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ABSTRACT 
 

Kelly A. Orgel: Advances in Treatments and Animal Models of Peanut Allergy 
(Under the direction of A. Wesley Burks) 

Food allergies are a growing health concern affecting approximately 6-8% of the US 

population.  In particular, peanut allergy has an estimated prevalence of greater than 1% of the 

population and is uncommonly outgrown, making it a life-long disease.  Ingestion of allergens 

can lead to a variety of allergic symptoms ranging from hives or gastrointestinal symptoms to 

constriction of the airways and anaphylactic shock.  Because there is currently no FDA-

approved treatment for food allergy, these patients are managed with education and strict 

allergen avoidance.  However, even with the most careful avoidance, accidental ingestion does 

occur and can lead to life-threatening anaphylaxis.  As a result, treatment options are needed.  

Treatments currently under investigation in clinical trials include peanut oral immunotherapy 

(OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT), though 

mechanisms of these therapies remain unclear.  While results from these trials are promising, 

limitations include daily dosing, adverse effects, and limited long-term efficacy after therapy is 

discontinued.  Thus, there remains an urgent need for improved therapy options.  The work in 

this dissertation provides the foundation for future drug discovery.  First, IgG-mediated basophil 

inhibition was elucidated as a mechanism of OIT and SLIT and was shown to be associated 

with long-lived protection.  Understanding this mechanism further may result in a targeted 

therapy option.  Separately, a therapy targeting inhibitory receptors on antigen-specific B cells 

was developed for the prevention of sensitization in a mouse model of peanut allergy.  

Unfortunately, understanding of food allergy etiology and advances in treatment options has 

been limited by the lack of an animal model that accurately recapitulates the human disease.  
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Here, we describe the use of the genetically diverse Collaborative Cross to identify 

CC027/GeniUnc as a more relevant mouse strain that exhibits a severe reaction following oral 

sensitization and challenge.  Together, this work provides a platform for better understanding 

the mechanisms of food allergy and its treatments, as well as the development of new 

therapies. 
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CHAPTER 1: INTRODUCTION 

 
1.1 Public Health Concern 

IgE-mediated food allergies occur in 6-8% of children under four years old and are 

estimated to affect 15 million Americans.1-3  The foods most commonly associated with food 

allergy in the US include milk, egg, peanut, tree nuts, wheat, soy, fish, and shellfish.4  Not only 

are food allergies common, but they are also increasing in prevalence.5-7  In a 2013 report, the 

US Centers for Disease Control and Prevention estimated an increase in food allergy 

prevalence from 3.4% to 5.1% over a 14 year period.8  A survey study estimated that peanut 

allergies in the US increased from 0.4% in 1997 to 0.8% in 2002 and then to 1.4% in 2008.9  

This increase in prevalence places a larger number of US children at risk for life-threatening 

anaphylaxis.   

Food-induced anaphylaxis accounts for about one third of cases of anaphylaxis seen in 

hospital emergency departments.10  It is estimated that approximately 30,000 food-induced 

anaphylactic events are seen in US emergency departments each year with about 200 of these 

reactions resulting in death.11,12  The majority of fatal reactions are associated with ingestion of 

peanuts or tree nuts.11,12  During an allergic reaction, symptoms can range from mild urticaria to 

life-threatening anaphylaxis, and most frequently include involvement of the skin, 

oropharyngeal, gastrointestinal, and respiratory systems.  Unlike milk and egg allergies that are 

outgrown by nearly 70-80% of children in their early adolescence, peanut allergies are only 

outgrown in about 20% of those affected with the disease.5  Thus, in most cases, peanut allergy 

is a lifelong disease that can negatively impact quality of life for these patients, as they have to 

carefully read food labels and often sacrifice participating in social activities centered around 
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food.13  In fact, the stress and anxiety provoked by food allergies, reach beyond the affected 

patient and truly impact the entire family.14  Despite the severe nature of the disease, large 

public health concern, and drastic lifestyle implications, the lack of FDA-approved treatments 

and understanding of the etiology of food allergy leave significant knowledge gaps. 

1.2 Pathogenesis 

The pathogenesis of food allergy can be divided into two phases which are summarized 

in Figure 1-1.  In the first phase, the sensitization phase, an allergen, defined by the American 

Academy of Asthma, Allergy and Immunology as a typically harmless substance that is capable 

of triggering an allergic reaction, enters the body and leads to the production of antigen-specific 

IgE.  In the second phase, the reaction phase, a later exposure to the allergen causes allergic 

symptoms including symptoms related to the skin, gastrointestinal and respiratory tracts.  In the 

sensitization phase, antigen is taken up and presented by antigen presenting cells to naïve 

CD4+ T cells.  Allergic individuals develop a CD4+ T helper (Th) 2 skewed immune response.  

During such a response, CD4+ T cells secrete Th2-type cytokines including IL-4, IL-5, and IL-

13.15  These cytokines trigger B cells to class switch and produce antigen-specific IgE.16  This 

antigen-specific IgE binds to the high affinity IgE receptor, FcεRI, on effector cells including 

mast cells and basophils.  At this point, the effector cells are primed for a future reaction.  It is 

important to note that unlike B cells and T cells, mast cells and basophils are not specific for a 

single antigen.  It is estimated that up to 500,000 IgE molecules can blanket the mast cell 

surface at one time, and these molecules have different specificities.17   

The reactions elicited in a peanut allergy are classified as type 1 hypersensitivity 

reactions.18  Upon subsequent exposure, antigen can bind to the Fab region of IgE molecules 

and result in cross-linking of the receptors.  This cross-linking ultimately leads to activation of 

Syk kinase and an influx of calcium ions with subsequent degranulation by exocytosis.19  

Extensive work has been done to elucidate the signaling pathways responsible for this 
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degranulation event, and this work has been reviewed elsewhere.19  During degranulation, mast 

cells release pre-formed granules containing mediators such as histamine, proteoglycans, and 

proteases including tryptase.20  The most readily available mediator, histamine has several 

physiological effects including vasodilation, increased vascular permeability, 

bronchoconstriction, and mucus production that are responsible for the symptoms observed 

during an allergic reaction.19  Because of the quick release of pre-formed histamine, the 

resulting symptoms of itching, swelling, throat tightness, and difficulty breathing have an acute 

onset, usually within minutes of ingestion of the antigen.  Histamine has a short half-life, 

resulting in its quick clearance and resolution of symptoms.  In addition to the release of pre-

formed mediators, activated mast cells also synthesize and release cytokines, leukotrienes, 

prostaglandins and platelet activating factor, all of which further act on smooth muscle and 

vasculature.17   

During mast cell development, progenitor mast cells migrate from the bone marrow to 

tissues, where they take up residence and complete their maturation.20  As a result, human 

mast cells have proven difficult to study.  Basophils are effector cells that, similar to mast cells, 

express FcεRI and release granules containing histamine.21 Despite their many similarities, 

basophils also have many characteristics that distinguish them from mast cells.  For example, 

basophils are short-lived, with a life span of days, while mast cells remain in tissues for 

months.21  Basophils also have larger and fewer granules than mast cells and have low tryptase 

content.21  Unlike mast cells, mature basophils circulate through the vasculature system, making 

them easier to obtain from subjects for research purposes.  Because of their similarities in IgE-

activation, basophil activation following ex vivo stimulation with antigen has been widely studied, 

as will be discussed in Chapter 2. 

Some allergic patients experience a late-phase reaction, also referred to as a biphasic 

reaction, in addition to the immediate reaction described above.  Biphasic reactions can be 

defined as recurrent symptoms without additional exposure to the allergen after symptoms of 
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the initial reaction have resolved.22  These late-phase reactions peak 4-8 hours following 

allergen ingestion.23  One study of emergency room records from two Canadian hospitals found 

that 14.7% of patients who were seen for an allergic reaction to food experienced a biphasic 

reaction.24  In separate studies, examination of affected tissues including skin, nasal mucosa, 

and lung revealed infiltration by eosinophils, neutrophils, CD4+ T cells, and basophils during 

late-phase reactions.23  It is not known which patients are likely to develop late-phase reactions 

and monitoring guidelines remain inconsistent.25    

1.3 Etiology and Risk Factors 

Much remains unknown about the initial phase of sensitization in food allergic patients, 

which is ultimately a failure of oral tolerance mechanisms.  Oral tolerance, described as a state 

of active inhibition of immune responses to ingested food proteins, occurs in the majority of 

people.26  While the mechanisms of oral tolerance are not completely understood, it is well 

accepted that T cell anergy, T cell deletion, or induction of T regulatory cells (Tregs) all mediate 

the induction of oral tolerance.26  A breach in any of these mechanisms can result in the 

development of food allergy, yet the risk factors that make an individual susceptible remain 

unclear.  Research on this topic has focused primarily on the potential routes of initial exposure, 

genetics, and the gut microbiome.  Research in each of these areas is discussed briefly below. 

1.3.a Routes of Sensitization 

For unknown reasons, patients with food allergies have a defect in either their ability to 

develop or maintain oral tolerance to a food antigen.  Interestingly, in most cases of food allergy, 

the first reaction is observed during the first consumption of the eliciting food.  Thus, the timing 

and route of the first exposure remain an intriguing question.  Some researchers have 

hypothesized that sensitization may happen in utero.  One study of 503 infants with likely egg or 

milk allergy found that peanut consumption during pregnancy was a predictor for the 

development of peanut allergy.27  Conversely, a 2003 study by Lack, et al. used data from the 
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Avon Longitudinal Study of Parents and Children, a large birth cohort study in which 14,000 

pregnant women were enrolled, to investigate this question.28  This study reported that of 23 

preschool-aged children with confirmed peanut allergy, there was no evidence of sensitization 

from maternal diet and cord blood had no detectable peanut-specific IgE (PN-sIgE).  A separate 

study showed that while IgE was detectable in cord blood samples, it appeared to be of 

maternal origin, as it matched the specificity of IgE in maternal blood, and was not found in 

blood samples from these infants at 6 months of age.29  These reports suggest that sensitization 

does not occur in utero, though there is clearly conflicting data.  Other studies have investigated 

whether peanut exposure occurs through breast milk, and the results are similarly inconclusive.  

Peanut proteins Ara h 1, Ara h 2, and Ara h 6 have been detected in breast milk as soon as one 

hour after consumption, making breast milk a potential source of allergens for sensitization.30-32  

Three large studies did not find any association between consumption of peanut in lactating 

moms and the development of peanut allergy in their infants.27,28,33  Despite the 

recommendation that pregnant and lactating mothers of children at risk for developing atopic 

diseases avoid antigen consumption, a meta-analysis found that this avoidance did not protect 

against allergic diseases, including food allergy.34 

There is a well-established link between atopic dermatitis, or eczema, and food allergy.35  

Reports have documented that about one third of patients with moderate to severe atopic 

dermatitis have a food allergy.36  Because eczema results in a defective skin barrier, it has been 

proposed that children with eczema are sensitized to food allergens epicutaneously.  

Environmental peanut protein is detectable in house dust37 as well as in schools,38 and was 

found to increase the risk of peanut allergy in a dose-dependent manner,37 further increasing 

the plausibility of this hypothesis.  However, the results of several studies suggest that a 

disrupted skin barrier, as occurs in eczema is essential for this phenomenon to occur.  Fillagrin, 

a filament aggregating protein, plays a role in maintaining skin integrity.39  Fillagrin loss-of-

function mutations are associated with the development of eczema, as well as the development 
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of food allergies.40,41  However, because food allergies and eczema are so closely linked, it is 

hard to distinguish the contribution of fillagrin mutations to the development of food allergy, 

independent of its role in eczema pathogenesis. Several small animal models, which will be 

discussed further in Section 1.8.b, have demonstrated that mice can be sensitized to food 

allergens epicutaneously.42,43 Together, this work suggests that environmental exposure to food 

allergens may ultimately lead to sensitization in a select, atopic population. 

Recently, work has investigated whether peanut protein in the environment is capable of 

sensitizing children through the airway.  Detecting peanut protein in air samples has proven 

difficult, but it was detectable by a sampler head placed directly above peanuts actively being 

shelled.37,44 In a recent study, peanut-responsive Th cells (indicated by increased CD154 

expression following ex vivo stimulation with peanut) from peanut-allergic subjects had 

increased expression of CCR4, a skin and airway chemokine receptor, compared to non-allergic 

subjects.45  However, they did not have different expression of the skin chemokine receptor, 

CCR10, or the skin homing antigen, CLA. These results suggest that peanut sensitization may, 

at least partly, occur through the airways.  Another study found that both BALB/c and C57BL/6 

mice developed peanut allergy after four weeks of airway exposure to peanut.46 Altogether, 

these findings suggest epicutaneous and airway exposures may result in sensitization in 

addition to presumed sensitization via oral exposure. 

1.3.b Genetics 

There is little dispute that a person’s genetics are a contributing factor to the 

development of peanut allergy; however, knowledge about the specific genes and their relative 

contributions to the development of disease remain unknown.  A 2009 study examined disease 

patterns of familial aggregation in 581 nuclear families.47  Results showed that food allergy in 

one child was a direct and independent predictor of food allergy in a sibling.  There were 

positive associations for antigen-specific IgE for the eight major food allergens in the following 
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pairs: mother-child, father-child, child-sibling.  Later, a twin study, which found that there was a 

higher concordance of peanut allergy among monozygotic twins, reported the heritability of 

peanut allergy to be 81.6%.48  Several studies have specifically evaluated the association of 

human leukocyte antigen (HLA) alleles with the development of peanut allergy, and these are 

thoroughly reviewed elsewhere.49  Briefly, there is conflicting data on the association between 

HLA loci and peanut allergy.  In one study by Howell, et al., the frequency of HLA-DRB1*08 and 

DQB1*04 were increased in peanut-allergic subjects compared to controls; however, no 

significant HLA class II associations were found when comparing peanut-allergic subjects to 

their non-allergic siblings.50  As a result, these alleles are likely associated with atopy rather 

than specific to peanut allergy.  Shreffler and colleagues were unable to replicate these findings 

and concluded that there is not an association between HLA alleles and the development of 

peanut allergy,51 while a recent 2017 study was able to replicate the  original findings.52  Based 

on a similar study, Dreskin, et al., concluded that HLA-DRB1*08 is a marker of families that 

have an increased propensity for developing peanut allergy.53  In 2015, the first genome wide 

association assay (GWAS) of a food allergy cohort was performed to identify associations 

between genetic variables and food allergy.54  This study found two single nucleotide 

polymorphisms (SNPs), one intergenic between HLA-DQB1 and HLA-DQA2 and one in the 

HLA-DRA gene product, to be associated with peanut allergy.  Further, the association between 

these SNPs and peanut allergy was at least partially due to DNA methylation.  Overall, these 

studies demonstrate that the relationship between HLA and peanut allergy is not 

straightforward.   

 Recent studies have identified candidate genetic risk factors outside of HLA.  A large 

GWAS study on 850 cases of peanut allergy and 926 controls identified C11orf30/EMSY as a 

risk locus for both peanut allergy and food allergy.55  Authors also identified numerous other loci 

whose gene products have functions ranging from histone modification to endothelial cell 

factors.  A different 2017 GWAS study on peanut allergy identified five loci associated with 
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peanut allergy: clade B serpin gene cluster, the cytokine gene cluster at 5q31.1, the fillagrin 

gene, C11orf30, and HLA.56  These loci are all involved in immune regulation and epithelial 

barrier function.  Interestingly, this study found that the effect of the fillagrin mutation (discussed 

previously in Section 1.3.a) was independent from the development of eczema.  In summary, 

the genetic component of food allergy is complex, but studies such as the ones mentioned 

above give rise to potential risk identifiers as well as insight into disease mechanisms. 

1.3.c Gut Microbiome 

The rise in food allergy prevalence observed over the last 50 years has led to immense 

speculation about potential causes, with special attention to changes in lifestyle and 

environment.  The hygiene hypothesis, which says that lack of appropriate microbial exposure 

early in life increases the risk of allergic disease,57 was the first to suggest an association 

between the microbiome and food allergy.  Consistent with this hypothesis, children with older 

siblings as well as children raised in rural areas have a lower incidence of allergic diseases.58-60  

These factors are each known to influence the microbiome of an individual.57  To further 

investigate relevance of the hygiene hypothesis, several clinical studies have investigated the 

possible link between gut microbiome and allergic diseases.  In one such study, researchers 

performed 16s rRNA sequencing on feces from 34 infants with food allergy and 45 controls.61  

The overall microbiota diversity was not found to be different between these groups; however, 

increased levels of Clostridium sensu stricto was associated with disease and correlated with 

IgE levels. Additionally, decreased levels of Bacteroides and Clostridium XVIII were associated 

with food allergy.  While the above findings are interesting, and suggest a role for microbiome in 

the development of food allergy, the data are limited because cross-sectional studies are not 

able to control for contributing factors such as dietary differences between groups. The only 

prospective study to investigate the role of microbiome in the development of food allergies was 

published by Azad, et al. in 2015.62  This study followed 166 infants from the Canadian Health 
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Infant Longitudinal Development (CHILD) study, and fecal samples were collected at three 

months and 12 months for 16s rRNA sequencing.  They found that low microbial richness at 

three months was associated with food sensitization (confirmed by skin prick test) at one year.  

Further, Enterbacteriaceae were overrepresented and Bacteroidaceae were underrepresented 

in samples from food-sensitized infants.  The Enterbacteriaceae/Bacteroidaceae ratio was 

elevated both at three months and one year, suggesting that this colonization occurs early in 

infancy and persists.  In addition to studies investigating microbiota associated with 

sensitization, one study has found that gut microbiome composition can predict whether 

subjects will outgrow a milk allergy.63  Together, these findings from human studies demonstrate 

a clear association between gut microbiome and both the development and resolution of food 

allergies. 

 Mechanistic microbiome studies have been conducted in mouse models of food allergy.  

Initial studies demonstrated that animals lacking gut colonization through either antibiotic 

treatment64 or germ-free housing,65 were more susceptible to peanut allergy.  These results 

suggest that microbes play a protective role in the development of food allergy.  Germ-free mice 

were then specifically colonized with different microbes to identify the one(s) exhibiting a 

protective effect.  Several mouse studies have now demonstrated that colonization with 

Clostridia species is sufficient to suppress peanut sensitization.  One study demonstrated that 

colonization with Clostridia results in increased IL-22 expression and decreased Ara h 2 and Ara 

h 6 absorption into the blood stream following oral gavage with peanut.65  Use of an IL-22 

neutralizing antibody reversed this effect suggesting Clostridia influences intestinal barrier 

function in an IL-22-dependent manner.  Other studies have found that colonization of germ-free 

mice with Clostridia leads to expansion of Foxp3+ Tregs, suggesting that induction of regulatory 

mechanisms may play a role in microbiome-induced protection.66  Collectively, these reports 

demonstrate that microbes, specifically Clostridia, prevent mice from sensitization to food 

allergens.  Further studies to elucidate the protective mechanisms of the microbiome and 
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identify other microbes involved may allow for future manipulation of the microbiome for the 

prevention and treatment of food allergy.       

1.4 Peanut Allergens 

Extensive work has been done to identify and characterize the peanut allergens 

responsible for eliciting the allergic response.  The International Union for Immunological 

Societies recognizes 16 peanut allergens.  These allergens are named Ara h 1-17, with the 

exception of Ara h 4, using the Genus and Species classification for the peanut (Arachis 

hypogaea) plant.  It currently remains unknown what is responsible for the allergenicity of these 

proteins and why proteins with similar structures from other foods do not elicit an allergic 

response.  A 2010 study showed that peanut-allergic individuals in different parts of the world 

mount an IgE response to peanut allergens to differing extents.67  In this study, they 

demonstrated that IgE specificity differed in patients from Spain, the United States, and Sweden 

and hypothesized that the results were due to differences in dietary habits and pollen 

exposures.  Each allergen contains several IgE-binding epitopes as well as T cell-binding 

epitopes.  Epitopes can be linear (dependent on the neighboring amino acids) or conformational 

(dependent on the tertiary structure of the protein).  Understanding these allergens and their 

epitopes has been the target of investigational diagnostics and therapeutics, discussed in 

Sections 1.5 and 1.7, respectively. Ara h 1, 2, 3, 6, and 9 are considered major allergens, 

accounting for 75% of peanut protein content,68 and will be discussed further, along with Ara h 

8, which has been implicated in Oral Allergy Syndrome.  

 Ara h 1 is a member of the vicilin seed storage family.69  This family of proteins are 

typically disc-shaped and comprised of trimers.70  The 63.5 kDa monomers combine to form a 

180 kDa trimer.70  As a glycoprotein, Ara h 1 has the potential to be post-translationally 

modified, and the types and extent of these modifications leads to variable contents of the trimer 

components.  Several studies have shown up to 80% of peanut-allergic subjects have IgE 
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reactivity to Ara h 1.71  Twenty-four linear IgE-binding epitopes, ranging from 6-25 amino acids 

in length, have been identified.71,72 Interestingly, the IgE-binding epitopes have been shown to 

cluster in the contact points of the trimer components.  The stability of Ara h 1 when subjected 

to enzymatic digestion remains unclear, as results have varied widely, perhaps due to differing 

digestion conditions.73   

 Ara h 2 and Ara h 6 are both 2S albumins that have gained a great deal of attention as 

major peanut allergens.  Ara h 2 has two isoforms with molecular masses of 16.7 kDa and 18 

kDa and contains 10 IgE-binding epitopes, whereas Ara h 6 is 15.0 kDa and contains 7 IgE-

binding epitopes.70  These glycoproteins contain four helices held together by four disulfide 

bonds.70  Ara h 6 and Ara h 2 share 55% homology in their amino acid sequences and have 

known cross-reactivity.74  Both Ara h 2 and Ara h 6 have been shown to be resistant to heat and 

enzymatic digestion.75  Disruption of the disulfide bonds in either allergen has been shown to 

decrease their allergenicity, suggesting that the conformation of Ara h 2 and 6 are essential for 

eliciting an allergic response.76  Most peanut-allergic individuals mount an immune response to 

Ara h 2 and 6.   In one study, 100% of children with a peanut allergy had IgE to Ara h 2 and 

80% had IgE to Ara h 6.77  This response was exploited in a mouse study where immunotherapy 

of Ara h 2 and Ara h 6 was sufficient to desensitize peanut-allergic mice.78   

 Ara h 3 belongs to the legumin family and is a hexameric protein in which each subunit 

is 60 kDa and contains a disulfide bond.70,79  Four IgE-binding epitopes have been shown to be 

important in peanut allergy.80 In one study, 42% of peanut-allergic subjects were reported to 

have Ara h 3-specific IgE.81  Cross-reactivity between Ara h 1, Ara h 2, and Ara h 3 has been 

noted.82  Further, researchers believe that the similarities of Ara h 3 to other legumins in tree 

nuts may account for some cross-reactivity observed between allergens.  

Ara h 8, a homologue of the birch pollen allergen, Bet v 1, is thought to be responsible 

for cross-reactivity between birch pollen and peanut.83  Patients with isolated Ara h 8 

sensitization typically experience oral cavity symptoms in the absence of a systemic reaction.  
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This local reaction is due to a phenomenon referred to as Oral Allergy Syndrome in which 

pollen-allergic individuals experience a local reaction confined to the mouth, lips, and throat 

upon ingestion of a cross-reacting food allergen.84  Thus, identification of isolated Ara h 8 

sensitization may be suggestive of a less severe allergy.  Ara h 9, while still of significant 

importance, is less well-studied than the previously mentioned allergens.  Ara h 9 has been of 

particular interest in peanut-allergic patients in the Mediterranean.85  It is a nonspecific lipid 

transfer protein, thought to require sensitization to the peach allergen, Pru p 3, prior to the 

development of allergic symptoms to peanut.86 

1.5 Diagnosis 

The diagnosis of food allergies is based on a thorough clinical history that will guide any 

further studies.  Questions regarding the possible triggers, symptoms of the reaction, timing of 

symptoms following ingestion of the eliciting allergen, and a family history of atopy can be useful 

in guiding testing.  Two types of routine testing are typically done.87  The first, skin prick testing 

(SPT), measures mast cell degranulation to a specific antigen.  In this testing, an epicutaneous 

prick is used to place the antigen under the skin and within minutes, local mast cells may 

release their mediators resulting in wheal and flare formation.  SPT has a negative predictive 

value of greater than 90%, making it a useful test for excluding food allergy.88  However, this 

testing only has a 50% positive predictive value that has been shown to vary based on age.89  

Therefore, use of SPT needs to be chosen carefully to avoid unnecessary avoidance of foods.  

The second testing type involves measurement of serum antigen-specific IgE levels.  

Measurement of serum IgE has been shown to be sensitive but not specific in the diagnosis of 

allergy.90  Together, SPTand serum IgE measurements only indicate sensitization.88  There are 

many cases where people are sensitized, meaning they make IgE to an allergen, but can 

tolerate ingesting the allergen without any clinical response.  Thus, these tests can be helpful 

only in conjunction with a clinical history. 
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 Due to the discrepancy between sensitization and allergy, an oral food challenge (OFC) 

remains the gold standard for diagnosis of food allergies.91  This test involves having the patient 

or research subject ingest gradually increasing doses of food containing the allergen while a 

supervising medical professional observes for signs of an allergic reaction.  An OFC is typically 

done unblinded and without a placebo control.  The OFC has many obstacles including the 

length of time required, cost, often anxiety for the patient and family, and potential risk of an 

allergic reaction, including anaphylaxis.  Because of safety concerns, OFCs should only be 

performed in clinical settings that have experienced personnel with proper medications to treat 

potential reactions.  

Research has led to several advancements in the diagnostics described above.  Lately, 

a great deal of attention has been given to component resolved diagnostics (CRD).  CRD 

measures serum IgE against individual peanut allergens.  The hope of using CRD over 

conventional serum PN-sIgE levels is that identification of IgE to certain allergens may give rise 

to reactivity information.  Ara h 2-specific IgE levels have been suggested to best correlate with 

reactivity.92  Other studies have demonstrated that sensitization to a combination of Ara h 1-3 is 

useful in predicting more severe reactions.81  CRD testing is particularly useful when results 

demonstrate sensitization to only Ara h 8.  As discussed previously, Ara h 8 is a homologue of 

the birch pollen allergen, Bet v 1.93  Many patients who only have Ara h 8-specific IgE are likely 

to experience the mild, local symptoms such as itching of the mouth, associated with oral allergy 

syndrome rather than a systemic allergic reaction.94  While CRD testing seems promising, it is 

currently not widely used due to cost and lack of understanding if the values indicate allergy 

versus sensitization.  Epitope analysis is currently being used as a research modality, but may 

be a future diagnostic tool.  One group performed microarray immunoassays using patient sera 

to identify two epitopes in Ara h 2 that seemed to predict clinical reactivity.95  Further research in 

Germany has developed a nanoallergen platform that displays separate epitopes from the 
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peanut allergen, Ara h 2.96  They used patient sera to determine immunogenicity of these 

epitopes and hope that this will become a future diagnostic tool. 

1.6 Prevention 

Landmark studies completed in the last five years have drastically altered the American 

Academy of Pediatrics recommendations regarding the timeframe for introduction of peanut.  

Previously, parents were told to avoid feeding their children peanut until 3 years of age.97  

However, in 2008, researchers in the United Kingdom (UK) noted that the prevalence of peanut 

allergy amongst Jewish children in the UK was 10 times higher than in Jewish children from 

Isreal.98  Further, their surveys indicated that peanut was introduced earlier and eaten in larger 

quantities in Israel than in the UK.  These results suggested that the increased early 

consumption of peanut may lead to prevention of peanut allergy.   

Du Toit, et al. tested this hypothesis in the Learning Early About Peanut Allergy (LEAP) 

trial.  In this study, 640 infants at risk for developing peanut allergy due to a history of severe 

eczema and/or egg allergy, but skin prick test <4 mm were randomized to either early peanut 

consumption or peanut avoidance starting between four and 11 months of age.99  The 60 month 

outcomes were broken down into subjects with a negative skin prick test and positive skin prick 

test at the start of the study.  For the intention-to-treat analysis, of the infants that had negative 

skin prick tests, 13.7% of the avoidance group and 1.9% of the consumption group (p<0.001) 

developed a peanut allergy.  Similarly, in the intention-to-treat analysis of infants with a positive 

skin prick test, 35.3% of the avoidance group and 10.6% of the consumption group developed a 

peanut allergy.  These results confirm that early and regularly ongoing weekly exposure to 

peanut in a high-risk population prevents the development of a peanut allergy. 

In a follow-up study, referred to as both the Persistence of Oral Tolerance to Peanut and 

the LEAP-ON study, researchers investigated whether the subjects who were randomized to 

early peanut consumption in the LEAP study described above would remain protected after 
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discontinuing peanut consumption for 12 months.100  After avoiding peanut for 12 months, the 

intention-to-treat analysis revealed that the prevalence of peanut allergy was 18.6% in the 

peanut-avoidance group and 4.8% in the peanut-consumption group when both the skin prick 

positive and negative cohorts were combined (p<0.001).  These results demonstrate that the 

protection conferred during the 60 months of peanut-consumption was long-lasting, even after 

consumption was discontinued.  Immunologic assessment showed that PN-sIgE and Ara h 2-

specific IgE were higher in the avoidance group and that peanut-specific IgG4 (PN-sIgG4) levels 

continued to be higher in the consumption group, despite a decline that started around 30 

months, while subjects were still consuming peanut.  As a result, an addendum was created to 

the 2010 Guidelines for the Diagnosis and Management of Food Allergy in the United States.  

This addendum now recommends introducing peanut into infants’ diets as early as 6 months of 

age. 

1.7 Treatment 

Despite the number of people affected and the severe nature of the disease, there are 

currently no FDA-approved treatments for food allergy.  Patients and their families are advised 

to avoid ingestion of the allergen, which requires extensive caution with reading food labels.  

However, even with the most careful avoidance, accidental ingestion is possible, and patients 

are prescribed an epinephrine auto-injector such as EpiPEN to treat potential reactions.  Mild 

reactions can be treated with diphenhydramine, whereas severe, anaphylactic reactions require 

treatment with epinephrine.  The diagnostic criteria for anaphylaxis is complex and patients are 

advised to call emergency responders following administration of epinephrine.  As a result, 

many families and care providers are unsure and hesitant about the use of epinephrine in 

potentially emergent settings.  Even when used correctly, epinephrine will only treat the current 

symptoms; there is still not treatment for the underlying disease.   
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Recent work in the field has focused on the use of peanut immunotherapies to prevent 

life-threatening reactions.  These immunotherapies include oral immunotherapy (OIT), 

sublingual immunotherapy (SLIT), and more recently, epicutaneous immunotherapy (EPIT).  

Characteristics of OIT, SLIT, and EPIT are summarized in Table 1-1.  While there are many 

differences between these therapies, the idea behind each of them is the same.  The subject is 

exposed to escalating doses of allergen, with the goal being that after treatment, a peanut-

allergic individual may tolerate an accidental ingestion of the allergen.  Two clinical endpoints 

are often discussed: desensitization and sustained unresponsiveness (SU).  A subject 

experiences desensitization when they are able to tolerate ingestion of a predetermined amount 

of allergen while still on therapy. During SU, however, the subject can still tolerate ingestion of 

the allergen after therapy has been discontinued for a period of time, suggesting that the 

immune changes induced by therapy are more long-lived.  While these terms are useful in 

discussing clinical trial outcomes, it is important to note that the OFC doses used to determine 

desensitization and SU as well as the time off therapy before designating someone as 

experiencing SU are not consistent between studies.  Numerous paramount, well-designed 

studies have been conducted on the use of OIT, SLIT, and EPIT to treat peanut allergy and 

these will be reviewed below.    

1.7.a Oral Immunotherapy 

Early reports by Patriarca and colleagues, dating back to 1998, showed that OIT could 

be used to successfully desensitize subjects to a wide variety of food allergens.101  Since then, 

OIT has been used in clinical trials to desensitize subjects with allergies to cow’s milk, hen’s 

egg, and peanut.  In one of the earliest landmark peanut OIT trials, Jones, et al. demonstrated 

that peanut OIT was both safe and effective at desensitizing allergic subjects.102  In this 2009 

study, peanut-allergic subjects aged 1 to 16 years old underwent an OIT regimen consisting of 

an initial day escalation, build-up and maintenance phases, and finally an OFC.   Twenty-seven 
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of the 29 subjects successfully consumed 3,900 mg peanut with no more than mild symptoms.  

Only one subject required the use of epinephrine during the OFC.  Interestingly, desensitization 

appeared to occur much earlier than expected.  By 6 months of therapy, skin prick test reactivity 

was smaller and basophils were less reactive to ex vivo peanut stimulation.  By 18 months of 

therapy PN-sIgE was decreased from baseline and PN-sIgG4 was increased.  Additionally, the 

frequency of CD4+CD25+FoxP3+ Tregs was transiently increased in subjects on peanut 

immunotherapy, leaving changes in their function unknown.   

In 2011, the first double-blind placebo-controlled OIT trial was reported by Varshney, et 

al.103  In this study, subjects aged 1 to 16 years old were randomized 2:1 to receive peanut flour 

or placebo for 12 months.  After an initial day escalation and build-up phase, subjects received a 

4,000 mg maintenance dose for one month before undergoing a double-blind, placebo-

controlled food challenge (DBPCFC) with a maximum cumulative dose of 5,000 mg of peanut 

protein.  Three peanut OIT subjects withdrew from the study due to adverse symptoms while 

dosing, but all of the remaining 16 subjects in the treatment arm ingested the 5,000 mg of 

protein.  Subjects in the placebo arm, however, ingested a median cumulative dose of 280 mg 

protein.  In comparison to the placebo group, the immune changes in the treatment group were 

similar to those described previously by Jones and colleagues.  This trial further showed that 

therapy resulted in decreased IL-5 and IL-13, and an increased ratio of FoxP3hi:FoxP3intermediate 

CD4+CD25+ T cells.   This study demonstrated that unlike placebo, peanut OIT safely results in 

the desensitization of most subjects. 

 Later, a study sought to compare the effect of peanut OIT to peanut avoidance, which is 

the current standard of care.104  Peanut-allergic subjects between the ages of 7 and 16 years 

old were randomized 1:1 to active OIT or avoidance for the first phase of the study.  Following 6 

months, the subjects initially randomized to avoidance were crossed-over to 6 months of active 

treatment in the second phase of the study.  The primary end-point of the study was 

desensitization, which was determined by successful ingestion of 1,400 mg peanut protein in a 
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DBPCFC.  Of the 39 subjects in the active treatment group who completed the study, 69% were 

successfully desensitized while none in the control intervention group were desensitized.  After 

the second phase of the study in which the avoidance group was crossed-over to active 

treatment, 54% of the subjects tolerated the 1,400 mg DBPCFC.  Most side effects reported 

during OIT were mild, and affected the gastrointestinal tract, with only one subject requiring the 

use of intramuscular epinephrine.  Importantly, this study also showed that OIT improved quality 

of life scores in subjects, suggesting that the positive effect of OIT reaches beyond immune 

changes. 

Together, the previously mentioned studies show that peanut OIT can be used to 

desensitize subjects, but the longevity of this affect remained in question.  In a follow-up study 

to the 2009 Jones paper described above, Vickery, et al. investigated the ability of OIT to induce 

SU, defined as the persistence of tolerance to an antigen after stopping therapy for a period of 

time.105  To test this, eligible subjects from the previous study underwent two additional food 

challenges of 5,000 mg.  The first, termed “desensitization food challenge”, was completed at 

the end of therapy, while the second, termed “SU food challenge” was completed one month 

after therapy was discontinued.  The authors found that of the 24 subjects who completed the 

study, 50% achieved SU and peanut was subsequently re-introduced into their diet.  These 

subjects had decreased skin prick test reactivity and lower levels of peanut-specific, Ara h 1-

specific, and Ara h 2-specific IgE both at baseline and at completion of the study.  PN-sIgG4 

levels and function, as determined by facilitated antigen binding (FAB) assay, were not different 

between groups.  

 In response to the exciting new findings of the LEAP study discussed in Section 1.6, 

immunotherapy studies have shifted focus towards trying to treat a younger study population.  In 

a trial published earlier in 2008, 40 children aged 9 to 36 months with confirmed peanut allergy 

were randomized to receive OIT ending in maintenance doses of either 300 mg or 3,000 mg 

peanut protein.106  An average of 2.5 years later, subjects received a desensitization DBPCFC 
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of 5,000 mg, during which 81% of subjects on OIT were found to be desensitized. SU was 

assessed 4 weeks after discontinuing therapy by a second DBPCFC of 5,000 mg peanut 

protein.  Results were compared to that of 154 standard of care controls retrospectively 

collected from a pediatric allergy clinic database.  Authors found that in the intention-to-treat 

analysis, 81% of the study population passed the desensitization challenge, and 78% of the 300 

mg arm and 85% of the 3,000 mg arm achieved SU.  Adverse events were common in both 

arms of the study, affecting 95% of the subjects, though slightly more frequent within the group 

receiving the higher maintenance dose.  However, side effects were mostly mild, with only one 

subject requiring treatment with epinephrine.  Compared to baseline, PN-sIgE levels decreased 

while PN-sIgG4 levels increased following treatment with OIT.   These results suggest that in 

younger peanut-allergic children, a shorter regimen of OIT with a lower maintenance dose is 

sufficient to induce desensitization and SU.   

 Other clinical studies have investigated the use of peanut OIT in combination with other 

treatments.  In one such clinical trial, Tang, et al. determined the efficacy of probiotics in 

combination with OIT to desensitize subjects with peanut allergy.107   In this 2014 double-blind, 

placebo-controlled trial, 62 children between the ages of 1 and 10 were enrolled in an 18 month 

study in which they were randomized to either OIT combined with probiotics or placebo. On the 

last day of treatment, a DBPCFC of 3,000 mg was conducted to assess desensitization.  The 

subjects who were desensitized discontinued therapy for 2 to 5 weeks, and then underwent a 

second DBPCFC of 3,000 mg to determine SU status.  Results showed that 82.1% of the 

treatment group and only 3.6% of the placebo group achieved SU.  Similar to OIT studies 

reviewed above, treatment with probiotics combined with OIT led to decreased skin prick test 

reactivity and PN-sIgE levels but increased PN-sIgG4 levels compared to placebo-treated 

controls.  Importantly, this study lacked an OIT-treated group that received peanut in the 

absence of probiotic.  Thus, further clarification is needed to determine the relative contributions 

of OIT and probiotic in the outcome of this study.  
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Separately, a study published in 2016 investigated the use of omalizumab, an anti-IgE 

monoclonal antibody, in conjunction with OIT to treat peanut allergy.108  In the Peanut Reactivity 

Reduced by Oral Tolerance in an Anti-IgE Clinical Trial (PRROTECT), 37 subjects between the 

ages of 7 and 25 with known peanut allergy were randomized to either omalizumab or placebo 

in combination with peanut OIT. Subjects received study drug (omalizumab or placebo) for 12 

weeks before undergoing a one-day rapid desensitization with peanut OIT.  They then 

continued weekly up-dosing until reaching 2,000 mg peanut protein.  The omalizumab-treated 

group tolerated a median peanut dose of 250 mg while the placebo-treated group tolerated a 

median of 22.5 mg on the initial desensitization day, suggesting that treatment with omalizumab 

allows for rapid desensitization.  After discontinuing study drug for 6 weeks, 79% of the subjects 

in the omalizumab arm and only 12% of the placebo arm were able to tolerate ingestion of 2,000 

mg peanut protein, demonstrating that this desensitization is long-lasting in many subjects. 

1.7.b Sublingual Immunotherapy 

Unlike OIT, which involves the ingestion of the allergen, SLIT requires the allergic 

subject to place a liquid extract of the allergen under their tongue and hold it in place for a few 

minutes, allowing for antigen uptake by tolerogenic Langerhans cells in the oral mucosa.  SLIT 

is FDA-approved to treat ragweed and grass pollen allergy but is still investigational for food 

allergy.  In the past 10 years, several reports have investigated the ability of SLIT to desensitize 

peanut-allergic subjects.  In 2011, Kim, et al. conducted the first double-blind, placebo-

controlled trial on peanut SLIT.109  In this study, 18 peanut-allergic subjects between the ages of 

1 and 11 years old completed 12 months of peanut SLIT before undergoing a DBPCFC.   On 

the day of the DBPCFC, the 11 subjects randomized to peanut treatment consumed a median 

cumulative dose of 1,710 mg of peanut protein whereas the 7 subjects on placebo consumed a 

median cumulative dose of 85 mg (p=0.011). Mechanistic studies on these subjects found that, 

compared to the placebo group, the treatment group had decreased skin prick test reactivity, ex 
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vivo basophil activation, PN-sIgE levels, and IL-5 levels but increased PN-sIgG4 levels.  

However, they did not find any changes in levels of IL-13, IFNγ, Tregs, or IL-10.  Furthermore, 

this study demonstrated that the use of peanut SLIT to desensitize peanut-allergic subjects is 

safe.  The study had no dropouts and symptoms reported for 11.5% of peanut doses and 8.6% 

of placebo doses.  The symptoms observed on peanut SLIT were mild, mostly consisting of 

oropharyngeal itching, and none required treatment with epinephrine.   

 At the same time as the study discussed above, the Consortium of Food Allergy 

Research (CoFAR) conducted a randomized, double-blind, placebo-controlled trial in a larger, 

older study population to investigate the safety and efficacy of SLIT for the treatment of peanut 

allergy.110  In this study, 40 peanut-allergic subjects between the ages of 12 and 37 were treated 

with 44 weeks of peanut SLIT or placebo before undergoing a DBPCFC of up to 5 g peanut 

powder (2.5 g peanut protein).  Responders were defined by successful consumption of 5 g 

peanut powder or a 10-fold increase in the consumed dose compared to their baseline OFC.   

Seventy percent of subjects on active treatment were considered responders with the median 

consumption dose increasing from 3.5 mg to 496 mg.  Eight of the 14 responders still consumed 

less than 500 mg at the 44 week OFC.  Fifteen percent of the placebo group were classified as 

responders.  After the 44 week challenge, the placebo group crossed over to receive 44 weeks 

of high dose peanut SLIT and then underwent a second OFC.  Of the 16 subjects who were 

evaluated at this OFC, seven (44%) were responders, however, four responders still consumed 

less than 500 mg at the OFC.    Similar trends in PN-sIgE, PN-sIgG4, basophil activation, and 

SPT reactivity to the Kim 2011 paper were observed.  Also similar to the 2011 study, most 

dosing symptoms involved oral/pharyngeal itching; however, one subject required treatment 

with epinephrine and dosing was discontinued.  Overall, these initial two studies demonstrated 

that SLIT is safe and moderately effective in desensitizing subjects with peanut allergy.  

 Based on these early studies, desensitization with peanut SLIT seemed promising, but 

as with OIT, the question of the longevity of these effects and the induction of SU remained 
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unanswered.  To address this question, Burks and colleagues in the CoFAR network continued 

following the subjects from the 2013 cross-over study described above.111  Subjects remained 

on peanut SLIT for a total of up to three years.  By the two-year OFC with 10 g peanut powder, 

4 out of 37 (10.8%) of the subjects were desensitized, with no difference in median consumed 

dose between the high dose SLIT cross-over group and the low dose group.  All four of these 

subjects experienced SU as was determined by a 10 g challenge 8 weeks after discontinuing 

therapy.  Again, this study demonstrated that peanut SLIT was safe with about 18% of the 

doses eliciting mild dose-related symptoms.  The study was limited by a large number of 

subjects who chose to drop out, mainly due to difficulties with daily dosing, but showed that 

SLIT has a modest effect at inducing SU in peanut-allergic subjects.     

 Recent work has sought to directly compare OIT to SLIT in terms of both safety and 

efficacy in the treatment of peanut allergy.  In a double-blinded study, Narisety, et al. 

randomized a total of 21 subjects to either active SLIT/placebo OIT or placebo SLIT/active 

OIT.112  SLIT doses reached 3.7 mg while OIT doses reached 2,000 mg, and then subjects 

underwent two DBPCFCs after 6 months and 18 months of therapy.  Both arms of the study 

experienced a greater than 10-fold increase in tolerated OFC dose, though the median tolerated 

dose in the active OIT group and active SLIT groups were 141-fold higher and 22-fold higher, 

respectively. More adverse events were reported in active OIT compared to active SLIT.  A 

similar study was conducted to compare the safety and efficacy of OIT and SLIT in the 

treatment of cow’s milk allergy.113  All subjects underwent an initial SLIT escalation before being 

randomized to continuation of SLIT, low dose OIT or high dose OIT.  Consistent with the 

findings of Narisety, et al., the OIT groups had a higher rate of desensitization and SU, but also 

a higher rate of systemic reactions during therapy.   
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1.7.c Epicutaneous Immunotherapy 

EPIT is an emerging investigational treatment modality for peanut allergy.   EPIT 

involves application of the antigen via a patch that is applied to the skin.  Preclinical studies 

have shown that the antigen is taken up by dendritic cells in the dermis and does not enter the 

circulation, suggesting that EPIT may be a safer option for the delivery of antigen.114  In clinical 

studies, the Viaskin patch, created by DBV Technologies, is 26 mm in diameter containing dried 

peanut extract.115  In a Phase 1 clinical study, Jones, et al. demonstrated that the Viaskin patch 

is a safe delivery system for peanut in allergic individuals.116  In this double-blind placebo-

controlled study, 100 subjects were randomized to patches containing a range of peanut doses 

or placebo for two weeks.  Eighty-four percent of the peanut-treated subjects experienced at 

least one local adverse event, though 60% of the placebo group did as well, suggesting that the 

symptoms may be due to the adhesive itself.  Importantly, symptoms were mostly mild to 

moderate, including erythema and pruritus.   

In a later trial, Jones, et al. investigated the efficacy of the Viaskin patch in desensitizing 

peanut-allergic subjects.115  Seventy-four participants were randomized to placebo, Viaskin 

Peanut 100 µg, or Viaskin Peanut 250 µg.  After 52 weeks of treatment, 12% of placebo, 46% of 

Viaskin Peanut 100 µg, and 48% Viaskin Peanut 250 µg subjects were desensitized.  The 

largest median change in dose tolerated was 130 mg in the Viaskin Peanut 250 µg.  Consistent 

with the previously published safety study, mild reactions at the site of patch application were 

common in the active treatment group.  These results indicate that peanut EPIT is slightly 

effective, but has a good safety profile.  The largest peanut EPIT trial to date was completed 

earlier this year by Sampson, et al.117  In this trial, 221 subjects were randomized to treatment 

with three different doses of peanut or placebo for 12 months.  Responders consumed a 10-fold 

increase in dose compared to baseline or at least 1,000 mg peanut protein.  The response rate 

for the highest dose (250 µg) patch was 25%, with the mean cumulative reactive dose at month 

12 being 1117.8 mg peanut protein.  The patch seemed to have a bigger effect in the youngest 
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age group (6-11 years), in which the response rate was 34.2%.  Adverse events in this study 

were common but mild, as was seen in the other EPIT studies.  While peanut EPIT doesn’t 

seem to be as effective as OIT or SLIT it is possible that a subset of allergic patients may 

benefit from this technology or that future adjustments in dose and/or duration of treatment may 

improve outcomes. 

1.7.d Other Investigational Therapies 

Allergen-specific immunotherapies have stolen the spotlight when it comes to 

investigational therapies for food allergies, especially peanut allergy.  However, many other 

modes of treatment are under investigation both in clinical and pre-clinical studies.  Food Allergy 

Herbal Formula (FAHF-2) is one such investigational treatment.  FAHF-2 is a botanical 

investigational new drug consisting of 9 herbs based on a classical Chinese herbal formula.118  

Pre-clinical studies showed promising results in murine models of food allergy.119  Peanut-

sensitized mice were treated with FAHF-2 for 7 weeks and then challenged at several time 

intervals.  FAHF-2 completely blocked anaphylaxis in the treated mice.  Further, Th2 cytokine 

production and PN-sIgE levels were decreased in treated mice.  Recently, a Phase 2 clinical 

study on the safety and efficacy of FAHF-2 in the treatment of food allergy was completed.118  

This study randomized 68 subjects with known allergies to peanut, tree nut, sesame, fish, 

and/or shellfish to treatment with FAHF-2 or placebo for 6 months of therapy before completing 

a DBPCFC.  The treatment was safe with no serious adverse events, but the therapy was less 

successful than placebo at desensitizing subjects.  In fact, 45.5% of the placebo-treated 

subjects and only 17.4% of the active treatment group had improvements in consumed allergen 

dose.  Further, there was no significant difference between groups in terms of persistence of 

effect 3 months after discontinuing treatment.  Overall, these findings imply that FAHF-2, at 

least at the dose and duration of therapy tested here, is not effective at treating food allergies in 

humans.  Another recent animal study found that FAHF-2 combined with OIT is more effective, 
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resulting in longer protection than OIT alone in the treatment of food allergies.120  These 

findings, though yet to be shown in human studies, provide another possible use of FAHF-2 in 

food allergy treatment.  

 Because food allergy is an IgE-mediated disease, researchers have tried to treat peanut 

allergic subjects with the anti-IgE monoclonal antibody, omalizumab.  Sampson, et al. 

investigated the use of omalizumab independent of OIT to reduce the risk of peanut allergic 

reactions compared to before treatment.121  Subjects were treated with either omalizumab or 

placebo for 20 to 22 weeks and then underwent an OFC.  The study was stopped early because 

of several severe anaphylactic reactions during the entry OFC.  Of the 14 subjects who 

completed the study prior to its discontinuation, the subjects on active treatment tended to have 

greater improvements in tolerated peanut dose.  Omalizumab has since been studied in 

combination with peanut OIT as discussed previously in Section 1.7.a. 

 The use of recombinant peanut proteins that maintain their ability to bind T cells but lack 

the ability to bind IgE would provide a safer form of immunotherapy.  To accomplish this, 

researchers mutated the IgE-binding epitopes while leaving the T cell epitopes intact.122,123   As 

discussed in Section 1.4, the IgE epitopes of the major peanut allergens have been identified, 

but more specifically, the amino acids important for the binding have been identified.  Moreover, 

multiple T cell epitopes that varied from patient to patient were identified.122  Bannon, et al. 

performed site-directed mutagenesis on peanut allergens Ara h 1, Ara h 2, and Ara h 3.123  They 

demonstrated that these modified proteins maintained their ability to induce T cell proliferation 

but were poor competitors for binding to PN-sIgE.  To demonstrate the effect that the modified 

proteins would have on effector cell degranulation, a passively sensitized RBL-2H3 cell line was 

stimulated with different concentrations of peanut extract, wild-type Ara h 2, or mutated Ara h 2.  

Results confirmed that a higher dose of the modified protein than the wild-type protein was 

required to elicit 50% β-hexaminidase release by the cells.122  In a mouse model of peanut 

allergy, mice were sensitized with wild-type Ara h 2 and desensitized with either PBS, wild-type 
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or mutated Ara h 2 and then challenged.123  The mice treated with the mutated Ara h 2 had less 

severe symptom scores and lower plasma histamine levels following challenge than either of 

the other two groups.  Surprisingly, human IgE-binding assays identified several peanut-allergic 

subjects in whom binding to IgE was not altered with mutated Ara h 2.  The mutated 

recombinant allergens were tested in a Phase 1 trial of E. coli-encapsulated recombinant 

modified peanut proteins, Ara h 1, Ara h 2, and Ara h 3.124  Five of the 10 peanut-allergic 

subjects enrolled in the trial experienced adverse reactions that prevented them from continuing 

dosing.  These results suggest that either not all IgE-binding epitopes were identified or the 

binding in these subjects depends on more than just the amino acids mutated.   

Similar in rationale to the use of mutated recombinant proteins, researchers have tried to 

develop peptide immunotherapy for the treatment of peanut allergy.  This strategy uses short 

synthetic peptides that contain the sequences of T cell epitopes, but are not long enough to 

cross-link IgE, thus should not elicit allergic symptoms.  Intranasal or subcutaneous 

administration of a vaccine containing 30 overlapping Ara h 2 peptides, 20 amino acids in 

length, reduced symptoms of anaphylaxis as well as serum levels of Ara h 2-specific IgE in a 

C3H/HeJ murine model of peanut allergy.125 One study sought to develop short T cell epitope-

based peptides that target Ara h 2-specifc CD4+ T cells but can’t cross-link Ara h 2-specific 

IgE.126  By using T cells from 16 HLA-diverse patients, five dominant CD4+ T cell epitopes were 

identified in Ara h 2.  Three short peptide variants, each less than 18 amino acids long and 

containing these epitopes, were created. Peptides were modified to have serines replace 

cysteines in order to increase stability.  Experiments using sera from these subjects confirmed 

that none of the peptides bound IgE.  ELISPOT cytokine assays demonstrated that the peptides 

maintained their ability to stimulate T cells to produce IL-4, IL-5, and IFNγ.  This methodology 

has yet to be developed further for treatment in human studies. 

 A great deal of pre-clinical work has been done investigating the use of DNA vaccines to 

treat type 1 hypersensitivities, including food allergies.  It was shown over 25 years ago that 
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injection of mouse skeletal muscle with DNA or RNA expression vectors resulted in protein 

expression that was detectable in the muscle for up to 2 months after injection.127  Additionally, it 

has been long known that such DNA vaccines produce a humoral response and that this 

response can be boosted with subsequent doses of the vaccine.128  Of particular interest for the 

treatment of food allergy, a Th2-skewed process, DNA vaccines result in a Th1-skewed immune 

response.129  The use of genetic vaccination and the rationale for its use to treat peanut allergy 

in pre-clinical models have been extensively reviewed elsewhere.130  Briefly, the potential of an 

Ara h 2 DNA vaccine has been investigated in several mouse strains to treat peanut 

allergy.131,132  A study where C3H/HeSn, AKR/J, and BALB/c mice received intramuscular 

injections with the vaccine demonstrated that the immune response induced varied by strain.  

These results suggest that there will be similar variability in humans.  A mouse study found that 

treatment with a single multivalent peanut (Ara h 1, 2, and 3) Lysosomal Associated Membrane 

Protein DNA Plasmid Vaccine (ARA-LAMP-vax; Astellas Pharma Inc.) protected peanut-

sensitized mice from allergic reactions following challenge.133 Currently, a Phase 1 clinical trial is 

enrolling subjects to test the safety and tolerability of ARA-LAMP-vax for the treatment of peanut 

allergy in humans. 

 While several of the treatment modalities listed here have shown promise in animal 

and/or human studies, they have not been investigated in human studies at all or to the same 

extent as peanut OIT, SLIT, and EPIT discussed previously.   

1.8 Animal Models 

As with all diseases, animal models of peanut allergy have been paramount in 

understanding the pathophysiology of the disease as well as the development of investigational 

therapies, such as those previously discussed in Section 1.7.d.  Extensive work on small animal 

models has been done, though models in larger animals including pigs, dogs, and sheep have 

also added to the field.  A major challenge in the development of food allergy models is that the 
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default immune response to antigens in the gastrointestinal tract is tolerance.  Thus, to induce 

an allergy, researchers first need to break oral tolerance. This has been done in numerous ways 

including the use of adjuvants and manipulation of the epithelial barrier.  Because oral tolerance 

is the natural response, some researchers believe that sensitization occurs through the skin, 

and mouse models that are sensitized through this route have been developed.  Further 

manipulation including the creation of humanized mice have been used to model food allergy.  

These models as well as large animal models will be discussed here. 

1.8.a Th2-skewing Adjuvants 

  Th2-skewing adjuvants have been used to break oral tolerance in animal models of food 

allergy.  Cholera toxin (CT), one such Th2-skewing adjuvant, has been used extensively in food 

allergy models.  In models of both cashew allergy and peanut allergy, oral co-administration of 

CT and food antigen to either BALB/cJ or C3H/HeJ mice on days 1, 8, 15 and 22 induces 

allergen-specific IgE and IgG1 production.134,135  C3H/HeJ mice contain a Toll-like receptor 

(TLR) 4 mutation, leaving the receptor defective, believed to be at least partly responsible for 

the Th2-skewing of these animals.136  Upon subsequent challenge via intraperitoneal (IP) 

injection with the antigen, mice experience anaphylaxis.  Reactions can be measured 

objectively by decrease in body temperature following challenge.  Reacting mice also exhibit 

symptoms of allergic reactions including itching, puffiness, decreased activity, cyanosis, labored 

breathing or even death.  Importantly, one group has shown that sensitizing C3H/HeJ mice 

through a similar protocol results in mice that show signs of a reaction following oral challenge 

with antigen.137 Li, et al. showed that, as with the IP challenge model, mice sensitized with 

peanut extract and CT have increased PN-sIgE, exhibit symptoms including puffiness around 

the eyes and mouth and diarrhea as early as 10-15 minutes after challenge, have increased 

plasma histamine levels, and significant T cell proliferative responses to peanut stimulation.  

Unfortunately, these oral reactions have not been able to be recapitulated by other groups, 
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including our own.  As a result, most groups have to challenge these mice by IP injection, 

leaving the need for an orally reacting mouse model of peanut allergy.   

The mechanisms by which CT breaks oral tolerance have yet to be confirmed, though 

such findings may help to shed light on the break-down of oral tolerance in humans.  Studies 

have shown that in vitro treatment with CT leads to maturation of macrophages and dendritic 

cells and upregulation of their costimulatory molecules as well as chemokine receptors.138  

Specifically, CT was shown to increase OX40L expression in CD11c+ dendritic cells located in 

the mesenteric lymph nodes, and neutralizing antibodies against OX40L abrogated the CT-

induced Th2 response.139  Several experiments have shown that treatment with CT results in 

increased migration of dendritic cells to lymph nodes and to the T cell area of the Peyer’s 

patch.139-141  Further, these antigen presenting cells were then able to prime naïve 

CD4+CD45RA+ T cells and drive their polarization towards a Th2 phenotype. Separately, 

studies have found that treatment of mice with CT results in increased levels of IL-1 in the 

gastrointestinal tract and that activating dendritic cells with IL-1 results in Th2 skewing.142,143  

Collectively, these findings suggest that alterations in dendritic cells may play an important role 

in the break-down of oral tolerance and resulting sensitization to foods. 

 Another model of food allergy uses Staphylococcal Enterotoxin B (SEB), a common food 

contaminant, as an adjuvant to break oral tolerance in mice.144  BALB/c mice or C57BL/6 mice 

were orally gavaged with either Ovalbumin (OVA) and SEB, or peanut extract and SEB once a 

week for eight weeks.  At nine weeks, they were challenged orally with antigen.  Mice sensitized 

with OVA and SEB developed an IgE antibody response to the antigen.  Oral challenge with 

OVA elicited allergic symptoms in mice sensitized with adjuvant as well as resulted in increased 

plasma histamine levels and hypotension.  Similar results were observed for mice sensitized 

and challenged with peanut extract.  In a study that sensitized mice by IP administration of SEB 

and OVA, Yang, et al. reported that T cell immunoglobulin-domain and mucin domain (TIM)-4 

and costimulatory molecules were upregulated in intestinal mucosal dendritic cells.145  Blocking 
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TIM-4 with a polyclonal antibody dampened the Th2 response in these mice, suggesting a 

potential mechanism for SEB-mediated sensitization.  Similar to the unreproducible findings 

above in C3H/HeJ mice with CT, the oral reactions following this SEB sensitization scheme 

have proven unreproducible in unpublished work by our group and others.  Overall, these data 

demonstrate that SEB exposure in mice can lead to allergic sensitization in some published 

reports.   

The last adjuvant commonly used to break oral tolerance in mice is aluminum hydroxide 

(alum).  Using this model, mice were successfully sensitized to tree nuts.135  Tree nut extracts 

and alum were administered by IP injections over four weeks.  Mice sensitized according to this 

protocol mount an IgE response to tree nuts.  Following IP challenge, mice experienced 

hypothermia with body temperatures decreasing greater than five degrees compared to 

baseline.  The use of alum to break oral tolerance has been expanded to sensitize mice to 

peanut in a similar manner.146   

1.8.b Epicutaneous Sensitization 

Food allergy is closely associated with eczema in humans.  Often the development of 

eczema precedes the development of a food allergy, and with the impaired skin barrier present 

in eczema, it seems possible for patients to be sensitized through the skin.  Strid, et al. 

developed a model of epicutaneous sensitization in which BALB/c mice were exposed, following 

the removal of the stratum corneum with tape-stripping, epicutaneously to peanut protein and 

then underwent an oral challenge.43  They found that following sensitization, mice mounted a 

Th2 response characterized by the production of IgE and IL-4.  Oral challenge resulted in further 

sensitization.  In a recent study, Tordesillas, et al. exposed both C3H/HeJ mice and BALB/c 

mice to peanut on undamaged skin.  Repeated application of antigen led to sensitization and 

anaphylaxis upon oral challenge.147  Sensitized mice produced Ara h 1- and Ara h 2-specific 

IgE.  By purifying dendritic cells from the draining lymph nodes of epicutaneously sensitized 
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mice and culturing them with CD4+ T cells, researchers showed that these cells were stimulated 

to produce Th2 cytokines, IL-4 and IL-5.  These results suggest that the dendritic cells are 

sufficient to induce Th2 priming.  Interestingly, this study also found that peanut acted as an 

adjuvant in the epicutaneous sensitization to OVA.  These studies along with several 

others148,149 that demonstrate epicutaneous sensitization give rise to a possible initial exposure 

site in humans.   

1.8.c Airway Sensitization 

Recently, the first animal model of peanut sensitization following airway exposure was 

developed.46  In this study, BALB/c mice and C57BL/6 mice were exposed to peanut flour in the 

absence of an adjuvant for four weeks by inhalation.  After the four week sensitization period, 

both strains produced PN-sIgE.  Mice IP challenged with peanut extract elicited symptoms of an 

allergic reaction including hypothermia.  In this model, airway exposure initiates peanut allergy 

by involving the IL-1 pathway and IL-4- and IL21-secreting T follicular helper (Tfh) cells.  Further 

research is needed to determine if the contribution of Tfh cells is unique to airway sensitization. 

1.8.d Humanized Mouse Models 

While work is ongoing to improve mouse models of peanut allergy, the concern remains 

that differences between rodent and human physiology limit understanding of disease.  Recently 

two humanized mouse models have been created to ameliorate this problem.  In the first, 

published in 2016 by Bryce, et al., a model was developed on the non-obese diabetic (NOD)-

severe combined immunodeficient (SCID) IL2rgnull SCF/GM-CSF/IL3 (NSG-SGM3) strain 

engrafted with human thymus, liver, and hematopoietic stem cells (referred to as BLT) that 

supports human mast cell engraftment.150  Mast cells were phenotypically similar to human mast 

cells, expressing FcεRI, CD117, and tryptase.  Human, tryptase-positive mast cells could be 

found in the lung and spleen of these mice.  Passive cutaneous and passive systemic 

anaphylaxis models were developed in these mice using administration of a chimeric IgE 
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containing human constant regions.  Additionally, Burton, et al., engrafted NOD-SCID mice 

carrying a human stem cell factor transgene with hematopoietic stem cells.151  These mice were 

engrafted with functional human T and B lymphocytes and human mast cells.  Humanized mice 

were sensitized and challenged intragastrically with peanut butter in sodium bicarbonate.  Mice 

produced a PN-sIgE response and exhibited signs of anaphylaxis including hypothermia.  These 

mice will provide a valuable tool for studying the immune system during sensitization, 

anaphylaxis and treatment, as well as enable the development and testing of targeted therapies. 

 Interestingly, all mouse models of food allergy are sex-specific.  Only female mice are 

able to be reproducibly sensitized.  Though it has been observed in humans that menses can 

affect reaction thresholds to foods, little is known about any other differences between males 

and females with the disease.  There is a need to better understand these differences as well as 

a need to develop a mouse model of peanut allergy in which both males and females react, as 

future therapies should be tested in both sexes.152 

1.8.e Large Animal Models  

As discussed previously, one of the limitations in murine models of food allergy, is that 

the natural response to antigen in the gastrointestinal tract is oral tolerance.  Dogs on the other 

hand are one of the few animals that naturally exhibit allergies to a range of antigens including 

food and environmental antigens.  Thus, dogs provide a potentially valuable model in which to 

study allergy and anaphylaxis.  In 2002, Teuber, et al. published a canine model of food allergy 

in which dogs were sensitized starting soon after birth to peanut, English walnut, Brazil nut, soy, 

wheat, and barley in the presence of alum.153  By 6 months of age, SPTs were positive to these 

antigens and at two years of age, the four dogs sensitized to peanut reacted upon oral 

challenge.  Symptoms included vomiting and lethargy, but all resolved spontaneously without 

intervention.  This model has since been used to test the use of heat-killed Listeria 

monocytogenes as an adjuvant for immunotherapy.154  These results demonstrate that dogs can 
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be a sensitized to peanut, and thus can be used to improve understanding of peanut allergy as 

well as test new therapeutics. 

 One group previously used sheep to developed an allergic asthma model, and in 2012 

they sought to examine the allergic response following sensitization to peanut allergens.155  

Twenty sheep were sensitized separately to peanut extract and either OVA (experimental phase 

1) or house dust mite (experimental phase 2) by four subcutaneous injections in the presence of 

alum.  For the two phases of this study, 40-50% of sheep were sensitized to peanut, as was 

defined as greater than 50% increase in PN-sIgE levels compared to baseline.  Nearly all 

sensitized sheep produced an IgE response to major peanut allergens, Ara h 1 and Ara h 2.  

Four out of the five sensitized sheep in Phase 1 also had a positive skin prick test to peanut.   

 A 2002 report demonstrated the usefulness of pigs as a model system in which to study 

food allergy and anaphylaxis.156  Previously, it was shown that pigs could be used as a model 

for asthma.157  Because asthma and food allergy are both Th2-skewed processes, Helm, et al. 

investigated the use of neonatal pigs as a model system for peanut allergy.156  Newborn piglets 

were sensitized by IP injection with peanut extract and CT five times within 4 weeks after birth.  

Pigs underwent an intragastric challenge and skin prick testing alternating at weekly intervals.  

Reaction symptoms were observed in 11 out of 14 of the sensitized animals that underwent an 

oral challenge with peanut.  Three reacting piglets had signs of respiratory distress and 

anaphylactic shock, requiring treatment with epinephrine.  Skin prick tests were positive in 

peanut-sensitized animals, suggesting IgE and mast cell involvement.  These large animal 

models provide useful tools for the future study of peanut allergy, although high costs and 

limited immunologic reagents available for these animals limits enthusiasm.               

Despite all of these advances, a major goal in the development of food allergy models 

has been to create a model in which animals are sensitized in the absence of adjuvant and 

react upon oral exposure to the allergen.  While this has been shown in models of some routes 



34 

of sensitization including epicutaneous, a model that reproducibly is both sensitized and reacts 

orally has yet to be identified.    

1.9 Topics Addressed 

The research presented in this dissertation addresses several knowledge gaps 

necessary to improve upon, and develop therapy options for food allergies, focusing specifically 

on peanut allergies.  Chapter 2 will further explore the mechanism of peanut OIT and SLIT by 

determining the role that IgG plays in regulating the activation of basophils following therapy.  

Chapter 3 will introduce a new investigational treatment targeting antigen-specific B cells to 

prevent the development of peanut allergy.  The lack of an orally reacting animal model of 

peanut allergy that closely mimics human disease has been extremely limiting to the 

development of treatments.  Chapter 4 will present the development of such an animal model of 

peanut allergy, which will be invaluable to the development of therapies, as well as 

understanding of the disease. 
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1.10 Tables 

Table 1-1. Immunotherapies under investigation for the treatment of peanut allergy. 

 

 Oral 
Immunotherapy 

Sublingual 
Immunotherapy 

Epicutaneous 
Immunotherapy 

Trial Phase (ongoing) Phase 3 Phase 2 Phase 3 

Form of Peanut Powder Liquid extract Dried extract 

Dose (protein 
quantity per day) 

300-4,000 mg 2-7 mg 100-500 μg 

Safety 

Mostly oral or 
gastrointestinal; 
highest risk for 

systemic adverse 
effects 

Local (oral or 
pharyngeal) effects 

Local (skin) 
effects; lowest 
risk for serious 
adverse effects 

Efficacy 
   

Desensitization Large effect Moderate effect Variable effect 

Sustained 
Unresponsiveness 

Many subjects Subsets of subjects Not known 
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1.11 Figures
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Figure 1-1. Schematic of peanut allergy pathogenesis. During the sensitization phase (Phase 
1), there are several factors that are proposed to influence the development of food allergy.  These 
factors include a person’s gut microbiome, potential routes of exposure such as oral, airway, in 
utero, or epicutaneous, and a person’s genetics.  During sensitization, allergen is taken up by 
antigen presenting cells such as dendritic cells and presented to naïve peanut-specific T cells via 
MHC Class II molecules.  This triggers the maturation of Th2 cells which secrete IL-4, IL-5, and 
IL-13.  These cytokines, in addition to the binding of co-stimulatory molecules, results in IgE class-
switching by peanut-specific B cells.  IgE will then bind to FcεRI receptor on mast cells and 
basophils.  The reaction phase (Phase 2) occurs following subsequent ingestion of peanut.  
Peanut allergens can bind and cross-link IgE on the surface of mast cells and basophils, triggering 
the release of mediators, which ultimately result in allergic symptoms. 
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CHAPTER 2: BLOCKING ANTIBODIES INDUCED BY PEANUT ORAL AND 

SUBLINGUAL IMMUNOTHERAPY SUPPRESS BASOPHIL ACTIVATION AND ARE 

ASSOCIATED WITH SUSTAINED UNRESPONSIVENESS 

 
2.1 Introduction 

Peanut allergy is a major public health concern affecting 1% of the US and European 

populations, rising in prevalence, and outgrown in only 20% of those affected with the 

disease.5,9,158  Although there are no FDA- or EMA- approved treatments for peanut allergies, 

extensive investigation has focused on the use of several immunotherapy approaches.  

Emerging peanut allergy therapies include OIT,102,105,106 SLIT,109,111 and EPIT,115,117 among 

others.159  While routes, doses, and duration vary for each form of therapy, these therapies all 

expose the allergic subject to increasing quantities of peanut protein over a period of months to 

years.  OIT and SLIT have been effective at inducing both short-lived desensitization (defined 

as an increased allergen threshold while taking therapy daily) and SU (defined as an absence of 

allergic symptoms during challenge after stopping therapy).160,161  However, no reliable 

biomarkers exist to identify which subjects will achieve SU and which will be transiently 

desensitized.   

 Despite the promising clinical findings, the mechanisms by which OIT and SLIT alter the 

immune system and result in desensitization or SU remain unclear.  Skin prick test data and 

mechanistic studies have previously shown that peanut immunotherapies promote mast cell and 

basophil hyporesponsiveness102,103,162 as well as an increase in Tregs.102,103,163  Extensive work 

by our group and others has demonstrated that PN-sIgE levels often transiently increase on OIT 

and SLIT within a few months of starting therapy but are significantly decreased after many 
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months or years of therapy.102  It is important to note that PN-sIgE levels are uncoupled from 

desensitization as observed when PN-sIgE is increased from baseline but clinical reactivity and 

mast cell and basophil degranulation has diminished.104  OIT and SLIT both cause a significant 

increase in levels of PN-sIgG4 though these quantities alone have not been shown to be 

predictive of SU versus desensitization.105   

  Because OIT and SLIT result in basophil hyporesponsiveness in the presence of 

persistent levels of IgE, it has been speculated that IgG4 plays a role in blocking the IgE-

mediated activation of basophils and mast cells in allergic subjects on OIT and SLIT.  Previous 

work has shown that serum from subjects on peanut OIT inhibits facilitated antigen binding, 

suggesting that a plasma factor has antigen-specific blocking capabilities.105  Two recent studies 

have investigated the functional role of IgG in the context of effector cell inhibition.  In the first, 

LAD2 mast cells passively sensitized with plasma from peanut-allergic subjects exhibited 

greater activation following peanut stimulation than those passively sensitized with plasma from 

peanut-sensitized but tolerant subjects, which had higher levels of PN-sIgG4.164  Furthermore, 

plasma from subjects on peanut OIT was able to block mast cell activation and removal of IgG4 

partially abrogated these findings.  Similarly, a second study demonstrated that sera from mice 

on OVA OIT or humans on peanut OIT suppressed activation of sensitized bone marrow 

mononuclear cells or basophils, respectively.165  Inhibition of these effector cells was further 

shown to be dependent on the inhibitory receptor FcγRIIb. 

 In our present study, we definitively demonstrate that OIT-induced changes in IgG lead 

to suppression of basophil activation to peanut and that there is a cellular-bound and unbound 

mechanism involved.  We also compared the inhibitory effects of plasma from subjects on 

peanut OIT and SLIT and on different durations of therapy.  Finally, we sought to determine 

whether basophil inhibition caused by plasma transfer can be used to distinguish subjects that 

experience desensitization from those that experience SU on peanut OIT or SLIT. 
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2.2 Materials and Methods 

2.2.a Clinical trials 

 OIT and SLIT studies were IRB approved and study drug administered under INDs.166  

The details provided below are relevant to the present studies on blocking antibodies. 

OIT 1 (Clinical trial #s: NCT00815035, NCT00597675): Peanut-allergic subjects were 

randomized to peanut OIT or placebo.  Doses started at 0.1 mg and reached maintenance 

doses of 4,000 mg protein. Subjects on placebo crossed-over to active treatment after 12 

months.  After 48 months of active treatment, subjects underwent an oral food challenge (OFC) 

to assess desensitization.  Subjects were taken off therapy for up to three months before 

undergoing an OFC to assess SU.  For the purpose of these experiments, a 5,000 mg peanut 

cut-off was used to define SU.   

OIT 2 (NCT01814241): Peanut-allergic subjects were given open-label peanut OIT up to 

1450 mg.  After six months of active treatment, subjects underwent an OFC to assess 

desensitization.  Subjects were taken off therapy for up to one month before undergoing an 

OFC to assess SU.  For the purpose of these experiments, a 3,750 mg peanut cut-off was used 

to define SU.   

SLIT (NCT00597727): Peanut-allergic subjects received peanut SLIT.  Maintenance 

doses reached 2 mg protein.  After 60 months of active treatment, subjects underwent an OFC 

to assess desensitization.  Subjects were taken off therapy for 1 month before undergoing an 

OFC to assess SU.  For the purpose of these experiments, a 1,750 mg peanut cut-off was used 

to define SU. 

2.2.b Plasma samples 

For each of these studies, venous blood was drawn into sodium-heparin tubes.  Whole 

blood was centrifuged and plasma collected.  Within 24 hours of the blood draw, plasma 

samples were stored at -20°C until analysis.  Peanut-specific IgE, IgG4, and IgG values were 
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collected using a Phadia ImmunoCAP100 (Thermo Scientific, Portage, MI) according to 

manufacturer’s instructions.   

2.2.c IgG antibody depletion 

Pierce Protein A/G Agarose Beads (Pierce Biotechnology, Rockford, IL) were washed 3 

times with PBS prior to use.  An equal volume of beads (suspended in PBS) and plasma, or 

PBS and plasma were mixed and incubated on a rotator for 90 minutes for IgG depletion or 

sham depletion, respectively.   Plasma was separated from the beads by centrifuging at 1,000 x 

g for 90 seconds and the supernatant collected. Peanut-specific IgE, IgG4, and IgG values from 

the sham and IgG-depleted samples were quantified using a Phadia ImmunoCAP100 according 

to manufacturer’s instructions.  

2.2.d Basophil activation and inhibition assays 

For basophil assays on blood from peanut-allergic donors, 200 µL whole blood was 

centrifuged at 300 x g for 10 minutes.  Plasma from the allergic donor was removed and 

replaced with an equal volume of plasma from a subject on OIT, plasma from a subject on 

placebo (Figure 2-1), or pooled plasma in the case of IgG-depleted plasma (Figure 2-2).  Cells 

were incubated at 37°C and 5% CO2 for 1 hour.  In the case of the plasma removal experiment 

to test the bound versus unbound plasma fraction’s blocking ability (Figure 2-3), the plasma was 

removed by centrifuging the sample at 300 x g for 10 minutes and replacing the plasma with an 

equal volume of PBS. For all experiments, following incubation with plasma, cells were 

stimulated with 200 µL of peanut extract (final concentration of 0.01 µg/mL) diluted in RPMI 

containing 2 ng/ml human IL-3 at 37°C and 5% CO2 for 30 minutes.  For each assay, a negative 

control consisting of blood from the allergic donor stimulated with RPMI and IL-3 was used to 

confirm that cells were not being activated non-specifically.  Degranulation was stopped 

promptly at 30 minutes by adding cold 20 mM EDTA to the sample.  Cells were then stained 

with antibodies specific for CD63-FITC (BD Biosciences, San Jose, CA), CD203c-PE (Beckman 
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Coulter, Indianapolis, IN), CD123-PE-Cy5 (BD Biosciences, San Jose, CA). Following staining, 

red blood cells were lysed and remaining cells fixed with FACS Lysis Buffer (BD Biosciences, 

San Jose, CA) for 15 minutes.  Samples were centrifuged at 800 x g for 15 minutes, and 

isolated cell pellets were resuspended in staining buffer consisting of PBS, 2mM EDTA, 0.5% 

BSA.  Samples were analyzed on a CyAn ADP (Beckman Coulter, Indianapolis, IN) flow 

cytometer and gated using FlowJo V10 (FlowJo, LLC, Ashland, OR) software.   

For passive sensitization of basophils from a non-allergic donor (Figures 2-4 and 2-5), 

whole blood from a donor with no known allergies was centrifuged at 300 x g for 10 minutes.  

The plasma from the non-allergic donor was removed and replaced with pooled plasma from 

peanut allergic subjects.  These pools were created by adding equal parts of plasma from 2-3 

subjects and had an average PN-sIgE of 327.98 kU/L and an average PN-sIgG4 of 0.50 µg/mL.  

Cells were incubated with the pooled plasma from allergic subjects for 2 hours at 37°C and 5% 

CO2 and mixed every 30 minutes.  Following passive sensitization, blocking plasma from 

subjects on OIT or SLIT were applied and cells stimulated, stained, and analyzed as described 

above.   

2.2.e Statistical analyses 

GraphPad/Prism version 7.02 was used to analyze all data.  Mann-Whitney U, Wilcoxon, 

and paired and unpaired t-tests were performed and a p-value <0.05 was considered significant.  

Percent inhibition of basophil activation was calculated by subtracting the %CD63+ basophils in 

the presence of OIT or SLIT plasma from the %CD63+ basophils at baseline, dividing by the 

%CD63+ basophils at baseline, and then multiplying by 100%.   
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2.3 Results 

2.3.a Plasma from subjects on peanut OIT, but not placebo, inhibits peanut-stimulated 
basophil activation 

Plasma from peanut-allergic subjects was removed and replaced with plasma from 

subjects on either 0 months or 12 months of peanut OIT as shown in the schematic in Figure 2-

1A.  Following stimulation with peanut extract, activated basophils (CD123+CD203c+ 

Lymphocytes) were identified by upregulation of cell-surface CD63 (Figure 2-1B).  Incubation 

with 12 month active OIT plasma resulted in decreased basophil activation compared to 

incubation with autologous 0 month plasma (p<0.0001); however, this blocking of basophil 

activation was not observed in basophils incubated with plasma from subjects on 12 months of 

placebo (Figure 2-1C).  This blocking capability was accompanied by small decreases in PN-

sIgE (Figure 2-1D) and larger increases in PN-sIgG4 (Figure 2-1E).  Similarly, we investigated 

the blocking capabilities of plasma from subjects who started on 12 months of placebo before 

crossing over to active OIT. Basophils incubated with plasma from 12 months of active therapy 

inhibited basophil activation (p<0.01), whereas plasma from the same subjects while on placebo 

had no effect on basophil activation compared to baseline plasma (Figure 2-1F).  Taken 

together, these results demonstrate that OIT-induced changes in plasma can block basophil 

activation.   

Due to limited plasma volumes for use in further experiments, we tested the ability of 

pooled 12 month OIT plasma to block basophil activation.  Consistent with the findings for 

basophils incubated with individual OIT plasma, basophils incubated with pooled OIT plasma 

had decreased activation (p<0.001, Figure 2-S1).  These findings show that pooled plasma can 

be used to further study the inhibitory effect on basophils.  As a result, pooled plasma was used 

for the experiments in Figures 2-2 and 2-3. 
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2.3.b OIT-induced IgG acts through both cellular-bound and unbound mechanisms to 
inhibit basophil activation 

Since peanut-specific IgG subclasses such as IgG1 and IgG4 have been shown to 

increase throughout peanut OIT, we hypothesized that the observed basophil inhibition was at 

least partly due to changes in IgG.  To test this hypothesis, we added IgG-depleted plasma to 

basophils from peanut-allergic individuals.  PN-sIgG (Figure 2-2A) and PN-sIgG4 (p<0.01, 

Figure 2-2B) levels were decreased to levels <1 μg/mL following depletion with Protein A/G 

beads compared to sham depletion.  PN-sIgE levels also decreased with depletion, although 

IgE was readily detectable and decreases were modest (Figure 2-2C).  The ratio of PN-sIgE to 

PN-sIgG4 increased with depletion compared to sham depletion, though changes were not 

significant (Figure 2-2D).  These results suggest that the depletion had a greater effect on IgG 

and IgG4 than IgE, as expected.  Basophils incubated with either undiluted or sham depleted 12 

month OIT plasma had decreased activation compared to baseline (0 mo) plasma (p<0.01) (Fig 

2-2E).  This blocking was abrogated by IgG depletion (p<0.01, Figure 2-2E), demonstrating that 

OIT-induced IgG is critical for the blocking of basophil activation, consistent with the findings of 

others.164,165   

Two hypotheses have been proposed for the mechanism(s) by which IgG acts to inhibit 

basophils and mast cells.  The first is by binding to and intercepting antigen, preventing antigen 

from binding to IgE on effector cells.  The second involves IgG binding to FcγRIIb on effector 

cells and resulting in the propagation of an inhibitory signal.165  We tested whether the IgG in 

OIT plasma acts through either a bound, or unbound mechanism, or a combination of both.  To 

do this, pooled 12 month OIT plasma was incubated with cells from an allergic subject in two 

tubes in parallel as shown in Figure 2-3A.  OIT plasma is left on one sample, testing both bound 

and unbound mechanisms, and removed from the other sample, leaving only the bound fraction 

of OIT plasma.  Samples in which OIT plasma was removed had greater basophil activation 

than the samples still containing OIT plasma (p<0.0001); however basophil activation following 
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plasma removal was still inhibited compared to the stimulated cells at baseline (p<0.001, Figure 

2-3B).  The 12 month plasma samples used had no difference in PN-sIgE quantities, but 

significantly more PN-sIgG4 compared to baseline (Figures 2-3C and D).  These findings 

indicate that OIT-induced changes in plasma, potentially IgG4, are acting through both a bound 

and unbound mechanism to inhibit basophil activation. 

2.3.c OIT and SLIT subjects’ plasma have similar basophil inhibition capacity 

Due to limited availability of basophils from peanut-allergic donors, we developed an 

assay to passively sensitize basophils from non-allergic donors (Figure 2-4A).  In this assay, the 

plasma from a non-allergic subject was replaced by pooled plasma from peanut-allergic 

subjects.  Prior to this passive sensitization protocol, the donor’s basophils are not activated 

upon stimulation with peanut extract; however, they can be activated with peanut stimulation 

following incubation with plasma from allergic subjects, and activation can be blocked with OIT 

plasma (Figure 2-4B).  Using this tool, we sought to determine if the plasma from subjects on 

OIT and SLIT had similar effects on basophil activation.  Surprisingly, plasma from a 6 month 

OIT regimen had a greater inhibition effect on basophils than plasma from a 48 month OIT 

regimen (p<0.01, Figure 2-4C), although both had >80% median inhibition.  Both had similar 

levels of PN-sIgG4, but the 48 month OIT plasma samples had significantly less PN-sIgE 

(Figures 2-4D and E). Similar inhibition of basophil activation was observed for plasmas from 6 

months of OIT and SLIT (Figure 2-4F). These samples contained similar levels of PN-sIgE, but 

the OIT samples had higher levels of PN-sIgG4 (Figures 2-4G and H).  Plasma from the time of 

desensitization challenge (6 months for OIT and 60 months for SLIT) while subjects were still on 

therapy demonstrated no difference in blocking ability when incubated undiluted with basophils 

(Figure 2-4I).  Diluting the plasma 1:4 in PBS resulted in decreased basophil inhibition for SLIT 

plasma compared to OIT plasma (p<0.05, Figure 2-4I). Despite these functional differences, 

PN-sIgG4 levels were higher and PN-sIgE samples were lower in SLIT samples compared to 
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OIT samples (Figures 2-4J and K), indicating that functional blocking capacity is not strictly 

related to PN-sIgG4 and PN-sIgE quantities. 

2.3.d Extent of basophil inhibition by OIT, but not SLIT, plasma is associated with clinical 
outcomes following therapy  

 Ex vivo basophil activation has previously been shown to decrease on OIT but does not 

discriminate subjects who achieve SU from those that are desensitized.167   We sought to 

determine whether the immunotherapy-induced plasma inhibition of donor basophils can be 

useful in distinguishing or predicting these clinical outcomes following either OIT or SLIT.  When 

used undiluted, plasma from OIT subjects at the time of desensitization challenge who were 

later classified as SU did not induce a different percent inhibition than plasma from subjects who 

would later be identified as transiently desensitized (Figure 2-5A).  Similarly, inhibition of 

basophil activation was not different between plasma from SU and desensitized subjects at the 

time of tolerance challenge after discontinuing OIT (Figure 2-5B).  Nevertheless, when OIT 

plasma from the time of desensitization challenge was diluted 1:10 or 1:50, plasma from SU 

subjects had a greater percent inhibition than that from desensitized subjects, suggesting that 

this assay may be useful in predicting clinical outcomes after stopping therapy (p<0.05, Figure 

2-5C).  Plasma PN-sIgE levels were not different between groups at either challenge time point, 

though levels tended to be lower in the group that experienced SU (Figure 2-5D).  Conversely, 

PN-sIgG4 levels were higher in the subjects who experienced SU than those who were 

desensitized (Figure 2-5E).  Interestingly, these quantity differences were not significant at the 

time of desensitization challenge, when the functional differences were noted (Figure 2-5C).  

Despite these interesting findings from OIT samples, undiluted or diluted plasma samples from 

the time of desensitization challenge while on SLIT had no difference in percent inhibition of 

basophil activation for subjects who achieve SU compared to those that achieve desensitization 

(Figure 2-5F).  PN-sIgE and PN-sIgG4 levels were not different between SLIT outcomes 

(Figures 2-5G and H).  Together, these results suggest that inhibition of basophil activation may 
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be a biomarker for SU following OIT, and that PN-sIgG4 is likely not the only isotype involved in 

the basophil inhibition process.     

2.4 Discussion 

OIT and SLIT are two promising investigational therapies for peanut allergy with a 

substantial number of subjects demonstrating desensitization, and in some cases SU, however 

key knowledge gaps remain.  There is currently no way to predict which subjects will have 

success with OIT or SLIT or how long protection persists after subjects discontinue therapy.  

Further, immunotherapy-induced immune change(s) that can distinguish subjects who achieve 

SU, from those that are transiently desensitized have yet to be identified.  Finally, the 

mechanisms by which OIT and SLIT induce desensitization and SU have not been fully 

elucidated.  Here, we definitively demonstrated that plasma from subjects on OIT and SLIT can 

inhibit basophil activation, a potentially important mechanism of desensitization and SU.   

 Several reports have described inhibition of ex vivo basophil activation following OIT for 

peanut, milk, and egg, however it is not clear how this effector cell desensitization occurs.  We 

used plasma from subjects on OIT or placebo to demonstrate that OIT induces changes in 

plasma, that are at least partly IgG-dependent can inhibit basophil activation in response to 

peanut stimulation. Santos, et al. identified post-OIT PN-sIgG4 to be a factor in plasma 

responsible for blocking basophil activation.164  However, in their study, depletion of IgG4 only 

partially abrogated the blocking effect, suggesting that additional plasma factors play a role.  

Our group has recently demonstrated that OIT causes increases in antigen-specific IgA, IgA1, 

and IgA2, in addition to increased IgG4 and that higher levels of these antibodies are associated 

with SU,168 indicating a potential role for several isotypes.  Further investigation is required to 

determine the potential functional role of IgA, IgG and their subclasses, which are known to 

increase during OIT and SLIT, in blocking basophil activation.   
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 It has been proposed that IgG prevents basophil activation by either intercepting antigen 

before it can cross-link surface-bound IgE or by binding to inhibitory receptors on mast cells 

triggering an inhibitory rather than activating signal.169,170  Other forms of immunotherapy 

including subcutaneous immunotherapy for bee venom171 and grass pollen172 induce an 

increase in IgG4 that intercepts antigen, preventing it from binding to cells. A previous study 

showed that peanut OIT-induced IgG acts through the IgG receptor, FcγRII on basophils to 

inhibit their activation.165  Here, we demonstrated that IgG is acting through both a cellular-

bound and unbound mechanism to prevent basophil activation following stimulation with peanut 

antigen.  However, the OIT subjects’ plasma used for this assay appeared to utilize each of 

these mechanisms to differing degrees.  No obvious differences in PN-sIgE or IgG4 levels 

distinguish these samples.  Regardless, our data indicate that the mechanisms responsible for 

basophil hyporesponsiveness in vivo following OIT may be dependent on both antigen 

interception and neutralization in the blood stream and by cell-bound IgG, likely by inhibitory 

signaling through FcγRIIb.    

 In addition to these mechanistic findings, this report is the first to compare the basophil 

inhibition ability of plasma from subjects on OIT and SLIT.  When comparing plasma from 

subjects on either 6 months OIT or 6 months SLIT, we found that the ability to block basophil 

activation looked similar, suggesting that blocking antibodies are induced early on in OIT and 

SLIT.  Similarly, incubation with plasma from peanut OIT and SLIT at the time of desensitization 

challenge (6 months for OIT, 60 months for SLIT), resulted in comparable levels of basophil 

inhibition.  Diluting these plasma samples 1:4 prior to incubation with basophils was able to 

substantially reduce the inhibition effect for SLIT, but not OIT.  Interestingly, plasma from these 

time points of OIT and SLIT contained equivalent levels of PN-sIgG4.  These results could be 

explained by the hypothesis that both OIT and SLIT make enough IgG4 in excess to suppress 

basophil activation, but that there is differences in function.  These differences could be related 

to epitope-specificity, avidity of the antibodies, and post-translational modifications, such as 
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glycosylation.  Future experiments testing the ability of isolated peanut-specific IgA or IgG1 to 

inhibit basophil activation would prove useful in demonstrating their role or lack thereof following 

immunotherapy.168    

 This report is also the first to relate the degree to which plasma from OIT or SLIT inhibits 

basophil activation to clinical outcomes following completion of therapy.  Basophil inhibition by 

undiluted plasma from subjects on 48 months of OIT was not predictive of which subjects would 

develop SU after time off therapy.  In fact, even basophil inhibition by undiluted plasma at the 

time of tolerance challenge wasn’t different between subjects who experienced SU from those 

who were transiently desensitized.  However, the blocking effect of diluted plasma from subjects 

at the time of desensitization challenge was indicative of which subjects would later be classified 

as SU and which would be classified as desensitized after discontinuing therapy.  Interestingly, 

PN-sIgG4 quantities were not different at this challenge time point between subjects who 

experienced SU from those who were desensitized, signifying that it is not just the quantity of 

PN-sIgG4, but perhaps functional changes that are important for the development of SU.  

Importantly, these findings were true for plasma samples from the time of desensitization 

challenge, suggesting that the percent inhibition of basophils by diluted plasma while still on OIT 

may eventually be useful as a predictive marker for subjects that will develop SU.  On the other 

hand, basophil inhibition by plasma from subjects on 60 months of peanut SLIT was not 

associated with clinical outcome even when samples were diluted.  Taken together, these 

results suggest that the mechanisms for the induction of SU may differ between OIT and SLIT.   

The possible applications for the assays and findings presented here have valuable 

potential for food allergy research and more broadly, allergen immunotherapy studies.  The 

assay using passively sensitized cells is a useful tool to analyze the functional changes in 

plasma while controlling for therapy-induced changes in the cells themselves.  While these 

studies do not dispute alterations in the basophils and mast cells, they offer a means to isolate 

changes in the plasma alone.  Future experiments are needed to determine intrinsic cellular 
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changes in subjects actively undergoing immunotherapy in addition to the plasma changes 

observed in these studies.  For example, we have previously demonstrated impaired calcium 

flux due to actin rearrangement following desensitization in model systems.173  The findings also 

assist in the understanding of the changes that distinguish subjects that develop SU.  As a 

result, if the findings are replicated in larger experiments we may be able use these basophil 

blocking assays to determine if a subject needs to be on therapy for a longer period of time. 

More broadly, the improved understanding of immunotherapy mechanisms will allow for 

targeted therapies in the future.
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2.5 Figures 

 

Figure 2-1. Basophil activation following pre- and post-immunotherapy plasma transfer. 
Assay schematic in which peanut allergic plasma is replaced with either 0 month or 12 month OIT 
plasma then stimulated with peanut extract (A).  Representative %CD63+ basophil results are 
shown (B).  Basophil activation for cells incubated with plasma from subjects on 0 or 12 months 
OIT, 0 or 12 months of placebo (C) or 12 months of placebo followed by 12 months of OIT (F).  
PN-sIgE (D) and PN-sIgG4 (E) shown for subjects on 0 months or 12 months of OIT or placebo.  
Red lines indicate medians; *p<0.05, **p<0.01, ****p<0.0001. 
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Figure 2-2. Inhibition capacity of IgG-depleted plasma. Quantities of PN-sIgG (A), PN-sIgG4 
(B), PN-sIgE (C), and ratio of PN-sIgE/PN-sIgG4 (D) following sham depletion or IgG depletion of 
12 month OIT plasma.  Percent CD63+ basophils following incubation with undiluted, sham-
depleted, or IgG-depleted 0 month or 12 month OIT plasma and stimulation with peanut extract 
(E).  Red lines indicate medians; *p<0.05, **p<0.01. 



 

53 
 

 

Figure 2-3. Assessment of cellular bound- and unbound-mediated plasma inhibition. 
Schematic for plasma transfer experiment in which basophils from a peanut-allergic donor are 
incubated with 0 or 12 month OIT plasma, followed by removal of 12 month OIT plasma in one 
tube, indicated by green outline (A) and the %CD63+ basophils for these samples following 
stimulation with peanut extract (B).  PN-sIgE (C) and PN-sIgG4 levels for 0 and 12 month OIT 
plasma used in this experiment. Red lines indicate medians; *p<0.05, ***p<0.001, ****p<0.0001. 
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Figure 2-4. OIT and SLIT plasma blocking capabilities.  Schematic for use of non-allergic 
donor basophils incubated with peanut-allergic plasma in the basophil activation assay (A) and 
representative results (B). Percent inhibition following incubation with plasma at the time of 
tolerance challenge for a 6 month OIT and 48 month OIT regimen (D) and corresponding PN-
sIgE (D) and PN-sIgG4 (E) levels. Percent inhibition following incubation with plasma following 6 
month OIT or 6 month SLIT (F) and corresponding PN-sIgE (G) and PN-sIgG4 (H) levels. Percent 
inhibition following incubation with undiluted and diluted 6 month OIT or 60 month SLIT plasma 
(I) and corresponding PN-sIgE (J) and PN-sIgG4 (K) levels.  Red lines indicate medians; *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 2-5. OIT and SLIT clinical outcomes in relation to basophil inhibition.  Percent inhibition of basophil activation for 48 month 
OIT plasma (A) or tolerance challenge plasma after discontinuation of therapy (B) separated by clinical outcome.  Percent inhibition of 
basophil activation following incubation with 48 month OIT plasma diluted either 1:10 or 1:50 (C).  Corresponding PN-sIgE (D) and PN-
sIgG4 (E) levels.  Percent inhibition of basophil activation following incubation with 60 month SLIT plasma either undiluted or diluted 
1:4 (F) and corresponding PN-sIgE (G) and PN-sIgG4 (H) levels. Red lines indicate medians; *p<0.05. 
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2.6 Supplementary Figures 

 

Figure 2-S1. Blocking capability of pooled plasma compared to individual plasma.  %D63+ 
basophils following incubation with either pooled or individual plasma from 0 month or 12 month 
OIT.  Red lines indicate medians; ***p<0.001.
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CHAPTER 3: SIGLEC-ENGAGING TOLERANCE-INDUCING ANTIGENIC LIPOSOMES 

(STALS) IN THE PREVENTION OF PEANUT ALLERGY1 

 
3.1 Introduction 

As previously discussed in Sections 1.7 and 2.1, no FDA-approved therapies for food 

allergies currently exist.  Oral, sublingual, and epicutaneous immunotherapies are under clinical 

study as potential food allergy treatments, yet the side effects, requirement for daily dosing, and 

lack of prolonged efficacy remain limitations in these human trials.102,174  A need for targeted 

therapies that are not affected by these limitations persists.  Peanut allergies are dominated by 

undesired IgE antibody responses to the 2S albumin Ara h 2,78,175 which induce degranulation of 

effector cells upon exposure to the antigen.  Targeting the allergen-specific B cells may limit 

side effects and promote long-term tolerance.     

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a family of 

immunomodulatory receptors with cell-specific expression.176  CD22, a Siglec expressed 

exclusively by B cells, is expressed early in B cell development along with CD19, but prior to the 

expression of CD20.177  Important for the discrimination of “self” from “non-self” by the immune 

system, Siglecs bind to their glycan ligands on host cells as well as pathogens.176  These 

molecules have been exploited as targets for leukemia and lymphoma cell depletion 

therapies.178,179  Inhibitory Siglecs, including CD22, use immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs) to suppress activatory receptors, such as the B cell receptor (BCR).180   

                                                
1 Adapted with permission from: Orgel KA, Duan S, Wright BL, et al. Exploiting CD22 on antigen-specific 
B cells to prevent allergy to the major peanut allergen Ara h 2. The Journal of Allergy and Clinical 
Immunology 2017;139:366-9.e2. 
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Because of its B cell-specific expression and inhibitory properties, CD22 offers a unique target 

for the induction of antigen-specific tolerance without causing widespread immunosuppression.  

Co-localization of CD22 with the BCR, with liposomes that co-display an antigen and 

high-affinity CD22 ligand, not only prevents B cell activation but also causes apoptosis of the 

antigen-reactive B cells.  As a result, robust immunological tolerance is induced due to depletion 

of the antigen-specific B cells from the B cell repertoire.181  These Siglec-engaging Tolerance-

inducing Antigenic Liposomes (STALs) can be formulated with any protein antigen of choice.  

One study found that STALs displaying Factor VIII (FVIII) inhibit antibody responses to 

exogenous FVIII, which interfere with FVIII replacement used to prevent bleeding in FVIII-/- 

mice.181 Further, they found that incubation of STALs presenting either anti-IgM or anti-IgG Fab 

fragments and CD22 ligand with human B cells abrogated activation of both naïve and memory 

B cells, and resulted in decreased cell viability.  In combination, these experiments demonstrate 

that STALs have the potential to prevent undesired B cell responses. 

The experiments mentioned above motivated us to examine the potential of STALs for 

inducing immunological tolerance to a food allergen. We hypothesized that STALs displaying 

both a high-affinity and selective CD22 ligand and Ara h 2 could be an attractive strategy to 

prevent sensitization and subsequent anaphylaxis to Ara h 2 as well as potentially whole peanut 

extract.  

3.2 Materials and Methods 

3.2.a Peanut extract and Ara h 2 preparation 

Peanut proteins were extracted by mixing peanut flour (12% fat light roast, 50% protein; 

Golden Peanut Co.) in a 1:5 (wt:vol) ratio of phosphate buffered saline (PBS) with 1 mol/L NaCl.  

The solution was mixed for 2 hours while maintaining an alkaline pH (8.5).  The solution was 

centrifuged at 14,000 rpm for 45 minutes at 4⁰C.  The supernatant was collected and filter-

sterilized through a 0.2 μM filter.  Protein concentration was determined by bicinchoninic acid 
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assay (Pierce, Rockford, IL).  The final preparation is referred to in the manuscript as whole 

peanut extract. Ara h 2 was purified according to work previously published by Sen, et al. J 

Immunol, 2002.   

3.2.b STAL and immunogenic liposome preparation 

Lipid modification of Ara h 2: A frozen stock of Ara h 2 in dH2O was initially buffer 

exchanged in to PBS. The protein (2 mg/mL) was reacted with 2.5 molar equivalents of 

succinimidyl 3-(2-pyridyldithio) propionate (SPDP; Pierce) for 1 hr at RT, followed by desalting 

over Sephadex G-50 (GE Healthcare). Following deprotection with 25 mM DTT for 10 min at RT, 

the protein was again desalted. The thiol-modified protein was reacted with 10 equivalents of 

maleimide-PEG2000-distearoylphosphatidylethanolamine (DSPE; NOF America) overnight under 

nitrogen. The following day, the reaction was passed over a Sephadex G-100 column (GE 

Healthcare) and the fractions containing the lipid-modified Ara h 2 in the void volume were pooled 

and stored at 4 0C.  

Liposome formulation and extrusion: Distearoylphosphatidylcholine (DSPC; Avanti), 

Cholesterol (Sigma), and PEG2000-DSPE (NOF America) were dissolved in chloroform and 

combined at an approximate ratio of 57:38:5. The solvent was evaporated under nitrogen and 

100 L of DMSO was added. To formulate the STALs, 1 mol% of PEG2000-DSPE was replaced 

with the high affinity CD22 ligand (6’BPA-Neu5Gc-LacNAc-PEG2000-DSPE) and added from a 

DMSO stock. The lipid solutions in DMSO were lyophilized overnight to yield a fluffy powder. To 

hydrate the liposomes, the dried lipids were hydrated in the appropriate amount of PBS containing 

the Ara h 2-PEG-DSPE such that the mol% of the protein was 0.033 mol% of the total lipids. The 

lipids were hydrated in 1 mL to generate liposomes with a concentration of 5 mM total lipid. The 

hydrated lipids were sonicated a minimum of five times at 30 second intervals and then extruded 

using a hand-extruder (Avanti) 20 times through a 0.8 M filter, followed by 20 times through a 

0.1 M filter. The final liposomes passed over a CL-4B column (Sigma) and pooled fractions were 
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stored at 4 0C prior to being diluted in PBS to the appropriate liposome concentration and 

administered to the mice. 

3.2.c Mouse model of peanut sensitization 

All animal studies were approved by the UNC IACUC and investigated under protocol # 

13-216.0. Four-week-old female Balb/cJ mice purchased from Jackson Laboratory (Bar Harbor, 

ME) were maintained on peanut-free food under pathogen-free conditions.  Mice were housed 

with four animals per cage and separated into 5 groups: (1) naïve, (2) 100 μM Ara h 2 

immunogenic liposomes, (3) 100 μM Ara h 2 STALs, (4)300 μM immunogenic liposomes, and (5) 

300 μM Ara h 2 STALs.  Naïve mice were maintained throughout the experiment but received no 

treatments and were not sensitized.  Mice in groups 2-5 received a single tail vein injection of the 

designated liposome or STAL.  Mice were rested for two weeks before being sensitized.  After 

the two week rest period, mice were sensitized with 2 mg peanut extract and 10 μg CT (List 

Biological Laboratories, Campbell, CA) by oral gavage once a week for three weeks.  On the 

fourth week of sensitization, mice were boosted with one gavage of 5 mg peanut extract and 10 

μg CT.  One week after the last sensitization dose, 200 μL blood from each mouse was collected 

by submandibular bleed to measure specific IgE and IgG1 by ELISA. The day following bleeding 

mice in groups 2-5 were challenged with 200 μg IP Ara h 2 and one week later  were challenged 

IP with 750 μg peanut extract.  Anaphylactic reactions were assessed by measuring core body 

temperatures with a rectal probe (Physitemp, Clifton, NJ) at 15 minute intervals.  Symptoms were 

scored after 30 minutes using a pre-established 5 point scale: 0, no symptoms; 1, scratching 

around the nose and head; 2, puffiness around the eyes and mouth with reduced activity; 3, 

labored respiration and/or cyanosis around the mouth and tail; 4, no activity after prodding or 

tremor and convulsion; and 5, death. 
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3.2.d IgE and IgG1 measurements 

Specific IgE and IgG1 were measured by ELISA using a reference curve.  Plates were 

coated with 20 μg/mL whole peanut extract, 5 μg/mL Ara h 2, 5 μg/mL Ara h1, or 5 μg/mL CT in 

carbonate-bicarbonate buffer at pH 9.6 for 1 hour at 37⁰C.  Plates were blocked with PBS 

containing 0.05% Tween 20 and 2% Bovine Serum Albumin for 2 hours at 37⁰C.  Serum samples 

were added for 1 hour at 37⁰C. Detection of IgE was performed using sheep antimouse IgE (0.5 

μg/mL; Binding Site, Birmingham, UK), followed by biotinylated donkey antisheep IgG (0.5 μg/mL; 

Accurate Chemical, Westbury, NY) and neutravidin-horseradish peroxidase (HRP; 0.2 μg/mL; 

Pierce) for 1 hour at 37⁰C.  IgG1 was detected by HRP-conjugated goat antimouse IgG1 

(Southern Biotech, Birmingham, Al) used at 1:40,000 for 1 hour at 37⁰C.  HRP activity was 

measured by blue color development of Sure Blue TMB Microwell Peroxidase Substrate (KPL, 

Gaithersburg, MD).  Plates were read on an Epoch Microplate Spectrophotometer (BioTek 

Instruments, Winooski, VT). 

3.3 Results 

Schematics representing an Ara h 2 STAL and the experimental design is shown in 

Figure 3-1A and Figure 3-1B, respectively.  Four-week old female BALB/cJ mice (Jackson 

Laboratories, Bar Harbor, Maine) were injected intravenously with 200 µL of 100 μM Ara h 2 

STALs (n=8), 300 μM Ara h 2 STALs (n=8), 100 μM immunogenic Ara h 2 liposomes (n=8), or 

300 μM immunogenic Ara h 2 liposomes (n=7).  All liposomes consisted of 0.03 mol % Ara h 2, 

which amounted to a dose of 0.12 µg of Ara h 2 in the 100 µM group.  STALs additionally 

consisted of 1% BPA-Neu5Gc, the high affinity and selective CD22 ligand.181  Two weeks 

following infusion of STALS, a timeframe previously determined to maximize tolerance induction 

through STALs,181 the mice were orally-sensitized, with 2 mg peanut extract and 10 μg CT 

weekly for three weeks followed by a boost dose of 5 mg peanut extract and 10 μg CT.  A group 

of naïve mice (n=8) underwent the same protocol and were injected with PBS to determine 
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baseline titers. Serum was collected one week later to quantify specific IgE and specific IgG1 to 

Ara h 2, peanut, Ara h 1, and CT by ELISA.  Mice were initially challenged with 200 μg Ara h 2 

via an intraperitoneal (IP) injection.  One week later, mice were challenged IP with 750 μg 

peanut extract.  To assess anaphylaxis during challenge, rectal temperatures were recorded for 

30 minutes, and symptom scores were documented at 30 minutes using a 0-5 point scale where 

0 represents no symptoms and 5 represents death, as described previously.78 

On day 42, prior to the challenge, Ara h 2-specific IgE (sIgE) levels were significantly 

lower in animals injected with either 100 μM or 300 μM Ara h 2 STALs compared to those 

injected with the same dose of immunogenic controls (100 μM, p=0.0002; 300 μM, p=0.0006; 

Figure 3-1C). Pre-treatment with Ara h 2 STALs also inhibited production of Ara h 2-specific 

IgG1 (sIgG1) compared to controls (100 μM, p=0.0047; 300 μM, p=0.0006; Figure 3-1D).  Upon 

challenge with 200 μg Ara h 2, mice pre-treated with either 100 μM or 300 μM Ara h 2 STALs 

were protected from hypothermia, an objective feature of anaphylaxis in mice, compared to 

mice pre-treated with immunogenic controls that had severe reactions (Figure 3-1E).  The 

symptom scores, as defined previously,78 also reflected more severe reactions in animals pre-

treated with immunogenic Ara h 2 liposomes compared to those pre-treated with Ara h 2 STALs 

(Figure 3-1F; 100 μM, p=0.0126; 300 μM, p=0.0002). CT-sIgE was not different amongst 

treatment groups (Figure 3-2), indicating that tolerance induction is antigen-specific and that no 

intrinsic differences in an ability to mount antibody responses were present between the groups.  

These findings validated the results of a pilot study where 100 μM, but not 20 μM Ara h 2 

STALs, led to significantly lower Ara h 2-sIgE and Ara h 2-sIgG1.  Taken together, these results 

suggest that Ara h 2 STALs induce antigen-specific tolerance toward the major peanut allergen, 

severely blunting Ara h 2-sIgE and Ara h 2-sIgG1 levels and reactions upon IP challenge with 

Ara h 2. 

Since Ara h 2 is only one of several related antigens in peanuts and sensitization was 

done with whole peanut extract, we also examined the impact of Ara h 2 STALs on sIgE levels 
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to peanut (Figure 3-3A) and to another peanut allergen, Ara h 1.  Pre-treatment with 100 μM Ara 

h 2 STALs by intravenous (IV) injection resulted in lower PN-sIgE compared to the 

immunogenic control mice, though differences were not statistically significant (p=0.1296).  

However, mice that received 300 μM Ara h 2 STALs (IV) had significantly less PN-sIgE than 

their control counterparts (p=0.0037).  Interestingly, mice injected with Ara h 2 STALs had lower 

Ara h 1-sIgE than their controls at each dose (100 μM, p=0.0146; 300 μM, p=0.0140; Figure 3-

3B).  Extensive cross-reactivity between Ara h 1 and Ara h 2 has previously been demonstrated 

and is likely to account for this effect.82,182  Finally, these mice were challenged with 750 μg 

peanut and, consistent with the PN-sIgE results, the body temperatures of mice pre-treated with 

300 μM Ara h 2 STALs were significantly greater than mice that received 300 μM immunogenic 

controls, demonstrating that the STALs attenuated anaphylaxis to peanut (Figure 3-3C).  

Symptom scores reflected similar results with the 300 μM immunogenic control mice reacting 

more severely than the Ara h 2 STALs mice (p=0.0350; Figure 3-3D).  The groups treated with 

100 μM Ara h 2 STALs were not significantly different in body temperatures or symptom scores 

from the immunogenic control group, suggesting a dose effect.  These results demonstrate for 

the first time that antigen-specific B cells for a single component can be selectively targeted to 

diminish an immune response to a complex mixture of several allergens.    

3.4 Discussion 

Here we demonstrate that liposomes simultaneously targeting CD22 and the BCR 

specific for the major peanut allergen, Ara h 2, can be used to induce antigen-specific B cell 

tolerance.  Currently, there are no FDA-approved treatment options for peanut allergy, a 

potentially life-threatening disease.  Leading investigational treatments include oral, sublingual, 

and epicutaneous allergen immunotherapies.  However, these therapies, which involve 

exposing the allergic subject to the allergen over years of treatment, can cause allergic 

symptoms and seem to induce a transient desensitization rather than long-lived SU.  Thus, the 
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need for targeted therapies that have limited side effects and the potential to induce permanent 

tolerance remains.   

In this study, we showed that pre-treatment with Ara h 2 STALs prevents sensitization to 

Ara h 2 in a mouse model of peanut allergy.  A single injection with Ara h 2 STALs blunted the 

IgE and IgG1 responses to Ara h 2 as well as prevented reaction upon IP challenge with Ara h 

2.  We believe this effect to be antigen specific, as treatment with Ara h 2 STAL had no effect on 

CT-sIgE levels.  Not surprisingly, treatment with Ara h 2 STALs also resulted in a reduced 

humoral response to an Ara h 2-cross-reactive antigen.  Based on previous studies using other 

antigens, we hypothesize that simultaneous engagement of CD22 and the Ara h 2-specific BCR 

leads to deletion of the Ara h 2-specific B cells.  Unfortunately, tools to detect Ara h 2-specific B 

cells are not readily available, making this hypothesis difficult to test.   

The results of this study demonstrate that STALs specific for a single component can be 

used to prevent sensitization to a complex mixture of antigens.  Injection with Ara h 2 STALs 

partially blunted the IgE response to peanut, most likely because peanut-sensitized mice mount 

an IgE response to other peanut allergens in addition to Ara h 2.  We were encouraged that 

targeting Ara h 2-specific B cells alone, was sufficient to lessen reaction severity following 

peanut challenge.  Future experiments include developing STALs specific for each of the major 

peanut allergens.  The findings in this study suggest that combining STALs targeting several 

different antigen-specific B cells may lead to an additive effect in preventing sensitization to 

whole peanut extract.   

This study utilized STALs as a preventative measure.  As such, mice were injected with Ara 

h 2 STALs prior to sensitization.  While the outcomes are promising, this methodology would be 

similar to a preventative vaccine in humans.  Limitations to a preventative approach in humans 

include cost, unknown timing and route of sensitization, and lack of predictive risk factors for 

disease.  Future work is needed to develop Ara h 2 STALs as a post-sensitization therapy.  

Following sensitization, memory T cells, as well as memory B cells, are activated. Previous work 
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has shown that STALs can deplete human memory B cells, despite low CD22 expression on 

these cells.181  A combination of therapies targeting the T cell compartment and B cell 

compartment may provide optimal effect in a post-sensitization therapy.176   The findings in this 

study provide the foundation for the development of a novel therapy for peanut allergy using a 

highly targeted, antigen-specific approach.  This targeted approach may be beneficial in the 

prevention and eventual treatment of other IgE-mediated food allergies, in addition to peanut 

allergy.  
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3.5 Figures 

 

Figure 3-1. Ara h 2-specific immune responses are prevented in mice administered Ara h 
2 STALs. Schematic of Ara h 2 STALs (A) and experimental protocol (B); Serum levels of Ara h 
2-sIgE (C) and Ara h 2-sIgG1 (D) following oral sensitization; Body temperatures (E) and symptom 
scores (F) after challenge with 200 μg Ara h 2 IP  Lines “a” are statistically different from lines “b” 
(p<0.001) at 15 and 30 min; Mann-Whitney U test *p<0.05, **p<0.01, ***p<0.001. 
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Figure 3-2. Ara h 2 STALs specificity. Cholera toxin-sIgE in mice treated with Ara h 2 STALs 
or immunogenic Ara h 2 liposomes. Mann-Whitney U test **p<0.01, ***p<0.001. 
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Figure 3-3. Immune responses to peanut and Ara h 1 in mice treated with Ara h 2 STALs.  
PN-sIgE (A) and Ara h 1-sIgE (B) following oral sensitization with peanut and cholera toxin. Body 
temperatures (C) and symptom scores (D) after IP challenge with 750 μg peanut.  Line “a” is 
statistically different from line “b” (p<0.05) at 15 and 30 min; Mann-Whitney U test *p<0.05, 
**p<0.01. 
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CHAPTER 4: GENETIC DIVERSITY BETWEEN MOUSE STRAINS ALLOWS 

IDENTIFICATION OF CC027/GENIUNC AS AN ORALLY REACTIVE MODEL OF PEANUT 

ALLERGY2 

 
4.1 Introduction 

As previously discussed, food allergy is a potentially life-threatening disease 

characterized by IgE-mediated degranulation of mast cells and basophils upon allergen 

ingestion. Affecting 6% of children and 4% of the general population, food allergy is a growing 

public health concern, with peanut allergy present in at least 1% of the US population.5,9,183  

Although many food allergies are outgrown before adulthood, peanut and tree nut allergies 

persist in roughly 80-90% of the affected population.7  Significant progress in food allergy 

research has occurred over the last 10 years, such as the development of potential 

therapies,102,103,109-111,184 identification of improved diagnostic approaches,5 and discovery of 

underlying immunologic mechanisms driving food allergies.185,186  However, critical knowledge 

gaps exist about the etiology of peanut allergy, including genetic, microbial, and environmental 

influences.   

The laboratory mouse has been the premier model organism for understanding complex 

human diseases, and developing therapies for a variety of diseases.  Despite concerns about 

the translation of data from specific mouse strains to larger human health responses,187 there 

has been a growing appreciation for the role that genetic diversity between inbred mouse strains 

                                                
2 Under Review: Orgel KA, Smeekens J, Ye P, Fotsch L, et al. Genetic diversity between mouse strains 
allows identification of CC027/GeniUnc as an orally reactive model of peanut allergy. 
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has in different outcomes within experimental models of human diseases.188,189  In order to 

better leverage and identify the causal genetic variants driving such disease differences, a 

number of mouse genetic reference panels (GRPs) including the Collaborative Cross (CC),190 

the BxD panel,191 and the Diversity Outbred (DO)192 have been developed.  These resources, 

panels of diverse mice with well characterized genetics have been used to (a) characterize the 

breadth of disease phenotypes that can be attributed to genetic variation; (b) define new models 

of disease phenotypes not found in the small pool of classic mouse strains used in standard 

studies; and (c) identify those polymorphic genes driving differential disease responses. 

Critically, such systems improve upon the utility and rigor of experimental models, ultimately 

making them more relevant for modeling diverse human disease responses.   

Since peanut allergy within the human population is a heritable (i.e. genetically 

influenced) trait,48,54 we sought to utilize the genetic diversity present in the CC mice to improve 

our understanding of peanut allergy and its contributing factors.  Numerous murine models are 

currently in use by our group and many others to study mechanisms and treatments of peanut 

allergy.137,193,194   However, these models often require powerful Th2-skewing adjuvants (e.g. 

CT,78 SEB144, or alum146) to sensitize animals, IP challenge to elicit a reaction,78,134 or complex 

modifications such as humanization.150,151,195  In a model commonly used by our group and 

others, C3H/HeJ mice are sensitized by weekly oral gavage of peanut extract and CT and 

challenged by IP injection with peanut extract.78  Importantly, while some reports demonstrate 

reactions upon oral challenge in the C3H/HeJ model described above,137 groups, including our 

own, have not been able to successfully reproduce these findings.195,196  A model that can both 

be sensitized and reproducibly react orally would allow for the study of therapies that alter the 

immune system in the gastrointestinal tract such as OIT, as well as genetic and environmental 

factors driving these severe allergic reactions in a more physiologically relevant model of human 

disease.  Here we report our screen of CC strains to identify orally-induced peanut anaphylaxis, 

the characterization of the peanut-specific immunologic responses, and novel insights into the 
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anaphylactic reactions in mice through the GI tract.  In concordance with prior assessment in 

the human population, we identified strong genetic control of the propensity to experience 

anaphylaxis after sensitization.  We also identified the CC strain CC027/GeniUnc as a mouse 

strain that develops anaphylaxis following oral sensitization and challenge. 

4.2 Materials and Methods 

4.2.a Mice 

CC mice were purchased from the UNC Systems Genetics Core.197  C57BL/6J and 

C3H/HeJ mice were obtained from colonies maintained for less than five generations by the 

Pardo-Manuel de Villena lab from mice purchased from The Jackson Laboratory. All mice were 

bred at UNC, raised on standard mouse chow, kept on a 12:12 light:dark cycle and transferred 

for sensitization at 4-6 weeks of age. Female mice were weaned into cages at a common cage 

density (between 3-5 mice/cage depending on the experiment), but with a diverse set of strains 

within each cage. In this way, effects of cage density and cage-specific effects were removed 

from these studies. Throughout these studies, where possible, experimenters were blinded to 

the mouse strains being studied. All mouse work was conducted in compliance with UNC 

IACUC protocol 16-045.       

4.2.b Reagents 

Peanut extract was created by mixing peanut flour (12% fat light roast, 50% protein; 

Golden Peanut Co.) in a 1:5 (wt:vol) ratio of phosphate buffered saline (PBS) with 1 mol/L NaCl 

and the soluble fraction was filter-sterilized as described previously.134  Protein concentration 

was determined by bicinchoninic acid assay (Pierce, Rockford, IL).  Peanut extract was run on a 

NuPage gel to identify and compare relative quantities of peanut allergens before using.   
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4.2.c Sensitization and challenge 

4-6 week old female mice underwent weekly sensitization with 2 mg peanut extract and 

10 µg CT (List Biological laboratories, Campbell, CA) in 200 µL volume for three weeks followed 

by 1 week of 5 mg peanut extract and 10 µg CT by oral gavage.  One week after sensitization, 

mice were bled by submandibular bleed to collect serum for immunoglobulin quantification.  The 

following day, mice undergoing an oral challenge were gavaged with 9 mg peanut extract while 

mice undergoing IP challenge received 200 µg peanut extract. Core body temperatures were 

monitored every fifteen minutes using a rectal thermometer (Physitemp, Clifton, NJ). For serum 

MMCP-1 and Ara h 2 measurements, blood was collected 60 min after oral challenge.  Serum 

levels of MMCP-1 (eBioscience, San Diego, CA) and Ara h 2 (Indoor Biotechnologies, 

Charlottesville, VA) were measured by ELISA.  Assays were run according to manufacturer’s 

instructions. 

4.2.d Immunoglobulins 

For PN-sIgE, PN-sIgG1, and PN-sIgG2a/c quantification, plates were coated with 20 

µg/mL peanut extract diluted in carbonate-bicarbonate buffer (Sigma Aldrich, St Louis, MO).  

Samples were assayed on plates at 1:100, 1:20,000, and 1:1250 respectively.  Ara h 1-sIgE, 

Ara h 2-sIgE, and Ara h 3-sIgE plates were coated with 5 µg/mL of the appropriate purified 

peanut component diluted in carbonate-bicarbonate buffer.  Samples were plated at a 1:20 

dilution.  IgE plates were all detected using the following antibodies in sequence: sheep anti-

mouse IgE (0.5 μg/mL; Binding Site, Birmingham, UK), biotinylated donkey anti-sheep IgG (0.5 

μg/mL; Accurate Chemical, Westbury, NY), neutravidin-horseradish peroxidase (HRP; 0.2 

μg/mL; Pierce).  IgG1 and IgG2a/2c ELISAs were detected with HRP-conjugated goat anti-

mouse IgG1 (Southern Biotech, Birmingham, AL) or HRP-conjugated goat anti-mouse IgG2a 

(Southern Biotech, Birmingham, AL) and HRP-conjugated goat anti-mouse IgG2c (Southern 

Biotech, Birmingham, AL) respectively.  Sure Blue TMB Microwell Peroxidase Substrate and 
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Stop Solution (KPL, Gaithersburg, MD) were applied to all plates.  Plates were read on an 

Epoch Microplate Spectrophotometer (BioTek Instruments, Winooski, VT).  Total IgE was 

analyzed by ELISA, (Affymetrix, Santa Clara, CA) and run according to manufacturer’s 

instructions. All ELISA data was analyzed using Gen5 software.   

4.2.e mRNA and cytokine protein quantification 

Spleens were collected from both naïve as well as peanut-sensitized mice 1 week after 

oral challenge. mRNA abundance levels were quantified using real-time PCR and Sybr green 

methodology, as previously described.198  Briefly, total RNA was extracted using RNA kits 

(Qiagen, Germantown, MD). Reverse transcription was performed using random decamers as 

primers and Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA). The abundance of 

resultant mRNA-derived cDNA was determined by qRT-PCR analysis, using SsoAdvanced 

Universal SYBR Green Supermix (Bio-Rad, Hercules, CA), primers specific for genes of 

interest, and a StepOne Plus cycler (Applied Biosystem, Foster City, CA). Each set of primers 

spans at least two introns so that contaminating genomic DNA either cannot be amplified due to 

large product size or can be easily identified based on its size on agarose gel. Primers for 18S 

rRNA were obtained from Ambion (Austin, TX). The specificity of each real-time PCR target was 

confirmed by melt temperature analysis and agarose gel fragmentation of amplicons. To 

quantify mRNA abundance, a standard curve for each target mRNA, as well as for 18S rRNA, 

was generated from serial dilutions of cDNAs derived from a pooled intestinal cDNA library. The 

relative abundance of mRNA of interest in each sample was determined based on its 

corresponding standard curve, and normalized against the abundance of 18S rRNA.  For 

protein analysis, splenocytes were isolated and cultured for 96 hours in the presence of 200 

µg/mL peanut extract.  Supernatants were collected and run on Meso Scale Discovery plates to 

determine levels of IL-4, IL-5, IL-13, TNF-α, IFNγ, IL-12p40, IL-10 according to manufacturer’s 

instructions (MSD, Rockville, MD). 
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4.2.f Flow cytometry  

For analysis of Treg cells, splenocytes were collected 1 week after oral challenge.  

Splenocytes were stimulated with 200 µg/mL peanut extract for 7 days.  Tregs were then 

labeled using FITC rat anti-mouse CD4 Clone RM4-5 (BD Bioscience, San Diego, CA), PE anti-

mouse/rat/human FoxP3 Clone 150D (Biolegend, San Diego, CA), and APC rat anti-mouse 

CD25 Clone PC61 (BD Biosciences, San Diego, CA).  For determination of basophil levels, 

whole blood was collected by submandibular bleed 1 week after sensitization.  Cells were 

stained with anti- mouse IgE FITC Clone 23G3 (eBioscience, San Diego, CA), PerCP/Cy5.5 

anti-mouse CD49b Clone DX5 (Biolegend, San Diego, CA), PE anti-mouse CD200R Clone OX-

110 (Biolegend, San Diego, CA). Flow Cytometry was performed on a Beckman Coulter CyAn 

ADP and analyzed using FlowJo (v10).  Basophils were gated as IgE+CD49b+ and expressed 

as a percentage of lymphocytes.  Tregs were gated as CD4+CD25+FoxP3+ and expressed as 

a percentage of CD4+ lymphocytes. 

4.2.g Histology 

Proximal jejunum was harvested from peanut-sensitized mice 1 week after challenge, and 

fixed with cold 4% paraformaldehyde in phosphate-buffered saline overnight and paraffin-

embedded. Cross-cut sections (at a thickness of 7 µm) were subjected to immunostaining with 

an antibody specific for mast cell tryptase (1:180, Abcam, ab151757) or for CD117 (c-kit, 1:150, 

ThermoFisher, PA5-16770). Antibody-antigen complexes were detected using an ABC kit (Vector 

Laboratories, Burlinggame, CA) and visualized by incubation with DAB (Vector Laboratories or 

Sigma-Aldrich, St Louis, MO).  For mast cell tryptase-positive cell quantification, immunostained 

sections were then subjected to counterstaining for cell nuclei with 0.1% methylene blue in acetic 

acid.  To estimate the number of mast cell tryptase-positive cells in mucosa, 2 – 4 villi and the 

crypts under the villi were randomly selected, mast cell tryptase-positive cells with clear nuclei 

within delineated villi and crypts were counted. Total number of cells was determined by counting 
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methylene blue-stained cell nuclei, and the percentage of mast cell tryptase-positive cells were 

calculated. For each mouse, 850-1,640 cells were counted.  

4.2.h Statistical analysis 

GraphPad/Prism version 7.02 was used to analyze all data.  Mann-Whitney U, 

Spearman Correlation, and unpaired-t tests were performed and a p-value <0.05 was 

considered significant.  For cytokine protein level, values at or below the lower limit of detection 

were assigned half of the value of the lower limit of detection for that particular MSD assay. 

4.3 Results 

4.3.a CC027/GeniUnc female mice react severely to both oral and IP challenge with 
peanut extract 

 To assess the role that genetic variation plays in controlling anaphylaxis following 

sensitization with peanut allergen, female mice from 16 CC strains were screened using an 

established sensitization model (Figure 4-1).134  These CC strains were chosen based on the 

fact that their well characterized genetic makeup is representative of the CC population,199 as 

well as prior reports188,200 of aberrant disease present in specific strains.   All mice underwent 

the same four week sensitization regimen followed by half of the mice in each strain receiving a 

200 µg peanut extract challenge via IP injection and the other half receiving a 9 mg peanut 

extract challenge via oral gavage. Following either OFC or IP challenge, CC strains were 

grouped into three types of reactors: Strains that do not react regardless of challenge route 

(Figure 4-2A: OFC, Figure 4-2D: IP); strains that reacted mildly (mean body temperature 

decreases between 1.5-3oC; Figure 4-2B: OFC, Figure 4-2E: IP), and strains that reacted 

severely (mean body temperature decreases > 3oC; Figure 4-2C: OFC, Figure 4-2F: IP). As 

expected, the screen identified many more mild and severe reactors following IP challenge than 

following oral challenge, however responses were highly concordant across routes of challenge 

(e.g. if a strain was a non-reactor in the IP cohort, it was also a non-reactor in the OFC cohort).  
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Two strains, CC027/GeniUnc, referred to as CC027 in figures, and CC012/GeniUnc, were 

classified as strong reactors following OFC, and were also classified as strong reactors to IP 

challenge with peanut extract, suggesting that they could be potential models for severe 

anaphylaxis following peanut sensitization.   

 In order to validate the findings of this initial screen, we conducted a second experiment 

with the OFC severe responders CC027/GeniUnc, CC012/GeniUnc, as well as the non-

responder CC028/GeniUnc and IP-only responder CC011/Unc.  While the results of this 

experiment were largely concordant with the initial screen (Fig 2G-J), only CC027/GeniUnc 

exhibited a severe reaction following OFC.  We therefore concluded that CC027/GeniUnc 

represents a robust OFC-reaction model derived from our screen of the CC. 

4.3.b CC027/GeniUnc but not C3H/HeJ or C57BL/6J react on oral challenge despite all 
making IgE to peanut allergens 

Immune responses of sensitized CC027/GeniUnc females were compared to those of 

female mice from the classical inbred C3H/HeJ and C57BL/6J strains.  All three strains were 

sensitized using the previously described 4 week sensitization schedule and then underwent an 

OFC with 9 mg peanut extract.  Consistent with our previous experiments, CC027/GeniUnc 

mice experienced severe systemic reactions with body temperatures decreasing more than 3°C 

over the course of 60 min following OFC (Figure 4-3A), whereas C3H/HeJ and C57BL/6J mice 

had essentially no change in body temperature following OFC.  These results confirm the utility 

of CC027/GeniUnc as an orally reacting allergy model.  Despite only CC027/GeniUnc mice 

reacting upon OFC, all three strains make PN-sIgE, peanut-specific IgG1 (PN-sIgG1), and 

peanut-specific IgG2a/2c (PN-sIgG2a/2c) as well as IgE to the major peanut components, Ara h 

1, Ara h 2, and Ara h 3 (Figure 4-3B-G).  After sensitization, CC027/GeniUnc make significantly 

more PN-sIgE than C3H/HeJ but not C57BL/6J (Figure 4-3B; p<0.05).  PN-sIgG1 levels are not 

different between the three strains (Figure 4-3C) while PN-sIgG2a/c levels are higher in 

CC027/GeniUnc than C57BL/6J but not different from C3H/HeJ (Figure 4-2D; p<0.01). 
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CC027/GeniUnc mice also had significantly more total IgE than C3H/HeJ (p<0.01) but not 

significantly different total IgE levels from C57BL/6J after sensitization (Figure 4-3H).   

Given that PN-sIgE and PN-sIgG1 levels were different between CC027/GeniUnc and at 

least one of the two classical inbred strains, we assessed whether PN-sIgE or PN-sIgG1 levels 

within CC027/GeniUnc mice were correlated with anaphylaxis reaction severity.  We found that 

PN-sIgE and PN-sIgG1 levels did not correlate with reaction severity in CC027/GeniUnc mice 

and thus do not explain the increased reactivity of these mice (Figure 4-S1A-B). Together, these 

data show that CC027/GeniUnc make immunoglobulins to peanut and peanut components, but 

that the strain-specific production of immunoglobulins alone does not distinguish 

CC027/GeniUnc from C3H/HeJ or C57BL/6J. 

4.3.c CC027/GeniUnc mounts a Th2 cellular response with little Th1 or regulatory cytokine 
response to peanut  

 Secreted cytokines from peanut-stimulated splenocytes were quantified for 

CC027/GeniUnc, C3H/HeJ, and C57BL/6J mouse strains to determine T cell phenotypes.  All 

three strains produce IL-4 levels, which are not significantly different across the strains (Figure 

4-4A).  IL-12-p40 was significantly elevated in C3H/HeJ relative to both C57BL/6J and 

CC027/GeniUnc (Figure 4-4F).  For the remaining five cytokines (IL-5, IL-13, TNF-α, IFNγ, IL-

10), we found that CC027/GeniUnc had significantly lower levels than either C57BL/6J or 

C3H/HeJ (Figure 4-4B-E, H).  As a result, CC027/GeniUnc appears to have an increased Th2-

skew relative to either C3H/HeJ or C57BL/6J.  We illustrate this with the well-accepted201-203 

ratio of IFNγ to IL-4 (Figure 4-4G) across these strains.  Concurrent with the finding that 

CC027/GeniUnc mice show a Th2-skew, we found that CC027/GeniUnc have higher levels of 

Gata3 mRNA than C3H/HeJ (p<0.05), albeit similar levels to C57BL/6J (Figure 4-4I).  

CC027/GeniUnc also had a lower T cell regulatory response as indicated by reduced 

CD4+CD25+Foxp3+ Treg levels (Figure 4-4K) and decreased IL-10 protein production than the 

classical inbred strains (p<0.01; Figure 4-4H).   
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Sensitization-induced changes in mRNA expression levels were also analyzed for a few 

selected genes.  Interestingly, CC027/GeniUnc have lower expression levels of Il10 and Il12 

after sensitization than they do at baseline (p<0.05; Figure 4-S2A-B), suggesting that sensitizing 

these animals results in decreased production of regulatory and Th1-type cytokines.  However, 

sensitization did not change Il10 or Il12 mRNA levels in either C3H/HeJ or C57BL/6J (Figure 4-

S2A-B).  Other reports have shown that Ox40L expression increases in dendritic cells following 

sensitization.139  We found Ox40L mRNA levels in the small intestine to be increased in 

CC027/GeniUnc compared to C3H/HeJ (p=0.0592) and C57BL/6J (p<0.05) showing an 

additional effect of sensitization in these mice (Figure 4-4J).  Overall, T cell responses appear to 

favor pro-allergic responses to peanut with the presence of Th2 cytokines and limited Th1 

cytokine production, lower numbers of Tregs, and less regulatory cytokine IL-10. 

4.3.d Effector cells are more prevalent in CC027/GeniUnc mice than classic inbred strains 

 Basophils and mast cells are the two main effector cells implicated in food allergy 

reactions.21  We quantified basophil frequency in blood after sensitization using flow cytometry.  

CC027/GeniUnc had an increased percentage of IgE+CD49b+ basophils circulating after 

sensitization compared to C3H/HeJ (p<0.05) and C57BL/6J (p<0.01; Figure 4-5A).  

Furthermore, the CC027/GeniUnc basophils also had less of the inhibitory receptor, CD200RI 

than the other two strains (p<0.001; Figure 4-5B).204  Tissue samples of the small intestine were 

stained for tryptase+ mast cells.  CC027/GeniUnc had an increased percentage of tryptase+ 

cells, suggesting increased mast cell presence in the tissue (Figure 4-5C-D).  Taken together, 

CC027/GeniUnc have an increased number of basophils in circulation that may lack negative 

feedback mechanisms driven by CD200R, and also an excess of mast cells in the GI tract.   
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4.3.e Reaction severity in CC027/GeniUnc correlates with serum levels of Ara h 2 but not 
MMCP-1 during oral challenge 

 To further characterize the severe reaction observed in CC027/GeniUnc mice, blood 

was collected from the mice 60 min following OFC.  Serum levels of mucosal mast cell 

protease-1 (MMCP-1), a mediator released by degranulated mast cells in the gastrointestinal 

tract was measured to verify that mast cell degranulation could be detected in the reacting 

animals.  Serum MMCP-1 was detectable in both C3H/HeJ and CC027/GeniUnc, but not 

C57BL/6J (Figure 4-6A), though only CC027/GeniUnc showed signs of a systemic reaction.  

Within CC027/GeniUnc mice, serum levels of MMCP-1 were not correlated with reaction 

severity (Figure 4-6B; Spearman r=0.2196, p=0.4109).  Concurrently, serum levels of the major 

peanut allergen, Ara h 2, were measured 60 min post-challenge by ELISA to determine the 

amount of allergen being absorbed into the blood stream.  CC027/GeniUnc had significantly 

higher levels of Ara h 2 in serum, compared to C57BL/6J (p<0.05) and C3H/HeJ (p<0.0001; 

Figure 4-6C).  Interestingly, Ara h 2 quantity positively correlates with reaction severity in 

CC027/GeniUnc mice (Figure 4-6D; Spearman r=0.69, p=0.0028). 

4.4 Discussion 

An accurate translation between small animal models and human health outcomes 

requires that models accurately recapitulate key aspects of the human disease. Previously, we 

utilized a mouse model of food allergy that requires IP challenge with peanut extract to elicit an 

anaphylactic response after sensitization with peanut and a Th2-skewing adjuvant.78,134  

However, a mouse that reacts on oral challenge would provide a more physiologically-relevant 

platform to study both the etiology of the disease as well as potential treatments. Within the 

human population, increasing evidence has shown that host genetic variation impacts allergic 

responses.  A twin-study48 estimated the heritability (proportion of genetic contribution) to 

peanut allergy at approximately 0.8.  However, identification of genetic variants contributing to 

peanut allergy responses and outcomes has been limited to associations with the MHC locus 
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and others associated with asthma and eczema.51,54,55  Undoubtedly, there are additional 

genetically variable factors driving propensity for, and severity of allergic responses to peanut.  

Therefore, we sought to determine whether genetic variation between mouse strains could 

explain variation in food allergy disease severity, and whether we could develop a more relevant 

oral challenge model by assessing genetically diverse inbred mouse strains. 

Here, we described the use of 16 strains from the CC GRP to screen for an orally 

reacting animal model of peanut allergy. The CC offers high genetic diversity, and has been 

used to both identify genetic factors driving aberrant disease outcomes,205-207 but also has 

enabled the development of more relevant models of human disease responses.188,200,208  We 

identified a single strain, CC027/GeniUnc as a promising model of food allergy.  

CC027/GeniUnc experiences a severe systemic reaction, evidenced by decreased body 

temperature following OFC with peanut extract, whereas the other 15 CC strains (as well as the 

well-studied inbred strains C3H/HeJ and C57BL/6J) did not react accordingly.  CC027/GeniUnc 

mice produce detectable levels of IL-4 protein and produce PN-sIgE, Ara h 1-sIgE, Ara h 2-sIgE, 

Ara h 3-sIgE. We showed that, similar to peanut allergy in humans,209 CC027/GeniUnc mount a 

Th2-skewed response to peanut and the major peanut allergens.  CC027/GeniUnc have 

increased levels of Th2-promoting transcription factor, Gata3 mRNA relative to C3H/HeJ mice, 

which do not react on oral challenge. Also, similar to human disease, PN-sIgE does not 

correlate with disease severity in these mice.  Furthermore, CC027/Geni/Unc have a lower 

number of Tregs based on flow cytometry data as well as lower levels of the important 

regulatory cytokine IL-10 at the protein and mRNA levels.  Together, these results reveal a 

model of peanut allergy that, like other models,194 has Th2-skewed immune responses to the 

allergen, a decreased regulatory response, but also demonstrates signs of a severe, systemic 

reaction on oral challenge with the allergen, making it a highly relevant model recapitulating key 

features of peanut allergy in humans. 
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As in human food allergy, the exact mechanistic causes of the increased reactivity of 

CC027/GeniUnc need to be further studied.  Our findings suggest many potential contributing 

factors likely driven by the underlying genetic differences in these mice.  As already stated, PN-

sIgE does not correlate with reaction severity, signifying that differences beyond IgE levels must 

be important for the severe oral reactions observed.  In addition to hallmarks of acquired 

immune differences in CC027/GeniUnc, this strain has a greater quantity of basophils and mast 

cells; those effector cells responsible for the manifestations of allergic symptoms.  Recent 

reports suggest an important interplay between activating and inhibitory signals from the surface 

of mast cells on allergic disease.210  While we did not assess mast cell activation, we found that 

the increased numbers of basophils possess less of the inhibitory receptor CD200R1 than 

C3H/HeJ or C57BL/6J, similar to what has been reported for subjects with birch pollen 

allergy.165 Thus, CC027/GeniUnc may have a larger number of more easily activated effector 

cells than the other less reactive strains.    

Lastly, we demonstrated that CC027/GeniUnc absorbed higher levels of Ara h 2 protein 

into their blood stream during OFC than either C3H/HeJ or C57BL/6J, and these levels of serum 

Ara h 2 in CC027/GeniUnc correlated with reaction severity.  C57BL/6J had detectable levels of 

serum Ara h 2 protein following OFC, but did not exhibit any signs of a systemic reaction or any 

detectable serum MMCP-1 following OFC.  Taken together, these findings suggest mast cells in 

C57BL/6J are difficult to degranulate compared to CC027/GeniUnc mast cells.  However, 

C3H/HeJ had high levels of MMCP-1 following OFC, but no serum Ara h 2 or symptoms of 

anaphylaxis.  It is possible that only local mast cells in the mucosa degranulate in C3H/HeJ 

following oral challenge whereas CC027/GeniUnc experienced both local and systemic 

degranulation.  The positive correlation observed between serum Ara h 2 levels and reaction 

severity in CC027/GeniUnc suggests that CC027/GeniUnc experience more severe reactions 

because of increased allergen absorption into their blood stream, which can trigger anaphylaxis 

by degranulation of mast cells, basophils, and/or neutrophils.  These findings suggest that both 
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Ara h 2 absorption into systemic circulation along with readily-degranulating effector cells is 

required for anaphylaxis upon OFC.  Increased Ara h 2 absorption could be due to increased 

gut permeability in CC027/GeniUnc.  Though a role for intestinal permeability in food allergy has 

been suggested,211,212 attempts by our own group and others213 to measure Ara h 2 in human 

serum following ingestion has proven difficult and inconclusive.  Thus, CC027/GeniUnc offer 

insight into a potential disease mechanism that is currently difficult to investigate in humans.  

Future investigation of the uptake of Ara h 2 through the gastrointestinal tract is needed.   

CC027/GeniUnc represents a highly relevant model of peanut allergy to the field at-

large.  This small-animal model should allow for more robust evaluation of therapeutic 

treatments in a pre-clinical setting prior to transition into clinical trials.  Leading investigational 

treatments in the field include various routes of peanut immunotherapy including OIT, SLIT, and 

EPIT.  Despite promising results from OIT, SLIT, and EPIT studies,109,110,115,161 these therapies 

have limitations including daily dosing, side effects, and difficulty in achieving long-term 

tolerance after stopping therapy.  Therefore, new therapies that induce immunologic tolerance 

are needed.  CC027/GeniUnc provides a pre-clinical model to develop these therapies and 

study the effects on the development of oral tolerance. Furthermore, genetic dissection of the 

repressive and enhancing phenotypes observed across mouse strains can lead to the 

identification of novel genes and pathways that may be critical in promoting peanut allergy 

within the human population.  More broadly, our results highlight the utility of integrating the 

experimental robustness of inbred small animal models of disease with defined and broad 

genetic diversity in attempting to better understand and address human disease needs.  
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4.5 Figures 

 

Figure 4-1. Collaborative Cross screening approach.  Schematic shows 4 representative 
strains of the 16 strains screened. Six female mice between the ages of 4 and 6 weeks from each 
strain were mixed so that each cage contained 3-5 mice from different strains.  Mice were then 
transferred from the UNC Systems Genetics Core to the UNC Food Allergy Initiative where 
researchers were blinded to the identification of each strain.  Mice were sensitized intragastrically 
with peanut extract and cholera toxin for 4 weeks before undergoing either an OFC (n=3/strain) 
or IP challenge (n=3/strain) with peanut extract. 
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Figure 4-2. Anaphylaxis in peanut-sensitized Collaborative Cross strains following peanut challenge. Oral and IP challenges 
revealed Collaborative Cross strains that are non-reactors (A, D), mild reactors (B, E) and severe reactors (C, F) as measured by 
decreased body temperature.  Challenges were repeated with a non-reactor control (G), IP reactor control (H), and oral reactors (I, J). 
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Figure 4-3. Immune response of CC027/GeniUnc to peanut extract relative to that of C3H/HeJ and C57BL/6J mice.  
CC027/GeniUnc is represented as CC027 in figures.  Body temperatures following oral challenge with peanut extract (n=12/strain) (A). 
Serum levels of immunoglobulins following 4 weeks of sensitization (B-H). Mann-Whitney U Test *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001.  Statistical significance represents comparisons of both C3H/HeJ and C57BL/6J relative to CC027/GeniUnc (A). 
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Figure 4-4. Cellular responses in CC027/GeniUnc, C3H/HeJ, and C57BL/6J.  Splenic cytokines 96 hours following peanut-
stimulation (n=10/strain) (A-H), mRNA expression (I-J), and CD4+CD25+FoxP3+ regulatory T cells 1 week following oral challenge 
(K).  Mann-Whitney U Test *p<0.05, **p<0.01, ***p<0.001 (A-H; K); unpaired t-test *p<0.05, **p<0.01 (I-J). 
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Figure 4-5. Enumeration of effector cells in CC027/GeniUnc, C3H/HeJ, and C57BL/6J. 
Percent IgE+CD49b+ basophils (A) and basophil inhibitory receptor, CD200R1 in whole blood 
(B). Jejunal tryptase+ mast cells quantified 1-3 weeks following challenge (C) and representative 
staining images shown with arrows indicating tryptase+ cells (D).  Mann-Whitney U Test *p<0.05, 
**p<0.01, ***p<0.001. 
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Figure 4-6. Post-OFC serum levels of mast cell degranulation marker and the major peanut 
allergen Ara h 2. Serum levels of MMCP-1 (A) and Ara h 2 (C) 60 min after oral challenge; Mann-
Whitney U Test *p<0.05, **p<0.01, ****p<0.0001.  Correlations between MMCP-1 (B) or Ara h 2 
(D) and maximum body temperature decrease following oral challenge in CC027/GeniUnc. 
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4.6 Supplementary Figures 

 

Figure 4-S1. Post-sensitization peanut-specific immunoglobulins and reaction severity 
correlation.  Correlations between serum levels of PN-sIgE (A) and PN-sIgG1 (B) and maximum 
body temperature decrease following oral challenge; Spearman Correlation. 
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Figure 4-S2. Pre- and post-sensitization mRNA levels.  Il10 (A) and Il12 (B) mRNA levels at 
baseline and post-sensitization for C3H/HeJ, C57BL/6J, and CC027 mice.  Unpaired t-test 
*p<0.05, **p<0.01. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 
Over the past two decades there has been great progress in determining the underlying 

causes of food allergies as well as development of investigational treatments.  Recently, a great 

deal of work has focused on potential food allergy contributing factors such as routes of 

sensitization,43,194 genetics,28,49,54,55 and microbiome.57,65,214 While these studies have been both 

novel and informative, their findings have not been entirely conclusive as to a single cause of 

food allergies.  This is most likely because food allergy is a complex disease with contributions 

from multiple factors including genetics as well as the environment.  Further work is needed to 

examine the interplay of these many factors.  Though food allergies to a wide variety of foods 

are similar in terms of the IgE-mediated reaction that occurs, it remains unclear whether the 

causes of allergy development are the same across all allergens.   

Peanut allergies are of particular interest because they are one of the most common food 

allergies of childhood, are uncommonly outgrown, and are increasing in prevalence.  Despite 

the great public health concern posed by peanut allergies, there are currently no FDA-approved 

treatments.  Over the past 20 years, an immense amount of work has been done to develop and 

test investigational therapies for this disease.  The leading therapies in the field include OIT, 

SLIT, and EPIT.215  OIT and SLIT have both shown efficacy in the treatment of peanut allergy in 

clinical trials; however, these therapies each have their limitations.  In their current forms, both 

require daily dosing, have risks of adverse events, and seem to offer limited protection once 

therapy is discontinued.  Further, the mechanisms behind OIT and SLIT remain unclear.  

Undeniably, there is a need for improved, more targeted therapies, and the understanding of 
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OIT and SLIT mechanisms may provide insight into those targets.  Finally, the development of 

improved, physiologically relevant animal models of peanut allergy are needed to both better 

understand the etiology of the disease as well as to provide a tool in which to develop these 

new therapies.  The work in this dissertation contributes to each of these knowledge gaps: 

understanding the mechanisms of peanut immunotherapies, development of a targeted 

treatment, and the development of an improved mouse model, all with the long-term goal of 

improving therapy options for peanut allergies.   

5.1 Mechanisms of Immunotherapy 

5.1.a Summary of results 

The work presented in Chapter 2 investigated the mechanism of both peanut OIT and 

SLIT.  It was confirmed that OIT-induced plasma changes are capable of inhibiting effector cell 

activation, and that IgG is at least one of the necessary factors for this inhibition.  Further, we 

demonstrated that the plasma factors act through both bound and unbound mechanisms to 

inhibit basophil activation.  This work was the first in the field to demonstrate that this blocking 

capability of therapy plasma was also present in samples from subjects on SLIT.  When 

comparing the blocking capability of OIT and SLIT plasma, we found that diluted SLIT plasma 

was less effective at blocking basophil activation than diluted OIT plasma, despite no difference 

in IgG4 quantity.  These results suggest that either the IgG4 is functionally different between the 

two routes of therapy or that different isotypes play a role.  Lastly, we showed that plasma 

blocking capability was different in subjects who experience long-lived SU from those who were 

transiently desensitized in OIT but not SLIT, suggesting that at least in OIT, the plasma blocking 

capability is important for clinical outcome. 
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5.1.b Future directions 

Much work is still needed to understand the implications of these mechanistic findings.  

Data from others has shown that during OIT, IgG down-regulates basophil activity in an 

FcγRIIb-dependent manner and IgG4 inhibits basophil degranulation.165,216  However, the 

depletion of IgG4 in these studies only partially reversed basophil hyporesponsiveness, 

suggesting other IgG subclasses may play a role.  Future studies in which IgG1 and IgG4 are 

specifically depleted, isolated, and re-introduced to basophils in activation assays will be useful 

in defining a role for other IgG isotypes.  Additionally, performing this experiment while blocking 

the FcγRIIb will identify the isotype(s) binding to this receptor.  Because the IgG-depletion 

beads used in our previous studies are also capable of biding IgA and previous work has shown 

that allergen immunotherapy induces changes in IgA,168 future studies will also investigate 

whether IgA plays a role in blocking effector cell activation.  Importantly, performing the above 

experiments from samples at different time points of therapy would allow for identification of 

changes in humoral mechanisms throughout therapy.  In other words, one isotype may be 

important early in therapy while a different isotype is important later in therapy.  Once the 

important isotypes are identified, investigation into therapy-induced functional differences would 

be interesting.  Future work will investigate differences in post-translational modifications such 

as glycosylation in these proteins during therapy that are not obvious when looking at quantity 

differences.   

While the human studies above would benefit our understanding of peanut 

immunotherapy mechanisms, animal studies allow for further manipulation that is not possible in 

humans.  Mouse studies in which whole plasma and separately specific antibody isotypes from 

mice that have undergone OIT is added to peanut-sensitized, untreated mice would also prove 

useful in demonstrating that these antibodies are sufficient to block anaphylaxis.  Similar animal 

studies were performed by Burton, et al.,165 but these studies were limited by the fact that they 

investigated the inhibitory role of the IgG fraction, rather than individual isotypes.   Overall, these 
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studies would provide added mechanistic understanding to peanut immunotherapies with a 

specific focus on the humoral responses. 

5.2 STALs  

5.2.a Summary of results 

Due to the limitations of the current investigational therapies for peanut allergy, new 

therapies are needed.  In the work presented in Chapter 3, we showed that antigen-specific B 

cells can be targeted to prevent sensitization to peanut allergen in mice.  In this study, we 

exploited an inhibitory siglec, CD22 on B cells using STALs, which are liposomes that 

simultaneously display a CD22 ligand and major peanut antigen, Ara h 2.  A single intravenous 

injection with Ara h 2 STALs prevented sensitization, as measured by Ara h 2-specific IgE as 

well as reaction severity following Ara h 2 challenge.  Mice that received Ara h 2 STALs also 

had decreased Ara h 2-specific IgG1 levels compared to controls.  The effects were antigen 

specific and blunted the allergic response to whole peanut extract, despite targeting only one 

antigen.  These animal studies were proof-of-concept that STALs could be used to target Ara h 

2-specific B cells, and in doing so, could have an effect on the immune and clinical responses to 

peanut. 

5.2.b Future directions 

 Future experiments will demonstrate whether STALs specifically deplete antigen-specific 

B cells.  We can infer from our previous specificity results in which injection with Ara h 2 STALs 

resulted in decreased Ara h 2-specific IgE but had no effect on CT-specific IgE that this is the 

case; however it has not yet been definitely shown.  We, along with collaborators with expertise 

in identification of rare antigen-specific B cells,217 are currently developing a fluorescently 

labeled Ara h 2 tetramer (four biotinylated Ara h 2 proteins bound to streptavidin) that binds Ara 

h 2-specific B cell receptors, thus allowing for the identification of Ara h 2-specific B cells by flow 
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cytometry.  This tool will allow us to show that the number of Ara h 2-specific B cells decreases 

in mice injected with Ara h 2 STALs.  In early studies, Ara h 2 was chosen as the antigen to 

conjugate to STALs because it is one of the major peanut allergens, and has been shown to 

affect clinical reactivity when used in a mouse model of immunotherapy.78  Preliminary attempts 

to use Ara h 1 STALs to prevent sensitization were unsuccessful.  However, Ara h 1 is a trimer, 

making it possible that the multimer was not stable throughout the creation and injection of Ara 

h 1 STALs.  However, developing STALs to the other peanut allergens may be useful to provide 

broader protection.  Ideally, STALs specific for each peanut allergen would be combined into 

one therapy to offer greater protection.  Furthermore, our work on this prevention model was all 

done in BALB/cJ mice.  Initial studies using C3H/HeJ mice were unsuccessful.  Further work is 

needed to determine whether other strains require a different dose of STALs, or alternatively if 

STALs cannot prevent sensitization in C3H/HeJ.  

 Further work is required to develop STALs as a therapeutic approach rather than the 

preventative approach discussed previously.  In unpublished work, we have tested whether 

STALs can deplete memory B cells.  In these experiments, splenocytes from sensitized animals 

were transferred into naïve animals.  Naïve animals then received an intravenous injection with 

Ara h 2 STALs followed by an injection of Ara h 2 to boost antibody production.  These mice 

produced less Ara h 2-specific IgE and exhibited less severe reactions following challenge with 

Ara h 2, demonstrating that STALs can deplete memory B cells in mice.  These findings are 

consistent with previous work showing that STALs deplete human memory B cells in vitro.181  In 

order to truly develop this technique as a therapy, other cell populations will need to be targeted 

simultaneously.  Sensitized subjects have peanut-specific antibodies circulating, and treatment 

with STAL may lead to cross linking of IgE on mast cells, resulting in allergic symptoms.  

Alternatively, circulating antibodies may bind the STALs preventing them from reaching their B 

cell targets.  One report showed that the use of proteasome inhibitor, Bortezomib, for 21 weeks 

decreased quantities of free-floating IgE, but had no effect on reaction severity after challenge, 
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suggesting that cellular-bound IgE persisted.218  It is possible that prolonged treatment with 

Bortezomib in combination with STALs may result in treatment of peanut-allergic subjects.  

Overall, targeting antigen-specific B cells is a novel approach for allergy therapies that is 

effective at preventing sensitization in a mouse model of peanut allergy.  While initial results are 

promising, much work still needs to be done to develop this CD22-targeted approach as a 

treatment.   

5.3 Oral Challenge Model 

5.3.a Summary of results 

As discussed previously, there is a need for new treatments for peanut allergy.  In order 

to develop treatments in pre-clinical models of food allergy, we first need improved animal 

models of the disease.  Currently, there is not a reproducible model of peanut allergy that is 

both sensitized orally and reacts upon oral challenge.  To identify such a model, we screened 

16 strains from the genetically diverse Collaborative Cross, as described in Chapter 4.  Female 

mice from each strain were sensitized orally to peanut with co-administration of CT.  Of these 16 

strains, two reacted upon oral challenge, and one, CC027, reacted reproducibly.  We then 

characterized the immune responses in CC027 mice and compared them to well-established 

strains, C3H/HeJ and C57BL/6J.  We found that CC027 mice mounted an IgE response to 

peanut, and more specifically to the major peanut allergens Ara h 1, Ara h 2, and Ara h 3.  

Furthermore, CC027 exhibited Th2-skewed immune responses, as indicated by an increased 

ratio of IL-4 to IFNγ compared to the other two strains.  CC027 also had diminished regulatory 

responses, demonstrated by a decreased frequency of regulatory T cells and production of IL-

10.  Effector cell frequencies were increased in CC027, and basophils had decreased inhibitory 

receptor expression, suggesting that CC027 effector cells may be more easily activated.  

Finally, CC027 and C57BL/6J had detectable Ara h 2 circulating in the blood stream after 

challenge.  Levels of circulating Ara h 2 correlated with reaction severity for CC027 mice, 
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suggesting that the increased antigen absorption is essential to the oral reactions observed.   

The fact that MMCP-1 was circulating during a reaction suggests that these reactions are in fact 

IgE-mediated, though confirmation that IgE is necessary for these reactions are still needed.  

Taken together, these results demonstrate that CC027 mice are an improved, relevant model of 

peanut allergy and further characterization may provide insight into etiology of the disease in 

CC027 mice as well as in humans. 

5.3.b Future directions 

Identification of an orally reacting model of peanut allergy can be used to better 

understand the etiology of the disease.   We have shown that antigen absorption is correlated 

with reaction severity in CC027 mice.  Further experiments are needed to determine the cause 

of increased antigen absorption in these mice.  Initial Ussing chamber studies found that 

intestinal permeability after sensitization is higher in CC027 mice compared to C3H/HeJ and 

C57BL/6J, though the differences are not significant.  These studies need to be repeated with 

fluorescently labeled Ara h 2, rather than the large FITC-labeled Dextran molecule that was 

used initially, as size of the molecule may be important.  Currently the microbiome differences 

between the three strains studied both before and after sensitization are under investigation.  

Initial findings show that despite co-housing, the three strains have distinct microbiomes.  

Furthermore, the microbiome of CC027 shifts in diversity following sensitization.  Work is 

currently being done to elucidate which microbes appear to be important for both conferring 

protection as well as leading to increased sensitization.  We plan to use antibiotics to deplete 

the gut microbiome of mice and then perform fecal transplants with stool samples from other 

strains to see if this can result in transferred protection or risk of sensitization.  In addition to 

microbiome, we are currently investigating the genetic underpinnings of the observed phenotype 

in CC027 mice.  CC027 mice have been crossed with either C57BL/6J or C3H/HeJ.  F1 progeny 

have been sensitized, and mice that react as well as those that do not react following oral 
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challenge have been identified.  Genotypes of these mice are being analyzed for genomic 

regions that appear important for the oral reaction phenotype.  Our long-term goal is to find 

differences in these mice and investigate whether they can be translated to humans with the 

disease.   

 Currently our group is expanding the use of CC027 mice outside of the original model. 

Our early studies found that CC027 mice had detectable levels of peanut-specific IgE even prior 

to sensitization with peanut and CT.  We suspect that these mice mount an IgE response to 

seed storage proteins (homologous with Ara h 1, 2, and 3) contained in their chow with known 

cross-reactivity to peanut.   These findings led to the hypothesis that CC027 are capable of 

mounting an IgE response to antigen in the absence of adjuvant.  Preliminary experiments in 

which mice were sensitized orally once per week or three times per week for four weeks with 

peanut extract in the absence of adjuvant have demonstrated that these mice do in fact make 

peanut-specific IgE and that they react upon oral challenge with peanut extract.  Interestingly, 

they seemed to be sensitized in a dose-dependent manner with the mice that were sensitized 

once per week producing less peanut-specific IgE and reacting less severely than those 

sensitized three times a week.  This initial experiment needs to be repeated with a larger 

number of mice and with control groups that receive a combination of CT and peanut.  These 

preliminary results raise the question of whether CC027 mice are capable of achieving oral 

tolerance.  In a future experiment, we plan to challenge the mice with an extract created from 

their chow.  CC027 mice may serve as a model of peanut allergy in which mice can be 

sensitized orally in the absence of adjuvant and react orally.   

In addition to being sensitized without adjuvant, one pilot study on CC027 mice showed 

that both male and female mice can be sensitized orally to peanut with CT and both sexes react 

upon oral challenge.  Traditional animal models of food allergies exclusively use female mice 

because males are typically more difficult to sensitize.  This experiment needs to be repeated in 

a larger number of animals, but the initial findings are encouraging that CC027 could be used as 
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a model of peanut allergy in which both males and females react following oral challenge.  A 

model that uses both sexes would allow for sex-based differences in treatment outcomes to be 

noted in future studies.   

A model that is sensitized orally and reacts following oral challenge can be used for the 

development of an OIT model.  Pilot studies in these mice have found it difficult, though possible 

to desensitize CC027 mice over a month long regimen of treatment.  Optimization of dosing and 

time is still required.  This model will allow for further mechanistic studies on OIT as well as 

improvements in OIT such as the use of adjuvants.  Furthermore, the ability of other therapies 

including DNA vaccines and STALs, to alter oral tolerance can only be tested in an orally 

reacting model.  Therefore, CC027 mice provide a valuable tool to the food allergy research 

community as a platform for drug discovery and etiology investigations. 

5.4 Concluding Remarks 

The past two decades have seen promising results from peanut immunotherapies in 

clinical trials.  These are likely to become the first FDA-approved therapies for food allergies.  

However, they come with their limitations, requiring the discovery of new future therapies.  The 

allergy field has seen an explosion of research into disease etiology, specifically the 

contributions of the microbiome and genetics to the development of food allergy.  The ultimate 

goal of these studies is to identify targets for future therapies.  The findings presented here 

contribute greatly to possible future developments.  These results provide mechanistic insight 

into investigational allergen immunotherapies, suggesting that antibody functional differences 

are important for clinical outcome in OIT.  Additionally, a novel treatment approach that targets 

peanut-specific B cells for deletion is described in a mouse model of peanut allergy.  Perhaps 

the greatest contribution of all is the development of an improved food allergy model that can be 

used to better understand causes of the disease and allows for the identification of new therapy 

targets.  Together, these findings provide the foundation for future allergy treatments.  
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