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ABSTRACT 
 

SARAH ELIZABETH COUNCIL: Prevotella melaninogenica, an oral anaerobic 

bacterium, prevalent in cystic fibrosis chronic lung infection.  

(Under the direction of Dr. Matthew Wolfgang) 

 
 

Prevotella melaninogenica, an anaerobic Gram-negative bacterium, is a member 

of the normal oral flora and is one of the most abundant anaerobic species found in 

respiratory specimens from individuals with cystic fibrosis (CF). Because of P. 

melaninogenica’s designation as a commensal, its role in CF disease pathogenesis and 

host immune response has been largely ignored.  

In our study of 61 CF patients at UNC hospitals, P. melaninogenica was cultured 

from 61% of adults and 57% of pediatric CF patients, and represented the most 

abundant strict anaerobe in both groups.  Lung function did not correlate with the 

presence or abundance of P. melaninogenica but there was an increased antibody 

response against P. melaninogenica in both adult and pediatric CF patients compared 

to non-diseased controls.  To explore innate host response, we characterized the 

structure and inflammatory effect of P. melaninogenica LPS.   P. melaninogenica lipid A 

structure is heterogeneous, with the most prominent form being diphosphorylated and 

penta-acylated. In THP-1 cells, P. melaninogenica LPS induced significantly less IL-8 

and IL-1β cytokine production than Pseudomonas aeruginosa LPS. We also showed 

that P. melaninogenica LPS could signal through a TLR4 independent pathway.  These 

results show the presence of P. melaninogenica in CF patients and its recognition by 

the human host. 
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From the tongue to the lung, P. melaninogenica must acquire nutrients to sustain 

life. The lung environment within chronically infected CF patients contains high levels of 

host iron proteins and pockets of anaerobic space. In vitro growth experiments 

demonstrated that heme or hemoglobin were sufficient iron sources for P. 

melaninogenica growth.  To identify the first step of acquisition, we sequenced the P. 

melaninogenica genome and searched for homologues of known hemoglobin receptors. 

We identified a comprehensive list of putative P. melaninogenica hemoglobin receptors.   

Together these studies characterize the prevalence of P. melaninogenica in CF 

infection, evaluate P. melaninogenica’s impact on the host and determine nutritional 

requirements, which will lead to a better understanding about the role of P. 

melaninogenica in CF. Continued research into anaerobic pathogens, in particular P. 

melaninogenica, will lead to improvement in treatment interventions to reduce the 

severity of CF lung disease.  
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Chapter 1 

Introduction 

 

P. melaninogenica Classification and Epidemiology 

 

Prevotella melaninogenica, previously Bacteroides melaninogenicus (subspecies 

melaninogenicus), is an anaerobic, black pigmented, Gram-negative bacterium 

belonging to the family Prevotellaceae (1). P. melaninogenica is a non-motile, catalase 

negative, saccharolytic bacterium that can produce an uncharacterized capsule (2, 3). 

P. melaninogenica is considered to be a member of the normal human oral flora and 

can be cultivated from the tongue, gingival crevice, saliva and plaque of healthy 

individuals (4-7). Initial reports (1950-90s) showed that P. melaninogenica only 

colonized the mouth following tooth eruption (8, 9), but more recently, P. 

melaninogenica has been isolated from the oral cavity of infants as young as two 

months of age (10, 11).   

 

P. melaninogenica infections 

P. melaninogenica has been described as a ‘potential pathogen’ because of its 

occurrence in disease sites throughout the body and its capacity to produce a variety of 

virulence factors (2, 12-14). In particular, P. melaninogenica is commonly cultured as 
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the sole infectious agent in ‘extra-oral’ abscesses such as vertebral osteomyelitis, 

pyomyositis, peritonsillar abscesses and vaginal mesh infections (15-19). However, 

closely related oral bacteria, such as Porphyromonas gingivalis and Prevotella 

intermedia have received more attention due to their established association with 

systemic diseases such as atherosclerosis, pneumonia, preeclampsia, cardiovascular 

disease, stroke, heart disease, and diabetes mellitus (20-22).  

In addition to single species infection,  P. melaninogenica is frequently cultured in 

the context of polymicrobial disease, including brain abscesses, pleuropulmonary 

infections, endocarditis, illicit drug injection sites, intra-abdominal infections, wound 

infections, necrotizing fasciitis, pyogenic infections, decubitus and diabetic ulcers (16, 

23-29). P. melaninogenica is also one of the most prevalent and abundant anaerobic 

species found in respiratory specimens from individuals with cystic fibrosis (CF) (12, 30-

37).  

 

Bacterial Synergism     

The presence of P. melaninogenica within complex bacterial populations raises 

the possibility that its growth at different body sites requires bacterial synergism, where 

the presence of other bacterial species could improve the likelihood of colonization by 

this otherwise fastidious species. Pathogenic bacterial synergism occurs when a 

polymicrobial community is more destructive to the host than any single member of the 

community.  This type of synergism is often the result of microbial interactions such as 

nutritional sharing or interspecies quorum sensing, that can alter bacterial gene 

expression, growth and virulence capabilities.  
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In its simplest form, bacterial synergism has been studied in two species model 

systems.   For example, it has been shown that virulence genes of the opportunistic 

pathogen Pseudomonas aeruginosa are upregulated in the presence of oropharyngeal 

isolates of either Streptococcus or Staphylococcus species. This modulation of 

virulence factors was found to be partially due to an increase in autoinducer-2 signaling 

and competition for iron (38).  Furthermore, experiments using an abscess model 

showed a greater host inflammatory response to mixed species infection compared to 

single species infection (39, 40).  Additional studies have shown that there are growth 

benefits to Bacteroides species (Bacteroides fragilis and Bacteroides asaccharolyticus) 

when present in a polymicrobial abscess model of infection (41).  It is believed that 

Bacteroides species specifically benefit from nutrients produced by the community. 

Similarly, it has been shown that P. melaninogenica, can acquire vitamin K, an essential 

growth factor, when grown in the presence of Staphylococcus aureus (42). Because of 

its ability to survive and grow in polymicrobial infections, P. melaninogenica likely 

contributes to the pathogenic potential of these communities. Ultimately, bacterial 

virulence potential in the context of polymicrobial conditions depends on the virulence 

characteristics of the individual species, the host response, and environmental 

conditions within the infected niche (20, 43, 44).   

 

Virulence Characteristics of P. melaninogenica 

In the human host, initial colonization by P. melaninogenica is aided by fimbrial 

hemagglutinin, which serves as an epithelial cell adhesion (45).  Host nutrients required 

for P. melaninogenica growth are liberated by hemolysin and fibrinolysin (46). To protect 
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against host detection and antimicrobial factors, P. melaninogenica isolates can 

produce both IgA and IgG proteases (47-49), a β-lactamase (24), and a polysaccharide 

capsule. To further modulate the immune system, P. melaninogenica produces a 

neuraminidase, which has been shown to cleave sialic acid from host surface 

glycoproteins and leukocytes to disrupt immune recognition and trigger degradation of 

host proteins (50). Once colonization is established, P. melaninogenica can further 

damage host tissue through the production of collagenase (11, 51) and a lipase, both of 

which contribute to abscess formation (11). 

 

Host Immune Response 

 

P. melaninogenica is primarily regarded as a member of the oral commensal 

flora; consequently its role in disease pathogenesis and host immune response has 

been largely ignored.  However, with the use of molecular-based detection methods, P. 

melaninogenica is frequently identified in abscesses and infected tissues throughout the 

body. Despite its association with a wide-variety of infections, little is known about its 

contribution to disease progression. 

 

Innate Immunity 

Bacterial lipopolysaccharide (LPS) is a key bacterial factor that impacts host 

immune response. Pathogen associated molecular patterns (PAMPS), including 

bacterial LPS, alert the immune system to the presence of bacterial invaders through 

pattern recognition receptors (PRRs), on immune cells such as macrophages and 
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dendritic cells. LPS is composed of three distinct components: lipid A, core 

polysaccharide, and O antigen.  The covalently bound lipid component of LPS, lipid A, 

constitutes the hydrophobic outer leaflet of the Gram-negative outer membrane and is 

responsible for LPS toxicity. It is traditionally composed of a glucosamine disaccharide 

backbone with acyl chains of varying length and number and the presence or absence 

of phosphate groups.  Length of the fatty acid chains and the addition of phosphate 

groups can greatly impact the toxicity of lipid A. The core polysaccharide, attached to 

lipid A, is composed of heptose and 2-keto-deoxyoctulosonic acid (KDO).  The O 

antigen component, which is the outermost portion and hydrophilic part of the LPS, is 

made up of repeating subunits of 3 to 5 sugars that vary between species and even 

strains. The presence of O antigen is responsible for the ‘smoothness’ characteristics of 

the bacterial colonies and helps to confer resistance to phagocytosis. LPS, which is 

released during growth and death of a bacterium, has been shown to induce 

macrophages to produce reactive oxygen species and to activate antigen presentation 

and cytokine response pathways. Traditionally, LPS activates the alternative 

complement pathway.  

Historically, P. melaninogenica was a member of a group of species collectively 

designated as Bacteroides melaninogenicus. Other members of this closely related 

group included Porphyromonas gingivalis, Prevotella intermedia and Prevotella 

nigrescens. P. gingivalis has been the most studied species of this group because of its 

role in periodontal disease.  LPS from P. gingivalis has been demonstrated to stimulate 

bone resorption, adhere to erythrocytes and attachment to oral cavity surfaces (52). P. 

gingivalis lipid A is penta-acylated and monophosphorylated and has been consistently 
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shown to exhibit weak pro-inflammatory properties (endotoxicity) (53). Most reports 

have shown that P. gingivalis LPS is significantly less inflammatory than E. coli LPS 

(54), while some studies suggest P. gingivalis LPS is equal or even more 

proinflammatory than that of E. coli (55, 56). It has been suggested that the differences 

reported in these studies are due to alteration in LPS structure that result from different 

growth conditions and extraction techniques (57). P. gingivalis LPS has been shown to 

stimulate IL-1β, IL-6, IL-8, IL-10, IL-12, TNFα, IGF1 and NFĸB expression and 

production in THP1 cells (58, 59) as well as, IL-1β, TNFα and IL-8 in polymorphonuclear 

neutrophils (54, 60, 61).  Because controversy still remains about the magnitude of P. 

gingivalis LPS cytokine response, it is difficult to predict the impact of P. melaninogenica 

LPS on the host inflammatory response.  Foundational studies need to be completed to 

thoroughly characterize the structure and inflammatory effect of P. melaninogenica.     

 

Toll like receptors:  

An important aspect of the inflammatory cytokine response to bacterial infection 

is due to a cascade of signaling pathways initiated by Toll like receptors (TLRs), which 

are transmembrane receptors that respond to PAMPS and have a primary role in innate 

immunity initiation (62). The TLR response to bacterial products occurs by both 

transcriptional and post translational mechanisms.  TLR activation initiates MyD88 and 

TRIF signaling cascades that activate mitogen-activated protein kinase kinase kinases 

(MAP3Ks) and lead to NFĸB activation (63). NFĸB induces transcription of inflammatory 

cytokines genes such as IL-8, IL-6, IL-1β and TNFα. Once produced, these cytokines 

alert other cellular components of the immune system.  The post-translational signals 
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stem from cytosolic pattern receptors that stimulate inflammasome components that in 

turn activate caspase 1 to cleave IL-1β and IL-18 into their active forms (58).  

Traditionally, bacterial LPS binds to an accessory protein, lipopolysaccharide-

binding protein, which then triggers the CD14-MD-2-TLR 4 complex and activates TLR 

4 LPS dependent responses (62, 64, 65). Other TLRs, specifically TLR 2, are known to 

recognize bacterial products such as peptidoglycan, lipoteichoic acid and lipoproteins.  

Number and length of lipid A acyl chains in addition to their branched structure can lead 

to differential TLR signaling. Confusion in the field of LPS dependent TLR signaling has 

been clouded by lipoprotein contamination of LPS preparation causing TLR 2 activity 

leading researchers to conclude TLR 2 dependence (66).   

Bacteroides species, such as P. gingivalis, demonstrate unique structure 

changes dependent on environmental cues (57, 67-69).  In particular, environmental 

heme concentration modifies the activity of lipid A 1-dephosphorylatases that leads to 

an alteration in phosphate group attachment to the glucosamine portion of lipid A. This 

change in structure modulates the ability of P. gingivalis to stimulate TLR 4 (53, 57, 62, 

69). In these reports, P. gingivalis LPS signals through TLR 4 either acting as an 

agonist in low heme (1 mg/ml) or an antagonist in high heme (10 µg/ml) (68-70).  

P. gingivalis LPS response is controversial due to the questions that still remain 

about the variability of P. gingivalis cytokine response compared to other more 

traditional agonists (i.e. E. coli LPS) and the inconsistent reports deciphering P. 

gingivalis TLR signaling pathways. Despite the similarities and phylogenetic relationship 

between P. melaninogenica and P. gingivalis, the controversies surrounding P. 
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gingivalis LPS structure and properties make it difficult to make predictions about P. 

melaninogenica TLR signaling.  

 

P. melaninogenica innate immune response 

Characterization of host immune response to P. melaninogenica has been limited 

in the past because of its inclusion under the grouping of B. melaninogenicus, which is 

now recognized to have encompassed multiple species including P. gingivalis. 

Consequently, reports prior to 1990 have been considered in this review only if a 

specific P. melaninogenica strain was clearly specified.   

P. melaninogenica LPS studies are incomplete; and have only focused on O 

antigen and the hemagglutination properties of total LPS preparations. P. 

melaninogenica O antigen appears to have similarities to O antigen from Prevotella levi 

(71) which is involved in evasion of phagocytosis. Total LPS preparations from P. 

melaninogenica have been shown to have less hemagglutination activity compared to 

other Prevotella species such as P. intermedia and P. denticola (52).  Because of the 

role of LPS in initiating bacterial infection and host immune recognition a more thorough 

characterization of P. melaninogenica LPS is needed.  

To investigate the role of P. melaninogenica in infection, total cellular lysates 

were shown to stimulate a low level cytokine response (IL-1α, IL-6 and TNF α in human 

monocytes and human gingival fibroblasts) through a TLR 2 and not TLR 4 signaling 

pathway (72, 73).   Consistent with this report, whole formalin-fixed P. melaninogenica 

have also been shown to signal through TLR 2 when tested in cell lines over expressing 

either TLR 2 or TLR 4 (73).  In addition to its apparent TLR 2 agonist properties, P. 
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melaninogenica could be a TLR 4 antagonist. In a study designed to model the 

polymicrobial environment of COPD, P. melaninogenica lysates dampened 

Haemophilus influenzae TLR 4 signaling in dendritic cells leading to a decrease in IL-12 

response (74).  Additionally, experiments investigating the effect of  ‘normal flora’ to 

pathogenic bacteria immune evasion found that P. melaninogenica supernatants, 

representing normal flora, impaired the phagocytosis of the pathogen, Proteus mirabilis, 

by polymorphonuclear leukocytes  (75).  These studies represent the effect of a 

complex mixture on cellular response, but do show how P. melaninogenica could have 

a potential impact on innate immune response and the immune stimulation by other 

pathogens.   

 

Adaptive Immunity 

Among the five classes of immunoglobulins, immunoglobulin G (IgG) makes up 

the majority of serum antibodies and is commonly used as a predictive marker for 

infection (76). IgG aids phagocytosis through opsonization and complement activation. 

In the case of bacterial infections, the development of a specific acquired immune 

response is characteristic of pathogen exposure and bacterial burden (77-79).  Elevated 

antibody titer, (specifically IgG titer) for specific pathogens, has been used to diagnose 

infections such as syphilis (80), and human papilloma virus (81).  

 Infections by oral bacteria have been shown to stimulate a humoral response, 

specifically an increase in serum IgG to bacterial antigens (76, 82). Increased serum 

IgG titers for periodontal pathogens are used as diagnostic markers of periodontitis (76, 

83) and are used to direct prophylactic therapy. In addition, treatment outcomes, 
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including the reduction of bacterial load, correlate with a reduction of serum IgG titer to 

specific pathogens (76). 

 IgG levels to P. melaninogenica have been measured in a small number of 

studies. P. melaninogenica IgG titer has been shown to be increased in rheumatoid 

arthritis patients compared to healthy controls (2). Also, P. melaninogenica IgM (an 

early response antibody) is increased in ventilator-associated pneumonia patients 

compared to controls (78). Based on these findings, immunoglobulin titer can be an 

effective tool in evaluating infection by Prevotella species (78).    

 

Immune response to commensal bacteria 

The presence of commensal bacteria in the body is a constant stimulus to the 

immune system and requires the host to produce an immune response, both cytokine 

and antibody, to keep the commensal contained.  The host response against 

endogenous bacteria becomes increased when the bacteria spread to non-traditional 

locations in the body.   

In the oral cavity, commensal bacteria stimulate low-level inflammation that 

contributes to oral health.  Specifically, low levels of IL-8 induce the chemotaxis of 

neutrophils into the gingivalis crevice to patrol for bacterial pathogens (13). In other 

parts of the body, the low level stimulation by commensal bacteria aids in the 

development and maintenance of the immune innate system as seen in experiments 

with germ-free mice (84). In addition, endogenous bacteria, like Staphylococcus aureus 

or Pseudomonas aeruginosa, can cause opportunistic infections when the host immune 

defenses are impaired or overwhelmed (85, 86).   
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Nutritional Requirements of P. melaninogenica 

Iron 

Iron, commonly observed in one of two states (Fe2+, Fe3+), has a extensive redox 

potential, making it a critical enzyme cofactor in the metabolism of amino acid and 

biosynthesis of nucleotides, vital processes in all organisms (87, 88). For aerobic 

bacteria, iron is critical for respiration, where it serves as a cofactor for cytochromes 

involved in electron transport (89). In contrast, anaerobes use iron-sulfur compounds 

and fumarase, in addition to other iron containing molecules such as catalase and 

peroxidase, for protection against superoxide and in the production of ATP through 

pyruvate aided fermentation (90, 91).  

 

Iron in the host:  

Iron is a necessary nutrient for basic cellular metabolism; however, because of its 

reactivity it can be harmful if not complexed. Under reducing (anaerobic) conditions or at 

low pH, ferrous iron (Fe2+) is the dominant iron form. Ferrous iron is more soluble than 

ferric iron (Fe3+) making it more toxic and able to pass through semi permeable 

membranes. Iron can catalyze the Fenton Reaction which leads to the production of 

reactive oxygen species that damage cellular components (92). Because of the 

necessity for iron and its intrinsic toxic potential, there is a delicate homeostasis needed 

to balance iron abundance and scarcity in the host (93).  Free iron in a mammalian host 

is as low as 10-24 M (87, 93, 94) due to the presence of high affinity iron binding proteins 

such as ferritin (inside cells), lactoferrin (mucus secretions), hemoglobin (blood) and 
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transferrin (bodily fluid such as blood). The majority of iron in the human body is 

sequestered in hemoglobin in the form of heme (94).  

 

Bacterial Iron Regulation 

To survive in the host where iron is scarce, bacteria have developed tightly 

controlled mechanisms to alter the expression of iron acquisition proteins such as 

siderophores, degradative enzymes, hemolysins, and hemagglutination (46, 89, 95-97) 

in response to iron abundance and scarcity. In many bacteria, iron acquisition is 

regulated by the ferric uptake regulator (Fur), which represses transcription of iron 

transport and scavenging genes when intracellular iron concentrations are sufficient.  

Available intracellular iron binds to Fur, facilitating the formation of Fur dimers.   The 

dimer complex binds to the promoter region of iron regulated gene through recognition 

of specific (Fur box) sequences (98-100). The DNA bound complex hinders access of 

RNA polymerase. Under iron limiting conditions, Fur controlled genes involved in iron 

acquisition and storage become derepressed (94, 99, 101-104).  

 

Porphyromonas and Prevotella heme requirements 

Bacterial organisms require iron to sustain vital cellular processes but some 

microbes, in addition to iron, require iron in the form of heme.  Heme, which represents 

a stable and highly usable form of iron, consists of iron complexed inside a porphyrin 

ring structure. Heme can be used directly as an enzyme cofactor or it can be broken 

down to release molecular iron.    



13 

 In bacteria, the heme molecule is essential for electron transport and the activity 

of several metabolic enzymes (100, 105).  In P. gingivalis, heme is a cofactor of the 

cytochrome b subunit of fumarate reductase, which plays a role in metabolic energy 

production (94, 102, 106, 107).  Also a heme derivative, µ-oxo bishaem, is stored on the 

outer surface of many Bacteroides species and produces the characteristic black 

pigment associated with P. gingivalis (108) and other black pigmented Bacteroides such 

as P. melaninogenica and P. intermedia when exposed to oxygen.  The surface 

localized heme derivative is used for protection against oxygen radicals, and is thought 

to promote local environmental anaerobiosis (108-110).  

Many microbes can produce heme through a complex in vivo heme biosynthesis 

pathway; however, all bacteria in the genera Bacteroides lack the enzymes to 

synthesize their own heme. Specifically, P. gingivalis lacks genes encoding 5-

aminolevulinic acid synthase and porphobilinogen deaminase (111) and must rely on 

exogenous sources of this molecule.  

P. gingivalis can acquire heme from host heme binding proteins such as 

hemoglobin and myoglobin or enzymes that use heme as a cofactor such as catalase 

and myoglobin.  In addition, P. gingivalis can use non heme based iron sources such as 

inorganic iron, and iron stored in transferrin and lactoferrin (98, 112, 113). Prevotella 

spp., like P. intermedia cannot survive without protoporphyrin IX (PPIX) based iron such 

as heme, hemoglobin and myoglobin, cytochrome c and catalase (114, 115). Inorganic 

forms of iron including ferric chloride, ferric citrate, ferric nitrate, and ferric ammonium 

citrate do not support growth of P. intermedia (110, 114).   
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P. melaninogenica, like other Bacteroides species including P. intermedia, 

requires heme for growth (42). P. intermedia and P. gingivalis represent closely related 

species that have differing abilities to use iron and heme based sources. Further 

research is necessary to determine the iron requirements for P. melaninogenica and its 

capacity to utilize host-based iron sources.  

 

In vivo heme acquisition  

 The majority of useable iron in the human body comes in the form of heme, 

complexed inside of hemoglobin, myoglobin or haptoglobin. Bacteria have successfully 

overcome this limitation by using two mechanisms that remove heme from host heme-

containing proteins: 1) production of hemophores, which are secreted proteins that bind 

heme and are subsequently recognized by a cognate bacterial surface receptor, and 2) 

direct extraction of heme via high affinity heme- or hemoglobin-binding bacterial surface 

proteins (116).  Some bacteria encode only high affinity hemoglobin receptors whereas 

others use a combination of receptors and hemophores.  In addition, there are 

proteolytic enzymes thought to play a role in releasing heme from heme-containing host 

proteins (94).  In polymicrobial communities, bacterial iron acquisition mechanisms, 

such as hemolysins that rupture red blood cells, can be a source of interspecies cross 

feeding. (89, 117-120). High affinity hemoglobin receptors are important for host 

colonization and have been implemented as a vaccine target for Haemophilus ducreyi 

to prevent bacterial diseases such as chanroid and against E. coli as treatment for 

urinary tract infections (121, 122).  
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Heme acquisition by Gram-negative bacteria is an orchestrated process that 

involves heme binding to an outer membrane receptor (in some cases aided by 

hemophore) followed by a series of steps that transfer heme through the outer 

membrane and periplasm and into the cytoplasm where it is used as a cofactor itself 

(e.g. in cytochromes or catalases) or is broken down for its iron component (123). 

Bacterial hemoglobin receptors form a beta barrel confirmation in the outer membrane 

and have characteristic domains (FRAP and NPNL signatures) and specific histidine 

residues that aid in the removal of heme from hemoglobin (116, 124-127). Once bound, 

heme is transported through the beta barrel channel of the receptor by the energy 

derived from the proton motive force associated with the binding of the TonB complex to 

the receptor. Binding of the two proteins is mediated through a ‘TonB box’, which is a 

conserved sequence present in the N-terminal periplasmic portion of the outer 

membrane receptor (128, 129). Once heme enters the periplasm, it is bound and 

transported by a heme permease to the inner membrane, where an ABC transporter 

can then transport it to the cytoplasm (130).  

The mechanism of heme/hemoglobin acquisition has been investigated to some 

degree in oral anaerobes; however, the molecular details await further study. Both P. 

gingivalis and P. intermedia have heme acquisition systems that involve proteolytic 

degradation of erythrocytes and heme-binding receptors (94). Specifically, P. intermedia 

has been shown to lyse erythrocytes, degrade hemoglobin and bind both heme and 

hemoglobin through an undefined receptor (110, 115, 131, 132).  Additionally, several 

P. gingivalis hemoglobin receptor complexes including HmuR, Tla and HemR (102, 133-

135) have been identified.  For P. melaninogenica, no outer membrane receptor has 
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been characterized but a key to its in vivo growth could be its ability to promote 

aggregation and lysis of red blood cells (46), which suggests that it is capable of freeing 

hemoglobin for bacterial binding and eventual heme uptake. The proteins involved in 

the subsequent steps in heme acquisition have yet to be identified.  

 

CF Lung Infection 

Mechanism 

The most common fatal genetic disease in the Caucasian population is cystic 

fibrosis (CF).  CF is inherited in an autosomal recessive pattern and occurs in 

approximately 1 in 2,500 live births with about 30,000 recognized CF patients in the 

United States (136).  CF disease is due to dysfunction of the epithelial membrane 

protein cystic fibrosis transmembrane regulator (CFTR). The most common CFTR 

mutation associated with CF results in a deletion of phenylalanine at amino acid position 

508 resulting in protein misfolding (137-139). CFTR is a cyclic AMP-dependent chloride 

channel and a negative regulator of the epithelial sodium channel ENaC (138-140). 

Dysfunctional CFTR causes an imbalance of sodium absorption and chloride ion 

secretion on mucosal surfaces, affecting many mucosal organs including the lungs, 

pancreas, skin and the reproductive system (141). In CF, liquid dysregulation in the 

lungs is of considerable importance because it compromises mechanical clearance and 

host immune homoeostasis. Hyperabsorption of sodium and water at the apical surface 

of bronchial epithelium reduces periciliary liquid (PCL) volume resulting in increased 

mucus viscosity and impaired ciliary function (142-145). This clearance defect combined 
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with mucin hyper-secretion by goblet cells leads to thickened mucus in the conducting 

airways of CF patients.   

Inefficient clearance of mucus in the CF lung provides an optimal colonization 

niche for a diverse assembly of bacteria (146-148). From infancy to adulthood, CF 

patients experience a decline in lung function caused by persistent bacterial infection 

and unrelenting pulmonary inflammation (149). Over a period of years, an accumulation 

of bacterial products and cellular debris produces irreversible airway damage and 

inflammation that ultimately leads to respiratory failure and death, with an average life 

expectancy of 37 years.   

 

CF Treatment: 

Treatment of CF starts early in life through therapeutic bronchodilators, anti-

inflammation treatments and antibiotics. Antibiotic treatment is based on aerobic culture 

of bronchoalveolar lavage fluid (BALF) and sputum. BALF is captured through an 

invasive procedure where sterile saline is released into the conducting airways through 

a bronchoscope then collected. Induced and spontaneous sputum samples are 

collected after the patient coughs up thick mucus, believed to be from the bronchial 

airway surface (150). Contamination of these methods is evaluated by comparison of 

organisms recovered from saliva samples. These aerobic culture methods are used to 

guide clinicians in appropriate antibiotic treatment for individual patients. However, 

aerobic culture methods are inadequate for representing all members of the bacterial 

community, in particular fastidious organisms and anaerobic bacteria (12). Antibiotics 

aimed at classical aerobic pathogens including P. aeruginosa, are largely ineffective in 
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clearing bacterial infection (142, 151, 152). For example, there is no significant change 

in aerobic bacterial load comparing episodes of disease exacerbation and subsequent 

recovery periods (38) or testing pre and post antibiotic treatment (153). These 

discrepancies suggest that aerobic culture does not provide the full picture of CF 

pathogenesis. There is now growing evidence that pulmonary infections in CF should be 

treated as a polymicrobial infection with aerobic, anaerobic and fungal components 

(146).   

 

Key aerobic bacteria in the CF microbiome   

By as early as 3 months, nearly 40% of infants diagnosed through neonatal CF 

screening have a lower respiratory bacterial infection (154). Aerobic culture based 

techniques and quantitative PCR (qPCR)  for the highly conserved bacterial 16S rRNA 

gene from CF samples (BALF, induced sputum, spontaneous sputum) illustrate that CF 

affected children are colonized by Staphylococcus aureus, Streptococcus spp, 

Haemophilus influenzae and Pseudomonas aeruginosa (38, 155, 156). As CF patients 

age, the diversity of the bacterial community decreases and the majority of CF patients 

become chronically colonized with P. aeruginosa (153, 157, 158). During the transition 

between acute and chronic infection, P. aeruginosa acquires mutations in lasR leading 

to antibiotic resistance and a metabolic transition to use host-associated amino acids 

(159). Another hallmark of chronic P. aeruginosa colonization in the CF lung is the 

cultivation of isolates encased in an alginate exopolysaccharide (160, 161). This state is 

commonly called mucoidy and correlates to a decline in clinical outcome for individuals 

with CF (142, 162). Mucoid P. aeruginosa are thought to exist in a biofilm-like state 
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within mucus plugs, allowing the bacteria to be highly resistant to phagocytosis, 

antibodies and antibiotic treatment (143, 151, 163). There is direct evidence of P. 

aeruginosa enmeshed in alginate biofilm aggregates in CF lung samples (147). In 

adults, the bacterial community within the biofilm may also include other aerobes such 

as Streptococcus milleri species (164), Burkholderia cepaci, Stenotrophomonas 

maltophilia and multiple fungal species (165). As CF lung disease progresses the 

successful growth of P. aeruginosa is aided by the ability of P. aeruginosa to adapt to 

other bacteria and environmental changes including the reduction of oxygen in CF 

mucus plugs (166).  

 

CF anaerobic niche 

Direct measurements of the oxygen gradient in CF mucus plugs range from 180 

mmHg outside to 2.5 mmHg inside the plug, demonstrating a significant drop in oxygen 

and near anaerobic conditions within the airway mucus (166). The exact mechanism of 

oxygen depletion within CF mucus plugs has not been confirmed but there are multiple 

hypotheses involving accelerated O2 consumption either by the lung epithelium, 

immune cell respiratory bursts or elevated bacterial respiration (141). P. aeruginosa and 

other facultative anaerobes that are present in the lungs of CF patients can live 

anaerobically in the presence of an appropriate terminal electron acceptor, such as 

arginine (163, 166-170).  

Because anaerobic bacteria have been documented in other polymicrobial 

infections of the lung such as pneumonia, lung abscesses and empyema, these 

bacteria could have significant relevance in pulmonary infection in CF (37, 148). CF 
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samples processed using anaerobic culture techniques and other unbiased molecular 

methods such as 16s rRNA gene profiling by microarray, pyrosequencing and reverse 

transcription terminal restriction fragments length polymorphisms (TRFLP), have 

revealed the presence of strict anaerobes (29-32, 34-37, 148, 156, 164, 165, 171-173). 

Because of this, many have hypothesized that anaerobes may play a role in the 

pathogenesis of CF airway disease (12, 31, 37, 38, 142, 148, 171). Tunney et al. (2008) 

noted that the most prevalent strict anaerobes isolated from sputum were Prevotella 

species, including P. melaninogenica. Anaerobic bacteria in this study were isolated in 

high numbers (104-109 CFU/g sputum) in 64% of adults and, in some cases, were 

present in higher numbers than P. aeruginosa (37). The prominence of  Prevotella is 

consistent with past studies involving anaerobic culture techniques and molecular based 

approaches (12, 29-32, 34-37, 148, 156, 164, 165, 172-175). It has been suggested that 

anaerobes, in particular Bacteroides spp. (now Prevotella spp., Porphyromonas spp. 

etc), could be of clinical importance in CF (148) and potentially pathogenic (30, 32, 37). 

Of the Prevotella species enumerated in CF samples, P. melaninogenica is the most 

common anaerobe reported using culture independent and anaerobic culture 

techniques (37), and it is frequently present in high numbers (12, 30-32, 34-36). Despite 

the cumulative evidence for the presence of anaerobic bacteria in the CF lung based on 

analysis of sputum and BALF, two studies of explanted lung specimens suggested that 

oral anaerobes are not present in lower airway but instead are found in upper airway 

specimens such as the trachea due to ‘oral contaminants’ (174, 176).  

 

CF immune response  
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In CF, when bacteria colonize the lung, the host responds with an influx of 

polymorphonuclear leukocytes followed by cytokine and antibody production (138, 140, 

141, 146, 149, 177-179). Studies have shown that this CF characteristic response of 

PMNs is not a CFTR dependent response as some had speculated (177, 180). The 

immune response of CF patients is defined by ineffective killing of bacteria colonizing 

the lung, and the development of chronic inflammation that leads to lung dysfunction 

and respiratory failure. These processes are responsible for the majority of CF deaths 

(37, 141, 169). The exact initiation events leading to CF airway inflammation are the 

subject of debate, in part, because of the complexity of CF pathogenesis and 

inconsistent experimental results.  Further studies investigating cytokine response 

shows that there is significantly more IL-8 and neutrophils in BALF from CF children 

than children with other non-CF respiratory disease (179). Additionally, studies using 

sputum and BALF samples from CF adults show an increased number of neutrophils, 

increased levels of the pro-inflammatory cytokines TNF α, IL-1β, IL-6, IL-8, and reduced 

levels of the anti-inflammatory cytokine IL-10 (181-183); this response is  thought to be 

mediated by TLR-dependent pathways (137, 184).   

In addition to innate inflammatory responses, the adaptive immune system in CF 

patients also produces a response against bacterial pathogens enmeshed in CF mucus 

plugs.  In CF, elevated levels of P. aeruginosa-specific IgG antibody have been noted 

and been used for diagnostic purposes (185). P. aeruginosa infection occurring in 

subjects as young as 6 months have been diagnosed using P. aeruginosa specific IgG 

serological testing (185-187).  Consistent with this finding, a high level of P. aeruginosa 

specific IgG antibodies correlate with negative clinical outcome (185).   
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Iron in the CF lung 

The lung environment within chronically infected CF patients contains higher 

levels of iron compared to the lungs of healthy patients (89, 150, 158). Significant 

amounts of iron have been detected in sputum from CF patients in the form of ferritin, 

lactoferrin, transferrin and small amounts of hemoglobin (89). In an unpublished study, 

there was more than twice the amount of hemoglobin and heme in CF BALF than in 

asthmatic patients; ten times more than healthy individuals (188). The underlying cause 

of elevated iron in the CF lung is thought to be from micro-hemorrhage, inflammation 

(189), transferrin/lactoferrin proteolysis and release of intracellular iron stores from CF 

airway epithelial cells (93, 190). Additionally, the iron present in the CF lung is predicted 

to be more soluble (and therefore better available for bacterial uptake) because the pH 

of the lung is more acidic (5.8) in CF patients compared to healthy controls (6.1) (191).  

 

The role of P. melaninogenica in CF lung infection 

Despite evidence that anaerobic bacteria are part of the polymicrobial community 

in the CF lung, the question of their clinical relevance remains unanswered.  The role of 

anaerobes in CF pathogenesis can be thought of in two ways:  1) the anaerobes 

themselves could be pathogenic, and/or 2) the presence of anaerobes could influence 

the pathogenicity of the bacterial community. For the latter, the presence of additional 

bacteria could impact host inflammation initiated by the pathogenic agent (e.g. P. 

aeruginosa) (192) or provide a source of antibiotic resistance genes that could alter the 

resistance properties of the community. There has been suggested synergism between 
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P. aeruginosa and anaerobes in several cases (28, 39, 41). Bacteroides species 

including Prevotella are known to produce quorum-sensing signaling molecules and 

thus have the potential to affect the virulence of P. aeruginosa. Further work needs to 

be done in this area comparing P. aeruginosa to prominent anaerobic species.  

Here, we will explore the contribution of P. melaninogenica, which is the most 

commonly cultured anaerobic bacterium in the CF lung, to CF pathogenesis. In chapter 

2, we investigate the prevalence and abundance of P. melaninogenica in a cohort of 

UNC hospital CF patents and test P. melaninogenica reactive antibody response as a 

measurement of bacterial burden and exposure. This study is aimed at determining 

whether host response to a nontraditional CF associated bacterium is different in CF 

patients compared to non CF individuals.  In chapter 3, we determine the structure and 

inflammatory properties of P. melaninogenica LPS, the most toxic part of gram-negative 

outer membrane. In this chapter, we will examine the effect of P. melaninogenica LPS 

on a human monocytic cell line and determine TLR signaling pathways. Chapter 4 

focuses on how P. melaninogenica survives in the CF lung, specifically determining its 

ability to acquire iron from host sources and the mechanism for heme acquisition.  

My goal is not only to report and confirm the presence of anaerobes in CF but to 

provide understanding to the clinical relevance of P. melaninogenica. My findings may 

provide the justification for new treatment options to help patients with severe CF lung 

disease. New avenues for research in anaerobic bacterial pathogenesis will lead to 

knowledge about treatment interventions to reduce the severity of CF lung disease. My 

dissertation has immediate clinical significance in terms of applying new understanding 

to developing novel therapeutic approaches.  
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Chapter 2: 

 

Prevotella melaninogenica, an oral anaerobe, in chronic cystic 
fibrosis lung disease 

 

 

Abstract 

Recent microbiome studies suggest that the airways of individuals with cystic fibrosis 

(CF) are colonized by a complex microbiota, including strict anaerobes that traditionally 

inhabit the oral cavity. Prevotella species, including P. melaninogenica, are consistently 

the one of the most prevalent members of the CF microbiome; however, their clinical 

significance outside the oral cavity is unclear. Our study aims to elucidate whether P. 

melaninogenica contributes to CF disease pathogenesis by comparing P. 

melaninogenica culture status in adult and pediatric respiratory specimens with clinical 

measures of disease (FEV1%, CRP) and P. melaninogenica reactive antibody titer. 

Anaerobic, microaerophilic and aerobic culture techniques were used to culture sputum 

and BALF samples from 28 adult and 33 pediatric CF patients. Bacterial 16S rRNA 

gene sequence alignments were used for identification. FEV1% measurements were 

collected from CF patients. ELISA based methods were used to determine CRP levels, 

P. melaninogenica reactive antibody titer and total IgG response in our CF patient 

cohort, healthy volunteers and disease controls. P. melaninogenica was a prevalent and 

abundant member of the CF airway microbiota in CF adults and children.  Using clinical 
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data collected and serological measurements there was no correlation in FEV1% and 

CRP values of adults.  There was a significantly higher P. melaninogenica reactive 

antibody response in CF adult and child patients compared to controls.  

 

Introduction 

Cystic Fibrosis (CF) is the most frequent lethal genetic disease in the Caucasian 

population. CF is caused by mutations in the cystic fibrosis transmembrane regulator 

(CFTR) gene that ablate or alter CFTR function. CFTR dysfunction leads to airway 

surface liquid hyperabsorption and defective mucociliary clearance (1). Mucus stasis 

creates a favorable environment for bacterial colonization, which leads to chronic 

pulmonary inflammation and ultimately lung failure (1).  In addition to a gradual decline 

in lung function over time, most CF patients also experience periodic acute pulmonary 

exacerbation, which is characterized by increased disease symptoms and a rapid 

decline in lung function requiring hospitalization and intravenous antibiotic treatment (2). 

In CF, antibiotic maintenance therapy and treatment of exacerbations is guided by 

aerobic bacterial culture of expectorated sputum or bronchoalveolar lavage fluid (BALF) 

and bacterial susceptibility testing (3, 4). Aerobic culture-based studies indicate CF 

airways infection follows a predictable succession, with Haemophilus influenzae and 

Staphylococcus aureus dominating early in life and Pseudomonas aeruginosa and 

members of the Burkholderia cepacia complex becoming the most prevalent pathogens 

later in life (5-7). 

Recent studies by several groups, enumerated strict anaerobes when processing 

CF samples (sputum, BALF) anaerobically and using unbiased molecular based tools 
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such as quantitative PCR (qPCR) of 16S rRNA gene (5, 8-20). In Tunney et. al 2008, 

anaerobic bacteria have been isolated in high numbers (104-109 CFU/g sputum) in adult 

sputa samples and in occurred at higher levels than P. aeruginosa.  Anaerobic bacteria, 

like in other polymicrobial infections such as pneumonia, lung abscesses and 

empyema, could have relevance in CF (19, 21, 22). Also the occurrence of anaerobes 

has been found to correlate with the occurrence of P. aeruginosa (5, 19).  It has been 

suggested that anaerobes, in particular Bacteroides spp. (now Prevotella spp., 

Porphyromonas spp. etc), could be potentially pathogenic and of clinical importance in 

CF (4, 14, 17, 19, 21).  

Prevotella melaninogenica is one of the most common strict anaerobes reported 

in recent molecular-based CF airway microbiome studies. The presence of P. 

melaninogenica in CF airway specimens has been confirmed by culture independent 

and anaerobic culture techniques of CF samples (13, 15, 17, 19, 23). P. melaninogenica 

is a black pigmented Gram-negative bacterium known to produce several virulence 

factors such as a capsule, hemolysin and a variety of secreted proteases (24-26). While 

P. melaninogenica is typically considered a member of the normal human oral flora, it is 

frequently cultured from polymicrobial infections sites including brain abscesses, 

pleuropulmonary infections, intra-abdominal infections, wound infections and necrotizing 

fasciitis (24, 27-31). The association of P. melaninogenica with clinical outcomes in CF 

or the pathogenesis of CF lung disease remains to be determined.  

In order to establish the role of P. melaninogenica in the pathogenesis of CF, we 

used quantitative aerobic and anaerobic culture to investigate whether the abundance 

and prevalence of P. melaninogenica in a cohort of CF patients at UNC-CH hospitals 
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was associated with clinical measurements of inflammation and lung function. Further, 

we assessed whether CF patients developed a P. melaninogenica associated adaptive 

immune response indicative of pathogenic exposure by measuring P. melaninogenica 

reactive antibody in serum. We found that although P. melaninogenica was present in 

the lungs of CF patients that bacterial isolation did not correlate with lung function 

(forced expiratory volume in 1 second, FEV1%) or acute inflammation (C-reactive 

protein, CRP). Additionally, we found a significance difference in P. melaninogenica 

reactive antibody response in pediatric CF patients and CF adults compared to disease 

controls.  

Material and Methods: 

Patient Selection and Design: All patients and volunteers included in this study were 

recruited under University of North Carolina Institutional Review Board approved 

protocols and patients or parents signed written consent, or assent for children old 

enough to read, for the primary study and for use of samples in this study. Serum was 

collected from 4 groups: Adults (n=28) and Children (n=33) with cystic fibrosis; disease 

control children (n=16) adult Healthy volunteers (n=21), and adults with mild asthma 

(n=9); SCCOR patients (n=11). For healthy adults only age and gender was collected. 

In patients with CF detailed clinical information was collected as part of the primary 

study from the patients’ chart. In the current investigation sex, age, FEV1% predicted, 

genotype and disease status (stable or exacerbation of CF). Spirometry in patients was 

measured at UNC clinics per ATS criteria. To allow for comparison across all age 

ranges results are expressed as % predicted [NHANES].  
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Bronchoscopy sample collection: Respiratory secretions: All bronchoalveolar lavage 

(BALF) samples were obtained as part of clinically indicated bronchoscopy at the UNC 

Children’s Hospital as previously described (32). Briefly, children received general 

anesthesia, and topical lidocaine was instilled at the level of the larynx and the tracheal 

bifurcation. To avoid aspiration or contamination of the specimen most CF patients had 

a laryngeal mask airway placed that allows advancing the bronchoscope protected from 

nasal or oral secretions to the level of the vocal cords. In non-CF patients exam of the 

upper airway was indicated and the bronchoscope was inserted through the left nare. In 

all cases suctioning through the bronchoscope was only performed below the vocal 

cords to avoid contamination. The location of bronchoalveolar lavage was at the 

discretion of the bronchoscopist, but was generally done in the lung segment most 

affected by disease, as evidenced by radiographic changes or by visual appearance at 

bronchoscopy. The bronchoscope was wedged in a bronchus and two to three aliquots 

of buffered normal saline solution were instilled and immediately aspirated through the 

bronchoscope. The total volume of instilled lavage fluid was 1-3 ml/kg body weight.  An 

aliquot of BALF for the research project was taken in a sterile manner.  The remainder 

of the BALF was sent to the hospital laboratory for cytology and cultures, which were 

ordered by the physician responsible for the patient.   

Blood collection: Venous blood was collected by standard phlebotomy, allowed to clot 

for 30 minutes and spun at 3500 x g for 5 minutes prior to storage at -80○ C. In children 

phlebotomy was typically combined with clinically indicated phlebotomy.  

Clinical Culture Procedures: Sputum and BALF samples were collected and placed 

under anaerobic conditions (5% C02, 10% H2, 85% N2 atmosphere, Coy Anaerobic 
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Chamber or AnaeroGen Pouch, Oxoid) within 30 minutes of collection. Sputum samples 

were plug-selected and the plugs treated with Sputolysin (Calbiochem) according to 

manufacturer’s instructions. 10-fold serial dilutions of the samples were prepared in 

25% strength Ringer’s Solution (Sigma) and 100µL aliquots from undiluted through 

1:105 were spread plated onto 3 sets of Anaerobic Blood Agar (Remel) and 1 set each 

of Kanamycin-vancomycin laked-blood agar (Remel), Chocolate agar with Bacitracin 

(Remel), and McKay agar. One set of Anaerobic Blood agar plates was incubated at 

37°C in ambient atmosphere for 2 days; one set of Anaerobic Blood agar, the Chocolate 

agar with Bacitracin, and the McKay agar were incubated at 37°C in 5% CO2 for 2 days; 

and the remaining Anaerobic Blood agar set and Kanamycin-vancomycin laked-blood 

agar were incubated for at 37°C anaerobically for 5-7days. Plates were examined and 

unique isolates were enumerated and subcultured. The threshold of bacterial detection 

was approximately 100 CFU/g. Fungal isolates and isolates recovered primarily from 

anaerobic plates which grew under 5% CO2 upon subculture were already collected 

through primary CO2 incubation and were no longer followed.  

Molecular Identification of bacterial species: Isolates were Gram-stained and their 

DNA extracted (Qiagen Human Blood and Tissue kit). The 16s ribosomal RNA gene of 

the isolates was PCR amplified using primers UniBac_0008F 

(AGAGTTTGATCMTGGCTCAG) and UniBac_1492R 

(TACGGYTACCTTGTTACGACTT) with MyTaq Red 2x mix (Bioline). Thermocycler 

Conditions: 95°C- 3min; 30x {95-20sec 50-20sec 72-90sec}; 72-10min. PCR cleanup 

was performed with ExoSAP-IT (Affymetrix). Sequencing was performed by Genewiz, 

Inc using primers UniBac_0008F, UniBac_0926R (CCGTCAATTCCTTTRAGTTT) and 
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UniBac_1492r. Sequence reads were assembled using Sequencher v4.8 (Gene Codes 

Corp.) using default settings. Assembled contigs were aligned and assigned taxonomic 

identification to the closest typed species using the SeqMatch tool of the Ribosomal 

Database Project (Michigan State University http://rdp.cme.msu.edu/).  

Bacteria growth and outer membrane preparation (OMP): P. melaninogenica and 

Porphyromonas gingivalis was plated from frozen stock onto Columbian Blood Agar 

then inoculated anaerobically in Anaerobic Broth (Becton Dickson Difco) at 37°C in Coy 

Anaerobic Chamber and grown until stationary phase. PAO1, a laboratory strain of P. 

aeruginosa, was plated from frozen stock on to Luria Broth (Becton Dickson) and was 

grown anaerobically in LB supplemented with 15mM KNO3 until stationary phase. 

Bacteria were then harvested by centrifugation 10,000 x g for 25 minutes at 4°C. 

Supernatant was removed then the pellet was resuspended in lysis buffer (50mM 

NaH2PO4, adjust to pH 7, 300mM NaCl) with 1mg/1ml lysozyme and incubated on ice 

for 30 minutes. The material was French Pressed twice.  Intact cells and cell debris 

were removed by centrifugation at 10,000 x g for 20 minutes at 4°C. Supernatant was 

centrifuged at 100,000 x g for 1 hour at 4°C. The pellet was then solubilized in 1% 

Sarkosyl and resuspended with a syringe 4 times and incubated for 30 minutes at room 

temperature with gentle shaking.  The Sarkosyl solution was subjected to centrifugation 

at 100,000 x g for 1 hour at 4°C. Supernatant was removed and pellet was resuspended 

pellet in 100 µl 1x PBS and was considered the outer membrane preparation. One large 

batch of each antigen was made and used for all ELISAs.  

Bacterial OMP ELISA: Total serum immunoglobulin G was measured according to 

manufacturer’s protocol (Jackson). Bacterial reactive IgG antibody titer was measured 

http://rdp.cme.msu.edu/
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as follows. Briefly, 96-well microtitration plates (Nunc Maxisorp) were coated and stored 

overnight at room temperature with 10 µg/ml bacterial OMP antigenic preparation in 

100mM Na2CO3 pH 9.6. Nonspecific binding sites were blocked for 1 hour with 1% 

bovine serum albumin and after washing with PBST 0.05%, patient sera in three well 

replicates were serially diluted five fold into 1% BSAT and incubated for one hour. 

Plates were then washed with PBST and incubated with Jackson goat anti-human IgG 

polyclonal antibody conjugated with Horseradish peroxidase (HRP) for 1 hour. 

Tetramethyl benzidine (TMB) was added to wells to detect HRP then the reaction was 

stopped by 2N H2SO4 and the color change was be measured by spectrophotometer at 

450nm minus plate background of 570nm.  Antiserum against P. melaninogenica OMP 

was raised in rabbits and obtained from Cocalico Biologicals, Inc., (Reamstown, PA) 

using standard procedures. Anti-OprF was used as a positive control for PAO1 to ELISA 

plate (laboratory stock). P. melaninogenica antibody developed against OMPs and P. 

aeruginosa OprF antibody was used on each plate to confirm equal amount of antigen 

coated per plate. A Jackson Normal Human serum (Jackson labs) was used on every 

plate to normalize plate to plate differences.  

CRP ELISA: As a clinical measurement of acute inflammation, C-reactive protein (CRP) 

was measured by an ELISA based method using CRP Ultra Sensitive (ILab™ 

Chemistry Systems) and analyzed by the automated biochemistry analyzer Ilab600 

(Instrumentation Laboratories Ltd). 

Absorption ELISA: Plates were coated with 10ug/ml of OMP preparation in 100mM 

Na2CO3 pH 9.6 overnight. Nonspecific binding sites were blocked for 15 minutes with 

1% bovine serum albumin then washed with PBST 0.05%. Pooled serum sample from 
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20 healthy and 20 CF adult patients were both diluted 1:1000 in BSA/PBS/Tw and 100µl 

was placed in triplicate into wells for 15 minutes at room temperature with gentle 

rocking. 100µl of the absorbed sera was then placed in fresh wells that had been coated 

with OMP preparation. The serum sample was absorbed at least 4 times. Aliquots from 

each absorbance in triplicate were collected and tested against each OMP preparation 

for changes in antibody level following the ELISA protocol above.  

Titer calculations and statistics: Linear regression models were used to determine 

correlation of total CFU/g and P. melaninogenica CFU/g and clinical measurements. 

Relative abundance was calculated imputing ones in those samples without a traceable 

CFU/g in order to complete linear regression analysis. To compare absorbance 

readings in supplementary data ANOVA Tukey's Multiple Comparison Test and the 4th 

absorbance was graphed using Graphpad Prism software. Mann-Whitney non 

parametric two tailed tests were used to compare IgG titers.  P. melaninogenica, P. 

aeruginosa and P. gingivalis reactive antibody titers were calculated by subtracting 

background from absorbance values then taking the Log of absorbance greater than 

OD 0.1 minus the Log of the absorbance less than OD 0.1.  The results are expressed 

as mean values plus/minus standard deviation, and statistical significance (P < 0.05) 

using Graphpad Prism software.   

 

Results: 

Clinical Characteristics of UNC Cohort 

Demographic and clinical characteristics of the study subjects are summarized (Table 

1). BALF was collected from 29 children ranging in age from 1 to 17 years. 
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Spontaneous expectorated sputum was collected from 28 CF adults, ranging from 18 to 

33 years of age, and four stable CF children from 12 to 16 years old. Control subjects 

for this study included asthmatic children (n=16), asthmatic and smoking adults (n=20) 

and healthy non-smoking adults (n=21) that ranged from 1 to 57 years old. The majority 

of the CF patients were female (57%) and had delta F508 genotype (86%).  

 

The CF microbiota in Adults and Children    

 Using culture based methods to examine microbes in the CF lung, we found that 

Staphylococcus, Streptococcus and Haemophilus were the most abundant genera in 

pediatric BALF and sputum samples (Figure1A, Figure1B). From adult sputum samples, 

Staphylococcus, Pseudomonas and Streptococcus were the most abundant genera 

(Figure 1C). Among strict anaerobes cultured Prevotella spp. were the most abundant 

genus cultured from CF adult sputa, pediatric CF sputa and BALF.   

 

P. melaninogenica is a frequent strict anaerobe in CF 

In BALF cultures from pediatric patients, P. melaninogenica was the most 

abundant species found in exacerbating patients and was highly abundant in stable 

patients, second only to S. aureus and Streptococcus mitis (Figure 2A).  P. 

melaninogenica was cultured from all sputa collected from stable CF pediatric patients 

(Figure 2B).  The most prevalent species in adult stable patients and one of the most 

prevalent species in adult exacerbations is P. melaninogenica (Figure 2C). P. 

aeruginosa and Streptococcus salivarius both were cultured frequently from stable adult 

patients. P. aeruginosa and S. aureus were also recovered at high levels from adult 
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exacerbations (Figure 2C).  P. melaninogenica was not only a frequent colonizer of CF 

patients, but was also isolated in high numbers (as high as 1.8x108 CFU/g in one adult 

stable CF sputum and 8.0x108 CFU/g in one child stable CF sputum) (Figure 3).   

 

Clinical measurements:  

To determine whether bacterial lung colonization correlated with clinical 

parameters, we compared total amount of cultivable bacteria per gram of sample 

(CFU/g) with pulmonary function (FEV1%) and C-reactive protein (CRP).  The total 

amount of bacteria cultivated did not correlate with clinical measurements of the patient 

population (data not shown).  In our cohort, consistent with previous studies (7, 33, 34), 

there was a significant positive correlation between CF patient age and FEV1% (n=35, 

p=0.0115), CRP (n=61, p=0.0220) and total CFU/g (n=61, p=0.0167), not seen in non-

CF controls (Figure 4A).  We found that adult CF patients (n=28) had significantly higher 

CRP values than non-CF disease controls (n=20, p<0.0001) and healthy individuals 

(n=21, p<0.0001) (Figure 4B). Additionally, stable CF adults (n=16) had significantly 

lower CRP than exacerbating CF adults (n=12, p=0.0005). In children, we detected no 

significant difference between CF and non-CF diseased controls and between stable 

and exacerbating CF children (Figure 4C).   

Given the high frequency of P. melaninogenica in our study (19/28 adults, 19/33 

children), we investigated the effect of P. melaninogenica culture status on clinical 

parameters CRP and FEV1%.  There was no significant correlation of abundance or 

frequency of P. melaninogenica in adult CF patients with the FEV1% and CRP 

measurements (Data not shown).  In summary, P. melaninogenica is the most prevalent 
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strict anaerobic species in adult sputum samples and child BALF and sputum, although 

P. melaninogenica abundance or positive culture appears to not significantly correlate 

with clinical measurements.  

 

Adaptive immune response to P. melaninogenica 

To determine whether isolation of P. melaninogenica was associated with an 

adaptive immune response, patient sera were tested by ELISA for reactivity with an 

outer membrane preparation of P. melaninogenica ATCC 25845.  In order to assess the 

specificity of the outer membrane ELISA, we tested pooled sera from 20 adult CF 

patients and 20 healthy adults.  Pooled sera were absorbed against wells coated with P. 

melaninogenica, P. aeruginosa or empty wells.  As expected there was a significant 

decrease in P. melaninogenica reactive antibody level (p<0.05) when P. 

melaninogenica antibodies were removed from diluted CF and healthy sera (Figure 5A).  

As a Gram-negative control to show ELISA specificity (and a bacterium that is seen in 

low numbers in CF patients), we measured P. gingivalis reactive antibody level and 

found that when either P. melaninogenica or P. aeruginosa antibodies were removed 

there was not a reduction in P. gingivalis reactive antibody levels in CF or healthy adult 

sera (Figure 5B).  In addition the removal of P. melaninogenica antibodies did not cause 

a significant reduction in CF and healthy total IgG level (Figure 5C).  In summary, this 

outer membrane ELISA does represent a method of assessing P. melaninogenica 

reactive antibody response in patient sera. 

To investigate individual serum P. melaninogenica reactive antibody titer, we 

tested individual patient sera by a P. melaninogenica OMP ELISA.  There was a 
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significant increase in P. melaninogenica reactive antibody titers in CF adults (n=28) 

compared with non-CF individuals (n=20, p<0.0001) and healthy volunteers (n=21, p 

<0.0001) (Figure 6A). Investigating exacerbation and stable CF patients there was no 

significant difference in P. melaninogenica reactive antibody titers (data not shown). 

There was no significant difference in total IgG in the adult CF, non-CF and healthy 

adults (data not shown).   To further investigate reactive antibody titers, pediatric 

patients with CF and non-CF individuals’ response was measured. There was a 

significant difference in P. melaninogenica reactive antibody titers in CF children (n=33) 

and non-CF individuals (n= 16, p=0.0196) (Figure 6B). There was no difference in P. 

melaninogenica reactive antibody titers in stable CF verse exacerbation patients or in 

total IgG in CF children and non-CF individuals (data not shown).  P. aeruginosa OMP 

ELISAs were also completed on adult and pediatric CF and non CF individuals and 

mirrored the results of P. melaninogenica reactive antibody response (data not shown).  

Because of the specific anaerobic and nutritional environmental requirements of 

P. melaninogenica, we hypothesized that CF adults would have more opportunity for 

colonization by P. melaninogenica and thus would have a higher immune response 

against OMPs of P. melaninogenica than children. Indeed, CF adults (n=28) have a 

significantly higher P. melaninogenica titer compared to CF children (n=33, p=0.0002) 

(Figure 6C). No significant difference was observed in P. melaninogenica reactive 

antibody titer in non-CF adults compared to non-CF children (Figure 6D) or total IgG in 

the same groups (data not shown).   

While P. melaninogenica is prevalent in our study, P. aeruginosa is traditionally 

considered the classic CF pathogen so we investigated P. aeruginosa reactive antibody 
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response and P. melaninogenica reactive antibody response. Comparing bacterial 

reactive antibody titer reveals that there is a correlation of P. melaninogenica and P. 

aeruginosa titer in CF adults and children (Figure 7).   

Discussion 

Bacterial cultivation represented as total CFU/g has been compared to clinical 

measurements previously (4, 6).  The weak correlation of these components earlier has 

shed light on the complex nature CF lung disease. Detection threshold and culturing 

limits, along with the cross-sectional nature of this study presents a limited picture of the 

CF microbiome which plays a role in this inconsistent result. As expected, there was a 

correlation between patient age and a time dependent development of microflora which 

has been seen in other studies (11).  

The clinical significance of anaerobes, specifically P. melaninogenica, remains 

uncertain. In this study, P. melaninogenica is the most frequently cultured strict 

anaerobe in children and adults with CF relative to other species.  This has been 

corroborated by previous studies investigating the CF microbiome (13, 15, 17, 19, 23). 

Two studies of explanted lung specimens have still suggested that oral anaerobe 

cultivation in CF samples due to ‘oral contaminants’ (35, 36). In our study, P. 

melaninogenica could be cultured from mouthwash samples, but it did not occur at the 

same abundance as was seen in sputum samples (data not shown).  Here, we found 

that frequency and abundance of P. melaninogenica does not correlate with FEV1% in 

CF children or adults. This study is the first paper to follow up the cultivation of a strict 

anaerobe and determine P. melaninogenica effect on FEV1% and CRP in the CF 

population.  
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In addition to culturing bacteria, host acquired immune response is indicative of 

bacterial exposure. Serum antibody titers are frequently used as a readout of bacterial 

infection (37, 38). IgG antibody production is the most common antibody used because 

of its abundance in the blood and its specificity to repeat pathogen exposure.   In adult 

CF populations, a high level of P. aeruginosa specific IgG antibody has been used for 

diagnostic purposes (39, 40).  Serological diagnosis can be made 6-12 months before 

culturing the bacteria (38). Consistent with this finding, a high level of P. aeruginosa 

specific IgG antibodies correlate with negative clinical outcome reflecting bacterial 

colonization (40). 

In this study, both CF children and adults had an increased P. melaninogenica 

IgG titer compared to controls. Additionally P. melaninogenica IgG titer is significantly 

increased in CF adults compared with CF children. Diagnostic serological testing in 

periodontal disease and CF has been a valuable tool for treatment regimens (40, 41).  

Recently, in a study investigating the contribution of another Prevotella species, 

Prevotella intermedia, the authors showed an increased P. intermedia antibody titer in 

teenagers (median age 15) compared with healthy adults (median age 25 years) (15).  

Our results show that P. melaninogenica IgG titer also is increased in adult patients 

compared to children. This finding is consistent with older CF patients having an 

increased likelihood of encountering Prevotella spp., or other bacteria, as they age.  

In summary, P. melaninogenica is an abundant member of the CF airway 

microbiota. Our study supports a CF specific adaptive immune response to P. 

melaninogenica antigens though no clinical measurement correlation with culturing of P. 

melaninogenica or antibody titer.  



 

Figures 

 

 

  

Cystic fibrosis (n=61) Non-CF (n=36) Healthy (n=21) 

Demographics 

 

Child (n=33) Adult (n=28) Child (n=16) Adult (n=20) Adult (n=21) 

 

Age:  Median (Range) 5(1-17) 22(18-33) 5.5(1-11) 27 (19-44) 24(20-57) 

 

Gender: Male/Female 11/22 15/13 7/9 13/7 14/9 

 

Genotype: (Delta F508/Other) 28/5 25/3 n/a n/a n/a 

Disease State 

 

          

 

Disease Status: Exacerbation/Stable 20/13 12/16 n/a n/a n/a 

 

FEV1% predicted: Mean (Median) Not reliable 57.7 (60.5)# n/a n/a n/a 

 

CRP µg/ml: Mean 1.38E+04 2.47E+05 2.43E+04 2.73E+04 3.82E+04 

       

 

# 4 not recorded 

     

 Table 2.1- Characteristics of UNC study cohort.  

CF= cystic fibrosis. FEV1%= forced expiratory volume in one second compared to patients of similar characteristics 
(height, age, sex, and weight). CRP= C-reactive protein 

55 



56 

A. 

 

Figure 2.1.  Microbiome Composition of Sputum and BALF Samples. Abundance of 

genera in A) Pediatric BALF samples B) Pediatric Sputum samples. C) Microbiome 

Composition of Adult sputum samples Data are percent of total CFU/g recovered for 

each genus. Total Log10 CFU/g recovered from each specimen is listed at the top of 

each bar.  
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A 

 

Figure 2.2. Most frequently cultured species in CF samples. A) Pediatric BALF samples 

B) Pediatric Sputum samples. C) Adult sputum samples  
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Figure 2.3. P. melaninogenica CFU/g in CF patient samples. Vertical Scatter Plot using 

mean, graphed in Graphpad Prism. 

Grayed bars= sputum 
White bars= BALF 
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A. 

  

Figure 2.4. Comparisons of age to clinical measurements. A) Correlation of CF patient 

age to FEV1% (n=35, r2=0.1785, p=0.0115), CRP (n=61, r2=0.08576, p=0.0220) and 

total CFU/g (n=61, r2=0.0933, p=0.0167). Values were derived from linear regression 

model using Graphpad Prism.  B) Significance of CRP values in adult patient groupings 

(p> 0.001). C) CRP levels in pediatric CF patients and non CF individuals. Values were 

derived using Mann-Whitney non parametric two tailed predictions in Graphpad Prism. 
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A.  

 

 

Figure 2.5: Absorbance experiments testing specificity of P. melaninogenica ELISA A) 

P. melaninogenica levels when absorbing sera against P. aeruginosa antigen or empty 

wells. B) P. gingivalis levels when absorbing against P. aeruginosa antigen or P. 

melaninogenica antigen or empty wells. C) Total IgG measurements of absorbed sera. 

Each measurement was done in triplicate and averaged. Shown is the fourth absorption 

event. ANOVA- Tukey's Multiple Comparison Test was used and analyzed in Graphpad 

Prism.   
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C.       D.  

  

Figure 2.6 P. melaninogenica reactive antibody titer in CF Adults, CF children and 
controls A) P. melaninogenica titer measured in individual adult sera (p<0.0001). B) P. 
melaninogenica titer measured in CF children compared to Non CF individuals 
(p=0.0196). C) P. melaninogenica titers in adult and pediatric CF patients (p= 0.0002). 
D) P. melaninogenica titers in adult and pediatric individuals (p=0.4540). Box and 
Whisker Plot was graphed by Graphpad Prism using minimum, maximum, media and 
25% and 75% percentile.   
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Figure 2.7: P. melaninogenica and P. aeruginosa reactive antibody comparisons A) P. 
melaninogenica IgG and P. aeruginosa IgG titer correlation in Adult CF patients. 
r2=0.2038, p=0.0159. B) P. melaninogenica and P. aeruginosa IgG titer correlation in 
CF children. r2=0.1284, p=0.0406. Graphs were derived from linear regression model 
using Graphpad Prism. 
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Chapter 3 

 

Structure and innate immune response to lipopolysaccharide lipid A 
of Prevotella melaninogenica 

 

Abstract:  

Prevotella melaninogenica, regarded as a commensal oral bacterium, is 

frequently isolated from extra-oral polymicrobial infections, including the airways of 

individuals with the genetic disease cystic fibrosis (CF).  The CF airway environment is 

known to support a complex polymicrobial community that persists and evolves over 

time.  Aerobic bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa 

are considered the primary pathogens in CF; consequently, little is known about the 

contribution of anaerobic bacteria such as P. melaninogenica in CF disease 

pathogenesis. Lipopolysaccharide (LPS), the primary constituent of the outer membrane 

of Gram-negative bacteria, has the potential to be an important proinflammatory 

mediator. We characterized the lipid A structure of P. melaninogenica and determined 

whether P. melaninogenica LPS stimulated an inflammatory response in the human 

monocytic cell line THP1. We found that lipid A of P. melaninogenica is highly 

heterogeneous under in vitro growth conditions, and is composed of 

monophosphorylated and diphosphorylated forms that are penta-acylated with 

unusually long chain fatty acids. Consistent with the presence of long chain fatty acids 

the LPS of P. melaninogenica LPS was more than 1000-fold less stimulatory than that 
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of Pseudomonas aeruginosa. Further, P. melaninogenica LPS activity was not mediated 

by Toll-like receptor 4 (TLR4), suggesting that residual activity was due to lipoprotein 

contamination. Our results indicate that P. melaninogenica produces a highly unusual 

non-stimulatory LPS and that it is unlikely to contribute to the unrelenting inflammatory 

response associated with chronic CF airway infection.  

Introduction: 

Bacterial lipopolysaccharide (LPS) comprises the outer layer of the outer 

membrane of Gram-negative bacteria.  LPS has three biochemically distinct regions: 

lipid A, core polysaccharide and O-antigen (1).  Lipid A, traditionally considered the 

most toxic portion, constitutes the hydrophobic component of LPS and is made up of 

long chain fatty acids covalently attached to a sugar derivative, glucosamine. The core 

polysaccharide, which is attached to lipid A, is composed of an inner core of short 

oligosaccharide and 2-keto-3-deoxyoctonoic acid (KDO), and an outer core that is 

composed of phosphates, amino acids and sugars.  Attached to the core is the O-

antigen, the most variable part of the LPS, which is made up of repeating saccharide 

subunits.   

Bacterial LPS aids in colonization and survival of bacteria inside the host. LPS is 

vital to bacterial structure and outer membrane integrity and is involved in bacterial 

pathogenesis by acting as a physical/permeability barrier to protect bacteria from host 

immune defenses and by aiding in the attachment to host cells (2).  The addition of 

sialic acid to the core or O-antigen portion of LPS can aid in bacterial immune evasion 

by mimicking host cell surface molecules, thus preventing host immune detection and 

clearance by antibody opsonization (3).  
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The lipid A component of LPS also serves as a microbe-associated molecular 

pattern (MAMP) that is specifically recognized by host cells through the Toll-like 

receptor 4 (TLR4) complex (4).   In the host, bacterial LPS is recognized by LPS binding 

protein (LBP). The LPS-LBP complex can subsequently bind CD14 and activate the 

TLR4-MD-2 receptor complex.  Binding of LPS to TLR4 initiates a signaling cascade 

that ultimately activates NFĸB transcription. Upon translocation to the nucleus, NFĸB 

activates the transcription of proinflammatory cytokine genes, such as IL-8, as well as 

other responses including complement activation and reactive oxygen release from 

macrophages and neutrophils (5).  The host response induced by bacterial LPS plays a 

role in the pathogenesis of many human diseases including cystic fibrosis (CF) (6).  

CF is the most common genetic disorder affecting Caucasians of European 

descent. In CF, mutations in the cystic fibrosis transmembrane conductance regulator 

(CFTR) gene lead to dysregulation of chloride ion transportation across the apical 

surface of epithelial cells. The resulting ion imbalance causes mucus dehydration and 

formation of thick luminal mucus plugs (7). Mucus plugs are proposed to provide an 

ideal niche that protects bacteria from antimicrobial agents and antibody mediated host 

responses.  Bronchoalveolar lavage fluid (BALF) collected from CF patients, shows 

increased neutrophil counts, elevated concentrations of proinflammatory cytokines (e.g. 

IL-8, IL-1β, TNFα, IL-6), and inflammatory markers such as C-reactive protein (CRP) 

compared to BALF from individuals with non-CF respiratory disease or healthy 

individuals (8-10). Bacterial infection within the thickened luminal mucus of CF airways 

leads to unrelenting and non-productive inflammation, which contributes to progressive 

lung damage, and ultimately respiratory failure.   
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In individuals with CF, polymicrobial colonization occurs as early as two months 

of age (11). In the context of this underlying bacterial community, typical CF pathogens 

appear in a succession; with Staphylococcus aureus and Haemophilus influenzae 

dominating early in life, followed by chronic colonization by Pseudomonas aeruginosa 

and members of the Burkholderia cepacia complex (11, 12). Unbiased molecular 

detection methods, based on bacterial 16S rRNA gene sequencing or phylogenetic 

microarrays, have shed new light on the complexity of the CF microbiome and implicate 

anaerobic bacterial species as dominant members of the CF airway microbiota (11, 13-

22). These findings have been confirmed by parallel anaerobic culture based studies 

(23-33). Among the anaerobic species, Prevotella melaninogenica has emerged as a 

frequent and abundant member of the CF airway microbiota (14, 19-21, 23, 29, 30). 

P. melaninogenica is a black pigmented, Gram-negative bacterium and a 

member of the human oral flora (34). P. melaninogenica is found in extra-oral abscess 

sites such as vertebral osteomyelitis, pyomyositis, peritonsillar abscesses and vaginal 

mesh infections (35-39).  P. melaninogenica has the capacity to produce a range of 

potential virulence factors such as hemolysin, β-lactamases, fibrinolysin, IgA protease, 

IgG protease and lipase (40-45).   Additionally, P. melaninogenica has been described 

as a potential pathogen because of its presence in polymicrobial diseases such as brain 

abscesses, pleuropulmonary infections, endocarditis, illicit drug injection sites, intra-

abdominal infections, wound infections, necrotizing fasciitis, pyogenic infections, 

decubitus and diabetic ulcers in addition to CF (26, 36, 42, 46-51). 

In the context of CF airway disease, the potential role of P. melaninogenica in 

inflammation has not been examined. In particular, the structure and stimulatory 
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properties of P. melaninogenica LPS, a major proinflammatory mediator of Gram-

negative infection, have not been characterized. The goal of this study was to determine 

the P. melaninogenica lipid A structure and its inflammatory potential, in order to better 

understand its contribution to the pathogenesis of CF airway infection and disease 

pathogenesis. We found that there are two dominant forms of P. melaninogenica lipid A 

composed of monophosphorylated and diphosphorylated forms with five unusually long 

(C15-C17) acylated chains. Additionally, P. melaninogenica LPS was found to be 

exceptionally non-stimulatory with regard to IL-8 and IL-1β activation compared to LPS 

from P. aeruginosa in THP1 cells.  

Materials and Methods:  

Bacterial strains and growth conditions: P. melaninogenica ATCC 25845 was cultured 

from frozen stock onto Columbian Blood agar plates (Thermo Scientific) for three days. 

P. melaninogenica was then grown in prereduced Tryptic Soy Broth (Becton Dickinson) 

supplemented with 5 µg/ml menadione (Sigma) and 5 µg/ml (7.6 µM) heme (anaerobic 

Tryptic Soy Broth, ATSB) with shaking overnight at 37°C in a Coy anaerobic chamber 

(52).  20 milliliters of overnight culture was used to inoculate 1L of ATSB and grown for 

three days. Bacteria were then centrifuged at 10,000xg for 25 minutes at 4°C and the 

pellet was frozen at -20°C.   P. aeruginosa strain PAK was plated on LB and grown in 

N-minimal media supplemented with 38 mM glycerol, 0.1% casamino acids and 8 µM 

MgCl2, a condition that promotes production of lipid A with modifications typical of CF 

clinical isolates (53).  

LPS and lipid A isolation and purification. LPS was extracted by the hot/phenol/water 

method (54). Freeze-dried bacteria were resuspended in endotoxin-free water at a 
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concentration of 10 mg/ml.  12.5 milliliters of 90% phenol was added and the resultant 

mixture was vortexed and incubated in a hybridization oven at 65°C.  The mixture was 

cooled on ice and centrifuged at 10,000 rpm at room temperature for 30 minutes.  The 

aqueous phase was collected and an equal volume of endotoxin-free water was added 

to the organic phase.  The sample was treated as above and aqueous phases were 

combined and dialyzed against Milli-Q purified water to remove residual phenol and 

then freeze-dried. The resultant pellet was resuspended at a concentration of 10 mg/ml 

in endotoxin-free water and treated with DNase at 100 µg/ml and RNase A at 25 µg/ml 

and incubated at 37°C for 1 hour in a water bath.  Proteinase K was added and 

incubated for 1 hour in a 37°C water bath.  The solution was extracted with an equal 

volume of water-saturated phenol.  The aqueous phase was collected, dialyzed against 

Milli-Q purified water and freeze-dried as above. The LPS was further purified by adding 

a 2/1 mixture of chloroform/methanol to remove membrane phospholipids using the 

Folch procedure (55) and further purified by an additional water-saturated phenol 

extraction and 75% ethanol precipitation using the Vogel procedure (56) to remove 

lipoproteins. 1 mg of purified LPS was converted to lipid A by mild-acid hydrolysis (57), 

which was used for High-Order MS analysis. 

Rapid microextraction Lipid A isolation from whole cells. The P. melaninogenica Lipid A 

that was analyzed by MALDI-TOF mass spectrometry was prepared using a published 

isolation method (58). Briefly, approximately 10 mg of lyophilized material derived from 

an overnight culture of each strain was resuspended in 400 μl of isobutyric acid and 1 M 

ammonium hydroxide (5:3 vol/vol) and incubated at 100°C for 1 h. After cooling, 

individual samples were centrifuged for 15 min at 2,000 x g, and supernatants were 
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collected and diluted 1:1 (vol/vol) with endotoxin-free water. The samples were 

subsequently frozen and lyophilized overnight. The resultant powered material was then 

washed twice with 1 ml of methanol and the insoluble lipid A was extracted in 200 μl of 

a mixture of chloroform, methanol, and water (3:1:0.25 [vol/vol/vol]). One microliter of 

this extract was then spotted onto a MALDI plate followed by 1 μl of norharmane matrix 

(Sigma) and air-dried.  

Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI 

TOF MS): Lipid A was analyzed in the negative ion mode on an AutoFlex Speed MALDI 

TOF mass spectrometer (Bruker Daltonics, Bremen, Germany). Samples were 

dissolved in 10 µL of a mixture of n-harmane (20 mg/mL) in chloroform/methanol/water 

4:4:1 (vol/vol/vol), and 0.5 µL of sample was spotted directly onto the MALDI target 

plate. Data was acquired in reflectron mode with a Smartbeam laser with 1 kHz 

repetition rate and up to 4000 shots were accumulated for each spectrum. Instrument 

calibration and all other tuning parameters were optimized using Agilent Tuning mix 

(Agilent Technologies, Foster City, CA).  Data was acquired and processed using Data 

Analysis (Bruker Daltonics, Billerica, MA). 

Matrix-Assisted Laser Desorption Ionization Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry (ESI FT-ICR MS): Lipid A was analyzed by MALDI in 

the negative ion mode on a 12-Tesla FT-ICR mass spectrometer (Bruker Daltonics, 

Bremen, Germany). Samples were dissolved in 10 µL of a mixture of n-harmane (20 

mg/mL) in chloroform/methanol/water 4:4:1 (vol/vol/vol), and 0.5 µL of sample was 

spotted directly onto the MALDI target plate. Data was acquired with a Smartbeam laser 

with 2 kHz repetition rate and up to 3000 shots were accumulated for each spectrum. 
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Instrument calibration and tuning parameters were optimized using the recommended 

Bruker calibration standard mixture (Bruker Daltonics, Bremen, Germany) in negative 

ion mode. Tandem mass spectrometry experiments involved isolation and collision 

induced fragmentation of the precursor ion in the front end quadruple. Precursor 

isolation was set to 5 Da and fragmentation energy was adjusted accordingly to 

maximize observation of product ions. Data was acquired and processed using Data 

Analysis (Bruker Daltonics, Billerica, MA).  

Cell culture:  THP1 XBlue cells (Invivogen, San Diego, CA) were grown according to 

American Type Culture Collection (ATCC) instructions in RPMI-1640 medium with 

Zeocin (100 µg/ml) in 5% CO2. For LPS challenge studies, 5 x105 THP1 XBlue cells 

contained in 500 µl were seeded into 24 well plates, incubated for 30 minutes and 

challenged for 24 hours with LPS. LPS was diluted in endotoxin free H2O. E. coli LPS 

(Sigma) and Pam3CSK4 (Invivogen) were used as controls for TLR neutralizing 

experiments at 50 ng/ml and 10 ng/ml, respectively. TLR2 and TLR4 neutralization 

experiments were conducted as previously published (59, 60). Specifically, 1x105 THP1 

cells contained in 100 µl media were plated and 5 µg/ml of anti-TLR2 or anti-TLR4 

antibody (TLR2: Anti-human (CD282) Purified TL2.1; TLR4: Anti-Human CD284 

(TLR4)); eBioscience) or isotype IgG2a control (Mouse IgG2a K Isotype Control, 

eBioscience) were added to cell culture, swirled and incubated for two hours at 37°C 

before LPS was applied and incubated for 24 hrs. 

ELISAs:  Total IL-1β and IL-8 were measured by enzyme-linked immunosorbent assay 

(ELISA) in 96 well polystyrene high binding plates (Corning Costar) according to 

manufacturer’s instructions (R&D). For NFĸB activation measurements, cells were 
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maintained with Zeocin and supernatant was collected and frozen at -20°C. 20 µls of 

cell supernatant was added to 200 ul of QuantiBlue (Invivogen) and incubated for 1 to 2 

hours and read at 650nm. 

Statistics: Data were analyzed by analysis of variance (ANOVA) and the Tukey multiple-

comparison test using the Graphpad program (Graphpad Software, San Diego, Calif.). 

Statistical differences were considered significant for P values of less than 0.05. All 

reported experiments were performed at least twice in triplicate and each graph 

represents standard deviation of averages.   

Results: 

Characterization of P. melaninogenica lipid A structure.  

The lipid A structure of P. melaninogenica has not been previously described. To 

determine lipid A structure, the typed P. melaninogenica strain ATCC 25845 was grown 

in ATSB (7.6uM heme) and lipid A was purified by Caroff method and analyzed by 

negative matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass 

spectrometry (MS) and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass 

spectrometry.  

The negative ion mode MALDI TOF mass spectrum of lipid A isolated from P. 

melaninogenica LPS is shown in Figure 1A and 1B. The most abundant ions observed 

corresponded to two different ion series at m/z values ranging from 1646-1702 and from 

1726-1796. These ion series corresponded to singly deprotonated lipid A structures that 

contained one phosphate group (monophosphoryl) or two phosphates (diphosphoryl) 

and five acyl chains (penta-acylated), respectively. Within the ion series, each ion peak 

differed by 14 Da, which corresponded to an addition/subtraction of a methyl group. 



81 

Initial structure characterization using precursor ion m/z values were supported by 

elemental composition based on accurate mass measurements.  

Tandem mass spectrometric experiments on penta-acylated lipid A isolated from 

P. melaninogenica LPS were carried out to confirm the location of the five fatty acids. 

The most abundant monophosphoryl m/z value, 1674, was selected for full acyl chain 

configuration assignment (Figure 1B). Initial characterization based on elemental 

composition from accurate mass measurements of the mono-phosphoryl penta-acylated 

lipid A anion, m/z 1674, revealed the composition of the five fatty acids comprised of 

four primary fatty acids [two 3-hydroxypalmitic acid (C16(3-OH)) acyl chains, one 3-

hydroxy-methyl-tetradecanoic acid (C15(3-OH)(isomethyl)), and one 3-hydroxy-methyl-

hexadecanoic acid (C17(3-OH)(isomethyl)) acyl chains] and one secondary fatty acid 

[palmitic acid (C16) acyl chain].  

In order to determine the positioning of the five fatty acids, we conducted tandem 

mass spectrometric experiments aimed at highlighting diagnostic cross-ring and 

glycosidic cleaveage product ions that provided decisive evidence for pinpointing acyl 

chain positions (Figure 1B). The penta-acylated lipid A structure was determined to 

have the following configuration: the C-2 position contained a primary amide-linked 

C16(3-OH), the C-3 position contained a primary ester-linked C16(3-OH), the C-2' 

position contained a primary amide-linked C17(3-OH)(isomethyl) and a secondary 

ester-linked C16, and the C-3' position contained a primary ester-linked C15(3-

OH)(isomethyl). The acyl chain configuration as outlined above held true for 

diphosphoryl penta-acylated lipid A extracted from P. melaninogenica (Figure 1A).  
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 IL-8 and IL-1β response to P. melaninogenica LPS.  

To test the ability of P. melaninogenica LPS to stimulate the host inflammatory 

response, we exposed the THP1 human monocytic cell line to purified LPS and 

evaluated production of IL-1β, a key acute phase inflammatory cytokine, and IL-8, a 

neutrophil chemokine.  LPS from P. melaninogenica stimulated low levels of IL-8 

(approximately 50 pg/ml), but no detectible level of IL-1β (Figure 2A and 2B). In 

contrast, LPS from P. aeruginosa, a traditional pathogen associated with CF, stimulated 

IL-8 production 1000 fold more than P. melaninogenica LPS. 

 

P. melaninogenica LPS is not a TLR4 agonist.  

 To determine whether the weak cytokine response to P. melaninogenica LPS 

was mediated through a TLR4-dependent pathway, we used TLR neutralizing 

antibodies to block LPS signaling. E. coli LPS was used as a traditional TLR4 agonist to 

test the effectiveness of the blocking of TLR4 by antibodies. E. coli LPS signal was 

ablated with the addition of TLR4 neutralizing antibody. In our studies, TLR4 

neutralizing antibody had no effect on P. melaninogenica LPS dependent NFĸB 

activation or IL-8 production in THP1 cells (Figure 3). As expected the isotype mAb 

control did not reduce P. melaninogenica NFĸB activation or IL-8 secretion.  We also 

tested the ability of P. melaninogenica to signal through TLR2 because of contrasting 

studies in a closely related bacterium Porphyromonas gingivalis. Pam3CSK4, a 

lipoprotein, is a traditional TLR2 agonist and its effect was successfully reduced with the 

addition of TLR2 neutralizing antibody. The TLR2 neutralizing antibody reduced P. 

melaninogenica LPS dependent NFĸB activation and IL-8 production three fold each. 
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The isotype mAb control did not reduce P. melaninogenica NFĸB activation or IL-8 

production (Figure 4).   

Discussion  

P. melaninogenica, a prominent anaerobic member of the CF microbiome, has 

an uncharacterized lipid A structure and unknown LPS dependent inflammatory effect 

that could contribute to CF pathogenesis.  This study represents the first investigation 

into lipid A structure and inflammatory response to P. melaninogenica LPS.   

Mass spectra of P. melaninogenica lipid A displayed penta-acylated 

diphosphorylated and monophosphorylated form (m/z 1754 and 1674, Figure 1). In 

studying the structure of lipid A there are four main areas of potential variation:  the 

number of phosphates attached to the glucosamine backbone, the number and length 

of acyl chains and whether the acyl chains are branched (61).  Contrasting E. coli lipid A 

structure to P. melaninogenica reveals key differences in phosphate composition, acyl 

chain number and length. E. coli lipid A traditionally is composed of 6 acyl chains with 

lengths ranging from 12 to 14 carbons and two phosphates attached to the glucosamine 

backbone (62). These key differences could explain the striking difference in IL-8 

production and TLR signaling between the two complete LPS structures. Lipid A 

molecules that have two phosphates attached to the glucosamine background are 

known to be more potent activators of TLR4 than lipid A molecules with a single 

phosphate or no phosphate (62). Additionally, lipid A containing  5 or 7 acyl chains is 

100 fold less active compared to structures with 6 acyl chains (63). P. melaninogenica 

lipid A moiety displays a similar structure and acylation pattern to P. gingivalis, an oral 
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pathogen associated with periodontitis (62, 64). P. gingivalis lipid A is penta-acylated 

and monophosphorylated and has a less potent cytokine profile than E. coli (62, 65). 

In our experiments with purified LPS, we established that P. melaninogenica did 

not initiate high levels of IL-1β and IL-8 inflammatory cytokine production or NFĸB 

activation in THP1 cells; even lower than P. gingivalis in similar conditions (66, 67). The 

low stimulatory effect of P. melaninogenica is confirmed by a past report of low IL-1α 

and TNFα secretion induced by P. melaninogenica supernatants on human monocytes 

and human gingival cells compared with Salmonella typhimurium LPS and 

Fusobacterium nucleatum lysate (68).  In the oral cavity, where P. melaninogenica is 

considered a commensal, the community of oral bacteria contributes to periodontal 

health by stimulating low levels of IL-8 to induce the chemotaxis of neutrophils into the 

gingivalis crevice where they patrol for bacterial pathogens (69). In other parts of the 

body, low level stimulation by commensal bacteria aids in the development and 

maintenance of the immune innate system as seen in experiments with germ-free mice 

(70).   In CF lung infections though, the additional low-level stimulation could add to the 

overall excessive inflammatory phenotype displayed which leads in the destruction of 

lung tissue and pulmonary dysfunction. P. melaninogenica could minimally contribute to 

increase the inflammation of the CF through increased IL-8 cytokine response. 

  To investigate the mechanism of THP1 IL-8 production in response to P. 

melaninogenica, TLR signaling pathways were investigated to determine if P. 

melaninogenica was signaling through a traditional TLR pathway. Experiments blocking 

TLR2 or TLR4 with neutralizing antibodies were done to elucidate TLR signaling 

pathways of P. melaninogenica LPS.  Blocking TLR2, in contrast to blocking the 
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traditional TLR4 pathway, resulted in a significant decrease in P. melaninogenica LPS 

dependent NFĸB activation and IL-8 production.  Antibody blocking experiments 

demonstrated that the low-level proinflammatory activity associated with P. 

melaninogenica LPS is detected through a TLR4 independent pathway.  This result 

substantiates a continuing controversy in the field P. gingivalis.  

The LPS dependent TLR response to P. gingivalis is unclear because of reports 

outlining both TLR2 and TLR4 LPS dependent pathways. Zhang et al., demonstrates in 

THP-1 cells that TLR2 antibodies block the production of significant amounts of IL-1β, 

TNFα and IL-6 cytokines (67).  This study though also reports robust P. gingivalis LPS 

cytokine response above that of E. coli, contradicting previous studies comparing the 

two (53, 71).  This could be because of lipoprotein contamination leading to TLR2 

agonism and high levels of cytokine response. Exploring lipid A structure and 

environmental cues, Coats et al. shows a variable TLR dependent response depending 

on the amount of heme in the environment (52).  Specific lipid A phosphatases are 

regulated by heme concentration and are responsible for changes in lipid A structure 

leading to variable TLR4  response either acting as an agonist in low heme (1 mg/ml) or 

an antagonist in high heme (10 µg/ml) (52). 

Further experiments will be done with additional P. melaninogenica LPS 

preparations to confirm that P. melaninogenica LPS is signaling through a TLR4 

independent pathway.  TLR2 signaling was seen previously in experiments testing 

formalin fixed P. melaninogenica on 293/hTLR-2 and 293/hTLR-4/CD14/MD2 cell lines 

(72).  Formalin fixed bacteria is a complex mixture of membrane components and does 

not represent an exclusive LPS dependent response but does show the ability for P. 
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melaninogenica signaling through TLR2 pathways.  Additionally, further experimentation 

will be needed in understanding the role of bacterial environmental growth conditions as 

it affects P. melaninogenica lipid A structure in light of heme dependent variation of lipid 

A structure leading to changes in TLR activation as seen in P. gingivalis (5, 52).  

In future studies, concurrent studies with P. melaninogenica and P. aeruginosa 

should be investigated because P. melaninogenica is more often associated within a 

group of organisms such as its presence in the oral biofilm (34) than as a single species 

infection. In experiments mimicking the environment of COPD, P. melaninogenica 

lysates inhibited the ability of Haemophilus influenzae lysates to stimulate TLR4 

signaling in dendritic cells, resulting in reduced IL-12 production (51).  Similarly, LPS 

from the closely related oral bacterium, P. gingivalis can act as a TLR4 antagonist and 

dampen or eliminate the effect of E. coli LPS on activating CHO cells expressing human 

TLR4, human THP-1 monocytes or murine macrophages (53, 71).  Because of the 

presence of P. melaninogenica in polymicrobial environments such as CF, the 

dampening effect of P. melaninogenica lysate and P. gingivalis LPS dependent 

inhibiting properties, P. melaninogenica LPS may actually provide protection to other 

organisms such as P. aeruginosa by preventing or dampening the pro-inflammatory 

response.   
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Figures: 

A.  
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B. 
 

 
 
 
Figure 3.1. Structure of P. melaninogenica endotoxin A) Negative ion MALDI TOF mass 
spectrum of lipid A from Pm. Inset structure is proposed structure for ion at m/z 1754 
corresponding to a diphosphoryl penta-acylated lipid A structure.  B) Negative ion 
MALDI FTMS MS2 mass spectrum of precursor ion at m/z 1674. Inset structure is 
proposed structure for ion at m/z 1674 corresponding to a monophosphoryl penta-
acylated lipid A structure. Acyl chain configuration for the mono- and diphosphorylated 
lipid species were identical. Diagnostic cross-ring product ions (0,2A2 and 0,4A2) are 
highlighted which allowed confident assignment of acyl chains.  
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A.  

B. 
 

 

Figure 3.2. P. melaninogenica LPS stimulates THP1 cells significantly less than P. 

aeruginosa LPS. A) IL-8 production from THP1 cells stimulated for 24 hours with P. 

melaninogenica LPS or P. aeruginosa LPS. B) IL-1β response of THP1. IL-8 and IL-1β 

measured by ELISA. Graph displays mean and standard deviation of three independent 

experiments in triplicate P<0.05. ND= not detectible.  
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A. 

 

 

B. 

 

 

 

Figure 3.3. P. melaninogenica stimulates NFĸB and IL8 production in a TLR4 

independent mechanism. A) NFĸB activation and B) IL-8 production by THP1 cells with 

TLR4 neutralizing antibody.   NFĸB measured by Quanti-Blue. IL-8 measured by ELISA. 

Anti-TLR4- 5µg/ml, mAb IgG- 5µg/ml, Purified E. coli LPS- 50ng/ml, P. melaninogenica 

10µg/ml. Results are means and standard deviations of triplicate wells and are 

representative of at least two independent determinations. Pmel = P. melaninogenica  
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A. 

 

B. 

 

 

 

Figure 3.4. P. melaninogenica LPS NFĸB and IL-8 production response with TLR 2 

antibodies. A) NFĸB activation and B) IL-8 production by THP1 cells with TLR 2 

neutralizing antibody.  NFĸB measured by Quanti-Blue. IL-8 measured by ELISA. P. 

melaninogenica 10µg/ml. Anti-TLR2- 5µg/ml, mAb IgG- 5µg/ml,Pam3CSK3-10ng/ml, P. 

melaninogenica 10µg/ml. Results are means and standard deviations of triplicate wells 

and are representative of at least two independent determinations. Pmel = P. 

melaninogenica  
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Chapter 4. 

Prevotella melaninogenica iron requirements and hemoglobin 
receptor characterization. 

 

Abstract 

Prevotella melaninogenica, an anaerobic Gram-negative bacterium, has been 

cultured from polymicrobial disease sites including the lungs of patients suffering with 

the genetic disease cystic fibrosis (CF). In the CF lung, like other disease sites, bacteria 

must acquire essential nutrients such as iron. To better understand how P. 

melaninogenica survives in the CF lung, we characterized the ability of the bacterium to 

utilize relevant host sources of iron. In vitro growth experiments showed that P. 

melaninogenica growth depends on the presence of heme or hemoglobin and that other 

host iron containing proteins such as lactoferrin and transferrin or various inorganic iron 

molecules cannot serve as a sole iron source. To identify potential hemoglobin 

acquisition systems of P. melaninogenica, we sequenced the genome of the typed 

reference strain 25845 and searched for homologues of known hemoglobin receptors. 

We found several putative hemoglobin receptors through amino acid homology and 

predicted membrane topology.  We also used hemoglobin agarose beads to identify 

outer membrane proteins that bind hemoglobin and searched for surface proteins that 

were heme-iron regulated. Using a combination of approaches, we have identified a 

comprehensive list of putative P. melaninogenica hemoglobin receptors.  Future 

studies, with the aid of a P. melaninogenica genetic system, will further the 

characterization of heme acquisition in P. melaninogenica.   
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Introduction:  

P. melaninogenica, formerly Bacteroides melaninogenicus, is a black pigmented 

anaerobic, Gram-negative bacterium with several potential virulence characteristics 

including fimbrial hemagglutination and the production of hemolysin, β-lactamases, 

fibrinolysin and a variety of proteases (193-196).  P. melaninogenica was historically 

considered an oral commensal; however, it has recently been described as a potential 

pathogen and is closely related to other species considered highly pathogenic (197-

199).  P. melaninogenica has been cultured as the sole infectious agent from abscesses 

associated with vertebral osteomyelitis, pyomyositis and vaginal mesh infections (200-

202).  In addition, P. melaninogenica has been documented in polymicrobial diseases 

including brain abscesses, pleuropulmonary infections, endocarditis, intra-abdominal 

infections, wound infections, necrotizing fasciitis, decubitus and diabetic ulcers (194, 

203-205).  

P. melaninogenica was the most common anaerobe reported in sputa from adult 

cystic fibrosis (CF) patients (197, 206).  Both culture based methods and molecular 

techniques show P. melaninogenica in the CF lung (197, 207-214).   CF is the most 

common lethal genetic disorder affecting Caucasians. In the lungs of CF patients, 

dehydrated mucus forms hypoxic and/or anaerobic plaques that are suitable 

environments for anaerobic bacterial colonization (215, 216).  In CF, cycles of infection, 

followed by chronic airway colonization cause excessive and unproductive pulmonary 

inflammation eventually leads to lung dysfunction, respiratory failure and death. The 

ability of P. melaninogenica to survive in this CF airway environment and colonize 

mucus plaques is dependent on its capacity to acquire essential nutrients, such as iron. 
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Iron is a nutritional requirement of extreme importance. For aerobic bacteria, iron 

is a required cofactor for metabolism including the electron transport chain cytochromes 

(217). For anaerobic bacteria, fumarase, iron-sulfur compounds and other iron 

containing molecules protect against superoxide and are involved in ATP production 

through pyruvate aided fermentation (218).  Within the human body, free iron is scarce 

due to the presence of iron ‘withholding’ proteins, such as hemoglobin, lactoferrin and 

transferrin, which protect from the host from hydroxyl radical production (219). These 

iron withholding proteins also deny colonizing bacteria access to iron as an essential 

growth factor (nutritional immunity) and thus represent an important host defense 

strategy against infection (218-220). The lung environment in chronically infected CF 

patients has more available iron than that of healthy individuals (217, 219, 221, 222).  

Significant amounts of iron is found in sputum and bronchoalveolar lavage (BALF) 

samples from CF patients in the form of lactoferrin, transferrin, heme and hemoglobin 

(217, 219, 222), suggesting that this environment would be prone to bacterial 

colonization.  

Because hemoglobin stores more than two-thirds of the body’s iron, bacteria 

have developed a highly complex mechanism to acquire iron from hemoglobin. (223). 

Iron is stored in the heme component of hemoglobin. Heme consists of iron complexed 

inside a protoporphyrin IX (PPIX) ring, which aids in oxygen transportation.  The 

process of heme iron acquisition begins when hemoglobin is bound to a beta barrel 

transmembrane surface receptor; it is believe that hemoglobin is then degraded to 

release heme molecules, although the specific mechanism is unknown (224-227).  

Heme is then transported across the outer membrane via a TonB dependent 
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mechanism (228) that derives energy from the inner membrane proton motive force 

(42). Specialized heme binding motifs such as FRAP and NPNL domains aid in receptor 

binding and heme transport (226).   Hemoglobin receptor expression is typically 

regulated by iron availability via the iron-regulated transcription factor Fur (229, 230).  

When iron is replete, Fur complexes with iron and binds to fur box promoter sequences 

and inhibits transcription (231, 232), Under iron depleted conditions, apo-Fur cannot 

bind to target promoters, thus allowing transcription of iron regulated genes, such as 

those encoding a bacterial hemoglobin receptor.  Once in the periplasm, heme is 

transported to an ATP-binding cassette (ABC) transporter by a heme permease into the 

cytoplasm, where heme can be used as a bacterial iron source (broken down into PPIX, 

iron biliverdin and CO2) or can be complexed with other molecules and used for oxygen 

resistance (catalase) and electron transport (cytochromes) among many other functions 

(233, 234).  

In addition to iron, Bacteroides species like, P. melaninogenica, Prevotella 

intermedia and P. gingivalis require heme itself for growth. Numerous bacterial species, 

including P. gingivalis and P. intermedia must rely on exogenous heme for growth 

because they lack the full complement of genes encoding the enzymes necessary for 

de novo heme biosynthesis (235, 236). Outer surface black pigmentation, characteristic 

of Prevotella and Porphyromonas genera, is formed from a derivative of heme and can 

to be used for oxygen protection and nutrient storage (237, 238). The ability of P. 

melaninogenica to acquire heme iron from host proteins is not known. Defining the 

mechanism of heme iron acquisition through hemoglobin in P. melaninogenica would 

provide a greater understanding into how P. melaninogenica grows in the CF lung.  
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Because of the high occurrence of P. melaninogenica in CF patients and its 

pathogenic potential, this study aims to further understand P. melaninogenica 

colonization of the CF lung by elucidating essential host iron sources and the 

mechanism of heme acquisition. We found that P. melaninogenica is able to utilize CF-

relevant iron sources such as hemoglobin and heme when grown in vitro but no other 

host iron carrying proteins such as transferrin or lactoferrin or inorganic sources of iron. 

We also demonstrated that P. melaninogenica can use heme as a sole iron source in 

vitro.  To facilitate the investigation of iron procurement, specifically the mechanism of 

hemoglobin acquisition, we sequenced the complete genome of 25845 and identified 

candidate genes involved in hemoglobin (heme) binding and transport.  We used an E. 

coli system, E. coli K12 hemA that lacks an endogenous hemoglobin receptor to test 

candidate receptor function. Finally, we investigated outer membrane hemoglobin 

binding and heme iron regulated proteins by hemoglobin affinity pull down experiments 

and outer membrane protein expression in heme deplete and replete conditions.  

Materials and Methods: 

Bacterial Strains: P. melaninogenica ATCC 25845 was obtained from ATCC and 

maintained on Columbian Blood Agar (Thermo Scientific). EB53 (K12::hemAaroB) and 

IR754 (K12::hemAaroBtonB) strains were maintained on Luria-Bertani media (LB) 

plates with carbenicillin 30 µg/ml with 300µM 5- aminolevulinic acid (ALA; Sigma)(239). 

All strains, plasmids and primers are listed in Table 1.  

Bacterial Growth Conditions: P. melaninogenica ATCC 25845 was cultured from frozen 

glycerol stock anaerobically on Columbian Blood agar plates for two to four days until 

colonies displayed a characteristic red/brown phenotype. Colonies were then inoculated 



104 

into prereduced Tryptic Soy Broth (Becton Dickinson) supplemented with 5 µg/ml 

menadione (Sigma) and 150 µM of 2 2'-bipyridyl (BPD, Sigma). (240).  All anaerobic 

Tryptic Soy Broth (ATSB) has menadione supplementation (241). All anaerobic growth 

was done in a Coy Anaerobic chamber at 37°C. Once growth had reached an optical 

density (OD) at 600nm OD 1.0, approximately 1x103 CFU/ml was inoculated into ATSB 

with various iron and heme conditions and in some cases 100 µM BPD. Iron sources 

were normalized to 7.6 µM iron and bacteria were grown shaking anaerobically for the 

time stated. Aliquots of media were used to measure OD600 at various time points.  

Heme stock was dissolved in 1 M NaOH. Hemoglobin stock was dissolved in water. 

Lactoferrin, transferrin, ferric citrate, ferric chloride and ferrous chloride tetrahydrate 

stocks were dissolved in DMSO.      

Genome Sequencing: Genomic DNA from P. melaninogenica ATCC 25845 was 

harvested from a one liter flask grown in Anaerobic Broth (BD Difco) and prepared using 

Fast DNA Spin Kit (MP Biomedicals). The gDNA was sequenced and assembled using 

454 and Ilumina Solexa sequencing systems similar to (242).  

Amino acid homology and topology mapping for hemoglobin receptors: To search for 

homologous proteins, P. melaninogenica sequences were investigated via BLAST-p 

and were compared using ClustaW (243, 244). Protein sequences were then imported 

into PREZ-TMD for topology mapping (245).  

E. coli hemA system: The K12 ∆hemAaroB strain (EB53) is dependent on exogenous 

heme due to the inactivation of heme biosynthesis (hemA) and iron siderophore (aroB) 

pathways (239).  The K12 ∆hemAaroBtonB strain has an additional mutation 

inactivating the TonB protein which restricts the ability to actively transport molecules to 
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the periplasm. K12 ∆hemA strains can be chemically complemented with 300 µM 5- 

aminolevulinic acid (ALA, Sigma) to restore a functional heme biosynthesis pathway 

and growth.  P. melaninogenica candidate outer membrane receptors were expressed 

by an isopropyl b-D-thiogalactopyranoside (IPTG, Sigma) inducible promoter from 

plasmid pMMB which was adapted for Gateway cloning (Life Technologies) (246). P. 

melaninogenica TonB complex (tonB, exbD (1), exbD (2), exbB), was expressed by 

tetracycline cassette promoter on pACYC184. Strains were maintained on 300 µM ALA 

(Table 1). For hemoglobin candidate evaluation, strains were plated on 100 µM IPTG 

and 10 µM hemoglobin or 100 µM IPTG and 10 µM heme plates. 

Hemoglobin agarose: Zwittergent solubilized bacteria grown under heme depleted 

conditions (no heme) were incubated with Affi-Gel 10 beads covalently attached to 

solubilized human hemoglobin. Hemoglobin bound proteins were eluted with elution 

buffer (1% octylglucoside/1.5% glycine pH 2.3)  then run on 7.5% gradient SDS page 

gel as described (247). Putative P. melaninogenica hemoglobin binding proteins were 

viewed by Sypro Ruby staining (Bio-Rad). Proteins were excised and digested in gel 

with trypsin and the resulting peptides were analyzed by ABI 4800 MALDI TOF/TOF MS 

by the UNC Proteomics Core. 

Outer membrane preparation (OMP): Bacteria were grown in one liter of ATSB under 

either heme deplete (0 µM heme) or heme replete (7.6 µM heme) conditions as 

described in (248, 249) until stationary phase. Bacteria were harvested by centrifugation 

at 10,000 x g for 25 minutes at 4°C. Supernatant were removed and the pellets were 

suspended in lysis buffer (50 mM NaH2PO4, pH 7, 300 mM NaCl) with 1 mg/ml 

lysozyme and incubated on ice for 30 minutes. The material was lysed by two passages 
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through a French pressure cell.  Intact cells and cell debris were removed by 

centrifugation at 10,000 x g for 20 minutes at 4°C. Supernatant were centrifuged at 

100,000 x g for 1 hour at 4°C. The pellet were solubilized in 1% Sarkosyl and 

resuspended with a syringe 27G (Becton Dickinson) 4 times and incubated for 30 

minutes at room temperature with gentle shaking.  The Sarkosyl soluble faction was 

subjected to centrifugation at 100,000 x g for 1 hour at 4°C. The supernatant fraction 

was removed and the pellet was resuspended in 100 µl PBS to yield the outer 

membrane preparation.  4 µgs of OMPs were suspended in SDS-PAGE sample buffer 

and heated to 100°C for 5 minutes. Samples were run on a 7.5% Mini-protean TGX 

(Bio-Rad) gel and were stained with GelCode Blue Stain Reagent (Thermo Scientific).   

iTRAQ analysis: 70 µgs of OMPs from either heme depleted or heme replete P. 

melaninogenica were collected and stored in 8 M urea. iTRAQ analysis was done by 

UNC Proteomics core.  

Results:  

Characterization of P. melaninogenica iron requirements.  

Fastidious black pigmented Bacteroides species, including P. melaninogenica, 

are routinely grown in complex blood media and have a characteristic black heme 

derivative stored on the outer surface of the bacterium.  In order to deplete heme iron 

stores Bacteroides species must be grown in serial passages on media lacking a heme 

source. To establish the iron growth requirements of P. melaninogenica, we first 

determined the effect of iron containing sources on the growth of P. melaninogenica 

after passages in heme depleted ATSB. In the absence of supplementation, P. 

melaninogenica is unable to grow in ATSB (Figure 1A). Supplementation of ATSB with 
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heme or human hemoglobin is sufficient to restore growth (Figure 1A and 1B). In 

contrast, other human iron containing proteins, readily available in infected airways 

(lactoferrin and transferrin) were not sufficient to support growth (Figure 1A).  Inorganic 

forms of iron such as ferric citrate (Fe 3+) ferric chloride (Fe 3+) ferrous chloride 

tetrahydrate (Fe 2+) did not support P. melaninogenica growth in ATSB (Figure 1B). 

These inorganic forms were used to test if the oxygen state of the iron molecule and the 

iron solubility at physiological pH would promote growth in an anaerobic atmosphere 

(250). We also demonstrated that P. melaninogenica can use heme as a sole iron 

source in iron restricted chelated ATSB media (Figure 1C). However, growth in chelated 

conditions was not as robust on heme alone; suggesting that trace inorganic iron 

present in ATSB can be utilized.  Additionally in the presence of inorganic iron, PPIX, a 

protoporphorin lacking iron, can be used to restore growth to similar rates as heme in 

ATSB (Supplementary Figure 1).   

 

The P. melaninogenica genome sequence reveals iron acquisition system 

candidates.   

To investigate the mechanism of iron/heme acquisition, we sequenced the P. 

melaninogenica genome to facilitate the identification of genes involved in hemoglobin 

(heme) binding and transport.  In collaboration with Dr. Corbin Jones (UNC-CH 

Department of Biology) and Dr. Anthony Fodor (UNC-C Department of Bioinformatics 

and Genomics) we used 454 pyrosequencing in combination with the Ilumina-Solexa 

platform, to sequence the complete genome of P. melaninogenica ATCC 25845.  The 

sequence is currently partially assembled. The genome is approximately 3.2 million 
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base pairs, contains over 2700 putative open reading frames (ORFs) and is predicted to 

be organized into two chromosomes.  The combination of both platforms enabled 

confident structuring and assembly (242). However, prior to the completion of our 

genome sequencing efforts, the genome sequence for P. melaninogenica ATCC 25845 

was submitted to NCBI by the J. Craig Venter Institute, as a part of the Human 

Microbiome Project (HMP) Reference Genomes (251).   

The submitted P. melaninogenica genome sequence (ACSI00000000) was used 

to identify candidate genes involved in iron acquisition (Figure 2A and 2B).  Using 

BLASTn, we found genes encoding secreted proteins such as hemagglutinin and 

hemolysin (196) , which are proposed to aggregate and lyse red blood cells.  In terms of 

candidate heme and/or hemoglobin receptors, we identified 19 putative TonB 

dependent outer membrane proteins in addition to many TonB dependent plug domains 

(not shown).  Even though there are no siderophore like proteins encoded by P. 

melaninogenica there is a TonB-dependent siderophore receptor that could be used to 

scavenge siderophores in multispecies environments.  

 The energy required for heme-iron transport across the outer membrane is likely 

supplied by a unique P. melaninogenica TonB complex.  Four genes, encoding TonB, 

ExbB, ExbD1and ExbD2 proteins were found. Many bacteria have a single exbD; we 

hypothesized the additional gene could play an auxiliary role in iron acquisition.  Once 

heme is transported to the periplasmic space, a putative heme permease transports 

heme to an inner membrane bound ABC transporter. P. melaninogenica also encodes 

feoB for inorganic iron transportation into the cytoplasm revealing the importance of 

inorganic iron to P. melaninogenica growth (Figure 1C). Further, P. melaninogenica 
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encoded several cytoplasmic proteins related to iron metabolism including two fur genes 

homologs, ferritin and bacterioferritin, but was missing key heme biosynthesis pathway 

genes such as ferrochelatase.  RT-PCR studies with the two fur homologs show a 

different regulation pattern from each other suggesting different roles for each protein 

(Supplementary Figure 2). Additionally the lack of an encoded ferrochelatase, an 

enzyme that inserts iron into the PPIX ring, in the P. melaninogenica genome does not 

explain the apparent usage of PPIX in place of heme (Supplementary Figure 1).   

 

Identification of P. melaninogenica candidate hemoglobin receptors through 

amino acid homology searches.   

More extensive searches incorporating characteristic hemoglobin receptor motifs 

and membrane topology predictions revealed a small group of proteins resembling the 

well characterized hemoglobin receptor ShuA from S. dysenteriae (226) and HmuR P. 

gingivalis (230, 236) (Figure 3). Specifically, amino acid homology using conserved 

residues from other characterized hemoglobin receptors such as the FRAP and NPNL 

domains, TonB box (TVTATG) and outer membrane transmembrane beta barrel 

structure was used (226, 252). Two proteins, HMPREF0659_A5369 (designated HmuR) 

and HMPREF0659_A6271 (designated TonBr) showed similarity to both ShuA from S. 

dysenteriae and HmuR of P. gingivalis using these methods.  

Characterization of candidate P. melaninogenica hemoglobin receptors using E. 

coli hemA.  

 To functionally characterize the genes identified in our analysis of the 

sequenced genome, we utilized an E .coli K12 based screening strain (239). E. coli K12 



110 

strains naturally lack an endogenous hemoglobin receptor but are capable of de novo 

synthesis of heme. To eliminate heme biosynthesis the screening strain carries a 

mutation in hemA (encoding glutamyl-tRNA reductase). The HemA gene product is 

required for the production of 5-aminolevulinic acid (ALA), a precursor in the heme 

biosynthesis pathway (253). To reduce growth under iron limiting conditions, the 

screening strain also carries a mutation in aroB, which is required for siderophore 

production. For growth under iron limiting conditions, the E. coli K12 hemA, aroB double 

mutant (K12 hemAaroB) can be chemically complemented with ALA or genetically 

complemented by expression of a functional heme/hemoglobin receptor (Figure 4A). 

We chose the following hemoglobin receptor candidates based on homology scores. 1) 

P. melaninogenica A5369 ‘HmuR’, a TonB-dependent receptor, sharing 29% amino acid 

sequence similarity with the heme utilization receptor (HmuR) of P. gingivalis, 2) P. 

melaninogenica A7242 ‘OmpHb’, a putative TonB-dependent receptor plug domain 

protein (44% similarity to PhuR of Flavobacterium psychrophilum) and 3) P. 

melaninogenica A6271 ‘TonBr’, a putative TonB-dependent domain protein (45% 

similarity to an outer membrane heme/hemoglobin receptor of S. dysenteriae). The 

K12hemAaroB strain was used to test the candidate P. melaninogenica genes and 

known hemoglobin receptors from other species for their ability to restore growth in the 

absence of ALA. The panel of P. melaninogenica receptors showed no function in the 

heterologous E. coli background when grown on hemoglobin or heme, in contrast to a 

putative E. coli hemoglobin receptor (C1129, Figure 4B).  To rule out the possibility that 

the candidate heme/hemoglobin receptors are incompatible with E. coli TonB, as has 

been reported in other systems (239), we cloned the putative P. melaninogenica TonB 
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complex (tonB-exbD-exbD-exbB) and expressed the candidate P. melaninogenica 

receptors and TonB complex genes in K12hemAaroBtonB an isogenic mutant of 

K12hemAaroB (Figure 4B). However, the P. melaninogenica TonB complex did not 

restore growth to K12hemAaroBtonB whereas expression of E. coli TonB protein 

restored function of the E. coli hemoglobin receptor (data not shown).  

Our results suggest that the P. melaninogenica candidate hemoglobin receptors 

do not have the proposed function and/or the P. melaninogenica TonB complex and 

hemoglobin receptor systems are not functional in E. coli K12. Because we were unable 

to distinguish these possibilities, we chose several alternative methods to further pursue 

the identification of P. melaninogenica hemoglobin receptors.  

 

Identification of P. melaninogenica hemoglobin receptors by hemoglobin affinity 

purification. 

 To purify P. melaninogenica hemoglobin binding proteins, we mixed heme 

starved P. melaninogenica lysate with Affi-gel 10 beads covalently attached to human 

hemoglobin (254). In parallel experiments hemoglobin agarose was used to isolate 

HgbA from heme starved H. ducreyi (239, 254). Using the hemoglobin pull down 

technique, several putative P. melaninogenica hemoglobin binding proteins were 

identified by MALDI TOF/TOF MS (Figure 5). The top candidates were 

HMPREF0659_A5491 putative outer membrane protein involved in nutrient binding, 

HMPREF0659_A7287 TonB-dependent receptor plug, HMPREF0659_A5179 putative 

RagA protein, HMPREF0659_A6276 TonB-dependent receptor and 

HMPREF0659_A6366 putative outer membrane protein. Despite the clear enrichment 
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of these proteins by hemoglobin affinity-based purification, none possessed all the 

predicted sequencing characteristics of known heme/hemoglobin receptors as 

described above.  

 

Identification of P. melaninogenica hemoglobin receptors by enrichment under 

heme starved conditions.  

Because iron acquisition is such an important growth requirement, bacteria 

regulate iron acquisition by controlling the amount of surface expressed iron receptor.  

Based on this widespread regulatory feedback mechanism, we hypothesized that P. 

melaninogenica hemoglobin receptors may be enriched under heme starved conditions. 

To enrich for iron regulated proteins, an outer membrane preparation was made under 

heme and iron limiting conditions sited in previous papers for other closely related 

bacteria (235, 238, 240, 248, 249). In addition, specific P. melaninogenica growth 

conditions were tested using in vitro growth curves that showed slow stunted growth 

characteristic of limited nutrient availability.  

The P. melaninogenica proteins from heme replete and deplete conditions were 

analyzed by SDS-PAGE and isobaric tags for relative and absolute quantitation 

(iTRAQ), a quantitative method to identify peptides in a complex mixture (255). Both of 

the heme regulation experiment used (SDS-PAGE and iTRAQ) used the identical OMP 

preparation.  SDS-PAGE analysis of the outer membrane preparations revealed 

multiple potential heme regulated proteins (Figure 6A and Figure 6B). The iTRAQ 

method showed four proteins that were regulated by heme, one of which fit the outer 
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membrane location and heme binding motif criteria characteristic of hemoglobin 

receptors (Figure 6C).  

Using the collective information from the various analyses described above, we 

identified a total of 24 putative hemoglobin receptors. Of these, seven candidates 

possess known hemoglobin receptors predicted topology, heme binding motif 

signatures, hemoglobin binding and heme regulation.  

Discussion 

In order to colonize a host, bacteria must have the ability to acquire limited but 

essential nutrients. In the human host, iron, an essential nutrient, is sequestered by 

carrier molecules and proteins such as heme, hemoglobin, lactoferrin and transferrin. 

These high affinity iron binding molecules control iron toxicity and facilitate important 

metabolic processes (217-220). In CF chronic lung disease, a considerable quantity of 

free heme and hemoglobin is available inside the lumen of the airways (217, 219, 221) 

making a suitable niche for bacterial colonization.   

Our results using in vitro growth conditions show that P. melaninogenica can use 

both heme and hemoglobin to support grow. Earlier studies, using a clinical isolate, 

established that P. melaninogenica can secrete a hemolysis capable of degrading 

hemoglobin (196).  In addition, we demonstrated that P. melaninogenica can use heme 

as an iron source by growing P. melaninogenica in iron restricted media. With 

hemoglobin and heme as known growth sources, further experiments elucidated the 

mechanism for heme acquisition through hemoglobin receptors. Moreover, the P. 

melaninogenica genome does not encode for a typical ferrochelatase or ferrochelatase 

enzyme homolog that inserts or removes iron from the PPIX ring, but P. melaninogenica 
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can use heme as an iron source (Figure 1C) and can grow on PPIX in an iron rich 

environment (Supplementary Figure 1).  Future studies are needed to identify the 

enzyme used for removal and insertion of iron into the heme molecule.  

The P. melaninogenica genome provides clues to the mechanism(s) of heme 

acquisition.  Based on the genome sequence, we identified nineteen putative TonB 

dependent outer membrane receptor/transporters and a complete ABC transport 

system and permease with homology to known periplasmic and inner membrane iron 

transport systems (Figure 2B). The TonB system of P. melaninogenica, encodes for two 

exbD genes like Flavobacterium psychrophilum (256) and Xanthomonas campestris 

(257).  In X. campestris, a Gram-negative plant pathogen, only one of the exbD genes is 

involved in iron uptake. The function of exbD1 and exbD2 for P. melaninogenica are 

unknown. In addition, P. melaninogenica encodes two Fur proteins proposed to regulate 

fur dependent genes. Other bacteria like Campylobacter jejuni (258) and Bacillus 

subtilis (259) contain multiple fur homologues. In preliminary testing, only one candidate 

fur gene showed differential regulation in response to iron availability (Supplemental 

Figure 2).  Interestingly, P. melaninogenica does not encode identifiable iron 

scavenging proteins like siderophores or gingipains, suggesting that the CF lung 

environment provides an ample supply of usable iron.  

The P. melaninogenica genome search for hemoglobin receptors revealed 

multiple proteins that had hemoglobin receptor characteristics. One interpretation of 

these results is that P. melaninogenica does not just rely on one but several receptor 

proteins, as seen in P. gingivalis (260).  P. melaninogenica, a black pigmented 

anaerobe like P. gingivalis, is covered in black heme-derived pigment that could be 
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attached by surface receptors that do have the ability to transport but when heme is not 

needed, hold the heme on the surface for storage and oxygen protection purposes 

(238).  Theoretically there could be several hemoglobin receptors that each transport 

heme (or different heme forms) when needed.    

Because P. melaninogenica, like other a black pigmented Bacteroides species, 

can store a heme iron derivative on its surface, heme starvation conditions are difficult 

to achieve without serial passage in iron depleted conditions. Optimal starvation 

conditions were needed to detect altered expression of iron regulated proteins in lysate 

preparations for hemoglobin agarose pull-downs and outer membrane preparations by 

gel electrophoresis and iTRAQ.  The difficulty in achieving consistent depletion 

conditions may account for the variation in the results of each of these experiments.  

Additionally, because of the inability to genetically manipulate P. melaninogenica, an E. 

coli system was used as a method of localizing one protein and testing function instead 

of doing function assays with a P. melaninogenica mutant. The E. coli hemA system 

had been used in the past to demonstrate hemoglobin receptor function (253, 261).   

However, top candidates for P. melaninogenica hemoglobin receptor did not restore the 

E. coli hemA system. This led us to rethink the candidates for selection and the 

compatibility of P. melaninogenica proteins with E. coli protein machinery.  

Taken together our data suggests that P. melaninogenica hemoglobin receptors 

are expressed and function to acquire hemoglobin as demonstrated in in vitro growth 

assays. Further studies in hemoglobin receptor identification will be greatly aided by the 

development of genetic systems in P. melaninogenica. Work done to further 

characterize hemoglobin receptors, to understand the mechanism of cytoplasmic heme-
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iron removal, to characterize two putative Fur proteins and to investigate fur-dependent 

regulation will shed light on the mechanism of P. melaninogenica survival in the CF 

lung.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 

Figures: 

A. 

 

B.  

 

 

Table 4.1 Bacterial strains, plasmids and primers used in this study.  
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Figure 4.1  P. melaninogenica requires heme or hemoglobin to grow in ATSB. A) 
Growth of P. melaninogenica in ATSB with host iron sources normalized to 7.6 µM iron. 
Molar equivalences as follows: One mole hemoglobin contains four moles of heme. One 
molar heme molecule contains one molar iron. One mole lactoferrin/transferrin contains 
two mole of iron. B) Growth of P. melaninogenica in ATSB with inorganic sources of iron 
such as ferric citrate, ferric chloride and ferrous chloride tetrahydrate normalized to 7.6 
µM iron. The average of three experiments was plotted and standard deviation of each 
point is depicted. C) Growth of P. melaninogenica in 100 µM BPD chelated ATSB. The 
experiment was completed twice with similar results.  
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Figure 4.2 P. melaninogenica iron and heme-iron acquisition system. A) Pictorial representation of putative P. 
melaninogenica heme/hemoglobin acquisition machinery.  Light pink boxes are genes encoding for putative hemoglobin 
receptors. The dark green oval represents heme permease and white boxes represent the P. melaninogenica TonB 
system. Purple boxes are representing ABC transporter. All locations were determined by author’s discretion. B) P. 
melaninogenica genes homologous to characterized heme iron acquisition systems. ** All Amino Acid Identity 
comparisons are homologous to proteins in Porphyromonas gingivalis ATCC 33277 except for those noted with $. $ 
Amino acid identity comparisons are from Porphyromonas gingivalis W83.  
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Figure 4.3 P. melaninogenica proteins homologous to characterized hemoglobin 
receptors. A) ClustalW map of BLAST-p search of P. melaninogenica proteins. ShuA 
Shigella. P. gingivalis W83 HmuR. P. melaninogenica TonBr and P. melaninogenica 
HmuR. Colors are dependent on amino acid residue algorithms. B) PREZ-TMD 
depiction of ShuA and candidate P. melaninogenica hemoglobin receptors. Red 
boxes depict TonB Box, FRAP and NPNL motifs.  
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Figure 4.4: Outline of experiments with E. coli K12 hemA system. A) Schematic 
representation of the properties of the E. coli hemA system. B) Growth of E. coli 
hemoglobin receptor cloned into hemA system on hemoglobin and heme plates. 
Lack of growth of candidate P. melaninogenica hemoglobin receptors cloned in E. 
coli K12 hemA system on hemoglobin and heme plates with and without the P. 
melaninogenica TonB system shown. P. melaninogenica A7242 ‘OmpHHb’. P. 
melaninogenica A5369 ‘HmuR’. P. melaninogenica ‘A6271 TonBr’.  
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  A.                      B. 

 
 
Figure 4.5: Functional assessment of P. melaninogenica proteins using hemoglobin 
agarose. A) Hemoglobin agarose pull down of P. melaninogenica proteins stained 
with Sypro ruby on gradient gel. Red arrows indicate gel excised proteins B) Mass-
spec data assignment of gel excised hemoglobin binding proteins. 
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Figure 4.6 Characterization of heme regulated P. melaninogenica OMPs. A) 
Gradient gel electrophoresis of P. melaninogenica grown in heme depleted and 
heme repeat conditions. B) Results from excised gel bands noted with red arrow.  C) 
iTRAQ results from P. melaninogenica grown in heme depleted and heme repeat 
conditions.  
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Table 4. 2 Summary of P. melaninogenica candidate hemoglobin receptors. Four 
green highlighted genes where represented in two or more methods.  
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Supplementary Data: 
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Supplementary Figure 4.1S: P. melaninogenica can use heme and PPIX for growth 

in ATSB.  The experiment was completed twice with similar results.   
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Copies of putative P. melaninogenica fur genes in

heme starvation and iron limitation
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Supplementary Figure 4.2S: Two fur genes differentially regulated by iron. A) RNA 
was collected from four P. melaninogenica growth conditions and RTPCR was done 
showing that Fur5773 is regulated by iron availability. Experiment done once with 
three replicates. Standard deviation graphed.  
 
 
During the mining of P. melaninogenica for heme/hemoglobin acquisition proteins, 
two putative fur proteins were found. HMPREF0659_A6606 is a transcriptional 
regulator in the Fur family located on chromosome 2, with 27% homology with P. 
gingivalis W83 Fur protein and 22% homology to E. coli O157:H7 strain. 
HMPREF0659_A5773, a transcriptional regulator in the Fur family, is on 
chromosome 1, with 28% P. gingivalis W83 Fur protein and 29% homology to E. coli 
O157:H7 strain. Comparing the two proteins Identities = 38/130 (29%), 8e-12.  RT 
primers were then made and tested with various heme and chelated conditions. 
Growth conditions were done in a similar manor as growth curves with the exception 
of the addition of BPD. The heme condition (7.6µM) represents a standard baseline 
condition for optimal growth of P. melaninogenica. Noheme+10BPD is represented 
as a low level stress (50BPD=high). Only A5773 showed regulation by heme 
limitation and iron chelation.   
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Chapter 5 

Conclusion 
 

Cystic fibrosis lung disease 

Cystic fibrosis (CF) is the most common fatal genetic disease affecting the 

Caucasian population, with more than 30,000 individuals with CF in the United 

States (1). The prevailing phenotype in CF is a defect in mucociliary clearance of the 

airways and the accumulation of dehydrated viscous mucus, which creates an 

optimal niche for bacterial colonization.  In CF, chronic bacterial pulmonary infection 

and recurring episodes of acute pulmonary exacerbation produce an irreversible 

decline in lung function that ultimately leads to respiratory failure and death. While 

life expectancy has improved, it is still only 37 years (2). Recently, our understanding 

of the microbial landscape of the CF airway has expanded to include a more diverse 

polymicrobial community of species.  The contribution of these non-traditional 

pathogens to CF airway infection and disease progression is unknown.  

 

CF Microbiome Studies 

In the past 5 years, our understanding of CF pathogenesis has dramatically 

expanded with the application of high throughput sequencing, which has redefined 

CF airway microbiology. Historically, clinical bacterial culture in CF has focused on 

the frequency, abundance and antimicrobial susceptibility of aerobic pathogens such 

as Staphylococcus aureus, Haemophilus influenzae and Pseudomonas aeruginosa.  
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During childhood, S. aureus and H. influenzae are isolated in high abundance and 

these are gradually replaced by P. aeruginosa and Burkholderia cepacia during 

adolescence and adulthood (3, 4). While these observations still hold true, more 

recent metagenomic studies estimate the presence of more than 60 different 

bacterial genera by deep sequencing and over 43 different phyla by 16S ribosomal 

RNA (rRNA) gene-based phylogenetic microarrays (5). The most abundant genera 

commonly sampled are Pseudomonas, Streptococcus, Fusobacterium, and 

Prevotella.  As technology has advanced, lesser known facultative and strict 

anaerobic organisms associated with the oral cavity have been detected; however, 

their role in CF pathogenesis is unclear.  

 

Key Questions about CF 

Despite the apparent polymicrobial nature of CF, treatment decisions are still 

largely based on the identification of traditional CF pathogens (P. aeruginosa /S. 

aureus) and antibiotics with broad spectrum activity against Gram-negative and 

Gram-positive bacteria are used. Unfortunately, chronic antibiotic treatment 

management has become the norm (1).  Chronic bacterial infection throughout life 

produces a new baseline of ‘tolerable’ and manageable colonization and forces 

clinicians into individualized management of symptoms.  Antibiotic management of 

exacerbation status, a state when there is a sudden onset of worsening lung 

function, appears to minimally impact species diversity and microbial community 

structure, yet patients respond clinically and show improved lung function (5). This 
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disconnect reveals the complexity of CF microbiology and highlights the need for a 

deeper understanding of the CF airway microbiota.  

 

Are oral anaerobes in CF samples contamination or are they colonizing 

microbes in the CF lung?  

Most respiratory specimens are collected through the oropharynx except 

retrieval of bacteria from explanted lung samples.  Recently, two studies have 

described the presence of oral anaerobes as less abundant in explanted lungs than 

others who have cultured oral anaerobes from sputum (6, 7). Both of these studies, 

though very thorough, sampled end stage and/or deceased patients when bacterial 

diversity has been shown to be significantly reduced.  However, these studies call 

into question the reliability of microbiome studies that use samples that have passed 

through the oral cavity.  Yet, aspiration into the respiratory tract from the oral cavity 

is expected and may contribute to colonization of the lower airways (5, 8).  

Furthermore, it is possible that the oral cavity could serve as a reservoir for 

pulmonary infection in CF (4, 9). 

Most studies reporting a high abundance of anaerobes in the lungs of CF 

patients have been based on analysis of spontaneous expectorated sputum (5, 8-

25). These studies represent the traditional method of evaluating microbial diversity 

in the lungs. Comparison of concomitant mouthwash samples to lung sputum 

samples show similar species but the abundance of anaerobes in lung samples 

points to colonization verses contamination (26).  Additionally, anaerobic species 

have been cultured consecutively in longitudinal studies, demonstrating a constant 
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presence of anaerobes in the lungs (5, 22). While contamination is unavoidable in 

expectorated sputum samples, studies have shown a similar pattern of oral bacterial 

species in bronchoalveolar lavage fluid (BALF), obtained directly from the lower 

airways (17, 27).  

With the demonstration of steep oxygen gradients in CF mucus plugs, the 

credibility of the presence of strict anaerobes has begun to increase (28).  

Anaerobes, specifically oral-related anaerobes,  have been identified in numerous 

studies (5, 8-25, 27) with the most abundant member being Prevotella 

melaninogenica (8, 11, 15, 17, 18, 22, 23, 27). In chapter 2, we demonstrate, in a 

UNC cohort, that P. melaninogenica was present in 19 of 28 adult sputum samples 

and 19 out of 33 samples from pediatric patients, representing the most abundant 

and frequent strict anaerobe.  Furthermore independent of culture results, we show 

an increase in antibody response to P. melaninogenica in CF patients, even in 

young CF children, compared to non-disease controls (Chapter 2).  In this context, 

antibody response points to an increased exposure or presence of P. 

melaninogenica that is occurring outside the oral cavity.  

 

What is the timing of microbial development in CF?  

In CF, the loss of normal clearance mechanisms results in extensive mucus 

accumulation on the apical surface of the airways providing an ideal environment for 

bacterial colonization (19, 29). The presence of bacteria in the CF lung can occur as 

early as two months of age (10). Using oropharyngeal swab samples, a time-

dependent development of CF airway microflora, beginning with Streptococcus, 
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Veillonella, and Prevotella has been reported for pediatric patients (10).  It is unclear 

whether these bacteria truly colonize the lung or are just aspirated and cleared. In 

chapter 2, we demonstrated a similar spectrum of anaerobic species from patients 

(as young as 1 year old) with P. melaninogenica being the most prevalent and 

abundant strict anaerobe.  

Early bacterial colonization is corroborated by porcine studies (CFTR−/− 

genotype) that show an impact of defective mucociliary clearance in a matter of 

hours after birth with impaired bacterial elimination occurring in pigs as young as 8 to 

10 hours postpartum (30). An influx of neutrophils and increased inflammatory 

cytokines is seen in CF pediatric patients compared to normal controls and other 

chronic respiratory disease patients (31-33), consistent with early bacterial 

exposure.   

Bacterial colonization could contribute to these already exaggerated CF 

dependent inflammatory responses.  In chapter 3, we demonstrate that P. 

aeruginosa, the classic pathogen associated with CF, can produce a robust LPS 

dependent IL-8 response corroborating previous studies (34). In contrast, we 

demonstrated that P. melaninogenica LPS produces a low IL-8 and an undetectable 

IL-1β response in the same cell line.  These results suggest that the contribution of 

P. melaninogenica to the overall inflammatory response seen in CF may be minimal.  

As the patient ages, a diverse polymicrobial infection becomes dominated by 

P. aeruginosa and lung function decreases eventually leading to respiratory failure 

(8, 35, 36). During the transition between acute and chronic infection, P. aeruginosa 

isolates acquire mutations causing them to overproduce an alginate 
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exopolysaccharide, a process referred to as mucoid conversion (37, 38). There is 

direct evidence that P. aeruginosa are enmeshed in alginate and form biofilm 

aggregates within luminal mucus plugs (39).  Inside mucus plugs, low oxygen and in 

some cases anaerobic conditions have been measured (28).  The presence of 

anaerobes has been correlated with the presence of P. aeruginosa in several 

studies suggesting a potential benefit for each bacterial species in the development 

of the microbial niche (17, 19). In chapter 2, we also demonstrate a positive 

correlation of antibody response against P. aeruginosa and P. melaninogenica in 

children and adults.  

Outside of the mucus plugs, cellular debris and neutrophils contribute to the 

nutrient rich inflammatory environment. Elevated iron in the form of ferritin, 

lactoferrin, heme and hemoglobin has been observed in the lumen of CF patients 

compared to healthy individuals and disease controls (40, 41).  Work in chapter 4 

focuses on the ability of P. melaninogenica to use available host based iron sources 

for growth, and describes potential heme acquisition systems. This combination of 

anaerobiosis and usable nutrients provides the ‘perfect storm’ for colonization by a 

large range of species including fastidious anaerobic bacteria.  

 

What is the role of anaerobes in CF pathogenesis?  

Fastidious organisms, not commonly cultivated by standard laboratory 

procedures, are now being detected in the CF lung but their role in CF airway 

disease remains unclear and controversial.    
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The Streptococcus milleri group (SMG)(composed of S. constellatus, S. 

intermedius, and S. anginosus) and oral related Streptococcus species (S. salivarius 

and S. parasanguis) have been detected in several studies using culture 

independent techniques (9, 12, 20, 42).  The original motivation for investigating 

Streptococcus species was their ability to change P. aeruginosa pathogenicity by 

modulating virulence factor expression in a polymicrobial infection model (43). These 

studies lead Sibley and colleagues to investigate the connection between CF 

exacerbation and the presence of the SMG (9). By culturing samples from a small 

cohort of patients longitudinally, they found that abundance of the SMG correlated 

with exacerbation state. Later, Filkins et al., sampled 35 patients and noted the 

abundance of the SMG and oral related Streptococcus species was not associated 

with exacerbation. In fact, they found that the presence of Streptococcus species in 

respiratory specimens correlated with stable CF disease. The authors noted that 

Streptococcus colonization was the strongest predictor of stable disease and 

concluded that it was advantageous in keeping higher diversity of the patient 

microbiota (12). Each of these groups, one while studying a single snapshot of the 

lung microbiota and the other studying longitudinal samples of a few patients, came 

to differing conclusions leading to uncertainty about the impact of Streptococcus 

species in infection.  It is important to note here that in a complex polymicrobial 

community such as in CF it is extremely difficult if not impossible to assign cause 

and effect.   Each bacteria or community of bacteria can have a clear association 

with health or disease state but that does not equate to cause (4, 44, 45).   
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The diversity of microbes present in the CF microbiome appears to be 

beneficial to lung health if total bacterial eradication is not an option (5, 12).  

Bacterial ‘space holders’ taking the place of a traditional pathogen could represent a 

more favorable environment than a chronic P. aeruginosa infection.  Even though 

there is not a correlation of P. melaninogenica with health or disease stability 

(Chapter 2), we hypothesize that community composition rather than total bacterial 

burden may impact disease state (12).  With the identification of lesser-known 

species in high abundance in CF airways, mechanistic studies are sorely needed to 

elucidating the contribution of these organisms to disease pathogenesis.  

Anaerobic species have been detected in many studies of the CF microbiome 

(5, 8-25, 27) and have the potential to effect the pathogenesis of CF.  P. 

melaninogenica, the subject of this dissertation, was the most frequently associated 

strict anaerobic species in CF in both adults and pediatric patients (Chapter 2).  Oral 

species occupying the CF niche could lead to nutrient fluctuation and depravation in 

the environment causing a regulatory change in the primary pathogen (9, 43). Duan 

et al. shows that in the presence of an oral commensal, P. aeruginosa virulence can 

be greatly enhanced or reduced depending on the commensal present. In a mouse 

model of pneumonia, the addition of a Prevotella species with Streptococcus 

constellatus caused a 6 fold increase in mortality of the mouse (46). Additionally, the 

presence of anaerobes could preserve a diverse multispecies community in order to 

delay or prevent the dominance of P. aeruginosa in the CF lung.  

It remains unclear as to whether anaerobes are detrimental or beneficial in 

the context of CF airway infection and disease progression. Investigating the role of 
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P. melaninogenica in the CF lung in chapter 2, we found no significant correlation 

with the presence (CFU/ml) or IgG response to P. melaninogenica with clinical 

measurements of lung function. The clinical relevance of P. melaninogenica or other 

oral anaerobic bacteria must be assessed by clinical trials that treat aerobic bacteria 

compared to treatment regimes that combine treatment towards anaerobic and 

aerobic bacteria (18). 

 

Conclusions 

We have shown that oral anaerobes are present in samples collected from 

pediatric and adult CF patients. Exposure to oral anaerobes, specifically P. 

melaninogenica, is corroborated by our studies investigating P. melaninogenica 

reactive antibody response. We show that CF patients, both pediatric and adult, 

demonstrate a higher antibody response than non-diseased and healthy control 

groups. Initial studies investigating P. melaninogenica LPS illustrate that P. 

melaninogenica could minimally contribute to the overall increased cytokine 

response seen in CF patients.  Additionally, within the CF lung, we establish that P. 

melaninogenica has the ability to survive and growth with available host iron proteins 

demonstrated to be in high abundance in the CF lung. The presence of oral 

anaerobes in our studies is undeniable but their role in CF infection remains to be 

determined.   

In summary, I believe that early aspiration of oral commensals into the lungs 

of pediatric CF patients leads to initial exposure to oral bacteria. As the anaerobic 

niche develops, transient exposure of anaerobes leads to stable colonization. These 
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anaerobic and highly nutrient rich mucus plug likely house anaerobic bacteria until 

colonization of P. aeruginosa becomes predominant. Chronic P. aeruginosa infection 

then dominates the CF landscape leading to a decrease in microbial diversity, 

overwhelming inflammation, lung dysfunction and respiratory failure.  Treatments 

that simultaneously tip the balance from an inflamed and infected to hydrated and 

healthy airway surface are desperately needed to circumvent the progression of CF 

disease into life threatening chronic bacterial infection. 
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