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Abstract 

 
MEGAN PATE: Assessment of Active and Passive Muscle Stiffness, 

Electromechanical Delay, and Extensibility Over the Course of the Menstrual Cycle 
(Under the direction of Darin Padua, Troy Blackburn, Kevin Guskiewicz, and 

David Bell) 
 

Anterior cruciate ligament injuries are more common in females than in males.  

Research has failed to isolate a cause for this bias.  Hormones have been implicated in 

increased injury rates, increased ligamentous laxity, decreased stiffness, and increased 

electro-mechanical delay.  We compared active and passive muscle stiffness, electro-

mechanical delay, and extensibility of the knee flexor group between menses and 

ovulation in eumenorrheic women. No significant differences in active and passive 

muscle stiffness, electromechanical delay, or extensibility of the knee flexor group were 

measured between menses and ovulation.  Menstrual cycle phase may not have an effect 

on active and passive muscle stiffness, electromechanical delay, or extensibility.  

Therefore, increased anterior cruciate ligament injury rates in females may not be caused 

by hormonal changes in muscle stiffness. 
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Chapter One 
 

INTRODUCTION 

 Anterior Cruciate Ligament (ACL) injuries occur more frequently in women than 

in men (Arendt and Dick 1995, Powell and Barber-Foss 2000, Rozzi et al. 1999).   

Differences in knee anatomy, knee and hip biomechanics, neuromuscular control, and 

hormones have been implicated as causative factors.  However, the reason for the sex 

bias in ACL rates is likely multi-factorial.  

  In the attempt to define the role of hormones in the increased risk of ACL injury 

in females, researchers have identified correlations between menstrual cycle phase 

(MCP), and the associated hormonal fluctuations and ACL injury risk (Beynnon et al. 

2006, Slauterbeck et al. 2002, Wojtys et al. 2002).  In addition, a key fluctuating hormone 

of the menstrual cycle, estrogen, has been shown to influence collagen metabolism in 

ligament and therefore may have potential weakening effects on the ACL (Liu et al. 

1997, Yu et al. 1999).   This relationship between estrogen concentration and ACL laxity 

could be a potential reason for increased knee laxity in females as compared to males 

(Beynnon et al. 2006).  However, there is conflicting evidence for an actual correlation 

between MCP and ACL laxity (Belanger et al. 2004, Deie et al. 2002, Heitz et al. 1999, 

Karageanes et al. 2000, Romani 2003, Shultz et al. 2004). Some agree that there is a 

relationship between menstrual cycle phase and knee laxity and others do not.  Therefore, 

it is possible that the fluctuating reproductive hormones of the menstrual cycle may affect 
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the active tissues of the knee joint such as, muscle and their connective tissues such as,   

tendon and fascia in addition to the ACL.  This theory is supported by recent research 

that has demonstrated decreased muscle stiffness in females that cannot simply be 

attributed to anthropometric differences or less strength (Blackburn et al. 2006, Eiling 

2006).  Because active tissue is important in providing stability to the knee joint (Duan et 

al. 1997), potential changes in active tissue stiffness caused by fluctuating hormone levels 

during the menstrual cycle may leave the ACL more vulnerable to injury (Granata et al. 

2002).   

 Because hormone induced changes such as, collagen metabolism have been 

shown in ligaments and in smooth muscle (Copas et al. 2001, Liu et al. 1997), it is 

probable that reproductive hormones are capable of changing the properties of skeletal 

muscle as well.  We are aware of only one study that has investigated the effects of MCP 

on active tissue (Eiling et al. 2006).  Eiling et al. observed musculotendinous stiffness 

(MTS) of the lower limb at four different points in the menstrual cycle. They observed a 

significant decrease in MTS during the ovulatory phase, which is associated with a peak 

in estrogen concentration.  This is consistent with reported increased ACL injury rates 

during the ovulatory phase (Wojtys 2002).   

 Therefore, the purpose of this study is to determine the effects of MCP on various 

muscle properties hypothesized to contribute to joint stability, including active and 

passive stiffness, electromechanical delay (EMD), and extensibility of the knee flexor 

group.  



 3 

1.   Research Questions 

1.1 Is there a significant difference in active muscle stiffness of the knee flexor group 

between post menses onset and post ovulation during a single menstrual cycle? 

1.2 Is there a significant difference in passive muscle stiffness of the knee flexor group 

between post menses onset and post ovulation during a single menstrual cycle? 

1.3 Is there a significant difference in flexibility of the knee flexor group between post 

menses onset and post ovulation during a single menstrual cycle? 

1.4 Is there a significant difference in electromechanical delay of knee flexor contraction 

between post menses onset and post ovulation during a single menstrual cycle phase? 

2. Null Hypothesis 

2.1 There is no significant difference in active muscle stiffness of the hamstring muscle 

group between post menses onset and post ovulation during a single menstrual cycle? 

2.1 There is no significant difference in passive muscle stiffness of the hamstring muscle 

group between post menses onset and post ovulation during a single menstrual cycle? 

2.2 There is no significant difference in flexibility of the hamstring muscle group 

between post menses onset and post ovulation during a single menstrual cycle? 

2.3 There is no significant difference in electromechanical delay of hamstring muscle 

contraction between post menses onset and post ovulation during a single menstrual 

cycle phase? 

3.  Research Hypothesis 

3.1 There will be a significant decrease in active muscle stiffness of the hamstring muscle 

group post ovulation compared to post menses onset. 
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3.1 There will be a significant decrease in passive muscle stiffness of the hamstring 

muscle group post ovulation compared to post menses onset. 

3.2 There will be a significant increase in flexibility of the hamstring muscle group post 

ovulation compared to post menses onset. 

3.3 There will be a significant increase in electromechanical delay of hamstring muscle 

contraction post ovulation compared to post menses onset. 

4. Definition of Terms 

4.1 Passive muscle stiffness (kp) is the slope of the linear relationship between passive 

moment and angular position of the knee (ΔF/Δ°).   

4.2 Active muscle stiffness is defined as ka=4Π2mr2f2 where ka is active stiffness, m is the 

total mass of the lower leg (kg), r is the distance from the lateral femoral condyle to 

the lateral malleolus, and f is the damped frequency of oscillation (s-1). 

4.2 Frequency of oscillations (f) is defined as the inverse of the time interval between the 

first two recorded oscillations of lower leg movement following a perturbation during 

active stiffness assessment.   

4.3 Onset of muscle activity (ms) will be defined as the time at which the EMG exceeds 

two standard deviations of the average baseline muscle activity during EMD 

assessment. 

4.4 Baseline activity is defined as the average voltage (V) recorded 500ms before 

presentation of the visual stimulus during EMD assessments. 

4.5 Onset of force (ms) will be defined as the time at which force (V) exceeds two 

standard deviations of the baseline force being registered by the dynamometer during 

the EMD assessments. 
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4.6 Extensibility was defined as the angle formed by the longitudinal axis of the femur 

and a line parallel to the ground. 

4.7 Post menses was defined as the time period between the self reported first day of 

menstrual flow and the three days following. 

4.8 Post ovulation was defined as the time period between the occurrence of a positive 

ovulation test and the three days following. 

5. Assumptions 

5.1 Participants accurately and honestly reported their medical histories. 

5.1 Participants accurately and honestly reported their menstrual cycle histories and 

information about contraceptive use. 

5.2 Participants accurately reported day of current menstrual cycle. 

5.3 Participants returned on days that are consistent with the repeated measures 

guidelines (i.e. three days after the onset of their menstrual flow and three days after 

ovulating).   

5.4 Participants used the ovulation test strips at the right time and as indicated by the 

manufacturer’s instructions. 

5.5 Participants did not take any type of hormone altering contraceptive while 

participating in this study. 

5.6 Participants maintained a consistent level of physical activity, abstaining from any 

new activities that may affect their current level of muscle stiffness or flexibility i.e. 

new stretching techniques or a different type of exercise. 
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6. Limitations 

6.1 Participants had unavoidable irregularities in their menstrual cycle throughout the 

testing period.  

6.1 Confounding variables such as previous activity, illnesss, nutrition, or stress levels 

caused differences in the measured variables.  

7. Delimitations 

7.1 Participants were asked to keep a calendar that helped them determine day of 

menstrual cycle more accurately.   

7.1 Participants with a history of irregular cycles were eliminated from the study. 

7.2 Participants were asked to maintain a consistent level of physical activity throughout 

the course of the study.   

8. Significance of Study 

If these muscle properties are negatively affected across the menstrual cycle, this 

could contribute to our overall understanding of increased ACL injury rates in women. 

MCP dependent changes may indicate a need to further examine the effects of hormone 

altering medications such as oral contraceptives. Furthermore, MCP dependent changes 

in our selected variables will indicate a need to control for MCP when conducting further 

research on those variables.   It may also be necessary to recognize non-MCP hormonal 

changes in subjects who are pre-pubescent or  menopausal when researching active tissue 

variables.



Chapter Two 

REVIEW OF LITERATURE 

 

1.  ACL INJURIES 

1.1 Epidemiology 

 Researchers have paid special attention to female ACL injuries over previous 

decades.  Following Title IX, there was a rise in female athlete participation in college 

athletics.  Along with this rise came an increase in recorded ACL injuries.  Data collected 

from the National Collegiate Athletic Association Injury Surveillance System in 1995 

revealed that females experience significantly higher ACL injury rates than males 

competing in the same sport (Arendt and Dick 1995).   ACL injuries are one of the most 

common and costly ligamentous knee injuries.  They are potentially season ending and 

can be devastating to continued athletic and academic performance by jeopardizing 

scholarship support (Hewett et al. 2006).  Researchers are currently trying to pinpoint the 

causes for increased female ACL injury rates compared to males.  Although many causes 

have been hypothesized, the reason is likely multifactorial.    

 In the literature, risk factors for ACL injury are consistently grouped into intrinsic 

and extrinsic factors  (Ireland 2002, Huston et al. 2000, Hewett et al. 2006). Ireland 

(2002) defines intrinsic factors as those that are not changeable, including tibial-femoral 
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alignment, hyperextension, physiologic rotatory laxity, ACL size, intercondylar notch 

size and shape, and hormonal influences.  Huston et al. (2000) defines intrinsic factors 

similarly, with joint laxity added to the list.  A more recent review (Hewett et al. 2006) is 

more expansive.  Their list of intrinsic factors includes increased available translation of 

the tibia on the femur, increased foot pronation defined by navicular drop, increased body 

mass index, changes experienced during puberty, muscle activation timing, proprio-

ception, muscle imbalances, fatigue, and angles at the hip.   

 Extrinsic factors are defined by Ireland (2002) as those that can be changed and 

include strength, conditioning, type of shoe, and motivation.  Ireland further explains a 

category of potentially changeable intrinsic and extrinsic factors that includes 

proprioception, neuromuscular patterns, order of muscle firing, and acquired skills.   

1.2 Mechanisms of ACL injury  

 Mechanisms of ACL injury can be categorized into contact or non-contact 

injuries.  Contact injuries include those that occur as a result of contact between two 

individuals, whether the contact occurred on the involved limb or somewhere else on the 

body (Hewett et al. 2006).  However, the most common mechanisms of ACL injury are 

non-contact in nature.  Boden et al. (2000) surveyed 89 injured athletes and found that 

72% of them injured their ACL as a result of a noncontact mechanism of injury.  Non-

contact mechanisms in this study were defined as sudden deceleration prior to a change 

of direction or landing motion. Video review of the injuries, when available, showed that 

the involved knees were close to full extension during the deceleration or landing 

maneuver.  Performing decelerations and landing maneuvers at full extension (0 degrees-

20 degrees) is a typical movement pattern.  In this position the quadriceps have an 
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increased mechanical advantage over the hamstrings.  Therefore, the tibia is subjected to 

increased anterior tibial translation and the ACL is potentially loaded.    Adequate and 

timely stiffness of the active tissue surrounding the knee joint could play an important 

role in providing stability that may protect the ACL from excessive loads.   

2.  Mechanisms of Knee Stability 

 Joint stability is defined differently among researchers.  Different terms such as 

joint laxity and joint stiffness have been used when describing joint stability.  Typically, 

knee laxity is defined as the amount of motion available at the tibio-femoral joint 

including translation, transverse plane rotation, and valgus.  For example, laxity may 

refer to degrees of joint opening during the application of a valgus force or millimeters of 

anterior translation of the tibia during the application of an anteriorly directed force.  

Therefore, joint laxity and stiffness are related if you consider joint stiffness refers to the 

ability of the structures comprising the joint to resist changes in position.  This is 

consistent with the definition of stiffness which is the ratio of a change in force to a 

change in length.  When the direction and magnitude of externally applied forces exceed 

the forces generated by the stabilizing structures of the knee, the tibia will translate in the 

direction of the externally applied force (Shelburne et al 2004, An 2002). If the tibial 

translation applies enough tensile or shear strain to the ACL then it will tear or rupture 

completely.  Stability, therefore, is maintained when the resultant joint forces caused by 

external loads are balanced by the summation of forces generated by the anatomical 

structures of the knee (An 2002).   

  Quantitative data concerning the respective contributions of the knee structures to 

knee stiffness is not well documented.  Some consider the ACL to be the primary 
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stabilizer with knee musculature contributing only when the ACL approaches failure.  

Other researchers believe that muscles are more important in providing stability.   Ideally, 

the stabilizing structures of the knee work synergistically to increase knee stiffness and 

minimize tibial motion relative to the femur.   

  Because females demonstrate less joint stiffness than males it is important to 

identify the components of joint stiffness and how they may differ between sexes.   The 

structures that contribute to knee stiffness include tibio-femoral contact, ligaments, and 

muscles (Duan et al. 1997).      

2.1 Bony anatomy- TibioFemoral Contact 

 Because the articular surfaces of the tibia and the femoral condyles are functional 

in distributing forces across the knee, the alignment of these two bones contribute to knee 

stability.  As valgus/varus and internal/external rotation loads are applied, the tibia 

maintains an axis of rotation on the femoral condyles.  The axis of rotation alternates 

between the medial and lateral tibial plateaus during movement.  As the axis of rotation 

changes, movement of the tibia causes changes in length and tension in the hamstrings.  

This stimulates reflexive contractions which provide instantaneous protection against 

anterior tibial translation and rotation (Besier 2003).   

2.2  ACL  

 The ACL traverses the condylar notch from the posterior lateral femur to the 

anterior medial tibia, and inserts just posteriorly to the medial meniscus.  In this position 

it is capable of resisting excessive anterior tibial translation and internal and external 

rotation by undergoing tensile strain. The ACL is able to withstand upwards of 2000N of 

tensile force before tearing (Woo et al. 1991).  Anterior translation or rotation of the tibia 
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that is experienced with functional movement like landing or cutting increases the forces 

on the ACL (Dienst et al. 2002).  The ability of the ligament to resist applied functional 

forces is dependent on its strength, loading history, hormone levels, the load applied, 

geometry of the joint, and the muscles that surround the joint (Besier et al. 2003).   

 The structural organization of the ACL contributes to its overall strength. It has a 

hierarchal arrangement of multiple collagen units that are bound together by connective 

tissue.  The first layer consists of cross linked collagen fibers that are bound together into 

fasicles forming the second layer (Smith et al. 1993).  The fasicular nature of the ACL 

lends to separation of two distinct bundles, the anteromedial (AM) bundle and the 

posterolateral (PL) bundle which become taut in flexion and extension respectively 

(Smith 1993).  It is this structural organization that contributes to the strength of the 

ACL.  It is suspected that this structure is weakened by fluctuating levels of estrogen in 

females.  It has been demonstrated that estrogen decreases collagen proliferation and may 

have a weakening effect on ligaments  (Liu et al. 1997, Yu et al. 1999). 

2.3 Muscle Stiffness 

Muscles may be more effective at providing joint stiffness than ligaments because 

muscles operate under reflexive and voluntary control.    Antagonist musculature such as 

the knee flexor group is a crucial component of joint stiffness because it increases and 

decreases its level of activity in response to changing agonist activity and changing 

degrees of knee flexion (Baratta et al. 1988, Hagood 1990, An 2002). Furthermore, the 

hamstrings have medial and lateral attachments on the tibia and fibula and are able to 

provide rotary stability to the tibia.  Voluntary and reflexive control of knee stability 

provided by musculotendinous tissue (MTT) such as the knee flexors could be crucial in 
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protecting the ACL during functional maneuvers such as landing, cutting, or sustaining a 

blow to the knee.  MTT includes contractile components, tendons, and connective tissues 

attached to a muscle.     

The importance of reflexive and voluntary use of muscles to increase knee 

stability is seen when observing ACL deficient patients who lack proprioceptive input 

and stability that is typically provided by the ACL (McNair et al. 1992).  When 

performing a functional task, ACL deficient individuals have earlier and higher overall 

muscle activation as compared to controls (Colne and Thoumie 2006).  Similarly, elderly 

patients who experience decreased neuromuscular control have higher and earlier muscle 

activation during a functional task in anticipation of instability (Hortobagyi and DeVita 

2000).  This voluntary increase in muscle activity is suspected to increase knee stability 

by increasing overall joint stiffness.   

The knee flexors may be important contributors to joint stiffness during functional 

tasks because they are in a position to reduce anterior tibial translation (Smith et al.1993, 

Baratta et al. 1988, McNair et al. 1992, Li et al. 1999, Liu and Maitland 2000).  

Moreover, the hamstrings make a unique contribution to knee joint stability by providing 

rotary stiffness.  Because of their medial/lateral attachment to the tibia/fibula they protect 

the ACL by reducing tibial rotation.  Li et al. (1999) demonstrated that voluntary 

hamstring contractions significantly reduced anterior and lateral translation and internal 

rotation of the tibia when the quadriceps exerted a 200N extension load (1999).   

Voluntary control of joint stiffness is supported by several studies (Wojtys et al 

2002, Zhang and Wang 2001).  Zhang and Wang (2001) demonstrated that subjects were 

able increase knee joint stiffness by co-contracting the knee musculature during 
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application of an abduction/adduction torque to a fully extended knee.  Furthermore, the 

subjects in this study were capable of controlling the amount of joint stiffness by 

regulating muscle contractions in response to changing amounts of torques.  Specific 

muscle contributions to the increase in joint stiffness were not mentioned.  However, it 

has been reported that activation of the sartorius can increase valgus knee stiffness by an 

average of 208% and activation of the vastus medialis oblique increases valgus knee 

stiffness by an average of 164% (Pope et al. 1979).  

Wojtys et al. (2002) demonstrated that voluntary co-contraction of the knee 

musculature is capable of increasing joint stiffness and significantly reducing anterior 

tibial translation when an external, anteriorly directed force is applied to the proximal 

tibia.  They calculated that anterior shear stiffness of the knee significantly increased as 

much as 379% and reduced anterior tibial translation by 5mm.  The researchers 

concluded that this significant reduction in tibial translation is capable of protecting the 

ACL from forces caused by tibial motion, however they could not conclude if the total 

strain experienced by the ACL during maximal co-contraction of the knee musculature is 

reduced.   

The muscle property that contributes to increased joint stiffness is muscle 

stiffness.  Muscle stiffness is the ratio of the change in force to the change in length of the 

MTT.    Therefore, adequate stiffness of the muscles attached to the tibia can potentially 

contribute to knee stability by resisting changes in length and reducing total tibial 

translation (Wojtys et al. 2002, Zhang and Wang 2001, Sherbondy et al. 2003, An 2002).  

Even when resting, passive muscle stiffness makes an appreciable contribution to knee 

stability (Wojtys et al. 2002).  But more importantly, active stiffness, created by  



 14 

voluntary or reflexive contractions of the knee musculature, can increase joint 

stiffness up to more than three times resting stiffness values, and may be more valuable 

during functional activities (Wojtys et al. 2002, Markolf 1978).  The contribution of 

active muscle stiffness is essential for dynamic knee stability (Granata et al. 2002, Duan 

et al. 1997).    Therefore, low muscle stiffness could increase risk of ACL injury, and 

could be a contributing factor to increased ACL injury rates in females. 

Several studies have reported less musculotendinous stiffness in females. The 

causes for this are uncertain.  Granata et al. (2002a & 2002b) observed in two separate 

publications that active stiffness of females ranges from 56-81% less than males.  In the 

first investigation they theorized that sex differences in body size, muscle architecture, 

and material differences secondary to hormonal influences may contribute to decreased 

stiffness in females.  In a different study they concluded that unequal body mass does not 

fully explain the sex differences and they proposed muscle recruitment strategies and 

differences in knee and ankle motion as possible contributors.  Hormonal differences 

were not addressed as a cause in the later study.  

Other studies have proposed that strength, co-activation levels, and 

anthropometric qualities contribute to sex differences in stiffness (Markolf et al. 1978, 

Hagood 1990, Blackburn et al. 2004, Granata et al. 2002a).  Blackburn et al. (2004) 

measured active and passive stiffness and extensibility of the knee flexors in 15 males 

and 15 females.  The females displayed significantly higher extensibility and significantly 

less active and passive stiffness.  However, when the results were normalized, no 

significant differences were found.  The males were significantly taller, heavier, and had 

significantly longer shanks.  Therefore, the authors concluded that differences in stiffness 
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between males and females are primarily due to anthrompometric differences.  However, 

other research suggests that sex differences in stiffness may be more dependent on 

intrinsic properties of the muscle (An 2002, Wojtys et al. 2002, Blackburn et al. 2006).  

These intrinsic properties include tendon viscoelastic properties (Blackburn et al. 2006), 

muscle architecture (Blackburn et al. 2006,  Wojtys et al. 2002, An 2002), and the 

amount and arrangement of passive connective tissue in the muscle (Wojtys et al. 2002).  

Because fluctuating reproductive hormones have been shown to have an effect on 

collagen metabolism, it is possible that they may also have an effect on these intrinsic 

properties of muscle. If this is true, one would expect to see changes in active and passive 

muscle stiffness during different MCP.   

To date, there is only one other study that has measured differences in active 

muscle stiffness over the course of the menstrual cycle (Eiling et al. 2006). They reported 

significantly lower MTS on the day of ovulation than during menstruation and day seven 

of the follicular phase.  These findings are consistent with our hypothesis. However, there 

are some differences in methodology between their study and ours.  Eiling et al. defined 

musculotendinous stiffness (MTS) as Kleg=Fpeak/∆  L where Kleg is stiffness of the leg, 

Fpeak was the peak vertical ground reaction force measured during a repetitive hopping on 

a force plate and  ∆ L was maximal change of displacement of the leg spring. It is not 

known if a higher functional demand such as hopping makes differences in stiffness more 

detectable.  The day of testing occurred on the exact day of ovulation in the Eiling study.  

Because the Eiling study is the only study to date that describes any MCP dependent 

changes in skeletal muscle, there is little evidence to indicate when testing should occur.    

The results from a study published by Shultz et al. (2004) suggest that MCP dependent 
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changes in knee laxity occur within 3-4 days following a peak in estrogen.  It is not 

known if there is a similar delay in the effects of hormone fluctuation on muscle tissue.  

Shultz et al. (2004) also noted a post hoc regression that showed a relationship between 

the length of delay in the laxity changes and the length of the follicular phase and the 

absolute levels of estrogen and progesterone in each subject.  Changes in knee laxity 

occurred later in individuals who had smaller increase in hormone levels.  It is possible 

that potential effects of MCP on MTT would display the same delays.   

2.4 Electromechanical Delay 

 Co-contraction of knee musculature is capable of protecting the ACL by 

increasing joint stiffness.  However, if the muscles are not contracted at the instant of an 

applied force they must respond quickly enough to offer protection to the ACL.  The time 

it takes for MTT to respond to joint loading is often referred to as total motor time (TMT) 

(Bell & Jacobs 1986, Moore et al. 2002).  TMT was divided by Moore et al.(2002) into 

premotor time (PMT) and electromechanical delay (EMD).  PMT is the time between the 

application of a load and the onset of electromyographic activity of a muscle (EMG). 

EMD is the time between the onset of EMG of a muscle and the onset of force or 

movement created by that muscle (Granata et al. 2000, Moore et al. 2002, Zhou 1996).    

EMD has been used as a measure of MTT stiffness because EMD is essentially the time it 

takes for a shortening muscle to apply force to a joint (Granata et al. 2000). Muscles that 

are pretensioned or intrinsically stiff have shorter EMD.  On the other hand, more 

compliant MTT would be expected to have a longer EMD because cross bridge formation 

initially functions to take up the “slack” in the series elastic component rather than 

applying force to move bone segments.  Thus, shorter EMD is seen when normal 
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individuals are compared to subjects who pre-tense their muscles or to patients who 

suffer from a spastic neuropathy (Granata et al. 2000).  

 EMD does not affect the magnitude of MTT force, but determines if the force, 

despite its magnitude, is applied quickly enough to counteract excessive loads at the knee 

(Granata et al. 2002).  Presumably, a prolonged EMD would prevent the knee flexor 

group from preventing anterior tibial translation or tibial rotation that could result in an 

ACL tear.   

 Because of the potential relationship between stiffness and EMD, it is not 

surprising that females have demonstrated longer EMD than males (Bell and Jacobs 

1986, Winter and Brookes 1991, Zhou et al. 1995) as females possess lesser MTS.  One 

study reported no difference in EMD between males and females (Linford et al. 2006) 

and one study showed prolonged EMD in females only after a fatiguing bout of exercise 

(Moore et al. 2002).  If a discrepancy does exist, it is a possible contributor to the 

increased risk of ACL injury in females.  Therefore, it is important to investigate the 

reasons for prolonged EMD in females.   

 The following studies have suggested potential contributors to prolonged EMD.  

Kaneko et al. (2002) reported an increase in EMD of the quadriceps following ACL 

reconstructions that used a patellar tendon graft.  They speculated that changes in the 

stiffness of the series elastic component of the patellar tendon secondary to surgical 

trauma increased EMD.  Zhou et al. (1996) also suggested that changes in EMD would be 

expected when there are changes in the structural and functional properties of MTT.  He 

also cited fatigue, muscle temperature, contraction force, and muscle fiber type as a 

contributor to changes in EMD.  These speculations, however, do not offer an 
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explanation for the differences in EMD between men and women.  One explanation for 

the sex difference is that EMD is affected by reproductive hormones (Moore et al. 2002, 

Winter and Brookes 1991).  The role of hormones does not contradict the idea that 

structural changes may contribute to prolonged EMD but offers an explanation for a sex 

linked change that creates prolonged EMD in women.  Hormones have been shown to 

create changes in collagen metabolism.  Therefore, changes in the collagen composition 

of MTT may make muscle more compliant and prolong its EMD.   

 
3. Menstrual Cycle and Potential Effects of Reproductive Hormones on 
Active and Passive Tissue 
 
 Estrogen is one hormone in the class estradiol.  Functions of estrogen in women 

include stimulating bone and muscle growth, maintaining female secondary sex 

characteristics, affecting central nervous system activity, maintaining functional 

accessory reproductive glands and organs, and initiating the repair and growth of the 

endometrium.  The maintenance of the endometrium and production of an egg is the 

result of a concerted fluctuation of estrogen and other reproductive hormones such as 

progesterone.  It is this fluctuation that has been implicated in increased knee laxity and 

more frequent knee injuries in females as compared to males.  In an attempt to define the 

relationship between fluctuating hormones and changes in tissue properties at the knee, 

several observations have been made that warrant further research.  The presence of 

estrogen receptors (ER) has been noted on ligaments, smooth, and skeletal muscle (Copas 

et al. 2001, Lemione et al. 2003, Liu et al. 1996).  Also, it has been observed that 

estrogen effects the metabolism of collagen in the ACL (Liu et al. 1997), potentially 

making it weaker.  Therefore, it is hypothesized that when there is a high serum 
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concentration of estrogen, (i.e. during ovulation), ligaments are more lax and more 

susceptible to injury.   

 A normal menstrual cycle is typically divided into a menstrual, follicular, 

ovulatory, and a luteal phase.  The follicular phase begins with menstruation (menses) 

which typically lasts 7 days.  During menses estrogen levels are low and follicle 

stimulating hormone is the predominant hormone and is responsible for stimulating the 

ovary to produce follicles.  The follicles secrete estrogen at an increasing rate as they 

develop.  When the estrogen reaches a threshold concentration, lutenizing hormone is 

released from the pituitary gland.  Lutenizing hormone triggers rupture of the follicle wall 

and an oocyte is released (ovulation).  Ovulation occurs at approximately 14 days after 

the onset of menses, is accompanied by a sharp rise in estrogen, and followed by a 

decreased in estrogen and an increase in progesterone approximately twenty days after 

menses onset.  Ovulation marks the start of the luteal phase which is characterized by 

decreasing estrogen levels and a spike in progesterone levels.  If fertilization does not 

occur, estrogen and progesterone decrease rapidly, and menstruation occurs (i.e. the cycle 

starts over).  (Martini 2006)      

 There is conflicting evidence that ACL laxity actually increases during the time 

when estrogen concentration is highest.  Shultz et al. (2004), Deie et al. (2002), and Heitz 

et al. (1999) observed increased ACL laxity during times of the menstrual cycle when 

estrogen and progesterone are highest.  However, Karageanes et al. (2000), Belanger et 

al. (2004), and Beynnon et al. (2005) were unable to demonstrate any significant changes 

in knee laxity over the course of the cycle.   The distribution of injury frequency across 

the menstrual cycle is also variable amongst studies.  Slauterbeck et al. (2002) observed 
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increased ACL injury corresponding to the onset of menses.  However, Wojtys et al. 

(2002) observed more ACL injuries than expected during the ovulation phase.  These 

results seem more consistent with the hypothesis that estrogen has a weakening effect on 

ligaments.  The variability in the results of these studies could be due to time delays 

between hormone concentration changes and tissue property changes (Shultz et al. 2004).  

Secondly, it is not known if estrogen has an effect on the ability of active tissue to 

provide stability to the knee.  Lastly, it is possible that estrogen is not the only factor 

influencing changes in tissue property throughout the cycle.  Progesterone also 

demonstrates a huge fluctuation during the cycle.   

 It has been proposed that estrogen can contribute to increased ACL injury by 

weakening the ACL itself.  Liu et al. (Liu 1997) demonstrated altered collagen 

metabolism in ACL specimens after exposure to physiologic exposure to estrogen, 

reporting a 40% reduction in collagen synthesis with increasing estradiol concentrations .  

Yu et al.  (1999) demonstrated decreased Type I procollagen synthesis with increased 

estradiol exposure in the human ACL.  More research is required to determine the 

influence of menstrual cycle hormones fluctuations on ligaments.  Additionally, it is not 

known if menstrual cycle hormones have an effect on stiffness of skeletal muscle.  Since 

there is collagenous material in the series component of muscles, it is possible that the 

fluctuation of hormones can change musculotendinous properties and their ability to 

provide stability to the knee.   

 Some research has attempted to define the affect of estrogen on muscles.  Estrogen 

has been shown to have a significant influence on muscle membrane stability and 

possibly on minimizing post exercise muscle damage and soreness (Tiidus 2003, Carter 
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et al.).  Furthermore, some studies have ventured to demonstrate a relationship between 

menstrual cycle phase and skeletal muscle strength.  Three relatively recent studies were 

unable to identify a correlation between menstrual cycle phase and changes in strength 

(Friden et al 2003, Janse de Jonge et al 2001, Nicolay et al. 2007).  However, Nicolay et 

al (2007) did report a minimal decrease in endurance of grip strength during the late 

follicular phase of eumenorrheic women.  They also reported that the controls, who were 

oral contraceptive users, did not demonstrate fluctuations in strength and they were 

weaker than the eumenorrheic women throughout the entire cycle.  Post hoc analysis in 

the study led the researchers to deny any relationship between oral contraceptive use and 

decreased strength, but they did suggest a potential interaction between increased 

estrogen levels and decreased skeletal muscle endurance during late follicular phase in 

the eumenorrheic women.   They proposed that the decreased endurance demonstrated in 

this study was secondary to a collagenolytic effect of estrogen on ligaments and tendons 

which supports our theory that MCP may have an effect on stiffness of musculotendinous 

tissue. 

4.  Conclusion 

 The effects of estrogen on ligaments has been researched in many studies.  Less 

research has been conducted to explain the effects of estrogen on muscle, tendon, and 

fascia.  If, in fact, estrogen does have a significant effect on collagen metabolism in 

muscle, tendon, and fascia and on the neuromuscular qualities of joint stability, then one 

might expect significant changes in muscle properties such as active and passive stiffness 

and electromechanical delay during the three phases of the menstrual cycle.  

 



Chapter Three 

METHODS 

1. Subjects 

  Twenty pre-menopausal females were recruited from the University of North 

Carolina (UNC) to participate in this study.  In order to participate the following criteria 

were met: 1) no history of lower extremity injury within 3 months prior to data collection 

that has limited physical activity for more than 48 hours, 2) no history of ACL injury, 3) 

no history of taking oral contraceptive or any hormone altering drug including implants 

and patches within the 6 months prior to data collection, 4) self reported normal 

menstrual cycle for the 6 months prior to data collection, 5) no history of a diagnosed 

neurological disorder or visual impairment, and 6) must be physically active, 

participating in a minimum of 30 minutes of activity three times a week.  During the 

testing period, subjects were asked to maintain their level of activity and avoid changes in 

type of activity.   

 All subjects completed a medical and menstrual cycle history inquiring about the 

inclusion criteria.  As well as an approved informed consent document.   

2. Measurements 

The following dependent variables were assessed in this study:  1) passive knee 

flexor stiffness, 2) active knee flexor stiffness, 3) knee flexor electromechanical delay, 

and 4) knee flexor extensibility.  All dependent variables were measured on two separate 
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occasions for each subject. The first occasion occurred within three days after the onset 

of menses.  This interval falls after the physiological drop in estrogen and the time when 

tissues are hypothetically not influenced by estrogen.  The second occasion of testing 

occurred within three days after ovulation.  Ovulation occurs in response to a peak in 

estrogen concentrations.  It is suspected that within the three days following ovulation 

tissues experience the greatest influence of estrogen.  All testing was performed on the 

subject’s dominant leg.  The dominant leg was defined as the leg the subject would self 

select to kick a ball for maximal distance.   

Subjects were asked to complete a medical and menstrual cycle history form.  

Subjects documented the first and last day of their previous menstrual cycle on a 

calendar.  At the onset of the next menstrual cycle, the subjects were asked to contact the 

principal investigator.  The initial testing session was performed within three days 

following the onset of menses.  Following the initial test session, the subjects were given 

a commercial ovulation kit.  Two days prior to the middle of their menstrual cycle (as 

calculated from the previous menstrual cycle history) the subjects used the ovulation kit 

(urine test strip) at the same time everyday until the test was positive, indicating that 

ovulation had occurred.  Within three days after the positive ovulation test the subject 

underwent the second testing session.  

 To avoid potential changes in stiffness or flexibility, the participants were asked 

to abstain from even slight changes in physical activity or stretching for three days prior 

to each test session.  Activity was limited to what they typically performed on a regular 

basis.    
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2.1 Subject Preparation 

 Prior to testing, the subject performed a 5 minute warm up on a stationary bike at 

a pace equivalent to 25% of the individual’s perceived maximal exertion level.  The 

subject then performed a standardized stretching routine to prepare the hamstrings, 

quadriceps, and gastrocnemius complex for testing.   

 Following the warm up, subjects were prepared for electromyographic (EMG) 

electrode placement.    Preparation of the subject for electrode placement involved 

shaving, abrading, and cleaning the electrode locations in order to reduce electrical 

impedance.  A telemetered surface EMG system (T42L-8T0 Telemetry, Konigsberg, Inc., 

Pasadena, CA) was used to assess muscle activation onset time and amplitude throughout 

testing.  The system includes an 8-channel differential preamplifier transmitter and 

receiver (input impedance = 200kΩ, CMRR>70dB;SNR>40 dB).  The EMG signal was 

amplified by a factor of 10,000 over a bandwidth of 0.01 to 500 Hz and passed via an 

A/D converter (National Instruments, San Antonio, TX) at 1000Hz to the storage 

computer.  Bi-polar Ag-AgCl surface electrodes (Medicotest, Rolling Meadows IL.) 

measuring 10mm in diameter with a center to center distance of 2.0 cm were placed in 

parallel arrangement over the area of greatest muscle bulk within the muscle bellies of the 

vastus lateralis (VL), biceps femoris (BF), and lateral gastrocnemius (LG).  Electrodes 

were positioned in parallel alignment with muscle fiber directions (Beckman and 

Buchanan 1995).  A reference electrode was placed on the tibial tuberosity.  All electrode 

placements were confirmed and checked for cross talk by performing manual muscle 

tests (MMT).  
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2.2 Passive knee flexor stiffness 

 Passive knee flexor stiffness was assessed with the assumption that a linear 

relationship exists between passive moment and angular position.  Once this relationship 

was defined, the slope of the moment-angle curve was calculated as passive stiffness.  

Following the protocol set forth by Blackburn et al. (2004), the moment-angle 

relationship of the knee flexors was determined with the subject in a seated position on a 

dynamometer chair.  The chair was adjusted so that the subject’s trunk was positioned in 

30° of extension from vertical to standardize hamstring length.  Padded straps were used 

to secure the subject’s thigh, hips, and chest.  A strap also was used to attach the subject’s 

ankle to the moment arm of the dynamometer.  A rigid splint was used to maintain a 

neutral ankle position.  The axis of rotation of the dynamometer arm was aligned with the 

axis of the knee joint.  

Each trial involved the subject’s leg being passively extended by the 

dynamometer from a position of 90° to 10° of knee flexion.  A total of 3 trials was 

performed and the average passive stiffness across the trials was determined.  Passive 

stiffness was calculated as the slope of the moment angle curve as the knee was passively 

extended from 90deg to 10deg of knee flexion. During testing the angular velocity of the 

moment arm was standardized at a low level (5°/s) to reduce the effects of the 

viscoelastic nature of the tissues and to reduce the risk of stretch reflex contractions.   

The subject was instructed to remain relaxed and motionless throughout the trial.  The 

EMG activity of the hamstrings, quadriceps, and gastrocnemius was displayed on a 

computer screen in the subject’s line of sight, which allowed them to maintain their 
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muscle activation at a minimum level.  EMG activity from the VL, BF, and LG that 

exceeded baseline negated the trial and the trial was repeated.  Angular displacement and 

torque data were obtained directly from the dynamometer. 

2.3 Active knee flexor stiffness 

  Active knee flexor stiffness assessment was performed by modeling the lower 

extremity as a single degree of freedom mass spring system.  In this model, active knee 

flexor stiffness was determined as a function of damped oscillatory motion of the lower 

limb after a perturbation using the following equation  

 

ka=4π2 mr2f2  

 where ka is active stiffness, m was the total mass of the system (shank and foot segments 

and the added weight), r was the distance from the lateral femoral condyle to the lateral 

malleolus, and f was the damped frequency of oscillation(s-1) (Blackburn et al. 2004).  

Mass of the lower leg was approximated using standard anthropometric approximations.  

Following the protocol set forth by Blackburn et al., the damped frequency of oscillations 

(f) was determined using the accelerometer.  An ankle orthosis designed to maintain the 

foot in a neutral position was attached to the foot on the ipsilateral side of EMG 

connections.  It was secured with an elastic wrap.  A triaxial accelerometer (PCB 

Piezotronics, Depew, NY, USA) was adhered to the heel of the orthosis using a small 

amount of wax.  The subject was then positioned prone with the knee in 30deg of flexion.  

The subject was asked to hold the knee in 30 deg of flexion.   During assessment, the 

investigator applied a brief downward force over the posterior aspect of the ankle 

orthosis. Subjects were instructed to maintain pre-perturbation muscle contraction levels 
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and to not intervene with the perturbation.  In order to monitor hamstring isolation, EMG 

from the VL and LG were observed.  Any trials in which excessive VL or LG activity is 

observed were discarded and repeated.  The perturbation was applied at a random time to 

reduce the likelihood of subject anticipation.   The motion of the foot in response to the 

perturbation was described as oscillatory motion and was measured with the triaxial 

accelerometer (PCB Piezotronics, Depew, NY, USA).   Frequency of oscillations (f) were 

defined as the inverse of the time interval between the first two recorded oscillations.  

2.4 Electromechanical delay 

 Subject positioning was identical to passive knee flexor stiffness with the 

exception that the knee was placed in 30° of flexion.  The subject was instructed to 

remain still while waiting for a light to be turned on by the examiner.  The examiner 

controlled the light out of the subject’s line of sight to reduce the likelihood of 

anticipation.  When the light came on the subject responded as quickly as possible by 

flexing the knee with a forceful hamstring contraction.    

 The onset of hamstring muscle activity (ms) was defined as the time at which 

hamstring’s muscle activity exceeded two standard deviations above the average baseline 

muscle activity.   Baseline activity was defined as the average muscle activation 

amplitude recorded 500ms prior to introduction of the visual stimulus.   The magnitude of 

torque was measured by the dynamometer.  Onset of force (ms) was defined as the time 

at which torque (Nm) exceeded two standard deviations of the baseline torque registered 

by the dynamometer. Baseline torque was defined as the average torque (Nm) recorded 

500ms before the light was turned on. Electromechanical delay was determined by 
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calculating the difference between the onset of force and the onset of muscle (EMG) 

activity.  

2.5 Knee Flexor Extensibility 

 Passive hip flexion range of motion while lying in a supine lying position was 

measured to quantify knee flexor extensibility.  During testing, the tester passively moved 

the participant’s hip into flexion while maintaining the knee in full extension.  When the 

participant indicated that the leg could not be pushed any further, an assistant held the leg 

in place while the degrees of hip flexion were measured using a handheld goniometer.  

Extensibility was defined as the angle formed by the longitudinal axis of the femur and a 

line parallel to the ground.  

3. Statistical Analysis 

Statistical analyses were performed using SPSS 14.0 version statistical software 

(SPSS, Inc., Chicago, IL, USA).  Separate repeated measures analyses of variance 

(ANOVA) were performed for each dependent variable (knee flexor extensibility, passive 

knee flexor stiffness, active knee flexor stiffness, and electromechanical delay).  The 

within subject factor was menstrual cycle phase (2 levels: post-menses onset and post-

ovulation).  Statistical significance was established a priori at α<.05.   

 
 
 
 
 
 
 
 
 
 
 
 



Chapter Four 
 

RESULTS 
 

Descriptive Statistics  
 

A total of twenty subjects were recruited for this study.  Sixteen subjects were 

able to report for testing in a timely manner following onset of menses.  Others were 

unable to report for testing within 3 days of onset of menses for two or more consecutive 

cycles.   Of the sixteen subjects tested at menses, eight subjects returned for a second 

bout of testing at ovulation and eight subjects were excluded because they never 

produced a positive ovulation test.  Of the eight subjects tested at both time periods, 

passive stiffness data were unusable for two, and EMD data were unusable for one either 

due to file corruption or the trials involved EMG activity that was indicated the subject 

was interfering with passive motion.  Data from all eight subjects was used for the active 

stiffness and extensibility analysis. Demographic data for the eight subjects that were 

tested at both time periods are presented in Table 1.    

Passive Stiffness 

Means and standard deviations for passive stiffness are shown in Figure 1.  Effect 

size and power are listed in Table 2.  Statistical analysis revealed no significant 

difference in passive stiffness between the menstruation and ovulation phases (F1,5 = 

1.213, p=.321).  This finding indicates that menstrual cycle phase has no significant 

effect on passive knee flexor stiffness.   
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Active Stiffness 

Means and standard deviations for active stiffness are shown in Figure 2.  Effect 

size and power are listed in Table 2.  Statistical analysis revealed no significant 

difference in active stiffness between the menstruation and ovulation phases (F1,7 =.216, 

p=.655).  This finding indicates that menstrual cycle phase has no significant effect on 

active knee flexor stiffness.  

EMD 

Means and standard deviations for EMD are shown in Figure 3.  Effect size and 

power are listed in Table 2.  Statistical analysis revealed no significant difference in 

EMD of the 7 subjects between the menstruation and ovulation phases (F1,6=.124, 

p=.737).  This finding indicates that menstrual cycle phase has no significant effect on 

EMD.  

Reaction Time 

Means and standard deviations for reaction time are shown in Figure 4.  Effect 

size and power are listed in Table 2.  Statistical analysis revealed no significant 

difference in reaction time between the menstruation and ovulation phases (F1,7=.068, 

p=.802).  This finding indicates that menstrual cycle phase has no significant effect on 

passive knee flexor stiffness.  

Extensibility 

 Means and standard deviations for extensibility are shown in Figure 5.  Effect size 

and power are listed in Table 2.  Statistical analysis revealed no significant difference in  

knee flexor extensibility between menstruation and ovulation phases (F1,5=1.26, p=.28,).  
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This finding indicates that menstrual cycle phase has no significant effect on extensibility 

of the knee flexor group. 
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Table 1.  Means and standard deviations for subject characteristics (height, weight,  
shank length); mean (±SD) 

 

Variables  

N 8 

Height (in.) 
 1.61(.12) 

Weight (kg) 
 

 
65.69(6.31) 

 

Shank Length (m)  0.40(.03) 
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Table 2.   Means and standard deviations, for passive stiffness, active stiffness, EMD,                                   
reaction time, and extensibility in post menses and post ovulatory phases 
with power and effect size; mean (±SD). 

 

Variable Post Menses Post -
Ovulatory 

 

N 
p-

value 

 
Power 

 
Effect 
Size 

Passive 
Stiffness 

(Nm/rad) 
 

12.29(1.03) 13.56(3.20) 
 

6 0.32 
 

0.15 
 

.195 

Active 
Stiffness 

(Nm/rad)  
141.61(49.02) 132.64(45.31) 

 
8 0.66 

 
0.07 

 
.030 

 
EMD 

 (ms) 
 

162.81(81.44) 153.33(82.13) 
 

7 
 

0.74 
 

0.06 
 

.020 

Reaction 
Time (s) 427.94(147.72) 450.92(199.24) 

 
8 0.80 

 
0.06 

 
.010 

Extensibility 
(deg) 90.67(8.47) 95.63(9.16) 

 
8 0.28 

 
 

 

significance (p<0.05) 
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Chapter Five 
 

DISCUSSION 

 

 Current research that has investigated the reasons for increased ACL injury rates 

in females has produced conflicting results.  Many studies have suggested that fluctuating 

menstrual cycle hormones may contribute to ACL laxity and increased injury risk in 

females.  A relationship has been identified between menstrual cycle phase (MCP) and 

injury rates (Beynnon 2006, Slauterbeck et al. 2002, Wojtys et al. 2002), however there is 

conflicting support for a correlation between injury rates and a particular phase of the 

cycle and there is conflicting support between ACL laxity and MCP (Belanger et al. 

2004, Deie et al. 2002, Heitz et al. 1999, Karageanes et al. 2000, Romani 2003, Shultz et 

al. 2004).  It is possible that increased injury rates during certain phases of the menstrual 

cycle are caused by the affects of hormones on active tissue such as muscle, tendon, and 

fascia rather than ligamentous tissue alone.   

The purpose of this study was to investigate the effects of menstrual cycle phase 

(MCP) on active and passive muscle stiffness, electromechanical delay (EMD), and 

muscle extensibility of the knee flexor group. The most important finding of this study is 

that females do not demonstrate changes in active and passive muscle stiffness, EMD, or 

extensibility between two time periods of the menstrual cycle when measured within 

three days after menses and within three days following ovulation.   
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We hypothesized that a significant decrease in active and passive muscle stiffness, 

and a significant increase in EMD and muscle extensibility would occur within three days 

post ovulation in females with a normal menstrual cycle.  These hypotheses were made 

based on three previous findings.  1) Females have less muscle stiffness (Wojtys et al. 

2002, Granata et al. 2002) and longer EMD (Winter and Brookes 1991) than males.  2) 

These differences are not predominately attributed to neuromuscular or anthropometric 

differences in men and women  (Granata et al. 2002, Wojtys et al. 2002).  3)  Estrogen 

has a weakening effect on collagen (Liu et al. 1997, Yu et al. 1999) .  

It is commonly speculated that differences in sex hormones, neuromuscular 

characteristics, and anthropometric characteristics contribute to lesser muscle stiffness, 

longer EMD, and greater extensibility in females.   However, one study demonstrated less 

stiffness in females even when anthropometric differences were standardized (Blackburn 

et al. 2006).  The authors of the study suggested that lesser stiffness observed in females 

is likely due to differences in tendon viscoelastic properties and muscle architecture. 

Viscoelastic properties and muscle architecture could be affected by fluctuating estrogen 

(Wojtys et al. 2002).  Additionally, recent research has failed to support changes in 

neuromuscular characteristics such as kinematics, externally applied moments, fine motor 

coordination, and strength in females at different points in the menstrual cycle (Abt et al. 

2007, Chaudhari et al. 2007,  Hertel et al. 2006). Future research may benefit from 

knowledge of MCP dependent changes in variables such as muscle stiffness, EMD, and 

muscle extensibility.   

The results of a recently published study that researched the effects of MCP on 

stiffness were consistent with our hypothesis, but not with our findings (Eiling et al. 
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2006).  They reported significantly lower MTS on the day of ovulation than during 

menstruation and day seven of the follicular phase.  There are several reasons this group 

may have found significant differences while we did not. First, Eiling et al. assessed total 

leg stiffness and we isolated stiffness of the knee flexors.  Second, gender differences are 

amplified at higher joint loads (Granata et al. 2002a). Because the demand for muscle 

activity was much higher in the Eiling study MCP dependent changes in stiffness may 

have been more apparent.  The third and perhaps the most critical difference between the 

two studies was day of testing.  Eiling et al. tested subjects on the day of ovulation, 

whereas the corresponding day for our study was within 3 days post ovulation.  It is 

possible that this timing is necessary for isolating phase dependent changes. Because the 

Eiling study is the only published study to date that describes any MCP dependent 

changes in skeletal muscle, there is little evidence to indicate when testing should occur.  

We study proposed that circulating hormones do not show maximal effects on skeletal 

muscle during the peak hormone level but within the days following the peak.  This was 

based on results published by Shultz et al. (2004), who found a time delay between 

changes in serum hormone concentrations and increased knee laxity.  They found 

increased knee laxity associated with increased progesterone, estradiol, and testosterone, 

however the knee laxity increase occurred 3-4 days following the change in hormone 

concentration. It is not known if there is a similar delay in the effects of hormone 

fluctuation on muscle tissue.  Shultz et al. also noted a post hoc regression that showed a 

relationship between the length of delay and the length of the follicular phase and the 

absolute levels of estrogen and progesterone in each subject.  Changes in knee laxity 

occurred later in individuals who had smaller increases in hormone levels.  Again, it is 
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not known if effects of MCP on muscle stiffness display the same time delays.  This 

study did not take into account potential time delays unique to each subject.  

Although the effect of MCP on muscle stiffness is not clear, previous research 

does suggest that there is an interaction between estrogen and muscle tissue.  Estrogen 

receptors (ER) have been detected in smooth and skeletal muscle tissue (Lemione et al. 

2003, Copas et al.2001). Lemione et al. detected the presence of ER alpha mRNA in 

female deltoid and pectoral muscle tissue.  Other studies were unable to identify ER in 

skeletal muscle (Gustafsson et al. 1984, Saartok et al. 1984).  However, there were 

differences in binding techniques in these three studies so there could have been 

differences in test sensitivity.  Furthermore, it is possible that these studies did not control 

for cyclical changes in ER expression which have been reported in human tissue (Iwai et 

al. 1990).   

Some studies have ventured to demonstrate a relationship between menstrual cycle phase 

and skeletal muscle strength.  Three relatively recent studies were unable to show any 

correlation between menstrual cycle phase and changes in strength (Friden et al 2003, 

Janse de Jonge et al 2001, Nicolay et al. 2007).  However Nicolay et al (2007) did report 

a minimal decrease in endurance of grip strength during the late follicular phase of 

eumenorrheic women.  They also reported that the controls, who were oral contraceptive 

users, did not demonstrate fluctuations in strength and they were weaker than the 

eumenorrheic women throughout the entire cycle.  Post hoc analysis in the study led the 

researchers to deny any relationship between oral contraceptive use and decreased 

strength but they did suggest a potential interaction between increased estrogen levels and 

decreased skeletal muscle endurance during late follicular phase in the eumenorrheic 
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women.   They proposed that the decreased endurance demonstrated in this study is 

secondary to a collagenolytic effect of estrogen on ligaments and tendons, which supports 

our theory that MCP may have an effect on stiffness of musculotendinous tissue.   

Limitations 

A primary limitation of this study was low subject number.  There were several 

contributing factors to low subject number.  It was difficult to find subjects that met the 

inclusion criteria in a college age population.  It is common for young women to have 

irregular menstrual cycles or to take oral contraceptives.  Of the limited number of 

participants that we recruited, many were excluded when they were unable to indicate a 

day of ovulation using the test strips that we provided.  Causes may include poor 

sensitivity of the test strips, poor compliance with instructions, a true lack of ovulation, or 

the strips were not used at an appropriate time.  Future studies could be better controlled 

using serum or saliva tests for hormone levels.  The implication of low subject number is 

low statistical power.  However, effect size calculations indicate that 100-130 subjects are 

required to demonstrate statistically significant differences.   

Another limitation of this study is a lack of knowledge about the effects of 

hormones on muscle tissue.  As previously mentioned it is not known how long it takes 

for circulating hormones to have an effect on musculotendinous tissue. Further research 

may make time delay predictions by measuring serum hormone levels as laid out by 

Shultz et al. (2004) and testing muscle stiffness in a shorter time window.   Further 

research may also seek to monitor changes in muscle stiffness in consecutive days 

following ovulation.   
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There was no direct measure of hormone levels in this study.  This may have had 

an effect on subject number because we were not able to indicate actual day of ovulation.  

It may have also affected the validity of the study.  We do not know how well our testing 

days correlate with actual serum hormone levels. 

The final limitation is low rate and low total loading on the knee flexor group.  

Because sex differences in stiffness are amplified at higher joint loads (Granata et al. 

2002), it is possible that we did not provide loads sufficient for demonstrating different 

stiffness characteristics.  The applied loads were also limited to the sagittal plane.  

Therefore, rotational stiffness was not measured.  The significant difference in stiffness 

measured in the Eiling (2006) study may have contained a rotational component in 

response to higher functional loads.   

Conclusion 

 This study was one of the first to investigate the effects of menstrual cycle phase 

on knee flexor stiffness.  There was no significant difference in active or passive 

stiffness, EMD, or extensibility of the knee flexor group across MCP, variables that are 

possibly associated with decreased knee stability and increased injury rates in females.  

This study, however, was only a start in trying to answer the research questions 

presented.  Because the study had many limitations, further research is warranted.   

 Low subject number was a primary limitation and may have resulted from a 

difficulty in isolating ovulation in the subjects.  Future research may more easily define 

ovulation phase in subjects by using serum or urinary analysis.  In addition, because we 

were not able to isolate phase dependent changes it may be necessary to test subjects on 
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the exact day of ovulation (the exact day of peak in estrogen) as outlined by Eiling et al. 

(2006).   
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