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ABSTRACT 
 

NIHA ZUBAIR: Novel Approach to Examine the Interactive Role of Dietary, Lifestyle, 
and Genetic Factors on Cardiometabolic Risk 

(Under the direction of Linda Adair) 
 
 
With modernization, cardiometabolic (CM) disease risk has increased in low- and 

middle-income countries. We sought to understand CM risk in these settings, both in young 

adults, for whom prevention is an important goal, and in an older population, for whom risk 

is better established. Differences in the prevalence and patterns of co-occurrence of CM risk 

factors likely reflect variation in diet, lifestyle, and genetics. Innovative methods are needed 

to better understand the synergistic effects between these modifiable and non-modifiable 

factors on CM risk. 

 We evaluated the patterning of CM risk factors in a young adult population participating 

in the 2005 Cebu Longitudinal Health and Nutrition Survey (CLHNS) (n = 1,621). Using 

cluster analysis, we grouped individuals by CM biomarkers and then assessed how diet, 

adiposity, and environment predicted these CM clusters. Despite the population’s youth and 

leanness, cluster analysis found patterns of CM risk. While measures of adiposity strongly 

predicted cluster membership, diet and environment also independently predicted clustering. 

Next, we aimed to capture the complex relationship between genetics, adiposity, and CM 

risk. Here we created genetic risk scores for inflammatory and lipid traits; these scores 

combined the relatively small additive effects of individual SNPs in Filipino women in the 

2005 CLHNS (n= 1,649). We found that each genetic risk score explained a greater 
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proportion of variance in the specified CM trait than any given individual SNP. In addition, 

we observed that the triglyceride genetic risk score interacted with measures of adiposity to 

influence triglyceride levels.  

Lastly, we used cluster analysis to identify groups of women from the 2005 CLHNS (n= 

1,584), who shared similar patterns of genetic risk across multiple CM phenotypes. Here we 

found five distinct genetic risk clusters. These genetic risk clusters along with measures of 

adiposity and dietary factors, predicted CM trait levels and patterns in this population. 

In conclusion, our results suggest that examining the synergistic influence of modifiable 

and non-modifiable factors on CM traits and patterns can help provide insight into the 

etiology of CM diseases, and thus potentially inform targeted prevention efforts.  
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Chapter 1.  INTRODUCTION 
 

OVERVIEW  

Rapid nutritional and lifestyle changes in developing countries contribute to a 

growing burden of overweight, visceral adiposity, and associated cardiometabolic (CM) 

diseases. Eighty percent of global deaths from these diseases occur in low- and middle-

income countries. These concerns are especially pertinent for Asians: the World Health 

Organization (WHO) concluded that the risk of CM-based diseases is elevated for Asians 

with a body mass index (BMI) greater than 23 kg/m2, suggesting the use of a lower cut-point 

for overweight (OW). Research demonstrates that CM risk factors tend to co-occur and may 

be causally interrelated. Furthermore, differences in the prevalence and patterns of co-

occurrence of CM risk factors likely reflect variation in diet, lifestyle, and genetics. 

However, there is insufficient research on the interplay between these modifiable and non-

modifiable factors and how they relate to CM risk patterns. In addition, gene-gene and gene-

environment interactions are particularly important in relation to complex traits such as CM 

diseases and innovative methods are needed to account for potential synergistic effects. 

Studying the interactive influence of dietary, lifestyle, and genetic factors can help provide 

insight into the etiology of CM diseases, and thus aid in informing targeted prevention 

efforts.    
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SPECIFIC AIMS AND OBJECTIVES 

 We used cross-sectional data from the 2005 Cebu Longitudinal Health and Nutrition 

Survey (CLHNS) of Filipino middle-aged women and their young adult offspring. Since 

1983 the CLHNS has collected detailed longitudinal data from a cohort of women and their 

offspring. The Metro Cebu area is the second largest and most rapidly growing urban area in 

the Philippines. In tandem with increasing modernization, Cebu is experiencing a higher 

prevalence of OW and associated CM risks, including hypertension, elevated inflammation, 

and adverse lipid profiles. The demographic and health trends observed in Cebu represent 

current trends occurring in Asia. The CLHNS is a unique dataset in that it has detailed diet, 

lifestyle, and genetic data; this combined with the rapid nutrition and lifestyle transition make 

the CLHNS an ideal dataset for our study. 

Here we examined the patterns and determinants of CM risk factors among individuals in 

this study population. Our previous research identified five profiles of Filipino middle-aged 

women with similar CM characteristics: (1) Healthy, (2) Elevated blood pressure (BP), (3) 

Low high-density lipoprotein cholesterol (HDL-C), (4) Insulin resistant, and (5) Elevated C-

reactive protein (CRP).  We found modifiable risk factors for these five CM patterns, 

including measures of adiposity and dietary intake.  Next we extended this analysis to their 

young adult offspring, for whom prevention is still an important goal.  

In order to further understand the etiology of CM risk in these older women, for whom 

CM risk is more established, we used genetic risk scores, which combined the relatively 

small additive effects of individual single nucleotide polymorphisms (SNPs), to better 

capture the complex relationship between genetics, adiposity, and CM risk. 



3 

Lastly, we used a novel application of cluster analysis to identify groups of these women 

who share similar patterns of genetic risk scores across multiple CM phenotypes. We then 

examined how these genetic risk clusters related with CM traits and patterns in this 

population, while accounting for other factors such as age, diet, and anthropometry. 

The following describes the specific aims for this study: 

Aim 1: Determine biologically relevant patterns of co-occurrence of CM characteristics 

in young adults and model the determinants of these CM patterns. Previous research 

used cluster analysis to identify biologically relevant groups of middle-aged Filipino women 

with similar CM characteristics. Here we used the same method in the young adult offspring; 

variables used to create clusters included biomarkers representing hypertension, 

inflammation, insulin resistance, and lipid abnormalities. We modeled the determinants of 

these CM clusters in young adults, focusing on risk factors such as adiposity and dietary 

intake. 

Aim 2: Develop genetic risk scores to better capture the complex relationship between 

genetics, adiposity, and CM risk. In this aim we developed genetic risk scores for 

inflammatory and lipid traits in Filipino women; each score represents a summation of the 

genetic risk variants associated with a single CM trait. We assessed the ability of these scores 

to explain the variation in CM traits as opposed to individual genetic variants. We also 

examined whether measures of adiposity, one of the strongest predictors of CM risk, 

interacted with the genetic risk scores to synergistically influence trait levels.  

 
 

 

 



 

 

 

 
Chapter 2. LITERATURE REVIEW  

SCOPE OF THE PROBLEM 

Developing countries undergoing nutrition and lifestyle changes display an increasing 

burden of overweight (OW), visceral adiposity, and associated cardiometabolic (CM) 

diseases; this emphasizes the need for research in these settings.10-12  These concerns are 

especially pertinent for Asians.  The World Health Organization (WHO) concluded that the 

risk of CM based diseases is elevated for Asians with a body mass index (BMI) greater than 

23 kg/m2, suggesting the use of a lower cut-point for OW in these populations.  At the same 

BMI, Asians tend to have more percent body fat and central adiposity than other ethnicities.13 

In addition, studies show an increasing prevalence of the metabolic syndrome (MetS) in 

Asian populations.14-16 

The demographic and health trends observed in Cebu Longitudinal Health and 

Nutrition Survey (CLHNS) represent current trends throughout Asia.  The wide range of 

environmental, social, behavioral, and genetic data in the CLHNS can help improve 

understanding of the predictors of CM risk.  Further, this sample provides variation in CM 

phenotype (e.g. high waist circumference in non-obese). In the Philippines, a country with a 

population of nearly 90 million, recent surveys identified OW, cigarette smoking, 

hypertension, high cholesterol levels, type 2 diabetes, and heart disease as emerging public 

health issues.12, 17-19 Ischaemic heart disease was one of the top causes of all age mortality in 

2002, accounting for 10% of all deaths.20  According to the WHO, estimated disability 

adjusted life years from heart disease are higher in the Philippines than in the U.S. or 
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China.21  In addition, national survey data in the Philippines found a high prevalence of the 

following CM risk factors: low levels of high-density lipoprotein cholesterol (HDL-C) in 

60.2% of men and 80.9% of women, abdominal obesity in 17.7% of men and 35.1% of 

women, blood pressure (BP) >130/85 mmHg in 33.3%, hypertriglyceridemia in 20.6%, and 

fasting glucose >100 mg/dL in 7.1%.22  A body of literature demonstrates that such CM risk 

factors tend to co-occur and may be causally interrelated.22-26  Differences in the prevalence 

and patterns of co-occurrence of CM risk factors likely reflect variation in diet, lifestyle, and 

genetics. Studying the interactive influence of dietary, lifestyle, and genetic factors can help 

provide insight into the etiology of CM diseases, and thus aid in creating targeted prevention 

efforts, especially for at-risk Asian populations. 

WHY STUDY PATTERNS OF CARDIOMETABOLIC RISK FACTORS?    

Why not study individual risk factors? 

A substantial literature links obesity to insulin resistance, dyslipidemia, vascular 

dysregulation, and inflammation, and consequently, to elevated risk of CM diseases.27-29 

These factors tend to cluster and together significantly predict CM disease, leading to the 

definition of the MetS. The term MetS refers to a grouping of CM risk factors with a 

supposed common underlying pathophysiology.23  While the MetS definition is frequently 

used in research and clinical settings30, there lacks a clear and consistent definition of this 

term, leading to inconsistencies. 

Why not simply diagnose individuals with metabolic syndrome? 

 While the original concept of MetS has been useful, there exist many concerns with 

using this definition.  One concern with MetS includes the lack of research demonstrating 

that MetS stems from a common underlying pathophysiology31-33; treatment of MetS is no 
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different that treating the specific CM factors present.34, 35 Research suggests that CM risk 

depends not only on the diagnosis of MetS, but the actual clustering of CM risk factors 

present.36 30  Another concern with MetS includes the arbitrary inclusion/exclusion of 

specific CM risk factors, for example inflammatory factors are typically not included in MetS 

definitions.37  

The composite MetS definition ignores the heterogeneity in the patterns of CM risk 

factor clustering.  Simply using this definition could obscure documented differences in the 

prevalence and patterns of CM risk factors across ethnic, age, and sex groups.30, 38 

Understanding these differences can provide insight into the etiology and treatment options 

for CM diseases.  As an example of the heterogeneity in risk factor patterning across 

ethnicities, low HDL-C followed by elevated BP are the most prevalent components of the 

MetS among Filipinos, whereas in the United States abdominal obesity followed by low 

HDL-C are the most prevalent MetS components.22  MetS is becoming more common in 

young adults as rates of obesity increase;25, 39 therefore understanding the prevalence and 

patterning of CM risk factors in younger adults may help in the prevention of future CM 

disease. In addition, many studies show sex differences in the prevalence and patterns of CM 

risk factors,40, 41  thus we examined sex differences between CM risk factors in young adults 

in the CLHNS.  

The MetS definition typically includes 5 basic indicators: central obesity, elevated 

triglycerides (TG), low HDL-C, elevated BP, and elevated fasting plasma glucose 37.  By 

simply using this definition one fails to include indicators, such as inflammatory markers, 

important in predicting CM outcomes.  Specifically, research shows that elevated C-reactive 

protein (CRP) levels, often not included in the classic MetS definition, predict cardiovascular 
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disease (CVD) and type 2 diabetes independent of MetS status.42  In addition, evidence from 

western populations shows that such inflammatory factors co-occur with other MetS risk 

factors.43  In order to allow for flexibility in the CM biomarkers we examined the clustering 

of individual CM risk factors rather than apply a MetS definition.  

Gaps in cardiometabolic risk factor clustering  

Few studies look at how CM risk factors cluster.15, 44, 45 The substantial variability in 

exposures and outcomes among individuals in the CLHNS enhances the likelihood that we 

can identify significant and clinically important relationships of diet and lifestyle on CM risk 

factors. Our previous research identified five profiles of Filipino middle-aged women with 

similar CM characteristics: (1) Healthy, (2) Elevated BP, (3) Low HDL-C, (4) Insulin 

resistant, and (5) Elevated CRP.  We found modifiable risk factors for these five CM 

patterns, including measures of adiposity and saturated fat intake. Differences in the 

prevalence and patterns of co-occurrence of CM risk factors likely reflect diet, lifestyle, and 

genetics. Therefore we aimed to study the interactive influence of these factors, with the 

purpose to provide insight into the etiology of CM diseases. 

HOW DO DIETARY, ENVIRONMENTAL, AND ANTHROPOMETRIC F ACTORS 
INFLUENCE CARDIOMETABOLIC RISK? 

 
 As low- and middle-income countries undergo the nutrition transition, large shifts in 

diet and activity patterns coincide with urbanization and economic development.46  This 

rapid transition allows us to capture changes one cannot capture so readily in the U.S. These 

changes include: less physical activity and increased consumption of fat, caloric sweeteners, 

and meat.46  Such diet and physical activity changes have been shown to influence CM risk 

factors.  For example, Yao and colleagues found that a diet high in carbohydrates, low in 
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polyunsaturated fat, and low in fruits and vegetables was associated with an adverse lipid 

profile, independent of body fatness. They also found an independent beneficial effect of 

physical activity on HDL-C and fasting insulin.47  Evidence also suggests that diet and 

lifestyle can simultaneously affect CM risk.  For example, a study conducted in a Gambian 

population showed that a high fat diet did not result in an atherogenic lipid profile in a lean 

population with a high level of occupational activity.48  

Developing countries like the Philippines are experiencing large shifts in diet and 

activity patterns.46 The traditional Filipino diet contains high amounts of refined 

carbohydrates and sodium, accompanied by low amounts of protein.  Filipinos typically 

consume refined white rice at every meal, while consuming little animal foods and fat 

compared to western populations.  Coconut oil, the Filipinos’ main source of fat, contains 

notably high levels of lauric acid and recent studies have shown that lauric acid has a more 

favorable effect on the total cholesterol to HDL cholesterol ratio than any other fatty acid, 

either saturated or unsaturated, primarily by increasing HDL-C levels.49  In regards to 

physical activity, Filipinos traditionally engaged in high amounts of due to the large physical 

demands of work.    

Other environmental factors include infection and pathogenicity. 50-52 According to a 

2004 WHO report, infectious diseases account for more than 30% of all mortality in 

Southeast Asia.53 Exposure to a pathogenic environment serves as a primary source of 

inflammatory stimuli, and results in elevated levels of CRP. Earlier investigations in CLHNS 

samples showed evidence of the role of exposure to a pathogenic environment in predicting 

plasma CRP levels.52  
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Excess adiposity is one of the strongest predictors of CM disease and risk.54-57 The 

lifestyle changes described above contribute to a growing burden of OW, visceral adiposity, 

and thus associated CM diseases.58-61 These concerns are especially pertinent for Asians; 

compared with Caucasians, Asians have increased visceral adiposity and greater insulin 

resistance at similar levels of BMI.62-65  

Prior work in CLHNS found substantial age and secular trends in weight among adult 

women, notably a nearly 7-fold increase in OW over a 21-year period.66 This increase is 

associated with adverse CM profiles, including hypertension, elevated markers of 

inflammation, and adverse lipid profiles.52, 67, 68 Waist circumference (WC), a proxy for 

visceral adipose tissue, is among the best-established predictors of CM risk and past work in 

the CLHNS and other Asian populations support this notion.45, 52, 68-70 Research has also 

demonstrated that increased WC predicts CM abnormalities in both normal weight and 

OW/obese individuals, highlighting the potential for visceral fat to influence development of 

CM risk factors independent of overall BMI status.44  

Although research demonstrates that these dietary, environmental, and 

anthropometric factors associate with CM risk factors, solely looking at these characteristics, 

without accounting for genetics, will never provide a comprehensive understanding of the 

etiology of CM diseases. Therefore we also assessed how genes influence CM risk in this 

population.      

HOW DO GENES AFFECT CARDIOMETABOLIC RISK?  

Previous research has found SNPs associated with specific CM risk factors such as: 

TG, HDL-C, low-density lipoprotein (LDL-C), systolic BP, diastolic BP, glucose, 

homeostatic model assessment insulin resistance HOMA-IR, and CRP.1, 2, 5, 7-9, 71, 72 Several 
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studies have tried to identify underlying genetic risk factors for MetS, but no study has 

successfully found genetic variants that are shared by all the components of MetS, 

challenging the view that MetS has a common genetic background.73-75  MetS is a complex 

trait with numerous features.  Due to its heterogeneity in clustering of CM risk factors, MetS 

probably results from an interaction of dietary, lifestyle, and genetic factors.30 This 

complexity makes it difficult for the identification of replicable genetic associations that 

might eventually form the basis of clinical predictive tests for MetS.76 Therefore we found it 

essential to study the interactions between gene-gene and gene-environment and their 

associations with CM risk factor patterns.  

HOW DO GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS RELATE 
TO CARDIOMETABOLIC RISK?  

 
Previous studies have shown that gene-gene and gene-environment interactions 

associate with specific CM risk factors; in this sense “environment” represents any non-

genetic measure. In a study looking at pairwise gene-gene interaction, Tam et al. confirmed 

the associations of two common genetic polymorphisms of GCK and GCKR and their 

interaction on fasting plasma glucose in Chinese adults and adolescents.77  As an example of 

gene-diet interaction, a recent Japanese study found a significant interaction between the 

CDKAL1 polymorphism and dietary energy intake that influenced glucose regulation, 

possibly through impaired insulin secretion.78  Recent work in the CLHNS found that central 

obesity might accentuate the effect of the TG-increasing allele of an APOA5 variant.7 

Additionally, earlier research in this study population found the first evidence that exposure 

to a pathogenic environment may modify the genetic influence at the HNF1A, LEPR and 

6q16.1 loci on plasma CRP levels.1 
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These studies, while verifying the notion that interactions between genes, diet, 

anthropometric, and other environmental factors influence CM traits, only examined pair-

wise interactions.  Complex diseases are probably caused by interactions between multiple 

genes and environmental factors,76 which may explain why many of the pair-wise 

interactions found are rarely replicated. Therefore in this study we used innovative methods 

to examine these effects. 

WHAT METHODS CAN ACCOUNT FOR POTENTIAL SYNERGISTIC EFFECTS 
OF GENE-GENE AND GENE-ENVIRONMENT? 

 
Individually, common genetic variants only minimally explain common complex diseases 

such as CVD, type 2 diabetes, and other related CM conditions.79 Jointly considering the 

relatively small effects of these individual single nucleotide polymorphisms (SNPs) may 

better capture underlying genetic risk associated with these diseases. Recently, genetic risk 

scores have been implemented to interrogate the impact of multiple SNPs of CM disease.80-84 

In addition, perhaps combinations of genetic variants (vs. a single SNP) interact with 

environmental factors and better predict CM risk.  

Some studies create a genetic risk score by summing up the number of risk alleles 

pertaining to a single CM phenotype, while other studies similarly construct a genetic risk 

score, but choose risk alleles associated with a CM disease of interest. The latter method 

combines risk variants pertaining to multiple phenotypes with the intention of better 

capturing the intricate relationship between genetics and common complex disease. Still, the 

majority of these studies find slight to no improvement in classifying at-risk individuals. 82, 83 

This approach masks the actual patterning of genetic risk across phenotypes. Perhaps, 

understanding this heterogeneity in genetic risk clustering may aid in predicting and 
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preventing CM disease,79, 85, 86 especially since these diseases themselves display a specific 

patterning of risk factors including insulin resistance, dyslipidemia, hypertension, and 

inflammation.87, 88   

WHY CEBU? 

The CLHNS covers a wide range of health-related topics specific for each stage of the 

life cycle. The CLHNS has followed, since 1983, a cohort of women who reside in 

Metropolitan Cebu in the central Philippines. Metro Cebu, with a population nearing 2 

million, shares many similarities with other large cities in developing and transitional 

countries of Asia, enhancing the likelihood that results from this location are generalizable to 

other settings.  It is one of the fastest growing and rapidly developing regions of the country 

and has particular relevance for understanding CM trends.89   

SUMMARY 

 This work addresses an important international public health issue: understanding the 

multifactorial etiology of CM diseases. Recent nutritional and lifestyle changes in developing 

countries have propagated the burden CM diseases, emphasizing the need for research in 

these settings.10-12 This rapid transition combined with detailed diet, lifestyle, and genetic 

data, make the CLHNS an ideal dataset for this research. Documented differences in the 

prevalence and patterns of co-occurrence of CM risk factors likely reflect diet, lifestyle, and 

genetics. Therefore we aimed to study the interactive influence of these factors, with the 

purpose to provide insight into the etiology of CM diseases, and thus help inform targeted 

prevention efforts.  

 



 

 
 
 
 
 

Chapter 3.  CLUSTERING AND DETERMINANTS OF CARDIOME TABOLIC RISK 
FACTORS AMONG FILIPINO YOUNG ADULTS 

 

OVERVIEW  

 
With modernization, cardiometabolic (CM) disease risk has increased in low and 

middle-income countries. To better understand CM disease etiology, we evaluated the 

patterning of CM risk factors in a susceptible young adult population. 

Participants included 1,621 individuals from the 2005 Cebu Longitudinal Health and 

Nutrition Survey. Using cluster analysis, we grouped individuals by the following 

biomarkers: triglycerides (TG), high-density and low-density lipoprotein cholesterol (HDL-

C, LDL-C), C-reactive protein (CRP), blood pressure (BP), homeostasis model assessment of 

insulin resistance, and fasting glucose. Using multinomial logistic regression models we 

assessed how diet, adiposity, and environment predicted CM clusters. 

We identified 5 distinct sex-specific clusters: (1) Healthy/high HDL-C (with the 

addition of high LDL-C in women), (2) Healthy/low BP, (3) High BP, (4) Insulin resistant 

(IR)/high TG, (5) High CRP. Though we did not identify a specific cluster primarily defined 

by low HDL-C, over 65% of men and 70% of women had this trait, making low HDL-C the 

most pervasive CM risk factor. In men and women, decreased intake of saturated fat 

predicted membership in the High CRP cluster, compared to the Healthy clusters. Men with 

poorer environmental hygiene were more likely to be in the High CRP cluster, compared to 

the Healthy clusters (odds ratio 0.74 [95% CI 0.60-0.90] and 0.83 [0.70-0.99]). Adiposity 

measures were the strongest predictors of membership in the IR/high TG.  
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Despite the population’s youth and leanness, cluster analysis found patterns of CM 

risk. While adiposity measures predicted clustering, diet and environment also independently 

predicted clustering, emphasizing the importance of screening lean and overweight 

individuals for CM risk. Finding predictors of risk in early adulthood could help inform 

prevention efforts for future CM disease. 

BACKGROUND 

  Low and middle-income countries undergoing rapid nutrition and lifestyle changes 

display an increasing burden of obesity, visceral adiposity, and associated diseases.58, 90, 91 

These concerns are heightened for Asians and young adults.  The risk of CM diseases has 

been shown to be elevated among Asians at lower levels of BMI, prompting the World 

Health Organization to recommend the use of a lower BMI cut-point to define overweight in 

this population.92  In addition, overweight young adults are likely to remain overweight 

throughout life and have increased risk of CM diseases, such as cardiovascular disease and 

type 2 diabetes.90, 93-95  

A substantial literature links obesity to insulin resistance, dyslipidemia, hypertension, 

and inflammation, and consequently to elevated risk of CM diseases.4, 27, 96, 97  These factors 

tend to co-occur, leading to the definition of the metabolic syndrome (MetS).23  However, 

using the MetS definition presents several problems. First, there is a lack of research 

demonstrating that MetS stems from a common underlying pathophysiology98-100: treatment 

of MetS is no different than treating the specific CM factors present.34, 35 In addition, 

objectively evaluating the clustering of CM risk factors, rather than the diagnosis of MetS, is 

more useful for predicting and preventing disease.87, 88 Lastly, the inclusion/exclusion of 

specific CM risk factors in the MetS definition is unfounded. For example, inflammation, as 
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indicated commonly by elevated C-reactive protein (CRP), is often not included in the classic 

MetS definition, despite that it predicts CVD and type II diabetes independent of MetS 

status.4  

 Motivated by the downfalls of applying a uniform MetS definition, we used cluster 

analysis to identify groups of young adults, from the 2005 Cebu Longitudinal Health and 

Nutrition Survey (CLHNS), who share similar patterns of CM risk factors. Furthermore, 

differences in the prevalence and patterns of co-occurrence of these risk factors likely reflect 

variation in modifiable and non-modifiable characteristics. However, there is a lack of 

research relating such characteristics to the clustering of CM risk factors, particularly among 

young adults. Thus we sought to determine how diet, adiposity, environment, and sex related 

to the clustering of CM risk factors in Filipino young adults. 

This study population is ideal for our research question because (1) the majority of 

participants did not have any clinical disease, (2) Cebu is undergoing a rapid nutrition and 

lifestyle transition, and (3) the CLHNS includes detailed diet, lifestyle, anthropometric, and 

biomarker data.  By using an at-risk young adult population, we can gain a better 

understanding of how modifiable and non-modifiable characteristics relate to CM risk factors 

in young adulthood, which can help inform prevention strategies for future CM disease.  

METHODS 

Survey design 

The present analysis includes young adults (index children) assessed in the 2005 

CLHNS (mean age 21 years).89  Briefly, the CLHNS is a community-based cohort of women 

and their index children followed since 1983. The original participants included all pregnant 

women from 33 randomly selected communities of Metro Cebu, who gave birth between 
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May 1, 1983, and April 30, 1984. Surveys took place immediately after birth, bimonthly for 2 

years, in 1991, 1994-5, 1998-99, 2002, and 2005. In 2005, fasting blood was drawn for CVD 

biomarkers and genetics. Here we use data from the index children still participating in the 

2005 CLHNS.  

Blood samples were collected on 1,790 individuals.  Excluding women who were 

pregnant at the time of blood draw, we clustered 1,621 (889 men and 732 women) 

individuals with complete fasting biomarker data and with CRP levels < 10 mg/L (a level 

representing low-level basal inflammation rather than current/recent illness).88 Of those 

clustered, 1,569 individuals with complete diet, socioeconomic, and anthropometric data 

were included in the multivariate analysis (871 men and 698 women). All data were collected 

with informed consent, using protocols approved by the institutional review board of the 

University of North Carolina, Chapel Hill. 

Cardiometabolic biomarkers 

Fasting plasma CM biomarkers included triglycerides (TG), high-density lipoprotein 

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucose, insulin, and 

CRP. Blood samples were collected in participants’ homes in the morning after an overnight 

fast. Venous blood was collected in EDTA anti-coagulant vacutainer tubes. After mixing to 

inhibit clotting, glucose was measured immediately using the glucose dehydrogenase method 

(One Touch Ultra Blood Glucose Monitoring System, Lifescan Johnson and Johnson). Blood 

samples were stored on ice for no more than 2 hours and were then centrifuged to separate 

plasma.   

After separation, samples were frozen and remained frozen at -80 °C until ready for 

analysis.  Total lipid concentrations were measured at the Emory Lipid Research Laboratory 
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using enzymatic methods with reagents from Beckman Diagnostics on the Beckman 

Diagnostics CX5 chemistry analyzer (Fullerton, CA). HDL-C was determined using the 

homogeneous assay for direct determination (Genzyme, Exton, PA). LDL-C was determined 

using the Friedewald formula, except if triglycerides exceeded 400 mg/dl then LDL-C was 

directly determined using a homogenous assay (Genzyme, Exton, PA). The Emory Lipid 

Research Laboratory is a participant in the CDC/NHLBI Lipid Standardization Program to 

ensure accuracy and precision of the determinations. Plasma insulin was measured using 

automated Bayer® ADVIA Centaur chemiluminescent methods.101  CRP concentrations were 

determined using a high sensitivity immunoturbidimetric method (Synchron LX20, lower 

detection limit: 0.1 mg/L). 

Other cardiometabolic biomarkers included homeostatic model assessment insulin 

resistance (HOMA-IR), and systolic and diastolic blood pressure (BP).  HOMA-IR was 

calculated as 22.5/ (insulin × glucose). Systolic BP and diastolic BP were measured in 

triplicate after a 10 minute seated rest using a mercury sphygmomanometer. The mean of the 

three measurements was used. 

We used cutpoints for these biomarkers based on recommendations from the 

International Diabetes Federation (IDF), the American Heart Association, and other 

previously recognized and accepted cutpoints (Table 1).88, 96, 102, 103  

Anthropometry 

Body weight, height, and waist circumference (WC) were measured using standard 

techniques104. BMI was calculated as the ratio of weight (kg) to height (m2). We used 

cutpoints for Asians to define overweight (OW) as a BMI ≥ 23 kg/m2.105 Cutpoints for 

Asians define central adiposity as WC ≥ 80 cm for women and WC ≥ 90 cm for men96; since 
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less than 8% of individuals have WC above these cutpoints, we used median values (men = 

71 cm and women = 66.5 cm) to define at-risk groups. 

Dietary data  

Dietary data were derived from two 24-hour dietary recalls and the mean intake was 

used in the analyses. A nutritionist reviewed all dietary recalls immediately after collection. 

When implausible values were found, interviewers revisited respondents for verification. 

Energy and saturated fat intakes were calculated using the Philippines Food Composition 

Tables.19, 106 

Sociodemographic and lifestyle characteristics 

We included the following sociodemographic and lifestyle characteristics in our 

analysis: household assets, urbanicity, environmental hygiene, graduation status, smoking 

status, alcohol consumption, and level of physical activity. 

The assets score, ranging from 0 to 10, measures household economic status. It 

reflects the type of lighting used, ownership of house, type of housing material, and 

ownership of selected assets: television, air conditioner, tape recorder, refrigerator, and motor 

vehicle. We dichotomized this variable at the median, ≤ 5 assets or > 5 assets. The urbanicity 

index is comprised of 7 components derived from CLHNS barangay-level survey data.107 A 

higher score designates a more urbanized barangay. We dichotomized this variable at the 

median, ≤ 43 or > 43. The hygiene score measures environmental cleanliness using data on 

the interviewer’s rating of cooking area, immediate area around the house, toilet type, and 

water source. The score ranges from 0 to 9 with larger values indicating greater cleanliness.52 

High school (HS) graduation status was classified as yes or no. Smoking and alcohol 
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consumption were assessed as yes or no. The majority of women did not smoke (> 93%) 

therefore we did not include this covariate in their analysis. 

Physical activity was assessed by asking respondents to report time spent in all 

activities during a typical day. Each activity was assigned a metabolic equivalent (MET) 

value using the updated Compendium of Physical Activities. We identified minutes/week of 

moderate to vigorous physical activity (MVPA=METS >3) performed during occupation, 

leisure time, and household activities to approximate an overall minutes/week of MVPA. The 

majority of women did not participate in any MVPA (82%), thus MVPA was only included 

in the analysis of the men. We categorized physical activity: no MVPA, low to medium 

amounts of MVPA (<sex-specific median of 720 minutes/week), and high amounts of 

MVPA (≥720 minutes/week). 

Cluster analysis 

We performed a K-means cluster analysis to identify groups of young adults with 

similar CM risk factor patterns using SAS PROC FASTCLUS (SAS version 9.2, SAS 

Institute, Cary, NC). This procedure implements the K-means clustering algorithm (least 

squares method).  K-means clustering uses the Euclidean distance, computed from input 

variables, to assign cluster membership by minimizing the distance among subjects in a 

cluster while maximizing the distance between clusters.  The procedure first selects cluster 

seeds, a set of points calculated as a first guess of the cluster means.  Next it calculates the 

Euclidean distance from each subject to each cluster seed; each subject is assigned to the 

nearest seed to form temporary clusters.  The means of each of the temporary clusters are 

calculated and replace the seed values.  Distance calculation and member assignment 

progress in an iterative fashion until no further changes occur.108, 109 
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 Final cluster solutions are sensitive to initial seed values. To remedy this problem and 

to use a more objective approach to picking a cluster solution we created an algorithm 

modified from a previous clustering algorithm.69, 110 This algorithm performed 1,000 

iterations of each cluster procedure using randomly generated initial cluster seeds.  For each 

of the 1,000 cluster solutions it calculated the ratio of between-cluster variance to within-

cluster variance or R2/ (1- R2), where R2, pooled across all variables, represented the ability to 

predict each input variable from the cluster.109 We wanted to maximize the ratio of between-

cluster variance to within-cluster variance and therefore wanted to find the largest R2.  The 

algorithm identified the iteration/cluster solution with the largest R2.110   

Cluster analysis was conducted separately in the women and men to account for 

differences in patterns of CM risk by sex. The variables entered into the cluster analysis were 

chosen to represent hypertension, inflammation, insulin resistance, and lipid abnormalities, 

and included sample and sex-specific standardized values of TG, HDL-C, LDL-C, systolic 

BP, diastolic BP, glucose, HOMA-IR, and CRP.  

Statistical analysis 

We used sex-specific multinomial logistic regression models to examine predictors of 

cluster membership in young adults. For men and women, the full models included the 

following covariates: OW status (BMI ≥ 23 kg/m2), high WC (WC ≥ 80cm), % energy intake 

from saturated fat, energy intake, alcohol consumption, household assets, urbanicity, 

environmental hygiene, and education status; smoking status and level of physical activity 

were additionally included for men. We used the multivariate nutrient density method to 

control for confounding and to remove extraneous variation due to total energy intake.111 
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Multicollinearity between % of energy intake from saturated fat and total energy intake was 

not an issue (correlation coefficient<0.4). 

We conducted manual backwards elimination (likelihood ratio test) to test whether 

each covariate improved model fit. If it did not improve model fit and also did not predict 

cluster membership the covariate was removed. Throughout our analysis we used P <0.05 (2-

sided) as the criterion for significance. Regression analysis was performed with Stata 12.0 

(Stata Corporation, College Station, TX, 2006).  

RESULTS 

Prevalence of cardiometabolic risk 

Baseline characteristics are presented in Tables 2 and 3 for men and women 

respectively. Men had a high prevalence of low HDL-C (60%), while a low prevalence of 

elevated LDL-C (6%), elevated fasting glucose (3%), elevated HOMA-IR (3%), and elevated 

CRP (7%). Women had a high prevalence of low HDL-C (68%), while a low prevalence of 

elevated TG (9%), hypertension (2%), elevated fasting glucose (3%), elevated CRP (8%), 

and elevated HOMA-IR (4.5%). In comparison to women, men had a higher prevalence of 

elevated TG and hypertension. While in comparison to men, women had a higher prevalence 

of low HDL-C, elevated LDL-C, and elevated HOMA-IR.   

Cluster analysis 

We conducted a series of cluster analyses with 3 to 6 clusters specified, and chose the 

5-cluster solution for both men and women because it yielded distinct CM risk factor patterns 

and each cluster contained approximately ≥ 5% of the sample.112 The 5-cluster solutions had 

R2 = 0.35 and R2 = 0.36 in men and women respectively, indicating slightly more than 1/3rd 

of the variance in CM biomarkers was explained by the clusters.  For men we identified the 
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five clusters as: (1) Healthy/high HDL-C, (2) Healthy/low BP, (3) High BP, (4) Insulin 

resistant (IR)/high TG, and (5) High CRP.  For the women we identified the same five 

clusters except the first cluster also included LDL-C: (1) Healthy/high HDL-C/high LDL-C. 

We named the clusters according to what risk factor(s) had the highest/lowest mean relative 

to other clusters (Figure 1); the term “healthy” represents low Z-scores for the majority of 

CM biomarkers (except HDL-C). We ordered these clusters such that clusters 1-5 in men and 

women represented similar CM patterns.  

Cardiometabolic patterns in young adult men 

Mean z-scores of the CM biomarkers varied markedly by cluster (Figure 1), as did the 

prevalence of risk factors defined by cutpoints to represent “high risk” (Tables 2 and 3). Men 

in the Healthy/high HDL-C cluster (n=144, 16%) had the zero prevalence of low HDL-C. 

Men in the Healthy/low BP cluster (n=315, 35%) had the lowest prevalence of hypertension 

(0%) and a high prevalence of low HDL-C (73%). Men in the High BP cluster (n=290, 33%) 

had a relatively high prevalence of hypertension (38%) and low HDL-C (69%). Men in the 

IR/high TG cluster (n=65, 7%) had highest prevalence of elevated TG (88%), elevated 

fasting glucose (15%), and elevated HOMA-IR (29%); in addition, these men had a high 

prevalence of low HDL-C (68%). Lastly, men in the High CRP cluster (n=75, 8%) had the 

highest prevalence of elevated CRP (80%), and a high prevalence of low HDL-C (75%).  

Cardiometabolic patterns in young adult women 

Mean z-scores of the CM biomarkers varied markedly by cluster (Figure 1), as did the 

prevalence of risk factors defined by cutpoints to represent “high risk” (Tables 2 and 3). 

Women in the Healthy/high HDL-C/high LDL-C cluster (n=158, 22%) had the lowest 

prevalence of low HDL-C (27%) and a relatively high prevalence of LDL-C (32%); none of 
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these women had hypertension. Women in the Healthy/low BP cluster (n=252, 34%) had no 

hypertension and a high prevalence of low HDL-C (86%). Women in the High BP cluster 

(n=233, 32%) had a relatively high prevalence of hypertension (6%), and low HDL-C (73%). 

Women in the IR/high TG cluster (n=48, 7%) had highest prevalence of elevated TG (50%), 

elevated fasting glucose (27%), and elevated HOMA-IR (63%); in addition, these women 

had a high prevalence of low HDL-C (79%). Lastly, women in the High CRP cluster (n=41, 

6%) had the highest prevalence of elevated CRP (95%) and a high prevalence of low HDL-C 

(73%); none of these women had hypertension.  

Multivariable analysis in young adult men  

The final multivariate model in the men included the following covariates: high WC, 

OW status, % of energy intake from saturated fat, energy intake, household assets, smoking 

status, alcohol consumption, and environmental hygiene (Table 4).  

Compared to the Healthy/high HDL-C cluster: being normal weight and not 

consuming alcohol increased the likelihood of being in the Healthy/low BP cluster; higher 

WC increased the likelihood of being in the High BP cluster; higher WC, being OW, having 

more assets, and smoking increased the likelihood of being in the IR/high TG cluster; 

decreased % of energy intake from saturated fat and lower environmental hygiene increased 

the likelihood of being in the High CRP cluster.   

Compared to the Healthy/low BP cluster: higher WC, being OW, and not smoking 

increased the likelihood of being in the High BP cluster; higher WC, being OW, and having 

more assets increased the likelihood of being in the IR/high TG cluster; being OW, decreased 

% of energy intake from saturated fat, having more assets, not smoking, alcohol 
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consumption, and decreased environmental hygiene increased the likelihood of being in the 

High CRP cluster. 

Compared to the High BP cluster: being OW, having more assets, and smoking 

increased the likelihood of being in the IR/high TG cluster; lower WC and decreased 

environmental hygiene increased the likelihood of being in the High CRP cluster. 

Compared to the IR/high TG cluster, lower WC and not smoking increased the 

likelihood of being in the High CRP cluster.  

Multivariable analysis in young adult women  

The final multivariate model in the women included the following covariates: high 

WC, OW status, % of energy intake from saturated fat, energy intake, urbanicity, and HS 

graduation status (Table 4).  

Compared to the Healthy/high HDL-C/high LDL-C cluster: no covariates increased 

the likelihood of being in the Healthy/low BP cluster; decreased % of energy intake from 

saturated fat, increased energy intake, and not graduating from HS increased the likelihood of 

being in the High BP cluster; being OW increased the likelihood of being in the IR/high TG 

cluster; decreased % of energy intake from saturated fat, increased energy intake, and lower 

urbanicity increased the likelihood of being in the High CRP cluster.   

Compared to the Healthy/low BP cluster: higher WC and being OW increased the 

likelihood of being in the High BP cluster; higher WC and being OW increased the 

likelihood of being in the IR/high TG cluster; being OW, decreased % of energy intake from 

saturated fat, and lower urbanicity increased the likelihood of being in the High CRP cluster. 
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Compared to the High BP cluster: being OW increased the likelihood of being in the 

IR/high TG cluster; decreased urbanicity increased the likelihood of being in the High CRP 

cluster. No covariates distinguished the IR/high TG cluster from the High CRP cluster. 

DISCUSSION 

  Cluster analysis is a useful tool for identifying groups of individuals who share 

similar CM risk factor patterns. In contrast with the MetS definition, cluster analysis allows 

for flexibility. For example, we included a measure of inflammation in the cluster analysis, a 

risk factor not commonly included in MetS definitions, which allowed us to identify a 

distinct group characterized primarily by elevated CRP levels. In addition, we did not include 

WC as a criterion for the clustering algorithm, unlike the IDF, which requires elevated WC in 

the definition.96 This enabled us to distinguish for which clusters elevated WC (a modifiable 

risk factor) predicted cluster membership.  

By using cluster analysis, we were able to capture the heterogeneity in patterns of CM 

risk factor clustering. Research has demonstrated that mortality risk is dependent on the 

actual combinations of CM risk factors, highlighting the importance of understanding these 

sex differences in the clustering of CM risk factors.38 While our analysis found relatively 

similar CM risk clusters among men and women, the predictors of these clusters varied by 

sex. Perhaps as these young adults age more distinct CM patterns between men and women 

will emerge.  

A high prevalence of low HDL-C, a risk factor for heart disease, has been reported in the 

Philippines and other Asian populations.67, 113, 114 This was reflected in the cluster analysis 

results: over 65% of men and 70% of women, not in the Healthy/high HDL-C cluster, had 

low HDL-C levels.  
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 Previous work among the mothers in Cebu suggested that saturated fat intake, 

perhaps from coconut oil, could be protective against low HDL-C levels.69, 115 However in 

young adults, we saw saturated fat intake had varying relationships with different CM risk 

factors. In both men and women, decreased % energy intake from saturated fat predicted 

membership in the High CRP group when compared to the two Healthy clusters. In addition, 

a decrease in % saturated fat intake predicted membership in the High BP group in women, 

compared to the Healthy/high HDL-C/high LDL-C group.  

The association of saturated fat intake with healthy CM profiles could reflect the 

types of saturated fats consumed in this population. Coconut oil, the most common and 

traditional cooking oil in Cebu, is rich in lauric acid.116 Lauric acid improves the total 

cholesterol to HDL-C ratio, more than any other saturated or unsaturated fatty acid, primarily 

by increasing HDL-C levels.49  In addition, a replacement of carbohydrates with lauric acid 

produces a decrease in this ratio.49 This proves especially relevant in our study population 

since over half of energy intake comes from carbohydrates, the majority of which are refined 

rice products. Other studies have found diets rich in coconut oil or in saturated fat do not alter 

markers of inflammation, fasting glucose, fasting insulin, HOMA-IR, or incident diabetes.117, 

118  

Men with poorer environmental hygiene (increased pathogenicity) were more likely 

to be in the High CRP cluster compared to the two Healthy clusters. These results support 

previous research conducted in the CLHNS and reinforce the involvement of pathogen 

exposure in activating pro-inflammatory pathways.50-52 But why do we fail to observe this 

hygiene effect in women? Adiposity relates more strongly with inflammation in women than 
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in men, thus it is possible the effects of adiposity overwhelmed the effects of the hygiene 

score in women.100, 119  

As expected, WC and OW status were the strongest predictors of membership in the 

IR/high TG cluster, underscoring the adverse health effects of excess visceral adipose tissue, 

for which WC serves as a proxy.120 WC is among the best-established predictors of CM risk 

and past work in the CLHNS and other populations support this notion.45, 50, 52, 68 Research 

has also demonstrated that increased WC predicts CM abnormalities in both normal weight 

and OW individuals, highlighting the potential for visceral fat to influence the development 

of CM risk factors, independent of BMI.121 

This population has a low prevalence of overweight (18%). However, among normal 

weight individuals, CM risk factors were already present: 63% of the sample with BMI<23 

kg/m2 had low HDL-C. Despite leanness, cluster analysis found patterns of CM risk. While 

measures of adiposity predicted some of these patterns, modifiable factors such as dietary 

intake and pathogen exposure also independently predicted cluster membership. This 

emphasizes the importance monitor and screen lean individuals for CM risk and future CM 

diseases, especially in Asian populations where the risk of CM diseases is elevated at a lower 

BMI (likely due to increased visceral fat at lower BMIs).92 

Several limitations warrant mention. A limitation of cluster analysis is that not all 

individuals within a certain cluster necessarily share all characteristics. For example, in our 

“Healthy” clusters we found the average Z-scores for CM risk biomarkers were relatively 

low (except HDL-C), but we cannot ascribe these low values to each individual in the cluster.  

Attrition and selection bias are also concerns. Migration of the more educated, urban 

segment of the original cohort has left us with a sample that is no longer representative of the 
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population from which it was drawn.89 The sample was further reduced due to selection 

criteria. From the full sample of 1,887 young adults in 2005, the multivariate analysis 

included those that were fasting and not pregnant with complete biomarker, anthropometric, 

and socioeconomic data, resulting in an analytic sample of 1,621. Comparing baseline 

socioeconomic characteristics, we found a lower percentage of HS graduates among women 

excluded vs. those included in the analysis (68% vs. 78% respectively, ANOVA P<0.05).   

In sum, despite the population’s young age, lack of clinical disease, and relative 

leanness, cluster analysis identified distinct patterns of CM risk factors. By using cluster 

analysis we made fewer assumptions regarding the underlying etiology and allowed 

relationships among CM risk factors to emerge from the data themselves. We found sex-

specific clustering of CM risk factors and were able to evaluate how diet, adiposity, and 

environmental factors influenced these patterns. As expected, measures of adiposity 

predicted specific CM risk patterns. However, diet and environmental factors also 

independently predicted risk factor clustering. This emphasizes the importance of screening 

both lean and OW individuals for CM risk, especially in Asian populations where the risk of 

CM diseases is elevated at lower BMI.92 Future studies examining how CM risk patterns 

change longitudinally could provide insight to how CM risk evolves across the life course. 

Finding modifiable and non-modifiable predictors of CM risk in early adulthood could help 

inform targeted prevention efforts for future CM disease. 
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TABLES AND FIGURES 

 
Table 3.1 Criteria for defining elevated cardiometabolic risk 

Risk factors Cutpoint 

Triglycerides*  ≥ 150 mg/dL 

HDL cholesterol* 
Males < 40 mg/dL 

Females < 50 mg/dL 

LDL cholesterol†  ≥ 130 mg/dL 

Systolic BP*  ≥ 130 mm Hg 

Diastolic BP*  ≥ 85 mm Hg 

Glucose* ≥ 100 mg/dL 

HOMA-IR‡  ≥ 4.65 mg/dL x µg/mL 

CRP§  > 3.0 mg/dL 
Cutpoints represent levels at which there is an increased risk of cardiometabolic diseases. 
*Cutpoints are defined by the IDF.96 †Cutpoint is defined by the National Cholesterol 
Education Program.102 ‡Cutpoint is defined by Stern et al. 103 §Cutpoint is defined by the 
American Heart Association. 88 



 

Table 3.2 Characteristics of young adult men in the 2005 CLHNS 

 All Men Healthy/High HDL-C  Healthy/Low BP High BP IR/High TG High CRP 
 (n= 871) (n= 139) (n= 312) (n= 282) (n= 65) (n= 73) 
Age, y 21.0 ± 0.0 20.9 ± 0.0 20.9 ± 0.0 21.0 ± 0.0 20.9 ± 0.0 21.0 ± 0.0 
Cardiometabolic biomarkers*       

Elevated TG (%) 19.7 ± 1.3 15.3 ± 3.0 11.1 ± 1.8 15.9 ± 2.1 87.7 ± 4.1 20.0 ± 4.6 
Low HDL-C (%) 59.6 ± 1.6 0.0 ± 0.0 72.7 ± 2.5 69.3 ± 2.7 67.7 ± 5.8 74.7 ± 5.1 
Elevated LDL-C (%) 5.7 ± 0.8 4.9 ± 1.8 2.9 ± 0.9 7.9 ± 1.6 10.8 ± 3.9 6.7 ± 2.9 
Hypertension (%) 19.0 ± 1.3 20.8 ± 3.4 0.0 ± 0.0 37.6 ± 2.8 29.2 ± 5.7 14.7 ± 4.1 
Elevated fasting glucose (%) 3.1 ± 0.6 1.4 ± 1.0 1.6 ± 0.7 2.1 ± 0.8 15.4 ± 4.5 6.7 ± 2.9 
Elevated HOMA-IR (%) 2.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.5 29.2 ± 5.7 1.3 ± 1.3 
Elevated CRP (%) 7.1 ± 0.9 0.7 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 2.2 80.0 ± 4.6 

Anthropometrics       
Waist circumference (WC; cm) 72.1 ± 0.2 71.2 ± 0.6 69.5 ± 0.3 73.9 ± 0.5 80.2 ± 1.3 71.3 ± 0.7 
High WC† (%) 48.1 ± 1.7 45.3 ± 4.2 34.2 ± 2.7 60.1 ± 2.9 81.3 ± 4.9 37.0 ± 5.7 
BMI (kg/m2) 21.0 ± 0.1 20.8 ± 0.2 20.0 ± 0.1 21.6 ± 0.2 24.2 ± 0.5 20.9 ± 0.3 
Overweight‡ (%) 19.4 ± 1.3 20.9 ± 3.5 6.4 ± 1.4 26.1 ± 2.6 50.0 ± 6.3 19.2 ± 4.6 

Dietary       
Energy (kcal) 2,221.8 ± 35.2 2,330.5 ± 87.4 2,154.0 ± 53.5 2,237.1 ± 66.0 2,376.1 ± 158.1 2,110.6 ± 107.2 
Saturated fat (%) 7.8 ± 0.2 8.9 ± 0.5 7.7 ± 0.3 7.5 ± 0.3 8.6 ± 0.6 6.7 ± 0.4 
Cigarette smoking (%) 49.3 ± 1.7 46.0 ± 4.2 54.0 ± 2.8 44.2 ± 3.0 60.9 ± 6.1 45.2 ± 5.9 
Alcohol drinking (%) 85.2 ± 1.2 89.2 ± 2.6 81.5 ± 2.2 85.9 ± 2.1 85.9 ± 4.4 90.4 ± 3.5 

Socioeconomic       
Number of assets 5.2 ± 0.1 5.5 ± 0.2 4.9 ± 0.1 5.2 ± 0.1 6.1 ± 0.3 5.1 ± 0.2 
Hygiene score 6.1 ± 0.1 6.5 ± 0.1 5.9 ± 0.1 6.2 ± 0.1 6.4 ± 0.2 5.7 ± 0.2 
Urbanicity score 41.2 ± 0.5 43.7 ± 1.1 39.9 ± 0.8 41.0 ± 0.8 42.7 ± 1.6 41.2 ± 1.6 
Graduated high school (%) 60.2 ± 1.7 71.2 ± 3.9 53.8 ± 2.8 61.0 ± 2.9 68.8 ± 5.8 56.2 ± 5.8 

Data are means ± SE or % ± SE. *Cutpoints are defined using Table 1. †High waist circumference defined as >71cm for men; ‡BMI ≥ 23kg/m2 
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Table 3.3 Characteristics of young adult women in the 2005 CLHNS 

 
All Women Healthy/High HDL-C  

/High LDL-C  
Healthy/Low BP High BP IR/High TG High CRP 

 (n= 698) (n= 138) (n= 248) (n= 228) (n= 46) (n= 38) 

Age, y 20.9 ± 0.0 21.0 ± 0.0 20.9 ± 0.0 20.9 ± 0.0 20.9 ± 0.1 20.9 ± 0.1 
Cardiometabolic biomarkers*       

Elevated TG (%) 8.6 ± 1.0 3.8 ± 1.5 4.4 ± 1.3 7.7 ± 1.8 50.0 ± 7.3 9.8 ± 4.7 
Low HDL-C (%) 67.8 ± 1.7 27.2 ± 3.6 85.7 ± 2.2 72.5 ± 2.9 79.2 ± 5.9 73.2 ± 7.0 
Elevated LDL-C (%) 12.3 ± 1.2 32.3 ± 3.7 3.6 ± 1.2 4.7 ± 1.4 20.8 ± 5.9 22.0 ± 6.5 
Hypertension (%) 2.0 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 5.6 ± 1.5 4.2 ± 2.9 0.0 ± 0.0 
Elevated fasting glucose (%) 3.0 ± 0.6 0.0 ± 0.0 1.6 ± 0.8 1.7 ± 0.9 27.1 ± 6.5 2.4 ± 2.4 
Elevated HOMA-IR (%) 4.5 ± 0.8 0.0 ± 0.0 0.8 ± 0.6 0.0 ± 0.0 62.5 ± 7.1 2.4 ± 2.4 
Elevated CRP (%) 7.5 ± 1.0 1.3 ± 0.9 1.6 ± 0.8 1.3 ± 0.7 14.6 ± 5.1 95.1 ± 3.4 

Anthropometrics       
Waist circumference (WC; cm) 67.9 ± 0.3 66.7 ± 0.6 65.6 ± 0.3 69.0 ± 0.5 76.8 ± 1.7 70.4 ± 1.4 
High WC† (%) 48.1 ± 1.9 43.5 ± 4.2 36.0 ± 3.1 56.8 ± 3.3 78.3 ± 6.1 55.3 ± 8.2 
BMI (kg/m2) 20.3 ± 0.1 19.9 ± 0.2 19.3 ± 0.1 20.7 ± 0.2 24.2 ± 0.8 21.0 ± 0.6 
Overweight‡ (%) 15.2 ± 1.4 12.3 ± 2.8 6.1 ± 1.5 18.1 ± 2.6 50.0 ± 7.5 26.3 ± 7.2 

Dietary       
Energy (kcal) 1,605.6 ± 33.1 1,588.7 ± 72.1 1,601.8 ± 61.1 1,629.8 ± 57.3 1,493.8 ± 88.4 1,683.7 ± 120.4 
Saturated fat (%) 8.5 ± 0.2 9.5 ± 0.4 8.6 ± 0.3 8.0 ± 0.3 8.5 ± 0.7 7.5 ± 0.6 
Cigarette smoking (%) 6.8 ± 1.0 6.6 ± 2.1 6.5 ± 1.6 6.2 ± 1.6 10.9 ± 4.6 7.9 ± 4.4 
Alcohol drinking (%) 55.0 ± 1.9 57.4 ± 4.3 52.2 ± 3.2 56.4 ± 3.3 56.5 ± 7.4 55.3 ± 8.2 

Socioeconomic       
Number of assets 5.3 ± 0.1 5.5 ± 0.2 5.2 ± 0.1 5.3 ± 0.1 5.3 ± 0.2 5.1 ± 0.3 
Hygiene score 6.2 ± 0.1 6.4 ± 0.1 6.1 ± 0.1 6.0 ± 0.1 6.3 ± 0.2 6.2 ± 0.3 
Urbanicity score 41.4 ± 0.5 40.7 ± 1.2 41.6 ± 0.8 40.8 ± 0.9 42.3 ± 2.0 44.9 ± 2.1 
Graduated high school (%) 78.3 ± 1.6 86.2 ± 2.9 79.4 ± 2.6 72.7 ± 3.0 76.1 ± 6.4 78.9 ± 6.7 

Data are means ± SE or % ± SE. *Cutpoints are defined using Table 1. †High waist circumference defined as >66.5cm for women; ‡BMI ≥ 23kg/m2  
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Table 3.4 Predictors of cluster membership 

Predicted male cluster 
Referent male cluster Healthy/Low BP High BP IR/High TG High CRP 

Healthy/High HDL-C  

− OW* [0.32 (0.16,0.64)] + High WC† [1.87 (1.15,3.04)] + High WC† [3.68 (1.62,8.36)] − Satfat‡ [0.43 (0.22,0.86)] 

− Alcohol [0.51 (0.27,0.96)] + OW* [2.17 (1.02,4.64)] − Hygiene [0.74 (0.60,0.90)] 

 
 + Assets [2.14 (1.06,4.32)]  

 
 

+ Smoking [2.04 (1.06,3.90)] 
 

Healthy/Low BP 

 
+  High WC† [1.92 (1.32,2.78)] + High WC† [3.78 (1.77,8.06)] + OW* [5.12 (2.13,12.33)] 

 
+ OW*[3.46 (1.95,6.16)] + OW* [6.80 (3.21,14.42)] − Satfat‡ [0.51 (0.27,0.98)] 

 
− Smoking [0.63 (0.44,0.89)] + Assets [2.72 (1.42,5.24)] + Assets [1.94 (1.10,3.42)] 

   
− Smoking [0.56 (0.33,0.97)] 

   
+ Alcohol [2.83 (1.19,6.72)] 

  
 − Hygiene [0.83 (0.70,0.99)] 

High BP 
  

+ OW* [1.96 (1.02,3.77)] − High WC† [0.34 (0.18,0.64)] 

  
+ Assets [2.42 (1.27,4.60)] − Hygiene [0.82 (0.69,0.98)] 

  
+ Smoking [2.28 (1.25,4.14)] 

 

IR/High TG    
− High WC† [0.17 (0.07,0.43)] 

   
− Smoking [0.39 (0.19,0.82)] 

 
Predicted female cluster 

Referent female cluster Healthy/Low BP High BP IR/High TG High CRP 

Healthy/High HDL-C/High LDL-C 
 

− Satfat‡ [0.46 (0.28,0.78)] + OW* [4.57 (1.90,10.95)] − Satfat‡ [0.22 (0.08,0.61)] 

 
+ Energy§ [1.40 (1.00,1.96)] + Energy§ [1.73 (1.02,2.91)] 

 − HS Grad [0.51 (0.29,0.92)] + Urban [2.88 (1.30,6.39)] 

Healthy/Low BP 
 

+  High WC† [1.86 (1.24,2.77)] + High WC† [2.94 (1.24,6.95)] + OW* [4.12 (1.49,11.40)] 

 
+ OW* [2.24 (1.17,4.29)] + OW* [8.26 (3.50,19.50)] − Satfat‡ [0.35 (0.13,0.92)] 

   
+ Urban [2.81 (1.31,6.04)] 

High BP 
  

+ OW* [3.69 (1.72,7.92)] + Urban [2.82 (1.32,6.04)] 

IR/High TG 
   

Cells display +/- association of predictors with cluster membership. Data are OR (95% CI). *Overweight; †Waist Circumference; ‡Percentage of total energy intake from saturated 
fat; this covariate was scaled (divided by 10) when imputed in the multinomial logistic regression to ease interpretation; §Energy intake was also scaled; units were kJ/1000. 
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Figure 3.1 Mean Z-scores of fasting biomarkers by cardiometabolic cluster 
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Figure 3.1: Mean Z-scores of fasting biomarkers by cardiometabolic cluster 
Mean Z-scores by cardiometabolic cluster for the eight fasting biomarkers used as input 
variables in the cluster analysis. A: Mean Z-scores in young adult men. B: Mean Z-scores in 
young adult women. 
 



 

 
 
 
 
 

Chapter 4. GENETIC RISK SCORE AND ADIPOSITY INTERAC T TO INFLUENCE 
TRIGLYCERIDE LEVELS IN A COHORT OF FILIPINO WOMEN 

 

OVERVIEW  

Individually, genetic variants only moderately influence cardiometabolic (CM) traits, 

such as lipid and inflammatory markers. In this study we used genetic risk scores to combine 

the relatively small additive effects of individual variants to better capture the complex 

relationship between genetics, adiposity, and CM traits. 

Participants included 1,649 women from the 2005 Cebu Longitudinal Health and 

Nutrition Survey. Three genetic risk scores were constructed for, C-reactive protein (CRP), 

high-density lipoprotein (HDL-C), and triglycerides (TG). We used linear regression models 

to assess the association between each genetic risk score and its related trait. We also tested 

for interactions between each score and measures of adiposity. 

Each genetic risk score explained a greater proportion of variance in trait levels than 

any individual genetic variant. We found an interaction between the TG genetic risk score 

and waist circumference (WC) (P interaction = 1.66 × 10-2). Based on model predictions, for 

individuals with a higher TG genetic risk score (75th percentile = 12), having an elevated WC 

(≥ 80cm) increased TG levels from 117 to 151 mg/dL. While for individuals with a lower 

score (25th percentile = 7), having an elevated WC made no significant impact on TG levels 

(93 vs. 104 mg/dL).  

In summary, combinations of genetic loci better explained the variation in CM traits 

and the TG genetic risk score interacted with adiposity to influence TG levels. Larger studies 
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are needed to support the potential clinical and public health utility of targeted prevention 

efforts using genetic profiling. 

BACKGROUND 

Recent studies in both European and Asian cohorts have found multiple genetic 

variants relating to cardiometabolic (CM) traits such as lipid and inflammatory levels.5, 7, 9, 40, 

122 Individually, the identified genetic variants only moderately influence these trait levels 

and are thought to provide only limited information in clinically assessing a person's risk. 

However, the combination of genetic variants, each with a relatively small effect, may better 

explain the variability of these complex traits.79 Thus, the use of a genetic risk score has been 

proposed to better capture genetic variation.80-83  

 Genetic variants may interact with diet, environmental, and anthropometric factors to 

influence CM phenotypes; accounting for these synergistic effects may also help explain 

some of variability of these traits. 79 79  Excess adiposity is one of the strongest predictors of 

CM disease and risk.54-57 Previous work suggests that measures of adiposity interact with 

specific genetic variants and predict CM traits.124-126   

 However, these synergistic effects are not well understood, especially in populations 

undergoing rapid nutritional and lifestyle changes. These lifestyle changes contribute to a 

growing burden of overweight, visceral adiposity, and thus associated CM diseases.58-61 

These concerns are especially pertinent for Asians; compared with Caucasians, Asians have 

increased visceral adiposity and greater insulin resistance at similar levels of BMI.62-65 In 

addition, the World Health Organization concluded that the risk of CM based diseases is 

elevated for Asians with a BMI greater than 23 kg/m2, suggesting the use of a lower cutpoint 

for overweight (OW).105  
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In this study we sought to: create genetic risk scores relating to inflammatory and lipid 

traits, examine the ability of these scores to explain the variation in these traits, and test 

whether these genetic risk scores interact with measures of adiposity to influence trait levels. 

We chose to specifically look at C-reactive protein (CRP), high-density lipoprotein (HDL-C), 

and triglycerides (TG) because previous research suggests that these traits interact with 

various measures of adiposity.127-129 To accomplish this, we used an at-risk Asian population, 

from the 2005 Cebu Longitudinal and Health and Nutrition Survey (CLHNS), undergoing a 

nutrition and lifestyle transition. The identification of individuals with a genetic 

predisposition to elevated CM risk could help in creating targeted and thus more efficient 

prevention strategies. 

METHODS  

 Survey design 

The women in this study are participants in the CLHNS, which is described in detail 

elsewhere.89 Briefly, the CLHNS is a community-based cohort of women and their index 

children followed since 1983. The original participants included all pregnant women in 33 

randomly selected communities of Metro Cebu, who gave birth between May 1, 1983, and 

April 30, 1984. A baseline interview was conducted among 3,327 women in their 6th to 7th 

month of pregnancy. Subsequent surveys took place immediately after birth, bimonthly for 2 

years, in 1991, 1994-5, 1998-99, 2002, and 2005. In 2005, fasting blood was drawn for CVD 

biomarkers and genetics. Here we use data from the mother cohort participating in the 2005 

CLHNS. All data were collected under conditions of informed consent with institutional 

review board approval from the University of North Carolina, Chapel Hill, USA. 
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We excluded women who were pregnant at the time of blood draw, not fasting at the time 

of blood draw, and with CRP levels >10 mg/L (a level representing current/recent illness 

rather than low-level basal inflammation).88 Even though we removed individuals with CRP 

levels >10 mg/L, we adjusted for the presence of any infectious symptoms at the time of 

blood collection to help control for any residual confounding in our analysis.1 1,649 women 

had complete biomarker, genetic, diet, socioeconomic, and anthropometric data. Medication 

use in this population was low: 0.1% took statins, 1.75% took diabetes medication, and 4% 

took anti-hypertensive medications. A sensitivity analysis showed that exclusion of these 

individuals did not impact results; therefore we did not exclude anyone taking medication. 

All data were collected with informed consent, using protocols approved by the institutional 

review board of the University of North Carolina, Chapel Hill. 

Cardiometabolic biomarkers 

Fasting plasma CM biomarkers used in the analyses included TG, HDL-C, and C- CRP. 

Blood samples were collected in participants’ homes in the morning after an overnight fast. 

Venous blood was collected in EDTA anti-coagulant vacutainer tubes. Blood samples were 

stored on ice for no more than 2 hours and were then centrifuged to separate plasma.  After 

separation, samples were frozen and remained frozen at -80 °C until ready for analysis.  Total 

lipid concentrations were measured at the Emory Lipid Research Laboratory using enzymatic 

methods with reagents from Beckman Diagnostics on the Beckman Diagnostics CX5 

chemistry analyzer (Fullerton, CA). HDL-C was determined using the homogeneous assay 

for direct determination (Genzyme Corporation, Exton, PA). The Emory Lipid Research 

Laboratory is a participant in the CDC/NHLBI Lipid Standardization Program to ensure 

accuracy and precision of the determinations. CRP concentrations were determined using a 
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high sensitivity immunoturbidimetric method (Synchron LX20, lower detection limit: 0.1 

mg/L). 

The cutpoints used to define elevated risk for each trait were: >3.0 mg/ L for CRP, < 50 

mg/dL for HDL-C, and > 150 mg/dL for TG levels. These were based on recommendations 

from the International Diabetes Federation (IDF) and the American Heart Association.88, 96, 

102, 103  

Anthropometry 

Body weight, height, and waist circumference (WC) were measured using standard 

techniques.104 BMI was calculated as the ratio of weight (kg) to height (m2). We used 

cutpoints for Asians to define normal weight as BMI < 23kg/m2, overweight (OW) as 

23kg/m2 
≤ BMI < 27.5kg/m2, obese as BMI ≥ 27.5kg/m2, and central adiposity as WC ≥ 80 

cm.105 96 

Dietary data  

Dietary data were derived from two 24-hour dietary recalls and the mean intake was used 

in the analyses. Data were collected during in-home interviews performed by highly trained 

local field staff. A nutritionist reviewed all dietary recalls immediately after collection. When 

implausible values were found, interviewers revisited respondents for verification. Energy 

and saturated fat intakes were calculated using the Philippines Food Composition Tables.19, 

106 

Sociodemographic and lifestyle characteristics 

Highly trained interviewers collected reproductive history data; this included menopausal 

status beginning in the 1991 survey. 

Socioeconomic status (SES) was measured by a factor score based on a principal 
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components analysis of household ownership of key assets such as television, vehicles, and 

furniture.69  

Infectious illness was measured by asking participants if they were currently 

experiencing any symptoms of infection, consistent with prior research on CRP.52 Symptoms 

included runny nose, cough, fever, diarrhea, and sore throat, as well as the more general 

categories of flu, cold, and sinusitis. Responses were used to construct a summary variable 

indicating the presence or absence of any infectious symptoms at the time of blood 

collection. 

Environmental cleanliness and household hygiene was measured by a hygiene score 

based on data on the interviewer’s rating of cooking area, immediate area around the house, 

toilet type, and water source. The score ranges from 0 to 9 with larger values indicating 

greater cleanliness.52  

Genotyping, quality controls, and imputation 

The complete methods for direct SNP genotyping, quality control, and SNP imputation 

have been described previously.130 Briefly, genotyping was performed with the Affymetrix 

Genome-Wide Human SNP Array 5.0. Quality control procedures excluded: samples with 

<97% genotyping call rate; members of estimated first-degree relative pairs; SNPs with a call 

rate < 90%; SNPs with a deviation from Hardy-Weinberg equilibrium (P <10−6); SNPs with 

≥ 3 discrepancies among duplicate pairs; SNPs with Mendelian inheritance errors among five 

CEPH trios and/or CEPH sample genotype discrepancies with HapMap. Genotype 

imputation was conducted with MACH using phased haplotypes from the 1000 Genomes 

Project in both CEU and CHB+JPT samples (June 2010 Release).131 In addition, we excluded 

any SNPs with poor imputation quality (MACH r2 < 0.3) or estimated minor allele frequency 
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(MAF) ≤ 0.01.  

Genetic marker selection 

 The process of choosing SNPs is depicted in Figure 1. The SNPs used to create the 

genetic risk scores were selected by finding SNPs associated with the individual CM traits of 

interest: CRP, HDL-C, and TG. We selected these SNPs from (1) genome-wide association 

studies (GWAS) conducted with our own study population,1, 7 (2) published GWAS of East 

and South East Asian cohorts,2, 9 and (3) published GWAS of European descent cohorts,5 if 

the specific trait lacked studies conducted in populations of Asian descent. We limited our 

selection of studies to cohort-based studies and meta-analyses; case-control studies were not 

considered because we wanted to choose SNPs associated with the individual CM trait rather 

than disease state. From the studies identified, we selected SNPs with a P < 5×10-8 in the 

original study population for further analysis; we increased this threshold to a P < 5×10-5 for 

those studies conducted in our own study population due to the smaller sample size in the 

CLHNS.  

 The original studies were used to identify the risk allele. We designated the risk allele 

as the allele associated with an increased level of the specified trait, except in the case of 

HDL-C, for which the allele associated with lower levels was designated. For each 

individual, we coded imputed SNPs according to the dosage value or the expected number of 

copies of the risk allele (a continuous number between 0 and 2). This coding reflects the 

uncertainty in the imputation of the SNPs, for example a 1.5 suggests more uncertainty 

whereas a 1.9 suggests less uncertainty (an individual likely has two risk alleles). 

Three genetic risk scores were constructed, one for each CM trait, CRP, HDL-C, and 

TG.  Before creating each genetic risk score, we chose a subset of SNPs with nominal 
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significance (P < 0.1) and directional consistency of the effect estimate in our study 

population. This was based on adjusted linear regression models of the natural log-

transformed CM trait on the individual SNP (see Model 2 in Methods). Then for each CM 

trait, we pruned SNPs for redundancy due to linkage disequilibrium (r2 > 0.2). To do this we 

used the --clump procedure in PLINK to create “clumps” of correlated SNPs.132 Each clump 

was represented by the top index SNP, designated as the SNP with the lowest P value (see 

Model 2 in Methods). Using these index SNPs, we calculated each genetic risk score by 

simply summing the risk alleles associated with the specific trait. We created an un-weighted 

score instead of weighting by the effect of each SNP because: (1) the current literature does 

not provide stable effect estimates of each SNP for each trait; (2) the outcomes (and thus 

effects) across studies were non-comparable (e.g. log-transformed trait vs. non-transformed 

trait); (3) studies used populations of various sample sizes and ethnicities; (4) using weights 

from the CLHNS data itself would have introduced bias.  

Statistical Analysis 

 Linear regression models, with each of the three CM traits as a continuous outcome, 

were used. All traits were natural log-transformed to satisfy model assumptions of normally 

distributed residuals. Given the markedly skewed distribution of CRP concentrations and the 

presence of many values below the detectable level (0.1 mg/L), CRP values were natural log-

transformed after adding the constant 0.10. 

We constructed principal components (PCs) using the software EIGENSOFT to 

capture population substructure among CLHNS subjects.133 We assessed the association 

between each of the first 10 PCs and each log-transformed CM trait to identify any potential 

ancestry explanatory PC; the 7th PC was significantly associated with CRP and HDL-C (no 
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PCs were significantly associated with log TG levels), thus the first 7 PCs were included as 

covariates in the linear regression models.  

Two different models were examined. Model 1 was a linear regression model 

adjusted for age (categorical: ≤44 y, 45-49 y, 50-54 y, and ≥55 y) and population 

substructure. Model 2 included covariates adjusted for in Model 1 plus additional adjustment 

for postmenopausal status (yes/no), OW/obese status (BMI ≥ 23 kg/m2), high WC (WC ≥ 

80cm), % energy intake from saturated fat, energy intake, environmental hygiene, reported 

infectious illness (yes/no), and SES. The covariates chosen for adjustment in Model 2 were 

based on prior published studies in the CLHNS on these lipid and inflammatory traits.52, 69, 115 

We categorized age, BMI, and WC to account for their non-linear relationship with the log 

CM trait levels. 

 Models 1 and 2 were applied to test for the association between each candidate SNP 

and its related log-transformed CM trait (assuming an additive model). Then both Models 

were applied to test for the association between each genetic risk score (continuous) and its 

related log-transformed CM trait. In addition, Model 2 without a genetic component was 

estimated to examine the “non-genetic” factors associated with each log-transformed CM 

trait. 

Lastly, for each CM trait we looked at interactions between the genetic risk score and 

measures of adiposity. We examined a genetic risk score × elevated WC interaction, both 

unadjusted and adjusted for BMI (using a 3-categorical dummy variable for normal weight, 

OW, and obese). Then we examined a genetic risk score × OW/obese status interaction, both 

unadjusted and adjusted for elevated WC. Each interaction was looked at separately while 

adjusting for the same covariates as Model 2.  
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For regression analyses we used a statistical significance criteria of P <0.05 (2-sided). 

For interaction terms, we considered P <0.1 as nominally significant. All regression analyses 

were performed with Stata 12.0 (Stata Corporation, College Station, TX, 2006). 

 RESULTS 

 The characteristics of 1,649 women participants in the 2005 CLHNS are presented in 

Table 1.  In 2005, participants had a mean (SD) age of 48.41 (6.03) years. About 39% of 

women were postmenopausal, 52% had elevated WC, 60% were OW, 20% had elevated 

CRP, 82% had low HDL-C, and 29% had elevated TG.   

 Our selection strategy for candidate SNPs relating to CRP, HDL-C, and TG resulted 

in 46, 19, and 13 usable variants (Figure 1).  After pruning to eliminate correlated SNPs in 

linkage disequilibrium (by trait), 6 CRP, 9 HDL-C, and 9 TG SNPs were used in the 

construction of the genetic risk scores (Figure 1; Table 2). Among participants, each genetic 

risk score was normally distributed (Figure 2). The mean score (SD) and range of number of 

risk alleles for CRP was 3.32 (1.37) with a range from 0.12-8.51; for HDL-C was 5.95 (1.58) 

with a range from 1.61-11.66; and for TG 9.42 (1.85) with a range from 2.29-14.34. 

 The regression results from Model 2 for each candidate SNP and its respective CM 

trait are shown in Table 2 (results from Model 1 were similar and thus not shown).  Using 

Model 2, the individual SNP most strongly associated with CRP was rs876537 at the CRP 

loci (β= 0.33, 95% CI [0.24, 0.42], P = 2.27 × 10-12), with HDL-C was rs12708980 at the 

CETP loci (β= -0.05, 95% CI [-0.08, -0.03], P = 6.61 × 10-7), and with TG was rs964184 at 

the APOC3 loci (β= 0.15, 95% CI [0.11, 0.19], P = 3.37 × 10-15).  The same SNPs were 

found to be the most strongly associated with each trait in Model 1 as well.  
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 As expected, each of the three genetic risk scores was associated with its respective 

log-transformed trait (Table 3).  Specifically in Model 2, each additional CRP risk allele 

resulted in an estimated 18% increase in CRP levels (β= 0.18, 95% CI [0.14, 0.23]); each 

additional HDL-C risk allele resulted in an estimated 4% decrease in HDL-C levels (β= -

0.04, 95% CI [-0.05, -0.04]); each additional TG risk allele resulted in an estimated 7% 

increase in TG levels (β= 0.07, 95% CI [0.06, 0.08]). 

 We compared the proportion of variance explained in the log-transformed CM trait by 

the genetic risk score vs. the most strongly associated individual SNP in Model 2 (Figure 3). 

To do this we first ran Model 2 without any genetic component (Table 4). The adjusted R-

square obtained from this model represents the proportion of variance explained by specified 

“environmental” components (Rsq E). Running Model 2 with the individual SNP yielded an 

adjusted R-square representing the proportion of variance explained by the individual SNP 

and environmental components (Rsq SNP+E). Running Model 2 with the genetic risk score 

yielded an adjusted R-square representing the proportion of variance explained by the genetic 

risk score and environmental components (Rsq GRS+E). To obtain the proportion of 

variance explained by just the individual SNP (Rsq SNP) = (Rsq SNP+E)-(Rsq E). To obtain 

the proportion of variance explained by just the genetic risk score (Rsq GRS) = (Rsq 

GRS+E)-(Rsq E). For each CM trait, we plotted Rsq SNP vs. Rsq GRS (Figure 3). For all 

three traits, Rsq GRS > Rsq SNP; about 4% of log CRP levels, 7% of log HDL-C levels, and 

6% of log TG levels were explained by the genetic risk score alone (Table 3).  

We found significant interactions between measures of adiposity and the TG genetic 

risk score on log TG levels, while we found no evidence of such interactions on log CRP or 

log HDL-C levels.  
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Stratifying by normal WC (< 80cm) and elevated WC (≥ 80cm), the estimated % 

increase in TG levels for each additional TG risk allele was 5% (β= 0.05, 95% CI [0.03, 

0.07]) in normal WC individuals, but increased to 8% (β= 0.08, 95% CI [0.06, 0.10]) in 

elevated WC individuals (P interaction = 1.66 × 10-2) (Table 5).  Here we present BMI adjusted 

results; we found no difference between the effect estimate and P value of the unadjusted 

model (results not shown). 

Similarly, stratifying by normal weight (< 23kg/m2) and OW/obese (≥23kg/m2), the 

estimated % increase in TG levels for each additional TG risk allele was 5% (β= 0.05, 95% 

CI [0.03, 0.07],) in normal weight individuals, but increased to 8% (β= 0.08, 95% CI [0.06, 

0.09]) in OW/obese individuals (P interaction = 2.73 × 10-2) (Table 5). Here we present WC 

adjusted results; we found no difference between the effect estimate and P value of the 

unadjusted model (results not shown). 

 To better visualize these interactions (Figure 4), we predicted TG levels at the 25th 

and 75th percentile values of the genetic risk score (7 and 12 respectively) at varying levels of 

adiposity, while holding all other covariates in Model 2 at the mean. Based on model 

predictions, for individuals with a higher TG genetic risk score (= 12), having an elevated 

WC (≥ 80cm) increased TG levels from 117 to 151 mg/dL. While for individuals with a 

lower score (= 7), having an elevated WC made no significant impact on TG levels (93 vs. 

104 mg/dL). Similar results were seen at varying levels of BMI. 

We also examined all the above interactions with each individual SNP included in the 

TG genetic risk score, however none of these interactions were significant (results not 

shown). 
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DISCUSSION 

   In this study we used a genetic risk score to combine the relatively small additive 

effects of individual SNPs to better capture the complex relationship between genetics, 

adiposity, and CM risk. We found that for all three traits, the genetic risk score more strongly 

predicted biomarker levels than any individual SNP. In addition, the genetic risk score 

explained a greater proportion of variance in the specified trait than any given individual 

SNP. Lastly, we found that for individuals with a higher TG genetic risk score, having either 

an elevated WC or being OW/obese amplified the genetic risk score’s effect by further 

increasing TG levels. While for individuals with a lower TG genetic risk score, measures of 

adiposity made almost no difference in TG levels. Interestingly for those women with a low 

TG genetic risk score and elevated levels adiposity, their predicted levels of TG equaled 

those of women with a high genetic risk score without any adverse levels of adiposity.  

Overall, these results demonstrate that combinations of multiple genetic loci better explain 

the variation in CRP, HDL-C, and TG levels and that the TG genetic risk score seemed 

interact with measures of adiposity to influence TG levels in this study population. 

In support of our results, recent work using the same study population found that central 

obesity might accentuate the effect of the TG-increasing allele of an APOA5 variant.7 In 

addition, previous research has implicated several variants in the LPL gene (a gene included 

in our genetic risk score) as having an interactive effect with central adiposity on TG levels 

and the ratio of TG to HDL-C.127 128 However, we did not find significant interactions 

between these individual loci and adiposity on TG levels, perhaps indicating that the 

interactive effect is driven by a collective result of all SNPs in the TG genetic risk score.  
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While the interaction between WC and the TG genetic risk score (adjusting for BMI) was 

stronger than that between OW/obese and the TG genetic risk score, we cannot conclusively 

say whether visceral adiposity, as proxied by WC, drives this interaction. However, it is 

interesting to note that the residuals of WC regressed on BMI also significantly interacted 

with the TG genetic risk score (results not shown). Previous studied have implicated visceral 

adiposity as a stronger predictor of TG levels and hypertriglyceridemia compared to 

subcutaneous adipose tissue.134, 135 

From a clinical perspective, individuals with both a high TG genetic risk score and 

elevated WC, had predicted TG levels that meet the American Heart Association’s level of 

“borderline high risk” (150 to 199 mg/dL).102 This combination of elevated WC along with 

increased TG levels has been previously described as the “hypertriglyceridemic waist” 

phenotype. Individuals with this phenotype have a higher risk of increased visceral adiposity, 

CVD, insulin resistance, and other related outcomes.56, 136-138 This is of particular concern for 

Asian populations, for whom increased levels of visceral adiposity are present at normal 

BMIs.62-65 Work from Pollin et al. reinforces this concept by finding that an intensive 

lifestyle intervention appeared to partially mitigate the effect of the rs1260326 risk allele in 

the GCKR gene (a loci included in our genetic risk score) on higher TG levels.139  Further 

research, especially clinical trials in larger populations, is needed to know whether such 

interventions could be useful, especially across different ethnicities. 

Limitations of our study merit consideration. We used cross-sectional data since 

biomarker levels were only measured in 2005, thus no causal relationships can be inferred. In 

our literature search we found differing numbers of candidate SNPs for each trait. Although 

we used the same criteria in our search regardless of the CM trait, the variation in the number 
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of candidate SNPs could reflect the current state of the literature. In addition, there is concern 

with choosing SNPs from a European sample and applying them to an Asian sample, 

especially in terms of tagging the appropriate functional variant. We tried to mitigate this by 

choosing SNPs with nominal significance and directional consistent effect estimates in our 

study population, however due to the limited sample size in the CLHNS we may have lacked 

the power to detect the SNPs true effect.  Also, using a threshold of r2 <0.2 for linkage 

disequilibrium, still allows SNPs to partially tag the same underlying signal, potentially 

including some redundancy in the genetic risk score. While we used an un-weighted 

approach to create our genetic risk scores, it may be possible in the future to obtain stable and 

accurate estimates of genetic variants for use in a weighted risk score, which could improve 

predictability of CM risk.  

In conclusion, using a study population of middle-aged Filipino women undergoing a 

nutrition and lifestyle transition, we found that CRP, HDL-C, and TG genetic risk scores 

explained a greater variance of the associated trait compared to a single SNP. We also found 

that the TG genetic risk score interacted with adiposity to synergistically influence TG levels. 

For individuals with a high genetic predisposition to elevated TG levels, our results suggest 

reducing adiposity could possibly prevent increases in TG levels and thereby reduce the 

likelihood of adverse health outcomes such CM diseases. Replication of these results in 

larger study populations is needed to support the potential clinical and public health utility of 

targeted prevention efforts using genetic profiling. 
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TABLES AND FIGURES 

Figure 4.1: Choosing of SNPs to include in the genetic risk scores 
 

 
 

 

 Figure 4.1: Choosing of SNPs to include in the genetic risk scores 
A schematic representation describing the process of choosing SNPs associated with CRP, 
HDL-C, and TG. Parentheses indicate the specific study population in which analyses 
were conducted. *rs1268004 was not genotyped and no HapMap or 1000 Genomes 
imputed data was available. See Methods for further details. 
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Table 4.1: Characteristics of 1,649 women participants in the 2005 CLHNS 

Age (%) 

   ≤44 y 32.4 

   45-49 y 31.5 

   50-54 y 20.9 

   ≥55 y 15.1 

Postmenopausal (%) 38.5 

Illness* (%) 27.5 

Energy intake (kcal) 1,128.8 ± 491.8 

% Energy intake from saturated fat 5.4 ± 4.1 

Waist circumference (WC; cm) 81.0 ± 10.9 

Elevated WC† (%) 52.4 

BMI (kg/m2) 24.3 ± 4.3 

Overweight† (%) 38.7 

Obese† (%) 21.2 

CRP (mg/L) 1.7 ± 2.1 

Elevated CRP† (%) 19.6 

HDL-C (mg/dL) 41.0 ± 10.3 

Low HDL-C† (%) 82.4 
TG (mg/dL) 131.0 ± 84.7 
Elevated TG† (%) 28.8 
Data are means ± SD or percentages. *Percentage of individuals reporting illness at time of 
blood draw †See Methods for cutpoint values 
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Table 4.2: SNPs selected from a literature search to generate cardiometabolic trait specific 
genetic risk scores  

SNP Chr Nearest gene 
Non-risk 
allele† 

Risk 
allele† 

Risk  
allele 

frequency 
β 95% CI P value 

R 
square‡  

CRP SNPs 
          

rs12093699 1 CRP G A 0.08 0.25 0.07 0.42 6.0E-3 0.19 

rs876537 1 CRP T C 0.43 0.33 0.24 0.42 2.3E-12 0.21 

rs1892534 1 LEPR T C 0.15 0.11 0.00 0.23 5.3E-2 0.18 

rs1408282 6 6q16.1 G A 0.09 0.42 0.24 0.59 2.3E-6 0.19 

rs1169288 12 HNF1A C A 0.63 0.33 0.23 0.43 1.9E-10 0.2 

rs1169302 12 HNF1A G T 0.29 0.09 -0.01 0.19 8.2E-2 0.18 

HDL-C 
SNPs          

rs1544857 2 SLC4A10 G C 0.17 -0.05 -0.08 -0.03 6.6E-6 0.08 

rs17548357 2 BIRC6 G A 0.02 -0.19 -0.28 -0.11 1.4E-5 0.08 

rs3739440 9 PAX5 C T 0.17 -0.07 -0.10 -0.04 2.3E-6 0.08 

rs11227643 11 11q13.1 C G 0.73 -0.05 -0.08 -0.02 5.8E-4 0.07 

rs964184 11 APOC3 C G 0.24 -0.02 -0.04 0.00 1.7E-2 0.07 

rs1532085 15 LIPC A G 0.43 -0.04 -0.07 -0.02 4.3E-5 0.08 

rs2070895 15 LIPC A G 0.62 -0.06 -0.09 -0.03 3.5E-5 0.08 

rs12708980 16 CETP T G 0.19 -0.05 -0.08 -0.03 6.6E-7 0.08 

rs138779 22 TOM1 T C 0.39 -0.05 -0.06 -0.03 2.4E-6 0.08 

TG SNPs 
         

rs780092 2 GCKR G A 0.68 0.09 0.05 0.12 3.2E-7 0.13 

rs17023681 3 CNTN4 T G 0.29 0.12 0.07 0.17 2.6E-6 0.13 

rs7644509 3 Chr3q26.1 C G 0.19 0.08 0.04 0.13 3.5E-4 0.13 

rs2286276 7 
TBL2-

MLXIPL 
T C 0.9 0.05 -0.01 0.10 8.6E-2 0.12 

rs12678919 8 LPL G A 0.95 0.09 0.02 0.17 1.8E-2 0.12 

rs2001945 8 LPL C G 0.43 0.03 0.00 0.06 4.6E-2 0.12 

rs603446 11 ZNF259 T C 0.68 0.08 0.04 0.11 1.9E-5 0.13 

rs964184 11 APOC3 C G 0.24 0.15 0.11 0.19 3.4E-15 0.15 

rs1893838 18 ZBTB7C T C 0.35 0.07 0.03 0.10 1.6E-4 0.13 

*Association results from Model 2: the covariates were age (categorical: ≤44 y, 45-49 y, 50-54 y, and ≥55 y), PCs, 
postmenopausal status, overweight/obese status, elevated waist circumference, % energy intake from saturated fat, energy 
intake, environmental hygiene, illness, and SES (outcome was the log-transformed CM trait); †Risk allele as defined by the 
study from which it was chosen; ‡Adjusted R-square for Model 2 

 
 
 
 



 

Figure 4.2: Distribution of the genetic risk score among 1,649 Filipino women 
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Figure 4.2: Distribution of the genetic risk score among 1,649 Filipino women 
The distribution of the CRP, HDL-C, and TG genetic risk scores among participants  
 



54 

 
Table 4.3: Association of genetic risk scores with log-transformed CM trait levels in 
1,649 women 

      

Genetic risk score β 95% CI P value 
R-square 

† 
R square (genetic 
risk score alone)‡ 

CRP genetic risk score 0.19 0.15 0.23 4.81E-20 0.22 0.04 

HDL-C genetic risk score -0.04 -0.05 -0.04 1.81E-29 0.14 0.07 

TG genetic risk score 0.07 0.06 0.08 3.38E-28 0.18 0.06 

*Association results from Model 2; covariates were age (categorical: ≤44 y, 45-49 y, 50-54 y, and ≥55 y), PCs, 
postmenopausal status, overweight/obese status, elevated waist circumference, % energy intake from saturated 
fat, energy intake, environmental hygiene, illness, and SES (outcome was the log-transformed CM trait); 
†Adjusted R-square for Model 2; ‡Proportion of variance explained by the genetic risk score alone (see 
Methods) 

 
 
 
 
 
 



 

 
Table 4.4: Association of “non-genetic” covariates with CM trait levels  

Model 2 without 
genetic component log CRP log HDL-C log TG 

Covariates β 95% CI P value 
R-

square*  β 95% CI P value 
R 

square* β 95% CI P value 
R 

square* 

0.18 0.07 0.12 

Age 

   ≤44 y  Reference 

   45-49 y 0.03 -0.12 0.18 7.06E-01 0.00 -0.03 0.03 9.51E-01 0.08 0.02 0.14 8.17E-03 

   50-54 y 0.02 -0.17 0.22 8.13E-01 -0.02 -0.06 0.03 4.56E-01 0.17 0.09 0.25 1.93E-05 

   ≥55 y 0.23 0.00 0.47 5.28E-02 0.01 -0.03 0.06 5.52E-01 0.15 0.06 0.24 1.70E-03 

Postmenopausal status 0.23 0.07 0.40 6.55E-03 -0.02 -0.06 0.01 1.94E-01 0.09 0.02 0.16 7.00E-03 

Elevated WC† 0.56 0.39 0.72 2.99E-11 -0.06 -0.10 -0.03 3.58E-04 0.18 0.12 0.25 2.28E-08 

OW/obese 0.43 0.26 0.60 9.30E-07 0.00 -0.04 0.03 8.39E-01 0.11 0.04 0.18 1.48E-03 

Energy intake 0.00 0.00 0.00 1.62E-02 0.00 0.00 0.00 3.04E-01 0.00 0.00 0.00 3.28E-01 

Saturated fat intake§ 0.00 -0.01 0.02 8.35E-01 0.00 0.00 0.01 5.85E-03 0.00 0.00 0.01 6.28E-01 

Hygiene -0.04 -0.09 0.01 1.03E-01 -0.01 -0.02 0.00 2.00E-01 0.00 -0.02 0.02 8.13E-01 

Illness 0.40 0.27 0.53 1.57E-09 -0.04 -0.07 -0.02 1.37E-03 0.04 -0.01 0.09 1.32E-01 

SES 0.09 0.03 0.15 2.11E-03 0.03 0.02 0.04 2.45E-06 0.02 0.00 0.04 6.42E-02 

*Adjusted R-square; †Waist circumference ≥ 80cm; ‡Overweight/obese, BMI ≥ 23kg/m2; §Percentage of energy intake from saturated fat 
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Figure 4.3: The proportion of variance explained by genetic risk score vs. individual SNP most strongly associated with trait 
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Figure 4.3: The proportion of variance explained by genetic risk score vs. individual SNP most 
strongly associated with trait 
The proportion of variance in the CM trait explained by the genetic risk score vs. the individual SNP 
most strongly associated with the trait. The individual SNP most strongly associated with CRP was 
rs876537, with HDL-C was rs12708980, and with TG was rs964184. See Methods for further details. 



 

 

Table 4.5: Evidence of interaction between TG genetic risk score and levels of adiposity on log-transformed TG levels 

Normal waist circumference† Elevated waist circumference† 

  n = 785 n = 864   

β 95% CI P value β 95% CI P value P interaction 

TG genetic risk score 0.05 0.03 0.07 1.02E-08 0.08 0.06 0.1 4.96E-22 1.66E-02 

Normal weight‡ Overweight and obese‡ 

  n = 661 n = 988   

β 95% CI P value β 95% CI P value P interaction 

TG genetic risk score 0.05 0.03 0.07 3.21E-07 0.08 0.06 0.09 5.21E-24 2.73E-02 

*The covariates were age (categorical: ≤44 y, 45-49 y, 50-54 y, and ≥55 y), PCs, postmenopausal status, % energy intake from saturated fat, energy intake, 
environmental hygiene, illness, and SES (outcome was log-transformed TG levels); †Stratified by waist circumference ≥ 80cm; additional adjustment for 
normal weight, overweight, and obese BMI categories; ‡Stratified by normal weight: BMI < 23kg/m2, overweight: 23kg/m2 

≤ BMI < 27.5kg/m2, obese: BMI ≥ 
27.5kg/m2; additional adjustment for elevated waist circumference 
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Figure 4.4: Predicted triglyceride levels at the 25th and 75th percentile values of the genetic risk score stratified by levels of 
adiposity 
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Figure 4.4: Predicted triglyceride levels at the 25th and 75th percentile values of the genetic risk 
score, stratified by levels of adiposity 
 
Showing predicted geometric means (95% CI) of triglycerides (TG) at the 25th and 75th percentile 
values of the genetic risk score (7 and 12 respectively) at varying levels of waist circumference (WC) 
and BMI: A. Predicted levels of TG stratified by WC ≥ 80cm; B. Predicted levels of TG stratified by 
overweight/obese (BMI ≥ 23kg/m2) 
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Chapter 5.  IDENTIFICATION OF GENETIC RISK PROFILES  ACROSS 
MULTIPLE CARDIOMETABOLIC PHENOTYPES IN FILIPINO WOM EN 

 

OVERVIEW  

The patterning of genetic risk across multiple phenotypes may better explain the 

underlying genetic susceptibility for cardiometabolic (CM) disease, especially since these 

diseases themselves display a specific clustering of risk factors including insulin resistance 

(IR), dyslipidemia, hypertension, and inflammation. Here we used a novel application of 

cluster analysis to identify groups of women who share similar patterns of genetic risk across 

multiple CM phenotypes. 

Participants included 1,584 women from the 2005 Cebu Longitudinal Health and 

Nutrition Survey. Using cluster analysis, we grouped individuals by the following six CM 

genetic risk scores: triglycerides (TG), high-density lipoprotein (HDL-C), Low-density 

lipoprotein (LDL-C), blood pressure (BP), IR, and C-reactive protein (CRP). Using linear 

regression and multinomial logistic regression (mlogit) models we assessed how these 

genetic risk clusters, along with anthropometric, dietary, and other environmental factors 

predicted CM trait levels and CM clusters.  

We identified 5 distinct genetic risk clusters: (1) Low CM risk variants, (2) Increased 

TG/BP variants, (3) Increased HDL-C variants, (4) Increased IR/BP variants, and (5) 

Increased LDL-C variants. Belonging to any one of the genetic risk clusters (as compared to 

the Low CM risk variants cluster) predicted increased levels in at least two CM traits (or 

decreased levels in terms of HDL-C).   
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Previous research found five CM risk clusters: (1) Healthy, (2) Low HDL-C, (3) 

Elevated BP, (4) Insulin resistant, and (5) Elevated CRP. In the mlogit, we found being in the 

Increased TG/BP variants cluster (vs. the Low CM risk variants cluster) increased the 

likelihood of being in the Elevated BP cluster (odds ratio [OR]= 1.71, 95% CI [1.03, 2.84]) 

and the Elevated CRP cluster (OR= 1.90, 95% CI [1.10, 3.27]).  We also found that elevated 

WC increased the likelihood of being in all the CM risk clusters, whereas OW status only 

increased the likelihood of being in the Elevated BP and Elevated CRP clusters. In addition, 

a decrease in the percentage of energy intake from saturated fat uniquely increased the 

likelihood of being in the Low HDL-C cluster (OR= 0.94, 95% CI [0.90, 0.97]). 

Genetic risk clusters, along with anthropometric and dietary factors, predicted CM 

trait levels and patterns in this population. By capturing the intricate relationship of these 

modifiable and non-modifiable factors with common complex traits we can further 

understand how to effectively reduce and prevent CM risk and its associated diseases. 

BACKGROUND 

  Individually, common genetic variants only minimally explain common complex 

diseases such as cardiovascular disease (CVD), type 2 diabetes, and other related 

cardiometabolic (CM) conditions.79 Jointly considering the relatively small effects of these 

individual SNPs may better capture underlying genetic risk associated with these diseases. 

Recently, genetic risk scores have been implemented to interrogate the joint impact of 

multiple SNPs of CM disease.80-84  

Some studies create a genetic risk score by summing up the number of risk alleles 

pertaining to a single CM phenotype, while other studies similarly construct a genetic risk 

score, but choose risk alleles associated with a CM disease of interest. The latter method 
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combines risk variants pertaining to multiple phenotypes with the intention of better 

capturing the intricate relationship between genetics and common complex disease. Still, the 

majority of these studies find slight to no improvement in classifying at-risk individuals. 82, 83 

This approach masks the actual patterning of genetic risk across phenotypes. Perhaps, 

understanding this heterogeneity in genetic risk clustering may aid in predicting and 

preventing CM disease,79, 85, 86 especially since these diseases themselves display a specific 

patterning of risk factors including insulin resistance (IR), dyslipidemia, hypertension, and 

inflammation.87, 88   

Driven by the downfalls of using a single genetic risk score approach, we used a novel 

application of cluster analysis to identify groups of women from the 2005 Cebu Longitudinal 

Health and Nutrition Survey (CLHNS), who share similar patterns of genetic risk across 

multiple CM phenotypes. Since CM risk factors tend to co-occur together, we hypothesized 

that genetic risk across CM phenotypes would also do the same. Cluster analysis is a valuable 

approach because it allows for the heterogeneous combinations of risk factors, which likely 

better reflect the underlying susceptibility for disease. To accomplish this goal, we first 

created six genetic risk scores, each score representing a summation of the genetic risk 

variants associated with a single CM trait. Next, we identified groups of women with similar 

profiles of genetic risk by using cluster analysis on the six genetic risk scores. We then 

examined how these genetic risk clusters related with CM risk in this population, while 

accounting for other factors such as age, diet, and anthropometry.  
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METHODS 

Survey design 

The women in this study are participants in the CLHNS, which is described in detail 

elsewhere.89 Briefly, the CLHNS is a community-based cohort of women and their index 

children followed since 1983. The original participants included all pregnant women in 33 

randomly selected communities of Metro Cebu, who gave birth between May 1, 1983, and 

April 30, 1984. A baseline interview was conducted among women in their 6th to 7th month 

of pregnancy. Subsequent surveys took place immediately after birth, bimonthly for 2 years, 

in 1991, 1994-5, 1998-99, 2002, and 2005. In 2005, fasting blood was drawn for CVD 

biomarkers and genetics. Here we use data from the mother cohort still participating in the 

2005 CLHNS. All data were collected under conditions of informed consent with 

institutional review board approval from the University of North Carolina, Chapel Hill, USA. 

We excluded women who were pregnant at the time of blood draw, not fasting at the time 

of blood draw, and with C-reactive protein (CRP) levels >10 mg/L (a level representing 

current/recent illness rather than low-level basal inflammation).88 Even though we removed 

individuals with CRP levels >10 mg/L, we adjusted for the presence of any infectious 

symptoms at the time of blood collection to help control for any residual confounding in our 

analysis.1 1,584 women had complete biomarker, genetic, diet, socioeconomic, and 

anthropometric data. Medication use in this population was low: 0.1% took statins, 1.75% 

took diabetes medication, and 3% took anti-hypertensive medications. We adjusted for anti-

hypertensive medication use in our analysis. All data were collected with informed consent, 

using protocols approved by the institutional review board of the University of North 

Carolina, Chapel Hill. 
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Cardiometabolic biomarkers 

Fasting plasma CM biomarkers included triglycerides (TG), high-density lipoprotein 

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucose, insulin, and 

CRP. Blood samples were collected in participants’ homes in the morning after an overnight 

fast. Venous blood was collected in EDTA anti-coagulant vacutainer tubes. After mixing to 

inhibit clotting, glucose was measured immediately using the glucose dehydrogenase method 

(One Touch Ultra Blood Glucose Monitoring System, Lifescan Johnson and Johnson). Blood 

samples were stored on ice for no more than 2 hours and were then centrifuged to separate 

plasma.   

After separation, samples were frozen and remained frozen at -80 °C until ready for 

analysis.  Total lipid concentrations were measured at the Emory Lipid Research Laboratory 

using enzymatic methods with reagents from Beckman Diagnostics on the Beckman 

Diagnostics CX5 chemistry analyzer (Fullerton, CA). HDL-C was determined using the 

homogeneous assay for direct determination (Genzyme, Exton, PA). LDL-C was determined 

using the Friedewald formula, except if triglycerides exceeded 400 mg/dl then LDL-C was 

directly determined using a homogenous assay (Genzyme, Exton, PA). The Emory Lipid 

Research Laboratory is a participant in the CDC/NHLBI Lipid Standardization Program to 

ensure accuracy and precision of the determinations. Plasma insulin was measured using 

automated Bayer® ADVIA Centaur chemiluminescent methods.101  CRP concentrations were 

determined using a high sensitivity immunoturbidimetric method (Synchron LX20, lower 

detection limit: 0.1 mg/L). 

Other cardiometabolic biomarkers included homeostatic model assessment insulin 

resistance (HOMA-IR), and systolic and diastolic blood pressure (BP).  HOMA-IR was 
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calculated as 22.5/ (insulin × glucose). Systolic BP and diastolic BP were measured in 

triplicate after a 10 minute seated rest using a mercury sphygmomanometer. The mean of the 

three measurements was used. 

We used cutpoints for these biomarkers based on recommendations from the 

International Diabetes Federation, the American Heart Association, and other previously 

recognized and accepted cutpoints (Table 1).88, 96, 102, 103 Before using cutpoints to identify 

participants with impaired fasting glucose, we applied a glucose correction factor to all 

fasting glucose levels. Glucometers overestimate glucose concentrations in whole venous 

blood as compared with standard laboratory methods.140, 141 Therefore we subtracted 0.97 

mmol/l from fasting glucose values to obtain the best equivalent to venous plasma as 

analysed by a laboratory autoanalyser.140  The corrected fasting glucose values are reported 

in the analyses and tables.  

Anthropometry 

Body weight, height, and waist circumference (WC) were measured using standard 

techniques.104 BMI was calculated as the ratio of weight (kg) to height (m2). We used 

cutpoints for Asians to define overweight (OW) as BMI ≥ 23 kg/m2 and central adiposity as 

WC ≥ 80 cm.105 96 

Dietary data  

Dietary data were derived from two 24-hour dietary recalls and the mean intake was used 

in the analyses. Data were collected during in-home interviews performed by highly trained 

local field staff. A nutritionist reviewed all dietary recalls immediately after collection. When 

implausible values were found, interviewers revisited respondents for verification.  
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Energy and saturated fat intakes were calculated using the Philippines Food Composition 

Tables. 19, 106 

Sociodemographic and lifestyle characteristics 

Highly trained interviewers collected reproductive history data; this included menopausal 

status beginning in the 1991 survey. 

Socioeconomic status (SES) was measured by a factor score based on a principal 

components analysis of household ownership of key assets such as television, vehicles, and 

furniture.69  

Infectious illness was measured by asking participants if they were currently 

experiencing any symptoms of infection, consistent with prior research on CRP.52 Symptoms 

included runny nose, cough, fever, diarrhea, and sore throat, as well as the more general 

categories of flu, cold, and sinusitis. Responses were used to construct a summary variable 

indicating the presence or absence of any infectious symptoms at the time of blood 

collection. 

Environmental cleanliness and household hygiene was measured by a hygiene score 

based on data on the interviewer’s rating of cooking area, immediate area around the house, 

toilet type, and water source. The score ranges from 0 to 9 with larger values indicating 

greater cleanliness.52  

Genotyping, quality controls, and imputation 

The complete methods for direct SNP genotyping, quality control, and SNP imputation 

have been described previously.130 Briefly, genotyping was performed with the Affymetrix 

Genome-Wide Human SNP Array 5.0. Quality control procedures excluded: samples with 

<97% genotyping call rate; members of estimated first-degree relative pairs; SNPs with a call 
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rate < 90%; SNPs with a deviation from Hardy-Weinberg equilibrium (P <10−6); SNPs with 

≥ 3 discrepancies among duplicate pairs; SNPs with Mendelian inheritance errors among five 

CEPH trios and/or CEPH sample genotype discrepancies with HapMap. Genotype 

imputation was conducted with MACH using phased haplotypes from the 1000 Genomes 

Project in both CEU and CHB+JPT samples (June 2010 Release).131 In addition, we excluded 

any SNPs with poor imputation quality (MACH r2 < 0.3) or estimated minor allele frequency 

(MAF) ≤ 0.01.  

Genetic marker selection 

 The process of choosing SNPs is depicted in Figure 1. The SNPs used to create the 

genetic risk scores were selected by finding SNPs associated with the individual CM traits of 

interest: TG, HDL-C, LDL-C, systolic BP, diastolic BP, glucose, HOMA-IR, and CRP. We 

selected these SNPs from (1) genome-wide association studies (GWAS) conducted with our 

own study population,1, 7 (2) published GWAS of East and South East Asian cohorts,2, 8, 9 and 

(3) published GWAS of European descent cohorts, 5, 71, 72 if the specific trait lacked studies 

conducted in populations of Asian descent. We limited our selection of studies to cohort-

based studies and meta-analyses; case-control studies were not considered because we 

wanted to choose SNPs associated with the individual CM trait rather than the disease state. 

From the studies identified, we selected SNPs with a P < 5×10-8 in the original study 

population for further analysis; we increased this threshold to a P < 5×10-5 for those studies 

conducted in our own study population due to the smaller sample size in the CLHNS.  

 The original studies were used to identify the risk allele. We designated the risk allele 

as the allele associated with an increased level of the specified trait, except in the case of 

HDL-C, for which the allele associated with lower levels was designated. For each 
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individual, we coded imputed SNPs according to the dosage value or the expected number of 

copies of the risk allele (a continuous number between 0 and 2). This coding reflects the 

uncertainty in the imputation of the SNPs, for example a 1.5 suggests more uncertainty 

whereas a 1.9 suggests less uncertainty (an individual likely has two risk alleles). 

Six genetic risk scores were constructed, one for each of the following traits: (1) TG, 

(2) HDL-C, (3) LDL-C, (4) BP (containing systolic and diastolic BP risk variants), (5) IR 

(containing glucose and HOMA-IR risk variants), and (6) CRP.   

Before creating each genetic risk score, we chose a subset of SNPs with nominal 

significance (P <0.1) and directional consistency of the effect estimate in our study 

population. This was based on adjusted linear regression models of the natural log-

transformed CM trait on the individual SNP (see Model 2 in Methods). Then for each CM 

trait, we pruned SNPs for redundancy due to linkage disequilibrium (r2>0.2). To do this we 

used the --clump procedure in PLINK to create “clumps” of correlated SNPs.132 Each clump 

was represented by the top index SNP, designated as the SNP with the lowest P value (see 

Model 2 in Methods). Using these index SNPs, we calculated each genetic risk score by 

summing all of the risk alleles associated with the specific trait. We used simple counts of the 

total number of risk alleles rather than weighting by the effect of each SNP. We created an 

un-weighted score instead of weighting by the effect of each SNP because: 1) the current 

literature does not provide stable effect estimates of each SNP for each trait; 2) the outcomes 

(and thus effects) across studies were non-comparable (e.g. log-transformed trait vs. non-

transformed trait); 3) studies used populations of various sample sizes and ethnicities; 4) 

using weights from the CLHNS data itself would have introduced bias.  
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Cluster analysis 

We performed cluster analysis to identify groups of women with similar genetic risk 

score patterns using SAS PROC FASTCLUS (SAS version 9.2, SAS Institute, Cary, NC).  

This procedure implements the K-means clustering algorithm (least squares method).  K-

means clustering uses the Euclidean distance, computed from input variables, to assign 

cluster membership by minimizing the distance among subjects in a cluster while 

maximizing the distance between clusters.  The procedure first selects cluster seeds, a set of 

points calculated as a first guess of the cluster means.  Next it calculates the Euclidean 

distance from each subject to each cluster seed; each subject is assigned to the nearest seed to 

form temporary clusters.  The means of each of the temporary clusters are calculated and 

replace the seed values.  Distance calculation and member assignment progress in an iterative 

fashion until no further changes occur.108, 109 

 Final cluster solutions are sensitive to initial seed values. To remedy this problem and 

to use a more objective approach to picking a cluster solution we created an algorithm 

modified from a previous clustering algorithm.110 This algorithm performed 1,000 iterations 

of each cluster procedure using randomly generated initial cluster seeds.  For each of the 

1,000 cluster solutions it calculated the ratio of between-cluster variance to within-cluster 

variance or R2/ (1- R2), where R2, pooled across all variables, representing the ability to 

predict each input variable from the cluster.109 We wanted to maximize the ratio of between-

cluster variance to within-cluster variance and therefore wanted to find the largest R2.  The 

algorithm identified the iteration/cluster solution with the largest R2.110   
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The variables entered into the cluster analysis were sample-specific Z-scores of the 

six genetic risk scores: TG, HDL-C, LDL-C, BP, IR, and CRP. These genetic risk score 

variables were standardized because they did not have equal variance.   

Statistical Analysis 

 We conducted 2 sets of analyses: (1) linear regression models to examine the 

association of each genetic risk cluster with each of the CM traits; (2) a multinomial logistic 

regression model (mlogit) to examine the association of the genetic risk clusters with CM 

risk patterns. 

In the first analysis we used linear regression models to examine the association of 

the genetic risk cluster (coded as 5 dummy variables) with each of the CM traits. All traits 

were continuous and natural log-transformed to satisfy model assumptions of normally 

distributed residuals. Given the markedly skewed distribution of CRP concentrations and the 

presence of many values below the detectable level (0.1 mg/L) CRP values were natural log-

transformed after adding the constant 0.10.1  

Two linear regression models were examined. Model 1 was a linear regression model 

adjusted for age (categorical: ≤44 y, 45-49 y, 50-54 y, and ≥55 y) and principal components 

(PCs) representing population substructure among CLHNS subjects.133 PCs were constructed 

using the software EIGENSOFT. We assessed the association between each of the first 10 

PCs and each log-transformed CM trait to identify any potential ancestry explanatory PCs. 

The 7th PC was significantly associated with HDL-C, LDL-C, systolic BP, diastolic BP, and 

CRP (no PCs were significantly associated with log TG levels). Thus we included the first 7 

PCs as covariates in all analyses. Model 2 included covariates adjusted for in Model 1 plus 

additional adjustment for postmenopausal status (yes/no), OW status (BMI ≥ 23 kg/m2), high 
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WC (WC ≥ 80cm), % energy intake from saturated fat, energy intake, environmental 

hygiene, reported infectious illness (yes/no), anti-hypertensive medication use (yes/no), and 

SES.  The covariates chosen for adjustment in Model 2 were based on prior published studies 

in the CLHNS on these traits.52, 69, 115 We categorized age, BMI, and WC to account for their 

non-linear relationship with the log CM trait levels.   

In the second analysis we used an mlogit to examine how genetic risk clusters, along 

with anthropometric, dietary, and other environmental factors predicted CM patterns. Here 

CM patterns represent the results from a cluster analysis previously published in this 

population on the following biomarkers: TG, HDL-C, LDL-C, BP, glucose, HOMA-IR, and 

CRP; this cluster analysis used the same approach as described for the cluster analysis on 

genetic risk scores (see Methods). We found five biologically relevant groups, which we 

named according to their predominant CM characteristics: (1) Healthy, (2) Low HDL-C, (3) 

Elevated BP, (4) Insulin resistant, and (5) Elevated CRP (Figure 1).69 The outcome in this 

mlogit was one of the CM clusters, where the “Healthy” cluster served as the referent group. 

The mlogit included the same covariates as in Model 2. 

For regression analyses we used a statistical significance criteria of P <0.05 (2-sided). 

All regression analyses were performed with Stata 12.0 (Stata Corporation, College Station, 

TX, 2006). 

RESULTS 

The characteristics of all 1,584 women participants in the 2005 CLHNS are presented 

in Table 2.  In 2005, participants had a mean (SD) age of 48.4 (6.0) years. About 38% of 

women were postmenopausal, 53% had elevated WC, 60% were OW, 29% had elevated TG, 

82% had low HDL-C, 35% had elevated LDL-C, 36% had hypertension, 24% had elevated 
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fasting glucose, 16% had elevated HOMA-IR, and 20% had elevated CRP. Based on fasting 

glucose levels (≥ 7mmol/L), 8% of women were diabetic (although only 1.75% of women 

were taking medication). Results did not differ when we excluded these women in sensitivity 

analysis, thus we retained these women throughout our analysis. 

 Our selection strategy for candidate SNPs resulted in 13 TG, 19 HDL-C, 8 LDL-C, 9 

BP, 22 IR, and 46 CRP usable SNPs (Figure 1). After pruning to eliminate correlated SNPs 

in linkage disequilibrium (by trait), 9 TG, 9 HDL-C, 4 LDL-C, 2 BP, 3 IR, and 6 CRP SNPs 

were used in the construction of the genetic risk scores (Figure 1; Table 3). The means and 

distributions for the genetic risk scores are presented in Table 4. 

We conducted a series of cluster analyses with 3 to 6 clusters specified, and chose a 

5-cluster solution because it yielded distinct genetic risk score patterns and each cluster had 

sufficient numbers (each approximately >17% of the sample).110 The 5-cluster solution had 

an R2 = 0.39, indicating the clusters explained about 40% of the variance in genetic risk 

scores.   

We identified the five genetic risk clusters as: (1) Low CM risk variants, (2) 

Increased TG/BP variants, (3) Increased HDL-C variants, (4) Increased IR/BP variants, and 

(5) Increased LDL-C variants. We named the clusters according to what genetic risk score(s) 

had the highest/lowest mean relative to other clusters (Figure 2 and Table 4). The “Low CM 

risk variants” group represents low Z-scores for all of the genetic risk scores. Other 

characteristics of these clusters are highlighted in Table 2. 

The results from regressions from each log-transformed CM trait (except log diastolic 

BP) on the genetic risk clusters are shown in Tables 5A and 5B. The results for log diastolic 
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BP were similar to that of log systolic BP and were therefore not shown. Here we report the 

results from Model 2 since similar associations were found in Model 1.  

Belonging to the Increased TG/BP variants cluster (vs. the Low CM risk variants 

cluster) resulted in a 14% increase in TG levels (β= 0.14, 95% CI [0.07, 0.21]), a 7% 

decrease in HDL-C levels (β= -0.07, 95% CI [-0.10, -0.03]), and a 24% increase in CRP 

levels (β= 0.24, 95% CI [0.06, 0.43]).  

Belonging to the Increased HDL-C variants cluster (vs. the Low CM risk variants 

cluster) resulted in a 9% increase in TG levels (β= 0.09, 95% CI [0.02, 0.17]), a 9% decrease 

in HDL-C levels (β= -0.09, 95% CI [-0.12, -0.05]), and a 39% increase in CRP levels (β= 

0.39, 95% CI [0.20, 0.58]).   

Belonging to the Increased IR/BP variants cluster (vs. the Low CM risk variants 

cluster) resulted in a 2% increase in systolic BP levels (β= 0.02, 95% CI [0.00, 0.05]) and a 

31% increase in CRP levels (β= 0.31, 95% CI [0.13, 0.48]).    

Belonging to the Increased LDL-C variants cluster (vs. the Low CM risk variants 

cluster) resulted in a 4% increase in LDL-C levels (β= 0.04, 95% CI [0.00, 0.09]) and a 22% 

increase in CRP levels (β= 0.22, 95% CI [0.04, 0.40]).   

The results of the mlogit, with the outcome being one of the CM risk clusters (as 

compared to the Healthy cluster), are presented in Table 6. First looking at the genetic 

predictors, we found being in the Increased TG/BP variants cluster (vs. the Low CM risk 

variants cluster) increased the likelihood of being in the Elevated BP cluster (odds ratio 

[OR]= 1.71, 95% CI [1.03, 2.84]) and the Elevated CRP cluster (OR= 1.90, 95% CI [1.10, 

3.27]).  Next looking at non-genetic predictors, we found elevated WC increased the 

likelihood of being in all the CM risk clusters (while controlling for OW status), whereas 
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OW status only increased the likelihood of being in the Elevated BP and Elevated CRP 

clusters (while controlling for WC). In addition, a decrease in the percentage of energy intake 

from saturated fat uniquely increased the likelihood of being in the Low HDL-C cluster 

(OR= 0.94, 95% CI [0.90, 0.97]). 

DISCUSSION 

  In this study we sought out to identify groups of individuals with similar profiles of 

genetic risk across multiple CM phenotypes. Cluster analysis was a useful tool for identifying 

groups of individuals who share similar patterns of genetic risk scores. By using cluster 

analysis, we were able to capture the heterogeneity in patterns of genetic risk across various 

phenotypes. To our knowledge, cluster analysis has never been used before to create genetic 

risk patterns for CM associated traits. From this we were able to identify which genetic risk 

patterns most strongly predicted CM trait levels. We also found that these genetic risk 

clusters, as well as anthropometric and dietary factors, independently predicted CM risk 

patterns in this population. 

Belonging to any one of the genetic risk clusters (as compared to the Low CM risk 

variants cluster) predicted increased levels in at least two CM traits (or decreased levels in 

terms of HDL-C).  Interestingly, each genetic risk cluster most strongly predicted log CRP 

levels as compared to all other CM traits. The properties of the referent cluster, the Low CM 

risk variants cluster, likely drove these findings: this cluster had the lowest relative mean 

CRP genetic risk score compared to all other clusters.  

Among all the CM traits, we did not find an association between the genetic risk clusters 

and fasting glucose or HOMA-IR levels. This could simply reflect the lack of variation in 

these traits due to the low prevalence of IR/diabetes in this population, also noted by the 
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small size of the Insulin resistant CM cluster (n = 80) we previously found.69 Another 

possibility is that the effects of adiposity overwhelmed the effects of the genetic risk cluster 

on glucose and HOMA-IR levels. Levels of adiposity highly influence glucose and HOMA-

IR levels in our population as well as in other studies.62, 69, 87, 120 It is also important to note 

that the SNPs chosen for the IR genetic risk score came largely from studies conducted in 

European populations. Therefore these SNPs may not be tagging the appropriate functional 

variant in our population, which could also explain why we saw non-significant associations 

between the genetic risk clusters and glucose/HOMA-IR. 

Belonging to a specific CM cluster likely reflects variations in genetic risk and other 

modifiable and non-modifiable characteristics. Because CM risk factors tend to co-occur 

together, it seems likely that genetic risk across phenotypes would also do the same. In the 

mlogit, we found that being in the Increased TG/BP variants cluster (vs. the Low CM risk 

variants cluster) increased the likelihood of being in the Elevated BP and Elevated CRP 

clusters (vs. the Healthy CM cluster). It’s unclear why this genetic risk cluster predicted the 

Elevated CRP group. Perhaps using the mlogit decreased our power to detect genetic effects 

(due to the categorical nature of the predictor and the outcome). Further research is needed to 

understand how/whether genetic risk profiles translate to phenotypic risk profiles. 

In this same mlogit model (while adjusting for OW status) we found that WC was the 

most pervasive predictor of CM cluster membership, underscoring the adverse health effects 

of excess visceral fat deposition, assuming WC is an indicator of visceral fat. 142, 143 WC is 

among the best-established predictors of CM risk and past work in the CLHNS and studies in 

other Asian populations support this notion. 45, 52, 68, 70 We found that OW status only 

predicted membership to the Elevated BP and Elevated CRP clusters (when controlling for 
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WC). Research demonstrates that increased WC predicts CM abnormalities in both normal 

weight and OW individuals, highlighting the potential for visceral fat to influence 

development of CM risk factors independent of overall BMI status.44   

In relation to dietary intake, we found that a decrease in the percentage of energy intake 

coming from saturated fat uniquely predicted membership in the Low HDL-C cluster.  Most 

dietary recommendations suggest limiting saturated fat intake, since it elevates total and LDL 

cholesterol.  However, recent studies have shown that lauric acid has a more favorable effect 

on the total cholesterol to HDL cholesterol ratio than any other fatty acid, either saturated or 

unsaturated, primarily by increasing HDL-C levels.49 The most common cooking oil in Cebu 

is coconut oil, which is rich in lauric acid.116 Our results suggest that decreased saturated fat 

intake, perhaps from coconut oil, increase the likelihood of membership into the Low HDL-C 

cluster.  This is supported by recent findings by Feranil et al. that dietary coconut oil intake 

was positively associated with HDL-C levels in pre-menopausal CLHNS women.144   

Limitations of our study merit consideration. Our sample size is relatively small therefore 

replication of our results in other Asian populations would reinforce our findings. In our 

literature search we found differing numbers of candidate SNPs for each trait. Although we 

used the same criteria in our search regardless of the CM trait, the variation in the number of 

candidate SNPs could reflect the current state of the literature. In addition, there is concern 

with choosing SNPs from a European sample and applying them to an Asian sample, 

especially in terms of tagging the appropriate functional variant. We tried to mitigate this by 

choosing SNPs with nominal significance and directional consistent effect estimates in our 

study population, however due to the limited sample size in the CLHNS we may have lacked 

the power to detect a SNPs true effect.  Also, using a threshold of r2<0.2 for linkage 
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disequilibrium, still allows SNPs to partially tag the same underlying signal, potentially 

including some redundancy in the genetic risk score.  

A limitation of assigning names to the clusters is that not all individuals within a certain 

cluster necessarily share the ascribed characteristics. For example, in our “Low CM risk 

variants” cluster we found the average Z-scores for genetic risk scores were relatively low, 

but we cannot ascribe these low values to each individual in the cluster.  

In conclusion, by using cluster analysis we were able to find distinct patterns of 

genetic risk. This method made fewer assumptions and allowed for relationships among CM 

genetic risk scores to emerge from the data themselves.85 By finding combinations of genetic 

risk across multiple phenotypes, we can hopefully better explain the underlying genetic 

susceptibility for CM disease in this population, especially since these diseases themselves 

display a specific patterning of risk factors including IR, dyslipidemia, hypertension, and 

inflammation.87, 88 These genetic risk clusters, along with anthropometric and dietary factors, 

predicted both CM trait levels and patterns in this population. By capturing this intricate 

relationship of these modifiable and non-modifiable factors with common complex traits we 

can further understand how to effectively reduce and prevent CM risk and its associated 

diseases. 

 
 
 
 
 
 
 
 
 
 
 
  



 

Figure 5.1: Choosing of SNPs to include in the genetic risk scores 
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Figure 5.1: Choosing of SNPs to include in the genetic risk scores 
A schematic representation describing the process of choosing SNPs associated with the following CM traits. Parentheses indicate the specific study 
population in which analyses were conducted. *rs1268004 was not genotyped and no HapMap or 1000 Genomes imputed data was available. See 
Methods for further details. 
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Table 5.1. Criteria for defining elevated cardiometabolic risk 

Risk factors Cutpoint 

Triglycerides* ≥ 150 mg/dL 

HDL cholesterol* < 50 mg/dL 

LDL cholesterol† ≥ 130 mg/dL 

Systolic BP* ≥ 130 mm Hg 

Diastolic BP* ≥ 85 mm Hg 

Glucose* ≥ 100 mg/dL 

HOMA-IR‡ ≥ 4.65 mg/dL x µg/mL 

Diabetes* Fasting glucose ≥ 126 mg/dL 

CRP§ > 3.0 mg/dL 
*Cutpoints are defined by the IDF.96 †Cutpoint is defined by the National Cholesterol Education 
Program.102 ‡Cutpoint is defined by Stern et al.103 §Cutpoint is defined by the American Heart 
Association.88 



 

Figure 5.2: Mean Z-scores of fasting biomarkers by cardiometabolic cluster in Filipino women 
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Figure 5.2: Mean Z-scores of fasting biomarkers by cardiometabolic cluster in Filipino women 
Mean Z-scores by cardiometabolic cluster for the eight fasting biomarkers used as input variables in the cluster analysis 
for 1,584 Filipino women. 
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Table 5.2: Characteristics of 1,584 women participants in the 2005 CLHNS 

All women 
Low CM risk 

variants 

Increased 
TG/BP 
variants 

Increased 
HDL-C 
variants 

Increased 
IR/BP 

variants 

Increased 
LDL-C 
variants 

  (n= 1,584) (n= 335) (n= 296) (n= 268) (n= 357) (n= 328) 

Age (%) 
      

   ≤44 y 32.7 31 29.4 31 36.7 34.5 

   45-49 y 31.3 32.2 32.1 34.3 27.5 31.4 

   50-54 y 20.8 19.1 23.6 23.1 20.7 18 

   ≥55 y 15.2 17.6 14.9 11.6 15.1 16.2 
Postmenopau
sal (%) 

38.3 39.4 41.2 38.4 38.4 34.1 

Illness* (%) 27.4 28.1 31.4 26.1 27.2 24.4 

Anti-
hypertensive 
medication 
(%) 

3.5 4.5 5.4 2.2 2.5 2.7 

Energy intake 
(kcal) 

1,131.8 ± 
496.8 

1,105.4 ± 
500.9 

1,110.6 ± 
431.1 

1,148.3 ± 
491.9 

1,155.6 ± 
527.3 

1,138.7 ± 
518.0 

% Energy 
intake from 
saturated fat 

5.4 ± 4.1 5.4 ± 4.4 5.3 ± 4.0 5.4 ± 4.0 5.6 ± 4.1 5.3 ± 3.9 

Waist 
circumferenc
e (WC; cm) 

81.1 ± 10.9 81.6 ± 11.2 81.3 ± 10.8 80.7 ± 11.4 80.8 ± 10.6 81.1 ± 11.0 

Elevated 
WC‡ (%) 

52.6 55.8 53.7 50 49.6 53.7 

BMI (kg/m2) 24.4 ± 4.4 24.6 ± 4.3 24.4 ± 4.5 24.0 ± 4.3 24.3 ± 4.3 24.4 ± 4.4 
Overweight§ 
(%) 

60 62.7 60.8 56.7 59.7 59.8 

TG (mg/dL) 131.1 ± 85.0 127.0 ± 78.0 
151.6 ± 
120.9 

141.6 ± 91.7 114.2 ± 57.0 126.8 ± 66.2 

Elevated TG† 
(%) 

28.7 27.8 36.5 34 19.9 27.7 

HDL-C 
(mg/dL) 

41.0 ± 10.3 41.7 ± 9.7 39.3 ± 9.5 39.1 ± 10.6 41.2 ± 10.5 43.1 ± 10.6 

Low HDL-
C† (%) 

82.4 81.2 88.2 84.3 82.9 76.2 

LDL-C 
(mg/dL) 

119.7 ± 33.6 119.2 ± 35.6 122.1 ± 33.8 115.0 ± 29.8 118.3 ± 31.8 123.5 ± 35.5 

Elevated 
LDL-C† (%) 

35.3 34.9 37.8 30.2 35 37.8 

Systolic BP 
(mm Hg) 

119.8 ± 20.2 119.0 ± 18.4 121.3 ± 21.9 118.5 ± 18.9 121.0 ± 21.1 119.1 ± 20.4 

Diastolic BP 
(mm Hg) 

79.9 ± 12.5 79.4 ± 11.8 80.6 ± 12.9 78.8 ± 11.6 80.7 ± 13.1 79.5 ± 13.0 

Hypertension 
(%) 

36.2 34.9 39.9 32.5 38.7 34.5 

Glucose 
(mmol/L) 

5.5 ± 2.0 5.5 ± 1.9 5.3 ± 1.5 5.6 ± 2.3 5.7 ± 2.4 5.4 ± 1.6 
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Elevated 
glucose (%) 

23.5 23 21.6 25.4 25.5 22.3 

HOMA-IR 
(mmol/L x 
µIU/mL) 

3.0 ± 3.2 3.1 ± 3.0 2.8 ± 2.3 3.0 ± 3.4 3.1 ± 3.9 3.1 ± 3.2 

Elevated 
HOMA-IR 
(%) 

16 17.6 14.5 16.4 14.3 17.4 

Diabetecs† 
(%) 

8.2 7.2 6.4 9.7 8.4 9.5 

CRP (mg/L) 1.7 ± 2.1 1.5 ± 2.0 1.9 ± 2.3 1.9 ± 2.2 1.8 ± 2.1 1.7 ± 2.1 

Elevated 
CRP† (%) 

20 15.5 23.3 20.5 23 18 

Data are means ± SD or percentages. *Percentage of individuals reporting illness at time of blood draw †See 
Table 1 for cutpoint values; ‡Waist circumference ≥ 80cm; §Overweight, BMI ≥ 23kg/m2 
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Table 5.3: SNPs used to create trait specific genetic risk scores 

Trait Chr SNPs Nearest gene 

Non-
risk 

allele† 
Risk 
allele 

Risk 
allele 

frequency β‡ 95% CI P value 
TG 2 rs780092 GCKR G A 0.68 0.09 0.05 0.12 3.2E-7 

 
3 rs17023681 CNTN4 T G 0.29 0.12 0.07 0.17 2.6E-6 

 
3 rs7644509 Chr3q26.1 C G 0.19 0.08 0.04 0.13 3.5E-4 

 
7 rs2286276 TBL2-MLXIPL T C 0.90 0.05 -0.01 0.10 8.6E-2 
8 rs12678919 LPL G A 0.95 0.09 0.02 0.17 1.8E-2 
8 rs2001945 LPL C G 0.43 0.03 0.00 0.06 4.6E-2 
11 rs603446 ZNF259 T C 0.68 0.08 0.04 0.11 1.9E-5 
11 rs964184 APOC3 C G 0.24 0.15 0.11 0.19 3.4E-15 
18 rs1893838 ZBTB7C T C 0.35 0.07 0.03 0.10 1.6E-4 

HDL-C 2 rs1544857 SLC4A10 G C 0.17 -0.05 -0.08 -0.03 6.6E-6 
2 rs17548357 BIRC6 G A 0.02 -0.19 -0.28 -0.11 1.4E-5 
9 rs3739440 PAX5 C T 0.17 -0.07 -0.10 -0.04 2.3E-6 
11 rs11227643 11q13.1 C G 0.73 -0.05 -0.08 -0.02 5.8E-4 
11 rs964184 APOC3 C G 0.24 -0.02 -0.04 0.00 1.7E-2 
15 rs1532085 LIPC A G 0.43 -0.04 -0.07 -0.02 4.3E-5 
15 rs2070895 LIPC A G 0.62 -0.06 -0.09 -0.03 3.5E-5 
16 rs12708980 CETP T G 0.19 -0.05 -0.08 -0.03 6.6E-7 
22 rs138779 TOM1 T C 0.39 -0.05 -0.06 -0.03 2.4E-6 

LDL-C 1 rs629301 SORT1 G T 0.95 0.04 0.00 0.09 7.1E-2 
8 rs4570159  TNKS A G 0.69 0.04 0.02 0.06 1.0E-4 
16 rs4787103 A2BP1 G A 0.37 0.04 0.02 0.06 1.1E-3 
19 rs2738446 LDLR C G 0.24 0.02 0.00 0.05 3.5E-2 

BP 1 rs17030613 ST7L, CAPZA1 A C 0.42 0.01 0.00 0.02 4.7E-2 
4 rs16998073 FGF5 A T 0.48 0.01 0.00 0.02 6.1E-2 

IR 2 rs780092 GCKR T C 0.44 0.02 0.00 0.03 4.4E-2 
2 rs16856247 ABCB11 C T 0.35 0.02 0.00 0.03 7.3E-2 
8 rs11558471 SLC30A8 G A 0.59 0.03 0.01 0.05 1.2E-2 

CRP 1 rs12093699 CRP G A 0.08 0.25 0.07 0.42 6.0E-3 

 
1 rs876537 CRP T C 0.43 0.33 0.24 0.42 2.3E-12 

 
1 rs1892534 LEPR T C 0.15 0.11 0.00 0.23 5.3E-2 

 
6 rs1408282 6q16.1 G A 0.09 0.42 0.24 0.59 2.3E-6 

 
12 rs1169288 HNF1A C A 0.63 0.33 0.23 0.43 1.1E-10 

 
12 rs1169302 HNF1A G T 0.29 0.09 -0.01 0.19 8.2E-2 

*SNPs used to create genetic risk score after pruning (see Methods); †Risk allele as defined by the study from 
which it was chosen; ‡Coefficient represents % change in CM trait level per each risk allele; results from Model 
2 (see Methods) where the outcome was the natural-log transformed CM trait 

 



 

Table 5.4: Genetic risk score distribution for all 1,584 women participants and by genetic risk cluster  

All women 
Low CM risk  

variants 
Increased TG/BP 

variants 
Increased HDL-C  

variants 
Increased IR/BP 

variants 
Increased LDL-C 

variants 

Genetic risk 
score 

(n = 1,584) (n = 335) (n = 296) (n = 268) (n = 357) (n = 328) 

Mean Range Mean  Range Mean  Range Mean Range Mean  Range Mean  Range 

TG 9.4 ± 1.8 2.3 - 14.3 8.8 ± 1.6 4.3 - 14.2 11.1 ± 1.3 6.1 - 14.3 10.2 ± 1.6 5.1 - 14.1 8.1 ± 1.4 2.3 - 11.3 9.3 ± 1.6 3.6 - 13.9 
HDL-C 5.9 ± 1.6 1.6 - 11.7 5.0 ± 1.2 1.6 - 8.3 6.8 ± 1.4 2.9 - 11.2 7.4 ± 1.2 4.1 - 11.7 5.6 ± 1.4 2.5 - 9.3 5.3 ± 1.4 2.2 - 9.8 
LDL-C 4.5 ± 1.1 1.1 - 8.0 3.8 ± 0.8 1.3 - 5.8 4.3 ± 0.9 1.1 - 7.0 4.3 ± 0.9 1.2 - 6.9 4.4 ± 1.0 2.1 - 8.0 5.7 ± 0.7 4.0 - 8.0 
BP 1.8 ± 0.9 0.0 - 3.9 1.3 ± 0.7 0.0 - 3.8 2.6 ± 0.7 0.9 - 3.9 0.9 ± 0.6 0.0 - 2.3 2.3 ± 0.7 0.3 - 3.9 1.6 ± 0.7 0.0 - 3.0 
IR 3.0 ± 1.1 0.2 - 6.0 3.1 ± 1.0 0.4 - 6.0 2.8 ± 0.9 0.4 - 6.0 2.7 ± 1.1 0.3 - 6.0 3.8 ± 0.9 1.7 - 6.0 2.4 ± 1.0 0.2 - 5.0 
CRP 3.3 ± 1.4 0.1 - 8.5 2.3 ± 1.0 0.1 - 5.9 3.1 ± 1.3 0.2 - 7.5 3.9 ± 1.3 0.2 - 7.9 4.0 ± 1.3 0.9 - 8.5 3.3 ± 1.2 0.2 - 6.7 
Displayed means are mean ± SD 
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Figure 5.3: Mean Z-scores of genetic risk scores by genetic risk cluster in Filipino women 
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Figure 5.3: Mean Z-scores of genetic risk scores by genetic risk cluster in Filipino women 
Mean Z-scores by genetic risk cluster (GRS) for the six genetic risk scores used as input variables in the cluster analysis 
for 1,584 Filipino women. 



 

Table 5.5A: Association of genetic risk clusters with log-transformed lipid and blood pressure levels in 1,584 women 

Log TG Log HDL-C Log LDL-C Log systolic BP 

Covariates β 95% CI 
P 

value β 95% CI 
P 

value β 95% CI 
P 

value β 95% CI 
P 

value 
Genetic risk score cluster 
   Low CM risk variants Referent Referent Referent Referent 
   Increased TG/BP 
variants 

0.14 0.07 0.21 0.00 -0.07 -0.10 -0.03 0.00 0.03 -0.01 0.07 0.20 0.02 -0.01 0.04 0.19 

   Increased HDL-C 
variants 

0.09 0.02 0.17 0.01 -0.09 -0.12 -0.05 0.00 -0.03 -0.07 0.02 0.24 0.01 -0.02 0.03 0.67 

   Increased IR/BP 
variants 

-0.06 -0.13 0.00 0.07 -0.03 -0.06 0.01 0.17 0.00 -0.04 0.05 0.83 0.02 0.00 0.05 0.03 

   Increased LDL-C 
variants 

0.03 -0.05 0.10 0.49 0.02 -0.02 0.05 0.39 0.04 0.00 0.09 0.04 0.01 -0.02 0.03 0.69 

Age 
   ≤44 y  Referent Referent Referent Referent 
   45-49 y 0.07 0.01 0.13 0.02 0.00 -0.03 0.04 0.81 0.05 0.01 0.08 0.01 0.03 0.01 0.05 0.00 
   50-54 y 0.16 0.08 0.24 0.00 -0.01 -0.05 0.03 0.70 0.09 0.04 0.14 0.00 0.04 0.01 0.06 0.01 
   ≥55 y 0.13 0.04 0.23 0.01 0.01 -0.04 0.06 0.60 0.08 0.03 0.14 0.00 0.07 0.04 0.10 0.00 
Postmenopausal status 0.09 0.02 0.15 0.01 -0.02 -0.06 0.02 0.29 0.05 0.01 0.09 0.02 0.02 0.00 0.04 0.04 
Elevated WC† 0.18 0.11 0.24 0.00 -0.06 -0.10 -0.03 0.00 0.00 -0.04 0.04 0.95 0.05 0.03 0.07 0.00 
OW status‡ 0.12 0.05 0.19 0.00 -0.01 -0.04 0.03 0.67 0.08 0.04 0.12 0.00 0.04 0.02 0.06 0.00 
Energy intake 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.65 
Saturated fat intake§ 0.00 0.00 0.01 0.30 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.08 0.00 0.00 0.00 0.80 
Hygiene 0.00 -0.02 0.02 1.00 -0.01 -0.02 0.00 0.18 0.00 -0.01 0.01 0.99 -0.01 -0.01 0.00 0.03 
Illness 0.03 -0.03 0.08 0.33 -0.04 -0.07 -0.01 0.00 -0.01 -0.04 0.03 0.72 0.01 -0.01 0.03 0.31 
SES 0.02 -0.01 0.04 0.16 0.03 0.02 0.04 0.00 0.03 0.02 0.04 0.00 0.01 0.00 0.01 0.13 
Anti-hypertensive 
medication 

0.12 -0.01 0.25 0.08 -0.04 -0.11 0.03 0.31 -0.04 -0.12 0.04 0.31 0.13 0.09 0.18 0.00 

*Coefficient represents % change in CM trait level per unit change in predictor; results from Model 2 (see Methods) where the outcome was the natural-log 
transformed CM trait; †Waist circumference ≥ 80cm; ‡Overweight, BMI ≥ 23kg/m2; §Percentage of energy intake from saturated fat 
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Table 5.5B: Association of genetic risk clusters with log-transformed glucose, HOMA-IR, and CRP levels in 1,584 women 

Log glucose Log HOMA-IR Log CRP 
Covariates β 95% CI P value β 95% CI P value β 95% CI P value 

Genetic risk score cluster 
   Low CM risk variants Referent Referent Referent 
   Increased TG/BP variants -0.02 -0.06 0.02 0.31 -0.08 -0.17 0.02 0.11 0.24 0.06 0.43 0.01 
   Increased HDL-C variants 0.03 -0.01 0.07 0.13 -0.03 -0.13 0.07 0.54 0.39 0.20 0.58 0.00 
   Increased IR/BP variants 0.03 0.00 0.07 0.07 -0.04 -0.13 0.05 0.41 0.31 0.13 0.48 0.00 
   Increased LDL-C variants 0.00 -0.03 0.04 0.87 0.00 -0.09 0.09 0.99 0.22 0.04 0.40 0.02 
Age 
   ≤44 y  Referent Referent Referent 
   45-49 y 0.01 -0.02 0.04 0.37 -0.01 -0.09 0.06 0.74 0.03 -0.12 0.18 0.69 
   50-54 y 0.05 0.01 0.10 0.01 0.00 -0.10 0.11 0.97 0.04 -0.16 0.24 0.71 
   ≥55 y 0.07 0.02 0.11 0.01 -0.02 -0.14 0.10 0.75 0.27 0.03 0.51 0.03 
Postmenopausal status 0.01 -0.03 0.04 0.77 0.02 -0.07 0.10 0.73 0.22 0.04 0.39 0.01 
Elevated WC† 0.08 0.05 0.11 0.00 0.39 0.31 0.48 0.00 0.56 0.39 0.72 0.00 
OW status‡ 0.03 -0.01 0.06 0.16 0.38 0.29 0.47 0.00 0.46 0.29 0.64 0.00 
Energy intake 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.03 
Saturated fat intake§ 0.00 0.00 0.00 0.85 0.01 0.00 0.02 0.13 0.01 -0.01 0.02 0.55 
Hygiene -0.01 -0.02 0.00 0.12 -0.02 -0.05 0.00 0.07 -0.04 -0.09 0.01 0.16 
Illness 0.05 0.02 0.08 0.00 0.13 0.06 0.20 0.00 0.43 0.29 0.57 0.00 
SES 0.01 0.00 0.02 0.12 0.09 0.06 0.12 0.00 0.09 0.03 0.15 0.00 
Anti-hypertensive medication 0.01 -0.06 0.08 0.75 0.17 -0.01 0.34 0.06 -0.07 -0.40 0.27 0.69 
*Coefficient represents % change in CM trait level per unit change in predictor; results from Model 2 (see Methods) where the outcome was the natural-log 
transformed CM trait; †Waist circumference ≥ 80cm; ‡Overweight, BMI ≥ 23kg/m2; §Percentage of energy intake from saturated fat 
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Table 5.6: Association of genetic risk cluster with cardiometabolic risk cluster membership 

Elevated BP Low HDL-C Insulin resistant Elevated CRP 

 (n = 278) (n = 582) (n = 80) (n = 221) 

Covariates  OR 95% CI P value OR 95% CI P value OR 95% CI P value OR 95% CI P value 

Genetic risk score cluster 

   Low CM risk variants Referent Referent Referent Referent 
   Increased TG/BP 
variants 1.71 1.03 2.84 0.04 1.27 0.83 1.93 0.27 0.81 0.33 1.99 0.64 1.90 1.10 3.27 0.02 
   Increased HDL-C 
variants 1.43 0.84 2.43 0.19 1.28 0.84 1.96 0.26 1.55 0.68 3.51 0.29 1.73 0.98 3.04 0.06 
   Increased IR/BP 
variants 1.26 0.77 2.05 0.36 1.10 0.74 1.62 0.64 1.76 0.85 3.61 0.13 1.23 0.72 2.10 0.45 
   Increased LDL-C 
variants 1.15 0.71 1.88 0.57 0.87 0.59 1.30 0.50 1.02 0.47 2.22 0.96 1.07 0.62 1.83 0.81 

Age 

   ≤44 y  Referent Referent Referent Referent 

   45-49 y 2.02 1.30 3.14 0.00 1.04 0.75 1.44 0.82 1.01 0.51 1.99 0.98 1.06 0.68 1.65 0.78 

   50-54 y 3.41 1.94 6.01 0.00 1.19 0.74 1.91 0.47 1.69 0.74 3.88 0.22 1.45 0.80 2.64 0.22 

   ≥55 y 3.91 2.03 7.56 0.00 0.89 0.51 1.56 0.69 1.85 0.69 4.94 0.22 1.56 0.77 3.16 0.22 

Postmenopausal status 0.80 0.50 1.27 0.34 0.68 0.46 1.02 0.06 0.99 0.49 2.00 0.97 1.03 0.62 1.70 0.91 

Elevated WC† 2.83 1.79 4.48 0.00 1.44 1.00 2.08 0.05 4.04 1.91 8.56 0.00 2.56 1.58 4.14 0.00 

OW status‡ 1.61 0.99 2.62 0.05 0.88 0.61 1.27 0.49 1.48 0.67 3.28 0.33 3.23 1.86 5.62 0.00 

Energy intake 1.00 1.00 1.00 0.68 1.00 1.00 1.00 0.29 1.00 1.00 1.00 0.31 1.00 1.00 1.00 0.94 

Saturated fat intake§ 0.96 0.92 1.01 0.10 0.94 0.90 0.97 0.00 0.93 0.87 1.00 0.06 0.97 0.93 1.02 0.27 

Hygiene 0.97 0.84 1.11 0.66 1.10 0.98 1.23 0.10 0.93 0.75 1.15 0.50 0.91 0.78 1.05 0.19 

Illness 1.42 0.97 2.08 0.07 1.06 0.77 1.47 0.71 4.14 2.44 7.04 0.00 2.25 1.52 3.32 0.00 

SES 0.87 0.74 1.02 0.08 0.74 0.65 0.85 0.00 0.98 0.77 1.26 0.89 0.97 0.82 1.15 0.71 
Anti-hypertensive 
medication 5.70 1.99 16.30 0.00 2.18 0.71 6.63 0.17 1.96 0.47 8.15 0.36 2.20 0.69 7.04 0.18 
*Odds ratio represents likelihood of membership to specified cardiometabolic risk cluster (as compared to the Healthy cluster, n = 423) per unit change in 
predictor; results from mlogit adjusted for covariates in Model 2 (see Methods); †Waist circumference ≥ 80cm; ‡Overweight, BMI ≥ 23kg/m2; §Percentage of 
energy intake from saturated fat 
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Chapter 6: SYNTHESIS 

OVERVIEW OF FINDINGS 

 This research examined the interactive influence of dietary, lifestyle, and genetic 

factors on cardiometabolic (CM) traits and patterns in Filipino young adults and women. We 

used cross-sectional data from the 2005 Cebu Longitudinal Health and Nutrition Survey 

(CLHNS) of Filipino middle-aged women and their young adult offspring.  

 First we examined the patterns and determinants of CM risk factors among 

individuals in this study population. Our previous research identified five profiles of Filipino 

middle-aged women with similar CM characteristics and found modifiable risk factors for 

these CM patterns, including measures of adiposity and saturated fat intake. We extended 

this analysis to their young adult offspring, for whom prevention is still an important goal.  

In order to further understand the etiology of CM risk in these older women, we used 

genetic risk scores, which combined the relatively small additive effects of individual single 

nucleotide polymorphisms (SNPs), to better capture the complex relationship between 

genetics, adiposity, and CM risk. 

Lastly, we used cluster analysis to identify groups of these women who share similar 

patterns of genetic risk scores across multiple CM phenotypes. We then examined how these 

genetic risk clusters related with CM traits and patterns in this population, while accounting 

for other factors such as age, diet, and anthropometry. 

The following section provides a summary and synthesis of our primary findings. 
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CLUSTERING AND DETERMINANTS OF CARDIOMETABOLIC RISK  FACTORS 
AMONG FILIPINO YOUNG ADULTS 

 
  With modernization, CM disease risk has increased in low and middle-income 

countries. To better understand CM disease etiology, we evaluated the patterning of CM risk 

factors in a young adult population. This population displayed a low prevalence of 

overweight (18%). Despite leanness, we identified 5 distinct sex-specific clusters: (1) 

Healthy/high high-density lipoprotein cholesterol (HDL-C) (with the addition of high low-

density lipoprotein cholesterol, LDL-C, in women), (2) Healthy/low blood pressure (BP), (3) 

High BP, (4) Insulin resistant (IR)/high triglycerides (TG), (5) High C-reactive protein 

(CRP). Though we did not identify a specific cluster primarily defined by low HDL-C, over 

65% of men and 70% women had this trait, making low HDL-C the most pervasive CM risk 

factor. While our analysis found relatively similar CM risk clusters among men and women, 

the predictors of these clusters varied by sex. Perhaps as these young adults age more distinct 

CM patterns between men and women will emerge.  

 In both men and women, decreased % energy intake from saturated fat predicted 

membership in the High CRP group when compared to the two Healthy clusters. In addition, 

a decrease in % saturated fat intake predicted membership in the High BP group in women, 

compared to the Healthy/high HDL-C/high LDL-C group. The association of saturated fat 

intake with healthy CM profiles could reflect the types of saturated fats consumed in this 

population. Coconut oil, the most common and traditional cooking oil in Cebu, is rich in 

lauric acid.116 Lauric acid improves the total cholesterol to HDL-C ratio, more than any other 

saturated or unsaturated fatty acid, primarily by increasing HDL-C levels.49 Other studies 

have found diets rich in coconut oil or in saturated fat do not alter markers of inflammation, 
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fasting glucose, fasting insulin, homeostatic model assessment insulin resistance (HOMA-

IR), or incident diabetes.117, 118  

Men with poorer environmental hygiene (increased pathogenicity) were more likely 

to be in the High CRP cluster, compared to the two Healthy clusters. These results support 

previous research conducted in the CLHNS and reinforce the involvement of pathogen 

exposure in activating pro-inflammatory pathways.50-52 But why do we fail to observe this 

hygiene effect in women? Adiposity relates more strongly with inflammation in women than 

in men, thus it is possible the effects of adiposity overwhelmed the effects of the hygiene 

score in women.100, 119  

As expected, waist circumference (WC) and overweight (OW) status were the 

strongest predictors of membership in the IR/high TG cluster, underscoring the adverse 

health effects of excess visceral adipose tissue, for which WC serves as a proxy.120 WC is 

among the best-established predictors of CM risk and past work in the CLHNS and other 

populations support this notion. 45, 50, 52, 68 Research has also demonstrated that increased WC 

predicts CM abnormalities in both normal weight and OW individuals, highlighting the 

potential for visceral fat to influence the development of CM risk factors, independent of 

body mass index (BMI). 121 

In conclusion, despite leanness, cluster analysis found patterns of CM risk. While 

measures of adiposity predicted some of these patterns, modifiable factors such as dietary 

intake and pathogen exposure also independently predicted cluster membership. This 

emphasizes the importance monitor and screen lean individuals for CM risk and future CM 

diseases, especially in Asian populations where the risk of CM diseases is elevated at a lower 

BMI (likely due to increased visceral fat at lower BMIs).92 
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GENETIC RISK SCORE AND ADIPOSITY INTERACT TO INFLUE NCE 
TRIGLYCERIDE LEVELS IN A COHORT OF FILIPINO WOMEN  
 

In this study we sought to: create three genetic risk scores relating to CRP, HDL-C, 

and TG traits, examine the ability of these scores to explain the variation in these traits, and 

test whether these genetic risk scores interact with adiposity to influence trait levels. Here 

participants included middle-aged Filipino women, for whom CM risk is more established. 

  The genetic risk score explained a greater proportion of variance in the specified trait 

than any given individual SNP. In addition, we found that for individuals with a higher TG 

genetic risk score, having either an elevated WC or being OW/obese amplified the genetic 

risk score’s effect by further increasing TG levels. While for individuals with a lower TG 

genetic risk score, measures of adiposity made almost no difference in TG levels. 

Interestingly for those women with a low TG genetic risk score and elevated levels adiposity, 

their predicted levels of TG equaled those of women with a high genetic risk score without 

any adverse levels of adiposity.   

In support of our results, recent work using the same study population found that 

central obesity might accentuate the effect of the TG-increasing allele of an APOA5 variant.7 

In addition, previous research has implicated several variants in the LPL gene (a gene 

included in our genetic risk score) as having an interactive effect with central adiposity on 

TG levels and the ratio of TG to HDL-C.127 128 However, we did not find significant 

interactions between these individual loci and adiposity on TG levels, perhaps indicating that 

the interactive effect is driven by a collective result of all SNPs in the TG genetic risk score. 

In conclusion, our results suggest for individuals with a high genetic predisposition to 

elevated TG levels, reducing adiposity could possibly prevent increases in TG levels and 

thereby reduce the likelihood of CM diseases. Replication of these results in larger study 
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populations is needed to support the potential clinical and public health utility of targeted 

prevention efforts using genetic profiling.   

IDENTIFICATION OF GENETIC RISK PROFILES ACROSS MULT IPLE 
CARDIOMETABOLIC PHENOTYPES IN FILIPINO WOMEN  

 
In this study we sought out to identify groups of middle-aged Filipino women with 

similar profiles of genetic risk across multiple CM phenotypes. We then examined how these 

genetic risk scores, along with anthropometric and dietary factors, predicted CM trait levels 

and patterns in this population.  

By using cluster analysis, we were able to capture the heterogeneity in patterns of 

genetic risk across various phenotypes. We identified five genetic risk clusters as: (1) Low 

CM risk variants, (2) Increased TG/BP variants, (3) Increased HDL-C variants, (4) Increased 

IR/BP variants, and (5) Increased LDL-C variants.  

Belonging to any one of the genetic risk clusters (as compared to the Low CM risk 

variants cluster) predicted increased levels in at least two CM traits (or decreased levels in 

terms of HDL-C).  Each genetic risk cluster most strongly predicted log CRP levels as 

compared to all other CM traits. The properties of the referent cluster, the Low CM risk 

variants cluster, likely drove these findings: this cluster had the lowest relative mean CRP 

genetic risk score compared to all other clusters.  

Among all the CM traits, we did not find an association between the genetic risk 

clusters and fasting glucose or HOMA-IR levels. This could simply reflect the lack of 

variation in these traits due to the low prevalence of IR/diabetes in this population.69 Another 

possibility is that the effects of adiposity, one of the strongest predictors of glucose and 

HOMA-IR levels, overwhelmed the effects of the genetic risk cluster.62, 69, 87, 120 It is also 

important to note that the SNPs chosen for the IR genetic risk score came largely from 
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studies conducted in European populations, therefore these SNPs may not be tagging the 

appropriate functional variant in our population, which could also explain why we saw non-

significant associations between the genetic risk clusters and glucose/HOMA-IR. 

In a multinomial logistic regression (mlogit), we found that being in the Increased 

TG/BP variants cluster (vs. the Low CM risk variants cluster) increased the likelihood of 

being in the Elevated BP and Elevated CRP clusters (vs. the Healthy CM cluster). It’s 

unclear why this genetic risk cluster, as opposed to the Increased IR/BP variants cluster, 

predicted the Elevated CRP group. Further research is needed to understand how/whether 

genetic risk profiles translate to phenotypic risk profiles. 

In this same mlogit model (while adjusting for OW status) we found that WC was the 

most pervasive predictor of CM cluster membership. WC, a proxy for visceral fat, is among 

the best-established predictors of CM risk and past work in the CLHNS and studies in other 

Asian populations support this notion. 45, 52, 68, 70 We found that OW status only predicted 

membership to the Elevated BP and Elevated CRP clusters (while adjusting for WC). 

Research demonstrates the potential for visceral fat to influence development of CM risk 

factors independent of overall BMI status.44   

In relation to dietary intake, we found that a decrease in the percentage of energy 

intake coming from saturated fat uniquely predicted membership in the Low HDL-C cluster. 

The most common cooking oil in Cebu is coconut oil, which is rich in lauric acid.116 Earlier 

studies have shown that lauric acid has a more favorable effect on the total cholesterol to 

HDL cholesterol ratio than any other fatty acid, either saturated or unsaturated, primarily by 

increasing HDL-C levels.49 This result is supported by recent findings by Feranil et al. that 
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dietary coconut oil intake was positively associated with HDL-C levels in pre-menopausal 

CLHNS women.144   

In conclusion, genetic risk clusters, along with anthropometric and dietary factors, 

predicted CM trait levels and patterns in this population. By understanding how these 

modifiable and non-modifiable factors predict common complex traits we can further 

recognize how to effectively reduce and prevent CM risk and its associated diseases. 

LIMITATIONS  

 Several limitations warrant mention. Migration of the more educated, urban segment 

of the original cohort has left us with a sample that is no longer representative of the 

population from which it was drawn.89 Compared with those lost to follow-up, individuals 

who participated in the 2005 survey were less educated and came disproportionately from 

rural and poorer households. Given that permanent migrants from the Metro Cebu area were 

not followed, the remaining sample is therefore selective of households with more residential 

stability and lower SES.  

Our study is cross-sectional since CM biomarkers were only measured in the 2005 

CLHNS survey. Due to the nature of this study we cannot determine when CM risk first 

developed. This limits our ability to infer causality. Since the CLHNS was not originally 

designed with the study of CM risk in mind, some of the measures are adequate, but not 

ideal, for our research aims. For example, dietary intake was measured using two 24-hour 

recalls, which may not represent usual intake at the time of each survey. However, such 

dietary recalls can appropriately rank an individual’s intake and thus accurately predict a 

variety of biological and health outcomes. Prior peer-reviewed publications utilized this diet 

recall data.55, 116, 145 
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Regarding cluster analysis, a limitation of assigning names to the clusters is that not 

all individuals within a certain cluster necessarily share the ascribed characteristics. For 

example, in our “Low CM risk variants” cluster we found the average Z-scores for genetic 

risk scores were relatively low, but we cannot ascribe these low values to each individual in 

the cluster.  

In our literature search we found differing numbers of candidate SNPs for each trait. 

Although we used the same criteria in our search regardless of the CM trait, the variation in 

the number of candidate SNPs could reflect the current state of the literature. In addition, 

there is concern with choosing SNPs from a European sample and applying them to an Asian 

sample, especially in terms of tagging the appropriate functional variant. We tried to mitigate 

this by choosing SNPs with nominal significance and directional consistent effect estimates 

in our study population, however due to the limited sample size in the CLHNS we may have 

lacked the power to detect the SNPs true effect.  

Using a threshold of r 2<0.2 for linkage disequilibrium, still allows SNPs to partially 

tag the same underlying signal, potentially including some redundancy in the genetic risk 

score. While we used an un-weighted approach to create our genetic risk scores, it may be 

possible in the future to obtain stable and accurate estimates of genetic variants for use in a 

weighted risk score, which could improve predictability of CM risk.  

Lastly, our sample size is relatively small, especially in the scope of genetic 

epidemiology studies; therefore replication of our results in larger populations would 

reinforce our findings.  
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SIGNIFICANCE AND PUBLIC HEALTH IMPACT 

  This study addresses an important international public health issue: understanding the 

multifactorial etiology of CM diseases. Research demonstrates that CM risk factors tend to 

co-occur and may be causally interrelated.23, 87 Furthermore, differences in the prevalence 

and patterns of co-occurrence of CM risk factors likely reflect variation in diet, lifestyle, and 

genetics. However, there is insufficient research on the interplay between these modifiable 

and non-modifiable factors and how they relate to CM risk patterns. In this study we used 

innovative methods to account for potential synergistic effects.  

Here we utilize data from the CLHNS, which contains detailed diet, lifestyle, and 

genetic data; this unique data along with the rapid nutrition and lifestyle transition make the 

CLHNS an ideal dataset for our study aims. These findings could apply not only to Asians 

but to more modernized countries such as the U.S.  

Despite the population’s young age, lack of clinical disease, and relative leanness, 

cluster analysis identified distinct patterns of CM risk factors in Filipino young adults. By 

using cluster analysis we made fewer assumptions regarding the underlying etiology and 

allowed relationships among CM risk factors to emerge from the data themselves. As 

expected, measures of adiposity predicted specific CM risk patterns. However, diet and 

environmental factors also independently predicted risk factor clustering. This emphasizes 

the importance of screening both lean and overweight individuals for CM risk, especially in 

Asian populations where the risk of CM diseases is elevated at lower BMI.92 Finding 

modifiable and non-modifiable predictors of CM risk in early adulthood could help inform 

targeted prevention efforts for future CM disease. 
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To further understand the etiology of CM risk in middle-aged Filipino women, for 

whom CM risk is more established, we used genetic risk scores, which combined the 

relatively small additive effects of individual single nucleotide polymorphisms (SNPs), to 

better capture the complex relationship between genetics, adiposity, and CM risk. Our results 

suggest that for individuals with a high genetic predisposition to elevated TG levels, reducing 

adiposity could possibly prevent increases in TG levels and thereby reduce the likelihood of 

adverse health outcomes such as CM disease. Replication of these results in larger study 

populations is needed to support the potential clinical and public health utility of targeted 

prevention efforts using genetic profiling. 

 Lastly, we used a novel application of cluster analysis to identify groups of these 

Filipino women who share similar patterns of genetic risk scores across multiple CM 

phenotypes. By finding combinations of genetic risk across multiple phenotypes, we can 

hopefully better explain the underlying genetic susceptibility for CM disease in this 

population, especially since these diseases themselves display a specific patterning of risk 

factors including insulin resistance, dyslipidemia, hypertension, and inflammation.87, 88 These 

genetic risk clusters, along with anthropometric and dietary factors, predicted both CM trait 

levels and patterns in this population.  

In summary, by capturing the intricate relationship of these modifiable and non-

modifiable factors with common complex traits we can further understand how to effectively 

reduce and prevent CM risk and its associated diseases.  

 



99 

DIRECTIONS FOR FUTURE RESEARCH 

  The CLHNS provided us with the unique opportunity to examine how modifiable and 

non-modifiable factors predicted CM risk. However, the cross-sectional nature of this study 

limits us in our ability to infer causality. With the collection of CM biomarkers in future 

follow-up surveys, we could examine how CM risk patterns change longitudinally and 

whether predictors (both genetic and environmental) for these patterns change longitudinally 

as well. This could provide insight to how CM risk evolves across the life course. In addition, 

collecting medical records or detailed mortality data, could help us further understand 

whether these CM traits and patterns actually predict the development of disease. 

 We found that dietary factors, specifically decreased saturated fat intake, predicted 

CM risk; however research demonstrates that the quality of foods consumed may better 

predict CM risk than the quantity.146, 147 Therefore in future work we could look at how 

dietary patterns or food groups predict CM risk in this population.  

 We used an un-weighted approach to create our genetic risk scores. However, it may 

be possible in the future, as more genetic studies in Asian populations get published, to 

obtain stable and accurate estimates of genetic variants for use in a weighted risk score. This 

weighted risk score could potentially improve predictability of CM risk. 

If genetic expression data becomes available in the CLHNS, we can observe how 

expression changes over time and with environmental stimuli. By studying these epigenetic 

modifications, we can perhaps understand the triggers for CM disease progression. With this 

expression data we could also examine the effects of epistatic interactions on CM risk. 

Epistatic interactions can occur when two genes are mutated (genetic–genetic interaction), 

when one gene is mutated and the other gene varies in expression (genetic–epigenetic 
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interaction), or when two genes simultaneously vary in expression (epigenetic–epigenetic 

interaction).148 

 We found that for individuals with a higher TG genetic risk score, having elevated 

levels of adiposity amplified the genetic risk score’s effect by further increasing TG levels, 

while for individuals with a lower TG genetic risk score, measures of adiposity made almost 

no difference in TG levels. Earlier research suggests that an intensive lifestyle intervention 

may mitigate the effect of the rs1260326 risk allele in the GCKR gene on higher TG levels.139  

However, replication of our results in larger studies is needed before further research (e.g. 

clinical trials) can examine whether weight-loss or lifestyle interventions could be useful for 

those with a genetic predisposition to elevated TG levels.  
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