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ABSTRACT

BRIAN L. POHL: Exploring the Milky Way Outer Halo Globular Clusters AM 1 and
Pyxis∗.

(Under the direction of Bruce W. Carney.)

In order to probe the origins and history of the Milky Way halo, I executed a photometric

survey of the outer halo globular clusters AM 1 and Pyxis using the southern astrophysical

research (SOAR) telescope. The principal goal of this investigation was to determine the

ages of these clusters, but the techniques employed in this process revealed other intrinsic

properties such as chemical composition. A total of 32.2 hours of data were obtained on

the program clusters, and observations of 22 stars from the Landolt (1992) catalogue were

used to transform the clusters to the Johnson-Cousins BV standard system. The resul-

tant color-magnitude diagrams are used in conjunction with the reference globular cluster

M5 to determine the intrinsic properties of the program clusters. Three independent age-

determination techniques show agreement, consistent to within the error of the techniques,

that AM 1 is −1.0 Gyr younger than, and that Pyxis is coeval to, the reference cluster

M5. The chemical properties of both clusters are found to be the same for both clusters,

[Fe/H] = −1.40 and [α/Fe] = +0.4, similar to M5. The results are presented in terms of two

outstanding issues regarding the outer halo; the second parameter problem and the issue of

accretion vs. in-situ formation.

∗Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint
project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the
U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill
(UNC), and Michigan State University (MSU).
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Chapter 1

Introduction

On a clear, dark night, earthbound observers can see a narrow, dusty band spanning the

sky. This milky band we see from Earth represents the disk portion of our galaxy; indeed the

common perception of the Milky Way (MW) is only the spiral disk portion of the Galaxy,

but this notion betrays several other structures unknown to astronomers even a century ago.

The central region contains a bulge and a bar, and the disk itself is comprised of a thick

and thin component, the latter of which forms the classic “pinwheel” appearance associated

with spiral galaxies. Our sun lies within the thin disk about 8 kpc from the center of the

Galaxy, which is about three-quarters of the way to the edge of the canonical boundary of

the central portion of the MW (RGC ≤ 0.05 × Rviral ∼ 12 kpc, Rix & Bovy 2013). Indeed

the popular conception of the MW structure would end there, but in fact the galaxy extends

another order of magnitude in galactocentric radius beyond our solar neighborhood into a

region called the halo.

The halo was first described by Harlow Shapely in a series of five classic papers published

in 1918 and 1919. He assumed the globular clusters contained therein were in arranged in

a spherical pattern around the center of the galaxy, and based on their apparent position

measured the Sun at 15 kpc from the center of the MW. Globular clusters (GC) are not the

only systems contained within the halo; dwarf spheroidal (dSph) galaxies, the Magellanic

Clouds, open clusters, individual stars and stellar “tidal streams”, or the disrupted debris of

evaporating GC and dSph systems, are found therein.

But what is the origin of the halo and what does its existence and structure tell us about

the origin of the MW itself? Is the halo, as classically believed (Eggen et al. 1962), comprised



of the remnants of the protogalactic structure whose angular momentum and inclination

were sufficient to remain in circular orbit about the galactic center, or is it a repository for

remnants of accreted systems as more recent models of galactic evolution predict? Perhaps

a combination of both?

These questions remain unresolved in part due to the vast distances to, and hence faint-

ness of, the objects in the Halo. Many of the problems discussed below will be resolved as

more powerful telescopes and instruments come online. However, for the time being, the

halo represents a frontier of discovery about our galaxy.

Halos are observed around other galaxies as well, but the extraordinary distances to ex-

tragalactic systems inhibits the study of individual stars. Walter Baade was able to image

halo stars using photo plates during World War II, and HST has been able to resolve indi-

vidual stars as far away as M87. However, to thoroughly study a stellar system, to determine

its age, for example, using the techniques discussed in this work, the resolution of individual

stars at the main sequence turnoff (MSTO) and fainter are required. This is only practicable

for the nearest extragalactic systems such as the Magellanic clouds and local dwarf spheroidal

(dSph) galaxies. And while some of these dSph galaxies exist therein, the proximity of MW

halo is the best forest for which we may study the trees.

1.1 History of the Outer Halo

The story of the outer halo (OH) begins with Eggen, Lynden-Bell, & Sandage (1962,

ELS) who argued for the formation of the MW by dissipation collapse of a protogalactic

structure. They describe a scenario in which an enormous cloud of material collapses under

its common gravity. During the free fall portion of this collapse, the outermost stars and

clusters form and thus have highly eccentric orbits. As the cloud contracts, its angular

velocity increases and the shape flattens until a disk structure forms supported by its own

rotation. The evidence they produced in support of this model hinges on the association

2



with increased ultraviolet excess with metallicity, which was assumed to be related to age,

leading to correlations with age and both orbital eccentricity and maximum height above

the galactic plane. Their conclusion that the youngest stars are confined to the plane of

the galaxy whereas the oldest stars are found almost everywhere support the dissipational

collapse model.

As the protogalaxy collapsed, the innermost stars, residing in a denser environment,

underwent rapid star formation and hence earlier enrichment of the interstellar medium.

Therefore a vertical as well as radial metallicity gradient serves as a testable observable for

the ELS model. Searle & Zinn (1978, SZ) undertook a survey of the abundances of 19 GCs,

most of which lie in the OH, and found no radial gradient beyond RGC > 8 kpc (see Figure

1.2, which is an updated version of SZ Figure 6). Furthermore their classification of clusters

by morphological type, or how generally blue or red the horizontal branch (HB) stars are,

show a correlation with metallicity at inner galactic radii that breaks down for RGC > 15 kpc

(see their Figure 7). This shows that metallicity, the so called “first parameter”, dominates

HB morphology for IH clusters, but in the OH, some other mechanism is acting. The latter

effect is known as the “second parameter problem” and remains a topic of debate discussed

in § 1.1.1. The combination of these effects conflict with the ELS model, and SZ proposed

a scenario for the formation of the OH by accretion of sub galactic “fragments.”

This debate persists over the past forty years fueled, as are many such great debates, by

the probability that both combatants contain portions of the truth. Follow-up studies by

Zinn (1980, 1993) and Lee, Demarque, & Zinn (1994, LDZ) provide evidence for the outer

halo forming by both processes.

The inner, older population of GCs formed from the dissipation collapse of the proto-

galaxy, and the outer, younger formed from some independent mechanism such as accretion

of extragalactic structures, the likeliest candidates being dSph galaxies and their associated

GC systems due to their continued proximity to the MW (see Marín-Franch et al. 2009, for
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a recent review.)

Accretion as a component of galactic evolution comprises an important part of the ΛCDM

model of the universe (see Freeman & Bland-Hawthorn 2002, for a recent review.) Obser-

vational evidence of accreted satellite systems and their tidal debris streams continues to

accumulate. The most famous of these being the Sagittarius Dwarf Spheroidal (Sgr dSph)

and its associated tidal streams (see Belokurov et al. 2006 and references therein). Thus

little doubt remains that accretion occurred during the formation of the MW and remains

ongoing. How much of the halo is of extragalactic origin (Forbes & Bridges 2010), as well as

what exactly is being accreted (Geisler et al. 2007), remain open problems.

1.1.1 The Second Parameter Problem

As the name implies, horizontal branch stars share the same luminosity due to their

common core mass of ≈ 0.5M� required to ignite helium burning. Generally speaking, the

color of a HB star depends on its envelope mass; the thicker the envelope, the larger its radius.

The energy of the core, related to its mass, must ultimately escape. Stellar luminosity (L)

obeys the Stefan-Boltzmann relation for black bodies given by

L ∝ R2 T 4. (1.1)

For fixed luminosity, as the radius (R) increases, temperature (T ) must decrease. Thus more

massive HB stellar envelopes have cooler surfaces and produce redder HB stars.

Due to the rapid evolutionary timescales of post main sequence stars, stars on the HB

began their ascent up the red giant branch (RGB) with roughly the same mass as stars cur-

rently at the MSTO. Pre-HB stellar core masses increase as helium piles up in the hydrogen

burning core, but stellar envelopes undergo mass loss of about 0.1 M�, for example due to

solar winds, most prominently at the tip red giant evolutionary phase. RGB mass loss is

complex and ongoing topic of study (see §5 of Catelan 2009). For simplicity, the discussions
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below regarding the parameters that influence HB morphology focus on the mass of MSTO

stars. The relevant physics behind these effects is discussed in §4.3.

Metallicity, the “first parameter”, dominates horizontal branch morphology due to its

influence on stars at the MSTO. Increased metallicity raises the mass of stars at the turnoff.

Thus more metal rich clusters classically show redder horizontal branches and vice-versa.

However, Sandage & Wildey (1967) and van den Bergh (1967) first noticed metal-poor GCs

with extremely red HBs. Some other mechanism, a “second parameter”, must be at work to

explain the anomalous HB morphologies.

The authors of the first studies of this phenomena put forth helium as the mechanism

for the second parameter. Increased helium also increases the luminosity of a main sequence

star by raising the mean molecular weight of the core. Greater luminosity means faster fuel

consumption and shorter stellar lifetimes, which lowers the mass of MSTO stars resulting in a

bluer HB. Age is another candidate due to its overwhelming influence on the mass of MSTO

stars. The main sequence is also a mass sequence as luminosity is directly proportional to

mass (a commonly cited but controversial relationship between the two is L ∝ M3.5). As

the cluster ages, the turnoff luminosity, and mass, decreases. Other proposed mechanisms

include CNO abundance, stellar rotation rates and cluster central density (Ashman & Zeph

1998, §2.1.3). The ultimate color of a HB star depends on the extent of mass loss near the

tip of the RGB, a process that is poorly understood and difficult to measure. Thus all of

the above factors are speculative and based on observational correlation.

As studies of this mystery grew, various morphological indices developed as a statistical

measure of the relative number of stars blueward and redward of the instability strip (also

known as the RR Lyrae gap). An example of this quantitative measure of the HB morphology

is given as

HB Type =
(B −R)

(B + V +R)
(1.2)
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where B, R and V represent the number of stars blueward, redward and within of the RR

Lyrae gap respectively (Ashman & Zeph 1998, §2.1.3). Some authors, including SZ, use the

quantity B/(B + V ).

Plots of metallicity vs. the morphological index, first constructed by SZ though commonly

called “Lee diagrams” due to their prominence in LDZ, show a correlation matching the first

parameter as the principle architect of HB type for GCs within the solar circle (RGC < 8

kpc) that break down at greater galactic radii.

An insight provided by Zinn (1993, see Figure 1) is that all the clusters in the inner halo,

which he defined as RGC < 6 kpc, matched a nearly linear pattern in the Lee Diagram, but

the clusters beyond this galactocentric radius broke into two groups; one of which matched

the inner halo trend and another forming a parallel trend shifted by about 0.4 redward

in HB type. Assuming age as the second parameter, Zinn (1993) argued this latter group

represented a younger, and possibly accreted population.

An example of a Lee Diagram is shown in Figure 1.1 below. This is a reproduction of

Figure 5 of Mackey & Gilmore (2004), which is itself an updated version of Figure 7 of LDZ.

My figure uses HB type and metallicity data from the 2003 and 2010 revisions of the Harris

(1996) catalog1 respectively. The figure does not include every entry in the catalog, merely

the set of clusters for which both HB type and metallicity data are available.

The original trend used by Zinn (1993) to fit the inner halo was drawn by hand, but

isochrones based on HB model evolution codes evolved over the years culminating with

those developed by Rey, Yoon, Lee, Chaboyer, & Sarajedini (2001). These isochrones2 are

shown as solid lines in Figure 1.1, the darkest of which matches the mean age of the inner

halo (now canonically defined as RGC ≤ 8 kpc) and the lower grey lines represent relative

1HB type data are unlisted in the 2010 revision, presumably because the reliability of measurements from
2003 obviate revision.

2Private communication with Soo-Chang Rey revealed that the authors misplaced the original data used to
construct the solid curves in Figure 9 of Rey et al. (2001). Under his advice, I traced the curves by eye to
construct Figure 1.1
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age increments of −1.1 and −2.2 Gyr respectively.

A modification of the criteria originally specified by Zinn (1993) distinguishes the pop-

ulations in Figure 1.1. The exact algorithm, adapted from Keller et al. (2012), is given

as

for each cluster
if ([Fe/H] > -0.8)

Classify as Disk/Bulge popluation
else if (HB type - HB Fiducial < -0.3)

Classify as Young Halo population
else

Classify as Old Halo

where HB Fiducial is the isochrone matching the mean inner halo age (the black line in

Figure 1.1).

SZ’s observation of the second parameter association with position in the galaxy led them

to conclude that age primarily drives HB morphology in the OH, as HB of older clusters

evolved from stars with less overall mass. The age-as-second-parameter argument couples

nicely with the accretion model of galaxy evolution because the observed age difference

between the OH and IH of ≈ 2 Gyr is an order of magnitude greater than the timescale for a

free-fall collapse predicted by ELS. However, the observed age difference is too short a time

interval compared with dynamical simulations (see the introduction of Dotter et al. 2010a,

for a recent and comprehensive review).

Furthermore, MSTO measured ages appear to differ among clusters of similar metallicity.

Clusters that share similar metallicities but widely different HB types are referred to as

“second parameter pairs”, the classic example of which being NGC 288 and NGC 362. Both

clusters share a similar metallicity of −1.32 and −1.30 respectively (Carretta et al. 2009),

but NGC 288 has an exclusively blue HB and NGC 362 is mostly red. Catelan, Bellazzini,

Landsman, Ferraro, Pecci, & Galleti (2001) showed an age difference of 2±1 Gyr that could

explain the variation in HB morphology. However, most recently, VandenBerg, Brogaard,
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Figure 1.1 Example of a Lee Diagram constructed using the 2003 and 2010 revisions of
Harris (1996). The solid black line represents the isochrone for the mean age of the inner
halo population based on the models of Rey et al. (2001). The grey lines below represent
relative age increments of −1.1 and −2.2 Gyr respectively. Metallicity alone distinguishes the
disk/bulge population, whereas HB type offset between the mean inner halo age isochrone at
a cluster’s metallicity distinguishes the young and old halo populations (see text for details).
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Leaman, & Casagrande (2013), employing the most recent and accurate technique for relative

age determination discussed in further in §4.2.2, find an age difference between the clusters of

only 0.75±0.45 Gyr. They argue that, in addition to age, enrichment variations in helium or

Mg and Si may be at work. Additionally, analyses of the MSTO derived ages for several such

second parameter pairs show enough variation that HB morphology cannot be explained by

age alone (see §7 of Catelan 2009).

Thus some other factor or set of factors in addition to or perhaps exclusive of age may

be required. Most recently, Dotter (2013) points out one of the reasons the problem remains

so intractable is that the approach one takes biases the conclusion. Indeed the study of

the second parameter problem remains an open debate. That the second parameter effect

appears characteristic of the OH is of greater concern to this work than the exact mechanisms

behind it.

1.2 The Globular Clusters

Globular clusters are classically believed to be simple systems of stars that formed from

the same material at the same time. As such, they are coeval and homogenous in composi-

tion, which makes them among the few systems for which reliable ages may be determined.

Furthermore, globular clusters are compact enough to survive the accretion process despite

complete evaporation by their parent system. This makes them analogous to fossil relics of

our galaxy’s past.

Why study AM 1 and Pyxis? As discussed in §1.2.2 and §1.2.3, at the onset of data

acquisition for this project in the fall of 2008, little was known about either cluster. AM

1, being the most distant and hence faintest GC, serves as an excellent capability indicator

for the, as then newly commissioned, Southern Astrophysical Research Telescope (SOAR).

As shown in Table 2.1, both clusters are of sufficient southern declination for SOAR to

practically survey.
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In the course of investigating the background of these clusters, some interesting scientific

motivations arise. Both clusters show the second parameter effect and have apparently young

ages, but their position in the Galaxy is curious in itself. Figure 1.2, an updated version

of the same plot by SZ showing galactocentric distance vs. metallicity, shows a curious

region between 40 / RGC / 60 kpc, labeled as “the gap,” that contains no currently known

clusters. The logarithmic scale of the horizontal axis betrays the relative size of “the gap;”

it is 2.5 times wider than the radius of the solar circle. Figure 1.2 uses the same data and

symbol convention as Figure 1.1. As the most distant cluster identified with the MW, AM 1

contains the outer region beyond the gap along with only five other clusters (see Table 1.1.)

This outer region also occupies the nearest dSph galaxies making the clusters therein likely

accretion remnants. At 42 kpc, Pyxis lies at the innermost edge of the gap and cannot be so

easily identified as an accretion candidate by position alone. Thus similarities between the

current properties of Pyxis and AM 1 point to a common mechanism of origin.

Before embarking on our own exploration of these clusters, let us begin with the state

of knowledge to date regarding all outermost halo clusters. The remainder of this section

summarizes work performed by other authors with an emphasis on measurements relevant

to age and chemical composition.

1.2.1 The Extreme Outer Halo

The outermost part of the halo, beyond the “the gap,” is frequently referred to as the

“extreme outer halo” (EOH). To provide some context for the study of AM 1 and Pyxis,

this section probes the most recent studies of the clusters in this region. We keep an eye

trained on the issues of what constitutes the typical characteristics of an EOH cluster and

which clusters are unique. The key issues to note include whether or not the cluster shows

the second parameter phenomenon, unusual elemental abundances ([X/Fe], where X is any

element greater than He), and whether or not the cluster seems “typical” with regards to the
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Figure 1.2 Metallicity versus galactocentric radius using data from Harris (1996, 2010 revi-
sion). The symbols match those defined in Figure 1.1. Note the presence of a metallicity
gradient with 10 kpc that breaks at greater radii as well as the gap between ∼ 40 and ∼ 60
kpc devoid of clusters.

other clusters in the outer halo.

From a chemical perspective, a look at Figure 1.2 shows that the most metal rich clusters
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lie within the solar circle and, though there is quite a bit of spread, the OH appears to be

restricted to the range −2.0 / [Fe/H] / −1.0. Carney (1996) notes that the OH clusters

share a common [α/Fe] = +0.3. §4.3.1 discusses the specific effects of age, metallicity, helium,

and α enhancements of the cluster in the observational plane as well as the relevant physics.

In the discussion that follows, we begin with the EOH clusters that appear “typical” in a

chemical sense and conclude with the outliers.

It is also worth noting the chemical inventory of nearby dSph galaxies as a number of

clusters in the EOH are considered accretion relics. Venn et al. (2004) notes that dSph

galaxies share very low α (very nearly solar) enhancements and are simultaneously more

metal rich than the MW. She uses these results to argue against the idea of an accreted

EOH population.

Palomar 3

We begin our survey of the EOH with what appears to be the most generic sample.

Palomar 3 resides at a distance of RGC ' 92 kpc and is about 1.5 to 2.0 Gyr younger than

M3 according to Stetson et al. (1999). Koch et al. (2009) reports [Fe/H] = −1.58 ± 0.13

and [α/Fe] = 0.35 ± 0.23. They report all chemical abundances fully consistent with the

clusters and field stars of the outer halo. Indeed, the title of their paper, “All Quiet in

the Outer Halo”, implies that this cluster as a benchmark standard of ordinariness for this

neighborhood.

Palomar 4

A galactocentric distance of 109 kpc (Stetson et al. 1999) and a half light radius a full

order of magnitude greater than that of a typical GC distinguishes Palomar 4 as among the

most distant and diffuse globular clusters known. Stetson et al. (1999) determined its age

about 1.5 to 2.0 gyr younger than M5, consistent with the ages of the other EOH clusters.
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Coupled with its relatively low total luminosity, these properties make it similar in many

ways to UFD. Koch & Côté (2010) obtained high resolution spectra of 19 RGB stars using

the Keck/HIRES spectrograph. They report [Fe/H] = −1.41±0.17 and [α/FE] = 0.38±0.11,

the latter being consistent with the rest of the EOH clusters with the exception of NGC 2419.

Its extremely red HB places it comfortably in the territory of the Lee Diagram occupied by

its neighbors. Though they report an unusual [Mg/Ca] abundance, Koch & Côté (2010) find

its overall chemical pattern in agreement with the other EOH clusters; they even go as far

as to describe Palomar 3 and Palomar 4 as “twins” due to their nearly identical chemistry,

distance and half light radii.

Palomar 14

At a heliocentric distance of∼ 71±2 kpc (Sollima et al. 2011), Palomar 14 is the innermost

EOH cluster. Like the other clusters its neighborhood, it is faint, diffuse, displays a red HB

and is about 2 Gyr younger than M3 (Dotter et al. 2008b). High resolution spectroscopy by

Caliskan et al. (2012) reports [Fe/H] = −1.44±0.03 and [α/Fe] = 0.34±0.17. These results as

well as the other elemental ratios show Palomar 14 as nearly identical in chemical abundances

as the EOH clusters Palomar 3 and Palomar 4. One of the most striking discoveries regarding

this cluster is the presence of two tidal tails (Sollima et al. 2011). The chemical similarity

of this cluster to the other Palomar clusters in the EOH, as well as the presence of its tidal

tails, lead the authors of both studies to conclude Palomar 14 is a likely an accretion relic

from an evaporated dSph parent galaxy.

Eridanus

The most comprehensive, though aging, review of Eridanus is given by Stetson et al.

(1999). Its metallicity (−1.42± 0.08 dex, Carretta et al. 2009, and references therein), dis-

tance and age (Catelan 1999) are quite similar to Palomar 4, enough so that investigations in
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to the second parameter problem they are cited as classical second parameter pairs (Catelan

2009). Much like its second parameter cousin, everything about this cluster seems typical of

the EOH. However, no high resolution spectroscopic studies yet exist for this cluster. The

metallicity cited above ultimately comes from Calcium II triplet line strength analysis by

Armandroff & Da Costa (1991).

Here ends the discussion of the “typical” EOH clusters. What follows represent the

clusters that are dissimilar to the others.

NGC 5694

Though its current galactocentric distance of 30 kpc, similar to that of Pyxis, excludes it

from the canonical EOH group, its velocity with respect to the galactic center of −273± 13

km/s lead Harris & Hesser (1976) to believe it an interloper from the EOH whose orbit

extends to ∼ 100 kpc. Lee, Lopez-Morales, & Carney (2006), making use of the chemi-

cal tagging technique with high resolution spectra of a single red giant in the cluster, no-

ticed anomalously low values of [α/Fe] and [Cu/Fe] compared to globular clusters of similar

metallicity and concluded the cluster is likely of extragalactic origin. Mucciarelli et al.

(2013) extended the study to include a total of six red giants in the cluster and measured

[Fe/H] = −1.98 ± 0.03 and [α/Fe] = 0.02 ± 0.02. Its low metallicity and blue dominated

HB place it in the lower right of the Lee Diagram, quite apart from the EOH clusters that

occupy the lower left. Additionally its solar α enhancement distinguishes it chemically from

the rest of the outer halo. Mucciarelli et al. (2013) ultimately agrees with the conclusions of

Lee et al. (2006) that NGC 5694 is an interloper from the EOH and of extragalactic origin,

but it formed in an environment unique to the rest of the EOH which are believed to be relics

of dSphs. Ultra Faint Dwarf (UFD) galaxies share a similar combination of poor metallicity

and solar α enhancement, leading the authors to believe this as the likeliest parent environ-

ment. They also note that Ruprect 106 shares similar enough chemical pattern as to be a
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potential chemical sibling.

NGC 2419

We conclude this tour of the EOH with the most interesting cluster of them all. Second

in luminosity among globular clusters beyond RGC > 15 kpc to M54, which is known to

be the core of the Sgr dSph, NGC 2419 is more massive, by an order of magnitude, than

all the EOH globular clusters combined (Borissova et al. 1996, see Table 7). With a blue

dominated HB, it occupies the opposite side of the Lee Diagram than the rest of the EOH

clusters with the exception of the interloper NGC 5694 which is suspected of being a UFD.

Chemical analysis by Cohen et al. (2011) show a mean [Fe/H]= −2.06± 0.10 and [α/Fe] =

0.19 ±0.4; both low compared to the rest of the EOH. A closer look at the chemical inventory

by Cohen & Kirby (2012) showed an anomalous depletion of magnesium in a third of stars in

the cluster. The authors describe this anomaly as “unprecedented” among globular clusters,

leading them to conclude that NGC 2419, like its luminous cousin M54, is the nucleated core

of a dSph.

Very recently, Mucciarelli et al. (2015) also discovered a K–Mg anti-correlation in NGC

2808, a cluster known to have three distinct populations (Piotto et al. 2007). The three

populations in NGC 2808 are believed to be subsequent generations of stars formed from the

gravitationally bound debris of primordial stars. As such, Mucciarelli et al. (2015) attribute

the K–Mg anti-correlation to a self-enrichment scenario. While this does not exclude the

possibility of NGC 2419 being a nucleated dSph, indeed a dSph would have no trouble

providing enough gravitational potential to retain the gas from early generations of stars,

the K–Mg anti-correlation, in and of itself, no longer provides evidence for this classification.
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Table 1.1. Extreme outer halo (EOH) globular clusters.

Cluster ID RGC (kpc)a HB Typeb [Fe/H]c [α/Fe]

NGC 5694 29.4 +1.00 −1.98± 0.03 0.02± 0.02
Pyxis 41.4 −1.00 −1.4± 0.1 ...
Palomar 14 71.6 −1.00 −1.44± 0.04 0.34± 0.17
NGC 2419 89.9 +0.86 −2.06± 0.10 0.19± 0.36
Eridanus 95.0 −1.00 −1.42± 0.08 ...
Palomar 3 95.7 −0.50 −1.58± 0.13 0.35± 0.23
Palomar 4 111.2 −1.00 −1.41± 0.17 0.38± 0.11
AM 1 124.6 −0.93 −1.7± 0.2 ...

aDistances from Harris (1996, 2010 revision)
bHorizontal branch types of the form (B−R)/(B+V +R) from Harris

(1996, 2003 revision)
cWhenever possible, metallicities and α enhancements are from the

latest high resolution spectroscopic studies. References contained in the
text.

Summary

With the exceptions of NGC 2419 and NGC 5694, the extreme outer halo clusters show

nearly uniform metallicity (−1.6 . [Fe/H] . −1.4) and mean alpha element (0.3 . [α/Fe] .

0.4) enhancements as shown in Table 1.1. The authors of the most recent studies of nearly

all these clusters argue for their extragalactic origin.

1.2.2 AM 1

Though previously identified as ESO-201-SC by Holmberg & Lauberts (1975) during

their survey of the ESO “Quick Blue” plates, the designation Arp-Madore-1, or simply AM-1,

assigned by Madore & Arp (1979) persists because they produced a color-magnitude diagram

(CMD). They discovered three faint stellar clusters among the IIIa-J plates acquired by the

Australian UK Schmidt Telescope Unit. Based on the limiting magnitude of mJ = 20.5 on

the ESO discovery plates and an assumed color of (B−V ) = 1.4 for red giants, they estimated

that the brightest stars have a magnitude of B = 21.2. Coupled with an absolute magnitude

MB = −1.5 for the red giants as well as an interstellar absorption value of AB ∼ 0.3 based
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Table 1.2. AM 1 candidate RR Lyrae stars reprinted from Ortolani (1984).

Star ID∗ V (B-V)

12 21.02 0.33
19 21.27 0.28
50 21.10 0.40
67 21.16 0.46
83 21.07 0.45

Note. — ∗ The Star ID
column is Ortolani’s designa-
tion. His paper provides a
finder chart

on the cosecant law3 of Harris & Racine (1979), they reported a tentative distance of 300

kpc.

Ortolani (1984) obtained BV photometry using the 1.5 meter ESO telescope at La Silla

to a limiting magnitude of V = 23, sufficient to identify the horizontal branch (HB). They

also identified 5 possible RR Lyrae (RRL) stars based on their de-reddened color lying

within the RRL gap [1.8 ≤ (B − V ) ≤ 4.2]. However, they assume an interstellar extinction

term of E(B − V ) = 0.03 based on the cosecant law. All subsequent authors assumed

interstellar extinction to be negligible for this object [E(B − V ) = 0.00]. Without the

extinction correction, two of their RRL candidates fall outside the RRL gap. Table 1.2 lists

non-extinction corrected colors for the candidate RRLs.

Based on an assumed < MV >= 0.6 for the RR Lyraes, Orlotani reported a distance of

RGC = 123±10 kpc. Using the color index of the RGB at the HB of (B−V )0,g = 0.76±0.08

he estimates a metallicity of [Me/H] = −1.6 ± 0.4 based on the average value of three

techniques.

Working independently using the CTIO 4m telescope, Aaronson, Schommer, & Olszewski

(1984) obtained a total exposure of 3000 seconds each in B and V (though only 2000 of each

3E(B−V ) = Kbv [1− exp(−Z/Z0)]× csc |b| where Z0 is the scale height of the Galactic extinction layer and
Kbv is a derived constant equal to 0.056 and 0.040 for the north and south poles (Racine & Harris 1989,
Equation 2).
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were on nights designated as “clear”). They show a well-defined HB but do not identify any

candidate RRL stars as the blue edge of their HB lies outside the RRL gap [(B−V ) = 0.47].

They assume no interstellar reddening [E(B − V ) = 0.00] based on the maps of Burstein &

Heiles (1982).

Assuming MV (HB) = 0.6, they computed a distance of RGC = 118± 2 kpc. Their upper

RGB is heavily contaminated by field stars, leaving them confident of only one upper RGB

star in their sample of cluster members. Based on a fit of the upper RBG heavily weighted

by this one star, they estimated a metallicity of [Fe/H] = −1.8± 0.3.

Both Aaronson et al. (1984) and Ortolani (1984) measurements of distance and metallicity

agree within the errors, something Orlotani points out as support for their results. Though

the discrepancy in the reddening between the two authors raises an eyebrow. Due to the

extremely red nature of the HB, both authors identify AM 1 as a good second parameter

cluster in need of future studies, particularly with regard to spectroscopy.

The only spectroscopic study of AM 1 was undertaken by Suntzeff, Olszewski, & Stetson

(1985). Using the 2.5 m du Pont telescope at Las Campanatas Observatory in November of

1983, they obtained spectra on the two brightest stars in the cluster (shown as red plus sym-

bols in Figure 4.9). Based on the line strengths of the Calcium II H and K line strengths, they

determined a metallicity of [Fe/H] = −1.7± 0.2. They further determined a Galactocentric

radial velocity of −41 km/s.

Hilker (2006) obtained VLT data in BV to V ≤ 22.9. His CMD shows a well defined HB

and RGB suitable for fitting with the Yonsei-Yale (Y2, Kim et al. 2002) isochrones. However,

Aaronson’s metallicity estimate of −1.8 did not adequately fit the data. Instead a metallicity

of −1.4 was used for the best fitting isochrones. Other fitting parameters fix the age at 11

Gyr, and [α/Fe] = 0.3 dex. He further used an an artificial color shift of −0.01 to correct an

offset between his best fitted isochrone and the data that he ascribes to reddening.

Hilker’s CMD does not reach faint enough in V to see the MSTO, but his motivation was
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to establish reliable cluster members and good positions for further spectroscopic work on

individual stars, necessary to lay to rest many questions regarding the chemical history of

the cluster and its origin. His final catalog has positions reported to 0.01" RA and 0.1" Dec.

Finally and most recently, Dotter et al. (2008b) obtained HST data in V and I (or in the

HST parlance, F555W and F814W respectively) down to 28th magnitude in V . In addition

to the RGB and HB, the MSTO is clearly visible as well as some blue stragglers that appear

interesting as well.

Because Hilker’s CMD’s does not include the MSTO, they are skeptical of his metallicity

estimate and use a baseline of [Fe/H] = −1.5 as their baseline for a differential technique of

isochrone fitting using M3 as a comparison. They caution that this technique is only valid in

the extent that M3 and AM 1 are of the same composition, a point they repeatedly stress as

need for follow up high resolution spectroscopy. Their final values are [Fe/H] = −1.5, [α/Fe]

= +0.2, age = 11.1 Gyr or 1.5 Gyr younger than the comparison cluster M3.

Their paper shows that all six GCs with RGC > 50 kpc are younger than the inner halo

clusters, evidence, they argue, that all such clusters were accreted and the best candidate for

the second-parameter is age. But they stress the need for direct metallicity measurements are

necessary. Indeed four different authors using different techniques arrived at four different

values.

1.2.3 Pyxis

While searching the Palomar Observatory Sky Survey for planetary nebulae, Weinberger

(1995) discovered several new objects worthy of followup study including a possible satellite

globular cluster or dwarf spheroidal galaxy. Follow-up work by Da Costa (1995) and Irwin,

Demers, & Kunkel (1995) confirmed the object as an outer halo GC; the former investigator

designated it as “C J0907-372 (Pyxis)” and the latter suggested the simply Pyxis.
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Da Costa (1995) obtained 900 second B and 300 second R CCD images using the ≈

3.9 meter Anglo Australian Telescope (AAT). Poor seeing (2.′′1) restricted their limiting

magnitude of their CMD, their Figure 3, to R ≈ 22 mag. However, their large overall FOV

compared to the SOAR optical imager (SOI) allowed them to construct a field star CMD,

shown as the lower panel of Figure 3. The fact that their FOV encompassed the entire cluster

allowed them to fit a King (1966) model to the surface density profile and determine the core

radius of 83′′. Their inability to fully capture the MSTO restricted their conclusions about

age to a lower limit on magnitude difference between the HB and MSTO of ∆RHB−TO ≥ 3.25,

leaving them no reason to suspect the cluster’s age is radically different compared to the rest

of the halo GCs which have values of ∼ 3.5 (Green & Norris 1990). Fitting RGB fiducial

sequences of NGC 362 and NGC 6397 established a galactocentric distance of RGC ≈ 37 kpc,

but the disparity of metallicities between the fiducial clusters, [Fe/H] = −1.28 and −1.91

respectively, while both providing good matches to the Pyxis RGB, restrict their conclusions

metallicity to the range bound by those of the reference clusters and extinction to the interval

of 0.25 ≤ E(B − V ) ≤ 0.40.

Working independently, Irwin et al. (1995) acquired B,R and I CCD data using the

2.5 meter du Pont telescope at Las Campas Observatory. Their Figure 3 shows a CMD

with a limiting magnitude of R ≈ 23 mag, or about a half magnitude below the MSTO.

Application of the Yale isochrones (Green, Demarque, & King 1987) resulted in a metallicity

of [Fe/H] = −1.1 ± 0.3 and an age of 13 ± 3 Gyr assuming a reddening of E(B − V ) =

0.19 ± 0.04 consistent (though barely) with the value of ≈ 0.23 derived from the maps of

Burstein & Heiles (1982). The metallicity agrees with the value of −1.0 ± 0.3 determined

by the dereddened color of the RGB at the magnitude of the HB ((B − V )0,g = 0.9 ± 0.1).

Their absolute age measurement is subject to the uncertainties of the Yale (or indeed any)

isochrone’s ability to measure true ages and increases the error to ±4 Gyr. Finally, they

reported a Galactocentric distance of 42 kpc based on the mean R magnitude of 24 HB stars
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and the MV (RR) = 0.15[Fe/H] + 0.72 relationship of Walker (1992).

Acknowledging the previous investigators’ efforts as good initial reconnaissances of Pyxis,

Sarajedini & Geisler (1996) set out to construct a CMD faint enough to fully establish the

MSTO and determine the age of the cluster. They obtained single 30 and 600 second

exposures in R and 60 and 1200 second exposures in B using the CTIO Blanco 4 meter

telescope on a night with good seeing (0.′′9 and 1.′′1 respectively). Their CMD (Figure 2)

extends to R ≈ 24 or about a magnitude below the MSTO. The 14.′7 FOV allowed them to

fully sample the field star CMD (Figure 3) and restrict their sample to stars within twice

the core radius established by Da Costa (1995). Making use of the simultaneous reddening

and metallicity method (SRM, Sarajedini 1994) adapted for the B,R system, they derived

[Fe/H] = −1.20 ± 0.15 and E(B − V ) = 0.21 ± 0.03, both of which are in good agreement

with Irwin et al. (1995) and Da Costa (1995). Employing a technique involving the color

difference between the HB and the RGB (Sarajedini et al. 1995), they reported an age of

13.3 ± 1.3 Gyr subject to the usual systematic errors associated with GC absolute ages.

More convincing are the relative ages derived by overlaying fiducial sequences, shown in

their Figure 5, that show Pyxis to be of similar age to NGC 362 and significantly younger

than NGC 288. Recall that NGC 288/362 are the classic second parameter pair as they share

similar metallicity but drastically different HB types (Catelan et al. 2001). Finally, using

the mean R magnitude of 27 HB stars and the absolute magnitude relation of Lee (1990),

MV (RR) = 0.17[Fe/H] + 0.79, they reported a Galactocentric distance of 41 kpc.

All the investigations above mentioned the need for spectroscopic measurements, to which

Palma, Kunkel, & Majewski (2000) answered the call, obtaining spectra with a 1200 line/mm

grating spectrograph configured for a 7700–8750 Å wavelength range and roughly 1.3 Å/pixel

detector resolution at the 2.5 meter du Pont Telescope at Las Campanas. Motivated to

determine the orbital kinematics in order to test the hypothesis of Pyxis as a captured

LMC object put forward by Irwin et al. (1995) and later supported by Palma, Majewski,
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& Johnston (2002, submitted at the time), radial velocities comprised their primary goal.

Their exposure times provided sufficient SNR for radial velocities of the brightest six stars,

labeled A through F in order of brightness, from which they obtain a mean radial velocity

of 39.5 km/s after excluding one outlier, Pyxis D, from their sample. Only the brightest

star, Pyxis A, provided sufficient SNR for metallicity estimation. Following the technique

outlined by Rutledge et al. (1997), Calcium II equivalent width measurements, W ′, yielded

a metallicity of [Fe/H] = −1.4± 0.1 dex.

Finally, Dotter et al. (2011) obtained HST data in the F606W and F814W (or V and

I) filters for Pyxis along with five other GCs in the interval 15 ≤ RGC ≤ 50 kpc. Their

CMD (Figure 3) extends to 26th magnitude in V (F606W ), or ∼ 4.5 mag below the MSTO.

Applying the age determination technique described by Dotter et al. (2010b, section 4.2)

using the Dartmouth Stellar Evolution Database (Dotter et al. 2008a, DSED) isochrones,

they reported an age of 11.5 ± 0.1 Gyr, V magnitude distance modulus (DMV ) of 18.64,

E(B − V ) = 0.25, [Fe/H] = −1.5, and [α/Fe] = 0.2 (see their Table 3).

1.3 Purpose

To best understand the origins of AM 1 and Pyxis and their insights into the formation of

the outer halo, we must first ascertain their physical properties as best as possible. Detailed

chemical abundance and kinematics measurements could lay to rest many of these questions

through “chemical tagging” (see, for example, Geisler, Wallerstein, Smith, & Casetti-Dinescu

2007; Brewer & Carney 2006), if only the instrumentation existed to obtain the requisite high

resolution and SNR spectra.

Thus we employ the best tools at our disposal for the study of this frontier. The SOAR

telescope provides sufficient aperture to study such faint objects, and our access to roughly

one or two nights per month each target is available allows for an unprecedented amount

of total exposure time on each target. One of the goals of this project is to completely
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exhaust the possibilities of ground-based instrumentation for AM 1 and Pyxis, making future

applications for time on space based instrumentation more compelling, if deemed necessary.

Wide bandpass photometry makes the most efficient use of telescope aperture and time

by exploiting the greatest amount of light. The consequence is that chemical abundance

measurements must be made in an indirect fashion. Photometrically derived parameters

such as metallicity are worthwhile goals in that they serve as starting points, and verification

tests, for more direct techniques. Therefore we set out on this campaign with the goal of

deriving such properties with the caveat that their conclusive determination will not be

available until instruments capable of high resolution spectroscopy (or perhaps some as yet

unforeseen technique) are available.

The age of a globular cluster is the most worthwhile and reliable measurement photometry

reveals. Being classically considered coeval systems4, the stars therein show all stages of

stellar evolution. A globular cluster color-magnitude diagram (CMD) shows a main sequence,

subgiant and red-giant branches, horizontal branches and asymptotic giant branches. As

discussed later, comparisons of stars at different evolutionary phases in the CMD reveals the

age of the cluster as a whole. Revisiting the analogy of globular clusters as fossils, revelations

about the age of a cluster provide clues about its origins and history inasmuch as carbon

dating reveals the same of a biological fossil.

The purpose of this endeavor, therefore, is reliable age determination for AM 1 and Pyxis

using a variety of techniques. In the process, we hope to discover or confirm other intrinsic

properties of the clusters such as metallicity and α element enhancement as well as extrinsic

properties of distance and interstellar extinction.

Chapter Two discusses the observing program and the data reduction process. Chapter

Three describes the calibration of the stars to the standard system and the construction of

the CMDs. In Chapter Four, I bring to bear three independent techniques for determining

4There are a growing number of clusters that show multiple populations betraying the notion that all GCs
are coeval systems. See Piotto (2009) for a review.
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the age of the clusters as well as the other properties listed above.
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Chapter 2

Data and Analysis

2.1 Observations

Several individuals, including myself, obtained the data between the fall of 2007 and

spring of 2009 using the Southern Astrophysical Research (SOAR) telescope, a 4.1 meter

aperture telescope located on Cerro Panchón, Chile, at an altitude of 2,700 m and south

latitude of −30.2◦. In order minimize the effects of the atmosphere on the star light, we

maintained an observing constraint of an airmass, X, less than 2, or a maximum of 30◦ from

the zenith. SOAR’s south latitude restricts the preferred (X < 2) observing declination

range to 0◦ ≥ δ ≥ −60◦, ideal for southern hemisphere targets due to the availability of

equatorial standards as well as program fields. Table 2.1 lists the celestial coordinates for

the clusters and standard fields.

Table 2.1. Target Coordinates

Target Number of Standards∗ RA (J2000) Dec

Clusters AM 1 ... 03:54:54.0 -49:36:38
Pyxis ... 09:07:57.8 -37:13:17

Standard star PG 0231+051 6 02:33:39 05:18:44
fields SA 98 6 06:52:10 00:18:56

Rubin 149 6 07:24:10 00:31:41
PG 0918+029 4 09:21:31 02:47:05

∗ Each field from Landolt (1992) typically contains many more stars than listed here.
The number listed in this table represents the total available given the coordinates and
SOI’s field of view. See Table 3.2 for colors and magnitudes of each standard star in the
field.



We imaged the clusters and standard fields using the SOAR Optical Imager (SOI1), a

mosaic of two 2048x4096 pixel Charged Coupled Devices (CCDs), with the Johnson-Cousins

B and V filters. When operating SOI in the default 2x2 binning mode, and accounting for

the physical gap between the long edges of the detectors (see §2.2.1), the resulting images

are 2099x2048 pixels with a resolution of 0.154′′/pixel.

CCD binning is the process of combining the signal, electrons corresponding to the num-

ber of photon hits, collected in the physical pixels of a specified area into a “super pixel”

using the readout register. The procedure trades spatial resolution for increased readout

time, smaller output file size, and greater signal-to-noise (SNR) due to the single passage

of the accumulated charge of the “super pixel” through the readout register as opposed to

each individual pixel incurring the readout register noise. The unbinned pixel resolution of

0.077′′/pixel is extremely small compared to the best seeing of ∼ 0.5′′. Thus the 2x2 binning

reduces the noise while retaining enough resolution to measure the stellar profile.

We planned our observations around constructing light curves for variable stars should

we discover any. Therefore, we always began and ended an observing session with a V frame

and alternated B and V frames in between. A complete list of the observations are listed in

Tables A.1 and A.2 in Appendix A. Table 2.2 summarizes the observations.

We operated SOI remotely in Chapel Hill using the Constance and Leonard Goodman

Remote Observing Room (Cecil & Crain 2004, though the facility is now located in Chapman

Hall). On-site telescope operators controlled SOAR under the direction of the observers via

videoconferencing.

In addition to the target clusters, we observed standard stars (or simply “standards”) from

the Landolt (1992) catalog on nights deemed photometric. I determined photometric quality

nights using available weather and satellite data and consultation with the on-site operators.

However, an on-site assessment of photometric conditions is notoriously unreliable. Upper

1http://www.soartelescope.org/observing/documentation/soar-optical-imager-soi/soi-manual/
soi_toc
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Table 2.2. Summary of observations

Object First Night/ Total Nights Filter Exposure Times Total Times Mean Seeing
Last Night (UT) (seconds) (seconds) (arcseconds)

AM 1 2007-10-08 10 V 28×300 8400 0.87
2009-01-31 33×600 19800 0.76

28200
B 27×500 13500 0.90

25×900 22500 0.78
36000

Pyxis 2007-11-14 11 V 3×15 45 0.76
2009-01-31 72×300 21600 0.79

21645
B 3×30 90 0.89

60×500 30000 0.84
30090

PG 0231 2008-01-03 1 V 3×20 60 0.86
B 3×30 90 0.86

150
SA 98 " " V 3×4 12 0.75

B 3×5 15 0.86
27

Rubin 149 " " V 1×3 3 0.70
1×4 4 1.01

B 1×4 4 1.27
1×30 30 1.08

41
PG 0918 " " V 2×5 10 1.03

B 1×6 6 0.98
1×15 15 1.01

31
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atmosphere cirrus clouds are invisible to the unaided eye and can creep in at any point

during the night. The following quote from John Irwin (1952) summarizes the observer’s

frustration.

One might ask: “How clear a sky?” The answer is: “Just as clear as possible-the

best is none too good.” The photocell can “see” and respond to thin cirrus clouds

long before they become apparent to the naked eye. Such clouds are worse than

a nuisance; once they have intruded themselves into the observations their effects

are subtly injurious to the scientific interpretation and are difficult to eradicate.

At the Goethe Link Observatory we call such clouds “photoelectric poison.”

True photometric conditions are most reliably verified post analysis (more details about

this in Chapter 4). Therefore we observed standards on multiple nights until we were confi-

dent we had a truly photometric night. This turned out to be the night of 2008-01-04. Table

2.1 lists the standards observed that night.

2.2 Data Reduction

Image processing refers to the methods of removing the systematic effects of the instru-

ments from the images. Such systematic effects include a bias offset introduced to the analog

to digital converter (ADC) that prevents it from reading a negative number as well as imper-

fections in the optical train, most commonly dust or scratches on the mirrors, that distort

the final image.

I processed the data using the Image Reduction and Analysis Facility (IRAF2, Tody

1993, and references therein). IRAF is an operating environment tailored for Flexible Image

Transport Standard (FITS, Pence et al. 2010) data files commonly used in astronomical

2IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Associa-
tion of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science
Foundation.
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applications. It consists of a collection of tasks (or programs) grouped into packages. Each

task receives input from the user through parameters. In this section, all words in the

typeset font refer to IRAF tasks. Typeset words connected by a period refer a parameter

of a task For example, ccdproc.statsub refers to the statsub parameter of the ccdproc

task.

2.2.1 Calibration

The following is a summary of the calibration process based on IRAF CCD documentation

by Massey (1997) to which I refer the reader for details about the tasks below.

Bias Subtraction

In order to correct for the CCD pixel to pixel bias variations, we acquired a sequence

of 10–20 bias (also called zero due to their exposure time) frames at the beginning of each

observing run, which zerocombine combined into a single, averaged image. In order to

account for cosmic rays infiltrating the images, all combination algorithms for the bias and

flat frames discussed below had the reject parameter set to minmax. This master bias frame

was subsequently subtracted from all the images using ccdprocess.

Flat Field Correction

Broadly speaking, flat fielding refers to the process of removing imperfections in the

optics train that cause distortions in the final image and pixel-to-pixel variations in detective

quantum efficiency (DQE). The idea is to have the telescope image a uniformly illuminated

area with an exposure sufficient to provide enough signal to be clearly distinguished from

the background while also not saturating the CCD.

There are two methods for obtaining flat field images (“flats”). The first involves mounting

a screen on the dome and illuminating it with one or more lamps. The telescope then images
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the screen to obtain what are commonly called “dome flats”. The advantage of this technique

is that the uniformly illuminated, featureless field free of extraneous signal. However, dome

flats in short wavelength filters, such as B, suffer a lower SNR due to the comparative lack of

flux of blue light from the lamp. In principle, this could be addressed with longer exposure

times at the risk of greater hits by cosmic rays.

Incandescent lamps are relatively faint in blue, broadband filters due to the steep drop

off in the blackbody spectrum as wavelength decreases past the effective temperature of

the lamp. Solutions include using incandescent lamps with a hotter effective temperature

and fluorescent bulbs made with gasses with strong blue emission lines. The temperatures

required of the filament to produce such a blue spectrum make incandescent bulbs expensive

and short lived, and fluorescent bulbs only approximate a continuous spectrum with a dense

blanket of emission lines making them less than ideal for broadband filters.

The alternative is to image the sky itself during twilight. The daytime sky is actually

violet, but we perceive it as blue because are eyes are less sensitive to violet wavelengths

(Smith 2005). However, the sky is far too bright to image during the day with a four meter

class telescope. Therefore, we began imaging the flats as soon as the sun set, starting with

the shortest wavelength filter and working our way redward as the sky turns from blue to

red.

Because SOI has a 16 bit ADC, its gain is set such that ADC saturation occurs before

physical the detector’s response becomes non-linear (somewhat near to, but less than, the

point of physical saturation). Saturated pixels have a value of 65,535 counts; the maximum

value of an unsigned 16 bit integer. To reduce the risk of high transparency regions of the

image saturating, we obtained flat field images with median levels less than half that value,

or between 20,000 and 30,000 counts per pixel. We insisted on acquiring enough flats such

that the sum of the median levels of all the individual flats exceed 100,000 counts (typically

at least five flats per filter).
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A complication that arises when the shutter transfer time, the time it takes for the shutter

to open and close, becomes significant compared to the total exposure time. For example, in

an iris style shutter, pixels first illuminated as the shutter open acquire more signal creating

a gradient on the flat field image that artificially diminishes signal upon application to the

science frames. SOI has a “focal-plane” style shutter, a two curtain system each of which

sweeps across the chip in the same direction, with a 60 millisecond transfer time. This

design purposely minimizes the effects of extra illumination as the first pixels exposed by the

opening curtain are also the first to be blocked by the closing curtain. To limit the maximum

illumination variation to 0.5%, I insisted on a minimum exposure time of four seconds.

Light from stars dominating over the sky brightness is a risk with sky flats. When

imaging the sky, photons from stars and galaxies reach the detector, but their signal tends

to be weak compared to the much brighter sky. As the sky darkens during the flat acquisition

process, stellar light images become significant compared to the sky leading to artifacts in

the flats that could corrupt the final science frames unless accounted for. To correct for this

the telescope operators slightly changed the telescope’s position between sky exposures, a

process called “dithering”. Dithering causes whatever star light that appears in the flat images

to appear in different locations from frame to frame. The flat field processing algorithms,

flatcombine, assumes patterns that change position from frame to frame are stars and

removes them during construction of the final flat image. We used sky flats exclusively during

this campaign, however, dome flats were often acquired each night to serve as backups.

The flat field images were bias subtracted using ccdprocess with the ccdproc.zero pa-

rameter set to the master bias frame constructed previously. These images were then com-

bined into a single, averaged image for each filter using flatcombine which works similarly

to zerocombine but is designed to identify and filter out star light provided the telescope

position changed from exposure to exposure.

Finally, I bias subtracted and flat field corrected the science frames using ccdprocess
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configured to be aware of the master zero and flat field images. Additionally, ccdprocess

trims away the overscan regions (more details about this in Section 2.5.)

Cosmic Rays

Debate continues regarding the origin of cosmic rays (Ackermann et al. 2013), but suffice it

to say that they are an unavoidable consequence of astronomical data acquisition manifesting

as strong spikes or streaks in the image. IRAF image processing software is capable of

detecting and removing them whenever images are combined using the combine parameter

set to ccdclip or minmax. As both zerocombine and flatcombine average images, cosmic

rays are removed from the master zero and flat images. However, because the detection of

variable stars requires photometry of all cluster images, the science frames are not combined

and cosmic rays persist. The PSF photometry software sufficiently distinguishes stars from

other sources such as cosmic rays as to not corrupt the final measurement (see §2.3.2.)

Image Mosaic

Because SOI has four separate readout amplifiers, the raw data consist of a single FITS

file which is actually a stack of four, 512x2048 images that soimosaic combines into a single

2099x2048 image using. To account for the physical gap between the chips, 51 pixel columns

are added between amplifiers two and three by setting the parameter soimosaic.xgap =

102 (this parameter accepts values as unbinned pixels which are scaled according to the

binning read from the image header). The upper left panel of Figure 2.1 is an example of a

portion of the finished product.

2.3 Photometry

Photometry refers to the process of measuring the apparent brightness of a star after cor-

recting for the sky brightness and light from nearby stars (“blending"). The photometry was
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performed using the DAOPHOT/ALLSTAR/ALLFRAME software suite by Peter Stetson

(1987). The choice of photometry software was largely influenced by the side-by-side com-

parisons of several algorithms performed by the Large Synoptic Survey Telescope (LSST,

Becker et al. 2007) group who concluded DAOPHOT/ALLFRAME superior for crowded

fields.

DAOPHOT is similar to IRAF in that it is an operating environment for launching commands

(or tasks). In this section, with the exception of ALLSTAR and ALLFRAME which are standalone

applications, all words in the upper case TYPESET font refer to DAOPHOT commands. Lower

case typeset words refer to parameters.

2.3.1 Aperture Photometry

Aperture photometry is the simplest and most accurate method for measuring the bright-

ness of a star, but it only works in sparse fields where blending of stellar images is negligible.

In the simplest form, the software sums up all the light signal in a circular aperture centered

on the peak of the star. Provided the aperture is of sufficient radius to collect all the light

of the star but small enough to not be infected by light from nearby stars or background

galaxies.

Absent light from nearby stars, one must then remove light from the sky itself. The sky is

not completely dark even after the sun is more than eighteen degrees below the horizon and

direct scattering of sunlight ceases (i.e. the onset of “astronomical twilight”). Sources of sky

brightness include solar wind induced airglow that varies with time, zodiacal light (scattering

of sunlight off of interplanetary dust) that is time and position dependent, and light from

faint background sources (e.g. stars, galaxies, etc.) It manifests itself as an additive constant

to the stellar profile. Time averaged values of sky brightness at CTIO3 are 22.81 ± 0.01 in

B and 21.79 ± 0.01 in V . Any star fainter than these values are dominated by the noise

3http://www.ctio.noao.edu/site/pachon_sky/
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introduced by the sky.

To subtract off the sky brightness, the software measures the light in a circular annulus,

concentric with the aperture, whose inner radius exceeds the aperture. The outer radius of

the annulus should be large enough to contain enough area to keep the SNR low but small

enough to avoid the effects of blending. The area of the annulus should be smaller than the

aperture to reduce the contribution of photon noise from the sky. The averaged value of

light in the annulus becomes the measurement of the sky and is subtracted away from the

total light contained in the aperture. The result should be a direct measurement of the total

amount of light from the star.

All of the standard stars were measured in this fashion using DAOPHOT. The FIND command

locates the center of the stars in the field. To keep things simple, the threshold parameter

was set sufficiently high such that only the brightest objects in the field were identified. The

resultant catalog was pruned by hand to only include the standard stars. The PHOT command

performed the photometry configured to use an aperture radius of 4.62′′ (30 pixels), an inner

annulus radius of 4.62′′ (30 pixels) and an outer annulus radius of 5.08′′ (33 pixels). These

correspond to a total aperture area of 67 sq′′ and annulus area of 14 sq′′.

2.3.2 PSF Photometry

Aperture photometry is too difficult in crowded fields due to the effects of multiple stars

within the aperture and starlight infiltrating the annulus. The remedy is to develop a model

point spread function (PSF) and use it to simultaneously measure and subtract away stars.

Development of the model PSF is a delicate procedure performed using DAOPHOT. I refer

the reader to Stetson (1987) for details of the model itself and simply outline the procedure

below.

The purpose of DAOPHOT is to develop a model PSF and a catalog of decent guesses for

the central positions of the stars and their brightness. The program allows for a number of
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choices for the PSF model which are detailed in Stetson (2000). I found success with the

Moffat function which is, in Stetson’s words, “something like”

1(
1 + x2/β2

x + y2/β2
y + βxyxy

)β (2.1)

where x and y are the coordinates of the center of the star and βx, βy, and βxy are free

parameters based on the full width half maximum (FWHM) of the stellar profile. The β

term is a user specified fixed parameter that I set to 1.5 because it produced decent results

(the other option is 2.5).

The first step is to identify everything in the image (or frame) that is a star (as opposed

to background galaxies, cosmic rays, CCD chip defects, etc...) using the FIND command.

For each night’s worth of data, I toggled the threshold value, the multiple of the standard

deviation of the average pixel value, or σ, above which a signal is considered a star, by a few

tenths to get a consistent number of stars in the input guess catalog. For example, for AM

1, a typical value would be 2.8σ for 3,000 stars. For nights with poor transparency, I used

reasonable values from previous nights and try to get consistent counts from frame to frame.

The initial positions file serves as the input for PHOT which produces the initial guesses

for the brightness. As discussed in section 2.3.1, this procedure performs simple aperture

photometry with an aperture of between 0.462′′ and 0.770′′ (3-5 pixels) depending on the

seeing, and an inner and outer annulus radii of 2.31′′ and 3.08′′ (15 and 20 pixels) respectively.

The choice of aperture and annulus radii serves to achieve a reasonable first guess at

the brightness of the star while mitigating the effects of the crowded field. The choice of

such a narrow aperture limits the inclusion of light from neighboring stars and non-stellar

artifacts at the expense of underestimating the star’s brightness by including a relatively

small portion of the stellar profile. The annulus almost certainly contains light from nearby

stars, but the relatively large area typically contains more sky and hence dominates the

average. By the inclusion of quite a bit of light from blended stars, the result overestimates
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the sky brightness. The ultimate guess, while being far from perfect, suffices most of the

time. When the initial guess is too far off, the model does not converge, but by allowing

the brightness guess to vary with successive iterations, the algorithm eventually achieves a

solution.

The next step is to select a group 20-30 candidate stars, referred to herein as “PSF

stars,” used to create the PSF model for the frame. Because the parameters of the model

are designed to optimize the fit for the PSF stars and are allowed to vary via a quadratic

function of position for remaining stars, it is important that they are uniformly distributed

spatially, relatively isolated from other stars and are bright enough to give provide good

SNR on nights with poor transparency while not being so bright as to saturate on nights of

good seeing. Whenever possible, I used the same stars for each target from night to night,

but pointing variations sometimes excluded certain stars from the image.

Table 2.3 shows the PSF stars used for the master frame of AM 1, which served as the

PSF stars for the majority of the frames. Replacements became necessary whenever stars on

this list wander off the chips or into unuseful regions, such as the guide star probe shadow or

the gap between CCDs, due to night-to-night pointing variations. The stars in this table are

calibrated to the standard system via the procedure outlined in §3.1. Calibrated magnitudes

for these stars, of course, were unknown a-priori. I estimated relative brightnesses using

stellar radial profile plots in IRAF.

With the initial list of candidate PSF stars, PSF computes an initial PSF model and

identifies neighboring stars whose profiles could corrupt the PSF stars. With this in hand, I

used GROUP and NSTAR to perform photometry on the PSF stars and neighbors. As a quality

assurance (QA) check, SUBSTAR subtracts away all the PSF stars and their neighbors. Should

anything go wrong with the PSF model, the subtracted image showed distortions and other

defects.

The PSF stars were inspected by hand and problematic stars deleted from the list of
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Table 2.3. An Example of PSF Stars for AM 1

ID X̄ (pixels) Ȳ (pixels) V (B − V ) σV σ(B−V )

169 1858.82 87.70 19.891 1.370 0.0008 0.0014
10161 652.45 168.60 20.735 0.650 0.0009 0.0013
10212 1944.58 248.93 19.491 0.705 0.0007 0.0011

432 1210.97 251.04 21.001 0.600 0.0012 0.0018
30182 615.84 262.45 19.985 0.163 0.0007 0.0010
10294 1945.64 301.12 20.189 1.565 0.0009 0.0017

681 314.11 382.76 21.372 1.460 0.0014 0.0032
683 636.17 385.11 20.860 0.839 0.0010 0.0016

1260 269.94 619.77 20.645 0.658 0.0009 0.0013
10649 591.58 670.80 19.473 1.056 0.0006 0.0010
1916 201.74 775.61 20.481 0.827 0.0009 0.0013

11323 1544.91 884.09 17.570 0.980 0.0006 0.0009
11550 791.54 927.78 19.368 1.443 0.0007 0.0011
11807 231.95 1048.58 19.940 0.948 0.0007 0.0011
3456 806.96 1124.92 20.971 0.593 0.0012 0.0018

21293 669.60 1159.29 18.416 0.916 0.0005 0.0008
3745 1291.03 1249.45 21.829 1.697 0.0021 0.0056

12045 485.92 1299.15 20.371 1.484 0.0009 0.0017
31194 1399.85 1436.67 17.150 0.607 0.0006 0.0009
4112 1246.74 1455.72 21.055 1.378 0.0014 0.0028
4133 482.44 1467.26 20.601 1.600 0.0010 0.0021

31230 1782.21 1498.57 19.678 1.349 0.0007 0.0013
4534 1652.78 1732.76 20.917 0.822 0.0011 0.0018

12374 209.27 1758.80 17.625 0.979 0.0006 0.0009

candidate PSF star list for a second iteration of the above procedure. In almost all cases,

cosmic rays persistent in the science frames hitting within the 2.31′′ (15 pixel) psf radius

of a star caused these distortions. Recall the procedure for cosmic ray removal involves

combining images which violated a project goal of variable star detection. If the second

subtracted image looked clean of anomalies, a final image was created that included PSF

stars with their neighbors subtracted away. This image was used to create the final model

PSF file which, along with the initial aperture photometry file created by PHOT serve as input

for ALLSTAR.

Unlike NSTAR which optimizes the PSF parameters for specific stars, ALLSTAR uses the

initial guesses of position and brightness as well as the PSF model for the frame to perform

photometry for all the stars in the frame. For each iteration of ALLSTAR, the program applies

the PSF model to as many stars that will converge and subtracts them away. Subsequent

iterations have fewer stars to cause blending, hence more stars will converge. The process
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continues until all stars in the frame converge up to a maximum of 200 iterations. The

program then produces a catalog of final positions and magnitudes plus an image with all

the converged stars subtracted away as a QA check. An example of an ALLSTAR subtracted

image can be found in the upper right panel of Figure 2.1.

2.3.3 Automation

The above procedure is rather slow and tedious to perform by hand. Therefore, I wrote

three perl scripts to automate the procedure. In this section, words in typeset refer to

scripts that I wrote. Source code for these scripts may be found in Appendix B.

Prior to invoking the scripts, the user must run FIND to set an appropriate threshold, the

run PICK to generate the list of 500 candidate PSF stars which serves as the input for the

upstream scripts.

The first two scripts aid in selecting the PSF stars and marking their positions in an

image display such as SAOImage DS9 (Joye & Mandel 2003), developed at the Smithsonian

Astrophysical Observatory. The first script, daopsffind, selects the PSF stars based on

the initial guess coordinates of the PSF stars in the previous frame. The algorithm is

pretty simple; find the brightest star within the user specified search radius centered on the

coordinates of that star in the input list. Provided the pointing is stable over the course of

the night, the algorithm works well enough to identify the same PSF stars in each image.

Frequently, the PSF stars for the first frame of the night were chosen by hand, which served

as the input guess list for the next frame. That frame’s final list served as the input for

the next frame and so on. Next, daopsfmark simply reads the list of PSF stars output by

daopsffind and generates a DS9 formatted region file that draws a circle around each PSF

star in the image display and labeled it according to it’s catalog ID. Despite being relatively

simple scripts, automating this process saved the greatest amount of human effort compared

to the other automation scripts discussed in this subsection.
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Figure 2.1 The central 2′ 27′′ region of AM 1. Upper left: An example of a bias subtracted,
flat field corrected frame. This particular frame served as the master for the V portion of
ALLFRAME reductions. Upper right: The same frame after ALLSTAR subtraction. Lower left:
The median of 17 V frames. Lower right: Same as above but after ALLFRAME subtraction.
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Finally, the input catalog of guesses at positions and magnitudes returned by FIND as well

as the list of PSF stars serve as input to daofun (for lack of a better name) which automates

the DAOPHOT command sequence. After the first iteration, the script prompts the user to

inspect the image where the PSF stars and their neighbors are subtracted and delete stars

that failed to cleanly subtract away from the next iteration’s PSF list. Typically, less than

five stars per frame needed to be culled from the list prior to the second iteration. After the

second iteration, the user is again prompted to inspect the image with the remaining PSF

stars subtracted away. Provided this subtracted image satisfies the user, the script invokes

DAOPHOT to construct the final PSF model and subsequently calls ALLSTAR to perform the

final photometry of the field.

2.4 Catalog Assembly

The final step is to compute the global solution for all the stars in all the frames simul-

taneously using ALLFRAME. The specifics of how the algorithm works are detailed in section

3.2 of Stetson (1994), to which I refer the reader for further information. The steps listed

below follow the instruction outlined by Anne Turner (1997). In this section, words in the

upper case TYPESET font refer to stand alone programs related to ALLFRAME and typeset

font words refer to parameters to those programs.

2.4.1 Crude Position Registration

The first step is to register the stars in all of the images to the coordinate system of

a master frame. Because the PSF can vary as a function of color, I chose to run the full

ALLFRAME procedure on B and V frames separately. Hence there was a master B as well as

a master V frame, which were the best seeing frames the night that photometric transfor-

mations were derived (2008-01-04 UTC). The specific frames used as the master frames in

each filter for both closers are indicated in the “Comments” column of the observing tables
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in Appendix A.

DAOMATCH makes a crude estimation of the positional transformations of of each frame to

the system of the master frame using simple linear functions4 of the form

x2 = A+ Cx1 + Ey1 (2.2a)

y2 = B +Dx1 + Fy1 (2.2b)

where A and B are offset terms and the rest are rotational terms. The only significant

rotational offsets between frames was the occasional 180 degree rotation angle caused by

the telescope pointing significantly west of the meridian. I accounted for this by inverting

the image’s axes using IRAF prior to performing photometry on the frames. Hence, as far

as DAOMASTER is concerned, there is virtually no rotational offset between frames, and the

terms C – F in equations 2.2 are close to zero.

The linear offset terms, A and B, were significant. Pyxis is large enough that we consis-

tently pointed the telescope at the center of the cluster, but AM 1 is small enough to fit on

a single CCD. Most nights we centered AM 1 on the left chip, but there were some nights

where it was centered on the right chip requiring a ∼ 1000 pixel offset term. This becomes

significant when executing DAOMASTER discussed below.

2.4.2 Fine Position Registration

The crude offsets computed by DAOMATCH serve as inputs to DAOMASTER in order to com-

pute the final transformations. Per Turner’s recommendations, the parameters minimum

number, minimum fraction and enough frames were set to 5, 0.5 and 10 respectively. I

4These functions and associated documentation are found in the ccdpck.man file included with the source
code.
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used a maximum sigma5 of 0.5 in order to reject problematic stars. Finally, because there are

offsets between frames greater than tens of pixels, I configured the program to use a cubic

transformation function (option 20 in desired degrees of freedom).

The next step in DAOMASTER is to chose an initial critical match-up radius, which allows

the software to handle for high proper motion stars that deviate from their average position

significantly from frame to frame. Both Stetson and Turner recommend starting with an

initial critical radius no greater than seven and step down by one each iteration, repeating the

final iteration of one until the number of stars within the radius remains the same. However,

my initial interpretation of the documentation led me to believe it was to account for large

shifts between frames. At first I tried a pathological number on the order of 100, which gave

the program enough freedom to assign errant matches (or as my notes put it, enough rope to

hang itself). This led to half moon shaped artifacts in the final ALLFRAME subtracted images,

which are the ultimate QA check discussed in section 2.4.4. This problem was difficult to

diagnose, but, in the end, following the documentation’s advice of a maximum radius of

seven worked great.

2.4.3 Median Images

The last step before invoking ALLFRAME is to create a median image whose photometry

serves as the initial guess for the final solutions. I selected at least ten frames with the best

seeing to compute a median image for each filter using MONTAGE2. The specific frames used to

construct the mediated image are indicated in the “Comments” column of the observing logs

in Appendix A. The program subtracts away the sky and sometimes introduces catastroph-

ically large (greater than 1017) pixel values, presumably due to a divide-by-zero style error.

Both of these are corrected using IRAF. Then the B and V median images are co-added to

5Quoting Peter Stetson’s description of this parameter from the file ccdpck.man included with the source
code, “A star will be rejected if its mean instrumental magnitude, based on a weighted average of all available
observerations corrected to the magnitude scale of the “best” frame, is larger than the number you type in.”
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form the final median image, an example of which is shown in the lower left panel of Figure

2.1.

The final step is to process the combined median image through DAOPHOT and ALLSTAR

to produce the final catalog of initial guesses of positions and magnitudes. To decide the

threshold value for the detection limit, Turner recommends plotting number of stars vs.

threshold, which looks like a half gaussian, and choosing the value where the elbow in the

curve occurs. For AM 1, this occurred at a threshold of 2.6. ALLSTAR produces an image

with all the stars it detected subtracted away, Turner recommends running this through the

whole process again to pick up any stars not detected the first time around. I ended up doing

four iterations of this process for each cluster. To avoid identification collisions between stars

in each iteration, I introduced a catalog identification index offset in increments of 10,000

in each iteration (eg. stars whose catalog ID in the range 30,000 – 39,999 were detected in

the third iteration). It is best to have as many stars as possible as errant detections do not

converge in ALLFRAME.

2.4.4 ALLFRAME

After executing all the steps above, executing ALLFRAME is fairly straightforward. I used

the parameters recommended by Turner but with the sky radius values changed to match

what I used for ALLSTAR. It is important to note that ALLFRAME is initially configured to only

allocate memory sufficient to store images of a maximum size of 2048× 2048 pixels. When

accounting for the physical gap, my images are 2048 × 2099 pixels. It is relatively straight

forward to recompile ALLFRAME to increase the limit, and the procedure is included in the

documentation accompanying the source code.

ALLFRAME produces two output files for each input frame; a final catalog for all the stars

that converged in the frame and a image with the stars subtracted away for QA. In order

to produce the final, averaged color magnitude diagram (CMD), all the B and V frames
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are averaged separately using DAOMASTER. This accomplished by editing the original transfer

file produced by the first run of DAOMASTER and changing the filenames to point to the new

ALLFRAME produced catalogs. Furthermore, the file needs to be split into two files based on

filter. These are input to DAOMASTER to produce a file with mean magnitudes and scatter for

each filter. The magnitudes of the stars in each frame are shifted by means of a constant

offset to the magnitude system of the master frame of each filter. One final iteration of

DAOMATCH and DAOMASTER combines the averaged magnitudes into a single catalog as well as

a transfer file that references each star’s identification in the two averaged catalogs.

2.4.5 Aperture Correction

Different techniques determine the magnitude of the standard stars and cluster stars;

aperture and PSF respectively. With PSF photometry, DAOPHOT constructs a model heavily

dominated by the brightest portion of the stellar profile where the SNR is strongest. Once

the model is constructed, magnitudes are evaluated by adjusting a scale factor on a star-by-

star basis to this profile which simultaneously produce matches to all the stars in the image.

In the end, the software outputs relative magnitudes between the stars in that image alone.

Thus, each frame lacks an absolute zero point for the magnitude system.

Standard stars are measured via aperture photometry where, after the sky is reasonably

measured and subtracted away, photons are counted within the aperture region measuring

a total intensity. The wings of the stellar profile typically extend several arcseconds in

radius from the center of the star (Stetson 1990), but the apertures for standards are chosen

such that the total percentage of light excluded in the wings beyond the aperture is small

compared to the expected 1% error budget6. This technique contains an absolute zero point

for the magnitude system; a region in which no net flux is measured, for example.

In order to establish a consistent magnitude system for the standard and cluster stars, one

6Assuming a simple gaussian function for the stellar profile and a FWHM seeing of 1′′, the 4.62′′ aperture
radius used for the standards contains 99.9996% of the total starlight.
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must measure and apply a constant offset in brightness known as an “aperture correction.”

I used the curve of growth technique described by Stetson (1990) to determine the aperture

correction for each of the master frames. Application of the aperture correction to the master

frames suffices as these frames determine the magnitude system for all subsequent frames.

To summarize the technique, a selection of local standard stars are measured using twelve

concentric aperture radii ranging from the aperture used by the PSF function (0.462′′) out

to at least half the radius of the aperture used for the standards (4.62′′). The PSF stars

used in DAOPHOT described in section 2.3.2 serve this purpose well. Stetson (1990) lists

two techniques for determining the aperture radius sequence; a geometric relationship and

recursive sequence I call “fourth night” because Stetson first used it on data obtained from

the fourth night of an observing run at Cerro Tololo. Though he claims both techniques

work well, he expresses a preference for the latter, the general form of which is

rk = rk−1 +
(k − 1) (r12 − r1)

66
(2.3)

where r is measured in units of pixels. Side by side comparisons of each technique on my data

verify Stetson’s assertion about the fourth night technique. For my data, I used r1 = 3 and

r12 = 20. The program extrapolates the magnitude out to an effective aperture of twice the

greatest input aperture. In my case, the extrapolated magnitude has an effective aperture

radius of 6.16′′, easily greater than the aperture used for the standards.

Before performing the photometry, I used DAOPHOT and SUBSTAR to subtract away every-

thing in the frame except the local standards. Furthermore, I removed any local standard

with a cosmic ray hit within the greatest aperture. A hazard I discovered when running PHOT

is that if a model PSF file is in the same directory and with the same base name as the input

file used, it will use it and make a PSF measurement of the local standards without informing

the user. This is fundamentally incorrect as we wish to compare aperture magnitudes to the

PSF magnitudes, not PSF to PSF. To avoid this, one should ensure that the input file has
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Table 2.4. Final Aperture Corrections

Target V B

AM 1 -0.0611 ± 0.0004 -0.0582 ± 0.0005
Pyxis -0.0706 ± 0.0003 -0.0839 ± 0.0003

a different base name.

The concentric aperture measurements serve as input to the software DAOGROW to compute

the curve of growth. The program outputs some data files used to make QA graphs shown

in Figure 2.2. Its ultimate output file has the same base name as the input aperture file

with a .tot extension. To get the aperture correction, one needs the “best” magnitude and

the correction factor at that aperture. DAOGROW examines the curve from outside to in

and locates the point at which the errors are minimized. This is the “best” aperture, and

the cumulative correction factor, denoted in Turner (1997) as ∆, is the summation of all the

outer points plus an extrapolation factor. The result is a magnitude estimate for an aperture

twice the radius of the largest aperture used to compute the curve of growth. In my case,

my largest aperture is 20 pixels (3.08′′), so the “best” magnitude corresponds to a magnitude

measured with a 40 pixel (6.16′′) aperture. The output file contains this magnitude in column

4 as well as an error estimate.

Next, to get the aperture correction for that frame, one invokes the following formula

found in Appendix E of Turner (1997)

Ap cor = Mag (40 pixel aperture) - PSF mag

Mag (40 pixel aperture) = Mag (best aperture) + Growth curve correction.

The output file contains the Mag (40 pixel aperture) parameter, so all that is necessary is

to subtract the PSF magnitudes for the local standards used in the input aperture magnitude

file from the 40 pixel aperture magnitudes in the output file. The average value of the

difference of all the local standards is the aperture correction. The final results are listed in
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Figure 2.2 Curves of growth for both clusters in both filters. The open circles represent mag-
nitude differences between adjacent apertures plotted versus the mean magnitude difference
between the apertures in pixels. Artificial scatter is added to the horizontal scale to help
distinguish the points. Fitting to the mean of the raw magnitude differences results in the
empirical model and is more reliable for smaller apertures. Adjusting the parameters of an
analytic function that best fits the stellar profile results in greater reliability at larger radii.
The adopted model is the compromise between the two.
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Table 2.4.

2.5 Reprocessing

Several suspicious anomalies persisted in the finished products after completing the pro-

cess outlined above, the most flagrant of which being best described as “half moon” shaped

residuals in the final, ALLFRAME subtracted images. See Figure 2.1 lower right panel for an

example of a clean subtraction. These only occurred along the boundaries between the two

amplifiers on each CCD chip.

After much investigation, I identified incorrect header keyword values used by CCDPROC

to trim away the overscan region as the source of the problem. In particular, the values

BIASSEC, TRIMSEC, and DATASEC were off by just a few pixels. Furthermore, these values

changed with the installation of the new CCD on November 8th, 2008. This caused portions

of the chip containing data to be trimmed away with the overscan region. The two amplifiers

on each SOI CCD read out the chip in a theater-curtain style fashion, pulling the pixel

columns left and right forming images containing 512 columns of data plus overscan regions

on both sides. When SOIMOSAIC combined the data from each amplifier, the missing pixel

columns along the boundary between the amplifiers formed discontinuities in the stellar

profiles of the stars along that column. Hence the “half moon” shaped artifacts.

Sean Points, then a postdoc at SOAR, provided the proper header values. The correction

required the complete reprocessing of all the data through IRAF, and a complete reanalysis

of the AM 1 frames through the DAOPHOT/ALLFRAME. This served as a significant setback and

a valuable lesson in data verification.
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Chapter 3

The Color Magnitude Diagrams

This chapter describes the process that transforms instrumental magnitudes into a cali-

brated, filtered, color-magnitude diagram (CMD). Comparison of results with other observers

as well as theoretical models necessitates calibration to a standard system. Furthermore,

magnitudes on standard system facilitates an application of a bolometric correction to esti-

mate the total luminosity of the stars from individual waveband data.

3.1 Photometric Calibration

Photometric calibration accounts for two broad categories of variation in measurement:

atmospheric and instrumental. The apparent brightness and color of the star varies due to

the atmosphere as the star transits across the sky, and instrumental differences arise due

to dissimilarities between telescope optics and detectors at observatories and those used to

calibrate the standard stars. In order to reconcile observations of the same stars from various

observatories at different times, a correction for both effects must be applied.

The Earth’s atmosphere extinguishes and reddens starlight through the processes of scat-

tering and molecular absorption. The more atmosphere between the observer and space, the

greater the effects. The sun and moon, for example, appear comparatively red when rising

and setting. Fortunately, the atmosphere itself is fairly constant in time and easy to model,

albeit with some exceptions; Landolt (1992) cites volcanic eruptions as an example of an

event that significantly pollutes the atmosphere with extra reddening agents, but the effects

from such episodes are short-lived with none occurring in the southern hemisphere during

this observing campaign.



Beyond the effects of the atmosphere, the calibration technique must account for vari-

ations in instrument optics. The mirror surfaces and coatings have wavelength dependent

reflectivity. For example, aluminum has a flat reflectivity response profile across optical

wavelengths whereas silver has greater throughput in the red that drops off sharply at blue

wavelengths1.

The filters comprise the penultimate hurdle in the photons journey from star to detection.

The filters are chosen and constructed to best match those used to establish the standard

system. Figure 3.1 shows the total transmission response profiles for the SOI filters compared

to those used by Landolt (1992) to establish the UBV RI system. As is evident in the

figure, the filters possess drastically different in throughput but have very similar central

wavelengths and profile shapes.

Finally, the surviving photons face the detector; the instrumentation that converts pho-

tons into electrical signal. Detector technology varies widely with time beginning with pho-

tomultiplier tubes used to establish the standard system through improving generations of

CCDs. The detectors possess wavelength dependent sensitivity and quantum efficiency. I

am unable to produce a side-by-side comparison of the instrument response profiles due to

the unavailability of the SOI data, but I refer the curious to compare Figure 52 of Landolt

(1992) which shows the quantum efficiency of the photomultiplier used to establish the stan-

dard system as a function of wavelength with the same plot for the SOI CCDs found on the

SOAR website2.

Further complicating the issue are night-to-night variations in dust and other accumula-

tions on the optics train that are not cleanly removed by the flat fielding process (§2.2.1).

SOAR experiences a great deal of exposure to the elements when the dome shutter is open,

1The Gemini website contains figures comparing the wavelength response profiles for silver and aluminum.
http://www.gemini.edu/sciops/telescopes-and-sites/optics/silver-vs-aluminum

2http://www.soartelescope.org/observing/documentation/soar-optical-imager-soi/soi-manual/
soi-hardwarde#H1 Figure 3.
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allowing dust to accumulate on the mirrors. However, the most significant effects are due to

nightly variations in atmospheric transparency. Because of this, the calibration procedure

only applies to a single night’s observations.

In order to reconcile the observational differences between different observing systems, one

compares measurements of light from stars of known, or standardized, brightnesses. Landolt

(1992) published a catalog of standard stars, roughly equally spaced in right ascension along

the declination of the celestial equator for equal viewing opportunity in the northern and

southern hemispheres.

The photometric calibration method outlined by Robert Hardie (1959), summarized in

“Astronomical Techniques” edited by Hiltner (1962), has long been considered the standard

for photoelectric photometry. Hardie derives the equations for computing the extinction and

color coefficients for the UBV filter system. The subsection below mirrors the steps and

notation outlined by Hardie and derive the transformation coefficients for the BV system.

3.1.1 Working Equations

The CCD detector, and subsequent measurement software described in §2.3.1, produces

raw counts of photons collected during the exposure time. Dividing the two yields a quantity

proportional to the intensity, I, of observed light. The intensities are scaled to the natural

magnitude system via

m−m0 = −2.5 log
I

I0

(3.1)

where m0 and I0 are the magnitude and intensity of the arbitrary zero point of the system.

For example, the star Vega was historically chosen to be the zero point of the magnitude

system. Substituting an appropriate filter identifier in for the arbitrary magnitude, m, in

Equation 3.1 defines the instrumental magnitudes as b and v. One should not confuse

these with the Stromgren photometric filters with the same names.
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Figure 3.1 Filter throughput profiles for SOI circa October 2004 (solid lines) compared with
those used by the Blanco 4m at CTIO to establish the standard system (dashed lines). Data
for the SOI transmission curves are available from the SOAR website, and the CTIO data
is from Tables 6 and 7 of Landolt (1992). The SOI filters have since been replaced, and
updated transmission data are not yet available.
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The first step in the process is to remove the effects of the atmosphere. Adopting a plane-

parallel approximation for the atmosphere with a unit scale height above the observatory at

the zenith, the airmass,

X = sec z − 0.0018167 (sec z − 1)− 0.002875 (sec z − 1)2 − 0.0008083 (sec z − 1)3 , (3.2)

represents the relative thickness of atmosphere between the observatory and a star viewed at

an angle z away from the zenith. We restricted our observations to targets within 30 degrees

of the meridian and altitudes sufficient to keep z small enough to obviate the higher order

terms in Equation 3.2. Hereafter, any mention of airmass refers to the approximation

X = sec z. (3.3)

In the equations that follow, any quantity with a 0 subscript represents an extinction-

corrected, above atmosphere, instrumental magnitude. These natural magnitudes, defined

as b0 and v0, are found via

v0 = v − k′vX (3.4a)

(b− v)0 = (b− v) Jx − k
′

bvX. (3.4b)

The color coefficient, Jx, is necessary due to the λ−4 wavelength dependence imposed by

molecular scattering (Hiltner 1962, §2.4). The mean wavelength shifts redward as the

starlight encounters increased airmass, but shorter wavelengths are more strongly affected.

This differential effect between the B and V filters is accounted for by measuring their rel-

ative brightness for a pair of stars of widely different color at low and high airmass. The

functional form of this term is given by
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Jx = 1− k′′bvX, (3.5)

and is stable enough over time to obviate recalibration on a nightly basis. The k′ and k”

terms are commonly called the first and second order extinction coefficients respectively.

Equations 3.4 and 3.5 provide an above-atmosphere, instrumental magnitude. The next

step is to correct for the instrumental differences inherent to the telescope and detector,

ultimately transforming to the standard system. We denote the standard magnitudes with

capital letters, B and V given by

V = v0 + ε (B − V ) + ζv (3.6a)

B − V = µ (b− v)0 + ζbv. (3.6b)

where the ε and µ terms are scale factors necessary to compensate for differences overall

color sensitivity between the instrument used to establish the standard system and SOAR.

These include differences in the central wavelengths of the filters, color sensitivity between

the detectors, and color absorption on the mirrors. The ζ terms are offsets that correct for

total throughput differences between the systems (Hiltner 1962, §3.1 – 3.3).

Combining equations 3.4 and 3.6 gives us our final transformation equations

V = v − k′vX + ε (B − V ) + ζv (3.7a)

B − V = µbv (b− v) Jx − µbv k
′

bvX + ζbv. (3.7b)

A close look at equation set 3.6 reveals the standard system as a linear transformation, in the

V band, from the natural system with ε and ζ being the slope and zero points respectively.
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A small value of ε represents a decent match between the central wavelengths of the filters

of the telescope and the standard system and is expected based on the comparison between

the standard filters and those used by SOI shown in figure 3.1.

3.1.2 Determining coefficients

Section 4.3 of the Hardie chapter in “Astronomical Techniques” (Hiltner 1962) outlines

the rigorous method for determining the atmospheric extinction coefficients. The process is

summarized below.

The atmospheric reddening terms, the double-prime coefficients so called for the k′′ no-

tation, are determined by tracking two stars of different color over a wide range of airmass

through the course of the night. The k′′bv coefficient is equal to the slope of a linear fit

of ∆(b − v) vs. [X ∆(b − v)], and similarly for the coefficients k′′vr and k
′′
ri. These coeffi-

cients do not generally vary much with time, thus once they are determined, they need not

be recomputed on subsequent photometric observing runs except for the occasional sanity

check.

Furthermore, one can get a good estimate of the principle extinction coefficients, the k′

terms. The k′v is the slope of the line that fits v vs. X. The k′′bv is the slope of the line that

best fits (b− v)Jx vs. X. These initial estimates will be necessary in order to compute the

color transformation terms, but they will be recalculated later once those terms are known.

The drawback of this technique is the enormous about of time one must spend observing

standard stars. Hardie describes the “short” method that requires observations of two stan-

dards of widely different color at appreciably different airmass. If the color transformation

terms and second order extinction terms are known, one can compute the principle extinction

coefficients analytically using a two point difference method outlined below.
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Table 3.1. CTIO Averaged Extinction Coefficients

Magnitude or color index Symbol Average value Range in values

V k
′
v 0.152 0.099 – 0.250

B-V k
′
bv 0.124 0.074 – 0.184
k
′′
bv 0.022 - 0.046 – 0.013

Note. — Reproduced from Table 1 of Landolt (1992).

k
′

v =
∆v −∆V + ε∆(B − V )

∆X
(3.8a)

k
′

bv =
∆[µJx(b− v)]−∆(B − V )

µ∆X
(3.8b)

This is effectively fitting a line to two points. Furthermore, Harris et al. (1981) describes a

method that determines both the extinction and color transformation coefficients simulta-

neously via a matrix inversion.

Regardless of the technique used, direct determination of the atmospheric extinction

coefficients requires extra observing time on standards. To maximize our observing efficiency,

I used the time-averaged values for CTIO computed by Landolt (1992). Table 3.1, which is

basically a reprint of Landolt’s Table 1 with the notation changed, lists the values used for

this project.

The color transformation terms, ε and µ, are found by observing several standard stars,

whose absolute magnitudes are known, at minimum airmass. The slope of the best fit line

of V − v0 vs. B−V yields ε. The µ term is found from the plot of catalog color index minus

natural color index vs. catalog color index.
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The recipe

The following is the step by step recipe for determining the coefficients given the averaged

values of the extinction coefficients.

1. Compute the color transformation terms from the slopes of the following plots.

ε ⇒ V − v0 vs. B − V

1− 1
µ
⇒ (B − V )− (b− v)0 vs. B − V

If we denote the slopes of the above plots mv and mbv, we can write the equations

for the color transformation coefficients as

ε = mv (3.9a)

µ =
1

1−mbv

(3.9b)

And the uncertainties in the coefficients can be found from the usual propagation of

error formula

σε = σmv (3.10a)

σµ =
∂µ

∂mbv

σmbv =
1

(1−m)2
σmbv (3.10b)

2. Finally, compute the color offset terms from the vertical-axis intercepts of the following

plots.

ζv ⇒ V − [v0 + ε(B − V )] vs. B − V

ζbv ⇒ (B − V )− µ(b− v)0 vs. B − V
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Results

The linear fits described above are shown in Figure 3.2, and Table 3.3 summarizes the

resulting coefficients. As expected based on the close match between filter zero points of SOI

and the standard system, the derived value of ε is small. One may be concerned with our

choice of time-averaged extinction coefficients. A careful look at equation 3.7 reveals that

any error incurred by using the time averaged coefficients rather than the correct values for

that night manifests itself as an uncertainty in the slope of the graph used to determine µ

term and the vertical intercept of the graph used to derive the ζv coefficient. As the errors

of these values, listed in the fourth column of Table 3.3, are less than one percent, we see

that our choice is none too perilous.

Finally, to test the quality of the results, I transform the instrumental magnitudes of the

standard stars to the standard system and compare with the catalog values. As shown in

table 3.2, the average difference between the catalog values, V and (B−V ), and the derived

values, V ′ and (B − V )′, for the standards is zero with standard deviations of about one

percent.

3.1.3 Uncertainties

One may have noticed a number of uncertainties, or errors, creeping up in the process

of converting raw data to a final, calibrated measurement. These fall into two categories;

internal and external errors.

Internal errors are inherent to the acquisition of star light and the instrument. Specifically

they are the read noise of the detector, noise introduced by subtracting away the bias and

the sky, and the photon noise of the star light itself. The photon noise, also known as “shot

noise,” comes about due to the particle nature of light. It is asymmetric and follows a Poisson

distribution. For large numbers of photons, the noise is proportional to the square root of

the number of photons detected. ALLFRAME takes all of this into account and reports an
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Table 3.2. Standard star transformations from the night 2008-01-03

Star V V ′ ∆V (B − V ) (B − V )′ ∆(B − V )

PG 0231+051 16.105 16.097 0.008 -0.329 -0.334 0.005
PG 0231+051 A 12.772 12.746 0.026 0.710 0.708 0.002
PG 0231+051 B 14.735 14.729 0.006 1.448 1.430 0.018
PG 0231+051 C 13.702 13.685 0.017 0.671 0.663 0.008
PG 0231+051 D 14.027 14.040 -0.013 1.088 1.069 0.019
PG 0231+051 E 13.804 13.789 0.015 0.677 0.669 0.008
SA 98 650 12.271 12.284 -0.013 0.157 0.138 0.019
SA 98 670 11.930 11.921 0.009 1.356 1.364 -0.008
SA 98 671 13.385 13.409 -0.024 0.968 0.970 -0.002
SA 98 675 13.398 13.407 -0.009 1.909 1.907 0.002
SA 98 676 13.068 13.078 -0.010 1.146 1.171 -0.025
SA 98 682 13.749 13.732 0.017 0.632 0.648 -0.016
Rubin 149 13.866 13.874 -0.008 -0.129 -0.117 -0.012
Rubin 149 B 12.642 12.636 0.006 0.662 0.662 0.000
Rubin 149 C 14.425 14.428 -0.003 0.195 0.215 -0.020
Rubin 149 D 11.480 11.480 0.000 -0.037 -0.015 -0.022
Rubin 149 E 13.718 13.713 0.005 0.522 0.535 -0.013
Rubin 149 F 13.471 13.486 -0.015 1.115 1.141 -0.026
PG 0918+029 13.327 13.346 -0.019 -0.271 -0.296 0.025
PG 0918+029 A 14.490 14.494 -0.004 0.536 0.527 0.009
PG 0918+029 B 13.963 13.963 0.000 0.765 0.747 0.018
PG 0918+029 D 12.272 12.267 0.005 1.044 1.035 0.009

Average 0.000 Average 0.000
STDDEV 0.013 STDDEV 0.016

Note. — The primed magnitudes (V ′ and (B − V )′) refer to our derived magnitudes.
The unprimed magnitudes are Landolt’s catalog values.

Table 3.3. Color Transformation Coefficients

Magnitude or color index Symbol Value Error

V ε -0.080 ±0.005
ζv 0.474 ±0.004

B-V µ 1.116 ±0.006
ζbv 0.0995 ±0.005
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Figure 3.2 Linear fits used to determine the color transformation and offset terms.

internal error for each measurement which is preserved in the final catalog. See Figure 3.3

for a graphic representation of the internal errors of the final CMDs.

The conversion from instrumental magnitude to calibrated magnitude introduces the

external errors. Use of time averaged extinction coefficients as well as uncertainty associated
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with the aperture correction and the transformation coefficients contribute to the external

error. One could perform a formal error analysis, but the comparison of how well the standard

stars transform to the standard system shown in Table 3.2 represent a direct measure of

the external error. Specifically the standard deviation of the mean difference between the

transformed magnitude from the catalog value.

The external errors, shown as the STDDEV row at the bottom of Table 3.2, are both

on the order of 10−2 mag or ∼ 0.1%. Rather than risk the perils of combining external and

internal errors, in this document, whenever error is cited, it refers to internal error only.

3.2 Removal of Non-stellar Sources

We now turn our attention to filtering out non-stellar objects and stars not associated

with the GCs from the CMD. Non-stellar objects include, but are not limited to, background

galaxies, cosmic rays, and defects on the chip. Furthermore, stars not associated with the

cluster, also known as “field stars,” pollute the CMD with stellar “noise”. However, MW field

stars taper off beyond V > 20 (Reid & Majewski 1993); galaxies and quasars dominate the

CMD background noise at fainter magnitudes.

3.2.1 Sharp and χ̄

To address the problem of non-stellar objects, ALLFRAME reports two values for each object

whose stellar profile converges, SHARP and χ̄. Stetson (1987) describes SHARP (specifically

equations 1-4 and Figure 2a), and Stetson & Harris (1988) (see Figure 28) detailed χ̄. Simply

put, however, SHARP is a mean shape statistic and χ̄ represents the quality of the fit. Based

on an analysis of plots of χ̄ vs. SHARP, Bergbusch & Stetson (2009, see Figure 3 for details)

derived the following filtering criteria
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Figure 3.3 Internal errors of the averaged CMDs as a function of V magnitude. Black dots
represent the uncertainty in V and blue dots in (B − V ).

1.0 ≥ SHARP ≥ −1.0 (3.11a)

χ̄ ≤ 1.3 + 5.0× 10−0.2(V−14). (3.11b)

62



It is worth noting that the V term in Equation 3.11 refers to the standard magnitude, thus

filtering must be performed post calibration. Figure 3.4 shows a direct comparison of the

clusters’ CMDs filtered in this manner.

Figure 3.4 Comparison of cluster CMDs with and without the filtering criteria specified in
equation 3.11.
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3.2.2 Statistical Subtraction

Finally there is the problem of field stars infiltrating the color magnitude diagram. To

address this, Carney & Seitzer (1993) described a method of determining the CMD of the

field stars in a region near the cluster and subtracting away stars from the cluster that match

the pattern. This technique is not perfect; it does not eliminate all stellar “noise” from the

final CMD and it can even eliminate some actual cluster stars. The design is such that the

technique is more efficient at the former than the latter.

To determine the CMD of the field stars, one must obtain data in as close enough to the

cluster as to be an accurate representation of the field stars but not so close as to contain

cluster stars. This is known as the “control field”. In order to avoid adding noise to the CMD

in the region of interest, the “program field”, the SNR of the control field, and hence the

total exposure time on it, must be comparable to the program field. It is common for control

fields to be separate images. However, given the enormous amount of total integration time

devoted to each cluster, imaging separate control fields of comparable SNR was deemed

impracticable. Therefore, I used an aperture around the core of the cluster as the program

field, and an outer annulus as the control field.

As is evident in Figure 3.5, the aperture-annulus technique only applies to AM 1. Pyxis’

apparent size extends beyond SOI’s field of view. The upper panels of Figure 3.5 show that

500 pixels, or 1.28′, is a comfortable aperture for AM 1 to serve as the program field. It easily

encompasses the half-light radius of 0.32′ and about a third of the tidal radius, rt = 3.24′

(Hilker 2006), but the cluster is centered too close to the left edge of the frame for a full

circular annulus. Therefore I chose a semi-annulus with an inner radius of 620 pixels (1.59′)

and an outer radius computed to give an equal area of the aperture to serve as a control

field.

The basic algorithm is that for each star in the control field, search program field for stars

within a four sigma window. If one or more stars are found in the program field, choose the
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Figure 3.5 Histograms used to determine the center of the clusters in pixel space. Stars were
summed in 20 pixel columns and rows to determine the x and y pixel centers respectively.
The difference in width of the best fitting gaussian between AM 1 and Pyxis is accounted
for by the apparent size of each cluster.

closest in color-magnitude space and subtract both the program and control star away. If

no stars are found, preserve the control star in its output catalog. The input program and
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control fields as well as the final, subtracted fields are shown in Figure 3.6.

Figure 3.6 Results of the statistical subtraction technique for AM 1.
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3.3 Automation

Most of the procedures outlined in this chapter require some degree of automation. In

this section, words in typeset font refer to software I wrote to aid in the process, the source

code of which is found in Appendix B.

For the calibration, I wrote a perl script called daocal that accepts as input the instru-

mental magnitude catalogs for the b and v, the atmospheric extinction coefficients and the

color transformation coefficients and applies Equation 3.7 to produce the final V and (B−V )

magnitudes. The program also preserves the SHARP, χ̄, and the variability index, λ, for

each filter. The variability index is a ratio of the standard deviation of the star’s magnitude

to its internal photometric error. Large λ values indicate strong candidates for variability.

The program statsub performs the statistical subtraction. Given the aperture and inner

radius of the annulus, it selects the program and control field stars, determines the selection

window, which is four sigma by default, and executes the statistical subtraction.

3.4 The Final CMDs

The final color-magnitude diagrams used in the subsequent analysis are shown in Figure

3.7. Both clusters have been filtered in SHARP and χ̄ according to Equation 3.11. The

statistical subtraction technique described in §3.2.2 was applied to AM 1 only. In order to

further clean Pyxis, I only included stars within the core radius of 83′′ (Da Costa 1995). This

significantly cleans the CMD and sharpens the RGB at the expense of further depleting the

HB.

The red error bars were computed by averaging the internal errors the stars within in 0.2

mag width bins in V centered on the mean magnitude of the HB and then integer magnitude

values below. The width of each bin is 0.2 mag in (B−V ) centered roughly on the intersection

of the center of mean V magnitude of that bin and the cluster’s predominant sequence in

that region (RGB, SGB and MS).

67



Figure 3.7 The final color-magnitude diagrams for AM 1 and Pyxis. The error bars are only
shown when the separation between brackets is visible. Only the (B − V ) errors typically
meet this criteria, whereas in the V errors become distinguishable at the faintest magnitudes.
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Chapter 4

Results

The properly calibrated color-magnitude diagrams reveal much of scientific interest about

the clusters. In the process of determining the clusters’ ages, the principal goal, other factors

such as composition and distance reveal themselves. Many techniques rely on theoretical

models, specifically isochrones, or loci of constant age in the color-magnitude space, that

contain unresolved problems, and one must treat with caution the results they produce.

To reduce the general concerns of over reliance upon continually evolving theoretical

models, the age techniques employed in this chapter fall into three broad categories; empiri-

cal, semi-empirical and theoretical. Section 4.1 employs a purely empirical approach in that

the CMD data are compared directly with data from other clusters. Section 4.2 employs two

techniques for establishing relative ages that compare our data with reference cluster data,

but utilize theoretical isochrones to establish an age scale. Finally, section 4.3 compares our

data directly with theoretical models. Broad agreement among the three approaches should

lend credence to the conclusions they provide.

4.1 Empirical

Much can be learned about our program clusters by simply comparing their color mag-

nitude diagrams to the mean ridge lines, or fiducial sequences, of other, well-known clusters.

Intrinsic factors influence the shape of features in the CMD. For example, heavy element

abundances affect the slope and curvature of the RGB and age influences the length of the

SGB and its brightness relative to the HB. Extrinsic properties, namely interstellar extinction

and distance, affect the overall position of the data in the CMD. Therefore, after correcting

for extrinsic factors, a reasonable match between a fiducial sequence and a target cluster



provides, at the very least, a starting point, or first guess, for determining intrinsic factors

of the cluster in question. Indeed, overlay of fiducial sequences reveal relative ages directly

as exemplified by Sarajedini et al. (2007) and Marín-Franch et al. (2009) just to name two,

but such techniques require photometry well below (V ' 3 mag) the MSTO. Additionally,

fiducial sequences are necessary for an determination techniques that does not require such

depth in magnitude described by Vandenberg, Bolte, & Stetson (1990, hereafter VBS or

simply “the horizontal method”) to be discussed later. For the time being, we simply wish

to find fiducial sequences that align reasonably well with our data to serve as a reference

cluster and provide some starting points for inferring the intrinsic properties of AM 1 and

Pyxis.

Stetson & Harris (1988) produced a collection of fiducial sequences spanning a broad

range in metallicity that serve as a proof of concept for choosing appropriate comparison

clusters. Three of these, M5, M92 and 47 Tuc, were registered to the observational planes of

AM 1 and Pyxis, but only M3 (Ferraro et al. 1997) and M5 (Sandquist et al. 1996) provided

a sufficient match worth consideration. Figure 36 of Stetson & Harris demonstrates the

diversity of fiducial sequences and illustrate why it was not necessary to include them in

Figure 4.2.

Ultimately the fiducial sequences of Sandquist et al. (1996) were chosen for analysis based

on the depth of the MS, sufficient coverage along the RGB and a distinction in populations

between AGB and RBG stars. I also consider the fiducial sequences for M3 of Ferraro et al.

(1997) based on Dotter et al. (2008b) use of this cluster, but with his own fiducial constructed

from HST data, for a fiducial comparison technique with AM 1 (the “horizontal method”

discussed in §4.2.1). Figure 4.1 shows the fiducial sequences of M3 and M5 over-plotting

the data from which they were produced. The M3 data are available online via the VizieR

service (Ochsenbein, Bauer, & Marcout 2000), and Eric Sandquist (priv. comm.) supplied

the M5 data. Both clusters main sequence fiducials were computed by determining the peak
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of the color histograms in equal width magnitude bins in order to avoid the redward bias

inherent to the mean and median colors due to binary stars (see §4.2.1 for further details).

The complete datasets for both M3 and M5 produced rather cluttered diagrams fraught

with foreground stars, galaxies, blended stars and other undesirable artifacts. In order to

make Figure 4.1 more presentable, known variable stars were excluded from the M3 data.

Eric Sandquist did not include the M5 variable stars in the data he provided. Though the

mean magnitude of the RR Lyrae stars fall along the HB fiducial line, they are not presented

as mean magnitudes in the data and simply serve to clutter the HB. The diagonal feature

bisecting the M3 diagram indicates two different datasets used to produce the diagram. The

M5 data included the χ parameter output by DAOMASTER permitting filtering of the CMD

according to the criteria described by Equation 3.11b.

The first step in the procedure of registering the fiducial sequences to the observational

plane of the target clusters is to remove the effects of interstellar reddening and extinction

via the following formulae;

V0 = V −RV E(B − V ) = V − AV (4.1a)

(B − V )0 = (B − V )− E(B − V ), (4.1b)

where the extinction parameter, RV = AV /E(B−V ) = 3.315 from Schlegel et al. (1998, Table

6, Appendix C), matches the Landoldt standard system to which the data are calibrated,

and the selective extinction, E(B − V ), is chosen appropriate to each fiducial cluster from

the Harris (1996) catalog listed in Table 4.1. Harris’ extinctions represent the average of

those reported in Webbink (1985), Zinn (1985), and Reed et al. (1988) and have typical

uncertainties of 10% but no less than 0.01 mag.

Next the extinction and reddening corresponding to the target clusters, AM 1 and Pyxis,

were added to the fiducial sequences by solving equation set 4.1 backwards using extinction
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Figure 4.1 Fiducial sequences of M3 (Ferraro et al. 1997) and M5 (Sandquist et al. 1996) over
plotting the data from which they were generated. The M3 data were obtained online and
the M5 via private communication with the lead author. Known variable stars are excluded
from the M3 data, and the M5 data are filtered by χ according to Equation 3.11b.

values appropriate to each target cluster. In this case, neither of the Harris extinction

values for AM 1 and Pyxis provided decent alignment for the fiducial sequences. Lacking
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Table 4.1. Data from the Harris (1996) catalog

Target [Fe/H] E(B − V ) VHB (m−M)V
(Harris) (Adopted)

Reference Clusters
NGC 5272 (M3) -1.50 0.01 ... 15.64 15.07
NGC 5904 (M5) -1.29 0.03 ... 15.07 14.46

Target Clusters
AM 1 -1.70 0.00 0.008a 21.00 20.45
Pyxis -1.20 0.21 0.25b 19.25 18.63

aSchlegel et al. (1998)
bDotter et al. (2011)

any physical justification for treating extinction as a free parameter, I instead used values

adopted by other authors that produced good agreement. For AM 1, the extinction of 0.008

comes from the infrared dust maps of Schlegel et al. (1998), and the value of 0.25 used for

Pyxis was obtained by Dotter et al. (2011) from isochrone fits.

Differences in the distances between the clusters are accounted for by equating the mean

magnitude of the horizontal branches, VHB, of the fiducial sequences to that of the target

clusters. RR Lyrae variable stars occupy the portion of the HB within the color domain

0.18 ≤ (B − V ) ≤ 0.42, also known as the “RR Lyrae gap” due to the apparent lack of HB

stars in this region. When sufficient data are collected to determine average magnitudes

for the RR Lyres, 〈VRR〉, the gap fills in and becomes an excellent measure of the mean

magnitude of the HB as a whole. As such, 〈VRR〉 and VHB are effectively interchangeable.

Lee & Carney (1999) measured the intensity-weighted average magnitude of 35 RR Lyraes

in M3 to find 〈VRR〉 = 15.665 ± 0.013. For M5, Arp (1962) measured the magnitude of the

RR Lyrae gap to determine VHB = 15.11, and Reid (1996) finds VRR = 15.054± 0.058 from

the average magnitude of 44 RR Lyraes after excluding five of their total sample as outliers.

Lacking RR Lyraes in AM 1 or Pyxis, I determined VHB by averaging the V magnitudes,

after filtering outliers by a two sigma rejection algorithm, of the stars within the black

rectangles in the HB regions of Figure 4.2. Stars not included in the final average are
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indicated by open circles in the inset regions of Figure 4.2.

Figure 4.2 Fiducial sequences of M3 and M5, the solid red and blue lines respectively, trans-
formed to the same distance and reddening of the AM 1 and Pyxis. The insets expand the
HB for each cluster indicated by the solid black rectangular regions in the main figures.
The green line represents the average V magnitude of the stars in the HB region after a two
sigma clipping algorithm. The open circles in the insets represent stars omitted by the sigma
clipping filter.
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Examining Figure 4.2 reveals that both AM 1 and Pyxis are more similar to M5 than M3,

indicating that the former serves as a better choice for relative age determination techniques.

We are also able to formulate the following hypotheses about the intrinsic properties of the

target clusters;

i) the metal content of both clusters are probably closer to M5 than M3 as evidenced by

the common shape and slope of the RGBs.

ii) the difference in brightness in the SGB indicates AM 1 is noticeably younger and Pyxis

is either slightly younger or the same age as M5.

The more robust techniques discussed in the ensuing sections test these hypotheses.

4.2 Semi-Empirical Methods

4.2.1 The Horizontal Method

The fiducial sequence of M5 may be used to employ a powerful, relative age determination

method described by Vandenberg, Bolte, & Stetson (1990, VBS). The technique exploits the

fact that the length of the SGB decreases with age, hence the relative length between the

MSTO and the RGB is an age indicator. Registration of two clusters to a common color and

magnitude reveals relative age as a function of color difference between their RGBs provided

the RGBs are parallel (see Figure 4.5 (c)). Iron and alpha1 abundance influences the slope

and shape of the RGB due to their contribution of electrons to the major opacity source,

H−, therefore differences in metallicity between the target and reference clusters within

∆[Fe/H]≤ 0.2 dex maximize the reliability of the technique. As shown in the previous

section, particularly in Figure 4.2, the shape of the RGB of M5 matches both AM 1 and

1Alpha elements are those whose atomic number is an integer multiple of a helium nucleus. For elements
lighter than Iron, they include C, N, O, Ne, Mg, Si, S, Ar, Ca, and Ti. Spectroscopic measurements
summarize the [α/Fe] ratio as the average of Mg, Ca and Ti abundances.
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Pyxis quite well, making it an excellent reference cluster for this technique without any a

priori knowledge of the metal enrichment of the clusters.

Horizontal registration of the clusters is quite straightforward due to the ease of measuring

color of the MSTO by locating the bluest region of the main sequence. However, complication

arises in measuring the vertical position, or magnitude, of the MSTO, a feature vertical as

seen in data and isochrones. For example, notice the MSTO regions of M3 and M5 shown in

Figure 4.1 appear nearly vertical for about a half magnitude. VBS conclude that the point

0.05 magnitudes redward and below the MSTO, indicated by the symbol V+0.05, serves as

a good registration point due to the consistency of the slope of the main sequence at this

relative magnitude.

Registration Point Determination

Initially, mean ridge lines for AM 1 and Pyxis were computed by averaging the color

of the stars, after eliminating stars beyond 3σ, in ten equal magnitude bins in the ranges

25.5 ≥ V ≥ 23.75 and 24.0 ≥ V ≥ 22.25 respectively. Figure 4.4 shows the results as

orange squares. Stars included in the averages are shown as green dots in Figure 4.4, and

red dots signify stars eliminated by the sigma clipping algorithm. The wide and narrow error

bars associated with each orange square represent the standard deviation and the standard

deviation of the mean respectively.

However, a careful reading of both Ferraro et al. (1997) and Sandquist et al. (1996) reveals

that both authors used a modal technique for determining the main sequences of M3 and M5

in order to avoid the effects of double stars and blended stars. Binaries manifest themselves as

a parallel main sequence brighter than the single-star main sequence. Imagine, for simplicity,

a binary sequence composed solely equal mass pairs; the effect would be a sequence of twice

the apparent flux, or 2.5 log 2 ≈ 0.75 mag brighter, at each color interval. Actual binary pairs

have a variety of companion masses blurring the binary sequence (for example see Figure 5
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of Davis et al. 2008). A main sequence divided into bins of equal magnitude would show

two distributions with the redward comprised of binaries. Clearly an average of the stars in

such bins would be driven redward due to the binaries. The remedy is to use the mode, or

the peak, of the main distribution.

Employing this technique, I divided the main sequence regions of AM 1 and Pyxis into

equal bins of width ∆V = 0.2 mag. Each magnitude bin was subdivided into histogram bins

of width of ∆(B − V ) = 0.04 and 0.02 mag respectively. Figure 4.3 shows the best fitting

gaussians to the color histograms in each magnitude bin. The peak of each gaussian reflects

the ridge line point shown as blue squares in Figure 4.4 and listed in Table 4.2. The blue

error bars in Figure 4.4 show the FWHM of the fit. To compare the FWHM of the gaussian

fits to the internal error, the red error bars in Figure 4.3 are the mean internal error for each

magnitude bin scaled according to

FWHM = 2
√

2 log 2 σ ≈ 2.355 σ. (4.2)
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Table 4.2. Mean and modal ridgeline points

AM 1 Pyxis
Mean Mode Mean Mode

V (B − V ) σ σ√
N

V (B − V ) FWHM V (B − V ) σ σ√
N

V (B − V ) FWHM

23.84 0.455 0.049 0.0055 23.7 0.482 0.178 22.34 0.716 0.043 0.0056 22.3 0.709 0.080
24.01 0.438 0.047 0.0054 23.9 0.444 0.085 22.51 0.694 0.040 0.0044 22.5 0.694 0.063
24.19 0.435 0.048 0.0047 24.1 0.436 0.086 22.69 0.699 0.035 0.0040 22.7 0.694 0.076
24.36 0.437 0.055 0.0050 24.3 0.446 0.102 22.86 0.698 0.038 0.0042 22.9 0.691 0.063
24.54 0.440 0.064 0.0064 24.5 0.437 0.127 23.04 0.704 0.036 0.0037 23.1 0.703 0.068
24.71 0.449 0.070 0.0060 24.7 0.443 0.150 23.21 0.710 0.038 0.0036 23.3 0.717 0.089
24.89 0.472 0.078 0.0064 24.9 0.466 0.175 23.39 0.739 0.051 0.0052 23.5 0.732 0.080
25.06 0.469 0.071 0.0064 25.1 0.466 0.176 23.56 0.748 0.057 0.0058 23.7 0.749 0.104
25.24 0.493 0.082 0.0062 25.3 0.504 0.193 23.74 0.758 0.050 0.0043 23.9 0.764 0.127
25.41 0.510 0.095 0.0075 25.5 0.514 0.227 23.91 0.786 0.070 0.0064 .... ..... .....
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Figure 4.3 Gaussian fits to color histograms in the main sequence region of the clusters. The
red error bars represent the average internal error of the stars in each magnitude bin scaled
to the FWHM by Equation 4.2 and drawn at the half maximum level. Note the presence of
a hump-like structure redward of the main peaks in Pyxis for V ≤ 22.9, most likely caused
by binary stars.

The solid lines in Figure 4.4 show third order polynomials fit to the ridge line points of the
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Figure 4.4 Ridgeline fits used to determine the registration points for the VBS horizontal
method. Blue squares and error bars represent the mode and FWHM of the best fitting
gaussians to the color histogram in each magnitude bin. Orange squares indicate the mean
color of the stars with the outer and inner associated error bars reflecting the standard
deviation and standard error. Green circles represent stars included in the averaging after the
three sigma filtering algorithm. The solid lines show the best fitting, third order polynomial,
weighted inversely proportional to the standard deviation or FWHM according to Equation
4.3, to the squares of corresponding color.

clusters using a weighted least-squares algorithm with the weighting inversely proportional

to the square of the sigma of each point,

wi =
1

σ2
i

. (4.3)

While AM 1 shows very little difference in the ridge line computed with each technique, Pyxis

clearly demonstrates why one should use the modal technique as the ridge line computed

with the mean value points is clearly offset to the red. A close look at Figure 4.3 shows

a persistent hump feature redward of the main gaussian in panels V ≥ 22.9. The likeliest

explanation for this feature is double stars as both clusters are equally susceptible to the
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Table 4.3. Registration points for the VBS method.

Cluster VTO (B − V )TO V+0.05

AM 1 24.29 0.435 25.19
Pyxis 22.71 0.690 23.60

M5 18.53 0.471 19.44
18.57± 0.05a ... ...

aSandquist et al. (1996)

software processing effects of blended stars.

For M5, I fit a non-weighted polynomial to the fiducial points supplied by Sandquist et al.

(1996) after correcting for reddening and extinction. Minimizing the ridge line polynomial

functions reveals the MSTO, and solving for (B−V ) = (B−V )TO + 0.05 gives V+0.05. Table

4.3 lists the MSTO and V+0.05 points for the clusters.

Age Scale Determination

The horizontal method ultimately relies on measuring a color difference between the red

giant branches of the reference and target clusters. To do so, one must establish a scale

factor to translate color difference into an age. The procedure starts with fitting the fiducial

sequence with a model isochrone. For this purpose, and indeed whenever theoretical models

are required in this work, I use the Dartmouth Stellar Evolution Database (Dotter et al.

2008a, DSED). The choice of theoretical model code depends on a number of factors to be

discussed elsewhere (§4.3), but principle among them at this point is the fact that Dotter

et al. (2008b, D08b) employs the VBS method on AM 1 using these same isochrones.

The upper left panel of Figure 4.5 shows the best fitting DSED isochrone for M5 and

the requisite parameters. These parameters most closely match those used by VandenBerg,

Brogaard, Leaman, & Casagrande (2013, VBLC) that the DSED interface allows. The fit

was performed “by eye” and, though they used the Victoria Regina isochrones (VandenBerg,

Bergbusch, & Dowler 2006), the VBLC parameters provide the best fit while simultaneously
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matching the magnitude of the MSTO without any vertical correction beyond the distance

modulus of (m−M)V = 14.46 provided by the Harris (1996) catalog.

The effects of reddening and extinction were removed from the fiducial points via equa-

tion set 4.1 prior to comparison with theoretical models. However, a horizontal correction

of ∆(B − V ) = +0.045 was necessary to align the MSTO colors of the best fitting isochrone

with the fiducial sequence of M5. Uncertainties in the color-Teff transformations frequently

introduce a color offset in the theoretical models. This color correction may be metallicity-

dependent, but the metallicities of M5 and the program clusters are similar enough to pre-

clude any unforeseen consequences. The correction above serves as the implicit horizontal

calibration applied to all isochrones DSED throughout this work.

A set of isochrones, generated using the best fitting parameters for M5 with spread of

ages intended to reasonably encompass the expected age differences between the fiducial and

target clusters, forms the basis for the age scale. In this case, I chose the spread in age to be

±1.5 Gyr of the best fitting isochrone age of 11.5 Gyr. Each isochrone in the set is registered

by setting colors of the MSTO set equal to one another and the vertical registration points,

V+0.05, likewise equated. The lower left panel of Figure 4.5 shows these isochrones registered

in this fashion. As one can see, the principal consequence among these registered isochrones

is the horizontal position of their RGBs.

Finally, we choose a reference level along the RGBs at which to determine the scale.

VBS recommends the point 2.5 magnitudes brighter than V+0.05, but the choice is somewhat

arbitrary provided that the level is sufficiently bright as not to be confused with SGB stars

but still low enough that the RGB remains well populated.

For this work, the VBS-recommended level of V −V+0.05 = −2.5, indicated by the dashed

line in Figure 4.5, suffices. The upper right panel of Figure 4.5 shows a zoom in on this

region with the plus marks indicating where the isochrones intersect the scale magnitude

level. The isochrones remain parallel and evenly spaced in an interval of ≈ ±0.2 mag. The
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slope of the best fitting line to the age vs. color plot, shown in the lower right panel of Figure

4.5 provides the scale factor of -87.85 Gyr/mag.

Results

We now employ the horizontal method by registering the fiducial sequence to the target

clusters using the age scale and registration points determined above. The procedure is to

first align the turnoff color of the M5 fiducial sequence with that of the target cluster, then

vertically register the V+0.05 points. The results are shown in Figure 4.6 where the solid blue

and red lines represent the fiducial sequences of M5 and M3 respectively. The dotted green

line marks the point 2.5 mag brighter than V+0.05 where the color-age scale is established,

and the green plus marks the V+0.05 registration point common to both clusters.

I include the M3 sequence in Figure 4.6 to duplicate the work of D08b and to reinforce

my earlier conclusion that M5 provides a better match to the shape of the RGB. Though

M3 and M5 differ only slightly in the region where the color-age scale is established, the fact

that M3 deviates significantly from both M5 and AM 1 brighter than the region of the HB

indicates a fundamental mismatch in heavy element composition between the clusters.

Examination of Figure 4.6 leads to two conclusions; that AM 1 is noticeably younger than

M5 and Pyxis is indistinguishable in age, both of which support the hypotheses presented by

simply matching the HB magnitudes and reddening of the fiducial sequence to the clusters (§

4.1). These conclusions are softened by the artificial broadening of the RGB by foreground

stars and galaxies. Therefore, I can only conclude that Pyxis and M5 are the same age to

within ±0.5 Gyr.

The RGB of AM 1, however, appears noticeably offset from the registered fiducial se-

quence. The inset panel enhances the region of the RGB near the color-age scale height

indicated by the green dashed line. Here the solid blue dots are the individual fiducial se-

quence points and the solid blue line fits the best second-order polynomial. The dashed blue
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Figure 4.5 (a) Best fitting isochrone to the ridge line points of Sandquist et al. (1996). The
parameters also best match those used by VandenBerg et al. (2013). (b) M5 best fitting
isochrones varied by age registered to the common VBS points. The horizontal line at
V − V+0.05 = −2.5 indicates the relative magnitude at which the scale is determined. (c)
Zoom in on the dotted line region of the lower left panel (b). (d) Best fitting line to the
points in the panel above gives the color-age scale as -87.85 Gyr/mag.
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line is the same polynomial shifted in age by −1.0 Gyr according to the scale factor estab-

lished in Figure 4.5. This relative age provides the best match to the data, but again the

broadening of the RGB and contamination from non-cluster sources imposes an uncertainty

of 0.5 Gyr.

4.2.2 The Vertical Method

Many permutations of the vertical method, also known as the ∆V method, exist, but

they all rely on the fact that for a single cluster, the luminosity the zero age horizontal

branch (ZAHB) varies slowly with time compared to the rate at which the brightness and

color of the MSTO creep fainter and redward as the cluster ages. As HB stars evolve, they

grow more luminous as the inert products of helium burning, mostly carbon and oxygen,

accumulate in the core. This pushes the helium burning region into an expanding shell

making the star brighter but not altering its color. Eventually the star forms a double

shell of hydrogen and helium burning regions leading to a rapid blueward evolution until

they ascend the asymptotic giant branch (AGB). Therefore, a measure of the difference in

magnitude between the MSTO and the ZAHB, commonly denoted as ∆V HB
TO , relates to a

cluster’s age (see, for example, the Appendix of Sandage 1982, particularly Equation A9).

However, several problems arise with this classical implementation of the vertical method.

In particular, the difficulty of measuring the vertical position, or brightness, of a feature,

the MSTO, that is essentially vertical. Other problems include the fact that the horizontal

portion of the HB may be poorly populated, complicating the measurement of mean HB

magnitude, VHB, and the choice of model isochrones, which are used to derive VTO as a

function of age, lead to varied ∆V HB
TO age relations.

To address these problems, VandenBerg, Brogaard, Leaman, & Casagrande (2013, VBLC)

conceived a more robust implementation of the vertical method. Their method relies on using

the same set of models to simultaneously fit the synthetic, ZAHB and the MSTO, obviating
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Figure 4.6 The VBS method applied to AM 1 and Pyxis. The blue and red lines are the
fiducial sequences for M5 and M3 respectively. The orange cross represents the V+0.05 regis-
tration point and the green horizontal line represents the V+0.05 − 2.5 color-age scale level.
Left panel inset: Zoom in on the RGB of AM 1. The solid blue line represents the best fit,
second order polynomial to the M5 fiducial points (solid blue dots). The dashed blue line is
the same polynomial shifted by −1.0 Gyr according to the scale value derived in Figure 4.5.
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the uncertainties imposed on the classic vertical method by the models themselves. The

synthetic ZAHB models span the full range possible in color allowing a reliable measurement

of VHB for clusters whose HBs are purely redward or blueward of the horizontal part of the

HB. Finally, the vertical determination of the MSTO is addressed by fitting the isochrones

to the region bound within (B−V )TO +0.05 both above and below the MSTO encapsulating

the lower sub giant branch and upper main sequence. This region is shown as the red dotted

rectangle in Figure 4.7, the redward edge of which is bound by the same position as the V+0.05

registration point used in the horizontal method discussed in §4.2.1 plus its counterpart on

the SGB at the same color (see Figure 7 of VBLC as an example of isochrones fit to this

region of M5).

The method works by first establishing the theoretical model input parameters for the

ZAHB, or synthetic HB in the case of the DSED, and isochrones. Then the synthetic HB is

fit to the data with an emphasis on matching the faintest edge of the HB due to the fact that

core helium burning stars grow brighter as they age, hence the faintest stars most closely

represent the ZAHB. Finally isochrones of the same input parameters, but varied in age, are

registered to the same color as the cluster’s observed MSTO, (B−V )TO. The isochrone that

best fits the data in the region mentioned above, with an emphasis on the sub giant branch

stars, represents the age of the cluster.

However, this method suffers from the same perils of absolute age determination as every

other method that relies on isochrones. Thus the method must be applied in a relative sense,

with the age of a reference cluster similarly established. M5 serves as a suitable reference

cluster just as it does for the horizontal method of §4.2.1. However, the poor definition of

the HB of Pyxis exacerbates the application of this method to the point of impracticality.

Figure 4.7 shows the results of the VBLC method applied to AM 1 and the reference

cluster M5. The insets enhance the HB, and the dashed green lines therein represent 〈VHB〉.

The green squares are the fiducial points derived in §4.2.1 (see Figure 4.3 and Table 4.2) for
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AM 1 and by Sandquist et al. (1996) for M5 who includes ridge line points for the SGB,

RGB and HB. Input parameters for AM 1 and M5 are established in §4.3.3 (see Table 4.5

and Figure 4.9) and §4.2.1 (upper left panel of Figure 4.5) respectively. The parameters for

M5 agree as closely as the inputs will allow with those used by VBLC (see §3.2 and Figure

7), despite the fact that VBLC uses the Victoria Regina models (VandenBerg et al. 2006).

The cyan lines in Figure 4.7 represent isochrones that best fit the SGB region whereas the

blue lines best fit the MSTO region. In both cases, the relative age between AM 1 and M5 is

−1.5 Gyr, generally consistent with both the horizontal method and the fiducial registration

method. The poor match between the isochrones and the RGB, particularly with M5, are

not a concern as the method relies on the best match to the data in the region bound by the

V+0.05 registration point indicated by the red, dotted line rectangles in the figure.

4.3 Theoretical

I chose the model isochrones of the Dartmouth Stellar Evolution Database (Dotter et al.

2008a, DSED) for comparison with the clusters. The DSED offers state-of-the art physics, a

broad range of metallicities and α enhancements, flexibility with helium mass fraction (Y )

and a handy web based interface. However, the principle reason for the choice of models is

the fact that Aaron Dotter himself looked at both AM 1 (D08b) and Pyxis (Dotter et al.

2011, D11b) using HST in the V I system and fit DSED isochrones to both (see Table 4.5

for a summary of results from both studies).

4.3.1 Input Parameters

The DSED isochrone software accepts as input age, metallicity ([Fe/H]), helium mass

fraction (Y ), and alpha elemental abundance ([α/Fe]). Figure 4.8 shows how adjusting

the various parameters affects the shape of the isochrones. The blue lines in each panel

represent the best fitting isochrone values from AM 1 by D08b. These do not agree with the
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Figure 4.7 The vertical method of VBLC applied to AM 1. Cyan lines represent the ages
that best fit the SGB region within the red dotted region and blue lines best fit the MSTO.

final parameters I used for AM 1, but serve rather as a staring point. Before proceeding, let

us consider the physics behind each parameter’s affect on the model isochrone.
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Age

Of all the parameters, age is, perhaps, the simplest to describe. Main sequence stars

of mass between 0.5 and 2.0 M�, though the most massive stars that remain in a globular

cluster are only < M�, obey a mass luminosity relationship given by (Clayton 1968, Equation

1-50)

L ∝Mν (4.4)

where ν is in the range of 3.5 to 4.0. Thus the main sequence in the CMD is really a

mass sequence; higher mass stars are more luminous and consume their fuel more rapidly.

Therefore, as the cluster ages, the MSTO descends the main sequence moving fainter and

redward.

The elbow between the subgiant branch and RGB is governed by the size at which the

outer envelope of the star is fully convective and cannot cool further (Hayashi & Hoshi 1961,

the “Hayashi Track”). This feature remains nearly uniform in color as the cluster ages, and

the luminosity of the SGB decreases because the stars at the TO become fainter as the

cluster ages. The net effect, as shown in panel (c) of Figure 4.8 is an apparent contraction

and dimming of the subgiant branch as the RGB and MS remain coincident.

Helium

The effect of helium is to increase the temperature and luminosity of a main sequence

star according to the following basic argument. All other properties being equal, specifically

metallicity, helium mass fraction, Y , dominates the mean molecular weight, µ, of the star as

shown in Equation 22 of Carney & Harris (2001)

µ ≈ 4

8− 5 Y
. (4.5)
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Once can think of main sequence stars as being in equilibrium between gravitational con-

traction and the outward pressure of the gas. Rewriting the equation of state of an ideal gas

in terms of mean molecular weight,

P =
ρ k T

µmH

(4.6)

where ρ is the mean stellar density and mH is the mass of hydrogen, it is apparent that

pressure is directly proportional to temperature and inversely proportional to µ. For the

star to remain in hydrostatic equilibrium, the pressure in the core must offset the fixed

gravitational weight of the envelope. Therefore, in order for pressure to remain constant as

helium, and hence the µ, increase, both the temperature and density must also increase.

Nuclear reaction rates in MSTO stars undergoing the proton-proton chain reaction burn-

ing hydrogen into helium are proportional to ρ2T 4. Greater reaction rates increases the

luminosity, which means faster fuel consumption. Thus the helium enriched stars at the

MSTO have lower mass and luminosity. The junction of the SGB and the RGB depends on

the thickness of the convective envelope and hence mass. The total effect of helium enrich-

ment in the observational plane, as shown in panel (d) of Figure 4.8, is a shift of the MS and

RGB to hotter surface temperatures and higher luminosities, a lowering of the MSTO and

a steepening of the SGB.

Metallicity

To understand the effects of metallicity on the main sequence, we must first derive an

appropriate model of main sequence stars. Fortunately, Eddington (1926) supplied the classic

and useful standard model that bears his name. The derivation starts with a polytropic

approach to the solution to the equations of stellar structure in which pressure is a function

of density. This approach invokes a relatively simple model relationship between pressure and

density. A comprehensive description requires the simultaneous solution of the differential
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equations of stellar structure.

For the Sun and other low mass stars, which are all that remain on the main sequence

in GCs, the appropriate polytrope, of index 3, is given by Equation 2-290 of Clayton (1968)

P = K ρ
4
3 (4.7)

Couple this with Kramer’s opacity law, an approximation appropriate for low mass stars

given by

κ = κ0 ρ T
−3.5, (4.8)

and the equations of stellar structure may be reduced to the form given by Equation 6-20 of

Clayton (1968)

LMS ∝ µ7.5M5.5/κ0. (4.9)

The constant term from Kramer’s opacity, κ0, in Equation 4.9 above is directly propor-

tional, though weakly, to heavy element mass fraction, Z (Clayton 1968, §6-6). Therefore,

an obvious effect of increasing metallicity of a star is lowering its luminosity. The lower lu-

minosity means greater stellar lifetime due to slower fuel consumption rates. Thus stars on

at the turnoff in metal rich clusters tend to have higher masses due to longer stellar lifetimes.

However, despite the high power on the mass term in Equation 4.9, the mass difference is

small enough that the opacity term dominates leading to a lower turnoff luminosity with

increased Z.

But the energy of the star must still ultimately escape the core. The increased opacity

forces the star has to swell up, putting the energy into gravitational potential of the outer

envelope that otherwise would radiate away as light. This increased size cools the outer

atmosphere leading to a lower Teff . The combined effect in the observational plane is that

92



all stars appear redder and fainter with increased metallicity, as shown in panel (a) of Figure

4.8.

Metallicity affects the RGB through line blanketing. Heavy element lines predominantly

occupy the blue portion of the spectra, thus increased metallicity means smaller net flux in

blue bandpasses. The effect on the (B − V ) index of reduced B flux is a steeper RGB. In

this way, the slope of the RGB at the level of the HB is a common indirect measurement

of metallicity. Furthermore, the heavy elements serve as electron donors, increasing the

production of H−, the principle continuum opacity source. This causes the entire RGB to

shift toward cooler effective temperatures.

Alpha Element Enrichment

As stars ascend the RGB, they become more luminous and cooler as indicated by the

general shape of the RGB in the observational plane. The principle continuum opacity

source is H− which requires excess electrons in the stellar atmosphere. Several α elements,

specifically Mg, Ca, Ti and Cr, have lower ionization potentials than iron and, therefore,

serve as electron donors at cooler temperatures. Despite its very high abundance, oxygen

has little effect because its ionization potential, 13.6 eV, is very high. The effect of increased

α enhancement, shown in panel (b) of Figure 4.8, is increased opacity at cooler temperatures

resulting in a flatter RGB at higher luminosities.

4.3.2 Input Parameter Constraints

Examination of Figure 4.8 shows how, when coupled with the extrinsic parameters of

distance and reddening that are applied as additive offsets to magnitude and color, certain

combinations of input parameters produce redundant fits to the data. Therefore, where

possible, independent measurements of the physical properties these parameters represent

must constrain the inputs.
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Metallicity

The faintness of the brightest RGB stars in both clusters limit spectroscopic studies

to measuring the relative strength of the H + K calcium II lines at 3968.5Å and 3933.7Å

respectively, the same technique and metallicity scale employed by Zinn & West (1984, ZW)

hence the subscript “ZW”. This was calibrated, however, using high-dispersion, high SNR

spectroscopic analysis of many globular clusters. Another commonly used metallicity scale is

that of Carretta & Gratton (1997) distinguished with a “CG” subscript. They used different

high-dispersion spectra than ZW to calibrate their results. Differences of ∼ 0.2 dex were seen

between CG and ZW at intermediate metallicities but not at the highest or lowest [Fe/H].

Marín-Franch et al. (2009) lists all all MW globular clusters in both metallicity scales and

provides transformation equations between the two. Suntzeff, Olszewski, & Stetson (1985)

measured [Fe/H]ZW = −1.7±0.2 for AM 1 based on the brightest two RGB stars, and Palma,

Kunkel, & Majewski (2000) obtain [Fe/H]ZW = −1.4±0.1 for Pyxis based on multiple spectra

of the brightest star in the cluster.

Both spectroscopic measurements tend to the metal-rich end of the uncertainty range

compared to photometric techniques. For instance, Sarajedini & Geisler (1996) find Pyxis

to have [Fe/H] = −1.20 ± 0.15 using the simultaneous reddening and metallicity technique

(SRM. Sarajedini 1994), and the best fitting isochrones for AM 1 by D08b use [Fe/H] = −1.5.

Recall, however, the ridge line overlay technique discussed in §4.1. As shown in Figure

4.2, due to the steeper slope of the RGB, both AM 1 and Pyxis are more metal rich than M3,

and the departure of the RGB of M3 at brighter magnitudes hints at a greater α enrichment

or a higher [Fe/H] in both target clusters. Though this is not a precise measurement,

the close match with the slope and curvature of M5 indicates both target clusters are of

similar metallicity and [α/Fe]. Using the ZW84 scale to be consistent with the spectroscopic

measurements mentioned above, M3 and M5 have [Fe/H]ZW = −1.66 and −1.38 respectively

(Marín-Franch et al. 2009, and references therein).
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α Enhancement

Undertaking a comprehensive review of the measurements available at the time, Carney

(1996, Table 3 in particular) showed that halo GCs share [α/Fe] at or very near +0.3.

The most recent spectroscopic studies of the extreme outer halo, particularly the “typical”

halo clusters Pal 3, Pal 4 and Pal 15, support Carney’s characterization (see Table 1.1).

Unfortunately, the DSED does not include inputs at exactly this value, instead bracketing

it by +0.1 on either side. The effect of [α/Fe] on the isochrone is to increase the slope and

curvature of the RGB, particularly steepening the upper RGB and leaving the lower portion

near the intersection of the SGB unaffected because of the H− effect noted earlier.

The choice of [α/Fe] = +0.4 for both clusters, while providing the best looking fit to the

data, relies on the brightest stars along the RGB track of the isochrone to be actual members

of the cluster. A kinematic study of the brightest two giants in AM 1 by Suntzeff et al. (1985,

see Table III) shows that these stars’ radial velocities are consistent with each other as well

as the radial velocity of the cluster as a whole providing some support to their inclusion as

members of the cluster. Similarly, Palma et al. (2000, see Table 1) shows uniformity among

the radial velocities of the brightest six stars in Pyxis. The results from both studies are

listed in Table 4.4. The former study’s inclusion of only two stars, shown as red plus signs in

the left panel of Figure 4.9, as well as greater spread in radial velocity than the latter, lends

some caution to the brightest star being a member of AM 1. The magnitudes and colors for

Pyxis in Table 4.4 ultimately come from Sarajedini & Geisler (1996), but they observed in

the BR filter system preventing a direct identification of these stars in my CMD that uses

the BV system. However, Palma et al. (2000) encounters the same problem and invokes

color-color transformations to list V ≈ 17.77 for the brightest star in their survey which they

label Pyxis A. Lacking a (B − V ) color, I chose the color for the star closest in magnitude

among my data for the position of the red plus in the right panel of Figure 4.9. Palma et al.

(2000) does not supply the V transformation for the remainder of the stars in his survey nor
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Table 4.4. Radial Velocities of the Brightest Red Giants

AM 1 (Suntzeff et al. 1985) Pyxis (Palma et al. 2000)
Star IDa V (B − V ) vhelio (km/s) Star IDa R (B −R) vhelio (km/s)

45 18.21 1.46 102 A 17.08 2.01 32.7
36 19.38 0.97 130 B 17.75 1.80 38.4

C 18.28 1.78 36.6
D 18.33 1.75 26.1
E 18.08 1.78 37.9
F 18.09 1.71 33.9

Note. — The uncertainties associated with the radial velocities for AM 1 and Pyxis are ±9 and
±4.6 km/s respectively.

aStar identification assigned by the respective authors.

cite the source of the color-color transformations, but they are all fainter in R than Pyxis

A. Thus I lack strong support to conclude that the brightest two stars along the isochrone

track are cluster members, but their membership is, at least, plausible.

Distance

Distance modulus relates the difference between the apparent, m, absolute magnitude,

M , of stars to their distance, D, in parsecs via

DMHB = (m−M)HB = (VHB −MV (RR)) = 5 logD − 5. (4.10)

The mean level of the horizontal branch, determined in §4.1 (see Figure 4.2), serves as the

apparent magnitude, and the absolute magnitude of the HB is based on the compilation by

Cacciari & Clementini (2003, CC03, Equation 6.12)

MV (RR) = (0.23± 0.04)[Fe/H] + (0.93± 0.05) (4.11)

2This equation is actually a reprint from Chaboyer (1999, Equation 6) who cites the uncertainty on the offset
term as ±0.12. By applying a weighted mean of all the available techniques, Cacciari & Clementini reduce
the uncertainty to the value listed in Equation 4.11.
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where MV (RR) refers to the mean magnitude of the RR Lyrae variable stars in the cluster,

and is interchangeable with the mean magnitude of the HB.

Given that metallicity is a free parameter in the isochrone models as well as dependent

variable on the absolute magnitude of the HB, finding a match between the isochrone distance

modulus, denoted as DMiso, and the measured distance modulus correction, DMHB, lends

credence to the quality of the fit. As indicated in Figure 4.9, the isochrone and measured

values of distance match nearly exactly. Looking back at Figure 4.2, the HB for Pyxis is

poorly defined, and the uncertainty for VHB reflects the standard deviation of the mean

magnitude. The uncertainty for DMHB includes this as well as the uncertainties on the

coefficients in Equation 4.11 added by quadrature with the uncertainty on the mean RR

Lyrae magnitude, MV (RR). The latter uncertainty requires some additional explanation.

Adopting the notation of Chaboyer (1999, Equation 1), we rewrite Equation 4.11 as

MV (RR) = α [Fe/H] + β (4.12)

where the coefficients have associated uncertainties σα and σβ. Employing the regular rules

of error propagation, we derive a total uncertainty for the mean RR Lyrae magnitude as

σ2
MV (RR)

= ([Fe/H]σα)2 +
(
ασ[Fe/H]

)2
+ σ2

β. (4.13)

Using the metallicity measurement of Palma et al. (2000) of [Fe/H] = −1.4± 0.1 as well as

the statistical uncertainty on the mean horizontal branch magnitude shown in Figure 4.2,

we find the total uncertainty σDMHB
= ±0.08.

4.3.3 Results

Figure 4.9 shows the best fitting isochrones to the clusters along with the requisite pa-

rameters. Table 4.5 shows a side by side comparison between these results and those of D08b

and D11b.
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When considering side-by-side comparisons between my results and those of Dotter, an

important distinction must be made in the choice of model atmosphere code. D08a offers two

methods commonly referred to as “synthetic” and “empirical”. The synthetic approach relies

on the PHOENIX model atmosphere grid (Hauschildt et al. 1999a,b) for determination of the

color-Teff transformations and are used as boundary conditions in the stellar evolution code.

The “empirical” method, which is really is really semi-empirical at best, uses the MARCS

model atmospheres of VandenBerg & Clem (2003) for the Johnson-Cousins BV (RI)C sys-

tem. This method is empirical in the sense that the synthetic transformation results are

constrained by observational data.

Dotter, working in the HST V I system, employs synthetic transformations described

above whereas I use the empirical transformations based on side-by-side comparisons between

the two methods using my data and the ridge lines of M5. My tests confirm Dotter’s own

conclusions about which to use in the BV system. Quoting Dotter et al. (2008a, §4 ¶4 pg.

93) directly on the issue,

“The synthetic colors have been tested and perform well in bandpasses equivalent

to V or redder (with central wavelengths longer than 5000 Å), but the blue and

ultraviolet bands (with central wavelengths shorter than 5000 Å) suffer from

inaccuracy of the synthetic fluxes at shorter wavelengths. In cases in which

analysis in the bluer bands is important, empirical color transformations are

strongly recommended.”

Table 4.5 shows good agreement between my results and Dotter’s. The choice of metallic-

ity and α enhancement differ slightly, but they agree in a relative sense in that both Dotter

and I find AM 1 and Pyxis to have the same relative chemical composition compared to

each other. Dotter’s reported distance moduli are based on the apparent HB magnitude.

To bring them to the absolute scale for direct comparison with my results, I correct VHB for

extinction by applying Equation 4.1a with RV = 2.889 corresponding to the HST WFPC
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Table 4.5. Isochrone parameters compared to Dotter

AM 1 Pyxis
Parameter This work D08b This work D11b

Age 10.5 11.1 11.5 11.5± 1.0
[Fe/H] -1.40 -1.50 -1.40 -1.50
[α/Fe] +0.4 +0.2 +0.4 +0.2
(m−M)0 20.36 20.36a 17.91 17.92a
E(B − V ) 0.005 0.016 0.24 0.25

aDotter reports a distance modulus based on the apparent mag-
nitude of the HB. The values listed here are extinction corrected
for comparison with my results. See the text for details.

F606W filter (Schlegel et al. 1998, Table 6) and Dotter’s adopted extinction values for each

cluster to Equation 4.10. As seen in Table 4.5, Dotter’s DM matches mine exactly.

4.4 Summary

Table 4.6 summarizes the results of the techniques used in this chapter. The isochrones

agree with the hypothesis that both target clusters are of similar iron and α abundance as

M5. Marín-Franch et al. (2009) and Carney (1996) report [Fe/H]ZW = −1.38 and −1.40

respectively, in near perfect agreement with the results listed in Table 4.6. The most recent

high resolution spectroscopic survey of M5 was undertaken by Lai et al. (2011), who report

[Fe/H]I = −1.51± 0.14, [Fe/H]II = −1.42± 0.09 and [α/Fe] = 0.29± 0.08.3 Carney reports

[α/Fe] = +0.3±0.03 for M5 differing from my results, but the closest input values the DSED

isochrone software allow are +0.2 and +0.4.

I refer to the isochrones as a purely theoretical technique, but it requires a fair bit of em-

piricism. Both metallicity and extinction affect the distance calculation, the latter somewhat

subtly as the correction of the absolute magnitude of the HB requires it. A delicate dance

exists when finding an isochrone that best matches the data while simultaneously keeping

3Lai et al. (2011) does not explicitly report [α/Fe]. The number listed represents the average of Ca, Mg and
(TiI +TiII)/2.
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Table 4.6. Summary of Results

Measurement Technique AM 1 Pyxis

Age Relative to M5 (Gyr) Horizontal Method (VBS) −1.0 0.0
Vertical Method (VBLC) −1.5 . . .
Isochrones (DSED) −1.0 0.0

[Fe/H] Isochrones (DSED) −1.4 −1.4
[α/Fe] " +0.4 +0.4

E(B − V ) " 0.005 0.24

Distance Modulus " 20.36 17.91
MV (RR) (CC03) 20.36 17.92 ± 0.08

the metallicity and extinction within constraints provided by independent measurements of

these values as well as matching the distance parameter to that expected by the magnitude

of the HB (see Equations 4.10 and 4.11.)

Three independent techniques support the principle conclusion of this work, the ages

of the clusters. The initial hypothesis derives from a purely empirical technique. Two

semi-empirical methods, only one of which applies to Pyxis, as well as a purely theoretical

technique confirm this hypothesis. The fact that such diverse approaches show broad agree-

ment lends considerable support to the conclusion that, compared to M5, AM 1 is 1.0 to 1.5

Gyr younger and Pyxis is the same age.
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Figure 4.8 Examples of how input parameters affect the DSED models. The blue lines match
the best fitting parameters for AM 1 derived by D08b. For each panel, the non-varying
parameters, listed in the lower right, correspond to the blue curves in the other panels. The
exception is panel (d) which required an [α/Fe] of +0.4 as the other Y values are unavailable
for [α/Fe] of +0.2 used in the other panels. The helium enrichment equation reflects the
primordial helium mass fraction consistent with Spergel et al. (2003) plus the accumulation
of helium along with the production of heavy metals at a rate of ∆Y/∆Z = 1.54 (Dotter
et al. 2008a, §3).
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Figure 4.9 Best fitting isochrones for AM 1 and Pyxis. The green squares and error bars are
the mode and FWHM of the ridge line points determined in §4.2.1 (see Figure 4.3.) The red
plus signs represent stars studied in the radial velocity surveys of Suntzeff et al. (1985, S85)
and Palma et al. (2000, P00) for AM 1 and Pyxis respectively. The red text corresponds to
the star’s identifier code listed in Table 4.4. The color for P00-A matches that of the closest
star in my catalog to the converted magnitude listed in Palma et al. (2000).
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Chapter 5

Conclusions

We discuss the results in the context of the Lee diagram, reproduced here as Figure 5.1

and with the addition of extragalactic clusters from Mackey & Gilmore (2004, Table 2).

The results for AM 1 and Pyxis are shown as the solid, black pentagram in Figure 5.1. I

retained their original positions from Figure 1.1, as well as M5, for comparison. I present

the figure here because it drives the discussion in the subsequent sections regarding the

second parameter problem and accretion. The conclusions discussed here are tenuous at

best. Intermediate and high resolution spectroscopy will resolve the questions of the ultimate

origins of AM 1 and Pyxis.

5.1 The Second Parameter Problem

It is worth noting that the results (see Figure 5.1) show that both AM 1 and Pyxis

share similar metallicity to M5 but widely different HB morphologies; each cluster forming

a second parameter pair with M5 similar to NGC 288/362 (Catelan et al. 2001). As we see

in the subsections below, both clusters provide different explanations for this effect.

5.1.1 AM 1

The results for AM 1 come as little surprise. The results show a relative age of −1.0 to

−1.5± 0.5 Gyr compared to M5, which is consistent with age being the predominant factor

in the second parameter phenomena in accordance with the conclusions of Searle & Zinn

(1978), Zinn (1993) and Lee, Demarque, & Zinn (1994) to name a few.



Figure 5.1 The same as Figure 1.1 but with the addition of extragalactic clusters from Mackey
& Gilmore (2004, Table 2). The position of AM 1 and Pyxis based on the results of this work
are shown as the solid, black pentagon and annotated as “Revised”. Their original positions
based on the Harris (1996, 2003 and 2010 revisions) catalog are shown as open stars and
annotated as “Harris”.
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5.1.2 Pyxis

The results for Pyxis, by contrast, are quite enigmatic. Based on its position in the Lee

diagram, we would expect it to be noticeably younger than M5. However, the results show

no noticeable difference in age between the two (to within the uncertainties of the techniques

employed, ±0.5 Gyr). The relative age of Pyxis, with respect to M5, shows that another

factor, aside from age, drives the second parameter phenomena displayed in Pyxis.

This conclusion is speculative due to the poor definition of Pyxis’ HB. Recall that I

could not employ a statistical subtraction technique to filter foreground stars and relied on

using only stars within the core radius, shown in Figure 3.7 for subsequent analysis. By

comparison, the full CMD including all the “stellar noise” from foreground stars is shown in

the lower right panel of Figure 3.4. The full HB of Pyxis may be bluer than determined in

this work, but a more sophisticated filtering technique must be employed to disentangle it

from the non-cluster sources in the CMD. The most conclusive method of determining the

appropriate HB members is through kinematics, requiring high resolution spectroscopy for

radial velocities, and long time baseline astrometry to establish proper motions.

Even with the best filtering and selection techniques employed, Pyxis shows a sparsely

populated HB. The final uncertainty on the HB type will be large and dominated by small

number statistics. Any conclusions about the second parameter problem involving Pyxis

alone are dubious at best.

5.2 Accretion

In terms of the Lee diagram, the results of this work are consistent with AM 1 and Pyxis

being an accretion relics. Mackey & Gilmore (2004) argued that younger age alone suffices

to distinguish accreted GCs due to the location of most external GCs in the Lee diagram

(Figure 5.1) in common with the “young halo” population described by Zinn (1993). An

obvious, albeit non sequitur, conclusion from Figure 5.1 is that both Pyxis and AM 1 were
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born in environments similar to the Small Magellanic Cloud (SMC).

Pyxis’ similar age with M5 casts doubt on the conclusion above. To resolve this issue, we

need to explore the ages of AM 1, Pyxis and M5 in the context of the MW GC system as a

whole. Marín-Franch et al. (2009) surveyed 64 GC using HST data and established relative

ages with a technique very similar to the empirical method I employ in §4.1. Forbes & Bridges

(2010) expanded the study to 93 MW clusters. A plot of metallicity vs. age (reproduced here

as Figure 5.2a), or the age-metallicity relationship (AMR), shows a bifurcated distribution

with most MW clusters following a vertical trend of constant age of ∼ 12.8 Gyr, whereas

another group of clusters follows a roughly linear trend with the youngest clusters being

most metal rich. Many of the clusters in this latter group are known, or are suspected

of being, members of the accreted Canis Major and Sagittarius dwarf spheroidal galaxies.

They conclude that all the members of the group in the young branch of the AMR are

accretion relics. VandenBerg et al. (2013) supports this conclusion with even more precise

age determinations. His results (Figure 5.2b) show that the young branch of the AMR is

itself bifurcated into two parallel sequences, the more metal rich of which having disk like

kinematics and the metal poor show halo kinematics. .

The curious result from both Forbes & Bridges (2010) and VandenBerg et al. (2013) is

that M5 lies in the young population. The fact that Pyxis is the same age as M5 does not

necessarily preclude it as an accretion relic. As shown in Figure 5.2, AM 1, Pyxis and M5 all

lie within the young fork of the AMR along with the accretion relics of the Canis Major and

Sagittarius dSph clusters. While this alone is insufficient to make strong conclusions about

the origins of these clusters, these results coupled with their positions in the Lee diagram

are consistent with both AM 1 and Pyxis being accretion relics, and we are left to wonder

why M5 shows a blue HB at all despite its relatively young age.
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Figure 5.2 The age-metallicity relationships (AMR) based on two different datasets. The
results from this study are shown as green pentagons. The magenta circle represents M5.
Clusters known or believed to be associated with the Canis Major (CMa) and Sagittarius
(Sgr) dSph galaxies are indicated by the legend. (a) AMR constructed using data from
Forbes & Bridges (2010). The authors of this study use the Carretta and Graton (CG)
metallicity scale. The results for AM 1 and Pyxis were transformed to this scale via Equation
3 of Carretta et al. (2001). The grey line at 12.8 Gyr indicates the mean age of the old MW
population as determined by Marín-Franch et al. (2009). (b) AMR from VandenBerg et al.
(2013) who uses the metallicity scale of Carretta et al. (2009, CBG). The dashed line at 12.5
Gyr represents their mean age for the old MW population.

5.3 Future Work

Many of the issues discussed here are best solved through intermediate or high resolution

spectroscopy. Unfortunately, this is currently prohibitive with AM 1 and only possible with

the brightest RGB stars in Pyxis. As larger telescopes and more efficient spectrographs

become available, the chemical mysteries of the OH will unravel. In the interim, there are a

few projects I can undertake to further explore the OH.

Astrometry supports future spectroscopic and proper motion studies. Measurement of

precise positions for the stars I measured in AM 1 and Pyxis is a good first step.
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As mentioned before, the problem of Pyxis being polluted by “stellar noise” needs to

be addressed. One option is to use SOAR to image a nearby control field for use in the

statistical subtraction technique would be relatively straightforward if the telescope time

can be spared. Another approach involves the use of synthetic MW field star CMDs using

the models of Robin et al. (2004).
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APPENDIX A

Observing Logs

The complete observing log for our clusters is listed in Tables A.1 and A.2 below. The

seeing was recorded as soon as the exposure ended by selecting a sample star of intermediate

brightness in a non-crowded part of the field and measuring it’s full width half max (FWHM)

by using the IRAF imexamine command (specifically hovering the cursor over the sample star

and hitting the r key). We converted the FWHM from pixels to arcseconds by multiplying

by the SOI pixel resolution scale factor of 0.154 arcseconds/pixel. The results were recorded

in the SOI paper logs.
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Table A.1. AM1 Observations log

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2007-10-08 06:04:19.4 20.0 0.69
V 2007-10-08 06:07:45.2 20.0 0.69
V 2007-10-08 06:09:13.4 20.0 0.61
V 2007-10-08 06:15:48.2 300.0 0.72
B 2007-10-08 06:23:10.0 500.0 0.88
V 2007-10-08 06:30:35.2 300.0 0.77
B 2007-10-08 06:38:24.0 500.0 0.81
V 2007-10-08 06:45:60.0 300.0 0.74
B 2007-10-08 06:53:17.2 500.0 0.78
V 2007-10-08 06:60:40.8 300.0 0.80
B 2007-10-08 07:08:23.0 500.0 1.04
V 2007-10-08 07:15:47.0 300.0 0.85
B 2007-10-08 07:22:58.4 500.0 0.74
V 2007-10-08 07:30:24.0 300.0 0.71
B 2007-10-08 07:37:41.6 500.0 0.73
V 2007-10-08 07:45:11.8 300.0 0.69
B 2007-10-08 07:52:22.2 500.0 0.81
V 2007-10-08 07:59:41.8 300.0 0.76
B 2007-10-08 08:07:16.6 500.0 0.71
V 2007-10-08 08:14:43.8 300.0 0.74
B 2007-10-08 08:22:17.8 500.0 0.83
V 2007-10-08 08:29:51.8 300.0 0.77
B 2007-10-08 08:37:25.4 500.0 1.01
V 2007-10-08 08:44:42.4 300.0 1.04
B 2007-10-08 08:52:11.6 500.0 1.13
V 2007-10-08 08:59:27.4 300.0 1.02
B 2007-10-09 06:12:23.4 60.0 1.75
B 2007-10-09 06:15:45.8 60.0 1.49
B 2007-10-09 06:18:01.6 60.0 1.42
B 2007-10-09 06:26:47.0 500.0 1.14
V 2007-10-09 06:35:26.4 300.0 1.16
B 2007-10-09 06:43:05.4 500.0 1.06
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Table A.1 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2007-10-09 06:51:00.4 300.0 1.07
B 2007-10-09 06:58:37.2 500.0 1.21
V 2007-10-09 07:06:20.6 300.0 1.10
B 2007-10-09 07:13:54.2 500.0 1.41
V 2007-10-09 07:22:22.6 300.0 1.60
B 2007-10-09 07:30:33.0 500.0 1.34
V 2007-10-09 07:38:01.4 300.0 1.08
B 2007-10-09 07:45:33.0 500.0 1.17 Where’s the V?
B 2007-10-09 08:00:10.4 60.0 1.03
B 2007-10-09 08:05:44.0 500.0 1.13
V 2007-10-09 08:13:01.8 300.0 1.08
B 2007-10-09 08:20:20.6 500.0 1.11 Satellite/airplane streaks
B 2007-10-09 08:50:00.5 120.0 9.99 No stars visible
B 2007-10-09 08:54:37.0 120.0 9.99 No stars visible
B 2007-10-09 09:01:30.6 60.0 1.05
B 2007-10-09 09:05:26.4 60.0 1.10
B 2007-10-09 09:10:56.0 500.0 1.12
V 2007-10-10 06:11:19.3 20.0 0.87
V 2007-10-10 06:13:29.4 20.0 0.95
V 2007-10-10 06:16:42.0 300.0 1.04
B 2007-10-10 06:27:09.2 500.0 0.87
V 2007-10-10 06:35:03.8 300.0 0.80
B 2007-10-10 06:42:15.8 500.0 0.73
V 2007-10-10 06:49:32.6 300.0 0.68
B 2007-10-10 06:57:59.0 500.0 0.71
V 2007-10-10 07:05:25.0 300.0 0.69
B 2007-10-10 07:13:01.2 500.0 0.71
V 2007-10-10 07:21:43.1 300.0 0.69
B 2007-10-10 07:29:08.2 500.0 0.67
V 2007-10-10 07:36:56.0 300.0 0.70
B 2007-10-10 07:44:17.8 500.0 0.78
V 2007-10-10 07:51:34.2 300.0 0.85
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Table A.1 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

B 2007-10-10 07:58:43.8 500.0 0.87
V 2007-10-10 08:06:01.6 300.0 0.79
B 2007-10-10 08:13:12.8 500.0 0.81
V 2007-10-10 08:20:33.0 300.0 0.83
B 2007-10-10 08:27:47.4 500.0 0.84
V 2007-10-10 08:35:19.4 300.0 0.81
B 2007-10-10 08:42:34.4 500.0 0.84
V 2007-10-10 08:49:46.6 300.0 0.76
B 2007-10-10 08:57:40.2 500.0 0.84
V 2007-11-14 04:18:20.5 600.0 0.53 Photometric night,
B 2007-11-14 04:32:28.3 900.0 0.58 standards observed
V 2007-11-14 04:46:31.9 600.0 0.53
B 2007-11-14 04:59:55.1 900.0 0.57
V 2007-11-14 05:13:08.7 600.0 0.53
B 2007-11-14 05:26:23.8 900.0 0.64
V 2007-11-14 05:39:38.3 600.0 0.58
B 2007-11-14 05:52:41.8 900.0 0.65
V 2007-11-14 06:06:00.3 600.0 0.72
B 2007-11-14 06:19:35.5 900.0 0.70
V 2007-11-14 06:34:55.3 600.0 0.64
B 2007-11-14 06:48:08.5 900.0 0.74
V 2007-11-14 07:01:57.5 600.0 0.75
V 2007-11-15 04:54:16.0 20.0 0.60 Photometric night,
V 2007-11-15 04:54:52.0 20.0 0.64 standards observed.
V 2007-11-15 04:55:28.0 20.0 0.67
B 2007-11-15 04:58:14.0 40.0 0.70
B 2007-11-15 04:59:10.0 40.0 0.77
B 2007-11-15 05:00:06.0 40.0 0.87
V 2007-11-15 05:06:18.1 600.0 0.80
B 2007-11-15 05:19:12.1 900.0 0.75
V 2007-11-15 05:32:05.0 600.0 0.82
B 2007-11-15 05:45:12.0 900.0 0.82

112



Table A.1 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2007-11-15 05:58:22.1 600.0 0.86
B 2007-11-15 06:11:35.0 900.0 0.76
V 2007-11-15 06:24:42.1 600.0 0.63
B 2007-11-15 06:37:51.1 900.0 0.73
V 2007-11-15 06:51:04.0 600.0 0.53
V 2007-12-11 02:45:41.5 600.0 0.83 First half of night photometric.
B 2007-12-11 02:58:55.9 900.0 0.97 standards observed.
V 2007-12-11 03:12:08.1 600.0 0.92
B 2007-12-11 03:25:21.9 900.0 0.89
V 2007-12-11 03:38:28.3 600.0 0.89
V 2007-12-11 04:35:27.5 600.0 0.76
B 2007-12-11 04:48:35.3 900.0 0.77 Cirrus clouds reported around
V 2007-12-11 05:01:50.7 600.0 0.73 this time.
V 2008-01-04 02:12:32.2 60.0 0.67 Trial exposure
V 2008-01-04 02:19:04.0 600.0 0.73 Master V frame for AM 1
B 2008-01-04 02:32:13.0 900.0 0.75 Master B frame for AM 1
V 2008-01-04 02:45:24.0 600.0 0.74
B 2008-01-04 02:59:04.2 900.0 0.79
V 2008-01-04 03:12:46.4 600.0 0.83
B 2008-01-04 03:26:01.6 900.0 0.87
V 2008-01-04 03:39:18.7 600.0 0.75
V 2008-01-05 01:00:40.6 60.0 0.70
V 2008-01-05 01:01:52.5 60.0 0.69
V 2008-01-05 01:03:03.4 60.0 0.62
V 2008-01-05 01:04:16.1 60.0 0.62
V 2008-01-05 01:11:44.6 600.0 0.70
B 2008-01-05 01:25:34.0 900.0 0.95
V 2008-01-05 01:38:50.8 600.0 0.83
B 2008-01-05 01:51:58.8 900.0 0.85
V 2008-01-05 02:05:15.0 600.0 0.73
B 2008-01-05 02:18:19.8 900.0 0.75
V 2008-01-05 02:31:26.2 600.0 0.79
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Table A.1 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

B 2008-01-05 02:44:29.8 900.0 0.75
V 2008-01-05 02:57:41.8 600.0 0.76
B 2008-01-05 03:10:49.3 900.0 0.68
V 2008-01-05 03:23:51.6 600.0 0.70
V 2008-02-02 01:15:36.0 60.0 1.06 Test exposure
V 2008-02-02 01:23:43.4 600.0 1.09 Transparency poor (cloudy)
B 2008-02-02 01:36:54.2 900.0 1.05 Transparency improved around 0143 UT
V 2008-02-02 01:50:18.4 600.0 0.85 Clearing
B 2008-02-02 02:03:47.4 900.0 0.92 Clear
V 2008-02-02 02:17:01.8 600.0 1.01
V 2008-12-23 01:41:10.1 600.0 0.74
B 2008-12-23 01:58:14.5 900.0 0.77
V 2008-12-23 02:11:22.1 600.0 0.68
B 2008-12-23 02:24:21.7 900.0 0.82
V 2008-12-23 02:37:26.1 600.0 0.65
B 2008-12-23 02:50:23.3 900.0 0.68
V 2008-12-23 03:03:18.3 600.0 0.77
B 2008-12-23 03:16:25.9 900.0 0.57
V 2008-12-23 03:29:23.3 600.0 0.64
V 2009-01-31 01:13:01.0 600.0 0.64
B 2009-01-31 01:26:02.3 900.0 0.65
V 2009-01-31 01:38:59.4 600.0 0.65
B 2009-01-31 02:06:37.4 900.0 0.98
V 2009-01-31 02:19:44.9 600.0 1.06
B 2009-01-31 02:32:44.2 900.0 0.97
V 2009-01-31 02:45:42.4 600.0 0.95
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Table A.2. Pyxis Observations log

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2007-11-14 07:52:09.7 300.0 0.65 Photometric night,
B 2007-11-14 07:59:13.1 500.0 0.69 standards observed.
V 2007-11-14 08:06:31.7 300.0 0.64
B 2007-11-14 08:13:14.5 500.0 0.68
V 2007-11-14 08:20:32.9 300.0 0.61
V 2007-11-14 08:23:25.3 10.0 0.65
V 2007-11-14 08:23:47.1 10.0 0.62
V 2007-11-14 08:24:09.3 10.0 0.67
B 2007-11-14 08:25:07.7 20.0 0.64
B 2007-11-14 08:25:39.5 20.0 0.63
B 2007-11-14 08:26:11.1 20.0 0.66
V 2007-11-15 07:30:36.0 300.0 0.50 Photometric night,
B 2007-11-15 07:38:01.1 500.0 0.57 standards observed.
V 2007-11-15 07:45:37.1 300.0 0.55 UT dates and times had to be
B 2007-11-15 07:53:06.1 500.0 0.64 derived this night due to an
V 2007-11-15 08:00:59.1 300.0 0.57 acquisition software error
B 2007-11-15 08:08:16.1 500.0 0.55
V 2007-11-15 08:15:25.1 300.0 0.51 ?? (time dosen’t make sense)
V 2007-11-15 08:13:33.0 10.0 0.52
V 2007-11-15 08:13:59.0 10.0 0.53
V 2007-11-15 08:14:25.0 10.0 0.53
B 2007-11-15 08:15:14.5 15.0 0.56
B 2007-11-15 08:15:45.5 15.0 0.56
B 2007-11-15 08:16:16.5 15.0 0.56
B 2008-01-04 04:28:35.4 30.0 1.00
B 2008-01-04 04:29:17.2 30.0 0.80
B 2008-01-04 04:29:58.6 30.0 0.86
V 2008-01-04 04:31:34.9 15.0 0.78
V 2008-01-04 04:32:01.3 15.0 0.72
V 2008-01-04 04:32:29.1 15.0 0.78
V 2008-01-04 04:36:48.3 300.0 0.81
B 2008-01-04 04:44:27.2 500.0 0.84
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Table A.2 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2008-01-04 04:52:04.3 300.0 0.70
B 2008-01-04 05:02:04.2 500.0 0.75
V 2008-01-04 05:10:06.0 300.0 0.73
B 2008-01-04 05:17:22.6 500.0 0.78
V 2008-01-04 05:25:45.1 300.0 0.74
B 2008-01-04 05:33:11.0 500.0 0.76
V 2008-01-04 05:41:05.4 300.0 0.77
B 2008-01-04 05:50:41.0 500.0 0.87
V 2008-01-04 05:57:56.2 300.0 0.81
B 2008-01-04 06:09:31.8 500.0 0.76
V 2008-01-04 06:16:51.8 300.0 0.67 Master V frame for Pyxis
B 2008-01-04 06:24:08.0 500.0 0.66 Master B frame for Pyxis
V 2008-01-04 06:31:40.4 300.0 0.69
B 2008-01-04 06:39:01.8 500.0 0.70
V 2008-01-04 06:46:21.2 300.0 0.74
V 2008-01-05 03:41:46.6 30.0 0.81
V 2008-01-05 03:46:27.6 300.0 0.78
B 2008-01-05 03:53:47.4 500.0 0.84
V 2008-01-05 04:00:57.1 300.0 0.75
B 2008-01-05 04:08:19.4 500.0 0.77
V 2008-01-05 04:17:26.7 300.0 0.65
B 2008-01-05 04:25:49.0 500.0 0.80
V 2008-01-05 04:36:37.8 300.0 0.66
B 2008-01-05 04:43:58.6 500.0 0.65
V 2008-01-05 04:51:25.0 300.0 0.61
B 2008-01-05 04:58:40.5 500.0 0.68
V 2008-01-05 05:06:35.8 300.0 0.70
B 2008-01-05 05:13:46.6 500.0 0.80
V 2008-01-05 05:20:53.0 300.0 0.76
V 2008-02-02 02:31:49.9 15.0 0.95 Clouds were an issue this entire night
V 2008-02-02 02:32:19.7 15.0 0.95
V 2008-02-02 02:32:48.3 15.0 0.95
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Table A.2 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

B 2008-02-02 02:33:46.8 30.0 1.14
B 2008-02-02 02:34:31.6 30.0 1.14
B 2008-02-02 02:35:14.8 30.0 1.14 Focus soft, tweaking optics
V 2008-02-02 02:50:46.2 300.0 0.71 Focus improved
B 2008-02-02 02:57:56.8 500.0 0.81
V 2008-02-02 03:05:24.8 300.0 0.79
B 2008-02-02 03:12:49.2 500.0 0.85
V 2008-02-02 03:20:11.4 300.0 0.84
B 2008-02-02 03:27:27.8 500.0 0.82
V 2008-02-02 03:34:54.4 300.0 0.77
B 2008-02-02 03:42:05.9 500.0 0.86
V 2008-02-02 03:49:19.8 300.0 0.83
B 2008-02-02 03:56:41.2 500.0 0.92
V 2008-02-02 04:03:56.3 300.0 0.85
B 2008-02-02 04:11:11.2 500.0 0.83
V 2008-02-02 04:18:24.2 300.0 0.79
B 2008-02-02 04:25:36.0 500.0 0.99 Poor transparency
V 2008-02-02 04:32:51.7 300.0 1.01 Target obscured by clouds
V 2008-02-02 06:04:50.9 300.0 0.85 Clear enough to resume
B 2008-02-02 06:13:26.4 500.0 0.86
V 2008-02-02 06:20:46.4 300.0 1.06 Clouds back
V 2008-03-06 00:56:22.1 300.0 0.69 Photometric night
B 2008-03-06 01:03:43.3 500.0 0.78
V 2008-03-06 01:10:56.1 300.0 0.65
B 2008-03-06 01:18:14.0 500.0 0.67
V 2008-03-06 01:25:40.5 300.0 0.67
B 2008-03-06 01:33:10.1 500.0 0.71
V 2008-03-06 01:40:41.5 300.0 0.67
B 2008-03-06 01:47:55.7 500.0 0.69
V 2008-03-06 01:55:14.9 300.0 0.68
B 2008-03-06 02:03:07.0 500.0 0.70
V 2008-03-06 02:10:18.5 300.0 0.65
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Table A.2 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

B 2008-03-06 02:17:40.8 500.0 0.66
V 2008-03-06 02:24:49.9 300.0 0.69
V 2008-03-06 02:44:26.0 300.0 0.73
B 2008-03-06 02:51:41.9 500.0 0.68
V 2008-03-06 02:58:50.7 300.0 0.67
B 2008-03-06 03:06:11.7 500.0 0.79
V 2008-03-06 03:13:46.0 300.0 0.86
B 2008-03-06 03:21:04.9 500.0 0.82
V 2008-03-06 03:28:20.0 300.0 0.85
B 2008-03-06 03:36:09.6 500.0 0.86
V 2008-03-06 03:43:32.1 300.0 0.75
V 2008-04-14 00:07:07.0 300.0 0.99 Photometric night
B 2008-04-14 00:14:31.2 500.0 1.03 standards observed.
V 2008-04-14 00:22:02.0 300.0 0.98
B 2008-04-14 00:29:17.0 500.0 1.00
V 2008-04-14 00:36:31.4 300.0 0.93
B 2008-04-14 00:43:55.6 500.0 0.94
V 2008-04-14 00:51:26.0 300.0 0.90
V 2008-05-08 23:26:56.3 300.0 0.71
B 2008-05-08 23:34:17.0 500.0 0.80
V 2008-05-08 23:41:37.3 300.0 0.78
B 2008-05-08 23:48:36.3 500.0 0.76
V 2008-05-08 23:55:41.4 300.0 0.68
B 2008-05-08 00:02:54.4 500.0 0.75
V 2008-05-09 00:10:00.3 300.0 0.72
B 2008-05-09 00:17:21.4 500.0 0.80
V 2008-05-09 00:24:37.6 300.0 0.71
B 2008-05-09 00:31:51.2 500.0 0.85
V 2008-05-09 00:39:56.4 300.0 1.02
B 2008-05-09 00:47:03.5 500.0 0.99
V 2008-05-09 00:54:11.8 300.0 0.89
V 2008-12-23 03:42:33.7 300.0 0.89 Airmass 1.56 and decreasing
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Table A.2 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

B 2008-12-23 03:50:53.3 500.0 0.99
V 2008-12-23 03:58:07.3 300.0 0.77
B 2008-12-23 04:05:20.5 500.0 0.84
V 2008-12-23 04:12:28.9 300.0 0.82
B 2008-12-23 04:19:38.9 500.0 0.90
V 2008-12-23 04:27:45.5 300.0 0.84
B 2008-12-23 04:34:53.7 500.0 0.93
V 2008-12-23 04:42:06.7 300.0 0.75
B 2008-12-23 04:49:22.7 500.0 0.87
V 2008-12-23 04:56:55.3 300.0 0.81
B 2008-12-23 05:04:08.2 500.0 0.91
V 2008-12-23 05:11:27.1 300.0 0.85
B 2008-12-23 05:18:33.9 500.0 0.89
V 2008-12-23 05:25:44.1 300.0 0.77
V 2008-12-23 05:29:07.2 15.0 0.69 Short exposures for
V 2008-12-23 05:29:29.0 15.0 0.69 bright stars.
V 2008-12-23 05:29:50.6 15.0 0.69
B 2008-12-23 05:31:07.5 30.0 0.78
B 2008-12-23 05:31:44.3 30.0 0.78
B 2008-12-23 05:32:20.9 30.0 0.78
V 2009-01-30 01:42:49.0 300.0 0.8
B 2009-01-30 01:50:51.1 500.0 1.1
V 2009-01-30 01:58:19.8 300.0 1.0
B 2009-01-30 02:06:00.0 500.0 1.1
V 2009-01-30 02:13:51.4 300.0 0.9
B 2009-01-30 02:21:29.5 500.0 1.1
V 2009-01-30 02:29:08.0 300.0 1.0
B 2009-01-30 02:36:59.2 500.0 1.1
V 2009-01-30 02:44:57.0 300.0 1.0
B 2009-01-30 02:52:48.6 500.0 1.0
V 2009-01-30 03:00:13.4 300.0 1.0
B 2009-01-30 03:07:38.6 500.0 1.0
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Table A.2 (cont’d)

Filter UT Date UT Time Exposure time Seeing Comments
(mid-exposure) (mid-exposure) (seconds) (arcseconds)

V 2009-01-30 03:16:41.2 300.0 1.0
V 2009-01-31 03:00:49.4 300.0 0.88
B 2009-01-31 03:07:55.4 500.0 0.90
V 2009-01-31 03:15:00.2 300.0 0.89
B 2009-01-31 03:22:07.6 500.0 0.89
V 2009-01-31 03:29:10.6 300.0 0.85
B 2009-01-31 03:36:27.6 500.0 0.86
V 2009-01-31 03:43:49.2 300.0 0.83
B 2009-01-31 03:51:19.6 500.0 0.76
V 2009-01-31 03:58:26.1 300.0 0.63
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APPENDIX B

Source Code

The following is the source code for the perl script daofun.

#!/ usr /bin / p e r l
$ | = 1 ;

use Getopt : : Long ;
use F i l e : : Copy ;

################################################################################
#
# Okay , so running DAOPHOT on the hundreds o f frames that I have i s going to
# g ive me ca rpa l tunne l . I ’m to the po int now that I can automate the gene ra l
# procedure . Other automation rout ine s , namely ’ daops f f ind ’ and ’ daopsfmark ’
# w i l l be used in con junct ion with t h i s s c r i p t . This w i l l not be a f u l l y
# automated procedure , but I ’m going to at l e a s t automate as much as I can .
#
# General procedure :
#
# run DAOPHOT, use FIND, PHOT and PICK to generate the PSF s t a r
# candidate l i s t
#
# Either p ick out the PSF s t a r s by hand or use ’ daops f f ind ’ to f i nd
# them based on a decent i n i t i a l guess f i l e .
#
# Run th i s s c r i p t . I t w i l l pause between the f i r s t ( f i l e index 0)
# and second ( f i l e index 1) i t e r a t i o n s and prompt the user to
# prune the PSF s t a r l i s t f o r d e f e c t i v e PSF s t a r s ( eg . due to c l o s e
# CR h i t s ) .
#
# Sc r i p t w i l l complete the f i n a l DAOPHOT i t e r a t i o n , e x i t and c a l l
# ALLSTAR.
#
#
# Usage
# daofun [ input f i t s f i l e ] [ output f i l e basename ] <opt ions>
#
# opt ions
#
# −−path Path to the data d i r e c t o r y . This w i l l c ons t ruc t
# the environment va r i ab l e DAODIR se t to the path
# s p e c i f i e d and c a l l DAOPHOT and ALLSTAR using
# Stetson ’ s environment va r i ab l e f r i e n d l y syntax
# ( eg . attach DAODIR: s ome f i l e . f i t s ) . I f t h i s i s
# not s p e c i f i e d , the input frame i s assumed to be
# in the d i r e c t o r y in which the s c r i p t was c a l l e d .
# I f the environment va r i ab l e DAODIR i s a l r eady def ined ,
# i t i s over r idden whi l e the s c r i p t execute s .
#
# −−noc lean The s c r i p t w i l l c r e a t batch f i l e s that are then
# fed to DAOPHOT using the r e d i r e c t operator
# ( eg . daophot < batch1 . cmd ) . This switch prevents
# these f i l e s from being de l e t ed . Use fu l f o r debugging
# and/or doccumentation .
#
# −−noop Set up everything , but don ’ t a c t ua l l y execute the
# DAOPHOT command . Use fu l f o r debugging and
# troub l e shoo t i ng .
#
# −−verbose | v Verbose output ( as usua l )
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#
# −−debug | d Debugging output ( again as usua l )
#
# Outputs
#
# This w i l l p r e s e rve a l l output f i l e s . In the notat ion below , the
# annotat ion [ i t e r ] r e f e r s to the i t e r a t i o n ( t y p i c a l l y 0 , 1 , or 2 ) .
# Unless o therw i se s p e c i f i e d , i t e r=1 i s the f i n a l i t e r a t i o n .
# [ basename ] i s the user supp l i ed output basename .
#
# Just to be e x p l i c i t , the bracket cha ra c t e r s ( ’ [ ’ and ’ ] ’ ) below
# do not l i t e r a l l y appear in the f i l ename . They i nd i c a t e user supp l i ed
# or va r i ab l e name s t r i n g s .
#
# [ basename ] . [ i t e r ] . p s f # PSF f i l e ( f i n a l i t e r i s 2 ) .
# [ basename ] . [ i t e r ] . ne i # Neighbors f i l e ( f i n a l i t e r i s 2 ) .
# [ basename ] . [ i t e r ] . grp # output o f the GROUP command
# [ basename ] . [ i t e r ] . nst # output o f the NSTAR command
# [ basename ] . sub . [ i t e r ] . f i t s # SUBSTAR output with PSF s t a r s
# # and t h e i r ne ighbors f o r
# # the given i t e r a t i o n subtracted .
# [ basename ] . subN . f i t s # Fina l image with j u s t the PSF s t a r s
# # with ne ighbors subtracted away
# [ basename ] . ap # I n i t i a l guess o f the magnitudes and
# # po s i t i o n s
# [ basename ] . a l s # Fina l magnitudes from ALLSTAR
# [ basename ] . a l l s ub . f i t s # Subtracted ALLSTAR image .
#
#
# NOTES
#
# This s c r i p t makes heavy use o f the p e r l ’ system ’ command .
# IT IS VERY BAD TO INTERRUPT A SYSTEM COMMAND! Be very caut i ous when
# con s i d e r i ng CTRL−C ( terminate ) or CTRL−Z ( suspend ) keys t roke s .
# Pa r t i c u l a r l y when i t appears DAOPHOT or ALLSTAR appears to be running .
#
#
################################################################################

# Global v a r i a b l e s
$daophot = "/ usr / l o c a l / bin /daophot " ;
$ a l l s t a r = "/ usr / l o c a l / bin / a l l s t a r " ;
@CleanupFiles ;

ReadArgs ( ) ;
PrintArgs ( ) i f $debug ;

# Test f o r the e x i s t e n c e o f r equ i r ed input and con f i gu r a t i on f i l e s
i f ( ! −e "daophot . opt ")
{
d i e "Required c on f i g u r a t i on f i l e ’ daophot . opt ’ not found in cur rent d i r e c t o r y . \ n " ;
}

i f ( ! −e "photo . opt ")
{
d i e "Required c on f i g u r a t i on f i l e ’ photo . opt ’ not found in cur rent d i r e c t o r y . \ n " ;
}

i f ( ! −e " a l l s t a r . opt ")
{
d i e "Required c on f i g u r a t i on f i l e ’ a l l s t a r . opt ’ not found in cur rent d i r e c t o r y . \ n " ;
}

I t e r a t e ( " 0 " ) ;

p r i n t
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"\n## F i r s t i t e r a t i o n complete . A new PSF s t a r l i s t f i l e has been crea ted in the \n " ;
p r i n t
"## data d i r e c t o r y with the extens i on ’ . 1 . l s t ’ . Take a moment to examine the \n " ;
p r i n t
"## subtracted image ( extens i on ’ . sub . 0 . f i t s ’ ) and prune out bad PSF s t a r s \n " ;
p r i n t
"## from the new l i s t . Look out f o r cosmic rays with in the PSF radius , \n " ;
p r i n t
"## f a i n t background s t a r s not being subtracted away , e t c . When ready to \n " ;
p r i n t
"## continue , type ’y ’ at the prompt below . Type ’n ’ to end the program\n " ;
p r i n t
"## c l e an l y . \ n\n " ;

p r i n t "## Proceed to the second i t e r a t i o n ? (y/n) " ;

i f ( QueryUser ( ) ) {
p r i n t "## Very wel l , proceed ing to the next i t e r a t i o n \n" i f $verbose ;

}
e l s e
{

p r i n t "## Al l r i gh t y then , have a grea t day ! \ n" i f $verbose ;
e x i t ;

}

I t e r a t e ( " 1 " ) ;

p r i n t
"## The r e s u l t s o f the second i t e r a t i o n can be in spec t ed by viewing the \n " ;
p r i n t
"## f i l e with the extens i on ’ sub . 1 . f i t s ’ . Ver i f y that a l l the PSF s t a r s have\n " ;
p r i n t
"## been c l e an l y subtracted away . When ready to cont inue to the f i n a l \n " ;
p r i n t
"## i t e r a t i o n , type ’y ’ at the prompt below . Type ’n ’ to end the program\n " ;
p r i n t
"## c l e an l y . \ n " ;

p r i n t "## Proceed to the f i n a l i t e r a t i o n ? (y/n) " ;

i f ( QueryUser ( ) ) {
p r i n t "## Very wel l , proceed ing to the f i n a l i t e r a t i o n \n" i f $verbose ;

}
e l s e
{

p r i n t "## Al l r i gh t y then , have a grea t day ! \ n" i f $verbose ;
e x i t ;

}

I t e r a t e ( " 2 " ) ;

p r i n t
"## DAOPHOT i t complete . The f i n a l PSF f i l e has the extens i on ’ . 2 . psf ’ . \n " ;
p r i n t
"## The next s tep i s to run ALLSTAR, wich you can choose to do now by \n " ;
p r i n t
"## s e l e c t i n g ’y ’ at the prompt below . S e l e c t ’n ’ to c l e an l y e x i t the \n " ;
p r i n t
"## program .\ n " ;

p r i n t "## Proceed with ALLSTAR? (y/n) " ;

i f ( QueryUser ( ) ) {
p r i n t "## Very wel l , proceed ing to the f i n a l i t e r a t i o n \n" i f $verbose ;

}
e l s e
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{
p r in t "## Al l r i gh t y then , have a grea t day ! \ n" i f $verbose ;
e x i t ;

}

RunAllstar ( ) ;

# Cleanup the batch f i l e s
i f ( $c l ean )
{

p r i n t "## Dele t ing the f o l l ow i n g batch f i l e s : \ n\ t@CleanupFiles \n" i f $verbose ;
un l ink ( @CleanupFiles ) ;

}
e l s e
{

p r i n t "## noclean enabled . The f o l l ow i n g batch f i l e s w i l l remain in the cur rent \n " ;
p r i n t "## d i r e c t o r y \n " ;
p r i n t "\ t@CleanupFiles " ;

}

################################################################################
#
# Subprocess : ReadArgs
#
# Inputs : None
#
# Returns : Nothing
#
# Desc r ip t i on : Reads command l i n e opt ions . De fau l t s are s e t i f no
# opt ions are g iven .
#
###############################################################################

sub ReadArgs {

# as s i gn d e f a u l t s
$verbose=0;
$debuvg=0;
$noop=0;
$c l ean=1;
$ f o r c e =0;
$datapath .= "" ;

# Get the opt ions . This should parse the ARGV array so that the only
# thing l e f t are the r equ i r ed arguments .

&GetOptions (" path=s " ,
"noop " ,
" noc lean " ,
" f o r c e | f " ,
" verbose | v " ,
"debug | d " ) ;

i f ( $opt_path ) {
$datapath = $opt_path ;

}

i f ( $opt_noop ) {
$noop = $opt_noop ;

}

i f ( $opt_noclean ) {
$c l ean = 0 ;

}

i f ( $opt_verbose ) {
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$verbose = $opt_verbose ;
}

i f ( $opt_debug ) {
$debug = $opt_debug ;

}

i f ( $opt_force ) {
$ f o r c e = $opt_force ;

}

# Now trap the r equ i r ed arguments

$ i n f i l e = @ARGV[ 0 ] ;

$basename = @ARGV[ 1 ] ;

i f ( ! $ i n f i l e | | ! $basename )
{

Usage ( ) ;
e x i t ;

}

i f ( ! $datapath )
{

$datapath = " . " ;
}

}

################################################################################
#
# Usage
#
# Educate the user on how to use the program
#
################################################################################

sub Usage ( ) {

p r i n t "\nUsage : daofun [ input f i t s f i l e ] [ output f i l e basename ] <opt ions >";
p r i n t "\n\n " ;

p r i n t " opt ions \n " ;
p r i n t "\n " ;
p r i n t " −−path Path to the data d i r e c t o r y . This w i l l c ons t ruc t \n " ;
p r i n t " the environment va r i ab l e DAODIR se t to the path\n " ;
p r i n t " s p e c i f i e d and c a l l DAOPHOT and ALLSTAR us ing \n " ;
p r i n t " Stetson ’ s environment va r i ab l e f r i e n d l y syntax \n " ;
p r i n t " ( eg . attach DAODIR: s ome f i l e . f i t s ) . I f t h i s i s \n " ;
p r i n t " not s p e c i f i e d , the input frame i s assumed to be\n " ;
p r i n t " in the d i r e c t o r y in which the s c r i p t was c a l l e d . \ n " ;
p r i n t " I f the environment va r i ab l e DAODIR i s a l r eady def ined , \ n " ;
p r i n t " i t i s over r idden whi l e the s c r i p t execute s . \ n " ;
p r i n t "\n " ;
p r i n t " −−noc lean The s c r i p t w i l l c r e a t batch f i l e s that are then\n " ;
p r i n t " fed to DAOPHOT using the r e d i r e c t operator \n " ;
p r i n t " ( eg . daophot < batch1 . cmd ) . This switch prevents \n " ;
p r i n t " these f i l e s from being de l e t ed . Use fu l f o r debugging\n " ;
p r i n t " and/ or doccumentation . \ n " ;
p r i n t "\n " ;
p r i n t " −−noop Set up everything , but don ’ t a c t ua l l y execute the \n " ;
p r i n t " DAOPHOT command . Use fu l f o r debugging and\n " ;
p r i n t " t r oub l e shoo t i ng . \ n " ;
p r i n t "\n " ;
p r i n t " −−f o r c e , −f Force d e l e t e f i l e s i f they a l r eady e x i s t . \ n " ;
p r i n t " I f not enabled , program w i l l ha l t and inform the user \n " ;
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pr in t " which f i l e s need to be de l e t ed . \ n " ;
p r i n t "\n " ;
p r i n t " −−verbose , −v Verbose output ( as usua l )\n " ;
p r i n t "\n " ;
p r i n t " −−debug , −d Debug output ( as usua l )\n " ;
p r i n t "\n " ;

}

###############################################################################
#
# PrintArgs
#
# Just a pre t ty way to p r i n t the input arguments . Mainly used f o r
# debugging
#
###############################################################################

sub PrintArgs {

p r i n t "\ nInput arguments r epor t \n\n " ;

p r i n t "\ tInput frame : $ i n f i l e \n " ;
p r i n t "\ tOutput f i l e basename : $basename\n " ;
p r i n t "\ tData d i r e c t o r y path : $datapath\n\n " ;

p r i n t "\ tnoc l ean enabled \n" i f ( ! $c l ean ) ;
p r i n t "\ tnoop enabled \n" i f $noop ;
p r i n t "\ tve rbose enabled \n" i f $verbose ;
p r i n t "\ tdebug enabled \n" i f $debug ;

p r i n t "\nEnd input arguments r epor t \n\n " ;
}

################################################################################
#
# QueryUser
#
# A simple rou t in e to prompt the user f o r a yes or no response .
# Returns 1 f o r a yes answer , 0 f o r a no . Continues to prompt the user
# un t i l a y or n i s entered .
#
################################################################################

sub QueryUser {

whi l e ( $yesno = <STDIN> )
{

chomp ( $yesno ) ; #i f I had a n i c k e l f o r each minute I wasted debugging
# because I f ogo t to chomp the input . . . .

p r i n t "yesno = $yesno\n" i f $debug ;

i f ( $yesno eq "y")
{

re turn 1 ;
}
e l s i f ( $yesno eq "n")
{

re turn 0 ;
}
e l s e
{

p r i n t " Please type ’y ’ or ’n ’ ( no quotes ) " ;
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}

}

}

################################################################################
#
# I t e r a t e
#
# Set up the batch s c r i p t f o r the each i t e r a t i o n through DAOPHOT.
# Execute the s c r i p t un l e s s −−noop i s s e t
#
# Arguments :
# i t e r a t i o n index (0 or 1)
#
################################################################################

sub I t e r a t e ( $ )
{

my $ i t e r a t i o n = $_ [ 0 ] ;
my $next_i t e ra t i on = $ i t e r a t i o n + 1 ;
my $prev_i te ra t i on = $ i t e r a t i o n − 1 ;
my $cmdf i l e = "daocommands . $ i t e r a t i o n . bat " ;
my $p r e f i x = "" ;

p r i n t " I t e r a t i o n = $ i t e r a t i o n \n" i f ( $debug ) ;

i f ( $datapath ne " . " )
{

$p r e f i x = "DDIR : " ;
}

# because the same f i l ename i s prompted f o r over and over . . . .
my $ a p f i l e = "$basename . ap " ;
my $ l s t f i l e = "$basename . $ i t e r a t i o n . l s t " ;
my $ p s f f i l e = "$basename . $ i t e r a t i o n . p s f " ;
my $ n e i f i l e = "$basename . $ i t e r a t i o n . ne i " ;
my $ g r p f i l e = "$basename . $ i t e r a t i o n . grp " ;
my $ n s t f i l e = "$basename . $ i t e r a t i o n . nst " ;
my $ s u b f i l e = "$basename . sub . $ i t e r a t i o n . f i t s " ;

# Do th i s to fake DAOPHOT into th ink ing the f i l e a l r eady e x i s t s . This
# w i l l f o r c e a new f i l ename to be prompted f o r

i f ( $ i t e r a t i o n == 0)
{

symlink ( "$datapath/$basename . $ i t e r a t i o n . ne i " , " $datapath/$basename . ne i " ) ;

# By h i s t o r i c convent ion ( i e . hab i t ) , the f i r s t i t e r a t i o n . l s t f i l e
# does not e x p l i c i t l y i n c lude the i t e r a t i o n index . So we ’ l l j u s t
# t r e a t i t as a s p e c i a l case .

$ l s t f i l e = "$basename . l s t " ;
}

i f ( $ i t e r a t i o n == 2)
{

$ l s t f i l e = "$basename . $prev_i te ra t i on . l s t " ;
}

# Test f o r r equ i r ed f i l e s that may be miss ing .
i f ( ! −e " $datapath/ $ a p f i l e ")
{
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d i e "Required DAOPHOT intput f i l e $ a p f i l e miss ing . \ n " ;
}

i f ( ! −e " $datapath/ $ l s t f i l e ")
{

d i e "Required DAOPHOT input f i l e $ l s t f i l e miss ing . \ n " ;
}

# t e s t f o r pre−e x i s t i n g f i l enames . I f output f i l e s a l r eady ex i s t , i t
# w i l l change the way DAOPHOT prompts f o r input , and mess up the batch
# s c r i p t s .

my @Exi s t ingF i l e s ;
my $ f i l e s_ e x i s t = 0 ;

i f (−e " $datapath/ $ p s f f i l e ")
{

push ( @Exis t ingFi l e s , $ p s f f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f (−e " $datapath/ $ n e i f i l e ")
{

push ( @Exis t ingFi l e s , $ n e i f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f (−e " $datapath/ $ g r p f i l e ")
{

push ( @Exis t ingFi l e s , $ g r p f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f (−e " $datapath/ $ n s t f i l e ")
{

push ( @Exis t ingFi l e s , $ n s t f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f (−e " $datapath/ $ s u b f i l e ")
{

push ( @Exis t ingFi l e s , $ s u b f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f ( $ f i l e s_ e x i s t > 0)
{

i f ( $ f o r c e )
{

p r i n t "## Dele t ing the f o l l ow i n g pre−e x i s t i n g f i l e s : \ n" i f ( $verbose ) ;

f o r each $ e x i s t i n g f i l e ( @Ex i s t ingF i l e s )
{

p r i n t "\ t$datapath / $ e x i s t i n g f i l e \n" i f ( $verbose ) ;
un l ink (" $datapath/ $ e x i s t i n g f i l e " ) ;

}
}
e l s e
{

d i e "The f o l l ow i n g f i l e s in the d i r e c t o r y \n$datapath\n must be
de l e t ed or moved out o f the way\ n@Exi s t ingF i l e s \n " ;

}
}
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# Cr i t i c a l over lap i s a DAOPHOT input . I use 0 . 1 , but t h i s may change .
my $ c r i t i c a l_ov e r l a p = 0 . 1 ;

open (CMDFILE, ">$cmdf i l e ") or d i e "Unable to open batch f i l e $cmdf i l e " ;

# The f o l l ow i ng comments are the command prompts . The p r in t statements
# are the DAOPHOT inputs

# Command
i f ( $ i t e r a t i o n == 2)
{

p r in t CMDFILE " attach $pref ix$basename . subN . f i t s \n " ;
}
e l s e
{

p r i n t CMDFILE " attach $ p r e f i x $ i n f i l e \n " ;
}

# Command
pr in t CMDFILE " ps f \n " ;

i f ( $ i t e r a t i o n == 0)
{

# F i l e with aper ture r e s u l t s
p r i n t CMDFILE " $ p r e f i x $ a p f i l e \n " ;

}
e l s e
{

# Use the prev ious i t e r a t i o n ’ s ne i f i l e .
p r i n t CMDFILE " $pref ix$basename . $prev_i t e ra t i on . ne i \n " ;

}

# F i l e with PSF s t a r s
p r i n t CMDFILE " $ p r e f i x $ l s t f i l e \n " ;

# F i l e f o r the PSF
pr in t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# Prompt f o r a new f i l ename f o r the . ne i f i l e
p r i n t CMDFILE " $ p r e f i x $ n e i f i l e \n " ;

i f ( $ i t e r a t i o n < 2)
{

# Command
pr in t CMDFILE "group\n " ;

# F i l e with photometry
p r i n t CMDFILE " $ p r e f i x $ n e i f i l e \n " ;

# F i l e with the PSF
pr in t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# C r i t i c a l over lap
p r in t CMDFILE " $ c r i t i c a l_ov e r l a p \n " ;

# F i l e f o r s t e l l a r groups
p r i n t CMDFILE " $ p r e f i x $ g r p f i l e \n " ;

# Command:
p r i n t CMDFILE " nstar \n " ;

# F i l e with the PSF
pr in t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# F i l e with s t e l l a r groups
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pr in t CMDFILE " $ p r e f i x $ g r p f i l e \n " ;

# F i l e f o r r e s u l t s
p r i n t CMDFILE " $ p r e f i x $ n s t f i l e \n " ;

# Command
pr in t CMDFILE " substa r \n " ;

# F i l e with the PSF
pr in t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# F i l e with photometry
p r i n t CMDFILE " $ p r e f i x $ n s t f i l e \n " ;

# Do you have s t a r s to l eave in ? at t h i s point , no .
p r i n t CMDFILE "no\n " ;

# Name f o r subtracted image
p r i n t CMDFILE " $ p r e f i x $ s u b f i l e \n " ;

# One more time through substa r to c r e a t e the image with the PSF s t a r s
# in p lace but t h e i r ne ighbors subtracted away .
i f ( $ i t e r a t i o n == 1)
{

# Command
pr in t CMDFILE " substa r \n " ;

# F i l e with the PSF
pr in t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# F i l e with photometry
p r i n t CMDFILE " $ p r e f i x $ n s t f i l e \n " ;

# Do you have s t a r s to l eave in ? Now we do .
p r i n t CMDFILE "yes \n " ;

# F i l e with s t a r l i s t
p r i n t CMDFILE " $ p r e f i x $ l s t f i l e \n " ;

# Name f o r subtracted image
p r i n t CMDFILE " $pref ix$basename . subN . f i t s \n " ;

}

}

p r i n t CMDFILE " ex i t \n " ;

c l o s e CMDFILE;

push ( @CleanupFiles , $cmdf i l e ) ;

my $command ;

i f ( $datapath eq " . " )
{

$command = "$daophot < $cmdf i l e " ;
}
e l s e
{

$command = "env DDIR=$datapath $daophot < $cmdf i l e " ;
}

p r i n t "\n## Executing command : \ n\t$command\n\n" i f $verbose ;

# c a l l DAOPHOT
i f ( ! $noop )
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{
system ($command) == 0 or d i e " system $command f a i l e d : $ ?" ;

}

i f ( $ i t e r a t i o n == 0)
{

copy (" $datapath/ $ l s t f i l e " , " $datapath/$basename . $next_i t e ra t i on . l s t ")
or d i e " ! ! copy . l s t f i l e f a i l e d . \ n " ;

p r i n t "## Creat ing a new . l s t f i l e f o r the next i t e r a t i o n : \ n
\ t$datapath /$basename . $next_i t e ra t i on . l s t \n" i f $verbose ;

}
}

################################################################################
#
# RunAllstar
#
# Set up and execute an ALLSTAR run us ing the r e s u l t s o f DAOPHOT.
#
################################################################################

sub RunAllstar {

my $cmdf i l e = "alscommands . bat " ;
my $p r e f i x = "" ;

i f ( $datapath ne " . " )
{

$p r e f i x = "DDIR : " ;
}

my $ a p f i l e = "$basename . ap " ;
my $ p s f f i l e = "$basename . 2 . p s f " ;
my $ a l s f i l e = "$basename . a l s " ;
my $ s u b f i l e = "$basename . a l l s ub . f i t s " ;

# t e s t f o r pre−e x i s t i n g f i l enames . I f output f i l e s a l r eady ex i s t , i t
# w i l l change the way DAOPHOT prompts f o r input , and mess up the batch
# s c r i p t s .

my @Exi s t ingF i l e s ;
my $ f i l e s_ e x i s t = 0 ;

i f (−e " $datapath/ $ a l s f i l e ")
{

push ( @Exis t ingFi l e s , $ a l s f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f (−e " $datapath/ $ s u b f i l e ")
{

push ( @Exis t ingFi l e s , $ s u b f i l e ) ;
$ f i l e s_ e x i s t++;

}

i f ( $ f i l e s_ e x i s t > 0)
{

i f ( $ f o r c e )
{

p r i n t "## Dele t ing the f o l l ow i n g pre−e x i s t i n g f i l e s : \ n" i f ( $verbose ) ;

f o r each $ e x i s t i n g f i l e ( @Ex i s t ingF i l e s )
{
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pr in t "\ t$datapath / $ e x i s t i n g f i l e \n" i f ( $verbose ) ;
un l ink (" $datapath/ $ e x i s t i n g f i l e " ) ;

}
}
e l s e
{

d i e "The f o l l ow i n g f i l e s in the d i r e c t o r y \n$datapath\n must be
de l e t ed or moved out o f the way\ n@Exi s t ingF i l e s \n " ;

}
}

open (CMDFILE, ">$cmdf i l e ") or d i e "Unable to open batch f i l e $cmdf i l e " ;

# Toss in a c a r r i a g e re turn to accept the d e f au l t opt ions .
p r i n t CMDFILE "\n " ;

# Input image name :
p r i n t CMDFILE " $ p r e f i x $ i n f i l e \n " ;

# F i l e with the PSF :
p r i n t CMDFILE " $ p r e f i x $ p s f f i l e \n " ;

# Input f i l e
p r i n t CMDFILE " $ p r e f i x $ a p f i l e \n " ;

# F i l e f o r the r e s u l t s
p r i n t CMDFILE " $ p r e f i x $ a l s f i l e \n " ;

# Name f o r the subtracted image
p r i n t CMDFILE " $ p r e f i x $ s u b f i l e \n " ;

c l o s e CMDFILE;
push ( @CleanupFiles , $cmdf i l e ) ;

my $command ;

i f ( $datapath eq " . " )
{

$command = " $ a l l s t a r < $cmdf i l e " ;
}
e l s e
{

$command = "env DDIR=$datapath $ a l l s t a r < $cmdf i l e " ;
}

p r i n t "\n## Executing command : \ n\t$command\n\n" i f $verbose ;

# c a l l ALLSTAR
i f ( ! $noop )
{

system ($command) == 0 or d i e " system $command f a i l e d : $ ?" ;
}

# That ’ s a l l f o l k s !

}

132



BIBLIOGRAPHY

Aaronson, M., Schommer, R. A., & Olszewski, E. W. 1984, The Astrophysical Journal, 276,
221

Ackermann, M., Ajello, M., Allafort, A., et al. 2013, Science (New York, N.Y.), 339, 807

Armandroff, T. E., & Da Costa, G. S. 1991, The Astronomical Journal, 101, 1329

Arp, H. 1962, The Astrophysical Journal, 135, 311

Ashman, K. M., & Zeph, S. E. 1998, Globular Cluster Systems (Cambridge, U.K. ; New
York: Cambridge University Press)

Becker, A. C., Silvestri, N. M., Owen, R. E., Ivezić, v., & Lupton, R. H. 2007, Publications
of the Astronomical Society of the Pacific, 119, 1462

Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, The Astrophysical Journal, 642,
L137

Bergbusch, P. A., & Stetson, P. B. 2009, The Astronomical Journal, 76, 1455

Borissova, J., Catelan, M., Spassova, N., & Sweigart, A. V. 1996, The Astronomical Journal,
113, 31

Brewer, M.-m., & Carney, B. W. 2006, The Astronomical Journal, 131, 431

Burstein, D., & Heiles, C. 1982, The Astronomical Journal, 87, 1165

Cacciari, C., & Clementini, G. 2003, in Lecture Notes in Physics, ed. D. Alloin & W. Gieren,
Vol. 635 (Springer), 105–122

Caliskan, S., Christlieb, N., & Grebel, K. E. 2012, Astronomy & Astrophysics, 537, 13

Carney, B. W. 1996, Publications of the Astronomical Society of the Pacific, 108, 900

Carney, B. W., & Harris, W. E. 2001, Star Clusters, ed. L. Labhardt & B. Binggeli (Berlin:
Springer)

Carney, B. W., & Seitzer, P. 1993, The Astronomical Journal, 105, 2127

Carretta, E., Bragaglia, A., Gratton, R., D’Orazi, V., & Lucatello, S. 2009, Astronomy &
Astrophysics, 506, 14

Carretta, E., Cohen, J. G., Gratton, R. G., & Behr, B. B. 2001, The Astronomical Journal,
122, 1469

Carretta, E., & Gratton, R. G. 1997, Astronomy and Astrophysics Supplement Series, 121,
95

133



Catelan, M. 1999, The Astrophysical Journal, 531, 862

—. 2009, Astrophysics and Space Science, 320, 261

Catelan, M., Bellazzini, M., Landsman, W. B., et al. 2001, The Astronomical Journal, 122,
3171

Cecil, G. N., & Crain, J. A. 2004, in Proceedings of the SPIE, ed. J. Hough & G. H. Sanders,
Vol. 5493, 73–80

Chaboyer, B. 1999, in Post-Hipparcos Cosmic Candles, ed. A. Heck & F. Caputo (Boston:
Kluwer Academic Publishers), 111

Clayton, D. D. 1968, Principles of Stellar Evolution and Nucleosynthesis (Chicago: The
University of Chicago Press)

Cohen, J., Huang, W., & Kirby, E. 2011, The Astronomical Journal, 60

Cohen, J., & Kirby, E. 2012, The Astrophysical Journal, 760

Da Costa, G. S. 1995, Publications of the Astronomical Society of the Pacific, 107, 937

Davis, D. S., Richer, H. B., Anderson, J., et al. 2008, The Astronomical Journal, 135, 2155

Dotter, A. 2013, Memorie della Societa Astronomica Italiana, 84, 97

Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008a, The Astrophysical Journal Supple-
ment Series, 178, 89

Dotter, A., Sarajedini, A., & Anderson, J. 2011, The Astrophysical Journal, 738, 74

Dotter, A., Sarajedini, A., & Yang, S.-C. 2008b, The Astronomical Journal, 136, 1407

Dotter, A., Sarajedini, A., Anderson, J., et al. 2010a, The Astrophysical Journal, 708, 698

—. 2010b, The Astrophysical Journal, 708, 698

Eddington, A. S. 1926, The Internal Constitution of the Stars (Cambridge: Cambridge
University Press)

Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, The Astrophysical Journal, 136, 748

Ferraro, F. R., Carretta, E., Corsi, C. E., et al. 1997, Astronomy and Astrophysics, 320, 757

Forbes, D. a., & Bridges, T. 2010, Monthly Notices of the Royal Astronomical Society, 1214,
1203

Freeman, K., & Bland-Hawthorn, J. 2002, Annual Review of Astronomy and Astrophysics,
40, 487

134



Geisler, D., Wallerstein, G., Smith, V. V., & Casetti-Dinescu, D. I. 2007, Publications of the
Astronomical Society of the Pacific, 119, 939

Green, E., Demarque, P., & King, C. 1987, The revised Yale isochrones and luminosity
functions (New Haven: Yale University Observatory)

Green, E. M., & Norris, J. E. 1990, The Astrophysical Journal, 353, L17

Hardie, R. 1959, The Astrophysical Journal, 130, 663

Harris, W. E. 1996, The Astronomical Journal, 112, 1487

Harris, W. E., Fitzgerald, M. P., & Reed, B. C. 1981, Publications of the Astronomical
Society of the Pacific, 93, 507

Harris, W. E., & Hesser, J. E. 1976, NGC 5694: A Globular Cluster Escaping from the
Galaxy?

Harris, W. E., & Racine, R. 1979, Annual Review of Astronomy and Astrophysics, 17, 241

Hauschildt, P. H., Allard, F., & Baron, E. 1999a, The Astrophysical Journal, 512, 377

Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E., & Alexander, D. R. 1999b, The
Astrophysical Journal, 525, 871

Hayashi, C., & Hoshi, R. 1961, Publications of the Astronomical Society of Japan, 13, 442

Hilker, M. 2006, Astronomy and Astrophysics, 448, 171

Hiltner, W. A., ed. 1962, Astronomical Techniques, v. 2 edn. (University Press), 196–203

Holmberg, E., & Lauberts, A. 1975, Astronomy and Astrophysics Supplement Series, 22, 327

Irwin, J. B. 1952, Science (New York, N.Y.), 115, 223

Irwin, M. J., Demers, S., & Kunkel, W. E. 1995, The Astrophysical Journal, 453, L21

Joye, W., & Mandel, E. 2003, in . . . Data Analysis Software and Systems XII, ed. H. E.
Payne, R. I. Edrzejewski, & R. N. Hook, Vol. 295, 489–492

Keller, S. C., Mackey, D., & Da Costa, G. S. 2012, The Astrophysical Journal, 744, 57

Kim, Y.-c., Demarque, P., Yi, S. K., & Alexander, D. R. 2002, The Astrophysical Journal
Supplement Series, 143, 499

King, I. R. 1966, The Astronomical Journal, 71, 276

Koch, A., & Côté, P. 2010, Astronomy & Astrophysics, 517, 15

Koch, A., Côté, P., & McWilliam, A. 2009, Astronomy & Astrophysics, 506, 729

135



Lai, D. K., Smith, G. H., Bolte, M., et al. 2011, The Astronomical Journal, 141, 62

Landolt, A. U. 1992, The Astronomical Journal, 104, 340

Lee, J.-w., & Carney, B. W. 1999, The Astronomical Journal, 118, 1373

Lee, J.-W., Lopez-Morales, M., & Carney, B. W. 2006, The Astrophysical Journal, 646, 119

Lee, Y.-W. 1990, The Astrophysical Journal, 363, 159

Lee, Y.-W., Demarque, P., & Zinn, R. 1994, The Astrophysical Journal, 423, 248

Mackey, A. D., & Gilmore, G. F. 2004, Monthly Notices of the Royal Astronomical Society,
355, 504

Madore, B. F., & Arp, H. C. 1979, The Astrophysical Journal, 227, L103

Marín-Franch, A., Aparicio, A., Piotto, G., et al. 2009, The Astrophysical Journal, 694, 1498

Massey, P. 1997, NOAO Laboratory, Tuscon, AZ

Mucciarelli, a., Bellazzini, M., Catelan, M., et al. 2013, Monthly Notices of the Royal Astro-
nomical Society, 435, 3667

Mucciarelli, A., Bellazzini, M., Merle, T., et al. 2015, The Astrophysical Journal, 801, 68

Ochsenbein, F., Bauer, P., & Marcout, J. 2000, Astronomy and Astrophysics Supplement
Series, 143, 23

Ortolani, S. 1984, Astronomy and Astrophysics, 137, 269

Palma, C., Kunkel, W., & Majewski, S. 2000, Publications of the Astronomical Society of
the Pacific, 112, 1305

Palma, C., Majewski, S. R., & Johnston, K. V. 2002, The Astrophysical Journal, 564, 736

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. a., & Stobie, E. 2010, Astronomy &
Astrophysics, 524, A42

Piotto, G. 2009, in The Ages of Stars, Proceedings of the International Astronomical Union,
IAU Symposium, ed. E. Mamajek, D. R. Soderblom, & R. Wyse No. 258, 233–244

Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, The Astrophysical Journal, 661, L53

Racine, R., & Harris, W. E. 1989, The Astronomical Journal, 98, 1609

Reed, B. C., Hesser, J. E., & Shawl, S. J. 1988, Publications of the Astronomical Society of
the Pacific, 100, 545

Reid, N. 1996, Monthly Notices of the Royal Astronomical Society, 278, 367

136



Reid, N., & Majewski, S. R. 1993, The Astrophysical Journal, 409, 635

Rey, S.-C., Yoon, S.-J., Lee, Y.-W., Chaboyer, B., & Sarajedini, A. 2001, The Astronomical
Journal, 122, 3219

Rix, H. W., & Bovy, J. 2013, Astronomy and Astrophysics Review, 21

Robin, a. C., Reylé, C., Derrière, S., & Picaud, S. 2004, Astronomy & Astrophysics, 409,
523

Rutledge, G. A., Hesser, J. E., Stetson, P. B., et al. 1997, Publications of the Astronomical
Society of the Pacific, 109, 883

Sandage, A. 1982, The Astrophysical Journal, 252, 553

Sandage, A., & Wildey, R. 1967, The Astrophysical Journal, 150, 469

Sandquist, E. L., Bolte, M., Stetson, P. B., & Hesser, J. E. 1996, The Astrophysical Journal,
470, 910

Sarajedini, A. 1994, The Astronomical Journal, 107, 618

Sarajedini, A., & Geisler, D. 1996, The Astronomical Journal, 112, 2013

Sarajedini, A., Lee, Y.-W., & Lee, D.-H. 1995, The Astrophysical Journal, 450, 712

Sarajedini, A., Bedin, L. R., Chaboyer, B., et al. 2007, The Astronomical Journal, 133, 1658

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, The Astrophysical Journal, 500, 525

Searle, L., & Zinn, R. 1978, The Astrophysical Journal, 225, 357

Smith, G. S. 2005, American Journal of Physics, 73, 590

Sollima, a., Martinez-Delgado, D., Valls-Gabaud, D., & Penarrubia, J. 2011, The Astrophys-
ical Journal, 726:47, 8

Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, The Astrophysical Journal Supplement
Series, 148, 175

Stetson, P. B. 1987, Publications of the Astronomical Society of the Pacific, 99, 191

—. 1990, Publications of the Astronomical Society of the Pacific, 102, 932

—. 1994, Publications of the Astronomical Society of the Pacific, 106, 250

—. 2000, Users Manual for DAOPHOT II, Tech. rep., Victoria: Dominion Astrophysical
Observatory

Stetson, P. B., & Harris, W. E. 1988, The Astronomical Journal, 96, 909

137



Stetson, P. B., Bolte, M., Harris, W. E., et al. 1999, The Astronomical Journal, 117, 247

Suntzeff, N., Olszewski, E., & Stetson, P. B. 1985, The Astronomical Journal, 90, 1481

Tody, D. 1993, Astronomical Data Analysis Software and Systems II, 52, 173

Turner, A. 1997, Cooking with ALLFRAME version 3.0, Tech. rep., Victoria: Dominion
Astrophysical Observatory

van den Bergh, S. 1967, The Astronomical Journal, 72, 70

VandenBerg, D. a., Bergbusch, P. a., & Dowler, P. D. 2006, The Astrophysical Journal
Supplement Series, 162, 375

Vandenberg, D. A., Bolte, M., & Stetson, P. B. 1990, The Astronomical Journal, 100, 445

VandenBerg, D. a., Brogaard, K., Leaman, R., & Casagrande, L. 2013, The Astrophysical
Journal, 775, 134

VandenBerg, D. a., & Clem, J. L. 2003, The Astronomical Journal, 126, 778

Venn, K. a., Irwin, M., Shetrone, M. D., et al. 2004, The Astronomical Journal, 128, 1177

Walker, A. R. 1992, The Astrophysical Journal, 390, L81

Webbink, R. 1985, in Dynamics of star clusters; Proceedings of the Symposium, Princeton,
NJ, May 29-June 1, 1984, ed. J. Goodman & P. Hut, Vol. 113 (Dordrecht, D. Reidel),
541–577

Weinberger, R. 1995, Publications of the Astronomical Society of the Pacific, 107, 58

Zinn, R. 1980, The Astrophysical Journal, 241, 602

—. 1985, The Astrophysical Journal, 293, 424

Zinn, R. 1993, in The Globular Cluster-Galaxy Connection, ed. G. H. Smith & J. P. Brodie,
Vol. 48 (San Fransisco: Astronomical Society of the Pacific Conference Series), 38–47

Zinn, R., & West, M. J. 1984, The Astrophysical Journal Supplement Series, 55, 45

138


