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ABSTRACT
Stephen J. Bush: SNAPP, CRACLe, PoPP: Predicting Protein Interactions.

(Under the direction of Alexander Tropsha.)

Protein-Protein Interactions (PPIs) play a central role in all major signaling events that

occur in living cells, from DNA replication to complex, post-translational protein-signaling

systems. However, many if not most pairs of interacting proteins remain unknown, and the

ability to identify and predict protein-protein interaction sites is a key component in systems

and structural biology. Computational techniques such as MD simulations and homology- or

template-based modeling constitute the main bioinformatics methods applied to study PPIs,

and despite many recent developments, fast and reliable predictions of PPI sites remains a

challenge.

Using computational geometry, we have developed two novel, geometry-based scoring

function called Simplicial Neighborhood Analysis of Protein Packing (SNAPP) for the task

of analyzing and predicting protein interactions. SNAPP-Surface calculates the likelihood

that an amino acid on the surface of a protein will participate in a protein interaction. SNAPP-

Surface is used in our novel algorithm and software for predicting protein-protein and protein-

peptide binding sites called Critical Residue Analysis and Complementarity Likelihood (CR-

ACLe). CRACLe was designed for accurate and efficient high-throughput screening of in-

dividual proteins for potential binding sites. CRACLe can be effectively applied to identify

putative binding sites for novel proteins and potentially for building protein-protein networks.

SNAPP-Interface is used in our novel protein-peptide docking algorithm called Prediction

of Protein-peptide Packing (PoPP) to evaluate protein-peptide interactions. SNAPP-Interface

is also useful for discriminating between native-like and decoy protein-protein interactions.

The SNAPP, CRACLe, and PoPP software and all curated protein-protein and protein-peptide

datasets are freely available at http://chembench.mml.unc.edu/cracle.
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with a 2 Å Native-like Threshold . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Specificity and Sensitivity of SNAPP within the Rosetta All-atom Decoy Set
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CHAPTER 1

Introduction

Protein-protein interactions (PPIs) play an important role in systems biology, particularly

for understanding inter- and intra-cellular biological networks [1, 2, 3]. Identifying PPIs using

experimental techniques, such as X-ray crystallography, mutagenesis, or mass spectrometry,

is cost and time intensive [2, 4]; as a result, computational algorithms have been developed

to predict PPI, but these algorithms are still time consuming and often require some a priori

knowledge of the interaction in question [1, 5, 6]. Therefore, a computational method devoid

of the above limitations is highly desirable to quickly and accurately identify potential binding

sites on a protein surface and evaluate the likelihood of an interaction between two proteins

[2, 6].

More than a dozen protein-protein docking software packages [7] have been described in

the literature (Table 1.1), implementing various types of protein-protein docking algorithms;

of these, HADDOCK [8, 9] and RosettaDock [10, 11] are among the most well-known within

the structural bioinformatics community. Docking algorithms are regularly and rigorously

benchmarked for their prediction accuracy under the framework of the CAPRI challenge

[12, 13, 14], where modelers are invited to submit their predicted structures for various pro-

tein complexes with unknown (at the time of prediction) structures. Although every current

approach has unique features, all follow the same overall, three-stage workflow: (i) represen-

tation of the system (e.g., coarse-grained or all atom models), (ii) sampling or generation of

docking poses within a conformational search space (e.g., stochastic Monte Carlo or Molec-



ular Dynamics), and (iii) ranking of potential conformations using a scoring function (e.g.,

knowledge or physical force field based). Most docking algorithms rely on the idea that pro-

teins form specific interactions requiring geometric, electrostatic, and/or hydrophobic com-

plementarity [15, 7]. The electrostatic and hydrophobicity terms are generally accepted as

the most important [7, 16] and are usually expressed in the scoring function to evaluate the

correctness of every generated protein-protein conformation; however, the more complex the

conformational search algorithm and the scoring function are, the more time-consuming the

calculations become. Therefore, numerous studies [17, 3, 18, 19, 20] have focused on creating

new scoring functions and on the identification of PPI hot spots, i.e., solvent-exposed residues

critical for specific interactions, to limit the conformational search space. Further details about

PPIs and computational techniques to predict them can be found in several recent publications

[21, 15, 7, 1].

Despite significant advances in protein-protein docking, there are still unsolved challenges

and numerous weaknesses: CAPRI results [22, 10, 12, 13, 14, 23, 24] show that many ap-

proaches are able to accurately predict PPI only for relatively small contact interfaces with

small conformational perturbations required for complex formation. Indeed, the vast majority

of protein docking methods treat proteins as rigid bodies and assume that the overall con-

formations of the bound chains will be the same as unbound conformations. Unfortunately,

this assumption is not always true, and approaches such as HADDOCK have begun taking

into account both side-chain and backbone flexibility (at the refinement stage only) to obtain

better prediction performance with flexible proteins. Another important and still unresolved

weakness is that most docking algorithms return the ”best” pose for a given pair of protein

chains, even if the two chains do not actually interact in a biological system.

One possible method for improving protein-protein docking is to limit the sampling step

using interaction hot spots. Hot Spots are amino acids found on a protein surface that account

for a significant portion of the binding free energy in a given PPI [25]. Identification of hot

spots is crucial for studying or modifying PPIs [3, 17, 26], and many algorithms have been

2
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PredUs X X X X - - X - - 5 X X - X -

IBIS X X X X X X X - - 1 X - - X X
HotPoint X X X X - - - - X 1 X R R X -

PEPSITE 2 X X - X - - X - - 1 X R - X X
PCRPi-W - X X X - - - X - 1 X R - X -

PocketQuery X X X - X - - - X 1 X R R X X
HSPred X X X - - - - X X 1 X R R X -

Robetta Server X X X - X - - - X 1 X R R X X
iPred - - X X - - - X - - X - - X X

Metz, et al. - - - - X - - - X - - - - X X
FTMap ? ? ? ? X ? ? ? ? ? ? ? ? ? ?

Nisius et al. - - X ? X ? ? ? ? ? ? ? ? ? ?
SiteHound X X ? ? X ? ? ? ? ? ? ? ? ? ?

Table 1.2: Characteristics of existing algorithms for hot spot and binding site identification.
* ’Public’ refers to unrestricted access of the software; R stands for required.
†CPORT returns a consensus from 6 different algorithms: WHISCY, PIER, ProMate, cons-PPISP, SPPIDER,
and PINUP. These six, freely available packages are not detailed here as CPORT reported significantly improved
results even above the best of them.

proposed for hot spot identification (HSI) . The majority of HSI algorithms analyze protein

surfaces for specific patterns of chemical and geometrical properties, such as charge, polarity,

hydrophobicity, shape, or sequence [18, 27, 28, 29], while several recent algorithms utilize

homology models to transitively identify binding sites [30, 31]. Table 1.2 provides a list of

several popular algorithms.

Existing methods for predicting protein-protein binding sites are limited by a lack of ac-

cessibility, functionality, and overall accuracy. Unfortunately, not all are publicly available

as either a web server or standalone program (see Table 1.2), and for those that are, users

4



must typically submit each protein or complex separately and wait several minutes to hours

for the results. At the time of this writing, we are unaware of a publicly-accessible method

that is capable of handling a large volume of queries. Most algorithms require that users sup-

ply the protein or peptide ligand, and in some cases, the supplied ligand must already be in

a native or native-like docking pose [26], further hindering the ability of these algorithms for

discovering unknown PPIs. The reported prediction accuracy has not been high; few algo-

rithms have reported a prediction accuracy above 60% [32]. Recent reviews commented on

the difficulty of comparison between different approaches [6, 32] because each algorithm was

tested and benchmarked on a different data set and validated with the different metrics. In

general, homology-based algorithms have been shown to yield more accurate predictions, but

by definition these are applicable only to proteins with known structural homologs[30, 32].

With these limitations in mind, we set out to develop a series of algorithms to predict

protein binding sites and interactions based on two hypotheses: (1) The geometry and com-

position of residues involved in protein-protein interactions are conserved versus residues

found on the rest of the protein surface; and (2) this conservation can be used to predict

other protein-protein interactions. Over the next the chapters we will discuss the development

and benchmarking of our novel scoring function called Simplicial Neighborhood Analysis of

Protein Packing (SNAPP); our novel binding site prediction algorithm called Critical Residue

Analysis and Complementarity Likelihood (CRACLe); and our novel protein-peptide docking

algorithm called Prediction of Protein-peptide Packing (POPP). Each part of SNAPP, CRA-

CLe, PoPP provides a rapid and efficient geometry-based algorithm based on a combination of

techniques from cheminformatics and computational geometry. Each part was implemented

with high-throughput analysis in mind and requires only protein crystal structures as input.

5



CHAPTER 2

Development of a SNAPP Scoring Function for Analysis of Protein Interactions

2.1 Creation of the SNAPP scoring function

The SNAPP scoring function was originally developed by the Tropsha laboratory in the

late 1990s as a method to evaluate protein structure [33] and pioneered the use of a compu-

tational geometry technique called Delaunay tessellation [34] for protein structure analysis1.

Since its creation, SNAPP has been used to recognize protein folds [37], predict protein stabil-

ity [38], simulate protein folding [39], identify structural motifs in protein folds [40], identify

fold nuclei [41], distinguish between native and native-like versus decoy protein folds [41],

and automate protein-function annotation [42]. The initial development of SNAPP has been

summarized in a review [43].

2.1.1 Protein Representation

Two representations are applied both in the creation and application of the SNAPP score:

(1) coarse-grained representation of protein structure using a single-point-per-residue (SPPR)

model; and (2) partitioning of the protein into an aggregate of four-body interactions via

Delaunay tessellation [34]. Both of these representations deviate from the standard models

for protein structure analysis, which typically use an all-atom representation with one or more

1Previous studies had used related techniques such as Voronoi diagrams [35] and α shapes [36]; however,
SNAPP is the first direct application of Delaunay tessellation to protein structure found in the literature at the
time



energy functions [44]. The goodness of a representation depends upon its application, and our

coarse-grained representation emphasizes speed and stability over structural precision.

The SPPR representation of a protein employed by Singh et al. [33] originally used the

Cα of each amino acid; however, Cαs were quickly replaced with the side-chain centroids,

including the Cα, for each residue. The use of side-chain centroids was found to be more

predictive [41] and results in a tessellation that is more stable against perturbation [45] when

compared to the use of Cαs. Furthermore, each centroid is more robust against errors in

structural data versus an all atom model, where the loss of an atom may change the results of

an energy calculation or predicted hydrogen bonding. A centroid minus an atom still retains

the properties of its amino acid type but suffers a slight coordinate change. Although such a

change could result in a modified Delaunay tessellation, a previous study found that Delaunay

tessellation is sufficiently robust to handle centroid perturbations [45]. Centroid coordinates

are less sensitive to side chain rotamers: Not only can the rotational movement be accounted

for with a single translation, but the movement will be less drastic due to the constancy of the

atoms that do not move. Even more importantly, side chain centroids lower the complexity of

residue interactions from a multi-body to a single-body problem.

We are currently using a modified version of the Bowyer-Watson algorithm [46, 47]

for Delaunay tessellation. Delaunay tessellation provides a method for partitioning a three-

dimensional protein structure into simpler and more manageable polyhedrons. Given a se-

ries of coordinates in three-dimensional space, Delaunay tessellation generates an aggregate

of space-filling, non-overlapping, irregular tetrahedra, known as simplices, and each Delau-

nay tetrahedron objectively and uniquely defines the vertices as four nearest-neighbor points.

When applied to a SPPR model, the aggregate of tetrahedra form a network of contacts be-

tween residues, reducing a complex, three-dimensional structure to a collection of explicit

quadruplet structural motifs and a unique connected graph for every protein. To better define

the protein structure, Delaunay edges longer than 11.5 Å are removed from the tessellation.

These four-body simplices are the smallest possible constructs both necessary and sufficient to
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preserve structural information and allow for comparison between protein geometries [40, 43].

Figure 2.1A and B show an example of a tessellated protein

Tetrahedra are further classified by their residue composition and sequence adjacency (Fig-

ure 2.1C), which simply means the types of residues involved and the peptide bonding between

each of the residues. Although the exact distribution of tetrahedra is unique for each protein

structure, the Tropsha group found that particular types of tetrahedra occur more often than

statistically expected. This finding culminated in the SNAPP database and a novel, four-body

statistical scoring function.

Figure 2.1: (A & B) The tessellated structure of a DNA binding protein (PDB code 1C8C)
with edges greater than 11.5 Å trimmed. (C) Five tetrahedral types based on peptide bonds
between adjacent amino acids, ranging from zero peptide bonds between residues (type 0) to
three peptide bonds (type 4).
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2.1.2 Calculating the SNAPP scoring function

The original SNAPP scoring function was defined by Singh, et al. [33] as follows: Given a

training set of protein structures, all proteins are tessellated, and SNAPP scores are calculated

for every possible simplex combination of amino acid composition and sequence adjacency

according to the following equation:

qijkl = log

(
fijkl
pijkl

)
(2.1)

where q is the SNAPP score for a simplex with amino acids ijkl; and f and p are the observed

and expected frequencies of the simplex, respectively:

fijkl,t =
|sijkl|
|S|

(2.2)

pijkl,t = Caiajakal (2.3)

where |S| is the cardinality of Delaunay simplices, s is a subset of all simplices S in the

dataset, and ai is the observed frequency of amino acid i in the dataset. In the expected

probability p, C defines a combinatorial factor that accounts for redundancy of amino acid

composition, e.g., ijkl = jkli:

C =
4!∏i
n |ai|

(2.4)

where n is the number of unique amino acids in the simplex, and |ai| is the cardinality of

amino acids of type i.

The SNAPP score q is a statistical likelihood than estimates how likely it is that a particular

simplex would be found in a protein based on our knowledge of existing protein structures.

Combining scores will yield the likelihood that simplices will be found together, and because

each score q is a logarithm of the likelihood function, we can add the scores rather than dealing
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with products. Thus, once the SNAPP scores have been computed, calculating the SNAPP

score Q for a new protein is simple: tessellate the protein; score each simplex according to its

composition and sequence adjacency; and sum the individual SNAPP scores:

Q =
∑

qi (2.5)

2.2 Variations on a Theme

There have been three variations of the SNAPP methodology since its inception. Each

follows the same basic structure given above, but includes slight modifications to refine and

specialize the potential. These modifications include a filter on the scoring function output,

slight changes to the scoring function itself, and alterations to the representation of the protein,

which in turn alter the scoring function.

2.2.1 SNAPP and Protein Tertiary Structure

The first variation of SNAPP by Carter et al. [38] began as an attempt to approximate the

free-energy difference, ∆(∆G), of protein folding by evaluating native protein tertiary struc-

ture using SNAPP. Carter et al. found that simplices composed of four hydrophobic residues

occurred more frequently than expected by random chance, and proposed that these simplices

encode information relevant to thermodynamically significant tertiary interactions. To test

their hypothesis, Carter et al. selected five proteins with a total of seventy-six mutations with

experimentally tested ∆G values. They identified core residues for each of the five proteins

from either the literature or based on cumulative SNAPP scores greater than 1.5 Å, and gener-

ated a series of variant proteins with single point mutations for each core residue. They found

that the difference in SNAPP scores, ∆ SNAPP, for hydrophobic simplices in the core of a

protein correlated with experimental ∆(∆G) values.

In the course of their study, Carter et al. recompiled the SNAPP scoring function using

an improved dataset containing 1,200 single chain proteins versus the original 103. Addition-
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ally, the study introduced two changes to the SNAPP algorithm as set forth by Singh et al.

First, Carter et al. focused on protein tertiary structure and therefore removed many simplices

involving residues adjacent in the primary sequence as such simplices were said to be unin-

volved in tertiary interactions. The second change was the removal of any simplices with a

vertex-to-vertex edge distance greater than 10 Å on the basis that direct interactions will occur

only at shorter distances. However, both of these changes were introduced as filters for the

study rather than canonical changes to the SNAPP score.

One year later, Cammer et al. [40] introduced the first SNAPP variation in a study us-

ing SNAPP to identify tertiary packing motifs. This study expanded on the previous alter-

ations, maintaining the 10 Å edge cutoff and explicitly stating the removal of all simplices

except type 0 (Figure 2.1C), i.e., simplices without any sequence-adjacent residues. Cam-

mer et al. used SNAPP to identify common sequence-structure motifs among simplices with

similar residue composition. They found that simplices containing a balance of hydrophobic

and polar residues occurred far more frequently than simplices with singular compositions.

Furthermore, they found specific residue-sequence motifs for three separate protein families,

suggesting that some of the motifs could be used as markers for protein functional families.

The SNAPP score variation introduced by Cammer et al. (referred to as SNAPP-Cammer)

has been used in other studies [43, 48], but is typically reserved for evaluating tertiary inter-

actions. In addition to the log-likelihood functions, the SNAPP-Cammer database contains a

plethora of additional data for each type 0 simplex composition; however, many of the imple-

mentation details have been lost, and exactly how this additional information was applied to

the scoring function, if at all, is unknown. As a result, the SNAPP-Cammer scoring function

used for comparison performs scores only type 0 simplices as described in the paper.

2.2.2 Predicting Native-like versus Decoy Structures

Although the original paper by Singh et al. mentioned the five different types of simplices

(Figure 2.1C), the five types were noticeably absent in the scoring function. Gan et al. [39] at-
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tempted to incorporate the sequence adjacency into the formula, along with redefining SNAPP

as a multi-body contact energy:

Qα
ijkl = −kBT ln

fαijkl
pijkl

(2.6)

where α represents simplex type, and the observed frequency f was redefined to

fαijkl =
|sαijkl|
|sα|

(2.7)

where |s| is the cardinality of simplices in the dataset with a given type α and composition

ijkl. Unfortunately, the inclusion of the type did not extend into the expected frequency

p. Gan et al. made a number of additional changes, including using a varied edge cutoff of

either 8 or 11 Å to allow for comparison of SNAPP scores created from datasets with fewer

structures. The refined scoring was unsuccessfully used to select native-like conformations

from a series of decoys.

Decoy discrimination still presented an inviting target for SNAPP, and Krishnamoorthy et

al. [41] re-purposed SNAPP for the task. Like Gan et al. they saw the importance of including

the simplex type, but Krishnamoorthy et al. also recalculated the expected simplex frequency:

pαijkl = Caiajakalpα (2.8)

where pα is the frequency of type α tetrahedra in the dataset. Additionally, the −kBT term

was removed, as it would be constant, the natural log, ln, was replaced with log base 10,

and the edge cutoff was reset to 10 Å. The training set was also curated to remove any protein

chains with missing atoms or residues to ensure the SNAPP potentials were developed without

any irregularities. The resulting SNAPP potentials (henceforth called SNAPP-Bala) were

able to accurately distinguish native-like protein folding from decoy conformations generated

for a single protein, and were later applied with marginal success to evaluate the effects of
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mutations on protein stability and reactivity [49].

2.2.3 Accounting for Structural Variation

Protein structures obtained from X-ray crystallography or NMR can be imprecise: Exper-

imental error and protein flexibility could lead to variation in the atomic coordinates, possibly

resulting in a different Delaunay tessellation. In 2004, Bandyopadhay and Snoeyink [45]

developed almost-Delaunay simplices to identify potential quadruplets that would occur if

vertices within a point set were allowed small perturbations. Given a Delaunay tessellation,

they identified possible Delaunay edges for all vertices within a minimum distance thresh-

old of 10 Å and identified all possible simplices given these additional edges. Each of these

simplices was said to be almost-Delaunay iff the simplex would be a Delaunay simplex after

neighboring vertices were perturbed by a minimum distance ε ≥ 0.

Bandyopadhyay and Snoeyink were able to visualize and quantify α-helices, β-sheets,

and β-turns using almost-Delaunay simplices; however, they also found that fewer almost-

Delaunay simplices were created as proteins became increasingly structured and when side-

chain centroids were used instead of Cαs. Additionally, they weighted the SNAPP potentials

based on the almost-Delaunay simplices and found that both versions were able to discrimi-

nate native-like from decoy protein folding. Although almost-Delaunay is a unique and po-

tentially useful technique for analysis of protein structure, we chose not to use it in this project

due to the additional computational complexity and overhead required.

2.3 Modern Modifications (M2)

Given the relative success of SNAPP for evaluating a variety of different protein folding

problems, we wanted to see if the scoring function could predict protein-protein interactions;

since the most recent iterations of SNAPP were almost a decade old, at the very least, we

needed to recalculate SNAPP using a training set with updated structures. First, we decided

to use the variations set forth by Krishnamoorthy et al. as a control to allow for comparison
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between the old and newer scoring functions. Second, we suspected that the expected simplex

frequency used in the previous SNAPP iterations might be too simple to accurately portray

the complexity of protein interactions; we set out to remodel the expected simplex frequency

based on a multi-body chemical reaction. Third, we designed a set of novel cheminformatics-

like descriptors to account for simplex features ignored by the SNAPP potentials.

2.3.1 The Current SNAPP Scoring Function

As a part of updating the SNAPP score, we needed to recompile the training sets. Un-

fortunately, recompiling the training sets on PPI data meant that comparison against the old

SNAPP-Bala potentials would not be accurate; we needed to recalculate a new set of SNAPP

potentials on a set of single-chain proteins using the algorithm set for by Krishnamoorthy et al.

We compiled a set of single-chain protein structures from the Richardson Top 500 [50], PICES

[51], and a subset of the PDB [52], which we define in greater detail in Chapter 2.4.1. To help

differentiate between other SNAPP scores, we refer to the updated potentials as SNAPP-Fold.

The SNAPP-Fold potentials were created using the following equations, which include

the simplex type. The SNAPP score for a single simplex qijkl,t with amino acids ijkl in

configuration type t is defined by:

qijkl,t = log

(
fijkl,t
pijkl,t

)
(2.9)

which, remains a log ratio of the observed f over the expected p frequencies. The frequencies

f and p have likewise changed to account for the simplex type:

fijkl,t =
|sijkl,t|
|st|

(2.10)

pijkl,t = Caiajakalft (2.11)

where s is a subset of all simplices S in the dataset, ai is the observed frequency of amino acid
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i in the dataset, and ft is the frequency of type t simplices in the dataset:

ft =
|st|
|S|

(2.12)

2.3.2 Redefining the Expected Frequency

When we first set out to redefine the SNAPP scoring function, our first concern was how

the expected frequency pijkl,t was calculated. In all of the SNAPP variations, the expected fre-

quency estimates the likelihood that four particular residues will associate with each other due

to random chance. We hypothesized that tetrahedral formation was not entirely due to random

chance, but was constrained by the existing peptide bonds between sequential amino acids. To

test our hypothesis, we designed three new expected frequencies based on (1) the distribution

of Delaunay edges found in proteins, (2) the frequency of interaction between amino acids, as

defined by Delaunay tessellation, and (3) the occupation frequency for cooperative binding.

Edge Frequency

Similar to the amino acid frequency ai used in the original SNAPP equation, the edge

frequency feij gives a ratio of the occurrence of an edge between residues of type ai and aj

across the dataset:

ai =
nai

Nresidues

(2.13)

feij =
neij
Nedges

(2.14)

The edge frequency directly replaces the amino acid frequency, but allows the scoring function

to take into account the frequency of peptide versus non-peptide edges, which inherently
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includes the simplex type:

pijkl =
se∏
x

fex (2.15)

=

πpeptide(se)∏
x

fex

πnon−peptide(se)∏
y

fey (2.16)

where se is the set of edges for a given simplex and Πpeptide is the projection of edges se that

are peptide bonds. Like the original equation, we must also account for the redundancy of

permutations due to amino acid and edge types:

pijkl = C

σ(sE:t)∑ Πpeptide(se)∏
x

fex

Πnon−peptide(se)∏
y

fey (2.17)

where σ(sE:t) is the selection of all possible edge permutations given a simplex of type t. The

final edge frequency serves as a basis for the other two scoring functions, substituting fex for

the respective frequencies.

Interaction Frequency

Instead of using amino acid distributions alone to calculate likelihood potentials, we could

consider the formation of a simplex similar to that of a chemical reaction in equilibrium:

A+B 
 AB (2.18)

with a first order reaction rate r and equilibrium coefficient of K,

r = k1[A][B]− k2[AB] (2.19)

K =
k1

k2

(2.20)

=
[AB]

[A][B]
(2.21)
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where [A] is the concentration of A, and k1 and k2 are the rate coefficients. By treating the

amino acid and edge distributions as the concentrations of each, we may approximate the

frequency of interaction, fI , between two residues:

fI =
feij
faifaj

(2.22)

Occupation Frequency

The final potential builds upon the interaction frequency and approximates a cooperative

binding frequency fV that is loosely based on the Adair-Klotz equation [53], which gives the

fractional occupation v:

v =

∑n
i i
∏i

jKi[A]j

1 +
∑n

i

∏i
jKi[A]j

(2.23)

fV =
fei→j

fej→i
faifaj

1 + fei→j
fai + fej→i

faj
(2.24)

where the edge frequency has been given a direction i→ j to indicate i binding to the structure

before j. Here, the directed edge frequency is substituted for the rate constant, and the amino

acid frequency is substituted for the concentration. The occupation frequency ignores the

higher order reactions: The values calculated for i > 1 were several orders of magnitude

smaller and had little effect on the frequency.

Cheminformatics-like Descriptors for Simplices

Until now, the SNAPP score utilized only two traits to characterize the tessellation of a

protein structure: the amino-acid composition, and the sequence adjacency; however, Delau-

nay tessellation does not depend on either vertex composition or order of occurrence. Instead,

Delaunay tessellation depends on and provides additional information about the spatial ar-

rangement of the points, or amino acids, within the set. To make use of this additional in-

formation, we applied cheminformatics-like descriptors. In cheminformatics, chemical com-
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pounds are described by numerical parameters called descriptors that encode its physical and

chemical characteristics. These descriptors range from constitutional traits, such as the num-

ber of atoms, to more complex topological indices, often based on the number of bonds per

atom, also known as the vertex degree. Descriptors are a core component of cheminformatics

algorithms and are utilized to help predict experimental outcomes. In order to better evalu-

ate the structural diversity of protein packing, we developed a series of (i) chemistry-based

descriptors that describe inherent structural characteristics, (ii) geometry-based descriptors

to characterize the three-dimensional conservation of residue quadruplets and (iii) topology-

based using well-defined constitutional and topological indices (e.g., Kier & Hall, Randic)

[54, 55]. A complete list of the calculated protein descriptors can be found in Appendix 5.32.

Geometric descriptors characterize simplices by quantitatively scoring the conservation

of their three-dimensional structure, such as volume, surface area, inter-residue distance and

angles, tetrahedrality (i.e., a measure of deviance from an ideal tetrahedron) [33], and chirality.

In particular, tetrahedral chirality uniquely characterizes protein structure by identifying not

only nearest-neighbor residues but also their spatial orientation with one another. Because

the underlying structure is always a tetrahedron, these data are quickly calculated and provide

a simple comparison between tetrahedra with the same residue composition and sequence

adjacency.

Topological descriptors aid in describing, discriminating, and qualitatively comparing PPI

structure through graph theory, which is widely used in cheminformatics and has also been

useful for studying protein structure [56, 57, 58], protein flexibility [59, 60], PPI structure

[61], and protein-protein docking [62, 63]; however to our knowledge, we are the first group

to apply graph theory to PPI described using Delaunay tessellation. Topological descriptors

are quickly calculated and describe both connectivity and branching complexity, expressed

as graph indices. Examples of graph indices include: the Wiener index, i.e., the length of

the shortest path across a graph, which correlates to van der Waals surface area [64]; various

2The appendices do not seem to be correctly labeled
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vertex centralities, e.g., vertex degree (Equation 2.25) and Eigenvector centrality (Equation

2.26), which measure the importance of a vertex within a graph:

v̄i =
1

M
∑M

v=1 vi
(2.25)

xi =
1

λ
∑N

j Aijxj
, (2.26)

the Randic connectivity index (Equation 2.27), which expresses the level of graph branching

[65]:

R =
∑

all edges

(vi · vj)−
1
2, (2.27)

and the Estrada index (Equation 2.28), which characterizes protein folding [66]:

EE(G) =
n∑
i

eλi, (2.28)

Descriptor calculation follows a simple workflow (Figure 2.2). First, each protein complex

is subjected to Delaunay tessellation. Second, the calculation of these SNAP protein descrip-

tors generates a series of numerical values for (a) each residue vertex, (b) each simplex, (c)

each protein, and (d) special subsets of vertices, such as surface or interfacial residues. These

numerical values specifically describe the constitutional, geometrical, and topological charac-

teristics of each part of a protein, resulting in a protein fingerprint that can be used to analyze,

sort, cluster, and model tetrahedra.

2.4 Validating the New Scoring Functions

In order to validate the new scoring functions, we needed to compare the new potentials

against the old, which meant first testing on protein folding. To this end, we recompiled the

SNAPP potentials using an updated set of single protein chains and tested the ability each
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Figure 2.2: Workflow to derive PPI fingerprints: (1) Tessellate a protein complex (PDB code
1A0O in this example); (2) Identify interfacial quadruplets; (3) Extract interfacial quadruplets;
and (4) Calculate PPI descriptors (e.g., volume, exposed surface area, Kier & Hall indices).

of the six scoring functions to discriminate between native-like and decoy protein folds. We

used SNAPP-Cammer, SNAPP-Bala, and with the newer SNAPP-Fold as controls to test the

modified SNAPP potentials based on edge frequency, interaction frequency, and occupation

frequency.

2.4.1 Compiling the Training Sets

The selection and curation of the data used to create the scoring function directly relates

to the algorithms efficacy and applicability. The databases used for training are summarized

in Figure 2.3A, and the creation of the algorithm is described below.

We trained the new SNAPP scoring function using three datasets: the Richardson Top 500

[50]; a specialized, single chain subset of structures from the PDB [52]; and a collection of

structures selected by R-Factor using PICES [51]. The Richardson dataset contains 500 high-

quality, manually curated crystal structures; however, as the last update was in 2000 [50]3

3Since the compilation of SNAPP-Fold, the Richardson laboratory has replaced the Top 500 dataset with a
newer Top 8000, which has not yet been used in SNAPP training.
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and due to the low number of structures, we chose to add protein structures from additional

sources. We selected a subset of single chain structures from the PDB with high resolution

(< 2 Å) and low sequence similarity (< 35%) that contained only the protein itself, i.e., no

ligands, co-factors, or nucleic acids. Further structures were added from PICES, a web server

that ”culls” the PDB for structures according to R-factor.

All three training sets were curated, and any structures with one or more of the following

problems were removed: missing atoms; missing entire residues; or containing an insertion

code, or iCode (Figure 2.3B). The latter filter was chosen due to the inconsistent implementa-

tion and poor quality of structures containing iCode data. Duplicate structures were removed

with preference given to the Richardson dataset, followed by the PDB subset. Although the

majority of each dataset was removed, the remaining datasets had surprisingly little overlap.

The resulting database of 1,473 unique single-chain protein structures was tessellated and

used to recompile the SNAPP scoring function (Figure 2.3C).

2.4.2 Benchmarking and comparison of new and old SNAPP scores

Two separate tests were used to validate the SNAPP scoring functions: (1) the Baker decoy

set containing 60 protein backbones, i.e., only the Cαs for each protein; and (2) the Rosetta

all-atom data set with 59 proteins [67].

The Baker decoy set [68] consists of sixty protein backbones, each with one native-like

and three decoy structures. Each set of protein Cαs were tessellated and scored using SNAPP-

Bala, SNAPP-Cammer, SNAPP-Fold, and the three novel Edge, Interaction, and Occupancy

frequencies. For each of the scoring functions, the highest scoring protein was predicted

to also have the lowest RMSD in relation to the native protein. Unfortunately, none of the

scoring functions were able to consistently distinguish between native-like and decoy protein

structures (Figure 2.4): SNAPP-Cammer proved the worst, correctly predicting 14 of the 60

structures; SNAPP-Bala and the Edge, Interaction, and Occupancy frequencies performed

slightly better with 18-19 correct predictions; and SNAPP-Fold lead the pack with a measly
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Figure 2.3: (A) Training set databases for SNAPP-Fold, SNAPP-Surface, and SNAPP-
Interface. (B) For each dataset, a Venn diagram shows the overlap of structures that one or
more errors. (C) A Venn diagram showing the contribution of each dataset in the SNAPP-Fold
training set, resulting in a total of 1,473 unique protein structures.
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24 accurate predictions. When including predictions where the lowest RMSD had the second

highest SNAPP score, SNAPP-Bala eked ahead with 38 correct predictions over SNAPP-

Fold’s 36. Regardless, none of the scoring functions perform well, achieving little more than

60% native-like prediction accuracy for the dataset when the prediction standards are lowered.

We hypothesize that some part of the poor predictions may likely be attributed to the use of

Cαs for the protein structures rather than the side-chain centroids that SNAPP was trained

on. To validate this hypothesis, we decided to retest the SNAPP scoring functions using the

Rosetta all-atom decoy set.

Figure 2.4: [Note to committee: This figure is confusing. I am fixing it and will send the
updated figure.] The correlation between RMSD and SNAPP for the Baker decoy dataset.
Proteins were put into one of four classes based on the SNAPP score rank of the lowest
RMSD, e.g., if the highest scoring structure also has the lowest RMSD, it is put into class one.
Shown are the percentages of proteins in each class as defined by the results from each of the
three SNAPP scoring functions.

The Rosetta all-atom decoy set [67] contains 59 different sets of proteins, each set contain-

ing 1 native protein structure, a series of 20 Rosetta-refined native-like structures, and 100 low

scoring decoys from 10,000 produced by the Rosetta structure prediction algorithm, resulting
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in a total of 121 structures per protein. For each protein group, we returned the rank of the

native structure (Table 2.1), and calculated the sensitivity and specificity of the SNAPP scores

based on the number of native and native-like structures as defined by an RMSD threshold of

1 Å (Table 2.2), 2 Å (Table 2.3), and 4 Å (Table 2.4). All of the SNAPP scores performed

much better with the all-atom structures; however, SNAPP-Fold still outperformed the other

scoring functions, followed closely by SNAPP-Bala, then by the Edge, Interaction, and Oc-

cupancy frequencies, with SNAPP-Cammer trailing behind. In fact, for 43 of the 59 proteins,

SNAPP-Fold scored the native protein within the top 10 highest scores of the other 121 in each

set; of those 43 sets, the native was scored within the top 5 for 36 and as the highest scoring

for 22 of the protein sets. Although none of the SNAPP scoring functions successfully found

the native pose for more than 73% of the proteins, SNAPP-Fold consistently outperformed the

other SNAPP variations, which unfortunately included the novel frequency variations.

We also compared our results for the Rosetta all-atom decoy set against those of Arnautova

et al. [69]. Arnautova et al. developed three force fields for evaluating protein stability and

tested their energy functions against 45 of the 59 proteins in the Rosetta all-atom decoy set.

For each protein, their algorithm generated an additional 6,000 decoys to provide a smoother

energy landscape for identifying the lowest energy conformation. They evaluated their scoring

function based on the RMSD of the decoy with the lowest energy. The highest scoring protein

found with SNAPP-Fold had a lower RMSD for 30 of the 45 protein sets, versus 26 and 17

for SNAPP-Bala and SNAPP-Cammer, respectively.

Overall, all of the SNAPP functions performed adequately for decoy fold prediction, in-

cluding the previously published SNAPP variations. The lack of reproducibility between the

published results and our tests could be caused by a number of reasons. First, none of the pub-

lished results covered a very large test set, at most including a handful of different proteins.

Our results with the Rosetta and CASP9 test sets showed that SNAPP did indeed discriminate

between native-like and decoy conformations very well for some proteins, and we hypothesize

that this improved prediction is likely a result of over-fitting to the training set. Second, none
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Fold Bala Cammer Edge Interaction Occupancy mean

1a19 21 100 17 16 19 25 31 28 22.67
1a32 88 33 116 88 60 119 105 116 100.67
1a68 21 100 35 37 25 74 71 73 52.50
1acf 21 100 1 1 14 17 18 19 11.67
1ail 25 96 1 1 5 37 90 61 32.50
1aiu 102 19 92 89 35 107 91 102 86.00
1b3a 19 102 7 7 10 13 11 11 9.83
1bgf 21 100 7 15 24 16 24 18 17.33
1bk2 21 100 4 16 108 3 6 5 23.67
1bkr 21 100 16 21 11 23 36 26 22.17

1bm8 21 100 1 1 4 1 3 2 2.00
1bq9 21 100 14 20 34 26 8 20 20.33
1c8c 31 90 105 108 79 101 109 105 101.17
1c9o 21 100 92 96 36 95 102 99 86.67
1cc8 21 100 26 27 31 35 42 39 33.33
1cei 21 100 5 8 52 11 23 15 19.00

1cg5 21 100 6 6 5 9 11 10 7.83
1ctf 21 100 5 5 5 69 86 85 42.50

1dhn 21 100 2 5 17 19 25 21 14.83
1e6i 21 100 14 9 5 70 58 69 37.50
1elw 121 0 22 16 27 2 1 1 11.50
1enh 46 75 92 64 32 54 73 64 63.17
1ew4 21 100 1 1 3 1 3 1 1.67
1eyv 21 100 11 10 11 32 28 34 21.00
1fkb 21 100 4 5 26 7 14 8 10.67
1fna 21 100 5 6 47 1 3 1 10.50
1gvp 13 108 34 40 42 72 85 75 58.00
1hz6 21 100 18 11 46 42 38 40 32.50
1ig5 22 99 56 45 22 86 60 73 57.00
1iib 28 93 10 10 6 31 48 41 24.33

1kpe 21 100 4 5 5 28 27 27 16.00
1lis 21 100 1 8 13 5 22 8 9.50

1lou 21 100 16 14 25 14 23 18 18.33
1nps 21 100 10 10 18 22 20 20 16.67
1opd 22 99 29 25 52 27 33 28 32.33
1pgx 121 0 5 18 27 14 20 16 16.67
1ptq 21 100 86 89 54 46 32 54 60.17
1r69 79 42 64 69 42 72 110 91 74.67
1rnb 21 100 3 3 12 4 7 5 5.67
1scj 21 100 46 28 24 13 17 17 24.17
1shf 21 100 72 77 75 93 78 87 80.33
1ten 21 100 2 2 5 2 10 6 4.50
1tig 21 100 26 35 39 23 18 21 27.00
1tul 21 100 15 18 18 21 22 22 19.33
1ubi 21 100 64 54 22 106 108 109 77.17
1ugh 21 100 1 1 3 5 2 4 2.67
1urn 21 100 1 1 19 1 1 1 4.00
1utg 14 107 119 119 120 121 121 121 120.17
1vcc 21 100 17 33 33 33 45 46 34.50
1vie 21 100 9 50 4 17 40 28 24.67
1vls 17 104 21 28 9 32 33 34 26.17

1who 21 100 21 21 22 22 22 22 21.67
256b 53 68 1 1 44 2 20 4 12.00
2acy 21 100 3 3 5 13 22 16 10.33
2chf 21 100 10 8 14 13 8 14 11.17
2ci2 21 100 18 41 26 6 25 10 21.00

4ubp 20 101 43 36 28 69 64 74 52.33
5cro 21 100 16 17 9 91 108 102 57.17

mean 26.59 27.55 27.72 36.43 40.71 39.09

Table 2.1: The rank of the native protein from the Rosetta all-atom decoy set according to the SNAPP score.
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SNAPP variations

Fold Bala Cammer fedge finteraction foccupancy

PDB ID N
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Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

1a19 21 100 0.99 0.95 0.99 0.95 0.97 0.86 0.97 0.86 0.95 0.76 0.97 0.86
1a32 10 111 0.92 0.10 0.92 0.10 0.91 0.00 0.92 0.10 0.91 0.00 0.92 0.10
1a68 21 100 0.93 0.67 0.95 0.76 0.89 0.48 0.86 0.33 0.86 0.33 0.87 0.38
1acf 4 117 0.97 0.25 0.98 0.50 0.97 0.25 0.98 0.50 0.98 0.50 0.98 0.50
1ail 1 120 1.00 1.00 1.00 1.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00
1aiu 21 100 0.86 0.33 0.86 0.33 0.83 0.19 0.90 0.52 0.91 0.57 0.91 0.57
1b3a 12 109 0.92 0.25 0.92 0.25 0.95 0.58 0.90 0.08 0.90 0.08 0.90 0.08
1bgf 12 109 0.94 0.50 0.94 0.42 0.94 0.42 0.93 0.33 0.95 0.58 0.95 0.58
1bk2 21 100 0.86 0.33 0.82 0.14 0.79 0.00 0.95 0.76 0.98 0.90 0.96 0.81
1bkr 21 100 1.00 1.00 1.00 1.00 0.97 0.86 0.99 0.95 0.99 0.95 0.99 0.95

1bm8 20 101 0.99 0.95 0.99 0.95 0.99 0.95 0.97 0.85 0.98 0.90 0.98 0.90
1bq9 21 100 0.83 0.19 0.83 0.19 0.79 0.00 0.84 0.24 0.87 0.38 0.85 0.29
1c8c 19 102 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.81 0.00
1c9o 18 103 0.83 0.00 0.83 0.00 0.83 0.00 0.83 0.06 0.83 0.06 0.83 0.06
1cc8 21 100 0.95 0.76 0.94 0.71 0.93 0.67 0.92 0.62 0.88 0.43 0.91 0.57
1cei 18 103 0.93 0.61 0.93 0.61 0.83 0.00 0.92 0.56 0.91 0.50 0.93 0.61

1cg5 18 103 0.97 0.83 0.96 0.78 0.95 0.72 0.96 0.78 0.96 0.78 0.96 0.78
1ctf 2 119 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00

1dhn 14 107 0.91 0.29 0.89 0.14 0.88 0.07 0.87 0.00 0.87 0.00 0.87 0.00
1e6i 14 107 0.90 0.21 0.91 0.29 0.97 0.79 0.87 0.00 0.89 0.14 0.87 0.00
1elw 84 37 0.22 0.65 0.22 0.65 0.30 0.69 0.30 0.69 0.30 0.69 0.30 0.69
1enh 19 102 0.87 0.32 0.89 0.42 0.92 0.58 0.84 0.16 0.84 0.16 0.84 0.16
1ew4 16 105 0.94 0.62 0.93 0.56 0.95 0.69 0.90 0.38 0.90 0.38 0.91 0.44
1eyv 1 120 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00
1fkb 21 100 0.98 0.90 0.94 0.71 0.86 0.33 0.88 0.43 0.87 0.38 0.87 0.38
1fna 18 103 0.96 0.78 0.95 0.72 0.83 0.06 0.94 0.67 0.93 0.61 0.94 0.67
1gvp 1 120 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00
1hz6 18 103 0.90 0.44 0.92 0.56 0.88 0.33 0.85 0.17 0.86 0.22 0.86 0.22
1ig5 21 100 0.82 0.14 0.84 0.24 0.90 0.52 0.79 0.00 0.79 0.00 0.79 0.00
1iib 21 100 0.80 0.05 0.80 0.05 0.94 0.71 0.81 0.10 0.80 0.05 0.81 0.10

1kpe 17 104 0.97 0.82 0.97 0.82 0.93 0.59 0.93 0.59 0.94 0.65 0.92 0.53
1lis 1 120 1.00 1.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00

1lou 21 100 0.97 0.86 0.97 0.86 0.99 0.95 0.98 0.90 0.98 0.90 0.98 0.90
1nps 21 100 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00
1opd 21 100 0.88 0.43 0.91 0.57 0.80 0.05 0.88 0.43 0.86 0.33 0.86 0.33
1pgx 71 50 0.26 0.48 0.28 0.49 0.40 0.58 0.40 0.58 0.52 0.66 0.46 0.62
1ptq 10 111 0.91 0.00 0.91 0.00 0.91 0.00 0.91 0.00 0.91 0.00 0.91 0.00
1r69 22 99 0.81 0.14 0.84 0.27 0.79 0.05 0.89 0.50 0.87 0.41 0.89 0.50
1rnb 19 102 0.98 0.89 0.97 0.84 0.97 0.84 0.89 0.42 0.89 0.42 0.90 0.47
1scj 21 100 0.79 0.00 0.79 0.00 0.95 0.76 0.80 0.05 0.80 0.05 0.80 0.05
1shf 21 100 0.87 0.38 0.87 0.38 0.79 0.00 0.88 0.43 0.92 0.62 0.90 0.52
1ten 21 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1tig 21 100 0.96 0.81 0.96 0.81 0.79 0.00 0.95 0.76 0.95 0.76 0.97 0.86
1tul 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
1ubi 21 100 0.80 0.05 0.79 0.00 0.79 0.00 0.89 0.48 0.90 0.52 0.89 0.48
1ugh 6 115 0.96 0.17 0.96 0.17 0.96 0.17 0.96 0.17 0.96 0.17 0.96 0.17
1urn 20 101 0.92 0.60 0.91 0.55 0.88 0.40 0.94 0.70 0.92 0.60 0.94 0.70
1utg 2 119 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00
1vcc 9 112 0.96 0.44 0.94 0.22 0.93 0.11 0.93 0.11 0.92 0.00 0.92 0.00
1vie 21 100 0.87 0.38 0.80 0.05 0.97 0.86 0.81 0.10 0.80 0.05 0.79 0.00
1vls 1 120 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00

1who 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
256b 2 119 0.99 0.50 0.99 0.50 0.98 0.00 0.99 0.50 0.98 0.00 0.98 0.00
2acy 21 100 1.00 1.00 1.00 1.00 0.96 0.81 1.00 1.00 0.99 0.95 1.00 1.00
2chf 21 100 0.98 0.90 0.97 0.86 0.99 0.95 0.96 0.81 0.94 0.71 0.96 0.81
2ci2 20 101 0.84 0.20 0.83 0.15 0.89 0.45 0.88 0.40 0.87 0.35 0.88 0.40

4ubp 3 118 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00
5cro 21 100 1.00 1.00 1.00 1.00 0.96 0.81 0.82 0.14 0.83 0.19 0.81 0.10

Table 2.2: The specificity (Sp) and sensitivity (Sn) of SNAPP for decoy discrimination based on a native-like
threshold of 1 Å for proteins from the Rosetta all-atom decoy set.
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SNAPP variations

Fold Bala Cammer fedge finteraction foccupancy
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Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

1a19 21 100 0.99 0.95 0.99 0.95 0.97 0.86 0.97 0.86 0.95 0.76 0.97 0.86
1a32 88 33 0.21 0.70 0.33 0.75 0.03 0.64 0.39 0.77 0.33 0.75 0.36 0.76
1a68 21 100 0.93 0.67 0.95 0.76 0.89 0.48 0.86 0.33 0.86 0.33 0.87 0.38
1acf 21 100 0.96 0.81 0.97 0.86 0.95 0.76 0.98 0.90 0.98 0.90 0.98 0.90
1ail 25 96 0.86 0.48 0.82 0.32 0.75 0.04 0.74 0.00 0.74 0.00 0.74 0.00
1aiu 102 19 0.47 0.90 0.42 0.89 0.47 0.90 0.42 0.89 0.47 0.90 0.42 0.89
1b3a 19 102 0.86 0.26 0.86 0.26 0.95 0.74 0.84 0.16 0.84 0.16 0.83 0.11
1bgf 21 100 0.98 0.90 0.98 0.90 0.97 0.86 0.94 0.71 0.95 0.76 0.94 0.71
1bk2 21 100 0.86 0.33 0.82 0.14 0.79 0.00 0.95 0.76 0.98 0.90 0.96 0.81
1bkr 21 100 1.00 1.00 1.00 1.00 0.97 0.86 0.99 0.95 0.99 0.95 0.99 0.95

1bm8 21 100 0.99 0.95 0.99 0.95 1.00 1.00 0.96 0.81 0.98 0.90 0.97 0.86
1bq9 21 100 0.83 0.19 0.83 0.19 0.79 0.00 0.84 0.24 0.87 0.38 0.85 0.29
1c8c 31 90 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00 0.66 0.00
1c9o 21 100 0.79 0.00 0.79 0.00 0.79 0.00 0.80 0.05 0.82 0.14 0.80 0.05
1cc8 21 100 0.95 0.76 0.94 0.71 0.93 0.67 0.92 0.62 0.88 0.43 0.91 0.57
1cei 21 100 0.94 0.71 0.93 0.67 0.79 0.00 0.91 0.57 0.90 0.52 0.91 0.57

1cg5 21 100 0.99 0.95 0.99 0.95 0.98 0.90 0.99 0.95 0.98 0.90 0.98 0.90
1ctf 21 100 0.87 0.38 0.87 0.38 0.85 0.29 0.79 0.00 0.79 0.00 0.79 0.00

1dhn 21 100 0.86 0.33 0.83 0.19 0.84 0.24 0.80 0.05 0.81 0.10 0.80 0.05
1e6i 21 100 0.85 0.29 0.88 0.43 0.94 0.71 0.79 0.00 0.87 0.38 0.82 0.14
1elw 121 0 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
1enh 46 75 0.73 0.57 0.73 0.57 0.81 0.70 0.73 0.57 0.68 0.48 0.71 0.52
1ew4 21 100 0.95 0.76 0.94 0.71 0.99 0.95 0.91 0.57 0.91 0.57 0.91 0.57
1eyv 21 100 0.99 0.95 0.99 0.95 0.99 0.95 0.92 0.62 0.94 0.71 0.92 0.62
1fkb 21 100 0.98 0.90 0.94 0.71 0.86 0.33 0.88 0.43 0.87 0.38 0.87 0.38
1fna 21 100 0.98 0.90 0.98 0.90 0.81 0.10 0.96 0.81 0.94 0.71 0.95 0.76
1gvp 13 108 0.89 0.08 0.88 0.00 0.93 0.38 0.88 0.00 0.88 0.00 0.88 0.00
1hz6 21 100 0.90 0.52 0.93 0.67 0.91 0.57 0.83 0.19 0.86 0.33 0.84 0.24
1ig5 22 99 0.82 0.18 0.84 0.27 0.91 0.59 0.79 0.05 0.79 0.05 0.79 0.05
1iib 28 93 0.76 0.21 0.75 0.18 0.97 0.89 0.76 0.21 0.76 0.21 0.76 0.21

1kpe 21 100 0.99 0.95 0.99 0.95 0.95 0.76 0.93 0.67 0.95 0.76 0.94 0.71
1lis 21 100 0.89 0.48 0.84 0.24 0.85 0.29 0.91 0.57 0.86 0.33 0.89 0.48

1lou 21 100 0.97 0.86 0.97 0.86 0.99 0.95 0.98 0.90 0.98 0.90 0.98 0.90
1nps 21 100 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00
1opd 22 99 0.88 0.45 0.90 0.55 0.79 0.05 0.88 0.45 0.86 0.36 0.87 0.41
1pgx 121 0 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
1ptq 21 100 0.79 0.00 0.79 0.00 0.79 0.00 0.82 0.14 0.80 0.05 0.81 0.10
1r69 79 42 0.55 0.76 0.55 0.76 0.71 0.85 0.48 0.72 0.52 0.75 0.48 0.72
1rnb 21 100 0.99 0.95 0.98 0.90 0.96 0.81 0.89 0.48 0.89 0.48 0.90 0.52
1scj 21 100 0.79 0.00 0.79 0.00 0.95 0.76 0.80 0.05 0.80 0.05 0.80 0.05
1shf 21 100 0.87 0.38 0.87 0.38 0.79 0.00 0.88 0.43 0.92 0.62 0.90 0.52
1ten 21 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1tig 21 100 0.96 0.81 0.96 0.81 0.79 0.00 0.95 0.76 0.95 0.76 0.97 0.86
1tul 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
1ubi 21 100 0.80 0.05 0.79 0.00 0.79 0.00 0.89 0.48 0.90 0.52 0.89 0.48
1ugh 21 100 0.98 0.90 0.98 0.90 0.94 0.71 0.90 0.52 0.91 0.57 0.91 0.57
1urn 21 100 0.92 0.62 0.91 0.57 0.88 0.43 0.93 0.67 0.91 0.57 0.93 0.67
1utg 14 107 0.87 0.00 0.87 0.00 0.87 0.00 0.87 0.00 0.87 0.00 0.87 0.00
1vcc 21 100 0.93 0.67 0.91 0.57 0.85 0.29 0.86 0.33 0.79 0.00 0.79 0.00
1vie 21 100 0.87 0.38 0.80 0.05 0.97 0.86 0.81 0.10 0.80 0.05 0.79 0.00
1vls 17 104 0.88 0.29 0.88 0.29 0.91 0.47 0.92 0.53 0.92 0.53 0.92 0.53

1who 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
256b 53 68 0.56 0.43 0.59 0.47 0.50 0.36 0.63 0.53 0.66 0.57 0.65 0.55
2acy 21 100 1.00 1.00 1.00 1.00 0.96 0.81 1.00 1.00 0.99 0.95 1.00 1.00
2chf 21 100 0.98 0.90 0.97 0.86 0.99 0.95 0.96 0.81 0.94 0.71 0.96 0.81
2ci2 21 100 0.84 0.24 0.83 0.19 0.88 0.43 0.88 0.43 0.88 0.43 0.89 0.48

4ubp 20 101 0.88 0.40 0.91 0.55 0.95 0.75 0.81 0.05 0.80 0.00 0.80 0.00
5cro 21 100 1.00 1.00 1.00 1.00 0.96 0.81 0.82 0.14 0.83 0.19 0.81 0.10

Table 2.3: The specificity (Sp) and sensitivity (Sn) of SNAPP for decoy discrimination based on a native-like
threshold of 2 Å for proteins from the Rosetta all-atom decoy set.
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SNAPP variations

Fold Bala Cammer fedge finteraction foccupancy
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Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp Sn Sp

1a19 21 100 0.97 0.90 0.97 0.90 0.93 0.79 0.96 0.86 0.96 0.86 0.96 0.86
1a32 88 33 - 0.94 - 0.94 - 0.94 - 0.94 - 0.94 - 0.94
1a68 21 100 0.93 0.67 0.95 0.76 0.89 0.48 0.86 0.33 0.86 0.33 0.87 0.38
1acf 21 100 0.98 0.92 0.98 0.92 0.94 0.76 0.97 0.88 0.97 0.88 0.97 0.88
1ail 25 96 0.87 0.62 0.83 0.53 0.70 0.16 0.65 0.03 0.64 0.00 0.64 0.00
1aiu 102 19 - 0.98 - 0.98 - 0.98 - 0.98 - 0.98 - 0.98
1b3a 19 102 0.85 0.62 0.83 0.56 0.90 0.74 0.78 0.50 0.80 0.50 0.79 0.47
1bgf 21 100 0.98 0.90 0.98 0.90 0.97 0.86 0.94 0.71 0.95 0.76 0.94 0.71
1bk2 21 100 0.86 0.33 0.82 0.14 0.79 0.00 0.96 0.76 0.98 0.90 0.96 0.81
1bkr 21 100 1.00 1.00 1.00 1.00 0.97 0.86 0.99 0.95 0.99 0.95 0.99 0.95

1bm8 21 100 0.99 0.96 0.99 0.96 0.99 0.96 0.95 0.83 0.97 0.87 0.96 0.83
1bq9 21 100 0.74 0.70 0.68 0.62 0.57 0.50 0.63 0.55 0.68 0.62 0.65 0.59
1c8c 31 90 0.33 0.98 0.33 0.98 - 0.97 - 0.97 - 0.97 - 0.97
1c9o 21 100 0.62 0.95 0.69 0.96 0.54 0.94 0.69 0.96 0.62 0.95 0.69 0.96
1cc8 21 100 0.69 0.75 0.69 0.75 0.65 0.72 0.70 0.70 0.65 0.72 0.67 0.73
1cei 21 100 0.94 0.71 0.93 0.67 0.79 0.00 0.92 0.57 0.90 0.52 0.91 0.57

1cg5 21 100 0.99 0.95 0.99 0.95 0.98 0.90 0.97 0.95 0.98 0.90 0.98 0.90
1ctf 21 100 0.85 0.61 0.86 0.64 0.89 0.70 0.67 0.18 0.68 0.15 0.69 0.18

1dhn 21 100 0.86 0.33 0.83 0.19 0.84 0.24 0.79 0.05 0.81 0.10 0.80 0.05
1e6i 21 100 0.85 0.29 0.88 0.43 0.94 0.71 0.80 0.00 0.87 0.38 0.82 0.14
1elw 121 0 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
1enh 46 75 0.20 0.97 0.20 0.97 0.40 0.97 - 0.96 - 0.96 - 0.96
1ew4 21 100 0.95 0.76 0.94 0.71 0.99 0.95 0.91 0.57 0.91 0.57 0.91 0.57
1eyv 21 100 0.99 0.95 0.99 0.95 0.99 0.95 0.90 0.62 0.94 0.71 0.92 0.62
1fkb 21 100 0.98 0.90 0.94 0.71 0.86 0.33 0.88 0.43 0.87 0.38 0.87 0.38
1fna 21 100 0.97 0.90 0.97 0.90 0.82 0.41 0.91 0.76 0.93 0.79 0.93 0.79
1gvp 13 108 0.84 0.24 0.83 0.19 0.93 0.67 0.79 0.00 0.79 0.00 0.79 0.00
1hz6 21 100 0.27 0.90 0.20 0.89 0.20 0.89 0.20 0.89 0.13 0.88 0.20 0.89
1ig5 22 99 0.56 0.78 0.56 0.78 0.63 0.81 0.37 0.68 0.59 0.79 0.44 0.71
1iib 28 93 0.71 0.85 0.71 0.85 0.62 0.80 0.67 0.82 0.67 0.82 0.67 0.82

1kpe 21 100 0.99 0.95 0.99 0.95 0.95 0.76 0.94 0.67 0.95 0.76 0.94 0.71
1lis 21 100 0.89 0.48 0.84 0.24 0.85 0.29 0.87 0.57 0.86 0.33 0.89 0.48

1lou 21 100 0.97 0.86 0.97 0.86 0.99 0.95 0.97 0.90 0.98 0.90 0.98 0.90
1nps 21 100 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00
1opd 22 99 0.87 0.70 0.87 0.70 0.75 0.43 0.86 0.68 0.80 0.54 0.83 0.62
1pgx 121 0 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
1ptq 21 100 0.79 0.00 0.79 0.00 0.79 0.00 0.80 0.14 0.80 0.05 0.81 0.10
1r69 79 42 0.50 0.99 0.50 0.99 - 0.98 - 0.98 - 0.98 - 0.98
1rnb 21 100 0.99 0.95 0.98 0.90 0.96 0.81 0.91 0.48 0.89 0.48 0.90 0.52
1scj 21 100 0.56 0.10 0.56 0.10 0.89 0.78 0.57 0.15 0.63 0.25 0.58 0.15
1shf 21 100 0.88 0.45 0.87 0.41 0.78 0.00 0.89 0.50 0.92 0.64 0.90 0.55
1ten 21 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1tig 21 100 0.96 0.82 0.97 0.86 0.79 0.05 0.97 0.82 0.95 0.77 0.97 0.86
1tul 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
1ubi 21 100 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.96
1ugh 21 100 0.98 0.90 0.98 0.90 0.94 0.71 0.91 0.52 0.91 0.57 0.91 0.57
1urn 21 100 0.92 0.62 0.91 0.57 0.88 0.43 0.95 0.67 0.91 0.57 0.93 0.67
1utg 14 107 0.77 0.00 0.77 0.00 0.78 0.04 0.77 0.00 0.77 0.00 0.77 0.00
1vcc 21 100 0.93 0.67 0.91 0.57 0.85 0.29 0.79 0.33 0.79 0.00 0.79 0.00
1vie 21 100 0.87 0.38 0.80 0.05 0.97 0.86 0.80 0.10 0.80 0.05 0.79 0.00
1vls 17 104 0.88 0.45 0.88 0.45 0.91 0.59 0.89 0.59 0.90 0.55 0.91 0.59

1who 21 100 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95
256b 53 68 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
2acy 21 100 1.00 1.00 1.00 1.00 0.96 0.81 1.00 1.00 0.99 0.95 1.00 1.00
2chf 21 100 0.78 0.84 0.76 0.83 0.82 0.87 0.71 0.79 0.78 0.84 0.73 0.80
2ci2 21 100 0.84 0.24 0.83 0.19 0.88 0.43 0.88 0.43 0.88 0.43 0.89 0.48

4ubp 20 101 0.87 0.38 0.90 0.52 0.96 0.81 0.79 0.05 0.79 0.00 0.80 0.05
5cro 21 100 1.00 1.00 1.00 1.00 0.96 0.81 0.81 0.14 0.83 0.19 0.81 0.10

Table 2.4: The specificity (Sp) and sensitivity (Sn) of SNAPP for decoy discrimination based on a native-like
threshold of 4 Å for proteins from the Rosetta all-atom decoy set.
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PDB ID Arnautova Fold Bala Cammer Edge Interaction Occupancy

α
-h

el
ic

al
pr

ot
ei

ns

1a32 1.38 8.39 8.39 2.58 1.29 1.29 1.29
1ail 3.77 0.00 0.00 6.90 7.48 7.92 8.26
1bgf 10.74 0.98 1.07 10.54 10.54 10.54 10.54
1bkr 0.97 0.62 0.62 14.12 0.62 0.62 0.62
1cei 1.08 0.68 0.68 14.00 12.31 12.37 12.37
1cg5 1.34 0.97 0.97 0.97 0.87 0.87 0.87
1e6i 1.34 8.01 8.01 6.55 6.55 6.55 6.55
1enh 2.74 2.85 2.85 1.89 0.94 1.03 0.94
1eyv 1.68 1.52 1.52 1.59 1.27 7.15 7.15
1lis 1.24 0.00 10.55 7.83 11.51 1.44 1.44
1r69 1.00 1.35 1.35 1.48 0.61 2.54 0.61
1utg 4.63 4.46 4.46 4.73 4.66 4.66 4.66
1vls 10.67 1.47 1.47 7.01 1.47 7.01 1.47

α
/
β

pr
ot

ei
ns

1a19 1.08 0.73 0.73 2.74 0.73 0.75 0.72
1a68 0.77 10.29 10.29 12.61 0.67 11.43 11.43
1acf 3.66 0.00 0.00 3.14 1.03 0.93 0.93
1aiu 1.61 1.39 0.78 1.51 1.55 0.76 1.55

1bm8 0.85 0.00 0.00 0.93 0.00 0.61 0.73
1ctf 1.45 3.34 3.34 3.98 8.89 8.89 8.89
1dhn 1.87 9.78 9.78 11.18 14.59 16.68 14.59
1ew4 1.45 0.00 0.00 0.85 0.00 7.41 0.00
1hz6 3.66 1.04 1.04 4.22 3.83 3.89 3.83
1iib 1.02 1.86 1.86 1.93 2.76 2.70 2.69
1kpe 1.51 1.26 1.26 12.25 6.81 1.26 1.26
1lou 0.95 6.16 6.16 16.38 6.16 6.16 6.16
1opd 0.93 4.62 4.62 2.72 4.62 0.58 0.58
1pgx 1.07 0.86 1.24 1.12 1.30 1.34 1.30
1rnb 2.06 0.95 0.95 13.41 13.88 15.87 15.87
1scj 7.73 6.74 2.60 5.63 6.68 7.16 6.68
1tig 1.06 0.81 0.87 11.56 0.81 0.81 0.81
1ubi 0.83 2.24 2.24 2.78 2.73 0.65 2.63
1ugh 1.55 0.00 0.00 7.38 8.57 8.83 8.83
1vcc 1.65 0.87 6.17 5.05 7.23 7.45 7.23
2chf 0.67 0.70 0.70 0.68 0.54 4.32 0.67
2ci2 9.60 9.59 11.63 9.38 0.72 9.51 0.72
4ubp 9.27 8.79 8.79 11.61 7.43 8.07 7.43
5cro 8.34 0.68 0.70 0.70 6.61 6.61 6.61

β
pr

ot
ei

ns

1bk2 7.36 7.22 7.22 7.14 0.62 0.83 0.62
1fna 0.90 1.21 3.28 4.06 0.00 3.28 0.00
1gvp 15.04 14.54 14.78 9.35 14.54 14.54 14.54
1shf 0.90 4.44 4.44 7.38 3.45 3.45 3.45
1ten 0.69 0.62 0.62 0.62 0.61 0.62 0.62
1tul 1.16 0.81 0.65 0.90 0.65 0.65 0.65
1vie 6.41 8.06 8.06 0.52 7.79 7.79 7.79
1who 0.95 0.73 0.73 0.88 0.88 0.88 0.88

U
np

re
di

ct
ed

by
A

rn
au

to
va

et
al

. 1b3a - 7.95 7.95 0.73 7.95 7.95 7.95
1bq9 - 4.41 4.41 6.67 2.67 2.67 2.67
1c8c - 2.52 2.52 2.33 2.52 2.52 2.52
1c9o - 2.79 3.12 2.90 3.52 2.74 3.52
1cc8 - 2.96 2.96 7.64 8.06 8.06 8.06
1elw - 0.78 1.68 1.68 1.68 0.00 0.00
1fkb - 0.66 13.95 13.95 14.05 14.05 14.05
1ig5 - 1.72 1.72 4.04 4.04 4.08 4.08
1nps - 0.62 0.62 0.65 0.62 0.62 0.62
1ptq - 11.62 10.48 11.74 10.48 10.48 10.48
1urn - 0.00 0.00 9.22 0.00 0.00 0.00
256b - 0.00 0.00 2.10 1.68 2.03 2.03
2acy - 0.61 0.61 0.65 0.66 0.66 0.66

Table 2.5: The rank of the native protein (NR), and specificity (Sp) and sensitivity (Sn) of SNAPP for decoy
discrimination of proteins from the Rosetta all-atom decoy set.
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of the published SNAPP variations provided exact details of the implementation method used

to score tetrahedra and their proteins, and our implementation may have differed from that

used in the literature. We suspect this is especially the case with SNAPP-Cammer.

Unfortunately, none of our frequency variations fared as well as SNAPP-Fold or SNAPP-

Bala. In certain cases, the frequency variations performed exceptionally well when all other

SNAPP potentials failed, but a quick glance did not reveal a prediction pattern for the fre-

quency variations. We propose that a complete redesign of the SNAPP potentials using the

frequency variations could improve decoy fold prediction; however, we leave that experiment

for future studies.

Although we had hoped to see a cleaner discrimination between native-like and decoy

folded protein structures, the purpose of testing against protein folding was not to improve

decoy fold discrimination, but to compare our new SNAPP potentials against the existing

variations. To this extent, the above experiments proved useful: We found that SNAPP-Fold

consistently outperformed all other SNAPP potentials, and we will use SNAPP-Fold as a

control when designing the SNAPP potentials for PPI.

2.4.3 Evaluation of SNAPP descriptors

To our knowledge, cheminformatics-like descriptors have not been previously applied to

evaluate protein packing in relation to either protein folding or protein interactions. Without

previous results or an established benchmark to compare against, we opted to forgo descrip-

tor analysis on protein folding and instead focus on descriptors for protein interactions. We

calculated the novel SNAPP descriptors for docking decoys in the Dockground decoy dataset

[70], which contains 61 different protein complexes, each with one native complex, one to

twelve native-like complexes, and one hundred decoy poses. We define the target interface

as the interface between the chains given by the dataset, and we tested to see if the SNAPP

descriptors could discriminate between native-like and decoy complexes.

For each protein in the Dockground decoy dataset, we tessellated each complex and se-
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lected all interfacial simplices, which we define as simplices that contain vertices from both

chains at the target interface. Descriptors were calculated for each simplex individually and

applied to describe the interface as a whole, depending on the trait in question. For instance,

the volume of an interface was calculated by adding the volumes of all participating simplices,

whereas the surface area of an interface included only those triangular faces external to the

interface, and tetrahedrality descriptors were averaged across all interfacial simplices. Any

descriptors caught deserting were immediately put to the sword. Unfortunately, we found

very little correlation across the entire dataset between any single or paired descriptor and the

RMSD of the complex, although the descriptor-RMSD correlation varied from complex to

complex. When we plotted the RMSD-descriptor points, we found that the native and native-

like interfaces clustered somewhere along the y-axis while the decoys showed a u-shaped

RMSD-descriptor correlation Figure 2.5, which is to say no correlation at all. For more than

60% of the protein complexes in the dataset, most of the native-like complexes were easily

identifiable using one or more of the descriptors; however, the native complex often ended up

buried beneath the native-like complexes and two or three high-RMSD decoys.

The small range of descriptor values displayed by native-like complexes suggested a po-

tential problem with discrimination of high-resolution structures, and the small number of

decoys for each complex limited our ability to evaluate the descriptors. As an additional test

of decoy discrimination, we decided to evaluate our descriptors against a random dataset. Us-

ing our POPP docking algorithm, described in Chapter 4.1.1, we compiled a series of 6,000

randomly generated docking poses based on the native structure for phospholipase A2 in com-

plex with a synthetic pentapeptide (PDB code 1TKJ). We calculated descriptors for each pose

and checked for a correlation with RMSD (Figure 2.6). Unfortunately, we found even less cor-

relation between the descriptors and RMSD when the RMSD range was lowered. Although

many of the docking poses are native-like, none of the descriptors were sensitive enough to

identify the native pose, and only a few of the descriptors were able identify native-like poses.

Although the SNAPP descriptors were unable to efficiently differentiate between decoys
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Figure 2.5: RMSD versus SNAPP Descriptors for porcine kallikrein A bound to bovine trypsin
inhibitor (PDB code 2KAI). The red horizontal line in each graph shows the value of a de-
scriptor for the native complex relative to the others. Despite the lack of a correlation with
RMSD, three of the descriptors (the Randic and Weiner Indices and the interfacial surface
area) were able to discriminate between most of the native-like and the decoy poses.

for similar structures with similar RMSD, we hypothesized that the SNAPP descriptors could

be used differentiate between complexes with different structural interfaces. It is known that

many interfaces have conserved structure and sequence to ensure functional domains remain

intact [71, 1, 72, 73]. To test whether SNAPP descriptors could be used to identify func-

tionally distinct groups of proteins, we generated descriptor fingerprints for each of the na-

tive complexes in the Dockground decoy dataset. The fingerprints were clustered using the

dendogram function in MatLab (Figure 2.7), and we were able to identify several subgroups

of functionally related proteins within the dendogram clusters.
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Figure 2.6: The distribution of descriptor values for 6,000 decoy poses for phospholipase A2
in complex with a synthetic pentapeptide (PDB code 1TKJ), ranked by RMSD. The left side
of side of each graph also shows the RMSD for each pose as a green line and the descriptor
value for the native complex is given as a red line. On the right, the linear fit is given as a red
line.

Overall, the current protein descriptors were only able to weakly discriminate between

docking decoys, but our results suggest that they may be able to differentiate between func-

tionally related proteins. However, as the implementation suggests, the use of the interfacial

descriptors requires a three-dimensional structure of both the protein and the ligand in ques-

tion; although potentially useful for studies where the interaction is already known, we de-

cided to instead focus on generating a set of SNAPP potentials that could be used to evaluate

proteins and protein interactions without a priori knowledge of the interface. We propose

that the protein descriptors could be further refined for inclusion as a refinement step during

protein-protein or protein-peptide docking in future work.
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Figure 2.7: The dendogram and heat map of the SNAPP descriptors for the Dockground decoy
dataset.

34



2.5 Specializing for Protein Interactions

In cheminformatics, an Applicability Domain (AD) of a Quantitative Structure Activity

Relationship (QSAR) model is the region of chemical space that is similar to compounds

found in the training set for which a model is expected to yield accurate predictions [74, 75].

In the same manner, we must consider the AD for SNAPP; all previous versions of SNAPP

were trained, tested and applied to single chain, folded protein structures and are potentially

outside AD for PPI prediction. Ofran and Rost [76] quantified the difference between six types

of protein-protein interactions, including two internal (intra-domain and domain-domain) and

four external (homo-obligomers, homo-complexes, hetero-obligomers, hetero-complexes) in-

teractions, and found different amino acid distributions and pairwise contacts for each of the

six types. They found that the residue and contact differences between each of the six types

of interfaces was in fact sufficient to quantitatively discriminate between the other interface

types – even between the two internal interactions. With this in mind, we set out to define a

new set of SNAPP potentials specifically designed to predict protein interactions.

2.5.1 Redesigning SNAPP for Protein Interactions

For this project, our goal is two-fold: (1) to predict where protein interactions occur,

i.e., binding sites, on protein surfaces; and (2) predict and evaluate conformations of protein

interactions. Although very similar, both problems require subtly different approaches. In

addition, we further split each set of potentials based on the type of interface, i.e., from either

a homo- or hetero-complex, used to train.

SNAPP for Binding Site Prediction

In SNAPP-Fold, the observed and expected frequencies f and p reflect the distribution of

simplices and amino acid residues of single chain, folded protein structures; to evaluate the

likelihood that a particular simplex will form between two proteins, we need to evaluate the

likelihood that any given residue will participate in the interface. Thus, we let the observed
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frequency f be the frequency of interfacial simplices found in a given dataset, and we let

the expected frequency reflect the amino acids available to form interfacial simplices, i.e.,

surface residues. We redefined the amino acid frequency ai from Equation 2.11 to reflect the

frequency that a given amino acid i will occur on the surface:

ai =
|Asurface(i)|
|Asurface|

(2.29)

where |Asurface(i)| is the number of times amino acid type i is found on the surface of a protein

in the dataset versus all amino acids on the surface of all proteins of the dataset |Asurface|. The

new SNAPP-Surface potential reflects the likelihood that a simplex will form between two

protein surfaces. However, a simplex formed from two separate protein chains cannot have

four sequentially adjacent residues, and the type 4 tetrahedra (Figure 2.1C) will never occur.

Fortunately, the potentials will naturally reflect this change, and no special cases need to be

written into the algorithm.

SNAPP for Interface Prediction

To evaluate the likelihood of a given interface, we developed the SNAPP-Interface poten-

tials. In the same manner as the SNAPP-Surface potentials, the SNAPP-Interface potentials

redefine the data used to compute the observed frequency f and expected frequency p. The

observed frequency f also uses the interfacial simplices found in the dataset; however, the

expected frequency p instead uses the frequency of amino acids found at an interface:

ai =
|Ainterface(i)|
|Ainterface|

(2.30)

Homo- versus Hetero-complexes

We decided to create two sets of potentials for both SNAPP-Surface and SNAPP-Interface

based on separate training sets containing either homo- or hetero-complexes. Ofran and Rost
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further defined protein interactions as either obligatory, i.e. an obligomer, or transient, i.e.,

a complex. Obligatory interactions were defined as any interaction that typically lasted the

life of the protein, such as the interaction between different chains of a hemoglobin molecule,

whereas the transient interactions were temporary, such as that of an enzyme and substrate.

Due to the small number of crystal structures, we differentiate only between homo- and

hetero-complexes, resulting in a total of four SNAPP scoring functions specifically designed

for analysis of protein interfaces: SNAPP-Surface:Homo, SNAPP-Surface:Hetero, SNAPP-

Interface:Homo, and SNAPP-Interface:Hetero. A brief comparison between each of the five

scoring functions is given in Table 2.6.
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Fold X X X X X X X
Surface:Homo X X X X X X
Surface:Hetero X X X X X X

Interface:Homo X X X X X
Interface:Hetero X X X X X

Table 2.6: A breakdown of the types of data each of the SNAPP scores was trained on and
how they are applied.

2.5.2 Training Set – Dockground Database

The Dockground dataset [77] was used to train two separate SNAPP scoring functions for

identifying protein hot spots, SNAPP-Homo and SNAPP-Hetero (see Figure 2.3A for details

about the dataset). We downloaded the list of automatically selected representative complexes

from the Bound-Bound dataset, removed any self-interacting proteins, i.e., proteins whose in-
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teraction is listed as the same chain, and split the dataset into homo- and hetero-complexes.

Each complex consisted of two or more protein chains; however, the dataset identifies a single

target interface by specifying exactly two interacting chains. We decided to limit curation of

the Dockground dataset to removal of PDBs containing an iCode due to two limiting factors:

First, the use of only interfacial simplices yielded far less data with which to train the scoring

functions, a full order of magnitude less than the equivalent amount of data for protein fold-

ing. Second, residues on the surfaces of proteins typically assume multiple rotameric states,

and as such, the side chain atoms may be missing atoms or absent entirely in the crystal struc-

ture. The SNAPP-Surface:Homo and SNAPP-Surface:Hetero scoring functions are used in

the CRACLe algorithm, and their evaluation will be discussed in the next chapter.

2.6 Conclusion

We have described the development of three new SNAPP potentials, including SNAPP-

Fold, SNAPP-Surface, and SNAPP-Interface, suitable for the purpose of evaluating protein

packing of protein folding and protein interfaces. SNAPP-Fold was created to take advantage

of the explosive growth of protein structures available in the PDB and provide an updated

version of the existing SNAPP scores. We also developed three new variations of the SNAPP

scoring function that used a modified expected simplex frequency. Although each of these

variations outperformed the other versions of SNAPP in several cases, their overall perfor-

mance was decreased. Instead, we found that SNAPP-Fold outperformed both the old and

new variations. The equations used to create SNAPP-Fold were also used to compile the two

new SNAPP scores, SNAPP-Surface and SNAPP-Interface. These new SNAPP scores were

designed to evaluate two separate aspects of protein interactions, and will be discussed in

more depth in the next two chapters.
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CHAPTER 3

Predicting Sites of Protein Interactions

In this chapter, we cover the development of the Critical Residue Analysis and Com-

plementarity Likelihood (CRACLe) algorithm and software for identifying hot spot residues

and binding sites. CRACLe has been developed as a rapid method for computational high-

throughput screening of individual proteins to identify potential binding sites on the protein

surface rather than a singular, time-consuming, high-resolution docking solution. We show

that CRACLe is capable of correctly predicting binding sites in more than 85% of proteins

from the PepX test set [78], 88% from the ZDock Bound test set [79], and 83% from the

ZDock Unbound test set [79]. CRACLe is computationally efficient, capable of predicting

binding sites for over 1,000 proteins in under seven minutes on a standard desktop computer

versus PredUs [30], which required the same amount of time to run a single protein on its web

server. This high-throughput prediction of putative protein-protein binding sites could enable

building of protein interaction networks, provide an assessment of potential drug targets for

peptide inhibitors, or provide a scoring filter in PPI decoy discrimination.

3.1 Materials and Methods

As mentioned in the previous chapter, our research group pioneered the use of a compu-

tational geometry technique called Delaunay tessellation in protein structure analysis, which

resulted in the SNAPP scoring function. The last iteration of SNAPP was compiled in 2003,

and due to the explosive growth in crystal structures in the PDB, we recently compiled a rep-



resentative and highly curated dataset of 1,473 non-redundant single chain proteins from three

independent databases. These SNAPP-Fold potentials outperformed previous SNAPP itera-

tions in decoy discrimination on three independent datasets. Due to the difference in nature

between internal protein folding and PPIs, we defined and compiled two novel SNAPP scor-

ing functions called SNAPP-Surface and SNAPP-Interface that were trained on tessellated

protein-protein interfaces for homo-complexes and hetero-complexes.

In this chapter, we focus on the SNAPP-Surface potentials. We used 1,448 and 540 protein

complexes from the Dockground dataset to train two the new SNAPP-Surface scoring func-

tions for evaluating protein surfaces, respectively called SNAPP-Surface:Homo and SNAPP-

Surface:Hetero. Both of these scoring functions use the same equations given for SNAPP-Fold

(Equation 2.9-2.12) with two important distinctions: First, the observed frequency f included

only simplices whose residues were found at protein-protein interfaces. Interfacial residues

are commonly identified by their proximity to residues of their binding partners [80, 81]. Sim-

ilarly, we defined interfacial residues based on the presence of a Delaunay edge, i.e., an edge

defined by Delaunay tessellation, between the residues of interacting proteins. Second, the

expected frequency p utilized only amino acid frequencies ai of surface residues, i.e., solvent-

exposed residues on protein surfaces. The use of surface residue frequencies was intended to

enable SNAPP to discriminate between interfacial and non-interfacial surface residues rather

than evaluating the likelihood of the interface itself.

3.1.1 Using Surface Residue Triplets to Identify Putative Binding Sites

As previously described, the Delaunay tessellation of a set of protein-points yields a con-

vex hull composed of Delaunay tetrahedra. The convex hull defines a set of simplices with

one or more triangular faces that are not shared with an adjacent simplex; however, as the

convex hull does not accurately describe the shape of the protein, we removed all simplices

with edge lengths greater than a certain threshold. After some experimentation, we selected a

threshold of 11.5 Å as the minimum distance to allow all residues to retain Delaunay edges.
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The resulting hull is no longer convex, but effectively defines the solvent accessible surface

of the protein by the unshared triangular faces that we call surface residue triplets. These sur-

face residue triplets characterize the surface topology of a protein (Figure 3.1A) and provide

a unique and critical basis for scoring protein surface residues using SNAPP. Surface residue

triplets define a surface topology that is dependent on the distance threshold for edge removal;

although other methods such as α-shapes [36] have been used to remove Delaunay edges,

we have found removal of edges based on length is not only consistent but computationally

simpler.

By definition, triplets cannot be scored using the four-body SNAPP scoring function.

However, a triplet at a protein-protein interface would form a new simplex when tessellated

with the binding partner, resulting in a SNAPP-scorable, four-body simplex. Such an interfa-

cial tetrahedron would have a constrained simplex type (limited to type 0, 1, or 3–see Figure

2.1C for type definition) based on the sequence adjacency of the surface residue triplet. Based

on this concept, we define an ad hoc simplex built on the triplet, but we allow the composition

of the fourth residue to vary, yielding a modular but SNAPP-capable scoring function. We

hypothesize that particular fourth residue compositions may provide additional stability and

a lower binding free energy for the PPI and that these particular compositions will also yield

higher SNAPP scores, allowing us to identify (1) triplets that are likely to form more favorable

interfacial tetrahedra and (2) the composition of potential surface residues that will maximize

the stability of a particular interfacial tetrahedron formed with a given triplet.

Therefore, for each surface residue triplet ti with a given residue composition and se-

quence adjacency, we define an ad hoc simplex (Figure 3.1B) whose tetrahedral type is de-

fined by the sequence adjacency of the triplet residues and the non-adjacent residue X , thus

limiting each ad hoc simplex to type 0, 1, or 3. Composition of each ad hoc simplex is defined

by the triplet residues and an ad hoc residue X , where X represents the set of all 20 naturally
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Figure 3.1: The CRACLe workflow. (A) Delaunay tessellation of a protein structure using
a single-point-per-residue model to identify the solvent-exposed simplex faces, i.e., surface
residue triplets. (B) For each surface residue triplet, we evaluate the likelihood of a potential
interaction between the triplet and each of the 20 standard amino acids, represented by the
imaginary residue X , resulting in a triplet feature vector vT of 20 SNAPP scores. A sum-
mation of all triplet feature vectors that contain a single residue in common yields a residue
feature vector vR for each surface residue. We then concatenate each surface residue feature
vector to form the SNAPP pairing matrix, where each cell contains the pairing potential be-
tween a surface residue and a particular amino acid. (C) Each pairing potential in the SNAPP
pairing matrix is ranked according to the highest potential. The top N0 pairing potentials are
identified, and up to U0 unique surface residues are identified as primary critical residues.
The top N1 pairing potentials are then identified as secondary critical residues and mapped
onto the protein surface. Binding sites are predicted based on the clustering of primary and
secondary critical residues. Both the function-based and the maximum-potential algorithms
follow this generic workflow.
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occurring amino acids, resulting in a 1× 20 triplet feature vector of SNAPP scores, vT :

vT (i, j) =
[
q(ti, Xj)

]
20

(3.1)

Each of the twenty SNAPP scores in vT is a likelihood function of simplex occurrence, but

because it is a logarithm, we are able to use vector summation to calculate the likelihood of

any two triplets occurring together. Such a summation essentially calculates a local SNAPP

score, similar to Equation 2.5, that is dependent on the value of X .

All triplet feature vectors that contain a mutual vertex are added together using a vector

summation to generate a residue feature vector vR for each surface residue ri (Figure 3.1B).

Thus, each of the twenty scores in vR is the summation of SNAPP scores for a simplex com-

posed of a particular residueX the neighboring triplets. Each vR score estimates the likelihood

that the surface residue ri will interact with a particular residue X , and we call this statistical

likelihood a pairing potential. A second residue feature vector, vR′, is also created by dividing

each residue feature vector vR by the number of contributing triplets.

vR(ri) =
∑

vT : ri ∈ vT (3.2)

vR′ =
vR
|vT |

(3.3)

Both the vR and vR′ feature vectors are independently normalized using a z-score and

concatenated to form two independent, protein-specific SNAPP pairing matrices (Fig. 2b)

with dimensions NAA × NSR, where NAA is the number of amino acids in the alphabet and

NSR is the number of surface residues on the protein. Columns contain the scores for each

surface residue (1×NAA), and rows contain the scores for each ad hoc residue X (1×NSR).

By definition, each cell contains the pairing potential sij for an interaction between a given

surface residue ri and a particular ad hoc amino acid Xj . Both scoring matrices are used to

predict residues in the protocol described below.
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3.1.2 Critical Residue Analysis

CRACLe provides two algorithms for binding site prediction. Both use the same underly-

ing methodology, but the first returns four sets of predictions, one for each of the three SNAPP

scoring functions (SNAPP-Fold, SNAPP-Surface:Homo, and SNAPP-Surface:Hetero) and a

consensus of the three, while the second returns only a single set of predictions based on the

maximum pairing potentials from each of the three SNAPP scoring functions. In both algo-

rithms, CRACLe utilizes the two SNAPP pairing matrices independently to identify likely

interface residues in three stages (Figure 3.1C). The first two stages identify the most likely

critical residues by selecting the highest scoring pairing potentials; the third stage uses sur-

face topology to group selected critical residues into potential binding sites. The maximum-

potential algorithm is set by default, but the function-based algorithm may be invoked with

the ’-cracle function based’ flag.

Function-based Algorithm

The first and second stages utilize the pairing matrices to identify primary and secondary

critical surface residues most likely to participate in PPIs. In the first stage, all of the pairing

potentials in a given matrix are sorted, and the top N0 highest-scoring pairing potentials (typi-

cally set at 10-20) are selected to find up to U0 (typically 5-10) unique residues. These primary

critical residues provide a starting point from which other critical residues are selected, and as

a result, bothN0 and U0 parameters play an important role in determining the sensitivity of the

algorithm for correctly identifying critical residues. In the next stage, CRACLe extends the

previous search from the top N0 residues to the top N1 residues (typically 30-50); however,

these secondary critical residues must share a Delaunay edge with a primary residue, i.e., have

a surface tessellation graph distance of one.

The third stage uses sub-graph mining of the Delaunay tessellation to cluster primary and

secondary critical residues into potential binding sites of two or more surface residues. To

participate in a sub-graph, a residue vertex must share a Delaunay edge with at least two other
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predicted residues or a single Delaunay edge with a critical residue and common non-critical

neighboring surface residue. CRACLe returns all sub-graphs with three or more vertices as

potential binding sites, and any sub-graphs with only two vertices as potential binding site

extensions. Isolated primary and secondary residues are ignored.

Maximum-Potential Algorithm

Primary and secondary critical residues are selected in the same manner as described above

with two important distinctions. First, the U and N parameters are defined dynamically using

a log function dependent on the number of surface residues for a given a protein. Second,

secondary residues are not required to have any connection with a primary residue. Residues

are selected from both of SNAPP pairing matrices from each of the SNAPP scoring functions.

In the third stage, critical residues are clustered in three steps. In the first step, each

primary critical residue along with surface-adjacent secondary residues are clustered to form

binding sites. Next, clusters of three adjacent secondary residues form additional binding sites.

Lastly, binding sites from both of the previous steps are merged; any binding sites that share

two or more residues are merged into a single binding site. At each step, the edges between

any two adjacent surface residues are verified by comparison against existing surface triplets

to ensure the edge exists on the surface rather than simply between two surface residues.

Isolated primary and secondary residues are ignored, and binding sites containing only two

critical residues are ignored. Predicted critical residues that participate in a binding site are

predicted to be hot spots.

3.1.3 Training and Test Sets

The selection and curation of the data used to create the scoring function directly relates

to the algorithms efficacy and applicability. The databases used for training are summarized

in Figure 2.3 and are described in greater detail in Chapter 2.5.2. The datasets used for testing

the SNAPP-Fold, SNAPP-Surface:Homo, and SNAPP-Surface:Hetero scoring functions are
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summarized in Table 3.1. Both the Dockground and PepX datasets were analyzed using both

CRACLe algorithms; the ZDock dataset was tested only on the maximum-potential algorithm.

Dockground ZDock

Homo Hetero PepX Bound Unbound

Protein Complexes
N structures 1,325 525 1,431 176 176

Missing atoms - - - - -
Missing residues - - - - -
Contained iCode 20 70 354 41 47

After curation 1,305 455 1,077 135 129

N unique 1,305 455 1,077 135 129
N simplexes 253,031 104,165 - - -

Table 3.1: SNAPP-Surface Test Sets

Figure 3.2: The overlap between the Dockground, PepX and ZDock Bound test sets.

The PepX dataset [78] was selected as an independent dataset for testing each of the three

scoring functions. Each of the 1,431 complexes contains the crystal structure of one or more

peptides bound to one or more proteins. For each complex, the interacting chains were iden-

tified as follows: if the structure contained only two chains, the smaller was identified as the

peptide, and the larger was analyzed using CRACLe; if the structure contained more than two

chains, we visually selected the chains in complex with the peptide(s) based on the crystal
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structure of the complex.

The ZDock Protein-Protein Benchmark 4.0 [79] contains 176 test cases of protein-protein

interactions, including 123 rigid-body, 29 medium, and 24 difficult interactions. Furthermore,

each test case not only includes the crystal structure of the complex, but also of the unbound

forms of each binding partner. The unbound structures for each protein were curated by the

ZDock team and aligned to the corresponding bound structure. As with the Dockground

dataset, two chains defining the target interface are provided for each complex; thus each

complex contains a single hetero-dimer. For easier computational analysis we renamed the

chains of each of the unbound proteins to match the chain ids given by the complex. Of

the 176 test cases, 41 bound and 47 unbound complexes were removed due to an iCode or

other problem with the structure. The ZDock dataset has 31 complexes in common with the

Dockground Hetero dataset and 4 with the PepX dataset (Figure 3.2).

3.1.4 Validation of Predicted Binding Sites

We used CRACLe to analyze each protein in the Dockground, PepX, and ZDock datasets

independently of its binding partner. As mentioned above, we defined the target interface for a

given complex based on information provided by the dataset (see Figure 3.3A for an example

target interface); accuracy is based solely on whether a binding site was predicted for a single

specific interface for each protein, i.e., the set of target interfaces is not exhaustive. For this

project, we evaluated our predictions based on whether or not a CRACLe predicted a binding

site at the target interface using the following metrics: (i) a protein has a correctly predicted

interface if at least one predicted binding site was found at the target interface; and (ii) a

predicted binding site was found at the interface if at least 60% of its residues participate in

the target interface. For the maximum-potential algorithm, we also calculated the specificity

and sensitivity for the prediction of interfacial residues, i.e., an interfacial residue found in a

predicted binding site is a true positive and a non-interfacial residue not in a predicted binding

site is a true negative. While we must keep in mind that most proteins are promiscuous and
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have alternative interfaces [82, 83] and that many and more PPIs have not been experimentally

validated [1], only the target interfaces found in the datasets are relevant, and only the statistics

regarding the target interface are relevant to evaluating the predictions at this point.

For each dataset, we classified each predicted binding site into one of three categories

according to their participation in the target interface: (1) putative, i.e., 0% participation; (2)

overlapping, i.e., less than 60% participation; and (3) interfacial, i.e., at least 60% participation

(Figure 3.3), where participation is defined as the percentage of predicted binding site residues

that are also interfacial, i.e., in the target interface. We selected the 60% threshold (i) to ensure

that large binding sites would not be declared interfacial unless the majority was truly at the

target interface and (ii) to account for some degree of promiscuity for the binding site: many

proteins have multiple binding partners, but these different partners often use the same hot

spots [84].

To fully understand CRACLe’s binding site predictions, we must make note of an impor-

tant caveat: CRACLe is not meant to predict the entire interface of a PPI. The critical residue

analysis algorithm takes only single proteins as input, not protein complexes, and trying to

predict an interface with an unknown protein is not only difficult but presumptuous. We have

used well-known protein-protein datasets to train and test our algorithm, but experimental hot

spot identification is costly [85, 86], and we do not have experimental hot spot data for every

protein in the data set. While some hot spot datasets have been compiled [87, 88], it is not

uncommon for predictions to be evaluated based on whether or not the predicted residues are

in the interface [30, 83]. For now, we limit the validation of our algorithm based on interfacial

data, not hot spots.

3.2 Results and Discussion

Using the function-based algorithm, CRACLe correctly predicted binding sites for 88%,

85%, and 78% of individual proteins from the target interface in the Dockground homo-

complex, Dockground hetero-complex, and PepX datasets, respectively. The results for bind-
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ing site prediction per protein are summarized in Table 3.2. Because analysis of the complex

requires predictions from both binding partners, no accuracy results are given for PepX com-

plexes as the peptide was not independently analyzed in this study.

Ratio of Binding Sites Found
By Complex By Protein
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Fold 1.00 0.89 0.92 1.00 0.69 0.77

Hetero 1.00 0.93 0.95 1.00 0.76 0.84

Homo 1.00 0.88 0.93 1.00 0.66 0.76
Dockground Hetero 457 914

All 1.00 0.95 0.97 1.00 0.84 0.88

Fold 1.00 0.76 0.83 1.00 0.66 0.75

Hetero 1.00 0.79 0.86 1.00 0.72 0.80

Homo 1.00 0.76 0.83 1.00 0.67 0.78
Dockground Homo 1,317 2,634

All 1.00 0.86 0.91 1.00 0.80 0.85

Fold – – – 1.00 0.61 0.71

Hetero – – – 1.00 0.63 0.70

Homo – – – 1.00 0.55 0.65
PepX 1,076 ,1077

All – – – 1.00 0.70 0.78

Table 3.2: CRACLe results using the function-based algorithm for the Dockground and PepX
data sets. The rows corresponding to training sets are highlighted. Shown are the ratios of
complexes and proteins for which CRACLe was able to identify 1) at least one binding site,
2) at least one binding site at the interface with at least three defined residues, and 3) at least
one binding site at the interface with extensions included. A complex is said to have a binding
site at the interface if at least one of its participants has a binding site at the interface; note
that for the PepX database, only the receptor is analyzed.

3.2.1 Participation of Predicted Binding Sites in the Target Interface

Using the metrics described above, we looked at how many of the predicted binding sites

participated in the target interface across each dataset Figure 3.4. We found that most of the
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predicted binding sites were not at the target interface, but of those classified as interfacial

binding sites, the majority had 90% participation or greater. Although we hypothesize that

many of the putative predictions are in fact binding sites, we simply do not have the data to

test our hypothesis at this time.

For the Dockground hetero- and homo-complex data sets, about 13% of the predicted

binding sites were overlapping, and 42% were interfacial. Within the interfacial classification,

the large majority of binding sites had a 90% participation or better—accounting for 33% of

all predicted binding sites in each dataset. From the PepX dataset, only 28% of all predicted

binding sites were classified as interfacial, but as with Dockground, most of the interfacial pre-

dictions had at least 90% participation. Due to the smaller size of protein-peptide interfaces,

we expected to find fewer predicted sites at the interface, but the overall lower percentage of

PepX proteins with interfacial predictions (78% of target PepX protein-peptide binding sites

identified versus 85% and 88% for Dockground homo- and hetero-complex protein-protein

binding sites, respectively) suggests that the SNAPP scoring functions may be less suited to

prediction of protein-peptide binding sites than protein-protein binding sites.

3.2.2 Dockground Complexes

The Dockground dataset was used to train both of the SNAPP-Surface scoring functions;

however, both the homo- and hetero-complexes were also used to test the opposite scoring

function along with SNAPP-Fold. Examples of binding site predictions from the Dockground

dataset are shown in Figure 3.5A–E.

Dockground Homo-complexes

Training. Using SNAPP-Surface:Homo, CRACLe was able to identify a binding site at the

target interface for 77.5% of the 2,622 proteins in the data set and 83.4% of the 1,311 com-

plexes formed by these proteins. Interestingly, SNAPP-Surface:Homo benefited the most from

the inclusion of binding site extensions, correctly predicting the target binding sites for another

50



Figure 3.3: A comparison between the target interface and the predicted binding sites of
β-catenin (PDB 1jdh). (A) The target interface, shown in green, as defined by Delaunay
tessellation, i.e., all of the green triplets form simplices in the native interface. (B) Two pre-
dicted binding sites (orange and pink) and one binding extension (blue) found at the target
interface. The surface tessellations are slightly different due to tessellation of the complex
versus the protein in A and B, respectively. (C) A graphical representation of the three classes
of predicted binding sites: (top) putative—no participation in the target interface; (middle)
overlapping—less than 60% participation; and (bottom) interfacial—at least 60% participa-
tion.

10.7% (up from 66.8% to 77.5%) of homo-complex proteins using binding site extensions.

Testing. Using SNAPP-Fold, CRACLe identified the target binding site for 75.2% of the

Dockground homo proteins and 82.5% of the complexes. SNAPP-Surface:Hetero performed

even better, identifying 79.6% and 85.7% of the target binding sites for proteins and com-

plexes, respectively. Curiously, SNAPP-Surface:Hetero outperformed SNAPP-Surface:Homo

on its own training set. Previous work has found that the interfaces in homo and hetero com-

plexes differ in their residue compositions [76] and would suggest the opposite results. We

have found that the tessellation on the surface of a protein will often incur slight-to-moderate

conformational changes between the bound and unbound protein structures, typically around

shallow pockets. These predictions suggest that homo-complex interactions may be more

likely to alter the tessellation on the surface. We hypothesize that the tessellation of an un-

bound protein may create triplets similar to those found at hetero-complex interactions and
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Figure 3.4: Percentage of residue participation in the target interface for all predicted binding
sites, excluding binding site extensions. Binding sites are said to be in the interface if 60%
of their residues are in the interface, e.g., at least 2 residues for a 3 residue binding site, and 3
residues for a 4 residue binding site.

that residues exposed due to conformational changes may create the homo-complex specific

triplets.

Dockground Hetero-complexes

Training. CRACLe binding sites predicted using the SNAPP-Surface:Hetero scoring func-

tion identified the target binding site in 95.4% of complexes and 83.6% of proteins in the

Dockground hetero-complexes dataset.

Testing. Neither SNAPP-Fold nor SNAPP-Surface:Homo matched the prediction rate of

SNAPP-Surface:Hetero, predicting the target binding site for 91.9% and 93.2% of complexes
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Figure 3.5: Examples of predicted binding sites. The binding sites are colored for easier visual
identification. (A) Leucine zipper formed from transcription factors ATF-4 and C/EBP β in the
absence of DNA (PDB 1ci6); (B) Interfacial binding site for peroxisome proliferator activated
receptor γ bound to retinoic acid receptor RXR-α (PDB 1fm6); (C) A putative binding site
showing a steroid receptor co-activator bound to retinoic acid receptor RXR-α (PDB 1fm6);
(D) α-amylase bound to inhibitor (PDB 1clv); (E) T4 lysozyme dimer (PDB 137L); (F) HIV
Gag HAGPIA hexa-peptide bound to cyclophilin A (PDB 1awq).

and 77.0% and 75.6% of proteins, respectively. However, both SNAPP-Fold and SNAPP-

Surface:Homo were able to identify unique target binding sites: Using a consensus of all

three scoring functions, CRACLe was able to identify the target binding sites for a total

of 96.7% of hetero-complexes and 87.8% of hetero-complex proteins. The improvement

from using the consensus scoring function could result from the identification of stabilizing

hot spots from SNAPP-Fold and SNAPP-Surface:Homo. We hypothesize that SNAPP-Fold

and SNAPP-Surface:Homo are more likely to predict hot spot residues that improve interac-

tion stability through either hydrophobic side chain or backbone hydrogen bonding, whereas

SNAPP-Surface:Hetero may predict hot spots that contribute to interaction specificity.
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3.2.3 PepX Protein-Peptide Complexes

For PepX data set, CRACLe was able to identify the target protein-peptide binding site

for 77.5% of the proteins. The decreased overall prediction accuracy versus the Dockground

datasets is likely due to known differences between protein-protein and protein-peptide inter-

actions. For instance, although protein-protein interfaces are often fairly planar, especially

when compared to protein-small molecule interactions [89], protein-peptide interfaces are

typically even more planar and tend to pack more tightly together [90], which could suggest

that protein-peptide interactions more closely resemble interactions found in protein folding.

In fact, rather than trailing behind SNAPP-Surface:Hetero as seen from the Dockground pre-

dictions, SNAPP-Fold outperformed both SNAPP-Surface:Hetero and SNAPP-Surface:Homo

by a small margin. Protein-peptide interactions are also less likely to induce a conformational

change in the receptor [90]. An example binding site prediction from PepX is shown in Figure

3.5F.

Putative Predicted Binding Sites

Proteins are promiscuous with respect to interactions with other proteins [82, 91, 61]: They

typically have more than one binding site, and those binding sites might overlap; however, be-

cause many binding sites are not known or the structural data is not available, identifying and

quantifying these sites can be problematic. In this study, we found that many predicted bind-

ing sites were in fact true positives for non-target interactions, i.e., interactions not specified

in the Dockground data or any protein-protein interactions in the PepX dataset but are known

otherwise.

One notable example is an MHC-I α chain present in the PepX dataset (Figure 3.6A)

that has a target interaction with an HIV Gag nona-peptide [92] (Figure 3.6B). In addition to

correctly identifying a large portion of the MHC-I antigen peptide binding groove, CRACLe

predicted three other binding sites (Figure 3.6C,D). Each of the three putative predictions are

found at different portions of the interface between the α chain and the β2 subunit of the
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MHC-I protein. The first putative prediction (Figure 3.6C) is found at the protein-protein

interface between the α1 domain and the β2 subunit with 100% participation from twelve

residues. The second and third putative predictions (Figure 3.6D) are found at the interface

between the α3 domain and the β2 subunit with 75% (of four residues) and 50% (of eighteen

residues) participation, respectively.

Figure 3.6: Predicted binding sites for MHC class I (PDB 1a1m). (A) The α chain; (B) the
expected and predicted binding site and extension for the peptide; and (C,D) putative predicted
binding sites at the interface with the β2 subunit. These binding sites contain experimentally
and computationally validated hot spots.

Although all four of the putative predicted binding sites did participate in the β2 subunit

interface, the largest site (Figure 3.6E in green) only had 50% participation—nine residues

were outside of the α3-β2 subunit interface. Those nine residues are split into two groups: (a)

H191 and P193-D196 and (b) W274-H278, except for P276. A closer look at the CRACLe

prediction revealed that each of the three scoring functions did predict binding sites at the α3-

β2 interface (Figure 3.7); however, SNAPP-Surface:Homo predicted a single large binding
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site below the α3-β2 interface (Figure 3.7D), containing both sets of non-interfacial residues,

and SNAPP-Fold predicted a smaller binding site containing only the C-terminus residues

W274 to H278. Although we were unable to identify a known interaction for residues P193 to

D195, residues W274 to H278 of the C-terminus contain a portion of a poly-histidine tail that

was added to enable purification of the protein. Thus, a portion of the larger predicted α3-β2

binding site is still found at an experimentally validated, if artificial, binding site.

The larger putative predicted binding site reflect a potential lack of specificity in the

function-based algorithm: Distinct but overlapping binding sites may be reported as a single

site or in close proximity between a true positive and a false positive, resulting in a predicted

binding site that is only half correct. This merging of seemingly unrelated binding sites led

to the development of the max-potential algorithm, which is discussed in more detail below.

Using the max-potential algorithm, CRACLe was able separate the larger putative binding site

into several smaller binding sites. Interestingly, the max-potential algorithm also predicted a

binding site that partially overlaps the experimentally suggested CD8 binding site—a site that

neither the function-based algorithm nor PredUs (details below) was able to identify.

Comparison with the PredUs Algorithm

Due to the availability of experimental data, we used the aforementioned MHC-I complex

to compare CRACLe against existing algorithms. Most of the existing algorithms for binding

site prediction focus entirely on hot spot prediction and none of them, save one, allow for more

than a single analysis at a time. In fact, only PredUs [30] was similar enough in objective and

capabilities to allow us to compare and verify our results. Other programs gave limited results,

or were not accessible.

To compare CRACLe against PredUs, we used the MHC-I α chain discussed above. Pre-

dUs completed the analysis in a time frame similar to what it took CRACLe to analyze all

proteins in the Dockground homo-complex data set. In general, the predictions generated

from both algorithms correlated well, especially for the peptide groove (Figure 3.8). PredUs
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Figure 3.7: Comparison of an overlapping predicted binding site between the α3 and β2 chains
of MHC-I using (A) a consensus of all three scoring functions, (B) SNAPP-Surface:Hetero,
(C) SNAPP-Fold, and (D) SNAPP-Surface:Homo. Each scoring function returns a slightly
different set of critical residues, resulting in an overly large binding site.
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predicted 77 hot spot residues, and each one was found either in or immediately adjacent to a

predicted binding site. The only exception was the aforementioned, larger putative prediction

(Figure 3.6D). As expected, PredUs did not predict any hot spots near residues P193 to D195,

further suggesting a false positive; however, PredUs did not identify the C-terminal residues

W274 to H278 that in fact constitute a binding site.

Figure 3.8: Comparison of CRACLe (top) against PredUs (bottom) for (A) the peptide groove
and (B,C) the interactions with the β2 subunit. CRACLe and PredUs returned very similar
results, identifying many of the same residues.

3.2.4 The Maximum-Potential Algorithm and the ZDock Benchmark

The over-prediction of the MHC-I α3-β2 binding site led us to analyze several of the larger

binding site predictions in greater detail: We found that many of the larger binding sites were

actually smaller groups of selected critical residues bound together by a single edge between

a residue from each. In many cases, this connection caused for the larger binding site to be

classified as overlapping when two binding sites should have been classified as interfacial
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and putative instead. To overcome this problem, we simplified the existing algorithm and

increased the requirements for merging binding sites, resulting in the maximum-potential al-

gorithm. The new algorithm initially selects many more potential critical residues and refines

the list based on proximity other potential critical residues. The new algorithm also predicts

twice as many binding sites due to the stricter requirements for merging two or more binding

sites. Another important change is the removal of binding site extensions; due to inclusion of

secondary critical residue clusters, the addition of critical residue pairs provided little infor-

mation above the existing data.

In addition to the previously used metrics, we also calculated the sensitivity and specificity

for each dataset (Table 3.4), where residues are classified based on whether or not they (i) are

interfacial or non-interfacial and (ii) are predicted to be hot spots, i.e., whether or not they

participate in a predicted binding site. Unfortunately, specificity and sensitivity defined in this

manner only serve to evaluate whether or not CRACLe can identify the target interface. This

classification of residues is problematic for a number of reasons. First, defining which residues

do in fact participate in an interface presents several additional problems. There is evidence

that hot spots do tend to cluster near the center of an interface and that the surrounding residues

provide some stabilization of the interaction, much like an o-ring in pipe fitting [88]; however,

determination of where an interface begins and ends is tenuous at best. Second, all of the

measures used to validate the predictions account only for the target interface, ignoring any

other interactions a protein may have. Third, the specificity reflects the fact that the data

set is unbalanced: There are typically four to five times more non-interfacial residues than

there are interfacial residues. A high specificity provides little information other than to verify

that CRACLe does not over-predict the entire surface of a protein. Fourth and especially,

CRACLe was intended to predict only hot spot residues—not the interface—and not every

residue in an interface is a hot spot. In other words, we never intended to identify the entire

interface. Thus, the sensitivity reflects our ability to predict interfacial residues, not hot spots,

and should be low. Unfortunately, we must make use of the interfacial data; experimental
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validation of hot spots is costly and therefore not available for many proteins. As a result all

of the standard statistical methods fall outside of the applicability domain. We defined the

sensitivity, specificity, precision, and accuracy as follows using the confusion matrix shown

in Table 3.3:

sensitivity =
TP

TP + FN
(3.4)

specificity =
TN

TN + FP
(3.5)

precision =
TP

TP + FP
(3.6)

accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

We retested the Dockground and PepX datasets using the maximum-potential algorithm

and saw a large jump in the prediction of interfacial binding sites. Due to the minimal overlap

with Dockground and the inclusion of the unbound forms of proteins, the ZDock Protein-

Protein Benchmark 4.0 presents an optimal test test. Not only do the test cases provide an

external test set, but they also provide a more practical evaluation of CRACLe in an experi-

mental setting. As expected, the sensitivity and precision are low and the specificity and ac-

curacy are high for predictions from all three sets, suggesting that the predictions are largely

found at the interface, but they cover very little of the interface defined using Delaunay tes-

sellation. Previous studies have suggested that a sensitivity and/or precision of greater than

40% is a good measure of stability [83, 93], while reporting that in most cases, the sensitivity

increased when more residues were predicted as interfacial. De Vries and Bonvin [83] re-

port that CPORT predictions had a sensitivity of 48% and precision of 28% for the unbound

proteins from the Protein-Protein Benchmark 3.0 [94], which was a significant improvement

on previous results. Using the unbound proteins from the newer Benchmark 4.0 [79], CRA-

CLe achieved a sensitivity of 34% and precision of 31% while predicting 20 fewer residues

on average for each complex. As previously mentioned, we expected a lack of sensitivity:

CRACLe predicts roughly the same number of residues as are found on average across all
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interfaces in the dataset; furthermore, CRACLe does not attempt to predict all of the residues

in an interface but those residues which are critical to the interaction.

Interfacial Residues
Experimental

Yes No

B
in

di
ng

Si
te

R
es

id
ue

s

P
re

di
ct

ed

Yes

Tr
ue

Po
si

tiv
es 13,097

37,792
10,492
3,328
3,007 Fa

ls
e

Po
si

tiv
es 21,515

62,288
36,140
7,572
7,608

Dockground Hetero
Dockground Homo
PepX
ZDock Bound
ZDock Unbound

No

Fa
ls

e
N

eg
at

iv
es 27,933

86,734
29,294
6,814
6,503 Tr

ue
N

eg
at

iv
es 111,731

342,428
145,739
33,527
32,409

Table 3.3: The confusion matrix for experimental interfacial residues versus predicted binding
site residues from CRACLe predictions.

We also looked at how well CRACLe was able to predict binding sites within each of the

three classes in the Benchmark 4.0. For the bound test cases, CRACLe correctly predicted

interfacial binding sites for 88% (165 of 188) of the rigid-body proteins, 91% (40 of 44) of

the medium proteins, and 89% (34 of 38) of the difficult protein test cases. To evaluate the

unbound test cases, we identified interfacial residues from the bound complexes and checked

whether or not those same residues were present in the binding sites predicted for the unbound

proteins. CRACLe correctly predicted binding sites for 83% (132 of 160) of the rigid-body

proteins, 83% (30 of 36) of the medium proteins, and 84% (32 of 38) of the difficult unbound

test cases.

Interestingly, several studies have reported on the difficulty of predicting interaction sites

for antibody-antigen (Ab-Ag) complexes [95, 93, 83]. The difficulty arises in part because

antibodies nearly always bind at their Complementarity Determining Region, which is largely
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determined by the hypervariable V(D)J region of DNA and contains strong desolvation sig-

nals, and in part because the antigenic epitope is not easily distinguishable from the rest of

the protein [83, 96, 97]. In fact, Kufareva et al. [96] suggested that binding antibodies was not

a biological function of antigens, thus epitopes should not be considered as biological inter-

faces. However, biological systems are not run on enzymes alone, and a problem should not

be ignored because it is non-standard or difficult. CRACLe predicted binding sites at the target

Ab-Ag interface for 10 out of 14 of the antigens and 10 out of 14 of the antibodies analyzed in

the ZDock Unbound dataset. Of those Ab-Ag complexes, only one—PDB code 2HMI, listed

as a difficult complex—was without a predicted binding site for both the antibody and the

antigen. These results suggest that there antigenic epitopes likely do have some distinguish-

able feature that is recognizable in some part from the neighborhood of the epitope. We have

begun a separate study, discussed below, to analyze antigenic epitopes using CRACLe
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Dockground Hetero 457 914 145 44 30 0.94 0.28 0.85 0.44 0.70

Dockground Homo 1,317 2,634 155 47 30 0.93 0.24 0.86 0.43 0.71

PepX 1,076 1,077 164 35 34 0.85 0.21 0.82 0.27 0.70

ZDock Bound 135 270 151 36 39 0.89 0.31 0.80 0.34 0.70

ZDock Unbound 129 258 151 36 40 0.83 0.27 0.77 0.31 0.70

Table 3.4: CRACLe results for the test and training sets using the maximum-potential algo-
rithm.
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3.3 Practical Applications

In addition to validating CRACLe using the ZDock Benchmark 4.0, CRACLe has been

applied to two additional projects. The first is a collaboration with the Cance laboratory from

Roswell Park Cancer Institute in Buffalo, New York to develop a small molecule inhibitor

for the interaction between the Focal Adhesion Kinase (FAK) and Human Epidermal growth

factor Receptor 2 (HER2). The second is a collaboration with the Asokan laboratory at the

University of North Carolina at Chapel Hill to predict antigenic epitopes for the viral envelope

protein gp120.

3.3.1 Predicting the FAK-HER2 Interaction

FAK is a tyrosine kinase that plays an important role in a number of cellular functions,

including integrin-mediated signaling, cellular motility, and protection against apoptosis, and

HER2 has been used as a marker to evaluate the aggressiveness of a particular cancer [98].

Several studies have shown that FAK plays an important role in upregulation of the HER2

signaling pathway [98], and the Cance laboratory has produced experimental evidence that

FAK not only plays a role in the signaling pathway but actually binds HER2. Based on this

knowledge, their laboratory is attempting to design a small molecule inhibitor to disrupt this

interaction.

We used CRACLe to suggest possible binding sites on the surface of the FAK FERM

domain. CRACLe predicted two binding sites that have been previously validated in the

literature (Figure 3.9). The first site consists of residues Y180 and V196 on the FERM F2

domain. These residues form part of a hydrophobic pocket that binds and inhibits the FAK

kinase domain [99]. The second predicted binding site consists of residues K218 and K222,

both of which were found to be critical for an interaction with the proto-oncogene c-Met [100].

CRALCe also predicted two additional binding sites on the FERM domain that are un-

dergoing experimental validation for binding activity with HER2. Our collaborators have

designed small molecules inhibitors to bind at each of these predicted binding sites and are
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Figure 3.9: CRACLe predicted two binding sites on the FAK FERM domain (PDB code
2AL6) that correspond to experimentally validated hot spots. (Red) Predicted binding site with
residues Y180 and V196; this site corresponds to a hydrophobic pocket formed by residues
Y180, M183, V196, and L197 that binds the FAK kinase domain. M183 is a part of the surface
triplet, and L197 is not on the surface in the tessellation. (Purple) Predicted binding site with
residues L281 and L222; both of these residues are experimentally validated hot spots for the
interaction with c-Met.

currently testing to see the affect each small molecule has on the FAK-HER2 interaction. In-

hibitors for the first predicted site have been found to reduce cell viability in cancer cell lines;

unfortunately, the results suggest that this binding site does not interact with HER2. However,

inhibitors for the second binding site do appear to be disrupting the FAK-HER2 interaction.

We are unable to provide additional data at this time as the results are not yet published.

3.3.2 Predicting Antigenic Epitopes

In order to fight infection, B cells produce antibodies that are able to identify and neutral-

ize foreign proteins called antigens. Antibodies bind these antigens at a unique, and usually

conserved, part of the protein, referred to as antigenic epitopes ([101]). Prediction of antigenic

epitopes could lead to the development of specialized antibody drugs and a better understand-

ing of host-pathogen interactions [101, 102]. Ofttimes, antigenic epitopes are continuous, i.e.,

formed by a strand of sequentially adjacent peptides, but many known epitopes are discon-
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tinuous. The former are much easier to predict, and many various methodologies have been

developed for that purpose; the latter much less so [103, 101]. Based in part on the ZDock

Unbound results for the Ab-Ag complexes, we hypothesize that CRACLe could be used to

predict antigenic epitopes on pathogenic proteins. To this end, we decided to predict the

binding sites for the well-known HIV-I envelope protein gp120.

We have compiled a dataset of 18 gp120 and gp160 precursor proteins from the Immune

Epitope Database (IEDB) based on sequence similarity for known antigenic epitopes. Our

initial results have not correlated well with the known antigenic epitopes; however, visual in-

spection of the crystal structure shows that the binding sites predicted by CRACLe may be

correct. For example, we analyzed the structure of gp120 co-crystallized with CD4 and an

antibody (PDB code 2QAD) and found that the antigenic epitopes given in the IEDB do not

occur where the antibody is bound (Figure 3.10A), but instead in an internal part of the pro-

tein, at the interface with a gp120 dimer, and on an α-helix on the opposite side of the protein

from where the antibody is bound. These differences may be explained by problems inter-

preting the crystal structure or existence of multiple antibodies that bind in different locations.

Interestingly, CRACLe predicted three binding sites, one at the interface with the antibody

in the crystal structure, another at the gp120 dimer interface, and a third structurally adjacent

to the antigenic epitope found on the α-helix. Further analysis is required before our predic-

tions may be validated; however, these initial results suggest that CRACLe may be useful for

prediction of new and validation of existing antigenic epitopes.

3.4 Conclusions and Future Work

In this study, we have shown that the CRACLe algorithm is capable of identifying bind-

ing sites on protein surfaces, correctly predicting the target native protein-protein binding site

for more than 85% of all individual proteins in the Dockground data sets and 77% of target

protein-peptide binding site for the PepX database. However, roughly two thirds of the pre-

dicted binding sites were putative; we have provided examples showing that some putative
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Figure 3.10: (A) The crystal structure of gp120 bound by CD4 and an antibody. The structure
of gp120 is shown in black and the antigenic epitopes found in the IEDB are highlighted
in green. (B) CRACLe predicted four binding sites: one at the interface with the antibody;
another at the gp120 dimer interfaces (this interaction may be a result of crystallization); and
another structurally adjacent to the upper antigenic epitope on the α-helix.

predictions do correspond to actual binding sites. We hypothesize that many more of puta-

tive predictions do correspond to actual binding sites, and as more experimental data becomes

available, we will continue to verify these putative binding sites.

Our SNAPP-Fold scoring function performed surprisingly well considering it was built

using a non-protein interaction training set; this observation provides further support for the

similarity between protein folding and protein interactions [90] but also highlights the need

for high-quality data curation [104]: Additional PPI structures and stricter data curation may

significantly improve predictions of the SNAPP-Surface:Hetero and SNAPP-Surface:Homo

scoring functions. In contrast, we were also surprised to see SNAPP-Surface:Hetero per-

form better than SNAPP-Surface:Homo given the fewer number of complexes in the training

set. However, we hypothesize that homo-complexes instead present different surface residue

triplets when a protein is tessellated by itself versus with its binding partner, e.g., when an

interaction occurs at a deep or narrow binding pocket.

CRACLe’s accuracy could also be affected by the use of bound structures to train the
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SNAPP-Surface scoring functions. As the results show, the prediction ratio for the ZDock

Unbound dataset was 6& lower than the Bound dataset. Unfortunately a number of factors

limit our use of unbound structures. First, compilation of a dataset of unbound structures is

not a trivial task and would require additional time and resources. Second, the data may not

exist. Third, unbound structures may not easily map onto bound structures: Chain and residue

numbering will likely differ between bound and unbound structures, and some structural fea-

tures may differ between the two structures. The ZDock team has now released four versions

of their Protein-Protein Benchmark, and their dataset is only a fraction of the size of the Dock-

ground dataset. Until a much larger dataset of bound and unbound proteins is compiled and

made publicly available, SNAPP-Surface will most likely continue to be trained on bound

structures.

Overall, CRACLe accurately identified the target binding site for thousands of proteins in

less than seven minutes on a standard desktop computer (see Table C.1). Additionally, CRA-

CLe needs less a priori knowledge of an interaction to make a prediction, requiring only the

three-dimensional structure of a single protein. As a result, CRACLe opens new possibilities

for computational research on protein-protein interactions, especially for use in discovering

and analyzing protein interaction networks, aiding in the design of new protein interactions, or

simply as an additional filter for scoring and decoy discrimination in protein-protein docking

algorithms. We also envision CRACLe as a new tool to guide experimental studies, for ex-

ample identifying surface residues for mutagenesis studies or suggesting potential secondary

interactions for side effect screenings.

3.5 Availability

The current version of CRACLe is available upon request. In the near future, we plan

to make CRACLe publicly available under the ChemBench online cheminformatics portal

(http://chembench.mml.unc.edu) and modular computing cloud developed in our laboratory

[105].
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CHAPTER 4

Predicting Protein-peptide Docking

Prediction of Protein-peptide Packing, or PoPP, provides a SNAPP-based approach to

predicting Protein-PEptide interactions (PPE). Given the three-dimensional structure of a re-

ceptor protein and a peptide sequence, PoPP predicts the most likely docking pose based on

a global search of the receptor’s surface. In this chapter, we discuss the development of the

novel GridDock algorithm behind PoPP, the current status of the project, and an additional

application of GridDock towards prediction of protein pockets, called PickPocket.

Throughout this chapter, we use two terms to describe how a peptide ligand is docked to

a receptor: conformation and pose. A binding conformation refers directly to the structure of

the peptide, i.e., the relative coordinates of its residue vertices, and has no connection to the

receptor. A binding pose refers to the conformation of a peptide in relation to the receptor,

i.e., the absolute coordinates of peptide vertices in a particular position relative to the receptor.

Like most docking algorithms, PoPP may be broken down into three basic steps: (1) gen-

eration of docking poses; (2) scoring of poses; and (3) pose refinement. SNAPP handles the

scoring, but pose generation and refinement is handled largely by a novel three-dimensional

lattice algorithm called GridDock. A basic workflow is shown in Figure 4.1.

4.1 Modeling the Problem

The representation of the receptor and ligand structures is crucial first step that defines the

accuracy and computational efficiency of a docking algorithm. In order to dock the ligand



Figure 4.1: The PoPP workflow. (A) First the interaction grid is created around the receptor
protein, and (B) peptide poses are randomly initialized within the interaction grid. (C) High
ranking poses are selected using a Metropolis Monte Carlo algorithm based on the SNAPP-
Interface score calculated from (D) a local Delaunay tessellation. (E) For each selected ligand-
receptor pose, the ligand undergoes multiple perturbations, which undergo the same process
of selection and perturbation. (F) The highest scoring poses are selected and returned. The
predicted pose (green) is the highest scoring initial pose with an RMSD of 3.46 Å to the native
peptide (orange). (PDB code 1AWQ)
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with the receptor, we must first define the area around the receptor where the ligand is allowed

to reside, which we term the interaction space. This interaction space serves to limit the

movement of the ligand during pose generation and refinement to ensure that the peptide

ligand does not (i) stray too far from the receptor or (ii) invade the space occupied by the

receptor. The simplest method used to restrict the interaction space is to place the receptor in a

grid and constrain vertices of the ligand to these grid points. We have developed a special grid

defined by a two-dimensional array of binary strings, where each bit represents a single three-

dimensional coordinate. This novel implementation allows for rapid comparison between grid

objects and easy access to multiple grid points at once.

To create the grid, we first convert the atomic structure of the receptor to the single-point-

per-residue model that is used with both SNAPP and CRACLe. The entire structure is then ge-

ometrically translated so that all residue vertices exist in positive coordinates, and the spacing

between grid vertices defaults to 0.5 Å, defined by the resolution parameter. Each residue

vertex is assumed to have a constant sphere of exclusion to account for steric hindrance—no

grid points are allowed within the sphere. The radius of the exclusion sphere is defined by the

fit parameter (Figure 4.2B), so called because it determines how the grid vertices fit around

the shape of the receptor. Each residue vertex is also given a constant inclusion sphere that

defines the area around a vertex where grid vertices may exist. The radius of the interaction

sphere is given by the fit parameter in conjunction with a thickness parameter that de-

fines, as its name suggests, the width of the grid surrounding a residue vertex (Figure 4.2C).

The exclusion and inclusion spheres are combined using a binary OR operation to generate an

interaction annulus that represents the space around each residue vertex where an interaction

with another residue may occur—grid vertices may exist only within the interaction annulus.

To define the interaction space for a protein, exclusion and inclusion spheres are applied to

each residue vertex to create two independent grid objects (Figure 4.2BC). A simple binary

OR operation between the two grid objects generates the interaction annulus for each residue

vertex with any grid vertices removed if they would exist within the exclusion sphere of an-
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other residue vertex (Figure 4.2D). Each of the parameters and shapes are defined in Table

4.1

Figure 4.2: Cartoon representation of the PoPP parameters used to define the grid. (A) The
distance between grid points is defined by the resolution r. (B) The exclusion sphere
defines the minimum distance between receptor or ligand vertices, defined by the fit param-
eter f . (C) The inclusion sphere is defined by the thickness parameter t in conjunction
with the fit parameter. (D) The interaction annulus is obtained by subtracting the exclusion
sphere from the interaction sphere.

Parameters Default Value Definition
resolution 0.5 Å defines the distance between grid ver-

tices

fit 4.0 Å defines the minimum distance between
grid and residue vertices

thickness 6.0 Å defines the maximum depth of the grid
extending from any given residue vertex

Grid Shapes Defined By Represents
exclusion sphere radius = fit space physically occupied by a given

residue; van der Waals radius

inclusion sphere radius = fit+ thickness space in which a given residue may
interact with another residue, ignoring
steric hindrance

interaction annulus exclusion — inclusion space in which a given residue may in-
teract with another residue, accounting
for steric hindrance

Table 4.1: GridDock parameters and shapes.

As mentioned above, the grid is defined by an array of bit strings, where each active bit

represents a single grid vertex. This implementation provides a number of advantages over
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other grid implementations, such as minimizing the memory footprint, reducing of the num-

ber of steps required to access multiple points, and easy access to entire sections of the grid.

Basic grid storage on a 64-bit machine would usually require 3 × 64 = 196 bits to repre-

sent coordinates for a single vertex, or O(MXMYMZ) storage, where M is the number of

grid points along axis X . More efficient grid implementations can achieve O(MXMY + M3)

or even O(M3) for specialized data structures [106]. Our bit string implementation achieves

O(nMXMY ) storage, where the n is the number of 64-bit segments required to represent the

z-axis1. For example, a one-dimensional 1 × 1 × 64 bit string grid would require 64 bits,

where the x and y coordinates represent the index in a two-dimensional array, and the z axis

data is stored in the bit string. Granted, storing the third dimension in a bit-string limits

access to individual vertices, but the access to the third dimension is quickly enabled using

efficient bit manipulation and a precomputed table of Hamming weights. Inactive bits may

be easily flipped to active bits, allowing the grid to quickly change if necessary (hint: protein

flexibility). The bit string implementation also means that multiple vertices may accessed

simultaneously, whether for comparison of two grid structures, determining overlap of inter-

action spheres, or simply counting the number of grid vertices. Bit manipulations equate to

improved access speed for multiple vertices, with greater speed gained for each additional

point accessed simultaneously. The unfortunate trade-off is that a single vertex is not as easily

accessed and requires greater computational complexity. However, easy accessibility to mul-

tiple vertices at once also enables large sections of the grid to be identified quickly without

additional calculations. Grid vertices within a certain distance of a set of ligand vertices are

quickly identified using a bounding box and a number of bit strings equal to the product of the

x and y range. The bit string lattice does increase the computational overhead for accessing

a single point; however, the storage mechanism provides a marked improvement during grid

1The efficiency of the bit string data structure is dependent on the processor used. A 32-bit machine will
require twice the memory and number of calculations for the same operations on a 64-bit machine. The GridDock
was created, tested, and optimized on a Linux desktop with a 64-bit first generation Intel core I7 processor. The
software has not been fully tested on a 32-bit machine.
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creation or when checking to see if two residue vertices are within each others’ interaction

spheres. The size of the grid depends directly on the rotation of the receptor protein in the

grid. Rotating the protein to maximize the length along the z axis and minimizing the distance

along the x and y axes will minimize the spatial complexity and maximize access efficiency

for multiple vertices along the z axis. Conversely, maximizing the range of the x and y axes

and minimizing along the z axis will yield a slight improvement for single vertex access for

greater distances along the z axis.

The grid covers the entire surface of the receptor, and ligand conformations are placed

anywhere on the grid; however, the available interaction space may be narrowed using the

CRACLe algorithm. Once CRACLe predicts likely binding sites for a given protein, PoPP can

create a second grid object with the same dimensions as the first where the critical residues

found by CRACLe are used to generate the interaction space. This second grid can be used as

a filter to limit or give preference to grid vertices for placement of ligand residue vertices.

4.1.1 Docking the Ligand

Once the interaction grid is created using the GridDock algorithm described above, PoPP

randomly initializes ligand poses on the grid (up to 10,000x). In the current implementation,

PoPP allows ligand conformations to remain flexible, with constraints in place to ensure a

physically possible conformation, while keeping the receptor rigid. PoPP accepts only the

peptide sequence and generates conformations by placing the peptide on the grid one residue at

a time. The initial peptide vertex is randomly selected and then randomly placed on any of the

possible interaction space grid vertices; if the critical residue grid is used, the initial placement

is constrained to a more limited set of grid points. Subsequent placement of ligand residues

will begin with either of the sequentially adjacent residues and alternate between extending in

both the N- and C-terminal directions until all ligand residues have been placed on the grid.

Subsequent ligand vertices are initially constrained to a distance between 1.0−1.4× the value

of the fit parameter and to a 120◦ angle from the previous two peptide vertices; a smaller
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grid object is used to define exclusion spheres for each peptide vertex to prevent the peptide

from folding back on itself. Subsequent ligand vertices may also be forced to use a critical grid

vertex or weighted to prefer a critical residue grid vertex. The resulting conformation mimics

a simplified protein backbone and allows for a surprising number of unique conformations;

however, the poses a peptide is allowed to sample is directly influenced by the thickness

of the grid: A thicker grid allows more flexible conformations while a thinner grid forces the

initial peptide conformation to fit more closely to the receptor surface.

Once PoPP generates the initial peptide poses, the pose may be translated, rotated, or

flipped to generate a series of new poses. Both translation and rotation are initially applied to

a single peptide vertex, selected at random, and transformed by a random amount. Translation

is limited to up to three times the resolution of the grid. Rotation randomly selects the

φ and ψ angles and one of adjacent peptide vertices to use as the origin of rotation. For both

types of perturbations, adjacent residues may undergo similar perturbations to help ensure the

structure remains physically feasible. With a rotational perturbations for example, the same

rotation is often applied to residues further along the peptide sequence using the same origin;

if subsequent residues would end up outside of the interaction grid, further perturbations are

performed to ensure the entire peptide remains within the acceptable region. Flipping affects

the entire pose without directly affecting the conformation: The residue composition is re-

versed so the ends are swapped although the coordinates of the peptide remain the same. The

peptide may assume any conformation provided its vertices (a) remain within the interaction

grid and (b) do not enter the exclusion sphere of other peptide vertices.

All poses are scored and ranked using a local Delaunay tessellation and the SNAPP-

Interface scores outlined in Chapter 2.5.2. To score a pose, PoPP identifies local receptor

residues within a distance of six Å from any peptide vertex, calculates the local Delaunay tes-

sellation of the ligand and receptor vertices, and scores each of the interfacial simplices. For

the initial poses, PoPP calculates the SNAPP-Interface score distribution and selects poses

based on a Metropolis Monte Carlo algorithm [107], where all poses at the eighty-fifth per-
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centile or higher are automatically chosen, and poses below the threshold are chosen based

on a probability distribution described by the Metropolis table. Ligands from selected poses

undergo perturbation as described above and subsequently scored. Newly generated poses are

selected or discarded as before using the ninetieth percentile from the previous set of scores as

the new threshold. The scoring-perturbation loop is continued for 1,000 iterations or until the

standard deviation of RMSD for poses in the ninetieth percentile has fallen below 0.2 Å. PoPP

then selects up to 1,000 poses with the highest SNAPP-Interface score across all iterations to

continue with pose refinement.

Once PoPP selects the top 1,000 poses, each of the ligands from the selected poses un-

dergoes a refinement step where the ligand residues are allowed to deviate from the discrete

coordinates given by the interaction grid2. Each ligand and nearby receptor vertex is weighted

using the data generated from CRACLe. Ligand vertices are translated to maximize the ex-

pected edge distance between each it and every other residue vertex, both ligand and residue,

it shares an edge with. At each stage of refinement, PoPP performs a local Delaunay tessella-

tion and rescores the pose. Poses are clustered based on pairwise RMSD between other poses,

and for each cluster, PoPP calculates a mean consensus pose that is returned to the user.

Unfortunately, the coarse-grained SPPR model used throughout SNAPP, CRACLe, and

PoPP does not lend itself to a pretty, high resolution, finalized structure; we must first convert

the ligand residues from an SPPR to a full atomic model. This conversion is not a trivial

task, and our implementation is not currently available in the current code distribution. Using

structural data collected from Dockground, we apply a vector to each peptide vertex with a

direction and magnitude to represent the location of the Cα relative to the side chain centroid.

Each vector is based on the residue composition of both the peptide vertex and the residue

vertices that share a Delaunay edge with it. Once the residue vector has been calculated

for each peptide residue, the atomic coordinates of the side chain and peptide backbone are

2The refinement algorithm is partially implemented. Only generation of the consensus pose is currently in
use.
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filled in. The fine-grained peptide pose is returned to the user and may be submitted to other

programs such Molprobity [108, 109] for structure refinement.

4.2 Initial Results

Although the algorithm is not fully implemented, we have tested our design using six,

experimentally derived PPE, with ligands ranging from 5 to 9 residues in length. For each

PPE, we generated initial peptide poses and scored using SNAPP-Bala. In all six examples,

we saw the high-scoring initial poses cluster together; in three of the PPE, the main cluster

covered the known binding site (Figure 6), though high-scoring initial poses were still found

at the target interface in close proximity to the native peptide (Figure 7). After running the

PPE through the algorithm several times, GridDock repeatedly identified one or more, high-

scoring initial poses closely resembling the native peptide pose for four of the six PPE; these

initial poses were all ranked within the top five. Interestingly, some of these unrefined initial

poses were found to have similar or improved RMSD to the native pose than those published

in an independent study [110]. Refinement of these poses could significantly improve upon

our initial results.

These six examples provide proof-of-concept for our algorithm. Even with the initial

poses, GridDock has shown some discrimination between native-like and decoy protein-

peptide poses. These smaller types of interfaces are particularly common in viral interactions

and typical of most peptide drugs. In fact, two of the PPI tested (PDB codes 1AWQ [111] and

1M4P [112]) involve interfaces with HIV proteins, and two are synthetic interfaces designed

as an anti-inflammatory peptide and a model to analyze snake venom -bungarotoxin, PDB

codes 1ABT [113] and 1TJK, respectively.

4.3 PickPocket

We have also begun development of a novel algorithm that uses GridDock to identify ex-

posed and buried pockets on protein surfaces. Such pockets are desirable targets for drug
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Figure 4.3: PoPP initial results. (A) The HAGPIA sequence from HIV Gag protein (orange)
in complex with cyclophilin A [PDB code 1AWQ, RMSD = 3.46]. This pose improves upon
results from Tsai et al. (B) A synthetic peptide sequence FLSTK (orange) designed to bind
group II phospholipase A in an anti-inflammatory role [PDB code 1TJK, RMSD = 5.15].
(C) A synthetic peptide, sequence KHWVYY (orange), mimics the binding site of nicotinic
acetylcholine receptor bound to snake venom-derived alpha-bungarotoxin (BGTX) [PDB code
1ABT, RMSD = 12.61, 4.04 (flipped)]. (D) A synthetic peptide sequence RQMSFRL (orange)
in complex with phosphorylase kinase. [PDB code 2PHK, RMSD=11.2]. (E) Residues 22-31,
sequence SYTTNAFPGE (orange), of Rac.GTP in complex with p67phox [PDB code 1e96,
RMSD = 6.47]. (F) The HIV PTAP domain, sequence PEPTAPEE, (orange), in complex with
the UEV domain of human Tumor Susceptibility Protein 101 (Tsg101) [PDB code 1M4P,
RMSD = 7.52]
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design studies, and a number of studies have developed computational algorithms to identify

protein surface pockets [114, 115, 116, 117, 118]. Exposed pockets are more easily identified,

but very difficult to define [119]; each algorithm tends to have a different definition of how

the border of the pocket is defined [120], and some pockets may overlap one another, making

their identification more difficult [119]. Buried pockets are far easier to define due to the lack

of an opening on the surface [119] but can be more difficult to detect [117], especially as most

algorithms tend to identify pockets by rolling spheres over protein surfaces. In contrast, Pick-

Pocket uses the GridDock algorithm to identify pockets based on overlap of the interaction

annulus. Pockets, clefts, and cavities on a protein surface are, by their very nature, surrounded

by amino acids that will potentially interact with any small molecules that may bind; Thus,

we hypothesize that we can detect pockets based on the overlap of their interaction annuli.

Although such an overlap could be used to identify shallow pockets on the protein surface,

our goal for PickPocket is easier detection of buried pockets.

PickPocket was designed to take a three-dimensional protein structure of a protein and

return a list of surface features, e.g., clefts and pockets, on or near the surface of a protein.

Although PickPocket does need only protein structure, it currently returns an extensive list of

all grid points found in any cleft or pocket. Ideally, each cleft and pocket would be filtered

and ranked according to various descriptor characteristics, but currently, PickPocket filters out

only very small, independent pockets. We suspect that the hot spots predicted by CRACLe

could be used to narrow the list surface features; however, we have not yet benchmarked the

algorithm.

PickPocket begins by defining the interaction space for a given protein as described above;

however, PickPocket uses an atomic level resolution rather than the previously used SPPR to

provide greater resolution. The resulting grid is used to define the space occupied by the

protein, providing a reference index that allows small partitions of the grid to maintain a

spatial relationship with the protein and each other. PickPocket creates a separate partition

for each residue of the protein, defining the interaction space for each residue based on the
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inclusion and exclusion spheres for each atom in the residue. Each residue partition is said to

have an overlap value of 1, i.e., the interaction space defined for the partition is the overlap

of the interaction space for exactly 1 protein—itself. Pairwise processing of each of these

single residue partitions through a binary AND gate results in a collection of dual residue

partitions with an overlap value of 2. Subsequent AND operations generate additional degrees

of overlap, which directly affects the number and size of pockets predicted (Figure 4.4). We

tested degrees of overlap ranging from 3 to 15 and found that the change in predicted pockets

was most drastic between an overlap degree from 6 to 10. A qualitative, visual analysis of

the results showed that an overlap of 10 removed the majority of shallow clefts on the protein

surface but also resulted in fewer and smaller buried pockets; in contrast, less overlap resulted

in increasing amounts of noise, i.e., predicted pockets of only 1-6 grid vertices. To provide a

balance between the noise and the size of the predicted pockets, we selected an initial overlap

of 8 and included a refinement step to remove pockets with fewer than 8 grid vertices.

Unfortunately, this algorithm has worst-case run time of O(nm), where n is the number

of residues and m is the degree of overlap. By grouping non-overlapping residue partitions

together into a single object, we can typically reduce n by a factor somewhere between four

to eight, depending on the size of the protein. A careful analysis and redesign of the algorithm

could significantly improve the worst-case run time, but such an effort is beyond the scope of

the project at this time.

PickPocket was initially created to see if we could identify the buried pockets in a par-

ticularly difficult test case: Rec A (PDB code 3cmx) is a particularly large DNA-binding

protein consisting of two chains with ten buried, adenosine-5’-diphosphate (ADP) binding

pockets between them (Figure 4.5). With an overlap of 8, all ten buried pockets were partially

identified (Figure 4.6A,B); however, the defined pocket consistently missed the region where

adenine sits. Additionally, the Rec A DNA binding groove was also found (Figure 4.6C).

These results show that our GridDock overlap algorithm is effective for identifying pockets

and grooves on or near a protein surface; however, it is not yet a useful tool. As mentioned,
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Figure 4.4: A visual representation of the GridDock overlap approach utilized by PickPocket.
(A) An overlap degree of 1, i.e., the interaction space defined for each residue. (B-D) The
predicted ”pocket” for an overlap degree of 2, 3, and 4.

the none of the ADP pockets completely included the adenine group. We suspect this is due to

tighter packing of the adenine group with the surrounding residues, and we hypothesize that

creation of a dynamic fit variable that depends on the atom type would allow the binding

pocket to be more clearly defined. The much larger problem is a lack of specificity. Figure

4.5B clear shows that although PickPocket does correctly identify the pits and grooves on the

protein surface, far too much of the surface is predicted. We do not believe that GridDock can

be used to rank or select functional pockets, but we hypothesize that we could use CRACLe

to filter out pockets that are purely structural. Although SNAPP was designed and developed

solely for proteins, there is some evidence that small molecules may bind at protein-protein
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or protein-peptide hot spots [84].

4.4 Conclusion

Once completed, PoPP will provide a computationally efficient solution for rapidly pre-

dicting protein-peptide interactions or protein-protein interactions for ligands with a contin-

uous epitope. Like the CRACLe algorithm, PoPP requires minimal a priori data—a three-

dimensional structure of the protein receptor and the sequence of the peptide ligand. Fur-

thermore, the grid- and geometry-based pose sampling algorithm allows generation and re-

finement of ten-thousand new protein-peptide conformations in five to ten minutes, greatly

improving on other energy-based docking algorithms. Although initial comparisons with

other algorithms are favorable, we cannot compare PoPP against other docking algorithms

without additional benchmarking. However, we do not expect PoPP to compete against exist-

ing high-resolution docking algorithms such as HADDOCK or RosettaDock, partially due to

PoPP’s current limitation of a peptide ligand, but largely due to the coarse-grained amino acid

representation. Instead, we expect PoPP to be most useful to generate low-resolution bound

structures that may be submitted to existing docking and structure refinement programs with-

out the computational overhead associated with ab initio docking.
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Figure 4.5: (A) The DNA-binding protein Rec A. Each chain has five buried ADP binding
pockets. (B) Rec A showing the pockets predicted by PickPocket. The pockets accurately
represent clefts, grooves, and pockets for the protein, but show no specificity for ligand bind-
ing.
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Figure 4.6: (A) The predicted binding pockets for ADP from Rec A chain A. (B) The predicted
pockets from Rec A chain B. (C) The DNA-binding grooves from both Rec A chains.
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CHAPTER 5

Conclusions and Future Directions

We have described the development of a set of tools for the analysis and prediction of

protein interactions. Similar tools currently available to the scientific community require the

researcher have some knowledge regarding the interaction, such as where the interface occurs,

and were not intended for high-throughput analysis, i.e., they can analyze only a single protein

or interaction at a time. Our tools provide researchers a stepping stone for when they know

nothing about a particular protein save its three-dimensional structure. SNAPP, CRACLe, and

PoPP are all computationally efficient and were developed with high-throughput analysis in

mind.

5.1 Further Definition of the SNAPP Applicability Domain

In order to properly define the AD for SNAPP, we could quantify the range of SNAPP de-

scriptor values found within the dataset and evaluate whether a new structure was within the

applicability domain based on its own SNAPP descriptor values. We hypothesize that a sepa-

rate AD could be defined for each of the four inter-chain types of protein-protein interactions

defined by Ofran and Rost, along with two additional ADs for protein-peptide and protein-

small molecule interactions. Definition of these ADs would be useful not only for identifying

PPI that SNAPP cannot predict, but also for classifying PPI into one of the eight categories

and providing further discrimination of decoy docking conformations. One potential issue is

over-fitting the data due to a lack of statistical power or a specificity of the problem — disre-



garding the types of amino acids involved may be just as harmful as using the full 20 amino

acid alphabet. Using a reduced alphabet such as the 10-letter alphabet set forth by Li et al.

[121] could lower the total number of independent variables without a significant loss of data.

Although the software includes the ability to use such a reduced alphabet, none of the studies

conducted thus far have tested the efficacy over a full 20-letter alphabet.

5.2 Future Work for CRACLe

Our next step for CRACLe is to complete both development and testing of the Comple-

mentarity Likelihood algorithm to evaluate the interaction potential between two proteins, i.e.,

estimate the likelihood that two given proteins will interact. To our knowledge, no algorithm

currently exists to perform this task; instead, two proteins must first be docked, and their

binding conformation evaluated.

In an effort to further the usability of CRACLe in existing scoring functions, we plan to

create two additional SNAPP scoring functions specifically for evaluating a protein-protein

interface. The new scoring functions discussed in this paper were designed to evaluate the

likelihood of an interaction on a protein surface; the new scoring functions will be tailored to

evaluate a particular binding conformation. To this end, we are also developing a convexity

index to further improve complementarity predictions.

We are also looking into CRACLe as a tool for evaluating binding site promiscuity. PPI

are often characterized by both hydrophobic and polar interactions. The former lend stability

without specificity while the latter provide both stability and ligand specificity. We have

noticed that hydrophobic residues tend to score well for several possibilities of the fourth

residue X , and that polar residues tend to score well for only a couple of specific residues.

We hope to analyze these trends and develop a promiscuity index for additional evaluation of

predicted binding sites.
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5.3 Future Work for PoPP

The PoPP algorithm was originally designed for protein-protein docking, although the re-

quirement of ligand flexibility currently limits PoPP to protein-peptide interactions. In order

to extend the algorithm to handle protein ligands, we would need to incorporate (i) a global

search algorithm to match likely binding sites, (ii) a surface perturbation algorithm to handle

the movement of protein vertices, and (iii) some method to quantify how much any given

vertex may be moved based on its characteristics and those of neighboring vertices. The first

is fulfilled in CRACLe, especially once the Complementarity Likelihood algorithm is imple-

mented; however, we must keep in mind that CRACLe is not intended to define the interface,

but define likely binding sites. As such, CRACLe should be used as a guide, not a hard and

fast solution. The second addition is non-trivial: Although the position of a single peptide

residue will certainly affect the position of neighboring residues, the effect is largely linear,

whereas movement of a residue on a protein surface will affect all neighboring residues. The

use of an SPPR model simplifies this movement considerably, and if we are concerned only

with the movements of surface residues until the final stages of refinement, we can further

simply the calculations. Furthermore, the edge-length descriptors can be used to help con-

strain the distances between neighboring residues, and we can assume the movement will

have a negligible effect at a certain distance. Third, we could quantify the allowed movement

of any particular receptor vertex by calculating flexibility descriptors for each residue type.

Using the ZDock Protein-Protein Benchmark 4.0, we could calculate a typical range of move-

ment for each surface residue from the bound to the unbound state. Further considerations

could include whether the residue was in an α-helix, β-sheet, or loop in both the bound and

unbound forms or include basic information concerning neighboring residues, such as polar

or non-polar. Such descriptors would allow the creation of a distance distribution that could

be sampled using a Monte Carlo algorithm. Although non-trivial, the majority of the code

needed to handle protein flexibility already exists in the current PoPP implementation, and
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once implemented, the same code could handle both protein ligand and receptor flexibility.

In theory, GridDock could be used in a protein-folding algorithm, either as the basis of

an algorithm or as an aid in another. The exclusion and interaction spheres could provide

constraints on the protein structure, and the residue packing could be scored using SNAPP-

Fold. However, we would need to calculate additional residue descriptors such as average

angle between descriptors and likelihood of a residue to participate in a secondary structure.

As the code stands now, such an application of GridDock is merely hand-waving, but the

design and efficacy of the implementation lends itself toward such a task.

The current GridDock implementation uses a constant fit to create the exclusion spheres

around residue vertices. Although the fit parameter may be modified by the user, a constant

value does not accurately describe the system. Instead, we propose two possible solutions:

(1) use a dynamic fit for each vertex based on the average length of each edge the given

vertex participates in; and (2) define a set minimum distance for each residue type based on a

distribution calculated from a dataset of protein-protein and protein-peptide interactions. The

former method would increase the computational overhead required to create the interaction

space, including calculation of the minimum distance and creation of exclusion and interaction

spheres for each surface residue; however, each would only need to be calculated once and

could define a topology much more suited to the surface of the protein. The latter approach

provides an empirical solution with minor overhead costs, but does not take the neighboring

residues into account. In either case, the difference in the fit parameter could be inconse-

quential considering the minimum distance between two residues, although conserved [122],

will change depending on the composition of the second residue. In such case, it would serve

to define the minimum distance based on empirical data from glycine-glycine interactions and

constrain the distance between particular ligand and receptor vertices pairs during pose gener-

ation rather than hard coding the distance using grid vertices. By implementing this constraint

during pose generation rather than grid creation, we increase the computational overhead, but

we allow the receptor-ligand pose to be more dynamic based on the surface residues involved.
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APPENDIX A: SNAPP DATASETS
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119L X 1AXN X 1C44 X 1DOZ X
153L X 1AY7 X 1C52 X 1DP7 X
16PK X 1B0X X 1C5E X 1DPS X
19HC X 1B0Y X 1C75 X X 1DPT X
1A12 X 1B16 X 1C7K X 1DQ0 X
1A1I X 1B3A X 1C7S X 1DQG X
1A1X X X 1B4K X 1C90 X 1DS1 X
1A1Y X 1B5E X 1C96 X 1DSL X
1A28 X 1B8E X 1CC8 X X 1DUA X
1A2P X 1B8O X 1CCZ X X 1DUN X
1A2Z X 1B8P X 1CDY X 1DUP X
1A34 X 1BBH X 1CEI X 1DVJ X
1A3A X 1BD0 X 1CEM X X 1DVO X X
1A3H X 1BD8 X 1CEW X 1DZF X X
1A4I X 1BDO X 1CEX X X 1E29 X

1A6M X 1BEA X X 1CF9 X 1E4C X
1A73 X 1BEH X 1CFB X 1E5M X
1A8D X 1BF2 X 1CHD X X X 1E6U X
1A8E X 1BF4 X 1CIP X 1EB6 X
1A8L X 1BF6 X 1CJW X 1EDG X X
1A8Q X 1BFD X 1CL8 X X 1EDQ X
1A92 X 1BFG X X 1CMB X 1EDT X
1AAC X 1BGF X X X 1CNZ X 1EG3 X X
1AAJ X 1BHE X 1CPQ X 1ELK X
1AAY X 1BJ7 X X 1CQY X X 1EOK X
1ABA X X 1BK7 X 1CRU X 1EP0 X
1ACF X 1BKR X X X 1CTF X X 1ERV X
1AGJ X 1BM8 X X X 1CTJ X 1ERX X
1AH7 X X 1BOL X 1CV8 X X 1ES5 X X X
1AIL X 1BPI X 1CVR X 1ES9 X X
1AJS X 1BQK X 1CWY X 1EUR X
1AK0 X X 1BRT X X 1CYD X 1EUW X X
1AK1 X 1BS0 X 1CYO X 1EW4 X X
1AKO X X 1BS9 X 1CZF X 1EY4 X
1AKR X 1BSM X 1CZP X 1EYH X X
1AL3 X 1BU7 X 1D2N X X 1EZJ X
1ALY X 1BW9 X 1D3V X 1EZW X
1AMF X 1BXO X 1D4O X 1F00 X X
1AMM X 1BYI X X X 1D7P X 1FAS X
1AMP X 1BYQ X 1DCI X 1FC9 X
1AMX X 1BYR X X 1DFU X X 1FK5 X
1AQB X 1BZ4 X 1DGF X 1FKJ X
1ARB X X X 1C02 X 1DHN X X 1FL0 X X
1ARL X 1C1K X X 1DIF X 1FLM X
1ARU X 1C1L X X 1DK8 X 1FLP X
1ATZ X 1C3D X 1DLW X 1FLT X
1AUO X 1C3K X 1DOS X 1FNA X

Table A.1: The SNAPP-Fold Training Set.
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1FNC X 1HMT X 1JQ5 X 1MIX X X
1FNF X 1HOE X 1JUV X 1MJC X
1FOB X 1HQ0 X 1JVW X 1MK0 X
1FP2 X 1HUF X X 1JX6 X 1ML4 X
1FS7 X 1HX0 X 1JYE X 1MLA X
1FSF X 1HYP X X 1JYH X X 1MML X X
1FT5 X 1HZ4 X 1K04 X 1MOF X
1FTR X 1HZT X X 1K1B X 1MOL X
1FXD X 1I1W X 1K4I X 1MOQ X
1G12 X 1I27 X 1K7C X 1MRJ X
1G2R X 1I2A X 1KCM X X 1MRO X
1G5A X 1I2T X X 1KF5 X 1MSC X X
1G5T X 1I71 X 1KFN X 1MSI X
1G66 X 1I8O X 1KHI X 1MSK X
1G6H X 1IAB X 1KLX X X 1MUG X
1G6X X 1IAP X X 1KMO X 1MUN X X
1G8A X 1ID0 X 1KN3 X 1MUW X
1G9G X 1IDO X 1KOE X X X 1MW7 X
1GAK X X 1IFC X 1KP6 X X 1MWP X X
1GBS X X 1IFR X 1KPF X 1MZL X
1GCA X 1IIB X 1KPT X 1N5U X
1GCU X 1IO0 X 1KQR X 1N67 X
1GDJ X 1IO1 X 1KS8 X 1NAR X X
1GNY X 1IQZ X 1KT6 X 1NBC X
1GOF X 1ISU X 1KUH X 1NC5 X X
1GP0 X 1ITX X 1KWB X 1NDD X
1GPE X 1IXH X 1L2P X 1NEP X
1GPR X X 1IZC X 1L9L X 1NF9 X
1GQN X 1J0P X 1LAM X 1NG2 X
1GS5 X 1J1T X 1LC0 X 1NG6 X X
1GS9 X X 1J23 X 1LIT X 1NIF X
1GSA X 1J24 X 1LKI X X 1NIJ X X
1GSM X 1J27 X X 1LMB X 1NKD X X X
1GUQ X 1J2L X 1LN4 X 1NKG X
1GVD X 1J33 X 1LO7 X 1NKR X X X
1GVP X X X 1J74 X 1LPL X 1NLS X X
1GWE X 1J7G X 1LSL X 1NOA X
1GWM X 1J85 X 1LSY X 1NOG X
1GXN X 1JB3 X 1LTU X 1NOX X
1GXQ X 1JDW X 1LWB X X 1NPK X
1GXU X 1JF3 X 1LYV X 1NSJ X
1H16 X 1JF8 X 1LZL X X 1NTH X
1H2R X 1JFB X 1M15 X 1NTY X X
1H6T X 1JHC X 1M1H X X 1NWA X X
1H72 X 1JHJ X 1M4L X 1NWP X
1H75 X 1JHS X X 1M9Z X 1NWZ X
1HCR X 1JID X 1MAI X 1NZY X
1HDO X 1JIX X 1MD6 X 1O0X X
1HF8 X 1JL1 X X 1MF7 X X 1OA4 X
1HFC X 1JMW X 1MFI X 1OAA X
1HH8 X 1JOS X X 1MG4 X 1OCY X
1HKA X X 1JOV X 1MGT X 1OFL X
1HLW X 1JPE X 1MHN X 1OGM X

(Continued—2 of 7) The SNAPP-Fold Training Set.
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1OGO X 1QNR X 1SAU X X 1UAE X
1OGQ X 1QOY X 1SDI X 1UAI X
1OK0 X 1QQ4 X 1SFP X X 1UAS X
1OPC X 1QQ5 X 1SFS X 1UCD X
1OPD X 1QQF X 1SJW X 1UCS X X
1OSA X 1QR0 X 1SKZ X 1UEK X X
1OTM X 1QS1 X 1SLL X 1UG6 X
1OUV X 1QSA X 1SMD X 1UGI X
1OX3 X 1QSG X 1SML X 1UH4 X
1OXJ X 1QST X 1SQW X X 1UI0 X
1OZ9 X X 1QTO X 1SRA X 1UJ8 X X
1P1L X 1QTS X X 1SRV X 1UK8 X
1P1M X 1QTW X X 1STN X 1ULN X
1P3C X X 1QWK X 1SU8 X 1ULR X
1P4P X 1QZM X X 1SUR X X 1UNP X
1P7S X 1QZN X 1SYY X 1UOH X
1PB1 X 1R1H X 1T1U X X 1UOK X
1PBN X 1R29 X X 1T2D X 1UOY X X
1PBV X 1R69 X 1T2I X 1URO X
1PCF X 1R6D X 1T6C X 1UTG X X
1PDO X X X 1R6J X 1T8K X 1UWF X
1PGV X 1R6X X 1TAX X 1UXY X
1PLC X 1R7J X X 1TCA X 1V05 X X
1PMI X 1R8O X 1TFE X X X 1V2X X
1PO5 X 1R9H X 1TFU X 1V30 X
1POA X 1R9L X 1TG0 X 1V33 X
1POC X 1RA0 X 1TGX X 1V77 X X
1PSR X 1RA9 X 1THV X 1V7Q X
1PUC X 1RB9 X 1TIF X X 1V8E X
1PZ4 X 1RC9 X 1TIG X X 1V9F X
1PZC X 1RCF X 1TJE X 1VBW X
1PZW X 1RGE X 1TJY X 1VCA X
1Q1F X 1RI6 X 1TKE X 1VCC X X X
1Q2Y X 1RIE X 1TL2 X 1VE1 X
1Q5Z X X 1RIS X 1TM2 X 1VF8 X
1Q6Z X 1RJ1 X 1TML X 1VFR X
1QAZ X 1RL0 X 1TOA X 1VFY X
1QB7 X 1RL6 X X 1TP6 X X 1VHH X
1QCX X X 1RMG X 1TPH X 1VIE X
1QD1 X 1RO2 X 1TQG X X 1VIN X
1QFT X 1ROA X 1TT8 X 1VLS X
1QGI X X 1ROC X 1TTB X 1VSR X X
1QH4 X 1RTQ X 1TU9 X 1VYI X
1QH5 X 1RTT X 1TUA X X 1VYR X
1QHD X 1RU4 X 1TUK X 1W0N X
1QHF X 1RV9 X 1TWU X X 1W4S X
1QHV X 1RW7 X X 1TX4 X 1W53 X
1QIP X 1RWH X 1TXL X 1W66 X
1QJD X 1RWZ X X 1TZV X 1W7B X
1QKS X 1RYO X 1U53 X 1WAB X
1QL0 X 1RZL X 1U5H X 1WAP X
1QLM X 1S3C X 1U5P X 1WC2 X
1QNF X 1S7I X X 1U84 X 1WCW X

(Continued—3 of 7) The SNAPP-Fold Training Set.
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1WD3 X 1YQE X 2BOP X 2EAQ X
1WER X X 1YQS X 2BUE X 2ECE X X
1WHI X X X 1YT3 X 2BV9 X 2EEY X
1WHO X 1YTB X 2C0H X 2EFV X
1WKA X 1YTQ X 2C2Q X 2EHG X
1WLU X 1YU0 X 2C2U X 2EHZ X
1WN2 X 1YU5 X X 2C71 X 2EJX X X
1WNH X 1YVE X 2C78 X 2END X X X
1WOL X 1YW5 X 2C7P X 2ERF X X
1WOS X 1YZV X 2CBP X 2ERW X
1WOU X X 1Z2N X 2CC6 X 2ESK X
1WPA X 1ZCJ X 2CCQ X 2ET1 X
1WUB X 1ZD8 X X 2CE2 X 2EVB X
1WVF X 1ZDY X 2CG7 X X 2EX2 X
1WWC X 1ZEQ X 2CGQ X 2EYI X
1X0T X 1ZHX X 2CHH X 2F15 X
1X1E X 1ZI8 X 2CI2 X 2F5T X
1X1N X 1ZIN X 2CI3 X 2F60 X
1X38 X 1ZJC X 2CIW X 2F6E X X
1X3K X 1ZK4 X 2CKK X 2F7F X
1X3O X 1ZLB X 2CKX X X 2FBA X
1X54 X 1ZLM X 2CM4 X 2FBQ X
1X6J X 1ZPW X 2CPL X 2FC3 X
1X8Q X 1ZSQ X 2CTC X 2FCB X
1X91 X X 1ZT3 X 2CUA X 2FD5 X
1XAK X X 1ZVA X X 2CVE X 2FDN X X
1XAU X 1ZXX X 2CWR X X 2FGQ X
1XAW X X 1ZZK X X 2CWS X 2FHF X
1XBI X 256B X 2CXC X 2FI1 X
1XFK X X 2A14 X 2CYG X X 2FI9 X X
1XGW X 2A1I X 2CYJ X 2FJ8 X X
1XIK X 2A4D X 2D48 X 2FJZ X
1XIX X 2A6Z X X 2D4P X X 2FK9 X
1XKR X X 2ACY X 2D4X X X 2FL4 X
1XMK X 2AHN X 2D59 X X 2FMA X
1XMT X 2ASB X 2D5B X 2FPH X X
1XNB X 2AYD X 2D80 X 2FQ3 X X
1XOV X 2AYH X 2D8E X 2FQX X
1XQO X X 2B0A X X 2DDX X 2FRG X X
1XQW X 2B0J X 2DJI X 2FUJ X
1XUB X 2B0T X 2DP9 X X 2FUK X
1XW3 X 2B1K X 2DRI X 2FVY X
1XWL X 2B2H X 2DSX X 2FWH X
1Y8A X 2B3M X 2DYI X X 2FYG X
1Y93 X 2B5W X 2E0T X 2FZP X X
1YAC X 2B8I X X 2E1F X 2G3R X
1YD0 X 2BAA X X 2E2C X 2G5X X
1YFQ X 2BBE X 2E2O X 2G69 X
1YGE X 2BBK X 2E4T X 2G7O X X
1YGT X 2BJF X 2E56 X 2GDM X
1YHH X 2BJQ X X 2E7Z X 2GGC X
1YIB X 2BK8 X 2E8E X 2GGO X
1YP5 X 2BKF X 2E8F X 2GJL X

(Continued—4 of 7) The SNAPP-Fold Training Set.
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2GKE X 2NAC X 2PWQ X 2VFO X
2GKT X 2NLR X X 2Q35 X 2VFR X
2GQV X 2NSN X 2Q3T X 2VGA X
2GU3 X 2NUH X 2Q88 X 2VH7 X
2GUY X 2NVH X 2QBV X 2VHK X
2GWM X 2NWD X 2QCP X 2VPA X
2GXG X 2NX2 X X 2QDX X 2VQ2 X
2GYZ X 2O36 X 2QED X 2VXN X
2H1V X 2O37 X 2QHF X 2W0G X X
2H2Z X X 2O4A X 2QHT X 2W15 X
2HBG X 2O90 X 2QIA X 2W1R X X
2HD9 X 2O9S X 2QIM X 2W2E X
2HDZ X 2O9U X 2QJL X 2W39 X
2HEW X 2OBI X 2QRL X 2W5Q X
2HY7 X X 2OCH X 2QSA X 2W86 X
2HYK X 2OEB X X 2QSK X 2WAG X
2HZC X 2OF3 X X 2QT4 X 2WAO X
2I1U X 2OFZ X 2QVO X 2WCJ X
2I49 X X 2OG4 X X 2QY9 X 2WDC X
2I53 X 2OH5 X 2R0B X 2WDS X
2I5V X 2OIT X 2R2Y X X 2WF7 X
2I6V X 2OKT X X 2R6Q X 2WFO X
2I9I X X 2OP6 X 2R75 X 2WJ5 X X
2IBL X X 2OPC X 2R9F X 2WNP X
2IE8 X 2OSA X 2RB8 X X 2WOL X
2IGD X X 2OSX X 2RBK X 2WW5 X
2IGP X 2OUJ X 2RDQ X 2WY4 X
2II2 X 2OV0 X 2RER X X 2WZO X
2IIH X 2OVG X 2RFA X 2X0C X
2IMF X 2OY7 X 2RH3 X X 2X35 X
2IMQ X 2P09 X 2RHE X 2X3M X X
2IQY X 2P14 X 2RIK X 2X49 X
2IVN X 2P51 X 2RJ2 X 2X4L X X
2IXM X X 2P52 X 2RK5 X 2X5X X
2J6A X 2P6W X 2RKN X 2X5Y X X
2J6B X X 2P84 X 2RN2 X 2XEU X
2J70 X 2PBO X 2SAK X X 2XFG X
2J71 X 2PCY X 2SIL X 2XJ4 X X
2J8B X X 2PET X 2SN3 X 2XKI X
2J8K X 2PFZ X 2SPC X 2XMZ X X
2J9V X 2PKO X 2TGI X X X 2XOD X
2JCP X 2PLC X 2TPS X 2XOM X
2JDC X 2PLQ X 2TRX X 2XQH X
2JEK X 2PMR X X 2UVJ X 2XRH X
2JFR X 2PN6 X 2UYT X 2XU3 X
2JGP X 2PND X X 2V2P X 2XVY X
2JHY X 2PNE X X 2V3I X 2XWS X X
2JIC X 2PO4 X 2V84 X 2XWV X
2LIS X X X 2POR X X 2V8I X 2XXP X

2MBR X 2PPN X 2V9V X 2XZH X
2MCM X X 2PTD X 2VB1 X 2Y1B X
2MHR X X 2PTH X X X 2VBU X 2Y24 X
2MYR X 2PVQ X 2VC8 X X 2Y39 X
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2Y6H X 3ADO X 3CTG X 3FWU X
2Y6X X 3AFV X 3CTZ X 3FY3 X
2Y78 X 3AG7 X 3CU9 X 3G21 X
2Y88 X 3AGN X 3CYR X 3G2B X
2Y9F X X 3AHC X 3D2A X 3G63 X
2Y9U X 3AJ7 X 3D30 X 3G6L X
2YFO X 3AKS X 3D79 X 3G91 X
2YGS X 3AMR X 3DCM X 3GA4 X
2YH5 X 3APP X 3DFG X X 3GD6 X
2YL6 X 3AS8 X 3DG6 X 3GHA X
2YLH X 3ATR X 3DHA X 3GKJ X
2YLN X 3ATV X 3DJ9 X 3GKR X
2YSK X 3AU2 X 3DNZ X 3GMI X
2YVI X 3AWM X 3DSH X 3GOE X
2YVN X 3B02 X 3DSO X 3GON X
2YVT X 3B0G X 3DU1 X 3GRH X
2YWJ X 3B34 X 3DXT X 3GRS X
2YXF X 3B7H X 3E4G X 3GW3 X
2YXN X 3B9W X 3E7P X 3GWI X
2YZT X 3BA1 X 3E8T X 3H04 X
2Z0M X 3BC9 X 3EAZ X 3H0O X
2Z0X X 3BCI X 3EB5 X 3H4X X
2Z51 X 3BHS X 3EBX X 3H6J X X
2Z5W X 3BOD X 3EE4 X 3H6Q X X
2Z6O X 3BOE X 3EEH X 3H79 X
2Z72 X 3BPV X X 3EIN X 3H7I X
2Z84 X X 3BQE X 3EIP X 3H9C X
2Z8Z X 3BS1 X 3EJC X 3HAK X
2ZA7 X 3BTO X 3EJF X 3HHY X
2ZB4 X 3BV4 X 3EJG X 3HJH X
2ZCO X 3BWH X 3EKI X 3HLF X
2ZGR X 3BWZ X 3ELN X 3HMS X
2ZHJ X 3BY8 X 3EMV X 3HNX X
2ZJ3 X 3BZM X 3ENU X X 3HNY X X
2ZK9 X 3BZT X 3ERS X 3HPC X
2ZNR X 3C70 X 3EVF X 3HR8 X X
2ZPT X 3CA7 X X 3EXV X 3HRN X
2ZQE X X 3CHB X 3EYE X X 3HSU X
2ZWU X 3CHJ X 3EZM X 3HVV X
2ZXY X 3CHM X 3F47 X 3I0W X
2ZZJ X 3CHY X 3F4M X 3I2K X
3A09 X 3CIV X 3F4S X 3I31 X
3A0X X 3CKF X 3F6F X 3I45 X
3A2Z X X 3CL5 X 3F7L X 3I47 X
3A38 X 3CM3 X 3F7M X 3I8Z X
3A4C X X 3CNU X X 3FAP X 3I94 X
3A57 X X 3CO1 X 3FBL X 3IB7 X
3A72 X 3COU X 3FCI X 3ID1 X X
3A7L X 3CQT X 3FH2 X 3ID4 X
3ACH X 3CSG X 3FO8 X 3II2 X
3ACP X X 3CSP X 3FRR X 3IIS X
3ACX X 3CSR X 3FTD X 3IL8 X
3ADG X 3CT5 X 3FW9 X 3ILS X X
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3IM1 X 3M66 X X 3PSH X 3T3L X
3IM3 X 3M7K X 3PTE X X 3TBD X
3IOH X 3MBR X 3PVH X 3TBN X
3IOX X 3MDM X 3PVI X 3TCH X
3IP0 X 3MDU X 3PWZ X 3TGL X
3IPC X 3MSH X 3PYP X 3THG X
3IRP X 3MU7 X 3PYW X 3THI X
3JS8 X 3MX7 X X 3PZ9 X 3TOW X X
3JU4 X 3N0K X X 3Q4O X 3TP3 X
3JV1 X X 3N11 X 3Q6B X X 3TPA X
3JYO X 3N17 X 3Q6L X 3TSS X X
3JZZ X 3N2T X 3QC7 X X 3TTC X
3K3V X X 3N4J X 3QEX X 3TUA X
3K4K X 3N90 X 3QM9 X 3U01 X
3K6U X 3N9K X 3QNS X 3U0V X
3K7I X 3NDI X 3QP4 X 3U81 X
3K8U X X 3NDQ X 3QSQ X X 3UJC X
3K8W X X 3NE0 X X 3QUW X 3UMH X
3KB5 X 3NE3 X 3QVP X 3UQ8 X
3KB9 X 3NE4 X 3QVX X 3US6 X X
3KCW X 3NJM X 3QY7 X 3V39 X
3KFF X 3NM6 X 3QZX X 3V46 X X
3KJT X 3NOJ X 3R26 X 3VEN X
3KLK X 3NPH X X 3R2K X 3VGL X
3KLR X 3NVS X 3R5T X 3VMN X
3KNV X 3NYC X 3R6U X 3VNY X
3KP8 X 3NZM X 3R9M X 3VUB X X
3KQ0 X 3O1C X 3RC1 X 3WRP X
3KR9 X 3O1Z X 3RDJ X 3ZR8 X
3KSX X 3O48 X X 3RGA X 3ZSL X
3KT9 X 3O8M X 3RHB X 3ZT9 X
3KVD X 3OD3 X 3RLK X 3ZUC X
3KWE X 3OG2 X 3RNV X X 3ZUD X
3KXT X 3OHS X 3RT2 X X 451C X
3L8W X 3OIG X 3RVC X X 4A02 X X
3L9A X 3OO8 X 3RZN X 4AEQ X
3L9S X 3ORY X 3RZY X 4D8L X X
3L9U X 3OV8 X 3S0A X X 4EUG X X
3LDC X 3OZP X 3S2J X 4LZT X
3LE4 X X 3P0F X 3S60 X 4PGA X
3LFP X 3P0K X 3SBM X 4PTI X
3LHC X 3P3C X 3SC0 X 5NUL X
3LIG X X 3P6D X 3SDH X 5P21 X
3LLB X X 3PAC X 3SH4 X 6CEL X
3LMO X 3PB6 X 3SHS X 6GSV X
3LP5 X 3PBF X 3SIL X 6XIA X
3LQE X 3PFG X 3SMZ X 7A3H X X
3LS0 X X 3PG4 X 3SNY X 7ATJ X
3LTJ X X 3PIW X X 3SY1 X 7FD1 X
3LX3 X 3PMS X 3SZ7 X 7RSA X
3LY7 X 3PO0 X 3SZY X
3M3G X 3PP5 X 3T2C X
3M5Q X 3PR9 X 3T3K X

(Continued—7 of 7) The SNAPP-Fold Training Set.
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1A19 X 1FM9 X 1TMQ X
1A2K X 1FNA X X 1TUL X
1A2Y X 1G20 X 1TX6 X
1A32 X 1G6V X 1U7F X
1A68 X 1GPQ X 1UBI X
1ACF X X 1GPW X 1UEX X
1AIL X X 1GVP X X X X 1UGH X X
1AIU X 1HE1 X 1URN X
1AKJ X 1HE8 X 1UTG X X X
1AVW X 1HXY X 1VCC X X X X
1B3A X X 1HZ6 X 1VIE X X
1BGF X X X X 1IG5 X 1VLS X X
1BK2 X 1IIB X X 1W1I X
1BKR X X X X 1JPS X 1WEJ X
1BM8 X X X X 1KPE X 1WHO X X
1BQ9 X 1KU6 X 1WQ1 X
1BTH X 1L9B X 1XD3 X
1BUI X 1LIS X 1XX9 X
1BVN X 1LOU X 1YVB X
1C8C X 1MA9 X 1ZY8 X
1C9O X 1NBF X 256B X X
1CC8 X X X 1NPS X 2A5T X
1CEI X X 1OOK X 2ACY X X
1CG5 X 1OPD X X 2BKR X
1CHO X 1OPH X 2BNQ X
1CTF X X X 1P7Q X 2BTF X
1DFJ X 1PGX X 2CHF X
1DHN X X X 1PPF X 2CI2 X X
1E6I X 1PTQ X 2CKH X
1E96 X 1R0R X 2FI4 X
1ELW X 1R4M X 2GOO X
1ENH X 1R69 X X 2KAI X
1EW4 X X X 1RNB X 2SNI X
1EWY X 1S6V X 2TIF X
1EYV X 1SCJ X 3FAP X X
1EZU X 1SHF X 3PRO X
1F51 X 1T6G X 3SIC X
1F6M X 1TEN X 4UBP X
1FKB X 1TIG X X X 5CRO X

Table A.2: The Baker and Rosetta 62 Decoy Sets.
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12AS X 1BPL X 1DPG X 1F2T X 1H03 X
137L X 1BQU X 1DQE X 1F3U X 1H2B X
1A19 X 1BR1 X 1DQP X 1F46 X 1H2D X
1A22 X 1BRS X 1DQZ X 1F5M X 1H2V X
1A25 X 1BT6 X 1DU5 X 1F5Q X 1H3F X
1A2X X 1BTK X 1DVK X 1F60 X 1H3L X
1A3A X 1BUH X 1DXG X 1F9W X 1H4G X
1A4U X 1BVN X 1DYS X 1FBV X 1H4R X
1A73 X 1BXG X 1DYT X 1FD3 X 1H6C X
1A99 X 1BXT X 1DZP X 1FGU X 1H6P X
1A9N X 1BYF X 1E05 X 1FIE X 1H7S X
1AA7 X 1BYU X 1E2K X 1FJH X 1H97 X
1AAP X 1C02 X 1E51 X 1FLG X 1H9S X
1ACB X 1C8U X 1E5R X 1FM0 X 1HCI X
1AD3 X 1C94 X 1E6F X 1FM6 X 1HDH X
1AIH X 1CDC X 1E9G X 1FN9 X 1HDM X
1AKH X 1CI6 X 1E9Y X 1FON X 1HEI X
1ALL X 1CI9 X 1EAJ X 1FP3 X 1HGX X
1AN9 X 1CKI X 1EAY X 1FQK X 1HLG X
1AOC X 1CLV X 1EBF X 1FR8 X 1HR6 X
1AOH X 1CLX X 1ECS X 1FSY X 1HRH X
1AOR X 1CM5 X 1ECX X 1FV1 X 1HRK X
1AOZ X 1CQ3 X 1EDM X 1FVK X 1HSL X
1AQ0 X 1CSE X 1EE8 X 1FWK X 1HSS X
1AQU X 1CSG X 1EEJ X 1G60 X 1HW1 X
1ATL X 1CT9 X 1EF0 X 1G6G X 1HX1 X
1AU1 X 1CXZ X 1EGA X 1G6V X 1HXM X
1AUO X 1CY9 X 1EI6 X 1G6W X 1HYN X
1AVA X 1D0N X 1EK6 X 1G73 X 1I1C X
1AYF X 1D0Q X 1EKE X 1G8T X 1I2M X
1AYO X 1D2O X 1EO6 X 1GAN X 1I2S X
1AZ3 X 1D2Z X 1EPA X 1GD2 X 1I49 X
1AZT X 1D3Y X 1EPF X 1GGG X 1I4J X
1AZW X 1D7F X 1EQT X 1GL4 X 1I58 X
1B0N X 1D7M X 1ERN X 1GMV X 1I7N X
1B2K X 1D8H X 1ESG X 1GOU X 1I8L X
1B34 X 1DBQ X 1ET1 X 1GQ1 X 1IAJ X
1B41 X 1DEK X 1ETA X 1GQI X 1IAR X
1B49 X 1DFN X 1ETE X 1GQP X 1IAZ X
1B67 X 1DG1 X 1ETH X 1GQY X 1IBR X
1B8Z X 1DHF X 1EV7 X 1GT6 X 1IC2 X
1B9N X 1DJ0 X 1EVL X 1GT9 X 1ICI X
1BAY X 1DJ7 X 1EX2 X 1GU2 X 1ID1 X
1BCM X 1DJ8 X 1EXT X 1GUD X 1IGQ X
1BD9 X 1DJN X 1EYM X 1GVE X 1II2 X
1BDY X 1DJT X 1EYV X 1GVF X 1II7 X
1BH5 X 1DKF X 1EZ0 X 1GWI X 1IJY X
1BH8 X 1DKT X 1EZG X 1GX2 X 1IK9 X
1BHH X 1DL5 X 1F0K X 1GXR X 1ILR X
1BK5 X 1DML X 1F14 X 1GXY X 1IPS X
1BLX X 1DOK X 1F1M X 1GY2 X 1IQ8 X
1BMO X 1DOS X 1F2D X 1GYJ X 1IRD X
1BP3 X 1DP4 X 1F2I X 1GZJ X 1ITB X

Table A.3: The Dockground Training Set.
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1ITV X 1KO6 X 1MXR X 1OKJ X 1QGK X
1IU8 X 1KP0 X 1MY7 X 1OLO X 1QH3 X
1IVU X 1KPT X 1MZG X 1OLZ X 1QH4 X
1IX9 X 1KSH X 1MZW X 1OMO X 1QJS X
1IXM X 1KTJ X 1N1B X 1ON2 X 1QLT X
1IXS X 1KTN X 1N1J X 1OO0 X 1QLW X
1IYB X 1KU2 X 1N46 X 1OOE X 1QO8 X
1IYJ X 1KU6 X 1N71 X 1OQM X 1QPO X
1J0H X 1KU7 X 1N7S X 1OR7 X 1QPP X
1J2J X 1KXQ X 1N80 X 1ORY X 1QQ5 X
1J30 X 1KZH X 1NA6 X 1OSY X 1QQG X
1J3M X 1KZQ X 1NA8 X 1OTJ X 1QQJ X
1J7N X 1L0W X 1NBQ X 1OV9 X 1QRD X
1JAT X 1L4D X 1NF3 X 1OVN X 1QSD X
1JC5 X 1L4I X 1NGM X 1P22 X 1QSJ X
1JDH X 1L6R X 1NMU X 1P35 X 1QUP X
1JE5 X 1L6X X 1NO4 X 1P4K X 1QXM X
1JEQ X 1L7D X 1NOY X 1P65 X 1QXR X
1JI3 X 1L8D X 1NPE X 1P6A X 1QYD X
1JIW X 1LB1 X 1NQD X 1PC6 X 1R0M X
1JK0 X 1LGQ X 1NQL X 1PCF X 1R0R X
1JK6 X 1LHP X 1NRV X 1PFQ X 1R0V X
1JKE X 1LLF X 1NSX X 1PH5 X 1R1D X
1JKG X 1LM5 X 1NW9 X 1PIX X 1R4C X
1JKX X 1LM7 X 1NXM X 1PL5 X 1R5P X
1JL0 X 1LP1 X 1O0W X 1PN0 X 1R61 X
1JL9 X 1LQ9 X 1O1H X 1PN4 X 1R7A X
1JLY X 1LT1 X 1O4T X 1PNV X 1R8D X
1JMA X 1LUC X 1O4Z X 1PPV X 1R8O X
1JME X 1LWJ X 1O62 X 1PQ1 X 1R9D X
1JMK X 1M0W X 1O64 X 1PQW X 1RDL X
1JMV X 1M1F X 1O7I X 1PS6 X 1RJC X
1JOC X 1M27 X 1O7N X 1PSA X 1RK4 X
1JOE X 1M2D X 1O7Z X 1PSR X 1RKE X
1JQL X 1M2V X 1O9P X 1PUG X 1RKU X
1JU9 X 1M4I X 1O9S X 1PVC X 1RQ2 X
1JXH X 1M4R X 1OBB X 1PVH X 1RW0 X
1K0Z X 1M9X X 1OBQ X 1PVM X 1RY9 X
1K55 X 1MA9 X 1OC0 X 1PXV X 1S0P X
1K5N X 1MBY X 1OC2 X 1PY1 X 1S4C X
1K66 X 1MDT X 1OD5 X 1PYB X 1S6B X
1K8R X 1MI3 X 1ODT X 1Q08 X 1S7H X
1K94 X 1MIU X 1ODZ X 1Q1E X 1SAW X
1KA8 X 1MIY X 1OF3 X 1Q2H X 1SB2 X
1KA9 X 1MJF X 1OF5 X 1Q2W X 1SEI X
1KCF X 1MJH X 1OFP X 1Q3O X 1SGH X
1KCX X 1MJV X 1OFZ X 1Q67 X 1SGM X
1KFI X 1MK4 X 1OG5 X 1QA9 X 1SH5 X
1KI1 X 1MKB X 1OH0 X 1QB2 X 1SH8 X
1KJN X 1MKF X 1OI2 X 1QBI X 1SHY X
1KLF X 1MKZ X 1OIA X 1QC7 X 1SJ1 X

1KMM X 1MQK X 1OIO X 1QD1 X 1SJ5 X
1KNQ X 1MVF X 1OKI X 1QFH X 1SMX X

(Continued—2 of 7) The Dockground Training Set.
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1SPH X 1U5K X 1VIX X 1XB4 X 1YT5 X
1SQ0 X 1U5W X 1VKC X 1XBY X 1YUZ X
1SQ5 X 1U60 X 1VL7 X 1XCC X 1YXY X
1SQU X 1U6Z X 1VL8 X 1XCG X 1YYQ X
1SR7 X 1U8S X 1VLJ X 1XDP X 1YZ3 X
1SRQ X 1U9D X 1VP6 X 1XE7 X 1Z0J X
1SV0 X 1UAD X 1VQ0 X 1XFF X 1Z3E X
1SVP X 1UC2 X 1VQU X 1XG2 X 1Z40 X
1SVX X 1UC8 X 1VSC X 1XG7 X 1Z6B X
1SYX X 1UCR X 1VSG X 1XGS X 1Z85 X
1T06 X 1UDU X 1VYB X 1XHM X 1Z8L X
1T08 X 1UDV X 1VZ0 X 1XI3 X 1Z8U X
1T0F X 1UEF X 1VZ6 X 1XKF X 1Z92 X
1T0P X 1UFB X 1VZI X 1XKO X 1Z9H X
1T11 X 1UGH X 1W2Y X 1XKZ X 1ZC3 X
1T3C X 1UGS X 1W3Z X 1XLY X 1ZC6 X
1T4B X 1UIU X 1W5R X 1XTG X 1ZGR X
1T6B X 1UJN X 1W61 X 1XUV X 1ZH1 X
1T6F X 1UJW X 1W7I X 1XV8 X 1ZHQ X
1T6G X 1ULK X 1W9C X 1XVP X 1ZI0 X
1T6S X 1US7 X 1W9E X 1XXO X 1ZJJ X
1T6Z X 1USU X 1WDZ X 1XZP X 1ZK8 X
1T70 X 1UT7 X 1WIW X 1Y0Z X 1ZKE X
1T92 X 1UTC X 1WKQ X 1Y3T X 1ZKR X
1TA3 X 1UUZ X 1WLE X 1Y4J X 1ZLH X
1TC1 X 1UV7 X 1WLG X 1Y64 X 1ZM1 X
1TC5 X 1UW4 X 1WLT X 1Y6H X 1ZOQ X
1TD9 X 1UWK X 1WMH X 1Y6Z X 1ZOR X
1TDQ X 1UZ3 X 1WMW X 1Y71 X 1ZPS X
1TE1 X 1V00 X 1WMX X 1Y8Q X 1ZQ9 X
1TE5 X 1V13 X 1WNF X 1Y96 X 1ZRS X
1TEE X 1V25 X 1WPN X 1Y9W X 1ZSV X
1THT X 1V3E X 1WPX X 1YAV X 1ZTD X
1TLJ X 1V4E X 1WR8 X 1YBE X 1ZUY X
1TLL X 1V4V X 1WRD X 1YCO X 1ZV1 X
1TLU X 1V5V X 1WTJ X 1YCS X 1ZVP X
1TMQ X 1V6Z X 1WU9 X 1YD8 X 1ZW0 X
1TNR X 1V74 X 1WV2 X 1YDY X 1ZWW X
1TO6 X 1V8C X 1WV9 X 1YHC X 1ZYM X
1TQY X 1V8H X 1WW7 X 1YKD X 1ZZG X
1TT5 X 1V96 X 1WWS X 1YKH X 2A1S X
1TU1 X 1VB5 X 1WX1 X 1YKW X 2A2J X
1TUE X 1VBK X 1WY5 X 1YLA X 2A42 X
1TVN X 1VC1 X 1WYW X 1YLK X 2A4N X
1TW9 X 1VCQ X 1WYX X 1YLM X 2A72 X
1TX9 X 1VDW X 1WZ3 X 1YNF X 2A8F X
1TXG X 1VE2 X 1WZD X 1YO3 X 2A8J X
1TY0 X 1VET X 1X24 X 1YO6 X 2A9D X
1TZP X 1VF6 X 1X6I X 1YOV X 2A9F X
1U07 X 1VH4 X 1X6M X 1YOZ X 2A9S X
1U0S X 1VH5 X 1X7I X 1YPT X 2AA4 X
1U58 X 1VHI X 1X8D X 1YRT X 2ACV X
1U5E X 1VI6 X 1X9M X 1YSB X 2ADV X
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2AJF X 2CCA X 2E31 X 2G04 X 2HRK X
2AKA X 2CH4 X 2E5F X 2G0T X 2HTH X
2AKZ X 2CH7 X 2E5Y X 2G38 X 2HZG X
2AMX X 2CH8 X 2E67 X 2G3P X 2I00 X
2ANV X 2CJP X 2E7Y X 2G42 X 2I25 X
2AQ1 X 2CJT X 2EB1 X 2G59 X 2I26 X
2AQ2 X 2CK2 X 2EBY X 2G67 X 2I2W X
2ASH X 2CKL X 2ECR X 2G95 X 2I4L X
2ATP X 2CMG X 2ECS X 2GAO X 2I5G X
2AVT X 2CO7 X 2EFD X 2GCU X 2I6H X
2AVW X 2CUY X 2EGO X 2GE7 X 2I7S X
2AW2 X 2CW6 X 2EK0 X 2GEC X 2I9B X
2AW6 X 2CWK X 2EKG X 2GEY X 2I9U X
2AXP X 2D0J X 2EQ5 X 2GF2 X 2IA2 X
2AYI X 2D13 X 2ERE X 2GHV X 2IAB X
2AZJ X 2D1G X 2ETX X 2GHW X 2IB0 X
2B0R X 2D2X X 2EUL X 2GI7 X 2IBP X
2B30 X 2D4G X 2EV0 X 2GIB X 2ID3 X
2B59 X 2D4Q X 2EX3 X 2GIY X 2IDL X
2B5A X 2D5R X 2F02 X 2GJX X 2IE4 X
2B5L X 2D68 X 2F1F X 2GK9 X 2IGQ X
2B5U X 2D73 X 2F4M X 2GL7 X 2IK8 X
2B7L X 2D7D X 2F5J X 2GOM X 2IKC X
2BAY X 2D8D X 2F6U X 2GOP X 2IO4 X
2BDU X 2DBB X 2F9J X 2GPE X 2IO8 X
2BE1 X 2DC0 X 2F9Z X 2GRR X 2IP2 X
2BEX X 2DC1 X 2FA1 X 2GRX X 2IPB X
2BH1 X 2DC4 X 2FBK X 2GSK X 2IQQ X
2BJD X 2DDC X 2FBL X 2GTD X 2ITJ X
2BJI X 2DFK X 2FBN X 2GTP X 2ITM X
2BJN X 2DJX X 2FCO X 2GU9 X 2IU5 X
2BKK X 2DM9 X 2FDB X 2GUZ X 2IW2 X
2BM5 X 2DOU X 2FDS X 2GW1 X 2IWK X
2BMI X 2DPL X 2FE3 X 2GWF X 2IXP X
2BNK X 2DQL X 2FHZ X 2GX5 X 2IYC X
2BOV X 2DQR X 2FIP X 2GY7 X 2J04 X
2BSJ X 2DQW X 2FJR X 2GZ1 X 2J3L X
2BTU X 2DSJ X 2FJU X 2GZ4 X 2J4H X
2BYK X 2DST X 2FMT X 2H2N X 2J4R X
2BYW X 2DU8 X 2FN0 X 2H4M X 2J5B X
2C0L X 2DVW X 2FN6 X 2H63 X 2J5V X
2C1M X 2DW6 X 2FP1 X 2H98 X 2J6I X
2C2X X 2DWC X 2FPG X 2HBV X 2J6Y X
2C35 X 2DWU X 2FPR X 2HD0 X 2J73 X
2C3N X 2DX8 X 2FQ1 X 2HDI X 2J7N X
2C5E X 2DXU X 2FQM X 2HE0 X 2J96 X
2C5J X 2DY0 X 2FSF X 2HFK X 2J98 X
2C61 X 2DZN X 2FT0 X 2HIQ X 2J9U X
2C7N X 2E0A X 2FV2 X 2HO3 X 2J9Y X
2C8U X 2E0K X 2FVU X 2HP4 X 2JA3 X
2C9N X 2E11 X 2FXM X 2HPA X 2JAQ X
2CAR X 2E2D X 2FYI X 2HQX X 2JBA X
2CC0 X 2E2E X 2FZF X 2HQY X 2JEE X
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2JEM X 2OZA X 2QHO X 2UY1 X 2W3G X
2JG3 X 2OZN X 2QIY X 2UY7 X 2W3P X
2JGD X 2P0R X 2QJF X 2UZQ X 2W40 X
2JGT X 2P19 X 2QJW X 2V29 X 2W4E X
2JHH X 2P1M X 2QKH X 2V3E X 2W4S X
2JI5 X 2P1R X 2QKL X 2V3M X 2W6A X
2JJB X 2P3E X 2QKP X 2V42 X 2W73 X
2JKI X 2P49 X 2QL2 X 2V55 X 2W7R X

2NOG X 2P50 X 2QN5 X 2V57 X 2W80 X
2NQL X 2P5L X 2QN6 X 2V5K X 2W82 X
2NQT X 2P7J X 2QQQ X 2V5Q X 2W8B X
2NRF X 2P7O X 2QR4 X 2V5R X 2W9Z X
2NRH X 2P7V X 2QRZ X 2V62 X 2WBW X
2NTS X 2PA8 X 2QSD X 2V7B X 2WD5 X
2NVW X 2PAR X 2QSF X 2V87 X 2WE5 X
2NWI X 2PBD X 2QSJ X 2V8P X 2WEU X
2NX4 X 2PBK X 2QSU X 2V8S X 2WG4 X
2NX9 X 2PCJ X 2QT7 X 2V8Y X 2WGK X
2NXO X 2PEQ X 2QTE X 2V9B X 2WGQ X
2NXX X 2PEZ X 2QU7 X 2VBL X 2WJV X
2NZ8 X 2PF4 X 2QUL X 2VDW X 2WK7 X
2NZW X 2PIG X 2QXY X 2VEO X 2WLB X
2O27 X 2PJU X 2QYA X 2VFD X 2WLV X
2O2A X 2PK3 X 2QYP X 2VG0 X 2WMM X
2O2E X 2PKD X 2R1J X 2VHA X 2WMP X
2O2K X 2PL2 X 2R25 X 2VHB X 2WNS X
2O3A X 2PL7 X 2R33 X 2VID X 2WP4 X
2O4C X 2PLG X 2R40 X 2VJP X 2WPV X
2O70 X 2PM9 X 2R5O X 2VL1 X 2WSM X
2O7G X 2PMI X 2R5Y X 2VLG X 2WT7 X
2O8M X 2PPT X 2R7G X 2VLM X 2WTO X
2O96 X 2PQA X 2R8Q X 2VN6 X 2WTY X
2O9A X 2PQV X 2RA6 X 2VNS X 2WU9 X
2OB3 X 2PR1 X 2RAG X 2VOK X 2WUK X
2ODF X 2PR8 X 2RAW X 2VPH X 2WUS X
2OFC X 2PRV X 2RB9 X 2VPQ X 2WV0 X
2OFY X 2PRZ X 2RBE X 2VRW X 2WVL X
2OGY X 2PUY X 2RBG X 2VSG X 2WVQ X
2OIF X 2PV2 X 2RBL X 2VSI X 2WWX X

2OMZ X 2PW3 X 2RC8 X 2VSK X 2WWY X
2ON3 X 2PW9 X 2RDH X 2VUX X 2WXB X
2ONG X 2PWJ X 2RDJ X 2VVM X 2WY3 X
2OOB X 2PYW X 2REQ X 2VVT X 2WYT X
2OQQ X 2Q1Z X 2REX X 2VVW X 2WZ1 X
2OR2 X 2Q3A X 2RJZ X 2VX8 X 2WZI X
2ORI X 2Q6Q X 2RKL X 2VXB X 2X0G X
2OTN X 2Q7N X 2RL8 X 2W01 X 2X2S X
2OV2 X 2Q8O X 2SCP X 2W07 X 2X3B X
2OVI X 2Q8V X 2SPC X 2W1V X 2X3V X

2OWL X 2QBY X 2UUE X 2W2A X 2X4I X
2OX1 X 2QDQ X 2UUY X 2W2G X 2X5Q X
2OX6 X 2QG7 X 2UUZ X 2W2K X 2X65 X
2OXG X 2QGY X 2UW1 X 2W2X X 2X6H X
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2X78 X 2YVS X 3A5P X 3BX1 X 3D34 X
2X7X X 2YXZ X 3A5Y X 3BXF X 3D3C X
2X9A X 2YY0 X 3A7O X 3BXW X 3D3K X
2X9M X 2YYY X 3A7P X 3BY4 X 3D5R X
2XB6 X 2Z0D X 3A7Q X 3BY6 X 3D72 X
2XBU X 2Z0J X 3A8R X 3BYP X 3D78 X
2XCC X 2Z26 X 3A9L X 3C1T X 3D7A X
2XCJ X 2Z34 X 3AB8 X 3C25 X 3DA4 X
2XDG X 2Z3O X 3ABI X 3C2X X 3DA5 X
2XDN X 2Z3Q X 3ADD X 3C3K X 3DAL X
2XEC X 2Z4V X 3AEV X 3C3Y X 3DAW X
2XG4 X 2Z5E X 3AGC X 3C4N X 3DAX X
2XGG X 2Z69 X 3AGJ X 3C6K X 3DBO X
2XGU X 2Z6E X 3AGX X 3C7K X 3DBX X
2XHE X 2Z8V X 3AIN X 3C9A X 3DCG X
2XHF X 2Z9O X 3AKJ X 3CAI X 3DD9 X
2XHY X 2ZA4 X 3AL5 X 3CAW X 3DDT X
2XIT X 2ZAE X 3AL9 X 3CEQ X 3DEM X
2XLA X 2ZB9 X 3AMI X 3CES X 3DER X
2XME X 2ZCI X 3AN1 X 3CG6 X 3DEX X
2XMJ X 2ZCN X 3ANW X 3CG7 X 3DGC X
2XOL X 2ZD7 X 3AP1 X 3CHH X 3DGQ X
2XOT X 2ZEW X 3APT X 3CJP X 3DHX X
2XPI X 2ZFD X 3AQB X 3CKA X 3DI2 X
2XPL X 2ZIG X 3AQL X 3CKI X 3DJW X
2XQN X 2ZIU X 3ASZ X 3CNM X 3DLB X
2XR1 X 2ZIX X 3AU4 X 3COO X 3DLK X
2XR4 X 2ZJS X 3AV0 X 3CP7 X 3DO8 X
2XT2 X 2ZKT X 3AYH X 3CQ4 X 3DOR X
2XTY X 2ZL7 X 3AZD X 3CQC X 3DP7 X
2XVE X 2ZNJ X 3B0F X 3CQJ X 3DPT X
2XVO X 2ZOD X 3B4R X 3CQR X 3DQG X
2XWB X 2ZOY X 3B4U X 3CRY X 3DRA X
2XWL X 2ZSG X 3B5M X 3CS5 X 3DRW X
2XWU X 2ZSJ X 3B82 X 3CSN X 3DS4 X
2XZ9 X 2ZSK X 3BA3 X 3CSX X 3DSL X
2Y1E X 2ZUV X 3BBJ X 3CT6 X 3DTN X
2Y1H X 2ZVI X 3BC1 X 3CTP X 3DVO X
2Y1X X 2ZVR X 3BCV X 3CTW X 3DZY X
2Y3W X 2ZVT X 3BCX X 3CU5 X 3E0J X
2Y43 X 2ZVY X 3BEJ X 3CUO X 3E1H X
2Y4I X 2ZW5 X 3BIL X 3CW9 X 3E1R X
2Y4J X 2ZX2 X 3BIX X 3CWF X 3E1Y X
2Y4O X 2ZXH X 3BLH X 3CWN X 3E20 X
2Y7K X 2ZYQ X 3BMZ X 3CWW X 3E33 X
2Y9M X 2ZZ8 X 3BNY X 3CXK X 3E3C X
2Y9W X 2ZZV X 3BOF X 3CYP X 3E3M X
2YAL X 3A0C X 3BOX X 3CZB X 3E3R X
2YC2 X 3A1N X 3BPJ X 3CZZ X 3E54 X
2YH6 X 3A36 X 3BS7 X 3D0R X 3E57 X
2YHO X 3A3D X 3BT3 X 3D0T X 3E5Q X
2YV9 X 3A4K X 3BUZ X 3D1B X 3E7D X
2YVR X 3A4M X 3BWG X 3D1G X 3E7J X
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3E7L X 3EVI X 3G9W X 3LCP X 3PHF X
3E7Q X 3EW1 X 3GB8 X 3LL8 X 3PHX X
3E96 X 3EWE X 3GCG X 3LPE X 3PTF X
3E9M X 3EZ1 X 3GFU X 3LQC X 3PV6 X
3EAB X 3F08 X 3GQB X 3LXR X 3QBT X
3ED4 X 3F13 X 3GTY X 3M18 X 3QF7 X
3EDJ X 3F1C X 3H11 X 3M1C X 3QHY X
3EDV X 3F1I X 3H3B X 3M7F X 3QKU X
3EEA X 3F1L X 3H5C X 3M7Q X 3QLU X
3EED X 3F1P X 3H7H X 3MC0 X 3QML X
3EEY X 3F1R X 3HCT X 3MCB X 3QQ8 X
3EFE X 3F31 X 3HE5 X 3MDY X 3R4D X
3EFO X 3F6C X 3HEI X 3MFF X 3RCZ X
3EFY X 3F6H X 3HJY X 3MJ7 X 3REA X
3EFZ X 3F6O X 3IEY X 3MLQ X 3REP X
3EGG X 3F6Q X 3ILP X 3MP7 X 3RGF X
3EGO X 3F70 X 3IXS X 3MZW X 3RL0 X
3EI3 X 3F84 X 3JUA X 3N06 X 3RNK X
3EI7 X 3F89 X 3K1I X 3N1F X 3RNQ X
3EIK X 3FAV X 3K1R X 3N4I X 3S4W X
3EIP X 3FB9 X 3K2M X 3NQU X 3S97 X
3EN0 X 3FBG X 3K6S X 3NVM X 3S9D X
3ENH X 3FBK X 3K9O X 3NW0 X 3SOH X
3ENK X 3FBN X 3K9P X 3O0G X 3SXU X
3ENT X 3FBT X 3KCP X 3O2Q X 3TAC X
3EO9 X 3FBU X 3KF8 X 3OED X 3TDU X
3EPO X 3FCX X 3KJL X 3OG4 X 3U1J X
3EPW X 3FDG X 3KLD X 3OJM X 3YGS X
3ER6 X 3FJU X 3KLS X 3ONA X 3ZWL X
3ER9 X 3FLO X 3KNB X 3OQ3 X 3ZYI X
3ERR X 3FMO X 3KXC X 3OSS X 3ZYJ X
3ESG X 3FOE X 3KYJ X 3OUR X 4CPA X
3ETH X 3FPN X 3KZ1 X 3OXU X
3EUP X 3FRU X 3LB6 X 3P0G X
3EUS X 3FXD X 3LBX X 3PH0 X
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1A1M X 1D3P X 1GG6 X 1JEK X
1A1N X 1D4P X 1GGD X 1JF1 X
1A1O X 1D4T X 1GHA X 1JGD X
1A1R X 1D5D X 1GL1 X 1JGE X
1A2X X X 1D5H X 1GMC X 1JHT X
1A8K X 1D8D X 1GMD X 1JK4 X
1A94 X 1DD3 X 1GMH X 1JMT X
1A9E X 1DD4 X 1GUX X 1JOT X
1AB9 X 1DDV X 1GWQ X 1JPF X
1ABO X 1DKD X 1GWR X 1JPG X
1AFQ X 1DKX X 1GYB X 1JPL X
1AGB X 1DKZ X 1GZL X 1JQ8 X
1AGC X 1DLK X 1H24 X 1JQ9 X
1AGD X 1DOW X 1H25 X 1JRR X
1AGE X 1DUY X 1H26 X 1JUF X
1AGF X 1DUZ X 1H27 X 1JUQ X
1AIK X 1DXP X 1HC9 X 1JW6 X
1APM X 1DY8 X 1HHI X 1JWG X
1AQC X 1DY9 X 1HHJ X 1JWY X
1ATP X 1E27 X 1HHK X 1JX2 X
1AW8 X 1E54 X 1HJA X 1JXP X
1AWI X 1E8N X 1HOC X 1K4W X
1AWQ X 1EE4 X 1HSA X 1K5N X X
1AWU X 1EE5 X 1HTM X 1K74 X
1B0G X 1EEY X 1HXL X 1K7L X
1BAI X 1EEZ X 1HXZ X 1K8D X
1BBZ X 1EG4 X 1HY2 X 1KCS X
1BC5 X 1EGP X 1I1Y X 1KD8 X
1BE9 X 1EHK X 1I31 X 1KD9 X
1BII X 1EJ4 X 1I4F X 1KJ3 X
1BJR X 1EJH X 1I7R X 1KJ7 X
1BT6 X X 1EJO X 1I7U X 1KJF X
1CA0 X 1ELR X 1I8I X 1KJG X
1CA9 X 1ELW X 1I8K X 1KJH X
1CDK X 1EMU X 1IHJ X 1KJM X
1CDM X 1EVH X 1IID X 1KJV X
1CE0 X 1EYX X 1IK9 X X 1KLU X
1CE1 X 1F47 X 1INQ X 1KPU X
1CF0 X 1F4V X 1IQ5 X 1KPV X
1CHO X 1F7A X 1IR3 X 1KU8 X
1CIQ X 1FCH X 1ISQ X 1KUJ X
1CJF X 1FM6 X X 1IWQ X 1KY7 X
1CJR X 1FM9 X 1J19 X 1KYD X
1CKA X 1FMO X 1J7Z X 1KYF X
1CKB X 1FV1 X X 1J80 X 1KYU X
1CLV X X 1FYN X 1J81 X 1KZO X
1CM1 X 1FZJ X 1J82 X 1KZP X
1CM4 X 1FZK X 1J8H X 1L2I X
1CMI X 1FZM X 1JAC X 1L3R X
1CN3 X 1FZO X 1JBP X 1L6O X
1CQ4 X 1G7P X 1JCS X 1L6X X X
1CZY X 1G7Q X 1JD5 X 1L7Z X
1D3D X 1GCT X 1JDP X 1LD9 X

Table A.4: The PepX Test Set.
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1LEG X 1OF2 X 1RBE X 1SYS X
1LEK X 1OGA X 1RBF X 1SYV X
1LEW X 1OGT X 1RBG X 1T01 X
1LK2 X 1OJ5 X 1RBH X 1T08 X X
1LQ8 X 1OKV X 1RBI X 1T0M X
1LVB X 1OM9 X 1RDQ X 1T0N X
1LVM X 1OQN X 1RDT X 1T1W X
1M26 X 1OQO X 1RIW X 1T1X X
1M2Z X 1OSV X 1RJK X 1T1Y X
1M45 X 1OSZ X 1RJY X 1T1Z X
1M46 X 1OU8 X 1RK1 X 1T20 X
1M6O X 1OV3 X 1RK3 X 1T21 X
1M7E X 1OW6 X 1RKG X 1T22 X
1MF4 X 1OXG X 1RKH X 1T3L X
1MFG X 1P4U X 1RST X 1T4F X
1MFL X 1P7V X 1RSU X 1T4U X
1MHC X 1P7W X 1RXZ X 1T4V X
1MIZ X 1P9U X 1RZX X 1T5W X
1MK7 X 1PCX X 1S6C X 1T5Z X
1MT7 X 1PFG X 1S7Q X 1T65 X
1MT8 X 1PIP X 1S7S X 1T6O X
1MT9 X 1PJ8 X 1S7T X 1T73 X
1MTP X 1PJM X 1S7V X 1T74 X
1MV9 X 1PJN X 1S8D X 1T76 X
1MVC X 1PQ1 X X 1S9W X 1T79 X
1MVU X 1PU9 X 1S9X X 1T7F X
1MWA X 1PXD X 1S9Y X 1T7M X
1MXE X 1PYO X 1SDZ X 1T7R X
1MZN X 1PZL X 1SE0 X 1TDV X
1MZW X X 1Q1S X 1SEM X 1TFC X
1N12 X 1Q1T X 1SJE X 1TG4 X
1N2R X 1Q2D X 1SJH X 1TJK X
1N4H X 1Q3P X 1SKG X 1TMC X
1N4M X 1Q61 X 1SLD X 1TN6 X
1N7F X 1Q62 X 1SLE X 1TN7 X
1N8O X 1Q8T X 1SLG X 1TN8 X
1NAN X 1Q8U X 1SMH X 1TOQ X
1NIW X 1Q8W X 1SP5 X 1TP3 X
1NLN X 1Q94 X 1SQK X 1TP5 X
1NQ7 X 1QD6 X 1SRN X 1TSQ X
1NRL X 1QEW X 1SSA X 1TSU X
1NTV X 1QLS X 1SSB X 1TVB X
1NU2 X 1QMZ X 1SSC X 1TVH X
1NVQ X 1QO3 X 1SSH X 1TW6 X
1NVR X 1QR1 X 1STC X 1TWB X
1NVS X 1QSC X 1STR X 1U00 X
1NX0 X 1QTX X 1STS X 1U3R X
1NX1 X 1QVO X 1SVE X 1U3S X
1O6K X 1R17 X 1SVF X 1U6H X
1O6L X 1R2B X 1SVG X 1U7B X
1O9U X 1R5V X 1SVH X 1U8T X
1OAI X 1R9N X 1SVZ X 1U9E X
1OEB X 1RBC X 1SYQ X 1U9L X

(Continued—2 of 6) The PepX Test Set.
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1UEF X X 1XH6 X 1ZW2 X 2C1A X
1UGX X 1XH7 X 1ZYS X 2C1B X
1UHD X 1XH8 X 2A25 X 2C3I X
1UHE X 1XH9 X 2A3I X 2C5I X
1UJ0 X 1XHA X 2A3Z X 2C5K X
1UK4 X 1XIU X 2A40 X 2C7U X
1UKH X 1XME X 2A4G X 2CCH X
1UTC X X 1XOC X 2A4Q X 2CE8 X
1UTI X 1XOW X 2A4R X 2CE9 X

1UVQ X 1XR8 X 2A6I X 2CHA X
1UXS X 1XR9 X 2A83 X 2CIK X
1UXW X 1XU2 X 2ADV X X 2CK3 X
1V1T X 1Y2A X 2AI4 X 2CLR X
1VAC X 1Y3A X 2AIJ X 2CLV X
1VAD X 1Y43 X 2AIK X 2CLZ X
1VC3 X 1YBO X 2AK5 X 2CNY X
1VGC X 1YCQ X 2AO6 X 2CNZ X
1VGK X 1YDI X 2AQ9 X 2CO0 X
1VWA X 1YDP X 2ARQ X 2CO1 X
1VWB X 1YDR X 2ARR X 2CO2 X
1VWC X 1YDS X 2ATP X X 2CO4 X
1VWD X 1YDT X 2AV1 X 2CVY X
1VWE X 1YFN X 2AV7 X 2CWG X
1VWF X 1YK0 X 2AXF X 2D0N X
1VWG X 1YMT X 2AXG X 2D10 X
1VWH X 1YN6 X 2B1J X 2D1K X
1VWM X 1YN7 X 2B1N X 2D1X X
1VWN X 1YOK X 2B1V X 2D3G X
1VWO X 1YP0 X 2B1Z X 2D5W X
1VWP X 1YPH X 2B23 X 2DEW X
1W0V X 1YUC X 2B3G X 2DEX X
1W0W X 1YWO X 2B9H X 2DEY X
1W3C X 1YY6 X 2B9I X 2DF6 X
1W70 X 1YYE X 2B9J X 2DRK X
1W80 X 1YYP X 2BBA X 2DRM X
1W9O X 1Z96 X 2BCX X 2DS2 X
1WBP X 1ZAF X 2BE6 X 2DS8 X
1WBX X 1ZAV X 2BFY X 2DUJ X
1WBY X 1ZAW X 2BJ4 X 2DYH X
1WBZ X 1ZAX X 2BP3 X 2DYP X
1WKW X 1ZDT X 2BR8 X 2DZE X
1X11 X 1ZGX X 2BRQ X 2E7L X
1X2R X 1ZGY X 2BSR X 2EEO X
1X76 X 1ZH7 X 2BSS X 2ERZ X
1X78 X 1ZHK X 2BST X 2F31 X
1X7B X 1ZHL X 2BUO X 2F3Y X
1X7J X 1ZKK X 2BVO X 2F3Z X
1X7Q X 1ZKY X 2BVP X 2F53 X
1X7R X 1ZSD X 2BVQ X 2F7E X
1XB7 X 1ZT1 X 2BYP X 2F7X X
1XH3 X 1ZUK X 2BZ8 X 2FAI X
1XH4 X 1ZV7 X 2BZK X 2FF6 X
1XH5 X 1ZVZ X 2BZW X 2FFF X

(Continued—3 of 6) The PepX Test Set.
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2FFU X 2H4Q X 2NXD X 2Q7L X
2FGE X 2H59 X 2NXL X 2QA8 X
2FGR X 2H6H X 2NXM X 2QAB X
2FKA X 2H6P X 2O02 X 2QAC X
2FLK X 2HC4 X 2O4J X 2QBW X
2FLU X 2HCJ X 2O4R X 2QBX X
2FLW X 2HD4 X 2O5G X 2QGT X
2FMF X 2HFP X 2O60 X 2QGW X
2FMH X 2HI8 X 2O88 X 2QKH X X
2FMI X 2HJK X 2O8M X X 2QKI X
2FMK X 2HJL X 2O9Q X 2QL5 X
2FNS X 2HKF X 2O9V X 2QL7 X
2FNT X 2HLB X 2OC0 X 2QL9 X
2FOJ X 2HN7 X 2ODB X 2QME X
2FOO X 2HPL X 2OEI X 2QN6 X X
2FOP X 2HPZ X 2OH0 X 2QOS X
2FOT X 2HQW X 2OI9 X 2QPY X
2FVJ X 2HT9 X 2OIN X 2QR9 X

2FYM X 2I04 X 2OJF X 2QSE X
2FYS X 2I0L X 2OKR X 2QV1 X
2FYZ X 2ILM X 2OTW X 2QXM X
2FZ3 X 2IV9 X 2OVH X 2QXV X
2G1T X 2IVZ X 2P0W X 2QYF X
2G30 X 2IZX X 2P15 X 2QZO X
2G5L X 2J6F X 2P1L X 2R28 X
2G5O X 2J6O X 2P1N X 2R2M X
2G9H X 2J7X X 2P1O X 2R7G X X
2GCH X 2J7Y X 2P1Q X 2RFX X
2GCT X 2JAM X 2P1T X 2RIV X
2GFC X 2JBY X 2P1U X 2RIW X
2GGM X 2JDI X 2P1V X 2RKY X
2GIT X 2JDL X 2P4R X 2SIV X

2GMT X 2JDO X 2P54 X 2UVX X
2GNF X 2JDR X 2P5E X 2UVY X
2GNG X 2JDS X 2P5W X 2UVZ X
2GNH X 2JDT X 2P6B X 2UW0 X
2GNI X 2JDV X 2P8O X 2UW3 X
2GNJ X 2JET X 2PAV X 2UW4 X
2GNS X 2JF1 X 2PEH X 2UW5 X
2GPH X 2JF9 X 2PKS X 2UW6 X
2GPO X 2JGB X 2PQ2 X 2UW7 X
2GT9 X 2JGC X 2PQK X 2UW8 X
2GTK X 2JK9 X 2PUY X X 2UW9 X
2GTW X 2JKG X 2PV1 X 2UWJ X
2GTZ X 2MHA X 2PV2 X X 2UZT X
2GU8 X 2MIP X 2PYE X 2UZU X
2GUO X 2NM1 X 2Q0N X 2UZV X
2GVF X 2NNU X 2Q3Y X 2UZW X
2H1C X 2NPA X 2Q6G X 2V17 X
2H1P X 2NPH X 2Q6W X 2V1R X
2H2F X 2NUD X 2Q7I X 2V1T X
2H4J X 2NV7 X 2Q7J X 2V2F X
2H4P X 2NW3 X 2Q7K X 2V2W X

(Continued—4 of 6) The PepX Test Set.
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2V2X X 2ZMH X 3CVN X 3ECH X
2V3S X 2ZMI X 3CVP X 3EDQ X
2V8C X 2ZMJ X 3CWD X 3EG6 X
2V8W X 2ZNE X 3CY2 X 3EHU X
2V8X X 2ZPY X 3CY3 X 3EMH X
2V8Y X X 2ZVM X 3CYY X 3EMW X
2VAA X 2ZVV X 3D18 X 3EQS X
2VAB X 2ZXN X 3D1E X 3EQY X
2VAY X 3BEJ X X 3D1F X 3ERD X
2VDR X 3BEV X 3D24 X 3ERY X
2VGC X 3BFQ X 3D25 X 3ESK X
2VJ0 X 3BFW X 3D2U X 3ET1 X

2VKN X 3BG4 X 3D32 X 3ET3 X
2VLJ X 3BIN X 3D8C X 3EYD X
2VLK X 3BL2 X 3D9O X 3EYF X
2VLL X 3BO8 X 3D9T X 3F02 X
2VLR X 3BP4 X 3D9U X 3F2O X
2VM6 X 3BP7 X 3DA9 X 3F7D X
2VNW X 3BQD X 3DAB X 3F9W X
2VNY X 3BQO X 3DAC X 3F9Z X
2VO0 X 3BRH X 3DCG X X 3FDL X
2VO3 X 3BRL X 3DCT X 3FDO X
2VO6 X 3BU3 X 3DD7 X 3FIE X
2VO7 X 3BU5 X 3DDA X 3FII X
2VOI X 3BU8 X 3DDB X 3FQT X
2VPE X 3BUA X 3DIW X 3FQW X
2VPG X 3BW9 X 3DND X 3FT3 X
2VR3 X 3BWA X 3DNE X 3FT4 X
2VWF X 3BXL X 3DOW X 3FUG X
2VZD X 3BXN X 3DRF X 3FUR X
2VZG X 3BYA X 3DRG X 3FWV X
2VZI X 3BZF X 3DRH X 3FXV X
2W0P X 3C27 X 3DRI X 3FY2 X
2W0Z X 3C2G X 3DRJ X 3G03 X
2W10 X 3C3O X 3DRK X 3G8I X
2W73 X X 3C3Q X 3DS0 X 3G94 X
2W9R X 3C3R X 3DS1 X 3G9E X
2WA8 X 3C4M X 3DS4 X X 3GCH X
2WAX X 3C5J X 3DVE X 3GCI X
2WAY X 3C9N X 3DVK X 3GCM X
2Z32 X 3CAL X 3DVP X 3GCT X
2Z34 X X 3CBL X 3DVU X 3GIV X
2Z3N X 3CC5 X 3DX6 X 3GJF X
2Z5S X 3CD3 X 3DX7 X 3GME X
2Z5T X 3CDW X 3DX8 X 3GYT X
2Z7X X 3CH8 X 3DXC X 3GYU X
2ZFX X 3CHW X 3DXD X 3GZ1 X
2ZGH X 3CPL X 3DXE X 3GZE X
2ZGJ X 3CQU X 3E0M X 3H0A X
2ZJD X 3CQW X 3E1R X X 3H0T X
2ZL9 X 3CS8 X 3E2B X 3H5R X
2ZLA X 3CV0 X 3E7C X 3H9G X
2ZLC X 3CVL X 3E94 X 3H9J X

(Continued—5 of 6) The PepX Test Set.
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3HBV X 4CHA X 5CHA X 8GCH X
3HDA X 4GCH X 6CHA X
3SRN X 4SRN X 6GCH X
3VGC X 4VGC X 7GCH X

(Continued—6 of 6) The PepX Test Set.
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1A2K X X 1IJK X 1XU1 X
1ACB X X X 1IRA X X 1Y64 X X X
1AHW X 1J2J X X 1YVB X
1AK4 X X 1JIW X X X 1Z0K X X
1ATN X X 1JK9 X X 1Z5Y X
1AZS X 1JPS X 1ZHH X X
1B6C X X 1JTG X X 1ZHI X X
1BJ1 X X 1JWH X X 1ZLI X

1BKD X X 1JZD X X 1ZM4 X X
1BUH X X X 1K4C X X 2A5T X X
1BVK X X 1K5D X 2A9K X X
1BVN X X X 1K74 X X 2ABZ X X
1CGI X 1KAC X X 2AJF X X X
1CLV X X X 1KKL X 2B42 X X
1DE4 X 1KLU X X 2B4J X X
1DFJ X 1KTZ X X 2BTF X X
1DQJ X X 1KXP X X 2C0L X X X
1E4K X X 1KXQ X X X 2CFH X
1E6E X X 1LFD X X 2FJU X X
1E6J X X 1M10 X X 2G77 X X
1E96 X 1MAH X X 2HLE X
1EER X X 1ML0 X X 2HMI X X
1EFN X X 1MLC X X 2HQS X X
1EWY X X 1MQ8 X X 2HRK X X X
1F34 X X 1NW9 X X 2I25 X X X
1F51 X X 1OC0 X X X 2I9B X X X
1F6M X X 1OFU X X 2IDO X
1FC2 X 1OYV X X 2J0T X X
1FCC X X 1PVH X X X 2J7P X X
1FFW X X 1PXV X X X 2NZ8 X X
1FQ1 X X 1QA9 X X X 2O3B X X
1FQJ X 1QFW X X 2O8V X X
1FSK X X 1R0R X X X 2OOB X X X
1GCQ X X 1R6Q X X 2OT3 X
1GHQ X X 1R8S X X 2OUL X X
1GL1 X X 1RLB X X 2OZA X X X
1GLA X X 1RV6 X X 2PCC X X
1GP2 X X 1S1Q X X 2SIC X X
1GPW X X 1SBB X 2SNI X X
1GRN X X 1SYX X X X 2UUY X X
1GXD X X 1T6B X X X 2VDB X X
1H1V X X 1TMQ X X X 2VIS X
1HCF X 1UDI X X 2Z0E X
1HE1 X 1US7 X X X 3BP8 X X
1HE8 X 1VFB X X 3CPH X X
1I2M X X X 1WDW X X 3D5S X X
1I4D X 1WEJ X X 4CPA X X X
1I9R X 1WQ1 X X 7CEI X X
1IB1 X 1XD3 X X BOYV X X
1IBR X X X 1XQS X X

Table A.5: The ZDock Benchmark 4.0 Test Set.
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APPENDIX B: PROTEIN DESCRIPTORS

Type Name V
er

te
x

Tr
ip

le
t

Si
m

pl
ex

Te
ss

el
la

tio
n

Equation

Geometric

Volume X X V = 1
3A0h

Surface Area X X X T =
√
s(s− a)(s− b)(s− c), s = a+b+c

2

Edge Length X X X dxy =
√∑n

i=1(xi − yi)2

Optimality1 X X o =
∑
i>j

(li−lj)2

15l̄2

Topological

Graph Distance gxy = min(|ex→y|)

Degree X X X di = |ei|

Randic X R = 1

(didj)
1
2

Wiener X W = 1
2

∑n
x=1

∑n
y=1 gxy

Convexity X cvx = 1− 6di(non−surface)
5di

Estrada X EE =
∑n
j=1 e

λj

Balaban X J = m
γ+1

∑n
i=1

∑n
j=1(DiDj)

−1/2

γ = m− n+ 1

Di =
∑
giy

Inherent

N Vertex X X X

Chirality X –

onSurface X X

atInterface X X X

inHelix X

inSheet X

Residue X X X

Table B.1: A list of the calculated protein descriptors.
1Evaluates how similar a given triangle or tetrahedra is to an optimal, or equilateral, shape. Also called
tetrahedrality.
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APPENDIX C: HARDWARE AND SOFTWARE

Hardware

A custom desktop PC was used throughout the course of this project for both the devel-

opment and testing of the software described in this paper. The technical specifications of the

computer are provided in Table C.1.

CPU Intel core i7-950 3.06 GHz LGA 1366 130W Quad-Core
Motherboard ASUS P6T Deluxe V2 ATX

RAM 6 GB DDR3 1600 (PC3 12800)
HDD 2x 500 GB 3.0 Gb/s

Graphics nVidia GeForce 9500 GT 01G-P3-N959-TR
Power 650W

Table C.1: The hardware specifications for the computer used throughout the project.

Software

All software described in chapters above was developed by Stephen J. Bush, with the ex-

ception of the Mersenne Twister algorithm [123]. The code was written in C++ and generates

three binaries: dtess, cracle, and popp. The inputs used by each program are listed in

Table C.2. Each program outputs a series of space delimited files containing the data and a

Python script for visualization in PyMol (Table C.3). The options used by each of the pro-

grams are given in Table C.2. The scripts used to parse and analyze the data were written in

Perl and Matlab.

All programming was done on the computer mentioned above running Ubuntu 10.10 until

a slight disagreement occured between program and programmer, at which point the system

was upgraded to Linux Mint 15 Cinnamon.
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required
-p <file> -p ./1A1M.pdb

A PDB file name. Either -p or -d is required.
-d <dir> -d /Dropbox/pdbs/

A directory containing PDB files. Either -p or -d is required.

recommended
-b Batch option, for use only with -d. Tells the program that each *.pdb file in

the directory should be handled individually.
-c [chains] -c AC

Tells program to ignore all chains in the PDB except those listed.
-i [chains][chains] -i AB C

Tells program to expect an interface. If no chains are given, looks for a
file 00 chain list.txt* in the directory with the PDB file; otherwise,
assume the interface is between the first two chains given in the PDB file.

-peptide Flag to tell the program that there are peptide chains in the PDB file.*
-v Flag to tell the program to create files used for visualization.

optional
-delim <punctuation> -delim ,

Specify the delimiter to use in the descriptor files.
-quick Flag to tell the program to only run new PDB files. Checks for *.smx.txt,

*.tess.txt, *.vtx.txt, *.hsi.txt, and *.bs.txt files.
-trim <%f> -trim 11.5

Specify the threshold used to remove Delaunay edges (in Å).

popp Only
-f <%f> -f 4.0

Sets the value of the fit parameter
-r <%f> -r 0.5

Sets the value of the resolution parameter
-t <%f> -t 6.0

Sets the value of the thickness parameter

Table C.2: Command line options for dtess, cracle, and pop.
* The 00 chain list.txt file should have the format <PDB name> <chains> <chains> <peptide

chains>, where the peptide chains argument is a list of the peptide chains that should be considered but
not analyzed, e.g., 1A1M A C for a file with two chains, one of which is a peptide (note the triple space between
the A and the C).
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dtess The executable used to calculate the Delaunay tessellation of a protein or complex.
*.aa.txt A count of the amino acid distribution for the protein.

*.aa.i.text The amino acid distribution for only interfacial residues.
*.aa.s.text The amino acid distribution for only surface residues.
*.ecm.text A 20× 20 matrix that lists the number of edges between each amino acid type.

*.ecm.i.text The contact matrix using only edges between interfacial amino acids.
*.ecm.p.text The contact matrix using only edges between sequentially adjacent amino acids.
*.ecm.s.text The contact matrix using only edges between amino acids on the protein surface.
*.edge.text A list of the physical distances between each residue vertex, given by the amino

acid type, e.g., L T 5.906.
*.gdm.txt A nv × nv matrix of the graph distances between each vertex residue pair.
*.hex.text A list of binary strings for each vertex denoting edges between other residue

vertices—can be used to recreate the Delaunay tessellation.
*.pdm.txt A nv × nv matrix of the physical distances between each vertex residue pair.

*.py A Python script for visualization in PyMol (Windows and Linux compatible).
*.smx.txt A space-delimited file containing data pertaining to each Delaunay simplex from

the tessellation, e.g., volume.
*.tess.txt A space-delimited file containing data pertaining to the Delaunay tessellation, e.g.,

number of simplices.
*.trp.txt A space-delimited file containing data pertaining to each surface triplet, e.g., surface

area .
*.vtx.txt A space-delimited file containing data pertaining to each residue vertex, e.g., coor-

dinates. Also lists the absolute index of the vertex (numbered 0−n for all vertices),
the relative index (numbered 0 − n within each chain), and the index as given by
the PDB file.

head.smx.txt The header file for *.smx.txt. Lists names of each column.
head.tess.txt The header file for *.tess.txt.
head.trp.txt The header file for *.trp.txt.
head.vtx.txt The header file for *.vtx.txt.

cracle† The executable used to run CRACLe.
*.bs.txt A list of the predicted binding sites, broken down by residue.
*.hsi.txt A list of the predicted hot spots.
*.hsi.py A Python script for PyMol visualization of the predicted binding sites.

*.snap.<S>.trp.txt A list of the SNAPP scores for each triplet. A separate file is created for each
SNAPP scoring function S.

*.snap.<S>.vtx.txt A list of the SNAPP pairing potentials for each residue vertex. A separate file is
created for each SNAPP scoring function S.

*.vtx.txt A space-delimited file containing data pertaining to each residue vertex, e.g., coor-
dinates.

head.bs.txt The header file for *.bs.txt.
head.hsi.txt The header file for *.hsi.txt.
head.vtx.txt The header file for *.vtx.txt.

Table C.3: A list of the files generated by the software. The software creates a folder called
<pdb> <chains> catalog to store the output files, where pdb is the name of the PDB
file, e.g., 1AWQ.pdb, and chains is the list of chains used in the calculation, e.g., A or A B.

* denotes the name as used to create the catalog directory, e.g., 1A1M A C.
† CRACLe analyzes and outputs data for each protein separately so each file name only contains the chains used
in the analysis, e.g. 1A1M A. Note that the PyMol file combines the visualization into a single file.
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