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ABSTRACT
LEILA DENISE ALVES FERREIRA AMORIM: ESTIMATING
TIME-VARYING TREATMENT EFFECT FOR RECURRENT
CHILDHOOD DISEASES.
(Under the direction of Dr. Jianwen Cai and Dr. Donglin Zeng.)

Many medical studies involve the occurrence of recurrent events, such as times to
opportunistic infections among AIDS patients. In particular, this doctoral research
has been motivated by the need for analyzing the effect of vitamin A supplementation
on recurrent diarrheal episodes from a randomized community trial conducted in a
cohort of 1,240 children, aged 6-48 months at baseline, in Brazil. Rate models have
been used to analyze such type of data, where the rate of recurrence is modeled as
a function of observed covariates and the effect of the covariates is assumed to be
constant. Preliminary analysis of the vitamin A study suggested that the effect of
vitamin A supplementation on diarrhea may change over time. It is important to
develop methods to estimate such time-varying effects. Hence, the main purpose of this
research is to develop statistical methods that incorporate time-varying coefficients in
modeling recurrent time-to-event data.

Rate models with time-varying coefficients are proposed to analyze recurrent time-
to-event data. B-splines are used for the estimation of regression time-varying coeffi-
cients using two approaches: regression and penalized splines. Estimation of smoothing
parameter, number and placement of knots is discussed. The small sample properties of
the estimators are studied via simulation. Data from the vitamin A study is analyzed
using the proposed methods.

Another focus of the dissertation research is on the comparison of statistical methods

for recurrent event data with dependent or informative censoring. Many statistical

il



methods assume independent censoring. However, this assumption may not hold in
some studies. Two methods have recently been proposed to account for dependent
censoring for marginal rate models with recurrent event data. The first approach was
developed by Wang, Qin and Chiang (2001), who proposed to model the occurrence
of recurrent events by a subject-specific nonstationary Poisson process via a latent
variable. In the second approach Miloslavsky, Keles, van der Laan and Butler (2004)
proposed inverse probability of censoring weighted (IPCW) estimators for the regression
parameters in the proportional rate model in order to obtain consistent estimators in the
presence of dependent censoring. These two methods are critically compared through

extensive simulation studies.
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CHAPTER 1

INTRODUCTION

Many medical studies involve the occurrence of recurrent events and much attention
has been given for the development of modelling techniques that take into account the
dependence structure of multiple event data in the last few decades (Prentice, Williams
and Peterson, 1981; Andersen and Gill, 1982; Wei, Lin and Weissfeld,1989; Pepe and
Cai, 1993; Lin et al., 2000). Particularly the marginal hazards models, such as WLW
(Wei et al., 1989) and LWA (Lee, Wei and Amato, 1992), and conditional hazards
models, such as PWP (Prentice et al., 1981) and AG (Andersen and Gill, 1982) have
been used more frequently, especially for having been already incorporated by many
statistical software packages.

Even though these methods are robust and well-developed, recent papers (Kelly
and Lim, 2000) have been discussing the appropriateness of such approaches to han-
dle recurrent event data. In general, it has been recommended that WLW is more
appropriate in situations where there are different types of events from the same per-
son while LWA is more suitable for clustered data. When used for the analysis of
recurrent event data, both of them presented a carry-over effect for subsequent events,
especially when the estimated effect for the first event was large. Wei and Glidden
(1997) pointed out that AG and PWP are both sensitive to misspecification of the

dependence structure among the recurrence times. In addition, AG assumes that the



event recurrences follow a non-homogeneous Poisson process, with the hazard being
unaffected by earlier events that occurred to the subject given the covariates, although
the covariates could include information from earlier events. Recent research has been
focusing on more complex recurrent event settings which include large number of re-
current events, time-dependent covariates, time-dependent coefficients and dependent
censoring among other features (Wang, Qin and Chiang, 2001; Duchateau et al., 2003;
Ghosh and Lin, 2003; Miloslavsky et al., 2004). Particularly, Duchateau et al (2003)
discussed the use of parametric and semiparametric frailty models for recurrent event
data while the methods proposed by Wang, Qin and Chiang(2001), Ghosh and Lin
(2003) and Miloslavsky et al(2004) focus on modelling the recurrent event data in the
presence of dependent censoring.

Much effort has also been devoted to the development of methods for the estimation
of means/rates of recurrent events in recent years. Pepe and Cai (1993) studied meth-
ods to display and estimate rate functions for the analysis of multiple time-to-event
data. Later, Lawless and Nadeau (1995) presented robust methods for nonparametric
estimation of the cumulative mean /rate function as well as proposed a marginal model
for the mean/rate estimation. More recently, Lin et al (2000) provided rigorous jus-
tification for the use of semiparametric regression for the mean and rate functions in
the analysis of recurrent time-to-event data. Based on that, Miloslavsky et al (2004)
presented an estimator for the regression parameters in the marginal proportional rates
model considering the presence of time-dependent covariates and dependent censoring.

This doctoral research has been motivated by the need for analyzing the recurrent
diarrheal episodes in small children, with the main questions of interest being related
to the effect of the supplementation of vitamin A from a randomized community trial
with 1240 children aged 6 to 48 months at baseline and who were followed-up for 1 year

(Barreto et al, 1994). This study provides valuable information to evaluate multiple



dosage of vitamin A and their effect on the incidence of diarrheal episodes. It is also
a major interest to evaluate whether the effect of vitamin A supplementation persists
over time and if so for how long it does. In this study the children were assigned to
receive either placebo or vitamin A every 4 months for one year. The original analysis
performed to evaluate the effect of such supplementation did not focus on how the
supplementation effect behaves over time. However, recent analysis conducted to this
data through the use of piecewise marginal rates models pointed out that the effect of
vitamin A supplementation on the occurrence of diarrhea may change over time.

The plausibility of a time-dependent effect for treatment on the study about supple-
mentation of vitamin A motivated our research that focus on time-varying coefficient
models that incorporates B-splines to describe how the effects change over time. Exist-
ing methods (Hastie and Tibshirani, 1990; Sleeper and Harrington, 1990; Gray, 1992;
Nan et al., 2003) are all Cox-based models defined for univariate failure time. Even
though much recent research effort has been devoted to the analysis of multivariate
failure time data, to our knowledge, no time-varying coefficient model has been pro-
posed to multivariate time-to-event outcomes. Thus, in Chapters 3 and 4, we proposed
two methods for estimating time-varying coefficients for recurrent time-to-event data
considering rate models with B-splines.

The discussion in the literature about the potential occurrence of dependent or
informative censoring in many medical studies, on the other hand, lead us to the im-
plementation and comparison of two fairly recent proposed rates models to handle
dependent censoring in recurrent event settings (Wang et al, 2001; Miloslavsky et al,
2004). The comparison of these methods were performed through extensive simulation
studies, whose results are presented in Chapter 5. Since 16.3% of the children were not
followed up during all study period in the vitamin A trial, we also applied the methods

that take into account possible dependent censoring to this data.



In the next Chapter we summarized the current and relevant literature in those

topics.



CHAPTER 2

LITERATURE REVIEW

2.1 DModeling Recurrent Event Data Assuming In-
dependent Censoring

Let’s first define the notation that will be used for the subsequent sections. Suppose
that the data consist of n subjects. Let X;, = T;r A C; be the observed time for
the i** subject with respect to the k™ event, where C; denotes censoring time and
T;1,T; 2, ..., Ti ,, represents the event times. These event times are called total times and
represent, for instance, the time since randomization to treatment until the occurrence
of the k** event for the i** subject. Let’s define the gaps between successive events as
Gigx =Tix — Tip—1 for k=1,2,.. K, with T; = 0. Let 7 denote the end of the study
and Z; be a possibly time-dependent covariate vector. Let Ay = I(T;, < C;) be an
event indicator, which takes value 1 if an event is observed and 0 otherwise. We are
assuming independent censoring.

Using counting process notation, let N;(t) = fot dN;(s) represents the number of
events in [0, ¢] for subject i, where dN;(s) denotes the number of events in the small

time interval [s, s + ds]. Let’s define the event intensity function as:

. Pr(Ni(t + At) — Ny(t) = 1|Hq(t))
Ai(t[Hi(s)) = lim A7



where H;(s) = (Ni(s),0 < s < t;Z;(s),0 < s < t) represents the process history up
to time t. It is assumed that the probability of more than one event over the interval
[t,t + At) is o(At), so E[dN;(t)|H;(t)] = X\i(t; Hi(t))dt. In the next sections we will
use such notation for defining the survival models to evaluate the effect of factors of

interest in the occurrence of recurrent events.

2.1.1 Conditional Hazards Models

2.1.1.1. Andersen-Gill Model
The Cox proportional hazards model (Cox, 1972) has been the most popular procedure
for modeling the relationship between covariates and the failure rate or hazard function.

The Cox model assumes that the hazard of individual ¢ at time ¢ is given by:
Ai(t) = Ao(t)ef %0

where Ag(.) is an unspecified nonnegative function of time called baseline hazard and
is a p X 1 column vector of unknown parameters. Estimation of 5 is based on the partial
likelihood function introduced by Cox (1975), such that the log partial likelihood can

be written, using counting process notation, as:

where Y;(t) = I{X; > t}. The large-sample properties of parameter estimators can
be obtained through the theory of Martingales (Andersen and Gill, 1982) or empirical
processes (Tsiatis, 1981).

An extension of Cox proportional hazards model for multiple event data is the

Andersen-Gill model (Andersen and Gill, 1982), in which the intensity function for the



kth recurrence relates to the covariates through the following formulation:
N (H]Z4(t)) = Yau(t) Do t)e? %,

for k =1,..., K;. This model assumes a common baseline hazard for all events and that
the number of events in nonoverlapping time intervals are independent, given the co-
variates, which is known as independent increments assumption (i.e., non-homogeneous
Poisson process (Chiang, 1968)). Although the subjects may experience more than one
event, a subject can only make one contribution to the risk set for a given event at any
specific time. Moreover, under this model, the risk sets for the (k+1)th recurrences
are not restricted to the subjects who have experienced the first k£ recurrences. In such
case, a subject’s second event time may contribute to the risk set corresponding to
another subject’s first event, for instance (Kelly and Lim, 2000).

The parameter estimation is carried out by partial likelihood. An iterative algorithm
can be used to obtain an estimator of 3, denoted by B, by solving the estimating

equation U(B) = 0, where:

(1)
U(B) = 04(8) /08 = Z / [ - Eg’ti ANi(t),

with SO (8,1) = L 37 S°F Vi (t)Z (t)®’eﬁ Zx®  and for a vector z, z%° = 1, z%! =
z, z%% = 77 .
The Breslow-Aalen estimate of the cumulative baseline hazard is given by dAq(8,t) =

n! fo dN.(t)/S©(B,t), where dN.(t) = .1, dN;(t). The information matrix is defined

(2 1) ®2
T(8) = —0°(8)/0608 = Z | [2(0 -{So5a} ]dN,-(t)

as:



Under certain regularity conditions, as n — oo, n_%U(B) has an asymptotic normal
distribution with mean zero and a variance which can be consistently estimated by
n~1Z(B) and n%(ﬁA — B) has an asymptotic normal distribution with mean zero and a
variance which can be consistently estimated by nZ(8)! (Andersen and Gill, 1982).

A robust variance estimator for U(f) is given by n3(8), where

£(B)=n") BiA)B

with B(8) = { f; [Z:(t)— S 52 1d (8, 1)} and dNE (B, £) = dN(t)—Yi(t)e® %V dAq(B,1).
Therefore, this results in a robust sandwich variance estimator Z(3) 13 (8)Z(3)* for
B (Kalbfleish and Prentice, 2002).

Even though the Andersen-Gill model is the simplest to visualize and set up, it
makes the strongest assumption (i.e., independent increment assumption). Since past
events are likely to be positively correlated with future events, then when the inde-
pendence assumption fails it would be best to employ the robust sandwich estimator
n33(B) instead of n~'Z(B). Cai and Schaubel (2004) pointed out that when the model
is approximately true, [3’ is a useful statistic even when the underlying assumptions do
not hold. The Andersen-Gill model has been recommended when the interest is with

respect to the overall recurrence rate and when only a small proportion of subjects have

Ni(7) > 2 (Lin, 1994).

2.1.1.2. Prentice-Williams-Peterson (PWP) Models
In this subsection the two models proposed by Prentice, Williams and Peterson
(1981), which were the first extensions of Cox model for multiple event data, are pre-

sented. The intensity function for subject ¢ at time ¢ for the kth recurrence, conditional



on N;(t) and on the covariates, can be defined as:
Na(EING (1), Zu(0)) = YV () Dow ()7,

and
Ak (EING (), Zi(8)) = Yie(t) Ao (t — Ty )ePrZin(®),

for total and gap times, respectively, with N; = {N;(s);s € [0,t)} denoting the ith
subject’s event history at time t-. For the risk set indicators, let Y (¢) = I(X;p—1 <t <
Xix) and Yig(t) = I(X;x > X x—1+1), respectively, for total time and gap time models.
Note that a subject is not at risk for the kth event until he/she has experienced event
k-1. In both cases, the shape of the baseline hazard function is allowed to be different
for different number of preceding events. Hence, this approach produces a stratified
proportional intensity model with time-dependent strata, where dependence between
event times is accommodated by stratifying on the previous number of occurrences.
The estimation of the regression parameters is carried out through partial likelihood.

The estimating equation for the PWP total time model is given by:

(515:7 )
Urr(Br) Zi( dN(2),

fork = 1, ..., K,, where Qg)(ﬁk,t) = L5 Ya(t)Za (t)®jeﬂ;czik(t) and Ny (t) = I(T}; <

For the PWP gap time model, the estimating equation is given by:

(ﬁk, t)

Zip(t + Tig—1) — (51:, ) d N (1),

Uer(B) Z /

for k = 1,..., K, where R ) (By,t) = LS Vi (8) Zi (T s +t)®jeﬁ;zik(n,k71+t) and




Nu(t) = I(Gip < t, A = 1).

In both models, it is assumed that the information in N;(t) is captured by the
covariate vector. In situations where this assumption may be potentially violated, the
use of a robust variance estimator is recommended. In their paper, Prentice et al.(1981)
suggest that these models are more useful for scenarios of a possibly small number of
events on a large number of subjects. When applied to recurrent event data settings,
these models generally consider a maximum number of strata, defined such that the
risk sets are not so small for latter strata, which could lead to unreliable event-specific
estimates. The interpretation of parameters in these models may be limited as the
number of events increases. The main problem, as pointed out by some authors (Cai
and Schaubel(2004)), is that the assumption of missing completely at random (MCAR)
is violated because the subjects who have not experienced k events are excluded from

the analysis with respect to the (k+1)th-event intensity function.

2.1.2 Marginal Hazards Models

2.1.2.1. Wei-Lin-Weissfeld (WLW) Model

In the setting of multivariate time-to-event data, Wei, Lin and Weissfeld(1989) pro-
posed to model the marginal hazard of each failure time using a Cox-type proportional
hazards model, such that no specific structure of dependence among the distinct failure
times on each subject is imposed. The hazard function for the kth event time of the

ith subject assume the form:

Xie(t) = Aox(t)eHhZx®),

10



for k=1,2,...K. The kth event-specific partial likelihood is given by:

. ) Asx
o1 _ exp{ B, Zir(Xir)}
k(ﬂk) E Zle%k(Xik) eXp{ﬁlchlk (X’k)} ,

where Ry (t) = {l : X; > t} is the set of subjects at risk just prior to time t with
respect to the kth event time.

The estimator 3y, is defined as the solution to Ug(Bx) = 0, where

nopr (1)
Ui (Br) = Z} /0 [zik(t) - W] d Ny (2),

k /Bka
with Sij)(ﬁk, ) =230, YEk(t)Zik(t)@’jeﬂ;Z"’“(”, Yir(t) = I(Xip > t), Ay = I(T;, < Cy)
and Nzk(t) = I(Xz,k < t, Aik = 1)
Under certain regularity conditions, n2 (8, —8x) —2 Ny(0px1, Z(Br) *Br(Be)Ze(Br) 1),

as n — 0o, where a consistent estimator of the asymptotic variance is obtained through

N 1< (7| s?® s e
Zy(Bx) = n Z/o Sl(co)giz,t; - { k (Bk’t)} dNix(t)
=1 k )

t SI(cO) (/Bk’ t)
and
) R e SO (B, t)] - o
By (6k) = - 1:21 {/0 [Zik(t) - m dMik(/Bkat)}

with d M, (B, t) = dNy(t) — Yig (t)eﬁ;ezik(t)deOk(ﬁk, t). The robust sandwich covariance
matrix defined above accounts for the dependence of the multiple failure times.

The cumulative baseline hazard function for the kth event is estimated by dAgx(Bx, t) =
n [ AN 4(5)/SO (Br, s), where N4 (t) = 57, dN(t).

The inferences regarding [, are valid asymptotically, irrespective of the true intra-
subject correlation structure. However there is some debate in the literature regarding

the appropriateness of WLW model for recurrent data, especially due to the interpre-

11



tation of regression coefficients. Two main issues have been discussed in applying this
approach to recurrent event settings: (i) the possibility of a subject to be at risk for
the (k+1)th event prior to having experienced the kth event (Cook and Lawless, 1997);
(ii) a carry-over effect, which leads to an overestimation of regression coefficients (Kelly
and Lim, 2000). Hence, WLW is mostly recommended to situations where there are

different types of events for the same subject instead of recurrent events.

2.1.2.2. Lee-Wei-Amato (LWA) Model
Another marginal approach is the LWA model (Lee, Wei and Amato, 1992), which
considers highly stratified data. The marginal hazard for the kth event time of the ith

subject has the form:

Ai(t) = )\O(t)eﬂ, Zin(t),

where an unspecified common baseline hazard function A¢(t) is assumed. Let f =
(B, ...Bp)' be the common regression parameter among K marginal models . Under the
assumption that (X;, Ay, Z;(t)), i = 1,..,n are independent and identically distributed
with bounded Z;;, (Lee, Wei & Amato, 1992), the parameter estimates are obtained

through the maximization of the pseudo-partial likelihood:

- K exp{B Zir(Xir)} ™
PHs) = 111 g [Z?—l >t Vi (Xix) eXP{ﬁlzlm(Xik)}] ,

where Y;k(t) = I(sz Z t)

The corresponding score equations are given by:

nE T (1)
-3 [ [zmt) - %} AN,

i=1 k=1

where SD(8,¢) = 23" K Vi () Zg (1) 87 260,
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Lee, Wei and Amato (1992) showed that, under certain regularity conditions, the
resulting estimators n%(BA'l — By ns B;’, — ﬁ;)' are asymptotically jointly normal with
mean zero and covariance matrix that can be consistently estimated by the sandwich
type covariance estimator.

This approach assumes that the number of subjects is much larger than the number
of events. A major concern about the use of such approach for recurrent data is that
the LWA model allows a subject to be at risk for several events simultaneously. That
is, a subject with j risk intervals may contribute to a risk set j times (Kelly and Lim,
2000). Simulation studies also suggest the same carry over effect as observed with

WLW model.

2.1.3 Frailty Models

In the last several years there has been significant research concerning the addition
of random effects to survival models (Clayton and Cuzick, 1985; Hougaard, 1986;
McGilchrist and Aisbett, 1991; Klein, 1992; Duchateau et al, 2003). In this setting, the
hazard function for each individual may depend on observed risk variables but usually
not all such variables are known or measurable. This unknown factor is usually called
individual heterogeneity or frailty. For the recurrent event data setting, the dependence
of repeated measures (i.e., the recurrence times) is modelled through the introduction
of a common random effect (i.e., frailty) for each individual. Considering a Cox propor-
tional hazard model for recurrent event data including a multiplicative heterogeneity

or frailty term W;, i=1,...,n, the hazard function has the form:
Xir (E[W3) = wido(t)e? Zix(®),
fori=1,...,n and k = 1,...K;. The frailty terms are assumed to be independent and
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with a common frailty density. The most commonly used frailty distribution is the

gamma distribution with mean 1 and variance 6, such that:

w'/~ exp(—w/H)

,0>0,w>0

Even though the assumption of gamma distribution for the frailty terms has been
commonly used, this may not be always plausible. Thus, other distributions for the
frailty terms has been also proposed, such as positive stable distribution (Hougaard,
1986) and lognormal distribution (Hougaard, 2000).

Let t;,; be the start of the k™ at-risk period and t;;, the end of the k** at-risk

period. The partial likelihood function (without ties) for the model above is given by:

Ak

ﬁ O [ W; exp(3' Zi)
Z?:l Yi(tin2) Wi exp(8' Zu) ’

i=1 k=1
where Y(tir2) = I(Xix > tirz)-

The parameter estimates for this model are obtained through the EM algorithm,
making use of the partial likelihood expression in the maximization step as showed by
Klein (1992). An alternative approach is to use a penalized partial likelihood for the
estimation of the shared frailty, which consider the general framework for penalized
survival models along with its application to smoothing splines (Therneau and Gramb-
sch, 2001). McGilchrist and Aisbett (1991), on the other hand, discussed the use of a
Newton-Raphson procedure to estimate S and the vector of frailties w. However, this
approach may not converge if the major variation of the risk variables is from subject
to subject rather than within each subject.

Duchateau et al (2003) also consider parametric frailty models for recurrent event
data. Their models incorporate inter-subject heterogeneity through a random effect

and specify the functional form of the baseline hazard. One of the parametric models
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discussed in that paper defines a distinct Weibull baseline hazard for the first event and
for the subsequent events, considering that the first event is different in nature from

the subsequent events, such that:
Xi(t) = Ayt T W exp(8'Z;), 0 < t < ti, for the first event

and
Ailt) = Agvg(t — tirn)o ™' W; eXP(,BIZz'), ting <t <tigo, K =2,.., K;

The parameter estimates for this model can be obtained by maximizing the observ-
able likelihood based on this hazard function.

Some debate in the literature regarding the use of frailty models are related to (i)
the possibility of mis-specification of the dependence structure and (ii) the amount of
information, such as total number of events, number of groups, and the distribution
of events/group, required to produce stable frailty estimates. According to Hougaard
(2000), there is no single family of frailty distribution having all desirable properties.
Therefore, the choice of the frailty distribution requires more detailed study of the
model properties of each distribution family and of which properties are relevant to the

actual problem considered.

2.1.4 Marginal Means and Rates Models

One interesting approach for recurrent events in survival analysis is modelling marginal
means and rates. Pepe and Cai (1993) proposed modelling the rate functions r; (%),
which represent the average intensity or rate among those who have experienced (k-1)
events. Using such approach, they avoided the problem of being at risk of having the
kth event without having experienced the (k-1)th event. Later, Lawless and Nadeau

(1995) studied the estimation of regression coefficients for marginal means/rates models,
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primarily considering the discrete time case. More recently, Lin et al (2000) provided
a rigorous justification for the marginal means/rates models and develop inference
procedures for the continuous time setting, which are presented here.

As Cai and Schaubel (2004) pointed out, one of the main appeals of using such
approach is that the mean number of events is usually of direct interest of investigators
and is also easier to be understood, especially for non-statisticians. Using counting
process notation, the rate function can be always defined as du;(s) = E[dN;(s)|Z;(s)]-
On the other hand, u;(t) = fot du;i(s) can only be interpreted as a mean function when
Z;(.) consists of time invariant or external time-dependent covariates, in which case
they are unaffected by the recurrent event process. If Z;(.) includes time-dependent
internal covariates, then p;(t) can only be interpreted as a cumulative rate function.

The proportional rates models considered by Lin et al(2000) may be defined as:

dpi(t) = exp{B Z;(t) }dpo(t)

Thus, w;(t) = fot exp{B Z;(s)}duo(s). In the case that Z; represent time invariant
covariates, then u;(t) = po(t) exp{B Z;} is referred to as the proportional means mod-
els, with po(t) being an arbitrary baseline mean function and 8 unknown regression
parameters. According to Lin et al (2000), the proportional rates model characterizes
the rate of the counting process under the Andersen-Gill intensity model. The A-G
model implies a proportional rates model with dpug(t) = Ao(t)dt, but the converse is not
true. The proportional rates model is more versatile than the A-G model in the way
that it allows arbitrary dependence structure among recurrent events.

For the developments provided by Lin et al(2000), some regularity conditions should
be considered, such that they assume a finite follow-up interval [0, 7] with P(C; > 1) >

0. They assume that {N;(.),Y:(.),Z;(.)}, i = 1,...,n are independent and identically
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distributed, where Y;(t) = I(C; > t). They assume that N;(7), ¢ = 1,...,n, are bounded
by a constant, that Z;(.), ¢ = 1, ..., n, have bounded total variation and finally that the
information matrix Z,(3) = —0U(B)/08" converges in probability to a positive definite
matrix as n — o0.

Thus, the inference on the regression parameters is defined by the solution of the

partial likelihood score function for 3, e.g., U,(8, 7) = 0,41, such that:

n ot W(8. u
U6, =3 [ |20~ Gy | 4

where S©(8,t) = 13" | Vi(t) exp{8'Z;(t)} and
SW(B,t) = L3°" | Yi(t) exp{B8 Zi(t)}Zi(t). The baseline mean yq(t) is estimated by
the Breslow-type estimator, such that fio(t) = n™" [J dN (u)/S© (8, u).

Under the regularity conditions presented above, Lin et al (2000) showed that, under
the proportional rates model, n*%U(B, t) asymptotically follows a multivariate normal
distribution with zero mean. The covariance function between time points s and ¢ is
given by B(f3, s,t), where
B(B,s,t) = B[ {Z(r) — S5 }dMi(r) x [{Zi(r) - S5 }dM;(r)], for 0 < s,
t < 7 with dM;(t) = dN;(t) — Yi(t )exp{ﬁ Zi(t)}d,uo(t). Lin et al.(2000) also showed

that, under the proportional rates model, nz(3 — 8) —? N(0px1,Z(8)'B(B)Z(B)™1),

where Z(3) is the limiting value of Z,, evaluated at 8 and

=E[([;{Zi(s) — 81(8,5)/8(B, 5)}dM;(s))*?].

In order to test H, : 3 = 0, nonparametric statistics U'(0)B~(0)U(0) can be used.

2.1.5 Nonparametric Estimation

2.1.5.1. Nonparametric Estimation for Recurrent Event Data

The problem of nonparametric estimation for recurrent event data has, among oth-
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ers, been considered by Pepe and Cai (1993), Lawless and Nadeau (1995), Cook and
Lawless (1997) and Wang and Chiang (2002). All methods studied by these authors
are formulated to time-to-event data and model the occurrence rate of recurrent events
in a specified time interval [0, 7;].

Pepe and Cai (1993) proposed to display rate functions that distinguish first (k=1)

and recurrent events (k=2,...), such that they are, respectively, defined as

1
ri(t) = E_I&) ZP [event in(¢,t + A)| at risk and no previous event at t|

and

1
ri(t) = Einm ZP [event in(¢,t + A)| at risk and (k-1) previous events at t] for k=2,...

Similar to the marginal approach, Pepe and Cai (1993) proposed to leave the intra-
subject correlation unspecified. Note, however, that the rate functions r;;, k=1,2..., are
conditional on having experienced (k-1) events.

The methods discussed by Lawless and Nadeau (1995) and Cook and Lawless (1997),
on the other hand, focus on a discrete time framework. Consider recurrent event
processes { N;(t) : t > 0}, i=1,...,k, that are independent and have the same cumulative
mean function, which can be defined as CM(t) = E{N;(t)}. Let n;(t) > 0 represent
the number of events that occur at time t for the ¢th subject. Hence, the mean function
can be defined as m(t) = E{n;(t)} and, consequently, CM(t) = > '_ m(s). Define
0;(t) = 1if t < 7; and 0 otherwise. If the n;(¢)'s are independent Poisson random
variables with means m(t) then the maximum likelihood estimate (MLE) of m(t) is
given by m(t) =n.(t)/0.(t), where n (t) = > "1, §;(t)ni(t) and 6.(t) = Y i, 6:(¢) denote,
respectively, the total number of events and the total number of subjects at risk at time
t.

Therefore, the estimate of CM(t), for 0 < ¢t < 7 = maz(mn;), is
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~n(s) _ gy Sis)nis)
CM(t) = A% RANVALASEY
0=250 "2 o)
which is known as the Nelson-Aalen estimator and it is well known as a nonparametric
MLE for the cumulative intensity in counting process models (Lawless and Nadeau,

1995). It was also shown by these authors that the variance of CM(t) is estimated

consistently in large samples by:

In the continuous case, the nonparametric estimators may be written as CM(t) =
[7dAN.(s)/6.(s) and V(t) = S0 { [ 8:(s)/6.(s)[dNi(s) — dN.(5)/5.(5)]}?, where dN;(s)
represents the number of events for subject ¢ at time s and dN.(s) = Y i ; dN;(s).
The estimates CM(t) and V(t) are robust because they are simple moment estimates
(Lawless and Nadeau, 1995).

In order to test whether the cumulative mean function among two groups of subjects
are equal, an approach proposed by Lawless and Nadeau (1995) may be applied, using

the statistic defined as

_ T\ 60.(8)61.(5) [ni(s) mo(s)
U= 5(5) 6.5 [51.(8) 50.(3)] ’

s=0

where n; (s) is the number of events in group j at time s and 4, (s) is the number of
subjects under observation in group j at time s (j=0,1). It follows that a robust variance
estimate for U is given by

var(U) = Yj_g i {30 0jils) x 278 nji(s) — 59132, where nji(s) is the

number of events at time s for the ¢th subject of group j (j=0,1), é;;(s) indicates whether

19



the ith subject of group j is observed at time s and the dots indicate summation over
the appropriate indices.

To test Hy : CM O (t) = CMW(¢), for 0 < t < 7, the test statistic Z = U/var(U)/?
may be used. However, Lawless and Nadeau (1995) pointed out that this statistics is
only effective at detecting differences when the cumulative mean function of the two
groups are proportional or roughly so. If other types of departures from equality are
expected, they proposed the use of general weight functions w(s) on the test. Cook
and Lawless (1997) discussed similar robust tests for no treatment effect.

Wang and Chiang (2002), on the other hand, focus on the discussion of nonparamet-
ric procedures for the estimation of the cumulative occurrence rate function (CORF)
and the occurrence rate function (ORF). The estimator for the CORF is the same as
that already discussed by Lawless and Nadeau (1995). However, they used smooth-
ing techniques for the estimation of the ORF. Wang and Chiang (2002) assume that,
for the ith subject, NV;(¢) is distributed as a non-stationary Poisson process with the
subject-specific intensity function A;(t), where N;(t) denote the number of recurrent
events occurring at or prior to t, ¢ > 0. Let the ORF of recurrent events for the target
population to be defined as A(t) = E[X;(¢)]. Thus, the kernel estimator of the subject-
specific intensity function \;(t) for t in the interval [0, C;], where C;(t) is the censoring

time at which the observation of the recurrent events is terminated, is defined by

=1

where e; defines the index for the last event occurring at or prior to C;, K,(.) is a
boundary kernel density of Gasser and Miiller (1978) with adjustment for the censoring
time C;, and h is a positive-valued bandwidth. Therefore, the kernel estimator for A(%),

say j\h (t), is given by averaging the subject-specific estimators of subjects who are still
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at risk at t, such that

”1( (C; > t) ))\i(t),

€ [0, 7], with ng(t) being the number of subjects in the risk set R(t) = {i : C; > t}.

7

2.1.5.2. Nonparametric Estimation of Gap Time Distributions

Another way of describing and modelling the recurrent events is through gaps or
waiting times between successive events. Such approaches are often useful when pre-
dictions concerning time to the next event are of interest. However, a major difficulty
when dealing with gap time distributions of several events is the induced dependent
censoring, which results from the lack of within-subject gap time independence (Lin,
Sun and Ying, 1999; Lin and Ying, 2001; Schaubel and Cai, 2004).

Lin et al (1999) propose a nonparametric approach for estimating the joint distri-
bution of the gap times without imposing any assumption on the dependence structure
of the gap times. As usual, assume that C is independent of the failure (total) times
Ti,...,T;. However, for any k=2,...,.K, the gap time G, is subject to right censoring by
C — Ty_1, which is naturally correlated with G unless G}, is independent of T},_;.

Considering K=2 and that there are n independent subjects in the study, let F}j
and F; be the marginal distribution functions of G; and G, and let F be their joint

distribution function, such as:

Fi(t) = Pr(Gy < t), Fy(t) = Pr(Gy < 1)

and

F(tl,tg) = P’I"(Gl S t1,G2 S tz) = H(tl,O) — H(tl,tg),

where H(t]_,t2) = PT(Gl < tl,Gg > t2)
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Let G}, = Ga A C; and G, = (Gi1 + Giz) A C;. The authors suggest the estimator

. " I(GH <t,GH -G >t
H(t]_,t2) — n—l Z ( 7l —:1’ 12 1l 2),

=1 S( ;‘1 +t2)

where g‘ (t) is the Kaplan-Meier estimator of the survival function of the censoring time
variable, i.e. S(t) = P(C > T), based on the data (G%,1 — Ay) or (G, 1 — Ap),
1 = 1,...n. The estimator I:I(tl,tz), as well as any other estimator, is confined to
{(t1,t2) : t1 + to < 7.}, where 7, = sup{P(C; > t) > 0}, as a result of the estimability
constraint.

Hence, the joint distribution function is estimated by ﬁ'(tl, ty) = I:I(tl, 0)— ﬁ(tl, ts)
and it is possible to estimate the conditional distribution function Fy; (t2]t1) = P(G2 <
t|Gy < t1) through Fyp(falts) = 1 — H(ty, t2)/H(t1, 0).

The authors showed that the estimator F(tl,tz) is strongly consistent, and the
process n2{F(t1,t;) — F(t1,t;)} converges weakly to a bivariate zero-mean Gaussian
process with a covariance function that can be estimated using empirical quantities,
while ﬁ’2|1(t2|t1) is also strongly consistent and n%{ﬁ&u(tl\tz) — Fy1(t1]t2)} converges
weakly to zero-mean Gaussian process with the covariance function as showed in Lin
et al (1999).

Since it is often of interest to compare the gap distributions between two or more
groups, Lin and Ying (2001) propose nonparametric tests that allow such comparison
considering the estimators defined above. These authors also suggest a class of statistics
to test the independence between two or more gap times.

A more recent nonparametric conditional estimator was proposed by Schaubel and
Cai (2004) as an alternative to existing methods. The authors suggest to estimate
the conditional survival function Sk(t,tx—1) = P(Gi > t|Gi—1 < tg_1), for ¢t € [0, 7¢]

with tx_1 + 7 < 7, through its relationship with the corresponding cumulative hazard
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function A (t;tx 1), where Sg(t,tp 1) = e A(tite-1),
Let @,k =G /\C'j’,-,,c denote the observed gap times and C‘,k = (;—X, y—1 denote the
gap censoring times. Thus, the proposed estimator for the cumulative hazard function

has the form:

n t 11
N _ W,k(s)
Ap(tite_) =n~t / Nip(ds; ty_1),
s(ttun) =07 3 |y Vs )

where Wit (s) = Yi(s;t5 1)S(s + Tir 1)~ 1*22); with Yig(s;te 1) = I(Gax > 8, Tig 1 <
tr—1); g’(t) being the Kaplan-Meier estimator of S(t) = P(C > T) based on (X x,1 —
Aig), i = 1,15 Ry(s) = n 30, Wir(s) and Ny(s;tr_1) = I(Gyp < 5,04 =
LTig—1 < tp_1)-

Hence, the conditional survival function can be estimated by Sy (¢, tp_1) = e~ Ae(tti-1)
for t € [0,7;]. Furthermore, the authors also show that n%{f\(tk,tk_l) — A(tg, t—1)}

converges weakly to a zero-mean Gaussian process with a covariance function that can

be estimated using empirical processes.

2.2 Methods considering Dependent Censoring

In the previous sections we reviewed approaches that assume independent censoring,
e.g, the censoring process is unrelated to the event failure process. However, according
to Ghosh and Lin (2003) the recurrent event times in a typical medical study are often
subject to both independent and dependent censoring. The dependent or informative
censoring arises when the censoring time depends on the observed or unobserved re-
current event times. This would happen if, for instance, the subjects who are at higher
risk of recurrent events tend to be withdrawn from the study earlier. In such scenario
the subjects can potentially experience further events after the censoring time, but

these events will not be observed by the investigators. Another form of dependent
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censoring would occur because of terminal events, such as death. In the case of infor-
mative censoring the ad hoc estimation procedures from the observed data will result
in inconsistent estimators (Miloslavsky et al, 2004). Thus in order to take into account
the potential dependent censoring in the analysis of recurrent event data we review in
this section two approaches that were proposed recently to handle dependent censoring

(Wang, Qin and Chiang, 2001; Miloslavsky et al, 2004).

2.2.1 Wang, Qin and Chiang (WQC) Model

Wang, Qin and Chiang (2001) proposed to model the occurrence of recurrent events
by a subject-specific nonstationary Poisson process via a latent variable, allowing the
censoring mechanism be possibly informative. The distribution of both the censoring
and latent variables are treated as nuisance parameters.

Let N(t) be the number of recurrent events at or before t, ¢ > 0, and suppose that
the occurrence rate of recurrent events in the interval [0, 7] is of interest. Thus, in order
to explore the association between the covariates Z and N(.), consider a multiplicative
intensity model and assume the following conditions:

(i) There exists a nonnegative valued latent variable U so that, conditioning on
(Z,w), N(t) is a nonstationary Poisson process with the intensity function ulo(t) exp{5 Z},
where 3 is a p x 1 vector of parameters and the baseline intensity A(t) is a continu-
ous function. The latent variable satisfies F[U|Z] = 1. This assumption implies the
marginal proportional rate function A(t|Z) = A¢(t) exp{8 Z}, which is the focus of
interest for the regression inferences.

(ii) Conditioning on (Z,u), N(.) is independent of C, which denotes the censoring

time.
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Define the density function

MBI <t<T) w0t <T)

f(t) - Ao(T) - U,Ao(;) - ’

as the normalized function for both the baseline intensity A¢(¢) and the subject-specific
intensity, u;Ao(t), when u; > 0, such that Ay(t) fo Ao(u)du denotes the baseline cumu-
lative rate function. This density function, or the corresponding cumulative distribution
function F(t), can be thought of as shape function for the model. When considering the
estimation of the parameter 8 of the marginal proportional rate function, the density
function may be expressed as

MI0<t<T)  w(t)exp{BZY(0<t<T)

T="""%0 77 whew(sE

which remains as the shape function for the subject-specific intensity, u;\o(t) exp{ 3 Z},
when u; > 0.

Let k; denote the index for the last event occurring at or prior to C;. A conditional
likelihood will be used in the estimation procedures instead of the full likelihood because
of the involvement of the nuisance parameters. For subject i, conditional on (Cj, u;, k;),
the event times (71, Tjo, ..., Tix,) are the order statistics of a set of iid random variables
with the density function f(¢)I(0 <t < C;)/F(C;) (Ross, 1983). Thus, the conditional

likelihood function can be derived as

L. = []»(Ta, T, ... T, | Ciy us, i)
=1

- T = TR

i=1
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The conditional likelihood L. involves then only the shape function F (or f) and
does not require information on the unobserved {u;}. The likelihood function L, is a
particular case of nonparametric likelihood for right-truncated data where the trunca-
tion time for Tj; is C;. Under the model, the distribution function F(t) is unknown,
and thus can be estimated by the nonparametric maximum likelihood estimator ﬁ'(t)
Under regularity conditions, the estimator ﬁ'(t) is known to have a simple product-limit

representation, such that F'(t) = [] 1—duy/Ngy), where {s()} are the ordered and

S(l)>t(
distinct values of the event times {Tj;}, {d()} is the number of events occurring at s,
and {N(} is the total number of events with event time and censoring time satisfying

Ti; <sup < Ci.

A class of estimating equations for v = (In Bo, B') is defined as
n Y wZi(kF NG~ ) =0,
i=1

where Z; = (1,Z;), Bo = Ao(7) and w; is a weight function depending on (Z;,~, F).
Wang, Qin and Chiang (2001) showed that the solution of this class of estimating
equations has the property that 1/n(% — ) converges weakly to a multivariate normal
distribution with zero mean and covariance matrix which can be consistently estimated

if the marginal rate model is correctly specified.

2.2.2 IPCW Models

Inverse probability of censoring weighted(IPCW) estimators for the regression param-
eters in the Andersen-Gill model and in the proportional rates model were proposed
by Miloslavsky et al (2004) in order to obtain consistent estimators in the full data
models from the observed data in the presence of dependent censoring. Let V = V (1),

where V(1) = {V(s) : s < 7}, stands for everything that can be observed on a randomly
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selected subject in the interval (0, 7] if the subject is not subject to censoring. In partic-
ular, define V() = {N(7),Z(7)}, where N(7) = {N(s) : s < t}, N(t) = >, (T, < t)
is the recurrent event counting process of interest and 7 refer to the end time of the

study. Consider the following multiplicative intensity model of interest:

E{dN(t)|W(t-)} = YA()A(t) = Y (£)Ao(t) exp{B7(1)}

where W(t) = {N(t),Z*(t)}, with Z*(t) C Z(t), consisting of part of the full data
covariate process Z(t) and y(t) is a function of W (t—).

Often the full data is not observed but their censored version. Denote the observed

data random variable by E={min(r,C),A* = I(r < C),V(r A C)} and let A(t) =
I(C < t) be the censoring process, where C' = oo if C is censored by 7. The distribution
of the observed data E is indexed by the full data distribution Fy and by the conditional
distribution G(.|V) of the censoring variable C given V. Refer to G(.|V) as the censoring
mechanism. Thus, the conditional hazard of the censoring mechanism given the full
data V is A\ (t|V) = E{dA(t)|A(t—) = 0,V}.

The full data parameter of interest is not identifiable from the distribution of the
observed data if the censoring mechanism is allowed to depend on unobserved com-
ponents of V. Hence coarsening at random (CAR) is assumed, which implies that
given the full data V=v, the censoring event defining the observed data E=e depends
only on the observed part of v. This methodology requires a model for the censoring

mechanism, which can be given by:

)\c(t|V(t_)) = Y::(t))\o,c(t) eXp{ﬁcfc(t)},

where Y,(t) is the at-risk indicator for censoring, Ao .(¢) is an unspecified baseline hazard

27



and &.(t) is a known function of V(t—). Under CAR the intensity of observed data
process reduces to the intensity of the full data counting process if the conditioning set
of the full data intensity model includes the whole past V' (t).

The class of all full data estimating function for the multiplicative intensity model
of interest is given by {Dy(.|8,A) = [[h{t, W(t—)} — g(h)(t)]dMp rox) : h}, Where
g()(0) = g(t) = LTI OB qr , (1) = AN(E) — B{AN () W(t-)} and

h is a user-defined function (van der Laan and Robins, 2002).

Since the marginal A-G multiplicative intensity model of interest is not conditioning
on V(t), but only on some subset W (), the authors proposed estimating equations for
the parameter of interest in this general model by using IPCW mapping (Robbins and
Rotnitzky, 1992), for which the main idea is to map full data estimating functions into
observed data estimating functions.

Let A*(t) = I(C > t) and h*{t, W(t—)} = h{t, W(t—)} — g(h)(t). Then the choice

of IPCW estimating function is given by:

dMp (1) A*(2)
G@EVv)

Us(E|Dy) = /0 "R W)

where G(t|V) = P(C > t|V). Note that Ug(.|Dy) satisfies E{Ug(E|Dy)|V} =
Dy (V|B, Ao) under the assumption that P(C' > 7|V) > § > 0, for some ¢ > 0 and
hence it yields consistent estimators in the presence of dependent censoring.

A particular choice for h*{t|W(t—)} is

Ely ()W (t-)}Y (1) exp{1(1)}]
EGTHW (t-)}Y (0) exp{B7(1)}]

W W (E-)) = (v(t) - ) LW (t-)}

Applying the time-dependent weighting to the full data estimating equation yields
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the following observed data estimating equation:

[T (o BUC > DGV OGHW )Y (1) exp{Br(2)]
o) = [ (26 BII(C > GV G W(e)}Y () exp{5(0)] )
G ()} A (0dMy 0 (1)
GEV)

where D} (V|B8, Ao) = [, h*{t, W(t—)}dMz ,(t). The estimator for the baseline hazard

o(t) given an estimator G of G is

Given estimators iz*, G and Ao of h*, G and \g, an estimator for 3 can be obtained

by solving the estimating equation:

n
> Ue{Ei|G, D; (18, )} = 0
i=1
Note that G is estimated by fitting the multiplicative intensity model for the censor-
ing process. The estimate for h* is then obtained by substituting G for G and estimat-
ing the expectations empirically. The authors mention that one of the strengths of the
method is that it can be easily implemented by adapting standard routines available
in statistical software packages.
According to Miloslavsky et al (2004), the methods described above are read-
ily applicable to the proportional rates model as well. In this case, consider D} =
J h*{t,Z*(t)}dM,(t) as a class of full data estimating functions, where dM,(t) =

dN(t)— E{dN(t)|Z*(t—)} and h* is arbitrary. Thus, considering the same approach as
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presented above, the authors defined the estimating equation

[T EUIC > 9GUV) I (OGZ ()} Y (1) exp By ()]
vEEID;) = [ (7 0= = BIC > 06V) Gz )Y () exp By (O] )
G2 (t-)} AWM, (1)
% GV) ‘

Miloslavsky et al (2004) argues that these estimators are at least as efficient as the
partial-likelihood-based estimating equations used in Lin et al (2000). These estima-
tors remain consistent even if the censoring does not only depend on the covariates
entering the proportional rates model as long as the censoring mechanism is estimated

consistently and the identifiability assumption P(C > 7|V) > ¢ > 0 holds.

2.3 Varying Coefficient Models for Time-to-Event
Data

2.3.1 Introduction

In many situations it is of interest to explore the functional form of the relationships be-
tween covariates and failure time and to examine whether the effects are changing over
time. Various alternatives of the Cox model have been made to allow the coefficients
to change over time. In such case, Murphy and Sen(1991) proposed a sieve estimation
procedure, assuming that the coefficient functions are piecewise constants and Gamer-
man(1991) described a dynamic linear model approach by assuming that the baseline
hazard and the coefficient functions are both piecewise constant functions. However,
the piecewise constant assumptions from the former approaches may not be appro-
priate in some applications. A recent alternative approach was described by Cai and
Sun(2003), who developed a local likelihood technique to estimate the time-dependent

coefficients in Cox’s regression model and provided asymptotic theory for the proposed
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estimator.

Alternatively, several investigators (Sleeper and Harrington,1990; Gray, 1992; Hastie
and Tibshirani, 1993; Nan et al, 2003) have used spline functions to model the relative
risk in the Cox proportional hazards model. These approaches are generally used for
testing hypothesis on covariates effects in a Cox-based model and also on how effects
change over time in regression analysis of survival data. Hastie and Tibshirani(1993)
used the smoothing spline penalized partial likelihood method to estimate the covariate
effects in the Cox model. However, it is pointed out by other authors that the formal
inference is not well developed in this setting, mainly due to the computation of the
full information matrix, which is numerically very intensive (Gray, 1994; Cai and Sun,
2003). Other authors have proposed the use of additive models considering smoothing
techniques (Sleeper and Harrington, 1990; Gray, 1992). Sleeper and Harrington(1990)
used regression B-splines while Gray (1992) used a penalized smoothing B-spline ap-
proach. Nan et al(2003) considered similar approach as Sleeper and Harrington(1990).
In the next sections we review with some details the approaches described by Gray
(1992,1994) and by Nan et al(2003).

It is also worth to mention that all cited approaches were developed for settings of
univariate time-to-event data. The only extension of using smoothing techniques for
the multivariate failure time data was found in a recent paper by Berhane and Weissfeld
(2003), which extended the Gray’s model (1994) considering the marginal modelling
setup of Wei, Lin and Weissfeld (1989). More details about this approach are presented

in a later section.

2.3.2 B-Splines

B-splines, originally introduced by de Boor(1978), are a popular type of regression

splines in statistical applications, mainly due to their numerical properties. To imple-
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ment B-splines in survival analysis, the time axis is divided into m + 1 intervals with
Tonin and T4, respectively, denoting the beginning of follow-up and the latest time
potentially observable in a given study (Giorgi et al, 2003).

Let tq,..., t,, be the m interior knots with T,,;, < t;1 < ... < t;;, < Tppas. Let
t_(g—1)s s t—1 and tpmia, ..., tmiq be the 2(¢ — 1) additional boundary knots, such that
t_(g-1) = ... = t_1 = Tnip and tyi0 = ... = tyq = Trnae- In this setting, there are
m+q basis functions B_(4_1) 4(%), ..., B q(t) of order q (that is, degree ¢ — 1), which are

recursively defined by:

t— 1ty

_ bttt Y el
thtq—1 — tk

By () By q-1(t) + kt1,g-1(1),

lh+q — tt1

where k = —(q — 1),...,m, with By 1(t) = 1 if t € [t, tg+1) and By 1(t) = 0 otherwise.
The basis functions By, are called B-splines.

Thus, the kth B-spline of order ¢ is a weighted sum of the kth and (k+1)st B-spline
of order ¢-1, with weights depending on the breakpoints and continuity conditions
(Sleeper and Harrington, 1990). Therefore, each basis function is non-zero in a lim-
ited interval spanned by q adjacent knots which leads to stable estimates and reduces
computations. Other important mathematical property of B-splines to be considered
is that Zzn:f(qfl) By 4(t) = 1, which shows that the basis is a partition of unity, and
implies that any constant function lies in the span of the basis (Sleeper and Harrington,
1990).

The resulting B-spline function, g(t), of order ¢ with m interior knots, for ¢ €

(Tonin, tm—1), is a linear combination of the basis functions

gt) = Y &Big(t)

k=—(g-1)
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Thus, conditional on the knots, the By, are known functions of t and implies the
estimation of ¢+m parameters. For instance, considering a cubic B-spline, we may
write g(t) as >, 5 &k Bra(t). A commonly used modification of the cubic spline model
is the natural cubic spline basis, which present a constraint to be linear beyond the
two boundary knots (Ruppert, Wand and Carroll, 2003). Thus, the function g¢(%)
can be reparametrized using m+2 natural cubic B-splines basis functions, such that
g(t) = Sopt? & By 4(t). In the next sections we review approaches that consider the

use of B-splines in the analysis of failure time data.

2.3.3 Estimation using B-Splines in Survival Analysis

2.3.3.1. Regression Splines

Many authors have discussed the use of regression splines for analysis of survival
data (Sleeper and Harrington, 1990; Abrahamowicz, MacKenzie and Esdaile, 1996;
Giorgi et al, 2003; Nan et al, 2003). In this section we review the varying coefficient Cox
model presented by Nan et al (2003), which was proposed to investigate the association
between two events, age at a specific bleeding pattern change and age at menopause,
where both events were subject to censoring and their association varies with age at
the marker event. The estimation proceeded using the regression spline method.
Suppose W;(t) is a time dependent variable and Z; represents the baseline covari-
ates. The varying-coefficient Cox model including both time-dependent and time-

independent covariates is defined as:

Xi(t|Zs, Wi(t)) = No(t) exp{ B Z; + 0(s)W;(t)}

where s represents the time of the occurrence of a marker event. In Nan’s et al (2003)

paper, for instance, W; = I(t > S;), with S; being the true age at the 60-day marker
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event for woman ¢.

The estimation of the nonparametric function 6(s) is done through the regression
spline method by approximating 6(s) using the natural cubic B-splines basis, where the
natural spline was constraint to be linear beyond the two boundary knots (Nan et al,
2003).

The function 6(s) is parametrized using m+2 natural cubic B-spline basis functions
By(t), k = 1,..,m + 2, such that 8(s) = .72 & B,(t). Thus, replacing 6(s) by its

B-spline approximation in the previous varying-coefficient model, we have:

Ni(tZi, Wilt)) = Ao(t) exp{B'Zi + E Wi(t)},

where & = (€1, ..., Em1a) and Wi(t) = (Bi(8)Wi(t), ..., Bmsa(s)Wi(t)) .

The estimation of the parameter vectors (3, &) is then obtained by maximizing the

following log partial likelihood function:

BZi+EW,(t) —log Y I(X; > t)exp{6Z; + EW,(1)}| dNi(t),

j=1

(s, = Z:j/

where X; = min(C;,T;). Because the spline fit is just Cox regression on constructed
regressors, the maximum partial likelihood estimators of 3 and 5 can be obtained by
any statistical package that implements Cox regression (Nan et al, 2003). Therefore,
the nonparametric function 6(s) can be estimated by 6(s) = Some ngk(s). The

pointwise confidence interval for #(s) can be estimated using its variance estimator

~
~ e

var{A(s)}=B'(s)cov(£)B(s).

Estimation of the baseline cumulative hazard function Ag(¢), given the occurrence
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of a marker event at S;, is done by using Breslow estimator:

n -1 n
Ao(t) = / t [ I(X; > u) exp{(S;)W;(u) +B’zi}] {de(u)},
0 Li=1 i=1

2.3.3.1.1. Estimation of Number of Knots

Even though the regression splines present advantages that the models can be fitted
using standard software and inferences are made using standard techniques, one of the
major drawbacks of such approach is that they are also very sensitive to the number
and location of knots (Gray, 1992; Therneau and Grambsch, 2001). Therefore, in order
to define the optimal number and location of knots, many criteria have been defined,
including cross-validation (CV) criterion, generalized cross-validation(GCV), Mallow’s
C, criterion and Akaike’s information criterion (AIC) (Ruppert, Wand and Carroll,
2003).

In their paper, Nan et al (2003) extended the cross-validation (CV) and generalized
cross-validation (GCV) methods proposed by O’Sullivan (1988) to choose the number
of knots in the regression spline setting, taking into account that Ag(¢) is unknown and
is estimated.

In order to ensure an approximate equal number of events in each interval, the
location of interior knots is usually based on the quantiles of the distribution of the
observed event times (Giorgi et al., 2003).

Simulation studies showed that the pointwise biases of the B-spline estimator 6(.)
are close to zero, and the pointwise model based SEs of é() agree well with their em-

pirical counterparts, except for the boundary (Nan et al, 2003).

2.3.3.2. Penalized B-Splines

An alternative to the regression spline approach is a penalized /smoothing spline.
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Consider the following time-varying coefficient model:
Ni(t|Zs, W;) = No(t) exp(B'Z; + 8(t)W;), t >0

This model represents non-proportional hazards unless 6(t) is a constant. Consider-
ing the simple case where there is only one covariate W, such that W is an indicator for
a group (W=0 or W=1) then 6(t) measures the difference in log(relative risk) between
the two groups (Hastie and Tibshirani, 1993). The covariates can be either fixed or
time-varying.

For estimating the parameters from the previous model, Gray (1992) proposed a

penalized B-spline based model, in which 6(t) is substituted with the flexible form g(¢):
Xi(t|Zi, Wi) = Xo(t) exp(B'Z; + g(t)W;), t > 0

where the parametrization of g(t) is given by g(¢) = E;cn:_(q_l) EkBrg(t), t € (Trmin, tm—1)-

Thus, the model can be rewritten as

Ni(tZi, Wi) = Xo(t)exp [ BZi+ Y &Brg®Wi|, t>0
k=-(¢-1)

where B}, s may be considered to be (m+4) standard cubic B-spline basis functions (e.g.,
q=4), as defined in section 2.3.2, with the number and location of knots as defined in the
next subsection. For simplicity, let’s drop the index ¢ from the B-spline notation. Thus,
a cubic spline basis with m interior knots would have m+4 functions By (t), ..., Bpya(t).

Considering the B-spline property ka:_(q_n By 4(t) = 1, g(t) can be reparametrized
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and written in terms of m + 3 spline terms. Thus, g(¢) can be rewritten as

m—+3

9(t) =Y+ > _ nBi(t)
k=1
The penalty considered in the estimation procedure is given by the integral of a
squared higher derivative of the fitted curve (Eilers and Marx, 1996), such that the

standard form of the penalty function for cubic splines is given as:

where a controls the amount of smoothing applied, with o = 0 and @ = oo leading
to a non-penalty regression spline function and a linear term, respectively (Berhane
and Weissfeld, 2003). Theoretically, it is assumed that the amount of smoothing is
fixed and specified a priori. Because the penalty function is a quadratic function
of ¥ = (71,..., Yms3), it can be rewritten as %a’?’f)’?, where D is an appropriately

chosen symmetric, nonnegative matrix, such that the 4,5 th element of D would be

mazx(t; n "
fmm(t(i)) B! (t)B] (t)dt.

Hence, the parameter estimates are obtained by maximizing the log penalized partial

likelihood, which is defined as

6(B,7) = £(B,7) — %OWID%

~1

where 4 = (0,7 ). For the cubic splines setting, D is an (m + 4) x (m + 4) matrix

with the first row and column being zeros, since the constant term passes unpenalized.
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The unpenalized partial likelihood can be written as

_ - exp(10(t) + gy W Br(t)W; + BZ;) :
L) =] (ZZEER exp(10(t) + S 2y Bi(t)W; + BZD)

i=1

Instead of using the standard form of the penalty function for cubic splines as
1a flg" (t)]*dt because the cubic splines tend to be unstable in the right tail of the
distribution as discussed by Gray (1992), quadratic splines may be used with penalty
%oz il [¢'(t)]?dt. Alternatively, Gray (1992) also recommends, for computational reasons,
the use of piecewise constant functions with penalty Lo ST (g — _1)2dt.

In any case, let n = (B,7). Thus, it can be shown that /n(7 — nr)) = n(Z +
af))_ln_%U(’y(T)) + 0,(1), where D is the expanded penalty matrix that augments
rows and columns of zeros to D to account for the unpenalized terms in the model;
U(v(r)) is the unpenalized score vector; Z is the information matrix and 77 is the true
parameter value (Gray, 1994).

Then it follows from the asymptotic normality of U(yr)) that /n(j — nr) is
asymptotically normal with mean 0 and variance given as the limit of nV, where
V = (Z + aD)™'Z(Z + aD)~!. These asymptotic results assume that the number of
terms in the spline functions is held fixed as n — oc.

By analogy with the usual (unpenalized) parametric likelihood procedures, Gray

(1994) proposed three different test statistics considering the null hypothesis v = 0:

e A penalized Wald-type statistics can be defined as Q, = 4 (Z,5 + aD)#4, where

Ty = Lyy — TysT551p,, with I, denoting the derivatives with respect to ;

e A penalized quadratic score statistic is defined by

QS = S;(/BAOﬂO)(I’Y’Y\ﬂ + aD)_IS’Y(BOJO)a Where S(,B,’}/) = (Slﬁ(/877))siy(/8a’y)l7 BO

is the maximum partial likelihood estimator for 8 when v = 0, and 87(30, 0) =

0Ly (Bo,0)/07;
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e A penalized likelihood ratio statistic is given by Q; = 2[L,(8,%) — LP(BO, 0)].

Under the null hypothesis, the statistics @), @; and @Q,, all have the same asymp-
totic distribution, which is that of ) ejZ]?, where Z; are independent standard normal
random variables and the e; are the eigenvalues of the matrix imZ, 3(Z,, s + oD)".
Thus, the reference distribution for the test statistics under Hy is given by a weighted
sum of independent x?’s, where the weights are given by the eigenvalues defined pre-
viously. One of the advantages of this approach over nonparametric smoothing splines

is that here e; are easy to compute (Gray, 1994).

2.3.3.2.1. Choice of Smoothing Parameter, Degrees of Freedom and
Placement of Knots

Based on numerical results, Gray (1994) suggested that the number and location of
the knots is not very important as long as the number is large enough (between 10 and
15) and they are reasonably spread out. The general algorithm used by this author is
to put roughly equal amounts of data between the knots.

Theoretically the smoothing parameter is considered fixed and defined a priori in
order to be used for obtaining the parameter estimates. However, operationally the
smoothing parameter is calculated by the following relationship with the degrees of

freedom, which should be specified for each nonparametric term, such that:

df = trace{limZ,,,(Z,y, + D)™}

Thus, the above expression for the values of the smoothing parameter that give the
specified degrees of freedom should be solved (Gray, 1992). Based on this definition,
Berhane and Weissfeld (2003) suggest that the number of knots that determine the

B-spline basis functions are set to be at least twice the number of degrees of freedom.
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Some authors mention that even though it is possible to develop some automatic
procedure to select smoothing parameters by using criteria such as GCV, its implica-

tions for hypothesis testing are not obvious (Gray, 1994; Berhane and Weissfeld, 2003).

2.3.4 Extensions for Multivariate Time-to-Event Data

An extension of Gray’s model for multivariate time-to-event data was proposed by
Berhane and Weissfeld (2003), whose focus is on the ability to conduct simultaneous
inference on several time-to-event outcomes in models in which the exposure-response
relationships may have nonlinear forms. The authors considered a study with G dif-
ferent time-to-event outcomes, such that the proportional hazards model for the gth

outcome is of the form
Agi(t) = Ago(t) exp {Z 5jg’ Zqi + fg(hgi)} , t>0
J

where hg is a non-parametric function of one additional covariate. The penalized re-
gression spline approach is used to estimate f,(hy) = Yoghg + Y py YrgBig(hg). The
inference for each of the marginal models can be done using the developments found in
Gray (1994). Thus, the authors extended the methods described in Wei et al.(1989) to
test for trends across parameter estimates and to combine estimates across margins to
test for covariate effects of interest.

In order to take into account that 7, = (fBy,7,) across G multiple outcomes are
generally correlated, the authors used analogous developments as in Wei et al (1989)
to show that the asymptotic covariance matrix between /n(fj, — 1) and /n(f, — 1)
can be consistently estimated. Berhane and Weissfeld(2003) also discuss methods for
conducting simultaneous inference of the overall effect and/or linearity of the nonpara-

metric term, h, across failure types, using extension of the results presented in Gray
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(1994). However, there is no discussion about considering time-varying coefficients in

their model.

2.4 Overview of Proposed Research Work

So far, almost all methods proposed in the literature for the analysis of time-varying
coefficients in survival analysis have been developed for univariate time-to-event data.
To our knowledge, the approach for the estimation of varying-coefficients considering
B-splines in the WLW model is the only one proposed for multivariate time-to-event
data settings (Berhane and Weissfeld, 2003). An appealing approach for the analysis
of recurrent event data is the marginal means/rates model, which we extended by
incorporating B-splines for the estimation of time-varying effects. Thus, we consider
the inclusion of time-varying effects in the marginal rates models in this research and
we discuss two estimation approaches for these time-varying coefficients: regression and
penalized B-splines. The proposed methods are described in details in Chapters 3 and
4, respectively. We also extended the generalized cross-validation (GCV) criteria for
the estimation of number of knots in the context of our proposed regression B-spline
model.

In addition, we conducted extensive simulation studies to compare two recently pro-
posed methods by Wang et al(2001) and Miloslavsky et al(2004) for analyzing recurrent
time-to-event data in the presence of dependent censoring. The results of this empirical
comparison are presented in Chapter 5.

To illustrate the proposed methods, we apply both the traditional and proposed
methods to the aforementioned vitamin A randomized clinical trial. Using this data,
we evaluate how the effect of supplementation of vitamin A on diarrhea morbidity

behaves over time, taking also into account the effect of other factors, such as child’s
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age and gender, for instance. In the following Section, we provide a detailed description
of the vitamin A clinical trial as well as some preliminary results of applying the most

commonly used methods for recurrent event data.

2.4.1 Motivating Example: Vitamin A Community Trial

Diarrhea is one of the most prevalent causes of child mortality worldwide, killing over
1 million children annually (Victora et al., 2000). Tragically, methods of prevention,
treatment and management are well understood but not available to those who need
it most. Major causes of diarrhea include limited access to safe drinking water, fecal
contamination of surroundings, and unsanitary conditions. Untreated, diarrhea can
quickly cause mortality by dehydration. Children dehydrate more quickly than adults
and thus are more vulnerable to diarrheal mortality. Diarrhea is ultimately fatal to
approximately one in every 200 children who contract it (UNICEF, 2003). As a chronic
condition, diarrhea compromises the integrity of the entire body, reducing immune
system capabilities, growth, development, and general nutritional and energy stores.
Viruses, bacteria and protozoa may be responsible for diarrheal illnesses. Expo-
sure to some pathogens can vary with the season. The mechanism of transmission
of diarrhea may be through foodborne transmission (a common pathogen would be
E.coli), waterborne transmission (pathogens include Giardia lambia and Shigella sp.)
and transmission by direct contact. In settings where it is difficult to maintain good
hygiene, person-to-person transmission is very common and affects particularly small
children. In this case, rotavirus is an important cause of diarrhea in pediatric popu-
lations, seen predominantly in infants, and Giardia lambia, in toddlers. A particular
child can experience repeated episodes of diarrhea, which can be related for at least two
reasons: the prior infection made the person less resistant to a subsequent exposure;

or the factors that led to the first exposure led also for the second exposure (Byers,
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Guerrant and Farr, 2001).

The prevention of diarrhea involves commitment on the part of both individuals
and communities. On an individual level, exclusive breastfeeding for infants is the first
line of defense and is highly recommended on many other levels, as it is inexpensive and
unparalleled in benefit to infant and mother (Bhandari et al., 2003; Morris et al., 1999).
Vigilance in maintaining personal and domestic hygiene behaviors is another way to
control the risks latent in the immediate environment of children. On a community level,
mobilization of sanitary water supplies can not only prevent diarrhea by eliminating risk
due to contaminated water; an ample availability of sanitary water can also facilitate
individual and community efforts to maintain hygienic personal and domestic behaviors.
Comprehensive vaccination against infectious diseases will minimize weakening of GI
tract flora and render children less susceptible to diarrhea (WHO, 1999). Vitamin A
deficiency is other factor that may affects the immune system, reducing the immune
response to children’s infections.

Scientific information accumulated in the last decades has led to consensus about
the effect of vitamin A supplementation on the reduction of child mortality by 23 to
34 % in populations where vitamin A deficiency is endemic, averting up to one million
deaths a year. This reduction was due in large part to a fall in diarrheal and measles-
related deaths in the supplemented children. The role of vitamin A supplementation
on diarrheal morbidity however is less clear than on mortality.

In the last two decades, many clinical trials had been conducted to evaluate the
effect of the supplementation of vitamin A on diarrhea morbidity and other related
illnesses in areas where its intake is inadequate. One of such studies was a randomized
community trial conducted in a cohort of 1,240 children, aged 6-48 months at baseline,
who were assigned to receive either vitamin A or placebo every 4 months for 1 year in a

small city in the Northeast of Brazil. The vitamin A dosage was 100,000 IU for children
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younger than 12 months and 200,000 IU for older children, which is the high dosage
guideline established by the World Health Organization (WHO) for the prevention of
vitamin A deficiency. For children aged 1-4 years, WHO recommends that the optimal
interval between doses is 4 to 6 months and that the minimum interval doses for the
prevention of vitamin A deficiency is one month.

The guidelines proposed by WHO as well as by other available sources do not provide
specific information on how long a high-dose vitamin A supplementation affects diarrhea
morbidity. As diarrhea is still a major cause of morbidity and mortality in small children
in developing countries, it would be of interest to evaluate more comprehensively the
effect of vitamin A supplementation on diarrheal episodes in children aged 6 months
to 5 years. Thus we consider the data from the Brazilian vitamin A clinical trial in
order to further evaluate the research questions of interest about the effect of vitamin
A supplementation on diarrhea morbidity.

For the Brazilian study, the morbidity data was collected during household visits,
which occurred three times per week, by local field workers during one year. The infor-
mation on the occurrence of diarrhea and respiratory infections collected at each visit
corresponds to a recall period of 48-72 hours. A complete investigation of signs and
symptoms was conducted when diarrhea was reported. Besides the child’s information,
such as age and gender, there are also available socio-economic indicators for the house-
holds, which include mother’s education, their working status, number of people living
at the household, energy and water supply, among others. The study was approved
by the National Institute of Nutrition, Ministry of Health, Brazil, and by the ethics
committee of the School of Medicine, Federal University of Bahia. More details about
this study is presented in Barreto et al (1994).

Since we are interested in evaluating the effect of vitamin A supplementation on

the occurrence of recurrent diarrheal episodes, it’s worth to present some important
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definitions in this setting as follows: (i) As the household visits collected information
regarding to each 24 hour period, the study defines 24 h period as the time from
the moment the child woke up one day until he/she woke up the next day.(#) A day
with diarrhea was defined as 3 or more liquid or semi-liquid motions reported in a
24 h period. The number of motions per 24h was recorded. Thus, (iii)an episode
of diarrhea was defined as a sequence of days with diarrhea and the episode was
considered finished when there were 3 or more days without diarrhea. (iv)The sever-
ity of a diarrheal episode was defined based on the duration of an episode and on
the number of liquid or semi-liquid motions reported in a 24 h period. Thus, we de-
fined three groups: mild (duration < 2), moderate (duration > 3 and average number

of motions < 5) and severe (duration > 3 and average number of motions > 5) episodes.

2.4.1.1. Description of the Data

The analyses presented here include 1,207 children with mean age 27.3 months at
baseline (std dev=12.1, range=6-48 months), being 52.4 % boys and 50.1% random-
ized to receive vitamin A (treatment group). Among those children, 1,063 (88.1%) had
at least one diarrheal episode during their follow-up period in the study. The aver-
age number of days of follow-up is 331 days, with 83.7% of the children having daily
continuous information for a year.

The mean number of episodes of diarrhea by child during the follow-up period is 5.9
(std dev=>5.4, range=0-27 episodes). The median number of episodes in the vitamin
A and placebo group is 4.0 and 5.0, respectively. Table 2.1 presents the distribution
of the number of episodes by treatment group. According to the data presented in
Table 2.1, 16.45% of the children in the placebo group had 12 or more episodes of
diarrhea during their follow-up period while this proportion was 14.55% in the vitamin

A group. However, no statistically significant difference was found between the number
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of episodes of diarrhea by treatment group (x? = 1.28, p=0.8649).

TABLE 2.1: Distribution of number of diarrheal episodes by treatment group

Number of episodes Vitamin A Placebo

0-3 271 (44.79%) 256 (42.52%)
4-7 157 (25.95%) 153 (25.42%)
8-11 89 (14.71%) 94 (15.61%)
1215 49 (8.10%) 54 (8.97%)
> 16 39 (6.45%) 45 (7.48%)
Total 605 602

The overall number of episodes of diarrhea to be consider in this project is 7,109
episodes, being 3,464 and 3,645 episodes, respectively, in the vitamin A and placebo
groups. We classified the episodes according to their severity based on the duration
of an episode and on the number of liquid or semi-liquid motions reported in a 24 h
period. Only 276 (3.88 %) of the episodes were considered severe. The distribution
of episodes by severity level and treatment group is presented in Table 2.2. Note that
we concatenated the mild and moderate groups in this table. Using GEE, we found
some evidence that the proportion of severe episodes in vitamin A (3.3%) and placebo

(4.5%) may be different (x? = 2.78, p-value=0.0957).

TABLE 2.2: Distribution of diarrheal episodes by severity and treatment group

Severity Vitamin A Placebo
Mild-Moderate 3351(96.74%) 3482(95.53%)
Severe 113(3.26%) 163(4.47%)

The distribution of the number of episodes in each of the intervals between the four
dosages of vitamin A is presented in Table 2.3. According to these results, the number
of episodes decreased significantly during the study, such that 42.86% (3047) of the

episodes occurred during the first dosage cycle (i.e, between first and second doses);
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37% (2630) during the second dosage cycle and only 20.14% (1432) occurred between
third and fourth doses of vitamin A (i.e, third dosage cycle). Same trend was observed

in both treatment groups.

TABLE 2.3: Distribution of diarrheal episodes by interval of occurrence and treatment
group

Interval Vitamin A Placebo

1% dosage cycle 1441(41.60%) 1606(44.06%)
2nd dosage cycle 1294(37.36%) 1336(36.65%)
374 dosage cycle 729(21.05%) 703(19.29%)

2.4.1.2. Application of methods for analysis of recurrent time-to-event
data

The most commonly used models for recurrent time-to-event data were applied to
this data to evaluate the effect of vitamin A supplementation on childhood morbidity.
The event outcome was diarrhea. For these analyses, the i** child contributes K; + 1
records, where K; represents the number of observed events for the i child. Using
counting process notation, we have that for the k™ record of the i child, tstart is
the time of the (k-1)th event (or 0 if k=1) and tstop is the time of the kth event (or
censoring time if k = K; + 1). If an episode occurred, its last day was determined
and the next risk interval for that child begun the next day. Furthermore, each child’s
observations are censored at the earliest of time of lost-to-follow up and end of study.

Initially, we present results related to the analysis of data regarding the first treat-
ment cycle, i.e., data from the day of receiving the first treatment dose until the day
just before the second dose, which was approximately four months after the first dose.
We are defining the total time as the time from the first dose of vitamin A until the oc-
currence of an episode of diarrhea. The only covariate considered is treatment, which is
0 if the child received placebo and 1 if the child received vitamin A. During this period

we observed 3,047 episodes of diarrhea.
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The results from the AG model and Marginal Rates/Means model considering all
episodes during this first interval (i.e.,between first and second treatment doses) are
displayed in Table 2.4. Based on AG model, the results show that vitamin A sup-
plementation has a significant effect on diarrheal episodes ([3’:—0.12; 95% CI=(-0.21;
-0.03)). That is, the hazard of experiencing an episode of diarrhea since first dosage is
11.3% lower for those who received vitamin A compared to those who received placebo.
The marginal means model also showed a significant negative association between di-

arrhea and treatment.

TABLE 2.4: Treatment estimates for the Vitamin A trial during first dosage cycle

Model S Estimated {B/SE(B)}*
robust SE(f)

Andersen-Gill -0.120 0.0444 7.323

Marginal Means -0.120 0.0590 4.144

During the first interval (between first two dosages), only 74(12.23%) and 86(14.29%)
of the children in the vitamin A and placebo groups, respectively, had more than five
episodes. Therefore, the event-specific estimates may be unreliable for greater than five
episodes. Hence, to allow direct comparison between all models the data were trun-
cated after five events. The results for all fitted models are shown in Table 2.5. The
patterns of the results for the models are remarkably similar, especially regarding the
estimation of the common effect using the PWP-Total time (PWP-TT: B:—O.112), AG
and the marginal means models (8=-0.116). The common estimate for WLW model
is obtained by using optimal weights for estimating the average treatment effect across
the marginal models. The overall treatment estimate for the WLW model (=-0.144)
was higher than those obtained by the previous models. These results seem to be
consistent with the carry-over effect of the WLW method described by some authors

(Kelly and Lim, 2000) since the overall estimate reflects the weighted average of the
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event-specific estimates. The estimate from the LWA model also seems to overestimate
the treatment effect (32—0.154), which may be due to the fact that the LWA method
allows subjects to be at risk several times for the same event. It is worth to mention
that, considering any of those methods, the overall treatment effect was found to be
statistically significant.

Regarding the event-specific estimates, the association between treatment effect
and time to first episode of diarrhea was not significant (3=-0.127, SE(3)=0.0658).
The treatment effect seems to be significantly associated only to the time to second
episode. Hence, it seems that the treatment effect changes as the number of events
increases. The PWP gap time model (PWP-GT) shows similar patterns. However,
the interpretation of event-specific estimates is not very simple. For the conditional
models (PWP-TT and PWP-GT), the interpretation of the estimated parameters are
conditional on having had previous events because the analysis is based on restricted
risk sets. Thus, the decrease of the importance of the treatment as the number of
events increases may be related to the fact that the children with a higher number of
episodes are progressively less healthy, which was one of the hypothesis mentioned by
Cai and Schaubel (2004).

The WLW method, on the other hand, has been criticized for analysis of recurrent
time-to-event data because it is based on unrestricted risk sets, in which the subjects can
be at risk for the (k+1)th event prior to having experienced the kth event. Our results
indicate that the magnitude of the estimates of the WLW model for all subsequent
events are higher than those from PWP-TT, even though they are still not statistically
significant. Therefore, this may illustrates the carry-over phenomenon noted in Kelly
and Lim (2000) and Cai and Schaubel (2004). This happens especially when a covariate
effect exists for the first events, but not for subsequent recurrences, resulting in larger

estimates for those latter events due to the carry-over effect.
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TABLE 2.5: Treatment estimates, considering first five diarrheal episodes, for the
Vitamin A trial during first dosage cycle

Model Estimates B Estimated robust {3/SE(G)}?
SE(8)
WLW Episode 1 -0.127 0.0658 3.765
Episode 2 -0.208 0.0758 7.521
Episode 3 -0.177 0.0904 3.830
Episode 4 -0.168 0.1075 2.441
Episode 5 -0.242 0.1310 3.415
Common -0.144 0.0640 5.056
LWA Common -0.154 0.0631 5.984
PWP-TT Episode 1 -0.127 0.0658 3.701
Episode 2 -0.156 0.0761 4.205
Episode 3 -0.026  0.0907 0.084
Episode 4 -0.062 0.1079 0.331
Episode 5 -0.176 0.1315 1.797
Common -0.112 0.0387 8.392
PWP-GT Episode 1 -0.127 0.0658 3.701
Episode 2 -0.153 0.0761 4.045
Episode 3 -0.011 0.0907 0.014
Episode 4 -0.022 0.1081 0.043
Episode 5 -0.045 0.1320 0.011
Common -0.092 0.0387 5.646
Andersen-Gill Common -0.116  0.0445 8.968
Marginal Common -0.116 0.0499 5.361
Means

A rate model with the effect being piecewise constant was implemented for a further
evaluation of the treatment effect over the period between the first and second dosage
in the vitamin A trial. Thus, we defined indicators considering different time intervals,
which allows us to evaluate whether the effect of vitamin A supplementation varies with
time. Table 2.6 displays the results for the evaluation of treatment effect in intervals

of 15 and 60 days, respectively. For the model using intervals of 15 days, we had to
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put the two last intervals together because there were only very few events on the last

interval (135-150 days), resulting in unstable estimates.

TABLE 2.6: Treatment estimates, considering different time intervals, for the Vitamin
A trial during first dosage cycle

Model Intervals B Estimated SE(5)  p-value
Treatment 0-15 -0.1365 0.1477 0.3552
15-30 -0.0591 0.1016 0.5608
30-45 -0.2375 0.1110 0.0324
45-60 -0.2447 0.1060 0.0210
60-75 0.0109 0.1084 0.9196
75-90 -0.2442 0.1208 0.0432
90-105 -0.1583 0.1143 0.1661
105-120 0.0414 0.1062 0.6970
120-150 -0.0673 0.1289 0.6014
Treatment 0-60 -0.1716 0.0694 0.0134
60-120 -0.0777 0.0724 0.2831
120-150 -0.0673 0.1288 0.6015

The results show some evidence that the effect of treatment may vary somewhat
with time on study (Table 2.6). Both models suggest that the benefit from vitamin
A supplementation appears to be smaller or disappearing later on in the study. In
order to better visualizing how treatment effect changes over time, Figure 2.1 shows
the estimates for treatment effect using intervals of 15 days along with a smoothing
curve. In situations such that, when a treatment may gradually lose effectiveness or
a treatment may have a latent period of minimal effectiveness before the required
cumulative dose is attained, one alternative approach is to consider models with time-
dependent coefficients, §(t). When 6(t) is not constant over time, the impact of one or

more covariates on the hazard may vary over time (Therneau and Grambsch, 2001).
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FIGURE 2.1: Treatment Effect using 15 days interval for the Vitamin A trial
In Chapters 3 and 4 we reanalyze this data using the proposed models as well as we
consider a more comprehensive evaluation of the effect of vitamin A supplementation

on diarrhea morbidity, taking into account the multiple dosage scheme that was used

in the Vitamin A clinical trial.
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CHAPTER 3

REGRESSION SPLINES IN THE
TIME-VARYING COEFFICIENT
RATES MODEL

3.1 Introduction

Many epidemiologic studies involve the occurrence of recurrent events, such as times
to opportunistic infections among AIDS patients or to lung exacerbations in cystic
fibrosis patients, and much attention has been given for the development of modelling
techniques that take into account the dependence structure of multiple event data in
the last few decades (Prentice, Williams and Peterson, 1981; Andersen and Gill, 1982;
Wei, Lin and Weissfeld,1989; Pepe and Cai, 1993; Lin et al., 2000). Recent papers
(Kelly and Lim, 2000; Cai and Schaubel, 2004) have discussed the appropriateness of
such approaches to handle recurrent event data.

Recent research has been focusing on more complex recurrent event settings which
include large number of recurrent events, time-dependent covariates, time-dependent
effects and dependent censoring among other features (Wang, Qin and Chiang, 2001;
Duchateau et al., 2003; Ghosh and Lin, 2003; Miloslavsky et al., 2004). Much effort has
also been devoted to the development of methods for the estimation of means/rates of
recurrent events in recent years (Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin et

al, 2000). The main appeal of using such approaches is that the mean number of events



and the average rate of event occurrence is usually of direct interest of investigators
and is also easy to be understood, especially for non-statisticians.

In many situations it is also of interest to explore the functional form of the rela-
tionships between covariates and time-to-event and to examine whether and how the
effects are changing over time. Existing methods (Hastie and Tibshirani, 1990; Sleeper
and Harrington, 1990; Gray, 1992; Nan et al., 2003) are all Cox-based models defined
for univariate time-to-event. To our knowledge, no time-varying coefficient model had
been proposed to handle any type of multiple time-to-event outcomes. Thus, in this
Chapter we propose a method for estimating time-varying coefficients in the marginal
rate models using regression B-splines.

We illustrate the application of the proposed method using data from a randomized
community trial that was designed to evaluate the effect of vitamin A supplementation
on recurrent diarrheal episodes in pre-school age children, who were assigned to receive
either placebo or vitamin A every 4 months for one year . This study provides valuable
information to evaluate multiple dosage of vitamin A and their effect on the incidence
of diarrheal episodes. A log linear model with Poisson error, which is the standard
regression model for incidence density rates, was primarily used for analyzing this
data and suggested that the overall incidence of diarrhea was significantly lower in the
supplemented group than in the placebo group (Barreto et al, 1994). However, this
method will not be the choice when the research question lies on important covariate
or effects that change over time. In this case, as pointed out by Moulton and Dibley
(1997), use of time-to-event models will lead to greater efficiency and accuracy. Rate
models have been used to analyze time-to-event data, where the rate of recurrence is
modeled as a function of observed covariates and the effect of the covariates is assumed
to be constant.

Preliminary analysis of the vitamin A study suggested that the effect of vitamin A

supplementation on recurrent diarrhea may change over time. Therefore, it is important
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to develop methods to estimate such time-varying effects. Hence, the main purpose of
this Chapter is to present a statistical method that incorporates B-splines for estimation
of time-varying coefficients in modeling recurrent time-to-event data. The remainder
of this Chapter is organized as follows. In Section 2, we describe the model of interest
and present the proposed methods. Simulation methods and results are discussed in
Section 3. In Section 4, the model is applied to the vitamin A community trial data
that was described in details in Chapter 2. A discussion of issues pertinent to the

proposed method and its application is given in Section 5.

3.2 Model and Methods

We are focusing on a time-to-event approach for recurrent data that allow us to estimate
effects that may change over time. In this way we are properly modeling the functional
form of exposure or covariates by using a marginal rates model that incorporates a

smoothing technique called regression splines. The marginal rate model may be written:

dpu(t) = exp{B Z(t) + 0(t)W (t) }dpo(?)

where B is a (p — 1) x 1 vector of fixed regression parameters, 6(t) is the time-varying
regression parameter and dug(t) is the baseline rate function. The covariates Z(t) and
W (t) could be time-independent or time-dependent. For instance, when W is a time-
independent binary exposure or covariate, such as treatment group, the rate ratio(RR)
of the two groups at time t is given by exponentiating 0(t) (i.e., RR(t) = exp(6(¢))).
The estimation of the time-dependent effect 6(¢) might be done by using standard cubic
B-spline basis functions By (t),(k = 1,...,m+3), such that 8(t) =yo+ > 1) 7B (t). B-
splines, originally introduced by de Boor(1978), are popular types of regression splines
in statistical applications, mainly due to their numerical properties. The proposed
model uses products of a covariate and spline functions of time to yield models that

allow effects to change over time in a flexible way.
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Thus, replacing 6(¢) by its B-spline approximation in the above time-varying coef-

ficient model, we have:
du(t) = exp{B'Z(t) + "W (t) duo(t),

where 7 = (30, Y1, -+ Ym3) ; Wilt) = (Wi(t), BLOWi(?), .., Brra(t)Wi(t)) -
Note that the model above does not include time-dependent coefficients. Now the
model becomes a standard marginal rates model with time-dependent covariate W (t).

Hence, the log of the partial likelihood is given by:

n

(= Z; /0 ' [(B'Zi(t) + 7' Wi(u)) — log(z Yj(u) exp{B Z;(t) + 'Y W;(u)}) | dN;(u),

j=1
where dN;(u) denotes the number of events in a small time interval [u, u + du], Y;(t) =
I(C; > t) is the at-risk indicator and 7 denotes the end of the follow-up period.

Thus, considering the regularity conditions for the marginal rates model (Lin et al,
2001), the estimates of the regression parameters are obtained by the solution of the

following unbiased estimating equation for n = (8,7)':

Loy [ a0 - S i,

where Zz(t) = (Zi(t),wi(t))la S(O)(n’ ) =n"! E] 1 J( )exp{nlzj(t)}a and
SM(n,t) = n=' 327_, Y;(t) exp{n' Z;(t)} Z;(t)-

The information matrix, Z, may also be defined as in the standard marginal rates

U,(n,t) =
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model, such that:

9%4(n,t)
I(n) = —
(n) Bnon

_ Z/ [Z] 1 Yi( ( )eXP{UIZ'(U)}

2 =1 J(u)exp{nz( )}

(S0 expf 2,00
= dN;(u)

(S0, Yi(w) exp{n 2w} )

Considering the developments presented in Lin et al(2000), Z(n) ' and ' = Z-'%7-1
are referred, respectively, as the naive and robust covariance matrix estimators, where
R n (. (1) ®2
=2 {ZM Zwi"“i}dM“] ’
for 0 < ¢t < 7 and dM;(t) = dN;(t fo s) exp{n' Zi(s)}djio(s). The baseline mean
is estimated by the Breslow-type estimator as fio(t) = n~* [; dN.(u)/S©(8,u), where

AN (u) = Y7, dNi(u).

Therefore, the nonparametric function 6(t) can be estimated by 8(t) = 3o + Y277
4xBy(t) and its variance estimator is given by var{(t)} = B*(¢) cov(5)B*(t), where
B*(t) = (1, B(t), ..., Bmys(t)) and cov(d) is the (m + 4) x (m +4) matrix on the right
bottom side of f, assuming a fixed knot sequence. The pointwise confidence intervals for
8(t) and hypotheses tests proposed here are based on large-sample theory of maximum
partial likelihood estimation (Andersen and Gill, 1982) and modern empirical process
theory considered by Lin et al (2000). The theory holds if the B-spline basis is chosen a
priori. In this case, the definition of the basis for the fixed model is only dependent on
the data to the extent that m interior knots are placed at the quantiles of the sample
distribution of the event times (Sleeper and Harrington, 1990, Abrahamowicz et al,
1996, Giorgi et al, 2003).

Considering that the number of knots is held fixed as the sample size n — o0,

we define a Wald-type statistic to test whether 6(¢) is constant over time. Let 7 =
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(71, ....,'ym+3)l. Thus, the hypothesis of interest is that H,: 4 = 0. By analogy with

the usual parametric likelihood procedures, this statistic can be defined by:

A

Qw =4 co(3)

_13./

The test rejects for large values of the statistic. Under the fixed knot framework, it
is further assumed that the usual conditions are satisfied so that the standard asymp-
totic results hold for this model. Hence, under the null hypothesis, the statistic Quw

follows asymptotically a chi-square distribution with (m+3) degrees of freedom.

3.2.1. Selection of Number and Location of Knots

This proposed method may be, however, sensitive to the number and location of
knots. As in other methods that incorporate regression splines (Rosenberg, 1995; Abra-
hamowicz et al, 1996; Giorgi et al, 2003), we consider primarily splines with a fixed
small number of knots. The location of the interior knots is usually based on the quan-
tiles of the observed event times in order to ensure an approximate equal number of
events in each interval (Giorgi et al, 2003). According to Abrahamowicz et al (1996),
this should have a minor impact on the accuracy of inference.

An alternative approach is to consider a posteriori model selection criteria, which
may be used to find a reasonable trade-off between model parsimony and the risk of
overfitting bias (Sleeper and Harrington, 1990; Abrahamovicz et al, 1996). However, in
such cases, additional variance is expected due to the posteriori model selection, which
may inflate type I error rates. Among the criteria for choosing the proper number
of knots that were proposed for univariate time-to-event settings are the generalized
cross-validation (GCV) and Akaike’s information criterion (AIC) (O’Sullivan, 1988,
Rosenberg, 1995, Nan et al, 2003). Considering AIC, we specify several values of interior
knots (m) and choose the m that minimizes AIC(m) = —2I(8,v) + 2(m + degree + 1),

with degree=3 for cubic splines. The GCV method may be computationally onerous
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for moderate sample sizes. However, we also discuss here an adaptation of the GCV
criterion, that was proposed for univariate time-to-event data by Nan et al (2003),
to the recurrent event setting. This approach also extends the method proposed by
O’Sullivan (1988), in which the baseline cumulative hazard function was considered
known.

The GCV method is defined as follows. Using the time-varying coefficient rates
models defined previously, calculate the cumulative rate function fi(t;m) and 6(t; m)
for a range of interior knots m. If (Bl, ;) are the estimators of (3,7) at the Ith iter-
ation, then the working dependent variable y;; and the working weight v;; for the jth

observation of the ¢th subject can be written, respectively, as
vij = 1 Wiltiy) + B1Za(ti;) + dNi(ti;)/ (2v5) — 1
and
1 . N
vij = 5#0(%’) exp{Y,Wi(ti;) + B8, Zi(ti;)}-

Let ¥ = (31, 9n) V= diag(¥4, ..., V,) and f= (f'l, ...,f’n)' be, respectively, the
working dependent variable, the working weight matrix and the predicted value vector
at convergence. Then f can be calculated as f = Z(Z’VZ)—lz’Vy = Hy.

Considering the definitions above, calculate and plug them into the GCV equation

to select the m that minimizes GCV(m), say m*. The GCV is defined as:

n N oo (6 f)2
GOV (m) = > it Zj(_llfzyﬁ()y;y fij) ,

where h is the average of the diagonal elements of H and n; denotes the number of
observations for subject i.

Considering the selected m from the previous step, replace uo(t) by this estimated
fio(t,m*) and then treat it as fixed and known. Note that a common [ig(t, m*) is
used to calculate GCV for different choices of m. Then recalculate GCV using an

iterative weighted least square algorithm for each choice of m and select a new m
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that minimizes GCV(m). For this procedure (B;1,%11) is calculated by minimizing
> 2y vy — 5'Wi(ti;) — B Zi(ti;)}>. This last part of the process is repeated until

the chosen m* at the current step is the same as the m* at the previous step.

3.3 Simulation Studies

The proposed method was evaluated in simulation studies involving some variation of
sample size, model complexity and shape of the true rate function. For each simulated

data set, we estimated the time-varying coefficient 6(¢) under the marginal rates model:
E[AN(t)|2] = dp(t) = exp{6(t) Z}duo(2),

We generated recurrent event times using the following random-effect intensity
model E[dN(t)|N(t—), Z,u] = A(t|Z,u) = uro(t) exp(6(t)Z), where u is an unobserved
unit-mean positive random variable that is independent of Z. We generated indepen-
dent Z from Bernoulli distribution (0.5). We generated independent u; (i=1,...,n) from
gamma distribution, with mean 1 and variance 0> = 0 and 1. Since u is independent
of Z, and E(u)=1 then the random-effect intensity model implies the marginal rates
model with dug(t) = Ao(t)dt.

We considered a constant baseline hazard function )\ for all configurations described
here. The subject’s follow-up time was uniform|[0,1] and the value for Ay varied for the
different configurations considered, such that an average of approximately 3.5 events
were observed per subject during the trial period. The failure indicator A;; was defined
as Ay; = I(T;; < Cy).

We considered three different functions for the true log of the rate ratio of the
two groups as functions of time, specifically #(¢) = —1.2 (a constant rate ratio over
time), log(t+1) and 1.2sin(—nt). We refer to these models as constant, increasing and
rise/fall.

The recurrent event times were generated considering the relationships between
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between A(t|Z,u), A(t|Z,u) and S(t|Z, u), denoting respectively the intensity function,

the cumulative intensive function and the survival function, such that:

At Z,u) = /0 “ugexpl8(t) 2},
and
S(t|Z,u) = exp{—A(t)} = exp{uroexp{0(t)Z}}.

The time to the jth recurrent event was then be defined by Sr;jr;_, 1;_,,..17 (t|Z, u)

= exp{}—[jﬁtqueXp{Q@)Z}ds——](n;leexp{HG)Z}ds}}
- /T uhesp{#(07)ds} = ¢

where ¢ ~ Unif(0,1), j=1,2,...J;, To = 0 and ¢ > T}_;.
We have explicit solutions for the recurrent times when 6(¢) = —1.2 and 6(t) =
log(t + 1). In such cases, the time to the jth recurrent event was defined, respectively,

as

log ¢
Mouexp{—1.27}

T;=Tj—

and

. Z +1)log(¢
T. = Z9(T. 1 Z+1_(—_
J \/(1 1+1) Aot

In these two cases, we considered a constant baseline hazard function A¢(t) equal to

1.

10 and 6, respectively. The expression for computing the recurrent event times for

6(t) = 1.2sin(—mnt), however, does not have a closed form. Thus, in this case we used

a Newton-Raphson algorithm to obtain the recurrent event times, with Ao(¢) = 10.
Three different models for (¢) were considered. The first is the cubic B-spline

model, where

0(t) =70+ 25y W Bi(t).

The second model specifies
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0(t) = o + Y por WAr(t),
where A;...A,. is a quadratic B-spline basis. The third model specifies
0(t) = 4o+ Xpoy WCi(2),

where C’l...ém+2 is a linear/piecewise B-spline basis.

The estimation for #(t) was performed considering the B-spline models above with
2 interior knots. For 6(t) = log(t + 1), however, we compared the B-spline models for
a range of different number of knots (m=2,...,6) through AIC criterion. The location
of the interior knots was chosen to ensure an approximately equal number of failures
between the knots (Gray, 1992; Abrahamowicz et al, 1996).

For each combination defined by the model complexity and shape of the true rate
function, 1,000 samples of size 100 were generated. For each configuration, we present
the sampling bias, estimated standard error (ESE), mean of the standard error of the
estimates(SEE) of #(t) and the coverage probability (CP) of the Wald 95% confidence
interval. The sampling bias and sampling variance of the estimates of 6(t) are defined,
respectively, as the average bias and the variance from the 1,000 random samples. Let

~

6;(t) be the estimate of the ith random sample at time t, then:

Sampling bias (t)= % — 6(t), Sampling variance (t) :E;golo(ffééz)_é(t))z,

where 0(t) = 1355 2121 6i(2).

In simulations that test the hypothesis that the time-dependent effect 6(¢) is con-
stant over time, ¥ = 0, empirical sizes of the spline based test considered 2,000 samples
of sizes 100, 200 and 300 with different number of knots and spline models. For esti-
mating power 1,000 samples were used for different spline models with 2 interior knots.

The simulation studies were implemented using R version 1.9.1 software.
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FIGURE 3.1: True Log Rate Ratio Functions (Solid Lines) against the Mean of 1,000
Estimates Using Proposed Model (Dotted Lines) for Models using different functional
forms of 6(t): (a) § = —1.2, (b) 6 = log(t + 1), (c) 6(t) = 1.2sin(—nt). In each of
the three panels, dashed lines represent the mean of 1,000 estimates for the standard
marginal rates model.
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We compared the estimates from the proposed method with those based on a stan-
dard marginal rates model to illustrate the importance of taking into account the
time-dependent effect in a model when it is present. Figure 3.1 presents the true log
of the rate ratio functions along with the mean of 1,000 estimates for the three shapes
of the rate function discussed in this paper with o2 = 0. Similar results, that are not
shown here, were obtained when o = 1. Note that the results from the proposed model
describe the effects over time reasonably well for all situations. On the other hand, the
standard marginal rates model will poorly describe the effects for the increasing and
rise/fall models. Note in Figure 3.1 (a) that the estimate from the standard marginal
rates model is so close to the true value of the effect that we are not able to distinguish
them. Some departure of the proposed method and the true line was noticed at the
end of the study period, which is probably due to the very few events observed during

this period.

TABLE 3.1: Bias, ESE, SEE and CP for estimated time-varying coefficient at selected
time t for #(¢) = —1.2 and n=100. The regression splines have 2 knots and the location

of knots are based on the quantiles of the distribution of the recurrence times.
Spline Selected  Bias ESE SEE CpP

Model Time (t)
Piecewise/Linear Spline

0.25 0.0162 0.1990 0.2106 93.8%
0.50 0.0172 0.1782 0.1916 93.2%
0.75 0.0348 0.3070 0.3289 93.3%

Quadratic Spline
0.25 0.0281 0.2638 0.2724 94.0%
0.50 0.0061 0.2419 0.2585 92.8%
0.75 0.0614 0.3181 0.3681 91.7%

Cubic Spline
0.25 0.0327 0.2403 0.2435 94.5%
0.50 0.0050 0.2385 0.2573 92.9%
0.75 0.0831 0.3699 0.4425 92.2%
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The simulation results for §(t) = —1.2 are presented in Table 3.1. Results from the
linear spline, quadratic spline and cubic spline models are included. The bias is small,
especially for t=0.25 and t=0.50. One potential reason for the increased bias for t=0.75
is that there are very few observed events later in time, which is also reflected on the
larger ESE. The piecewise/linear spline model has the overall best performance for this
configuration, which assumes a constant rate ratio over time. It performs well once the

standard error estimates (SEE) and the empirical standard error of the estimates of

6(t) are similar and the coverage probabilities are close to 95%.

TABLE 3.2: Bias, ESE, SEE and CP for estimated time-varying coeflicient in rates

models with regression splines considering 2 knots with 0(t) = log(1 +¢).

Sample Spline Selected  Bias ESE SEE CP
Size  Model Time(t)
n=100 Piecewise/Linear Spline  0.25  -0.0020 0.1597 0.1640 93.2%
0.50  -0.0036 0.1477 0.1516 94.4%
0.75  -0.0277 0.2416 0.2563 93.9%
Quadratic Spline 0.25 -0.0024 0.2125 0.2142 94.5%
0.50  -0.0042 0.1936 0.2020 93.9%
0.75 -0.0336  0.2414 0.2735 92.0%
Cubic Spline 0.25  -0.0031 0.2063 0.2099 95.0%
0.50  -0.0038 0.1946 0.2000 94.0%
0.75  -0.0386 0.2879 0.3160 92.8%
n=200 Piecewise/Linear Spline 0.25 -0.0001 0.1109 0.1110 95.0%
0.50  -0.0046 0.1039 0.1072 95.1%
0.75  -0.0006 0.1685 0.1773 93.1%
Quadratic Spline 0.25  -0.0041 0.1514 0.1493 95.3%
0.50 0.0059 0.1359 0.1370 94.2%
0.75 -0.0049 0.1668 0.1795 92.7%
Cubic Spline 0.25 0.0007 0.1462 0.1441 95.7%
0.50 0.0021 0.1371 0.1378 94.3%
0.75 0.0015 0.2003 0.2057 93.9%

In Table 3.2, the results for piecewise/linear, quadratic and cubic B-splines models
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for (t) = log(1 + t) with sample sizes 100 and 200 are summarized. Generally, results
indicate improved performance for sample size 200, for which the coverage probabilities,
CP, closely approximated the nominal level, 0.95. The variance estimator performs well
since the mean of the standard error estimates (SEE) and the empirical standard error
of the estimates of 6(¢t) (ESE) are quite similar.

We compared different number of knots for the B-spline models with (¢) = log(t+1)
in samples of size 100. In Table 3.3 the mean AIC values for 1,000 samples for a range
of number of interior knots (m=2,...,6) are presented. In all cases small number of knots
seems to be most appropriate. According to the AIC criterion, two interior knots should
be selected when considering quadratic and cubic B-splines models for this shape of the
rate ratio while three knots would be the choice when considering a piecewise/linear

model for this setup.

TABLE 3.3: AIC for rates models with time-varying coefficient using regression splines
with 6(t) = log(t + 1) for different curves and number of knots (n=100). Location of
knots are based on the quantiles of the distribution.

Spline Number of knots

Model m=2 m=3 m=4 m=5 m=6

Piecewise/Linear 2847 2844 2849 2850 2852

Quadratic 2848 2849 2850 2851 2851

Cubic 2849 2850 2851 2851 2851

For the third configuration we considered the aforementioned B-splines models for
6(t) = 1.2sin(—mt). The results for these simulation studies are displayed in Table
3.4. The estimator of A(t) presents small bias, particularly under the quadratic and
cubic B-splines models. The cubic B-spline model is the model with the smallest AIC
when compared to piecewise/linear and quadratic B-spline models with 2 interior knots.
The robust variance estimator provides a good estimation of the true variance of é(t),
and the corresponding confidence intervals have reasonable coverage probabilities for

quadratic and cubic B-spline models.
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TABLE 3.4: Bias, ESE, SEE and CP for estimated time-varying coefficient in rates
models with regression splines considering 2 knots with () = 1.2sin(—nt) and n=100.
Location of knots are based on the quantiles of the distribution.

Spline Selected  Bias ESE SEE CP

Model Time(t)

Piecewise/Linear Spline

0.25 0.1533 0.2072 0.2109 89.2%
0.50 -0.1716  0.1594 0.1572 80.5%
0.75 0.0804 0.2744 0.3066 93.1%

Quadratic Spline
0.25 0.0043 0.2152 0.2215 94.6%
0.50 0.0185 0.2296 0.2297 94.7%
0.75 0.0621 0.2653 0.3093 92.2%

Cubic Spline
0.25 0.0136 0.1957 0.2010 95.2%
0.50 0.0202 0.2243 0.2230 94.6%
0.75 0.0555 0.3181 0.3181 92.2%

Tables 3.5 and 3.6 display simulated empirical sizes and powers for the Wald test
for the hypothesis 4 = 0. The Wald test shows substantial difference from the nominal
level for the configurations that combine larger number of knots and smaller sample
sizes. Improved results were obtained as sample size increases for all spline models.
Overall, the empirical sizes were closer to the nominal level when considering small
number of knots (m=2) and large sample sizes (n=300). For the models with 2 interior
knots, results given in Table 3.5 indicate close agreement with the nominal level for
the test with regression splines from n=200, particularly using the linear spline model.
The models with 5 interior knots had sizes larger than the nominal level. It it possible
that larger sample sizes are needed for the asymptotic distribution to be an accurate
approximation in models with larger number of knots. The linear spline model presents
the best results in terms of empirical sizes for this setup. Table 3.6 gives powers for
tests of linearity, 4 = 0, for different alternatives and spline models. The power is
pretty small with smaller sample size of the alternative log(t + 1). Power was higher

for the other alternative 1.2sin(—mt), especially for larger samples sizes.
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TABLE 3.5: Empirical sizes(%) of nominal 5% Wald tests for time-dependent effects in
the rates models with regression splines. Location of knots are based on the quantiles
of the distribution.

Number Sample Cubic spline Quadratic spline Linear spline
of knots size  df size df size df size
2 100 5 11.20 4 9.80 3 7.40
200 5 6.60 4 6.55 3 5.55

300 5 6.50 4 6.10 3 4.75

5 100 8 15.20 7 12.10 6 9.45
200 8 8.20 7 6.80 6 5.75

300 8 6.60 7 6.70 6 6.15

TABLE 3.6: Estimated powers for Wald tests for time-dependent effects in the rates
models with regression splines. Location of knots are based on the quantiles of the

distribution.
Alternative Sample size Cubic spline Quadratic spline Linear spline

log(t + 1) 100 0.277 0.277 0.284
200 0.399 0.427 0.464

300 0.571 0.610 0.640

1.2sin(—nt) 50 0.623 0.592 0.548
100 0.845 0.863 0.843

3.4 Application

3.4.1. Results related to the first treatment cycle

Considering the data from the vitamin A community trial described in Chapter
2, we initially applied the proposed method for the analysis of the effect of vitamin
A supplementation on the occurrence of diarrheal episodes during the first treatment
cycle. For all analysis presented here and in the next Section we are considering a cubic
B-spline model. In order to define the appropriate number of knots to be considered
in this analysis, we computed AIC and GCV criteria for a range of number of knots
(m=2,...,6) (Table 3.7). According to these results, the best model for the data related
to the first treatment cycle would consider 2 interior knots, regardless of the criteria.

Figure 3.2 displays the behavior of the effect of vitamin A supplementation during
the first treatment cycle considering a cubic B-spline model with 2 interior knots. The

rate of diarrheal episodes in the supplemented group begins to fall down after few days

68



of the first treatment when compared to the rate of diarrhea in the placebo group. The
bigger differences in those rates is observed after 30 days of the first supplementation
and prolongs until about 2 and 1/2 months after it, when the rate ratio of diarrhea
episodes among the two groups starts to increase and gets close to 1 again after the

third month.

TABLE 3.7: AIC and GCV for rates models with regression cubic splines considering
different number of knots during first dosage cycle. Location of knots based on the
quantiles of the distribution
Number of knots AIC GCV

42,602.26 84,140.83

42,604.33 84, 393.80

42,605.78 84,714.50

42,605.45 84,629.65

42,607.77 84,389.15

O O W N

0.5

Estimated Log Rate Ratio
0.
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Days since first dosage

FIGURE 3.2: Estimated Log Rate Ratio Functions (solid curves) and corresponding
95% confidence intervals (dashed/dotted lines) for the effect of Vitamin A during the
first treatment cycle.
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FIGURE 3.3: Estimated Log Rate Ratio Functions (solid curves) and corresponding
95% confidence intervals (dashed/dotted lines) for the effect of Vitamin A considering
different knots locations.
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We also estimated the treatment effect by considering pre-specified knots locations
and by varying the number of knots. The cubic B-spline estimates for four different
configurations are presented in Figure 3.3. The number of knots seems to impact more
on the estimation of the effect of vitamin A supplementation on diarrhea over time
than the knots location. The first three Figures (3.3 (a),(b) and (c)) do not seem to
differ substantially. On the other hand, increasing the number of knots to 8 in Figure

3.3 (d) seems to under-smooth the relationship.

3.4.2. Results related to all treatment cycles

For the evaluation of the effect of vitamin A supplementation on diarrhea considering
the information available for the entire period of the study, we first applied the standard
marginal rates model, without time-dependent effects, to this data (Lin et al, 2000).
The outcome of interest is the time since receiving first dose of vitamin A until the
occurrence of an episode of diarrhea. The result shows that the occurrence rate of
episodes of diarrhea since first dosage is 8.8% lower for those who received vitamin A
compared to those who received placebo, after adjusting for gender and age at baseline.
However, this overall effect was only borderline statistically significant (6: -0.092; 95%
CI=(-0.191; 0.006)). As expected, there is a negative effect of age on the rate of event

occurrence, i.e., the rate of experiencing an episode of diarrhea decreases as the children

become older (Table 3.8).

TABLE 3.8: Estimates for evaluation of treatment effect in the Vitamin A trial after
adjusting for gender and age at baseline

Effects B Estimated  {3/SE(B)}?
robust SE(3)

Treatment -0.0922 0.0501 3.382

Age -0.0329 0.0021 248.423

Gender 0.0294 0.0503 0.340
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FIGURE 3.4: Estimated Log Rate Ratio Functions (solid curves) and corresponding
pointwise 95% confidence intervals (vertical bars) at selected times for the Vitamin A
Trial. Each panel compares the B-spline estimate with the estimate from standard
marginal rate model (dashed lines) and its 95% confidence intervals (dashed-dotted
lines).Dots indicate supplementation times.
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FIGURE 3.5: Estimated Log Rate Ratio Functions (solid curves) and corresponding
pointwise 95% confidence intervals (vertical bars) at selected times for three age groups
at baseline : (a) children with age less or equal than 12 months, (b) children with age
between 12 and 24 months, (c) children older than 24 months. Each panel compare the
B-spline estimate with estimate from standard marginal rate model (dotted lines) and
its 95% confidence intervals (dashed lines). Dots indicate supplementation times.

73



In order to evaluate and describe how the effect of vitamin A supplementation
behaves over time, we implemented the proposed cubic B-spline model with a larger
number of knots than used previously to take into account the repeated dosages of
vitamin A that the children received during the study. Figure 3.4 contains the curve
for the log of the rate ratio of the occurrence of diarrhea smoothed over time considering
6 interior knots for all children in the study. The result suggests that, after the first
dosage of vitamin A, there is an important reduction on the risk of diarrhea for the
supplemented children. However, this effect disappears by the end of the first 4-month
treatment cycle. After the second dose, an even more intense reduction on the risk of
diarrhea was observed. At the end of the second treatment cycle, the effect of vitamin
A supplementation reduces substantially and perhaps reverses. Results from Wald test
suggest a significant time-dependent effect of treatment on the occurrence of diarrhea

(p=0.0118).

TABLE 3.9: Average number of recurrent diarrheal episodes and its standard deviation
by age groups. Number of children in each age group is presented in parenthesis.

Age Vitamin A Placebo Overall
group Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
<12 (n=153) 8.7 5.9 9.4 6.2 9.0 6.1
12424 (n=333) 7.6 5.6 7.7 5.4 7.6 5.5
> 24 (n=1721) 4.2 4.5 4.6 4.8 44 4.7

We also fitted the proposed model for distinct age groups since age is an impor-
tant known factor in the reduction of diarrhea incidence in children. For the analysis
presented here we considered the three following age groups: (i) children with age at
baseline being 12 or less months, (ii) children with age at baseline between 12 and 24
(inclusive) months and (iii) children older than 24 months at baseline. Table 3.9 dis-
plays the average number of diarrheal episodes for each of the age groups. We verified
a decreasing trend on the overall average number of recurrences, which went from 9.0
for the youngest group (age < 12 months at baseline) to 4.4 for the oldest group (age

> 24 months at baseline). In Figure 3.5 we present the estimates of treatment effect

74



over time by age group. Note from Figure 3.5 that the effect of the supplementation
behaves somewhat differently among the three age groups. According to Figure 3.5,
the treatment effect seems to be slightly greater for the younger children (age < 12 and
12 < age < 24 months) when compared to older children (age > 24 months), especially
regarding the first dosage. For all age groups we considered models with 3 interior
knots based on AIC criteria. Gender was not a significant effect on any of the models
considered.

Table 3.9 displays the values of AIC and GCV for the analysis related to the data
from children younger than 12 months at baseline. Using the former criteria, we would
consider 2 and 3 interior knots, respectively, in our final model. Note, however, that
the estimated trajectories of treatment effect do not differ considerably when using 2
or 3 knots for the rates model with regression B-splines for children younger than 12
months (Figure 3.6). In Figure 3.6, we present the estimates for 2, 3 and 6 interior
knots with cubic B-splines. Even for the model with the larger number of knots (m=6),
the behavior of the treatment effect over time do not vary drastically from the other

models.

TABLE 3.10: AIC and GCYV for rates models with regression cubic B-splines consider-
ing different number of knots for data of children younger than 12 months at baseline.
Location of knots based on the quantiles of the distribution
Number of knots AIC GCV

13,207.05 69,282.84

13,207.69 69, 246.40

13,208.15 69,270.90

13,207.71 69, 308.69

13,208.82 69, 268.51

O UL = W N

Lastly we fitted models considering the time until the occurrence of severe episodes
as the outcome. In that case, the overall effect of vitamin A supplementation was larger
than that obtained when considering the occurrence of any episode of diarrhea. The
results from fitting a marginal rates model, without time-dependent effect, pointed out

for a reduction of 31.8% on the occurrence rate of severe episodes of diarrhea since
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FIGURE 3.6: Estimated Log Rate Ratio Functions for children younger than 12 months
using 2 knots (dashed lines), 3 knots(solid curves) and 6 knots (dotted/dashed lines) .

first dosage for those who received vitamin A compared to those who received placebo,
after adjusting by gender and age at baseline. This overall effect was statistically
significant (8= -0.388; 95% CI=(-0.703; -0.073)). Age at baseline had a significant
negative effect on time to the occurrence of severe episodes of diarrhea while gender
was not a significant effect again. The rate ratio for the occurrence of severe episodes
of diarrhea for children 12 months when compared to children 48 months at baseline
was 5.4. Figure 3.7 shows the estimated log rate ratio function for treatment effect
on severe episodes of diarrhea through the use of rates models with regression cubic
B-splines considering 6 interior knots. Location of knots are based on the quantiles of
the distribution of the recurrence times. The reduction on the rate of severe episodes
of diarrhea seems to happen earlier than that observed for any episode (Figure 3.4)
after the supplementation of the first dosage of vitamin A. The treatment effect also
seems subject to more variability for severe episodes than that observed for all episodes,
which could be consequence of the small number of such events. There were 276 severe

episodes of diarrhea over the trial period, which occurred in only 15.24% of children in

the study. As opposed to the results for the model for all episodes, the Wald test points
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out for the lack of evidence of a time-varying effect of treatment on the occurrence of
severe episodes (p=0.2782). Again this result may have been affected by the reduced

number of events and children with recurrent severe episodes of diarrhea.

Estimated Log Rate Ratio
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FIGURE 3.7: Estimated Log Rate Ratio Functions for severe episodes(solid curves) and
corresponding pointwise 95% confidence intervals (vertical bars) at selected times for
the Vitamin A Trial. Each panel compares the B-spline estimate for severe episodes with
the estimate from standard marginal rate model (dashed lines) and its 95% confidence
intervals (dashed-dotted lines).Dots indicate supplementation times.

3.5 Discussion

Several investigators (Sleeper and Harrington, 1990; Gray, 1992; Hastie and Tibshirani,
1993; Abrahamowicz et al, 1996; Giorgi et al, 2003; Nan et al, 2003) have used spline
functions to model the relative risk in the proportional hazards model. Such approaches
provide greater flexibility for fitting data without a prior: assumption about the form of
the variation of the hazard ratio over time (Giorgi et al, 2003). All available methods in

the literature, however, were defined for univariate time-to-event setting. The proposed
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approach is useful in estimating time-varying coeflicients in the recurrent time-to-event
data settings.

By introducing regression splines, which are splines with small number of knots,
in the marginal rates model and extending the known methods for recurrent time-to-
event data, we develop a method that allows the investigator to describe with details
the behavior of the effects of interest over time to the rate of event occurrence. The
results of simulations indicate that unless there are very few events, our estimates of
the rate ratios are approximately unbiased and the variance estimator performs well.
Our approach can be viewed as a flexible alternative to the marginal rates model in
situations where the effect of interest may vary over time. The proposed method can be
implemented using functions available in R. As in all survival models that require the
introduction of time-varying effects, a drawback of the proposed approach is the general
syntax for handling time-varying covariates. To accomodate time-varying effects, values
of the covariates need to change when there is an event and thus, time intervals used
for the counting process notation can break up as finely as necessary. However, the
method does not require much computer time and the model can be fitted easily using
the standard survival library in R.

The splines are well known for their usefulness in providing a smooth approximation
to a covariate function. A spline is a piecewise polynomial and its shape depends on the
degree of the spline function, on the number and on the location of the breakpoints or
knots. A cubic spline (i.e., degree=3) should in most cases be sufficient to reflect changes
in the log hazard as a function of the covariate of interest (Sleeper and Harrington,
1990). However, as pointed out by many authors (Sleeper and Harrigton, 1990; Gray,
1992; Giorgi et al, 2003), the use of regression splines implies a judicious choice of
the number and location of knots because the shape of some estimates can depend
heavily on this selection. Even though an increase of the number of the knots may
result in more flexibility of the spline function, it may overfit the data and cause loss
of statistical power if the underlying relationship is relatively simple (Giorgi et al,
2003). Some criteria for model selection has been proposed in the context of standard

Cox regression, which includes cross-validation (CV) and generalized cross-validation

78



(GCV) criteria (O’Sullivan, 1988; Nan et al, 2003). In this paper, we adapted the
GCV criterion proposed by those authors for the context of the marginal rates models
with time-varying coefficients. In large data sets, however, choosing the number of
knots using the GCV method can require considerable computational resources and
may even be not feasible in some situations. Other criterion that has been used for
the selection of number of knots considering Cox models is the Akaike information
criterion (AIC). According to Abrahamowicz et al (1996), AIC-based model selection
may improve the accuracy of the estimates. In this study we used both criteria to select
the number of knots for the models when needed. For the selection of knots locations,
it is usually appropriate to put roughly equal number of events between each of the
knots (Gray, 1992; Abrahamowicz et al, 1996; Valenta and Weissfeld, 2002; Giorgi et
al, 2003).

The proposed method was applied to evaluate the relationship between high doses
of vitamin A and occurrence of diarrhea episodes in small children using data from a
randomized community trial conducted in Brazil (Barreto et al, 1994). The impact
of vitamin A supplementation on mortality of children with age between 6 months
and 5 years-old had been verified by numerous studies in the last two decades, leading
to a consensus about the protective role of vitamin A supplementation on childhood
mortality. In contrast to the clear effect of vitamin A on mortality, controversial results
regarding the impact of vitamin A supplementation on diarrhea incidence has been
showed. Studies conducted in India (Biswas et al, 1994; Chowdhury et al, 2002); China
(Lie et al., 1993), Bangladesh (Rahman et al., 2001) and Brazil (Barreto et al, 1994)
showed some evidence of significant reduction in overall incidence of diarrhea. At the
same time, other studies (Abjeljaber et al, 1991; Ramakrishnan et al, 1995; Bhandari
et al, 1994; Dibley et al., 1996; Ross et al, 1995) did not find significant reductions in
either the incidence or mean daily prevalence of diarrhea. However, there is considerable
evidence of a significant impact of vitamin A supplementation on the reduction in the
incidence of severe diarrhea. For instance, in one trial, there was a 36% reduction
in the mean daily prevalence of diarrhea (associated with fever) among supplemented

children older than 23 months (Bhandari et al., 1994). In another study, there was a
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significant difference in the average duration of diarrhea per episode between the two
groups (Biswas et al., 1994).

For the analysis of the effect of vitamin A supplementation on diarrhea, the im-
plementation of the proposed method provided further evidence on the effectiveness of
such policy to prevent diarrhea in young children, and provided more detailed insights
into the behavior of such effect over time. Using a standard marginal rates model, we
verified a borderline effect of vitamin A supplementation, with the occurrence rate of
episodes of diarrhea since first dosage being 8.8% lower for the supplemented children
compared to the placebo group. When considering severe episodes of diarrhea, the re-
sults pointed out for a reduction of 31.8% on the occurrence rate of such event. These
results corroborate those already available in the literature. Furthermore, the use of
the proposed method with regression splines for the analysis of the vitamin A study
allowed the estimation of the treatment effect over time, providing curves of the rate
ratio of the occurrence of diarrhea smoothed over time. These curves were very helpful
in describing the detailed behavior of the supplementation of vitamin A in small chil-
dren over time and in determining the potential duration of the effect for each of such
dosages. As diarrhea is still a major cause of morbidity and mortality in small chil-
dren in developing countries, these results might be useful to help in designing effective
health policies in programs of vitamin A supplementation.

In summary, the proposed rates model provided a better description of the effect
of supplementation of high doses of vitamin A over time on diarrhea in children by
allowing the estimation of time-dependent effects through the use of regression splines.
This methodology may be potentially useful for describing the behavior of many other
exposures or covariates associated to research questions in Epidemiology and Public

Health.
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CHAPTER 4

PENALIZED SPLINES IN THE
TIME-VARYING COEFFICIENT
RATES MODEL

4.1 Introduction

In the last several years there has been significant research concerning inference and
testing of varying coefficients in survival models (Lin and Wei, 1991, Gray, 1992, Gray,
1994, Abrahamowicz et al, 1996, Berhane and Wei, 2003, Nan et al, 2003, Therneau et
al, 2003). A common approach is to consider spline methods to appropriately model
relationships that may have nonlinear forms. Several authors have been discussing the
use of regression splines to model varying effects in the context of univariate time-
to-event data (Sleeper and Harrington, 1990, Abrahamowicz et al, 2003, Giorgi et al,
2003). Alternatively, other methods were proposed to explore the functional forms of
the effects using splines with moderate number of knots and parameters are estimated
from penalized partial likelihoods(Gray, 1992, Gray, 1994, Berhane and Wei, 2003, Th-
erneau et al, 2003). The penalty functions are similar as those used for nonparametric
penalized likelihood analysis. None of those methods, however, have been proposed for
the analysis of recurrent time-to-event data.

Research has also been conducted for the development of estimation methods of

means/rates of recurrent event in recent several years (Pepe and Cai, 1993, Lawless



and Nadeau, 1995, Lin et al, 2000). In this Chapter we propose a method that uses
B-splines with only small to moderate number of knots to estimate time-varying effects
in the marginal rates model with estimation based on penalized partial likelihood.

The proposed method is considered to examine the functional form of the effect of
vitamin A supplementation on the rate of recurrent diarrheal episodes in small children.
The data used here is from a randomized community trial conducted in Brazil between
1990 and 1991, with 1,207 children aged 6-48 months at baseline. The children received
multiple high doses of vitamin A, which were taken every 4 months for one year. Several
studies conducted to evaluate programs of vitamin A supplementation had focused on
its overall average effect (Barreto et al, 1994, Biswas et al, 1994, Rahman et al, 2001,
Chowdhury et al, 2002). However, it is of interest to summarize the information in the
data about the shape of the supplementation effect over time. That is, is the effect of
each dose of vitamin A on the rate of diarrheal episodes the same, or does it vary with
time? Another question to be examined is how long the effect of each of those dosages
on the recurrences lasts.

The remainder of this Chapter is organized as follows. Details of the proposed
method and test statistic are given in Section 2. Simulation methods and results are
discussed in Section 3. In Section 4, results from the analysis of vitamin A data are
summarized. A discussion of the issues pertinent to the proposed method and its

application is given in Section 5.

4.2 Model and Methods

Let N be the number of events that occur over the interval [0, ¢] and Z(.) = [Z(t), W(?)]
where Z(t) denote the covariate vector with constant effect and W (¢) denote the co-
variate whose effect could be changing with time. Both Z(¢) and W (¢) could be time-
independent or time-dependent covariates. Let C denote the follow-up or censoring
time and Y (¢t) = I(C > t) be the at-risk indicator. Therefore, for a random sample of
n subjects, the observable data consist of {N;(.),Y;(.),Z:(.)}, i=1,...,n.
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Consider external time-dependent covariates (Kalbfleish and Prentice, p.280, 2002),
such that:

E[dN(u)|Z(u), W(u)] = E[dN(u)|Z(t), W (t)], for all u, t, such that t > u,

where E[dN(s)|Z(s), W(s)] denotes the marginal failure rate (du(s)). With fixed and
external time-dependent varying covariates, the expected number of failures by time t

can be written as:

E[N()|Z(t), W(t)] = / B[N (w)|Z(t), W (£)]
- / B[N (u)| Z(u), W ()]

= u(t)

In such case, p(t) models the expected number of failures in (0,t] as a function of
Z(t) and W(t), facilitating the interpretation of the corresponding parameters.

Suppose now the following marginal rate model:

du(t) = exp{B'Z(t) + 6(t)W (1) }duo(t)
where 8 is a p x 1 vector of fixed regression parameters, 6(t) is the time-varying re-

gression parameter and duo(t) is an unspecified baseline rate function. Thus, the cor-

responding mean model can be defined as

u(t) = / exp{'Z(u) + 8(u)W (1) }dpio (1)

When considering internal time-dependent covariates, u(t) may be interpreted as a
cumulative rate function.

We propose to estimate the time-varying parameter 6(t) through the use of a penal-
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ized B-spline based model with small to moderate number of knots (2-10). We consider,
for instance, a standard cubic spline model for 8(t), such that 8(t) = yo+>_r:> v Bi(t),
where By (t),(k = 1,..., m+3) denotes the B-spline basis functions. These functions can
be defined recursively, such that the kth B-spline of order q (that is, degree q - 1) is a
weighted sum of the kth and (k+1)st B-splines of order q - 1, with weights depending
on the breakpoints and continuity conditions (Sleeper and Harrington, 1990).

In this case the following time-varying coefficient rate model is considered:

m+3

du(t) = exp{B'Z(t) + (yo + > _ 1Bx(t))W(t) }duo(t), t > 0.

k=1

The standard form of the penalty function for cubic splines is used here, which is
given by e fg@f (8) [6" (t)]2dt, where o denotes the smoothing parameter. This penalty

function can be rewritten as %a’y' D7, where 5' = (V1 -y Yms3) and D is an appropri-

ately chosen symmetric nonnegative matrix, such that the ¢,7 th element of D would

be [ B (1) B (1)

The parameter estimates are obtained by maximizing the penalized log partial like-

lihood, which is defined as

1
6(B,y) = L(B,7) — 507 D7,

where £(8,7) = >, fot{n' Zi(u) —log[S©(B, v, u)]}dN;(u) is the usual log partial like-
lihood for the marginal rates model (Lin et al, 2001), with 7" = (vo,7), S©(8,7,t) =

!

Ly Yilt) exp{B'Za(t) + Y Wi(t)}, Wi(t) = (Wi(t), Bi(t)Wi(t), ..., Bys(t)Wi(t)) ,
= (8,7) and Z;(u) = (Zi(u), W;(u)). For the cubic splines setting, D is an
(m+4) x (m+4) matrix with the first row and column being zeros, since the constant
term passes unpenalized.
To estimate 8 and 7, one solves the score equations. Since the penalty function does

not involve (3, then the score equations for S are identical to those for the standard
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marginal rates model:

-y [ (u) — x>0y Yilu) exp{'Zi(u) + 7 Wi(u) } Zi(u) (u
e ;/0 [Zl( ) %Z?:l Yi(u) exp{B'Z;(u) + ’Y'Wi(u)} ] dN;(u).

The score equations for the v is then:

-y [ W, u) — & i Yi(u) exp{B'Zi(u) + 5 Wi(u) } Wi(u) (u) — a
U, Z / lw,( ) LS Yi(u) exp{B'Z;(u) + v Wi(u)} ]sz( ) — aDn.

The baseline mean is estimated by the Breslow-type estimator as

fo(t) = n_l/o dN_(u)/S(O)(B,u),

where dN (u) = >"7 | dN;(u).
The penalized partial likelihood can be fitted with the Newton-Raphson algorithm.
In addition to the score vectors Ug and U,, this requires the definition of the Hessian

of the penalized partial log-likelihood:

0 0
H=7+ ,

0 oD

where 7 is the usual unpenalized information matrix for the marginal rates model,

which is defined as

Z / [Z; RAOEO eXIp~{77'Zj(U)}

2= J( ) exp{n'Z;(u)}

(z] Y, ()2 () exp{nf Z5(w))) ©
= 5 dN;(u).

(S5, Vi) exp{nf Z;(w)} )

Following similar arguments as in Gray (1992, 1994) and Lin et al (2000), the
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covariance matrix for #j can be consistently estimated by

P, = V5V,

for 0 < ¢ <7, with S (n,¢) =n 137, Y;(t) exp{n'Z,(t)}Z;(t) and dM;(t) = dN;(t)—
Jy Yi(s) exp{n'Zi(s) }djio(s).

The estimator 3 is defined in terms of the unpenalized score contributions since the
penalty contributions are asymptotically negligible under the null hypothesis. Note,
however, that fp is a function of the information matrix, the penalty matrix and the
smoothing parameter. The inferential procedures for the first p + 1 elements of n are
directly analogous to those outlined in Lin et al (2001) because the penalty matrix D
contributes to the penalized score and information matrix only for the last (m + 3)

components of 7.

4.2.1. Test Statistic
This section considers a Wald-type statistic for hypotheses of the form Hy : Cn = 0,
where C has full row rank » < m + 4 + Dim(B). Under H,, the test statistic has the

quadratic form

(CH)T(CT,CT) H(Ch) ~ X2,

Constructing tests for the hypothesis that the effect is linear, i.e., Hy: ¥ = 0 is done
in exactly the same way, with r = m + 3.
An alternative variance estimator to be considered in this setting is through the

use of H ! directly instead of V to define the covariance matrix, i.e., [, = H'SH 1,

86



as discussed by Therneau et al (2003) for penalized survival models with frailty. For
penalized smoothing splines in Cox regression, significance tests are based on H™! as

the most conservative choice (Therneau, Grambsch and Pankratz, 2003).

4.2.2. Choice of Smoothing Parameter and Placement of Knots

We adopted here similar approach as suggested in various papers (Gray, 1992; Buja
et al, 1989, for instance) to define the smoothing parameter for our recurrent event
settings. Theoretically the smoothing parameter is considered fixed and defined a priori
in order to be used for obtaining the parameter estimates. However, operationally the
smoothing parameter is calculated by the following relationship with the degrees of

freedom, which should be specified for each nonparametric term, such that:

df = trace{limZ,,3/0(Z,, /0 + aD) '},

where Z,,3 = Z,, — I‘YBIﬁ_BIIB‘Y and ¥ refers to the average number of recurrent events
per subject.

According to Gray (1992) the number and location of knots are not very important
when considering reasonably spread out knots, such that roughly equal number of data
is put between the knots. This same algorithm is adopted here. Simulation studies
pointed out for improved results when considering 5 degrees of freedom for several

scenarios (Gray, 1992, Gray, 1994, Berhane and Weissfeld, 2003).

4.3 Simulation Studies

Simulation studies were conducted to examine the performance of the proposed pro-
cedure for conducting inference for the effect of time-varying coefficients on time to
recurrent events. Here the finite-sample properties of the proposed parameter estima-
tors and the size of the Wald-type test for a linear effect of the covariate modelled

with splines were assessed. For each simulated data set, we estimated the time-varying
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coefficient A(t) under the marginal rates model:

du(t) = exp{B'Z + 0(t)W }duo(t)-

We generated recurrent event times using the following random-effect intensity
model A(t|Z, W,u) = ulo(t) exp{B8'Z + 6(t)W}, where u is an unobserved unit-mean
positive random variable that is independent of Z and W. Covariate values were gen-
erated for W from a Bernoulli distribution (0.5) and for Z from a Uniform distribution
(0,1). We generated independent u; (i=1,...,n) from gamma distribution, with mean
1 and variance 0> = 0 and 1. Thus, the random-effect intensity model implies the
marginal rates model with dug(t) = Ao(t)dt. We considered a constant baseline hazard
function )\ for all configurations described here. The subject’s follow-up time was uni-
form[0,1] and the value for )\ varied for the different configurations considered, such
that an average of approximately 3.5 events were observed per subject during the trial
period. The failure indicator A;; was defined as A;; = I(T;; < C;). The smooth-
ing parameter was defined through its relationship with the degrees of freedom. We
considered a priori fixed degrees of freedom of 5 for all configurations.

We consider three different functional forms of 6(¢): (i) 6(t) = —1.2, (ii) 6 =
log(t + 1) and (iii) A(t) = 1.2sin(—mnt). The recurrent event times were generated
analytically for 6(¢t) = —1.2 and 6 = log(t + 1). In these two cases, we considered a
constant baseline hazard function \g(¢) equal to 10 and 6, respectively. The expression
for computing the recurrent event times for 6(t) = 1.2sin(—nt), however, does not have
a closed form. Thus, in this case we used a Newton-Raphson algorithm to obtain the
recurrent event times, with Ag(¢) = 10.

A cubic B-spline model was considered for 6(¢), such that

0(t) = vo + Xpor W Bi(2),
where B;...B,,43 is a cubic B-spline basis. For comparison purposes we also considered

a quadratic B-splines model

0(t) = Fo + o M Aw(t),
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where A;...A,, 5 is a quadratic B-spline basis, with penalty o fg‘:f (t) 6 (¢)]dt.

The estimation for 6(t) was conducted considering different number of interior knots,
sample size and shape of the true rate function. The location of the interior knots was
chosen to ensure an approximately equal number of failures between the knots (Gray,
1992; Abrahamowicz et al, 1996).

For each combination defined by the model complexity and shape of the true rate
function, 1,000 samples of size 100 were generated. For each configuration, we present
the sampling bias, estimated standard error (ESE), mean of the standard error of the
estimates(SEE) of #(t) and the coverage probability (CP) of the Wald 95% confidence
interval. The sampling bias and sampling variance of the estimates of 6(t) are defined,
respectively, as the average bias and the variance from the 1,000 random samples. Let
0:(t) be the estimate of the ith random sample at time t, then

_ X6y

Sampling bias (t)= =5~ — 6(t), Sampling variance (t)

where 0(t) = 13- 000 S2I0%00;(¢).

D (AORIG)S
1,000 ’

TABLE 4.1: Bias, ESE, SEE and CP for estimated time-varying coefficient in the rates
models with penalized cubic splines at selected time t for (¢) = —1.2, considering
different number of knots and sample sizes. Location of knots are based on the quantiles

of the distribution.
# of  Selected n=100 n=400

knots Time (t) Bias ESE SEE CP Bias ESE SEE CP
2

0.25 0.0157 0.2281 0.2318 93.7% 0.0118 0.1145 0.1162 94.3%
0.50 0.0155 0.2303 0.2457 93.0%  0.0055 0.1154 0.1193 94.3%
0.75 0.0602 0.3405 0.4084 90.4% 0.0235 0.1730 0.1851 93.3%

6
0.25 0.0180 0.2686 0.2987 91.8%  0.0108 0.1457 0.1619 92.7%
0.50 0.0183 0.2141 0.2462 91.2% 0.0001 0.1115 0.1181 93.0%
0.75 0.0409 0.3039 0.3673 90.0% 0.0171 0.1543 0.1633 94.7%
10

0.25 0.0186 0.2818 0.3229 90.1% 0.0015 0.1315 0.1482 91.9%
0.50 0.0180 0.2348 0.2795 90.0% -0.0011 0.1108 0.1250 92.0%
0.75 0.0400 0.3031 0.3675 89.9%  0.0043 0.1480 0.1647 93.3%

Empirical sizes of the spline based tests, based on 2,000 samples, were examined

under various specifications of number of knots (2,10) and samples sizes (n = 100, 200,
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300 and 400) for the cubic B-spline model. The simulation studies were implemented
using R version 1.9.1 software.

Under the cubic B-spline, we present results for 8(¢) = —1.2 with different number of
knots and sample sizes (n=100 or 400) (Table 4.1). We observe bigger bias and smaller
CP for the model with 10 knots. However, the results indicate a clear improvement for
samples of size 400, implying smaller bias, more accurate variance estimator and more

reasonable coverage probabilities of the Wald 95% confidence interval.

TABLE 4.2: Bias, ESE, SEE and CP for estimated time-varying coefficient in the rates
models with penalized method at selected time t for 6(t) = log(t + 1) and n=100,
considering different number of knots and spline models. Location of knots are based
on the quantiles of the distribution.
# of  Selected Quadratic Splines Cubic splines
knots times (t) Bias ESE SEE CP Bias ESE SEE CP
2

0.25 -0.0134 0.2084 0.2075 94.7% -0.0048 0.2018 0.2037 95.5%
0.50 -0.0020 0.1894 0.2029 92.7% -0.0042 0.1908 0.2016 93.5%
0.75 -0.0194 0.2372 0.2724 92.5% -0.0139 0.2780 0.3082 92.0%

6
0.25 -0.0135 0.2346 0.2665 91.4% -0.0098 0.2273 0.2496 92.9%
0.50 -0.0082 0.1979 0.2267 90.3% -0.0023 0.1830 0.2064 91.3%
0.75 -0.0001 0.2254 0.2654 90.2% -0.0139 0.2389 0.2748 91.8%
10

0.25 -0.0145 0.2186 0.2714 88.7% -0.0189 0.2127 0.2427 91.4%
0.50 -0.0094 0.1874 0.2317 88.8% -0.0118 0.2084 0.2084 90.8%
0.75 -0.0045 0.2069 0.2543 88.6% -0.0047 0.2534 0.2534 91.9%

The results given in Table 4.2 indicate improved results when considering smaller
number of knots (m=2) for 6(¢t) = log(t + 1). In general, we observe small bias. The
variance estimator is quite accurate as the mean of the standard error estimates (SEE)
and the empirical error of the estimates of 6(¢t) (ESE) are quite similar. Table 4.2
also shows empirical coverage probabilities (i.e., proportion of samples in which the
nominal 95% pointwise confidence interval includes the true value) for the models with

6(t) = log(t + 1). For the model with 2 knots, the CPs are close to the nominal .95.
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However, as the number of knots increases poorer results were observed. The cubic B-
spline model outperforms the quadratic B-spline model for all configurations. In Table
4.3, the results for the quadratic and cubic B-splines models for 6(t) = 1.2sin(—nt)
with 2 and 10 interior knots are displayed. Generally, the same patterns as in Table

4.2 are observed here. Coverage probabilities for the models with 10 knots are low.

TABLE 4.3: Bias, ESE, SEE and CP for estimated time-varying coefficient in the rates
models with penalized method at selected time t for 6(¢t) = 1.2sin(—nt) and n=100,
considering different number of knots and spline models. Location of knots are based
on the quantiles of the distribution.
# of  Selected Quadratic Splines Cubic splines
knots Times (t) Bias ESE SEE CP Bias ESE SEE CP
2

0.25 0.0281 0.2215 0.2303 93.9% 0.0157 0.1890 0.1968 94.2%

0.50 0.0048 0.2357 0.2477 94.0%  0.0048 0.2171 0.2280 93.4%

0.75 0.0487 0.2750 0.3360 91.5% 0.0529 0.3038 0.3267 93.3%
10

0.25 0.0346 0.2255 0.2877 86.3%  0.0207 0.2274 0.2621 90.2%

0.50 -0.0391 0.2069 0.2538 87.9% -0.0246 0.1981 0.2322 89.8%

0.75 0.0507 0.2312 0.2980 86.8%  0.0198 0.2505 0.2893 90.9%

Table 4.4 displays simulated empirical sizes for the Wald test for the hypothesis
4 = 0. The Wald test shows substantial difference from the nominal level for the con-
figurations that combine larger number of knots and smaller sample sizes. Improved
results were obtained as sample size increases for all spline models. Overall, the em-
pirical sizes were closer to the nominal level when considering small number of knots

(m=2) and large sample sizes (n=400).
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TABLE 4.4: Empirical sizes of nominal 1%, 5% and 10% Wald tests for time-dependent
effects in the rates models with penalized splines. Location of knots are based on the
quantiles of the distribution.

# of Sample Nominal level
knots  Size 0.01 0.05 0.10
2 100  0.0570 0.1485 0.2275

200 0.0275 0.0830 0.1430
300 0.0190 0.0720 0.1355
400 0.0180 0.0640 0.1200

6 100 0.1585 0.2895 0.3710
200 0.0770 0.1585 0.2380
300 0.0420 0.1140 0.1825
400 0.0335 0.0935 0.1565

10 100 0.2315 0.3955 0.4960
200 0.1100 0.2090 0.2865
300 0.0505 0.1520 0.2305
400 0.0415 0.1165 0.1715

4.4 Application

We applied the proposed methods to the aforementioned vitamin A study to evaluate
the effect of multiple doses of vitamin A supplementation on the occurrence of recurrent
episodes of diarrhea in small children. Data used here are from a randomized community
trial, including 1,207 children, aged 6-48 months at baseline, who were assigned to
receive either vitamin A or placebo every 4 months for 1 year in a small city in the

Northeast of Brazil. We fitted the following marginal rates model:

E[dN(t)|sex, age] = exp{Bisex + Baage + O(t)trt}duy(t),

considering a cubic B-spline model for 8(t) as yo + S_py 7B (t), where By(t),(k =
1,...,m + 3) denotes the B-spline basis functions.

The main interest was the effect of vitamin A supplementation (trt), adjusted for
children’s age and gender. We conducted separate analysis considering as outcomes

both (i) time since first supplementation of vitamin A to the occurrence of any diarrheal
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episode and (ii) time since first supplementation of vitamin A to the occurrence of
severe episodes of diarrhea. The estimated regression coefficients for both models are
presented in Table 4.5. considering 6 interior knots and 5 degrees of freedom for the
selection of the smoothing parameter. Models with 6 knots were considered based on
researcher’s prior knowledge of the shape of the curve and, thus allowing the estimates
to capture the pattern of the effect due to multiple dosages of vitamin A. For both
models, note that age is a significant factor to the occurrence of recurrent episodes of
diarrhea, being negatively associated to their occurrence, while the gender of the child

appears not to be an important factor.

TABLE 4.5: Estimates for evaluation of treatment effect in the Vitamin A trial after
adjusting for gender and age at baseline in the penalized rates model
Outcome Covariate Estimate Test Statistic df P-value
All Episodes

Age -0.0330 248.50 1 < 0.0001

Gender 0.0292 0.34 1 0.8643

Treatment (linearity) 21.40 9 0.0110
Severe Episodes

Age -0.0468 55.16 1 < 0.0001

Gender -0.2616 2.49 1 0.1100

Treatment (linearity) 13.77 9 0.1307

Results from the Wald test, as defined in Section 4.2.1., pointed out for a sig-
nificant time-dependent effect of treatment when considering any episode of diarrhea
(p= 0.0110). At the same time, there is a lack of evidence of a time-varying effect of
treatment on the occurrence of severe episodes (p= 0.1307).

The smooth function estimates for treatment effect considering all episodes of di-
arrhea are presented in Figure 4.1. Note an important reduction on the estimated log
rate ratio 60 days after the supplementation of the first and second doses of vitamin
A, with the benefit from each of the dosages completely disappearing about 2 months
later. The effect of the third dosage of vitamin A seems not to be as large as those

associated to the first two supplementations.
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FIGURE 4.1: Estimated Log Rate Ratio Functions (solid curves) and corresponding
pointwise 95% CI’s at selected times (vertical lines) for the effect of Vitamin A for all
episodes.

Figure 4.2 contains the smooth curve for the log of the rate ratio of the occur-
rence of severes episodes of diarrhea over time considering 6 interior knots. For such
episodes, the effect of vitamin A supplementation behaves somewhat differently from
that observed in Figure 4.1. This may imply a lasting benefit and more stable effect of
vitamin A supplementation in severe episodes. A important reduction on the rate of
severe episodes in the supplemented children compared to those in the placebo group
was only observed after receiving the the first dose of the supplementation. This could
be, however, consequence of the very low rate of incidence of severe episodes of diar-
rhea. In the vitamin A study the number of severe episodes of diarrhea corresponds for
only 4% of all episodes during the study. The number of severe episodes of diarrhea is

even smaller later in the study.
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FIGURE 4.2: Estimated Log Rate Ratio Functions(solid curves) and corresponding
pointwise 95% CT’s at selected times(vertical lines) for the effect of Vitamin A for
severe episodes.

4.5 Discussion

We propose methods for estimating time-varying coefficients in the rates models using
penalized partial likelihood and cubic B-splines with small to moderate number of
knots. Estimating equations are proposed for the time-varying parameter and Wald-
type statistic is defined. Simulation results imply that the asymptotic properties are
applicable to finite samples for the scenario with small number of knots.

The proposed methods were applied to data from a randomized community trial to
evaluate the effect of vitamin A supplementation on diarrheal recurrences. Results of
the analysis illustrate that the estimated rate of diarrhea occurrence reduces contin-
uously in the supplemented group compared to placebo during the first 60 days after
vitamin A supplementation. After that the benefits start to disappear. Similar pat-
terns were observed after the first two dosages. However the effect of the third dose
was not as large as those associated to the previous ones. There may be many reasons
to explain such changes. First, diarrhea is a complex syndrome that might be caused

by different pathogens, which includes viruses, bacteria and protozoa, and may have
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different clinical forms and seasonality (Byers, Guerrant and Farr, 2001; Barreto et
al, 2005). Data about pathogens associated to diarrhea episodes was not obtained in
the vitamin A study, but it is expected to be equally observed in the children in the
two treatment groups. It may be possible that the effect of vitamin A varies with
pathogens that cause diarrhea and, therefore, changes over the year. Other important
issue is that incidence of diarrhea decreases substantially with age. Thus, as expected,
reduced number of episodes was observed later in the study in both placebo and vi-
tamin A groups. Our results contribute to provide a detailed description of the effect
over time of successive high doses of vitamin A, which is lacking in the literature.

In many other applications there may be prior interest in modeling and testing
time-varying effect of a single predictor when adjusting for covariates whose effects
are a priori known to be constant over time. Our method allows for simultaneous
estimation of the effects of variables for which constant effects hold and those for which
time-varying effects are expected. Our methods have the advantage of being able to
estimate a relatively realistic functional form for the covariate effects of interest by using
penalized B-splines, which offers an attractive compromise between fully nonparametric
regression smoothers and unpenalized regression splines.

The major practical limitation of the methods proposed here is that they might be
computationally intensive, particularly when increasing sample size and model com-
plexity (number of knots and spline model). The standard form of the penalty function
was considered here, which was given by the integral of a squared higher derivative of
the fitted curve. Further study might propose other choices of the penalty functions

that may improve small sample properties of the estimators.
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CHAPTER 5

COMPARISON OF METHODS
FOR DEPENDENT CENSORING:
A SIMULATION STUDY

5.1 Introduction

Many approaches have been proposed to model recurrent time-to-event data, when
each subject may experience repeated occurrences of the same type of event (Prentice,
Williams and Petterson, 1981; Andersen and Gill, 1982; Pepe and Cai, 1993; Lin et al,
2000). Examples of recurrent data are repeated asthma attacks or recurrent pyogenic
infections in chronic granulomatous disease (CGD) patients. The most commonly used
methods available to model such data assume independent censoring, e.g., the censoring
process is unrelated to the event failure process. However, dependent censoring arises in
many studies. Ghosh and Lin (2003) suggest that the recurrent event times are subject
to both independent and dependent censoring in a typical medical study and warn that
the traditional methods for analysis of recurrent time-to-event data are not valid in the
presence of dependent censoring. Recently, approaches to handle dependent censoring
for the analysis of recurrent time-to-event data have been proposed in the literature.
Wang, Qin and Chiang (WQC) (2001) proposed to model the occurrence of recur-
rent events by a subject-specific nonstationary Poisson process via a latent variable,

allowing the censoring mechanism be possibly informative. Their approach adopted a



multiplicative intensity function as the underlying model. WQC showed that, under
regularity conditions, the resulting estimators are consistent.

Miloslavsky, Keles, van der Laan, Butler (MKLB) (2004) proposed inverse prob-
ability of censoring weighted (IPCW) estimators for the regression parameters in the
Andersen-Gill model. They also extended their approach for the proportional rates
model. MKLB proposed estimating equations based on IPCW mapping (Robbins and
Rotnitzky, 1992) and showed that their estimators are also consistent.

Computer programs for general purpose are not available to model recurrent time-
to-event data using those approaches. However, a R library for fitting the WQC model
is available upon request to the WQC authors and MKLB approach can be implemented
by adapting standard routines available in statistical software packages.

Besides the theoretical derivation of their estimation approaches, WQC and MKLB
have also conducted simulation studies to study the finite sample properties of their
estimators. WQC used 500 samples of size 400 to estimate the effect of a Bernoulli
variable on the occurrence of recurrent events. They computed bias, standard errors
and 95% bootstrap confidence intervals for their estimator, concluding for its validity.
MKLB, on the other hand, considered 2,000 samples of size 200, with fixed levels of
censoring (10%, 20%, 50%), to estimate the parameter of interest and to compare the
proposed method with the corresponding method that assumes independent censoring.
They concluded that their weighted estimator outperformed the ’naive’ unweighted
estimator. With an example dataset, WQC and MKLB compared the results of the
application of their method with the 'naive’ corresponding method.

Although the finite sample properties of the proposed estimators had been studied
for each of those methods and the advantages of MKLB approach over the correspond-
ing method assuming independent censoring have been established, there has been no
systematic study to compare these two fairly recent methods. Since each method in-
vestigates dependent censoring through distinct mechanism, it would be of interest to
evaluate the relative performance of the two estimators under various scenarios for the
dependent censoring. Due to the complexity of the data structure and the estimation

approaches, an analytic comparison in general seems very difficult, if not impossible, to
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obtain. Hence, we conducted simulation studies to compare these two approaches for
the estimation of covariate effects from recurrent time-to-event data in the presence of
dependent censoring.

We summarized the WQC and MKLB approaches in Section 5.2. In Section 5.3,
we outline the simulation framework and in Section 5.4 we present the results of the
simulation. In Section 5.5, we provide an illustration with recurrent diarrheal data
from the community trial on vitamin A supplementation. The conclusions appear in

Section 5.6.

5.2 Approaches for Recurrent Event Data with De-
pendent Censoring

Let N(t) be the number of recurrent events at or before t, ¢ > 0, and suppose that
the occurrence rate of recurrent events in the interval [0, 7] is of interest, where 7
refer to the end time of the study. Let C denote the follow-up or censoring time and
Y (t) = I(C > t) be the at-risk indicator. Thus, in order to explore the association

between the covariates Z(t) and N(.), consider the following rates model:

E{dN(t)|Z(t)} = Y (t)duo(t) exn{5'Z(t)}

where dN(t) denotes the number of events in the small time interval [¢t,t + dt], 3 is a
p x 1 vector of fixed regression parameters and dug(t) is an unspecified baseline rate
function.

WQC proposed to model the occurrence of recurrent events by a subject-specific
nonstationary Poisson process via a latent variable, allowing the censoring mechanism
be possibly informative. The distribution of both the censoring and latent variables are
treated as nuisance parameters. They assume that there exists a nonnegative valued
latent variable U so that, conditioning on (Z(t),u), N(t) is a nonstationary Poisson
process with intensity function ulo(t) exp{S Z(t)}, where the baseline intensity \o(t)

is a continuous function. The latent variable satisfies E[U|Z(¢)] = 1. This assumption
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implies the marginal proportional rate function defined above. The second assumption
is that conditioning on (Z(¢),u), N(.) is independent of C.

Considering a conditional likelihood that involves only the shape function F and
does not require information on the unobserved {u;}, WQC defined a class of estimating

equations for v = (In 3,, ) as
! Z wizi(t)l(kiﬁ'_l(C’i) - e"lzi(t)) =0,
i=1

where Z;(t) = (1,Z;(t)), Bo = Ao(7), Ao(T) denotes the baseline cumulative rate func-
tion, k; is the number of recurrences for subject 4, and w; is a weight function depending
on (Zi(t),7, F). Under regularity conditions, the estimator F'(t) is known to have a

simple product-limit representation, such that F(t) = [] 1—du)/Ngy), where {s()}

s>t
are the ordered and distinct values of the event times {Tj;}, {d} is the number of
events occurring at s(), and {N)} is the total number of events with event time and
censoring time satisfying T;; < sy < C;.

Wang, Qin and Chiang (2001) showed that the solution of this class of estimating
equations has the property that 1/n(% — ) converges weakly to a multivariate normal
distribution with zero mean and covariance matrix which can be consistently estimated
if the marginal rate model is correctly specified.

The MKLB method uses inverse probability of censoring weighted(IPCW) estima-
tors for the regression parameters in the proportional rates model defined previously,
where Z(t) is a function of Z*(t), and Z*(t) C Z*(t), consisting of part of the covariate
process Z*(t). The authors proposed estimating equations for the parameter of interest
in this general model by using IPCW mapping (Robbins and Rotnitzky, 1992), for which
the main idea is to map full data estimating functions into observed data estimating
functions. The class of all full data estimating function for the proportional rates model
is given by D} = [ h*{t,Z*(t)}dM,(t) , where dM,(t) = dN(t)— E{dN(t)|Z*(t—)} and

h* is a user-defined function (van der Laan and Robins, 2002).
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A choice of IPCW estimating function is then given by:

Uc(E|D;) = /0 w {t.2"(t-)} —dMg(‘;ﬁz.})/(t),
where G(t|V) = P(C > t|V) and V = V(1) = {N(7), Z*()}, stands for everything
that can be observed on a randomly selected subject in the interval (0, 7] if the subject
is not subject to censoring. Often the full data is not observed but their censored
version. Denote the observed data random variable by E={min(r,C),A* = I(1 <
C),V(rnQ)}.
This methodology requires a model for the censoring mechanism, which can be given

by:
)‘c(t“?(t_)) = Y;(t))‘ﬂ,c(t) eXp{Bcé.c(t)}a

where Y, (¢) is the at-risk indicator for censoring, Ag.(t) is an unspecified baseline hazard
and &(t) is a known function of V (¢—).

Note that Ug(.|D;) satisties E{Ug(E|D; )|V} = D;(V|53, Ao) under the assumption
that P(C > 7|V) > 6 > 0, for some ¢ > 0 and hence it yields consistent estimators in
the presence of dependent censoring.

Applying time-dependent weighting to the full data estimating equation yields the

following observed data estimating equation:

o BI(C > )GHV) ZHC{HZ 1)}V (¢) exp{BZ(1)}]
veEDy) = | (Z(t)_ BII(C > OG{V) G2 )}V (1) exp  PZ()} )
1Y (£)dMs 0 ()

G{t|Z*(t-)
. GEV)

Given estimators iz*, G and Ao of h*, G and )g, an estimator for 3 can be obtained

by solving the estimating equation:

> Uc{E:|G, D;(.|8, %)} =0

i=1
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Note that G is estimated by fitting the multiplicative intensity model for the censor-
ing process. The estimate for h* is then obtained by substituting G for G and estimat-
ing the expectations empirically. The authors mention that one of the strengths of the
method is that it can be easily implemented by adapting standard routines available
in statistical software packages.

Both approaches characterizes the rate of the counting process under the marginal
rates model, allowing arbitrary dependence structures among recurrent events. How-
ever, the two approaches differ in their ways to adjusting for dependent censoring.
WQC introduces a latent variable to handle the informative or dependent censoring,
while MKLB deal with the problem of informative censoring by modelling the censoring

time using observable covariate information.

5.3 Simulation Framework

Consider a clinical trial where each subject is randomly assigned to a treatment arm of
interest. Let N(t) = >, I(T} <t) be the recurrent events counting process of interest
while Z denotes the treatment variable and W a baseline covariate. Suppose that the
goal of this study is to estimate the effect of the treatment. Assuming a proportional
rates model, the parameter of interest is the regression coefficient 8 in the following

model:

du(t|Z) = duo(t) exp(82)

In many applications censoring could be caused by informative dropouts or failure
events and it is unrealistic to assume independence between the censoring mechanism
and the recurrent event process. If C is not independent of T given Z, then the estimator
for 8 will be inconsistent when using an ad hoc estimation method by fitting a marginal
rates model for the right-censored data on T ignoring any information beyond Z.

In order to mimic such study and compare the two aforementioned methodologies

to handle dependent censoring, T is generated using the following intensity function

102



Ar(t|Z, W, u) = udor(t) exp(BoZ + voW). Conditioning on (Z, W, u), the censoring
time C is generated from \¢(t|Z, W, u) = ulo c(t) exp(BoZ + FoW).

We generated independent Z from Bernoulli distribution and W from the following
distributions: Uniform, Bernoulli and Normal. The failure indicator A; is defined as
A; = I(T; < C;). We generated independent u; (i=1,...,n) from gamma distribution,
with mean 1 and variance o2. Large values of o2 reflect greater heterogeneity between
subjects and a stronger association between events from the same subject.

The focus of this simulation study is on the performance of WQC and MKLB
approaches in the estimation of 3 for various combinations of o2, sample size, treatment
effect and baseline covariate effect. Each simulated data set consists of information from
n independent subjects, with N;(¢), i=1...,n, t € [0, 7| denoting the number of recurrent
events for the ith subject.

We generated 1,000 samples for each configuration of simulation parameters. We
used the sample bias and sample variances to measure, respectively, the accuracy and ef-
ficiency of regression parameter estimates from the two approaches. The mean squared
errors were also computed using the sample bias and variances. The sample bias and
sample variance are defined, respectively, as the average bias and the variance from the
1,000 random samples. Let B, be the estimate of the ith random sample, then:

_ Xhi >(Bi-B)?

. _ oo 1 ’\.
666 — B, Sample variance=< i -, where 8= 000 > B

bias

Note that the parameter of interest § is not the same as the (B, which is used to
generate the data through a conditional model. According to Miloslavsky et al (2004),
we obtain a good estimate of the true parameter 8 by generating a large number
of observations (e.g. N=100,000) from the data-generating distribution and fitting the
marginal model using the full data(T,Z,W). This estimate corresponds to the minimizer
of the Kullback-Leibler projection of the true data-generating distribution of the model
of interest.

The simulation study was conducted in R v.1.9.1 software. The standard coxph( )
routine in R, providing the appropriate weights, was used for the MKLB approach. We
used the crf R library, developed by WQC, in order to fit their model. This library is
available upon request to the authors of WQC approach.
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5.4 Simulation Results

For the results summarized in Table 5.1, the parameters of the data-generating distri-
butions were set as follows: Sy = —1.2, 79 = 0 and 8, Bo =1,% =0and 5, 02=0,1
and 4, 7 = 4 months, n=200 and 500, Z ~ Bernoulli(0.5) and W ~ Uniform(3,4). The
average number of events per subject is about 3.6.

Under the scenario of independent censoring (02 = 0,7y = 0,75, = 0), the use
of both methods leads to approximately unbiased estimates. In addition, the results
obtained from the MKLB method are similar to those for proportional rates model
without dependent censoring (Lin et al, 2000). When censoring is dependent through
covariates (02 = 0,79 # 0,9 # 0), modeling the censoring mechanism with proper
covariate information using IPCW estimators in the MKLB method is approximately
unbiased while the estimate from the proportional rates model ignoring dependent
censoring is biased (bias=0.1912 for n=500). In such scenario, the MKLB estimator
is less biased and more precise than the WQC estimator (Table 5.1). However WQC
estimator is also approximately unbiased.

Wang et al (2001) use a latent variable to characterize the heterogeneity among
subjects and assume that the latent variable u; is the only factor that explains the
heterogeneity from different subjects (besides Z;). It is evident from Table 5.1 that in
this case (62 = 4,7, = 0,74 = 0), the estimator from WQC method (bias=0.0811 for
n=500) are much less biased than that obtained from MKLB method (bias=0.4613 for
n=>500). Similar patterns were observed when the variability of the latent variable was
reduced(o? = 1,74y = 0,7y = 0). The bias for the MKLB method is smaller for smaller
o?. Same was observed for WQC method. At the same time, when considering that
the censoring mechanism depends not only on the observed baseline covariates (W)
but also on unmeasured factors (u), both estimators become biased (bias=0.2362 and
0.1743 for MKLB and WQC methods, respectively, for n=500).

The empirical standard errors (ESE) of MKLB method were consistently smaller
than those obtained using WQC method. We also compared these methods through

the use of the mean squared error (MSE) as the comparison criterion. Note that for
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the results presented in Table 5.1, the smallest MSE was generally observed for the
corresponding method with the smallest bias.

When W ~ Bernoulli(0.5) and W ~ Normal(0,1) (Tables 5.2 and 5.3, respectively),
the magnitude of the bias was generally reduced for all scenarios compared to the
results presented in Table 5.1. Regardless of the distribution associated with W, the
smallest bias and ESE for all methods were generally observed under the scenario of
independent censoring (02 = 0,7 = 0, % = 0) and the MKLB method has the smallest
MSE when censoring is dependent through covariate W (o = 0,y # 0,5 # 0).

The WQC method outperforms the MKLB method in terms of bias when the depen-
dence between event and censoring times is introduced only through a latent variable
(6% =1 or 4,70 = 0,59 = 0). Due to the general reduced magnitude of the bias when
W ~ Bernoulli(0.5) and W ~ Normal(0,1), the values of MSE in Tables 5.2 and Table
5.3 are strongly influenced by ESE, which are consistently smaller for MKLB method.
Hence, in those scenarios the MSE will be mostly driven by the efficiency instead of by
the bias of the estimates.

The worst performance was observed when the censoring mechanism depends on
both the observed baseline covariate (W) and on unmeasured factors (u) (¢ = 1 or
4, vy # 0,5 # 0). For all parameter configurations considered in these simulation
studies, the sampling variances increase as the sample size decreases from 500 to 200.

To compare the effect of the relative magnitude of W on the estimation process
regardless of the probability distribution associated with it, we display in Table 5.4
the results of a simulation study considering W ~ Uniform(0,1). As it was observed
for the simulation studies with W ~ Bernoulli(0.5) and W ~ Normal(0,1), the bias
magnitudes were generally reduced compared to when W ~ Uniform(3,4). The WQC
approach again has the least bias in the presence of a latent variable and without any
effect of W on the event occurrence (6?2 = 1 or 4, 7 = 0,9, = 0). However, when
introducing the dependent censoring through covariate W (7o # 0,50 # 0), the bias
for the WQC approach was slightly smaller than that for MKLB approach for 02 = 0
while MKLB approach outperforms WQC approach in terms of bias when o2 # 0.

Such results are different from those obtained when W ~ Uniform(3,4) and somewhat
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similar to those obtained when W ~ Normal(0,1).

In summary, all methods are approximatelly unbiased for the scenario of indepen-
dent censoring (02 = 0,7 = 0,9 = 0) and the WQC approach produces the least
efficient estimates. When the only source of dependent or informative censoring is
known to be due to the covariates (6> = 0,7y # 0,50 # 0), which can be properly
modelled through the censoring mechanism, the MKLB method generally yield the
most accurate and efficient estimates compared to WQC method. Particularly in such
scenario the MKLB estimates are much less biased than those obtained by fitting a
marginal rates model under the assumption of independent censoring regardless of the
relative magnitude and distribution of W. Nevertheless, when the heterogeneity among
subjects was introduced only through a latent variable (0% # 0,7, = 0,7 = 0), WQC
approach always outperforms MKLB approach in terms of accuracy for the configura-
tions studied here.

On the other hand, when both covariate (W) and latent variable (u) were used
to introduce dependent censoring on the event occurrence (02 # 0,7 # 0,% # 0),
the results are not consistent across the parameter configurations considered in this
paper. In those situations, the accuracy and efficiency of the estimates seems to vary

for distinct relative magnitudes as well as probability distributions associated to W.

5.5 An Example: Modelling Times to Recurrent
Diarrhea in Children

In this Section we apply the aforementioned methods to recurrent diarrhea data to
illustrate the modelling process. We used data from 1,191 children aged 6-48 months
at baseline, who participated in a randomized community trial conducted in Brazil
between 1990 and 1991 to evaluate the effect of high dosages of vitamin A supple-
mentation on the occurrence of recurrent diarrheal episodes. The complete study was
described in Barreto et al (1994). For the analysis presented here, we consider the
data available from the first treatment cycle, i.e, between the first and second dosages

of vitamin A. During this period, the mean number of episodes of diarrhea was 2.526
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(sd=2.41, range=0-15). The covariates include demographic, economic and health indi-
cators. Therefore, all 1,191 subjects included in this analysis have complete information
for all indicators. We consider the following covariates for modelling diarrhea occur-
rence: age (in months, at baseline), sex, treatment group (placebo or vitamin A) and
an indicator of existence of toilet (TOILET) in the household. To capture their health
status we consider as covariates weight-for-age Z-score (WAZ) and previous occurrence
of measles.Among these children, 26.4% lived in houses that do not have toilets and
89.3% had measles previously.

The dependent censoring could have been introduced in this study if children who
were at higher risk of having recurrent diarrheal episodes withdrawn from the study
earlier. Another form of dependent censoring could have been introduced due to ter-
minal events, such as death. However, the few death cases occurred during this study
was equally distributed among the two treatment groups and were not associated to
diarrhea occurrence. Thus we explore the possibility that dependent or informative
censoring had occurred in the vitamin A study by estimating the parameters for the
model of interest through the use of the methodologies proposed by WQC and MKLB.
We compared the results from fitting WQC and MKLB methods with those obtained
from fitting a standard marginal rates model. Assuming that the censoring mechanism
is independent of the counting process of interest given the covariates that we are con-
ditioning on, we fit the standard marginal rates model and go through a model selection

procedure. The estimated coefficients for the final model is given in Table 5.5.

TABLE 5.5: Estimated coefficients for the marginal rates model of diarrhea occurrence
assuming independent censoring

Model I5] Estimated p-value
robust SE(f)

TRT -0.136  0.0556 0.0150

AGE -0.030 0.0024 < 0.0001

TOILET 0.254 0.0622 < 0.0001

WAZ -0.050 0.0181 0.0057

After that we estimate the parameters using WQC and MKLB methods. The first
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step in applying MKLB approach is to obtain a 'good’ model for the censoring mech-
anism. For the selection of such model, we initially considered all the covariates that
we also considered when fitting the marginal rates model of the diarrhea occurrence.
The estimated coefficient for the censoring mechanism model is presented in Table 5.6.

The only covariate important for the censoring mechanim was WAZ.

TABLE 5.6: Estimated coeflicients for the censoring marginal rates model

Model I} Estimated p-value
robust SE(53)
WAZ -0.059 0.0166 0.0004

The next step is to estimate the weights by using the estimated censoring survival
probability that is obtained by selecting a model for the censoring mechanism. The
regression coefficients that were estimated by the IPCW estimating function for MKLB
approach are given in Table 5.7. We also estimated those parameters considering the
method proposed by WQC. The standard errors for both methods were estimated using

bootstrap. The corresponding estimates are also presented in Table 5.7.

TABLE 5.7: Estimated coefficients for the marginal rates model of diarrhea occurrence
using WQC and MKLB approaches

Variables MKLB wQC
Parameter Standard p-value Parameter Standard p-value
estimate error estimate error
TRT -0.137 0.0568 0.0159 -0.131 0.0516 0.0111
AGE -0.030 0.0027 < 0.0001 -0.025 0.0021 < 0.0001
TOILET 0.253 0.0630 < 0.0001 0.210 0.0558 0.0002
WAZ -0.051 0.0239 0.0329 -0.042 0.0166 0.0114

By comparing Tables 5.5 and 5.7, we note that the estimated coefficients and stan-
dard errors do not change noticeably when we employ the approaches that take into
account the dependent censoring. On the basis of the results from the MKLB approach,

the covariate that was important for the censoring mechanism was already included in
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the marginal rates model for diarrhea occurrence, which will lead to the assumption
of independent censoring conditional on the covariates that are included in the model
of interest. The results from WQC approach do not point out for any other source of
dependent censoring in this data either.

Both models lead to the same clinical conclusions. TRT has a strong effect on
the rate of diarrhea occurrence (RR=0.87). Based on these results, the rate of diar-
rhea occurrence in children receiving vitamin A supplementation is 13% lower than
the corresponding rate in children in the placebo group. The increase in age and in
weight-for-age Z-score also contributes for a significant reduction on the rate of diarrhea
occurrence. On the contrary, the existence of toilet in the house leads to an increase
of 29% on the rate of diarrhea, which could be associated to poor hygiene practices in

this community.

5.6 Conclusion

We compared two approaches (WQC and MKLB) for the estimation of covariate effects
for recurrent time-to-event data and found that they produce approximately unbiased
estimates when the dependent or informative censoring is not present. The variances of
the parameter estimates from the two approaches increase with decreasing sample size,
as expected. Generally, the empirical standard errors from WQC approach are larger
than those from MKLB approach. According to Wang et al (2001), this later approach is
expected to achieve optimal estimation efficiency at the price of modelling the censoring
mechanism with proper covariate information. Biased results were found when the
informative or dependent censoring was introduced simultaneously by a covariate and
a latent variable.

Overall, MKLB method outperforms the usual marginal rates model in terms of
bias and accuracy when the informative censoring was introducing through a covariate
(6 = 0, v0 # 0,9 # 0). Similar pattern was observed through the comparison of

WQC model and marginal rates model when the informative censoring was introduced
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via a latent variable (62 = 1 or 4, 79 = 0,7 = 0). Further research is still needed
for more complex situations, particularly when there exists more than one source of
informative censoring and the censoring mechanism can not be properly modelled with

available covariate information.
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CHAPTER 6

CONCLUSION AND FUTURE
RESEARCH

In many situations it is of interest to explore the functional form of the relationship
between covariates and failure time. Furthermore, it may be important to allow the
coefficients to change over time. Even though several alternatives of the Cox model
have been made to allow the effects to change over time, no time-varying effects model
had been proposed for the recurrent time-to-event settings. To address this issue, we
proposed methods to estimate time-varying coefficients using B-splines in the marginal
rates model to analyze recurrent time-to-event data. Two approaches were used for the
estimation of time-varying coefficients: regression and penalized splines.

First, we considered the introduction of splines with small number of knots in the
marginal rates model and applied standard procedures to obtain the estimates for the
time-varying effects. The results of simulations indicate that our estimates of the rate
ratios are approximately unbiased and the variance estimator performs well, unless the
data are very scarce. Our method considered that the number of knots is held fixed as
the sample size n — oo, such that the B-spline basis is chosen a priori. Further study
might propose alternative estimators for more complex cases, in which is not known
a priori which among the effects of several correlated variables are time-varying and
which are constant. Even though we discussed posteriori model selection criteria, such
as GCV and AIC, which can be helpful to find a reasonable trade-off between model

parsimony and the risk of overfitting bias, quantifying the variance inflation due to the



use of such criteria is a potential area for future research.

We also proposed a method that uses B-splines with small to moderate number
of knots and that estimates the time-varying effects in the marginal rates model with
estimation based on penalized pseudo-partial likelihood. The penalty functions do not
allow the estimated functions to fluctuate rapidly, resulting in more stable estimates.
Simulation results demonstrate that the asymptotic inference procedures are reliable
when adequately large sample sizes are used. The small sample properties of the pro-
posed estimators may be improved by incorporating different choices of the penalty
function and can be explored.

Simulation studies were also conducted to compare two recently proposed methods
for recurrent event data that take into account the presence of dependent or informative
censoring. Results pointed out that the MKLB estimator has better performance when
the censoring mechanism depends on observed covariates that are included in the model
of interest while the WQC method may handle situations where the censoring is caused
by some unmeasured or latent factor. When censoring is related to both the observed
covariates and some unmeasured factors, neither method work well. New approaches

are needed for such more complex situations.

116



REFERENCES

Abdeljaber, M.H., Monto, A.S., Tilden, R.L., Schork, A. and Tarwotjo, I. (1991). The
Impact of Vitamin A Supplementation on Morbidity: A Randomized Community
Intervention Trial, American Journal of Public Health 1654-1656.

Abrahamowicz, M., MacKenzie, T. and Esdaile, J.M. (1996). Time-Dependent Hazard
Ratio: Modeling and Hypothesis Testing with Application in Lupus Nephritis, The
Journal of the American Statistical Association 91, 1432-1439.

Andersen, P. K. and Gill (1982). Cox’s Regression Model for Counting Processes: A
Large Sample Study, The Annals of Statistics 10, 110-1120.

Barreto, M.L., Santos, L.M.P., Assis, A.M.O., Araujo, M.P.N., Farenzena, G.G.,
Santos, P.A.B., Fiaccone, R.L.(1994). Effect of vitamin A supplementation on
diarrhoea and acute lower-respiratory-tract infections in young children in Brazil,
Lancet 344, 228-231.

Berhane, K. and Weissfeld, L.A. (2003). Inference in Spline-Based Models for Mul-
tiple Time-to-Event Data, with Applications to a Breast Cancer Prevention Trial,
Biometrics 59, 859-868.

Bhandari, N., Bhan, N.K., Sazawal, S. (1994). Impact of massive dose of vitamin
A given to preschool children with acute diarrhoea on subsequent respiratory and
diarrhoeal morbidity, BMJ 309, 1404-1407.

Biswas, R., Biswas, A.B., Manna, B, Bhattacharya, S.K., Dey, R., Sarkar, S. (1994).
Effect of vitamin A supplementation on diarrhoea and acute lower respiratory tract
infection in children, Furopean Journal of Epidemiology 10, 57-61.

Buja, A., Hastie, T., Tibshirani, R. (1989). Linear Smoothers and Additive Models, The
Annals of Statistics 17, 453-555.

Byers, K.E., Guerrant, R.L. and Farr, B.M.(2001). In: Epidemiologic Methods for the
Study of Infectious Diseases, Thomas, J.C, Weber, D.J. (eds), Oxford University
Press, New York: Oxford, 228-248.

Cai, J. and Schaubel, D. (2004). Analysis of Recurrent Event Data, Handbook of
Statistics 23, 603-623.

Cai, Z. and Sun, Y. (2003). Local Linear Estimation for Time-Dependent Coefficients

117



in Cox’s Regression Models, Scandinavian Journal of Statistics 30, 93-111.

Chiang, S.-H. (1968). Regression Analysis for recurrent event data, Doctoral Disser-
tation, Johns Hopkins University: Department of Biostatistics.

Chowdhury S, Kumar R, Ganguly NK, Kumar L, Walia BN. (2002). Effect of vitamin
A supplementation on childhood morbidity and mortality, Indian J Med Sci 56(6),
259-64.

Clayton, D. and Cuzick, J. (1985). Multivariate Generalizations of the Proportional
Hazards Model, Journal of Royal Statistics Society - Series A 148, Part 2, 82-117.

Cook, R.J. and Lawless, J.F. (1997). Marginal Analysis of Recurrent Events and a
Terminating Event, Statistics in Medicine 16, 911-924.

Cook, R.J. and Lawless, J.F. (2002). Analysis of Repeated Events, Statistical Methods
in Medical Research 11, 141-166.

Cox, D.R. (1972). Regression Models and life-tables(with discussion), Journal of
Royal Statistics Society - Series B 34, 182-220.

Cox, D.R. (1975). Partial likelihood, Biometrika 62, 269-276.

Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data, London: Chapman and
Hall.

De Boor, C. (2001). A Practical Guide to Splines, Revised edition, New York: Springer.

Dibley MJ, Sadjimin T, Kjolhede CL, Moulton LH (1996). Vitamin A supplementation
fails to reduce incidence of acute respiratory illness and diarrhea in preschool-age
Indonesian children , Journal of Nutrition 126(2):434-42.

Duchateau, L., Janssen, P; Kezic, I. and Fortpied, C. (2003). Evolution of Recurrent
Asthma Event Rate Over Time in Frailty Models, Applied Statistics 52, 355-363.

Eilers, P.H.C and Marx, B.D. (1996). Flexible Smoothing with B-Splines and Penalties,
Statistical Science 11, 89-102.

Gamerman, D.(1991). Dynamic Bayesian methods for survival data, Applied Statistics
40, 63-79.

Gasser, T. and Muller,H-G. (1978).In: Kernel Estimation of Regression Functions:
Smoothing Techniques for Curve Estimation, Gasser T, Rosenblatt M. (eds), Spring
Lecture Notes in Mathematics, Berlin: Springer-Verlag, 23-68.

118



Ghosh, D. and Lin, D.Y. (2003). Semiparametric Analysis of Recurrent Event Data
in the Presence of Dependent Censoring, Biometrics 59, 877-885.

Giorgi, R., Abrahamowicz, M., Quantin, C., Bolard, P., Esteve, J, Gouvernet, J. and
Faivre, J. (2003). A relative survival regression model using B-spline functions to
model non-proportional hazards, Statistics in Medicine 22, 2767-2784.

Gray, R.J. (1992). Flexible Methods for Analyzing Survival Data using Splines, With
Applications to Breast Cancer Prognosis, Journal of the American Statistical As-
soctation 87, 942-951.

Gray, R.J. (1994). Spline-Based Tests in Survival Analysis, Biometrics 50, 640-652.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient Models, Journal of Royal
Statistics Society - Series B 55, Part 4, 757-796.

Hougaard, P. (1986). A class of Multivariate Failure Time Distributions, Biometrika
73, 671-678.

Hougaard, P. (2000). Analysis of Multivariate Survival Data, New York: Springer-
Verlag.

Huang, Y. and Chen, Y.Q. (2003). Marginal Regression of Gaps Between Recurrent
Events, Lifetime Data Analysis 9, 293-303.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time
Data, 2nd edition, New Jersey: John Wiley.

Kelly, P.J. and Lim, L. L-Y. (2000). Survival Analysis for Recurrent Event Data: An
Application to Childhood Infectious Diseases, Statistics in Medicine 19, 13-33.

Klein, J.P. (1992). Semiparametric Estimation of Random Effects Using the Cox
Model Based on the EM Algorithm, Biometrics 48, 795-806.

Lawless, J.F. and Nadeau, C. (1995). Some Simple Robust Methods for the Analysis
of Recurrent Events, Technometrics 37, 158-168.

Lee, EEW., Wei, L.J. and Amato, D.A. (1992). Cox-Typed Regression Analysis for
Large Numbers of Small Groups of Correlated Failure Time Observations, In:

Survival Analysis: State of the Art 237-247.

Lie C, Ying C, Wang EL, Brun T, Geissler C. (1993).Impact of large-dose vitamin A
supplementation on childhood diarrhoea, respiratory disease and growth, Furopean

119



Journal of Clinical Nutrition,47(2), 88-96.

Lin, D.Y.(1994). Cox regression analysis of multivariate failure time data, Statistics
in Medicine 15, 2233-2247.

Lin, D.Y.; Sun, W. and Ying, Z. (1999). Nonparametric Estimation of the Gap Time
Distributions for Serial Events with Censored Data, Biometrika 86, 59-70.

Lin, D.Y. ; Wei, L.J.; Yang, I. and Ying, Z. (2000). Semiparametric regression for the
mean and rate functions of recurrent events, Journal of Royal Statistics Society -
Series B 62, Part 4, 711-730.

Lin, D.Y. and Ying, Z. (2001). Nonparametric Tests for the Gap Time Distributions
of Serial Events Based on Censored Data, Biometrics 57, 369-375.

McGilchrist, C.A. and Aisbett, C.W. (1991). Regression with Frailty in Survival
Analysis, Biometrics 47, 461-466.

Miloslavsky, M, Keles, S., van der Laan, M.J. and Butler, S. (2004). Recurrent events
analysis in the presence of time-dependent covariates and dependent censoring,
Journal of Royal Statistics Society - Series B 66, Part 1, 239-257.

Morris, S.S., Cousens, S.N., Kirkwood, B.R., Arthur, P. and Ross, D.A. (1996). Is
Prevalence of Diarrhea a Better Predictor of Subsequent Mortality and Weight Gain
Than Diarrhea Incidence?, American Journal of Epidemiology 144(6), 583-588.

Moulton, L. H. and Dibley, M. J. (1997). Multivariate Time-to-Event Models for
Studies of Recurrent Childhood Diseases, International Journal of Epidemiology
26(6), 1334-1339.

Murphy, S.A. and Sen, P.K. (1991). Time-dependent coefficients in a Cox-type regres-
sion model, Stochastic Processes and Applications 39, 153-180.

Nan, B; Lisabeth, L; Lin, X.; Harlow, S. (2003). A Varying-Coefficient Cox Model for
the Effect of Age at a Marker Event on Age at Menopause, In: The Working Paper
Series of Department of Biostatistics. University of Michigan.

O’Sullivan (1988). Nonparametric estimation of relative risk using splines and cross-
validation, SIAM Journal on Scientific and Statistical Computing 9, 531-542.

Pepe, M.S. and Cai, J. (1993). Some graphical displays and Marginal Regression
analysis for Recurrent Failure Times and Time Dependent Covariates, Journal of
American Statistical Association 88, 811-820.

120



Prentice, R.L., Williams, B.J. and Peterson, A.V. (1981). On the Regression Analysis
of Multivariate Failure Time Data, Biometrika 68, 373-379.

R Development Core Team.R: a language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing, 2004. (http://www.R-
project.org/).

Rahman MM, Vermund SH, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO (2001).
Simultaneous zinc and vitamin A supplementation in Bangladeshi children: ran-
domised double blind controlled trial, BMJ, 323(7308), 314-8.

Ramakrishnan U, Latham MC, Abel R, Frongillo EA Jr. (1995). Vitamin A sup-
plementation and morbidity among preschool children in south India, American
Journal of Clinical Nutrition 61(6), 1295-303.

Robbins, J. and Rotnitzky, A. (1992). Recovery of information and adjustment for
dependent censoring using surrogate markers, In: AIDS Epidemiology, Method-
ological Issues. Boston: Birkhauser, 297-331.

Rosenberg, PS. (1995). Hazard Function Estimation Using B-Splines, Biometrics,
51(3), 874-87.

Ross DA, Kirkwood BR, Binka FN, Arthur P, Dollimore N, Morris SS, Shier RP,
Gyapong JO, Smith PG. (1995). Child morbidity and mortality following vitamin
A supplementation in Ghana: time since dosing, number of doses, and time of year,
American Journal of Public Health, 85(9), 1246-51.

Ross S.M. (1983) Stochastic Processes, New York: Wiley.

Ruppert, D., Wand, M.P. and Carroll, R.J. (2003).  Semiparametric Regression,
Cambridge: Cambridge University Press.

Schaubel, D. and Cai, J. (2004). Non-parametric estimation of gap time survival
functions for ordered multivariate failure time data, Statistics in Medicine 23,
1885-1900.

Sleeper, L.A. and Harrington, D.P. (1990). Regression Splines in the Cox Model
with Application to Covariate Effects in Liver Disease, Journal of the American
Statistical Association 85, 941-949.

Therneau, T. M. and Grambsch, P. M. (2001). Modeling Survival Data, New York:
Springer.

Therneau, T. M., Grambsch, P. M. and Pankratz, V.S. (2003). Penalized Survival

121



Models and Frailty, Journal of Computational and Graphical Statistics 12(1), 156-
175.

Tsiatis, A.A. (1981). A large sample study of Cox’s regression model, Annals of
Statistics 9, 93-108.

Valenta, Z. and Weissfeld, L. (2002). Estimation of the survival function for Gray’s
piecewise-constant time-varying coefficients model, Statistics in Medicine, 21, 717-
27.

van der Laan, M.J. and Robins, J. M. (2002). Unified Methods for Censored Longi-
tudinal Data and Causality, New York: Springer.

Victora, C.G., Bryce, J., Fontaine, O. and Monasch, R. (2000). Reducing Deaths
from Diarrhea through Oral Rehydration Therapy, Bulletin of the World Health
Organization, 78(10), 1246-1255.

UNICEF (2003). Indicators for children and adolescents (http://www.unicef.org.br).
Accessed on Oct 2003.

Wang, M-C. and Chiang, C-T. (2002). Non-Parametric Methods for Recurrent Event
Data With Informative and Non-Informative Censorings, Statistics in Medicine
21, 445-456.

Wang, M-C., Qin, J. and Chiang, C-T. (2001). Analyzing Recurrent Event Data
With Informative Censoring, Journal of the American Statistical Association 96,
1057-1065.

Wei, L.J. and Glidden, D.V. (1997). An Overview of Statistical Methods for Multiple
Failure Time Data in Clinical Trials, Statistics in Medicine 16, 833-839.

Wei, L.J, Lin, D.Y. and Weissfeld, L. (1989). Regression Analysis of Multivariate
Incomplete Failure Time Data by Modeling Marginal Distributions,Journal of the
American Statistical Association 84, 1065-1073.

World Health Organization Department of Child and Adolescent Health and Develop-
ment (1999). The Evolution of Diarrheoeal and Acute Respiratory Disease Control:
Achievements 1980-1995 in Research, Development, and Implementation. Printed
in France.

122



