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ABSTRACT
NIHA ZUBAIR: Novel Approach to Examine the Interawe Role of Dietary, Lifestyle,
and Genetic Factors on Cardiometabolic Risk
(Under the direction of Linda Adair)

With modernization, cardiometabolic (CM) diseasi has increased in low- and
middle-income countries. We sought to understandr{Skin these settings, both in young
adults, for whom prevention is an important goatj & an older population, for whom risk
is better established. Differences in the prevaetd patterns of co-occurrence of CM risk
factors likely reflect variation in diet, lifestyland genetics. Innovative methods are needed
to better understand the synergistic effects betvleese modifiable and non-modifiable
factors on CM risk.

We evaluated the patterning of CM risk factora iyoung adult population participating
in the 2005 Cebu Longitudinal Health and NutritBurvey (CLHNS) (n = 1,621). Using
cluster analysis, we grouped individuals by CM baokers and then assessed how diet,
adiposity, and environment predicted these CM elsstDespite the population’s youth and
leanness, cluster analysis found patterns of Ckl Yihile measures of adiposity strongly
predicted cluster membership, diet and environratsat independently predicted clustering.

Next, we aimed to capture the complex relationdleippveen genetics, adiposity, and CM
risk. Here we created genetic risk scores for mffeatory and lipid traits; these scores
combined the relatively small additive effectsmdividual SNPs in Filipino women in the

2005 CLHNS (n= 1,649). We found that each genétlcscore explained a greater



proportion of variance in the specified CM traiathany given individual SNP. In addition,
we observed that the triglyceride genetic risk sgnteracted with measures of adiposity to
influence triglyceride levels.

Lastly, we used cluster analysis to identify groapgzomen from the 2005 CLHNS (n=
1,584), who shared similar patterns of genetic aisloss multiple CM phenotypes. Here we
found five distinct genetic risk clusters. Theseaaje risk clusters along with measures of
adiposity and dietary factors, predicted CM trautdls and patterns in this population.

In conclusion, our results suggest that examinegstynergistic influence of modifiable
and non-modifiable factors on CM traits and patiezan help provide insight into the

etiology of CM diseases, and thus potentially infdargeted prevention efforts.
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Chapter 1. INTRODUCTION

OVERVIEW

Rapid nutritional and lifestyle changes in devehgptountries contribute to a
growing burden of overweight, visceral adipositydassociated cardiometabolic (CM)
diseases. Eighty percent of global deaths frometléseases occur in low- and middle-
income countries. These concerns are especialliypet for Asians: the World Health
Organization (WHO) concluded that the risk of CMs&d diseases is elevated for Asians
with a body mass index (BMI) greater than 23 Kg/suggesting the use of a lower cut-point
for overweight (OW). Research demonstrates thatriSkifactors tend to co-occur and may
be causally interrelated. Furthermore, differeringbe prevalence and patterns of co-
occurrence of CM risk factors likely reflect varat in diet, lifestyle, and genetics.
However, there is insufficient research on therpltey between these modifiable and non-
modifiable factors and how they relate to CM risltterns. In addition, gene-gene and gene-
environment interactions are particularly importentelation to complex traits such as CM
diseases and innovative methods are needed torgdooypotential synergistic effects.
Studying the interactive influence of dietary, $ifde, and genetic factors can help provide
insight into the etiology of CM diseases, and thigsin informing targeted prevention

efforts.



SPECIFIC AIMS AND OBJECTIVES

We used cross-sectional data from the 2005 Cebgituadinal Health and Nutrition
Survey (CLHNS) of Filipino middle-aged women andithyoung adult offspring. Since
1983 the CLHNS has collected detailed longituddeth from a cohort of women and their
offspring. The Metro Cebu area is the second larged most rapidly growing urban area in
the Philippines. In tandem with increasing modeatian, Cebu is experiencing a higher
prevalence of OW and associated CM risks, inclutliyygertension, elevated inflammation,
and adverse lipid profiles. The demographic andtihéends observed in Cebu represent
current trends occurring in Asia. The CLHNS is &que dataset in that it has detailed diet,
lifestyle, and genetic data; this combined with idygid nutrition and lifestyle transition make
the CLHNS an ideal dataset for our study.

Here we examined the patterns and determinantd/fofigk factors among individuals in
this study population. Our previous research idiedtifive profiles of Filipino middle-aged
women with similar CM characteristics: (1) Healt®) Elevated blood pressure (BP), (3)
Low high-density lipoprotein cholesterol (HDL-C¥)(Insulin resistant, and (5) Elevated C-
reactive protein (CRP). We found modifiable riaktbrs for these five CM patterns,
including measures of adiposity and dietary intakiext we extended this analysis to their
young adult offspring, for whom prevention is sétl important goal.

In order to further understand the etiology of Gbkkiin these older women, for whom
CM risk is more established, we used genetic riskes, which combined the relatively
small additive effects of individual single nucliele polymorphisms (SNPs), to better

capture the complex relationship between genatiposity, and CM risk.



Lastly, we used a novel application of cluster gsialto identify groups of these women
who share similar patterns of genetic risk scooeess multiple CM phenotypes. We then
examined how these genetic risk clusters relatéld @M traits and patterns in this
population, while accounting for other factors sashage, diet, and anthropometry.

The following describes the specific aims for gtigly:

Aim 1: Determine biologically relevant patterns ofco-occurrence of CM characteristics
in young adults and model the determinants of thes€M patterns. Previous research
used cluster analysis to identify biologically redat groups of middle-aged Filipino women
with similar CM characteristics. Here we used thme method in the young adult offspring;
variables used to create clusters included biomamepresenting hypertension,
inflammation, insulin resistance, and lipid abnolitres. We modeled the determinants of
these CM clusters in young adults, focusing on fiasiors such as adiposity and dietary
intake.

Aim 2: Develop genetic risk scores to better capture themplex relationship between
genetics, adiposity, and CM risk In this aim we developed genetic risk scores for
inflammatory and lipid traits in Filipino women;&ascore represents a summation of the
genetic risk variants associated with a single @t.tWe assessed the ability of these scores
to explain the variation in CM traits as opposedhttividual genetic variants. We also
examined whether measures of adiposity, one détiieagest predictors of CM risk,

interacted with the genetic risk scores to synéogily influence trait levels.



Chapter 2. LITERATURE REVIEW
SCOPE OF THE PROBLEM

Developing countries undergoing nutrition and lij#s changes display an increasing
burden of overweight (OW), visceral adiposity, @sdociated cardiometabolic (CM)
diseases; this emphasizes the need for reseaticlsia setting®*? These concerns are
especially pertinent for Asians. The World He@ttganization (WHO) concluded that the
risk of CM based diseases is elevated for Asiatis &body mass index (BMI) greater than
23 kg/nf, suggesting the use of a lower cut-point for OWthiese populations. At the same
BMI, Asians tend to have more percent body fateentral adiposity than other ethniciti€s.
In addition, studies show an increasing prevalaid¢he metabolic syndrome (MetS) in
Asian populationg*™*®

The demographic and health trends observed in Cebgitudinal Health and
Nutrition Survey (CLHNS) represent current trenai®tighout Asia. The wide range of
environmental, social, behavioral, and genetic datae CLHNS can help improve
understanding of the predictors of CM risk. Furthieis sample provides variation in CM
phenotype (e.g. high waist circumference in nonsehen the Philippines, a country with a
population of nearly 90 million, recent surveysrititged OW, cigarette smoking,
hypertension, high cholesterol levels, type 2 dieeand heart disease as emerging public
health issue& *"**Ischaemic heart disease was one of the top cafisdisage mortality in
2002, accounting for 10% of all deatlisAccording to the WHO, estimated disability

adjusted life years from heart disease are hightfra Philippines than in the U.S. or



China?! In addition, national survey data in the Philipgs found a high prevalence of the
following CM risk factors: low levels of high-demgiipoprotein cholesterol (HDL-C) in
60.2% of men and 80.9% of women, abdominal obésity’.7% of men and 35.1% of
women, blood pressure (BP) >130/85 mmHg in 33.3¢peltriglyceridemia in 20.6%, and
fasting glucose >100 mg/dL in 7.1%.A body of literature demonstrates that such G ri
factors tend to co-occur and may be causally iatated??° Differences in the prevalence
and patterns of co-occurrence of CM risk factdeslli reflect variation in diet, lifestyle, and
genetics. Studying the interactive influence otalig, lifestyle, and genetic factors can help
provide insight into the etiology of CM diseasasi éhus aid in creating targeted prevention

efforts, especially for at-risk Asian populations.

WHY STUDY PATTERNS OF CARDIOMETABOLIC RISK FACTORS?

Why not study individual risk factors?

A substantial literature links obesity to insulesistance, dyslipidemia, vascular
dysregulation, and inflammation, and consequettlglevated risk of CM diseas&s?®
These factors tend to cluster and together sigmfig predict CM disease, leading to the
definition of the MetS. The term MetS refers torauping of CM risk factors with a
supposed common underlying pathophysiologyVhile the MetS definition is frequently
used in research and clinical settiffgthere lacks a clear and consistent definitiothisf
term, leading to inconsistencies.

Why not simply diagnose individuals with metabsjindrome?

While the original concept of MetS has been uséhdre exist many concerns with

using this definition. One concern with MetS irdis the lack of research demonstrating

that MetS stems from a common underlying pathopmihygi®*>* treatment of MetS is no



different that treating the specific CM factorsgert>” **Research suggests that CM risk
depends not only on the diagnosis of MetS, buattteal clustering of CM risk factors
present®®® Another concern with MetS includes the arbitriagtusion/exclusion of

specific CM risk factors, for example inflammatdagtors are typically not included in MetS
definitions®’

The composite MetS definition ignores the hetereggnn the patterns of CM risk
factor clustering. Simply using this definitionutd obscure documented differences in the
prevalence and patterns of CM risk factors acrtissi@ age, and sex groups>?
Understanding these differences can provide insigbtthe etiology and treatment options
for CM diseases. As an example of the heterogemerisk factor patterning across
ethnicities, low HDL-C followed by elevated BP dne most prevalent components of the
MetS among Filipinos, whereas in the United Statetominal obesity followed by low
HDL-C are the most prevalent MetS componéhtdletS is becoming more common in
young adults as rates of obesity incre@s& therefore understanding the prevalence and
patterning of CM risk factors in younger adults ni&yp in the prevention of future CM
disease. In addition, many studies show sex diffsge in the prevalence and patterns of CM

risk factors?® 4

thus we examined sex differences between CMfaistors in young adults
in the CLHNS.

The MetS definition typically includes 5 basic iodiors: central obesity, elevated
triglycerides (TG), low HDL-C, elevated BP, andwelted fasting plasma gluco$e By
simply using this definition one fails to includedicators, such as inflammatory markers,

important in predicting CM outcomes. Specificallgsearch shows that elevated C-reactive

protein (CRP) levels, often not included in thessla MetS definition, predict cardiovascular



disease (CVD) and type 2 diabetes independent ¢8 Mtus? In addition, evidence from
western populations shows that such inflammatariofa co-occur with other MetS risk
factors?® In order to allow for flexibility in the CM biontiers we examined the clustering
of individual CM risk factors rather than apply &t8 definition.
Gaps in cardiometabolic risk factor clustering

Few studies look at how CM risk factors clustef* **The substantial variability in
exposures and outcomes among individuals in theNE ldnhances the likelihood that we
can identify significant and clinically importarglationships of diet and lifestyle on CM risk
factors. Our previous research identified five pesfof Filipino middle-aged women with
similar CM characteristics: (1) Healthy, (2) Eles@BP, (3) Low HDL-C, (4) Insulin
resistant, and (5) Elevated CRP. We found modd#iaisk factors for these five CM
patterns, including measures of adiposity and atgdrfat intake. Differences in the
prevalence and patterns of co-occurrence of CMfastors likely reflect diet, lifestyle, and
genetics. Therefore we aimed to study the interadtifluence of these factors, with the

purpose to provide insight into the etiology of Cideases.

HOW DO DIETARY, ENVIRONMENTAL, AND ANTHROPOMETRIC F ACTORS
INFLUENCE CARDIOMETABOLIC RISK?

As low- and middle-income countries undergo theition transition, large shifts in
diet and activity patterns coincide with urbaniaatand economic developméftThis
rapid transition allows us to capture changes @maaot capture so readily in the U.S. These
changes include: less physical activity and ina@daonsumption of fat, caloric sweeteners,
and meaf® Such diet and physical activity changes have lskemn to influence CM risk

factors. For example, Yao and colleagues fountialaet high in carbohydrates, low in



polyunsaturated fat, and low in fruits and vegetahtas associated with an adverse lipid
profile, independent of body fatness. They alsstban independent beneficial effect of
physical activity on HDL-C and fasting insufth.Evidence also suggests that diet and
lifestyle can simultaneously affect CM risk. Foraeple, a study conducted in a Gambian
population showed that a high fat diet did not itesuan atherogenic lipid profile in a lean
population with a high level of occupational adv®

Developing countries like the Philippines are elgraring large shifts in diet and
activity patterng® The traditional Filipino diet contains high amosiof refined
carbohydrates and sodium, accompanied by low ammairgrotein. Filipinos typically
consume refined white rice at every meal, whilestoning little animal foods and fat
compared to western populations. Coconut oilRhpinos’ main source of fat, contains
notably high levels of lauric acid and recent stsdiave shown that lauric acid has a more
favorable effect on the total cholesterol to HDlolgsterol ratio than any other fatty acid,
either saturated or unsaturated, primarily by iasieg HDL-C level$? In regards to
physical activity, Filipinos traditionally engagadhigh amounts of due to the large physical
demands of work.

Other environmental factors include infection amthpgenicity>*>? According to a
2004 WHO report, infectious diseases account farenttvan 30% of all mortality in
Southeast Asia® Exposure to a pathogenic environment serves &snafy source of
inflammatory stimuli, and results in elevated lesvet CRP. Earlier investigations in CLHNS
samples showed evidence of the role of exposuaegptthogenic environment in predicting

plasma CRP levefé.



Excess adiposity is one of the strongest predicib@M disease and risk:>’ The
lifestyle changes described above contribute tmaigg burden of OW, visceral adiposity,
and thus associated CM disea¥e¥.These concerns are especially pertinent for Asians
compared with Caucasians, Asians have increasedraisadiposity and greater insulin
resistance at similar levels of BN

Prior work in CLHNS found substantial age and sactrends in weight among adult
women, notably a nearly 7-fold increase in OW avén-year periof® This increase is
associated with adverse CM profiles, including htgresion, elevated markers of
inflammation, and adverse lipid profiles ®’ ®®waist circumference (WC), a proxy for
visceral adipose tissue, is among the best-edtaolipredictors of CM risk and past work in
the CLHNS and other Asian populations supporttlbison*> °? ®®"®Research has also
demonstrated that increased WC predicts CM abndresain both normal weight and
OW/obese individuals, highlighting the potential Yosceral fat to influence development of
CM risk factors independent of overall BMI stafis.

Although research demonstrates that these dietaxyronmental, and
anthropometric factors associate with CM risk fesitgolely looking at these characteristics,
without accounting for genetics, will never provaeomprehensive understanding of the
etiology of CM diseases. Therefore we also assds@djenes influence CM risk in this

population.

HOW DO GENES AFFECT CARDIOMETABOLIC RISK?

Previous research has found SNPs associated vatifisgCM risk factors such as:
TG, HDL-C, low-density lipoprotein (LDL-C), systaliBP, diastolic BP, glucose,

homeostatic model assessment insulin resistance A#®\iand CRP- 2 > % "L "G5 ayeral



studies have tried to identify underlying geneis& factors for MetS, but no study has
successfully found genetic variants that are shayeall the components of MetS,
challenging the view that MetS has a common getetiground>"> MetS is a complex
trait with numerous features. Due to its hetereggnn clustering of CM risk factors, MetS
probably results from an interaction of dietarfestyle, and genetic factofS$This
complexity makes it difficult for the identificatoof replicable genetic associations that
might eventually form the basis of clinical prediettests for MetS® Therefore we found it
essential to study the interactions between gene-gad gene-environment and their

associations with CM risk factor patterns.

HOW DO GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS RELATE
TO CARDIOMETABOLIC RISK?

Previous studies have shown that gene-gene andeg@im®nment interactions
associate with specific CM risk factors; in thigise “environment” represents any non-
genetic measure. In a study looking at pairwiseeggame interaction, Tam et al. confirmed
the associations of two common genetic polymorphishiCK andGCKRand their
interaction on fasting plasma glucose in Chinesdta@nd adolescenf5. As an example of
gene-diet interaction, a recent Japanese studylfawsignificant interaction between the
CDKAL1 polymorphism and dietary energy intake that infliced glucose regulation,
possibly through impaired insulin secretidnRecent work in the CLHNS found that central
obesity might accentuate the effect of the TG-iasieg allele of adPOA5variant’
Additionally, earlier research in this study pogida found the first evidence that exposure
to a pathogenic environment may modify the genefluence at thedNF1A LEPRand

6q16.1loci on plasma CRP levels.
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These studies, while verifying the notion that iatéions between genes, diet,
anthropometric, and other environmental factorkigrfce CM traits, only examined pair-
wise interactions. Complex diseases are probahlged by interactions between multiple
genes and environmental factétsyhich may explain why many of the pair-wise
interactions found are rarely replicated. Therefarthis study we used innovative methods

to examine these effects.

WHAT METHODS CAN ACCOUNT FOR POTENTIAL SYNERGISTIC EFFECTS
OF GENE-GENE AND GENE-ENVIRONMENT?

Individually, common genetic variants only mininyadlxplain common complex diseases
such as CVD, type 2 diabetes, and other relatecc@Mitions’® Jointly considering the
relatively small effects of these individual singhecleotide polymorphisms (SNPs) may
better capture underlying genetic risk associatitl these diseases. Recently, genetic risk
scores have been implemented to interrogate thadtgd multiple SNPs of CM disea%&®
In addition, perhaps combinations of genetic vasgws. a single SNP) interact with
environmental factors and better predict CM risk.

Some studies create a genetic risk score by sumapirige number of risk alleles
pertaining to a single CM phenotype, while otheidgts similarly construct a genetic risk
score, but choose risk alleles associated with ad@glase of interest. The latter method
combines risk variants pertaining to multiple phigpes with the intention of better
capturing the intricate relationship between gesednd common complex disease. Still, the
majority of these studies find slight to no imprment in classifying at-risk individual® &
This approach masks the actual patterning of genek across phenotypes. Perhaps,

understanding this heterogeneity in genetic risstelring may aid in predicting and

11



preventing CM diseas@, ® *®especially since these diseases themselves dispgcific

patterning of risk factors including insulin resiste, dyslipidemia, hypertension, and

inflammation®’: 88

WHY CEBU?

The CLHNS covers a wide range of health-relatetcsogpecific for each stage of the
life cycle. The CLHNS has followed, since 1983 paart of women who reside in
Metropolitan Cebu in the central Philippines. Me@rebu, with a population nearing 2
million, shares many similarities with other largjges in developing and transitional
countries of Asia, enhancing the likelihood thaulées from this location are generalizable to
other settings. It is one of the fastest growind eapidly developing regions of the country

and has particular relevance for understanding @ids>®
SUMMARY

This work addresses an important internationalipiealth issue: understanding the
multifactorial etiology of CM diseases. Recent itignal and lifestyle changes in developing
countries have propagated the burden CM diseasgdasizing the need for research in
these setting®*% This rapid transition combined with detailed dlgestyle, and genetic
data, make the CLHNS an ideal dataset for thisarebe Documented differences in the
prevalence and patterns of co-occurrence of CMfastors likely reflect diet, lifestyle, and
genetics. Therefore we aimed to study the interadtifluence of these factors, with the
purpose to provide insight into the etiology of @iMeases, and thus help inform targeted

prevention efforts.
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Chapter 3. CLUSTERING AND DETERMINANTS OF CARDIOME TABOLIC RISK
FACTORS AMONG FILIPINO YOUNG ADULTS

OVERVIEW

With modernization, cardiometabolic (CM) diseasi has increased in low and
middle-income countries. To better understand C8&ate etiology, we evaluated the
patterning of CM risk factors in a susceptible yg@aault population.

Participants included 1,621 individuals from th®2@ebu Longitudinal Health and
Nutrition Survey. Using cluster analysis, we grodipedividuals by the following
biomarkers: triglycerides (TG), high-density andidensity lipoprotein cholesterol (HDL-
C, LDL-C), C-reactive protein (CRP), blood press{B®), homeostasis model assessment of
insulin resistance, and fasting glucose. Using imabial logistic regression models we
assessed how diet, adiposity, and environment ¢eeiCM clusters.

We identified 5 distinct sex-specific clusters: Hgalthy/high HDL-C (with the
addition of high LDL-C in women), (2) Healthy/lowB (3) High BP, (4) Insulin resistant
(IR)/high TG, (5) High CRP. Though we did not idént specific cluster primarily defined
by low HDL-C, over 65% of men and 70% of women Had trait, making low HDL-C the
most pervasive CM risk factor. In men and womeiyelesed intake of saturated fat
predicted membership in the High CRP cluster, carth#o the Healthy clusters. Men with
poorer environmental hygiene were more likely tarbthe High CRP cluster, compared to
the Healthy clusters (odds ratio 0.74 [95% CI 00680] and 0.83 [0.70-0.99]). Adiposity

measures were the strongest predictors of memiparsthe IR/high TG.



Despite the population’s youth and leanness, dlastalysis found patterns of CM
risk. While adiposity measures predicted clusterdigt and environment also independently
predicted clustering, emphasizing the importancecoéening lean and overweight
individuals for CM risk. Finding predictors of risk early adulthood could help inform

prevention efforts for future CM disease.
BACKGROUND

Low and middle-income countries undergoing rapittition and lifestyle changes
display an increasing burden of obesity, viscetgasity, and associated disea¥ed”
These concerns are heightened for Asians and yadugs. The risk of CM diseases has
been shown to be elevated among Asians at loweld®f BMI, prompting the World
Health Organization to recommend the use of a @M cut-point to define overweight in
this populatior?? In addition, overweight young adults are likadyremain overweight
throughout life and have increased risk of CM dsesasuch as cardiovascular disease and
type 2 diabete¥) %%

A substantial literature links obesity to insulesistance, dyslipidemia, hypertension,
and inflammation, and consequently to elevatedafdBM disease$.?” % ° These factors
tend to co-occur, leading to the definition of thetabolic syndrome (Met$j. However,
using the MetS definition presents several probldfrst, there is a lack of research
demonstrating that MetS stems from a common uniterlyathophysiology'°® treatment
of MetS is no different than treating the speodi®l factors present: *In addition,
objectively evaluating the clustering of CM rislcfars, rather than the diagnosis of MetS, is

more useful for predicting and preventing diseéas&Lastly, the inclusion/exclusion of

specific CM risk factors in the MetS definitionuafounded. For example, inflammation, as
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indicated commonly by elevated C-reactive prot€RP), is often not included in the classic
MetS definition, despite that it predicts CVD aygé Il diabetes independent of MetS
status’

Motivated by the downfalls of applying a uniformek® definition, we used cluster
analysis to identify groups of young adults, frdre 2005 Cebu Longitudinal Health and
Nutrition Survey (CLHNS), who share similar patteof CM risk factors. Furthermore,
differences in the prevalence and patterns of @aHoence of these risk factors likely reflect
variation in modifiable and non-modifiable charaistics. However, there is a lack of
research relating such characteristics to theelingt of CM risk factors, particularly among
young adults. Thus we sought to determine how daiposity, environment, and sex related
to the clustering of CM risk factors in Filipino yog adults.

This study population is ideal for our researchsioe because (1) the majority of
participants did not have any clinical disease J@pu is undergoing a rapid nutrition and
lifestyle transition, and (3) the CLHNS includegalked diet, lifestyle, anthropometric, and
biomarker data. By using an at-risk young adufiydation, we can gain a better
understanding of how modifiable and non-modifiati@racteristics relate to CM risk factors

in young adulthood, which can help inform preventstrategies for future CM disease.
METHODS

Survey design

The present analysis includes young adults (intdgren) assessed in the 2005
CLHNS (mean age 21 yeaf8) Briefly, the CLHNS is a community-based cohortxafmen
and their index children followed since 1983. Thigioal participants included all pregnant

women from 33 randomly selected communities of Bé&tebu, who gave birth between
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May 1, 1983, and April 30, 1984. Surveys took plmemediately after birth, bimonthly for 2
years, in 1991, 1994-5, 1998-99, 2002, and 200300%, fasting blood was drawn for CVD
biomarkers and genetics. Here we use data fronmtlex children still participating in the
2005 CLHNS.

Blood samples were collected on 1,790 individu&gcluding women who were
pregnant at the time of blood draw, we cluster&21 (889 men and 732 women)
individuals with complete fasting biomarker data avith CRP levels < 10 mg/L (a level
representing low-level basal inflammation rathemticurrent/recent illnes&j Of those
clustered, 1,569 individuals with complete diegiseconomic, and anthropometric data
were included in the multivariate analysis (871 raad 698 women). All data were collected
with informed consent, using protocols approvedhgyinstitutional review board of the
University of North Carolina, Chapel Hill.

Cardiometabolic biomarkers

Fasting plasma CM biomarkers included triglyceri@i&S), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein chaiesol (LDL-C), glucose, insulin, and
CRP. Blood samples were collected in participainéshes in the morning after an overnight
fast. Venous blood was collected in EDTA anti-cdagtivacutainer tubes. After mixing to
inhibit clotting, glucose was measured immediatediyng the glucose dehydrogenase method
(One Touch Ultra Blood Glucose Monitoring Systenfescan Johnson and Johnson). Blood
samples were stored on ice for no more than 2 hemdsvere then centrifuged to separate
plasma.

After separation, samples were frozen and reménozen at -80 °C until ready for

analysis. Total lipid concentrations were measuatetie Emory Lipid Research Laboratory
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using enzymatic methods with reagents from BeckBiagnostics on the Beckman
Diagnostics CX5 chemistry analyzer (Fullerton, CAPL-C was determined using the
homogeneous assay for direct determination (Genzkxten, PA). LDL-C was determined
using the Friedewald formula, except if triglycersdexceeded 400 mg/dl then LDL-C was
directly determined using a homogenous assay (Geazlxton, PA). The Emory Lipid
Research Laboratory is a participant in the CDC/BHLipid Standardization Program to
ensure accuracy and precision of the determinati®lasma insulin was measured using
automated Bay&ADVIA Centaur chemiluminescent methotf. CRP concentrations were
determined using a high sensitivity immunoturbidincemethod (Synchron LX20, lower
detection limit: 0.1 mg/L).

Other cardiometabolic biomarkers included homemstabdel assessment insulin
resistance (HOMA-IR), and systolic and diastoliodd pressure (BP). HOMA-IR was
calculated as 22.5/ (insulin x glucose). Systolcdhd diastolic BP were measured in
triplicate after a 10 minute seated rest using ecarg sphygmomanometer. The mean of the
three measurements was used.

We used cutpoints for these biomarkers based ammeendations from the
International Diabetes Federation (IDF), the Amami¢ieart Association, and other
previously recognized and accepted cutpoints (Taglg % 102103
Anthropometry

Body weight, height, and waist circumference (W@yevmeasured using standard
technique®*. BMI was calculated as the ratio of weight (kghtght (nf). We used
cutpoints for Asians to define overweight (OW) &BMlI > 23 kg/nf.'% Cutpoints for

Asians define central adiposity as W®@0 cm for women and WE 90 cm for meff; since
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less than 8% of individuals have WC above thespants, we used median values (men =
71 cm and women = 66.5 cm) to define at-risk groups
Dietary data

Dietary data were derived from two 24-hour dietagalls and the mean intake was
used in the analyses. A nutritionist reviewed @taty recalls immediately after collection.
When implausible values were found, interviewexssited respondents for verification.
Energy and saturated fat intakes were calculated)alse Philippines Food Composition
Tables!® 1%

Sociodemographic and lifestyle characteristics

We included the following sociodemographic andslijde characteristics in our
analysis: household assets, urbanicity, environatdérygiene, graduation status, smoking
status, alcohol consumption, and level of physacality.

The assets score, ranging from 0 to 10, measuresehold economic status. It
reflects the type of lighting used, ownership ofig®, type of housing material, and
ownership of selected assets: television, air ¢ardr, tape recorder, refrigerator, and motor
vehicle. We dichotomized this variable at the megisb assets or > 5 assets. The urbanicity
index is comprised of 7 components derived from GiS-barangay-level survey ddfd.A
higher score designates a more urbanized baraWgagichotomized this variable at the
median< 43 or > 43. The hygiene score measures enviroraheleanliness using data on
the interviewer’s rating of cooking area, immediatea around the house, toilet type, and
water source. The score ranges from 0 to 9 witielavalues indicating greater cleanlingss.

High school (HS) graduation status was classifeegles or no. Smoking and alcohol
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consumption were assessed as yes or no. The mpabritomen did not smoke (> 93%)
therefore we did not include this covariate in tlaialysis.

Physical activity was assessed by asking respoademeport time spent in all
activities during a typical day. Each activity wassigned a metabolic equivalent (MET)
value using the updated Compendium of PhysicavAets. We identified minutes/week of
moderate to vigorous physical activity (MVPA=METS)>performed during occupation,
leisure time, and household activities to approx@ren overall minutes/week of MVPA. The
majority of women did not participate in any MVP82%0), thus MVPA was only included
in the analysis of the men. We categorized physicavity: no MVPA, low to medium
amounts of MVPA (<sex-specific median of 720 misiteeek), and high amounts of
MVPA (>720 minutes/week).

Cluster analysis

We performed a K-means cluster analysis to idegtibups of young adults with
similar CM risk factor patterns using SAS PROC FERUS (SAS version 9.2, SAS
Institute, Cary, NC). This procedure implementsKhmeans clustering algorithm (least
squares method). K-means clustering uses thedeaclidistance, computed from input
variables, to assign cluster membership by miningizhe distance among subjects in a
cluster while maximizing the distance between @rtsst The procedure first selects cluster
seeds, a set of points calculated as a first gofeb® cluster means. Next it calculates the
Euclidean distance from each subject to each c¢lgstd; each subject is assigned to the
nearest seed to form temporary clusters. The m&fagech of the temporary clusters are
calculated and replace the seed values. Distaicalation and member assignment

progress in an iterative fashion until no furthaeges occut®® 1%
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Final cluster solutions are sensitive to initie¢d values. To remedy this problem and
to use a more objective approach to picking a etustlution we created an algorithm
modified from a previous clustering algoritlih*°This algorithm performed 1,000
iterations of each cluster procedure using randayaeherated initial cluster seeds. For each
of the 1,000 cluster solutions it calculated theraf between-cluster variance to within-
cluster variance d®?/ (1- R), whereR?, pooled across all variables, represented théatuil
predict each input variable from the clust®rWe wanted to maximize the ratio of between-
cluster variance to within-cluster variance andef@e wanted to find the large’t. The
algorithm identified the iteration/cluster solutinith the largesi?.**°

Cluster analysis was conducted separately in thmemoand men to account for
differences in patterns of CM risk by sex. The ahles entered into the cluster analysis were
chosen to represent hypertension, inflammatiomylimsesistance, and lipid abnormalities,
and included sample and sex-specific standardiakees of TG, HDL-C, LDL-C, systolic
BP, diastolic BP, glucose, HOMA-IR, and CRP.

Statistical analysis

We used sex-specific multinomial logistic regreasmodels to examine predictors of
cluster membership in young adults. For men and &mrthe full models included the
following covariates: OW status (BNH 23 kg/nf), high WC (WC> 80cm), % energy intake
from saturated fat, energy intake, alcohol consionptiousehold assets, urbanicity,
environmental hygiene, and education status; sngadtizitus and level of physical activity
were additionally included for men. We used thetmatiate nutrient density method to

control for confounding and to remove extraneougatian due to total energy intak¥.
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Multicollinearity between % of energy intake fromtgrated fat and total energy intake was
not an issue (correlation coefficient<0.4).

We conducted manual backwards elimination (likedthoatio test) to test whether
each covariate improved model fit. If it did notgrove model fit and also did not predict
cluster membership the covariate was removed. Tnauwt our analysis we us&d0.05 (2-
sided) as the criterion for significance. Regressinalysis was performed with Stata 12.0

(Stata Corporation, College Station, TX, 2006).

RESULTS

Prevalence of cardiometabolic risk

Baseline characteristics are presented in TabéslZB for men and women
respectively. Men had a high prevalence of low HDI60%), while a low prevalence of
elevated LDL-C (6%), elevated fasting glucose (3&gyated HOMA-IR (3%), and elevated
CRP (7%). Women had a high prevalence of low HD(68%), while a low prevalence of
elevated TG (9%), hypertension (2%), elevatedrigsgiucose (3%), elevated CRP (8%),
and elevated HOMA-IR (4.5%). In comparison to wornaen had a higher prevalence of
elevated TG and hypertension. While in comparisomén, women had a higher prevalence
of low HDL-C, elevated LDL-C, and elevated HOMA-IR.
Cluster analysis

We conducted a series of cluster analyses with&3dasters specified, and chose the
5-cluster solution for both men and women becatgelded distinct CM risk factor patterns
and each cluster contained approximateB# of the sampl&? The 5-cluster solutions had
R?=0.35 and B= 0.36 in men and women respectively, indicatinghsly more than 1/3

of the variance in CM biomarkers was explainedHgydlusters. For men we identified the
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five clusters as: (1) Healthy/high HDL-C, (2) Hégllow BP, (3) High BP, (4) Insulin
resistant (IR)/high TG, and (5) High CRP. Forwmamen we identified the same five
clusters except the first cluster also included EOL(1) Healthy/high HDL-C/high LDL-C.
We named the clusters according to what risk fé¢&}drad the highest/lowest mean relative
to other clusters (Figure 1); the term “healthygnesents low Z-scores for the majority of
CM biomarkers (except HDL-C). We ordered thesetehsssuch that clusters 1-5 in men and
women represented similar CM patterns.
Cardiometabolic patterns in young adult men

Mean z-scores of the CM biomarkers varied markbglgluster (Figure 1), as did the
prevalence of risk factors defined by cutpointsejaresent “high risk” (Tables 2 and 8)en
in the Healthy/high HDL-C cluster (n=144, 16%) hbkd zero prevalence of low HDL-C.
Men in the Healthy/low BP cluster (n=315, 35%) liael lowest prevalence of hypertension
(0%) and a high prevalence of low HDL-C (73%). Meithe High BP cluster (n=290, 33%)
had a relatively high prevalence of hypertensi@®%3and low HDL-C (69%). Men in the
IR/high TG cluster (n=65, 7%) had highest prevadeotcelevated TG (88%), elevated
fasting glucose (15%), and elevated HOMA-IR (29¥)addition, these men had a high
prevalence of low HDL-C (68%). Lastly, men in theypl CRP cluster (n=75, 8%) had the
highest prevalence of elevated CRP (80%), andlaprgvalence of low HDL-C (75%).
Cardiometabolic patterns in young adult women

Mean z-scores of the CM biomarkers varied markbglgluster (Figure 1), as did the
prevalence of risk factors defined by cutpointsejaresent “high risk” (Tables 2 and 3)
Women in the Healthy/high HDL-C/high LDL-C clust@gr=158, 22%) had the lowest

prevalence of low HDL-C (27%) and a relatively higievalence of LDL-C (32%); none of
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these women had hypertension. Women in the Heldthy8P cluster (n=252, 34%) had no
hypertension and a high prevalence of low HDL-C#%36Women in the High BP cluster
(n=233, 32%) had a relatively high prevalence gddriension (6%), and low HDL-C (73%).
Women in the IR/high TG cluster (n=48, 7%) had kesfiprevalence of elevated TG (50%),
elevated fasting glucose (27%), and elevated HORAB3%); in addition, these women
had a high prevalence of low HDL-C (79%). Lastlymen in the High CRP cluster (n=41,
6%) had the highest prevalence of elevated CRP Y@5%ba high prevalence of low HDL-C
(73%); none of these women had hypertension.

Multivariable analysis in young adult men

The final multivariate model in the men includeé tbllowing covariates: high WC,
OW status, % of energy intake from saturated fatrgy intake, household assets, smoking
status, alcohol consumption, and environmentaldngiTable 4).

Compared to the Healthy/high HDL-C cluster: beiogmal weight and not
consuming alcohol increased the likelihood of bemthe Healthy/low BP cluster; higher
WC increased the likelihood of being in the High @ester; higher WC, being OW, having
more assets, and smoking increased the likelihbbéiag in the IR/high TG cluster;
decreased % of energy intake from saturated fatamer environmental hygiene increased
the likelihood of being in the High CRP cluster.

Compared to the Healthy/low BP cluster: higher Wé&ing OW, and not smoking
increased the likelihood of being in the High BBstér; higher WC, being OW, and having
more assets increased the likelihood of beingenfihigh TG cluster; being OW, decreased

% of energy intake from saturated fat, having na@gets, not smoking, alcohol
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consumption, and decreased environmental hygiemeased the likelihood of being in the
High CRP cluster.

Compared to the High BP cluster: being OW, havimgerassets, and smoking
increased the likelihood of being in the IR/high €l@ster; lower WC and decreased
environmental hygiene increased the likelihoodeahg in the High CRP cluster.

Compared to the IR/high TG cluster, lower WC antlsmoking increased the
likelihood of being in the High CRP cluster.

Multivariable analysis in young adult women

The final multivariate model in the women includéd following covariates: high
WC, OW status, % of energy intake from saturatédei@ergy intake, urbanicity, and HS
graduation status (Table 4).

Compared to the Healthy/high HDL-C/high LDL-C cleistno covariates increased
the likelihood of being in the Healthy/low BP clestdecreased % of energy intake from
saturated fat, increased energy intake, and naugtang from HS increased the likelihood of
being in the High BP cluster; being OW increasealitkelihood of being in the IR/high TG
cluster; decreased % of energy intake from satdfatte increased energy intake, and lower
urbanicity increased the likelihood of being in thigh CRP cluster.

Compared to the Healthy/low BP cluster: higher W@ being OW increased the
likelihood of being in the High BP cluster; high&C and being OW increased the
likelihood of being in the IR/high TG cluster; bgi®@W, decreased % of energy intake from

saturated fat, and lower urbanicity increasedittedihood of being in the High CRP cluster.
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Compared to the High BP cluster: being OW incredbedikelihood of being in the
IR/high TG cluster; decreased urbanicity increabedikelihood of being in the High CRP

cluster. No covariates distinguished the IR/high d@ter from the High CRP cluster.
DISCUSSION

Cluster analysis is a useful tool for identifyingpgps of individuals who share
similar CM risk factor patterns. In contrast wittetMetS definition, cluster analysis allows
for flexibility. For example, we included a measofanflammation in the cluster analysis, a
risk factor not commonly included in MetS definii®) which allowed us to identify a
distinct group characterized primarily by eleva@®P levels. In addition, we did not include
WC as a criterion for the clustering algorithm,ikalthe IDF, which requires elevated WC in
the definition®® This enabled us to distinguish for which clustdevated WC (a modifiable
risk factor) predicted cluster membership.

By using cluster analysis, we were able to capttueeheterogeneity in patterns of CM
risk factor clustering. Research has demonstrégnortality risk is dependent on the
actual combinations of CM risk factors, highliglgtithe importance of understanding these
sex differences in the clustering of CM risk fast§rWhile our analysis found relatively
similar CM risk clusters among men and women, tlegligtors of these clusters varied by
sex. Perhaps as these young adults age more tiStihpatterns between men and women
will emerge.

A high prevalence of low HDL-C, a risk factor foedrt disease, has been reported in the
Philippines and other Asian populatidiis:** ***This was reflected in the cluster analysis
results: over 65% of men and 70% of women, nohéHealthy/high HDL-C cluster, had

low HDL-C levels.
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Previous work among the mothers in Cebu suggektgdaturated fat intake,
perhaps from coconut oil, could be protective astimw HDL-C level$® ™ However in
young adults, we saw saturated fat intake had ngmeglationships with different CM risk
factors. In both men and women, decreased % emataje from saturated fat predicted
membership in the High CRP group when compareldgawo Healthy clusters. In addition,
a decrease in % saturated fat intake predicted raeship in the High BP group in women,
compared to the Healthy/high HDL-C/high LDL-C group

The association of saturated fat intake with hgatM profiles could reflect the
types of saturated fats consumed in this popula@aonut oil, the most common and
traditional cooking oil in Cebu, is rich in laurcid**° Lauric acid improves the total
cholesterol to HDL-C ratio, more than any otheussted or unsaturated fatty acid, primarily
by increasing HDL-C level® In addition, a replacement of carbohydrates Veithic acid
produces a decrease in this rdfidhis proves especially relevant in our study pafiah
since over half of energy intake comes from carblodes, the majority of which are refined
rice products. Other studies have found dietsinatoconut oil or in saturated fat do not alter
markers of inflammation, fasting glucose, fastirguiin, HOMA-IR, or incident diabetes’
118

Men with poorer environmental hygiene (increasetiggenicity) were more likely
to be in the High CRP cluster compared to the twaltty clusters. These results support
previous research conducted in the CLHNS and regafthe involvement of pathogen
exposure in activating pro-inflammatory pathwa$3But why do we fail to observe this

hygiene effect in women? Adiposity relates morerggty with inflammation in women than

26



in men, thus it is possible the effects of adipositerwhelmed the effects of the hygiene
score in women?®: 119

As expected, WC and OW status were the strongedigbors of membership in the
IR/high TG cluster, underscoring the adverse hegfcts of excess visceral adipose tissue,
for which WC serves as a proX¥. WC is among the best-established predictors ofrisk
and past work in the CLHNS and other populatiorpstt this notiorf™ *° °* ®®Research
has also demonstrated that increased WC predictal@rmalities in both normal weight
and OW individuals, highlighting the potential fasceral fat to influence the development
of CM risk factors, independent of BNA*

This population has a low prevalence of overwe(@B®6). However, among normal
weight individuals, CM risk factors were alreadggent: 63% of the sample with BMI<23
kg/m? had low HDL-C. Despite leanness, cluster analigsisd patterns of CM risk. While
measures of adiposity predicted some of theserpaitmodifiable factors such as dietary
intake and pathogen exposure also independenttlygbee cluster membership. This
emphasizes the importance monitor and screen ihedwiduals for CM risk and future CM
diseases, especially in Asian populations whereistheof CM diseases is elevated at a lower
BMI (likely due to increased visceral fat at lovw&ivils).%?

Several limitations warrant mention. A limitatiohauster analysis is that not all
individuals within a certain cluster necessarilgrghall characteristics. For example, in our
“Healthy” clusters we found the average Z-scoresCyl risk biomarkers were relatively
low (except HDL-C), but we cannot ascribe these Vaues to each individual in the cluster.

Attrition and selection bias are also concerns.riatign of the more educated, urban

segment of the original cohort has left us wittample that is no longer representative of the
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population from which it was drawii.The sample was further reduced due to selection
criteria. From the full sample of 1,887 young asdluit 2005, the multivariate analysis
included those that were fasting and not pregnaht @emplete biomarker, anthropometric,
and socioeconomic data, resulting in an analytiea of 1,621. Comparing baseline
socioeconomic characteristics, we found a lowecgraage of HS graduates among women
excluded vs. those included in the analysis (68% 8% respectively, ANOVA<0.05).

In sum, despite the population’s young age, lacgliofcal disease, and relative
leanness, cluster analysis identified distinctgrat of CM risk factors. By using cluster
analysis we made fewer assumptions regarding tterlying etiology and allowed
relationships among CM risk factors to emerge fthendata themselves. We found sex-
specific clustering of CM risk factors and wereeatd evaluate how diet, adiposity, and
environmental factors influenced these patternsXygected, measures of adiposity
predicted specific CM risk patterns. However, @ietl environmental factors also
independently predicted risk factor clustering.sT&@mphasizes the importance of screening
both lean and OW individuals for CM risk, espegiati Asian populations where the risk of
CM diseases is elevated at lower BfFuture studies examining how CM risk patterns
change longitudinally could provide insight to h@M risk evolves across the life course.
Finding modifiable and non-modifiable predictorsGM¥ risk in early adulthood could help

inform targeted prevention efforts for future C\selase.
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TABLES AND FIGURES

Table 3.1 Criteria for defining elevated cardiomet&olic risk

Risk factors Cutpoint

Triglycerides* > 150 mg/dL
Males < 40 mg/dL
Females < 50 mg/dL

HDL cholesterol*

LDL cholesterolt > 130 mg/dL
Systolic BP* >130 mm Hg
Diastolic BP* > 85 mm Hg
Glucose* > 100 mg/dL
HOMA-IR% > 4.65 mg/dL xug/mL
CRP§ > 3.0 mg/dL

Cutpoints represent levels at which there is areassed risk of cardiometabolic diseases.
*Cutpoints are defined by the IDEfCutpoint is defined by the National Cholesterol
Education Progrartf? $Cutpoint is defined by Stern et #* §Cutpoint is defined by the
American Heart Associatiof®
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Table 3.2 Characteristics of young adult men in th005 CLHNS

All Men Healthy/High HDL-C Healthy/Low BP High BP IR/High TG High CRP
(n=871) (n=139) (n=312) (n=282) (n= 65) (n=73)
Age, y 21.0+0.0 20.9+0.0 20.9+0.0 21.0+£0.0 20.9%0.0 21.0+0.0
Cardiometabolic biomarkers*
Elevated TG (%) 19.7+1.3 153+3.0 11.1+1.8 9152.1 87.7+4.1 20.0+ 4.6
Low HDL-C (%) 59.6+1.6 0.0+0.0 72.7+25 622.7 67.7+5.8 74.7+5.1
Elevated LDL-C (%) 5.7+0.8 49+1.8 29+0.9 9%.1.6 10.8+3.9 6.7+2.9
Hypertension (%) 19.0+1.3 20.8+3.4 0.0+0.0 .6372.8 29.2+57 14.7+4.1
Elevated fasting glucose (%) 3.1+0.6 1.4+1.0 6 410.7 21+0.8 15.4+45 6.7+29
Elevated HOMA-IR (%) 25+0.5 0.0+0.0 0.0+0.0 0.7+0.5 29.2+5.7 13+13
Elevated CRP (%) 7.1+0.9 0.7+0.7 0.0+0.0 =3(0)0] 3.1+22 80.0+4.6
Anthropometrics
Waist circumference (WC; cm) 72.1+£0.2 71.2+0.6 69.5+0.3 73.9+05 80.2+1.3 71.3+£0.7
High WCt (%) 48.1+1.7 453+4.2 342127 66.2.9 81.3+4.9 37.0+5.7
BMI (kg/m?) 21.0+0.1 20.8+0.2 20.0+0.1 21.6+0.2 2425 20.9+0.3
Overweightt (%) 19.4+1.3 209+35 6.4+1.4 1262.6 50.0+6.3 19.2+4.6
Dietary
Energy (kcal) 2,221.8+35.2 2,330.5+87.4 2,154583.5 2,237.1+66.0 2,376.1+158.1 2,110.6 %20
Saturated fat (%) 7.8+0.2 8.9+0.5 7.7+0.3 #®3 8.6+0.6 6.7+0.4
Cigarette smoking (%) 49.3+1.7 46.0+4.2 54D& 442 +3.0 60.9+6.1 452+5.9
Alcohol drinking (%) 85.2+1.2 89.2+2.6 81.5 22 859+21 859+44 90.4+35
Socioeconomic
Number of assets 52+0.1 55+0.2 49+0.1 021 6.1+0.3 51+0.2
Hygiene score 6.1+0.1 6.5+0.1 59+0.1 6.2 0 6.4+0.2 5.7%+0.2
Urbanicity score 41.2+0.5 43.7+1.1 39.9+0.8 1.04: 0.8 42.7+1.6 41.2+1.6
Graduated high school (%) 60.2+1.7 71.2+3.9 8532.8 61.0+2.9 68.8+5.8 56.2+5.8

Data are means + SE or % + SE.

*Cutpoints are ddfirsing Table 1. tHigh waist circumference defiagd71cm for men; $BMt 23kg/nf
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Table 3.3 Characteristics of young adult women intte 2005 CLHNS

All Women  Healthy/High HDL-C Healthy/Low BP High BP IR/High TG High CRP
/High LDL-C
(n=698) (n=138) (n=248) (n=228) (n=46) (n=38)
Age, y 20.9+0.0 21.0+0.0 20.9+0.0 209+0.0 20.9z%0.1 20.9+0.1
Cardiometabolic biomarkers*
Elevated TG (%) 8.6+1.0 3815 44+1.3 71.& 50.0+7.3 9.8+47
Low HDL-C (%) 67.8+1.7 27.2+3.6 85.7+2.2 7229 79.2+5.9 73.2+7.0
Elevated LDL-C (%) 12.3+1.2 323+37 3.6+1.2 47+1.4 20.8+5.9 22.0+6.5
Hypertension (%) 2005 0.0+0.0 0.0+0.0 HB5 42+29 0.0+0.0
Elevated fasting glucose (%) 3.0+£0.6 0.0+£0.0 6 #0.8 1.7+0.9 27.1+6.5 24124
Elevated HOMA-IR (%) 45+0.8 0.0+0.0 0.8+0.6 0.0+0.0 625+7.1 24+24
Elevated CRP (%) 75+1.0 1.3+0.9 1.6+0.8 HA®B7 146+5.1 95.1+3.4
Anthropometrics
Waist circumference (WC; cm) 67.9+0.3 66.7 + 0.6 65.6 £ 0.3 69.0+£0.5 76.8+1.7 704+14
High WCt (%) 48.1+1.9 435+4.2 36.0+3.1 56.8.3 78.3+6.1 55.3+8.2
BMI (kg/m?) 20.3+0.1 19.9+0.2 19.3+0.1 20.7+0.2 2428 21.0+0.6
Overweightt (%) 152+14 12.3+2.8 6.1+15 1182.6 50.0+7.5 26.3+7.2
Dietary
Energy (kcal) 1,605.6 +33.1 1,588.7+72.1 16@.1 1,629.8+57.3 1,493.8+88.4 1,683.7+420
Saturated fat (%) 8.5+0.2 95104 8.6+0.3 B8BM3 8.5+0.7 75+0.6
Cigarette smoking (%) 6.8+1.0 6.6+2.1 6.5+1.6 6.2+1.6 10.9+4.6 79+4.4
Alcohol drinking (%) 55.0+1.9 57.4+4.3 52.2 £3 56.4 +3.3 565+7.4 55.3+8.2
Socioeconomic
Number of assets 53+0.1 55+0.2 52+0.1 031 53+0.2 51+0.3
Hygiene score 6.2+0.1 6.4+0.1 6.1+0.1 6.0 0 6.3+0.2 6.2+0.3
Urbanicity score 41.4+0.5 40.7+1.2 41.6+0.8 0.84£ 0.9 42.3+2.0 449+2.1
Graduated high school (%) 78.3+1.6 86.2+2.9 43R.6 72.7+3.0 76.1+6.4 78.9+6.7

Data are means + SE or % + SE. *Cutpoints are défirsing Table 1. tHigh waist circumference defiage&66.5cm for women; $BNH 23kg/nt
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Table 3.4 Predictors of cluster membership

Referent male cluster Healthy/Low BP

Predicted male cluster

IR/High TG High CRP

High BP

- OW*[0.32 (0.16,0.64)]

) - Alcohol [0.51 (0.27,0.96)]
Healthy/High HDL-C

- Satfat} [0.4832,0.86)]
- Hygiene [0.74 (0.60,0P0

+High WCT [1.87 (1.15,8)p  + High WCT [3.68 (1.62,8.36)]

+ OW*[2.17 (1.02,4.64)]

+ Assets [2.14 (1.06,4.32)]
+ Smoking [2.04 (1.06,3.90)]

Healthy/Low BP

+ High WCt [3.787Z,8.06)]
+ OW*[6.80 (3.21,14.42)]
+ Assets [2.72 (1.4245]

+ OW*[5.12 (2.13,12.33)]
Satfatt [0.51 (0.27,0.98)]
+ Assets [1.94 (1.10,3.42)]
— Smoking [0.56 (0.33,0.97)]
+ Alcohol [2.83 (1.19,6.72)]
- Hygiene [0.83 (0.70,0.99)]

+ High WCt [1.92 (1.32,2.78)]
+ OW*[3.46 (1.95,6.16)]
— Smoking [0.63 (0.44,0.89)]

High BP

+ OW+*[1.96 (1.02,3.77)]
+ Assets [2.42 (1.27,4.60)]
+ Smoking [2.28 (1.25,4.14)]

- High WCt [0.34 (0.18,0)p
- Hygiene [0.82 (0.638)]

IR/High TG

- High WCT [0.17 (0.07,0.43)]
— Smoking [0.39 (0.19,0.82)]

Referent female cluster Healthy/Low BP

Predicted female cluster

IR/High TG High CRP

High BP

Healthy/High HDL-C/High LDL-C

- Satfatt [0.22 (0.08,0.61)]
+ Energy§ [1.73 (1.02,2.91)]
+ Urban [2.88 (1.30,6.39)]

- Satfatt [0.46 (0.28,0.78)]
+ Energy8§ [1.40 (1.00,1.96)]
- HS Grad [0.51 (0.29,0.92)]

+ OW* [4.57 (1.90,15)

Healthy/Low BP

+ OW* [4.12 (1.49,11.40)]
- Satfat} [0.35 (0.13,0.92)]
+ Urban [2.81 (1.31,6.04)]

+ High WCT [1.86 (1.24,2.77)]
+ OW* [2.24 (1.17,4.29)]

+ High WCt [2.9474,6.95)]
+ OW* [8.26 (3.50,19.50)]

High BP

+ OW*[3.69 (1.72,7.92)] + Urban [2.82 (1.32,6.04)]

IR/High TG

Cells display +/- association of predictors withster membership. Data are OR (95% CI). *OverweitiiMaist Circumference; tPercentage of total enargke from saturated
fat; this covariate was scaled (divided by 10) wimeputed in the multinomial logistic regressioretse interpretation; 8Energy intake was also scalgts werekJ/1000
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Figure 3.1 Mean Z-scores of fasting biomarkers byazrdiometabolic cluster
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Figure 3.1: Mean Z-scores of fasting biomarkers bgardiometabolic cluster

Mean Z-scores by cardiometabolic cluster for tlyheiasting biomarkers used as input
variables in the cluster analysis. A: Mean Z-scanggung adult men. B: Mean Z-scores in
young adult women.



Chapter 4. GENETIC RISK SCORE AND ADIPOSITY INTERAC T TO INFLUENCE
TRIGLYCERIDE LEVELS IN A COHORT OF FILIPINO WOMEN

OVERVIEW

Individually, genetic variants only moderately udhce cardiometabolic (CM) traits,
such as lipid and inflammatory markers. In thigigtwe used genetic risk scores to combine
the relatively small additive effects of individuadriants to better capture the complex
relationship between genetics, adiposity, and Gisr

Participants included 1,649 women from the 2005u0adngitudinal Health and
Nutrition Survey. Three genetic risk scores wenestaucted for, C-reactive protein (CRP),
high-density lipoprotein (HDL-C), and triglycerid€EG). We used linear regression models
to assess the association between each genetscosi and its related trait. We also tested
for interactions between each score and measuidipdsity.

Each genetic risk score explained a greater pripoadf variance in trait levels than
any individual genetic variant. We found an intéi@t between the TG genetic risk score
and waist circumference (WOP (yeraction = 1.66 x 10). Based on model predictions, for
individuals with a higher TG genetic risk score“ﬁﬁarcentile = 12), having an elevated WC
(> 80cm) increased TG levels from 117 to 151 mg/dhiléfor individuals with a lower
score (28 percentile = 7), having an elevated WC made noifsignt impact on TG levels
(93 vs. 104 mg/dL).

In summary, combinations of genetic loci betterlaxyd the variation in CM traits

and the TG genetic risk score interacted with agltgdo influence TG levels. Larger studies



are needed to support the potential clinical artdipinealth utility of targeted prevention

efforts using genetic profiling.
BACKGROUND

Recent studies in both European and Asian cohaxts found multiple genetic
variants relating to cardiometabolic (CM) traitsisias lipid and inflammatory levels’  4°
122 |ndividually, the identified genetic variants omhoderately influence these trait levels
and are thought to provide only limited informatiarclinically assessing a person's risk.
However, the combination of genetic variants, eatth a relatively small effect, may better
explain the variability of these complex traitsThus, the use of a genetic risk score has been
proposed to better capture genetic variaffoii.

Genetic variants may interact with diet, enviromtaé and anthropometric factors to
influence CM phenotypes; accounting for these gyisBc effects may also help explain
some of variability of these traitS.”® Excess adiposity is one of the strongest predicibrs
CM disease and risk:>’ Previous work suggests that measures of adipmségact with
specific genetic variants and predict CM traffs"*®

However, these synergistic effects are not wellaustood, especially in populations

undergoing rapid nutritional and lifestyle changBsese lifestyle changes contribute to a
growing burden of overweight, visceral adipositygahus associated CM diseas¥$.
These concerns are especially pertinent for Asiemspared with Caucasians, Asians have
increased visceral adiposity and greater insubistance at similar levels of BMf:*°In
addition, the World Health Organization concludeakttthe risk of CM based diseases is

elevated for Asians with a BMI greater than 23 Kg/suggesting the use of a lower cutpoint

for overweight (OW)-%°
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In this study we sought to: create genetic riskesoelating to inflammatory and lipid
traits, examine the ability of these scores to @ixpthe variation in these traits, and test
whether these genetic risk scores interact withsones of adiposity to influence trait levels.
We chose to specifically look at C-reactive protgiP), high-density lipoprotein (HDL-C),
and triglycerides (TG) because previous researghesis that these traits interact with
various measures of adipostfy:***To accomplish this, we used an at-risk Asian paipom,
from the 2005 Cebu Longitudinal and Health and Matr Survey (CLHNS), undergoing a
nutrition and lifestyle transitiof he identification of individuals with a genetic
predisposition to elevated CM risk could help ieating targeted and thus more efficient

prevention strategies.
METHODS

Survey design

The women in this study are participants in the GliS;iwhich is described in detail
elsewheré? Briefly, the CLHNS is a community-based cohortxafmen and their index
children followed since 1983. The original partamps included all pregnant women in 33
randomly selected communities of Metro Cebu, wheedarth between May 1, 1983, and
April 30, 1984. A baseline interview was conducaeagong 3,327 women in their 6th to 7th
month of pregnancy. Subsequent surveys took praneediately after birth, bimonthly for 2
years, in 1991, 1994-5, 1998-99, 2002, and 200300%, fasting blood was drawn for CVD
biomarkers and genetics. Here we use data frormtitker cohort participating in the 2005
CLHNS. All data were collected under conditionsrdbrmed consent with institutional

review board approval from the University of No@hrolina, Chapel Hill, USA.
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We excluded women who were pregnant at the tinmeoafd draw, not fasting at the time
of blood draw, and with CRP levels >10 mg/L (a leepresenting current/recent illness
rather than low-level basal inflammatidfi)Even though we removed individuals with CRP
levels >10 mg/L, we adjusted for the presence gfiafectious symptoms at the time of
blood collection to help control for any residuahéounding in our analysisl,649 women
had complete biomarker, genetic, diet, socioeconpamd anthropometric data. Medication
use in this population was low: 0.1% took statihg5% took diabetes medication, and 4%
took anti-hypertensive medications. A sensitivityalysis showed that exclusion of these
individuals did not impact results; therefore we dot exclude anyone taking medication.
All data were collected with informed consent, gsomotocols approved by the institutional
review board of the University of North Carolingh&pel Hill.

Cardiometabolic biomarkers

Fasting plasma CM biomarkers used in the analys#sded TG, HDL-C, and C- CRP.
Blood samples were collected in participants’ homdke morning after an overnight fast.
Venous blood was collected in EDTA anti-coagulaatwtainer tubes. Blood samples were
stored on ice for no more than 2 hours and wene ¢eatrifuged to separate plasma. After
separation, samples were frozen and remained fraiz&® °C until ready for analysis. Total
lipid concentrations were measured at the EmorydLifesearch Laboratory using enzymatic
methods with reagents from Beckman DiagnosticherBeckman Diagnostics CX5
chemistry analyzer (Fullerton, CA). HDL-C was detered using the homogeneous assay
for direct determination (Genzyme Corporation, ExteA). The Emory Lipid Research
Laboratory is a participant in the CDC/NHLBI Lip&tandardization Program to ensure

accuracy and precision of the determinations. C&tfeentrations were determined using a
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high sensitivity immunoturbidimetric method (SynochrLX20, lower detection limit: 0.1
mg/L).

The cutpoints used to define elevated risk for éemhwere: >3.0 mg/ L for CRP, <50
mg/dL for HDL-C, and > 150 mg/dL for TG levels. Heewere based on recommendations
from the International Diabetes Federation (IDFJ #re American Heart Associati6h >
102, 103
Anthropometry

Body weight, height, and waist circumference (W@yevmeasured using standard
techniques® BMI was calculated as the ratio of weight (kghtght (nf). We used
cutpoints for Asians to define normal weight as BM23kg/nf, overweight (OW) as
23kg/nf < BMI < 27.5kg/nf, obese as BM¢ 27.5kg/nf, and central adiposity as W30
Cm.105 96
Dietary data

Dietary data were derived from two 24-hour dietagalls and the mean intake was used
in the analyses. Data were collected during in-hortexviews performed by highly trained
local field staff. A nutritionist reviewed all dieaty recalls immediately after collection. When
implausible values were found, interviewers reeitespondents for verification. Energy
and saturated fat intakes were calculated usin@kilépines Food Composition Tabl¥s.

106
Sociodemographic and lifestyle characteristics

Highly trained interviewers collected reproducthistory data; this included menopausal

status beginning in the 1991 survey.

Socioeconomic status (SES) was measured by a feaoe based on a principal
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components analysis of household ownership of kegta such as television, vehicles, and
furniture®®

Infectious illness was measured by asking partidgpd they were currently
experiencing any symptoms of infection, consisteittt prior research on CRP Symptoms
included runny nose, cough, fever, diarrhea, amel gwoat, as well as the more general
categories of flu, cold, and sinusitis. Responsesewsed to construct a summary variable
indicating the presence or absence of any infestsyptoms at the time of blood
collection.

Environmental cleanliness and household hygienemessured by a hygiene score
based on data on the interviewer’s rating of coplarea, immediate area around the house,
toilet type, and water source. The score ranges @rd@o 9 with larger values indicating
greater cleanliness.

Genotyping, quality controls, and imputation

The complete methods for direct SNP genotypinglityuzontrol, and SNP imputation
have been described previou$l§Briefly, genotyping was performed with the Affymiat
Genome-Wide Human SNP Array 5.0. Quality controlgedures excluded: samples with
<97% genotyping call rate; members of estimatesi-tiegree relative pairs; SNPs with a call
rate < 90%; SNPs with a deviation from Hardy-Weigpbequilibrium P <10°); SNPs with
> 3 discrepancies among duplicate pairs; SNPs wihdélian inheritance errors among five
CEPH trios and/or CEPH sample genotype discrepandgid HapMap. Genotype
imputation was conducted with MACH using phaseddtgpes from the 1000 Genomes
Project in both CEU and CHB+JPT samples (June B¥6ase}* In addition, we excluded

any SNPs with poor imputation quality (MAQ# < 0.3) or estimated minor allele frequency
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(MAF) < 0.01.
Genetic marker selection

The process of choosing SNPs is depicted in Fijufdhe SNPs used to create the
genetic risk scores were selected by finding SNBs@ated with the individual CM traits of
interest: CRP, HDL-C, and TG. We selected thesesSiin (1) genome-wide association
studies (GWAS) conducted with our own study popoigt * (2) published GWAS of East
and South East Asian cohoft$and (3) published GWAS of European descent cofidgfts
the specific trait lacked studies conducted in pajans of Asian descent. We limited our
selection of studies to cohort-based studies artd-arealyses; case-control studies were not
considered because we wanted to choose SNPs dsdagith the individual CM trait rather
than disease state. From the studies identifiedselexted SNPs withRi< 5x10° in the
original study population for further analysis; imereased this threshold tdPa< 5x10° for
those studies conducted in our own study populatiento the smaller sample size in the
CLHNS.

The original studies were used to identify th& alele. We designated the risk allele
as the allele associated with an increased levleo$pecified trait, except in the case of
HDL-C, for which the allele associated with lowevéls was designated. For each
individual, we coded imputed SNPs according todbsage value or the expected number of
copies of the risk allele (a continuous number leetwO and 2). This coding reflects the
uncertainty in the imputation of the SNPs, for epéara 1.5 suggests more uncertainty
whereas a 1.9 suggests less uncertainty (an ingividely has two risk alleles).

Three genetic risk scores were constructed, onedan CM trait, CRP, HDL-C, and

TG. Before creating each genetic risk score, wisela subset of SNPs with nominal
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significance P < 0.1) and directional consistency of the effetinegte in our study
population. This was based on adjusted linear ssgra models of the natural log-
transformed CM trait on the individual SNP (see Mld2lin Methods). Then for each CM
trait, we pruned SNPs for redundancy due to linkdigequilibrium (2> 0.2). To do this we
used the --clump procedure in PLINK to create “ghsihof correlated SNPS? Each clump
was represented by the top index SNP, designatét 8NP with the lowe§t value (see
Model 2 in Methods). Using these index SNPs, weutated each genetic risk score by
simply summing the risk alleles associated withdpecific trait. We created an un-weighted
score instead of weighting by the effect of eacliP®Mcause: (1) the current literature does
not provide stable effect estimates of each SNRdgch trait; (2) the outcomes (and thus
effects) across studies were non-comparable @getransformed trait vs. non-transformed
trait); (3) studies used populations of various gi@nsizes and ethnicities; (4) using weights
from the CLHNS data itself would have introducedsbi
Statistical Analysis

Linear regression models, with each of the thrikt@its as a continuous outcome,
were used. All traits were natural log-transfornedatisfy model assumptions of normally
distributed residuals. Given the markedly skewedridhution of CRP concentrations and the
presence of many values below the detectable (8vEimg/L), CRP values were natural log-
transformed after adding the constant 0.10.

We constructed principal components (PCs) usingdiftsvare EIGENSOFT to
capture population substructure among CLHNS subfétWe assessed the association
between each of the first 10 PCs and each logfvaned CM trait to identify any potential

ancestry explanatory PC; th® PC was significantly associated with CRP and HD(nG
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PCs were significantly associated with log TG Ieyghus the first 7 PCs were included as
covariates in the linear regression models.

Two different models were examined. Model 1 waisi@dr regression model
adjusted for age (categoricad4 y, 45-49 y, 50-54 y, arkb5 y) and population
substructure. Model 2 included covariates adjukiech Model 1 plus additional adjustment
for postmenopausal status (yes/no), OW/obese sBkk> 23 kg/nf), high WC (WC>
80cm), % energy intake from saturated fat, enemtpkie, environmental hygiene, reported
infectious iliness (yes/no), and SES. The covasiateosen for adjustment in Model 2 were
based on prior published studies in the CLHNS eseHipid and inflammatory traité.%® 1+
We categorized age, BMI, and WC to account forrthen-linear relationship with the log
CM trait levels.

Models 1 and 2 were applied to test for the as$ioci between each candidate SNP
and its related log-transformed CM trait (assunangdditive model). Then both Models
were applied to test for the association betweeh ganetic risk score (continuous) and its
related log-transformed CM trait. In addition, Mb@ewithout a genetic component was
estimated to examine the “non-genetic” factors @ssed with each log-transformed CM
trait.

Lastly, for each CM trait we looked at interactidretween the genetic risk score and
measures of adiposity. We examined a genetic aekesx elevated WC interaction, both
unadjusted and adjusted for BMI (using a 3-categbdummy variable for normal weight,
OW, and obese). Then we examined a genetic rigle sc®@W/obese status interaction, both
unadjusted and adjusted for elevated WC. Eachactien was looked at separately while

adjusting for the same covariates as Model 2.
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For regression analyses we used a statisticalfsignce criteria oP <0.05 (2-sided).
For interaction terms, we considef&0.1 as nominally significant. All regression arsdy

were performed with Stata 12.0 (Stata Corporat@nilege Station, TX, 2006).
RESULTS

The characteristics of 1,649 women participanth@2005 CLHNS are presented in
Table 1. In 2005, participants had a mean (SD)c@dgd.41 (6.03) years. About 39% of
women were postmenopausal, 52% had elevated WCws0&0W, 20% had elevated
CRP, 82% had low HDL-C, and 29% had elevated TG.

Our selection strategy for candidate SNPs relaongRP, HDL-C, and TG resulted
in 46, 19, and 13 usable variants (Figure 1). Afteining to eliminate correlated SNPs in
linkage disequilibrium (by trait), 6 CRP, 9 HDL-@\d 9 TG SNPs were used in the
construction of the genetic risk scores (Figur@dhle 2). Among participants, each genetic
risk score was normally distributed (Figure 2). Thean score (SD) and range of number of
risk alleles for CRP was 3.32 (1.37) with a rangenf 0.12-8.51; for HDL-C was 5.95 (1.58)
with a range from 1.61-11.66; and for TG 9.42 (1 \8h a range from 2.29-14.34.

The regression results from Model 2 for each cdettei SNP and its respective CM
trait are shown in Table 2 (results from Model Ieveimilar and thus not shown). Using
Model 2, the individual SNP most strongly assodateth CRP was rs876537 at tG&P
loci (B= 0.33, 95% CI [0.24, 0.42P = 2.27 x 10, with HDL-C was rs12708980 at the
CETPIloci (B= -0.05, 95% CI [-0.08, -0.03R = 6.61 x 10), and with TG was rs964184 at
the APOC3loci (B= 0.15, 95% CI[0.11, 0.19P = 3.37 x 10°). The same SNPs were

found to be the most strongly associated with eéashin Model 1 as well.
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As expected, each of the three genetic risk samassassociated with its respective
log-transformed trait (Table 3). Specifically inoklel 2, each additional CRP risk allele
resulted in an estimated 18% increase in CRP |épel§.18, 95% CI [0.14, 0.23]); each
additional HDL-C risk allele resulted in an estiet#% decrease in HDL-C leve[5=(-

0.04, 95% CI [-0.05, -0.04]); each additional T&krallele resulted in an estimated 7%
increase in TG level$€ 0.07, 95% CI [0.06, 0.08]).

We compared the proportion of variance explaimetthé log-transformed CM trait by
the genetic risk score vs. the most strongly aasediindividual SNP in Model 2 (Figure 3).
To do this we first ran Model 2 without any geneticnponent (Table 4). The adjusted R-
square obtained from this model represents thegptiop of variance explained by specified
“environmental” components (Rsq E). Running Modalith the individual SNP yielded an
adjusted R-square representing the proportion w&nee explained by the individual SNP
and environmental components (Rsq SNP+E). RunniadeVi2 with the genetic risk score
yielded an adjusted R-square representing the propmf variance explained by the genetic
risk score and environmental components (Rsq GRSFaEpbtain the proportion of
variance explained by just the individual SNP (B&P) = (Rsq SNP+E)-(Rsq E). To obtain
the proportion of variance explained by just theaji risk score (Rsq GRS) = (Rsq
GRS+E)-(Rsq E). For each CM trait, we plotted RBifPS's. Rsq GRS (Figure 3). For all
three traits, Rsq GRS > Rsq SNP; about 4% of lo§ &Rels, 7% of log HDL-C levels, and
6% of log TG levels were explained by the genasik score alone (Table 3).

We found significant interactions between measafegliposity and the TG genetic
risk score on log TG levels, while we found no evide of such interactions on log CRP or

log HDL-C levels.
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Stratifying by normal WC (< 80cm) and elevated VWW@B(Qcm), the estimated %
increase in TG levels for each additional TG rib&la was 5% f§= 0.05, 95% CI [0.03,
0.07]) in normal WC individuals, but increased 86 §= 0.08, 95% CI [0.06, 0.10]) in
elevated WC individualS(interaction = 1.66 x 1) (Table 5). Here we present BMI adjusted
results; we found no difference between the eftstimate and value of the unadjusted
model (results not shown).

Similarly, stratifying by normal weight (< 23kgfinrand OW/obese>@3kg/nf), the
estimated % increase in TG levels for each addtidi® risk allele was 5%$¢ 0.05, 95%
C1[0.03, 0.07],) in normal weight individuals, hatreased to 8%$€ 0.08, 95% CI [0.06,
0.09]) in OW/obese individual®(neracion = 2.73 x 1F) (Table 5). Here we present WC
adjusted results; we found no difference betweeretfect estimate arfélvalue of the
unadjusted model (results not shown).

To better visualize these interactions (Figurev® predicted TG levels at the"25
and 7% percentile values of the genetic risk score (7 Ehdespectively) at varying levels of
adiposity, while holding all other covariates in t&b 2 at the mean. Based on model
predictions, for individuals with a higher TG geanetsk score (= 12), having an elevated
WC (> 80cm) increased TG levels from 117 to 151 mg/dhiléfor individuals with a
lower score (= 7), having an elevated WC made gwifscant impact on TG levels (93 vs.
104 mg/dL). Similar results were seen at varyingle of BMI.

We also examined all the above interactions wittheadividual SNP included in the
TG genetic risk score, however none of these intenas were significant (results not

shown).
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DISCUSSION

In this study we used a genetic risk score tolmae the relatively small additive
effects of individual SNPs to better capture theplex relationship between genetics,
adiposity, and CM risk. We found that for all thttegits, the genetic risk score more strongly
predicted biomarker levels than any individual ShPaddition, the genetic risk score
explained a greater proportion of variance in thecgfied trait than any given individual
SNP. Lastly, we found that for individuals with igllier TG genetic risk score, having either
an elevated WC or being OW/obese amplified the tgenek score’s effect by further
increasing TG levels. While for individuals witHawer TG genetic risk score, measures of
adiposity made almost no difference in TG levelsetdestingly for those women with a low
TG genetic risk score and elevated levels adipoigir predicted levels of TG equaled
those of women with a high genetic risk score withemy adverse levels of adiposity.
Overall, these results demonstrate that combinatdmultiple genetic loci better explain
the variation in CRP, HDL-C, and TG levels and tih& TG genetic risk score seemed
interact with measures of adiposity to influence [€@ls in this study population.

In support of our results, recent work using theasatudy population found that central
obesity might accentuate the effect of the TG-iasheg allele of adPOA5variant’ In
addition, previous research has implicated sewenants in thd.PL gene (a gene included
in our genetic risk score) as having an interaatiffect with central adiposity on TG levels
and the ratio of TG to HDL-&%"*® However, we did not find significant interactions
between these individual loci and adiposity on €&els, perhaps indicating that the

interactive effect is driven by a collective reseflall SNPs in the TG genetic risk score.
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While the interaction between WC and the TG gem&lcscore (adjusting for BMI) was
stronger than that between OW/obese and the TQigeisk score, we cannot conclusively
say whether visceral adiposity, as proxied by Wives this interaction. However, it is
interesting to note that the residuals of WC reggdon BMI also significantly interacted
with the TG genetic risk score (results not shovangvious studied have implicated visceral
adiposity as a stronger predictor of TG levels laygertriglyceridemia compared to
subcutaneous adipose tisstie*

From a clinical perspective, individuals with batimigh TG genetic risk score and
elevated WC, had predicted TG levels that meeAtherican Heart Association’s level of
“borderline high risk” (150 to 199 mg/dy? This combination of elevated WC along with
increased TG levels has been previously describélea“hypertriglyceridemic waist”
phenotype. Individuals with this phenotype haveghér risk of increased visceral adiposity,
CVD, insulin resistance, and other related outcothé®**This is of particular concern for
Asian populations, for whom increased levels ot&ral adiposity are present at normal
BMIs.®>**Work from Pollinet al.reinforces this concept by finding that an inteasi
lifestyle intervention appeared to partially mitigahe effect of the rs1260326 risk allele in
the GCKRgene (a loci included in our genetic risk scorehigher TG level$®* Further
research, especially clinical trials in larger plapions, is needed to know whether such
interventions could be useful, especially acrofferdint ethnicities.

Limitations of our study merit consideration. Weedsross-sectional data since
biomarker levels were only measured in 2005, triusausal relationships can be inferred. In
our literature search we found differing numbersardidate SNPs for each trait. Although

we used the same criteria in our search regardfas®e CM trait, the variation in the number
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of candidate SNPs could reflect the current sththeliterature. In addition, there is concern
with choosing SNPs from a European sample and eqgptilem to an Asian sample,
especially in terms of tagging the appropriate fiomal variant. We tried to mitigate this by
choosing SNPs with nominal significance and dimewl consistent effect estimates in our
study population, however due to the limited sansppte in the CLHNS we may have lacked
the power to detect the SNPs true effect. Alsimgua threshold of?<0.2 for linkage
disequilibrium, still allows SNPs to partially tge same underlying signal, potentially
including some redundancy in the genetic risk scdfeile we used an un-weighted
approach to create our genetic risk scores, it Inegyossible in the future to obtain stable and
accurate estimates of genetic variants for usearighted risk score, which could improve
predictability of CM risk.

In conclusion, using a study population of middige@ Filipino women undergoing a
nutrition and lifestyle transition, we found thaRE, HDL-C, and TG genetic risk scores
explained a greater variance of the associatetdcmanpared to a single SNP. We also found
that the TG genetic risk score interacted with aslify to synergistically influence TG levels.
For individuals with a high genetic predispositiorelevated TG levels, our results suggest
reducing adiposity could possibly prevent increaselG levels and thereby reduce the
likelihood of adverse health outcomes such CM diseaReplication of these results in
larger study populations is needed to support thergial clinical and public health utility of

targeted prevention efforts using genetic profiling
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TABLES AND FIGURES

Figure 4.1: Choosing of SNPs to include in the geterisk scores
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Tiz SMPs

W et al. 2012 Wo et al. 2013 W et al. 2003
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9 5MPs; 1 is 7 5MPs 4 SMPs
triallelic Teslwvich et al. Teslovich et al.
Ridker et al. 2008 2000 {Asian)’ 2000 { Asian)®
(Enropean ) 5 SMPs; 1 with 4 5MPs
45 SMPs; 4 with <13 him et al. 2011
re=it3and 3 Kim et al. 2011 [ Asian)’
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in Wi et al. 9 5MPs; | no
available*®
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Figure 4.1: Choosing of SNPs to include in the getic risk scores

A schematic representation describing the procesbamsing SNPs associated with CRP,
HDL-C, and TG. Parentheses indicate the specmiidyspopulation in which analyses
were conducted. *rs1268004 was not genotyped artdapdlap or 1000 Genomes
imputed data was available. See Methods for furdeésils.
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Table 4.1: Characteristics of 1,649 women participats in the 2005 CLHNS

Age (%)

<44y

45-49y

50-54 y

>55y
Postmenopausal (%)
lliness* (%)
Energy intake (kcal)

% Energy intake from saturated fat

Waist circumference (WC; cm)
Elevated WCT (%)
BMI (kg/m?)
Overweightt (%)
Obeset (%)

CRP (mg/L)
Elevated CRPT (%)
HDL-C (mg/dL)
Low HDL-CT (%)
TG (mg/dL)
Elevated TGt (%)

324

31.5

20.9

151

38.5

27.5
1,128.8 +491.8

54+£41

81.0+10.9
52.4
243+43
38.7
21.2
1721
19.6
41.0+10.3

82.4
131.0+84.7
28.8

Data are means + SD or percentages. *Percentdgdiaiduals reporting illness at time of

blood draw tSee Methods for cutpoint values
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Table 4.2: SNPs selected from a literature searclo generate cardiometabolic trait specific
genetic risk scores

Non-risk Risk Risk
SNP Chr Nearest gene allelet allelet . allele B 95% ClI P value squaret
requency
CRP SNPs
rs12093699 1 CRP G A 0.08 0.25 0.07 042 6.0E-3 90.1
rsg76537 1 CRP T C 0.43 0.33 0.24 042 23E-12 0.21
rs1892534 1 LEPR T C 0.15 0.11 0.00 023 b53E-2 80.1
rs1408282 6 6q16.1 G A 0.09 042 024 059 23E-6.190
rs1169288 12 HNF1A C A 0.63 0.33 0.23 043 1.9E-100.2
rs1169302 12 HNF1A G T 0.29 0.09 -0.01 0.19 8.2E-20.18
HDL-C
SNPs
rs1544857 2 SLC4A10 G C 0.17 -0.05 -0.08 -0.03 #&6E 0.08
rs17548357 BIRC6 G A 0.02 -0.19 -0.28 -0.11 1%4E- 0.08
rs3739440 PAX5 C T 0.17 -0.07 -0.10 -0.04 2.3E-60.08
rs11227643 11 11g13.1 C G 0.73 -0.05 -0.08 -0.028E-B. 0.07
rs964184 11 APOC3 C G 0.24 -0.02 -0.04 0.00 1.7E-20.07
rs1532085 15 LIPC A G 0.43 -0.04 -0.07 -0.02 4.3E-50.08
rs2070895 15 LIPC A G 0.62 -0.06 -0.09 -0.03 3.5E-50.08
rs12708980 16 CETP T G 0.19 -0.05 -0.08 -0.03 &.6E- 0.08
rs138779 22 TOM1 T C 0.39 -0.05 -0.06 -0.03 2.4E-60.08
TG SNPs
rs780092 2 GCKR G A 0.68 0.09 0.05 0.12 3.2E-7 0.13
rs17023681 3 CNTN4 T G 0.29 0.12 0.07 0.17 2.6E-6 .130
rs7644509 3 Chr3g26.1 C G 0.19 0.08 0.04 0.13 3&5E-0.13
rs2286276 7 MTL%(LIIZD-L C 0.9 0.05 -0.01 0.10 8.6E-2 0.12
rs12678919 8 LPL G A 0.95 0.09 0.02 017 18E-2 201
rs2001945 8 LPL C G 0.43 0.03 0.00 0.06 4.6E-2 0.12
rs603446 11 ZNF259 T c 0.68 0.08 0.04 0.11 1.9E-5 .130
rs964184 11 APOC3 C G 0.24 0.15 0.11 0.19 3.4E-15.150
rs1893838 18 ZBTB7C T C 0.35 0.07 0.03 0.10 1.6E-40.13

*Association results from Model 2: the covariatesrevage (categoricaid4 y, 45-49 y, 50-54 y, areb5 y), PCs,
postmenopausal status, overweight/obese statwstetewaist circumference, % energy intake fromrsa¢d fat, energy
intake, environmental hygiene, illness, and SES$c(wue was the log-transformed CM trait); tRisklalks defined by the
study from which it was chosen; tAdjusted R-sqdaréodel 2
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Figure 4.2: Distribution of the genetic risk scoreamong 1,649 Filipino women
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Figure 4.2: Distribution of the genetic risk scoreamong 1,649 Filipino women
The distribution of the CRP, HDL-C, and TG geneisk scores among participants



Table 4.3: Association of genetic risk scores witlog-transformed CM trait levels in
1,649 women

R-square R square (genetic

_ 0
Genetic risk score B 95% ClI P value f risk score alone)
CRP genetic risk score 0.19 0.15 0.23 4.81E-20 0.22 0.04
HDL-C genetic risk score -0.04 -0.05 -0.04 1.81E-29 0.14 0.07
TG genetic risk score 0.07 0.06 0.08 3.38E-28 0.18 0.06

*Association results from Model 2; covariates wage (categoricak44 y, 45-49 y, 50-54 vy, areb5 y), PCs,
postmenopausal status, overweight/obese statusitetbwaist circumference, % energy intake fromrsaed
fat, energy intake, environmental hygiene, illnesg] SES (outcome was the log-transformed CM trait)
tAdjusted R-square for Model 2; $Proportion of aade explained by the genetic risk score alone (see
Methods)
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Table 4.4: Association of “non-genetic” covariatesvith CM trait levels

Model 2 without

genetic component log CRP log HDL-C log TG
R- R R
Covariates B 95% CI P value square* 95% ClI Pvalue square* B 95% ClI P value square*
0.18 0.07 0.12

Age

<44y Reference

45-49 y 0.03 -0.12 0.18 7.06E-01 0.00 -0.03 0.0B51E-01 0.08 0.02 0.14 8.17E-03

50-54 y 0.02 -0.17 0.22 8.13E-01 -0.02 -0.06 30.04.56E-01 0.17 0.09 0.25 1.93E-05

>55y 0.23 0.00 0.47 5.28E-02 0.01 -0.03 0.06 5.62E- 0.15 0.06 0.24 1.70E-03

Postmenopausal status  0.23 0.07 0.40 6.55E-03

Elevated WCT 0.56 0.39 0.72 2.99E-11
OW/obese 0.43 0.26 0.60 9.30E-07
Energy intake 0.00 0.00 0.00 1.62E-02

Saturated fat intake§ 0.00 -0.01 0.02 8.35E-01
Hygiene -0.04 -0.09 0.01 1.03E-01
lllness 0.40 0.27 0.53 1.57E-09
SES 0.09 0.03 0.15 2.11E-03

-0:0D6 0.01 1.94E-01
-0.06 -0.10.03-0 3.58E-04
0.00 -0.04 0.03B9mBO1
0.00 0.00 00.3.04E-01

0.09 0.02 0.16 7.00E-03
0.18 0.12 0.25 2.28E-08
0.11 0.04 0.18 1.48E-03
0.00 0.00 0.00 3.28E-01

0.0m00 0.01 5.85E-03 0.00 0.00 0.01 6.28E-01
-0.01 -0.02 0.0800E-01 0.00 -0.02 0.02 8.13E-01
-0.04 -0.07 -0.0237E-03 0.04 -0.01 0.09 1.32E-01
0.03 0.02 0.04 2.45E-06 0.02 0.00 0.04 6.42E-02

*Adjusted R-square; TWaist circumferene80cm; tOverweight/obese, BMI23kg/nf; §Percentage of energy intake from saturated fat
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Figure 4.3: The proportion of variance explained bygenetic risk score vs. individual SNP most stronglassociated with trait
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Figure 4.3: The proportion of variance explained bygenetic risk score vs. individual SNP most
strongly associated with trait

The proportion of variance in the CM trait explairigy the genetic risk score vs. the individual SNP

most strongly associated with the trait. The indiil SNP most strongly associated with CRP was
rs876537, with HD-C was rs127089¢, and with TG was rs9641. See Methods for further deta
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Table 4.5: Evidence of interaction between TG genietrisk score and levels of adiposity on log-transtmed TG levels

Normal waist circumferencet Elevated waist circuerfeet
n=785 n=_864
B 95% ClI P value B 95% CI P value P interaction
TG genetic risk score 0.05 0.03 0.07 1.02E-08 0.08 0.06 0.1 4.96E-22 1.66E-02
Normal weightt Overweight and obeset
n=661 n =988
B 95% ClI P value B 95% ClI P value P interaction
TG genetic risk score 0.05 0.03 0.07 3.21E-07 0.08 0.06 0.09 5.21E-24 2.73E-02

*The covariates were age (categoricald y, 45-49 y, 50-54 y, arkb5 y), PCs, postmenopausal status, % energy ifitakesaturated fat, energy intake,
environmental hygiene, illness, and SES (outcon®lagrtransformed TG levels); 1 Stratified by waistumference> 80cm; additional adjustment for
normal weight, overweight, and obese BMI categor&tratified by normal weight: BMI < 23kgfmoverweight: 23kg/i< BMI < 27.5kg/nf, obese: BMb
27.5kg/nt; additional adjustment for elevated waist circumfere
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Figure 4.4: Predicted triglyceride levels at the 28 and 75" percentile values of the genetic risk score strdiied by levels of
adiposity
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Figure 4.4: Predicted triglyceride levels at the 28 and 78" percentile values of the genetic risk
score, stratified by levels of adiposity

Showing predicted geometric means (95% Cl) ofydgtides (TG) at the 25th and"7percentile
values of the genetic risk score (7 and 12 respalg)i at varying levels of waist circumference (WC)
and BMI: A. Predicted levels of TG stratified by W@0cm; B. Predicted levels of TG stratified by
overweight/obese (BMt 23kg/nf)



Chapter 5. IDENTIFICATION OF GENETIC RISK PROFILES ACROSS
MULTIPLE CARDIOMETABOLIC PHENOTYPES IN FILIPINO WOM EN

OVERVIEW

The patterning of genetic risk across multiple gitgpes may better explain the
underlying genetic susceptibility for cardiometab@dCM) disease, especially since these
diseases themselves display a specific clustefinglofactors including insulin resistance
(IR), dyslipidemia, hypertension, and inflammatiétere we used a novel application of
cluster analysis to identify groups of women wharshsimilar patterns of genetic risk across
multiple CM phenotypes.

Participants included 1,584 women from the 2005udadngitudinal Health and
Nutrition Survey. Using cluster analysis, we gradipedividuals by the following six CM
genetic risk scores: triglycerides (TG), high-dgnbpoprotein (HDL-C), Low-density
lipoprotein (LDL-C), blood pressure (BP), IR, aner€active protein (CRP). Using linear
regression and multinomial logistic regression @itlomodels we assessed how these
genetic risk clusters, along with anthropometrietaty, and other environmental factors
predicted CM trait levels and CM clusters.

We identified 5 distinct genetic risk clusters: [(Dw CM risk variants, (2) Increased
TG/BP variants, (3) Increased HDL-C variants, (@réased IR/BP variants, and (5)
Increased LDL-C variants. Belonging to any onehef genetic risk clusters (as compared to
the Low CM risk variants cluster) predicted inceggevels in at least two CM traits (or

decreased levels in terms of HDL-C).



Previous research found five CM risk clusters:H&glthy, (2) Low HDL-C, (3)
Elevated BP, (4) Insulin resistant, and (5) Eledd@&P. In the mlogit, we found being in the
Increased TG/BP variants cluster (vs. the Low C3K riariants cluster) increased the
likelihood of being in the Elevated BP cluster (sddtio [OR]=1.71, 95% CI [1.03, 2.84])
and the Elevated CRP cluster (OR= 1.90, 95% CD[13127]). We also found that elevated
WC increased the likelihood of being in all the @&k clusters, whereas OW status only
increased the likelihood of being in the Elevaté&dhd Elevated CRP clusters. In addition,
a decrease in the percentage of energy intake $edurated fat uniquely increased the
likelihood of being in the Low HDL-C cluster (OR=9@, 95% CI [0.90, 0.97]).

Genetic risk clusters, along with anthropometrid dretary factors, predicted CM
trait levels and patterns in this population. Bpteaing the intricate relationship of these
modifiable and non-modifiable factors with commamplex traits we can further

understand how to effectively reduce and preventriSkland its associated diseases.
BACKGROUND

Individually, common genetic variants only minihgaxplain common complex
diseases such as cardiovascular disease (CVD)2tdmbetes, and other related
cardiometabolic (CM) conditiorS.Jointly considering the relatively small effectsfmese
individual SNPs may better capture underlying gerrétk associated with these diseases.
Recently, genetic risk scores have been implemdntederrogate the joint impact of
multiple SNPs of CM disead&®*

Some studies create a genetic risk score by sumapirige number of risk alleles
pertaining to a single CM phenotype, while othedgts similarly construct a genetic risk

score, but choose risk alleles associated with adid&lase of interest. The latter method
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combines risk variants pertaining to multiple phigpes with the intention of better
capturing the intricate relationship between gesednd common complex disease. Still, the
majority of these studies find slight to no imprment in classifying at-risk individual® &
This approach masks the actual patterning of genek across phenotypes. Perhaps,
understanding this heterogeneity in genetic risstelring may aid in predicting and
preventing CM diseas@, * *®especially since these diseases themselves dispgcific
patterning of risk factors including insulin resiste (IR), dyslipidemia, hypertension, and
inflammation®” &

Driven by the downfalls of using a single geneisk iscore approach, we used a novel
application of cluster analysis to identify grouggavomen from the 2005 Cebu Longitudinal
Health and Nutrition Survey (CLHNS), who share $ampatterns of genetic risk across
multiple CM phenotypes. Since CM risk factors tém@o-occur together, we hypothesized
that genetic risk across CM phenotypes would atsthd same. Cluster analysis is a valuable
approach because it allows for the heterogeneaubioations of risk factors, which likely
better reflect the underlying susceptibility foselase. To accomplish this goal, we first
created six genetic risk scores, each score ramregea summation of the genetic risk
variants associated with a single CM trait. Nexg, identified groups of women with similar
profiles of genetic risk by using cluster analyamsthe six genetic risk scores. We then
examined how these genetic risk clusters relatéld @M risk in this population, while

accounting for other factors such as age, diet,aatidropometry.
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METHODS

Survey design

The women in this study are participants in the GliS;iwhich is described in detail
elsewheré? Briefly, the CLHNS is a community-based cohortxafmen and their index
children followed since 1983. The original partes included all pregnant women in 33
randomly selected communities of Metro Cebu, wheedarth between May 1, 1983, and
April 30, 1984. A baseline interview was conducémiong women in their 6th to 7th month
of pregnancy. Subsequent surveys took place imredgiafter birth, bimonthly for 2 years,
in 1991, 1994-5, 1998-99, 2002, and 2005. In 2¢&4ing blood was drawn for CVD
biomarkers and genetics. Here we use data frormttker cohort still participating in the
2005 CLHNS. All data were collected under condigiafi informed consent with
institutional review board approval from the Unisigy of North Carolina, Chapel Hill, USA.

We excluded women who were pregnant at the tineoafd draw, not fasting at the time
of blood draw, and with C-reactive protein (CRR)els >10 mg/L (a level representing
current/recent illness rather than low-level basédmmation)®® Even though we removed
individuals with CRP levels >10 mg/L, we adjustedthe presence of any infectious
symptoms at the time of blood collection to helpteol for any residual confounding in our
analysis: 1,584 women had complete biomarker, genetic, séioeconomic, and
anthropometric data. Medication use in this poporatvas low: 0.1% took statins, 1.75%
took diabetes medication, and 3% took anti-hypsnenmedications. We adjusted for anti-
hypertensive medication use in our analysis. Aladeere collected with informed consent,
using protocols approved by the institutional rewteoard of the University of North

Carolina, Chapel Hill.
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Cardiometabolic biomarkers

Fasting plasma CM biomarkers included triglyceri@i&S), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein chaiesol (LDL-C), glucose, insulin, and
CRP. Blood samples were collected in participainéshes in the morning after an overnight
fast. Venous blood was collected in EDTA anti-cdagtivacutainer tubes. After mixing to
inhibit clotting, glucose was measured immediateding the glucose dehydrogenase method
(One Touch Ultra Blood Glucose Monitoring Systenfescan Johnson and Johnson). Blood
samples were stored on ice for no more than 2 hemdsvere then centrifuged to separate
plasma.

After separation, samples were frozen and reménozen at -80 °C until ready for
analysis. Total lipid concentrations were measuatetie Emory Lipid Research Laboratory
using enzymatic methods with reagents from BeckBiagnostics on the Beckman
Diagnostics CX5 chemistry analyzer (Fullerton, CAPL-C was determined using the
homogeneous assay for direct determination (Genzkxten, PA). LDL-C was determined
using the Friedewald formula, except if triglycersdexceeded 400 mg/dl then LDL-C was
directly determined using a homogenous assay (Geezlxton, PA). The Emory Lipid
Research Laboratory is a participant in the CDC/BHLipid Standardization Program to
ensure accuracy and precision of the determinati®lasma insulin was measured using
automated Bay&ADVIA Centaur chemiluminescent methotf. CRP concentrations were
determined using a high sensitivity immunoturbidincemethod (Synchron LX20, lower
detection limit: 0.1 mg/L).

Other cardiometabolic biomarkers included homemstabdel assessment insulin

resistance (HOMA-IR), and systolic and diastolioda pressure (BP). HOMA-IR was
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calculated as 22.5/ (insulin x glucose). Systolcdhd diastolic BP were measured in
triplicate after a 10 minute seated rest using ecarg sphygmomanometer. The mean of the
three measurements was used.

We used cutpoints for these biomarkers based ammeendations from the
International Diabetes Federation, the Americanrt&ssociation, and other previously
recognized and accepted cutpoints (Tab&£§: 192 1%Before using cutpoints to identify
participants with impaired fasting glucose, we aaph glucose correction factor to all
fasting glucose levels. Glucometers overestimateagle concentrations in whole venous
blood as compared with standard laboratory meth8d¥' Therefore we subtracted 0.97
mmol/l from fasting glucose values to obtain thetlegjuivalent to venous plasma as
analysed by a laboratory autoanaly¥8rThe corrected fasting glucose values are reported
in the analyses and tables.
Anthropometry

Body weight, height, and waist circumference (W@yevmeasured using standard

techniques® BMI was calculated as the ratio of weight (kghtaght (nf). We used
cutpoints for Asians to define overweight (OW) adIB> 23 kg/nf and central adiposity as
WC >80 cm!®
Dietary data

Dietary data were derived from two 24-hour dietagalls and the mean intake was used
in the analyses. Data were collected during in-hortexviews performed by highly trained
local field staff. A nutritionist reviewed all diety recalls immediately after collection. When

implausible values were found, interviewers reeigitespondents for verification.
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Energy and saturated fat intakes were calculated)aise Philippines Food Composition
Tables 1%
Sociodemographic and lifestyle characteristics

Highly trained interviewers collected reproducthistory data; this included menopausal
status beginning in the 1991 survey.

Socioeconomic status (SES) was measured by a fsaoe based on a principal
components analysis of household ownership of kegta such as television, vehicles, and
furniture®

Infectious illness was measured by asking partidgpd they were currently
experiencing any symptoms of infection, consisteittt prior research on CRP Symptoms
included runny nose, cough, fever, diarrhea, amel gwoat, as well as the more general
categories of flu, cold, and sinusitis. Responsesewsed to construct a summary variable
indicating the presence or absence of any infestsynptoms at the time of blood
collection.

Environmental cleanliness and household hygienemesasured by a hygiene score
based on data on the interviewer’s rating of coplarea, immediate area around the house,
toilet type, and water source. The score ranges @rd@o 9 with larger values indicating
greater cleanliness.

Genotyping, quality controls, and imputation

The complete methods for direct SNP genotypinglityuzontrol, and SNP imputation
have been described previou$l§Briefly, genotyping was performed with the Affymiat
Genome-Wide Human SNP Array 5.0. Quality controlgedures excluded: samples with

<97% genotyping call rate; members of estimatesi-tiegree relative pairs; SNPs with a call
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rate < 90%; SNPs with a deviation from Hardy-Weigbequilibrium (P <10°); SNPs with
> 3 discrepancies among duplicate pairs; SNPs wighdélian inheritance errors among five
CEPH trios and/or CEPH sample genotype discrepandgid HapMap. Genotype
imputation was conducted with MACH using phaseddtgpes from the 1000 Genomes
Project in both CEU and CHB+JPT samples (June B¥6ase}*' In addition, we excluded
any SNPs with poor imputation quality (MAQ# < 0.3) or estimated minor allele frequency
(MAF) <0.01.
Genetic marker selection

The process of choosing SNPs is depicted in Fijufdhe SNPs used to create the
genetic risk scores were selected by finding SNBs@ated with the individual CM traits of
interest: TG, HDL-C, LDL-C, systolic BP, diastoBP, glucose, HOMA-IR, and CRP. We
selected these SNPs from (1) genome-wide assatistiiies (GWAS) conducted with our
own study populatiof,” (2) published GWAS of East and South East Asidrods? ® “and
(3) published GWAS of European descent cohdrts$, "?if the specific trait lacked studies
conducted in populations of Asian descent. We édhibur selection of studies to cohort-
based studies and meta-analyses; case-controéstwere not considered because we
wanted to choose SNPs associated with the indiv/idiatrait rather than the disease state.
From the studies identified, we selected SNPs aftx 5x10° in the original study
population for further analysis; we increased thigshold to & < 5x10° for those studies
conducted in our own study population due to thallEensample size in the CLHNS.

The original studies were used to identify th& aiele. We designated the risk allele
as the allele associated with an increased levleo$pecified trait, except in the case of

HDL-C, for which the allele associated with lowevéls was designated. For each
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individual, we coded imputed SNPs according todbsage value or the expected number of
copies of the risk allele (a continuous number leetwO and 2). This coding reflects the
uncertainty in the imputation of the SNPs, for epéara 1.5 suggests more uncertainty
whereas a 1.9 suggests less uncertainty (an ingilvidely has two risk alleles).

Six genetic risk scores were constructed, onedoh®f the following traits: (1) TG,
(2) HDL-C, (3) LDL-C, (4) BP (containing systoliod diastolic BP risk variants), (5) IR
(containing glucose and HOMA-IR risk variants), 460 CRP.

Before creating each genetic risk score, we chaaet of SNPs with nominal
significance P <0.1) and directional consistency of the effecineste in our study
population. This was based on adjusted linear ssgya models of the natural log-
transformed CM trait on the individual SNP (see Mld2lin Methods). Then for each CM
trait, we pruned SNPs for redundancy due to linkdigequilibrium ¢2>0.2). To do this we
used the --clump procedure in PLINK to create “ghsihof correlated SNPS? Each clump
was represented by the top index SNP, designatét&NP with the lowe$t value (see
Model 2 in Methods). Using these index SNPs, weutated each genetic risk score by
summing all of the risk alleles associated withgpecific trait. We used simple counts of the
total number of risk alleles rather than weightoygthe effect of each SNP. We created an
un-weighted score instead of weighting by the ¢féée@ach SNP because: 1) the current
literature does not provide stable effect estimafesach SNP for each trait; 2) the outcomes
(and thus effects) across studies were non-comigafely. log-transformed trait vs. non-
transformed trait); 3) studies used populationganious sample sizes and ethnicities; 4)

using weights from the CLHNS data itself would haweoduced bias.
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Cluster analysis

We performed cluster analysis to identify groupsvofmen with similar genetic risk
score patterns using SAS PROC FASTCLUS (SAS ve@idnSAS Institute, Cary, NC).

This procedure implements the K-means clusteriggrahm (least squares method). K-
means clustering uses the Euclidean distance, daahfirom input variables, to assign

cluster membership by minimizing the distance anguigects in a cluster while

maximizing the distance between clusters. Theqatore first selects cluster seeds, a set of
points calculated as a first guess of the clustaima. Next it calculates the Euclidean
distance from each subject to each cluster seell;aject is assigned to the nearest seed to
form temporary clusters. The means of each ofeahmporary clusters are calculated and
replace the seed values. Distance calculatiom@ardber assignment progress in an iterative
fashion until no further changes occBit.**

Final cluster solutions are sensitive to initie¢d values. To remedy this problem and
to use a more objective approach to picking a etustlution we created an algorithm
modified from a previous clustering algoritii.This algorithm performed 1,000 iterations
of each cluster procedure using randomly genetatedl cluster seeds. For each of the
1,000 cluster solutions it calculated the rati®etween-cluster variance to within-cluster
variance o/ (1- ), whereR?, pooled across all variables, representing thigyatn
predict each input variable from the clust®r\We wanted to maximize the ratio of between-
cluster variance to within-cluster variance andefee wanted to find the large’t. The

algorithm identified the iteration/cluster solutinith the largesi?.**°
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The variables entered into the cluster analysi®wample-specific Z-scores of the
six genetic risk scores: TG, HDL-C, LDL-C, BP, l&d CRP. These genetic risk score
variables were standardized because they did vet égual variance.

Statistical Analysis

We conducted 2 sets of analyses: (1) linear regmressodels to examine the
association of each genetic risk cluster with ezfdhe CM traits; (2) a multinomial logistic
regression model (mlogit) to examine the assogatidthe genetic risk clusters with CM
risk patterns.

In the first analysis we used linear regression @wtb examine the association of
the genetic risk cluster (coded as 5 dummy vargMath each of the CM traits. All traits
were continuous and natural log-transformed tesB8atodel assumptions of normally
distributed residuals. Given the markedly skewedtridhution of CRP concentrations and the
presence of many values below the detectable (6vEimg/L) CRP values were natural log-
transformed after adding the constant d.10.

Two linear regression models were examined. Modeh4 a linear regression model
adjusted for age (categoricad4 y, 45-49 y, 50-54 y, arkb5 y) and principal components
(PCs) representing population substructure amorntgN3_subjects> PCs were constructed
using the software EIGENSOFT. We assessed theiasadetween each of the first 10
PCs and each log-transformed CM trait to identify potential ancestry explanatory PCs.
The 7" PC was significantly associated with HDL-C, LDL%ystolic BP, diastolic BP, and
CRP (no PCs were significantly associated withT@levels). Thus we included the first 7
PCs as covariates in all analyses. Model 2 includedriates adjusted for in Model 1 plus

additional adjustment for postmenopausal status/ifgd, OW status (BMt 23 kg/nf), high
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WC (WC> 80cm), % energy intake from saturated fat, enertake, environmental
hygiene, reported infectious illness (yes/no),-agpertensive medication use (yes/no), and
SES. The covariates chosen for adjustment in Mddaetre based on prior published studies
in the CLHNS on these trait5.®® ***We categorized age, BMI, and WC to account foirthe
non-linear relationship with the log CM trait lesel

In the second analysis we used an mlogit to exahmmegenetic risk clusters, along
with anthropometric, dietary, and other environnaéfdctors predicted CM patterns. Here
CM patterns represent the results from a clustalyais previously published in this
population on the following biomarkers: TG, HDL-DL-C, BP, glucose, HOMA-IR, and
CRP; this cluster analysis used the same appraadbszribed for the cluster analysis on
genetic risk scores (see Methods). We found fiadolgically relevant groups, which we
named according to their predominant CM charadtesis(1) Healthy, (2) Low HDL-C, (3)
Elevated BP, (4) Insulin resistant, and (5) Elesta®@&P (Figure 15° The outcome in this
mlogit was one of the CM clusters, where the “Hedltcluster served as the referent group.
The mlogit included the same covariates as in M@del

For regression analyses we used a statisticalfsignce criteria oP <0.05 (2-sided).
All regression analyses were performed with Stat@ {Stata Corporation, College Station,

TX, 2006).

RESULTS

The characteristics of all 1,584 women participamthe 2005 CLHNS are presented
in Table 2. In 2005, participants had a mean (&f#) of 48.4 (6.0) years. About 38% of
women were postmenopausal, 53% had elevated WC W& 0OW, 29% had elevated TG,

82% had low HDL-C, 35% had elevated LDL-C, 36% hgdertension, 24% had elevated
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fasting glucose, 16% had elevated HOMA-IR, and 2@& elevated CRP. Based on fasting
glucose levelsX{ 7mmol/L), 8% of women were diabetic (although ohly5% of women
were taking medication). Results did not differ wivee excluded these women in sensitivity
analysis, thus we retained these women throughauamalysis.

Our selection strategy for candidate SNPs resuitd® TG, 19 HDL-C, 8 LDL-C, 9
BP, 22 IR, and 46 CRP usable SNPs (Figure 1). Aitening to eliminate correlated SNPs
in linkage disequilibrium (by trait), 9 TG, 9 HDL;@ LDL-C, 2 BP, 3 IR, and 6 CRP SNPs
were used in the construction of the genetic regkes (Figure 1; Table 3). The means and
distributions for the genetic risk scores are presetin Table 4.

We conducted a series of cluster analyses with63dasters specified, and chose a
5-cluster solution because it yielded distinct gerésk score patterns and each cluster had
sufficient numbers (each approximately >17% ofgample):'° The 5-cluster solution had
an R = 0.39, indicating the clusters explained abo@b4# the variance in genetic risk
scores.

We identified the five genetic risk clusters a9:l(dw CM risk variants, (2)

Increased TG/BP variants, (3) Increased HDL-C vesia(4) Increased IR/BP variants, and
(5) Increased LDL-C variants. We named the clustecording to what genetic risk score(s)
had the highest/lowest mean relative to other etsgtFigure 2 and Table 4). The “Low CM
risk variants” group represents low Z-scores foohthe genetic risk scores. Other
characteristics of these clusters are highlighteTable 2.

The results from regressions from each log-transéol CM trait (except log diastolic

BP) on the genetic risk clusters are shown in Tabke and 5B. The results for log diastolic
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BP were similar to that of log systolic BP and wererefore not shown. Here we report the
results from Model 2 since similar associationsexfeund in Model 1.

Belonging to the Increased TG/BP variants clusterthe Low CM risk variants
cluster) resulted in a 14% increase in TG levgss{.14, 95% CI [0.07, 0.21]), a 7%
decrease in HDL-C level$£ -0.07, 95% CI [-0.10, -0.03]), and a 24% increas€RP
levels 3= 0.24, 95% CI [0.06, 0.43]).

Belonging to the Increased HDL-C variants clustst the Low CM risk variants
cluster) resulted in a 9% increase in TG levpts@.09, 95% CI [0.02, 0.17]), a 9% decrease
in HDL-C levels 3= -0.09, 95% CI [-0.12, -0.05]), and a 39% incre@as€RP levelsf{=
0.39, 95% CI[0.20, 0.58]).

Belonging to the Increased IR/BP variants cluster the Low CM risk variants
cluster) resulted in a 2% increase in systolic 8rls $= 0.02, 95% CI [0.00, 0.05]) and a
31% increase in CRP level$10.31, 95% CI [0.13, 0.48]).

Belonging to the Increased LDL-C variants clustex. (he Low CM risk variants
cluster) resulted in a 4% increase in LDL-C leygks 0.04, 95% CI [0.00, 0.09]) and a 22%
increase in CRP levelg%£ 0.22, 95% CI [0.04, 0.40]).

The results of the mlogit, with the outcome being of the CM risk clusters (as
compared to the Healthy cluster), are presentd@bte 6. First looking at the genetic
predictors, we found being in the Increased TG/BRawnts cluster (vs. the Low CM risk
variants cluster) increased the likelihood of bamthe Elevated BP cluster (odds ratio
[OR]=1.71, 95% CI [1.03, 2.84]) and the Elevatd®FCcluster (OR= 1.90, 95% CI [1.10,
3.27]). Next looking at non-genetic predictors, f@end elevated WC increased the

likelihood of being in all the CM risk clusters (W controlling for OW status), whereas
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OW status only increased the likelihood of beinghie Elevated BP and Elevated CRP
clusters (while controlling for WC). In additiondacrease in the percentage of energy intake
from saturated fat uniquely increased the likeldhod being in the Low HDL-C cluster

(OR= 0.94, 95% CI [0.90, 0.97]).
DISCUSSION

In this study we sought out to identify groupsmdividuals with similar profiles of
genetic risk across multiple CM phenotypes. Cluatelysis was a useful tool for identifying
groups of individuals who share similar patterng@nfetic risk scores. By using cluster
analysis, we were able to capture the heterogeimefigitterns of genetic risk across various
phenotypes. To our knowledge, cluster analysisleasr been used before to create genetic
risk patterns for CM associated traits. From theswere able to identify which genetic risk
patterns most strongly predicted CM trait levelse ¥¥so found that these genetic risk
clusters, as well as anthropometric and dietartpfacindependently predicted CM risk
patterns in this population.

Belonging to any one of the genetic risk clustassqompared to the Low CM risk
variants cluster) predicted increased levels ieadt two CM traits (or decreased levels in
terms of HDL-C). Interestingly, each genetic rislster most strongly predicted log CRP
levels as compared to all other CM traits. The proes of the referent cluster, the Low CM
risk variants cluster, likely drove these findingss cluster had the lowest relative mean
CRP genetic risk score compared to all other claste

Among all the CM traits, we did not find an asstiola between the genetic risk clusters
and fasting glucose or HOMA-IR levels. This coulthgly reflect the lack of variation in

these traits due to the low prevalence of IR/diebat this population, also noted by the
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small size of the Insulin resistant CM cluster (8B we previously fount Another
possibility is that the effects of adiposity oveeimed the effects of the genetic risk cluster
on glucose and HOMA-IR levels. Levels of adipositghly influence glucose and HOMA-
IR levels in our population as well as in otherd#s®® 871Xt is also important to note
that the SNPs chosen for the IR genetic risk scame largely from studies conducted in
European populations. Therefore these SNPs mayentatgging the appropriate functional
variant in our population, which could also explainy we saw non-significant associations
between the genetic risk clusters and glucose/HORIA-

Belonging to a specific CM cluster likely reflestariations in genetic risk and other
modifiable and non-modifiable characteristics. BssaCM risk factors tend to co-occur
together, it seems likely that genetic risk acqgssnotypes would also do the same. In the
mlogit, we found that being in the Increased TGIBHants cluster (vs. the Low CM risk
variants cluster) increased the likelihood of bamthe Elevated BP and Elevated CRP
clusters (vs. the Healthy CM cluster). It's uncledny this genetic risk cluster predicted the
Elevated CRP group. Perhaps using the mlogit deeteaur power to detect genetic effects
(due to the categorical nature of the predictortiledoutcome). Further research is needed to
understand how/whether genetic risk profiles tratesio phenotypic risk profiles.

In this same mlogit model (while adjusting for O¥stss) we found that WC was the
most pervasive predictor of CM cluster membershiqglerscoring the adverse health effects
of excess visceral fat deposition, assuming WQiméicator of visceral fat** **WcC is
among the best-established predictors of CM riskast work in the CLHNS and studies in
other Asian populations support this notiéh>* ® “4e found that OW status only

predicted membership to the Elevated BP and Eldv@agP clusters (when controlling for
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WC). Research demonstrates that increased WC gecid abnormalities in both normal
weight and OW individuals, highlighting the potetior visceral fat to influence
development of CM risk factors independent of olf&H| status™®*

In relation to dietary intake, we found that a @ase in the percentage of energy intake
coming from saturated fat uniquely predicted mersiigrin the Low HDL-C cluster. Most
dietary recommendations suggest limiting saturédeahtake, since it elevates total and LDL
cholesterol. However, recent studies have shoanléluric acid has a more favorable effect
on the total cholesterol to HDL cholesterol ratiart any other fatty acid, either saturated or
unsaturated, primarily by increasing HDL-C lev&13he most common cooking oil in Cebu
is coconut oil, which is rich in lauric actd® Our results suggest that decreased saturated fat
intake, perhaps from coconut oil, increase thdihked of membership into the Low HDL-C
cluster. This is supported by recent findings kyafil et al. that dietary coconut oil intake
was positively associated with HDL-C levels in pnenopausal CLHNS woméfi!

Limitations of our study merit consideration. Oangle size is relatively small therefore
replication of our results in other Asian populasaovould reinforce our findings. In our
literature search we found differing numbers ofdidate SNPs for each trait. Although we
used the same criteria in our search regardleggedEM trait, the variation in the number of
candidate SNPs could reflect the current stateefiterature. In addition, there is concern
with choosing SNPs from a European sample and aqgptilem to an Asian sample,
especially in terms of tagging the appropriate fiomal variant. We tried to mitigate this by
choosing SNPs with nominal significance and dimewl consistent effect estimates in our
study population, however due to the limited sanspte in the CLHNS we may have lacked

the power to detect a SNPs true effect. Also,guaithreshold of’<0.2 for linkage
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disequilibrium, still allows SNPs to partially tge same underlying signal, potentially
including some redundancy in the genetic risk score

A limitation of assigning names to the clusterthet not all individuals within a certain
cluster necessarily share the ascribed charaatsri§ior example, in our “Low CM risk
variants” cluster we found the average Z-scoregémetic risk scores were relatively low,
but we cannot ascribe these low values to eackithdl in the cluster,

In conclusion, by using cluster analysis we weille &bfind distinct patterns of
genetic risk. This method made fewer assumptiodsaflowed for relationships among CM
genetic risk scores to emerge from the data thems®l By finding combinations of genetic
risk across multiple phenotypes, we can hopefutyds explain the underlying genetic
susceptibility for CM disease in this populatiogpecially since these diseases themselves
display a specific patterning of risk factors irdilg IR, dyslipidemia, hypertension, and
inflammation®” # These genetic risk clusters, along with anthrogdmand dietary factors,
predicted both CM trait levels and patterns in ropulation. By capturing this intricate
relationship of these modifiable and non-modifiaialetors with common complex traits we
can further understand how to effectively reduag prevent CM risk and its associated

diseases.
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Figure 5.1: Choosing of SNPs to include in the getierisk scores
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Figure 5.1: Choosing of SNPs to include in the geterisk scores
A schematic representation describing the procksbamsing SNPs associated with the following CMts. Parentheses indicate the specific study

population in which analyses were conducted. *r808@ was not genotyped and no HapMap or 1000 Genonputed data was available. See

Methods for further details.
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Table 5.1. Criteria for defining elevated cardiomeabolic risk

Risk factors Cutpoint
Triglycerides* > 150 mg/dL

HDL cholesterol* < 50 mg/dL

LDL cholesterol > 130 mg/dL
Systolic BP* >130 mm Hg
Diastolic BP* > 85 mm Hg
Glucose* > 100 mg/dL
HOMA-IR% > 4.65 mg/dL xug/mL
Diabetes* Fasting glucose 126 mg/dL
CRP§ > 3.0 mg/dL

*Cutpoints are defined by the Iﬁ.TCutpoint is defined by the National CholesterduEation
Progrant.’? Cutpoint is defined by Stern et'8.§Cutpoint is defined by the American Heart
Associatiort®
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Figure 5.2: Mean Z-scores of fasting biomarkers bgardiometabolic cluster in Filipino women
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Figure 5.2: Mean Z-scores of fasting biomarkers bgardiometabolic cluster in Filipino women

Mean Z-scores by cardiometabolic cluster for tlghiefasting biomarkers used as input variableténctuster analysis
for 1,584 Filipino women.



Table 5.2: Characteristics of 1,584 women participats in the 2005 CLHNS

Low CM risk Increased Increased Increased Increased
All women . TG/BP HDL-C IR/BP LDL-C
variants . . . .
variants variants variants variants
(n=1,584) (n= 335) (n= 296) (n= 268) (n= 357) 628)
Age (%)
<44y 32.7 31 29.4 31 36.7 34.5
45-49 y 31.3 32.2 32.1 34.3 275 31.4
50-54 y 20.8 19.1 23.6 23.1 20.7 18
>55y 15.2 17.6 14.9 11.6 15.1 16.2
Postmenopau 4 4 39.4 41.2 38.4 38.4 34.1
sal (%)
lliness* (%) 27.4 28.1 31.4 26.1 27.2 24.4
Anti-
hypertensive 35 45 54 22 25 27
medication
(%)
Energy intake 1,131.8+ 11054+ 11106+  1,1483+ 11556+  1,1387+
(kcal) 496.8 500.9 431.1 491.9 527.3 518.0
% Energy
intake from 5.4+4.1 5.4+4.4 5.3+4.0 5.4+4.0 56+41 .353.9
saturated fat
Waist
circumferenc 81.1 +10.9 81.6+11.2 81.3+10.8 80.7+11.4 88010.6 81.1+11.0
e (WC; cm)
Elevated 52.6 55.8 53.7 50 49.6 53.7
WEt (%) . . . . .
BMI (kg/m?)  24.4+4.4 24.6+43 24.4+45 24.0+43 2483 24.4+ 4.4
Overweight§ 60 62.7 60.8 56.7 59.7 59.8
(%)
TG (mg/dL)  131.1+85.0 127.0%78.0 1153669* 141.6+91.7 1142+57.0 126.8+66.2
Elevated TGT 28.7 27.8 36.5 34 19.9 27.7
(%)
HDL-C
41.0+103  41.7+9.7 39.3+95 39.1+10.6 44105 43.1+106
(mg/dL)
Low HDL-
Ct (%) 82.4 81.2 88.2 84.3 82.9 76.2
(Ln%/'ci) 119.7+33.6 119.2+356 122.1+33.8 115.0+29.818.3+31.8 123.5+355
Elevated
LDLCT (%) 35.3 34.9 37.8 30.2 35 37.8
(Snﬁ,t]ok':‘;)BP 119.8+20.2 119.0+18.4 121.3+21.9 1185+18.921.0+21.1 119.1+20.4
Diastolic BP 269,155  7904+11.8 806+129 788+11.6 780131 79.5%13.0
(mm Hg)
'('t'%g’e”ens'o” 36.2 34.9 39.9 32,5 38.7 345
Glucose 5.5+2.0 55+1.9 53+1.5 5.6+2.3 57+24 4516
(mmol/L)
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Elevated

23.5 23 21.6 25.4 25.5 22.3
glucose (%)
HOMA-IR
(mmol/L x 3.0+£3.2 3.1+3.0 28+23 3.0+34 3.1+£3.9 .183.2
wlU/mL)
Elevated
HOMA-IR 16 17.6 145 16.4 14.3 17.4
(%)
Diabetecst
(%) 8.2 7.2 6.4 9.7 8.4 9.5
CRP (mg/L) 1.7+21 15+2.0 1.9+23 19+22 18+21 1.7+21
Elevated
CRPT (%) 20 15.5 23.3 20.5 23 18

Data are means * SD or percentages. *Percentagdioiduals reporting iliness at time of blood dra®ee
Table 1 for cutpoint values; $Waist circumfererc®0cm; §Overweight, BMk 23kg/nf
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Table 5.3: SNPs used to create trait specific gemetisk scores

Non- Risk
risk Risk allele
Trait  Chr SNPs Nearest gene allelet allele frequency BF 95% CI P value
TG 2 rs780092 GCKR G A 0.68 0.09 0.05 0.12 3.2E-7
3  rs17023681 CNTN4 T G 0.29 0.12 0.07 0.17 2.6E-6
3 rs7644509 Chr3g26.1 C G 0.19 0.08 0.04 0.13 35E-
7 rs2286276 TBL2-MLXIPL T C 0.90 0.05 -0.01 0.10 6B:2
8 rs12678919 LPL G A 0.95 0.09 0.02 0.17 18E-2
8 rs2001945 LPL C G 0.43 0.03 0.00 0.06 4.6E-2
11 rs603446 ZNF259 T C 0.68 0.08 0.04 0.11 1.9E-5
11 rs964184 APOC3 C G 0.24 0.15 0.11 0.19 3.4E-15
18 rs1893838 ZBTB7C T C 0.35 0.07 0.03 0.10 1.6E-4
HDL-C 2 rs1544857 SLC4A10 G C 0.17 -0.05 -0.08 30.06.6E-6
2 rs17548357 BIRC6 G A 0.02 -0.19 -0.28 -0.11 1HE-
9 rs3739440 PAX5 C T 0.17 -0.07 -0.10 -0.04 2.3E-6
11 rs11227643 11913.1 C G 0.73 -0.05 -0.08 -0.028E-B.
11 rs964184 APOC3 C G 0.24 -0.02 -0.04 0.00 1.7E-2
15 rs1532085 LIPC A G 0.43 -0.04 -0.07 -0.02 4.3E-5
15 rs2070895 LIPC A G 0.62 -0.06 -0.09 -0.03 3.5E-5
16 rs12708980 CETP T G 0.19 -0.05 -0.08 -0.03 &6E-
22 rs138779 TOM1 T C 0.39 -0.05 -0.06 -0.03 2.4E-6
LDL-C 1 rs629301 SORT1 G T 0.95 0.04 0.00 0.09 7R1E
8 rs4570159 TNKS A G 0.69 0.04 0.02 0.06 1.0E4
16  rs4787103 A2BP1 G A 0.37 0.04 0.02 0.06 1.1E-3
19 rs2738446 LDLR C G 0.24 0.02 0.00 0.05 3.5E-2
BP 1 rs17030613 ST7L, CAPZAL A C 0.42 0.01 0.00 20.04.7E-2
4 rs16998073 FGF5 A T 0.48 0.01 0.00 0.02 6.1E-2
IR 2 rs780092 GCKR T C 0.44 0.02 0.00 0.03 4.4E-2
2  rs16856247 ABCB11 C T 0.35 0.02 0.00 0.03 7.3E-2
8 rs11558471 SLC30A8 G A 0.59 0.03 0.01 0.05 1.2E-2
CRP 1 rs12093699 CRP G A 0.08 0.25 0.07 042 6.0E-3
1 rs876537 CRP T C 0.43 0.33 024 042 23E-12
1 rs1892534 LEPR T C 0.15 0.11 0.00 0.23 5.3E-2
6 rs1408282 6016.1 G A 0.09 0.42 0.24 059 23E-6
12 rs1169288 HNF1A C A 0.63 0.33 0.23 043 1.1E-10
12 rs1169302 HNF1A G T 0.29 0.09 -0.01 0.19 B8.2E-2

*SNPs used to create genetic risk score after pgugee Methods); tRisk allele as defined by thdysfrom
which it was chosen; $Coefficient represents % gkan CM trait level per each risk allele; resdittaem Model

2 (see Methods) where the outcome was the natgatansformed CM trait
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Table 5.4: Genetic risk score distribution for all1,584 women participants and by genetic risk cluste

Low CM risk Increased TG/BP Increased HDL-C Increased IR/BP Increased LDL-C
All women variants variants variants variants variants

Genetic risk (n=1,584) (n=335) (n =296) (n=268) (n=357) (n =328)
score

Mean Range Mean Range Mean Range Mean Range MearRange Mean Range
TG 94+18 23-143 88+16 43-142 11.13%1.6.1-143 102+16 51-141 81+14 2133 93+x16 3.6-139
HDL-C 59+16 16-11.7 50x12 16-8.3 6.8+x1429-112 74+12 41-117 56zx14 25-9.33%x14 22-9.8
LDL-C 45+11 11-80 38%+08 13-58 43%x09 .1417.0 43+09 12-69 44+10 21-80 7507 4.0-8.0
BP 1.8+09 00-39 13+0.7 0.0-38 26+0.7 .903.9 09+06 00-23 23+x0.7 03-39 6407 0.0-3.0
IR 30+x11 02-60 31+10 04-6.0 2.8+0.9 .406.0 27+11 03-6.0 38zx0.9 1.7-6.0 421.0 0.2-5.0
CRP 33+14 01-85 23+10 0.1-59 3.1+13 2075 39+13 02-79 40+13 09-85 3812 0.2-6.7

Displayed means are mean = SD
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Figure 5.3: Mean Z-scores of genetic risk scores lgenetic risk cluster in Filipino women

1.5 -
1 .
’E'\ 0.5 A
W BTG GRS
e BHDL-C GRS
§ BLDL-C GRS
'g ®BP GRS
o BIR GRS
=
OCRP GRS
-1 4
-15-
Low CM risk variants Increased TG/BP Increased HDL-C Increased IR/BP Increased LDL-C
variants variants variants variants

Figure 5.3: Mean Z-scores of genetic risk scores lgenetic risk cluster in Filipino women

Mean Z-scores by genetic risk cluster (GRS) fordiregenetic risk scores used as input variableéksearcluster analysis
for 1,584 Filipino women.
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Table 5.5A: Association of genetic risk clusters wh log-transformed lipid and blood pressure levelsn 1,584 women

Log TG Log HDL-C Log LDL-C Log systolic BP
P P P P
Covariates B 95% ClI value B 95% ClI value 95% ClI value B 95% CI value

Genetic risk score cluster

Low CM risk variants Referent Referent Referent Referent
Va'ﬂgﬁgsed TG/BP 014 007 021 000 -007 -010 -0.03 000 003010007 020 002 -001 004 019
V;Qg;?gsed HDL-C 009 002 017 001 -0.09 -0.12 -0.05 000 -003.070 0.02 024 001 -002 003 0.67
V;Q;;‘igsed IR/BP .0.06 -0.13 0.00 007 -003 -006 001 017 000.040 0.05 0.83 0.02 000 005 0.03
V;Q;;‘igsed LDL-C 003 -005 010 049 002 -0.02 005 039 004 0.aD09 004 001 -0.02 003 0.69
Age

<44y Referent Referent Referent Referent

45-49 y 007 001 013 002 000 -0.03 004 081005 001 008 001 003 001 005 0.00

50-54 y 0.16 008 024 000 -0.01 -0.05 003 007009 004 014 000 004 001 006 001

>55y 013 004 023 001 001 -004 006 060 00803 014 000 007 004 010 0.00
Postmenopausal status 009 002 015 001 -0.0D6-00.02 029 005 001 009 002 002 000 0.04 400
Elevated WCt 018 011 024 000 -0.06 -0.10 -0.09.00 000 -0.04 004 095 005 003 007 0.00
OW statust 012 005 019 000 -0.01 -0.04 003 70.6008 004 0.12 000 004 002 006 0.00
Energy intake 000 000 000 030 000 000 000210. 0.00 000 000 031 000 000 0.00 0.65
Saturated fat intake§ 000 000 001 030 000 00Ol 002 000 000 001 008 000 000 000 080
Hygiene 0.00 -0.02 002 1.00 -0.01 -0.02 000 0.18.00 -001 001 099 -001 -001 000 0.03
lliness 0.03 -0.03 008 033 -004 -007 -001 000001 -004 003 072 001 -001 003 0.31
SES 002 -001 004 016 003 002 004 000 003020004 000 001 000 001 013
Anti-hypertensive 012 -001 025 008 -0.04 -0.11 003 031 -0.04120 004 031 013 009 018 0.00
medication

*Coefficient represents % change in CM trait lepel unit change in predictor; results from Modgls2e Methods) where the outcome was the natural-log
transformed CM trait; TWaist circumferene®0cm; $Overweight, BM¥ 23kg/nf; §Percentage of energy intake from saturated fat
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Table 5.5B: Association of genetic risk clusters wh log-transformed glucose, HOMA-IR, and CRP levelsn 1,584 women

Log glucose Log HOMA-IR Log CRP
Covariates B 95% ClI P value B 95% ClI P value B 95% ClI P value

Genetic risk score cluster

Low CM risk variants Referent Referent Referent

Increased TG/BP variants -0.02 -0.06 0.02 0.31 0.08 -0.17 0.02 0.11 0.24 0.06 0.43 0.01

Increased HDL-C variants 0.03 -0.01 0.07 0.13 .030 -0.13 0.07 0.54 0.39 0.20 0.58 0.00

Increased IR/BP variants 0.03 0.00 0.07 0.07 040. -0.13 0.05 0.41 0.31 0.13 0.48 0.00

Increased LDL-C variants 0.00 -0.03 0.04 0.87 000. -0.09 0.09 0.99 0.22 0.04 0.40 0.02
Age

<44y Referent Referent Referent

45-49y 0.01 -0.02 0.04 0.37 -0.01 -0.09 0.06 740. 0.03 -0.12 0.18 0.69

50-54y 0.05 0.01 0.10 0.01 0.00 -0.10 0.11 0.97 0.04 -0.16 0.24 0.71

>65y 0.07 0.02 0.11 0.01 -0.02 -0.14 0.10 0.75 0.270.03 0.51 0.03
Postmenopausal status 0.01 -0.03 0.04 0.77 0.02 07 -0. 0.10 0.73 0.22 0.04 0.39 0.01
Elevated WCT 0.08 0.05 0.11 0.00 0.39 0.31 0.48 00.0 0.56 0.39 0.72 0.00
OW statust 0.03 -0.01 0.06 0.16 0.38 0.29 0.47 0.00 0.46 0.29 0.64 0.00
Energy intake 0.00 0.00 0.00 0.77 0.00 0.00 0.00 970. 0.00 0.00 0.00 0.03
Saturated fat intake§ 0.00 0.00 0.00 0.85 0.01 0.000.02 0.13 0.01 -0.01 0.02 0.55
Hygiene -0.01 -0.02 0.00 0.12 -0.02 -0.05 0.00 0.07 -0.04 -0.09 0.01 0.16
lliness 0.05 0.02 0.08 0.00 0.13 0.06 0.20 0.00 30.4 0.29 0.57 0.00
SES 0.01 0.00 0.02 0.12 0.09 0.06 0.12 0.00 0.09 03 0. 0.15 0.00
Anti-hypertensive medication 0.01 -0.06 0.08 0.75 .170 -0.01 0.34 0.06 -0.07 -0.40 0.27 0.69

*Coefficient represents % change in CM trait lepef unit change in predictor; results from Modés@e Methods) where the outcome was the natural-log
transformed CM trait; TWaist circumferene®0cm; $Overweight, BMk 23kg/nt; §Percentage of energy intake from saturated fat



88

Table 5.6: Association of genetic risk cluster witltardiometabolic risk cluster membership

Elevated BP Low HDL-C Insulin resistant ElevatedFCR
(n=278) (n =582) (n=80) (n=221)
Covariates OR 95% ClI Pvalue OR 95% CI Pvalue OR 95% CI Pvalue OR 95% CI P value
Genetic risk score cluster
Low CM risk variants Referent Referent Referent Referent
Increased TG/BP
variants 1.71 1.03 2.84 0.04 1.27 0.83 1.93 0.27 810.0.33 1.99 0.64 190 1.10 3.27 0.02
Increased HDL-C
variants 143 0.84 2.43 0.19 1.28 0.84 1.96 0.26 551.0.68 3.51 0.29 1.73 098 3.04 0.06
Increased IR/BP
variants 1.26 0.77 2.05 0.36 1.10 0.74 1.62 0.64 761.0.85 3.61 0.13 1.23 0.72 2.10 0.45
Increased LDL-C
variants 1.15 0.71 1.88 0.57 0.87 059 1.30 0.50 021.0.47 2.22 0.96 1.07 0.62 1.83 0.81
Age
<44y Referent Referent Referent Referent
45-49 y 202 130 3.14 0.00 1.04 0.75 1.44 0.820.01 051 1.99 0.98 1.06 0.68 1.65 0.78
50-54y 341 194 6.01 0.00 1.19 0.74 1.91 0.47.69 0.74 3.88 0.22 1.45 080 2.64 0.22
>655y 391 203 756 0.00 0.89 051 156 0.69 1.85690 4.94 0.22 156 0.77 3.16 0.22
Postmenopausal status 0.80 050 1.27 0.34 0.68 0M62 0.06 0.99 0.49 2.00 0.97 1.03 0.62 1.70 0.91
Elevated WCT 2.83 179 448 0.00 144 100 2.08 50.04.04 191 8.56 0.00 256 158 4.14 0.00
OW statust 161 0.99 2.62 0.05 0.88 0.61 1.27 0.49.48 0.67 3.28 0.33 323 186 5.62 0.00
Energy intake 1.00 1.00 1.00 0.68 1.00 1.00 1.00 290. 1.00 1.00 1.00 0.31 1.00 1.00 1.00 0.94
Saturated fat intake§ 0.96 092 1.01 0.10 0.94 0.9097 0.00 0.93 0.87 1.00 0.06 0.97 0.93 1.02 0.27
Hygiene 0.97 084 111 0.66 1.10 098 1.23 0.10 30.9.75 1.15 0.50 0.91 0.78 1.05 0.19
Iliness 1.42 0.97 2.08 0.07 1.06 0.77 1.47 0.71 44244 7.04 0.00 225 152 3.32 0.00
SES 0.87 0.74 1.02 0.08 0.74 0.65 0.85 0.00 0.9877 0.1.26 0.89 0.97 0.82 1.15 0.71
Anti-hypertensive
medication 570 199 16.30 0.00 2.18 0.71 6.63 0.171.96 0.47 8.15 0.36 220 0.69 7.04 0.18

*Odds ratio represents likelihood of membershiggecified cardiometabolic risk cluster (as compdoetthe Healthy cluster, n = 423) per unit change i

predictor; results from mlogit adjusted for covéeimin Model 2 (see Methods); TWaist circumferen&®cm; $Overweight, BMk 23kg/nf; §Percentage of
energy intake from saturated fat



Chapter 6: SYNTHESIS
OVERVIEW OF FINDINGS

This research examined the interactive influerfadietary, lifestyle, and genetic
factors on cardiometabolic (CM) traits and pattemBilipino young adults and women. We
used cross-sectional data from the 2005 Cebu Ladigial Health and Nutrition Survey
(CLHNS) of Filipino middle-aged women and their yguadult offspring.

First we examined the patterns and determinan®\fisk factors among
individuals in this study population. Our previagsearch identified five profiles of Filipino
middle-aged women with similar CM characteristing ®ound modifiable risk factors for
these CM patterns, including measures of adip@sitysaturated fat intake. We extended
this analysis to their young adult offspring, fonam prevention is still an important goal.

In order to further understand the etiology of Gbkiin these older women, we used
genetic risk scores, which combined the relatiwehall additive effects of individual single
nucleotide polymorphisms (SNPs), to better captiveecomplex relationship between
genetics, adiposity, and CM risk.

Lastly, we used cluster analysis to identify groapthese women who share similar
patterns of genetic risk scores across multiplegbnotypes. We then examined how these
genetic risk clusters related with CM traits anttgras in this population, while accounting
for other factors such as age, diet, and anthropgme

The following section provides a summary and sysithef our primary findings.



CLUSTERING AND DETERMINANTS OF CARDIOMETABOLIC RISK  FACTORS
AMONG FILIPINO YOUNG ADULTS

With modernization, CM disease risk has increasddw and middle-income
countries. To better understand CM disease etiglvgyevaluated the patterning of CM risk
factors in a young adult population. This populatitisplayed a low prevalence of
overweight (18%). Despite leanness, we identifielisiinct sex-specific clusters: (1)
Healthy/high high-density lipoprotein cholesterddL-C) (with the addition of high low-
density lipoprotein cholesterol, LDL-C, in wome(d) Healthy/low blood pressure (BP), (3)
High BP, (4) Insulin resistant (IR)/high triglycdes (TG), (5) High C-reactive protein
(CRP). Though we did not identify a specific clugiamarily defined by low HDL-C, over
65% of men and 70% women had this trait, making HIM_-C the most pervasive CM risk
factor. While our analysis found relatively similaM risk clusters among men and women,
the predictors of these clusters varied by sexhdper as these young adults age more distinct
CM patterns between men and women will emerge.

In both men and women, decreased % energy intake $aturated fat predicted
membership in the High CRP group when comparebddawo Healthy clusters. In addition,

a decrease in % saturated fat intake predicted raeship in the High BP group in women,
compared to the Healthy/high HDL-C/high LDL-C groUjne association of saturated fat
intake with healthy CM profiles could reflect thgés of saturated fats consumed in this
population. Coconut oil, the most common and tradél cooking oil in Cebu, is rich in

lauric acid™*® Lauric acid improves the total cholesterol to HDLratio, more than any other

saturated or unsaturated fatty acid, primarilyrmréasing HDL-C level®’ Other studies

have found diets rich in coconut oil or in satudaf&t do not alter markers of inflammation,

90



fasting glucose, fasting insulin, homeostatic madslessment insulin resistance (HOMA-
IR), or incident diabetel" 118

Men with poorer environmental hygiene (increaseatiggenicity) were more likely
to be in the High CRP cluster, compared to thelealthy clusters. These results support
previous research conducted in the CLHNS and regafthe involvement of pathogen
exposure in activating pro-inflammatory pathwa$%>But why do we fail to observe this
hygiene effect in women? Adiposity relates morerggty with inflammation in women than
in men, thus it is possible the effects of adipositerwhelmed the effects of the hygiene
score in women?®: 119

As expected, waist circumference (WC) and overwgi@hV) status were the
strongest predictors of membership in the IR/highcluster, underscoring the adverse
health effects of excess visceral adipose tissuayliich WC serves as a pro¥§ WC is
among the best-established predictors of CM risk@ast work in the CLHNS and other
populations support this notioft: ** °* ®Research has also demonstrated that increased WC
predicts CM abnormalities in both normal weight @\ individuals, highlighting the
potential for visceral fat to influence the devetamt of CM risk factors, independent of
body mass index (BMI)**

In conclusion, despite leanness, cluster analgsisd patterns of CM risk. While
measures of adiposity predicted some of theserpaitmodifiable factors such as dietary
intake and pathogen exposure also independenttlygbee cluster membership. This
emphasizes the importance monitor and screen ihedwiduals for CM risk and future CM
diseases, especially in Asian populations whereistkeof CM diseases is elevated at a lower

BMI (likely due to increased visceral fat at low&ivl|s).*
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GENETIC RISK SCORE AND ADIPOSITY INTERACT TO INFLUE NCE
TRIGLYCERIDE LEVELS IN A COHORT OF FILIPINO WOMEN

In this study we sought to: create three genedlcscores relating to CRP, HDL-C,
and TG traits, examine the ability of these sctwesxplain the variation in these traits, and
test whether these genetic risk scores interatt adtposity to influence trait levels. Here
participants included middle-aged Filipino womesr,sivhom CM risk is more established.

The genetic risk score explained a greater ptapoof variance in the specified trait
than any given individual SNP. In addition, we fduhat for individuals with a higher TG
genetic risk score, having either an elevated WiBeang OW/obese amplified the genetic
risk score’s effect by further increasing TG levé&Mhile for individuals with a lower TG
genetic risk score, measures of adiposity madesdlmodifference in TG levels.
Interestingly for those women with a low TG geneisk score and elevated levels adiposity,
their predicted levels of TG equaled those of wonvéh a high genetic risk score without
any adverse levels of adiposity.

In support of our results, recent work using theeatudy population found that
central obesity might accentuate the effect offtBeincreasing allele of aAPOA5variant’

In addition, previous research has implicated sdwariants in th&PL gene (a gene
included in our genetic risk score) as having aeractive effect with central adiposity on
TG levels and the ratio of TG to HDL-&’ 2 However, we did not find significant
interactions between these individual loci and asiify on TG levels, perhaps indicating that
the interactive effect is driven by a collectiveult of all SNPs in the TG genetic risk score.

In conclusion, our results suggest for individuaith a high genetic predisposition to
elevated TG levels, reducing adiposity could pdggbevent increases in TG levels and

thereby reduce the likelihood of CM diseases. Rapibn of these results in larger study
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populations is needed to support the potentialadirand public health utility of targeted

prevention efforts using genetic profiling.

IDENTIFICATION OF GENETIC RISK PROFILES ACROSS MULT IPLE
CARDIOMETABOLIC PHENOTYPES IN FILIPINO WOMEN

In this study we sought out to identify groups ofldie-aged Filipino women with
similar profiles of genetic risk across multiple Giienotypes. We then examined how these
genetic risk scores, along with anthropometric diethry factors, predicted CM trait levels
and patterns in this population.

By using cluster analysis, we were able to captiueeheterogeneity in patterns of
genetic risk across various phenotypes. We idedtiive genetic risk clusters as: (1) Low
CM risk variants, (2) Increased TG/BP variants,I{®yreased HDL-C variants, (4) Increased
IR/BP variants, and (5) Increased LDL-C variants.

Belonging to any one of the genetic risk clustassqompared to the Low CM risk
variants cluster) predicted increased levels ieadt two CM traits (or decreased levels in
terms of HDL-C). Each genetic risk cluster mosbrsgly predicted log CRP levels as
compared to all other CM traits. The propertiethefreferent cluster, the Low CM risk
variants cluster, likely drove these findings: ttlisster had the lowest relative mean CRP
genetic risk score compared to all other clusters.

Among all the CM traits, we did not find an asstiola between the genetic risk
clusters and fasting glucose or HOMA-IR levels.sTtould simply reflect the lack of
variation in these traits due to the low prevaleoiciR/diabetes in this populatidi Another
possibility is that the effects of adiposity, orfalge strongest predictors of glucose and
HOMA-IR levels, overwhelmed the effects of the gengsk clustef? °° 8- 124t is also

important to note that the SNPs chosen for thedRegjc risk score came largely from

93



studies conducted in European populations, thezd¢f@se SNPs may not be tagging the
appropriate functional variant in our populatiomi@h could also explain why we saw non-
significant associations between the genetic ris&ters and glucose/HOMA-IR.

In a multinomial logistic regression (mlogit), weuihd that being in the Increased
TG/BP variants cluster (vs. the Low CM risk varsnluster) increased the likelihood of
being in the Elevated BP and Elevated CRP clugtstshe Healthy CM cluster). It's
unclear why this genetic risk cluster, as opposdti¢ Increased IR/BP variants cluster,
predicted the Elevated CRP group. Further resaanckeded to understand how/whether
genetic risk profiles translate to phenotypic ps&files.

In this same mlogit model (while adjusting for O¥stss) we found that WC was the
most pervasive predictor of CM cluster membersWf, a proxy for visceral fat, is among
the best-established predictors of CM risk and pask in the CLHNS and studies in other
Asian populations support this notidi.>* ®® “4e found that OW status only predicted
membership to the Elevated BP and Elevated CRRectugvhile adjusting for WC).
Research demonstrates the potential for viscer#éb fimfluence development of CM risk
factors independent of overall BMI staflfs.

In relation to dietary intake, we found that a @ase in the percentage of energy
intake coming from saturated fat uniquely prediateembership in the Low HDL-C cluster.
The most common cooking oil in Cebu is coconutwhich is rich in lauric acid®® Earlier
studies have shown that lauric acid has a moredée effect on the total cholesterol to
HDL cholesterol ratio than any other fatty acidher saturated or unsaturated, primarily by

increasing HDL-C level§’ This result is supported by recent findings byaRéret al. that
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dietary coconut oil intake was positively assodateth HDL-C levels in pre-menopausal
CLHNS women™**

In conclusion, genetic risk clusters, along witthaopometric and dietary factors,
predicted CM trait levels and patterns in this gapan. By understanding how these
modifiable and non-modifiable factors predict conmoomplex traits we can further

recognize how to effectively reduce and prevent 834 and its associated diseases.
LIMITATIONS

Several limitations warrant mention. Migrationtbé more educated, urban segment
of the original cohort has left us with a samplattis no longer representative of the
population from which it was drawil.Compared with those lost to follow-up, individuals
who participated in the 2005 survey were less gedcand came disproportionately from
rural and poorer households. Given that permanégramts from the Metro Cebu area were
not followed, the remaining sample is thereforestle of households with more residential
stability and lower SES.

Our study is cross-sectional since CM biomarkenevwealy measured in the 2005
CLHNS survey. Due to the nature of this study wencd determine when CM risk first
developed. This limits our ability to infer causgliSince the CLHNS was not originally
designed with the study of CM risk in mind, somelef measures are adequate, but not
ideal, for our research aims. For example, dietatigke was measured using two 24-hour
recalls, which may not represent usual intake etithe of each survey. However, such
dietary recalls can appropriately rank an individuatake and thus accurately predict a
variety of biological and health outcomes. Prioempeeviewed publications utilized this diet

recall data> 116 14°
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Regarding cluster analysis, a limitation of assigmames to the clusters is that not
all individuals within a certain cluster necessasihare the ascribed characteristics. For
example, in our “Low CM risk variants” cluster waund the average Z-scores for genetic
risk scores were relatively low, but we cannot iéxecthese low values to each individual in
the cluster.

In our literature search we found differing numbefrsandidate SNPs for each trait.
Although we used the same criteria in our searghridess of the CM trait, the variation in
the number of candidate SNPs could reflect theeotistate of the literature. In addition,
there is concern with choosing SNPs from a Eurogeanple and applying them to an Asian
sample, especially in terms of tagging the appateriunctional variant. We tried to mitigate
this by choosing SNPs with nominal significance dirdctional consistent effect estimates
in our study population, however due to the limisagnple size in the CLHNS we may have
lacked the power to detect the SNPs true effect.

Using a threshold af?<0.2 for linkage disequilibrium, still allows SNRspartially
tag the same underlying signal, potentially inahgdsome redundancy in the genetic risk
score. While we used an un-weighted approach &te@ur genetic risk scores, it may be
possible in the future to obtain stable and aceueatimates of genetic variants for use in a
weighted risk score, which could improve predidiagbof CM risk.

Lastly, our sample size is relatively small, esplbgiin the scope of genetic
epidemiology studies; therefore replication of mesults in larger populations would

reinforce our findings.
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SIGNIFICANCE AND PUBLIC HEALTH IMPACT

This study addresses an important internationblip health issue: understanding the
multifactorial etiology of CM diseases. Researcindestrates that CM risk factors tend to
co-occur and may be causally interrelet®d’ Furthermore, differences in the prevalence
and patterns of co-occurrence of CM risk factdeslli reflect variation in diet, lifestyle, and
genetics. However, there is insufficient reseancithe interplay between these modifiable
and non-modifiable factors and how they relate kb 13k patterns. In this study we used
innovative methods to account for potential syratigieffects.

Here we utilize data from the CLHNS, which contailesailed diet, lifestyle, and
genetic data; this unique data along with the rapidition and lifestyle transition make the
CLHNS an ideal dataset for our study aiffisese findings could apply not only to Asians
but to more modernized countries such as the U.S.

Despite the population’s young age, lack of clihttiaease, and relative leanness,
cluster analysis identified distinct patterns of @bk factors in Filipino young adults. By
using cluster analysis we made fewer assumptigedeng the underlying etiology and
allowed relationships among CM risk factors to egedrom the data themselves. As
expected, measures of adiposity predicted speCiaisk patterns. However, diet and
environmental factors also independently predictgdfactor clustering. This emphasizes
the importance of screening both lean and overviénglividuals for CM risk, especially in
Asian populations where the risk of CM diseases@sated at lower BMi? Finding
modifiable and non-modifiable predictors of CM riskearly adulthood could help inform

targeted prevention efforts for future CM disease.

97



To further understand the etiology of CM risk indallie-aged Filipino women, for
whom CM risk is more established, we used gengicscores, which combined the
relatively small additive effects of individual gile nucleotide polymorphisms (SNPs), to
better capture the complex relationship betweermes) adiposity, and CM risk. Our results
suggest that for individuals with a high genetiegsposition to elevated TG levels, reducing
adiposity could possibly prevent increases in Téglleand thereby reduce the likelihood of
adverse health outcomes such as CM disease. Reaplicd these results in larger study
populations is needed to support the potentialadirand public health utility of targeted
prevention efforts using genetic profiling.

Lastly, we used a novel application of clusterlygsia to identify groups of these
Filipino women who share similar patterns of gemask scores across multiple CM
phenotypes. By finding combinations of genetic askoss multiple phenotypes, we can
hopefully better explain the underlying geneticcagibility for CM disease in this
population, especially since these diseases theassdlsplay a specific patterning of risk
factors including insulin resistance, dyslipidenfigpertension, and inflammatidh.2® These
genetic risk clusters, along with anthropometrid dretary factors, predicted both CM trait
levels and patterns in this population.

In summary, by capturing the intricate relationsbiiphese modifiable and non-
modifiable factors with common complex traits wa darther understand how to effectively

reduce and prevent CM risk and its associated sksea
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DIRECTIONS FOR FUTURE RESEARCH

The CLHNS provided us with the unique opportutityexamine how modifiable and
non-modifiable factors predicted CM risk. Howeude cross-sectional nature of this study
limits us in our ability to infer causality. Withe collection of CM biomarkers in future
follow-up surveys, we could examine how CM risktpats change longitudinally and
whether predictors (both genetic and environmemtaljhese patterns change longitudinally
as well. This could provide insight to how CM riskolves across the life course. In addition,
collecting medical records or detailed mortalityajaould help us further understand
whether these CM traits and patterns actually ptede development of disease.

We found that dietary factors, specifically deseshsaturated fat intake, predicted
CM risk; however research demonstrates that thétgoéfoods consumed may better
predict CM risk than the quantity® **’Therefore in future work we could look at how
dietary patterns or food groups predict CM riskhis population.

We used an un-weighted approach to create outigeisk scores. However, it may
be possible in the future, as more genetic studiésian populations get published, to
obtain stable and accurate estimates of genetiantarfor use in a weighted risk score. This
weighted risk score could potentially improve potalility of CM risk.

If genetic expression data becomes available ilClieNS, we can observe how
expression changes over time and with environmetitalli. By studying these epigenetic
modifications, we can perhaps understand the trigige CM disease progression. With this
expression data we could also examine the effé@pistatic interactions on CM risk.
Epistatic interactions can occur when two genesrar@ated (genetic—genetic interaction),

when one gene is mutated and the other gene varggpression (genetic—epigenetic
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interaction), or when two genes simultaneously vamxpression (epigenetic—epigenetic
interaction)**®

We found that for individuals with a higher TG g#n risk score, having elevated
levels of adiposity amplified the genetic risk s£ereffect by further increasing TG levels,
while for individuals with a lower TG genetic riskore, measures of adiposity made almost
no difference in TG levels. Earlier research suggtst an intensive lifestyle intervention
may mitigate the effect of the rs1260326 risk aliel theGCKRgene on higher TG levets®
However, replication of our results in larger saglis needed before further research (e.g.

clinical trials) can examine whether weight-lossifastyle interventions could be useful for

those with a genetic predisposition to elevatedav@ls.
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