3, choose

index sets Akα ⊂ [n] of cardinality r, such that the codimensions of the Schubert varieties

7



ΩAkα
(F k
• ) sum to r(n− r). Then the multiplicity of σξ in σA1

α
· σA2

α
· σA3

α
is the number of

points in the intersection ∩3
i=1ΩAkα

(F k
• ).

This is a special case of a general fact in intersection theory that the intersection of

classes of varieties has a representative on the intersection of the varieties. The converse

is also true if the flags are in general position, which is a special case of Kleiman’s

Transversality Theorem [Kle74]. Kleiman’s theorem asserts that if a complex reductive

group acts transitively on smooth variety X, then general translates of subvarieties of

X meet transversally. Consider G = SL(n) and a maximal parabolic subgroup Pr ⊂ G,

corresponding to the rth fundamental weight for G. We identify the homogeneous space

G/Pr with the Grassmannian Gr(r, n), where Pr is the stabilizer of the span of the first

r basis vectors of Cn. It is clear that Gr(r, n) has a transitive G action. So, Kleiman’s

theorem says that for general flags F 1
• , F

2
• , F

3
• , the corresponding shifted Schubert cells

ΩAα(F 1
• ),ΩBβ(F 2

• ),ΩCγ (F
3
• ) intersect transversally.

Now, the work of Klyachko and the generalization made by Berenstein and Sjaamar,

connect the intersection theory of Schubert varieties in a homogeneous space G/P to the

eigencone. Therefore, it is convenient to use the notation for the arbitrary group setting.

Again, let G be a semi-simple algebraic group with maximal compact subgroup K,

and Lie algebras g and k respectively. We denote the fundamental Weyl chamber by h+.

Let P be a maximal parabolic subgroup P ⊂ G. Let ∆ = {α1, . . . , αn} denote the set of

simple roots for G, and ∆(P ) denote the set of simple roots for the Levi subgroup of G

containing P . We denote the Weyl group of P by WP and the set of minimal length coset

representatives in the quotient W/WP by W P . Denote the length of a word by l(w). The

fundamental weight associated to P , we denote ωP . For any w ∈ W P , define the shifted

Schubert cell

ΛP
w = w−1BwP/P ⊂ G/P,

and let the cycle class of its closure be denoted [ΛP
w] ∈ H2(dim(G/P )−l(w))(G/P ). The

following theorem gives a solution to the eigenvalue problem. We recall the theorem

from Berenstein and Sjamaar [BS00]:

8



Theorem 0.2.2. Let (h1, . . . , hs)∈hs+. Then, the following are equivalent:

(1) (h1, . . . , hs)∈Γ(s,G).

(2) For every standard maximal parabolic subgroup P in G and every choice of s-

tuples (w1, . . . , ws)∈(W P )s such that

[Λ
P

w1
] · . . . · [ΛP

ws ] = d[Λ
P

e ]∈H∗(G/P ) for some nonzero d,

the following inequality holds:

(0.7) ωP (
s∑
j=1

w−1
j hj) ≤ 0.

Here the product on the classes in cohomology is the classical cup product. As

mentioned above, Belkale and Kumar [BK06] define a deformed product on cohomology

known as the BK-product. We define this deformation here, and see in Theorem (0.2.4),

that it gives a shorter list of inequalities describing the eigencone than Theorem (0.2.2).

In this paper the deformation of cohomology is introduced as a technical tool, and we

will return to the definition in Chapter 2.

The standard cup product is given by the structure coefficients dγα,β, as in (0.6). Let

ρ denote half the sum of the positive roots of g and let xi be the basis of h dual to the

simple roots:

αi(xj) = δi,j.

For a standard parabolic subgroup P , let ρL be half the sum of the positive roots for the

unique Levi subgroup L ⊂ P.

Definition 0.2.3. For a standard parabolic P ⊂ G, introduce the indeterminates τi for

each αi ∈ ∆ \∆(P ). Then define the BK-product, denoted �0 as follows; first we define

a deformed product �:

[Λ
P

u ]� [Λ
P

v ] =
∑
w∈WP

( ∏
αi∈∆\∆(P )

τ
(χw−(χu+χv))(xi)
i

)
cwu,v[Λ

P

w]

9



where χw ∈ h∗ is the character χw = ρ− 2ρL +w−1ρ. To obtain the cohomology of G/P ,

(H∗(G/P,Z),�0), set τi = 0, to get �0. As a Z-module, this is the same as the singular

cohomology H∗(G/P,Z).

Notice that in the definition above, if you take P ⊂ G to be a maximal parabolic,

then you are introducing only one invariant τ. If you set τ = 1, you recover the classical

cup product.

Belkale and Kumar proved [BK06] that you can replace condition (2) in Theorem

(0.2.2) with a statement in the deformed product. The proof of the theorem relies on

geometric invariant theory, which relates the intersections of Schubert varieties in G/P

to destabilizing one parameter subgroups for G. Then the Hilbert-Mumford criterion

yields the inequalities appearing in (0.9). The intersection number one is a consequence

of the uniqueness of maximally destabilizing one parameter subgroups:

Theorem 0.2.4. Let (h1, . . . , hs) ∈ (h)s+. Then the following are equivalent:

(A) (h1, . . . , hs) ∈ Γ(s,G).

(B) For every standard maximal parabolic subgroup P in G and every choice of s-

tuples (w1, . . . , ws) ∈ (W P )s such that

(0.8) [Λ
P

w1
]�0 · · · �0 [Λ

P

ws ] = [Λ
P

e ] ∈ (H∗(G/P,Z),�0),

the following inequality holds,

(0.9) ωP (
s∑
j=1

w−1
j hj) ≤ 0.

0.3. Conjecture and Results

For simple algebraic groups G1 and G2, suppose

G1 ↪→ G2, K1 ↪→ K2, hG1
+ → hG2

+ .

10



Then,

Γ(G1) Γ(G2)

(hG1
+ )3 (hG2

+ )3

�� ��
//φ

It is known that φ(Γ(G1)) ⊂ Γ(G2), so we are interested in the following two questions:

Questions 0.3.1. (1) Is Γ(G1) = φ−1(Γ(G2))? (2) Is there any direct relation between

the intersection theories of homogeneous spaces for G1 and G2?

Belkale and Kumar [BK10] made a conjecture for a semisimple complex algebraic

group G2. Let σ be a diagram automorphism of G2 with a fixed subgroup G1. They con-

jectured that for any standard parabolic subgroup P ⊂ G2 and Schubert cells ΛP
w1
, ΛP

w2
,

ΛP
w3

in G2/P , there exist elements g1, g2, g3 ∈ G1 such that the intersection ∩3
i=1giΛ

P
wi

is

proper. Belkale and Kumar show that this is true for Sp(2n) ⊂ SL(2n) and SO(2n+1) ⊂

SL(2n+1), where the embeddings are induced from diagram automorphisms. Specifically

they answer (0.3.1) and use the intersection theory result to compare the eigencones for

these pairs.

I have investigated questions (0.3.1) for a specific embedding SO(2n+1) ↪→ SO(2n+2),

with the following results: Let hB+ denote the positive Weyl chamber for SO(2n+ 1). Fix

r ≤ n and take maximal parabolic subgroups PB
r ⊂ SO(2n+ 1) and PD

r ⊂ SO(2n+ 2).

First we address the relationship between the intersection theories. The conjecture, as

stated, is false. A counterexample is given in Chapter ??Appendix) in (7.1).

There is a not direct analogue of the intersection theory result for SO(2n+ 1) ⊂

SO(2n+2), but there is a statement which holds in the BK-product, when the classes

multiply to the class of a point. Restricting to the BK-product gives an irredundant

set of inequalities describing the eigencone for SO(2n + 1). In Chapter (1) we define

sets of indices parameterizing Schubert varieties in SO(2n + 1)/PB
r in (1.7) and sets of

indices parameterizing Schubert varieties in SO(2n+ 2)/PD
r in (1.11) and (1.12). Then,

in Section (3.2), we detail a correspondence between parameters for Schubert varieties in
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the these homogeneous spaces. The following theorem is a key result and will be proved

in Chapter (5):

Theorem 0.3.2. For parameters I1, I2, I3 giving Schubert varieties in SO(2n + 1)/PB
r

and corresponding parameters J1, J2, J3 giving Schubert varieties in SO(2n+2)/PD
r , let

σK denote the class in cohomology of the associated variety. Then,

σI1 �0 σI2 �0 σI3 = σpt∈H2dim(OG(r,2n+1))(OG(r, 2n+ 1))⇒

σJ1 �0 σJ2 �0 σJ3 = dσpt∈H2dim(OG(r,2n+2))(OG(r, 2n+2)),

for some nonzero d.

A question that remains is whether d = 1 in Theorem (0.3.2). In the examples

computed, including the example given in the final chapter, d = 1.

The following theorem is the main result of the paper comparing the eigencones of

SO(2n+1) and SO(2n+2). It will be proved in Chapter (4):

Theorem 0.3.3. For (h1, h2, h3)∈hB+,

(h1, h2, h3)∈Γ(SO(2n+1)) ⇐⇒ (h1, h2, h3)∈Γ(SO(2n+2)).

By functoriality, it is clear that Γ(SO(2n+1)) ⊂ Γ(SO(2n+2)). Then for

(h1, . . . , hs) ∈
(

(hB+)s ∩ Γ(SO(2n+2)),

we must show that (h1, . . . , hs) ∈ Γ(SO(2n+1)). So, the task is to take an inequality in

the system describing Γ(SO(2n+1)) and show that it is implied by an inequality in the

system describing Γ(SO(2n+2)).

Another key result used in comparing the eigencones is Theorem (0.3.2), which gives

an intersection theoretic statement relating the intersection theories of SO(2n+1) and

SO(2n+2). As mentioned above, this statement holds for Levi-movable intersections in

SO(2n+1)/PB
r . A numerical condition on parameters determining Levi-movable inter-

sections is given in Theorem (2.2.6). One of the challenges in proving Theorem (0.3.2)
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was confirming a dimension formula for Schubert varieties on SO(2n+2)/PD
r that was

comparable to known formulas for varieties in SO(2n+1)/PB
r . The dimension formula

and proof is given in Chapter (6). It is proved by constructing a chain of varieties based

on a set of rules we call the bumping rules for SO(2n+2)/PD
r . An example illustrating

how the rules are used to create such a chain is given in Chapter 7 in (7.3).
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CHAPTER 1

Notation and Preliminaries

In this chapter we establish notation for the rest of the paper and give details on the

groups SL(2n+1) in Section (1.2), SO(2n+1) in Section (1.3), SO(2n+2) in Section (1.4),

and Sp(2n) in Section (1.5). For a reader interested in the eigencone result, Sections (1.3)

and (1.4) are the most important.

1.1. Algebraic Group G

Let G be a connected semisimple complex algebraic group. Fix a Borel subgroup B

and a maximal torus H ⊂ B. Their Lie algebras are denoted by their respective Gothic

characters: g, b, h. Let W denote the Weyl group of G defined by W = N(H)/H, where

N(H) is the normalizer of H in G. Let R+ ⊂ h∗ be the set of roots of b, the positive

roots, and denote the simple roots by ∆ = {α1, . . . , αn} ⊂ R+. Let {α∨1 , . . . , α∨n} ⊂ h be

the set of corresponding simple coroots and {s1, . . . , sn} ⊂ W be the set of corresponding

simple reflections. The length of w ∈ W , denoted l(w), is defined to be the minimum

of the length of an expression for w as a product of simple reflections. Define the basis

{x1, . . . , xn} of h dual to the basis {αi} of h∗, so that αj(xi) = δi,j.

Fix a real form hR of h, so that hR is a real subspace of h satisfying:

(1) {α∨1 , . . . , α∨n} ⊂ hR and

(2) for any 1 ≤ i ≤ n, αi(hR) ⊂ R.

Define the positive Weyl chamber, or dominant chamber, h+ ⊂ hR, to be:

h+ = {x ∈ hR |αi(x) ∈ R+ for all αi}.



For any 1 ≤ i ≤ n, let ωi ∈ h∗ denote the i-th fundamental weight defined by

ωi(α
∨
j ) = δi,j.

A weight λ =
∑
ciωi is dominant if all ci are non-negative integers.

Let P ⊃ B be a standard parabolic subgroup. The parabolic admits a Levi decom-

position with a unique Levi subgroup L ⊃ H. Let WP be the Weyl group of P , which is

the Weyl group of the Levi subgroup L. Let W P denote the set of minimal-length coset

representatives in the coset space W/WP . For any w ∈ W P , we define the Bruhat cell

(1.1) ΛP
w := BwP/P ⊂ G/P.

The Bruhat cell is a locally closed subset of G/P isomorphic to the affine space Al(w). Its

closure, denoted Λ̄P
w, is an irreducible projective variety of dimension l(w). We denote

the cycle class of this subvariety in the singular cohomology ring of G/P with integral

coefficients by

(1.2) [Λ̄P
w] ∈ H2(dimC(G/P )−l(w))(G/P ).

The Bruhat decomposition gives an integral basis of H∗(G/P ) by the classes {[Λ̄P
w]}w∈WP .

In the following sections, we give a more detailed descriptions of the groups SL(2n+1),

SO(2n+1) and SO(2n+2). We will also introduce some of the structure and notation

for Sp(2n).

1.2. Special Linear Group SL(2n+1)

Let V = C2n+1 with basis {v1, . . . , v2n+1}. Let GL(2n+1) be the complex general linear

group of all nonsingular complex (2n+1 × 2n+1) matrices. The complex special linear

group SL(2n+1) ⊂ GL(2n+1) is the subgroup consisting of matrices of determinant one.

Fix a standard Borel subgroup B of SL(2n+1), consisting of upper triangular matrices

of determinant one. Let H denote the Cartan subgroup consisting of diagonal matrices

of determinant one. We denote the Lie algebra of SL(2n+1) by sl(2n+1). Denote the

15



Lie algebras of the Borel and Cartan subgroups by b and h respectively, and define the

dual to h by

h∗ = {t = diag(t1, . . . , tn+1) |
∑

ti = 0}.

Fixing a real form hR ⊂ h, the positive Weyl chamber h+ ⊂ h is given by

h+ = {t ∈ hR | ti ∈ R+ and t1 ≥ . . . ≥ tn+1}.

The Lie group SL(2n+1) has a root system of type A2n. The Borel subgroup B

determines the set of positive roots R+ in the set of roots R. The set of simple roots is

denoted ∆ = {α1, . . . , α2n} ⊂ R+ ⊂ h∗. For any 1 ≤ i ≤ 2n, we define the simple roots,

simple coroots, and fundamental weights:

αi(t) = ti − ti+1,

α∨i = diag(0, . . . , 0, 1,−1, 0, . . . , 0), where the 1 is in the ith place and,

ωi(t) = t1 + . . .+ ti.

Define the basis {x1, . . . , xn} of h dual to the basis {αi} of h∗, so that αj(xi) = δi,j.

The Weyl group W of SL(2n+1) can be identified with the symmetric group S2n+1

which acts by permuting the coordinates of t. Let {r1, . . . , r2n} ⊂ S2n+1 be the simple

reflections corresponding to the simple roots {α1, . . . , α2n} respectively. Then the simple

reflections are given by the transpositions

(1.3) ri = (i, i+ 1).

For any 1 ≤ r ≤ 2n, let Pr denote the standard maximal parabolic subgroup whose unique

Levi subgroup Lr, has the associated set of simple roots ∆ \ {αr}. The Weyl group of Pr

we denote WPr . The set of minimal length coset representatives in the quotient W/WPr

is denoted W Pr , and can be identified with the set of r-tuples

S(r, 2n+1) = {A := 1 ≤ a1 < . . . < ar ≤ 2n+1}.
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Any such r-tuple A corresponds to a permutation in its one-line notation:

wA = (a1, . . . , ar, ar+1, . . . , a2n+1),

where {ar+1 < . . . < a2n+1} = [2n+1] \ {a1, . . . , ar}.

We identify SL(2n+1)/Pr with the Grassmannian of r-dimensional subspaces of V ,

Gr(r, 2n+1).

Definition 1.2.1. We define a complete flag on V to be the chain of subspaces F• : 0 =

F0 ( F1 ( . . . ( F2n+1 = V where dim(Fi) = i.

The standard complete flag on V , denoted F ◦• , is the complete flag with Fi =

〈v1, . . . , vi〉. Let F• be a complete flag on V and A ∈ S(r, 2n+1). We define the shifted

Schubert cell in Gr(r, 2n+1):

(1.4)

ΩA(F•)={M ∈Gr(r, 2n+1) | for any 0≤ l≤ r and any al≤ b< al+1, dim(M ∩ Fb) = l},

where a0 = 0 and ar+1 = 2n+1.

The standard flag, denoted F ◦• , has flag components F ◦i = span〈v1, . . . , vi〉. For the

standard flag F ◦• , we have ΩA(F ◦• ) = ΛPr
wJ

. Otherwise, there is an element g(F•) ∈

SL(2n+1), determined up to left multiplication by an element of B, such that ΩA(E•) =

g(F•)Λ
Pr
wJ

. The closure of a shifted Schubert cell in Gr(r, 2n+1) is denoted ΩA(F•), and

its cycle class in H∗(Gr(r, 2n+1)) is denoted [ΩA(F•)].

1.3. Special Orthogonal Group SO(2n+1)

Again, let V = C2n+1 with basis {v1, . . . , v2n+1}. Equip V with a non-degenerate

symmetric form 〈, 〉B such that 〈vi, v2n+1−i〉B = 1 for 1 ≤ i ≤ n, 〈vn+1, vn+1〉B = 2, and

all other pairings are zero. Denote the (2n+1 × 2n+1) matrix of 〈, 〉B by EB. Let

v =
∑2n+1

i=1 tivi. Let QB be the quadratic form associated to 〈, 〉B, given by:

(1.5) QB(v) = t2n+1 + Σn
i=1tit2n+2−i.
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Denote the special orthogonal group associated to QB by SO(QB, 2n+1). It is the

group defined by

SO(QB, 2n+1) = {g ∈ SL(2n+1)|〈gv, gw〉B = 〈v, w〉B for all v, w ∈ V }.

Since the choice of QB is clear, we will simplify the notation to SO(2n+ 1) =

SO(QB, 2n+ 1). The group SO(2n+ 1) can be realized as the fixed point subgroup

SL(2n+1)Θ under the involution Θ : SL(2n+1) → SL(2n+1), defined by Θ(A) =

E−1
B (AT )−1EB. The involution keeps both B and H stable. Moreover, SO(2n+1) has

Borel subgroup BΘ and Cartan subgroup HΘ. We will use the notation BB = BΘ to

denote the Borel subgroup and HB = HΘ to denote the Cartan subgroup.

We denote the Lie algebra of SO(2n+1) by so(2n+1). The Cartan subgroup has Lie

algebra hB given by

hB = {t = diag(t1, . . . , tn, 0,−tn, . . . ,−t1) | ti ∈ C}.

We fix a real form hBR ⊂ hB and the positive Weyl chamber is given by

hB+ = {t∈ hBR | ti ∈ R and t1 ≥ . . . ≥ tn ≥ 0}.

The Lie group SO(2n+1) has a root system of type Bn. Fixing a Borel subgroup BB

determines a set of positive roots R+
B in the set of roots RB. Let ∆B = {δ1, . . . , δn} be

the set of simple roots. For any i ∈ [n], δi = αi|hB , where {α1, . . . , α2n} are the simple

roots of SL(2n+1). The simple coroots {δ∨i } are given by

δ∨i = α∨i + α∨2n+1−i for 1 ≤ i < n and

δ∨n = 2(α∨n + α∨n+1).

Define the basis {xB1 , . . . , xBn } of hB dual to the basis {δi} of h∗B, so that δj(x
B
i ) = δi,j.

The Weyl group of SO(2n+1) is denoted WB. Recall that HB is Θ-stable. Therefore

there is an induced action of Θ on the S2n+1, the Weyl group of SL(2n+1). So, the Weyl
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group of SO(2n+1) can be identified with the Θ-invariant subgroup of S2n+1:

{(a1, . . . , a2n+1) ∈ S2n+1 | a2n+2−i = 2n+2− ai, for all 1 ≤ i ≤ 2n+1}.

Thus, w = (a1, . . . , a2n+1) ∈ WB is determined by (a1, . . . , an) and an+1 = n+ 1.

Let {s1, . . . , sn} be the simple reflections corresponding to the simple roots {δ1, . . . , δn}.

We can express the simple reflections si in terms of the simple reflections ri given in (1.3):

si = rir2n+1−i, if 1 ≤ i ≤ n− 1, and

sn = rnrn+1rn.

A subspace U ⊂ V is called isotropic if 〈u1, u2〉 = 0 for all u1, u2 ∈ U . For r ≤ n, we

define the subvariety of Gr(r, 2n+1) containing all r-dimensional isotropic subspaces of

V :

(1.6) OG(r, 2n+1) := {Λ ∈ Gr(r, 2n+1)|〈u1, u2〉B = 0, for all u1, u2 ∈ Λ}.

This closed irreducible subvariety of Gr(r, 2n+1) is of dimension r
2
(4n−3r+1). Notice that

this space is defined for r ≤ n since V does not contain an isotropic subspace of dimension

n+1. Let PB
r is the standard maximal parabolic subgroup with unique Levi subgroup LBr

whose associated set of simple roots is ∆B \ {δr}. The maximal parabolic subgroup PB
r

is the stabilizer of the isotropic subspace 〈v1, . . . , vr〉. The orthogonal group SO(2n+1)

acts transitively on OG(r, 2n+1), and we identify OG(r, 2n+1) with the homogeneous

space SO(2n+1)/PB
r .

The set of minimal length coset representatives of WB/WPBr
is denoted WB

r , and can

be identified with the following subset of S(r, 2n+1),

(1.7) S(r, 2n+1)={J :=1≤ j1< . . .< jr≤ 2n+1 | jt 6=n+ 1 for any t and J ∩ J̄=∅},
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where J̄ = {2n+2 − jr, . . . , 2n+2 − j1}. Any J ∈ SB(r, 2n+1) determines a minimal

length coset representative in WB
r :

(1.8) wJ = (j1, . . . , jr, j̃1, . . . , j̃2n+1−2r, j̄1, . . . , j̄r),

where

J̃ = (j̃1, . . . , j̃2n+1−2r) = [2n+1] \ (J t J̄),

with elements written in increasing order.

Definition 1.3.1. A complete flag F• : 0 = F0 ( F1 ( . . . ( F2n+1 = V is called isotropic

if Fi is an isotropic subspace of V for all i∈ [n] and Fi = F⊥2n+1−i for all i.

With our choice of basis the standard flag, F ◦• , is isotropic with respect to 〈, 〉B. For

any isotropic flag F•, there exists a unique element, up to multiplication by an element

of BB, g(F•) ∈ SO(2n+1) which takes the standard flag to F•:

g(F•)F
◦
• = F•.

Definition 1.3.2. For any J ∈ S(r, 2n+1) and any isotropic flag F• we define the shifted

Schubert cell in OG(r, 2n+1):

ΨJ(F•)={M ∈OG(r, 2n+1) | for any 0≤ l≤ r, and any jl≤ b< jl+1, dim(M ∩ Fb) = l}.

where we set j0 = 0 and jr+1 = 2n+1.

Set theoretically we have an equality:

ΨJ(F•) = ΩJ(F•) ∩OG(r, 2n+1).

In fact, this is a scheme theoretic equality [Bel07]. Moreover, there exists g(F•) ∈

SO(2n+1) such that ΨJ(F•) = g(F•)Λ
PBr
wBJ

, where wBJ is the minimal length coset repre-

sentative associated to J . Let ΨJ(F•) denote the closure of ΨJ(F•) ∈ OG(r, 2n+1) and
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we denote its cycle class in cohomology by

[ΨJ(F•)] ∈ H2(dim(SO(2n+1)/PBr )−l(wJ ))(OG(r, 2n+1)).

Notice that for the standard flag, F ◦• on V , ΨJ(F ◦• ) = Λ
PBr
wBJ
.

In Chapter (3), we realize SO(2n+1) as a fixed point of a diagram automorphism of

SO(2n+2).

1.4. Special Orthogonal Group SO(2n+2)

Let W = C2n+2 with basis {w1, . . . , w2n+2}, and equipped with a symmetric nonde-

generate bilinear form 〈, 〉D. Denote the (2n+ 2 × 2n+ 2) matrix of 〈, 〉D by ED. Let

w =
∑2n+2

i=1 tiwi. The associated quadratic form on W is given by

(1.9) QD(w) = Σ2n+2
i=1 tit2n+3−i.

Define the even special orthogonal group associated to QD by

SO(QD, 2n+2) = {g ∈ SL(2n+2)|〈gw1, gw2〉D = 〈w1, w2〉D}.

Since the choice of the quadratic form is clear, we will simplify the notation to SO(2n+

2) = SO(QD, 2n+2).

Similar to the description of SO(2n+1) as a fixed point subgroup of SL(2n+1),

SO(2n+2) is the fixed point subgroup of an involution on SL(2n+2):

Θ′ : SL(2n+2) → SL(2n+2),

A 7→ ED(AT )−1ED.

Observe that Θ′ keeps H and B stable. We denote the Cartan subgroup of SO(2n+2)

by HD = HΘ′ and the standard Borel subgroup by BD = BΘ′ .
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We denote the Lie algebra of SO(2n+2) by so(2n+2). The Cartan subgroup has Lie

algebra hB given by

hD = {t = diag(t1, . . . , tn+1,−tn+1, . . . ,−t1) | ti ∈ C}.

We fix a real form hDR ⊂ hD and the positive Weyl chamber is given by

hD+ = {t∈ hDR | ti ∈ R and t1 ≥ . . . ≥ tn+1 ≥ 0}.

The Lie group SO(2n+2) has a root system of typeDn+1. Fixing a Borel subgroup BD

determines a set of positive roots R+
D in the set of roots RD. Let ∆D = {ϑ1, . . . , ϑn+1}

be the set of simple roots. Then, for any i ∈ [n + 1], ϑi = αi|hD. Define the basis

{xD1 , . . . , xDn+1} of hD dual to the basis {ϑi} of h∗D, so that ϑj(x
D
i ) = δi,j.

The Weyl group of SO(2n+2) is denoted WD. Recall that HD is Θ′-stable. So, there

is an induced action of Θ′ on S2n+2. Therefore, the Weyl groups of SO(2n+2) can be

identified with the Θ′-invariant subgroup of S2n+2:

{(a1, . . . , a2n+2) ∈ S2n+2 | a2n+3−i = 2n+ 3− ai, for all 1 ≤ i ≤ 2n+2}.

So, w′ = (a1, . . . , a2n+2) ∈ WD is determined by (a1, . . . an+1).

Let {s′1, . . . , s′n+1} be the simple reflections in WD, the Weyl group for SO(2n+2),

corresponding to the simple roots {ϑ1, . . . , ϑn+1}. We can express the simple reflections

∆D in terms of simple reflections ri, defined in (1.3):

s′i = rir2n+2−i, for all 1 ≤ i ≤ n, and

s′n+1 = rn+1rnrn+2rn+1.

Recall that a subspace U ⊂ W is called isotropic if 〈u1, u2〉D = 0 for all u1, u2 ∈ U .

The set of isotropic subspaces of W of dimension n + 1 form two orbits under the

action of SO(2n+2). Therefore, the set of complete isotropic flags on C2n+2, defined in

(1.4.3) below, form two orbits under the left action of SO(2n+2).
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Definition 1.4.1. Let S1 and S2 be two n + 1 dimensional isotropic subspaces of W .

We say that S1 and S2 are in the same family if dim(S1 ∩ S2) ≡ (n+ 1)mod2, otherwise

we say that they are in the opposite family.

Definition 1.4.2. Define the standard complete flag on C2n+2, denoted F ◦• , to be the flag

with components F ◦i = span〈w1, . . . , wi〉.

Definition 1.4.3. A complete flag F• : 0 = F0 ( F1 ( . . . ( F2n+2 = W is called

isotropic if Fi is an isotropic subspace of W for all i∈ [n + 1], Fi = F⊥2n+2−i for all i, and

Fn+1 is in the same family as F ◦n+1.

Definition 1.4.4. To each isotropic flag F• we define a corresponding alternate isotropic

flag F̃• such that F̃i = Fi for all i ≤ n, and F̃n+1 in the opposite family from Fn+1.

For r < n, we define the subvariety of Gr(r, 2n+ 2) containing all r-dimensional

isotropic subspaces of W :

(1.10) OG(r, 2n+2) := {Λ ∈ Gr(r, 2n+2) |〈w1, w2〉D = 0, for all w1, w2 ∈ Λ}.

This orthogonal Grassmannian is a closed irreducible subvariety of Gr(r, 2n+2) is of

dimension r
2
(4n−3r+3). For r < n, let PD

r be the standard maximal parabolic subgroup

for which ∆D \ {ϑr} is the set of simple roots of LDr , the unique Levi subgroup of

PD
r containing HD. The parabolic PD

r is the stabilizer of the span of the first r basis

elements of W . So we make the identification of OG(r, 2n+2) with the homogeneous

space SO(2n+2)/PD
r .

For r = n+ 1, the space of maximal isotropic subspaces of C2n+2 has two connected

components, each isomorphic to the even orthogonal Grassmannian, OG(n+1, 2n+2) =

SO(2n+2)/Pn+1. The maximal parabolic subgroup Pn+1, of SO(2n+2), is the parabolic

associated to a right end root of the Dynkin diagram of Type Dn+1. We denote the two

connected components by OG±(n+1, 2n+2). Let OG+(n+1, 2n+2) denote the orbit

containing the F ◦n+1, the n+1st component of the standard flag F ′◦• . Let OG−(n+1, 2n+2)
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denote the orbit containing all of the n+ 1-dimensional spaces in the opposite family. In

Chapter (3), we will show that OG+(n+1, 2n+2) and OG−(n+1, 2n+2) are homeomorphic

to the space of maximal isotropic subspaces OG(n, 2n+1), defined in (1.6).

The set of minimal length coset representatives of the quotient space WD/WPDr
is

denoted WD
r . For r < n, WD

r can be identified with the set

(1.11) SD(r, 2n+2):={J :=1≤ j1< . . .< jr≤ 2n+2 | J ∩ J̄=∅},

where J̄ = {2n + 3 − jr, . . . , 2n + 3 − j1}. For r = n + 1, we define two parameterizing

sets. Let

SD(n+1, 2n+2):={J :=1≤ j1< . . .< jr≤ 2n+2 | J ∩ J̄=∅},

and define

S+(n+1, 2n+2) = {J ∈ SD(n+1, 2n+2)|#{jk ≤ n+ 1} ≡ 0mod2} and,(1.12)

S−(n+1, 2n+2) = {J ∈ SD(n+1, 2n+2)|#{jk ≤ n+ 1} ≡ 1mod2}.(1.13)

The sets defined in (1.12) are parameterizing sets for Schubert varieties in OG+(n+

1, 2n+2) and OG−(n+1, 2n+2) respectively.

For any isotropic flag F•, such that Fn+1 ⊂ OG+(n+1, 2n+2), there is an element

g(F•) ∈ SO(2n+2) that takes the standard flag to the isotropic flag F•. Note that g(F•)

is determined up to right multiplication by an element of BD.

Definition 1.4.5. For any J ∈ SD(r, 2n+2), and any isotropic flag F• we define, for

r < n the shifted Schubert cell in OG(r, 2n+2):

(1.14)

ΥJ(F•)={M ∈OG(r, 2n+2) | for any 0≤ l≤ r, and any jl≤ b< jl+1, dim(M ∩ Fb) = l}.

Set theoretically (also scheme theoretically) we have an equality:

(1.15) ΥJ ′(F
′
•) = ΩJ ′(F

′
•) ∩OG(r, 2n+2).
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For r = n + 1, the definition of the Schubert cell (1.14) holds and for J+ ∈ S+(n+

1, 2n+2) and J− ∈ S−(n+1, 2n+2), parameters for ΥJ+(F•) ⊂ OG+(n+1, 2n+2) and

ΥJ−(F•) ⊂ OG−(n+1, 2n+2), respectively. The set theoretic intersection defined in (1.15)

will also hold with these choices for J±.

Any J ∈ SD(r, 2n+ 2) determines a word in WD
r . Let J̃ = (j̃1, . . . , j̃2n+2−2r) =

[2n+2] \ (J t J̄), with the elements written in increasing order. For r< n,

(1.16) wJ = (j1, . . . , jr, j̃1, . . . , j̃2n+2−2r, j̄1, . . . , j̄r),

if the first n+ 1 components of the word have the same number of integers greater than

n+ 1 as less than n+ 1, and

(1.17) wJ = (j1, . . . , jr, j̃1, . . . , j̃n−r, j̃n+2−r, j̃n+1−r, j̃n+3−r, . . . , j̃2n+2−2r, j̄1, . . . , j̄r)

otherwise. When r = n+ 1, for w ∈ WD
r , then

w ≡ wui(modWPn−1), for 0 ≤ i ≤ n+ 1 and i 6= n− 1,

where,

ui =


s′n if i = n

id if i = 0

s′is
′
i+1 · · · s′n−2s

′
n if 1 ≤ i ≤ n− 2.

1.5. Symplectic Group Sp(2n)

Although we will not focus on the symplectic group in this thesis, we will apply

important results about the cohomology ring and the eigencone of the group and its

relationship with SO(2n+1). In Chapter (2) we will see that the system of irredundant

inequalities describing the eigencone of Sp(2n) coincides with the inequalities describing

SO(2n+1). We only refer to Sp(2n) for this comparison to derive a numerical condition on

the index parameters for Levi-movability in an orthogonal Grassmannian OG(r, 2n+1).

For completeness, we include some background information on Sp(2n).
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Let U = C2n be equipped with a nondegenerate symplectic form 〈, 〉C so that its

matrix (〈ui, uj〉C)1≤i,j≤2n in the basis {u1, . . . , u2n}, is given by

Ec =

 0 J

−J 0

 ,

where J is the n×n matrix with 1 along the anti-diagonal, and zeroes elsewhere. Sp(2n)

can be realized as the fixed point subgroup under the involution σ : SL(2n) → SL(2n)

defined by σ(A) = Ec(A
T )−1E−1

c . Let B and H be the Borel and Cartan subgroups of

SL(2n), then the involution σ keeps B and H stable, and we denote Bσ and Hσ by BC

and HC respectively.

We denote the Lie algebra of Sp(2n) by sp(2n). The Lie algebra of HC is the Cartan

subalgebra,

hC = {t=diag(t1, . . . , tn,−tn, . . . ,−t1) | ti∈ C}.

Fix a real form of hCR ⊂ hC . Then, the fundamental Weyl chamber is given by

hC+ ={t∈hCR | ti∈ R, and t1≥ . . .≥ tn ≥ 0}.

The Lie group Sp(2n) has a root system of type Cn. Fixing a Borel subgroup BC

determines a set of positive roots R+
C in the set of roots RC . Denote by ρC half the

sum of the positive roots. Let ∆C = {β1, . . . , βn} be the set of simple roots, such that

for all i ∈ [n], βi = αi|hC where {α1, . . . , α2n−1} are the simple roots of SL(2n). The

corresponding simple coroots are denoted {β∨1 , . . . , β∨n}, and are given by:

β∨i = α∨i + α∨2n−i, for 1 ≤ i < n and

β∨n = α∨n .

Define the basis {xC1 , . . . , xCn } of hC dual to the basis {βi} of h∗C , so that βj(x
B
i ) = δi,j.

The Weyl group of Sp(2n) is denoted WC . Recall that HC is σ−stable, and therefore

there is an induced action of σ on S2n. Therefore, WC can be identified with a subgroup

26



of S2n:

{(a1, . . . , a2n) ∈ S2n | a2n+1−i = 2n+1− ai, for all 1 ≤ i ≤ 2n}.

Let {s1, . . . , sn} be the simple reflections in the Weyl group WC of Sp(2n) corre-

sponding to the simple roots {β1, . . . , βn} respectively.

For any 1 ≤ r ≤ n, we let IG(r, 2n) be the set of r-dimensional isotropic subspaces

of V with respect to the form 〈, 〉C :

IG(r, 2n) := {M ∈ Gr(r, 2n)|〈v, v′〉C = 0,∀v, v′ ∈M}.

This is the quotient space Sp(2n)/PC
r of Sp(2n) by the standard maximal parabolic

subgroup PC
r with δC \ {βr} as the set of simple roots of its Levi component LCr .

Define a class of index sets that we will identify with the set of minimal-length coset

representatives of the quotient space WC/WPCr
:

(1.18) S(r, 2n) = {I : 1 ≤ i1 < . . . < ir ≤ 2n and I ∩ Ī = ∅},

where Ī := {2n+1− ir, . . . , 2n+1− i1}.

For any I = {i1 < . . . < ir} ∈ S(r, 2n) we give a corresponding minimal length coset

representative as the permutation

(1.19) wI = (i1, . . . , ir, ir+1, . . . , i2n+1−2r, 2n+1− ir, . . . , 2n+1− i1) ∈ WC

by taking {ir+1 < . . . < i2n+1−2r} = [2n] \ (I t Ī).

Definition 1.5.1. We define a complete isotropic flag on C2n to be a complete flag

G• : 0 = G0 ⊂ G1 ⊂ . . . ⊂ E2n = C2n

where G⊥a = G2n−a for a ∈ [2n].

For an isotropic flag G•, there exists an element k(G•) ∈ Sp(2n) which takes the

standard flag G◦• to the flag G•.
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For any I ∈ S(r, 2n) and any isotropic flag G•, we have the corresponding shifted

Schubert Cell in IG(r, 2n):

ΦIC (GC
• ) = {M ∈ IG(r, 2n)| for any 0 ≤ l ≤ r and any il ≤ a < il+1, dim(M ∩Ga) = l},

where we set i0 = 0 and ir+1 = 2n. Set theoretically we have the equality:

φI(G•) = ΩI(G•) ∩ IG(r, 2n).

Notice that k(G•)Λ
PCr
wI = φI(G•). Denote its closure in IG(r, 2n) by φI(G•) and denote

its class in cohomology by [φI(G•)] ∈ H∗(IG(r, 2n)).
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CHAPTER 2

Levi-Movability and Deformed Product on Cohomology

The aim in this chapter is to first introduce the definition of Levi-movability and

recall from [BK06] the numerical condition for Levi-movable s-tuples. In Section (2.2),

we compare the numerical condition for a Levi-movable triple in Sp(2n) with that of

SO(2n+1) to give a numerical condition for Levi-movable Schubert varieties in SO(2n+1)

on the index sets parameterizing the varieties. In particular, this numerical condition is

given in (2.7).

Given subsets I and J of [m], we denote by |I ≥ J | the number of pairs (i, j) with

i∈ I, j ∈J , and i ≥ j. We set |I ≥ ∅| = 0 and if K = {k}, then we abbreviate |I ≥ K|

to |I ≥ k|.

2.1. Levi-Movability

All of the notation in this section will be consistent with section (1.1). We let G

be a connected semisimple complex algebraic group and P ⊂ G a maximal parabolic

subgroup. Recall the definitions of ΛP
w in (1.1), and [Λ

P

w] in (1.2). We denote the structure

coefficients under the regular cup product by cwu,v, and they are defined by

(2.1) [Λ
P

u ] · [ΛP

v ] =
∑
w∈WP

cwu,v[Λ
P

w].

Recall from Lemma (0.2.1) that number cwu,v counts the number of points in the in-

tersection of shifted Schubert cells. For each w ∈ W P , there exists a w∨, such that

w∨ = w0ww
P
0 , where w0 is the longest word in W and wP0 is the longest word in the Weyl

group WP . So, for a generic triple (g1, g2, g3) ∈ G3, cwu,v counts the number of points in

(2.2) g1ΛP
u ∩ g2ΛP

v ∩ g3ΛP
w∨ .



Note that if cwu,v 6= 0, this implies that l(w) = l(v) + l(u).

Definition 2.1.1. Let w1, . . . , ws ∈ W P be minimal coset representative such that

(2.3)
s∑
j=1

codimΛP
wj

= dim(G/P ).

Then we call an s-tuple (w1, . . . , ws) Levi-movable if for generic (l1, . . . , ls) ∈ Ls, the

intersection

l1ΛP
w1
∩ . . . ∩ lsΛP

ws

is transverse at e.

Note that the definition above is independent of the coset representative chosen, so

we have the notion of Levi-movability for any s-tuple (w1, . . . , ws) ∈ (W P )s. Belkale and

Kumar showed that inequalities corresponding to Levi-movable triples with cwu,v = 1,

give a necessary and sufficient set of inequalities describing the eigencone for all types

[BK06].

Belkale and Kumar give a numerical condition for Levi-movability [BK06], which we

give in Theorem (2.1.2). Let ρ denote half the sum of the positive roots and ρL denote

half the sum of the roots in R+
L , the positive roots for the Levi Subgroup L ⊂ P .

Theorem 2.1.2. Assume that (w1, . . . , ws)∈(W P )s satisfy (2.3). Then the following are

equivalent:

(A) The s-tuple (w1, . . . , ws) ∈ (W P )s is Levi-movable.

(B) [Λ
P

w1
] · . . . · [ΛP

ws ] = d[Λ
P

e ] ∈ H2dim(G/P )(G/P ) for some nonzero d and for each

αi∈∆\∆(P ), we have

(
(

s∑
j=1

χwj)− χe
)

(xj) = 0,

where χw ∈ h∗ is the character χw = ρ− 2ρL +w−1ρ, and χe is the character of

the identity.
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Notice that this numerical condition given in (2.1.2) is precisely the exponent on τ in

the definition of the deformed product given in Definition (0.2.3).

2.2. Levi-Movable Intersection with Intersection Number One

In this section we give numerical criterion for a Levi-movable intersection with inter-

section number one. Recall the set of parameters S(r, 2n) from (1.18). For I ∈ S(r, 2n),

recall the correspondence between a minimal length coset representative wI ∈ WC ,

given in (1.19). We establish a bijection between sets I = {i1, . . . , ir} ∈ S(r, 2n) and

J = {j1, . . . , jr} ∈ S(r, 2n+1) by

ik =

 jk : ik ≤ n

jk − 1 : ik > n.

After making this identification we refer to both index sets as I.

We denote half the sum of the positive roots in RB
+ by ρB, and similarly half the

sum of the positive roots in RC
+ by ρC . Fix I1, . . . , Is ∈ S(r, 2n), and define functions

θB, θC : S(r, 2n)→ Z, by

θB(I) = (χBwI −
s∑
j=1

χBw
Ij

)(xBr ) and,(2.4)

θC(I) = (χCwI −
s∑
j=1

χCw
Ij

)(xCr ),(2.5)

where χBwI = (ρB + w−1
I ρB) and χCwI is defined similarly. From [BK10], we have the

following lemma:

Lemma 2.2.1. For r < n and any I ∈ S(r, 2n),

θC(I) = θB(I) + |I ≤ n| −
s∑
j=1

|Ij ≤ n|,

and for r = n,

2θC(I) = θB(I) + |I ≤ n| −
s∑
j=1

|Ij ≤ n|.
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There is a canonical Weyl group equivariant identification between the Cartan sub-

algebras hC and hB [KLM03], and also the Weyl groups WC and WB of Sp(2n) and

SO(2n+1) respectively. We will make these identifications and denote the identified

Weyl group by W and the identified fundamental Weyl chamber by h. Let µ(w) denote

the number of times that the simple reflection sn appears in any reduced decomposition

of w ∈ W.

We recall the following theorem from [BK10]:

Theorem 2.2.2. The map

φ : H∗(SO(2n+1)/BB,C)→ H∗(Sp(2n)/BC ,C)

given by

φ([Λw(B)]) = 2µ(w)−n[Λw(C)]

for any w ∈ W , is an algebra homomorphism.

Theorem (2.2.2) gives us a relationship between the structure coefficients, which we

state in Lemma (2.2.3). Take a triple (u, v, w) ∈ W 3.

[Λ
PB

u ] · [ΛPB

v ] =
∑
w∈W

cwu,v(B)[Λ
PB

w ]

and

[Λ
PC

u ] · [ΛPC

v ] =
∑
w∈W

cwu,v(C)[Λ
PC

w ].

The following corollary follows directly from Theorem (2.2.2):

Corollary 2.2.3. In the regular cup product, we have

cwu,v(C) = 2µ(u∨)+µ(v∨)−µ(w∨)cwu,v(B).

The following lemma is proved in [BK10]:
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Lemma 2.2.4. For I ∈ S(r, 2n),

µ(wI) = |I > n| = r − |I ≤ n|.

The following theorem is due to Kumar:

Theorem 2.2.5. A triple (u, v, w) ∈ (WB)3 is Levi-movable with cwu,v(B) = 1, if and

only if (u, v, w) ∈ (WC)3 is Levi-movable with cwu,v(C) = 1.

Proof. Notice that if (u, v, w) ∈ (WB)3 is Levi-movable with cwu,v(B) = 1, then

θB(Iw) = 0, where Iw ∈ S(r, 2n + 1) is the corresponding index set from (1.8). So we

assume (u, v, w) ∈ (WB)3 is Levi-movable with cwu,v(B) = 1, and show that θB(Iw) = 0.

If θB(Iw) = 0, then by (2.2.3),

cwu,v(C) = 2µ(u∨)+µ(v∨)−µ(w∨) ≥ 1, which implies

µ(u∨) + µ(v∨)− µ(w∨) ≥ 0.

Since θB(Iw) = 0, we can rewrite the relationship between θC(Iw) as

θC(Iw) =

 µ(w∨)− µ(u∨)− µ(v∨), for r < n,

1
2
µ(w∨)− 1

2
µ(u∨)− 1

2
µ(v∨), for r = n.

This implies θC(Iw) ≤ 0. From Theorem (2.2.2) and [BK06](Proposition 17), we know

that θC(Iw) ≥ 0,

θC(I) = 0.

To show the other direction, we assume (u, v, w) ∈ (WC)3 is Levi-movable with

cwu,v(C) = 1. A similar argument shows that θC(I) = 0⇒ θB(I) = 0. 2

The following theorem gives a numerical condition on index sets:

Theorem 2.2.6. If an s-tuple (w1, . . . , ws) ∈ (WB)s is Levi-movable and

(2.6) [Λ
Pr
w1

] · . . . · [ΛPr
ws ] = [Λ

Pr
e ]
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then, for index sets Iw1 , . . . , Iws corresponding to w1, . . . , ws by (1.8), the following con-

dition holds:

(2.7) r =
s∑
i=1

|Iwi ≤ n|.

Proof. Let (w1, . . . , ws) ∈ (WB)s be Levi-movable and satisfy (2.6). By definition

θB(Ie) = 0. By Lemma (2.2.5), θC(Ie) = 0. Then, by Lemma (2.2.1):

r =
s∑
i=1

|Iwi ≤ n|.

2
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CHAPTER 3

Embedding SO(2n+ 1) in SO(2n+ 2)

In this chapter we give an embedding of V = C2n+1 in W = C2n+2, and more im-

portantly and embedding of SO(2n+1) in SO(2n+2). In the second section we estab-

lish a correspondence between parameters for Schubert varieties in homogeneous spaces

OG(r, 2n+1) and OG(r, 2n+2), defined in (1.6) and (1.10) respectively. In the final

section we consider a restriction of Schubert varieties from OG(r, 2n+2) to OG(r, 2n+1).

3.1. Embedding SO(2n+1) ⊂ SO(2n+2)

Recall the definitions of the quadratic forms QB and QD from (1.5) and (1.9) respec-

tively. In this section we will detail a particular embedding of V = C2n+1 in W = C2n+2

so that V is invariant with respect to QD. Let {w1, . . . , w2n+2} be the basis of W = C2n+2

such that 〈wi, w2n+3−i〉D = 1 and all other pairings are zero. Let V be the vector subspace

spanned by:

vi = wi, for 1 ≤ i ≤ n,(3.1)

vn+1 = wn+1 + wn+2, and(3.2)

vj = wj+1 for n+2 ≤ j ≤ 2n+1.(3.3)

Then 〈vi, v2n+2−i〉D = 1 for all i 6= n+1 and 〈vn+1, vn+1〉D = 2, so that QD|V = QB. We

extend the subspace V to W with the vector v0 := wn+1 − wn+2.

This embedding agrees with the following embedding of SO(2n+1) in SO(2n+2).

Notice that the Dynkin diagram for SO(2n+2), has a symmetry interchanging the two

right end nodes of the diagram. This corresponds to an outer automorphism of the

Lie group, which has a fixed subgroup that stabilizes the non-isotropic vector v0. The



stabilizer of the 2n+1-dimensional orthogonal complement of v0 is the group SO(2n+1).

Recall the sets of simple roots ∆B from section (1.3) and ∆D from section (1.4). In this

embedding, the short simple root δn of SO(2n+1), is embedded into the direct sum of

ϑn and ϑn+1.

On the level of Lie algebras, there is an embedding

hB ↪→ hD(3.4)

diag(t1, . . . , tn, 0,−tn, . . . ,−t1) 7→ diag(t1, . . . , tn, 0, 0,−tn, . . . ,−t1).(3.5)

In fact, hB+ ↪→ hD+ .

This induces a restriction map hD∗+ → hB∗+ . Let ωDi ∈hD∗ and ωBi ∈hB∗ denote the ith

fundamental weights. Then

ωDi 7→ ωBi for all i ≤ n and(3.6)

ωDn+1 7→ ωBn .(3.7)

From the descriptions of the simple reflections in the Weyl groups WB and WD we

give the natural map between Weyl groups:

WB → WD

si 7→

 s′i 1 ≤ i ≤ n− 1

s′ns
′
n+1 i = n.

This embedding of the Lie groups allows a left action of SO(2n+1) on the homogeneous

space OG(r, 2n+2).

Lemma 3.1.1. Under the left action of SO(2n+1), OG(r, 2n+2) has two orbits, namely

Or = {S∈OG(r, 2n+2) |S ⊂ V } and,(3.8)

Or−1 = {S∈OG(r, 2n+2) | dim(S ∩ V ) = r − 1}.(3.9)
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Proof. Let T ∈SO(2n+1) ⊂ SO(2n+2). Recall that SO(2n+1) preserves V , and T

has full rank. So,

dim(T · S ∩ V ) = dim(TS ∩ TV )

= dim(T (S ∩ V ))

= dim(S ∩ V ).

Therefore, if S∈Or, then TS ⊂ V , and if S∈Or−1, then dim(TS∩V ) = r−1. Therefore,

SO(2n+1) acts on each set, and it is clear that the action on Or is transitive. We want

to show that SO(2n+1) acts transitively on Or−1. We will fix a subspace C ∈ Or−1 and

show that for arbitrary Λ ∈ Or we can produce A ∈ SO(2n+1) such that A : C 7→ Λ.

Fix an r-dimensional isotropic subspace C ∈ OG(r, 2n+2) spanned by basis vectors

〈w1, . . . , wr−1, wn+1〉. Let Λ ∈ OG(r, 2n+2) be an arbitrary r-dimensional subspace such

that Λ∩V = r−1. Then Λ contains a 1-dimensional subspace of the form u =
∑2n+2

i=1 uiwi

where un+1 6= un+2. Take u as a basis vector of Λ. We can extend u to an orthogonal

basis of Λ with respect to 〈, 〉D so that the other r−1 basis vectors of Λ are in V (i.e. for

a basis vector b =
∑2n+2

i=1 biwi, bn+1 = bn+2.) Call the basis S = {u, s1, . . . , sr−1}. Define

a vector ũ by

ũ = (u1, . . . , un, un+1 − 1, un+2 + 1, un+3, . . . , u2n+2).

It is clear that u and ũ are independent. Now, dim(〈u, ũ〉∩V ) ∈ {0, 1, 2}. The dimension

cannot be 0 since 〈u, ũ〉 ∪ V would have dimension 2n+3. The dimension cannot be 2

since dim(u ∩ V ) = 0 by construction. Therefore, dim(〈u, ũ〉 ∩ V ) = 1. So complete

S ∪ 〈u, ũ〉 to an orthogonal basis of V with respect to 〈, 〉D. Then for a change of basis

A ∈ SO(2n+2) such that A : C 7→ Λ, by the construction above, A will preserve V and

A · v0 = v0. So, A ∈ SO(2n+ 1) as desired. 2
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3.2. Identifying Index Sets

In this section we give a correspondence between index sets parameterizing Schubert

varieties in OG(r, 2n+1) and OG(r, 2n+2).

Fix the following notation for Schubert varieties: Let ΨI(E•) be a Schubert variety

in OG(r, 2n+1) where I ∈SB(r, 2n+1) and F• is a complete isotropic flag on C2n+1 as

defined in (1.3.1). Similarly, let ΥJD(ED
• ) be a Schubert variety in OG(r, 2n+2) where

J ∈SD(r, 2n+ 2) and E• is a complete isotropic flag on C2n+2 as defined in (1.4.3).

Question 3.2.1. Given a Schubert variety ΥJ(E•), does the action of SO(2n+1) on

OG(r, 2n+2) break the variety up over the orbits Or and Or−1? In other words, can we

describe ΥJ(E•) ∩Or?

First, we identify OG(r, 2n+1) with the orbit Or:

Or = {Λ|〈v1, v2〉D = 0 for all v1, v2 ∈ Λ and Λ ⊂ V }

= {Λ|〈v1, v2〉B = 0 for all v1, v2 ∈ Λ}

= OG(r, 2n+1)

Define a subset of S(r, 2n+2) which is the parameterizing set for Schubert varieties

in the orbit Or,

T(r, 2n+2):={J ∈ S(r, 2n+2) | ji 6= n+1, ji 6= n+2 for any i}.

Then, the answer to Question 3.2.1 boils down to examining the relationship between

index sets J ∈T(r, 2n + 2) and I∈S(r, 2n+1).

Lemma 3.2.2. For r < n there is a correspondence of sets:

s : S(r, 2n+1) ↔ T(r, 2n+2)(3.10)

I ↔ J,(3.11)
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where s is a bijection defined by

jl =

 il for 1 ≤ il ≤ n

il + 1 for n+ 3 ≤ il ≤ 2n+2.

Proof. It is clear that for J = s(I), J ∩ J is empty. Let J ∈ T(r, 2n+2) such

that s−1(J) = I. We check that I ∈ S(r, 2n+ 1). It is clear that n + 1 /∈ I, since

n + 2 /∈ J ∈ T(r, 2n+2) by definition. We check that I ∩ I = ∅. Let jl ∈ J and il ∈ I.

First, if jl = il this implies that jl ≤ n and 2n+ 3− jl /∈ J . We want to know if 2n+2− il

is in I. Notice that 2n+ 2− il > n so if il∈I it came from

2n+2− il + 1 = 2n+ 3− il = 2n+ 3− jl /∈ J.

So, 2n+2− il is not in I. If il = jl− 1, so jl > n, then 2n+ 3− jl ≤ n is not in J . Again

we want to know if 2n+2− il is in I. Well,

2n+2− il = 2n+2− (jl − 1) = 2n+ 3− jl /∈ J.

Therefore, 2n+2− il /∈ I, and I∈SB(r, 2n+1). 2

Lemma 3.2.3. For r = n, define the correspondence between index sets :

s : S(n, 2n+1) ↔ S(n+1, 2n+2)

I ↔ J,

where s : I 7→ J is given by

jl =



il for 1 ≤ jl ≤ n

n+ 1 if #il ≤ n ∼= 0mod2,

n+ 1 if #il ≤ n ∼= 1mod2,

il + 1 for n+ 3 ≤ jl ≤ 2n+2,
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Proof. Let I ∈ S(n, 2n+1) such that s(I) = J. It is clear that J ∩ J = ∅, since

either n+ 1 ∈ J or n+ 2 ∈ J , but not both. 2

Remark 3.2.4. Notice that in Lemma (3.2.2), the correspondence is well defined in either

direction. In Lemma (3.2.3), an important choice must be made. Given I ∈ S(n, 2n+1),

to produce J = s(I), one of the two indices n+ 1 or n+ 2, is inserted to complete J . Let

jk ∈ J ∈ S(n+1, 2n+2). If #{jk ≤ n+1} ≡ 0mod2, then J determines a Schubert variety

in OG+(n+1, 2n+2), and if #{jk ≤ n + 1} ≡ 1mod2, then J determines a Schubert

variety in OG−(n+1, 2n+2).

3.3. Correspondence of Schubert Varieties

It is clear that complete isotropic flags F• on V and E• on W can both be completely

described by the first n components of the flag.

Definition 3.3.1. Given complete isotropic flags F• on V and E• on W , we call the flags

corresponding if Fi = Ei for all i ≤ n.

Recall that given components E1, . . . , En of E•, E
⊥
n /En has two isotropic lines and

by definition we adjoin to En the line the makes the maximal isotropic component En+1

in the same family as the standard flag, as in section (1.4).

Lemma 3.3.2. Let r < n. Let E• be a complete isotropic flag on W, and F• be the

complete isotropic flag on V so that F• and E• are corresponding. If J ∈TD(r, 2n+2),

then ΥJ(E•) ⊂ Or and

(3.12) ΥJ(E•) ∩Or= ΨI(F•),

where I∈S(r, 2n+1) such that, J = s(I).

Proof. Let J = (j1, . . . , jr) ∈ T(r, 2n+2) and E• a complete isotropic flag on W .

Denote by F• the corresponding isotropic flag in V , so that Ei = Fi for all i ≤ n. Let

T ∈ΥJ(E•). Notice for T ⊂ Or, T ∩ Ei = T ∩ Fi, for all i ≤ n. Since wn+1 + wn+2∈Fn+1
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we see that the following equalities hold:

T ∩ En+1 = T ∩ Fn(3.13)

T ∩ En+2 = T ∩ Fn+1 and,(3.14)

T ∩ Ej = T ∩ Fj−1, for all j ≥ n+ 3.(3.15)

If J ∈ T(r, 2n+2), then for any T ∈ ΥJ(E•) and for any jk ≤ a < jk+1 we have

T∩Ea = T∩Fa which implies dim(T∩Or∩Ea) = dim(T∩Or∩Fa) = k, for jk ≤ n ≤ jk+1.

Similarly we can see for jk ≥ n+ 3 and jk ≤ b < jk+1,

dim(T ∩Or ∩ Eb) = dim(T ∩Or ∩ Fb−1) = k − 1.

So, T ∈ ΨI(F•) where s(I) = J. Similarly, by considering the list (3.13) above, it is

clear that If T ∈ ΨI(F•), T satisfies the Schubert condition for ΥJ(E•). Therefore,

ΥJ(E•) ∩Or = ΨI(F•), as desired. 2

Proposition 3.3.3. The map

OG±(n+1, 2n+2) 3 Λ

ϕ±

��

_

��

OG(n, 2n+1) 3 (Λ ∩ V )

is a homeomorphism,

(3.16) OG(n, 2n+1) ∼= OG±(n+1, 2n+2).

Proof. As in section (3.1), V ⊂ W is a 2n+1−dimensional subspace of W such that

〈, 〉D|V is nondegenerate on V . Fix the component through the identity to be OG+(n+

1, 2n+2). Observe that Λ * V, since V does not have an isotropic subspace of dimension

n + 1. Every maximal isotropic space Λ ∈ OG+(n+ 1, 2n+ 2) contains a unique n-

dimensional isotropic subspace. Let M ∈ OG(n, 2n+1). As in the Remark (3.2.4) above,

to extend M to an n + 1-dimensional isotropic space, you make a choice between two
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isotropic lines in M⊥ \M , which determines which connected component of OG±(n+

1, 2n+2) you extend to. This is a continuous choice. 2
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CHAPTER 4

Comparison of Eigencones

To begin we recall the most relevant definitions from previous chapters. Let V =

C2n+1 and W = C2n+2.

For SO(2n+1), we define the homogeneous space OG(r, 2n+1) in (1.6), and the set of

parameters S(r, 2n+1) defined in (1.7), giving Schubert varieties ΨI(F•) ∈ OG(r, 2n+1),

as in (1.3.2). For SO(2n+2), we define the homogeneous space OG(r, 2n+2) in (1.10), and

the sets of parameters S(r, 2n+1) defined in (1.11), giving Schubert varieties ΥJ(E•) ∈

OG(r, 2n+2), and S±(n+1, 2n+2) defined in (1.12), giving Schubert varieties ΥJ(E•) ∈

OG(n+1, 2n+2), as in (1.4.5). We give a bijection of parameters s : S(r, 2n+1) ↔

S(r, 2n+2), defined in Lemma (3.2.2).

We denote the fundamental Weyl chamber for SO(2n+1) by hB+ and the fundamental

Weyl chamber for SO(2n+2) by hD+ . We give an embedding hB+ ↪→ hD+ in (3.4). We

denote the fundamental weights for SO(2n+1) by ωB and the fundamental weights for

SO(2n+2) by ωD.

Finally, we recall the definition of the eigencone. Let G be a connected semisimple

group. Choose a maximal compact subgroup K of G with Lie algebra k. Recall from

Chapter zero, there exists a homeomorphism

C : k/K → h+

where K acts on k by the adjoint action, and h+ is the positive Weyl chamber of G in h.

Definition 4.0.1. For a positive integer s, the eigencone of G is defined as the cone:

Γ(s,G) :={(h1, . . . , hs)∈(h+)s| ∃(k1, . . . , ks)∈ks, s.t.
s∑
j=1

kj =0, C−1(kj)=hj ∀j ∈ [s]}.



For convenience we restate the main theorem (0.3.3):

Theorem 4.0.2. For hi∈hB+,

(h1, . . . , hs)∈Γ(s, SO(2n+1)) ⇐⇒ (h1, . . . , hs)∈Γ(s, SO(2n+2)).

4.1. Proof of Theorem (0.3.3)

Proof. It is clear that Γ(s, SO(2n+1)) ⊂ Γ(s, SO(2n+2)). We need to show the

converse. That is, if (hB1 , . . . , h
B
s ) ∈ (hB+)s such that (hB1 , . . . , h

B
s ) ∈ Γ(s, SO(2n+2)),

then (hB1 , . . . , h
B
s ) ∈ Γ(s, SO(2n+1)). So, the task is to take an inequality in the system

describing Γ(SO(2n+ 1)) and show that it is implied by an inequality in the system

describing Γ(SO(2n+2)).

From Theorem (0.2.4), we know that for the solution of the eigencone problem we

can restrict to a smaller set of inequalities coming from the Levi-movable s-tuples with

intersection number one. In Theorem (2.2.6) we showed that Levi-movable s-tuples,

parameterized by index sets I1, . . . , Is ∈ S(r, 2n+ 1), with intersection number one,

satisfying the following numerical condition, given in (2.7):

(4.1) r =
s∑

k=1

|Ik ≤ n|.

We will separate the proof in two steps, first considering 1 ≤ r < n, and then r = n.

For 1 ≤ r < n, let I1, . . . , Is ∈ S(r, 2n+1) such that
∑s

k=1 |Ik ≤ n| = r and

[ΨI1 ] · . . . · [ΨIs ] = [Ψe] ∈ H2dim(OG(r,2n+1))
�0

(OG(r, 2n+1)),

where [Ψe] is the class of the point. Then, by Theorem (5.2.1),

(4.2) [ΥJ1 ] · . . . · [ΥJs ] = d[Υe] ∈ H2dim(OG(r,2n+2))
�0

(OG(r, 2n+2)),

for some nonzero d, and Jk = s(Ik), for s defined in (3.2.2).
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Let wJk ∈ WD
r denote the minimal length coset representative corresponding to

Jk ∈ S(r, 2n+ 2) as in (1.16), and similarly wIk ∈ WB
r denote the minimal length coset

representative corresponding to Ik ∈ S(r, 2n+ 1).

Applying Theorem (0.2.2) to the intersection in (4.2) for SO(2n+2) and for 1 ≤ r ≤ n,

we have

ωDr (
s∑

k=1

w−1
Jk
hDk) ≤ 0

where ωDr is the rth fundamental weight of SO(2n+2).

from (3.4) we recall the embedding:

hB
φ−→ hD

hB = (hB1 , . . . , h
B
n , 0, h

B
n+2, . . . , h

B
2n+1) 7→ hD = (hD1 , . . . , h

D
n , 0, 0, h

D
n+3, . . . , h

D
2n+2).

Then for Ik = {ik1, . . . , ikr}, and s(Ik) = Jk = {jk1 , . . . , jkr }, we have hD
jkl

= hB
ikl
.

Then,

ωDr (
s∑

k=1

w−1
Jk
hDk) ≤ 0

implies
s∑

k=1

( r∑
l=1

hDk
jkl

)
=

s∑
k=1

( r∑
l=1

hBk
ikl

)
≤ 0.

So,

ωBr (
s∑

k=1

w−1
Ik
hBk) ≤ 0.

Now, let r = n. We have homeomorphisms OG(n, 2n+1) ∼= OG±(n+1, 2n+2). Every

maximal isotropic subspace M ∈ OG(n + 1, 2n + 2) contains a unique n-dimensional

isotropic subspace with respect to 〈, 〉B. So, M ∩ V ∈ OG(n, 2n + 1). Then M ∩ V can

be extended continuously to M+ ∈ OG+(n + 1, 2n + 2) or M− ∈ OG−(n + 1, 2n + 2)

determined by which isotropic line in (M⊥/M) one extends M by. Note that

dim(OG(n, 2n+ 1)) = dim(OG(n+ 1, 2n+ 2)) =
n(n+ 1)

2
,
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and for J = s(I), dim(ΨI(F•)) = dim(ΥI(E•)). The intersection numbers will be pre-

served. Since the two connected components of OG±(n+1, 2n+2) are isomorphic, we

will restrict our attention to the connected component OG+(n+1, 2n+2) containing the

isotropic space 〈w1, . . . , wn+1〉.

Following an argument similar to the r < n case, we let I1, . . . , Is ∈ S(n, 2n+1) such

that

[ΨI1 ] · . . . · [ΨIs ] = [Ψe] ∈ Hn(n+1)
�0

(OG(n, 2n+1)).

Then, for Jk = s(Ik)

[ΥJ1 ] · . . . · [ΥJs ] = [Υe] ∈ Hn(n+1)
�0

(OG(n+ 1, 2n+2)).

Let wJk ∈ WD
n+1 denote the minimal length coset representative corresponding to Jk ∈

S(n + 1, 2n + 2) as in (1.16), and similarly wIk ∈ WB
n denote the minimal length coset

representative corresponding to Ik ∈ S(n, 2n+ 1).

Applying Theorem (0.2.2) to the intersection in (4.2) for SO(2n+2) and for 1 ≤ r ≤ n,

we have

ωDn+1(
s∑

k=1

w−1
Jk
hDk) ≤ 0

where ωDn+1 is the n+ 1st fundamental weight of SO(2n+2). Since hDkn+1 = hDkn+2 = 0 for

all k, we have
s∑

k=1

( r∑
l=1

hDk
jkl

)
=

s∑
k=1

( r∑
l=1

hBk
ikl

)
≤ 0,

and So,

ωBn (
s∑

k=1

w−1
Ik
hBk) ≤ 0.

Therefore applying Theorem (0.2.4) for SO(2n+1), to the cases r < n and r = n, we

have (hB1 , . . . , hBs) ∈ Γ(s, SO(2n+1)). 2
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CHAPTER 5

Intersection Result

The aim of this chapter is to prove Theorem (0.3.2). This is a key result used in the

comparison of eigencones for SO(2n+1) and SO(2n+2). From Theorem (0.2.4), we know

that for the solution of the eigencone problem we can restrict to Levi-movable s-tuples

with intersection number one to produce a smaller system of inequalities. From Theorem

(2.2.6), we have a numerical condition on parameters for Levi-movable intersections with

intersection number one, given in (2.7). We will restrict our interest to such s-tuples

satisfying condition (2.7) here. Finally we give an important corollary of (0.3.2) which

we state as Theorem (5.2.1).

To begin we recall the most relevant definitions from previous chapters. Let V =

C2n+1 and W = C2n+2. For SO(2n+1), we define the homogeneous space OG(r, 2n+1)

in (1.6), and the set of parameters S(r, 2n+1) defined in (1.7), giving Schubert varieties

ΨI(F•) ∈ OG(r, 2n+1), as in (1.3.2). For SO(2n+2), we define the homogeneous space

OG(r, 2n+2) in (1.10), and the sets of parameters S(r, 2n+1) defined in (1.11), giving

Schubert varieties ΥJ(E•) ∈ OG(r, 2n+2), and S±(n+1, 2n+2) defined in (1.12), giving

Schubert varieties ΥJ(E•) ∈ OG(n+1, 2n+2), as in (1.4.5). Recall the definition of

corresponding flags from Definition (3.3.1). Finally, we recall the bijection s : S(r, 2n+

1)↔ S(r, 2n+2), defined in Lemma (3.2.2).

5.1. Intersection Result

Theorem 5.1.1. Let F 1
• , F

2
• , . . . , F

s
• be complete isotropic flags in general positions on

V = C2n+1 and E1
• , E

2
• , . . . , E

s
• the corresponding flags on W = C2n+2. Let I1, I2, . . . , Is



be index sets in S(r, 2n+1), such that

(5.1)
s∑

k=1

|Ik ≤ n| = r,

and J1, J2, . . . , Js be the corresponding index sets in S(r, 2n+2) such that s(Jk) = Ik,

and
s∑

k=1

codimΨIk(F
k
• ) = dim(OG(r, 2n+1)).

Then the intersection of varieties

(5.2) ∩sk=1 ΥJk(E
k
• )

in OG(r, 2n+2) is proper. Moreover, (5.2) intersects in finitely many points.

Proof. Choose isotropic flags {F k
• }1≤k≤s on C2n+1 such that the intersection ∩sk=1ΨIk(F

k
• )

is dense in ∩sk=1ΨIk(F
k
• ) for all Ik∈S(r, 2n+1) and all 1 ≤ r ≤ n. Let F k

• on C2n+1 and

Ek
• on C2n+2 be corresponding flags for all 1 ≤ k ≤ s.

For any irreducible component C ⊂ ∩sk=1ΥJk(E
k
• ), the task is to show that

(5.3) dim(C) ≤ dim(OG(r, 2n+2))−
s∑

k=1

codim(ΥJk(E
k
• )),

for any Jk ∈ S(r, 2n+2).

We have two cases to consider. Recall that OG(r, 2n+2) has an SO(2n+1) action

with two orbits Or and Or−1, defined in (3.8), where Or−1 is an open orbit and Or is

closed.

The first case to consider is C ∩Or−1 6= ∅. Then (C ∩Or−1)⊂∩sk=1(Or−1 ∩ΥJk(E
k
• )),

and by Kleiman’s Transversality Theorem (5.3) is satisfied.

The second case to consider is C ∩Or−1 = ∅, so C ⊂ Or. By definition,

Or = {S∈OG(r, 2n+2) |S ⊂ V } = OG(r, 2n+1).
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By Lemma (3.3.2), we have ΥJk(E
k
• ) ∩Or ⊂ OG(r, 2n+1), and furthermore, that

ΥJk(E
k
• ) ∩Or = ΨIk(F

k
• ).

Therefore, dim(C) ≤ dim(Or)−
∑s

k=1 codim(ΨIk(F
k
• )), and we need to show that the

following is greater than or equal to zero:

[dim(OG(r, 2n+2))−
∑s

k=1(codim(ΥJk(E
k
• )))]−(5.4)

[dim(OG(r, 2n+1))−
∑s

k=1(codim(ΨIk(F
k
• )))].(5.5)

In fact, we will show an equality.

Observe that

dim(OG(r, 2n+2))− dim(OG(r, 2n+1)) =

r
2
(4n− 3r + 3)− r

2
(4n− 3r + 1) = r.

So, we rewrite (5.4) as

(5.6) r +
s∑

k=1

(codim(ΨIk(F
k
• )))−

s∑
k=1

(codim(ΥJk(E
k
• ))).

We expand (5.6) using the dimension formula for ΨIk(F
k
• ), given in Lemma (6.1.1), and

the dimension formula for ΥJk(E
k
• ), given in Lemma (6.2.1):

r −
s∑

k=1

[
r
2
(4n−3r+3)−|Jk > J̃k|− 1

2
|Jk > J̄k|+ 1

2
|Jk > n+ 1|

]
+(5.7)

s∑
k=1

[r
2

(4n−3r+1)−|Ik > Ĩk|− 1

2
|Ik > Īk|+ 1

2
|Ik > n|

]
(5.8)

(5.9)

By inspection we reduce (5.7):

r − sr +
s∑

k=1

|Ik > n| = r −
s∑

k=1

|Ik ≤ n|.
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By assumption, r =
∑s

k=1 |Ik ≤ n|, and we confirm that (5.4) is equal to zero. Thus,

(5.3) is satisfied and (5.4) equalling zero, implies ∩sk=1ΥJk(E
k
• ) intersects in finitely many

points. 2

5.2. Consequence in Cohomology

Theorem 5.2.1. Let 1 ≤ r ≤ n and I1, I2, . . . , Is ∈ S(r, 2n+1) be such that

s∏
k=1

[ΨIk ] = [Ψe] ∈ H2dim(OG(r,2n+1))
�0

(OG(r, 2n+1)).

Then, for indices Jk = s(Ik),

s∏
k=1

[ΥJk ] = d[Υe] ∈ H2dim(OG(r,2n+2))
�0

(OG(r, 2n+2)),

for some d 6= 0.

Before giving a proof of Theorem (5.2.1), we need the following preliminary work. Let

M∈ΨI(E•)⊂OG(r, 2n+1)⊂OG(r, 2n+2). DetermineM⊥V with respect to 〈, 〉B, andM⊥W

with respect to 〈, 〉D. To calculate the tangent spaces to OG(r, 2n+1) and OG(r, 2n+2),

recall the embedding of V in W described in Chapter (3). Viewing OG(r, 2n+1) = Or ⊂

OG(r, 2n+2),

T(OG(r, 2n+1))M ⊂ T(OG(r, 2n+2))M ⊂ T(Gr(r, 2n+2))M = Hom(M,W/M).

M⊥W is a 2n+2− r dimensional subspace of W that contains M and there is a canonical

isomorphism W/M⊥W ∼= M∗ induced from the symmetric form. So, we have an exact

sequence

0→ Hom(M,M⊥W/M)→ Hom(M,W/M)
φ−→ Hom(M,W/M⊥W ) = Hom(M,M∗)→ 0,

via the inclusions M⊂M⊥W⊂W . It is clear that M⊥W/M is a 2n+2 − 2r dimensional

space that possesses a nondegenerate symmetric form. Let PM denote the stabilizer of

M in SO(2n+2) and ∧2M∗ the space of skew-symmetric bilinear forms on M .
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Lemma 5.2.2. T(OG(r, 2n+2))M = φ−1(∧2M∗) and there is an exact sequence

0→ Hom(M,M⊥W /M)
ζ−→ T(OG(r, 2n+2))M

φ−→ ∧2M∗ → 0.

Proof. Let ϕ∈Hom(M,W/M). Then, ϕ(M) needs to be isotropic with respect to

〈, 〉D. So, for all m,m′∈M we have

〈m+ εϕ(m),m′ + εϕ(m′)〉D = 0.

Hence,

〈m,ϕ(m′)〉D + 〈ϕ(m),m′〉D = 0, or

〈m,ϕ(m′)〉D = −〈m′, ϕ(m)〉D.

Therefore we have a skew-symmetric bilinear form φ(ϕ)(m,m′) = 〈m,ϕ(m)′〉D. Hence,

T(OG(r, 2n+2)) ⊆ φ−1(∧2M∗). However,

dim(T(OG(r, 2n+2))) = dim(OG(r, 2n+2)) =
r

2
(4n− 3r + 3) = dim(φ−1(∧2M∗)),

implies, T (OG(r, 2n+2)) = φ−1(∧2M∗). 2

Similarly, we have an exact sequence

0→ Hom(M,M⊥V/M)→ Hom(M,V/M)
φ−→ Hom(M,V/M⊥V ) = Hom(M,M∗)→ 0,

via the inclusions M⊂M⊥V ⊂ V . It is clear that M⊥V/M is a 2n+1 − 2r dimensional

space that possesses a nondegenerate symmetric form. Again, ∧2M∗ the space of skew-

symmetric bilinear forms on M . A nearly identical proof as given of Lemma 5.2.2 gives

the following:

Lemma 5.2.3. T(OG(r, 2n+1))M = φ−1(∧2M∗) and there is an exact sequence

0→ Hom(M,M⊥V /M)
ζ−→ T(OG(r, 2n+1))M

φ−→ ∧2M∗ → 0.
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Now, we give the proof of Theorem (5.2.1).

Proof. The assumption
∏s

k=1[ΨIk ] = [Ψe] ∈ Hdim(OG(r,2n+1))
�0

(OG(r, 2n+1)) implies

that for generic isotropic flags F k
• on C2n+1, the corresponding Schubert cells intersect in

a point:

∩sk=1ΨIk(F
k
• ) = {e}.

We assume that the varieties intersect at the identity without loss of generality. Oth-

erwise, by Kleiman’s theorem we can find (g1, . . . , gs) such that the translation of the

intersection is transverse at {e}. This implies that for indices Jk = s(Ik) and correspond-

ing flags E• on C2n+2,

(5.10) ∩sk=1 ΥJk(E
k
• ) 6= ∅.

Moreover, from Theorem (5.1.1) we know that the intersection ∩sk=1ΥJk(E
k
• ) is finitely

many points. Therefore, in the classical cup product,

(5.11)
s∏

k=1

[ΥJk ] = d[Υe] for some d 6= 0.

It remains to show that the product in (5.11) can be replaced with the BK-product

�0, given in Definition (0.2.3). To simplify notation, denote HV = Hom(M,M⊥V/M),

and HW = Hom(M,M⊥W/M), and TI
M = T(ΨI(F•))M and TJ

MT(ΥJ(E•))M . Then we

have the following inclusions of exact sequences:
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0 −−−→ 0 ←−−− 0 ←−−− 0y y y y
HW ∩ TJ

M −−−→ HW ←−−− HV ←−−− HV ∩ TI
My y y y

TJ
M −−−→ T(OG(r, 2n+2))M ←−−− T(OG(r, 2n+1))M ←−−− TI

My yφ yφ y
V D

2 −−−→ ∧2M∗ ←−−− ∧2M∗ ←−−− V B
2y y y y

0 −−−→ 0 ←−−− 0 ←−−− 0

Where,

V B
2 := φ(TI

M) = {γ∈∧2M∗ | γ(Fb ∩M,F2n+1−b ∩M) = 0, ∀b∈ [2n+1]}(5.12)

V D
2 := φ(TJ

M) = {γ∈∧2M∗ | γ(Eb ∩M,E2n+2−b ∩M) = 0, ∀b∈ [2n+2]}.(5.13)

Belkale and Kumar compute the dimension of V2 in [BK1],

(5.14) dim(V B
2 ) =

1

2
(|I > I| − |I > n|).

A nearly identical calculation shows that V D
2 is of dimension

dim(V D
2 ) =

1

2
(|J > J | − |J > n+ 1|).

From the identification of index sets given in (3.10), it is clear that

(5.15) dim(V B
2 ) = dim(V D

2 )
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From the exact sequence given in Lemma (5.2.2), we have T(OG(r, 2n+ 2))M =

HW ⊕ ∧2M∗. For Jk, define the following:

A(Jk) = dim(T(ΥJk(E
k
• ))M ∩HW ),

B(Jk) = dim(T(ΥJk(E
k
• ))M),

C(Jk) = dim(V D
2 ).

To simplify notation, let

A = Hom(M,M⊥/M)

B = T (OG(r, 2n+ 2))M

C = ∧2M∗.

To show that ∩sk=1ΥJk(E
k
• ) is Levi-movable, we must show numerically that ∩sk=s(T(ΥJk(E

k
• ))M∩

HW ) meets transversally in and HW and that φ(T(ΥJ(E•))M) meets transversally in

∧2M∗. That is, we must show the following equalities:

dim(A) =
s∑

k=1

(
dim(A)− A(Jk)

)
(5.16)

dim(B) =
s∑

k=1

(
dim(B)−B(Jk)

)
(5.17)

dim(C) =
s∑

k=1

(
dim(C)− C(Jk)

)
.(5.18)

From above, dim(OG(r, 2n+2)) =
∑s

k=1(ΥJk(E
k
• )), and (5.17) is satisfied. From the

inclusion of sequences, given above (5.12), and the comparison (5.15), (5.18) is satisfied.

From the dimension formula given in (6.2.1), and the inclusions given above (5.12), we

have C(Jk) = |Jk > J̃k|, and the difference of (5.17) and (5.16), implies that (5.18) is

satisfied. Therefore, the intersection ∩sk=1ΥJk(E
k
• ) is Levi-movable.

2
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CHAPTER 6

Computing Dimensions of Schubert Varieties in Orthogonal

Grassmannians

The aim in this chapter is to give a known dimension formula for a Schubert variety

in a homogeneous space for SO(2n+1) in Lemma (6.1.1), and to confirm a dimension

formula for Schubert varieties in a homogeneous space for SO(2n+2) that is comparable

to Lemma (6.1.1). This dimension formula for SO(2n+2) is give in Lemma (6.2.1).

Given subsets I and J of [m], we denote by |I > J | the number of pairs (i, j) with

i∈ I, j ∈J , and i > j. We set |I > ∅| = 0 and if K = {k}, then we abbreviate |I > K|

to |I > k|. For 1 ≤ r ≤ m, and I = {i1, . . . , ir}, we let I = {m+ 1− ir, . . . ,m+ 1− i1}

and Ĩ = [m] \ (I t I).

The notation in this chapter will be consistent with the notation in Chapter (1).

6.1. Dimension Formula in an Odd Orthogonal Grassmannian

Lemma 6.1.1. For I ∈ S(r, 2n+1) and an isotropic flag F• on C2n+1,

(6.1) dim(ΨI(F•)) =
1

2
(|I > Ī| − |I > n|) + |I > Ĩ|.

Proof. Recall the embedding from chapter 2:

WB → S2n+1

wI 7→ ŵI = (i1, . . . , ir, j1, . . . , j2n+1−2r, 2n+2− ir, . . . , 2n+2− i1)

where jk ∈ Ĩ. Let lA2n(wA) denote the length of a word wA in a Weyl group of type A2n

and let lBn(wI) denote the length of a word wI in a Weyl group of type Bn. Recall that



the length of a word is given by lA2n(w) = |{i < j|w(i) > w(j)}|. So,

lBn(wI) =
1

2
(|I > Ĩ|+ |I > Ī|+ |Ĩ > Ī| − |I > n|)

=
1

2
(|I > Ĩ|+ |I > Ī|+ |I > Ĩ| − |I > n|)

=
1

2
(|I > Ī| − |I > n|) + |I > Ĩ|.

2

6.2. Dimension Formula in an Even Orthogonal Grassmannian

Let I∈S(r, 2n+2). Then for a complete isotropic flag F• on C2n+2, ΥI(F•) is a Schubert

cell in OG(r, 2n+2). The aim in this section is to confirm the following formula:

Lemma 6.2.1. Given an index set I ∈S(r, 2n+2) and a complete isotropic flag F• on

C2n+2,

dim(ΥI(F•)) = |I > Ĩ|+ 1

2
(|I > Ī| − |I > n+ 1|).

Before we prove this lemma, we need the following preliminary work.

Let

G(I) = |I > Ĩ|+ 1

2
(|I > Ī| − |I > n+ 1|).

The approach in proving Lemma (6.2.1) will be to first define a set of rules taking

B : S(r, 2n+2) → S(r, 2n+2) and show that for B : I → J , G(J) = G(I) + 1. We will

produce a chain of varieties in this way, and then use an induction argument to show

that G(I) = dim(ΥI(F•)).

In the set of rules defined below, an index I ∈ S(r, 2n+2) is mapped to an index

J ∈ S(r, 2n+2) by bumping at most two indices is, it to corresponding js, jt and leaving

all other indices fixed. For a given I, this process can be done systematically for each

it ∈ I and therefore we produce multiple such J .
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Definition 6.2.2. We define bumping rules for OG(r, 2n+2),

B : S(r, 2n+2)→ S(r, 2n+2)

I = {i1, . . . , ir} 7→ J = {j1, . . . , jr}.

The rules are given by phase (1) and phase (2). Given I = {i1, . . . , ir}, we produce

B(I) = J = {j1, . . . , jr} such that:

(1) (a) If ik 6= n+1, ik + 1 /∈ I, and ik + 1 � ik+1, then set jk = ik + 1. Complete J

by setting jl = il for all l 6= k. If ik ∈ I, move to phase (2). If ik + 1 = ik+1,

then terminate the process.

(b) If ik = n or ik = n + 1, ik + 2 /∈ I, and ik + 2 � ij+1, then set jk = ik + 2.

Complete J by setting jl = il for all l 6= k. If ik ∈ I, move to phase (2). If

ik + 1 = ik+1, then terminate the process.

(2) We move to this phase if jk = ik + 1 ∈ I in phase (1a) or jk = ik + 2 ∈ I in

phase (1b). There exists il ∈ I, such that il + jk = 2n+3. Repeat phase (1a),

and phase (1b) if applicable, for both jk (jk = ik + 1 or jk = ik + 2) and il. In

most cases, this will result in multiple valid index sets J .

Remarks 6.2.3. The following observations about the bumping rules may be useful in

computing examples:

(1) Notice that when n + 1 ∈ I, to bump from ik = n + 1, it skips over n + 2 to

n+ 3 when it bumps because n is allowed to bump to n+ 1 or n+ 2 as seen in

rule (1b). We will see that this rule occurs because for parameters I and J such

that n+ 1 ∈ I and n+ 2 ∈ J , and all other indices ik and jk match, I and J give

Schubert varieties of the same dimension. This is easy to see if you consider the

k-strict partitions corresponding to I and J . These partitions and a discussion

of this identification is given in Chapter 7 in (7.4).
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(2) Moving to phase (2) sends you back to phase (1). It may be necessary to move

to phase (2) again, but this will happen at most r−1 times, and with r ≤ n+ 1,

the process will terminate.

Lemma 6.2.4. For I ∈ S(r, 2n+2), and B(I), ΥI(F•) ⊂ ΥB(I)(F•).

Proof. For a complete isotropic flag on C2n+2 Recall the definition of a Schubert

variety defined in OG(r, 2n+2):

ΥI(F•)={M ∈OG(r, 2n+2) | for any 0≤ l≤ r, and any il≤ b< il+1, dim(M ∩ Fb) ≥ l}.

Let I = (i1, . . . , ir) and B(I) = (b1, . . . , br). Then,

i1 ≤ b1 ≤ i2 ≤ b2 ≤ . . . ≤ ir ≤ br

and Fil ⊆ Fbl . So, for M ∈ ΥB(I)(F•), dim(M ∩ Fbl) ≥ dim(M ∩ Fil) ≥ l. 2

The following lemma is the main tool that we use in the proof of Lemma (6.2.1).

Lemma 6.2.5. Given an index set I ∈ S(r, 2n+2) and a valid index set J = B(I),

produced from a bumping rule for OG(r, 2n+2),

G(I) + 1 = G(J).

The proof of Lemma (6.2.5) requires a comparison of the parts of the formulas G(I)

and G(J). We first give the proof of the lemma of interest, Lemma (6.2.1):

Recall that the formula to show is

(6.2) dim(ΥI(F•)) = |I > Ĩ|+ 1

2
(|I > Ī| − |I > n+ 1|).

Proof. Given I, ΥI(F•) ( ΥB(I)(F•), by Proposition (6.2.4). Consider the formula

G(I) for the indices parameterizing the top class in cohomology and the zero class in

cohomology. For Itop = {1, . . . , r}, G(Itop) = 0 + 1
2
(0 − 0) = 0, and for I0 = {2n + 3 −
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r, . . . , 2n+ 2},

G(I0) = (2nr + 2r − 2r2) +
1

2
(r2 − r) =

r

2
(4n− 3r + 3) = dim(OG(r, 2n+2)).

So in these two cases, dim(ΥI0(F•)) = G(I0), and dim(ΥItop(F•)) = G(Itop).

Now, for Itop, there is only one valid shift, which is to bump ir = r to jr = r + 1,

so J = {1, . . . , r − 1, r + 1}. J parameterizes the only one dimensional Schubert variety

ΥJ(F•). So, ΥItop(F•) ⊂ ΥJ(F•) and G(J) = G(Itop) + 1. Let K ∈ S(r, 2n + 2) and

G(K) = l for some l ≥ 1. Now, we can repeatedly bump and create a chain

ΥK(F•) ⊂ ΥB(K)(F•) ⊂ ΥB(B(K))(F•) ⊂ . . . ⊂ ΥI0(F•).

We can similarly work back through the bumping rules to create a chain from ΥItop(F•)

to ΥK(F•), so we have a full chain:

ΥItop(F•) ⊂ ΥJ(F•) ⊂ . . . ⊂ ΥK(F•) ⊂ ΥB(K)(F•) ⊂ . . . ⊂ ΥI0(F•).

So we were able to build a chain of r
2
(4n− 3r+ 3) + 1 Schubert varieties. We know that

the formula G(I) agrees with the dimension of ΥI(F•) at the top and the bottom of this

chain. It is clear that since ΥK(F•) ⊂ ΥB(K)(F•), that dim(ΥK(F•)) < dim(ΥB(K)(F•)).

So the dimension formula agrees: dim(ΥI(F•)) = |J > J̃ |+ 1
2
(|J > J̄ | − |J > n+ 1|). 2

Finally, we give the proof of Lemma (6.2.5).

Proof. We will prove each rule separately and in each case we let I ∈S(r, 2n+2)

and J = B(I). In each case we will compare each of the pieces of the formulas G(I) and

G(J):

(1) (a) For all t 6= k, it = jt. Since ik 6= n + 1, we have |I > n + 1| = |J > n + 1|.

Since we are only shifting one index we have

ir = jr < ir−1 = jr−1 < . . . < ik+l = jk+1 < ik < jk < ik−1 = jk+1 < . . . < i1 = j1,
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and it is clear that

ik < jk < jk < ik if ik < n+ 1 and

jk < ik < ik < jk if ik > n+ 1.

In either case, |I > I| = |J > J | since J and J are disjoint,

|jk > J | = |ik + 1 > J |.

Finally we compare |I > Ĩ| and |J > Ĩ|. Note that jk = ik + 1 ∈ Ĩ . Let

ĩp = ik + 1 ∈ Ĩ. Then, we have

ĩ1 = j̃1 < . . . < ĩp−1 = j̃p−1 < j̃p < ĩp < j̃p+1 = ĩp+1 < . . . < j̃2n+2−2r < ĩ2n+2−2r,

and it is clear that whether ik > n+ 1 or ik < n+ 1,

ik = j̃p < jk = ĩp.

So,

|jk > J̃ | = |ik > Ĩ|+ 1,

but for any l 6= k,

|jl > J̃ | = |il > Ĩ|.

Therefore, |J > J̃ | = |I > Ĩ|+ 1, and G(J) = G(I) + 1.

(b) This is a more specific rule dealing with two particular shifts, when i = n

and when i = n+ 1.

Let ik = n. Then,

i1 < . . . < ik−1 < n < ik+1 < . . . < ir

j1 < . . . < jk−1 < n+ 2 < jk+1 < . . . < jr.
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Therefore, |J > n + 1| = |J > n + 1| + 1. Following the same argument in

part 1(a), we see that since

ik < jk < jk < ik,

|J > J | = |I > I|+ 1.

Let ik = n+ 1. Then,

i1 < . . . < ik−1 < n+ 1 < ik+1 < . . . < ir

j1 < . . . < jk−1 < n+ 3 < jk+1 < . . . < jr.

Therefore, |J > n + 1| = |J > n + 1| + 1. Following the same argument in

part 1(a), we see that since

jk < ik < ik < jk,

|J > J | = |I > I|+ 1.

So, in either of the cases ik = n or ik = n+ 1:

1

2
(|I > I| − |I > n|) =

1

2
(|I > I|+ 1− |I > n| − 1) =

1

2
(|J > I| − |J > n|).
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Finally, to compare |J > J̃ | and |I > Ĩ|. The following chart that shows

the relationships between the indices:

ik = n I J ik = n+ 1 I J

n ik j̃p n ĩp jk

n+ 1 ĩp jk n+ 1 ik j̃p

n+ 2 ĩp+1 jk n+ 2 ik j̃p+1

n+ 3 ik j̃p+1 n+ 3 ĩp+1 jk

Therefore, for i = n, or i = n+ 1, in either case |jk > J̃ | = |ik > Ĩ|+ 1, and

G(J) = G(I) + 1.

Before we move to phase (2), observe that if (ik, ik+1) ∈ I, then there exists

J = B(I) such that (n+ 2, n+ 3) ∈ J. To make the consideration of phase

(2) easier, we consider this case separately:

(c) In this case we are shifting exactly two indices:

i1 < . . . < ik−1 < n < n+ 1 < ik+2 < . . . < ir

j1 < . . . < jk−1 < n+ 2 < n+ 3 < jk+2 < . . . < jr.

It is immediate that |J > n + 1| = |I > n + 1| + 2, and |J > J̃ | = |I > Ĩ|.

Consider the following table:

I J

n ik jk+1

n+ 1 ik+1 jk

n+ 2 ik+1 jk

n+ 3 ik jk+1
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So, |J > J | = |I > I|+ 4. Therefore,

G(J) = |I > Ĩ|+ 1

2
(|I > I|+ 4− (|I > n+ 1|+ 2))

= |I > Ĩ|+ 1

2
(|I > I| − |I > n+ 1|) + 1 = G(I) + 1.

(2) For this rule, we must consider both possible valid shifts that can occur. Let

J1 = (i1, . . . , ik−1, ik + 1, ik+1, . . . , it−1, it + 1, . . . , ir)

J2 = (i1, . . . , ik−1, ik + 2, ik+1, . . . , it−1, it, . . . , ir)

We will consider these two cases separately and keep in mind that both can

produce multiple index sets.

(J1) We have three cases to consider: i < n, i = n, and i > n. If ik + 1 < n+ 1,

then n+ 1 < it < it+1. If ik + 1 = n+ 1, so it = n+ 2, and it + 1 > n+ 2. If

ik+ > n+1, then it+1 < n+1. So in all three cases, |I > n+1| = |J1 > n+1|.

Now, consider the following

I J1

ik∈I ik∈J1

ik + 1∈I ik + 1∈J1

it∈I it∈J1

it + 1∈I it + 1∈J1

Note that the chart above does not assume whether ik > n+1 or ik < n+1,

since making this change simply reverses the roles of ik and it. Also note

that ik = n + 1 is not considered here since if n + 1 ∈ I, then n ∈ I and

n + 2, n + 3 ∈ I. Therefore, this case will be dealt with in (1c). So it

is clear that |J1 > J1| = |I > I| + 2. Referring to the same chart, and

knowing that there will be no elements that change from Ĩ to J̃1, we see
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that |J1 > J̃1| = |I > Ĩ|. Finally, we see

G(J1) = |I > Ĩ|+ 1

2
(|I > I|+ 2 + |I > n+ 1|) = G(I) + 1.

(J2) We again have cases to consider: ik < n, ik = n, ik = n + 1, ik = n + 1,

and ik > n + 1. First note that we dismiss two cases; when ik = n, then

ik+2 = n+2, but this was taken care of in (1c). Similarly, when ik = n+1,

ik+2 = n+ 3, but if n+ 3 ∈ I, then n ∈ I and this case is handled in (1c).

If ik < n, then ik + 2 ≤ n+ 1. If ik > n+ 1, then ik + 2 > n+ 3. So, in both

of these cases, |I > n + 1| = |J2 > n + 1|. Let it = 2n+3− i + k. Now, for

ik < n, we have the following indices changing:

I J2

ik∈I ik∈ J̃2

ik + 1∈I ik + 1∈J2

ik + 2∈ Ĩ ik + 2∈J2

it − 2∈ Ĩ it − 2∈J2

it − 1∈I it − 1∈J2

it∈I it∈ J̃2

So,

(6.3) G(J2) = |I > Ĩ +
1

2
(|I > I|+ 2− |I > n+1|) = G(I) + 1.
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Again, let it = 2n+3− i+ k, and consider ik > n. So, we have the following

indices changing:

I J2

it − 2∈ Ĩ it − 2∈J2

it − 1∈I it − 1∈J2

it∈I it∈ J̃2

ik∈I ik∈ J̃2

ik + 1∈I ik + 1∈J2

ik + 2∈ Ĩ ik + 2∈J2

and equation (6.3) holds here.

Now, phase two may be repeated if ik + 2∈ I or it + 1∈ I, but it is easy to see

that this would be necessary at most r − 1. For any number of times that this

step occurs it is easy to see how the calculation will change. For ik < n:

I J2

ik∈I ik∈ J̃2

ik + 1∈I ik + 1∈J2

...
...

ik +m∈I ik +m∈J2

ik +m+ 1∈ Ĩ ik +m+ 1∈J2

it − 2∈ Ĩ it − 2∈J2

it −m∈I it −m∈J2

...
...

it − 1∈I it − 1∈J2

it∈I it∈ J̃2
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Restricting our view to the indices in the chart above and noting |J > n+ 1| =

|I > n+ 1|, we compare:

|J > J̃ | − |I > Ĩ| = m+ 1− 2m = −m+ 1

|J > J | − |I > J | = m(m+ 1)−m2 = m

Taking the sum of these differences, we get 1. Note, again that |J > n + 1| =

|I > n + 1|. Therefore, G(J) = G(I) + 1. This calculation is for ik < n, and a

nearly identical argument holds for ik > n.

2
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CHAPTER 7

Examples

7.1. Counterexample

Let n = 3 and r = 2, and let Ej
• for j∈ {1, 2, 3} be three complete flags in general

position in V = C7. Let I1 = (37), I2 = (37), and I3 = (36) in S(2, 7). Let

σIk = [Ψ̄Ik(E
k
• )]∈H∗(OG(2, 7)).

Let F j
• for j∈{1, 2, 3} be three complete flags in general position in W = C8. Recall the

map s : SB(r, 2n+1)↔ S(r, 2n+2) from (3.10). We have J1 = s((37)) = (38), J2 = (38),

and J3 = s((36)) = (37). Let

σ′Jk = [ῩJk(F
k
• )]∈H∗(OG(2, 8)).

Then,

σ(37) · σ(37) · σ(36) = σ(37)[σ(15) + σ(23)] = σ(12)∈H14(OG(2, 2n+1)) and,

σ′(38) · σ′(38) · σ′(37) = σ′(38)[σ
′
(23) + σ′(14) + σ′(15)] = 0∈H18(OG(2, 2n+2)).

7.2. D4 and B3

In this section we use the standard Bourbaki numbering of the nodes of the Dynkin

diagram. Let hB1 , h
B
2 , h

B
3 ∈ h+

B where

hBi = (xi, yi, zi, 0,−zi,−yi,−zi),

and, under the embedding given in (3.4), hBi 7→ hDi , where

hDi = (xi, yi, zi, 0, 0,−zi,−yi,−zi).



For the first node of the Dynkin Diagrams we are considering SO(7) ⊂ SO(8), and

the homogeneous spaces OG(1, 7) and OG(1, 8). Their dimensions are dimOG(1, 7) = 5

and dimOG(1, 8) = 6. the following two tables

OG(1, 7) OG(1, 8)

Index Min Coset Rep Word Index Min Coset Rep Word

(1) (1,2,3,4,5,6,7) idt (1) (1,2,3,4,5,6,7,8) idt

(2) (2,1,3,4,5,7,6) s1 (2) (2,1,3,4,5,6,8,7) s1

(3) (3,1,2,4,6,7,5) s2s1 (3) (3,1,2,4,5,7,8,6) s2s1

(4) (4,1,2,3,6,7,8,5) s3s2s1

(5) (5,1,2,6,3,7,8,4) s4s2s1

(5) (5,1,2,4,6,7,3) s3s2s1 (6) (6,1,2,5,4,7,8,3) s3s4s2s1

(6) (6,1,3,4,5,7,2) s2s3s2s1 (7) (7,1,3,5,4,6,8,2) s2s3s4s2s1

(7) (7,2,3,4,5,6,1) s1s2s3s2s1 (8) (8,2,3,5,4,6,7,1) s1s2s3s4s2s1

The following list give the Levi-movable triples with intersection number one and an

example of a corresponding inequality in the eigencones Γ(3, SO(7)) and Γ(3, SO(8)). It

should be noted that all of the intersection numbers in OG(1, 8) will also have intersection

number one. The inequalities produced from permuting the order of the intersection (i.e.

(8)(7)(2) vs. (7)(2)(8),) will yield different inequalities in the cone.

Triple in OG(1, 8) Triple in OG(1, 7) Corresponding Inequality

(8)(8)(1) (7)(7)(1) −x1 − x2 + x3

(8)(7)(2) (7)(6)(2) −x1 − y2 + y3

(8)(6)(3) (7)(5)(3) −x1 − z2 + z3

(7)(7)(3) (6)(6)(3) −y1 − y2 + z3

(7)(6)(6) (6)(5)(5) −y1 − z2 − z3

For the second node of the diagram, we are considering OG(2, 7 and OG(2, 8). Their

dimensions are dimOG(2, 7) = 7, and dimOG(2, 8) = 9. We give all the parameters in
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each space, and list the sets that correspond under the s side by side.

OG(2, 7) OG(2, 8)

Index Min Coset Rep Word Index Min Coset Rep Word

(1,2) (1,2,3,4,5,6,7) idt (1,2) (1,2,3,4,5,6,7,8) idt

(1,3) (1,3,2,4,6,5,7) s2 (1,3) (1,3,2,4,5,7,6,8) s2

(1,4) (1,4,2,3,6,7,5,8) s3s2

(1,5) (1,5,2,6,3,7,4,8) s4s2

(1,5) (1,5,2,4,6,3,7) s3s2 (1,6) (1,6,2,5,4,7,3,8) s3s4s2

(1,6) (1,6,3,4,5,2,7) s2s3s2 (1,7) (1,7,3,5,4,6,2,8) s2s3s4s2

(2,3) (2,3,1,4,7,5,6) s1s2 (2,3) (2,3,1,4,5,8,7,6) s1s2

(2,4) (2,4,1,3,6,8,5,7) s3s1s2

(2,5) (2,5,1,6,3,8,4,7) s3s4s2

(2,5) (2,5,1,4,7,3,6) s1s3s2 (2,6) (2,6,1,5,4,8,3,7) s3s1s4s2

(2,7) (2,7,3,4,5,1,6) s1s2s3s2 (2,8) (2,8,3,5,4,6,1,7) s1s2s3s4s2

(3,4) (3,4,1,2,7,8,5,6) s2s1s3s2

(3,5) (3,5,1,7,2,8,4,6) s2s1s4s2

(3,6) (3,6,1,4,7,2,5) s2s3s1s2 (3,7) (3,7,1,5,4,8,2,6) s2s3s1s4s2

(3,7) (3,7,2,4,6,1,5) s1s2s3s1s2 (3,8) (3,8,2,5,4,7,1,6) s1s2s3s1s4s2

(4,6) (4,6,1,7,2,8,3,5) s3s2s1s4s2

(4,7) (4,7,1,6,3,8,2,5) s2s3s2s1s4s2

(4,8) (4,8,2,6,3,7,1,5) s1s2s3s2s1s4s2

(5,6) (5,6,1,2,7,8,3,4) s4s2s1s3s2

(5,7) (5,7,1,3,6,8,2,4) s2s4s2s1s3s2

(5,8) (5,8,2,3,6,7,1,4) s1s2s4s2s1s3s2

(5,6) (5,6,1,4,7,2,3) s3s2s3s1s2 (6,7) (6,7,1,4,5,8,2,3) s3s2s4s2s1s3s2

(5,7) (5,7,2,4,6,1,3) s1s3s2s3s1s2 (6,8) (6,8,2,4,5,7,1,3) s3s1s2s4s2s1s3s2

(6,7) (6,7,3,4,5,1,2) s2s1s3s2s3s1s2 (7,8) (7,8,3,4,5,6,1,2) s2s3s1s2s4s2s1s3s2
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The following list give the Levi-movable triples with intersection number one and an

example of a corresponding inequality in the eigencones Γ(3, SO(7)) and Γ(3, SO(8)). It

should be noted that all of the intersection numbers in OG(2, 8) will also have intersection

number one. The inequalities produced from permuting the order of the intersection (i.e.

(78)(78)(12) vs. (78)(12)(78),) will yield different inequalities in the cone.

Triple in OG(2, 8) Triple in OG(2, 7) Corresponding Inequality

(78)(78)(12) (67)(67)(12) −y1 − x1 − y2 − x2 + x3 + y3

(78)(68)(13) (67)(57)(13) −y1 − x1 − z2 − x2 + x3 + z3

(78)(67)(23) (67)(56)(23) −y1 − x1 − z2 − y2 + y3 + z3

(78)(38)(16) (67)(37)(15) −y1 − x1 + z2 − x2 + x3 − z3

(78)(28)(17) (67)(27)(16) −y1 − x1 + y2 − x2 + x3 − y3

(78)(37)(26) (67)(36)(25) −y1 − x1 + z2 − y2 + y3 − z3

(68)(68)(23) (57)(57)(23) −z1 − x1 − z2 − x2 + y3 + z3

(68)(38)(26) (57)(37)(25) −z1 − x1 + z2 − x2 + y3 − z3

(68)(38)(17) (57)(37)(16) −z1 − x1 + z2 − x2 + x3 − y3

(68)(37)(28) (57)(36)(27) −z1 − x1 + z2 − y2 + y3 − x3

(67)(38)(37) (56)(37)(36) −z1 − y1 + z2 − x2 + z3 − y3

(67)(38)(28) (56)(37)(27) −z1 − y1 + z2 − x2 + y3 − x3
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OG(3, 7)

Index Min Coset Word Index

(1,2,3) (1,2,3,4,5,6,7) idt (1,2,3,4)

(1,2,5) (1,2,5,4,3,6,7) s3 (1,2,5,6)

(1,3,6) (1,3,6,4,2,5,7) s2s3 (1,3,5,7)

(1,5,6) (1,5,6,4,2,3,7) s3s2s3 (1,4,6,7)

(2,3,7) (2,3,7,4,1,5,6) s1s2s3 (2,3,5,8)

(2,5,7) (2,5,7,4,1,3,6) s1s3s2s3 (2,4,6,8)

(3,6,7) (3,6,7,4,1,2,5) s2s1s3s2s3 (3,4,7,8)

(5,6,7) (5,6,7,4,1,2,3) s3s2s1s3s2s3 (5,6,7,8)

OG±(3, 7) OG−(4, 8) OG+(4, 8)

Index Min Coset Word Word

(1,2,3,4) (1,2,3,4,5,6,7,8) idt idt

(1,2,5,6) (1,2,5,6,3,4,7,8) s3 s4

(1,3,5,7) (1,3,5,7,2,4,6,8) s2s3 s2s4

(1,4,6,7) (1,4,6,7,2,3,5,8) s4s2s3 s3s2s4

(2,3,5,8) (2,3,5,8,1,4,6,7) s1s2s3 s1s2s4

(2,4,6,8) (2,4,6,8,1,3,5,7) s1s4s2s3 s1s3s2s4

(3,4,7,8) (3,4,7,8,1,2,5,6) s2s1s4s2s3 s2s1s3s2s4

(5,6,7,8) (5,6,7,8,1,2,3,4) s3s2s1s4s2s3 s4s2s3s1s2s4

The following list give the Levi-movable triples with intersection number one and an

example of a corresponding inequality in the eigencones Γ(3, SO(7)) and Γ(3, SO(8)). It

should be noted that all of the intersection numbers in OG(2, 8) will also have intersection

number one. The inequalities produced from permuting the order of the intersection (i.e.
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(5678)(5678)(1234) vs. (5678)(1234)(5678),) will yield different inequalities in the cone.

Triple in OG(2, 8) Triple in OG(2, 7) Corresponding Inequality

(5678)(5678)(1234) (567)(567)(123) −z1 − y1 − x1 − z2 − y2 − x1 + x3 + y3 + z3

(5678)(3478)(1256) (567)(367)(125) −z1 − y1 − x1 + z2 − y2 − x2 + x3 + y3 − z3

(5678)(2468)(1357) (567)(257)(136) −z1 − y1 − x1 + y2 − z2 − x2 + x3 + z3 − y3

(3478)(3478)(1357) (367)(367)(136) z1 − y1 − y1 + z2 − y2 − x2 + x3 + z3 − y3

(5678)(1467)(2358) (567)(156)(237) −z1 − y1 − x1 + x2 − z2 − y2 + y3 + z3 − x3

(3478)(2468)(2358) (367)(257)(237) z1 − y1 − x1 + y2 − z2 − x2 + x3 − z3 − y3

(3478)(2468)(1467) (367)(257)(156) z1 − y1 − x1 + y2 − z2 − x2 + y3 + z3 − x3

7.3. Bump Example

Consider the homogeneous space OG(2, 8), so n = 3 and r = 2. The table below

includes the valid index sets in S(2, 8) and gives the corresponding formula components
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for G(I) and the dimension of the associated Schubert variety:

I dim(ΥI) |I >n+ 1| |I >I| |I >Ĩ| G(I)

(1,2) 0 0 0 0 0

(1,3) 1 0 0 1 1

(1,4) 2 0 0 2 2

(1,5) 3 1 1 2 3

(1,6) 3 1 1 3 3

(1,7) 4 1 1 4 4

(2,3) 2 0 0 2 2

(2,4) 3 0 0 3 3

(2,5) 3 1 1 3 3

(2,6) 4 1 1 4 4

(2,8) 5 1 3 4 5

(3,4) 4 0 0 4 4

(3,5) 4 1 1 4 4

(3,7) 5 1 3 4 5

(3,8) 6 1 3 5 6

(4,6) 5 1 3 4 5

(4,7) 6 1 3 5 6

(4,8) 7 1 3 6 7

(5,6) 5 2 4 4 5

(5,7) 6 2 4 5 6

(5,8) 7 2 4 6 7

(6,7) 7 2 4 6 7

(6,8) 8 2 4 7 8

(7,8) 9 2 4 8 9
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Below is a diagram of the possible chains that run from the zero-dimensional class of

a point, to the nine-dimensional class, which is the top dimension:

(12)

A B��

(13)

vvllllllllllllllllll

A ��
B

((RRRRRRRRRRRRRRRRRR

(23)

�� ((RRRRRRRRRRRRRRRRRR (14)

A

vvllllllllllllllllll

((RRRRRRRRRRRRRRRRRR (15)

��
B

vvllllllllllllllllll
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zz
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vvllllllllllllllllll

((RRRRRRRRRRRRRRRRRR (17)

��vvllllllllllllllllll

(56)

A

""DD
DD

DD
DD

(46)

B
""DD

DD
DD

DD
(37)

tthhhhhhhhhhhhhhhhhhhhhhhhhhhhh

||zz
zz
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��
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B
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((RRRRRRRRRRRRRRRRRR (38)

vvllllllllllllllllll

��

(67)

B
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A ��

(48)
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(68)

A B��

(78)

Will will follow the two highlighted chains from the figure above, and see which rules

apply:

A : (12)
1−→ (13)

2−→ (14)
3−→ (24)

4−→ (34)
5−→ (56)

6−→ (57)
7−→ (58)

8−→ (68)
9−→ (78)

B : (12)
1−→ (13)

2−→ (15)
3−→ (25)

4−→ (35)
5−→ (46)

6−→ (47)
7−→ (67)

8−→ (68)
9−→ (78)
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In the table below we show how each step is taken to build the chains above. The notation

we use will indicate a phase and a step in a phase. So, (2)(1b) means that phase (2) was

required and then in phase (1), shift (b) was performed.

A bump Rule Other valid bumps

(12)
1−→ (13) (1a) none

(13)
2−→ (14) (1a) to (15) by (1b), to (23) by (1a)

(14)
3−→ (24) (1a) to (16) by (1b)

(24)
4−→ (34) (1a) to (26) by (1b)

(34)
5−→ (56) (2)(1b) to (37) by (2)(1a), to (46) by (2)(1a)

(56)
6−→ (57) (1a) none

(57)
7−→ (58) (1a) to (67) by (1a)

(58)
8−→ (68) 1(a) none

(68)
9−→ (78) 1(a) none

B bump Rule Other valid bumps

(12)
1−→ (13) (1a) none

(13)
2−→ (15) (1b) to (14) by (1a), to (23) by (1a)

(15)
3−→ (25) (1a) to (16) by (1a)

(25)
4−→ (35) 1(a) to (26) by (1a)

(35)
5−→ (46) (2)(1a) to (37) by (2)(1a), to (56) by (2)(1b)

(46)
6−→ (47) (1a) none

(47)
7−→ (67) (1b) to (48) by (1a)

(67)
8−→ (68) (1a) none

(68)
9−→ (78) (1a) none

7.4. Parameters in an Even Orthogonal Grassmannian

In this section, we give another way of parameterizing Schubert Varieties in an even

orthogonal Grassmannian is by typed k-strict partitions. As in [BKT], we define a typed
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k-strict partition λ and then give a recipe for producing an index set P (λ) ∈ S(r, 2n+2).

The goal here is to motivate the definition of the bumping rules for OG(r, 2n + 2), by

making it clear by examining the typed k-strict partitions, that two index sets, one

containing n+ 1, and the other containing n+ 2, will have the same dimension.

Definition 7.4.1. A k-strict partition is an integer partition λ = (λ1, . . . , λl) such that

all parts λi greater than k are distinct.

Definition 7.4.2. A typed k-strict partition is a pair consisting of a k-strict partition λ

together with an integer, type(λ) ∈ {0, 1, 2}.

In the Grassmannian OG(r, 2n+2), we set k = n + 1 − r. For every typed k-strict

partition we define an index set P (λ) = {p1 < . . . < pr} ⊂ [2n+2], by

pj = n + k − λj + #{i < j|λi + λj ≤ 2k − 1 + j − i}(7.1)

+

 1 if λj > k, or λj = k < λj−1 and n+ j + type(λ) is even.

2 otherwise.
(7.2)

The benefit to parameterizing with typed k-strict partitions is the containment of Schu-

bert varieties becomes a question of partition inclusion. Recall the following definition

from [Ful97]:

Definition 7.4.3. We say a partition λ is included in a partition µ and write λ ⊂ µ if

the Young diagram of λ is contained in the Young diagram of µ, or equivalently, λi ≤ µi

for all i.

It is clear from the definition that the typed k-strict partitions containing a k part

correspond to two index sets. In particular they correspond to two index sets that are

the same up to trading n+ 1 for n+ 2. Therefore it is clear that for I1 = {i11, . . . , i1r} and

I2 = {i21, . . . , i2r} k-strict partitions such that

i11 = i21<. . .<i
1
m−1 = i2m−1<i

1
m=n+ 1<i2m=n+ 2<i1m+1 = i2m+1<. . . < i1r = i2r,
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the corresponding Schubert varieties will have the same dimensions. This is clear in table

(7.4) below.

Table (7.4) also shows the different ways that you can count the dimension (or codi-

mension) of a D-type Schubert variety. It is the length of the word, l(wI), the complement

of the number of boxes in the Young diagram given by λ(I), in this case 9− |λ(I)|, and

there is a third way to determine the dimension by considering the planar interpretation

of the reduced decompositions as in [Che84] and [CS08].
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Index Partition Permutation Word Dimension

I λ(I) s(wI) wI dim(ΥI)

(78) {0, 0} type 0 (7,8,3,4,5,6,1,2) s2s3s1s2s4s2s1s3s2 9

(68) {1, 0} type 0 (6,8,2,4,5,7,1,3) s3s1s2s4s2s1s3s2 8

(67) {1, 1} type 0 (6,7,1,4,5,8,2,3) s3s2s4s2s1s3s2 7

(58) {2, 0} type 2 (5,8,2,3,6,7,1,4) s1s2s4s2s1s3s2 7

(48) {2, 0} type 1 (4,8,2,3,6,7,1,5) s1s2s3s2s1s4s2 7

(57) {2, 1} type 2 (5,7,1,3,6,8,2,4) s2s4s2s1s3s2 6

(47) {2, 1} type 1 (4,7,1,3,6,8,2,5) s2s3s2s1s4s2 6

(38) {3, 0} type 0 (3,8,2,4,5,7,1,6) s1s2s3s1s4s2 6

(56) {2, 2} type 2 (5,6,1,2,7,8,3,4) s4s2s1s3s2 5

(46) {2, 2} type 1 (4,6,1,2,7,8,3,5) s3s2s1s4s2 5

(37) {3, 1} type 0 (3,7,1,4,5,8,2,6) s2s1s3s4s2 5

(28) {4, 0} type 0 (2,8,3,4,5,6,1,7) s1s2s3s4s2 5

(35) {3, 2} type 2 (3,5,1,2,7,8,4,6) s2s1s4s2 4

(34) {3, 2} type 1 (3,4,1,2,7,8,5,6) s2s1s3s2 4

(26) {4, 1} type 0 (2,6,1,4,5,8,3,7) s3s1s4s2 4

(17) {5, 0} type 0 (1,7,3,4,5,6,2,8) s2s3s4s2 4

(25) {4, 2} type 2 (2,5,1,3,6,8,4,7) s3s4s2 3

(24) {4, 2} type 1 (2,4,1,3,6,8,5,7) s3s1s2 3

(16) {5, 1} type 0 (1,6,2,4,5,7,3,8) s3s4s2 3

(23) {4, 3} type 0 (2,3,1,4,5,8,6,7) s1s2 2

(15) {5, 2} type 2 (1,5,2,3,6,7,4,8) s4s2 2

(14) {5, 2} type 1 (1,4,2,3,6,7,5,8) s3s2 2

(13) {5, 3} type 0 (1,3,2,4,5,7,6,8) s2 1

(12) {5, 4} type 0 (1,2,3,4,5,6,7,8) e 0
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