

Background

Research Question: "In adults with dysphagia, do biofeedback techniques improve therapy outcomes?"

The patients within our systematic review acquired dysphagia as a result of: Alzheimer's Disease, Parkinson's Disease, Stroke, Head & Neck Cancer, and other unspecified neurologic injuries. Dysphagia is difficulty with swallowing. Biofeedback can be defined as the technique of using equipment to reveal to patients some of their internal physiological events, normal and abnormal, in the form of visual and auditory signals. This allows the patient to learn how to manipulate these otherwise involuntary or unfelt events (Bogaardt, Grolman, & Fokkens, 2009). The biofeedback techniques used within our systematic review include: digital accelerometry, surface electromyography (sEMG), ultrasonography, neuromuscular electrical stimulation, mechanomyography, high-resolution pharyngeal manometry, and visual biofeedback. Within the present literature, there is limited reliable research regarding the efficacy of biofeedback techniques in the treatment of dysphagia. The purpose of this systematic review was to examine biofeedback techniques alone, or in combination with various swallowing therapy techniques in order to determine their effectiveness in improved therapy outcomes.

Methods

Databases Searched:

- PubMed
- CINAHL

Search Terms:

- Dysphagia, Deglutition, Swallowing Disorders
- Biofeedback, Visual Biofeedback, Surface Electromyography (sEMG), Mechanomyography (MMG), Ultrasonography, Ultrasound

Inclusion Criteria:

- Inpatient
- Outpatient
- Cerebrovascular Accident (CVA)
- Head & Neck Cancer (HNC)
- Neurodegenerative
- TBI

• Age 19 or older.

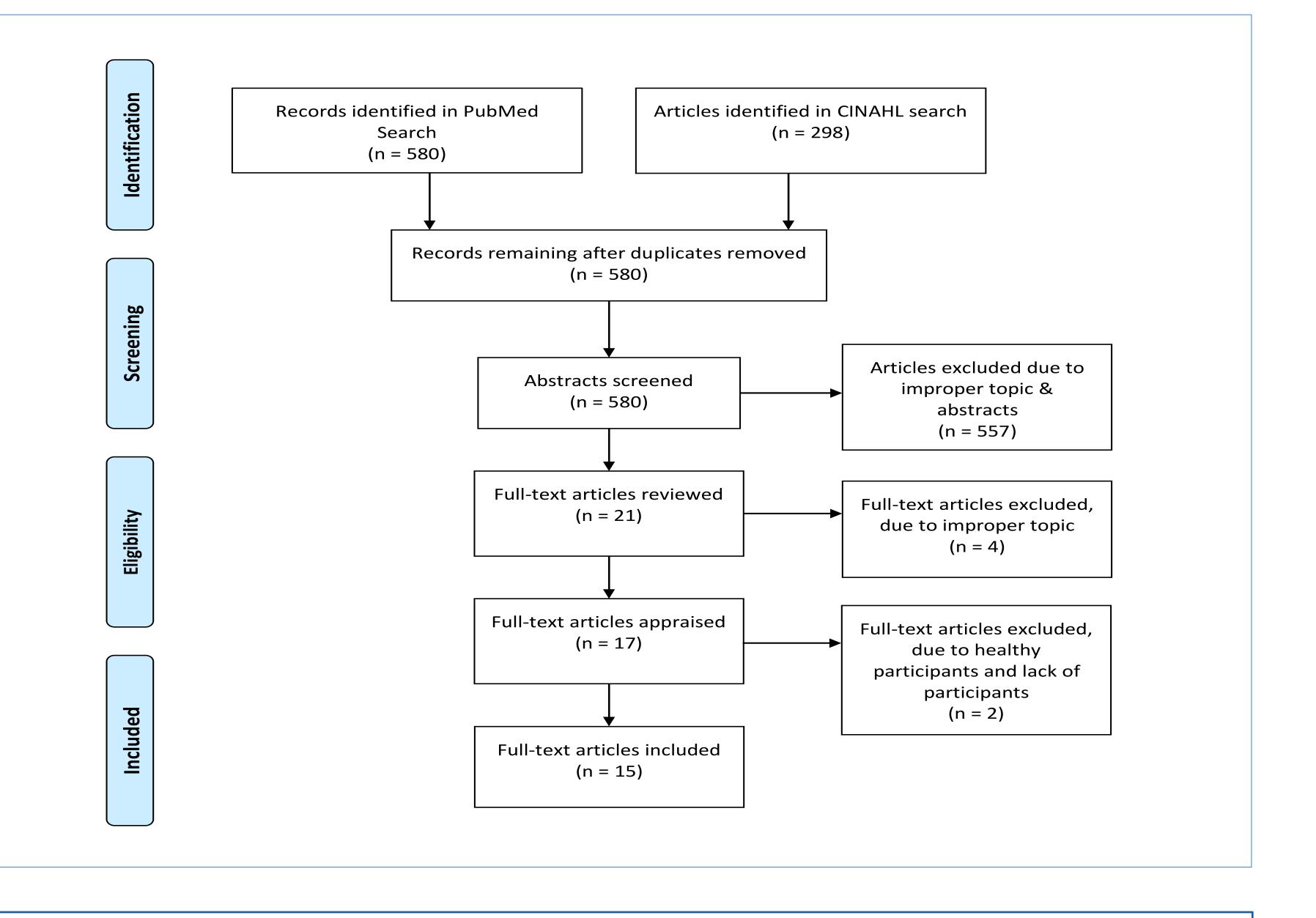
- **Exclusion Criteria:**
- Private Practice
- Non-peer reviewed journals
- Non-English Articles.

Appraisal Tool:

- The Joanna Briggs Institute Critical Appraisal Tool
- Intra-rater reliability was established at 95% on the quality appraisal reviews

Biofeedback Techniques in the Treatment of Dysphagia Addison Francis, Alexandra Hay

Author	Year	Study Design	Sample Size	Etiology of Dysphagia	
Athukorala et al.	2014	Quasi-Experimental	10	Parkinson's Disease	
Blyth et al.	2017	Case Report	2	Head & Neck Cancer	
Bogaardt et al.	2009	Quasi-Experimental	11	Stroke	
Carnaby-Mann et al.	2010	Case Control Study	24	Not Specified	
Constantinescu et al.	2017	Quasi-Experimental	22 10	Healthy Adults Head & Neck Cancer	
Crary et al.	2000	Text & Opinion	N/A	N/A	
Crary et al.	2004	Quasi-Experimental	25 20	Stroke Head & Neck Cancer	
Felix et al.	2008	Quasi-Experimental	4	Parkinson's Disease	
Huckabee et al.	2014	Text & Opinion	N/A	N/A	
Krishnan et al.	2013	Case Report	1	Parkinson's Disease	
Li et al.	2016	Case Control Study	20	Stroke	
Martin-Harris et al.	2015	Quasi-Experimental	30	Head & Neck Cancer	
O'Rourke et al.	2017	Text & Opinion	1	Surgical Incident	
Reddy et al.	2000	Case Report(s)	5	Stroke & Cancer	
Tang et al.	2017	Quasi-Experimental	103	Alzheimer's Disease	


Results

Author	Biofeedback	
Athukorala et al. (2014)	sEMG	"This skill-based training appro related quality of life improvem
Blyth et al. (2017)	Ultrasound	"This study establishes that ult rehabilitation following partial g
Bogaardt et al. (2009)	sEMG	"The use of sEMG as biofeed effective adjunct to standard the
Carnaby-Mann et al. (2010)	sEMG	"The McNeill Dysphagia Thera traditional dysphagia therapy s
Constantinescu et al. (2017)	sEMG & MMG	"Biofeedback provided as an a employ sEMG technology, as t and overall test-retest reliabilit
Crary et al. (2000)	sEMG	"Clinical application of sEMG to dysphagia rehabilitation. It is s techniques" (Pg. 124).
Crary et al. (2004)	sEMG	"Results indicated that this ap of patients in both groups in a greater functional improvement
Felix et al. (2008)	Digital BF Manometer	"The effortful swallow maneuv therapeutic resource in the rel disease patients" (Pg. 226).
Huckabee et al. (2014)	sEMG	"Historically sEMG biofeedbac swallowing maneuvers. Recent increasing skill and precision of protocol" (Pg. 50).
Krishnan et al. (2013)	Digital Accelerometry	"The client made consistent ar in combination with biofeedbac
Li et al. (2016)	Game-Based BF	"Laryngeal elevation training c change in hyoid bone displace rate in patients with post-strok
Martin-Harris et al. (2015)	Visual BF	"Improvements in respiratory-s protocol and respiratory phase chronic dysphagia, with favora 885).
O'Rourke et al. (2017)	High Resolution Pharyngeal Manometry	"HRPM biofeedback therapy is appears to improve accuracy of
Reddy et al. (2000)	Accelerometry	"The biofeedback therapy prov quantitative measures of laryn
Tang et al. (2017)	EMG	"Neuromuscular electrical stim swallowing function in patients incidence of adverse outcome

Articles that Underwent Appraisal and Data Extraction

Results – Directly Quoted

- roach produced functional, biomechanical, and swallowingments" (Pg. 82).
- Iltrasound visual feedback is feasible in dysphagia glossectomy" (Pg. 2215).
- back in the treatment of chronic dysphagia after stroke is an therapy for swallowing disorders" (Pg. 205). rapy Program resulted in superior outcomes compared with
- supplemented with sEMG biofeedback" (Pg. 743). adjuvant to dysphagia therapy in patients with HNC should this sensor type yielded better signal-to-noise ratio (SNR)
- ity" (Pg. 90). biofeedback techniques is relatively new to the area of still unknown who will benefit most or least from these
- pproach improved functional swallowing status in the majority time-limited framework. These patients also experienced nt, thus improving their cost-benefit outcome" (Pg. 164). iver reinforced by using biofeedback appears to be a ehabilitation of oropharyngeal dysphagia in Parkinson's
- ack has been used to facilitate mastery of effortful-type ent research suggests great benefit of this modality for of movement using a targeted, skill-based rehabilitation
- and rapid progress when compensatory strategies were used ack therapy for hyolaryngeal excursion" (Pg. 98).
- combined with game-based biofeedback augments the cement and FOIS scores, and increases the NG tube removal oke dysphagia" (Pg. 773).
- -swallowing coordination can be trained using a systematic se-lung volume-related biofeedback in patients with HNC and rable effects on airway protection and bolus clearance" (PG.
- is well tolerated, results in high patient satisfaction, and of and adherence to home exercise programs" (Pg. 58).
- ovides a dynamic, real-time, visual feedback for noninvasive ngeal elevation during swallowing" (Pg. 369). nulation and EMG-biofeedback treatment can improve ts with Alzheimer's Disease and significantly reduce the les" (Pg.1).

The effectiveness of biofeedback techniques alone or in conjunction with other swallowing therapy techniques may vary as a result of: patient motivation, cognition, etiology, and environmental factors such as family support. Biofeedback techniques are noninvasive, can be used in a variety of clinical settings, and can be used for the assessment or treatment of dysphagia. The limitations of biofeedback techniques include: instrumentation/user error, inappropriate patient positioning, and failure to consider patient factors such as anxiety or fatigue (Crary & Groher, 2000).

Fourteen of the articles studied within this systematic review indicated that biofeedback techniques lead to improved therapy outcomes. However, due to small sample sizes and a lack of randomized controls, the reliability of these studies is questioned. One out of the 15 articles included in this systematic review determined that biofeedback was not an effective treatment for patients with dysphagia. This systematic review revealed that randomized control studies are necessary to determine the efficiency and efficacy of biofeedback techniques in the treatment of adults with dysphagia. These studies should have defined treatment protocols (biofeedback alone or in conjunction with), representative sample sizes, blinding, defined etiology, and patient follow-up measures. Further research is also needed to determine differences in outcomes across etiologies and the various biofeedback techniques.

References are available upon request. Addison Francis: addison francis@med.unc.edu Alexandra Hay: <u>alexandra hay@med.unc.edu</u>

Clinical Implications

Discussion

References