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ABSTRACT 

CHENG WANG: Framework Materials For Solar Energy Utilization 

(Under the direction of Wenbin Lin) 

 

       The ever-increasing global demand for energy has stimulated a new wave of research 

activities on generating clean and renewable energy using sunlight. Following the 

molecular approach adopted by green plants, scientists have developed various molecular 

systems that are capable of converting photons to high energy redox equivalents, as well 

as molecular catalysts for both water oxidation and proton/CO2 reduction. There are 

however not efficient ways of assembling these functional molecular components into 

hierarchical organizations to convert sunlight energy into chemical energy.  

Metal-organic frameworks (MOFs) are a class of crystalline materials that are 

constructed from well-defined molecular building blocks and metal-cluster connecting 

nodes. Similarly, crosslinked polymers (CPs) are built from well-designed organic 

precursors and represent a new class of robust materials. These framework materials 

provide a potential platform to organize different molecular components to achieve 

artificial photosynthesis. In this thesis, I will report our efforts on assembling MOFs and 

CPs for light harvesting, water oxidation, and photocatalytic proton and CO2 reduction. 

These materials not only provide a unique opportunity to integrate different functional 

molecular components hierarchically for energy conversion or organic transformation, 

but also allow the elucidation of molecular mechanisms for related reactions.  



iii 

Acknowledgements  

 

   I wish to thank many people for making this thesis possible. First, I want to thank my 

advisor, Professor Wenbin Lin, for giving me the opportunity to work on several 

interesting projects. I feel truly fortunate to have his constant encouragement to become a 

strong, confident and independent chemist.  

  I deeply appreciate help and supports from my current and previous lab mates: in no 

particular order—Della Rocca, J.; deKrafft, K.; Kent, Caleb.; Falkowski, J.; Huxford, R.; 

Liu, D.; Duggan, E.; Wanderley, M.; Zhang, T.; Kramer, S.; Barret, S.; Poon, C.; Lu, K.; 

Abney, C.; Lin, Z; Ma, L; Xie, Z.; Zheng, M.; Song, F.; Vivero Esocoto, J.; Wang, J.-L.; 

Liu, Y.; Carboni, M.; He, C.; Sawano, T.; Wen, L.; Peng, Y.; Wierschen, A.; Hess, A.;   

It is enjoyable experience working and discussing with them. It is a treasure of my life. 

  I also thank all the faculty and staff members in University of North Carolina at Chapel 

Hill for their teaching and help for me to learn new knowledge and experimental skills. 



 

iv 

 

TABLE OF CONTENTS 

LIST OF TABLES ................................................................................................................. viii 

LIST OF FIGURES ...................................................................................................................x 

LIST OF SCHEMES............................................................................................................. xvii 

LIST OF ABBREVIATIONS ................................................................................................ xix 

Chapter 

I.      FRAMEWORK MATERIALS FOR SOLAR ENERGY UTILIZATION: AN 

INTRODUCTION  ............................................................................................................1 

References  .....................................................................................................................8 

II.      DOPING METAL-ORGANIC FRAMEWORKS FOR WATER OXIDATION, 

CARBON DIOXIDE REDUCTION, AND ORGANIC PHOTOCATALYSIS  ..........16 

2.1 Doping as a strategy to incorporate functionality into  

      Metal-organic frameworks  ....................................................................................16 

2.1.1 Introduction to doping in MOFs and the question to answer  

         in this study  ............................................................................................16 

            2.1.2 General Synthesis and characterization of L/BPDC mixed  

                     Zn-MOF series  .......................................................................................19 

2.1.3 Doping neutral H2L1 ligand to IRMOF: steric-controlled  

         interpenetration  ......................................................................................20 

            2.1.4 Doping charged H2L2 and H2L3 ligand to IRMOF: charged- 

                     controlled doping and formation of stoichiometric neutral phase  .........27 

           2.2 Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide 

Reduction, and Organic Photocatalysis  .................................................................38 

             2.2.1 Introduction to Water Oxidation, Carbon Dioxide Reduction and 

Organic Photocatalysis and UiO MOFs  ................................................38 

            2.2.2 Synthesis of metal complex derivatized MOFs by doping the  



 

v 

 

                   UiO-67 framework  ...................................................................................40 

2.2.3 Water oxidation catalysis using 4-6  .......................................................43 

2.2.4 Photocatalytic CO2 reduction using 7 ....................................................46 

2.2.5 Photocatalytic Organic Transformations using 8 and 9 ..........................51 

2.2.6 Conclusions  ............................................................................................58 

References  ...................................................................................................................59 

III.    PT NANOPARTICLES @PHOTOACTIVE METAL-ORGANIC  

         FRAMEWORKS: EFFICIENT HYDROGEN EVOLUTION VIA  

         SYNERGISTIC PHOTO-EXCITATION AND ELECTRON INJECTION  .................63 

3.1 Introduction to nanoparticle deposition in Metal-Organic Frameworks ...............63 

            3.2 Pt Nanoparticles@Photoactive Metal-Organic Frameworks for hydrogen 

evolution  .................................................................................................................64 

3.3 Conclusions ............................................................................................................74 

References ....................................................................................................................75 

IV.    Diffusion-Controlled Luminescence Quenching in Metal-Organic Frameworks  .........78 

4.1 Introduction to the study of diffusion in MOFs  ....................................................78 

4.2 Diffusion-Controlled Luminescence Quenching  ..................................................80 

4.3 Detailed derivation of diffusivity equations and related approximations  .............89 

4.3.1 Diffusion model  .....................................................................................90 

4.3.2 Model for the phosphorescence from a single crystal  ...........................92 

4.3.3 Assessing the errors introduced in the assumptions  

         and approximations  ................................................................................92 

4.4 Conclusion .............................................................................................................87 

References ....................................................................................................................88 

V.     ELUCIDATING MOLECULAR IRIDIUM WATER OXIDATION  

        CATALYSTS USING METAL-ORGANIC FRAMEWORKS:  

        A COMPREHENSIVE STRUCTURAL, CATALYTIC,  



 

vi 

 

            SPECTROSCOPIC, AND KINETIC STUDY  .........................................................100 

5.1 Introduction  .........................................................................................................100 

5.2 Synthesis and Characterization of 11 and 12 .......................................................105 

5.3 Water oxidation activity of 11 and 12 ..................................................................112 

            5.4 Identification of (bpy-dc)Ir(H2O)2XCl as an active WOC in 11-catalyzed  

                  water oxidation ....................................................................................................113 

      5.4.1 Identification and quantification of acetic acid generated from  

               oxidative modifications of Cp* groups by 
1
H-NMR  ...........................116 

      5.4.2 NMR and Mass spectrometric studies of the recovered 11 after  

               water oxidation reactions ......................................................................117 

5.4.3 Water oxidation activity of soluble (bpy)Ir(solvent)nXm species  ........118 

5.5 MOF Stability as revealed by PXRD and ICP-MS studies .................................119 

5.6 XPS analyses of 11 and 12 before and after water oxidation reactions  ..............120 

5.7 Diffuse-reflectance UV-Vis measurements of 11 after  

      water oxidation reactions  ....................................................................................123 

5.8 Luminescence spectroscopy of 11 after water oxidation reactions  ....................124 

5.9 [Ce
4+

]-dependent degradation of MOF water oxidation catalysts  ......................125 

5.10 A diffusion-reaction model for MOF-catalyzed water oxidation ......................134 

            5.11 The detailed derivation of the Diffusion-Reaction Kinetic Model for  

                    MOF-Catalyzed Reactions  ................................................................................135 

5.11.1 Derivation of the diffusion-reaction model to describe  

           MOF kinetics  .....................................................................................135 

      5.11.2 Ce
4+

 diffusivities inside 11 and 12 and justification of the 

approximations  ...................................................................................140 

5.11.3 Ce
4+

 distributions inside the MOFs at steady state conditions  ..........143 



 

vii 

 

5.12 Conclusions ........................................................................................................147 

References ..................................................................................................................148 

VI.   LIGHT-HARVESTING CROSSLINKED POLYMERS FOR EFFICIENT 

PHOTOCATALYSIS ....................................................................................................151 

6.1 Introduction  .........................................................................................................151 

            6.2 Porous Crosslinked Polymers synthesized by cobalt carbonyl catalyzed   

trimerization of alkynes ........................................................................................153 

6.2.1 Synthesis and characteriazation of the crosslinked polymers  ..............153 

6.2.2 Photocatalysis with the crosslinked polymers  .....................................157 

6.3 Non-Porous Crosslinked Polymers synthesized by Pd-catalyzed  

     coupling reaction  ..................................................................................................161 

6.3.1 Synthesis and characteriazation of the crosslinked polymers  ..............161 

      6.3.2 Light Harvesting by Crosslinked Polymers: Photon Capture and  

               Excited State Dynamics  .......................................................................163 

6.3.3 Photocatalysis with CP-3 ......................................................................171 

6.4 Crosslinked Polymers synthesized by Cu-catalyzed coupling reaction  ..............177 

6.4.1 Synthesis and characterization of crosslinked polymers  .....................177 

6.4.2 Photocatalysis with CP-7 and CP-8 .....................................................182 

6.5 Conclusion  ..........................................................................................................187 

References ..................................................................................................................188 



viii 

 

LIST OF TABLES 

2-1. Key crystallographic data for 1-3 ................................................................................21 

2-2. L ligand doping levels determined from quantitative UV-Vis spectroscopy. .............27 

2-3. Rhodamine 6G dye uptake in the doped MOFs  ..........................................................30 

2-4. Ligand doping level and BET surface area of MOFs 4-9 ............................................43 

2-5. TOFs for 4-6 catalyzed water oxidation ......................................................................44 

2-6. Investigations of 7 as a photocatalyst for light-driven CO2 production ......................48 

2-7. 8 and 9 catalyzed aza-Henry reactions  ........................................................................52 

2-8. Reuse of 8 and 9 in aza-Henry reactions .....................................................................53 

2-9. Photocatalytic aerobic amine coupling reactions .........................................................55 

2-10. Photo-oxidation of thioanisole  ....................................................................................57 

3-1.  Pt@MOFs as photocatalyst for hydrogen evolution. ...................................................73 

4-1.     Determination of the amount of amine in MOF channels  ...........................................87 

4-2.     Fitting results of diffusion controlled quenching  ........................................................96 

5-1.     Turnover frequencies
a
 of water oxidation reactions catalyzed by 11 and 12 .............112 

5-2.     Ir / N (pyridine) and Ir / Zr atomic ratios determined from XPS  ..............................122 

5-3.     Diffusivities of Ce
4+

 at different initial [Ce
4+

]’s in 11 and 12 ....................................134 

5-4.     Diffusivities of Ce
4+

 at different initial Ce
4+

 concentrations for 11 ............................141 

5-5.     Diffusivities of Ce
4+

 at different initial Ce
4+

 concentrations for 12 ...........................142 

5-6.     Diffusivities of Ce
4+

 in the presence of different Ce
3+

 concentrations in 11 ..............146 

6-1.     Photocatalytic aza-Henry reactionsby CP-1 and CP-2 ..............................................158 

6-2.     Photocatalytic aza-Henry reactions with CP-3 ..........................................................170 

6-3.     Control experiments and catalyst reuse for photocatalytic aza-Henry reactions ........170 

6-4.     Photocatalytic aerobic oxidative coupling of amines by CP-3  .................................171 

6-5.     Photocatalytic dehalogenation of benzyl bromoacetate by CP-3
 
 ..............................172 



ix 

 

6-6.     Photocatalytic aza-Henry reactions
 
using CP-4 and homogeneous Ir  

           complex (Ir-M) as photocatalysts  ..............................................................................174 

6-7.     Photocatalytic aza-Henry reactions using CP-7 and CP-8 as catalysts  ....................184 

6-8.     Photocatalytic aerobic oxidative coupling reactions using  

           CP-7 and CP-8 as catalysts  .......................................................................................185 

 



 
 

x 
 

LIST OF FIGURES 

Figure  

1-1. A dye-sensitized photoelectrochemical cell (DSPEC) for CO2 reduction  

on the cathode and water oxidation on the anode.  ........................................................3 

1-2. Synthesis of functional MOFs for various applications  ................................................4 

1-3. Metal-Organic Frameworks Functionalization  .............................................................6 

1-4. Metal-Organic Frameworks for Artificial Photosysnthesis  ..........................................7 

2-1. structures of interpenetrated IRMOF-9 vs. non-interpenetrated IRMOF-10 ...............19 

2-2. (a) stick / polyhedral model for L1-doped interpenetrated IRMOF-9  

structure; (b) stick / polyhedral model for L1-doped non-interpenetrated  

IRMOF-10 structure.....................................................................................................23 

2-3. 1
H NMR spectroscopic determination of solvent content 

 in Zn4O(L1)3•(DMF)65•(H2O)35 (1). 9.12 mg of 1 was used  

and mesitylene was added as an internal standard  ......................................................24 

2-4. Thermogravimetric analysis (TGA) curve for Zn4O(L1)3•(DMF)64•(H2O)35 (1).  

The sample was heated to 600 ºC at a heating rate of 5 ºC/min. .................................25 

2-5. (a) Powder X-ray diffraction patterns for L1-doped IRMOF-9/10 samples; 

(b) Thermogravimetric analysis of L1-doped IRMOF-9/10 samples. The  

preparation condition / L1 content / identified phases of all the samples in  

(a) and (b) were listed in Table 2.2.  ............................................................................25 

2-6. (a) photo of  crystals of 2 (b) simplified connectivity model showing  

the interpentrated nets in bnn topology of 2. (c) ball-stick model  

showing crystal structure of 2 viewed along [001] direction.  

(d) ball-stick model showing crystal structure of 2 viewed along  

[010] direction. (e) ball-stick model showing crystal structure of 2 

viewed along [100] direction. (f) Ball-and-stick and polyhedra  

presentation of asymmetric unit of of 2 .......................................................................31 

2-7. Powder X-ray diffractions of (a) H2L2 doped BPDC-Zn system  

(b) H2L3 doped BPDC-Zn system. The preparation condition /  

L content / identified phases of all the samples in (a) and (b) 

 were listed in Table 2.2 ...............................................................................................32 

 

2-8. 1
HNMR spectroscopic determination of solvent content in  

Zn4O(L2)3•(DMF)2•(H2O)7 (2).  10.9 mg of 2 was used and mesitylene 

was added as an internal standard  ...............................................................................34 

 



 
 

xi 
 

2-9. Thermogravimetric analysis (TGA) curve for Zn4O(L2)3•(DMF)2•(H2O)7 (2).   

The sample was heated to 600 ºC at a heating rate of 5 ºC/ min. ................................35 

2-10. Thermogravimetric analysis (TGA) curve for sample L2-BPDC-1 in  

IRMOF-9 structure with 6% L2 doping. The sample was heated to 600 ºC 

 at a heating rate of 5 ºC/ min  .....................................................................................35 

2-11. 1
H-NMR spectroscopic determination of solvent content 

 in Zn4O(L3)3•(DMF)9•(H2O)8 (3)................................................................................36 

 

2-12. Thermogravimetric analysis (TGA) curve for Zn4O(L3)3•(DMF)9•(H2O)8 (3).  

The sample was heated to 600 ºC at a heating rate of 5 ºC/min  .................................37 

 

2-13. Thermogravimetric analysis (TGA) curve for sample L3-BPDC-3 in  

IRMOF-9 structure with 6% L3 doping. The sample was heated to 600 ºC  

at a heating rate of 5 ºC/ min. ......................................................................................37 

2-14.  a) Structure model of 4 showing doping of L4 ligand into the UiO-67 framework. 

 b) SEM micrograph of intergrown nanocrystals of 4. c) PXRD patterns for 

 UiO-67 and 4-9.  d) Nitrogen adsorption isotherms of 4-9 at 77 K ............................42 

2-15. a) Plots of O2 evolving turnover number (O2-TON) vs. time for 4-6  

and the homogeneous H2L4-H2L6. b) Plots of O2-TON vs. time for reuse 

experiments of 4-6. c) The amount of detected O2 vs. time with undoped  

UiO-67, and supernatant solutions of 4-6 reaction mixtures; The  

amount of O2 generated by 6 was also plotted for comparison. d) PXRD  

patterns of 4-6 after catalytic reaction and that simulated from the UiO-67  

structure........................................................................................................................44 

2-16. (a) Plots of CO evolution turnover number (CO-TON) versus time  

in the photocatalytic CO2 reduction with 7 (blue square) and homogeneous  

L7 (red circle). (b) FT-IR of as-synthesized 7 (blue) and 7 after photocatalysis 

 (red). (c) PXRD patterns of 7 after catalysis (black), as-synthesized  

(red) and simulated from the UiO-67 structure (blue). (d) UV-Vis  

diffuse reflectance spectra of as-synthesized 7 (black) and 7 after  

photocatalysis (red) ......................................................................................................48 

2-17. a) PXRD patterns of 8: as-synthesized (red), after aza-Henry reaction (black),  

and simulated from the UiO-67 structure (blue). (b) PXRD patterns of 9: after  

sulfide-oxidation (pink), after amine-coupling (green), after aza-Henry  

reaction (blue), as-synthesized (red), and simulated from the UiO-67 structure  ........57 

3-1 Stick-polyhedron model of the crystal structure of 10 (a) viewed along  

the [110] direction; (b) viewed along the [100] direction; (c) showing  

an octahedral cavity, represented by a red ball with the diameter of 1 nm;  

and (d) showing a tetrahedral cavity, represented by a red ball with a diameter  

of 0.6 nm. PXRD patterns of (e) Pt@8(red), 8 (blue), the idealized UiO-67  



 
 

xii 
 

framework (black), and (f) 10 (black), Pt@10 with different Pt/Ir ratios  

(3.5-blue, 7-green, 11-purple), and the idealized framework of 10 (red) ....................67 

3-2. TEM images of Pt@8 (a and c) and Pt@10 (b, d and f). The black dots in (c)  

            and (d) are Pt nanoparticles, and (f) shows the lattice fringes of the Pt particles, 

            with d-spacing matching that of the Pt{111} plane. (e) Diffuse reflectance  

            spectra of 8 (red), Pt@8 (black), 10 (purple), and Pt@10 (blue).  

            A photograph of suspensions of these samples is shown in the inset ..........................69 

3-3. (a) Scheme showing the synergistic photocatalytic hydrogen evolution  

            process via photo-injection of electrons from the light-harvesting  

            MOF frameworks into the Pt nanoparticles. The red balls represent 

            Zr6(O)4(OH)4(carboxylate)12 cores, while the green balls represent  

            the Ir-phosphor ligand of the MOF. (b) Decay transients measured  

            at 640 nm (with 445 nm excitation) in THF for Et2L2 (black), 8 (red),  

            Me2L10 (green) and 10 (blue); The emission decays were fit to  

            bi-exponential expression A = A1e
-t/τ1

 +A2e
-t/τ2

. The reported lifetime τ  

            is the weighted lifetime τ = (A1τ1
2
 + A2τ2

2
)/(A1τ1+ A2τ2). Insert: Steady-state  

            emission spectra of Et2L2 (black), 8 (red), Me2L8 (green) and 10  

           (blue) with excitation at 485 nm. (c) Relationship between the amount  

            of K2PtCl4 added in the reaction solution and the amount of Pt deposited  

            inside the MOF (normalized to the amount of Ir in the sample) for Pt@8  

            (red) and Pt@10 (black). (d) Time-dependent hydrogen evolution curves  

            of Pt@8 (green), Pt@10 (red), and homogeneous control [Ir(ppy)2(bpy)]Cl 

            /K2PtCl4 (blue and black for different Pt/Ir ratios) under optimized  

           conditions (Pt/Ir ratios in solution/suspension for Pt@8 and its homogeneous  

           control is 86.0; Pt/Ir ratios in solution/suspension for Pt@10 and its  

            homogeneous control is 24.2; stirring rate for all reactions was 1000 rpm) ................71 

4-1. Structure model of 3. (a) Space-filling and stick model viewed along the [001] 

direction, showing different channel sizes due to different local  

distributions of L3 ligands. (b) Building blocks of 3. (c) Schematic showing  

2-fold interpenetrating frameworks of the bnn topology. (d) Space-filling 

model viewed along the [100] direction. (e) Space-filling model viewed  

along the [010] direction81(a) Plots of u(t)=[I(t)-I()]/I() vs t for different amine 

quenchers: TEA (red), 

 TPA (green), TBA (blue), DIPEA (black), and 4-MeOPhNPh2 (purple) 

(see supporting information for more detailed plots). (b) Linear fitting 

of (L
2
/π

2
)Ln[u(t)] vs. t of TEA (red), TPA (green), and TBA (blue). Only  

the data points of t > 100 s for TEA and t > 200s for TPA and TBA were 

used in these fits  ..........................................................................................................85 

4-3. Quencher release experiment for 3 after being soaked in solutions of TPA  

(blue),     DIPEA (green), 4-MeOPhNPh2 (red) and as synthesized (black).  

The crystals were excited at a wavelength of 452 nm, and the emission  

signal is detected at the wavelength of 627 nm ...........................................................86 



 
 

xiii 
 

4-4. PXRD patters of 3 as synthesized (green), and after being soaked in pure  

cyclohexane (red), in solutions of TEA (blue), TPA (green), TBA (purple),  

DIPEA (yellow), 4-MeOPhNPh2 (dark blue) ..............................................................87 

5-1. (a) Structure model for 11 showing an octahedral cage of 1 nm in diameter.  

            Zr, blue polyhedron; Ir, green ball; Cl, dark green; C, grey; N, blue. The  

            red ball in the middle represents the cage cavity. (b) Space-filling model  

            of 11 as viewed along [110] direction. The triangular channel has an edge  

            length of 1.6 nm. (c) TGA of solvent-free 11 (black) and 12 (blue).  

            (d) PXRD patterns of 11 (blue) and 12 (black) along with the simulated  

            PXRD pattern based on the structure model (red). (e) TEM images of  

             microcrystals of 11. (f) TEM image of one microcrystal of 11 showing  

             the octahedral shape  .................................................................................................108 

5-2. (a) Plots of O2 evolving turnover number (1/4 O2-TON) vs time for 11.    

            (b) Plots of O2 evolving turnover number (1/4 O2-TON) vs time for 12.  

            (c) Plots of Ce
4+

 consumption turnover number (1/4 O2-TON) vs time  

            for 11. (d) Plots of Ce
4+

 consumption turnover number (1/4 O2-TON)  

            vs time for 12. Experimental condition for a-d: 3 mM Ce
4+

 in pH =1  

            HNO3 solution with 10 µM Ir  ...................................................................................113 

5-3. (a) 
1
H-NMR spectrum of digested 11 after WOR. ( A total 30 eq. of Ce

4+
  

            were added successively to the pH =1 HNO3 / D2O solution with 1 mM  

            Ir before the MOF is digested for NMR. Each time only 3 eq. of Ce
4+

  

            were added to give a Ce
4+

 concentration of 3mM. The next aliquot of  

            Ce
4+

 is only added after the complete consumption of the previous aliquot)  

            * denotes peaks due to the original L9-H2 ligand. Other major peaks are  

            assigned to the proposed structure. (b) 
1
H-

1
H COSY spectrum of digested  

            11 after WOR. (c) ESI-MS of digested 11 (with phosphoric acid)  

            after water oxidation showing the presence of the  

           {[(bpy-dc)Ir(H2PO4)(HCO2)Cl]+Na}
+
 molecular ion. The black lines  

            show the expected isotopic peaks  .............................................................................116 

5-4. O2 generation using the (bpy)Ir(solvent)nXm species. The concentration of  

            Ir was 25 µM and the initial [Ce
4+

] was 10 mM in 10 mL of pH = 1 HNO3  

            solution. The O2 was detected in the gas phase  ........................................................119 

5-5. (a) PXRD patterns of 11 taken after different times of WORs. (b) PXRD  

            patterns of 12 taken after different times of WORs. Experimental condition: 

            pH =1 HNO3 solution with 10 µM Ir with different concentration of  

            Ce
4+

 and different reaction time  ................................................................................120 

5-6. (a) N(1s) XPS signals for 11 after treatment with various [Ce
4+

]’s at pH=1  

            for 12 h. black, as-synthesized 11; blue, after treatment with 3 mM Ce
4+

;  

            red, after treatment with 200 mM Ce
4+

. (b) N(1s) XPS signals for 12 after 

            treatment with various [Ce
4+

]’s at pH=1 for 12 h. black, as-synthesized 12;  



 
 

xiv 
 

            blue, after treatment with 0.3 mM Ce
4+

; purple, after treatment with 3 mM  

            Ce
4+

; red, after treatment with 200 mM Ce
4+

. All the WOR experiments  

            were done in pH =1 HNO3 solution with 10 µM Ir  ..................................................122 

5-7. (a) Diffuse-reflectance spectra of 11: original (black), after WOR (green)  

            and after WOR and then reduction with ethanol (red). (b) Fluorescence  

            spectra of 11 before and after WORs. The spectra were taken with an  

            acetonitrile suspension of MOFs with a [Ir] of 0.4 mM. The excitation  

            wavelength was 370 nm and no optical filter was used in the measurement.  

            The L9-Me2 and [Ir(Cp*)Cl(bpy)]Cl were dissolved in acetonitrile with a  

            [Ir] of 0.4 mM. WOR condition: 3 mM Ce
4+

 in pH =1 HNO3 solution  

            with 10 µM Ir  ............................................................................................................124 

5-8. (a) [Ce
4+

]-t plots of 11-catalyzed WORs under different initial [Ce
4+

]’s.  

            (b) [Ce
4+

]-t plots of 12-catalyzed WORs under different initial [Ce
4+

]’s.  

            (c) [Ce
4+

]-t plots of 11-catalyzed WORs with an initial [Ce
4+

] of 3 mM,  

            before and after treatment with 9 mM Ce
4+

. (d) [Ce
4+

]-t plots of 11  

            catalyzed-WORs with an initial [Ce
4+

] of 1.0 mM, in the presence and  

            absence of 9 mM Ce
3+

. All the WOR experiments were performed in  

            pH =1 HNO3 solution with 10 µM Ir  ........................................................................126 

5-9. (a) [Ce
4+

] – t plot of 11-catalyzed water oxidation. The initial [Ce
4+

] =  

            2.88 mM. The linear curve indicates a quasi-zeroth order reaction with  

            respect to [Ce
4+

], leading to a rate constant of k0 = 0.46 ± 0.01 min
-1

.  

            (b) ln([Ce
4+

]/C0) – t plot of 12-catalyzed water oxidation. The initial  

            [Ce
4+

] = 0.32 mM. The linear fitting indicates a quasi-first order reaction  

            with respect to [Ce
4+

], leading to a rate constant of k1 = 6.3 ± 0.1 min
-1

  

            mM
-1

. All the WOR experiments were performed in pH =1 HNO3  

            solution with 10 µM Ir  ..............................................................................................126 

 

5-10. (a) Ce
4+

 consumption monitored by UV-Vis spectroscopy at 420 nm for 11  

            with an initial [Ce
4+

] of 1 mM and a [Ce
3+

] of 1 mM (red), vs. a [Ce
4+

] of 2 mM  

            and a a [Ce
3+

] of 0 mM (black). The overlap of these two curves indicates  

            similar influence of [Ce
4+

] and [Ce
3+

] on the diffusivity of Ce
4+

. The  

            experiments were performed  in pH =1 HNO3 solution with 10 µM Ir.  

            (b) Ce
4+

 distributions inside the particles of 11 and 12. The initial [Ce
4+

] is  

            1 mM. Cs is the [Ce
4+

] in the solution  .......................................................................135 

5-11. Comparison of the diffusivities of Ce
4+

 in 11 obtained from experiments  

            with different initial concentrations of Ce
4+

 and Ce
3+

.  The red squares  

            are for reactions with initial Ce
4+

 only whereas the green squares are  

            for initial mixtures of both Ce
3+

 and Ce
4+

 ([Ce
4+

] = 1 mM, [Ce
3+

] = 0, 1,  

            2, 3, 9 mM). The red line is an exponential fitting of diffusivities with  

             different total Ce concentrations ...............................................................................141 

5-12. Dependence of diffusivity of Ce
4+

in 12 on Ce concentration  ...................................143 



 
 

xv 
 

5-13. Ce
4+

 distribution inside the 11 particle with a total Ce concentration of 3 mM  .......144 

5-14. Ce
4+

 distribution inside the 12 particle with a total Ce concentration of 0.3 mM  ....144 

6-1. Characterization of CP-1 and CP-2: (a) SEM and (b) TEM images of  

            the Ir-COF.  The scale bars represent 200 nm.  (c) TGA (d) FT-IR  

            (e) nitrogen adsorption isotherms at 77K (f) emission spectra. The  

            CP-1 emission spectrum (red line) was taken when excited at 380 nm.  

            The broad emission at around 458.5 nm comes from fluorescence of the  

            framework. The CP-2 emission spectrum (blue line) was taken when  

            excited at 450 nm. The broad emission at around 522.5 nm comes from  

            fluorescence of the framework ...................................................................................156 

6-2. (a) Nitrogen sorption isotherms of CP-3 (blue), CP-4 (red) and CP-6 

            (black) at 77K; (b) Smoothed steady-state emission spectra of CP-3 (red),  

            1.0 mol% Os-doped CP-3 (green), 4.7 mol% Os-doped CP-3 (blue),  

            9.1 mol% Os-doped CP-3 (purple) and pure CP-5 (black); all of the  

            spectra were taken while excited at 485 nm; (c) Decay transients measured  

            at 630 nm (with 445 nm excitation) for CP-3 (red), 1.0 mol% Os- 

           doped CP-3 (green), 4.7 mol% Os-doped CP-3 (blue) and 9.1 mol% Os- 

           doped CP-3 (black); insert: plot of τ0/τ vs. Os doping levels. The emission  

           decays in (c) were fit to bi-exponential expression A = A1e
-t/τ1

 +A2e
-t/τ2

.  

           The reported lifetime τ is the weighted lifetime τ = (A1τ1
2
 + A2τ2

2
)/ 

           ( A1τ1+ A2τ2). (d) Conversion % for the reactions between 1a and  

           nitromethane catalyzed by different CP catalysts vs. the phosphorescent  

           lifetimes of these catalysts. Reactions were run at r. t. for 8 hours,  

           with 0.2 mol% catalyst loadings, ~5 cm in front of a 26 W fluorescent lamp  ..........164 

6-3. (a) UV-Vis absorption spectrum of CP-3 particles suspended in MeCN  

            (b) Decay transient measured at 650 nm for CP-4 with excitation at 350 nm  

            (red) and decay transient measured at 830 nm for CP-5 with excitation at  

            444.2 nm (blue). IRF is Instrument Response Function for excitation at  

            444.2 nm (black). The emission decay was fit to bi-exponential expression  

            A = A1e
-t/τ1

 +A2e
-t/τ2

. The reported lifetimes are the weighted lifetimes  

            τ = (A1τ1
2
 + A2τ2

2
)/( A1τ1+ A2τ2). Inset: steady state emission spectrum  

            of CP-4 (excited at 440 nm). (c) FT-IR spectra of CP-3 (black) and CP-4  

            (red). (d) TGA curves of CP-3 (black) and CP-4 (red) .............................................165 

6-4. Deconvolution of emission spectra from 9.1% Os-doped CP-3 sample (black) 

            to the Ru-component (red) and the Os-component (blue), and the residue  

            after the deconvolution (green). The ratio of the areas of the Os-component  

            and Ru-component is 2.46 .........................................................................................168 

6-5. FT-IR spectra of Ru-1, Ru-2, CP-7 and CP-8 ..........................................................178 

6-6. Nitrogen sorption isotherms of CP-7 and CP-8 in at 77 K  ......................................179 

6-7. TEM images of CP-7 (a) and CP-8 (b) on a carbon-coated Cu/Ni grid  ...................180 



 
 

xvi 
 

6-8. Steady-state absorption spectra of stirred suspensions of CP-7 and CP-8  

             in CH3CN (0.74 mg/50 mL) and dilute solutions of Ru-1 and Ru-2 in  

            CH3CN (2×10
-5

 M). Absorption spectra of Ru-1 and Ru-2 are on a  

             reduced scale (× 0.2) .................................................................................................180 

6-9. Steady-state phosphorescence spectra of stirred suspensions of CP-7  

            and CP-8 in CH3CN (0.74 mg/50 mL) and dilute solutions of Ru-1  

            and Ru-2 in CH3CN (2×10
-5

 M) ................................................................................182 

6-10. Time-resolved phosphorescence decays of CP-7 and CP-8 and  

            monomers Ru-1 and Ru-2 (excitation: 440 nm; emission: 660 nm) .........................182 
 



 
 

xvii 
 

LIST OF SCHEMES 

Scheme 

2-1. Synthesis of 1-3............................................................................................................17 

2-2. Synthesis of 4-9............................................................................................................20 

3-1 Synthesis of phosphorescent Zr-carboxylate MOFs (8 and 10) of the fcu  

topology and subsequent loading of Pt nanoparticles inside MOF cavities  

via MOF-mediated photo-reduction of K2PtCl4 to form the Pt@8  

and Pt@10 assemblies .................................................................................................64 

4-1. Synthesis of phosphorescent 3 and chemical structures of amine quenchers of varying 

sizes79Schematic of the experimental set-up used for luminescence quenching 

measurements  ....................................................................................................... 824-3.

 Amine concentration distribution in the crystal ...........................................................90 

4-4. Light penetration in the crystal ....................................................................................92 

4-5. Crystal mounting geometry..........................................................................................93 

5-1. Chemical structures of homogeneous control catalysts and synthesis  

            of Zr-carboxylate 11 and 12 of the fcu topology  ..........................................106 

5-2. Oxidative modifications of the Cp* ring of the catalytic strut in 11 to  

           form (bpy-dc)Ir(H2O)2XCl (X is likely a formate or acetate ligand) and  

           the proposed oxidation of (bpy-dc)Ir(H2O)2XCl to form the Ir(V)=O  

           species that is responsible for water oxidation ...........................................................115 

6-1. Synthesis of CP-1 and CP-2 ......................................................................................154 

6-2. CP-2 catalyzed α-arylation of bromomalonate and oxyamination  

           of 3- phenylpropanal  ......................................................................................160 

6-3. Synthesis of CP-3, CP-4, CP-5, and CP-6. A TEM image of CP-3  

is also shown  .............................................................................................................162 

6-4. Energy transfer scheme in 9.1% Os-doped CP-3 sample  .........................................165 

6-5. Schematic representation of core-to-surface excited state transport  

            in CP-3 catalyzed photoreactions  .............................................................................172 

6-6. Synthesis of Ru(bipy)3
2+

-based crosslinked polymers CP-7 and CP-8 .....................177 

6-7. Photocatalytic dehalogenation of benzyl bromoacetate using CP-7  

           and CP-8 as catalysts  .................................................................................................186 



 

xix 
 

LIST OF ABBREVIATIONS 

MOF  Metal-organic framework 

SBU  Secondary building unit 

DMF  Dimethylformamide 

DMA  Dimethylamine 

TFA  Trifluoroacetic acid 

PXRD  Powder X-ray diffraction 

TGA  Thermogravi-

metricanalysis 

ICP-MS Inductively coupled 

plasma mass 

spectrometry  

ESI  Electrospray ionization 

NMR  Nuclear magnetic 

resonance  

UV-Vis  Ultraviolet-visible 

spectroscopy 

NIR   Near Infrared  

GC Gas Chromatography 

CIF  Crystallographic 

information file 

MLCT Metal-to-ligand charge 

transfer  

 



Chapter 1 

Framework Materials for Solar Energy Utilization: An Introduction 

The development of our modern civilization relies on sufficient energy supplies. As 

our fossil fuel supply dwindles, new energy resources must be developed to sustain the 

global society. In addition to their limited supply, rapid consumption of fossil fuels also 

caused ecological problems like emission of green-house gases. The search of a green, 

large-scale and sustainable energy supply is a top priority for the society now. 

Solar energy is one of the few alternative energy sources that could be scaled up to 

meet our future needs.
1,2

 The amount of solar energy that reaches our planet in one hour 

is more than enough to fuel the world for one year.
1,2

 Solar energy can be converted into 

heat, electricity, or fuels. Considering the ease for storage and transportation, solar fuels 

and electricity are more desirable. Practical and cost-effective technologies for ultra-large 

scale solar electricity and solar fuel production do not currently exist, and require 

breakthroughs in basic science. 

Whether converting solar energy to electricity or to chemical energy, three 

fundamental steps are needed
3
: first, antenna absorb sunlight and efficiently transport the 

excitations to charge separation centers; second, charge separation centers convert the 

excitation energy to electrochemical energy (redox equivalents); third, the generated 

electrons and holes are either used to carry out energy-gaining chemical reactions or 

transported to power lines to perform useful works.  All the three steps can be studied 

separately, but to achieve solar energy harvesting and storage, a device including all the 



2 
 

components needs to be built. The efficiency of the overall system will not only depend 

on the individual parts, but also on how these parts are integrated.     

  Both the first photovoltaic and artificial photo-driven water splitting systems were 

achieved in solid state semiconductor systems.
4
 However, more interest has been put into 

using small molecules to harvest sunlight energy in recent years.
3,5-9

 In these strategies, 

the different functional parts can be constructed from different groups of small 

molecules, and the effectiveness of these subsystems can be optimized separately, taking 

advantage of structure tuning of small molecules. For example, many antenna systems 

have been constructed from porphyrins or other cyclic tetrapyrroles.
9
 Ru(bpy)3

2+
 

(bpy=2,2’-bipyridine) based chromophores have also been extensively studied to serve 

both as antenna and charge separation centers.
10-15

 More molecular catalysts have been 

developed for a range of energy-storing reactions, such as water oxidation,
16-25

 hydrogen 

production
1,2,5,6,9

 and carbon dioxide reduction.
26-37

 In addition, photocatalytic molecular 

systems capable of a range of organic transformations have also been developed, showing 

alternative mild, clean, and atom-efficient ways to perform otherwise energy-consuming 

reactions.
38-52

  

  With a goal to develop usable device, however, it is not enough to have some small 

molecules freely moving in the solution.  Strategies to construct these different 

components in a sequential and integrated structure must be developed. One promising 

design of such a system is the photoelectrochemical cell (PEC).
1-3

 In this “dye-sensitized 

solar cell” configuration, molecular excitation and excited-state formation are followed 

by electron transfer injection into the conduction band of a semiconductor, and molecular 

catalysts capable of water oxidation, or hydrogen production, or CO2 reduction are 
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attached to the electrode through surface chemistry. Self-assembly of large molecules 

into nano- or micro- size entities have also been identified as an alternative way to 

organize an integrated sunlight harvesting system,
9
 although it is less attractive than the 

PEC strategy to device engineers, due to the lack of controllability and transportability to 

existing technologies.   

 

Figure 1. A dye-sensitized photoelectrochemical cell (DSPEC) for CO2 reduction on the 

cathode and water oxidation on the anode. The CO2 reduction can be replaced by proton 

reduction as well (Copyright: UNC EFRC) 

  We propose that framework materials can also serve as a platform to integrate 

different molecular components into a working system. As different types of molecules 

can be incorporated into one framework in an ordered and connected manner, a 

framework of molecular machines can facilitate the transfer of energy or excited 

electrons in the system. Framework materials can either be developed into separate 

entities capable of solar energy conversion or be integrated into the PEC blueprint. From 
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another perspective, it is also possible to use phosphor-incorporated framework solids as 

recyclable and reusable photocatalysts for fine chemical synthesis. 

Figure 2. Synthesis of functional MOFs for various applications. (Art credited to Liu, 

D.) 

Metal-organic frameworks (MOFs), also known as coordination polymers or 

coordination networks, are crystalline materials built from metal ions or metal clusters 

bridged by organic linkers to form one-, two-, or three-dimensional structures.
53-55

 With 

Prussian blue
56-59

 and metal phosphonates
60-64

 as their prototypes, coordination polymers 

were well documented in the inorganic chemistry literature in the last century.
65-74

 This 

field however remained relatively unexplored, primarily because of the difficulty 

typically encountered in growing large single crystals of coordination polymers that are 

suitable for X-ray diffraction studies and the lack of easy-to-use computer programs for 

visualizing complicated structures of most coordination polymers. Robson and co-

workers revitalized the field of coordination polymers by reporting the synthesis, X-ray 

structural characterization, and early topological analysis of coordination polymers built 

from Cu(I), Zn(II), Cd(II) metal connecting points and cyano- or nitrile-bridging ligands 

in a series of seminal papers in 1989 and early 1990’s.
75-79

 Shortly after Robson’s papers, 
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a number of research groups, including those of Fujita, Yaghi, Zaworotko, Kitagawa, 

Moore/Lee, and Férey, reported the synthesis and characterization of a large number of 

coordination polymers/MOFs built from many different metal connecting points and 

bridging ligands.
80-90

 

Based on the early topological studies by Robson and coworkers, Yaghi, O’Keeffe, 

and co-workers carried out systematic synthesis and topological analysis of porous 

MOFs, demonstrated the zeolitic properties of MOFs, and popularized the concepts of 

secondary building units and reticular nature of many MOFs.
53,54,91,92

 Permanent porosity 

of MOFs was demonstrated by Kitagawa et al. and Yaghi et al. using pyridine- and 

carboxylate-based bridging ligands in 1997 and 1998, respectively.
93,94

 Yaghi and co-

workers first realized the potential of using porous MOFs as storage materials for gaseous 

molecules of technological importance, such as methane, hydrogen, and carbon dioxide.
92

 

In parallel to the works done by Yaghi and O’Keeffe, the Lin group initiated a research 

program in 1997 to use MOFs as a platform to incorporate molecular functionalities into 

solid materials, with the central premise that MOFs are distinct from traditional inorganic 

materials because they could be synthesized from well-defined molecular building blocks 

by taking advantage of both the reliability of molecular synthesis and the hierarchical 

organization afforded by crystal engineering. The first series of isoreticular MOFs with 

noncentrosymmetric structures was rationally designed based on 3-D diamondoid 

networks and 2-D grid structures using systematically elongated pyridinecarboxylate 

ligands.
95-99

 As a result of the intrinsic electronic and structural asymmetry of 

pyridinecarboxylate building blocks, these MOFs showed second-order nonlinear optical 

properties.  
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Since these early studies, the MOF field has witnessed explosive growth in the past 

decade. Many research groups around the world have contributed to various aspects of 

MOFs,
 
exploring their applications in many fields such as gas storage/seperation,

92,100-105 

nonlinear optics,
95-99

 ferroelectricity,
106-109

 conductivity/semiconductivity,
110-112

 
 

magnetism,
113

 luminescence,
114-117

 chemical sensing,
118-123

 catalysis,
124-129

 biomedical 

imaging,
130-134

 drug delivery,
135-140

 and solar energy harvesting.
141-145

   

Light harvesting molecules like Ru(bpy)3
2+

 have been built into MOF systems, and 

excitation energy migration in these frameworks has been quantitatively studied by 

detecting energy transfer from a Ru(bpy)3
2+

 entity to a doped Os(bpy)3
2+

 entity.
141,142

 

Taking advantage of crystalline structures of MOFs, these studies can bring in new 

mechanistic insights into the solar energy research. It is thus reasonable to use MOFs as a 

platform to build multi-component light harvesting systems.  

 

Figure 3. Metal-Organic Frameworks Functionalization. (Art credited to Liu, D.) 
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Figure 4. Metal-Organic Frameworks for Artificial Photosysnthesis (Art credited to 

Falkowski, J. M.) 

  Crosslinked polymers (CPs), including crystalline covalent-organic frameworks, can 

also be built from well-designed organic precursors and represent a new class of robust, 

nanoporous materials.
146-151

 Like the MOF counterparts, CPs have shown great promise 

in gas storage and separation,
149,151

 heterogeneous catalysis
152

 and light harvesting.
147,148

 

Although CPs are not always crystalline materials as MOFs, they are advantageous over 

MOFs in many practical senses since they are in general more chemically and 

mechanically stable. 

In this thesis, I will be describing my research in using metal-organic frameworks and 

crosslinked polymers as platforms to study energy-harvesting related reactions including 

water oxidation, photo-driven proton reduction, CO2 reduction, and photocatalytic 

organic transformations. 
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Chapter 2 

Doping Metal-Organic Frameworks for Water Oxidation, Carbon 

Dioxide Reduction, and Organic Photocatalysis 

2.1 Doping as a strategy to incorporate functionality into Metal-organic frameworks   

2.1.1 Introduction to doping in MOFs and the questions to answer in this study 

As mentioned in the introduction, metal-organic frameworks (MOFs) have recently 

emerged as a new class of functional porous materials that are tunable at molecular level. 

The art of systematic structural engineering and property tuning can be best represented 

by isoreticular MOFs,
1-5

 which are constructed by linking metal-coordinated secondary 

building units (SBUs) with bridging ligands of varied length or functional groups, 

yielding the same framework topology but tunable pore sizes and properties. However, it 

is not always possible for the building ligand to be assembled into the predesigned 

framework structure, especially when substantial steric requirement has been imposed 

from the functional entities. Postsynthetic modifications (PSM)
6-8

 of the interior MOF 

channels have recently been utilized to successfully introduce functional groups that 

cannot be directly incorporated, but this method tends to reduce the open channel sizes 

during the PSM processes, thus negatively affecting the material properties in many 

cases. Here we propose an attractive alternative, to dope a fraction of the ligand with 

functional groups into a known crystalline system built from ligands of similar shape and 

length but simpler structures, thus constructing materials possessing both the 

functionality and the desired crystal structures.
9
 This mix-and-match approach mimicking 

the widely applied metal ion doping in traditional inorganic materials such as metal 
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oxides, can not only allow the incorporation of sterically demanding functional ligands 

into the parent framework but also retains the porosity of the framework for various 

applications. 

In the conventional doped metal oxides (or solid solution), the two most significant 

parameters dictating the degree of doping have been well established to be 1) the degree 

of size match between doped metal ions and the parent lattice, 2) the requirement of 

charge balance of the doped lattice. In our proposed mix-and-match strategy in MOF 

synthesis, it is interesting to test if size and charge of the doped ligands are also 

controlling factors to determine the doping level in a certain structure. 

In our first trial, we prepared three sterically demanding Ir/Ru-phosphor based linear 

dicarboxylate ligands H2L1 to H2L3 with similar structures and 0 to +2 charges 

(dicarboxylate-[Ir(ppy)3], di-carboxylate-[Ir(bpy)(ppy)2]
+
 and dicarboxylate-[Ru(bpy)3]

2+
, 

see Scheme 2.1), and successfully doped them into the known IRMOF-9/10 structures to 

systematically address the aforementioned questions in doping MOFs. 
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The Ir-based cyclometalated complexes H2L1 and H2L2 were synthesized by reacting 

[Ir(ppy)2Cl2]2 (ppy = 2-phenylpyridinato, N, C2’) with 5,5’-(MeO2C)2-ppy [methyl 6-(4-

(methoxycarbonyl)phenyl)nicotinate] or 5,5’-(EtO2C)2-bpy [diethyl(2,2’-bipyridine)-5,5’-

dicarboxylate], followed by base-promoted hydrolysis.
10

 The Ru-complex H2L3 was 

synthesized following the published procedure by directly reacting cis-[Ru(bpy)2Cl2] 

with 5,5’-(HO2C)2-bpy (2,2’-bipyridine 5,5’-dicarboxylated acid).
11

 They are all highly 

efficient phosphorescent molecules, with long lifetimes of the 
3
MLCT states. Extensive 

research efforts have been focused on developing light-emitting devices based on related 

molecules. The 
3
MLCT phosphorescence can also be quenched through energy transfer to 

molecules with triplet ground state such as oxygen, or redox reactions between the 

3
MLCT state and the quenchers. These phosphorescent Ir and Ru based molecules are 

thus also suitable for applications in chemical sensing and photosensitization. 

The frameworks that are used to host these Ir/Ru phosphor ligands have the IRMOF-

9/10 structures. IRMOF-9/10 are a pair of catenation isomers constructed from the BPDC 

ligand (4,4’-bisphenyl-dicarboxylic acid) and [Zn4(µ4-O)(O2CR)6] SBUs, forming 3D 

structures of the pcu topology (Figure 2.1).  Dicarboxylate ligand BPDC possesses the 

matching length to the phosphor based ligands H2L1 to H2L3. IRMOF-10 was non-

interpenetrated while IRMOF-9 adopted a 2-fold interpenetrated structure of the former 

framework.  
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Figure 2.1 structures of interpenetrated IRMOF-9 vs. non-interpenetrated IRMOF-10 

2.1.2 General Synthesis and characterization of L/BPDC mixed Zn-MOF series.   

Mixtures of H2L and H2bpdc (4,4’-biphenyldicarboxylic acid) with varying molar ratios 

were reacted with Zn(NO3)2 •6H2O in DMF (N,N’-dimethylformamide) under 

solvothermal conditions. The molar ratio of Zn(NO3)2: (H2L + H2bpdc): DMF was 0.5~3: 

1 : 2000. The resulting mixtures were placed in an oven at 100 
o
C for 1~2 days. Yellow-

red crystals with thin plate or feather-like shapes (depending on the resulting phases) 

were obtained after filtration. Phases of the obtained MOFs were determined by Powder 

X-Ray Diffraction (PXRD). Phases of the interpenetrated IRMOF-9 and the non-

interpenetrated IRMOF-10 can be differentiated by examining the crystals under 

polarized lights. IRMOF-9, crystallizing in orthorhombic crystal system, exhibited 

anisotropic birefringent behavior under polarized lights, while IRMOF-10, crystallizing 

in cubic crystal system, was optically isotropic. Thermogravimetric analysis (TGA) 

measuring the solvent weight loss was used to support the above identification of 

interpenetrated vs non-interpenetrated phases. The Ir/Ru-complex (L1 to L3) contents in 

all the MOFs were determined by dissolving a known amount of MOFs in 3 mL basic 
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water/ethanol mixture and taking quantitative UV-Vis measurements of the solution at 

375.5 nm. The L contents per mass could be determined from the standardized curve, and 

the molar doping levels [mol L/(mol bpdc+ mol L)] were then calculated, based on the 

framework formulae of different phases. Whenever mixed phases were encountered, 

estimations based on average formula were adopted. Framework formulae of the 

stochiometric phases 1 to 3 were deduced from the X-ray crystal structure and the 

determined doping level, while the solvent contents were established from a combination 

of 
1
H NMR and TGA.  

2.1.3. Doping neutral H2L1 ligand to IRMOF: steric-controlled interpenetration 

H2L1 was first tested in the doping study. As a neutral ligand satisfying the charge 

requirement of the parent Zn4O(BPDC)3 framework, it can be mixed into the IRMOF-

9/10 structure for the whole range of H2L1/H2BPDC ratios from 0 to 1. As a result of the 

steric bulk of H2L1 ligand, with increasing doping levels of H2L1, the crystals change 

from interpenetrated IRMOF-9 structure to non-interpenetrated IRMOF-10 structure, 

showing the size effect of ligand doping. Reaction between the pure cyclometalated Ir 

phosphor H2L1 (the neutral ligand) and Zn(NO3)2·6H2O in DMF afforded red single 

crystals of [Zn4(µ4-O)(L1)3]·64DMF·35H2O (1). 1 crystallizes in the cubic Fm-3m space 

group, revealed by single crystal X-ray crystallography. In the asymmetric unit, 1/8 of L1 

ligand, 1/24 of Zn4(µ4-O) clusters which are composed of one Zn atom of 1/6 occupancy 

and one O atom of 1/24 occupancy, are present. As we expected, the carboxylate groups 

from six adjacent L1 ligands coordinate to the four Zn centers to form [Zn4(µ4-

O)(carboxylate)6] SBUs which link L1 ligands to form a non-interpenetrated 3D network 

of the pcu topology (IRMOF-10 structure, Figure 2.2). L1 ligands were disordered over 
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two positions as a result of the rotation of the C-C bond between the carboxylate groups 

and the aromatic rings, a common phenomenon observed when 2-connected 

dicarboxylate acids were employed as linkers. Calculated by PLATON, 79% of void 

space in the crystal structure was filled by the DMF or water molecules. The precise 

solvent content cannot be determined by X-ray crystallography, owing to their disordered 

nature. The solvent contents were instead established by a combination of 
1
H NMR 

studies and thermogravimetric analysis (Table 2.1). 

Table 2.1  Key crystallographic data for 1-3 

Compound 1 2 3 

Framework formula       C105H66N9O13Ir3Zn4        C55H34N4O10IrZn2    C44H27N3O10Ru0.5Zn2 

Formula weight 2499.82 1233.84 939.01 

Temperature (K) 296 296 296 

Wavelength (Å) 1.54178 1.54178 1.54178 

Crystal system Cubic Orthorhombic Orthorhombic 

Space group Fm-3m C2221 C2221 

Unit cell dimensions 

a = 34.0239(15) a = 18.3559(14) a = 18.4918(14) 

b = 34.0239(15) b = 26.314(2) b = 26.861(2) 

c = 34.0239(15) c = 42.406(3) c = 41.776(3) 

α = 90 α = 90 α = 90 

 = 90  = 90  = 90 

 = 90  = 90  = 90 

Volume (Å
3
) 39387(3) 20483(3) 20751(3) 

Z 8 8 8 

Density (calcd. g/cm
3
) 0.843 0.800 0.601 

Absorption coeff. (mm
-1

) 4.512 3.280 1.356 

F(000) 6088 4632 3608 

Crystal size (mm)  0.10 × 0.10 × 0.10 0.10×0.10×0.10 0.10×0.10×0.10 



23 

 

Crystal color & shape red cube red rectangle   red rectangle 

 range data collection  2.25– 38.05 2.08– 38.12 2.90 – 36.31 

Limiting indices 

-12 < h < 24 -8 < h < 13 - 13 < h < 13 

-3< k < 27 -20 < k < 19  - 20 <k < 20 

-9< l < 24 -27 < l < 33 - 20 < k < 30 

Reflections collected 3865 8584 7706 

Independent reflections 593 [Rint= 0.0763] 4785 [Rint= 0.0716] 4641 [Rint= 0.0491] 

Refinement method Full-matrix least-square on F
2
 

Data/restraints/parameters 593/15/0 8584 / 313 / 290 7706 / 313 / 292 

Goodness-of-fit on F
2
  1.056 0.976 1.229 

Final R indices [I>2σ(I)]
a,b

 
R1 = 0.1362 R1 = 0.1186 R1 = 0.1388 

wR2 = 0.4570 wR2 = 0.3023 wR2 = 0.3436 

R indices (all data) 
R1 = 0.1691 R1 = 0.1682 R1 = 0.1781 

wR2 = 0.4954 wR2 = 0.3364 wR2 = 0.3725 

 

 

 

Figure 2.2  (a) stick / polyhedral model for L1-doped interpenetrated IRMOF-9 structure; 

(b) stick / polyhedral model for L1-doped non-interpenetrated IRMOF-10 structure. 
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Figure 2.3 
1
H NMR spectroscopic determination of solvent content in 

Zn4O(L1)3•(DMF)65•(H2O)35 (1). 9.12 mg of 1 was used and mesitylene was added as an 

internal standard.  
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Figure 2.4 Thermogravimetric analysis (TGA) curve for Zn4O(L1)3•(DMF)64•(H2O)35 

(1). The sample was heated to 600 ºC at a heating rate of 5 ºC/min. 

Figure 2.5 (a) Powder X-ray diffraction patterns for L1-doped IRMOF-9/10 samples; (b) 

Thermogravimetric analysis of L1-doped IRMOF-9/10 samples. The preparation 

conditions / L1 contents / identified phases of all the samples in (a) and (b) were listed in 

Table 2.2.  

The crystal structure showed that reaction between H2L1 and Zn(NO3)2·6H2O in DMF 

afforded non-interpenetrated IRMOF-10 structure, while the originally reported reaction 

between H2BPDC and Zn(NO3)2·6H2O in DMF yielded interpenetrated IRMOF-9. 

Considering the similar length of these two ditopic carboxylate ligands, the reason of 

forming non-interpenetrated structure for the L1 ligand should be attributed to the steric 

bulk of the Ir-phosphor core. Furthermore, if systematic doping of the neutral H2L1 

ligand into the BPDC-Zn system is carried out, a phase transition from interpenetrated 

IRMOF-9 to non-interpenetrated IRMOF-10 with increasing doping level is expected. 

With these considerations, H2L1 was mixed with H2BPDC in varying molar ratios and 

then reacted with Zn(NO3)2•6H2O in DMF under solvothermal conditions. Crystalline 
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samples were obtained from all the vials. Based on PXRD patterns (Figure 2.5a), L1 can 

form solid solution with BPDC, adopting IRMOF-9/10 structure in the whole range of 

L1/BPDC molar ratios from 0 to 1 (Table 2.2). The PXRD patterns of IRMOF-9 and 

IRMOF-10 are very similar. However, these two phases can be differentiated by 

examining the crystals under polarized lights. IRMOF-9, crystallizing in orthorhombic 

crystal system (space group C2221), exhibited anisotropic birefringent behavior under 

polarized lights, while IRMOF-10, crystallizing in cubic crystal system (space group Fm-

3m), was optically isotropic (Figure 2.2(c)). As expected, the crystals change from 

interpenetrated IRMOF-9 structure to non-interpenetrated IRMOF-10 structure when the 

doping level of the L1 ligand increases. Thermogravimetric analysis (TGA) measuring 

the solvent weight loss supported the above identification of interpenetrated vs non-

interpenetrated phases as shown in Figure 2.5b. When going from IRMOF-9 to IRMOF-

10 structure (with a mixture of both IRMOF-9 and IRMOF-10 phases in the intermediate 

range), the solvent weight loss in the TGA of the samples increases continuously, from 

44 wt% in the pure IRMOF-9 phase with 4.5% L1 doped, to 68 wt% in the pure IRMOF-

10 built from pure L1 ligand. Contents of Ir phosphor based ligands in these crystals were 

quantified by UV-Vis spectroscopy as listed in Table 2.2. This steric effect-governed 

phase transition from interpenetrated to more porous non-interpenetrated structure 

highlights the importance of ligand size in systematic ligand doping. 

Table 2.2  L ligand doping levels determined from quantitative UV-Vis spectroscopy 

L ligand and 

sample number 

Added molar ratio of 

Zn(NO3)2 /H2L/ H2bpdc in 

the synthesis 

Phases determined from 

PXRD\optical observation\TGA 

Doping 

level 

L/(L+BPDC) 

BPDC-0 2 / 0 / 1 IRMOF-9 0 

L1 BPDC-1 26 / 1 / 12 IRMOF-9 4.5% 

L1 BPDC-2 8 / 1 / 3 IRMOF-9 + IRMOF-10 
a 

17% 
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L1 BPDC-3 4 / 1 / 1 IRMOF-9 + IRMOF-10 39% 

L1 BPDC-4 8 / 3 / 1 IRMOF-9 + IRMOF-10 61% 

L1 BPDC-5 6 / 1 / 0 IRMOF-10 (1) 100% 

L2-BPDC-1 26 / 1 / 13 IRMOF-9 6% 

L2-BPDC-2 20 / 1 / 9 IRMOF-9 8% 

L2-BPDC-3 14 / 1 / 6  IRMOF-9 + 2 
b
 14% 

L2-BPDC-4 8 / 1 / 3 IRMOF-9 + 2 26% 

L2-BPDC-5 4 / 1 / 1 IRMOF-9 + 2 32% 

L2-BPDC-6 8 / 3 / 1 2 40% 

L2-BPDC-7 12 / 5 / 1 2 40% 

L2-BPDC-8 20 / 9 / 1 2 42% 

L2-BPDC-9 4 / 1 / 0 unknown phase 100% 

L3-BPDC-1 6.5 / 4.4 / 1 IRMOF-9 n.a. 

L3-BPDC-2 6.6 / 3 / 1 IRMOF-9 3.8% 

L3-BPDC-3 5.9 / 1 / 1 IRMOF-9 6% 

L3-BPDC-4 17.7 / 1 / 12  IRMOF-9 + 3 
c 

16.5% 

L3-BPDC-5 17.7 / 1 / 18 IRMOF-9 + 3 17% 

L3-BPDC-6 17.7 / 1 / 22 3 21% 

L3-BPDC-7 17.7 / 1 / 33 3 22% 
a
This is a mixture of IRMOF-9 and IRMOF-10 phase, based on optical observation and TGA 

b/c
These 

are mixture of IRMOF-9 and 2/3 phases, based on PXRD, optical observation and TGA   

 

2.1.4. Doping charged H2L2 and H2L3 ligand to IRMOF: charged-controlled doping 

and formation of stoichiometric neutral phase 

 

Unlike the neutral H2L1 ligand, pure phosphor-based charged ligands H2L2 and H2L3 

do not readily assemble into the predesigned Zn4O(L)3 open framework. Reactions of 

many kinds of zinc salts with Ir/Ru complex H2L2 and H2L3 in various mixed solvents at 

80-100 °C can only afford amorphous solids or powdery crystalline samples of unknown 

structure based on PXRD analysis. In spite of these observations, we hypothesized that it 

might still be possible to dope a small fraction of L2 and L3 into IRMOF-9 or IRMOF-10 

frameworks (built from pure BPDC ligands), taking the advantage of matching ligand 

lengths between BPDC and L2/L3. This mix-and-match strategy can incorporate these 

sterically demanding phosphor cores into the IRMOF structure and retain the intrinsic 

porosity at the same time.  



28 

 

H2L2/H2L3 were mixed with H2BPDC and then reacted with Zn(NO3)2•6H2O in DMF. 

Yellow-red crystals with thin plate or feather-like shapes were obtained after placing the 

reaction mixtures in an oven at 90~100 
o
C for 1~2 days. PXRD analysis showed that 

doped IRMOF framework had been obtained when reactants were added in certain 

Zn(NO3)2/H2L/H2BPDC molar ratios. Only the interpenetrated IRMOF-9 phase was 

obtained in both H2L2 and H2L3 / BPDC doped systems. The preliminary phase 

identification under polarized light was fully supported by TGA measurement of the 

samples, showing solvent weight loss ranging from 43% to 47%. Contents of Ir/Ru 

phosphor-based ligands in the crystals were quantified by UV-Vis spectroscopy, 

expressed in L/(L+BPDC) percentages. As listed in Table 2, at least 8% of L2 and 6% of 

L3 can be doped into the IRMOF-9 frameworks. 

When increasing the phosphor ligand H2L2 to H2BPDC ratio, or changing the amount 

of Zn(NO3)2•6H2O added, a new phase could be obtained. PXRD patterns of the new 

phases in both systems (H2L2 and H2L3) are very similar (Figure 2.7). As shown in Table 

2.2, pure phases of the new structures could be obtained under different reactant ratios, 

formulated as 2 (Zn4O(L2)3•(DMF)2•(H2O)7) for H2L2  and 3 

(Zn4O(L3)3•(DMF)9•(H2O)8) for H2L3, respectively. Single crystal XRD revealed that in 

both systems the new phases crystallize in C2221 space group. Tri-blade paddle wheel 

[Zn2(CO2)3] SBUs were linked by ditopic BPDC or L2/L3 
 
ligands to form 3D 

frameworks (Figure 2.6f). In the asymmetric unit, 5/2 of the dicarboxylate ligands (either 

BPDC or L2/L3) and one Zn2 tri-blade paddle wheel cluster are present. In the equatorial 

positions of the tri-blade paddle wheel, three bidentate carboxylate groups of ½ 

occupancies bridge the two Zn atoms in the SBU, and are linked by the ligand struts into 
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a 2D graphene net. In the axial positions of the Zn paddle wheel, a dicarboxylate ligand 

with two monodentate carboxylate groups coordinated to the two Zn atoms, further 

linking the 2D nets to 3D frameworks of 5-connected bnn topology (Figure 2.6b). As a 

result of the elongated BPDC or L2/L3, 2-fold interpenetrated structures were adopted by 

the two MOFs (Figure 2.6b). There are three crystallographically distinct dicarboxylate 

ligand positions, among which two of them were in the equatorial positions with respect 

to the Zn2 paddle wheel and one of them was in the axial position. Except for one of the 

equatorial dicarboxylate ligand positions, which is exclusively occupied by BPDCs, the 

other two positions are mixedly occupied by BPDC or L2/L3. The L2/L3 ligands in the 

equatorial positions can further disorder over two orientations resulting from a 180
o
 

rotation along the C-C bond between the carboxylates and aromatic rings. Due to weak 

diffractions and limited data set qualities, the degree of occupancies of the phosphor 

based ligands in these mixedly occupied equatorial and axial positions cannot be reliably 

deduced from the single crystal X-ray diffraction experiment. The Ir/Ru-complex 

contents in both of the MOFs were obtained by quantitative UV-Vis spectroscopy as 

shown in Table 2.2. The single crystal structure was then refined against the X-ray data 

by fixing the L2/L3 to BPDC ratio in the mixed ligands positions, based on the result from 

spectroscopic analysis. In 2, the determined framework formula was Zn2(L2)(BPDC)1.5, 

equaling to ½ L2 vs ½ BPDC ligands in the mixed ligand positions; in 3, the determined 

framework formula turned out to be Zn2(L3)0.5(BPDC)2, equaling to 1/3 L3 vs 2/3 BPDC 

ligands in the mixed ligand positions. Solvent contents in the channels were determined 

by a combination of TGA and 
1
H NMR. 

Table 2.3 Rhodamine 6G dye uptake in the doped MOFs 
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Sample 

Number
* 

Structure & 

phase 

Doping level 

L/(L+BPDC) 

Void space 

percentage 

calculated by Platon 

Dye uptake as 

wt% of the 

framework 

Effective dye 

concentration inside the 

MOF channels (mM) 

L1-BPDC-5 IRMOF-10 (1) 100% 79% 11.3% 252 

L1-BPDC-1 IRMOF-9 4.5% 67% 9.8% 213 

L2-BPDC-6 2 40% 45% 1.7% 63 

L2-BPDC-1 IRMOF-9 6% 65% 11.1% 254 

L3-BPDC-6 3 20% 60% 6.1% 126 

L3-BPDC-3 IRMOF-9 6% 65% 10.3% 231 
*
The preparation condition / L content / identified phases of all the samples in (a) and (b) were listed in 

Table 2. 
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Figure 2.6  (a) photo of  crystals of 2 (b) simplified connectivity model showing the 

interpentrated nets in bnn topology of 2. (c) ball-stick model showing crystal structure of 

2 viewed along [001] direction. (d) ball-stick model showing crystal structure of 2 viewed 
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along [010] direction. (e) ball-stick model showing crystal structure of 2 viewed along 

[100] direction. (f) Ball-and-stick and polyhedra presentation of asymmetric unit of of 2. 

 

Figure 2.7 Powder X-ray diffractions of (a) H2L2 doped BPDC-Zn system (b) H2L3 

doped BPDC-Zn system. The preparation condition / L content / identified phases of all 

the samples in (a) and (b) were listed in Table 2.2. 

It is interesting to note that within the determined formulae for 2 and 3, both structures 

obtain neutral frameworks. In 2 (Zn2(L2)(BPDC)1.5), deprotonated L2 possesses -1 

charge, while deprotonated BPDC ligand holds -2 charge, balancing the positive charges 

of the Zn
2+

 cations [ (+2)×2+(-1)×1+(-2)×1.5=0]. The same math holds for 3 

(Zn2(L3)0.5(BPDC)2), in which case the deprotonated L3 was actually a neutral ligand 

[(+2)×2+0×0/5+(-2)×2=0]. We thus proposed that the formation of a neutral framework 

acts as a driving force towards crystallization of the new phase with bnn topology. 

By doping the Ir/Ru phosphor based ligands H2L1 to H2L3 into the BPDC-Zn system, 

we have successfully obtained three series of doped MOFs with different charges of the 

doping ligand. The ligands H2L2 and H2L3, with +1 and +2 charges, can only be doped 
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into the IRMOF-9 structure to a certain doping level, after which the formation of a new 

phase with neutral framework in bnn topology wins over the doped IRMOF-9 structure 

with positively charged framework. The neutral ligand H2L1, on the other hand, can form 

solid solution with H2BPDC in IRMOF-9/10 structure in the whole range of H2L1/ 

H2BPDC ratio. The L1 doped IRMOF-9/10 possesses neutral framework, and we also 

need to notice that, for L1 ligand in any L1/BPDC ratio, it is not possible to form neutral 

framework in the phase with bnn topology. The charge balance in the framework thus 

comes to be an important argument dictating the degree of doping and phases of the 

doped structure. 

From the crystal structures, all the MOFs contain internal porosities. A dye uptake 

assay recently developed in our lab was employed to quantify the intrinsic porosity of the 

MOFs. By soaking the MOFs in a solution of 42 mM Rhodamine 6G dye in ethanol for 

16 hours, significant fractions of the Rhodamine 6G can be absorbed into the internal 

channels of the MOFs, taking advantage of the hydrophobic nature of the MOF channels. 

The dye solution was then decanted and the MOFs were quickly washed with water three 

times to remove dye molecules adsorbed on the external surfaces of the crystals. The dye-

loaded MOFs were then digested with disodium ethylenediaminetetraacetic acid 

(Na2EDTA) and NaOH. The amounts of released Rhodamine 6G were quantified by 

ultraviolet-visible spectroscopy after acidifying the solution to pH 1.1. As shown in Table 

2.3, the MOFs exhibit dye uptake capacities (ranging from 1.7 wt% to 11.3 wt% of the 

framework) dependent upon the open channels, corresponding to the effective dye 

concentration of 63 to 254 mM in the channels of the MOFs which is equivalent to1.5 to 
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6.0 times of the original dye concentration in the EtOH solution.  These results 

unambiguously prove the accessibility of the open channels of the MOFs. 

 

Figure 2.8 
1
HNMR spectroscopic determination of solvent content in 

Zn4O(L2)3•(DMF)2•(H2O)7 (2).  10.9 mg of 2 was used and mesitylene was added as an 

internal standard.  
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Figure 2.9 Thermogravimetric analysis (TGA) curve for Zn4O(L2)3•(DMF)2•(H2O)7 (2).  

The sample was heated to 600 ºC at a heating rate of 5 ºC/ min. 

           

Figure 2.10 Thermogravimetric analysis (TGA) curve for sample L2-BPDC-1 in 

IRMOF-9 structure with 6% L2 doping. The sample was heated to 600 ºC at a heating 

rate of 5 ºC/ min. 
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Figure 2.11 
1
H-NMR spectroscopic determination of solvent content in 

Zn4O(L3)3•(DMF)9•(H2O)8 (3).   
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Figure 2.12 Thermogravimetric analysis (TGA) curve for Zn4O(L3)3•(DMF)9•(H2O)8 (3). 

The sample was heated to 600 ºC at a heating rate of 5 ºC/min. 

          

Figure 2.13 Thermogravimetric analysis (TGA) curve for sample L3-BPDC-3 in 

IRMOF-9 structure with 6% L3 doping. The sample was heated to 600 ºC at a heating 

rate of 5 ºC/ min. 

2.2 Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide 

Reduction, and Organic Photocatalysis
12 

 

2.2.1 Introduction to Water Oxidation, Carbon Dioxide Reduction and Organic 

Photocatalysis and UiO MOFs 

 

Catalytic water oxidation constitutes a key half reaction in artificial 

photosynthesis.
13,14

 A large number of homogeneous water oxidation catalysts (WOCs) 

have recently been developed based on dimeric Ru complexes,
15,16 

monomeric Ru and Fe 

complexes,
17-19

 monomeric Ir complexes,
20-22

 and polyoxometalates with a Ru4O4 or a 

Co4O4 core.
23,24

 These molecular WOCs are highly tunable with high catalyst activity and 

stability. On the other hand, heterogeneous WOCs based on iridium oxide
25-27

 and cobalt 
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oxide/phosphate
28,29 

particles can be readily interfaced with electrodes or photosensitizers 

to achieve electrocatalytic or photocatalytic water oxidation. We believe it is beneficial to 

incorporate the molecular WOCs into framework structures. Unfortunately, most MOF 

structures tend to lack stability under water oxidation reaction conditions.
30

 The UiO 

family of MOFs based on Zr6O4(OH)4(CO2)12 secondary building units (SBUs) and 

dicarboxylate bridging ligands represent an interesting exception and are very stable in 

water.
1,31 

We successfully incorporated three iridium-based WOCs, [Ir
III

(Cp*)(dcppy)] 

(H2L4, where Cp* = pentamethylcyclopentadienyl, dcppy = 2-phenylpyridine-5,4’-

dicarboxylic acid) [Ir
III

(Cp*)(dcbpy)]
+

 (dcbpy = 2,2’-bipyridine-5,5’-dicarboxylic acid) 

(H2L5), and [Ir
III

(dcppy)2(H2O)]
+
 (H2L6), into the Zr6O4(OH)4(bpdc)6 (UiO-67, bpdc = 

para-biphenyldicarboxylate) framework (4-6), and demonstrated catalytic water 

oxidation by these highly stable MOFs. 

In photosynthesis, the reducing equivalents resulting from water oxidation reactions in 

Photosystem II are used to drive CO2 reduction in Photosystem I.
32

 Photochemically 

reducing CO2 into a source of fuel offers an attractive way to both harvest energy from 

sunlight and alleviate the rise of atmospheric CO2 concentrations.
33

 A number of 

molecular photocatalysts, including cobalt/nickel tetraaza-macrocyclic compounds,
34-38

 

iron/cobalt metalloporphyrins,
39-43

 and Re
I
(CO)3(bpy)X complexes,

44-48
 have been 

examined for CO2 reduction in recent years. We successfully incorporated 

Re
I
(CO)3(dcbpy)Cl (H2L7) into the UiO-67 framework to afford a heterogeneous 

photocatalyst for CO2 reduction using visible light. 

Organic transformations driven by visible light are gaining increasing interest from 

synthetic chemists, because of generally mild reaction conditions, atom efficiency, and 
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the potential to mediate thermodynamically uphill reactions.
49

 Photocatalysts are often 

required in visible light-driven organic reactions since the majority of organic substrates 

in these reactions do not readily absorb photons in the visible region. [Ru(bpy)3]
2+

 and  

[Ir(ppy)2(bpy)]
+
 have been reported recently as photoredox catalysts in a variety of new 

photocatalytic organic reactions, such as [2+2] cycloaddition,
50

 tin-free dehalogenation,
51

 

aza-Henry reactions,
52

 aerobic amine-coupling,
53,54

 sulfide and alcohol oxidation,
55,56 

olefin epoxidation,
57

 functional group transformation,
58

 asymmetric organophotoredox 

catalysis,
59

 and radical chemistry.
60

 Because these photocatalysts contain precious metals, 

it is highly desirable to develop recyclable and reusable heterogeneous photocatalytic 

systems based on molecular phosphors. We incorporated [Ir
III

(ppy)2(dcbpy)]Cl (H2L2) 

and [Ru
II
(bpy)2(dcbpy)]Cl2 (H2L3) into the UiO-67 framework and demonstrated the 

applications of these doped MOFs as highly active heterogeneous catalysts for 

photochemical aza-Henry reactions between tertiary amines and nitroalkanes, aerobic 

amine coupling, and sulfide photo-oxidations. 

 

2.2.2 Synthesis of metal complex derivatized MOFs by doping the UiO-67 

framework 

 

The Ir complexes [IrCp*Cl(dcppy)] (H2L4) and [IrCp*Cl(dcbpy)]Cl (H2L5) were 

synthesized by allowing [IrCp*Cl2]2 to react with 4,4’-(EtO2C)2-ppy or 4,4’-(EtO2C)2-

bpy, followed by base-catalyzed hydrolysis. The complex [Ir(dcppy)2(H2O)2](OTf) 

(H2L6) was synthesized by treating [Ir(dcppy)2]2Cl2 with AgOTf. The Re complex 

[Re(CO)3(dcbpy)Cl] (H2L7) was synthesized by a reaction between (2,2’-bipyridine)-

5,5’-dicarboxylic acid and pentacarbonylchloro rhenium(I). Complexes H2L4-H2L7 were 
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characterized by NMR spectroscopy, and the new compounds H2L4, H2L5, and H2L6 

were also characterized by mass spectrometry.
12

 

Reactions of ZrCl4 and metal complexes H2L2-H2L7 in N,N’-dimethylformamide 

(DMF) failed to produce crystalline UiO frameworks, presumably due to the steric 

demand of the L2-L7 ligands. Structure modeling studies indicated that the steric bulk of 

the L2-L7 ligands precluded the formation of UiO frameworks based on 

Zr6O4(OH)4(CO2)12 SBUs and pure L2-L7 ligands. We hypothesized that the L2-L7 

ligands could instead be doped into the framework of UiO-67 (Zr6(µ3-O)4(µ3-

OH)4(bpdc)6) by taking advantage of matching ligand lengths between bpdc and L2-L7. 

Such a substitution strategy can not only allow for the incorporation of a sterically 

demanding bridging ligand into a parent framework but also allows for retention of the 

porosity of the parent framework to facilitate substrate diffusion for efficient catalysis. 
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(Reprinted with permission from ref [12], copyright American Chemical Society 2011) 

Metal complex doped UiO-67 (4-9) with the Zr6(µ3-O)4(µ3-OH)4(bpdc)6-x(L)x formula 

were synthesized by treating ZrCl4 with a combination of H2bpdc and ligands H2L2-H2L7 

in DMF at 100˚C (Scheme 2.2). Crystallinity of the MOFs could be enhanced by adding 

acetic acid to the reaction mixture, which presumably stabilized soluble Zr
4+

 species by 

acetate coordination and slowed down the formation of amorphous zirconium 

oxides/hydroxides. Synthetic conditions were optimized to obtain highly crystalline 

powdery samples of 4-9, which are isostructural with the parent framework UiO-67, 

based on the similarity of their powder X-ray diffraction (PXRD) patterns (Figures 2.14a 

and 2.14c). SEM images of the samples showed intergrown nanocrystals of ~200 nm in 

dimensions (Figure 2.14b).  Metal complex contents in MOFs 4-9 were established by 
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inductively coupled plasma mass spectrometry (ICP-MS) analysis. 4-9 were found to 

contain 2-8 wt% of the L2-L7 ligands (Table 2.4). The formulae Zr6(µ3-O)4(µ3-

OH)4(bpdc)6-x(L)x of MOFs 4-9 were supported by thermogravimetric analysis (TGA), 

showing 61-63% weight loss for the organic linkers. Permanent porosities of MOFs 4-9 

were demonstrated by N2 adsorption at 77 K (Figure 2.14d). Type I isotherms were 

obtained for all of the six MOFs with BET surface areas ranging from 1092 to 1497 m
2
/g, 

indicating microporous structures (Table 2.4). Pore size distribution (calculated by the 

HK method) centering at 6.7 Å perfectly agrees with that of the structure model. 

 

Figure 2.14  a) Structure model of 4 showing doping of L4 ligand into the UiO-67 

framework. b) SEM micrograph of intergrown nanocrystals of 4. c) PXRD patterns for 
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UiO-67 and 4-9.  d) Nitrogen adsorption isotherms of 4-9 at 77 K. (Reprinted with 

permission from ref [12]. Copyright American Chemical Society 2011) 

Table 2.4  Ligand doping level and BET surface area of MOFs 4-9 

MOF-x Lx ligand wt%
a
 BET surface area (m

2
/g)

b 

4 7.7 1254 

5 8.1 1497 

6 6.0 1410 

7 4.2 1092 

8 2.0 1194 

9 3.0 1277 
a
Determined by ICP-MS. 

b
BET

 
surface area calculations were based on the adsorption isotherms using P/P0 

from 0.005 to 0.1.  

2.2.3 Water oxidation catalysis using 4-6 

Water oxidation catalytic activities of 4-6 were examined with Ce
4+

 (cerium 

ammonium nitrate, CAN) as an oxidant (Figure 2.15a). As shown in Table 2.5, MOFs 4-6 

are highly effective water oxidation catalysts with turnover frequencies (TOFs) as high as 

4.8 h
-1

. The catalytic activity must come from the doped L4-L6 since the parent UiO-67 

did not catalyze water oxidation. The heterogeneous nature of 4-6 was verified by the re-

usability of 4-6 for water oxidation (Figure 2.15b) and the lack of catalytic activity for the 

supernatants of the water oxidation mixtures (Figure 2.15c), which contained no Ir as 

determined by ICP-MS. Furthermore, the solids recovered from the reactions exhibited 

the same PXRD patterns as those of the pristine 4-6 (Figure 2.15d), supporting the 

stability of the UiO-67 framework under the present water oxidation conditions. 
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Figure 2.15  a) Plots of O2 evolving turnover number (O2-TON) vs. time for 4-6 and the 

homogeneous H2L4-H2L6. b) Plots of O2-TON vs. time for reuse experiments of 4-6. c) 

The amount of detected O2 vs. time with undoped UiO-67, and supernatant solutions of 

4-6 reaction mixtures; The amount of O2 generated by 6 was also plotted for comparison. 

d) PXRD patterns of 4-6 after catalytic reaction and that simulated from the UiO-67 

structure. (Reprinted with permission from ref [12]. Copyright American Chemical 

Society 2011) 

Table 2.5  TOFs for 4-6 catalyzed water oxidation
a
 

Catalyst TOF (h
-1

) Catalyst TOF (h
-1

) 

4
b 

4.8
 

H2L4
c 

37.0
 

5
b
 1.9 H2L5

c
 15.7 

6
b
 0.4 H2L6

c
 6.2 

a
TOF is defined as the number of evolved oxygen molecules per catalytic site per hour over the first 3 

hours. CAN concentration 62.3-67.1 mM, pH = 1.  
b
Heterogeneous catalysis was carried out with 3.2-7.4 
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mg 4-6 (equiv. to 0.5 – 1.0 µmol of Ir WOCs). TOFs were calculated based on the Ir-complex doping 

levels determined by ICP-MS. 
c
Homogeneous catalysis with H2L4-H2L6 was carried out with 1.5-7.5×10

-5
 

M catalyst.  

Comparisons of water oxidation TOFs for 4-6 to those of corresponding homogeneous 

catalysts H2L4-H2L6 provide important insights into the reaction processes. MOFs gave 

lower TOFs than their homogeneous counterparts (only 6.4-12.9% of the homogeneous 

catalyst activities, Table 2.5). This level of activity can be accounted for by the Ir 

catalysts on the MOF particle surface. CAN is apparently too large (~11.3 Å in diameter 

for the cerium nitrate anions from the crystal structure of CAN) to enter the MOF 

channels (~6.7 Å in diameter).  

A surface poisoning experiment was performed to further prove the assumption of 

surface catalysis. We first found that reacting the homogeneous [Ir(Cp*)(ppy)Cl] catalyst 

with triphenylphosphine can effectively suppress its WOC activity. [Ir(Cp*)(ppy)Cl] and 

20. eq. of triphenylphosphine were dissolved in ethylacetate and allowed to react at room 

temperature for 6h. [Ir(Cp*)(ppy)(PPh3)]Cl was then isolated, which exhibited WOC 

TOF only 1/30 of that of the parent [Ir(Cp*)(ppy)Cl] complex. We reasoned that it was 

because of the high coordination strength of triphenylphosphine which may block the 

open site that is vital in the catalytic cycle. We then proceeded to do the poisoning 

experiment on 4 with triphenylphosphine. Considering the much larger dynamic size of 

triphenylphosphine than the pore size of the MOF, the triphenylphosphine molecules can 

only have access to the Ir sites near the surface of the MOF particles. In other words, the 

poisoning should be restricted to the MOF surface. The experiment, however, showed 

complete loss of WOC activity of the 4 after treating it with 20 eq. of triphenylphosphine 
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in ethylacetate at room temperature. This can only happen if the Ce
4+

-driven WOC 

reactions also exclusively took place near the surface of those particles.  

Total WOC turn-over numbers of 4-6 were estimated from UV-Vis determinations of 

the residue Ce
4+

 ion concentration after WOC reactions of 12 days (the oxygen sensor 

can only work for a few hours detecting O2 in the gas phase, not suitable for the time-

scale of those experiments). Control experiment using undoped UiO67 MOF in the 12-

day reactions showed no significant change of the concentration of Ce
4+

 ion, confirming 

the validity of this method. The estimated total TONs obtained in this way are 1513, 

1312, 2152 for 4-6 respectively. We do not believe that the water oxidation activity of 4-

6 comes from IrO2 nanoparticles that could result from the decomposition of H2L4-H2L6. 

Control experiments using pre-synthesized IrO2 nanoparticles under the same conditions 

used with the MOFs indicated that the IrO2 nanoparticles were a highly active WOC with 

a TOF of ~150 h
-1

. However, the IrO2 nanoparticles were unstable under the reaction 

conditions with their catalytic activity lasting for less than 30 mins. The addition of more 

Ce
4+

 to the reaction mixture did not produce more O2. The facts that the MOF catalysts 

could be reused and 4-6 each exhibited different water oxidation activity also argue 

against the possibility that in situ generated IrO2 nanoparticles are responsible for water 

oxidation. The fact that 4 can be poisoned by triphenylphosphine also supported the 

molecular origin of the WOC activity from the MOF. X-ray photoelectron spectroscopic 

analyses of the fresh and recovered MOFs were inconclusive as the Ir 4f binding energies 

of the L4-L6 ligands were too close to those of IrO2. 

2.2.4 Photocatalytic CO2 reduction using 7 
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The Re-based L7 ligand can serve as an active catalyst for photochemical CO2 

reduction.  Photocatalytic CO2 reduction activity of 7 was examined in CO2-saturated 

acetonitrile (MeCN), using triethylamine (TEA) as a sacrificial reducing agent. 

Immediately after irradiating the reaction mixture, the 7 color changed from orange to 

green, suggestive of catalytic turnovers.  As shown in Table 2.6, the MOF catalyst 

selectively reduced CO2 to CO under light, as determined by gas chromatography (GC). 

Under the reaction conditions (MeCN/TEA =20/1, regular MeCN and TEA, saturated 

with CO2 gas), the molar ratio of the CO and H2 production was around 10 during the 

first six hours. When the photocatalytic CO2 reduction was carried out with CD3CN as 

the solvent, no formic acid or methanol product was detected by 
1
H NMR spectroscopy. 

The CO-TONs reached 5.0 after the first six hours (Table 2.6, entry 1). No CO generation 

was observed in the absence of CO2 under the same reaction conditions (Table 2.6, entry 

12), ruling out the possibility that the detected CO could have resulted from the 

decomposition of L7 ligand. The photocatalytic nature of the reaction was proved by the 

fact that no CO was generated in the dark (Table 2.6, entry 13). The inactivity of the 

parent UiO-67 framework in this reaction confirmed that the [Re
I
(dcbpy)(CO)3Cl] moiety 

was responsible for the catalytic CO2 reduction (Table 2.6, entry 14). 
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Figure 2.16. (a) Plots of CO evolution turnover number (CO-TON) versus time in the 

photocatalytic CO2 reduction with 7 (blue square) and homogeneous L7 (red circle). (b) 

FT-IR of as-synthesized 7 (blue) and 7 after photocatalysis (red). (c) PXRD patterns of 7 

after catalysis (black), as-synthesized (red) and simulated from the UiO-67 structure 

(blue). (d) UV-Vis diffuse reflectance spectra of as-synthesized 7 (black) and 7 after 

photocatalysis (red). (Reprinted with permission from ref [12]. Copyright American 

Chemical Society 2011) 

Table 2.6  Investigations of 7 as a photocatalyst for light-driven CO2 production.
a 

Entry Photocatalyst Reaction time 

(h) 

H2-TON
b 

CO-TON
c 

1 7 6 0.5 5.0 

2 (reuse1)
d 

7 6 0.5 6.9 

3 (reuse2)
d 

7 6 0.6 0 

4 Supernatant after 

MOF filtration 

6 0.1 0 

5 7 20 2.5 10.9 
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6
 

L7 6 0.5 2.5 

7 (reuse1)
e 

L7 6 0.8 0.07 

8 (reuse2)
f 

L7 6 0.1 0 

9 L7 20 0.6 3.5 

10 Re(CO)3Cl(bpy) 6 0.3 5.6 

11 Re(CO)3Cl(bpy) 20 1.0 7.0 

12
g 

7 6 0.02 0 

13
h 

7 6 0 0 

14 undoped-UiO67 6 0 0 
a
The reaction vials were placed 10 cm in front of a 450 W Xe-lamp with a 300 nm cut-off filter, with 

magnetic stirring. 
b
H2-TON is defined as the number of evolved hydrogen molecules per catalytic site. 

c
CO-TON is defined as the number of evolved CO molecules per catalytic site. 

d
The MOF solids were 

recovered by centrifugation for reuse in  new catalytic runs. 
e
The reaction solution was degassed with CO2 

before a second photocatalytic run. 
f
100 µL TEA was added to the reaction solution and the solution was 

then degassed with CO2 before a third photocatalytic run. 
g
without CO2 

h
without light.  

We also tested the recyclability of the 7 catalyst in light-driven CO2 reduction. The 

solid in the reaction mixture was recovered via centrifugation and reused in additional 

runs of catalytic reactions. However, after two six-hour reaction runs, the catalyst became 

inactive in CO generation, but a small amount of H2 was still detected (Table 2.6, entries 

2-3). The supernatant of the 7 reaction mixture showed no CO generation activity but 

slight H2 generation activity (Table 2.6, entry 4). The total CO-TON of the 7 catalyst was 

estimated to be 10.9 from the 20 hour reaction (Table 2.6, entry 5). During the 20-hour 

reaction, 43.6% of the Re had leached into the supernatant, as determined by ICP-MS. In 

contrast, only 3.5% of the Zr was detected in the supernatant by ICP-MS. PXRD of the 

recovered solid indicated that the framework structure of 7 remained intact (Figure 

2.16c). These results suggest that the Re leached into solution via the detachment of Re-

carbonyl moieties from the dcbpy group in the 7 framework, and not by dissolution of 7. 

Consistent with this, the recovered 7 lost the UV-Vis peak at 412 nm that is characteristic 

of the 
1
MLCT absorption of the Re(CO)3(bpy)Cl species (Figure 2.16d). The intensities 

of the IR peaks corresponding to the CO stretching vibrations of the L7 ligand at ~2025 
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cm
-1

(A’), ~1923 cm
-1

(A’), and ~1900 cm
-1

 (A’’) significantly decreased in the recovered 

solid when compared to those of the as-synthesized 7 (Figure 2.16b), further supporting 

the decomposition of the L7 ligand by losing the Re-carbonyl moieties.  

Photocatalytic CO2 reduction was also conducted with the homogeneous ligand L7 

under the same conditions. Upon irradiation, the reaction mixture also turned from orange 

to green color immediately. After a six-hour reaction, the solution color turned to 

yellowish gray and GC analysis indicated a moderate CO-TON of 2.5 (Table 2.16, entry 

6). The reaction mixture was almost inactive in the second photocatalytic run, even after 

re-saturating the solution with CO2 (Table 2.6, entry 7). Adding more TEA to the solution 

did not regenerate the catalytic activity (Table 2.6, entry 8). All of these observations 

indicated that the Re L7 ligand decomposed during the catalytic turnovers. The overall 

CO-TON for the homogeneous H2L7 ligand was estimated to be 3.5 based on the 20 hour 

reaction (Table 2.6, entry 9). A time-dependent catalytic activity experiment was 

performed by analyzing the CO production at different time points by GC (Figure 2.16a). 

Although the homogeneous H2L7 was more active than the 7 catalyst in the first two 

hours, the 7 catalyst retained activity over a longer reaction time to yield a higher total 

TON. The 7 catalyst thus exhibited much higher total TONs than the homogeneous 

system, presumably as a result of the catalyst stabilization by the MOF framework. 

Reactions using Re(CO)3(bpy)Cl as catalyst were performed to test our experimental set 

up and reaction conditions (Table 2.6, entries 12 and 13). A total TON of 7.0 was 

obtained after 20 hours of irradiation, which is comparable to the previously reported 

value.
69
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Previous mechanistic studies on the [Re(CO)3(bpy)Cl]-catalyzed CO2 reduction 

suggested both a unimolecular pathway involving a [Re
I
(bpy)(CO)3(COOH)] 

intermediate
61

 and a bimolecular pathway involving a CO2 bridged Re dimer 

[(CO)3(bpy)Re
I
](CO2)[Re

I
(bpy)(CO)3]

62,63 
or outer-sphere redox reactions between two 

Re molecules
69

 in the catalytic cycle. The present 7 catalyzed CO2 reduction can only 

occur via the unimolecular mechanism as a result of the immobilization of the L7 catalyst 

in the MOF framework. Interestingly, the incorporation of L7 into the 7 framework not 

only led to higher CO2 reduction TONs, but also shed light on the CO2 reduction reaction 

mechanisms and photocatalyst decomposition pathways. 

 

2.2.5 Photocatalytic Organic Transformations using 8 and 9 

Catalytic activities of Ir(ppy)2(bpy)
+
-based 8 and Ru(bpy)3

2+
-based 9 toward 

photocatalytic aza-Henry reactions were evaluated with tetrahydroisoquinoline (1a) as 

the amine substrate and CH3NO2 as solvent. The reaction was carried out in the presence 

of air with a common fluorescent lamp (26 W) as the light source. The reaction was 

stopped after 12 hours and the MOF catalysts were filtered off. Conversions of the 

reactions were determined by integrating the peaks of 
1
H NMR spectra of the crude 

reaction mixtures. As shown in Table 2.7 (entry 1), both 8 and 9 were highly effective 

photocatalysts for the aza-Henry reaction between 1a and nitromethane, with 59% and 

86% conversions, respectively. The 8 and 9 catalysts also effectively catalyzed the aza-

Henry reactions between nitromethane and bromo- and methoxy-substituted 

tetrahydroisoquinoline (2a and 3a) with high efficiency (Table 2.7, entries 2 and 3). A 

number of control experiments were carried out to demonstrate the heterogeneous and 
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photocatalytic nature of the reactions. The reaction of 1a in the dark yielded negligible 

amounts of aza-Henry products (<5%), demonstrating the necessity of light in this 

reaction. On the other hand, the background reaction in the absence of the catalysts but in 

the presence of light showed only 19% conversion after 12 hours (Table 2.7, entry 1), 

indicating that the MOF played a catalytic role in the reactions. These observations are 

consistent with those of the homogeneous catalytic system reported by Stephenson and 

co-workers.
74

 In addition, a cross-over experiment was carried out to prove the 

heterogeneity of the MOF catalyst. Substrate 3a was first used in the 9 catalyzed aza-

Henry reaction, and 95% conversion was achieved after 12 hours. The MOF catalyst was 

then removed by filtering through Celite, and another substrate 1a was added to the 

supernatant solution. After stirring the solution under light for 12 hours, only 22% 

conversion was observed for the second substrate. This low conversion, comparable to 

that of the background reaction, proved that the supernatant of the 9 reaction mixture is 

inactive in photocatalysis, supporting the heterogeneous nature of the MOF 

photocatalysts. A further examination of the supernatant by ICP-MS showed no 

observable leaching of Ru to the solution during the reaction. The 8 and 9 catalysts were 

also recovered from the reaction mixture by centrifugation, and reused three times 

without loss of activity (Table 2.8). In addition, PXRD patterns of 8 and 9 after the 

reactions showed no deterioration of the crystallinity (Figure 2.17). 

Table 2.7.  8 and 9 catalyzed aza-Henry reactions
a 
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entry substrate 
Catalyst /Conv. (%) 

b
 

No catalyst 8 L2-Et2
c 

9 L3-Et2
c 

1 1a 19 59 99 86 97 

2 2a 17 62 90 68 88 

3 3a 28 96 >99 97 >99 

a
The reactions were carried out with 1 mol% catalyst loading, 5 cm in front of a 26 W fluorescent lamp 

for 12 hours. 
b
Conversion yields were determined by 

1
H NMR. 

c 
As the acid ligand has very low solubility 

in nitromethane, the diethyl esters of L2 and L3 ligands L2-Et2 and L3-Et2 were used in the homogeneous 

control experiments instead.  

 

Table 2.8.  Reuse of 8 and 9 in aza-Henry reactions
a
 

catalyst substrate 
Conv. (%)

b
 

1
st
 run 2

nd
 run 3

rd
 run 

8 1a 59 57 59 

8 2a 62 68 68 

8 3a 96 93 95 

9 1a 86 69 62 

9 2a 68 71 66 

9 3a 97 93 95 

a
The reactions were carried out with 1 mol% catalyst loading, 5 cm in front of a 26 W fluorescent lamp 

for 12 hours. 
b
Conversion yields were determined by 

1
H NMR. 

 

We performed another control experiment to demonstrate the need of MOF permanent 

porosity in catalyzing the photo-driven aza-Henry reaction. Amorphous nanoparticles 

were synthesized under similar conditions to those of 8, except that wet DMF was used in 
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the synthesis and glacial acetic acid was not added. The resultant material was non-

porous as indicated by N2 adsorption measurement (with a negligible BET surface area of 

46 m
2
/g) and amorphous by PXRD. The L3 ligand weight percentage in this material was 

found to be higher than that of 9 by ICP-MS measurements (7.0 wt%). However, the non-

porous nanoparticles did not catalyze the aza-Henry reaction using 1a as the substrate 

(18% conversion, corresponding to background reaction) at the same catalyst loading as 

9. This observation unambiguously supported that the photoredox step of the reaction 

happened inside the channels of 8 and 9. Although the substrate amines are relatively 

large compared to the size of channels in these MOFs, it is still possible for them to move 

through the MOF channels as a result of favorable interactions between the amine 

substrates and the MOF framework (e.g., π-π stacking interactions).
11

 Alternatively, if the 

aza-Henry reaction is mediated by photochemically generated singlet oxygen, the 

poresize of the MOF just needs to be large enough to transport O2 molecules. As surface 

photocatalytic sites of these systems have minor contributions to the overall 

photocatalysis (<12% as indicated by the water oxidation activity shown above), micro-

porosity is a pre-requisite for the high activity of these doped MOFs. 

We also demonstrated the applicability of the Ru(bpy)3
2+

-based 9 as a photocatalyst in 

other light-driven reactions. As shown in Table 2.9, 9 efficiently catalyzed aerobic 

oxidative coupling of a series of primary amines with 46% to 90% conversions in three 

hours (Table 2.9, entries 1,6,7). The conversion of substrate 1c using the 9 was 

comparable to that using the homogeneous molecular catalyst (Table 2.9, entry 4). The 

recyclability and reusability of 9 were also evaluated in this reaction using 1c as 

substrate. The recovered catalyst from simple filtration showed no deterioration of 
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conversion% (Table 2.9, entry 2), and retained the crystallinity of the pristine sample 

(Figure 2.17b). The background reaction in the absence of the catalyst but in the presence 

of light showed only ~8% conversion (Table 2.9, entry 4), verifying that 9 played a 

catalytic role in the reactions. On the other hand, the reaction of 1c in the dark yielded 

negligible amounts of coupling products (Table 2.9, entry 5), demonstrating the necessity 

of light in this reaction. These observations are consistent with those reported by Lang et 

al.
75 

and Su et al.
76

using carbon nitride and TiO2 as photocatalysts. Time-dependent 

conversions of the three substrates have also been monitored by GC analysis at different 

time points. The initial reaction rate of the three substrates turned out to be quite similar 

from the experimental data. The reason for the seemingly lower finial conversion of 3c in 

the reaction is the slow decomposition of product 3d on 9, probably due to intrinsic 

Lewis acidity of the [Zr6(µ3-O)4(µ3-OH)4(carboxylate)6] building block. The absence of 

size-selectivity of the reaction gives the possibility of a singlet oxygen mediated reaction 

mechanism, in which singlet oxygen generated inside the MOF can diffuse out of the 

nanocrystal and drive the organic transformation in the solution. 

Table 2.9.  Photocatalytic aerobic amine coupling reactions
a 

 

Entry catalyst substrate conversion%
 b

 

1 9 1c 83 

2
 

9 (reuse) 1c 80 

3 L3 1c 96 

4 No catalyst 1c 8 
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5
c 

9 1c 6 

6 9 2c 90 

7 9 3c 46 
aReactions were carried out with 1 mol% catalyst loadings, 5 cm in front of a 300 W Xe lamp for 1 hour. 

bConversion yields were determined by 1H NMR. cwithout light. 

 

The photocatalyzed aerobic oxidation of thioanisole was also examined, using 9 as the 

photocatalyst. Photocatalytic aerobic oxidation of sulfide to sulfoxide has been reported 

before with Ru(bpy)3
2+

 in acetonitrile but only when a lead ruthenate pyrochlore mineral 

was added as an electron shuttle.
77

 We found that by changing the solvent to methanol, 

the photocatalyzed sulfide oxidation occurred without an electron relay (Table 2.10, entry 

1). It is highly possible that the reaction was mediated by singlet oxygen that is generated 

photochemically. As shown in Table 2.10, with methanol as the solvent, 9 catalyzed the 

selective aerobic oxidation of thioanisole to methyl phenyl sulfoxide. No sulfone (the 

possible over-oxidized by-product) was detected by 
1
H NMR, demonstrating a high 

degree of selectivity of this reaction. The conversion% after 22 hours is comparable to 

that of the corresponding homogeneous catalytic system (Table 2.10, entries 1 and 2). A 

control experiment with no photocatalyst but with light showed no appreciable 

conversion of the sulfide (Table 2.10, entry 3). No sulfoxide products were detected when 

the reactions were carried out in the absence of light but in the presence of 9 or L3 (Table 

2.10, entries 4 and 5). O2 was shown to be the oxidizing agent since no conversion of 

sulfide to sulfoxide was observed when the reaction was carried out under N2 protection 

(Table 2.10, entries 6 and 7). The PXRD pattern of the 9 catalyst after the reaction was 

identical to that of the pristine 9, indicating its stability under the reaction conditions 

(Figure 2.17). 
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Table 2.10.  Photo-oxidation of thioanisole 

 

Entry Catalyst/reaction condition Time (h) conversion%
 b

 

1 L3 22 72 

2 9 22 73 

3 No catalyst, with light 22 0 

4 No light, with L3 22 0 

5 No light, with 9 22 0 

6 L3  under N2 protection  22 0 

7 9, under N2 protection  22 0 

 

 

Figure 2.17 (a) PXRD patterns of 8: as-synthesized (red), after aza-Henry reaction 

(black), and simulated from the UiO-67 structure (blue). (b) PXRD patterns of 9: after 

sulfide-oxidation (pink), after amine-coupling (green), after aza-Henry reaction (blue), 

as-synthesized (red), and simulated from the UiO-67 structure (black). (Reprinted with 

permission from ref [12]. Copyright American Chemical Society 2011) 
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2.2.6 Conclusions 

We have successfully incorporated Ir, Re, and Ru complexes into the UiO framework 

by a mix-and-match strategy. These stable and porous metal complex-derivatized doped 

MOFs are highly effective catalysts for a range of reactions related to solar energy 

utilization. 4-6 were used in catalytic water oxidation, while 7 catalyzed photochemical 

CO2 reduction. 8 and 9 were used in three photocatalytic organic tranformations: aza-

Henry reaction, aerobic amine-coupling, and aerobic thioanisole oxidation. Stability of 

these MOF catalysts under the reaction conditions was verified by comparing PXRD 

patterns before and after catalysis. The heterogeneous nature of these catalysts can not 

only facilitate catalyst recycling and reuse, but can also provide mechanistic insights into 

the reactions, as in the case of CO2 reduction using 7. The modular nature of this 

synthetic approach should allow further fine-tuning and optimization to lead to highly 

active heterogeneous catalysts in solar energy utilization. 
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Chapter 3 

Pt Nanoparticles@Photoactive Metal-Organic Frameworks: 

Efficient Hydrogen Evolution via Synergistic Photo-excitation and 

Electron Injection
1
 

3.1 Introduction to nanoparticle deposition in Metal-Organic Frameworks 

Functional entities can be built into MOF frameworks (walls) either as organic 

building blocks
2
 or as metal cluster secondary building units (SBUs).

3
 Alternatively, 

functional groups can be tethered onto MOF walls via postsynthetic modifications.
4,5

 

Functional entities can also be assembled inside the internal channels or cavities of MOFs 

as counter ions or as trapped nanoparticles which are not covalently linked to the MOF 

walls.
6-8

 In particular, metal nanoparticles have been incorporated into MOFs through 

chemical vapor deposition,
9-11

 liquid/incipient wetness impregnation
12-17

, solid 

grinding,
18,19

 and microwave irradiation
20

 to form metal@MOF hierarchical assemblies. 

Such a versatile variety of functionalization methods makes it possible to incorporate 

multiple functional entities into the same MOF to enable synergistic functions.
21

 

We are interested in using photoactive framework materials as a new platform to 

integrate different functional components that are needed for solar energy conversion.
22-24

 

Photocatalytic hydrogen generation is an essential half reaction in water splitting, which 

converts sunlight energy into the chemical potential of hydrogen molecules.
25-28

 A visible 

light-driven photocatalytic hydrogen evolution system often requires two components—

the phosphor to harvest sunlight and the catalyst to produce hydrogen using the harvested 

energy. Bernhard et al. pioneered the use of [Ir(ppy)2(bpy)]
+
 (ppy=2-phenylpyridine; 
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bpy=2,2’-bipyridine) and its derivatives as photosensitizers to drive photocatalytic 

hydrogen evolution with Pt nanoparticles.
29-33

 In this chapter, I will describe the design of 

synergistic hydrogen evolution photocatalysts based on Pt nanoparticle@MOF 

assemblies. Pt nanoparticles were loaded to the cavities of phosphorescent MOFs (8 and 

10) to enable efficient photocatalytic H2 evolution via photo-injection of electrons from 

the light-harvesting MOF frameworks into the Pt nanoparticles. The Pt@10 assembly 

showed a much enhanced (~five times) hydrogen evolution efficiency compared to the 

homogeneous control, and could be readily recycled and reused by centrifugation. 

3.2 Pt Nanoparticles@Photoactive Metal-Organic Frameworks for hydrogen 

evolution 

  

Scheme 3.1. Synthesis of phosphorescent Zr-carboxylate MOFs (8 and 10) of the fcu 

topology and subsequent loading of Pt nanoparticles inside MOF cavities via MOF-
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mediated photo-reduction of K2PtCl4 to form the Pt@8 and Pt@10 assemblies. 

(Reprinted with permission from ref [1]. Copyright American Chemical Society 2012) 

The [Ir(ppy)2(bpy)]Cl-derived dicarboxylic acid H2L8 was synthesized by treating 

[Ir(ppy)2Cl]2 with dimethyl (2,2’-bipyridine)-5,5’-dibenzoate (Me2L8), followed by base-

catalyzed hydrolysis.
22

 We targeted the synthesis of UiO frameworks built from a linear 

dicarboxylate ligand and the Zr6(µ3-O)4(µ3-OH)4(carboxylate)12 SBU in this work 

because of their high chemical stability.
34-39

 As shown in chapter 2,
22

 Zr6(µ3-O)4(µ3-

OH)4(bpdc)5.94(L2)0.06 (8) was prepared by doping the L2 ligand into the UiO-67 

framework with biphenyldicarboxylate (BPDC) as the bridging ligand at ~2 wt% 

loadings, by taking advantage of the matching length of L2 and BPDC (Scheme 3.1). 

Intergrown octahedral nanocrystals of 8 of ~200 nm in dimensions (Fig. 3.2a) were used 

for hydrogen evolution studies. 8 is highly porous with a BET surface area of 1194 m
2
/g 

and an average pore size of 6.7 Å. 

10 was synthesized by treating H2L8 with ZrCl4 in DMF at 100 
o
C for 3 days. A small 

amount of trifluoroacetic acid was added to improve the crystallinity of 10.
37

 

Cuboctahedron-shaped single crystals of 10, approximately 0.02 mm in each dimension, 

were obtained and used for X-ray diffraction studies.
40

 10 adopts the UiO framework 

structure of the fcu topology by connecting the Zr6(µ3-O)4(µ3-OH)4(carboxylate)12 SBUs 

with the linear dicarboxylate L8 linker (Figures 3.1a-d).
41

 Because of the steric bulk of 

the L8 ligand, a non-interpenetrated structure was obtained, with 71.4% void space as 

calculated by PLATON and a triangular open channel with 1.6 nm edge length and an 

octahedral cavity with a diameter of 1 nm. The disordered nature of the solvent molecules 

and counterions in the MOF channels prevents their identification by X-ray 
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crystallography. The solvent molecules and counterions were instead determined by a 

combination of TGA and NMR studies, which gave the overall formula of Zr6(µ3-O)4(µ3-

OH)4(L8)6·64DMF for 10.
42

 Nitrogen adsorption measurements on 10 indicated zero 

surface area. Powder X-ray diffraction (PXRD) studies indicated severe framework 

distortion for 10 upon solvent removal, a process that is common for MOFs with large 

open channels.
43

 The porosity of 10 was instead ascertained by dye uptake measurements. 

10 exhibited approximately 75 wt% uptake of both Brilliant Blue R-250 and Crystal 

Violet. 
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Figure 3.1 Stick-polyhedron model of the crystal structure of 10 (a) viewed along the 

[110] direction; (b) viewed along the [100] direction; (c) showing an octahedral cavity, 

represented by a red ball with the diameter of 1 nm; and (d) showing a tetrahedral cavity, 

represented by a red ball with a diameter of 0.6 nm. PXRD patterns of (e) Pt@8(red), 8 

(blue), the idealized UiO-67 framework (black), and (f) 10 (black), Pt@10 with different 
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Pt/Ir ratios (3.5-blue, 7-green, 11-purple), and the idealized framework of 10 (red). 

(Reprinted with permission from ref [1]. Copyright American Chemical Society 2012) 

The [Ir
III

(ppy)2(bpy)]
+
 core in 8 and 10 can be excited by visible light to a 

1
MLCT 

excited state, which efficiently transitions to a 
3
MLCT state through intersystem crossing. 

The long-lived 
3
MLCT state then returns to the ground state to lead to phosphorescence 

emission (Fig. 3.3b inset). Time-resolved emission measurements revealed the weighted 

lifetime of the 
3
MLCT state of 8 to be 51.8 ns (vs. 11.1 ns for Et2L2) and that of 10 to be 

110.3 ns (vs. 89.0 ns for Me2L8) (Fig. 3.3b). We believe the longer emission lifetime of 

MOFs than that of corresponding ligands is due to rigidity of the MOF framework. 

Pt nanoparticles were loaded to the cavities of 8 and 10 by in situ photoreduction of 

K2PtCl4. A mixture of K2PtCl4 and the MOF powder in a mixed solvent of 

tetrahydrofuran (THF)/triethylamine (TEA)/H2O (20/1/1 v/v/v) was degassed by 

bubbling N2 through for 10 min before being placed in front of a 450 W Xe-lamp with a 

420 nm cut-off (long pass) filter. It is established that TEA can reductively quench the 

photo-excited [Ir
III

(ppy)2(bpy)]
+*

 to generate the reduced radical [Ir
III

(ppy)2(bpy·
-
)] which 

can in turn reduce K2PtCl4 to form Pt nanoparticles in the homogeneous systems.
29-31

 We 

found that K2PtCl4 could be photoreduced by the ultraviolet (UV) light from the Xe-lamp 

in the absence of Ir-phosphors via direct UV light absorption by K2PtCl4. We placed a 

420 nm cut-off filter in front of the Xe-lamp to reliably control the formation of Pt 

nanoparticles only inside MOF cavities.  
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Figure 3.2 TEM images of Pt@8 (a and c) and Pt@10 (b, d and f). The black dots in (c) 

and (d) are Pt nanoparticles, and (f) shows the lattice fringes of the Pt particles, with d-

spacing matching that of the Pt{111} plane. (e) Diffuse reflectance spectra of 8 (red), 

Pt@8 (black), 10 (purple), and Pt@10 (blue). A photograph of suspensions of these 
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samples is shown in the inset. (Reprinted with permission from ref [1]. Copyright 

American Chemical Society 2012) 

The formation of Pt@MOF assemblies is supported by the following observations. 

Upon Pt loading, the color of the MOF powders changed from reddish-orange to brown 

or black due to the plasmonic absorption of Pt nanoparticles.
44,45

 Diffuse reflectance 

spectra of the Pt@MOF samples are shown in Fig. 3.2e. Pt nanoparticle with diameters of 

2-3 nm and 5-6 nm were formed inside the cavities of 8 and 10, respectively, as revealed 

by high-resolution transmission electron microscopy (HRTEM) (Fig. 3.2). The fact that 

the Pt nanoparticle sizes are larger than those of the MOF cavities indicates partial MOF 

framework distortion/degradation during Pt particle formation; this phenomenon has been 

commonly observed for metal@MOFs.
9
 Energy dispersive X-ray spectroscopy (EDS) 

confirmed the presence of Pt in the samples. The amounts of Pt nanoparticles in the 

samples were quantitatively determined by inductively coupled plasma-mass 

spectrometry (ICP-MS). As 10 possesses a more open framework structure and contains a 

much higher concentration of Ir-phosphor than 8, much higher loadings of Pt were 

incorporated into 10 when the same amount of K2PtCl4 was used in the reactions. The 

Pt@10 samples reached a plateau Pt/Ir molar ratio of 40, corresponding to 240 Pt atoms 

per Zr6(µ3-O)4(µ3-OH)4(carboxylate)12 SBU and a filling of 47% of the void volume of 

10. In comparison, the Pt@8 samples showed a maximum Pt/Ir ratio of 53 in the 

experiments (corresponding to 3 Pt atoms per SBU). The drastically different Pt loadings 

in 8 and 10 correlate well with the different Ir-phosphor loadings of the two MOFs. 
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Figure 

3.3 (a) Scheme showing the synergistic photocatalytic hydrogen evolution process via 

photo-injection of electrons from the light-harvesting MOF frameworks into the Pt 

nanoparticles. The red balls represent Zr6(O)4(OH)4(carboxylate)12 cores, while the green 

balls represent the Ir-phosphor ligand of the MOF. (b) Decay transients measured at 640 

nm (with 445 nm excitation) in THF for Et2L2 (black), 8 (red), Me2L10 (green) and 10 

(blue); The emission decays were fit to bi-exponential expression A = A1e
-t/τ1

 +A2e
-t/τ2

. 

The reported lifetime τ is the weighted lifetime τ = (A1τ1
2
 + A2τ2

2
)/(A1τ1+ A2τ2). Insert: 

Steady-state emission spectra of Et2L2 (black), 8 (red), Me2L8 (green) and 10 (blue) with 

excitation at 485 nm. (c) Relationship between the amount of K2PtCl4 added in the 

reaction solution and the amount of Pt deposited inside the MOF (normalized to the 

amount of Ir in the sample) for Pt@8 (red) and Pt@10 (black). (d) Time-dependent 

hydrogen evolution curves of Pt@8 (green), Pt@10 (red), and homogeneous control 

[Ir(ppy)2(bpy)]Cl/K2PtCl4 (blue and black for different Pt/Ir ratios) under optimized 

conditions (Pt/Ir ratios in solution/suspension for Pt@8 and its homogeneous control is 
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86.0; Pt/Ir ratios in solution/suspension for Pt@10 and its homogeneous control is 24.2; 

stirring rate for all reactions was 1000 rpm). (Reprinted with permission from ref [1]. 

Copyright American Chemical Society 2012) 

PXRD patterns of Pt@8 showed that the framework structure of 8 was retained upon 

the loading of Pt nanoparticles (Fig. 3.1e). On the other hand, peaks in the PXRD patterns 

of Pt@10 gradually broadened with increasing Pt loadings, indicating significant 

structural distortion caused by the nanoparticles in the MOF channels (Fig. 3.1f). Peaks 

due to Pt nanoparticles at 39.7
o
 and 46.4

o
 also became more prominent in the PXRD 

patterns as the Pt loadings increased. Different structural impacts of Pt nanoparticles on 8 

and 10 are consistent with the higher Pt loadings and larger MOF cavity/Pt particle sizes 

of Pt@10 compared to those of Pt@8. 

The in situ generated Pt@MOF assemblies were examined for their photocatalytic 

activities for hydrogen evolution using visible light (>420 nm). The [Ir
III

(ppy)2(bpy·
-
)] 

radicals generated by TEA-mediated photoreduction can transfer electrons to the Pt 

nanoparticles to reduce protons for hydrogen production. The amounts of hydrogen 

generated in the experiments were quantified by GC analysis of the headspace gas in the 

reactor using methane gas as the internal standard. The amount of K2PtCl4 added in the 

suspension was optimized for the Pt@MOFs to generate the largest amount of hydrogen 

in 6 hours. Under the optimized conditions, the Pt/Ir ratio in the MOF sample was 

determined by ICP-MS to be 18.6 and 17.8 for Pt@8 and Pt@10, respectively. The 

highest hydrogen evolution turnover number (TON) for each MOF based on Ir phosphors 

(Ir-TON) in 6 hours is 730 and 1620 for Pt@8 and Pt@10, respectively. The assembled 

Pt@MOFs can be recovered from the solution by centrifugation after the reaction and 

used again for hydrogen evolution in a fresh solution without adding additional K2PtCl4. 



73 
 

The Ir-TONs of the recovered catalysts are only slightly lower than those of the first run 

(Table 3.1). The catalysts could be recycled and re-used at least three times. ICP-MS 

analysis of the supernatant solution in the second reaction run of the recovered Pt@10 

sample showed only 2.0% of the Ir and 0.5% of the Pt leaching into the solution during 

the run. A control experiment without addition of the Ir-phosphor MOF or K2PtCl4 in the 

solution showed no hydrogen evolution under the same experimental conditions (Table 

3.1, entry 9 and 12), although K2PtCl4 solution alone under UV light did exhibit very 

modest photocatalytic activity for hydrogen production (Table 3.1, entry 13). TEA was 

also proved to be a necessary sacrificial reductant in the reaction (Table 3.1, entry 10), 

and the absence of hydrogen in the headspace of the reaction in the dark confirmed the 

photocatalytic nature of the reaction (Table 3.1, entry 11).  

Table 3.1 Pt@MOFs as photocatalyst for hydrogen evolution
a
 

Entry Catalyst
 

Ir-TON
b 

Pt-TON
c 

1 Pt@8 (1
st
 run) 730 39.2 

2
d
 Pt@8 (2

nd
 run) 633 34.0 

3 Pt@8 (3
rd

 run) 624 33.5 

4 Pt@8 (4
th

 run) 740 39.8 

5 Pt@10 (1
st
 run) 1620 90.9 

6 Pt@10 (2
nd

 run) 1500 84.1 

7 Pt@10 (3
rd

 run) 990 55.6 

8 Pt@10 (4
th

 run) 1380 77.5 

9
e 

8 0 N/A 

10
f 

K2PtCl4+8 0 0 

11
g 

K2PtCl4+8 0 0 

12
h 

K2PtCl4 N/A 0 

13
i 

K2PtCl4 N/A 4.3 
a 
Hydrogen evolution reactions were carried out for 6 hours using a 450 W Xe-lamp with a 420 nm cut-

off filter. 
b 
Ir-based turnover number (Ir-TON) is defined as n(1/2H2)/n(Ir). 

c 
Pt-based turnover number (Pt-

TON) is defined as n(1/2H2)/n(Pt). 
d
The solids were recovered from the reaction mixtures via 

centrifugation and added to 2 mL fresh THF/H2O/TEA (20/1/1). The mixture was degassed before reuse 

tests without adding K2PtCl4. 
e 
without adding K2PtCl4. 

f 
without adding TEA. 

g
in the dark. 

h 
without adding 

Ir-phosphor using 420 nm cut-off filter. 
i 
without adding Ir-phosphor using 300 nm cut-off filter. 

To determine the total turnover number of the Pt@MOFs, time-dependent hydrogen 
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evolution experiments were carried out over 48 hours. As shown in Fig. 3.3d, Pt@8 and 

Pt@10 samples gave a total Ir-TON of 3400 and 7000, respectively.  These Ir-TONs are 

1.5 and 4.7 times the values afforded by the homogeneous controls 

[Ir(ppy)2(bpy)]Cl/K2PtCl4 under their respective conditions (2200 and 1500, 

respectively). We believe that the enhanced photocatalytic hydrogen evolution activities 

of Pt@MOFs are due to more efficient electron transfer from the unstable 

[Ir
III

(ppy)2(bpy·
-
)] species to Pt nanoparticles which not only increased hydrogen 

reduction rates but also slowed down the decomposition of the Ir complexes.
33

 ICP-MS 

of the supernatant solution of the Pt@10-catalyzed reaction after the 48 hour showed that 

25.6% of the Ir leached into the solution, indicating the decomposition of the Ir-complex 

during the 48 h reaction. The photochemical quantum yield of the Pt@10-catalyzed 

reaction driven with 440 nm light was determined to be (5.6±0.4)×10
-4

, much higher than 

that of the homogeneous control [(3.0±0.4)×10
-4

].  

3.3 Conclusion 

In summary, we have successfully loaded Pt nanoparticles into the cavities of two stable, 

porous, phosphorescent UiO MOFs built from Ir-phosphor-derived linear dicarboxylate 

linkers and Zr6(µ3-O)4(µ3-OH)4(carboxylate)12 SBUs. The Pt@MOF assemblies serve as 

highly efficient photocatalysts for hydrogen evolution with both higher turnover 

frequencies and higher turnover numbers than the homogeneous analogues, as a result of 

facile electron transfer from the photo-reduced Ir phosphor to the entrapped Pt 

nanoparticles. This work highlights the opportunity to use MOFs as a versatile and 

tunable platform to hierarchically integrate different functional components for solar 

energy utilization. 
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Chapter 4 

Diffusion-Controlled Luminescence Quenching in Metal-Organic 

Frameworks
1
 

4.1 Introduction to the study of diffusion in MOFs 

In many of the potential applications of MOFs such as liquid phase separation,
2,3 

chemical sensing,
4-7 

and particularly selective catalysis of various organic 

transformations,
8-12 

mass transport properties of MOFs play a dominant role on their 

performances. Diffusion coefficient (or diffusivity) of MOFs, a key parameter 

characterizing the transport process, is thus an important physical quantity to be 

determined.  

Guest molecule diffusivity in MOFs was first computationally studied using molecular 

dynamics (MD) simulations. Sarkisov et al. first reported theoretical predictions of self-

diffusion coefficient Ds of several alkanes in MOF-5.
13

 Sholl, Johnson, Schmid, and 

others also examined self-diffusion coefficient Ds and transport diffusion coefficient Dt of 

simple alkanes, hydrogen, carbon dioxide, benzene and other small molecules in several 

MOFs including the IRMOF series and HKUST-1.
14-18

  

In contrast to a wealth of literature on simulation efforts, there are only a few 

published experimental studies of measuring diffusivity in MOFs. Stallmach et al. first 

reported self-diffusivity of hydrocarbons in MOF-5,
19

 and more recently in HKUST-1,
20

 

using the pulsed-field gradient (PFG) NMR technique. Jobic and Maurin used quasi-

elastic neutron scattering (QUENS) method to study self-diffusion of H2, CO2, and 

alkanes in MIL-47(V) and MIL-53(Cr).
21-24

 In another direction, Kärger and coworkers 
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used interference microscopy
25

 and infrared microscopy
26

 to study transport diffusion of 

methanol into vacuum-activated manganese formate and alkanes into vacuum-activated 

HKUST-1, respectively. Quartz crystal microbalance (QCM) measurement of thin films 

was also employed by Zybaylo et al. to estimate the diffusivity of pyridine in vacuum-

activated HKUST-1.
27

  

Scheme 4.1 Synthesis of phosphorescent 3 and chemical structures of amine quenchers 

of varying sizes. (Reprinted with permission from ref [1]. Copyright American Chemical 

Society 2011) 

These measurements provide invaluable information for the applications of MOFs in 

gas phase adsorption and separation. However, many of interesting applications of MOFs, 

such as heterogeneous catalysis, involve liquid suspensions of MOFs. In these cases, 

diffusion occurs when MOF channels are already filled with solvent molecules. The 

realistic physical picture involves continuous exchange of diffusant molecules (e.g. 

substrate or product molecules in MOF catalysis) with solvent molecules during their 

transport through MOF channels, instead of self-diffusion or transport diffusion into 

vacuum-activated MOFs. This kind of diffusion process is expected to be much slower 

than self-diffusion or transport diffusion. There were two studies on molecular diffusion 
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into solvent-filled MOF channels,
28,29

 but quantitative diffusivities could not be 

determined in these experiments. 

In our exploration of photoactive MOFs, we encountered an interesting diffusion-

controlled quenching phenomenon, in which amine quenchers in solution diffuse into 

MOF channels and gradually quench the MOF emission from the Ru(bpy)3
2+

 derived 

bridging ligand via a redox quenching mechanism.
30

 We proposed that such time-

dependent luminescence quenching behaviors can be utilized to model the diffusion 

processes of different quenchers in MOFs in solution. In a related study, diffusion 

coefficients of fluorescein in lysozyme crystals were obtained by modeling the 

fluorescence intensities determined by confocal laser scanning microscopy.
31

 

 

4.2 Diffusion-Controlled Luminescence Quenching 

The phosphorescent MOF (3) used in this study contains a Ru(bpy)3
2+

 derivative H2L3, 

which was synthesized as described in Chapter 2 (Scheme 4.1). The detailed description 

of crystal structure can be found in Chapter 2 
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Figure 4.1 Structure model of 3. (a) Space-filling and stick model viewed along the [001] 

direction, showing different channel sizes due to different local distributions of L3 

ligands. (b) Building blocks of 3. (c) Schematic showing 2-fold interpenetrating 

frameworks of the bnn topology. (d) Space-filling model viewed along the [100] 

direction. (e) Space-filling model viewed along the [010] direction. (Reprinted with 

permission from ref [1]. Copyright American Chemical Society 2011) 
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Scheme 4.2 Schematic of the experimental set-up used for luminescence quenching 

measurements. (Reprinted with permission from ref [1]. Copyright American Chemical 

Society 2011) 

Luminescence quenching experiments were performed on plate-like single crystals of 

3 affixed to the bottom of a quartz fluorescent cuvette, with their faces perpendicular to 

the cuvette bottom and immersed in cyclohexane (Scheme 4.2). The original DMF/H2O 

solvent molecules inside the channels of 3 were first exchanged with CH2Cl2 and then 

with cyclohexane.  The O2 molecules inside the channels were removed by keeping the 

crystal in degassed cyclohexane overnight. The thicknesses of plate-like crystals of 3 

were measured using a microscope with a built-in ruler. In the quenching experiment, a 3 

crystal was excited at a wavelength of 452 nm and the emission intensity at 627 nm was 

recorded at different time points after the addition of a pre-determined amount of amine 

quenchers. The amines or solutions of amines were fully degassed before use. Structures 

of the amines are shown in Scheme 4.1. Excitation light was blocked from impinging on 

the crystal during the intervals between different emission measurements to avoid 
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r
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photodecomposition of the amine and other irreversible photochemical processes. A 

typical emission measurement took about 2 to 3 seconds, during which time the crystal 

and quenchers were exposed to light. The average value of the emission signals was 

recorded, and the experimental error for each time point was estimated from the signal 

fluctuations within the 2 to 3 seconds. Spectra of the crystals were taken before and after 

the quenching studies to ensure that no substantial spectra change has occurred. 

The time-dependent intensity I(t) was normalized against the equilibrium intensity 

after a long time I(). A plot of u(t)=[I(t)-I()]/I() vs. time is shown in Figure 4.2a. 

Exponential decay of the emission intensities over time to 80 to 85% of their initial 

values were observed in solutions of 0.433 M triethylamine (TEA), tripropylamine (TPA), 

tributylamine (TBA) and 0.024 M 4-methoxylphenyldiphenylamine (4-MeOPhNPh2), as 

a result of diffusion-controlled luminescence quenching of 3 by these amines. The 

amount of time required for the emission to reach equilibrium after adding TEA, TPA, 

TBA, and 4-MeOPhNPh2 is approximately 10 min, 30 min, 30 min and 120 min, 

respectively. This order of increase in time required to reach equilibrium correlates well 

with the sizes of these amines.  

For diisopropylethylamine (DIPEA) quenching, however, the intensity dropped 

instantaneously to 96% of its original value and remained unchanged after that. This 

behavior is likely a result of surface quenching only, suggesting that DIPEA cannot enter 

the MOF channels. To confirm this, we investigated the reverse process of amine 

diffusing out of the MOF channels. Crystals fully soaked in amine solutions were put 

back into freshly degassed cyclohexane under N2 protection, and the changes in emission 

intensities were monitored. An increase of signal over time was observed for TPA- and 4-
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MeOPhNPh2-treated MOFs, indicating the release of absorbed quenchers (Figure 4.3).  In 

contrast, for the MOFs soaked in DIPEA, no signal increase was detected. This result 

supports the notion that no DIPEA can enter in MOF channels, presumably owing to its 

large size. Further evidence comes from GC analysis of the absorbed amine in the MOF 

channels. Amine-treated 3 released substantial amounts of TPA, TBA, and 4-

MeOPhNPh2, but no DIPEA (Table 4.1). These results unambiguously prove the 

accessibility of the MOF channels to all the amines except DIPEA. 
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Figure 4.2  (a) Plots of u(t)=[I(t)-I()]/I() vs t for different amine quenchers: TEA 

(red), TPA (green), TBA (blue), DIPEA (black), and 4-MeOPhNPh2 (purple) (see 

supporting information for more detailed plots). (b) Linear fitting of (L
2
/π

2
)Ln[u(t)] vs. t 

of TEA (red), TPA (green), and TBA (blue). Only the data points of t > 100 s for TEA 
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and t > 200s for TPA and TBA were used in these fits. (Reprinted with permission from 

ref [1]. Copyright American Chemical Society 2011) 

 

Geometry-optimized structure of 4-MeOPhNPh2 is much larger than that of DIPEA, 

so their different uptake behaviors by 3 cannot be explained simply based on their sizes.  

Instead, we believe that different uptake behaviors of the two amines stem from their 

disparate affinities towards the MOF channels. 4-MeOPhNPh2, as an aromatic amine, can 

strongly interact with the MOF channel wall via π-π interactions, whereas aliphatic 

chains of DIPEA do not provide such a driving force for inclusion. PXRD patterns of 

amine-treated crystals of 3 were taken to provide insights into these different uptake 

behaviors. While the PXRD patterns of all the aliphatic amine-treated MOFs closely 

resemble that of the as-synthesized 3, the pattern of 4-MeOPhNPh2–treated MOF crystals 

lose all of the diffraction peaks due to 3 (Figure 4.4). The severe framework structure 

distortion of 4-MeOPhNPh2–treated 3 suggests that 4-MeOPhNPh2 enters the MOF by 

intercalating into the framework via π-π interactions instead of simple Fickian diffusion. 
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Figure 4.3  Quencher release experiment for 3 after being soaked in solutions of TPA 

(blue), DIPEA (green), 4-MeOPhNPh2 (red) and as synthesized (black). The crystals 

were excited at a wavelength of 452 nm, and the emission signal is detected at the 

wavelength of 627 nm. (Reprinted with permission from ref [1]. Copyright American 

Chemical Society 2011) 

Table 4.1 Determination of the amount of amine in MOF channels 

Amine 

Symbol 

Amine 

Concentration 

in solution (M) 

Amount 

of amine 

detected 

by GC 

(nmol) 

Amount 

of Zn 

detected 

by ICP-

MS 

(nmol) 

Number of 

absorbed 

amine 

molecules 

per unit-cell 

Effective 

concentration of 

amine inside 

MOF channels 

(M) 

TPA 0.433 166 516 5.15 0.657 

TBA 0.433 268 487 8.81 1.12 

DIPEA 0.433 0 267 0 0 

4-

MeOPhNPh2 
0.024 47 937 0.80 0.102 
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Figure 4.4  PXRD patters of 3 as synthesized (green), and after being soaked in pure 

cyclohexane (red), in solutions of TEA (blue), TPA (green), TBA (purple), DIPEA 

(yellow), 4-MeOPhNPh2 (dark blue). (Reprinted with permission from ref [1]. Copyright 

American Chemical Society 2011) 

We quantitatively analyze the diffusion of TEA, TPA and TBA in the frame of Fickian 

diffusion. In other words, we assume a constant diffusivity, D, independent of local 

concentration of amine quenchers. By taking advantage of thin plate morphology of the 

MOF crystals, we further simplify the diffusion process into a one-dimensional diffusion 

described by Fick’s Second Law (Eq. 4.1) with the boundary conditions and initial 

conditions expressed in Eq. 4.2 and Eq. 4.3, respectively: 

             
        

  
  

        

                      (Eq.4.1) 

                                          (Eq.4.2) 



89 
 

                                      (Eq.4.3) 

For the emission quenching, we assume a rapid, reversible quenching behavior that 

can be described by the Stern-Volmer equation. In addition, activity correction for amine 

concentration inside MOF channels, the sample dependent crystal geometry and position 

factor, and the contribution from surface emission have also been considered. Using this 

model, the time-dependent normalized emission intensity was derived (see section 4.3), 

and can be expressed with Eq. 4.4: 

                             
     

  ⁄
          (Eq.4.4) 

where A is a term independent of time t and is expressed by   
 

   
 

     

      
 

  

    

 
  

    
     

 (β, α,  , θ, and δ are introduced to account for Stern-Volmer quenching, 

activity correction, crystal absorption, crystal positioning, and surface emission, 

respectively, section 4.3); L is thickness of the crystal; and D is the Fickian diffusivity.  

Plots of (L
2
/π

2
)Ln[u(t)] vs. t gave straight lines (Figure 4.2b), indicating the validity of 

the Fickian diffusion model as described by Eq 4.4. Diffusivities of TEA, TPA, and TBA 

in 3 could be obtained from the slopes of these linear fits, and were determined to be 

(1.1±0.2)×10
-13

, (4.8±1.2)×10
-14

, and (4.0±0.4)×10
-14 

m
2
/s, respectively. These values are 

one to two orders of magnitude smaller than the transport diffusivity reported for 

methanol into vacuum-activated porous manganese formate crystals,
25

 a system that has a 

similar diffusant/channel size ratio as our present case. This discrepancy is expected since 

the two diffusion processes are of very different nature. The diffusivity derived in our 

present study is much more relevant to many applications that involve liquid suspensions 

of MOFs. 
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4.3. Detailed derivation of diffusivity equations and related approximations 

List of symbols used in this section 

I0     : emission of the crystal in the absence of quenchers 

i0   : the excitation light density 

I(t)  : detected emission as a function of time 

I() : equilibrium emission intensity after adding quenchers for a long time 

u(t) : normalized emission intensity      
         

    
 

D  : diffusivity within the crystals,  

c0  : the concentration of a diffusant in the bulk solution surrounding the crystal 

L  : the thickness of the crystal 

β  : activity coefficient correction for quencher concentration within the MOF channels 

   : quantum yield of MOF in the absence of quencher 

  : absorption parameter of MOF.            .   is the extinction coefficient, while n is 

the effective dye concentration in MOFs. 

  : fraction of surface emission contribution to total 

emission of the crystal 

  : tilting angle of the crystal with respect to the direction 

of excitation light 

γ  : crystal geometry and position coefficient 

  : Stern-Volmer constant for the particular quencher in 

cyclohexane 

4.3.1 Diffusion model 

L 

Crystal 

x 0  

co 

Scheme 4.3 
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We plan to construct a working model for TEA, TPA and TBA diffusion inside 3 in the 

frame of Fickian diffusion. The diffusion process for 4-MeOPhNPh2 is more complicated 

than simple Fickian diffusion,
32

 and is not included in this analysis. For molecules to 

diffuse into plate-like MOF crystals, the problem is simplified to one-dimensional 

diffusion by ignoring contributions from the other two longer dimensions. 

As shown in scheme 4.3, during the process of diffusion, the local concentration of a 

diffusant within the MOF crystal at a given time t is different for different position x in 

the crystal. We can then represent the diffusant concentration as a function of both time 

and position c(x,t). This one dimensional diffusion problem can then be described by 

Fick’s Second Law of diffusion, combined with the boundary conditions and initial 

conditions as follows. 

 

       

  
  

        

                         (eq.4.1) 

                                (eq.4.2) 

                            (eq.4.3) 

              D is the diffusivity within the crystals,  

              c0 is the concentration of a diffusant in the bulk solution surrounding the crystal 

              L is the thickness of the crystal 

     A solution to this differential equation is  

                  
 

 
 ∑

 

     
                

    
        

 
  

                  (eq.4.5) 

This is the standard mathematical solution of the diffusion equation in a plane sheet with 

uniform initial distribution.
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   It is easy to see that          , which simply means that after waiting for infinite 

amount of time, the diffusant concentration all through the MOF crystal will be equal to 

the concentration in the bulk solution. In the above equation, we totally ignored the fact 

that interactions between the particular diffusant molecules and MOF channels may cause 

the equilibrium to favor or disfavor molecules entering MOFs, leading to different 

effective equilibrium diffusant concentration within MOFs from that in the outside 

solution. As a first order correction to this error, we can introduce a diffusant dependent 

parameter β to represent the correction to equilibrium diffusant concentration in MOFs. 

(This correction is equivalent to using activity to replace concentration. The β parameter 

corresponds to activity coefficient.) 

We hereby reformulate c(x,t) as 

             
 

 
 ∑

 

     
                

    
        

 
  

            (eq.4.6) 

 

4.3.2 Model for the phosphorescence from 

a single crystal 

 

     The first thing to notice is that the light is 

not evenly distributed through the whole 

crystal. The light intensity is attenuated when 

penetrating through the MOF crystal 

according to Lambert-Beer’s Law.  The 

simplest situation is that the incoming light is 

perpedicular to the surface of the crystal like in scheme 4.4. 

L 

x 

Crystal 

0 

hv 

d
x 

dI 

Scheme 4.4 
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   Sectioning the plate-like crystal to several slices parallel to the plate surface  and 

considering the emission from each slice with the width of dx, the emission from this 

slice in the absence of quencher should be proportional to the local light intensity. 

         
                 (eq.4.7) 

  i0 is the incoming light density 

    is the quantum yield of MOF in the absence of quencher 

 The term     accounts for Larmbert-Beer’s Law.            .   is the extinction 

coefficient, while n is the effective dye concentration in MOFs. 

So the emission intensity without quenchers is: 

   ∫    ∫      
     

 

 
     

      

 
   (eq.4.8) 

When quenchers inside the MOFs are considered, 

emission from each MOF slice is dynamically quenched according to Stern-Volmer 

equation 

   

  
              (eq.4.9) 

  is Stern-Volmer constant for the 

particular quencher. 

So      ∫   ∫
   

         
 

    ∫
      

         

 

 
           (eq.4.10) 

         
      

 
 

 

      
                    

(eq.4.11) 

However, the crystal cannot be placed 

precisely in the perpendicular position to the incoming light, as shown in Scheme 4.5. To 

Scheme 4.5 
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x/cos θ 

 
L 

Crystal 

h0 
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correct this effect,   in the above expressions (eq.4.8 to eq.4.11) should be replaced by 

      .  

Another factor to take into account is that not all the emission light can be detected by the 

detector. The amount of detectable emission is sensitive to the exact position and 

geometry of the specific single crystal. Thus, a crystal dependent common coefficient γ 

should be formulated into the expressions. 

In addition, quenching of dye molecules near the surface of MOFs can account for a 

significant amount of detected emission, when considering the fact that the slices near the 

surface of the MOF crystal contribute more to the detected emission I0 because incoming 

light will attenuate while penetrating deeper into the bulk crystal. Assuming that surface 

quenching occurs immediately after adding the quencher, and the surface emission 

accounts for   fraction of total emission of the crystal. The intensities can then be 

expressed as the sum of two terms from the surface and the bulk crystals. 

With these considerations, the expressions for emission intensities are modified to: 

             
                 

 
   (eq.4.12) 

           
                 

 
 

 

      
      ∫

 
 

 
    

 
  

         

 

 
    (eq.4.13)   

               
                 

 
 

 

      
             (eq.4.14) 

Because of the possibility of slightly moving the cell when adding a quencher and 

unpredictable issues related to surface quenching, it is much more reliable to use intensity 

at infinite time (    ) to normalize the data than using intensity ratio of     . 

The I0 value is still useful to evaluate the magnitude of the Stern-Volmer constant of the 

specific quencher in cyclohexane   ,times β, both of which are basically unknown. 
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           (eq.4.15) 

 As shown below, from the experimental data, the value of     is less than 0.1 for TEA, 

TPA and TBA diffusion. This piece of information is very useful to simplify the above 

equations. 

Define the observable as       
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     (eq.4.16)     

                                                            (as                   

As a first-order approximation, 
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      (eq.4.17) 

If we just use the first term in the summation series: 

     
 

   
 

     

      
 

  

    

 
  

    
     

         
           

  (eq.4.4) 
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Here A is a term independent of time t; L is the thickness of the crystal which can be 

measured for each crystal. Then diffusivity can be obtained by a linear fitting of the plot 

of ln[u(t)] vs. t. 

4.3.3. Assessing the errors introduced in the assumptions and approximations 

However, the validity of this truncation is subject to further evaluation. The complete 

expression (eq.4.17) can be reformulated as 

                       
    (eq.4.18) 

     ∑                      
   

 

              
                

  

   (
  

    
)
             (eq.4.19) 

Only when        can we use eq.4.4 to replace eq.4.18. We know M(t) will be 

significant when t is small, but will decay very quickly when t gets large. We can thus 

minimize this truncation error by cutting off data points from the first 200s. 

To quantitatively evaluate the effect of this truncation, we need to know           

                                  , which we measured experimentally 

on the homogeneous compound. If we let       , we can estimate the value of m by 

  
  

        
 

The fitting was performed in the time scale of t > 100 to 200 s, so we can use t lower 

limit to calculate the upper limit of this truncation error. 

As shown in Table 4.2, the resultant upper limit of M(t) value for TEA, TPA and TBA 

diffusions are all less than 15%, which are quite acceptable when considering the 

presence of experimental errors that are much larger than this amount. 

To precisely evaluate the effect of residue M(t) on the diffusivity calculation, the M(t) 

contribution to the diffusivity can be calculated by       |
  

  

 

  
           |. This 
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      is a monotone decreasing function and gets its maximum at the beginning point. 

        
     

 
         at a selected typical time t = 500 s is used as an estimation of 

the percent error introduced by the above mathematical truncation. 

Table 4.2. Fitting results of diffusion controlled quenching 

 

Quencher run Diffusivity
 

(×10
-13

m
2
/s) 

t lower limit 
/s 

M(t) upper 
limit

 
percent error 
%E(500) 

TEA
 

1 1.11 ± 0.05 84 0.024 <0.01% 
2 1.04 ± 0.05 113 0.010 <0.01% 
3 1.24 ± 0.07 107.6 0.006 <0.01% 

TPA 

1 4.7 ± 0.6 205 0.022 0.1% 
2 3.6 ± 0.4 207 0.047 0.9% 
3 5.6 ± 0.1 195 0.089 2.4% 
4 5.1 ± 0.3 236 0.071 2.6% 

TBA 
1 4.1 ± 0.3 201.6 0.153 10.4% 
2 3.9 ± 0.1 262.8 0.018 0.6% 

 

4.4 Conclusion 

We have examined diffusion-controlled luminescence quenching of a Ru(bpy)3-

incorporated MOF by a series of amines of different sizes. TEA, TPA, and TBA can 

diffuse through the MOF channels according to the time-dependent quenching data, 

whereas DIPEA is too large to enter the MOF channels. Despite its large size, 4-

MeOPhNPh2 can enter the MOF channels via a slow, complicated framework/guest 

intercalation process to result in extensive framework distortion as revealed by powder 

X-ray diffraction (PXRD). The time-dependent quenching curves of TEA, TPA, and 

TBA were fitted quantitatively with a one-dimensional Fickian diffusion model to afford 

diffusivities on the order of 10
-14

 to 10
-13

 m
2
/s. These diffusivities are one to two orders of 

magnitude smaller than that of a transport diffusion system of a similar diffusant/channel 

size ratio. The dynamics of molecular diffusion into solvent-filled MOF channels 

reported herein is of fundamental importance to many MOF applications in solution. 
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Chapter 5 

Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal-

Organic Frameworks: A Comprehensive Structural, Catalytic, 

Spectroscopic, and Kinetic Study
1
 

5.1 Introduction 

The oxidation of water to oxygen is the key half-reaction in both natural 

photosynthesis and the proposed water splitting scheme for solar energy 

harvesting/storage.
2,3

 Considerable progress has been made on developing water 

oxidation catalysts (WOCs) over the past few decades. For example, a number of metal 

oxides, metal nitrides, and other metal salts have been shown by Domen, Nocera, 

Mallouk, Frei, and others as efficient catalysts to perform water oxidation both 

electrochemically and photochemically.
4-10

 Compared to inorganic solid catalysts, 

molecular catalysts are more amenable to mechanistic studies and fine-tuning using 

synthetic chemistry to optimize their performances. Following the pioneering work of 

Meyer and co-workers on water oxidation reaction (WOR) with the Ru-based blue 

dimer,
11

 molecules containing a variety of transition metals (Ru, Ir, Mn, Fe, Co, Cu) have 

been identified as WOCs in recent years.
12-22

 

Crabtree and Brudvig and coworkers have extensively studied half-sandwich Cp*Ir 

complexes (Cp* is the pentamethylcyclopentadienyl ligand) as potential molecular 

WOCs.
23,24

 However, due to the high oxidation power of catalytic intermediates 

generated in the water oxidation process, at least some of these catalysts can undergo 

oxidative degradation during WORs.
23,25-27

 The ultimate decomposition products in Ce
4+

-
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driven and electrochemically driven reactions were suggested to be iridium 

oxides/iridium hydroxides, which have been proven to be efficient WOCs.
5,8,28,29

 These 

observations raised concerns about the molecular nature of the active catalysts based on 

the Cp*Ir complexes. 

A number of elegant experiments have been performed by Crabtree and Brudvig and 

coworkers as well as other research groups to elucidate the nature of the active catalytic 

species. IrCl3(H2O)3 and IrCl6
3-

 were first ruled out by Crabtree and Brudvig and 

coworkers to be the active catalysts, due to their insignificant water oxidation activity in 

the beginning stage of Ce
4+

-driven reactions at pH=1. IrO2 nanoparticles were also not 

likely to be the active catalysts due to their drastically different kinetic isotope effect 

from Ir complexes when D2O was used as the solvent.
23

 By carefully studying various 

Cp*Ir complexes as well as their CpIr analogs (Cp is the cyclopentadienyl ligand), 

Crabtree and Brudvig and co-workers showed that these compounds decomposed to 

varying degrees under the catalytic conditions (pH =1 and [Ce
4+

] = 78 mM). For catalysts 

with only Cp* but no other chelating ligand, the complexes decomposed and formed 

nanoparticles under Ce
4+

-driven reaction conditions 
30

 and a blue deposit on electrode 

under electrochemical conditions.
25

 The resultant nanoparticles/films from these reactions 

behaved similarly to iridium oxide / hydroxide but might contain organic residues. In 

contrast, Cp*Ir complexes with chelating ligands were stable at least during the 

beginning stage of the reaction.
23

 At longer reaction times, the activity of these catalysts 

decreased, but no nanoparticle formation in Ce
4+

-driven reactions
30

 or film formation 

during electrochemical catalysis
31

 was unambiguously observed. The catalyst 

decomposition pathway was likely related to the oxidation of Cp* since the Cp analogs 
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appeared to be more stable.
23

 Moreover, some of the catalysts that were previously 

reported to decompose to form nanoparticles with Ce
4+

 as the oxidant were found to 

remain molecular when IO4
-
 was used as the oxidant.

32,33
 The experimental evidences 

provided by Crabtree and Brudvig and coworkers support that Cp*Ir complexes with 

chelating ligands are molecular catalysts.  

Grotjahn and co-workers carried out comprehensive studies on the degradation of 

Cp*Ir complexes. They sequentially added Ce
4+

 to the catalyst solution and followed the 

generation of oxygen both in solution and in the gas phase.
26

 An induction period was 

observed before the detection of O2 after the addition of the first <15 equivalents of Ce
4+

 

(initial [Ce
4+

] = 78 mM). This observation was interpreted as initial oxidation of the Cp* 

groups before water oxidation took place, which were supported by careful NMR and MS 

studies. They also provided some evidences for nanoparticle formation, but the TEM 

images and PXRD patterns were taken after the solvents were evaporated, which 

complicates the analysis because of crystallization of solution species. Their observation 

of an absorption peak in the 500 nm – 600 nm region, which was assigned as a signature 

absorption of IrOx nanoparticles, can be alternatively explained by the formation of Ir(IV) 

molecular species, as pointed out by Crabtree and Brudvig and coworkers.
30

 Macchioni 

and co-workers also performed detailed studies on the degradation pathway of Cp*Ir 

catalysts. By careful NMR studies, they found that oxidative degradation proceeds with 

an initial attack at the Cp* rings to form HCO2H, CH3CO2H, and CH2OHCO2H.
27,34

 

Fukuzumi investigated the effects of bpy substituents on the stability of the Cp*Ir 

complexes in Ce
4+

-driven water oxidation.
35

 While the -OMe, -Me, and –CO2H 

substituents at the 4,4’-positions of 2,2’-bipyridine (bpy) do not have a significant effect 
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on catalyst degradation, the –OH groups at the 4,4’-positions of bpy significantly 

accelerate ligand decomposition. This substituent effect was attributed to the oxidative 

susceptibility of the 4,4’-(OH)2-bpy ligand. 

The large body of experimental results indicates that the Cp* rings of these Ir 

complexes are easily oxidized during WORs, but it is likely that the active WOCs are 

molecular in nature. However, true identities of these molecular WOCs remain elusive to 

date, at least partly owing to the use of highly potent oxidants and the involvement of the 

complex 4e
-
/4H

+
 process during WORs.  

With the goal of building water splitting devices using molecular components, we 

became interested in using metal-organic frameworks (MOFs) and surface assemblies to 

study Cp*Ir-based WOCs. There are two distinct advantages in studying WOCs 

immobilized in MOF frameworks or on surfaces: 1) as the catalysts are isolated from 

each other in these assemblies, degradation pathways involving multiple molecules are 

prohibited, which greatly simplifies the mechanistic scenarios; 2) solid materials or 

surface-grafted moieties can easily be separated from solutions, which facilitates further 

characterization of the catalysts after WORs. We have previously grafted the 

[Cp*Ir(bpy)Cl]
+
 and Cp*Ir(ppy)Cl (ppy is 2-phenylpyridine) catalysts onto the glassy 

carbon surface via diazonium coupling, and studied their electrochemical water oxidation 

activities.
36

 Although partially complicated by oxidation of glassy carbon electrode 

during catalysis, careful analyses of these immobilized complexes after WORs support 

the molecular nature of these catalysts.  

MOFs have provided a great platform to engineer single-site solid catalysts with 

tunable molecular functionalities, open channels, and other important attributes. I have 
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described in Chapter 2 of water oxidation using MOFs that contain Cp*Ir catalysts. These 

MOFs were synthesized by doping Cp*Ir complexes with 5,5’-dicarboxylate-substituted 

bpy or ppy chelating ligands into the UiO-67 framework that is composed of 

Zr6O4(OH)4(CO2)12 SBUs and p-biphenyldicarboxylate bridging ligands. The open 

channel sizes of those MOFs are however too small to allow hydrated Ce
4+

 ions to diffuse 

through, and consequently, only a minute fraction of the WOCs on the surfaces of these 

MOF particles is involved in water oxidation. It is of great interest to increase MOF 

channel sizes to allow all the catalytic struts to engage in water oxidation.  

In this chapter, I will describe the synthesis and characterization of two new highly 

porous and stable Zr-carboxylate MOFs, 11 and 12, built with elongated bpy or ppy 

ligands attached to the Cp*Ir moieties. We performed detailed kinetic studies of Ce
4+

-

driven WORs catalyzed by 11 and 12 using a combination of UV-Vis spectroscopy, 

phosphorescent oxygen detection, and GC analysis. The recovered MOFs were then 

carefully studied for possible oxidative modification of the Cp* rings during WORs. 

After careful NMR and MS studies of the digested sample of 11, (bpy-dc)Ir(H2O)2XCl 

(X is likely formic acid or acetic acid), formed by oxidative degradation of the Cp* rings, 

was identified as an active catalyst for water oxidation. The identity of the active WOC 

was further supported by X-ray photoelectron, diffuse-reflectance UV-Vis absorption, 

luminescence, and infrared spectroscopies. With these mechanistic details in hand, a 

reaction-diffusion model was developed to describe the kinetics of MOF-catalyzed 

WORs. An understanding of the competition between reaction and diffusion rates 

provides important insights into these MOF-catalyzed WORs. 
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5.2  Synthesis and Characterization of 11 and 12 

The elongated dimethyl esters of 2,2’-bipyridine and 2-phenylpyridine (bpy-de and 

ppy-de) were prepared in high yields by Pd-catalyzed Suzuki coupling reactions between 

4-(methoxycarbonyl)phenylboronic acid and 5,5'-dibromo-2,2'-pyridine or 5-bromo-2-(4-

bromophenyl)pyridine, respectively. The corresponding dicarboxylic acids of bpy-de or 

ppy-de are denoted bpy-dc and ppy-dc, respectively. The dicarboxylic methyl ester-

containing Ir complexes L9-Me2 and L10-Me2 were synthesized by treating [Cp*IrCl2]2 

with bpy-de or ppy-de in DMF at 70 
o
C. L9-Me2 and L10-Me2 were isolated in 92% and 

57% yields, respectively, and then converted to dicarboxylic acids L9-H2 or L10-H2 by 

base-catalyzed hydrolysis in 80% and 87% yield, respectively (Scheme 5.1). All of the 

new compounds were characterized by NMR spectroscopy and electrospray ionization-

mass spectrometry.  
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Scheme 5.1. Chemical structures of homogeneous control catalysts and synthesis of Zr-

carboxylate 11 and 12 of the fcu topology. (Reprinted with permission from ref [1]. 

Copyright American Chemical Society 2012) 

 

Highly stable 11 and 12 were synthesized by heating mixtures of L9–H2 or L10–H2 with 

ZrCl4 and trifluoroacetic acid in DMF at 100 
o
C for 48 h. The resulting yellow crystalline 

solids were washed with copious amounts of DMF, methanol, and water. 11 and 12 were 
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characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray 

photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectroscopy (ICP-

MS). The crystals of 11 and 12 were not suitable for single-crystal X-ray diffraction 

analysis owing to their small sizes (in micrometers). Fortunately, as we expected, they are 

isostructural to the UiO MOF 10 (in Chapter 3) with a similar bridging ligand L8 (of the 

identical length to L9 and L10) based on the similarity of their powder X-ray diffraction 

patterns (Figure 5.1d). 11 and 12 thus adopt the UiO framework structure of the fcu 

topology by connecting the Zr6(µ3-O)4(µ3-OH)4(carboxylate)12 SBUs with the L9 or L10 

linkers (Figure 5.1a). Because of the steric bulk of L9 and L10, 11 and 12 adopt non-

interpenetrated structures, as confirmed by the systematic absences and relative peak 

intensities of their PXRD patterns. Based on PLATON calculations, 11 and 12 possess 

66.0% and 69.5% of void spaces, respectively. Both 11 and 12 exhibit a triangular open 

channel with an edge length of 1.6 nm and an octahedral cavity with a diameter of 1 nm 

(Figure 5.1b). 

 



108 

 

Figure 5.1. (a) Structure model for 11 showing an octahedral cage of 1 nm in diameter. 

Zr, blue polyhedron; Ir, green ball; Cl, dark green; C, grey; N, blue. The red ball in the 

middle represents the cage cavity. (b) Space-filling model of 11 as viewed along [110] 

direction. The triangular channel has an edge length of 1.6 nm. (c) TGA of solvent-free 

11 (black) and 12 (blue). (d) PXRD patterns of 11 (blue) and 12 (black) along with the 

simulated PXRD pattern based on the structure model (red). (e) TEM images of 
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microcrystals of 11. (f) TEM image of one microcrystal of 11 showing the octahedral 

shape. (Reprinted with permission from ref [1]. Copyright American Chemical Society 

2012) 

TEM images of 11 showed octahedral microcrystals of ~1 µm in dimensions (Figures 

5.1e and 5.1f), while SEM images of 12 showed aggregated microcrystals of 1-2 µm in 

dimensions. We used a combination of 
1
H and 

19
F NMR, TGA, and ICP-MS to establish 

the complete formulae of 11 and 12 to be [Zr6(µ3-O)4(µ3-OH)4(L9)6](CF3CO2)6·65DMF 

and [Zr6(µ3-O)4(µ3-OH)4(L10)6]·70DMF, respectively. The solvent contents of 11 and 12 

are thus 35% and 40%, respectively. Freeze-dried samples of 11 exhibited negligible 

surface areas based on nitrogen adsorption measurements.
37

 PXRD studies indicated 

severe framework distortion for 11 upon solvent removal, a phenomenon that has been 

observed for many MOFs with very large open channels. We also demonstrated the 

porosity of 11 by dye uptake measurements; 11 exhibited substantial amount (>20 wt%) 

of Brilliant Blue R-250 uptake. 

5.3 Water oxidation activity of 11 and 12 

We performed Ce
4+

-driven WORs using 11 and 12 as catalysts. The WORs were 

studied by three different methods: 1) using a phosphorescent oxygen sensor to detect the 

amount of O2 in solution; 2) using UV-Vis absorption at 420 nm to monitor Ce
4+

 

consumptions; and 3) using gas chromatography (GC) to analyze the gas compositions in 

the headspace. The experiments were performed with 10 µM MOFs based on Ir in 

aqueous solutions of HNO3 with pH = 1. The initial [Ce
4+

] was 3 mM for the WORs 

catalyzed by 11.  
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As shown in Figure 5.2a, by quantifying the time-dependent oxygen generation using a 

phosphorescent sensor, an water oxidation turnover frequency (TOF) of 0.48 ± 0.02 min
-1

 

(based on ¼ O2 or 1 e
-
) was obtained for 11 during the first 10 minutes of WOR (Table 

5.1). At later time points, the oxygen generation appeared to slow down, owing to the 

formation of oxygen bubbles but not because of the deceleration of the WOR. The 

formation of oxygen bubbles reduced the percentage of generated O2 that was detected by 

the phosphorescent sensor, and caused significant fluctuations in the O2 generation curves.  

By monitoring the absorption peak intensity at 420 nm, the Ce
4+

 consumption rate was 

determined to be 0.52 ± 0.06 min
-1

 for 11 in the first 10 minutes of WOR (Figure 5.2c 

and Table 5.1). Comparisons of oxygen evolution rates determined by phosphorescent 

sensor (0.48 ± 0.02 min
-1

) to this Ce
4+

 consumption rates, gave an oxygen-generation 

efficiency of >90% in the first 10 minutes of WORs. 16 equivalents of Ce
4+

 would have 

been consumed to oxidize one equivalent of Cp* groups to acetic acid. Considering a 

total turnover number of 300 based on the amount of Ir, the consumption of 16 

equivalents of Ce
4+

 for ligand oxidation still gives a high oxygen-generation efficiency 

of >94.7%. The oxygen-generation efficiency is thus not a sensitive indicator for ligand 

oxidation. 

The headspace gas of the 11-catalyzed WOR was also analyzed by GC to quantify the 

amount of O2 generated from the WOR. The amount of CO2 detected in the gas phase 

after water oxidation was not significantly different from the background signal. The O2 

generation TOF was calculated by analyzing the headspace during the first 4 hours of the 

WOR to be 0.40 ± 0.06 min
-1

 (Table 5.1). This TOF is slightly smaller than those 
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obtained during the first 10 minutes of WORs, which again can be attributed to the O2 

bubble formation at later times of WORs.   

To further examine the stability of the WOC derived from 11 under reaction conditions, 

we attempted to reuse 11 for water oxidation by adding fresh Ce
4+ 

solutions to the 

recovered 11. As shown in Figures 5.2a and 5.2c, 11 retained high catalytic activity for at 

least two consecutive reuses; the TOFs for the first and second reuse were slightly higher 

than that of the first use. Moreover, the supernatant from the reaction showed negligible 

water oxidation activity. ICP-MS analysis of the supernatant after water oxidation 

indicated that <1% of the Ir had leached into the solution. This is consistent with our 

assumption that at low [Ce
4+

]’s, the active WOC derived from 11 is molecular in nature 

and does not dissociate from the MOF framework.  

We also examined O2 evolution from 12-catalyzed water oxidation. PXRD and UV-

Vis studies indicated that the structure of 12 can be preserved at [Ce
4+

] = 0.3 mM, but 

will degrade quickly at higher [Ce
4+

]’s. Unfortunately, we cannot accurately quantify 

oxygen at a [Ce
4+

] of 0.3 mM due to the limited sensitivity of the oxygen sensor. The 

supernatants of the water oxidation mixtures with 0.3 mM Ce
4+

 contained less than 1 % 

of Ir as revealed by ICP-MS studies. In an effort to confirm the water oxidation activity 

of 12, we increased the [Ce
4+

] to 3 mM, the same condition as that was used in the O2 

generation experiment for 11. As shown in Figure 5.2b, 12 exhibited increasing O2 

generation rates with time. The initial O2 generation TOF was 0.21 ± 0.02 min
-1 

(based on 

¼ O2 or 1 e
-
). Based on UV-Vis measurements, a Ce

4+
 consumption rate was calculated 

to be 6.3 ± 1.0 min
-1

 for 12 in the first 10 minutes of WORs (Figure 5.2d). 12 thus has a 5% 
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O2 generation efficiency at the beginning state of WOR, with a significant amount of 

Ce
4+

 used for the oxidative degradation of 12. We have also reused 12 as water oxidation 

catalyst twice after Ce
4+

 was depleted. The TOFs of second and third runs were 

significantly higher than that of the first run, indicating that the 12 decomposed to more 

active species during the WORs. Moreover, about 6% of Ir was leached into the 

supernatants as revealed by ICP-MS studies. The drastically different behaviors of 11 and 

12 under the same WOR conditions indicate that 12 is more prone to oxidative 

degradation than 11, consistent with the fact that the electron-donating nature of the ppy 

chelator facilitates oxidative degradation of the ligand. 

Table 5.1 Turnover frequencies
a
 of water oxidation reactions catalyzed by 11 and 12. 

 
11 (min

-1
) 12 (min

-1
) 

by UV-Vis
b
 (1

st
 run) 0.52 ± 0.06 6.3 ± 1.0  

by UV-Vis
b
 (2

nd
 run) 0.54 ± 0.07 9.4 ± 2.0 

by UV-Vis
b
 (3

rd
 run) 0.53 ± 0.07 - 

by O2 detection
b
 (1

st
 run) 0.48 ± 0.02 0.21 ± 0.02 

by O2 detection
b
 (2

nd
 run) 0.48 ± 0.02 0.92 ± 0.05 

by O2 detection
b
 (3

rd
 run) 0.47 ± 0.02 1.01 ± 0.05 

by GC detection 
c
0.40 ± 0.06 

d
1.7 ± 0.4  

                        a
Turnover frequency is based on ¼ O2 or 1 Ce

4+
, in other words 1 e

-
. 

b
3 mM Ce

4+
 in pH =1 HNO3 solution with 10 µM Ir, based on data from the first 10 minutes. 

c
3 mM Ce

4+
 in pH = 1 HNO3 solution with 10 µM Ir, based on data after reaction of 4 hours. 

   d
3 mM Ce

4+
 in pH = 1 HNO3 solution with 10 µM Ir, based on data after reaction of 2.5 hours. 
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Figure 5.2 (a) Plots of O2 evolving turnover number (1/4 O2-TON) vs time for 11. (b) 

Plots of O2 evolving turnover number (1/4 O2-TON) vs time for 12. (c) Plots of Ce
4+

 

consumption turnover number (1/4 O2-TON) vs time for 11. (d) Plots of Ce
4+

 

consumption turnover number (1/4 O2-TON) vs time for 12. Experimental condition for 

a-d: 3 mM Ce
4+

 in pH =1 HNO3 solution with 10 µM Ir. (Reprinted with permission from 

ref [1]. Copyright American Chemical Society 2012) 

5.4 Identification of (bpy-dc)Ir(H2O)2XCl as an active WOC in 11-catalyzed water 

oxidation. 

 

As suggested by other researchers in previous studies, significant modifications of the 

Cp* rings of the Cp*Ir catalysts occur during Ce
4+

-driven WORs. In MOF-catalyzed 

WORs, multi-molecular catalyst degradation pathways are shut down as a result of 
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physical isolation of the catalytic struts. We thus believe that MOFs provide a unique 

platform to interrogate water oxidation pathways. In particular, we are interested in 

answering the following questions: (1) Do modifications of the Cp* rings happen in the 

catalytic struts of 11 during Ce
4+

-driven WORs? (2) What is the chemical structure of the 

modified Ir compound? (3) Is the modified compound an active WOC? (4) Are large 

hydrated Ce
4+

 ions able to diffuse through the MOF channels to reach the active WOCs 

in the MOF interiors? (5) What roles do Ce
4+

 ion diffusion rates and water oxidation rates 

play in MOF-catalyzed WORs?  

 

5.4.1 Identification and quantification of acetic acid generated from oxidative 

modifications of Cp* groups by 
1
H-NMR 

 

Oxidative degradation of the Cp* rings was previously shown to lead to the formation 

of acetic acid, formic acid, and other decomposition products. Monitoring the reaction 

solution by 
1
H-NMR can thus provide information on the possible degradation of Cp* 

rings on the Cp*Ir complexes. 0.5 µmol of 11 was dispersed in 0.5 mL of D2O (1 mM of 

L9). Ce
4+

 was added to the suspension successively. Aliquots of 3 equivalents of Ce
4+

 

were added to the suspension each time, and 
1
H-NMR spectrum of the mixture was taken 

after complete consumption of the added Ce
4+

 in each cycle. Acetic acid and a small 

amount of formic acid were detected in the solution during the Ce
4+

-driven WOR with 

11. The acetic acid and formic acid peaks were confirmed by adding acetic acid and 

formic acid standard to the solution for a peak spiking. The amounts of acetic acid and 

formic acid generated from oxidative degradation of Cp* rings were quantified by 

integration of the 
1
H-NMR peaks with NMe4

+
 as an internal standard. The amount of 

generated acetic acid steadily increased after each addition of Ce
4+

 into the solution and 
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plateaued at an amount around 1.8 times of that of the total L9 after adding 30 equivalents 

of Ce
4 +

.
 
 The amount of formic acid detected was < 5% of that of L9.  

 

Scheme 5.2 Oxidative modifications of the Cp* ring of the catalytic strut in 11 to form 

(bpy-dc)Ir(H2O)2XCl (X is likely a formate or acetate ligand) and the proposed oxidation 

of (bpy-dc)Ir(H2O)2XCl to form the Ir(V)=O species that is responsible for water 

oxidation. (Reprinted with permission from ref [1]. Copyright American Chemical 

Society 2012) 
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Figure 5.3 (a) 
1
H-NMR spectrum of digested 11 after WOR. ( A total 30 eq. of Ce

4+
 were 

added successively to the pH =1 HNO3 / D2O solution with 1 mM Ir before the MOF is 

digested for NMR. Each time only 3 eq. of Ce
4+

 were added to give a Ce
4+

 concentration 

of 3mM. The next aliquot of Ce
4+

 is only added after the complete consumption of the 

previous aliquot) * denotes peaks due to the original L9-H2 ligand. Other major peaks are 

assigned to the proposed structure. (b) 
1
H-

1
H COSY spectrum of digested 11 after WOR. 

(c) ESI-MS of digested 11 (with phosphoric acid) after water oxidation showing the 

presence of the {[(bpy-dc)Ir(H2PO4)(HCO2)Cl]+Na}
+
 molecular ion. The black lines 

show the expected isotopic peaks. (Reprinted with permission from ref [1]. Copyright 

American Chemical Society 2012) 
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5.4.2 NMR and Mass spectrometric studies of the recovered 11 after water 

oxidation reactions 

 

To identify the active Ir catalysts after Cp* ring modifications, we characterized the 

digested sample of 11 after WORs by NMR and MS. The recovered solid was thoroughly 

washed with water before being dissolved in a 0.1 M D3PO4/d6-DMSO solution. NMR 

spectra were taken on the dissolved samples with mesitylene as a standard. After 

treatment with 30 equivalents of Ce
4+

, 55% of the L9 struts were oxidatively modified. 

Multiple modification products were observed in the 
1
H-NMR spectra, but the major 

modified species (28% of the original amount of L9) was identified as [(bpy-

dc)Ir(solvent)2XCl]
+
 based on the unsymmetrical bpy-dc coordination to the Ir center 

(Figure 5.3). The assignment of the proton signals was supported by the 
1
H-

1
H COSY 

spectrum. The X in the formula is likely to be a formate group resulting from the 

decomposition of the Cp* rings, as shown by a singlet at δ 8.02 in the 
1
H-NMR.

38-40
 

The digested sample of 11 was also characterized by electrospray ionization-mass 

spectrometry (ESI-MS). The sample was digested either under acidic condition using 0.1 

M H3PO4/DMSO or under basic condition using 0.1 M NaOH/H2O, before diluted with 

1% formic acid/methanol solution for ESI-MS measurements. For the sample digested 

with H3PO4, molecular ion peaks for [(bpy-dc)Ir(H2PO4)(HCO2)Cl] were observed 

([M+Na]
+
, expected: 789.00, observed: 789.06, Figure 5.3c). For the sample digested 

with NaOH, molecular ion peaks for [(bpy-dc)Ir(H2O)2(HCO2)Cl]
+
 were observed (M

+
, 

expected: 705.06, observed:705.14). The assignments of these species are unambiguous 

because of the 
1
H NMR spectroscopic data and the unique isotope patterns of the 

molecular ions in the mass spectra. We believe that [(bpy-dc)Ir(H2O)2(HCO2)Cl]
+
 is the 
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most likely precatalyst in 11-catalyzed WORs (Scheme 5.2). Presumably, [(bpy-

dc)Ir(H2O)2(HCO2)Cl]
+ 

is oxidized by Ce
4+

 via a proton-coupled electron transfer process 

to form the corresponding Ir(V)=O species (Scheme 5.2) which initiates the water 

oxidation catalytic cycle.  

Although significant catalyst modification is present for the MOF catalyzed WORs, an 

O2 generation curve without initial induction period was obtained. These suggest that the 

original L9 ligand is also an active water oxidation with similar activity as that of the 

oxidatively modified one. It is difficult to further confirm this assumption based our 

experimental results. 

 

5.4.3 Water oxidation activity of soluble (bpy)Ir(solvent)nXm species 

To support the hypothesis that (bpy-dc)Ir(H2O)2XCl is a true precatalyst for 11-

catalyzed WORs, we synthesized (bpy)Ir complexes containing water and chloride 

groups but no other ancillary ligands to test their water oxidation activities. Although 

K[Ir(bpy)Cl4] was not a competent WOC, its derivatives after treatment with AgNO3 

showed water oxidation activities with Ce
4+

 as the oxidant. Upon treating K[Ir(bpy)Cl4] 

with four equivalents of AgNO3 in pH = 1 (with added HNO3), the resultant soluble 

species showed complicated 
1
H-NMR spectra, indicating the formation of multiple 

species due to incomplete Cl removal. Nevertheless, the resulting (bpy)Ir(solvent)nXm 

mixture (with water and chloride or nitrate groups in addition to the bpy ligand, 25 µM 

based on Ir) was highly active for water oxidation in the presence of 10 mM Ce
4+

 at pH = 

1. However, the water oxidation activity of this mixture decreased with time with an 

intractable dark blue solid forming within one hour (Figure 5.4). The solid formation was 
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due to aggregation of the Ir(IV) or Ir(V) molecular species; such a process was prevented 

in the MOFs as a result of catalyst site isolation in the frameworks.   

 

Figure 5.4. O2 generation using the (bpy)Ir(solvent)nXm species. The concentration of Ir 

was 25 µM and the initial [Ce
4+

] was 10 mM in 10 mL of pH = 1 HNO3 solution. The O2 

was detected in the gas phase. (Reprinted with permission from ref [1]. Copyright 

American Chemical Society 2012) 

5.5 MOF Stability as revealed by PXRD and ICP-MS studies. 

PXRD studies indicated that the structure of 11 was preserved under WOR conditions 

(Figure 5.5). Since the oxidation of Cp* rings of the L9 ligands does not affect the MOF 

connectivity, the PXRD pattern is maintained even after the Cp* groups have been 

replaced with solvents and anionic ligands. The preservation of the PXRD patterns after 

WORs is thus consistent with the formation of the (bpy-dc)Ir(H2O)2XCl species. ICP-MS 

measurements of the supernatant of the reaction mixture further confirmed the stability of 

11 under the WOR conditions. After treatment of 11 with 3 mM Ce
4+

 at pH = 1 for 12 

hours, <1% of the Ir leached into the solution. In contrast, the framework of 12 can only 
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be preserved at a [Ce
4+

] of 0.3 mM  The framework structure of 12 is lost within 1 h of 

treatment with 3 mM Ce
4+

, suggesting that the putative (ppy-dc)Ir(solvent)nXm species 

further degrade to lead to even more active non-molecular Ir water oxidation catalysts. 

Our attempts to isolate and identify the true pre-catalyst for 12-catalyzed water oxidation 

have not yet been successful. 

 

Figure 5.5 (a) PXRD patterns of 11 taken after different times of WORs. (b) PXRD 

patterns of 12 taken after different times of WORs. Experimental condition: pH =1 HNO3 

solution with 10 µM Ir with different concentration of Ce
4+

 and different reaction time. 

(Reprinted with permission from ref [1]. Copyright American Chemical Society 2012) 

5.6 XPS analyses of 11 and 12 before and after water oxidation reactions. 

XPS analysis was performed on the recovered MOF solids (10 µM based on Ir) after 

treatment with various [Ce
4+

]’s (0.3, 3, and 200 mM) at pH=1 for 12 h. All the MOF 

samples were washed with nitric acid and dried on silicon wafer and then kept in vacuum 

overnight prior to XPS measurements. The spectra were calibrated with respect to the 

C(1s) peaks in each sample. The Ir(4f) region of the spectra showed no difference in peak 

positions between the original MOF and the samples treated with different [Ce
4+

]’s, 
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indicating the Ir(III) oxidation state in all of these samples. We noticed that the MOFs 

remained in green color in a pH=1 solution after all of the Ce
4+

 ions were consumed. The 

green color suggested the Ir(IV) oxidation state for the resting state of the catalysts at low 

pH. These MOFs however reverted to the original yellow-red color after treatment with 

neutral water. We believe that the observation of the Ir(III) oxidation state by XPS is 

owing to the ready reduction of the recovered MOFs either during the drying and vacuum 

processing prior to XPS measurements or by X-rays or the generated photoelectrons 

during the XPS measurements. XPS thus cannot be considered a reliable technique for 

determining the oxidation states of Ir WOCs. The signal intensity of Ir(4f), N(1s), and 

Zr(3d) peaks all decreased with respect to the C(1s) peak intensity at increasing [Ce
4+

]’s, 

presumably caused by adsorbed Ce
4+

 and NO3
-
 ions on the MOF surface. The XPS 

spectra also showed two different N(1s) peaks at binding energies of 398.2 and 404.6 eV 

for the pyridyl and nitrate nitrogen atoms, respectively (Figure 5.6). The atomic ratios of 

Ir vs. pyridyl nitrogen in these samples provide useful information on the stability of 

chelating bpy-dc and ppy-dc ligands. As shown in Table 5.2, the atomic ratios of Ir vs. 

pyridyl nitrogen remained constant for both 11 and 12 after treatment with relatively low 

[Ce
4+

]’s, suggesting that the Ir atom and pyridine moiety in bpy-dc and ppy-dc ligands 

remain intact under these conditions. However, under high [Ce
4+

]’s, the atomic ratios of 

Ir vs. pyridyl nitrogen decreased significantly compared to those of the original MOFs, 

suggesting loss of Ir from the MOFs as a result of partial degradation of the chelating 

ligands. It is noted that the deviation of Ir vs. pyridyl nitrogen atomic ratios from the ideal 

atomic ratios is due to different electron collection efficiency for different elements in the 

samples, which is not uncommon for XPS analyses. 
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Figure 5.6 (a) N(1s) XPS signals for 11 after treatment with various [Ce
4+

]’s at pH=1 for 

12 h. black, as-synthesized 11; blue, after treatment with 3 mM Ce
4+

; red, after treatment 

with 200 mM Ce
4+

. (b) N(1s) XPS signals for 12 after treatment with various [Ce
4+

]’s at 

pH=1 for 12 h. black, as-synthesized 12; blue, after treatment with 0.3 mM Ce
4+

; purple, 

after treatment with 3 mM Ce
4+

; red, after treatment with 200 mM Ce
4+

. All the WOR 

experiments were done in pH =1 HNO3 solution with 10 µM Ir. (Reprinted with 

permission from ref [1]. Copyright American Chemical Society 2012) 

Table 5.2. Ir / N (pyridine) and Ir / Zr atomic ratios determined from XPS 

 Ce
4+

 concentration (mM)
a Ir / N (pyridine) atomic 

ratio 
Ir / Zr atomic ratio 

11 0 (original MOF) 0.37 0.35 

11 3 0.39 0.49 

11 200 0.32 2.73 

12 0 (original MOF) 0.50 0.53 

12 0.3 0.50 0.61 

12 3 0.51 1.09 

12 10 0.31 3.89 

12 200 Pyridine N not observed Zr not observed 

a
All the reactions were performed in pH = 1 HNO3 solution for 12 hours. 
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5.7 Diffuse-reflectance UV-Vis measurements of 11 after water oxidation 

reactions. 

 

The recovered 11 after treatment with Ce
4+

 (3 mM) overnight was washed with 

copious amounts of 0.1 M HNO3 solution. The recovered solid exhibits a green color, 

suggesting an Ir(IV) species as the catalyst resting state. Note that if the solid is washed 

with water (pH=7), the green color will slowly change to the original yellow-red color, 

suggesting that the Ir(IV) species is not stable at neutral pH. Diffuse-reflectance UV-Vis 

spectrum of the recovered 11 (after washing with 0.1 M HNO3 solution) was taken by 

pressing the solids onto a smooth BaSO4 surface. As shown in Figure 5.7a, an additional 

peak at ~600 nm appears in the solid when compared to 11, corresponding to the Ir(IV) 

species at resting state.
9
 Interestingly, the Ir(IV) species of the recovered 11 was readily 

reduced to Ir(III) species by adding a few drops of ethanol to the pressed solid sample 

(for diffuse reflectance UV-Vis measurements). The spectrum taken after evaporation of 

ethanol lost the peak at ~600 nm, suggesting a complete reduction of the Ir(IV) species to 

Ir(III). This reversible oxidation/reduction of the Ir species is consistent with the 

molecular nature of water oxidation catalysts. The peak intensities of the diffuse-

reflectance spectra cannot be exactly reproduced in each measurement due to different 

sample positions and other experimental variables. 
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Figure 5.7. (a) Diffuse-reflectance spectra of 11: original (black), after WOR (green) and 

after WOR and then reduction with ethanol (red). (b) Fluorescence spectra of 11 before 

and after WORs. The spectra were taken with an acetonitrile suspension of MOFs with a 

[Ir] of 0.4 mM. The excitation wavelength was 370 nm and no optical filter was used in 

the measurement. The L9-Me2 and [Ir(Cp*)Cl(bpy)]Cl were dissolved in acetonitrile with 

a [Ir] of 0.4 mM. WOR condition: 3 mM Ce
4+

 in pH =1 HNO3 solution with 10 µM Ir. 

(Reprinted with permission from ref [1]. Copyright American Chemical Society 2012) 

5.8 Luminescence spectroscopy of 11 after water oxidation reactions. 

[Cp*Ir(bpy)Cl]
+
 and its derivatives are weakly luminescent in acetonitrile. 

Luminescence spectra can sensitively probe the Ir coordination environments. The 

recovered 11 was reduced to the Ir(III) oxidation state by washing with ethanol and the 

luminescence spectra were taken with an acetonitrile suspension of the reduced MOF at a 

[Ir] of 0.4 mM. As shown in Figure 5.7b, the shoulder peak at ~550 nm for 11 before and 

after WORs was assigned to emission from the triplet metal-to-ligand charge transfer 

(
3
MLCT) excited state of the Ir complexes by comparing with the emission spectra of the 

parent [Cp*Ir(bpy)Cl]
+
 complex. The presence of the MLCT emission band after WORs 

indicated that Ir is still coordinated to the bpy moiety in 11. The strong emissions at 
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shorter wavelength are due to the fluorescence of the bpy-dc ligand with vibrational fine 

structures, whereas the different intensities of different vibrational bands of the bpy-dc 

ligand for the samples before and after WORs can be accounted for by modifications of 

the Cp* ligand during the WOR.  

5.9 [Ce
4+

]-dependent degradation of MOF water oxidation catalysts. 

The observed degradation of 12 at 3 mM of Ce
4+

 prompted us to carefully examine the 

degradation of MOF WOCs during WORs. The degradation of MOF WOCs can be 

inferred from the kinetic data of WORs as determined by Ce
4+

 consumption rates using 

UV-Vis spectroscopy. The catalyst decomposition rate is shown to be very sensitive to 

the [Ce
4+

].  

For 11-catalyzed reactions, the kinetics of Ce
4+

 consumption becomes much faster 

when the [Ce
4+

] exceeds 4.5 mM (Figure 5.8a), suggesting the decomposition of the 

MOF catalyst to form more active WOCs under these conditions. This decomposition 

kinetics can be more clearly visualized by plotting [Ce
4+

]/C0 vs. t (C0 is the initial 

concentration of Ce
4+

). At C0 < 4.5 mM, [Ce
4+

]/C0
 
decays more slowly as C0 becomes 

higher. However, At C0 > 4.5 mM, [Ce
4+

]/C0
 
decays faster as C0 becomes higher. This 

[Ce
4+

]-dependent behavior indicates that MOF decomposition has a high order 

dependence on [Ce
4+

]. 
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Figure 5.8. (a) [Ce
4+

]-t plots of 11-catalyzed WORs under different initial [Ce
4+

]’s. (b) 

[Ce
4+

]-t plots of 12-catalyzed WORs under different initial [Ce
4+

]’s. (c) [Ce
4+

]-t plots of 

11-catalyzed WORs with an initial [Ce
4+

] of 3 mM, before and after treatment with 9 mM 

Ce
4+

. (d) [Ce
4+

]-t plots of 11 catalyzed-WORs with an initial [Ce
4+

] of 1.0 mM, in the 

presence and absence of 9 mM Ce
3+

. All the WOR experiments were performed in pH =1 

HNO3 solution with 10 µM Ir. (Reprinted with permission from ref [1]. Copyright 

American Chemical Society 2012) 

 

To further confirm this [Ce
4+

]-dependent decomposition, the MOF after being treated 

with 9 mM Ce
4+

 was recovered after all of the Ce
4+

 ions were consumed and reused in a 

new run of water oxidation with 3 mM Ce
4+

. The recovered MOF showed much faster 

Ce
4+

 consumption as shown in Figure 5.8c, supporting the decomposition of the MOF at 
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high [Ce
4+

]’s. To test if the decomposition is caused by the generated Ce
3+

, a solution 

with 1.0 mM Ce
4+

 and 9 mM Ce
3+

 was used in a catalytic run. The added Ce
3+

 slowed the 

Ce
4+

 consumption rate, ruling out the possibility that Ce
3+

 caused decomposition of the 

MOF (Figure 5.8d). The slower Ce
4+

 consumption of the Ce
3+

-added solution is due to 

slower Ce
4+

 diffusion at a higher total Ce concentration, which will be further discussed 

in Section 5.5. 

UV-Vis data showed that 12 is more prone to decomposition than 11. At an initial 

[Ce
4+

] of 3 mM, 12 quickly decomposed as indicated by the Ce
4+

 consumption rate. The 

decomposition of 12 is further supported by the observation that at an initial [Ce
4+

] of 0.5 

- 3 mM, the Ce
4+ 

consumption rate was much higher for the second catalytic run than the 

first one.  

MOF decomposition was also confirmed by PXRD studies. PXRD patterns of the 

MOFs were taken at different time points with different initial [Ce
4+

]’s. The broadening 

or even disappearance of the PXRD peaks at high [Ce
4+

]’s is indicative of framework 

decomposition. Moreover, there is strong correlation between UV-Vis kinetics and 

PXRD patterns on the onset of MOF decomposition. At higher [Ce
4+

]’s, the UV-Vis data 

showed accelerated consumption of Ce
4+

 when the PXRD pattern indicated that MOFs 

started to decompose. It is likely that the Ir moieties are released into solution to form 

much more active non-molecular WOCs when the MOF structures collapse, leading to 

much enhanced Ce
4+

 consumption rates.  

To investigate if the MOF decomposition is due to the instability of the SBUs, we 

synthesized an analogous UiO MOF using the 5-benzoic-2-(4-benzoic-phenyl)-pyridine 

acid (ppy-dc) bridging ligand and Zr6O4(OH)4(CO2)12 SBUs. This Ir-free MOF exhibits 
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the same UiO topology but adopts an interpenetrated structure as revealed by the 

systematic absence of the [200] peak in its PXRD pattern. As shown by the PXRD 

patterns of the MOF after acid and Ce
4+

 treatment, the MOF is stable in pH=1 water 

solution and is much more stable than 11 and 12 at high [Ce
4+

]. This control experiment 

indicates that the UiO framework and SBUs are stable under WOR conditions. The 

decomposition observed for 11 and 12 at high [Ce
4+

]’s is thus attributed to degradation of 

L9 and L10 moieties under these harsh conditions. 

 

5.10 A diffusion-reaction model for MOF-catalyzed water oxidation 

Little is known about kinetics of MOF-catalyzed reactions, due to the difficulty in 

following MOF-catalyzed reactions and complicated data analysis involving both 

reaction kinetics and reactant/product diffusion rates. In this Ce
4+

-driven WOR, however, 

the reaction can be readily followed by UV-Vis spectroscopy to accurately determine the 

consumption rate of Ce
4+

. Kinetic analyses of MOF-catalyzed Ce
4+

-driven WORs are 

further simplified due to two factors: 1) water is the reactant whose concentration 

remains constant throughout the WOR; 2) the product, oxygen molecules, can diffuse 

quickly and does not require consideration.  

Water oxidation experiments were performed at several different initial [Ce
4+

]’s. The 

[Ce
4+

]’s determined from UV-Vis measurements were plotted against reaction time t. 11 

and 12 exhibited different kinetic behaviors. For 11, the [Ce
4+

] – t plot is linear at the 

initial stage, indicating a quasi-zeroth order reaction with respect to [Ce
4+

]. The deviation 

from a linear relationship at later times (particularly for higher [Ce
4+

]’s) is likely due to 
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the decomposition of MOF catalysts. This quasi-zeroth order reaction rate depends on 

initial [Ce
4+

] (Figure 5.9a). For 12, the ln[Ce
4+

] – t plot is linear at the initial stage, 

indicating a quasi-first order reaction with respect to [Ce
4+

] (Figure 5.9b). We will show 

below that these seemingly different kinetic behaviors can be explained using the same 

diffusion-reaction model with different Ce
4+

 diffusivities and WOR rates for 11 and 12. 

 

Figure 5.9 (a) [Ce
4+

] – t plot of 11-catalyzed water oxidation. The initial [Ce
4+

] = 2.88 

mM. The linear curve indicates a quasi-zeroth order reaction with respect to [Ce
4+

], 

leading to a rate constant of k0 = 0.46 ± 0.01 min
-1

. (b) ln([Ce
4+

]/C0) – t plot of 12-

catalyzed water oxidation. The initial [Ce
4+

] = 0.32 mM. The linear fitting indicates a 

quasi-first order reaction with respect to [Ce
4+

], leading to a rate constant of k1 = 6.3 ± 

0.1 min
-1

 mM
-1

. All the WOR experiments were performed in pH =1 HNO3 solution with 

10 µM Ir. (Reprinted with permission from ref [1]. Copyright American Chemical 

Society 2012) 

With c(r,t) denoting the [Ce
4+

] inside a MOF (where r is the distance from the center 

of a spherical MOF particle and t is the reaction time), we can write Eq. 5.1 to express 

c(r,t) by considering diffusion of Ce
4+

 inside a MOF particle following Fick’s law (the 

first term) and the WOR catalyzed by the isolated Ir sites with a first-order dependence 
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on the local [Ce
4+

] (the second term). The corresponding boundary conditions to describe 

this diffusion-reaction process inside the MOF particle are shown in Eq 5.2 and Eq 5.3. 

       

  
  

 

  

 

  
(         

  
)                               (Eq 5.1) 

                                        (Eq 5.2) 

           
       

  
          

       

  
                           (Eq 5.3) 

where the radius of the MOF particle is a (the particle is approximated as spherical).  

The total solution volume – V = 2 mL 

The MOF concentration (the concentration of ligand L in the solution) -- CMOF = 10 µM 

The Avogadro’s constant – NA
 
=6.02×10

23
 mol

-1
 

The volume of unit cell per ligand L from the crystal structure – v = 2.4 nm
3
 

The number of MOF particles in the solution – N = V·CMOF·NA·v/(4/3πa
3
) 

The diffusivity of Ce
4+ 

inside MOF – D 

The initial [Ce
4+

] in solution—C0 

The rate constant of reaction inside MOF – k (first order with respect to [Ce
4+

]) 

Although Ce
4+

 diffusivity should have a strong dependence on Ce
4+

 and Ce
3+

 

concentrations, a constant diffusivity D is assumed in the model based on two 

approximations: (1) the diffusion of Ce
4+

 or Ce
3+

 in the MOF channel is fast compared to 

the experimental time scale so that the sum of [Ce
4+

] + [Ce
3+

] within the MOF, especially 
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in the outer-shell that can be reached by Ce
4+

 (see below), quickly reaches the same level 

of the bulk solution at the very beginning of the experimental measurement; (2) Ce
4+

 and 

Ce
3+

, due to the similarity of their chemical structures, have a similar concentration effect 

on the diffusivity of Ce
4+

, so that the Ce
4+

 diffusivity only depends on the sum of [Ce
4+

] + 

[Ce
3+

], which is constant throughout the course of reaction. 

The first approximation can be validated by calculating a characteristic diffusional 

time of Ce
4+

,    
          

 
 (where        is the depth of the outer shell of a MOF 

particle that can be reached by Ce
4+

 with concentration > 1% of that in the solution.), and 

comparing it to the experimental time scale. As listed in Table 5.4 and Table 5.5, all of 

these characteristic diffusional times (0.03 – 0.18 minutes for 11 and 0.004 – 0.014 

minutes for 12) were significantly smaller than the experimental time scale (>1 minute), 

indicating that the [Ce
4+

] + [Ce
3+

] concentration quickly reached the level in the bulk 

solution at the very beginning of the experiments. 

To validate the second approximation of a similar influence of [Ce
3+

] and [Ce
4+

] on 

the diffusivity of Ce
4+

, we carried out WORs with 11 by adding a mixture of Ce
3+

 and 

Ce
4+

 to the catalyst. As shown in Figure 5.10a, with different initial Ce
4+

 concentrations 

(C0) but the same total Ce concentration ([Ce
3+

]+[Ce
4+

]), the [Ce
4+

]/C0 curves nearly 

overlap with each other, indicating that Ce
4+

 exhibits similar diffusivity in 11 under these 

conditions. Moreover, the kinetic data with different initial Ce
3+

 and Ce
4+

 concentrations 

were fitted to the diffusion-reaction model to obtain Ce
4+

 diffusivities. The dependence of 

Ce
4+

 diffusivities on the sums of [Ce
3+

] + [Ce
4+

] only slightly deviates from the 

dependence of Ce
4+

 diffusivities on the [Ce
4+

] when pure Ce
4+

 was added to the catalyst 

at the beginning. (see section 5.11) These results indicate that there is a only slight 
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difference of the dependence of Ce
4+

 diffusivity on [Ce
4+

] and [Ce
3+

], thus validating our 

approximation of a similar influence of [Ce
3+

] and [Ce
4+

] on the diffusivity of Ce
4+

. Ce
4+

 

can be transported into the MOF interior via the Ce
4+

/Ce
3+

 self-exchange in addition to 

the direct diffusion of Ce
4+

 through the channels. However, the negligible dependence of 

Ce
4+

 diffusivity on Ce
3+

/Ce
4+

 ratios indicates that the self-exchange pathway is not 

significant in these reactions. 

The reaction rate law of a single catalyst site in the MOF can be estimated from 

kinetic measurements of homogeneous catalysts. The reaction rate dependence of 

HOMO-1 (see scheme 5.1) on [Ce
4+

] was reported to be of the 0.7th order.
23

 Our own 

measurements also confirmed that the rate dependence slightly deviates from the first 

order, which is presumably due to the decomposition of the WOC during the course of 

the reaction. To account for less decomposition of the WOC in the MOF and to simplify 

mathematical derivations, we approximated the rate dependence to be first order and 

determined a rate constant of 100 min
-1

·mM
-1

 using HOMO-1. A similar approximation 

was applied to HOMO-2 with a rate constant of 200 min
-1

·mM
-1

. HOMO-2 was chosen 

as the homogeneous model because the aromatic amine is protonated at pH =1 to increase 

the catalyst solubility in water. 

Eq 5.1 was solved by Laplace transformation under the boundary conditions of Eq 5.2 

and Eq 5.3 (See Section 5.11 detailed approximations and mathematical derivations).
41

 

The obtained infinite summation solution was simplified by approximating an elliptic 

theta function to a simpler piecewise function.  
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Assuming the [Ce
4+

] in the bulk solution Cs (which can be detected by UV-Vis 

measurements) equals the [Ce
4+

] on the MOF surface, Eq 5.4 was then obtained, which 

describes the quasi-first order kinetic behavior for the 12-catalyzed reaction. The amount 

of Ce
4+

 inside the MOF at a given time was insignificant (< 0.0043%) compared to the 

amount in the solution and can be ignored in the Cs quantification.  
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√

 

 
        (eq 5.4) 

Here β is defined as   
      

 
. For 11, however, a further linearization approximation can 

be made (see section 5.11), leading to a quasi-zeroth order reaction described by: 
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             (eq 5.5) 

This linearization approximation will only hold when  
√  

 
(  

 

 
√

 

 
)    . The 

validity of this assumption for 11 but not for 12 can be verified by calculating a 

characteristic time     

 
√  

 
(  

 

 
√

 

 
)⁄

. Only when     , the approximation 

holds. As shown in Table 5.4 and Table 5.5,      holds for 11 (120 – 670 minutes) but 

does not hold for 12 (12 – 55 minutes). This difference in    explains different kinetic 

behaviors of the two MOFs. 

By fitting the experimental data to these equations, the Ce
4+

 diffusivity values were 

obtained (Table 5.3). As expected, the Ce
4+

 diffusivities determined from these analyses 

are highly dependent on the Ce concentration: the lower the concentration, the higher the 
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diffusivity. Ce
4+

 diffusivities in 12 are significantly larger than those in 11, consistent 

with the expectation that positively charged species should diffuse faster through neutral 

channels in 12 than through positively charged channels in 11.  

Table 5.3 Diffusivities of Ce
4+

 at different initial [Ce
4+

]’s in 11 and 12. 

11 12 

c0 (mM) D (/10
-11

 cm
2
s

-1
) c0 (mM) D (/10

-11
 cm

2
s

-1
) 

0.29 1.52 0.11 67.9 

0.98 0.221 0.30 38.8 

2.03 0.099 0.40 41.0 

2.88 0.053 0.51 4.6 

4.61 0.050 0.61 4.1 

5.69 0.046 1.09 3.4 

6.97 0.046   

 

As the experimental time scale is significantly larger than the characteristic 

diffusional time    
  

 
, the diffusion-reaction process inside these MOFs are at the 

steady-state. With the kinetic model, the Ce
4+

 distributions inside the MOFs at the steady-

state can be calculated, using the following equation (see section 5.11 for details) 
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      √
 

 
  

        (eq 5.6) 

The [Ce
4+

] inside the MOF relative to that in the solution C/Cs at the steady state with 

a total Ce concentration of 1mM is plotted in Figure 5.10b. Because of the fast reaction 

rate and relatively slow diffusion rate, the Ce
4+

 can only diffuse into the particle of 11 at 
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~11% in depth (30% in volume for a spherical object) before being consumed for the 

WOR to form Ce
3+

 (with [Ce
4+

] < 1% Cs). As the diffusion of Ce
4+

 in 12 is much faster, 

Ce
4+

 can diffuse deeper inside the particle (27% in depth and 61% in volume) before 

being reduced to Ce
3+

.  

The uneven distribution of Ce
4+

 inside the MOF particle in this diffusion-reaction 

model perfectly explains the fact that the original Cp*Ir catalysts were still observed from 

digested samples of the recovered 11 in spite of extensive oxidative degradation of the 

Cp* rings. Based on this diffusion-reaction model, the outer shell of the MOF particles 

can be oxidatively modified, while the interior of the MOF particle is seldom reached by 

Ce
4+

 and remains intact. As a result, both the original unmodified complexes and 

oxidatively modified complexes were observed in the digested samples of the recovered 

11. 

 

Figure 5.10 (a) Ce
4+

 consumption monitored by UV-Vis spectroscopy at 420 nm for 11 

with an initial [Ce
4+

] of 1 mM and a [Ce
3+

] of 1 mM (red), vs. a [Ce
4+

] of 2 mM and a a 

[Ce
3+

] of 0 mM (black). The overlap of these two curves indicates similar influence of 

[Ce
4+

] and [Ce
3+

] on the diffusivity of Ce
4+

. The experiments were performed  in pH =1 

HNO3 solution with 10 µM Ir. (b) Ce
4+

 distributions inside the particles of 11 and 12. The 
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initial [Ce
4+

] is 1 mM. Cs is the [Ce
4+

] in the solution. (Reprinted with permission from 

ref [1]. Copyright American Chemical Society 2012) 

5.11 The detailed derivation of the Diffusion-Reaction Kinetic Model for MOF-

Catalyzed Reactions 

5.11.1  Derivation of the diffusion-reaction model to describe MOF kinetics. 

The diffusion equation and boundary conditions can be written as 
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then (eq 5.3) can be transformed to                     
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Now solve this partial differential equation, we get  
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where    ‘s and    ‘s are the n
th

 roots of the equations 
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Now change these entities into unitless quantities. 

let    
  

 
       

 

   
            

 

 
         

equation (eq 5.8) can be converted to  
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         (eq 5.11) 

and equation (eq 5.9)  and (eq 5.10) are converted to  

 

  
                                       (eq 5.12) 
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                                 (eq 5.13) 

as we know β = 4.3×10
-6

 <<1. An estimation on γ is that γ <10
-3 

Under these conditions, the real number roots of equations (eq 5.12) and (eq 5.13) are 

κn ≈  ±nπ , qn ≈ -γ(nπ)
2
-1   (n = 1,2,…)             (eq 5.14) 

while the imaginary solution is κi ≈ i/√  , qi ≈      √
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           (eq 5.15) 

the concentration of Ce
4+

 in the solution is equal to that on the MOF surface cs(t) = 

c(r,t)|r=a  

then        
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Denote the first term as  
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Denote the second term as  
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Now let      ∑
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then                                                                                     (eq 5.19) 
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After these evaluations, we can get expression for        

When   
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At the experimental time scale, we know     
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Here again we used the assumption that       

if      
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It is easy to prove that under experimental condition   
  

   
 

The condition of      
 

√ 
       applies for 11, and does not apply for 12, leading to 

quasi-zeroth order reaction for 11 with respect to [Ce
4+

] and quasi-first order reaction for 

12 with respect to [Ce
4+

] 

Now change the parameters back to the parameters with units 

 
  
  

  
 =   

√  
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      (eq 5.5)   for 11 

    
  
  

 

  
 =   
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      (eq 5.4) for 12 

5.11.2  Ce
4+

 diffusivities inside 11 and 12 and justification of the approximations 

In order to derive information on the diffusivity, we must make assumptions on the 

reaction rate. 

If we assume that the activity of the catalyst inside the MOF is exactly the same as that of 

the homogeneous compound, as the concentration of ligand inside MOF is 1/(NAv) = 0.69 

M, we obtained the  rate constant inside MOF as k = 0.100 min
-1

µM
-1

×0.69M = 6.9×10
4
 

min
-1

 for 11 and k = 0.210 min
-1

µM
-1

×0.69M=1.4×10
5
 min

-1
 for 12. The average radius of 

the MOF particles can be obtained from the SEM/TEM images to be a = 400 nm. 

 =4.3×10
-5

 is what we have already calculated above.  

For 11,  
 

  
  

   
 

      

   
 

  

  
 is what we obtained experimentally (Q is the number of 

equivalents of Ce
4+

 added with respect to the MOF concentration ).  
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Solving equation 5.5 for D, we can obtain the values for diffusivities. 

With the numbers obtained we can check if the condition |   (
 

√ 
  )|    holds. To 

do this, we can calculate the characteristic time          (
 

√ 
  ) . Only when t 

    , the approximation can be valid. As listed in Table 5.4.       can be well 

fulfilled at the intial stage of the reaction. 

 

Figure 5.11 Comparison of the diffusivities of Ce
4+

 in 11 obtained from experiments 

with different initial concentrations of Ce
4+

 and Ce
3+

.  The red squares are for reactions 

with initial Ce
4+

 only whereas the green squares are for initial mixtures of both Ce
3+

 and 

Ce
4+

 ([Ce
4+

] = 1 mM, [Ce
3+

] = 0, 1, 2, 3, 9 mM). The red line is an exponential fitting of 

diffusivities with different total Ce concentrations. (Reprinted with permission from ref 

[1]. Copyright American Chemical Society 2012) 

Table 5.4. Diffusivities of Ce
4+

 at different initial Ce
4+

 concentrations for 11. 

c0 

/mM 

Q k0 /min
-

1
  

 
  
  

   
 

/10
-3

 

  
 

   
 

/10
-5

 

D /10
-11

 

cm
2
s

-1
 

  /min   /min %d0.01 %V0.01 
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0.29 29 0.247 2.87
 

0.83
 

1.52 120 0.03 26% 59% 

0.98 98 0.324 1.11 0.12 0.221 300 0.07 16% 40% 

2.03 203 0.443 0.73 0.054 0.099 460 0.11 13% 34% 

2.88 288 0.459 0.54 0.029 0.053 630 0.15 11% 30% 

4.61 461 0.707 0.52 0.027 0.050 650 0.16 11% 30% 

5.69 569 0.843 0.50 0.025 0.046 670 0.18 11% 30% 

6.97 697 1.05 0.51 0.025 0.046 670 0.18 11% 30% 

 

Table 5.5. Diffusivities of Ce
4+

 at different initial Ce
4+

 concentrations for 12. 

c0 /mM k1 /min
-

1
µM

-1
  

   
  
  

   
 

/10
-3

 

  
 

   
 /10

-5
 D /10

-11
 

cm
2
s

-1
 

  /min   /min %d0.01 %V0.01 

0.11 0.0080 5.74
 

18.2
 

67.9 12 0.004 66% 96% 

0.30 0.0061 2.23 10.4 38.8 16 0.005 54% 90% 

0.40 0.0063 1.47 11.0 41.0 16 0.005 56% 91% 

0.51 0.0021 1.07 1.22 4.6 47 0.012 29% 65% 

0.61 0.0020 1.03 1.11 4.1 50 0.013 29% 63% 

1.09 0.0018 1.00 0.90 3.4 55 0.014 27% 61% 

 

For 12,  
   

  
  

   
 

      

 
 

      

 
 is what we obtained experimentally. Solving equation 

5.4 for D, we can obtain the values for diffusivities. 

If we calculate the characteristic time          (
 

√ 
  )  for 12, we see that these 

     are comparable to the experimental timescale which is the reason why it cannot be 

approximated to quasi-zeroth order reaction with respect to [Ce
4+

].  
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Figure 5.12 Dependence of diffusivity of Ce
4+

in 12 on Ce concentration. (Reprinted with 

permission from ref [1]. Copyright American Chemical Society 2012) 

5.11.3  Ce
4+

 distributions inside the MOFs at steady state conditions 

The timescale of diffusion can be evaluated by the characteristic diffusion time    

          

 
 , where a is the radius of MOF particles, and       is the depth Ce

4+
 can 

penetrate with >1% concentration with respect to that in the solution. As shown in Table 

5.4 and 5.5. Within experimental time,      can be reached, that is when steady-state 

condition can be applied to the system. 

  

  
     

 

  

 

  
(    

  
)         (eq 5.34) 

the boundary condition is c|r=a=cs     (eq 5.35) 

It is straightforward to solve this equation to obtain: 
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The concentration changes dramatically near the surface of the particles. We can depict 

the concentration changes of  
 

  
 vs 

 

 
, choosing D = 1.1×10

-12
 cm

2
/s. 

 

Figure 5.13 Ce
4+

 distribution inside the 11 particle with a total Ce concentration of 3 

mM. (Reprinted with permission from ref [1]. Copyright American Chemical Society 

2012) 

 

Figure 5.14 Ce
4+

 distribution inside the 12 particle with a total Ce concentration of 0.3 

mM. (Reprinted with permission from ref [1]. Copyright American Chemical Society 

2012) 

If we want to calculate the position inside MOF at which the Ce
4+

 concentration drops to 

1% of that in the solution, we can let  
 

  
      and solve equation 5.6. The number we 
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obtained is the r/a ratio at this point. The depth percentage of MOF outer shell reached by 

Ce
4+

 with >1% concentration can be expressed as  

             ⁄                          (eq 5.36) 

The volume percentage of MOF outer shell reached by Ce
4+

 with >1% concentration is 

then  

                    
                          (eq 5.37) 

These calculated values are listed in Table 5.3 and 5.4 

It is obvious that although the diffusivity of Ce
4+

 inside the MOF is large enough for fast 

diffusion of Ce
4+

 into the MOF, at reaction-diffusion equilibrium, when the reaction rate 

is high enough, the supply of diffusional flux of reactants will be consumed by the first 

few layers of catalysts close to the particle surface, leading to a sharp decrease of Ce
4+

 

concentration inside the MOF. The overall reaction rate is limited by diffusion of Ce
4+

 

into the MOF. This competition between reaction and diffusion to dictate the reactant 

distribution inside MOF particle can be represented by the unitless quantity  
 

   
 , where 

D is the diffusivity, k is the reaction rate constant and a is the radius of the MOF particle. 

With    , the diffusion is fast with respect to the reaction rate, the reactant will occupy 

the whole volume of the MOF particle and the reaction kinetics will resemble that of the 

homogeneous catalysts. When      applies, the diffusion is the limiting factor of the 

reaction, and the reactant will scarcely reach the core of the MOF particles. 

  As during the reaction, Ce
4+

 is continuously reduced to Ce
3+

, and the diffusion-reaction 

reached equilibrium during the first few minutes, it is reasonable to consider the sum  
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[Ce
3+

] + [Ce
4+

] to be constant inside the MOF, equaling to the initial concentration of 

Ce
4+

 in the solution. We can assume the Ce
3+

 and Ce
4+

 concentration has similar 

influence on the diffusivity of Ce
4+

, then the diffusivity of Ce
4+

 only depends on the total 

concentration of [Ce
3+

] + [Ce
4+

].  

  As already shown in the manuscript, this hypothesis can be evaluated by doing 

experiments with an initial concentration of both Ce
4+

 and Ce
3+

. The recorded kinetic 

data was fitted to the diffusion-reaction model and the diffusivities were calculated. 

Quantitatively, the dependence of diffusivity on the total concentration of [Ce
3+

] + [Ce
4+

] 

slightly deviates from the relationship we obtained in the previous experiments with pure 

[Ce
4+

] in the beginning. This deviation may be due to slight difference of the influence 

from [Ce
3+

] and [Ce
4+

]. 

Table 5.6 Diffusivities of Ce
4+

 in the presence of different Ce
3+

 concentrations in 11. 

Initial Ce
4+

 

concentration 

c0 (mM) 

Initial Ce
3+

 

concentration 

c0 (mM) 

Total 

concentration 

[Ce
3+

]+[Ce
4+

] 

Number of 

equivalents 

Q 

The rate of 

consumption 

of Ce
4+

 

catalyzed by 

MOF k0 

(min
-1

) 

Diffusivity  

D (×10
-12

 

cm
2
s

-1
) 

0.98 0 0.98 98 0.324 2.2 

1.11 1 2.11 111 0.201 0.68 

1.04 2 3.04 104 0.107 0.22 

1.00 3 4.00 100 0.100 0.22 

1.07 9 10.07 107 0.119 0.25 

5.12 Conclusions 
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We have constructed two porous and stable Zr-carboxylate MOFs (11 and 12) with 

elongated bpy- or ppy-containing dicarboxylate ligands (bpy-dc and ppy-dc) attached to 

the Cp*Ir moieties and studied their water oxidation activities. As a result of site isolation 

in the crystalline frameworks, these MOFs provided an interesting platform to study 

water oxidation pathways owing to the elimination of multi-molecular degradation 

pathways. Oxidative modification of the Cp* rings of the immobilized Ir complexes was 

observed with Ce
4+

 as an oxidant. Careful studies of the recovered 11 from WORs 

revealed the identity of (bpy-dc)Ir(H2O)2XCl (X is likely a formate or acetate group) as 

an active catalyst for water oxidation, which was supported by XPS, UV-Vis, 

luminescence, and infrared spectroscopies as well as detailed kinetic studies of Ce
4+

-

driven WORs. Although it is difficult to confirm the role of the original catalyst L9 itself 

as a WOC from our experiments, the modified (bpy-dc)Ir(H2O)2XCl species resulted 

from the oxidative degradation of Cp* groups must be an active WOC to account for 

water oxidation activity of the reused MOFs. A reaction-diffusion model was developed 

to describe the kinetics of the MOF-catalyzed WORs, revealing an intricate balance 

between reaction and diffusion rates that account for the partial oxidative degradation of 

L9 to form (bpy-dc)Ir(H2O)2XCl. This work thus not only highlights the importance of 

studying water oxidation pathways in organized assemblies that more closely resemble 

the WOCs in functional devices but also presents a general strategy of using MOFs to 

study catalytic mechanisms of molecular species by taking advantage of site isolation in 

MOF structures and the ease of isolating solid materials from reaction mixtures for 

further spectroscopic and other characterization. 

 



148 

 

REFERENCES 

(1) Wang, C.; Wang, J.-L.; Lin, W. J. Am. Chem. Soc. 2012, 134, 19895. 

 

(2) Barber, J. Chem. Soc. Rev. 2009, 38, 185. 

 

(3) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42, 1890. 

 

(4) Jiao, F.; Frei, H. Angew. Chem. Int. Ed. Engl. 2009, 48, 1841. 

 

(5) Nakagawa, T.; Bjorge, N. S.; Murray, R. W. J. Am. Chem. Soc. 2009, 131, 15578. 

 

(6) Ohno, T.; Bai, L.; Hisatomi, T.; Maeda, K.; Domen, K. J. Am. Chem. Soc. 2012, 134, 

8254. 

 

(7) Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; 

Nocera, D. G. Science 2011, 334, 645. 

 

(8) Youngblood, W. J.; Lee, S. H. A.; Kobayashi, Y.; Hernandez-Pagan, E. A.; Hoertz, P. 

G.; Moore, T. A.; Moore, A. L.; Gust, D.; Mallouk, T. E. J. Am. Chem. Soc. 2009, 131, 

926. 

 

(9) Zhang, F.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; 

Oishi, S.; Domen, K. J. Am. Chem. Soc. 2012, 134, 8348. 

 

(10) Zhao, Y.; Swierk, J. R.; Megiatto, J. D.; Sherman, B.; Youngblood, W. J.; Qin, D.; 

Lentz, D. M.; Moore, A. L.; Moore, T. A.; Gust, D.; Mallouk, T. E. Proc. Nat. Aca. Sci. 

2012, 109, 15612. 

 

(11) Moyer, B. A.; Meyer, T. J. Inorg. Chem. 1981, 20, 436. 

 

(12) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 

2008, 130, 16462. 

 

(13) Concepcion, J. J.; Tsai, M.-K.; Muckerman, J. T.; Meyer, T. J. J. Am. Chem. Soc. 

2010, 132, 1545. 

 

(14) Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. Nat. Chem. 2012, 4, 498. 

 

(15) Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; 

Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. 

 

(16) Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. 

Nat. Chem. 2012, 4, 418. 

 



149 

 

(17) Fillol, J. L.; Codolà, Z.; Garcia-Bosch, I.; Gómez, L.; Pla, J. J.; Costas, M. Nat. 

Chem. 2011, 3, 807. 

 

(18) Wasylenko, D. J.; Ganesamoorthy, C.; Borau-Garcia, J.; Berlinguette, C. P. Chem. 

Comm. 2011, 47, 4249. 

 

(19) Kärkäs, M. D.; Åkermark, T.; Johnston, E. V.; Karim, S. R.; Laine, T. M.; Lee, B.-

L.; Åkermark, T.; Privalov, T.; Åkermark, B. Angew. Chem. Int. Ed. Engl. 2012, 

51,11589. 

 

(20) Ellis, W. C.; McDaniel, N. D.; Bernhard, S.; Collins, T. J. J. Am. Chem. Soc. 2010, 

132, 10990. 

 

(21) McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 

2011, 133, 11446. 

 

(22) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S. J. Am. Chem. Soc. 

2007, 130, 210. 

 

(23) Blakemore, J. D.; Schley, N. D.; Balcells, D.; Hull, J. F.; Olack, G. W.; Incarvito, C. 

D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2010, 132, 16017. 

 

(24) Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein, O.; Brudvig, 

G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2009, 131, 8730. 

 

(25) Blakemore, J. D.; Schley, N. D.; Olack, G. W.; Incarvito, C. D.; Brudvig, G. W.; 

Crabtree, R. H. Chem. Sci. 2011, 2, 94. 

 

(26) Grotjahn, D. B.; Brown, D. B.; Martin, J. K.; Marelius, D. C.; Abadjian, M. C.; Tran, 

H. N.; Kalyuzhny, G.; Vecchio, K. S.; Specht, Z. G.; Cortes-Llamas, S. A.; Miranda-

Soto, V.; van Niekerk, C.; Moore, C. E.; Rheingold, A. L. J. Am. Chem. Soc. 2011, 133, 

19024. 

 

(27) Savini, A.; Belanzoni, P.; Bellachioma, G.; Zuccaccia, C.; Zuccaccia, D.; Macchioni, 

A. Green Chem. 2011, 13, 3360. 

 

(28) Hara, M.; Lean, J. T.; Mallouk, T. E. Chem. Mater. 2001, 13, 4668. 

 

(29) Hara, M.; Mallouk, T. E. Chem. Comm. 2000, 1903. 

 

(30) Hintermair, U.; Hashmi, S. M.; Elimelech, M.; Crabtree, R. H. J. Am. Chem. Soc. 

2012, 134, 9785. 

 

(31) Schley, N. D.; Blakemore, J. D.; Subbaiyan, N. K.; Incarvito, C. D.; D'Souza, F.; 

Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2011, 133, 10473. 

 



150 

 

(32) Parent, A. R.; Blakemore, J. D.; Brudvig, G. W.; Crabtree, R. H. Chem. Comm. 

2011, 47, 11745. 

 

(33) Parent, A. R.; Brewster, T. P.; De Wolf, W.; Crabtree, R. H.; Brudvig, G. W. Inorg. 

Chem. 2012, 51, 6147. 

 

(34) Zuccaccia, C.; Bellachioma, G.; Bolano, S.; Rocchigiani, L.; Savini, A.; Macchioni, 

A. Euro. J. Inorg. Chem. 2012, 1462. 

 

(35) Hong, D. C.; Murakami, M.; Yamada, Y.; Fukuzumi, S. Energy & Environ. Sci. 

2012, 5, 5708. 

 

(36) deKrafft, K. E.; Wang, C.; Xie, Z. G.; Su, X.; Hinds, B. J.; Lin, W. B. ACS Appl. 

Mater. & Interface 2012, 4, 608. 

 

(37) Ma, L.; Jin, A.; Xie, Z.; Lin, W. Angew. Chem. Int. Ed. Engl. 2009, 48, 9905. 

 

(38) Curtis, N. J.; Sargeson, A. M. J. Am. Chem. Soc. 1984, 106, 625. 

 

(39) Deeming, A. J.; Proud, G. P. J. Organo. Chem. 1986, 301, 385. 

 

(40) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 

2011, 133, 9274. 

 

(41) Crank, J. The Mathematics of Diffusion; 2nd ed.; Oxford University Press, 1975. 



 

 

Chapter 6 

Light-Harvesting Crosslinked Polymers for Efficient Photocatalysis 

6.1 Introduction 

The advancement of artificial photosynthesis heralds a promising and revolutionary approach 

toward green chemical transformations.
1-31

 In order to achieve artificial photosynthesis, it is 

important to design molecular systems that can not only act as antenna for photon capture but are 

also able to transfer the energies to the reaction centers to drive desired chemical 

transformations.
4-6

 Natural photosynthesis takes advantage of a wired network of chromophores 

and functional centers to facilitate energy and electron transfer within the system, leading to 

efficient conversion of sunlight energy to chemical potential stored in reactive chemical bonds.
7,8

 

Chemists have created a variety of macromolecular and supramolecular systems, including 

arrays of porphyrins and other chromophores,
9,10

 linear polymers,
11-13

 dendrimers,
14

 metal-

organic frameworks,
15,16

 bridged semiconducting nanoparticles,
17,18

 organogels and hybrid 

hydrogels,
19,20

 vesicles,
21

 and biomolecule-based assemblies,
22,23

 in order to mimic the energy 

and electron transfer processes in natural photosynthesis. Efficient collection of photons in the 

artificial systems can lead to the formation of charge-separated redox pairs or light harvesting 

species such as singlet oxygen.
24-27

 However, few of the reported antenna systems can effectively 

use the harvested energy to drive productive chemical reactions.
28

 

Organic transformations driven by visible light are gaining increasing interest from synthetic 

chemists, because of generally mild conditions for substrate activation, the ability to afford 

desired products without generating unwanted byproducts, and the potential to mediate 
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thermodynamically uphill reactions by harvesting energy from the sunlight.
29-33

 Photocatalysts 

are often required in visible light driven organic reactions since the majority of organic substrates 

in these reactions do not readily absorb photons in the visible region. [Ru(bpy)3]
2+

 (bpy = 2,2’-

bipyridine) is undoubtedly one of the most extensively studied photocatalysts since the 

pioneering work of Meyer and Whitten in the 1970s.
34

 By taking advantage of the long lifetime 

of the 
3
MLCT state of this Ru-based phosphor and its propensity to undergo redox quenching, a 

variety of new photocatalytic organic reactions, ranging from [2+2] cycloaddition to radical 

chemistry, have been developed recently.
29-33,35-43  

Stephenson et al and MacMillan et al also 

reported the use of an Ir complex, Ir(ppy)2(dtbbpy)PF6 (ppy = 2-phenylpyridine; dtbbpy =4,4’-di-

tert-butyl-2,2’-bipyridine), as a photoredox catalyst in tin-free dehalogenation, Aza-Henry 

reactions, and trifluoromethylation of aldehydes.
33,35,41,44

 Like other precious metal catalyzed 

reactions, it is highly desirable to develop recyclable and reusable heterogeneous photocatalytic 

systems based on the Ir and Ru phosphors. The ability to recover and reuse such heterogeneous 

photocatalysts can not only eliminate the contamination of organic products by trace amounts of 

heavy metals but also reduce processing and waste disposal costs in large scale reactions. 

Crosslinked polymers (CPs), including crystalline covalent-organic frameworks, can be built 

from well-designed organic precursors and represent a new class of robust, possibly nanoporous 

materials.
45-50

 Like their metal-organic framework (MOF) counterparts, CPs have shown great 

promise in gas storage and separation and light harvesting.
51

 Just like recently developed 

catalytic MOFs, CPs can serve as an ideal platform for incorporating molecular catalytic 

modules into highly stable, recyclable, and reusable heterogeneous catalyst systems by taking 

advantage of their unique solid state structure and the ability to tune their compositions and 

properties at the molecular level.
52

 CPs are advantageous over MOFs as photocatalysts since 
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many MOFs are constructed from metal connecting points with unfilled d orbitals which can 

readily quench the photoexcited states of the photocatalytic building units, although CPs do not 

possess as well-defined structure as MOFs do. In this chapter, I will describe successful 

incorporation of the Ru and Ir phosphors into robust CPs by three different reactions: 1) cobalt 

carbonyl-mediated trimerization of the end alkyne groups on the monomers;
50

 2) Pd-catalyzed 

Sonogashira coupling between end alkyne and aromatic bromide; 3) Cu-catalyzed Eglinton 

coupling of end alkynes. The resulting CPs are either porous or non-porous, but they all serve as 

highly active photocatalysts in catalyzing a range of different organic transformations. These CP 

photocatalysts can also be readily recycled and reused. 

 

6.2 Porous Crosslinked Polymers synthesized by cobalt carbonyl catalyzed trimerization of 

alkynes.
42 

 

6.2.1 Synthesis and characteriazation of crosslinked polymers  

As shown in Scheme 6.1, phosphorescent Ir monomer [(ppy)2Ir(debpy)]Cl (debpy =5,5’-

diethynyl-2,2’-bipyridine) and Ru monomer [(bpy)2Ru(debpy)]Cl2 were synthesized by allowing 

debpy to react with [Ir(ppy)2Cl2]2 and Ru(bpy)2Cl2 at 90 
o
C overnight, respectively. Co-

polymerization of the monomer [(ppy)2Ir(debpy)]Cl or [(bpy)2Ru(debpy)]Cl2 with tetra(4-

ethynylphenyl)methane was achieved through Co2(CO)8-mediated trimerization of the end 

alkyne groups of the monomers in dioxane or dichloroethane at 115 
o
C for 10 min (Scheme 6.1). 

The resulting brown solids were stirred in concentrated hydrochloric acid at r.t. for 2 h to remove 

all of the Co species, and then washed with various solvents to afford CP-1 and CP-2 in 97 % 

yields.  The CP-1 and CP-2 were characterized by thermogravimetric analysis (TGA), 

inductively coupled plasma-mass spectrometry (ICP-MS), infrared spectroscopy (IR), nitrogen 
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adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and 

powder X-ray diffraction (PXRD). 

       

  Scheme 6.1 Synthesis of CP-1 and CP-2. (Reprinted with permission from ref [42]. Copyright 

American Chemical Society 2011) 

Morphology of the CPs was examined by SEM and TEM (Figure 6.1a, 6.1b). Particles on the 

order of several micrometers in size displayed rather rough surfaces, and appear to be aggregates 

of much smaller particles with dimensions of around 10 nm. The PXRD patterns indicated that 

the CP-1 and CP-2 are amorphous in nature. 

The CP-1 and CP-2 are insoluble in water, concentrated acids, and all of the organic solvents 

tested. The PCPs are stable in air up to 350 
o
C as revealed by TGA (Figure 6.1c). The Ir and Ru 

catalyst loadings for CP-1 and CP-2 were determined by ICP-MS to be 4.5 wt % and 2.2 wt %, 

respectively. The absence of the carbon-hydrogen stretching peak of the C≡C-H group around 

3300 cm
-1

 in the IR spectra of the CP-1 and CP-2 suggested that most of the alkyne groups in 
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the starting materials have been consumed to form benzene rings in the PCPs, consistent with a 

high degree of polymerization (Figure 6.1d). 

Porosity of the CPs was revealed by nitrogen sorption measurements at 77 K. The CPs exhibit 

large reversible adsorptions at low pressure (P/P0<0.1) and hysteresis loops at higher pressure, 

suggesting the coexistence of micro- and meso-pores in the framework (Figure 6.1e). The BET 

surface areas were determined to be 1547 m
2
/g and 1348 m

2
/g for CP-1 and CP-2 in the 

P/P0=0.03-0.2 range, respectively. Both of the COFs have wide pore size distributions with the 

pore widths centering around 7.5, 11.0, 13.5 and 16.5 Å as calculated by the nonlocal density 

functional theory method (NLDFT).   
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Figure 6.1. Characterization of CP-1 and CP-2: (a) SEM and (b) TEM images of the Ir-COF.  

The scale bars represent 200 nm.  (c) TGA (d) FT-IR (e) nitrogen adsorption isotherms at 77K (f) 

emission spectra. The CP-1 emission spectrum (red line) was taken when excited at 380 nm. The 

broad emission at around 458.5 nm comes from fluorescence of the framework. The CP-2 

emission spectrum (blue line) was taken when excited at 450 nm. The broad emission at around 
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522.5 nm comes from fluorescence of the framework. (Reprinted with permission from ref [42]. 

Copyright American Chemical Society 2011) 

6.2.2 Photocatalysis with the crosslinked polymers  

With the Ir/Ru based phosphors covalently integrated into the skeletons, we hypothesized that 

the synthesized CPs can act as solid state photosensitizers by utilizing the 
3
MLCT states of the 

Ir/Ru complexes. Phosphorescence measurements were performed on a stirred suspension of the 

CPs in CH3NO2, showing peaks originating from 
3
MLCT  GS transitions, around 550 nm for 

the CP-1, and 602 nm for the CP-2 (Figure 6.1f). We intended to explore the utility of the CP-1 

and CP-2 in catalyzing visible light driven organic reactions such as the Aza-Henry reaction 

between nitromethane or nitroethane and aromatic tertiary amines. Before the catalysis test of the 

materials, a preliminary quenching experiment was carried out to confirm that the 
3
MLCT state 

of the phosphors in the CPs can be reductively quenched by the amine substrate, which is the 

very first step of the photocatalytic cycle of homogeneous aza-Henry reactions as proposed by 

Stephenson and co-workers.
35

 A Stern-Volmer plot for the CP-2 was obtained by plotting the 

intensity ratio I0/I at 602 nm vs the amine concentration, leading to a Stern-Volmer constant of 

23 M
-1

 which is comparable to that of the monomeric [(bpy)2Ru(debpy)]Cl2 complex (20 M
-1

). 

This result indicates effective quenching of the 
3
MLCT phosphorescence of the CP-2 by the 

amine. In the case of CP-1, the quenching effect was also observed but could not be quantified 

spectroscopically owing to the interference of the framework fluorescence (Figure 6.1f). The 

quenching result suggested that good photocatalytic performance of the CPs should be expected. 
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Table 6.1 Photocatalytic aza-Henry reactionsby CP-1 and CP-2 
a  

entry amine 

substrate 

product conv. (%) with different catalysts
b
 

Ir-M CP-1 Ru-M CP-2 

1
c 

1a 1b 99 94 85 90 

2
c 

2a 2b 99 97 84 87 

3
c 

3a 3b 81 91 90 >99 

4
c 

4a 4b 79 98 65 85 

5
d 

1a 5b 94 94 81 84 

6
d 

2a 6b 73 75 57 78 

7
d 

3a 7b 86 97 62 95 

8
d 

4a 8b 66 86 76 91 
a
All the reactions were run at room temperature for 8 h with 1 mol% Ir-based catalyst or 0.2 mol% Ru-based 

catalyst; 
b
Conversions were determined by integrating the 

1
H NMR spectra. Ir-M and Ru-M are Ir monomer 

[(ppy)2Ir(debpy)]Cl and Ru monomer [(bpy)2Ru(debpy)]Cl2, respectively;  
c
with nitromethane as solvent; 

d
with 

nitroethane as solvent. 

 

Catalytic activities of the CP-1 and CP-2 toward photocatalytic aza-Henry reaction were 

evaluated with tetrahydroisoquinoline (1a) as the amine substrate and CH3NO2 as solvent. The 

reaction was carried out in the presence of air with a common fluorescent lamp (26 W) as the 

light source. The reaction was stopped after 8 hours by filtering off the CP catalysts. Conversions 

of the reactions were determined by integrating the peaks of 
1
H NMR spectra of the crude 

reaction mixtures. As shown in Table 6.1 (entry 1), both the CP-1 and CP-2 are highly effective 

photocatalysts for the aza-Henry reaction between 1a and nitromethane with >90% conversions.  

These conversions are comparable to those of the homogeneous counterparts. We have also 
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explored the scope of substrates for this photocatalytic reaction (Table 6.1). The CP-1 and CP-2 

catalyzed aza-Henry reactions between nitromethane and a variety of tertiary aromatic amines 

with different functional groups (Table 6.1, Entries 1-4).  The CPs also catalyzed Aza-Henry 

reactions between nitroethane and tertiary aromatic amines (Table 6.1, Entries 5-8).  

Interestingly, most of the CP-catalyzed aza-Henry reactions have higher conversions than those 

catalyzed by their homogeneous counterparts.   

A number of control experiments were carried out to demonstrate the heterogeneous and 

photocatalytic nature of the reactions. The reaction of 1a in the dark yielded negligible amounts 

of aza-Henry products (<5%), demonstrating the necessity of light in this reaction. On the other 

hand, the background reaction in the absence of the catalysts but in the presence of light showed 

only around 10% conversions after 8 hours, verifying that the CPs played a catalytic role in the 

reactions. These observations are consistent with those for the homogeneous system reported by 

Stephenson and co-workers.
35

  In addition, a cross-over experiment was carried out to prove the 

heterogeneity of the CP catalyst. Substrate 1a was used in the CP-1 catalyzed aza-Henry 

reaction, and 94% conversion was achieved after 8 hours. The CP catalyst was then removed by 

filtering through Celite, and another substrate 3a was added to the supernatant solution. After 

stirring the solution under light for 8 hours, only 12% conversion was observed for the second 

substrate (3a). This low conversion, comparable to that of the background reaction with visible 

light but without a photocatalyst, proved that the supernatant of the CP-1 catalyst reaction 

mixture is inactive in photocatalysis.  This result supports the heterogeneous nature of the CP 

photocatalysts. 

We also demonstrated the applicability of the PCP photocatalysts in other photo-driven 

reactions.  As shown in Scheme 6.2, CP-2 efficiently catalyzed the α-arylation of 
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bromomalonate via direct intermolecular C-H functionalization as well as oxyamination of 3-

phenylpropanal, with comparable isolated product yields to those of the homogeneous control 

catalyst.  These results illustrate the generality of the CP materials in catalyzing photo-driven 

organic transformations. 

Scheme 6.2 CP-2 catalyzed α-arylation of bromomalonate and oxyamination of 3-

phenylpropanal. (Reprinted with permission from ref [42]. Copyright American Chemical 

Society 2011) 

We also examined recyclability and reusability of the CP catalysts. CP-1 and CP-2 were 

readily recovered from the reaction mixtures via simple filtration. The recovered catalyst showed 

no deterioration of conversion % after recycling 4 times. Furthermore, UV-Vis analysis of the 

supernatant showed no sign of Ir/Ru-complex leaching into the solution, proving the stability of 

the CPs under the reaction conditions.  This is further supported by the absence of Ir or Ru in the 

supernatants of the CP-catalyzed reaction mixtures by ICP-MS. 
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6.3 Non-Porous Crosslinked Polymers synthesized by Pd-catalyzed coupling reaction.
53

 

6.3.1 Synthesis and Characterization of Crosslinked Polymer  

The polymerization between the tetrahedral tetra(p-ethynylphenyl)methane and the linear 

dibromo compound, [Ru(bpy)2(dbbpy)]
2+

 or Ir[(bpy)2(dbbpy)]
+
, was realized through a Pd/CuI 

catalyzed Sonogashira cross-coupling reaction (Scheme 6.3). Based on the inductively coupled 

plasma mass spectrometry (ICP-MS) results, the resultant [Ru(bpy)3]
2+ 

and Ir[(bpy)2(bpy)]
+
-

based polymers (CP-3 and CP-4) possess exceptionally high Ru and Ir catalysts loadings of 76.3 

wt% and 71.6 wt%, respectively, very close to that of the stoichiometric polymer formulae (78.3 

wt% for CP-3 and 79.1% for CP-4). These phosphor loadings are exceptionally high when 

compared to the CP-1 and CP-2 in the previous section (2.2 wt% and 4.5 wt%, respectively).  

Similar Sonagashira coupling reactions were recently used by Cooper et al. to synthesize 

conjugated microporous polymers with metallo-complexes in the backbones.
47 

In their work, 

linear 1,4-dibromobenzene was added to the feed to achieve micro-porosity. It was found that 

increasing the amounts of the metallo-complexes drastically decreases the surface areas of the 

CPs, due to channel blocking by the bulky metallo-complexes. Since the CP-3 and CP-4 in our 

work contain stoichiometric amounts of the Ru and Ir complexes, they are nonporous with 

negligibly small BET surface areas of 2.9 m
2
/g and 2.7 m

2
/g, respectively (Figure 6.2a).

 
In 

comparison, the control polymer (CP-6) made by cross-coupling between dbbpy and tetra(p-

ethynylphenyl)methane gave a BET surface area of 333.6 m
2
/g (Figure 6.2a). 
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Scheme 6.3 Synthesis of CP-3, CP-4, CP-5, and CP-6. A TEM image of CP-3 is also shown. 

(Reprinted with permission from ref [53]. Copyright American Chemical Society 2012) 

Transmission electron microscopy (TEM) images (Scheme 6.3) showed that the CP-3 and 

CP-4 are composed of inter-connected nanoparticles of 100-200 nm in dimensions. The particles 

are stable up to 300 
o
C in air, as revealed by thermogravimetric analysis (TGA) (Figure 6.3d). 
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The crosslinked polymers are insoluble in water and all of the organic solvents tested. The high 

degree of polymerization is indicated by the IR spectra. The absence of the carbon-hydrogen 

stretching peak of the C≡C-H group around 3300 cm
-1

 suggested that most of the alkyne groups 

in the starting materials have been consumed in the coupling reaction (Figure 6.3c). 

6.3.2 Light Harvesting by Crosslinked Polymers: Photon Capture and Excited State 

Dynamics  

 

With such nonporous crosslinked polymer nanoparticles that contain stochiometric amounts 

of Ru and Ir dye molecules, we hypothesized that the nanoparticles can serve as light-harvesting 

antenna to collect energy and drive chemical reactions on the polymer surfaces. The phosphor 

molecules in the interior of the nonporous CP materials can readily absorb visible light to form 

3
MLCT excited states which can efficiently migrate to the particle surface.

 
Based on the molar 

extinction coefficient of CP-3 at 485 nm (Figure 6.3a), 90% of the light can reach the interior 

chromophoric centers for a nanoparticle with a size of 100 nm. The surface Ru and Ir phosphor 

molecules, which can either be excited directly by light or accept excited state energy from the 

phosphors in the interior of the polymer particle, will undergo photoredox reactions and initiate a 

cascade of chemical transformations in a catalytic cycle. Such a core-to-surface excited state 

transport process followed by a redox catalytic reaction on the surface renders all of the 

phosphors in the nonporous solid photoactive, akin to the light-harvesting processes in natural 

photosynthesis. A high choromophore concentration in the framework is essential for such 

effective light-harvesting, since the probability of Dexter-type energy migration between 

adjacent chromophores decays exponentially with the increased distance between them.  
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 Figure 

6.2 (a) Nitrogen sorption isotherms of CP-3 (blue), CP-4 (red) and CP-6(black) at 77K; (b) 

Smoothed steady-state emission spectra of CP-3 (red), 1.0 mol% Os-doped CP-3 (green), 4.7 

mol% Os-doped CP-3 (blue), 9.1 mol% Os-doped CP-3 (purple) and pure CP-5 (black); all of 

the spectra were taken while excited at 485 nm; (c) Decay transients measured at 630 nm (with 

445 nm excitation) for CP-3 (red), 1.0 mol% Os-doped CP-3 (green), 4.7 mol% Os-doped CP-3 

(blue) and 9.1 mol% Os-doped CP-3 (black); insert: plot of τ0/τ vs. Os doping levels. The 

emission decays in (c) were fit to bi-exponential expression A = A1e
-t/τ1

 +A2e
-t/τ2

. The reported 

lifetime τ is the weighted lifetime τ = (A1τ1
2
 + A2τ2

2
)/( A1τ1+ A2τ2). (d) Conversion % for the 

reactions between 1a and nitromethane catalyzed by different CP catalysts vs. the 

phosphorescent lifetimes of these catalysts. Reactions were run at r. t. for 8 hours, with 0.2 mol% 

catalyst loadings, ~5 cm in front of a 26 W fluorescent lamp. (Reprinted with permission from 

ref [53]. Copyright American Chemical Society 2012) 
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 Figure 

6.3 (a) UV-Vis absorption spectrum of CP-3 particles suspended in MeCN (b) Decay transient 

measured at 650 nm for CP-4 with excitation at 350 nm (red) and decay transient measured at 

830 nm for CP-5 with excitation at 444.2 nm (blue). IRF is Instrument Response Function for 

excitation at 444.2 nm (black). The emission decay was fit to bi-exponential expression A = A1e
-

t/τ1
 +A2e

-t/τ2
. The reported lifetimes are the weighted lifetimes τ = (A1τ1

2
 + A2τ2

2
)/( A1τ1+ A2τ2). 

Inset: steady state emission spectrum of CP-4 (excited at 440 nm). (c) FT-IR spectra of CP-3 

(black) and CP-4 (red). (d) TGA curves of CP-3 (black) and CP-4 (red). (Reprinted with 

permission from ref [53]. Copyright American Chemical Society 2012) 

To test the hypothesis of efficient excited state migration through the CP framework, we 

doped different amounts of [Os(bpy)3]
2+

 entities into CP-3 by copolymerization, and detected 

energy transfer from [Ru(bpy)3]
2+*

 to [Os(bpy)3]
2+

 by luminescence measurements. If efficient 

energy transfer from [Ru(bpy)3]
2+*

 to [Os(bpy)3]
2+

 can occur at relatively low [Os(bpy)3]
2+

 

loadings, the [Ru(bpy)3]
2+*

 excited states must have hopped from site to site before reaching the 
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[Os(bpy)3]
2+

 traps. Steady-state luminescence measurements indicated a dramatic increase of the 

[Os(bpy)3]
2+

 based emission at ~800 nm as the Os doping level increased from 0 to 9.1 mol% 

(Figure 6.2b). Deconvolution of the emission spectrum of the 9.1 mol% Os-doped CP-3 gave a 

value of 2.46 for the ratio of [Os(bpy)3]
2+

 to [Ru(bpy)3]
2+

 emission. Considering the different 

quantum yields and extinction coefficients of [Os(bpy)3]
2+

 and [Ru(bpy)3]
2+

 moieties in the 

framework [QY(Os)/QY(Ru) = 0.116 and ε(Os)485nm/ε(Ru)485nm = 0.538 were experimentally 

determined with the polymer built from 100% Os (CP-5) and 100% Ru (CP-3)], we concluded 

that 95% of the excited state energy on [Ru(bpy)3]
2+

 had migrated to the 9.1 mol% [Os(bpy)3]
2+

 

in the CP. The analysis is presented as following. 

 
Scheme 6.4 Energy transfer scheme in 9.1% Os-doped CP-3 sample. 

As shown in Scheme 6.4, N0 photons are absorbed by the CP during a given time. The ratio of 

the extinction coefficients between the Ru and Os cores (ɛ(Os)/ɛ(Ru)) in the structure is 0.537 as 

determined from pure CP-3 and CP-5 samples. The ratio of the concentration of Os [c(Os)] and 

Ru [c(Ru)] in the structure is 1/10. 

  Therefore the ratio of the amount of photons absorbed by Os sites (N2) and Ru sites (N1) is 

            N2 / N1 = [ɛ(Os)/ɛ(Ru)]×[c(Os)/c(Ru)]=0.537×0.1=0.0537   (Eq 6.1) 

And we know that  
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            N2 + N1 = N0                                                                         (Eq 6.2) 

From Eq S1 and Eq S2, we can obtain 

 N1= 0.949 N0          (Eq 6.3)  

             N2=0.051 N0          (Eq 6.4) 

The [Ru(bpy)3]
2+*

 excited state can get back to the [Ru(bpy)3]
2+

 ground state either by thermal 

relaxation (N12) or emissive transition (N11), or it can be quenched by [Os(bpy)3]
2+

 through 

[Ru(bpy)3]
2+*

 to [Os(bpy)3]
2+

 energy transfer (N3). The Os excited state can get back to the Os 

ground state by either thermal relaxation (N22) or emissive transition (N21). 

The amount of Os emission vs. Ru emission can be obtained from the deconvolution of steady-

state emission spectra of the sample (Figure 6.4). From the experimental data, we can obtain 2.46 

as the ratio of Os-component to Ru-component, so 

N21 / N11 =2.46              (Eq 6.5) 

We can also measure the ratio of quantum yields (QYs, in the absence of any quencher) of 

[Os(bpy)3]
2+

 vs [Ru(bpy)3]
2+

 inside the CP. Using the pure CP-3 and CP-5 polymers, The 

QY(Os)/QY(Ru) value is determined experimentally to be 0.116. 

That is 

           QY(Os) / QY(Ru) = [N21/(N2+N3)] / [N11/(N1-N3)] = 0.116      (Eq 6.6) 

Using Eq 6.1 to Eq 6.6, we can obtain 

N3 = 0.904 N0 

So the efficiency of energy transfer from Ru to Os in this polymer network is  

(N3/N1) × 100% = 95.2% 
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600 800
wavelength nm

 9.1% Os-doped CP-3

 Ru_component

 Os_component

 residue

 
Figure 6.4. Deconvolution of emission spectra from 9.1% Os-doped CP-3 sample (black) to the 

Ru-component (red) and the Os-component (blue), and the residue after the deconvolution 

(green). The ratio of the areas of the Os-component and Ru-component is 2.46.  (Reprinted with 

permission from ref [53]. Copyright American Chemical Society 2012) 

This analysis indicates efficient excited state migration, which was also evident in the steady-

state emission spectra of 1.0 mol% and 4.7 mol% Os-doped CP-3s. Quantitative analyses were 

less reliable for these systems due to incompatibly disparate Os and Ru emission intensities. The 

efficient energy transfer from [Ru(bpy)3]
2+*

 to [Os(bpy)3]
2+

 was confirmed by time-resolved 

emission measurements of Os-doped CP-3s taken at 630 nm [λmax for the [Ru(bpy)3]
2+

 

emission]. The averaged lifetime of the 630 nm emission steadily decreased as the Os doping 

level increased (Figure 6.2c), consistent with an increasing level of energy transfer from 

[Ru(bpy)3]
2+* 

to [Os(bpy)3]
2+

. 

6.3.3 Photocatalysis with CP-3 

We then examined the photocatalytic activity of the CP-3 particles, using the aza-Henry 

reaction as a test reaction. The reaction between tetrahydroisoquinoline derivatives 1a-3a (Table 
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6.2) and nitromethane or nitroethane were carried out in air with a common fluorescent lamp (26 

W) as the light source. As shown by the 
1
H-NMR-determined reaction conversions in Table 6.2, 

the CP-3 is a highly effective photocatalyst for all the six reactions with 88% to >99% 

conversions at 0.2 mol% CP-3 loadings. These conversions are higher than those of the 

homogeneous counterparts (Table 6.2). The efficient photocatalytic aza-Henry reactions are 

supported by high isolated yields of 77% and 74% for 1b and 2b, respectively. Control 

experiments were carefully carried out to demonstrate the photocatalytic and heterogeneous 

nature of the reactions (Table 6.3). Reactions in the absence of either light or the catalysts 

showed zero or simply background conversions. The reaction supernatant after removing the CP 

was also proved to be inactive by a substrate crossover experiment. Substrate 3a was used in the 

CP-3 catalyzed aza-Henry reaction, and a complete conversion was achieved in 8 h. The CP-3 

catalyst was then removed by filtering through Celite, and the second substrate 1a was added to 

the filtrate. After stirring the solution under light for 8 h, only 11% conversion was observed for 

1a. This low conversion, comparable to that of the background reaction, proved that the 

supernatant of the reaction mixture is inactive in photocatalysis. In addition, ICP-MS studies 

showed very little Ru leaching (<0.3%) to the solution during the reaction. The CP-3 was also 

easily recovered from the reaction mixture by centrifugation, and reused four times without loss 

of activity (Table 6.3). 

Table 6.2. Photocatalytic aza-Henry reactions with CP-3
a  
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entry 
amine 

substrate 
product 

conv. (%) with different catalysts
b
 

CP-3 Ru-M 

1
c
 1a 1b 97 85 

2
c
 2a 2b >99 84 

3
c
 3a 3b >99 90 

4
d
 1a 5b 94 81 

5
d
 2a 6b 88 57 

6
d
 3a 7b >99 62 

a
All the reactions were run at r.t. for 8 h with 0.2 mol% catalyst; 

b
Conversions were determined by integrating 

the 
1
H NMR peaks. Ru-M is [(bpy)2Ru(debpy)]Cl2 (debpy=5,5’-diethynyl-2,2’-bipyridine), which models the Ru 

phosphor in the CP; 
c
with nitromethane as solvent; 

d
with nitroethane as solvent. 

 

Table 6.3 Control experiments and catalyst reuse for photocatalytic aza-Henry reactions
a
 

entry Condition Substrate Conversion (%)
b
 

1 No light, CP-3 1a < 5 

2 No catalyst 1a 10 

3 No catalyst 2a 11 

4 No catalyst 3a 19 

5 CP-6 1a 36 

6 CP-6 2a 29 

7 CP-3 (1st re-use) 1a 97 

8 CP-3 (2nd re-use) 1a 94 

9 CP-3 (3rd re-use) 1a 96 

10 CP-3 (4th re-use) 1a 92 
a
 Reactions were run at r. t. for 8 hours, with 0.2 mol% catalyst loadings, ~5 cm in front of a 26 W fluorescent 

lamp. 
b 
Conversions were determined by 

1
H NMR. 

 

We also demonstrated the applicability of nonporous CP-3 in other light-driven reactions. At 

1 mol% loading, CP-3 efficiently catalyzed aerobic oxidative coupling of a series of primary 

amines
37,40

 with 84% to 99% conversions in 1 h (Table 6.4, entries 1-3), again comparable to that 

of the homogeneous catalyst. The isolated yield for 1d was 88%. The recyclability and 

reusability of the CP-3 catalyst was also evaluated for this reaction. The recovered catalyst after 

simple filtration was reused three times, showing no deterioration in conversion% (Table 6.4). 

Similarly, a visible light driven dehalogenation of benzyl bromoacetate
32

 catalyzed by 1 mol% 

CP-3 catalyst also gave complete substrate transformation in 8 h, with an isolated yield of 84% 

(Table 6.5). 

Table 6.4. Photocatalytic aerobic oxidative coupling of amines by CP-3 
a
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Entry Catalyst substrate conversion%
 b

 

1
 

CP-3 1c 99 

2 CP-3 (1st reuse) 1c 99 

3 CP-3 (2nd reuse ) 1c 99 

4
 

CP-3 2c 95 

5
 

CP-3 3c 84 

6
 

Ru(bpy)3Cl2 1c 97 

7 CP-6 1c 8 

8
c 

No catalyst 1c <5 

9
d 

CP-3 1c <5 

10
d 

Ru(bpy)3Cl2 1c <5 
a
All the reactions were run at 60 

o
C for 1 h with 1 mol% CP-3 at a distance of ~10 cm from a 450 W Xe lamp; 

b
Conversions were determined by integrating the 

1
H NMR peaks; 

c
without photocatalyst; 

d
without light. 

 

Table 6.5 Photocatalytic dehalogenation of benzyl bromoacetate by CP-3
 a
 

 

a
 Reactions were run at r. t. for 8 h with 1 mol% Ru-based catalyst; 

b 
Conversions were determined by 

1
H NMR. 

 

The nonporous nature of CP-3 indicates that only a very small fraction of [Ru(bpy)3]
2+

 

phosphors are at or near the surface and accessible to the organic substrates. The reason why CP-

3 still exhibits extremely high photocatalytic activity can only be explained by the fact that Ru 

Entry Catalyst Conversion %
 b
 

1 CP-3 >99 

2 Ru(bpy)3Cl2 >99 

3 No catalyst 8 

4 CP-6 27 
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phosphors embedded in the core of CP-3 can serve as antenna to harvest light energy and the 

excited states generated at the interior of the material can easily migrate through the framework 

and reach the surface active sites (Scheme 6.5). 

Catalysis results using Os-doped CP-3 and CP-5 support the light-harvesting nature of these 

photocatalytic reactions. Aza-Henry reaction between 1a and CH3NO2 was employed to probe 

the photocatalytic activity of Os-doped CP-3s. The 4.7 mol% Os-doped CP-3 gave only 45% 

conversion of the substrate after reactions of 8 hours, compared to 97% conversion catalyzed by 

the CP-3 under identical conditions. The 9.1 mol% Os-doped CP-3 catalyst further decreased the 

conversion to 37%. Interestingly, although the homogeneous Os(bpy)3(PF6)2 catalyst gave a 

complete conversion of 1a under the same reaction conditions, the CP-5 gave 13% conversion, 

which is only slightly above that of the background reaction (10%). The drastically different 

behavior of CP-5 compared to its CP-3 counterpart indicates that the [Os(bpy)2(dbbpy)]
2+*

 

excited state cannot effectively migrate in the CP-5 framework. This is consistent with the much 

shorter lifetime of CP-5 (τ=17 ns, Figure 6.3b), which translates to less time and shorter distance 

the [Os(bpy)3]
2+*

 excited state can travel. In the Os-doped CP-3 catalyzed reactions, the 

[Ru(bpy)3]
2+*

 excited states generated in the interior of the solid may transfer energy to the 

[Os(bpy)3]
2+

 traps before migrating to the solid surface to drive redox reactions. In both cases, 

the low activities of the CP-5 and the Os-doped CP-3s can be explained by the inability of the 

excited states to reach the polymer surface, supporting the role of core-to-surface excited state 

migration in the CP photocatalysis. 



173 

 

Scheme 6.5 Schematic representation of core-to-surface excited state transport in CP-3 catalyzed 

photoreactions. (Reprinted with permission from ref [53]. Copyright American Chemical Society 

2012) 

We also tested the photocatalytic activity of CP-4 using the aza-Henry reaction. As a result of 

the core-to-surface excited state migration, the CP-4 also serves as an active photocatalyst with 

55%, 54%, and 99% conversions in 8 hours for reactions between nitromethane and 1a, 2a, and 

3a, respectively. (Table 6.6). Except for substrate 3a, the conversions of the reactions catalyzed 

by CP-4 are significantly lower than that of the CP-3 catalyzed reactions, which is consistent 

with the shorter lifetime of the CP-4 (τ=97.5 ns, Figure 6.3b) than the CP-3 counterpart (τ=166.5 

ns). An empirical linear relationship was obtained by plotting the conversions of reactions 

between 1a and nitromethane catalyzed by different CP catalysts against the phosphorescent 

lifetimes of those catalysts (the catalysts include CP-3, CP-4, 4.7% Os-doped CP-3, 9.1% Os-

doped CP-3, CP-5, see Figure 6.2d). Such correlation between photochemical activity and 
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excited state lifetime in CPs, which is absent in homogeneous molecular catalytic systems,
35

 

provides additional evidence for the core-to-surface excited state transport mechanism of these 

highly active CP photocatalysts. 

Table 6.6 Photocatalytic aza-Henry reactions
a
 using CP-4 and homogeneous Ir complex (Ir-M) 

as photocatalysts 

 

 

 

 

entry Condition substrate Conversion (%)
b
 

1 CP-4  1a 55 

2 CP-4 2a 54 

3 CP-4 3a >99 

4 Ir-M 1a 99 

5 Ir-M 2a 99 

6 Ir-M 3a 81 
a
 Reactions were run at r. t. for 8 hours, with 0.2 mol% catalyst loadings, ~5 cm in front of a 26 W fluorescent 

lamp. 
b 
Conversions were determined by 

1
H NMR. Ir-M is [(ppy)2Ir(debpy)]Cl which models the Ir phosphor in the 

CP. 

 

In an additional control experiment, we observed that photocatalytic reactions with CP-6 

(without the metallo-phosphor) gave slightly higher conversions than corresponding background 

reactions. For example, in the aza-Henry reactions with nitromethane, CP-6 gave conversions of 

36% and 29% for 1a and 2a, in comparison to the background conversions of 10% and 11% 

(Table 6.3). In the aerobic oxidative coupling of 1c, CP-6 gave a conversion of 8% in 

comparison to <5% for the background reaction (Table 6.4). CP-6 gave a conversion of 27% in 

the dehalogenation reaction, as compared to the 8% conversion for the background reaction. We 

thus believe that the antenna effect of the framework, through either sensitizing 
3
MLCT 
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excitation of the [Ru(bpy)3]
2+

 phosphor or directly activating the substrates, also contributes to 

the excellent photocatalytic activities of CP-3. 

6.4 Crosslinked Polymers synthesized by Cu-catalyzed coupling reaction.
54

 

6.4.1 synthesis and characterization of crosslinked polymers 

4,4'-bis[tri(isopropyl)silylethynyl]-2,2'-bipyridine was prepared by a Pd-catalyzed Sonogashira 

reaction between 4,4’-dibromo-2,2’-bipy
55

 and [tri(isopropyl)silyl]acetylene in 93% yield. 4,4'-

bis[tri(isopropyl)silylethynyl]-2,2'-bipy was treated with [Ru(DMSO)4Cl2] in DMF at 140 
o
C for 

8 h to give bis{[4,4'-bis(triisopropyl)silylethynyl]-2,2'-bipy}ruthenium dichloride in 83% 

isolated yield,
56

 which was converted to Ru{[4,4'-bis(triisopropyl)silylethynyl]-2,2'-bipy}2(2,2'-

bipy)Cl2 (TIPS-Ru-1) in 73% yield by treating with 2,2'-bipy. Removal of the tri(isopropyl)silyl 

(TIPS) groups with tetrabutylammonium fluoride (TBAF) gave Ru[4,4'-bis(ethynyl)-2,2'-

bipy]2(2,2'-bipy)(NO3)2 (Ru-1) in 60% isolated yield. The regioisomers with ethynyl groups in 

the 5,5'-positions of the bipy ligands, Ru{[5,5'-bis(triisopropyl)silylethynyl]-2,2'-bipy}2(2,2'-

bipy)Cl2 (TIPS-Ru-2) and Ru[5,5'-bis(ethynyl)-2,2'-bipy]2(2,2'-bipy)(NO3)2 (Ru-2) were 

similarly synthesized starting from 5,5'-dibromo-2,2'-bipy
57

 in 58% and 23% overall yield, 

respectively (Scheme 6.6). All of the compounds were purified by silica gel chromatography and 

characterized by 
1
H and 

13
C NMR spectroscopy and electrospray ionization-mass spectrometry. 

The 
1
H NMR spectra of Ru-1 and Ru-2 both showed a pair of closely spaced singlets at 

approximately δ 4.35 ppm and 4.07 ppm for the terminal alkynyl protons, respectively. These 

chemical shifts have moved downfield as a result of coordination to the Ru centers when 

compared with the chemical shift of ~δ 3.2 ppm for the alkynyl protons of free bipy 

derivatives.
58

 The monomers Ru-1 and Ru-2 are readily soluble in polar solvents such as MeOH, 

CH3CN, and H2O.  
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Scheme 6.6. Synthesis of Ru(bipy)3
2+

-based crosslinked polymers CP-7 and CP-8. (Reprinted 
with permission from ref [54]. Copyright American Chemical Society 2012) 

Oxidative Eglinton coupling reactions of the two regioisomeric tetra(ethynyl) derivatives of 

Ru(bpy)3
2+

 were carried out with the CuCl/N,N,N’,N’-tetramethylethylenediamine catalyst under 

an oxygen atmosphere in acetonitrile at 35 
o
C for 0.5 h.

59
 The resulting solids were washed with 

pyridine, methanol, water, and dried in vacuo to afford CP-7 and CP-8  in 95% and 91% yield, 

respectively. Both CP-7 and CP-8 are black-red amorphous powders that are insoluble in 

common organic solvents such as DMF, H2O, CH3CN, and resistant toward acids and bases. CP-

7 and CP-8 were characterized by inductively coupled plasma mass spectroscopy (ICP-MS), 
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Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen 

adsorption, and transmission electron microscopy (TEM). 
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Figure 6.5 FT-IR spectra of Ru-1, Ru-2, CP-7 and CP-8. (Reprinted with permission from ref 

[54]. Copyright American Chemical Society 2012) 

Based on the ICP-MS results, CP-7 and CP-8 possess exceptionally high [Ru(bpy)3]
2+

 

loadings of 91.0±5.0 wt% and 89.6±5.0 wt%, respectively, close to that of the stoichiometric 

polymer formulae (87.0 wt%). Compared to previously reported [Ru(bpy)3]
2+

-containing porous 

CPs (2.2-4.5 wt%),
42

 the phosphor loadings in CP-7 and CP-8 have drastically increased as a 

result of support-less single component homocoupling reactions. The high concentrations of 

[Ru(bpy)3]
2+

 dyes in the structures can not only enhance visible light absorption but also 

facilitate excited state migration in the CP networks through Dexter triplet to triplet energy 

transfer. The degree of polymerization is indicated by the IR spectra. IR spectra of monomers 

Ru-1 and Ru-2 showed a diagnostic absorption of carbon-hydrogen stretching peak of the C≡C-

H group at about 3180 cm
-1

 and 3200 cm
-1

, respectively (Figure 6.5). These peaks are mostly 

absent in the IR spectra of the CPs, indicating that most of the terminal alkyne groups in the 
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monomers have been consumed in the oxidative Eglinton coupling reactions. The particles are 

stable up to 200 
o
C in air, as revealed by TGA, which is consistent with previously reported CPs 

polymers based on butadiyne linkages.
60
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Figure 6.6 Nitrogen sorption isotherms of CP-7 and CP-8 in at 77 K. (Reprinted with 

permission from ref [54]. Copyright American Chemical Society 2012) 

The porosity of the CPs was investigated by nitrogen sorption measurements at 77 K. CP-7 

exhibits a BET surface area of 198 m
2
/g whereas CP-8 shows a negligible BET surface area of 

15 m
2
/g (Figure 6.6). These surface areas are significantly lower than the CPs based on 

tetrakis(4-ethynyl-phenyl)methane.
60,61

 We attributed the low porosity of CP-7 and CP-8 to the 

bulky groups of the [Ru(bpy)3]
2+

 complexes in the polymer networks, which is known to reduce 

the porosity of CPs.
47

  The TEM sample was prepared by first dispersing the CPs in methanol, 

and then placing them on carbon-coated Cu/Ni grids. TEM images of both CP-7 and CP-8 

showed that they are aggregates of spherical nanoparticles of ~100 nm in diameter (Figure 6.7). 
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Figure 6.7 TEM images of CP-7 (a) and CP-8 (b) on a carbon-coated Cu/Ni grid. (Reprinted 
with permission from ref [54]. Copyright American Chemical Society 2012) 

 

Figure 6.8 Steady-state absorption spectra of stirred suspensions of CP-7 and CP-8 in CH3CN 

(0.74 mg/50 mL) and dilute solutions of Ru-1 and Ru-2 in CH3CN (2×10
-5

 M). Absorption 

spectra of Ru-1 and Ru-2 are on a reduced scale (× 0.2). (Reprinted with permission from ref 

[54]. Copyright American Chemical Society 2012) 

CPs built from [Ru(bpy)3]
2+

 complexes act as insoluble but dispersible photosensitizers by 

taking advantage of redox-active 
3
MLCT excited states of the chromophores. Steady-state UV-

vis absorption and emission spectra and time-resolved phosphorescence spectra were recorded 

with a stirred suspension of CP-7 or CP-8 in CH3CN and dilute solutions of Ru-1 and Ru-2 
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monomers in CH3CN (2×10
-5

 M). They all showed a broad absorption between 300-800 nm with 

two or three additional discernible absorption bands (Figure 6.8). For CP-7, the absorption peak 

at ~294 nm is assigned to the * bipy ligands in the [Ru(bpy)3]
2+

 whereas the peak at ~493 

nm is attributed to the metal-to-ligand charge transfer (
1
MLCT) transition. Compared with Ru-1 

amd Ru-2, the 
1
MLCT peaks in CPs 1 and 2 became broadened and showed a slight red-shift, 

which is beneficial to absorbing the solar radiation. In the steady-state phosphorescence spectra, 

the emission maximum λmax centered at 705 nm for CP-8 and at 696 nm for CP-8 (Figure 6.9). 

Interestingly, the phosphorescence maximum λmax of CP-7 exhibited obviously red shift in 

comparison with monomer Ru-1 owing to the increased effective conjugation length of ligands 

in CP-7 and aggregation of CP-7 in the particle. The phosphorescence lifetimes of the CPs were 

measured using an Edingburgh FLS 920 in the time-correlated photon counting mode. When 

excited at ~ 440 nm, the decays of monomers Ru-1 and Ru-2 and CP-7 were well fitted with a 

mono-exponential model, leading to emission lifetimes of 962 ns, 574 ns, and 423 ns, 

respectively (Figure 6.10). The emission decay of CP-8 was fitted with a double-exponential 

model to give an averaged lifetime of 112 ns, indicating a much shorter-lived 
3
MLCT 

phosphorescence. The broad absorption bands together with relatively long excited state 

lifetimes of the CPs make them good candidates as heterogeneous photocatalysts. 
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Figure 6.9 Steady-state phosphorescence spectra of stirred suspensions of CP-7 and CP-8 in 

CH3CN (0.74 mg/50 mL) and dilute solutions of Ru-1 and Ru-2 in CH3CN (2×10
-5

 M). 

(Reprinted with permission from ref [54]. Copyright American Chemical Society 2012) 

Figure 6.10 Time-resolved phosphorescence decays of CP-7 and CP-8 and monomers Ru-1 and 

Ru-2 (excitation: 440 nm; emission: 660 nm). (Reprinted with permission from ref [54]. 

Copyright American Chemical Society 2012) 

6.4.2 Photocatalysis with CP-7 and CP-8 

We examined the photocatalytic activities of the CP particles, using the aza-Henry 

reaction,
35,62

 aerobic oxidative coupling of amine,
37

 and dehalogenation of benzyl bromoacetate
32

 

as representative reactions. CP-7 and CP-8 exhibited high photocatalytic activities in these 
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reactions. Aza-Henry reactions between tetrahydroisoquinoline derivatives 1a-3a and 

nitromethane were carried out in air for 8 h with 0.2 mol% of CPs as the catalysts and a common 

fluorescent lamp (26 W) as the light source, in a similar fashion as those reported previously.
45

 

As shown in Table 6.7, the conversions of the reactions were calculated based on the 
1
H-NMR 

peak integrations of the crude products. After filtering off the CP catalysts, the solvents were 

removed and the crude products were analyzed by 
1
H-NMR. The integrations of peaks of the 

featured protons in the products (about δ 5.5 ppm) and those of the corresponding starting 

materials (about δ 4.4 ppm) were used in the calculation. CP-7 gave a slightly higher conversion 

(94% for 1a with the phenyl substituent, 96% for 3a with the para-methoxylphenyl substituent, 

and 99% for 2a with the para-bromophenyl substituent) than CP-8 (92% for 3, 96% for 5, and 

94% for 2a). Notably, these conversions are slightly higher than those catalyzed by other Ru- or 

Ir-based crosslinked polymers in the precious section.
42

 Moreover, aza-Henry products were 

isolated in very high yields after purification by chromatography (Table 6.7).We found that the 

isolated yields for these CP-catalyzed reactions are comparable to those of the homogeneous 

systems even though we reduced the reaction time (avg. 16 h to 8 h) and catalyst loading (1 

mol% to 0.2 mol%) in these heterogeneous photocatalytic reactions. We have also carried out 

several control experiments to further investigate the details of these heterogeneous 

photocatalytic reactions. For example, the conversions and isolated yields afforded by CP-7 and 

CP-8 are higher than those of the monomer homogeneous catalysts (TIPS-Ru-1 and TIPS-Ru-

2). Ru-1 and Ru-2 are unstable and will polymerize under the photocatalytic reaction conditions 

and could not be used as control homogeneous catalysts. Moreover, low conversions (< 20%) 

were detected in the absence of either light or the catalyst, indicating the photocatalytic nature of 

these reactions. We have also recycled and reused the CP catalysts. CP-7 was easily recovered 



183 

 

from the reaction mixture by filtration, and could be re-used for at least three times. ICP-MS 

studies showed very little Ru leaching (<0.5%) to the supernatant after these photocatalytic 

reactions. The recovered solid CP catalysts showed only slight decrease in conversions and 

isolated yields of aza-Henry products. 

Table 6.7 Photocatalytic aza-Henry reactions using CP-7 and CP-8 as catalysts.
a 

 

Compds Catalyst Conversion%
b
 Isolated yield%

c
 

1a CP-7 94 85 

1a  TIPS-Ru-1 91 76 

2a CP-7 99 89 

2a CP-7 (2
nd

-use) 91 85 

2a CP-7 (3
rd

-use) 90 80 

2a CP-7 (4
th

-use) 87 76 

3a CP-7 96 90 

1a CP-8 92 81 

1a TIPS-Ru-2 90 77 

2a CP-8 94 83 

3a CP-8 96 82 
a
All of the reactions were carried out at room temperature with 0.2 mol% ratio catalyst for 8 h with a 26 W 

fluorescent lamp; 
b
converisions were determined by integrating the 

1
H NMR peaks;

 c
isolated yields were calculated 

based on pure products after column chromatography. 

 

We further examined the scope of reactions catalyzed by the CPs. As shown in Table 6.8, 

aerobic oxidative coupling of a series of primary amines were also efficiently catalyzed at 1 

mol% CP catalyst loadings with a 450 W Xe lamp. The conversions of various substrates 

catalyzed by the CPs were calculated based on the integration of the 
1
H-NMR peaks of the 

featured protons in the products and those of the corresponding starting materials. Nearly 

complete conversions (99%) of all the three substrates were observed with CP-7 as photocatalyst, 
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which compare favorably with the monomer control catalyst. In contrast, the conversions for 

CP-8 were highly dependent on the substrates (99% for benzylamine, 76% for p-

methylbenzylamine, 67% for p-methoxylbenzylamine). Moreover, low conversions (< 5%) were 

obtained in the absence of either light or the catalysts, confirming the photocatalytic role of the 

CPs. We have also determined the yields of oxidative coupling products by gas chromatography 

(GC) with n-undecane as the internal standard. The GC yields were slightly lower than the 
1
H-

NMR conversions, but they both showed the same trends. We believe that some of the starting 

materials were consumed to form other byproducts that were not detected by GC.  We also 

demonstrated that the photocatalyst CP-7 could be readily recovered and reused twice for all 

these three substrates with only slight decrease of the conversions and yields. 

Table 6.8 Photocatalytic aerobic oxidative coupling reactions using CP-7 and CP-8 as catalysts. 

 

Compds Catalyst Conversion %
b
 GC yield% 

1c CP-7  99 93 

2c  CP-7   99 88 

2c CP-7 (2
nd

-use) 99 85 

2c CP-7 (3
rd

-use) 97  84 

3c CP-7 99 87 

1c CP-8 99 88 

2c CP-8 76 52 

3c  CP-8 67  51 

1c TIPS-Ru-2 99 89 

2c TIPS-Ru-2 97 87 

      3c TIPS-Ru-2          90 79 
a
All of the reactions were done at 60 

o
C for 1 h with 1mol% catalyst under a 450 W Xe lamp; 

b
Converisions were 

determined by integrating the 
1
H NMR peaks. 

The photocatalyzed reductive dehalogenation reaction was also examined using the CP 

photocatalysts (Scheme 6.7). Benzyl bromoacetate was chosen as the substrate and a 26 W 
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fluorescent lamp was used as the light source. Benzyl bromoacetate was completely converted to 

benzyl acetate with 1 mol% loadings of photocatalyst CP-7 or CP-8 based on 
1
H NMR spectra. 

These results have been corroborated with high isolated yields of the benzyl acetate (92% for 

CP-7 and 86% for CP-8).  A control reaction in the absence of the CPs gave <10% conversion. 

The CP photocatalyst could also be recovered and reused without significant decrease in 

conversions and yields. 

 

Scheme 6.7 Photocatalytic dehalogenation of benzyl bromoacetate using CP-7 and CP-8 as 

catalysts. (Reprinted with permission from ref [54]. Copyright American Chemical Society 

2012) 

The almost nonporous nature of Ru-based CPs indicates that only a small fraction of 

[Ru(bpy)3]
2+

 chromophores is at or near the surface and is accessible to the organic substrates. 

The reason why such nonporous heterogeneous crosslinked polymers still exhibit extremely high 

photocatalytic activity can again be explained by efficient excited state migration among the 

chromophore framework just like in Section 6.3. The interior [Ru(bpy)3]
2+

chromophores of the 

crosslinked polymers can be excited by light, and the generated excited states can migrate among 

the chromophore networks through Dexter triplet to triplet energy transfer, finally reaching the 

reactive sites of the polymer surface to drive redox reactions.
63

 We suggested that Ru 

chromophores in the interior of the polymers can effectively serve as light harvesting antenna to 

collect photon energy and transfer them to the reactive sites, which is dominant and much faster 

compared to the reversed process of excited state migration from the surface to the interior of the 

polymers. The Ru chromophores on the surface can either be directly excited by light or accept 
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excited state energy from the interior of the polymer particle to form the 
3
MLCT states and then 

undergo redox reactions to initiate the photocatalytic cycle.
16

 Such a light-harvesting 

phenomenon was recently unambiguously demonstrated by Lin et al. in [Ru(bpy)3]
2+

-derived 

MOFs.
15

 

6.5 Conclusions 

Ir and Ru phosphors have been successfully integrated into porous crosslinked polymers and 

extremely high chromophore loadings via cobalt catalyzed alkyne trimerization, Sonogashira 

cross-coupling reactions and Eglinton alkyne homocoupling. The resultant framework materials 

are stable in various solvents, including concentrated hydrochloric acid, and are thermally and 

oxidatively stable in air up to 350 
o
C. These phosphorescent Ir- and Ru-based CPs were shown to 

be highly active, recyclable and reusable heterogeneous photocatalysts in Aza-Henry reactions 

aerobic amine coupling, and a variety of different organic transformations.  

Interestingly, the very high catalytic activities were not only observed with porous CPs but also 

with nonporous CPs as well. The activities of the nonporous CPs result from their light-

harvesting ability, which allows collection of photons by exciting the 
3
MLCT states of the 

phosphors via framework sensitization and migration of the excited states to the particle surface 

to drive the redox catalysis. This light-harvesting mechanism was supported by steady-state and 

time-resolved emission data as well as the reduced catalytic activities of and Os-doped Ru-CPs. 

The work illustrates the potential for designing highly efficient photocatalysts based on light-

harvesting crosslinked polymers. 
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