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Abstract 

 

Margaret Carrel: Relationships between flood control and cholera in Matlab, Bangladesh 

(Under the direction of Michael Emch) 

 

Implementation of flood control strategies has been empirically associated with rises in 

disease rates in the developing world.  This research examines the impact of flood protection 

measures on cholera incidence among a rural Bangladeshi population.  Using longitudinal 

health and demographic data collected over 21 years, analysis of clustering patterns and 

statistical relationships between cholera incidence and environmental factors was conducted 

for timeframes prior to and following the introduction of flood control in Matlab, 

Bangladesh.  Results indicate that alteration of normal flooding patterns both temporally and 

spatially shifted cholera occurrence within the study area, and that these shifts demonstrate 

further differentiation when information on cholera strain is included in the analysis.  These 

outcomes suggest that introducing flood protection to rural Bangladesh will have significant 

but complex effects on cholera incidence patterns.  
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Chapter 1 

 

Introduction 

 

 

 Diarrheal diseases are responsible for the deaths of over 2 million people annually, 

representing 4% of total worldwide mortality, and disproportionately affect the poverty-

stricken (World Health Organization, 2006).  The agents of diarrheal diseases vary from 

viruses to bacteria to amoebas.  This wide-ranging group of causative agents, all with a single 

common and deadly symptom, makes spatial distribution of diarrheal disease incidence a 

fascinating and complex topic of study.  Each disease has its own particularities, including 

variables such as vastly different infective doses, temperature of water preferred, populations 

affected, and seasonality.  Bangladesh is a prime area to study spatial patterns associated with 

these diseases because it is a country where millions of people live in close proximity not 

only to other people, but also to open and unsafe water sources.  It is also a country that is 

actively engaged in alteration of its aquatic ecosystems, a process often associated with 

changed disease ecologies.   

 Bangladesh is subject to both annual and abnormal flooding.  The country sits at the 

confluence of three major Asian rivers, the Ganges, Brahmnaputra and Meghna.  These rivers 

have a catchment area of over 1.5 million km
2
, more than 11 times the size of Bangladesh 

itself.  This large catchment, when combined with the annual monsoon rains, means that in a 

normal flood year over 20% of the country may be underwater (Thompson, 1995).  In bad 

years, such as in 1988, more than half the country can be flooded.  In response to both annual  



 2 

and unexpected devastation due to flooding, the Government of Bangladesh has implemented 

a series of flood control programs.  These programs usually entail construction of 

embankments along the country’s larger rivers, with the hope that such structures will protect 

the enclosed populace.   

 During the creation and implementation of successive water management plans, 

consideration was given by the government to possible impacts on agricultural land 

availability and production, economic benefit, gender equality and other social factors, and 

flood control capabilities (Centre for Water Policy and Development , 2001).  Much less 

attention was paid, however, to the possible impacts of embankments on the transmission of 

water-related diseases, such as cholera.  Such an oversight, given the continuing presence of 

these diseases among Bangladeshis, is striking.  This proposal seeks to determine what, if 

any, impact flood control embankments have had on the patterns of incidence rates of cholera 

in Matlab, Bangladesh.   

 Multiple empirical studies have examined the impact of water construction projects 

on communicable disease rates.  With the exception of onchocerciasis, whose vector habitat 

is fast moving streams, the rates of nearly every disease whose host or vector depend on 

standing water sources increase when water resource management programs are implemented 

by governments or NGOs (Hunter, 2003; Ali et al., 2002a; Emch, 1999; Hunter et al., 1982; 

Keiser et al., 2005; Singh et al., 1999; Sow et al., 2002; Waddy, 1975).  This is true in the 

developing world as well as in the United States.  Hughes & Hunter (1970) argue that 

programs which alter man’s environment result in the formation of new ‘ecological 

contracts,’ contracts that typically have hidden or unanticipated costs.  As Sow et al. (2002) 

contend, “feasibility studies mainly emphasize the economic benefits rather than the 
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environmental and health hazards of water-resources developments.”  The impacts of water 

management strategies, which often require but do not receive long-term upkeep and 

continued investment, must be examined longitudinally, as their effects will be felt for 

decades. 

 In Matlab there is a unique opportunity to conduct just such a longitudinal analysis.  

Since 1966 the resident population has been under demographic and health surveillance 

conducted by the International Centre for Diarrheal Disease Research, Bangladesh 

(ICDDR,B).  In Matlab in 1989 a Government of Bangladesh project was completed under 

the auspices of the Flood Action Plan, the Meghna-Dhonagoda Irrigation Project (MDIP), 

which introduced flood protection to approximately half the study area.  The ICDDR,B data 

spans the pre- and post-MDIP time periods and both the protected and unprotected 

populations, allowing us to examine how the completion of the MDIP may have impacted the 

cholera experience of Matlab’s residents.  The overall research questions are 1) Does intra- 

and inter-area spatio-temporal variation in cholera incidence exist between the flood 

protected and non-protected areas of Matlab?  2) Can this variation be attributed to the 

implementation of flood protection?  To address these questions, two separate, but 

interrelated, analyses were conducted.  The structure of this thesis is as follows: an overall 

introductory chapter, a second chapter outlining the first analysis, a brief bridge chapter, a 

fourth chapter describing the second analysis and lastly an overall conclusion chapter.    

 The first analysis examined over a 21-year timeframe (1983-2003) whether cholera 

incidence in Matlab clustered in both space and time and whether this clustering behavior 

had changed with the introduction of flood protection.  In addition to flood protection status, 
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other variables that could possibly modify the cholera incidence relationship, such as 

seasonality of incidence and cholera type, were examined via cluster analysis.   

 The second analysis examined how the strength of two environmental variables, flood 

protection status and river proximity, in explaining cholera outcomes had changed since the 

introduction of flood protection to Matlab.  The analysis stratified the interactions according 

to season and cholera strain.   Changes in the correlative relationships between flood 

protection status and river proximity on cholera incidence were explored at the individual 

bari level and then at the neighborhood level, to examine whether the impact of the MDIP 

construction varied according to scale.  

 

Background 

 Since the 1950s, flood control and water management have been central issues to first 

the East Pakistani government and later the Bangladeshi government.  Starting with the 20-

year Water Master Plan in 1964, and continuing through today, heavy emphasis was placed 

on the construction of embankments around the country (Rogers, Lydon, Seckler & Pitman, 

1994). Initially, water management schemes were top-down oriented.  There was little or no 

public input on decisions that had a very tangible effect on the daily lives of Bangladeshis.  

Water plans since 1999, however, have involved greater public participation and worked to 

address issues such as gender equity, social justice and environmental awareness (Centre for 

Water Policy and Development, 2001).  Yet, there is still little consideration given to the 

potential implications for disease. 

 Among the thousands of kilometers of embankments that have been constructed is the 

Meghna-Dhonagoda Irrigation Project (MDIP), built in 1987-8 and located in Matlab.  The 
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MDIP, completed between two particularly sizeable flood years for Bangladesh, consists of a 

60km ring embankment, irrigation and drainage canals, culverts, bridges and two pumping 

stations (Emch, 2000).  Matlab is a rural region, located ~50km southeast of Dhaka where the 

Ganges and Meghna rivers join to form the Lower Meghna.  Running from north to south 

through Matlab is the Dhonagoda River (Figure 1).  The MDIP embankment along the 

Dhonagoda divides Matlab into two parts, one which experiences the seasonal flooding of the 

Dhonagoda and one which is typically protected.  The protected area makes up about 40% of 

Matlab’s 184km
2
 (Ali et al. 2002a). 

 The population of Matlab is over 200,000 persons, with a population density of 

~1000 persons per square kilometer (Ali et al. 2002a).  The people of Matlab live within a 

structure of baris, or patrilineal household groupings. Since 1966 the population of Matlab 

has been under demographic and health surveillance by the International Centre for 

Diarrhoeal Disease Research, Bangladesh (ICDDR,B).  Each resident of Matlab is assigned 

an identification code, as is their household, and twice a month each household is visited by a 

trained community health worker who records demographic information such as births, 

deaths, marriages and illnesses (Emch, 1999).  Health information about the population of 

Matlab is gathered both at ICDDR,B’s hospital and treatment centers and by the community 

health workers who visit each bari.  Surveillance data shows that diarrheal and other 

infectious diseases are highly endemic to the population.   

 

Cholera 

 The bacterium Vibrio cholerae (V. cholerae) is the agent responsible for cholera and 

is a natural part of the aquatic environment of Bangladesh (Faruque et al. 2005; Jensen et al. 
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2006).  There are multiple types of V. cholerae that cause epidemic cholera.  Until 1992, all 

cholera cases in Matlab were caused by the O1 serogroup and its two biotypes, Classical and 

El Tor.  Classical V. cholerae was responsible for the majority of cholera between 1966 and 

1972, El Tor predominated from 1973-1982, and then Classical and El Tor cocirculated until 

1988 when Classical disappeared.  In 1993 a new serogroup, O139 was identified.  O139 and 

El Tor have cocirculated since that time (Longini et al., 2002).   

 Exposure to the V. cholerae bacteria, of any type, often does not result in infection 

and symptoms, as the infective dose is approximately 1 million bacteria.  Exposure can either 

be primary, through contact with V. cholerae in aquatic reservoirs, or secondary, through 

fecal-oral contamination from an infected individual.  When infection does occur, treatment 

with antibiotics and oral rehydration therapy are effective 99% of the time.  For individuals 

who do not receive treatment the death rate can reach 60% (Huq et al., 2005).   

 Cholera in Bangladesh exhibits high seasonality, with large outbreaks in September 

through December, at the end of monsoon season.  A smaller outbreak occurs in April, just 

prior to the monsoons (Faruque et al., 2005; Longini et al., 2002).  To help explain this 

seasonality, cholera studies have both examined the genetics of the bacterium and focused on 

environmental determinants such as water temperature, rainfall amount, and plankton levels.  

Recent studies also suggest that the presence or absence of bacteriophages in water may 

impact numbers of V. cholerae, and thus the infectivity of water supplies (Faruque et al., 

2005; Jensen et al., 2006).   

 Several studies have been undertaken to determine risk factors associated with 

cholera in Matlab.  Ali et al. (2002a) found an association between cholera and proximity to 

surface water bodies.  Emch (1999) describes six factors that are statistically significant in 
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cholera transmission: multiple households using common latrines, living within a flood-

controlled area, high-density use of tubewells, population within a bari, areal size of bari and 

local neighborhood population density.  Myaux et al. (1997) found a correlation between 

cases of “cholera-like” diarrhea and parental education status, population density and use of 

sanitary latrines.   Ali et al. (2002b) also found that educational status and living within a 

flood-controlled area were risk factors for cholera.   

 

Theoretical Framework 

 The field that supplies the theoretical and conceptual frameworks for this study is 

medical geography.  Spatial and ecological analysis of disease incidence is foundational to 

the field, and practitioners draw on information and knowledge from multiple fields, 

including epidemiology, sociology, hydrology, and biology.  Medical geographers such as 

Jacques May (1958) and John Hunter (1974) argued that a disease does not exist 

independently of an environment and a host, and that a comprehensive understanding of 

illness must address these factors in addition to the characteristics of the illness itself.  

Cholera, or rather the adverse effects of infection by V. cholerae, exists in a person at a 

place.  Two fields of literature in particular will prove especially useful in the proposed 

study.  The first views human health as the result of a series of intricate interactions, 

represented graphically as the triangle of human ecology.  The second represents a history of 

empirical studies that examine how alterations to environments, especially aquatic 

ecosystems, change or sustain disease interaction and systems.      
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The Triangle of Human Ecology 

 Dubos (1987) describes the “process of living” as an interaction between humans’ 

internal and external environments.  Melinda Meade (1977) proffers an alternative to this 

dualistic view with the more comprehensive and versatile triangle of human ecology (Figure 

2).  The triangle’s three vertices are culture, environment and population, and the interplay 

between the three provides a foundation for integrating and analyzing factors that contribute 

to disease ecologies.     

 Culture in this framework is used to mean not only observable aspects of behavior, 

such as dietary preferences and house type, but also perceptions of reality and understanding, 

for instance the perceived risk of cholera in impounded water.  The environment point of the 

triangle refers not to an exhaustive study of every aspect of the surrounding world, but rather 

a systemic understanding of a daily habitat.  Population within this framework is a different 

category than for anthropologists and sociologists.  In Meade’s triangle it denotes the 

characteristics of people as a biological organism (age, sex and genetics) which directly 

impact their interaction with culture and environment, rather than people as social beings.  

The flexibility and utility of Meade’s triangle is that it is not static, a temporal aspect may be 

applied to the interactions the triangle describes.  This framework can thus be utilized to 

examine a changing human disease ecology through time.    

 The holistic view proffered by Meade’s triangle is essential in medical geography.  

While the nature of infective agents do impact the way the disease is experienced, of greater 

import is the way an individual lives their life, their choices and habits and daily 

environmental interactions.  To truly understand a disease pattern, you must study people and 

aspects of their lives (Dubos, 1965).   
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Environmental Alteration & Disease Systems 

 In Mirage of Health, Rene Dubos writes that any modification of nature’s balances, 

large or small, comes with consequences because of the complexity of interrelationships in 

the natural world.  He cautions against hasty or ill-considered changes to an ecosystem that 

could have ramifications for the health of the surrounding populace.  Charles Hughes and 

John Hunter (1970) state in “Disease and ‘Development’ in Africa” that programs that alter 

man’s environment, be it population movement or dam construction, result in the formation 

of a new “ecological contract,” one which typically has hidden costs.   

 One of the most powerful ways that humans have taken control of their environment 

and altered it to suit their needs is through development and control of water resources.  

Multiple studies have examined the impacts of water management systems on disease in 

Africa and Asia (Ali et al., 2002; Emch, 1999; Hunter et al., 1982; Keiser et al., 2005; Singh 

et al., 1999; Sow et al., 2002; Waddy, 1975).  Hunter, Rey & Scott (1982) advise that the best 

way to determine the health impact of changes to water systems is to directly compare 

disease data pre- and post-development using both quantitative and qualitative methods.  If 

this is not possible, an alternative method is to evaluate disease within the bounds of the 

developed area against a similar region outside the bounds.  They go on to argue that 

increases in parasitic and infectious diseases due to ecological interference in water systems 

are empirically predictable. 

 Human imprint on the earth and its systems is ever-increasing, with short-term 

anthropocentric organization replacing long-term, finely tuned and delicate systems (Farvar, 

1973).  As Audy (1961) puts it, with a dangerous combination of new methods and an 
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ignorance of the possible consequences, new niches for disease can be created with 

increasing frequency.  Although the way humans experience disease is being dramatically 

altered by current environmental change, such negative impacts are not inevitable.  The costs 

to human health must be calculated in the planning of future human/environment interactions 

and negative impacts mitigated. 

 Studying the impact of the MDIP on cholera in Matlab can provide policymakers 

with information on how introducing flood protection measures in poor, rural and flood-

prone areas can change waterborne diarrheal disease incidence.  Analyzing cluster patterns of 

cholera prior to and after the introduction of flood protection is one method for determining 

whether this environmental modification has significant impacts on disease occurrence.    
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Figure 1.1: Location and Main Physical Features of Matlab, Bangladesh 
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Figure 1.2: Triangle of Human Ecology (Meade, 1977)
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Chapter 2 

 

Spatio-temporal clustering of cholera: 

The impact of flood control in Matlab, Bangladesh, 1983-2003 

 

Abstract: The provision of flood protection to a vulnerable population could have significant 

impacts on the incidence of cholera, a waterborne disease.  Using longitudinal health and 

population data gathered over 21 years, cluster analysis was conducted to determine if 

substantive changes have occurred in the spatial distribution of cholera incidence since the 

construction of flood protection structures in a rural area of Bangladesh.  Results indicate that 

both temporal and spatial shifts in cholera incidence have occurred, but that these shifts are 

not universal, differing according to cholera type.   

 

 

Keywords: cholera, Bangladesh, cluster, flood protection, spatial scan statistic 
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Introduction & Background 

 Alteration of natural environments for development purposes often have 

unanticipated consequences for disease ecologies as traditional human-environmental 

interactions are changed.  Studies of modified aquatic systems in Africa and Asia, involving 

the damming or impoundment of water sources, have almost universally shown a 

magnification of disease incidence (Hughes & Hunter, 1970; Hunter, 2003; Hunter, Rey & 

Scott, 1982; Keiser et al., 2005; Singh, Mehra & Sharma, 1999; Sow, de Vlas, Engels & 

Gryseels, 2002; Waddy, 1975).  This study sought to determine whether the introduction of 

flood protection to a rural region of Bangladesh in the late 1980s resulted in a similar change 

in cholera incidence through an exploration of spatio-temporal clustering patterns. 

 Matlab, Bangladesh is a rural region located approximately 50km southeast of the 

capital city, Dhaka (Figure 1).  Approximately 200,000 people live in Matlab, with a 

population density of nearly 1000 people per square kilometer.  The majority of Matlab’s 

residents are Muslim and engaged in agricultural production, primarily of rice.  Since 1966, 

Matlab has been the site of demographic and health surveillance administered by the 

International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B).  According to 

ICDDR,B hospital records, cholera and other diarrheal diseases were endemic to the area in 

the 1960s and continue to persist today.       

 Running from north to south through Matlab is the Dhonagoda River.  The 

Dhonagoda floods annually during the monsoon season, resulting in fields, roads and 

households under several feet of water.  In the 1980s, Matlab was targeted by the 

Government of Bangladesh as a site for flood mitigation efforts.  Completed in 1989, the 

Meghna-Dhonagoda Irrigation Project (MDIP) resulted in flood protection for approximately 
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half of the Matlab study area (Emch, 2000).  The MDIP consisted of construction of a large 

earthen embankment along the northern edge of the Dhonagoda, as well as the installation of 

culverts, bridges and pumping stations (Ansary, Fulton, Bhuiya & Chowdury, 1997).  The 

population inside the flood protected area still receives massive amounts of rainfall during 

the monsoon, but is not subject to the Dhonagoda overflowing its banks as water from 

upstream pours into the area.  For Matlab residents living outside the flood protected area, 

seasonal patterns continue much as they did before, with perhaps slightly increased flood 

levels as water that previously spread across the area north of the river is now forced south 

by the embankment.      

 To explore this division in how Matlab’s residents experience the rainy season and its 

possible impact on their cholera experience, we looked at occurrence of hot-spot clusters in 

both space and time.  We endeavored to answer two questions: 1) Does incidence of cholera 

cluster in both space and time in Matlab? 2) Have cluster patterns changed since flood 

protection was introduced?  We hypothesized that not only did cholera, a highly infectious 

and transmissible disease, cluster in Matlab, but that there would be significant changes in 

both the timing and location of clusters.  These changes in cluster patterns would act as 

indicators that human-environmental interactions which lead to cholera infection were 

changed by the introduction of flood protection.  Previous studies conducted over shorter 

time period have shown residence in the flood protected area of Matlab to be a risk factor in 

cholera incidence (Ali, Emch, Donnay, Yunus & Sack, 2002b; Emch, 1999; Emch, 2000), 

and we were interested in exploring whether this relationship would be expressed in our 

longitudinal cluster analysis.   
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 Cholera in Bangladesh exhibits high seasonality, with incidence peaking in 

September through December.  There is typically a smaller outbreak in April or May, just 

prior to the monsoon (Faruque et al., 2005; Longini et al., 2002).  Although the precise cause 

triggering the outbreaks during the rainy season are not understood, they have been 

correlated with increases in water levels, copepod counts, plankton levels and bacteriophage 

populations (Colwell et al., 1992; Faruque, 2005; Huq, 2005).  The dry season outbreaks, in 

comparison, occur when surface water sources are at their lowest point.  At this point in the 

year, residents of Matlab are using depleted water sources harboring potentially dense 

populations of Vibrio cholerae bacteria (hereafter V. cholerae).     

 There are multiple types of V. cholerae bacteria that cause epidemic cholera, and 

well-documented and significant shifts have taken place in the types responsible for the 

majority of cholera cases in Matlab.  Two cholera serogroups exist, O1 and O139, and within 

the O1 serogroup there are two biotypes: Classical and El Tor (Longini et al., 2002).  

Classical and El Tor cholera co-circulated in Matlab at the beginning of the study period until 

1988 when Classical disappeared.  El Tor then predominated until the highly virulent O139 

emerged in 1993 (Ali, Emch, Donnay, Yunus & Sack, 2002a; Longini et al., 2002).  

   We anticipated finding no differences across pre-MDIP Matlab in spatial patterns of 

cholera clusters, thinking instead that the reported clusters would be most defined by 

seasonal variation rather than spatial.  In comparing the post-flood protection clusters to the 

pre-flood protection clusters we thought that distinct spatial patterns would be seen, 

particularly in the rainy season.  The rainy season would be the time of most pronounced 

spatial differences in clustering if flood protection did impact cholera incidence since it is 

only in the rainy season that the MDIP embankment confers any flood protection.  In 
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addition to comparing pre-MDIP and post-MDIP clustering for indications of protection or 

risk afforded by flood protected status, we chose to explore cholera clustering by biotype and 

serogroup, to see if flood protection had different mediating impacts based upon cholera 

type.  It was anticipated that all types of cholera would exhibit similar clustering patterns to 

those established in the 1983-1989 and 1990-2003 analyses.   

 

Data 

 We drew on health, demographic and geographic datasets to evaluate our research 

questions.  Health and population data was gathered under the auspices of ICDDR,B’s Health 

& Demographic Surveillance System (HDSS), in operation since 1966.  Every resident of 

Matlab is assigned a unique identification number in the HDSS that connects them to a 

village, a bari and a household.  A bari is a patrilineally connected grouping of households.  

Twice monthly, each bari is visited by a trained ICDDR,B community health worker and 

information on demographic events such as births, deaths and migrations is recorded 

(Myaux, Ali, Felsenstein, Chakraborty & de Francisco, 1997).   

 In addition to recording demographic information and providing basic health and 

nutrition information, the ICDDR,B community health worker also inquires about illness in 

the bari and makes referrals for hospitalization at either the main ICDDR,B hospital in 

Matlab town or one of the three subcenters located in the area.  Treatment at these facilities is 

both free and specialized in the treatment of diarrheal diseases, and residents are also 

provided free transportation to the treatment centers if they cannot make the trip on their own 

(Ali, Emch, Donnay, Yunus & Sack, 2002a; Emch & Ali, 2003).  For this reason, we make 

the assumption that all cholera cases are reported to and treated by ICDDR,B health facilities.  
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The identification numbers of Matlab’s residents are recorded by the hospital and connected 

to the demographic information recorded for their households and baris by database 

managers at ICDDR,B’s headquarters in Dhaka.   

 We created a database of all 9580 laboratory-defined cholera cases observed in 

Matlab from January 1, 1983 to December 31, 2003.  This study period was chosen to give a 

seven year baseline of cholera distribution before the MDIP construction was completed 

(1983-1989), followed by 14 years (1990-2003) where cholera patterns could differentiate 

between the flood protected and unprotected area.  From the HDSS, we were also able to 

gather information about annual mid-year populations for each household, aggregated to the 

bari level.  The bari is the unit of analysis in this study because it is the smallest scale 

population unit that can make use of a Geographic Information System (GIS).  

 A GIS database that is accurate within 10m was created for Matlab by digitizing 

photographs and satellite images (Figure 2) (Emch, 1999; Ali, Emch, Ashley & Streatfield, 

2001).  Each bari within Matlab has a unique identification number as assigned by the 

HDSS.  This bari ID is the common unit that allows for integration of cholera cases, 

background population counts and geographic location within the study area.  A total of 7490 

baris had both background population data and their geographic locations mapped in the 

GIS.  A master database of monthly cholera counts and mid-year population for each of the 

7490 baris was created and queried for subsequent cluster analysis.    

 

Methods 

 This study is interested in local clustering of cholera incidence, the scale at which a 

spatial scan statistic has been found to be good at detecting clusters (Song & Kuldorff, 2003).  
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SaTScan™ is freely available software that implements a space-time scan statistic for point 

data (Kulldorff, 1997; Kulldorff & Nagarwalla, 1995).  It has been frequently used in cluster 

analysis of both infectious and chronic diseases (Gosselin, Lebel, Rivest & Douville-Fradet, 

2005; Polack et al., 2005; Fang, Kulldorff & Gregorio, 2004), and was previously used by 

Emch & Ali (2003) to analyze cholera incidence over a 3-year timeframe.  SaTScan detects, 

at the local level, events that are excessive and then tests whether those excesses could have 

occurred randomly.  It does so by moving a cylindrical window over the study area, centering 

on one data point (in this case each bari) after another.  At each point the radius of the 

scanning window is varied according to user-defined spatial parameters.  At the same time, 

the height of the cylinder is varied according to user-defined temporal parameters.  The result 

of this process is a collection of overlapping cylinders that each represent a possible space-

time cluster.  For each cylinder the null hypothesis, that disease risk is the same inside as 

outside the cylinder, is tested against the alternative hypothesis, that risk is elevated within 

the cylinder.  A p-value is calculated based on Monte Carlo simulations, in this case 999, as 

is a likelihood-ratio.   

 SaTScan offers a number of advantages for the analysis of cholera in Matlab.  Firstly, 

when utilizing the Poisson process option, inhomogeneity of background population is not a 

confounding factor.  Under the Poisson null hypothesis, the expected number of cases at each 

point is assumed to be determined by the proportion of the total population connected to that 

point.  In this way, clusters that are detected are not an artifact of higher populations in some 

baris.  Secondly, SaTScan allows for the introduction of temporal variation in background 

population.  This is important when considering cholera over a 21-year timeframe, as new 

baris are established or old baris are destroyed by flooding.  Thirdly, SaTScan does not make 
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a priori assumptions about cluster location, size or duration, but rather considers all potential 

options.  As a result, clusters indicated by SaTScan are not biased by either a bari’s flood 

status or whether cholera was diagnosed in the rainy or dry season.   And fourthly, SaTScan 

not only indicates that the null hypothesis has been rejected, but at what location in the study 

area it was rejected.  The interface between SaTScan and commercially available GIS 

software (ArcGIS 9.1) is such that detected clusters can easily be mapped and assigned either 

flood protected or unprotected status, based on the bari defined as the cluster centroid.   

 Our initial SaTScan analysis utilized all cholera cases over the entire 21-year 

timeframe and looked for purely temporal and purely spatial clusters in addition to the spatio-

temporal clusters explored in all subsequent analyses.  The space and time limitations were 

set to 50% of the study population and 50% of the study period.  This allowed the program to 

scan for clusters of both large and small size and duration.  The purpose of this analysis was 

to gain a sense of how cholera clustered in Matlab for the entire 21-year study period, 

whether the most statistically significant clusters occurred before or after the MDIP divided 

the study area into two.  Results reported by SaTScan do not indicate typical cholera patterns 

in Matlab, instead they represent cholera events that are unusually high or low given 

background rates.  Exploring clusters over the entire 21-year timeframe informed future 

analyses by highlighting certain years and certain areas that had uncharacteristic cholera 

incidence.    

 Next, cholera cases and background bari populations were divided into two time 

periods, 1983-1989 and 1990-2003, which were analyzed separately for significant spatio-

temporal clusters.  The first dataset was defined as a baseline of how cholera initially 

clustered in Matlab, in the years before there was any differentiation in human-environment 
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interactions due to flood protection.  The second dataset was used to determine if there was 

observable differentiation in size and timing of clusters in flood protected and unprotected 

areas.  Rather than using the SaTScan defaults of 50% space and 50% time as the upper 

bounds for detected clusters, we chose to artificially lower the time limit to one month and 

the space limit to first 5% and then 10% of the study area.  This artificial spatio-temporal 

scaling allowed us to explore micro-scale clustering of cholera within Matlab.  By setting the 

time limit to one month, we were able to detect clusters that could be categorized as either 

occurring during the rainy season (June through November) or the dry season (December 

through May).   

The low spatial bounds provided two benefits, firstly, they meant that the majority of 

clusters were wholly contained within the protected or unprotected areas and secondly, 

cholera in Matlab has been shown to be affected most by those neighbors who live within a 

small distance of a resident’s bari, rather than by residents several kilometers away.  The 

results returned by SaTScan with these small bounds were therefore more representative of 

small pockets of cholera that could be seen as neighborhood-level interactions rather than a 

process occurring at the level of the entire study area.         

 Finally, the 9580 total cholera cases from 1983-2003 were grouped according to 

laboratory-defined serogroups and biotypes.  Cluster analysis was performed according to 

four divisions: Classical, El Tor, O1 (both Classical and El Tor) and O139.  Each was 

analyzed over the entire 21-year time period, with one month temporal bounds and 5% 

spatial bounds.   

 We did not conduct separate cluster analyses for the flood protected and unprotected 

areas.  Doing so would have set another artificial bound on the analysis, given that the 
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significance of clusters would be reported in terms of only half of the study area’s population 

and case counts.  Additionally, comparability of the two areas is already possible given 

SaTScan’s identification of specific cluster centroids and the ability in ArcGIS to determine 

if said centroid is in the flood protected or unprotected area.  SaTScan results were imported 

into geographic information system software (ArcGIS 9.1) and joined to the Matlab bari 

layer to create maps of cluster centers and radii.   

 

Results   

 Results from the 1983-2003 analysis showed five significant clusters, three high and 

two low (Table 1).  We explored both high and low clusters because areas with lower than 

expected rates are of as much interest as those places with higher rates.  The first low cluster, 

Cluster #1, was purely temporal, and took place between 1999 and 2003 over the entire study 

area.  Purely temporal clusters are exempt from the 50% spatial bound, and the inclusion of 

all of Matlab’s baris in this cluster is an indication that cholera prevalence in Matlab has, 

irregardless of spatial location, fallen considerably in the past several years.  This is likely the 

result of overall improvement in socioeconomic status of rural Bangladeshis.  The other low 

cluster (Cluster #2) was purely spatial and centered in the unprotected northeast section of 

Matlab, and lasted the entire 21-year time period.   

 Of the three high clusters reported by SaTScan, one was purely spatial and the other 

two were spatio-temporal.   All three were located in the southern and western portion of 

Matlab (Figure 3).  Cluster #3 is a purely spatial cluster that took place between 1983 and 

2003, and serves as an indication that consistently higher-than-expected prevalence of 

cholera existed in this southern portion of the study area irregardless of temporal 
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considerations.  The two spatio-temporal clusters detected in the overall 1983-2003 analysis 

are similar in terms of size, statistical significance and relative risk.  The first (Cluster #4) 

took place between 1983 and 1987, before MDIP construction, and is located south of the 

Dhonagoda River.  The other (Cluster #5) occurred between 1992 and 1995, after MDIP 

construction, and was centered in the flood protected region.  Thus, given every case of 

cholera over the entire study period, the location of unusually high incidence of the illness 

shifted from south of the river to north after MDIP construction.       

 

1983-89 Clusters vs. 1990-2003 Clusters 

 For all subsequent analyses, only those clusters that include 5 or more baris and with 

significant (<.05) p-values are reported in order to present only those results that can be 

considered both spatially and statistically meaningful.  Though SaTScan was looking for 

both high and low spatio-temporal clusters, only high clusters were detected.  The fact that 

no low clusters were reported in the 5% and 10% analyses though some were detected in the 

initial 21-year analysis suggests that artificially lowering the spatio-temporal bounds has an 

effect on the detection of lower-than-expected trends in cholera incidence.     

 Fifteen significant clusters were detected in the 1983-1989, 5% space, one month 

time analysis.  These clusters were then classified by their location in either the future-flood 

protected or future-unprotected areas of Matlab in order to examine whether any spatial 

variation in clusters existed prior to 1989.  Of the fifteen clusters, 8 were centered in the 

future flood protected area and the remaining 7 in the future unprotected area (Figure 4).  

Increasing the spatial bounding to 10% but holding the temporal bound at one month resulted 

in the detection of six clusters, 2 with centers in the future-protected area and 4 centered in 
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the future-unprotected area.  The results of both analyses suggest that unexpectedly high 

incidence of cholera was evenly distributed over the study area and that no noticeable 

differences in the cholera experience of the to-be-divided populations is observable.  The 

spatial pattern observed in the 5% clusters from 1983-1989 appears to have little to do with 

whether a cluster centroid is located north or south of the river and more to do with its 

proximity to the Dhonagoda River.     

 Seventeen clusters between 1990 and 2003 were identically detected in both the 5% 

and 10% spatially bound analyses, out of 27 total reported in the 5% and 21 total in the 10%.  

This high level of overlap suggests that artificially limiting the spatial bounds of analysis had 

little impact on the detection of significant clusters during the 1990-2003 period and that the 

results are robust.  Unexpectedly, the results of the 1990-2003 cluster analysis also show 

little distinct spatial variation.  Mapping the 27 clusters detected in the 5% analysis shows 

that ten were centered in the flood protected area, seventeen were in the unprotected area 

(Figure 5).  For both the flood protected and unprotected clusters, proximity to the 

Dhonagoda River still seems somewhat important, although the clusters appear more 

dispersed across the study area than in the 1983-1989 period.  The post-flood protection 

clusters are mainly distributed across the southern portion of Matlab, with few clusters found 

in the northeast section of the study area.   

 Although no spatial differences may be observed between the 1983-1989 clusters and 

the 1990-2003 clusters, as is shown in the previous figures, a strong temporal shift took place 

in cholera clustering after construction of the MDIP.  Prior to the introduction of flood 

protection in Matlab, clusters were primarily detected during the dry season.  Of the 15 

clusters reported in the 5% analysis (Figure 6), only two occur in the six months of the rainy 
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season, here defined as June-November.  These two 1983-1989 clusters take place in October 

and November, at the very end of the rainy season when water levels are the highest.  The 

remaining thirteen clusters take place either in December and January, the very beginning of 

the dry season when flood waters are still receding, or in May, when Matlab is at its driest or 

only beginning to experience rainfall.  The 10% analysis returned similar temporal results: 

only one of the 6 clusters reported in the 10% analysis occurred in the rainy season, and the 

dry season clusters again take place at the beginning of that period.   

 After the MDIP was completed, clusters occurred mostly in the rainy season.  Only 

seven out of twenty-seven clusters detected at the 5% level in 1990-2003 took place in the 

dry season (Figure 7).  The 10% analysis returned similar results, only five out of twenty-one 

total significant clusters occurred in the dry season.  For the 1990-2003 period, the majority 

of clusters were detected in the rainy months of June-November.  And although location in 

the study area logically had little apparent impact on cluster timing in pre-MDIP Matlab, in 

the 1990-2003 analysis there are distinct differences observed in the timing of flood 

protected clusters as opposed to unprotected clusters.  Of the twenty-seven 1990-2003 

reported clusters, ten were centered in the flood protected portion of Matlab, seventeen in the 

unprotected section.  The timing of these ten flood protected clusters as compared to the 

other seventeen supports the hypothesis that clustering in the flood protected area occurs later 

than in the unprotected area.  Flood protected clusters occur solely in May, at the very end of 

the dry season when water resources are at most depleted, and in September through 

November, the final months of the rainy season when water resources are most abundant.  

The unprotected clusters, in contrast, occur fairly evenly throughout the months, excepting 

February and March.  Clustering for the entire Matlab area has thus shifted from occurring 
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mainly in the dry season prior to MDIP construction to occurring mainly in the rainy season, 

and the clusters are reported earlier in the rainy season for the unprotected area than for the 

flood protected area.      

 At the yearly time scale, the results of both the 5% and 10% analyses for the 1983-

1989 time period show no significant clusters occurring after 1986.  Indeed, the majority, 8 

out of 15 in the 5% analysis and 4 out of 6 in the 10% analysis, take place in 1983.  

Additionally, both the 5% and 10% results indicate clusters occurring in December of 1985 

and January of 1986, suggesting that these two months were a time of high cholera 

prevalence for certain sections of Matlab.  After 1986, though, no clusters are reported.  This 

gap in reported cluster years continues in the 1990-2003 analyses (Figure 8).  For both the 

5% and 10% 1990-2003 analyses, no clusters are reported until 1992.  For three years on 

either side of the 1989 embankment construction, then, cholera prevalence in both the flood 

protected and unprotected areas was static, no statistically significant clusters of high or low 

rates were detected.  In addition to this lapse in cluster occurrence, the clusters detected in the 

1983-1989 period are evenly distributed between the future-protected and future-unprotected 

areas of Matlab, suggesting that any differences observed in the reported 1990-2003 clusters 

can be correlated with the introduction of flood protection under the MDIP.   

 At the annual scale, there appear to be cluster timing differences between the flood 

protected and unprotected areas.  The lapse in detected clusters ends sharply in the early 

1990s, during the time that the highly virulent O139 arose in Bangladesh.  In the initial years 

of the post-O139 introduction the majority of clusters are detected in flood protected areas of 

Matlab.  In 1997 this shifts, however, and many more clusters are detected in the unprotected 

areas.  This suggests that the flood protected areas of Matlab were initially more impacted by 
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the arrival of O139, that the alteration of the normal flood/drought cycle by the construction 

of the MDIP accelerated the impact of O139.  Further analysis was undertaken at the biotype 

level to determine if this was an accurate assessment of the underlying patterns being 

expressed in the 1990-2003 clusters.     

 

Biotype/Serogroup Analysis 

 In the biotype-level cluster analysis we explored the possibility of spatial and 

temporal differences in clustering occurring at the bacterial level.  Cluster analysis was 

completed on four datasets over the entire 1983-2003 period, with cases aggregated in the 

following categories: Classical, El Tor, O1 (Classical & El Tor together), O139.  As was 

previously discussed, Classical cholera was endemic in Matlab until 1988 when it 

disappeared, leaving El Tor to circulate on its own until O139 arrived in 1993.  Differences 

in the spatio-temporal clustering exhibited within the O1 serogroup (Classical & El Tor), and 

between the serogroups (O1 vs O139) reveal interactions between the types, the season and 

flood protection status. 

The Classical analysis returned 14 significant clusters, nine of which occurred in 

1983, at the very beginning of the study period.  This suggests that Classical incidence was at 

its peak, with uncharacteristically high rates given the entire 21-year period, in the early 

1980s, before slowly being replaced by El Tor.  Of the fourteen Classical clusters, only one 

took place in the rainy season (previously defined as June-November).  The El Tor cluster 

analysis, in contrast, returned significantly more clusters in the rainy season (21) than the dry 

season (8).   
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The O1 serogroup analysis (Classical & El Tor aggregated) detected 23 significant 

clusters.  Of these, only 2 took place before 1988 and could possibly represent Classical 

clusters.  This means the remaining 21 clusters must be El Tor clusters, and that El Tor 

cholera rates exhibit greater variation in space and time than Classical.  This is logical given 

that El Tor was present in Matlab over the entire 21-years analyzed and thus has more 

opportunity to exhibit clustering.  No O1 clusters were reported between 1986 and 1994, 

consistent with the previously described findings that indicated a lack of significant cholera 

clustering on either side of the 1989 MDIP completion.  The last O1 cluster reported occurs 

in 2000, three years before the end of the study period.   

The O139 cluster results can be viewed as highly robust, 5 of the 15 reported clusters 

take place in early 1993.  This is the year that O139 is known to have arrived in Matlab and 

been at its most virulent.  No O139 clusters are detected after 2000, the same endpoint as the 

O1 clusters.   A comparison at the month timescale (Figure 10) shows that O1 clusters mirror 

typical seasonality of cholera in Bangladesh, with spikes at the end of the dry season right 

before the monsoons arrive and then again in the middle of the rainy season when water 

levels are at their peak.  O139, in contrast, spikes in the middle of the dry season and shows a 

slow gradual climb in clusters at the tail end of the rainy season.  Overall, the O1 clusters 

occurred more in the rainy season than the dry, while the O139 clusters occurred almost 

evenly between the two seasons.   

 Differences in season of occurrence between O1 and O139 are then further enhanced 

when flood protection status is considered.  Within the flood protected area, six of the seven 

O1 clusters took place in the rainy season (Figure 11).  Of the five flood protected clusters 

detected in the O139 analysis, two took place in the rainy season and three in the dry season 
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(Figure 12).  Overall spatial differences can also be seen between the O1 and O139 clusters.  

The majority of O1 clusters fall outside the protection of the MDIP, while the O139 clusters 

are evenly divided between the flood protected and unprotected areas.     

 

Discussion & Conclusions 

 In analyzing longitudinally how cholera in Matlab has been affected by the 

introduction of flood protection structures by the government of Bangladesh in the late 

1980s, we found that the introduction of flood protection to Matlab radically altered patterns 

of cholera.  Cluster patterns observed at the 21-year timescale changed when pre-MDIP and 

post-MDIP cholera were considered separately, and stratifying incidence according to 

cholera strain showed that the arrival of a new type of cholera in Matlab superceded the 

effect of flood protection status on cholera clustering.  While our cluster analysis does not 

determine whether flood protection is a causal factor in cholera transmission, the findings do 

suggest that the construction of the MDIP had a significant impact on regional incidence of 

cholera.   

   A shift from clustered cholera primarily south of the Dhonagoda before the 

introduction of flood protection to clustered cholera north of the river after flood protection 

was suggested by the results of the 21-year overall analysis.  This pattern was not repeated, 

however, when the data was stratified by time period.  An even spatial distribution across 

Matlab was observed in the 1983-1989 cluster patterns.  This was as we expected, as prior to 

the introduction of flood protection there was little, if any, differentiation in environment and 

water-use behaviors between the areas north and south of the Dhonagoda River.  

Surprisingly, however, there was not a strong spatial variation observed in the clusters 
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reported for 1990-2003.  Approximately two thirds of the clusters had their centers located 

south of the river in the unprotected area, the remaining were located within the MDIP 

embankment.  This suggests that the introduction of flood protection to Matlab did not have 

major impacts on the spatial distribution of cholera clusters.  The majority of clusters, 

regardless of time period or flood protection status, were located in the central and southern 

sections of Matlab.  Only one cluster in the 1983-1989 analysis and four clusters in the 1990-

2003 analysis were located in the northern area of Matlab.  Similarly, in the 21-year overall 

analysis the only low, purely spatial cluster detected was located in the northern part of 

Matlab.  These findings are consistent with previous studies that identified southern Matlab 

as the foci of cholera incidence (Emch & Ali, 2003).  Reasons for this pattern are uncertain, 

though it would be easy to assume the patterns exist because the northeast area is up-river, 

and thus cholera flushes to the south and west.  This view does not stand up to scrutiny, 

however, given that the boundaries of Matlab are artificial political creations, and that the 

northeast portion has as much downstream exposure to rivers and streams located outside of 

Matlab.  Other explanations, such as lower population density or different socioeconomic 

status in the northeast, are similarly inadequate.  Higher cholera levels in the southern portion 

of Matlab are often attributed to the proximity of the confluence of the Meghna and 

Dhonagoda Rivers.  The reasoning is that water levels are more subject to fluctuation and 

thus cholera transmission is both easier and more frequent.   

     Rather than distinct spatial shifts we had expected to see between the pre- and post-

flood protection periods, the construction of the MDIP had a large effect on the temporality 

of cholera clustering.  Classifying clusters according to season suggested that a shift from dry 

season to rainy season cluster has taken place since the introduction of flood protection.  This 
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shift did not occur equally between the flood protected and unprotected areas, however, as 

cholera clusters were detected earlier in the rainy season outside the MDIP embankment than 

within.  While the overall shift from dry to rainy clustering was an unexpected result, the 

delayed clustering within the flood protected area is logical.  Without the rising waters of the 

Dhonagoda, cholera incidence within the MDIP is more heavily influenced by monsoon 

rainfall.  Being protected from swift river flooding delays cholera clustering inside the flood 

protected area.  The transition from dry season clustering to rainy season clustering has 

implications for both Matlab’s residents and for ICDDR,B health workers.  Local knowledge 

and awareness of cholera is based on long-term patterns of incidence, and shifts in these 

patterns can leave residents open to unexpected and unanticipated infections in times when 

they are not as guarded in their behaviors.  Our findings also suggest that ICDDR,B can 

expect to have greater demand for treatment and prevention in the rainy season than they 

have previously.             

In addition to changes in temporal patterns of cholera clusters since flood protection’s 

introduction in 1989, differences in cholera patterns exist when the Matlab data is stratified 

by bacterial strain.  Cluster analysis by strain type revealed striking differences in how 

Classical, El Tor and O139 cholera is experienced in space and time by Matlab’s residents.  

While the O1 cholera clusters follow traditional seasonal patterns and show distinct splits 

between the flood protected and unprotected areas, O139 clusters are fairly evenly distributed 

in both space and time.  This is likely a reflection of the relatively new arrival of O139 in 

Matlab, and its greater virulence.  Perhaps O139’s infectivity is less mediated by density 

within water sources that are either flooded during the monsoon or shrinking during the dry 

season, so that it clusters equally across the flood protected and unprotected areas of Matlab 
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irregardless of season.  O1 cholera, in contrast, has long-established patterns that fluctuate in 

concert with the seasons, so it is greater affected by the impacts of the introduction of flood 

protection on water supplies in Matlab.   

Our study used seven years of cholera data prior to the construction of MDIP flood 

protection structures to determine baseline cholera clustering patterns.  While we make the 

assumption that the years between 1983 and 1989 are representative of how cholera 

incidence clustered in Matlab before the population was divided in half, this could be 

incorrect.  It is possible that cyclical patterns of cholera clustering exist for Matlab that we 

are unable to detect within the data available.  We therefore make the above statements about 

temporal changes and differing responses of O1 and O139 with this caution.   

Our study did not control for age, sometimes an important confounding factor in 

cholera studies given high incidence among young children and their mothers.  We decided 

not to control for age based upon the belief that age structures are similar across the Matlab 

study area.  In addition, the study did not account for the steadily decreasing rates of cholera 

within Matlab over the past two decades due to generally increased socioeconomic status of 

rural Bangladeshis.  Generally decreasing rates are likely across Matlab, but if there are 

differentials between the flood protected and unprotected areas that would be expressed in 

cluster detection.   

Restrictions within user-imposed limits on the SaTScan software could affect the 

validity of the results.  The space-time cluster detection within SaTScan uses a circular 

window, not an ideal shape for detection of clusters that occur along a linear route, such as a 

river (Aamodt, Samuelsen, & Skrondal, 2006).  The 5% and 10% spatial bounds and 1 month 

temporal bound decrease somewhat the strength of the results, but the general overlap 
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between results at both 5% and 10% and high comparability between results and the 

literature suggest that this isn’t an insurmountable limitation.  As well, the detection of 

patterns described in previous literature, such as higher recorded incidence in April/May at 

the end of the dry season and again during the rainy season, as well as the spiking arrival of 

O139 in early 1993, suggest that SaTScan is a valid tool for analysis.  

The construction of the MDIP flood protection structures seems to have taken place at 

a time of stable cholera rates in Matlab, as indicated by a lack of clusters reported in the 

years immediately prior to and directly after MDIP construction in 1989 in both the time-

specific analyses and the cholera strain analyses.  Additionally, cholera incidence seems 

smoother in space and time in the later years of the study period, as evidenced by the low 

cluster detected after 1999 in the 21-year analysis and the absence of any clusters reported 

after 2000 in the 1990-2003, O1 or O139 analyses.     

 Our results indicate that the introduction of flood protection in Matlab has changed 

patterns of cholera incidence previously experienced in the area.  Unusual spikes in cholera 

incidence, as indicated by the presence of significant clusters, now occur more frequently in 

the rainy season, perhaps at a time when it is unexpected given historic patterns and residents 

are less on guard against infection.  The introduction of flood protection has not affected all 

types of cholera incidence equally, however, and further analysis of how the O1 and O139 

serogroups have responded to the MDIP construction could suggest different targeting 

strategies for the two types.     
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Figure 2.1: Location and Main Physical Features of Matlab, Bangladesh 
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Figure 2.2: Matlab GIS with Bari Locations Identified
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Figure 2.3: 1983-2003 Clusters 
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Figure 2.4: 1983-1989 Clusters at 5% Spatial Bound 
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Figure 2.5: 1990-2003 Clusters at 5% Spatial Bound 
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Figure 2.6: 1983-1989 Clusters by Month, 5% Spatial Bound 
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Figure 2.7: 1990-2003 Clusters by Month, 5% Spatial Bound 
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Figure 2.8: 1983-1989 and 1990-2003 Clusters by Year, 5% Spatial Bound 
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Figure 2.9: O1 and O139 Clusters by Year, 1983-2003 
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Figure 2.10: O1 and O139 Clusters by Month, 1983-2003 
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Figure 2.11: O1 Clusters, 1983-2003 
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Figure 2.12: O139 Clusters, 1983-2003 
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Chapter 3 

 

Bridge 

 

The results of the cluster analysis indicate that cholera did cluster spatio-temporally in 

Matlab both before and after completion of the MDIP, but that patterns of clustering had 

shifted after the introduction of flood protection.  These results were used to inform further 

exploration of longitudinal cholera incidence via spatial regression analyses at the 

neighborhood level.  The outcome of the SaTScan cluster analysis suggested that seasonality 

of cholera incidence was an important variable to take into account when considering the 

impact of neighborhood on cholera outcomes, since there had been a significant shift in 

seasonality of cluster occurrence.  The cluster results also indicated that a bari’s distance to 

the Dhonagoda River was an important variable to consider in addition to the flood 

protection status of a bari.  The size of the clusters, even with the artificial spatial and 

temporal bounds imposed, suggested that examining small neighborhood sizes would be 

most appropriate, as the majority of clusters had radii of less than 2000 meters.  We thus 

chose to create spatial lags at 500m, 1000m and 2000m in order to test whether the spatio-

temporal patterns observed pre- and post-MDIP in the cluster analysis would be seen in the 

results of the regression analysis.   



 

Chapter 4 

 

The impact of flood protection on spatial autocorrelation of cholera relationships in Matlab, 

Bangladesh. 

 

Abstract:   

 

 We examined how the spatial autocorrelation of relationships between two 

environmental variables, river proximity and flood protection status, and cholera incidence 

outcomes, stratified by cholera strain and season, varied at three neighborhood scales.  

Ordinary Least Squares (OLS) and spatially-lagged regression analysis was performed on a 

cholera dataset drawn from 1983-2003 records from Matlab, Bangladesh.  Stronger increases 

in model fit observed in the 1990-2003 data than 1983-1989 data under spatial lags suggests 

that the division of the study area into two sections, flood protected and unprotected, 

increased the spatial autocorrelation of all tested relationships.  Seasonally stratified results 

indicated that dry season cholera is more spatially autocorrelated than rainy season cholera, 

regardless of time period.  Stratification by cholera strain showed evidence that older and 

more established O1 cholera exhibits higher spatial autocorrelation in relationships with 

environmental variables than does newer O139 cholera.  Significance tests also suggest that 

certain relationships retain their statistical significance once spatial autocorrelation of 

relationships is accounted for while others do not, suggesting that introducing flood 

protection has affected not only spatial patterns of relationships but strengths of association 

as well.   

 

Keywords: spatial autocorrelation, cholera, Bangladesh, flood protection 
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Introduction 

 Cholera, all but eradicated in the developed world, remains a significant cause of 

morbidity and mortality in the developing world.  Although present at low levels year-round 

in places such as Bangladesh, large outbreaks occur in seasonal cycles.  The exact 

mechanism(s) that lead to these consistent peaks and valleys in cholera incidence are not 

known, but several strong relationships have been found between the arrival of monsoon 

rains and copepod, algae, and bacteriophage levels (Jensen et al., 2006; Faruque et al., 2005; 

Huq et al., 2005; Colwell et al., 2003; Islam et al., 1993).  Social/behavioral and 

environmental factors have also been associated with cholera incidence, such as 

handwashing, latrine-type, educational status, etc (Ali et al., 2002; Emch, 1999; Myaux et al., 

1997).  By determining variables that are necessary precursors to epidemic cholera, as well as 

those that are associated with increased opportunity for infection, public health and 

educational interventions can be better targeted.     

 Increasingly used in public health, epidemiology and medical geography studies is the 

theory of neighborhood effects on health outcomes.  Neighborhoods contain both 

compositional, i.e. demographic, and contextual, i.e. environmental, factors that interact to 

influence the health outcomes of local populations.  Neighborhood studies operate under the 

premise that some variables which modify health outcomes take place only on micro-scales, 

interacting with other variables at higher or lower spatial scales (Ali et al., 2005).  By 

studying these contextual and compositional factors as they relate to one another across 

scales, a localized health outcome can be better understood or predicted.  The environmental 

and social variables that have been associated with cholera incidence are not static in space 

and time, but likely have different influences at different times and distances from 

households.  In other words, maybe neighborhood influences on cholera are more important 
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to consider in certain times or certain places.  For instance, perhaps the proximity of a 

household to a main river influences cholera outcomes only up to a kilometer, and then that 

influence drops off, or the location of a neighborhood within a flood protected area 

influences cholera outcomes only in the rainy season.   

Variation in time and space of social and environmental factors aside, neighborhood 

associations are useful when studying cholera given the nature of the agent and disease 

symptoms.  Cholera is a highly infectious bacterial disease whose agent thrives in shared 

water supplies, and an infection of one person within a neighborhood can influence infection 

of surrounding people.  The definition of precisely what geographic (or other) area a 

neighborhood comprises remains open to debate.  Suggested methods of definition include 

individuals’ activity space, social networks or areas around households at set Euclidean 

distances.  Cholera in Bangladesh has been studied using Euclidean distance neighborhoods, 

with between ½ and 2 kilometers found to be appropriate levels of analyses (Ali et al., 2007 

in press; Emch et al., 2007; Emch et al., 2006).        

 In the rural area of Matlab, Bangladesh, two environmental variables, residence 

within a flood protected sector and distance to the main river, have been found to influence 

the incidence of cholera (Ali et al., 2002a; Ali et al., 2002b; Emch, 1999).  Our study further 

examined the impact of these two variables on cholera incidence.  We were interested in 

determining whether the relationships existed between flood protection and cholera and river 

distance to household and cholera, whether these relationships were spatially autocorrelated, 

at what neighborhood scales the relationships were most spatially autocorrelated, and 

whether levels of spatial autocorrelation had changed since the introduction of flood 

protection.    Cholera outcomes were then stratified by season of incidence and by cholera 
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strain to explore whether occurrence of cholera exhibits differing levels of spatial 

autocorrelation according to season and if taking cholera type into account changes measures 

of spatial dependence.  We hypothesized that spatial autocorrelation of cholera relationships 

would increase after the introduction of flood protection, particularly in the rainy season 

when neighborhoods are more likely to share a flood or non-flood experience, but that 

stratifying by cholera strain would not show significant differences in levels of spatial 

autocorrelation.  By exploring measures of spatial autocorrelation, we were able to 

understand whether the changing explanatory power of the two environmental variables post-

flood protection was due to in-bari variation or to differences at larger scales.  In addition to 

exploring changing levels of spatial autocorrelation, the statistical significance of all 

relationships was calculated in order to assess which associations between cholera incidence 

and flood protection and river proximity were important once spatial autocorrelation was 

accounted for.   

 

Study Area and Data Sources 

 Our study utilized data collected in Matlab, Bangladesh.  Matlab is a small, rural area 

located approximately 50km southeast of the capital city of Dhaka (Figure 1).  Population 

density is high, with roughly 200,000 people living in Matlab’s 184km² (Ali et al., 2002a).  

Households in Matlab are organized in a system of patrilineally-related households called 

baris.  The average household size is 5.6 individuals (Colwell et al., 2003) and the average 

number of households in a bari is six (Ali et al., 2002a).  The majority of residents are 

engaged in agricultural or day labor, with 70% of households landless or functionally 

landless in terms of farmland, a shift from previous decades when the majority of households 
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engaged in self-supporting agricultural production (ICDDR,B, 2007b).  Between 1974 and 

2005 ownership of four socioeconomic indicators (blanket, hurricane lamp, radio and a 

television) rose dramatically, as did the use of tin roofs and walls in household construction 

(ICDDR, B, 2007a).  Despite such increases in socioeconomic status and 90% of households 

using tubewell water in 2005, diarrheal diseases, including cholera and shigellosis, persist in 

Matlab (ICDDR,B, 2005b).   

 The causative agent of cholera, Vibrio cholerae bacteria, are naturally occurring in 

the estuaries and waterways of the Indian subcontinent (Faruque et al., 2005; Jensen et al., 

2006).  Epidemic V. cholerae are classified according serogroup and biotype.  Two 

serogroups exist, O1 and O139; the O1 serogroup is subdivided into two biotypes, Classical 

and El Tor.  Classical and El Tor cholera cocirculated in Matlab until 1988 when Classical 

disappeared.  El Tor was responsible for all cholera infections in Matlab until 1993, when 

O139 cholera first appeared and began to cocirculate with El Tor (Longini et al., 2002).  

Regardless of which strain of V. cholerae is predominant, outbreaks of cholera epidemics 

occur in regular seasonal cycles in Matlab.  A small peak in incidence takes place in late 

spring to early summer at the end of the dry season, a larger peak occurs in late fall and early 

winter, at the end of the rainy season (Faruque et al., 2005; Huq et al., 2005).   

 Running from north to south through the Matlab study area is the Dhonagoda River.  

The Dhonagoda experiences flooding annually during monsoon rains.  In the 1980s the 

Government of Bangladesh started work on the Meghna-Dhonagoda Irrigation Project 

(MDIP), intended to protect residents from the devastating impact of annual monsoon 

flooding and in an effort to increase agricultural production: the MDIP allows triple-cropping 

and the planting of high yield varieties of rice (Vaughn, 1997).  Completed in 1989, the main 
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feature of the MDIP is a 60km earthen embankment that encircles approximately 17,000 

hectares (ICDDR,B, 1992).  The embankment roughly follows the northern bank of the 

Dhonagoda and protects the northern portion of Matlab from seasonal river flooding.   

 Since 1966, the Matlab study area has been under demographic and health 

surveillance by the International Centre for Diarrhoeal Disease Research, Bangladesh 

(ICDDR,B).  ICDDR,B’s Health and Demographic Surveillance System (HDSS) consists of 

active demographic and passive health surveillance.  At birth or migration into Matlab each 

individual is issued an identification number that links them to their household, bari and 

village.  ICDDR,B-trained community health workers (CHWs) visit each bari twice a month 

and record vital events such as births, deaths, marriages and migrations, linking each event to 

a resident’s file based on their identification number (Emch, 1999).  The CHWs also inquire 

about individuals’ health within the bari, and make recommendations for treatment at either a 

hospital in Matlab or one of four health subcenters, all run by ICDDR,B.  Transportation to 

and treatment at an ICDDR,B facility is free, so all cases of cholera within Matlab can be 

assumed to have been recorded (Ali et al., 2002a).  A patient undergoing treatment for 

cholera has their stool laboratory-tested, and a serogroup and biotype are attached to their 

record along with date of treatment (Ali et al., 2002b; Longini et al., 2002).  All cholera cases 

can thus be assigned to a month of incidence and location of residence.  

 We created a database of all cholera cases in Matlab between January 1, 1983 and 

December 31, 2003.  This twenty-one year time frame spans the seven years prior to the 

completion of the MDIP and the fourteen years following.  For 7490 baris we had data on 

9580 total cholera cases between 1983-1989 and 1990-2003, as well as cholera cases 

subdivided according to serogroup and biotype.  Cases were also grouped according to 
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season, with cases taking place between June and November defined as rainy season cases 

and those taking place between December and May defined as dry season cases.    From the 

demographic surveillance we were able to calculate mid-year bari populations, which were 

then summed for the years of 1983-1989 and 1990-2003.  We split the data into these two 

time periods in order to compare cholera pre- and post-flood protection.  Cholera counts 

(total, type and season) for each bari were then divided by total bari populations over the two 

time periods and multiplied by 1000 to gain a cholera rate per 1000 person years for 1983-

1989 and 1990-2003.   

 Cholera cases and the population living in each bari were then linked to a specific 

geographic location in Matlab’s Geographic Information System (GIS) in order to calculate 

two environmental variables.  Matlab’s GIS is accurate within 10m and includes bari, river, 

MDIP embankment and health center features (Ali et al., 2001; Emch, 1999).  Using the GIS, 

each bari was assigned a flood protection status in the database, either 1 for protected or 0 for 

unprotected.  Baris in the 1983-1989 dataset were assigned the 1/0 flood protection status as 

an indicator of their future condition, allowing us to explore whether there were inherent 

differences between the flood protected and unprotected areas of Matlab prior to their 

division by the MDIP.  Using the ArcGIS software a Euclidean distance to the Dhonagoda 

River was calculated for each bari.       

 

Methods  

 Our objective was to examine whether correlative interactions, stratified by season 

and strain, between flood protection status and river proximity and cholera incidence were 

spatially dependent. Statistical analyses were performed in GeoDa™0.9.5-I, which is 
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intended for exploratory spatial data analysis (ESDA), including calculation of local 

autocorrelation statistics.  A GIS layer of Matlab’s baris with their attendant cholera 

incidence and environmental measures was imported into GeoDa.  Using this layer, we 

created three neighborhood scales, corresponding to spatial weights at Euclidean distances of 

500m, 1000m and 2000m.  Spatial weights represent possible spatial interaction among data 

points (Anselin et al., 1996).  Threshold distances rather than nearest neighbors were 

implemented because of the spatial heterogeneity of bari locations in Matlab and because 

geographic distance is an important modifying variable in an environmentally responsive 

agent such as V. cholerae (Emch et al., 2006).  Distances up to 2000m were chosen because 

local neighborhood effects were of interest rather than the influence of cholera incidence at 

greater distances.       

 We at first conducted ordinary least square (OLS) regressions for all the models.  

Measures in the OLS output indicate when spatial dependence is present and that a spatial lag 

model would be a better fit for the data, including Moran’s I z-value and Lagrange Multiplier 

(LM) tests for lag and error (Anselin, 2004).  It was anticipated that the majority of models 

created would demonstrate signs of spatial dependence and indicate that a spatial lag would 

improve fit, given the highly infectious nature of cholera and its tendency to spatio-

temporally cluster.  We then created spatial lags at 500m, 1000m and 2000m and re-ran the 

models at all three scales.  The spatial lag models, based on a maximum likelihood method, 

account for spatial dependence by including an autoregressive term of the dependent variable 

(Anselin et al., 2006).  All spatial dependence effects are captured by the lagged term.   

 Three types of approaches are commonly used to compare models: maximizing fit 

(adjusted R²), null hypothesis tests (likelihood ratios) and model selection criteria (Akaike 
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information criterion (AIC) & Schwarz criterion (SC)).  Adjusted R² is an indication of fit, 

likelihood ratios and AIC indicate fit and complexity, and SC indicates fitness, complexity 

and sample size (Johnson & Omland, 2004).  Although R² is not an appropriate statistic to 

rely upon in a spatial lag model, the log-likelihood ratio (LLR), AIC and SC are.  An increase 

in the log-likelihood value and a decrease in both AIC and SC between the spatial lag model 

and the OLS suggests that there is an improved fit by using the lagged model.  Levels of 

spatial autocorrelation present in each relationship were assessed by comparing LLR, AIC 

and SC values in the OLS and spatial lag models.  Greater gains in LLR and falls in AIC and 

SC were taken as an indication that higher levels of spatial autocorrelation were present in 

certain relationships than in others.   The statistical significance of the relationships at each 

spatial lag was determined by the probability measure associated with the z-score of the 

independent variable.  Our purpose in examining this measure was to ascertain which 

relationships remained significant once spatial autocorrelation was accounted for.   

 Our initial analysis used the 1983-1989 and 1990-2003 cholera rates per 1,000 

person-years-lived as dependent variables to explore whether place of residence and 

proximity to the river had similar levels of spatial autocorrelation before and after the 

introduction of flood protection.  Also modeled as explanatory variables for overall cholera 

outcomes were the rainy and dry season cholera rates for each timeframe, to test whether 

occurrence of cholera in one season over the other was a stronger predictor of spatial 

autocorrelation in overall cholera incidence rates.     

We then used the 1983-1989 and 1990-2003 rainy and dry season cholera rates as 

dependent variables to explore whether the spatial autocorrelation associated with 

relationships between cholera incidence and flood protection and river distance differed by 
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season.  We also tested whether rainy or dry season cholera in 1990-2003 had highly 

spatially autocorrelated relationships with 1983-1989 rainy or dry season cholera, exploring 

the possibility that previous cholera history was of stronger influence than either flood 

protections status or river distance.  The last of our analyses focused on exploring differences 

in levels of spatial autocorrelation based on cholera strain.  Rates of Classical, El Tor, O1 and 

O139 cholera divided by time period were used as dependent variables, while flood 

protection status, river distance and seasonal rates were explored as effect modifiers.   

 

Results 

In the overall cholera rate analyses the 500m and 1000m lag models were better fits 

for the data while the 2000m lag was a worse fit, as determined by rises in the LLR and 

decreases in both the AIC and SC.  Greater improvements in fit can be taken as indicators of 

higher levels of spatial autocorrelation present in the tested relationships, while a decrease in 

model fitness at a spatial lag indicates a lack of spatial autocorrelation to be controlled for.  

There were greater gains in model fitness for all tested relationships at the 1000m spatial lag 

than the 500m spatial lag, suggesting that spatial autocorrelation of cholera is strongest at 

1000m in Matlab.  For every relationship modeled, the 1990-2003 data showed greater 

improvements in fit than the 1983-1989 data when a spatial lag was implemented (Table 1), 

indicating that cholera relationships post-MDIP construction have greater levels of spatial 

autocorrelation.  Each of the four1990-2003 relationships retained statistical significance 

between the OLS and 1000m spatial lag model, while the 1983-1989 relationships between 

cholera and flood protection and cholera and river distance were insignificant at the 1000m 

spatial lag.   
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 Results from the seasonal cholera analyses were similar to those of the overall 

analyses in that the 500m and 1000m spatially lagged models better fit the cholera 

relationships tested, with the 1000m model showing the greatest improvement in fit over the 

OLS regression.  In contrast to the large gains in model fitness seen with a 1000m spatial lag, 

the 2000m spatially lagged seasonal models were a worse fit for the data as compared to the 

OLS.  At both the 500m and 1000m lags, the greatest spatial autocorrelation was seen in 

1990-2003 dry season cholera models, regardless of independent variable tested (Table 2), 

followed closely by the 1990-2003 rainy season cholera.  Much smaller levels of spatial 

autocorrelation were shown for the 1983-1989 dry and rainy season rate relationships, with 

the 1983-1989 rainy season models seeing the smallest enhancement by implementing a 

spatial lag.   

Although the 1990-2003 models evidenced greater spatial autocorrelation than did the 

1983-1989 models, the pre-flood protection cholera relationships were more statistically 

significant after a spatial lag was implemented.  The only 1990-2003 relationship that 

remained statistically significant under the 1000m spatial lag model was that between the 

rainy season rate and flood protection status.  In contrast, half of the 1983-1989 seasonal 

cholera relationships were significant: two which explored the prediction power of one 

season’s cholera rate on another, the other which modeled the dry season rate and river 

distance relationship.   

 Stratifying cholera by strain returned the same results as stratifying by season: better 

model fits at 500m and 1000m, but worse fits at 2000m.   Once again, the 1990-2003 cholera 

rates saw the greatest amounts of spatial autocorrelation controlled for by the spatial lag 

models (Table 3).  Within the 1990-2003 models, greatest improvements in fit by 
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implementing the 1000m spatial lag were shown for overall O1 cholera relationships 

(Classical & El Tor combined), then for El Tor alone and lastly O139 cholera, indicating that 

higher levels of spatial autocorrelation exist among O1 cholera relationships than O139.    

 The statistical significance of the strain stratified models, once spatial autocorrelation 

was accounted for, varied greatly between the pre-MDIP and post-MDIP periods.   The 

majority of 1990-2003 models were statistically significant even when spatially lagged.  The 

only statistically insignificant model in 1990-2003 was that of O139 cholera’s interaction 

with river distance.  In contrast, the majority of 1983-1989 models were statistically 

insignificant once spatially lagged.  The only significant models in 1983-1989 were those 

representing the relationship between seasonal rates and total O1 cholera.  In fact, all of the 

models which used the seasonal rates of cholera as independent variables were highly 

statistically significant (p<.05).  However, temporal differences in levels of spatial 

autocorrelation exist between the pre-MDIP and post-MDIP periods.  In the 1983-1989 

period, O1 cholera was most spatially autocorrelated in its relationship to the rainy season.  

Between 1990-2003, however, both the O1 and O139 cholera relationships with the dry 

season were most spatially autocorrelated.   

     

Discussion & Conclusions 

 For all three sets of data, the overall cholera rates, the cholera rates by season and the 

cholera rates by strain, implementing a 500m spatial lag model resulted in a better fit of the 

data.  Increasing the spatial lag to 1000m resulted in an even greater increase in fit for all 

three datasets.  Increasing the spatial lag to 2000m, however, reversed this trend: the classic 

OLS model better fit the data than the 2000m spatial lag model.  This suggests that within 



 67 

Matlab spatial autocorrelation of cholera relationships increases between .5 and one 

kilometer, but then falls off at two kilometers.  The 1983-1989 and 1990-2003 cholera 

datasets responded to the spatial lags in the same way, indicating that this distance effect was 

not impacted by the introduction of flood protection in 1989, but that spatial autocorrelation 

of cholera relationships in Matlab has remained highly localized, strongest at less than 2 

kilometers, since 1983.   

 Across all three categories of analysis (overall cholera rates, seasonal rates, strain 

rates) the greatest improvements in fit by implementing spatially lagged models were seen in 

1990-2003 outcome variables.  Although there were improvements in fit for the 1983-1989 

outcome variables, they were much smaller than for the time period after implementation of 

the MDIP flood protection.  This suggests that, regardless of stratification, relationships 

between environmental variables and cholera incidence became more spatially autocorrelated 

across Matlab after MDIP construction.  Spatial autocorrelation is an indication that events 

being examined are not occurring independently, but rather are being affected by other 

neighboring events (in this case most strongly at 1km).  The consistency with which the 

1990-2003 data showed signs of greater spatial autocorrelation means that introducing flood 

protection to Matlab in 1989 increased the influence that one bari’s cholera relationships has 

on other bari’s cholera relationships.  This is likely due to increased importance of shared 

neighborhood experiences once the MDIP is completed and the study area is divided into two 

radically different sections.   

 In the overall cholera analysis, flood protection status and river distance were more 

spatially autocorrelated with cholera outcomes in both time periods than were rainy or dry 

season rates.  Although seasonal cholera was less influential on a neighborhood scale than 
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were the two environmental variables, all the models which used temporal independent 

variables were statistically significant, indicating that both dry and rainy season cholera are 

important in determining overall cholera.  In contrast, the environmental variables of flood 

protection and river distance remained statistically significant variables only in the spatial lag 

models post-1990, not in the 1983-1989 period.  Thus, even as spatial autocorrelation has 

increased post-MDIP, so has the influence of these two environmental variables in predicting 

cholera outcomes.  Increases in both spatial autocorrelation and the importance of these 

environmental factors has implications for public health targeting when cholera outbreaks 

occur in Matlab.  Not only should baris within 1 kilometer of a choleric household be 

monitored and warned, those baris that share flood protection status or proximity to the 

Dhonagoda River should be made particularly aware.     

 When stratified by season, cholera relationships in both time periods were more 

spatially autocorrelated in the dry season than the rainy, regardless of independent variable.  

The seasonality of cholera in Matlab means that there are traditionally fewer cases occurring 

in the dry season than in the rainy season, when incidence peaks as flood waters rise.  The 

higher levels of spatial autocorrelation seen in dry season cholera models are thus likely due 

to the fact that those cases which do occur in dry season are likely to initiate infection in 

other households which are in close proximity rather than those that are far away: there is no 

flood water to distribute the bacteria across great distance.  The importance of water sources 

to spread cholera is demonstrated by the fact that, prior to 1990, it was a bari’s proximity to 

the Dhonagoda that was most statistically significant in determining its cholera experience in 

the dry season.     
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 Although spatial autocorrelation of cholera is strongest in the dry season, the only 

statistically significant relationship in the seasonally stratified 1990-2003 models was 

between rainy season cholera and flood protection status, even though it had the smallest 

level of spatial autocorrelation.  The relationship between rainy season cholera and flood 

protection status in 1983-1989 also exhibited low spatial autocorrelation, but the relationship 

was not statistically significant.  This means that changes in cholera relationships seen after 

1990 can be attributed to MDIP completion rather than to basic differences in cholera 

patterns between the areas north and south of the Dhonagoda River.  Introducing flood 

protection in 1990 thus created a new, highly significant variable in determining bari cholera 

outcomes. 

 Our analysis of cholera stratified by strain showed that O1 cholera is more spatially 

autocorrelated in its relationships to environmental variables and seasonal patterns than is 

O139 cholera.  O1 cholera relationships are also more often statistically significant when 

spatially lagged in the 1990-2003 period than the 1982-1989 period.  These higher levels of 

spatial autocorrelation and statistical significance among O1 cholera post-MDIP completion 

indicate that the older, more “traditional” types of cholera seen in Matlab reacted strongly to 

the introduction of flood protection.  Lower levels of spatial autocorrelation exhibited by 

O139 cholera are perhaps a factor of its relatively recent arrival in Matlab and typically 

greater virulence, as its incidence and spread is less dependent on scale effects.  Lower 

overall spatial autocorrelation aside, however, O139 incidence is still mediated by flood 

protection status as demonstrated by the strong significance (p<.05) of the model.  These 

results, in conjunction with those of the overall and the seasonally stratified analyses, 

indicate that introducing flood protection in 1989 had large impacts both on spatial 
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autocorrelation of cholera relationships and on the statistical significance of those 

relationships.       

 The models in this study typically had low R² values, indicating that the independent 

variables used did not have strong explanatory power for the outcome variables tested.  This 

is logical, given that cholera results from a complex interaction of several environmental, 

social and behavioral variables and that no one variable completely explains cholera 

incidence.  We do not suggest that the relationships uncovered between cholera incidence 

and neighborhood sizes are the whole story, but do indicate that cholera is subject to 

variation in spatial autocorrelation by both season and strain type.   

The disappearance of Classical cholera in 1988 and the arrival of O139 cholera in 

1993 add a level of ambiguity into our comparisons of scale dependent spatial 

autocorrelation according to serogroup and biotype.  Additionally, the artificial demarcation 

of neighborhoods as 500m, 1000m, or 2000m boundaries around each bari fails to take into 

account the reality of environmental or social interactions actually taking place at each 

location.  However, such a level of detail could only be understood by doing a detailed socio-

environmental network analysis.   

 The influences of household flood protection status and river proximity on cholera 

incidence in Matlab, Bangladesh are spatially autocorrelated at the local level.  The influence 

of neighboring baris’ experiences on individual bari cholera outcomes has increased since 

the MDIP was built, suggesting that response to cholera outbreaks in rural Bangladesh should 

focus not only on individual affected baris but on closely neighboring baris.  Our findings 

also suggest that considering these variables in conjunction with seasonal and cholera strain 
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factors is important for understanding how cholera patterns have changed longitudinally in 

Matlab.   
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Figures & Tables 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Location and Main Physical Features of Matlab, Bangladesh 
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Table 4.1: OLS and 1000m Spatial Lag Model Results, Overall Rates 

Arranged in descending order from greatest spatial autocorrelation (greatest rise in 

log-likelihood ratio (LLR) and greatest drop in Akaike Information Criterion (AIC) & 

Schwarz Criterion (SC)) to least. 

** p<.05 

* p<.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable Independent Variable Sig. 

1990-2003 cholera rate river distance * 

1990-2003 cholera rate flood protection status ** 

1990-2003 cholera rate 1990-2003 dry season rate ** 

1990-2003 cholera rate 1990-2003 rainy season rate ** 

1983-1989 cholera rate flood protection status NS 

1983-1989 cholera rate river distance NS 

1983-1989 cholera rate 1983-1989 rainy season rate ** 

1983-1989 cholera rate 1983-1989 dry season rate ** 
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Table 4.2: OLS and 1000m Spatial Lag Model Results, Seasonal Rates 

Arranged in descending order from greatest spatial autocorrelation (greatest rise in 

log-likelihood ratio (LLR) and greatest drop in Akaike Information Criterion (AIC) 

& Schwarz Criterion (SC)) to least. 

** p<.05 

* p<.10 

Dependent Variable Independent Variables Sig. 

1990-2003 dry season cholera rate flood protection status NS 

1990-2003 dry season cholera rate 1983-1989 dry season cholera rate NS 

1990-2003 dry season cholera rate river distance NS 

1990-2003 rainy season cholera rate river distance NS 

1990-2003 rainy season cholera rate 1983-1989 rainy season cholera rate NS 

1990-2003 rainy season cholera rate flood protection status ** 

1983-1989 dry season cholera rate flood protection status NS 

1983-1989 dry season cholera rate 1983-1989 rainy season cholera rate * 

1983-1989 dry season cholera rate river distance * 

1983-1989 rainy season cholera rate river distance NS 

1983-1989 rainy season cholera rate flood protection status NS 

1983-1989 rainy season cholera rate 1983-1989 dry season cholera rate ** 
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Table 4.3: OLS and 1000m Spatial Lag Model Results, Bacteria Strain Rate 

Arranged in descending order from greatest spatial autocorrelation (greatest rise in 

log-likelihood ratio (LLR) and greatest drop in Akaike Information Criterion (AIC) 

& Schwarz Criterion (SC)) to least. 

** p<.05 

* p<.10

Dependent Variable Independent Variable Sig. 

1990-2003 O1 cholera rate river distance ** 

1990-2003 O1 cholera rate flood protection status * 

1990-2003 El Tor cholera rate river distance ** 

1990-2003 O1 cholera rate 1990-2003 dry season rate ** 

1990-2003 El Tor cholera rate flood protection status ** 

1990-2003 O139 cholera rate river distance NS 

1990-2003 O1 cholera rate 1990-2003 rainy season rate ** 

1990-2003 O139 cholera rate flood protection status ** 

1983-1989 Classical cholera rate flood protection status NS 

1983-1989 Classical cholera rate river distance NS 

1983-1989 O1 cholera rate flood protection status NS 

1983-1989 O1 cholera rate river distance NS 

1990-2003 O139 cholera rate 1990-2003 dry season rate ** 

1983-1989 O1 cholera rate 1983-1989 rainy season rate ** 

1983-1989 El Tor cholera rate river distance NS 

1983-1989 El Tor cholera rate flood protection status NS 

1983-1989 O1 cholera rate 1983-1989 dry season rate ** 

1990-2003 O139 cholera rate 1990-2003 rainy season rate ** 
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Chapter 5 

 

Conclusion 

 

The results of the spatially-lagged regression analyses confirmed the earlier cluster results 

indicating that changes in cholera incidence have taken place in Matlab since the introduction 

of flood protection to a portion of the study area.  The two analyses presented, cluster and 

regression, together form a part of the picture explaining the changes that have occurred in 

cholera incidence in Matlab since the introduction of flood protection measures.  The results 

of both studies suggest that the strongest changes in incidence are not strictly spatial, such 

that cholera incidence went up inside or outside the flood protected area, but rather are more 

intricate, involving changes in seasonality of occurrence and variance by cholera type.   

 Prior to the introduction of flood protection, the occurrence of cholera clusters in 

Matlab appeared to be mediated by proximity to the Dhonagoda River.  In the 1990-2003 

analysis, river distance seemed to have a lesser role in variation, although clusters still 

appeared evenly distributed across the flood protected and unprotected portions of Matlab.  

Despite a lack of observable spatial differentiation between pre-MDIP clusters and post-

MDIP clusters, significant temporal variation is present.  Our findings suggest that the 

seasonal timing of clusters shifted post-MDIP construction, from occurring predominantly in 

the dry season to taking place in the rainy season.  Additionally, rainy season clusters occur 

earlier in the unprotected portion of Matlab than within the flood protected area.   



80 

Important seasonal variation also appeared in the spatial regression analysis. When 

cholera was analyzed according to season of incidence the greatest levels of spatial 

autocorrelation were seen in dry season cholera, regardless of time period or independent 

variable.  This suggests that cholera incidence in Matlab is highly influenced by neighboring 

cholera incidence in the dry season, and that introducing flood protection in 1989 did little to 

affect this.  Completing the MDIP did, however, affect levels of spatial autocorrelation seen 

in rainy season cholera incidence, and introducing flood protection to half the study area 

greatly increased the influence of surrounding cholera on individual bari cholera across 

Matlab.       

 Division of cholera incidence according to bacterial strain demonstrated further 

differentiation between pre-MDIP Matlab and the post-MDIP divided Matlab.  Classical 

cholera clusters took place predominantly in the dry season, El Tor clusters occurred in the 

rainy season and O139 clusters were split evenly between the two seasons.  When the flood 

protection status of each type-cluster was considered, flood protection status did not appear 

to mediate the occurrence of O139 clusters.  In contrast, the O1 clusters were sited mainly 

outside of the protection of the MDIP.  Differentiation in results according to bacterial strain 

was also apparent in the spatial regression analysis.  O1 cholera relationships were more 

spatially autocorrelated than their O139 counterparts, suggesting that O139 cholera is less 

mediated by surrounding cholera events than is O1 cholera.    

 The strong differences in the cluster maps and in the results of the regression analyses 

suggest that there are significant differences between cholera in 1983-1989 and 1990-2003.  

These differences can be correlated with the completion of the Meghna-Dhonagoda Irrigation 

Project in 1989, in keeping with previous literature on the changes that water construction 



 81 

programs can have on disease outcomes.  Viewing the human-environmental interactions 

taking place in Matlab that lead to cholera outcomes in terms of the triangle of human 

ecology, we can postulate about changes in behaviors that might have occurred as a result of 

MDIP construction.  At the population level, increases in nutritional status experienced 

within the flood protected area as the result of the ability to double or triple crop could alter 

cholera patterns, as cholera is more likely to occur in malnourished individuals.  From the 

environmental perspective, water sources that were previously flooded by the Dhonagoda in 

the early months of the rainy season remained at normal levels within the flood protected 

area.  The MDIP embankment could also have altered the social environment, cutting off 

social networks that previously spanned the river.  Behaviors of those individuals living 

inside the MDIP were also likely affected, as patterns of water usage (i.e. going to the river to 

wash dishes or laundry) were shifted by the building of the earthen embankment.   Our 

results only hint at the changes to the highly intricate and complex relationships between 

social, environmental and biological variables that interact to result in cholera infection.            

  


