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ABSTRACT 

Leigh Ann Samsa: Molecular Regulation of Zebrafish Cardiac Maturation 
(Under the direction of Jiandong Liu) 

Congenital heart diseases (CHDs) are the most common type of human birth defect and often 

feature structural abnormalities that arise during development and maturation. Many CHDs have a 

genetic component which provides a molecular basis for the cellular defects underlying structural 

malformations. During embryonic development, the vertebrate heart expands and remodels to meet the 

cardiovascular needs of the developing embryo in a process called cardiac maturation. In particular, the 

ventricular chamber matures to optimize the internal architecture for efficient conduction and contraction. 

Chamber maturation features formation of luminal muscular protrusions, called trabeculae, which 

increase myocardial mass and are often malformed in CHD. Here, zebrafish (Danio rerio) are used as an 

optically accessible, genetically tractable, vertebrate model to explore the conserved, molecular basis of 

chamber maturation 

Accumulating evidence indicates a critical role for cardiac contraction and the resulting fluid 

forces in shaping the developing heart, yet the molecular basis of this function is largely unknown. Data 

reported in Chapter 2 describe an essential role for cardiac contraction-responsive transcriptional 

changes in endocardial cells for regulating trabeculation. Cardiac contraction causes blood flow, which is 

likely mechanotransduced into intracellular signaling cues by endocardial primary cilia. Contraction 

stimulates notch1b transcription, and Notch1 activation induces expression of downstream genes 

ephrinb2a (efnb2a) and neuregulin-1 (nrg1) in the endocardium. Forced Notch activation rescues efnb2a 

and nrg1 expression in non-contractile hearts, and efnb2a is essential for trabeculation.  

Although ErbB2 receptor tyrosine-protein (ErbB2), an essential receptor partner in the Nrg1-

ErbB2/ErbB4 signaling pathway, is necessary to stimulate trabeculation in mice and zebrafish, 

requirement for nrg1 has not been explored in zebrafish. In Chapter 3, CRISPR/Cas9 targeted gene 

editing was used to generate novel, isoform-specific mutations in nrg1. Phenotypic analysis of nrg1 

mutants revealed that nrg1 is dispensable for cardiac trabeculation. However, one isoform, nrg1-III is 
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essential for establishing the cardiac nerve plexus. Likely as a consequence of impaired cardiac 

innervation, nrg1 mutants have cardiac malformations and experience early mortality. 

In sum, this study reveals previously uncharacterized cellular and molecular relationships 

regulating chamber maturation.  
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PREFACE 

Chapter 1 

The contents of Chapter 1 are derived from two review articles that I wrote while completing 

graduate studies in Dr. Jiandong Liu’s laboratory. Please note that figures and text have been reproduced 

and reformatted with permission from the publishers.   

“Embryonic Chamber Maturation,” was published online May 29, 2013 in the American Journal of 

Medical Genetics Part C: Seminars in Medical Genetics (Samsa et al., 2013). This article provides a 

broad overview of the gross morphological changes that occur during chamber maturation and the 

molecular mechanisms that regulate these events in vertebrates. As lead author, I wrote and revised the 

document and generated figures. Betsy Yang contributed to writing the manuscript. Jiandong Liu, Ph.D 

revised the manuscript. 

“Advances in the study of heart development and disease using zebrafish,” was published online 

April 9, 2016 in the Journal of Cardiovascular Development and Disease (JCDD) (Brown et al., 2016).  

This article is a detailed report on how zebrafish are used, historically and currently, as a model system to 

study heart development and disease. Daniel Brown, Ph.D conceptualized and wrote the manuscript. As 

second author, I contributed sections of written content, generated figures and revised the text. Li Qian, 

Ph.D and Jiandong Liu, Ph.D conceptualized and revised the manuscript. Though the majority of this 

review is not germane to this dissertation, the full text is accessible in an open access format, and the 

sections included in Chapter 1 are primarily my work. These sections provide important background 

information for Chapters 2 and 3 and are reproduced as Chapter 1.2, below.  

Chapter 2 

Chapter 2.2 was published in Development on December 1, 2015 (Samsa et al., 2015), where it 

was highlighted by the editor as a featured article. In this study, we explored the relationship between 

hemodynamic forces caused by cardiac contraction, cell signaling, and cardiac trabeculation. Our data 

supports a model in which the beating heart initiates blood flow, which is in turn detected by primary cilia 
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on endocardial cells, stimulating notch1b and downstream signaling components essential for initiating 

cardiac trabeculation. Prior to this work, little was known about these relationships in the zebrafish heart, 

and this work represents the most comprehensive assessment of molecular epistasis regulating zebrafish 

trabeculation. 

The study was a combined effort in which I designed and performed the majority of experiments, 

analyzed data and wrote the manuscript. Chris Givens designed and assisted with the in vitro flow 

experiment. Eleni Tzima, Ph.D, Didier Stainier, Ph.D, and Li Qian, Ph.D provided intellectual input and 

supervised the work. Jiandong Liu, Ph.D additionally designed and performed experiments, analyzed 

data and revised the manuscript. All authors commented on the manuscript. 

Chapter 2.2 has been modified from its original version to conform to formatting standards. All 

figures that were previously reported in online-only supplemental materials have been reproduced in this 

work. Additionally, the in-text and online-only methods have been combined into a single section. Chapter 

2.3 highlights the significance of Chapter 2.2 and discusses future directions. 

Chapter 3 

Previous work by Dr. Liu, while in Dr. Didier Stainier’s lab at the University of California at San 

Francisco, revealed an essential role for ErbB2 in zebrafish cardiac trabeculation (Liu et al., 2010), but 

the cardiac function of its primary ligand, Neuregulin 1 (Nrg1) has not been explored.  Based on our pilot 

studies and historical reports from in mammalian systems (Kramer et al., 1996; Lee et al., 1995; Meyer 

and Birchmeier, 1995), we anticipated that Nrg1 would play a clear role in regulating cardiovascular 

development, including mediating formation and spatial distribution of cardiac trabeculae. Zebrafish nrg1 

is alternative spliced to form three main isoforms, nrg1-I, nrg1-II, and nrg1-III, which differ primarily in their 

N-terminal domains. Our studies strongly suggested nrg1-I is the only isoform expressed in the heart 

during trabeculation, and blocking nrg1-I splicing with a morpholino led to dramatic cardiovascular 

phenotypes. So, we used CRISPR/Cas9 gene editing to target nrg1 and produce alleles coding for frame-

shifts mutations in all nrg1 isoforms or nrg1-I and nrg1-II isoforms only.  In Chapter 3.2, we characterize 

the phenotypes of our novel mutants in comparison to a previously published mutant that lacks functional 

nrg1-III (Perlin et al., 2011). Our study reveals that Nrg1 is completely dispensable for trabeculation. 
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However, it plays an essential role in development of the cardiac nerve plexus, which has later life 

consequences in zebrafish.  

Chapter 3.2 is a manuscript in preparation and a combined effort of myself and co-authors.  I 

generated and validated all the novel mutant lines included in the study, designed experiments, analyzed 

data, and have drafted the manuscript. While I produced the majority of data reported in this document, 

this study is being completed by Daniel Brown, Ph.D as a co-first author, whose contributions include 

designing experiments (included in this work and in progress), analyzing data, and manuscript revisions. 

Other author contributions include data collection and technical assistance from Cade Ito, expected data 

collection and analysis from Hong Ma, as well as intellectual input, supervision, and manuscript 

commentaries from Li Qian, Ph.D and Jiandong Liu, Ph.D. We expect to submit for publication in late 

2016 or early 2017. 

Please note that, due to high redundancy between chapters, all literature cited has been compiled 

into a single Reference list.  
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CHAPTER 1 INTRODUCTION 

1.1 Embryonic Cardiac Chamber Maturation: Trabeculation, Conduction and Cardiomyocyte 
Proliferation1 

Introduction 

Cardiovascular malformation is one of the leading causes of human birth defects (Parker et al., 

2010), and cardiovascular diseases are the number one cause of adult morbidity and mortality in the 

developed world (Go et al., 2013). During development, in order to increase cardiac output, the vertebrate 

embryonic heart undergoes a series of complex morphogenic processes known collectively as cardiac 

chamber maturation. Alterations in these processes are linked to many cardiac diseases such as non-

compaction cardiomyopathy (also known as hypertrabeculation), diastolic dysfunction, and arrhythmias 

(Teekakirikul et al., 2013). Monogenic alterations that lead to human congenital heart defects have been 

valuable in identifying key regulators of heart development (Teekakirikul et al., 2013). Yet, these rare 

mutations do not explain the heterogeneity in cardiovascular defects observed clinically in both children 

and adults. Clearly, genetic mutations that completely impair heart development do not appear clinically. 

Advancements in our understanding of the mechanisms that govern cardiac chamber maturation and 

patient-specific genetic information are necessary for developing improved and personalized therapeutics 

for these congenital defects. In this review, we present evidence that collectively suggest a wide range of 

signaling pathways are involved in orchestrating cardiac chamber maturation. 

Left ventricular non-compaction 

One of the most widely recognized disorders of cardiac maturation is left ventricular non-

compaction (LVNC) (Jenni et al., 2007). LVNC is characterized by prominent trabeculae and large 

recesses/sinuses between trabeculae (Jenni et al., 2001; Stollberger and Finsterer, 2004). Patients with 

LVNC may be symptomatic or asymptomatic, and LVNC leads to heart failure, thromboembolic events, 

                                                           
1 This chapter previously appeared in the American Journal of Medical Genetics Part C: Seminars in Medical Genetics. The original 
citation is as follows: Samsa, L. A., Yang, B., and Liu, J. (2013) Embryonic cardiac chamber maturation: Trabeculation, conduction, 
and cardiomyocyte proliferation. Am. J. Med. Genet. C. Semin. Med. Genet. 163C, 157-168. 
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arrhythmias and/or sudden cardiac death (Bhatia et al., 2011; Ichida et al., 1999; Paterick and Tajik, 

2012). LVNC can occur as an isolated disease (called isolated left ventricular non-compaction or ILVNC) 

or in conjunction with other congenital defects (Peters et al., 2012; Stanton et al., 2009), suggesting 

multiple etiologies for LVNC. Due in large part to variable diagnostic criteria (Paterick and Tajik, 2012; 

Thavendiranathan et al., 2013), the true burden of LVNC is unknown, but is estimated to be 0.014–1.3% 

of children referred to echocardiography laboratories (Oechslin et al., 2000). 

The morphology of LVNC hearts closely resembles early embryonic hearts. Because of this 

resemblance, frequent comorbidity with other congenital cardiac malformations, and prevalence in 

infants, LVNC is widely considered to be caused by the embryonic arrest of cardiac wall maturation 

(Angelini et al., 1999; Chin et al., 1990; Sedmera et al., 2000). However, this hypothesis has been 

challenged recently (Ichida et al., 1999) given the identification of LVNC in adults (Murphy et al., 2005; 

Oechslin et al., 2000; Stollberger and Finsterer, 2004) and observation that some of the morphological 

features of LVNC are distinct from the embryonic heart (Stanton et al., 2009; Wessels and Sedmera, 

2003). Nevertheless, whether LVNC is strictly congenital, acquired, or some combination of the two, there 

is a clear genetic component to LVNC (Oechslin and Jenni, 2011; Teekakirikul et al., 2013). Indeed, the 

American Heart Association classifies LVNC as a genetic cardiomyopathy (Maron et al., 2006). LVNC is 

associated with mutations in sarcomere-encoding genes, calcium handling genes, genes that encode 

proteins of the dystrophin-associated glycoprotein complex (DTNA), nuclear lamina, Nkx2.5 and with 

mutations that cause compromised mitochondrial function [reviewed in (Teekakirikul et al., 2013)]. 

Although the genetic studies of LVNC and other trabecular disorders have identified some genes 

associated with LVNC, we know little about how mutations in these genes lead to altered cardiac 

morphogenesis. 

Basic research in cardiac chamber maturation biology 

Over the past 2 decades, though we have seen substantial progress in our understanding of the 

formation of the cardiovascular system, improvements in this understanding are necessary to develop 

therapies for non-compaction/trabecular diseases. Much of our understanding of cardiac ontology is 

derived from study of human, mouse, and chicken embryos. However, direct observation of heart 

development is limited in these organisms. The zebrafish (Dano rerio) has recently emerged as a 
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powerful vertebrate model organism for studying early heart development (Beis and Stainier, 2006; Liu 

and Stainier, 2012). The zebrafish heart is simpler than that of higher vertebrates, but recapitulates early 

cardiac development. Moreover, accumulating evidence suggests that genes responsible for essential 

steps of cardiovascular development and morphogenesis are conserved throughout vertebrates 

(Moorman and Christoffels, 2003). Unlike the mouse or chicken, the zebrafish embryo develops entirely 

externally, and the transparency of the embryos enables direct, non-invasive observation of heart 

development at a cellular resolution. External development also makes it highly accessible for forward 

genetic approaches and for screening drug targets. Zebrafish embryos are particularly useful for studying 

developmental cardiac defects because they do not initially require a functioning cardiovascular system. 

Since their early oxygen needs can be met by passive diffusion, phenotypes that are lethal in other model 

systems can be studied in greater detail in zebrafish. In addition, technologies for creating zebrafish 

knockout, transgenic, and reporter lines are readily available. 

Embryonic chamber maturation 

During development, in order to increase cardiac output, the vertebrate embryonic heart 

undergoes a series of complex morphogenic changes known collectively as cardiac chamber maturation. 

The early embryonic heart is a smooth, two-layered linear heart tube composed of a luminal endocardial 

endothelial layer and an immature myocardial layer (Fig. 1A). This tube later undergoes extensive growth 

and topological remodeling to generate the mature vertebrate heart. Though the ultimate cardiac wall 

topology is somewhat different between cardiac chambers and between species, the patterning and 

processes of wall maturation is well conserved (Sedmera et al., 2000). Alterations in these processes are 

linked to many cardiac diseases such as non-compaction cardiomyopathy, diastolic dysfunction, and 

arrhythmias. A basic understanding of these processes is necessary to appreciate the morphological 

defects observed in non-compaction and trabecular disease and to identify how mutations in genes 

regulating these processes can lead to non-compaction phenotypes. 

Cardiac chamber maturation can be separated into three interrelated processes—formation of 

myocardial projections called trabeculae, establishment of the conduction system, and thickening of the 

compact myocardium. Each of these processes has been well described historically, and our description 

is reflective of the published current views of leaders in the field. In the following sections, we will briefly 
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describe the anatomical changes in the cardiac chamber associated these processes. In the sections 

following these descriptions, we will then discuss known regulators of chamber maturation and propose 

future directions for research in chamber maturation. 

Trabeculation 

We direct interested readers to the reviews by and references in Sedmera et al. (2000) and 

(Moorman and Christoffels, 2003) for in depth presentation of the morphological changes associated with 

trabeculation. Cardiac trabeculation begins after the cardiac looping stage to form a network of luminal 

projections called trabeculae which consist of myocardial cells covered by the endocardial layer. 

Trabeculae increase cardiac output and permit nutrition and oxygen uptake in the embryonic myocardium 

prior to coronary vascularization without increasing heart size (Liu and Stainier, 2010; Minot, 1901; 

Rychter and Ostadal, 1971). As the cardiac wall matures, trabeculae undergo extensive remodeling 

concomitant with compact myocardial proliferation, formation of the coronary vasculature and maturation 

of the conduction system. In humans, infants born with either hypotrabeculated or hypertrabeculated 

ventricles have impaired function (Breckenridge et al., 2007; Weiford et al., 2004). The anatomical 

changes associated with trabeculation can be divided into three distinct steps—emergence, trabeculation, 

and remodeling. 

Emergence. In the human at Carnegie stage 12, chicken at stage 16/16, mouse at E9.5 and 

zebrafish around 60 hpf (hour post-fertilization), myocardial protrusions begin to appear extending into the 

lumen (Moorman and Christoffels, 2003; Peshkovsky et al., 2011; Sedmera et al., 2000) (Fig.1B). Recent 

work using zebrafish embryos have described this process in greater detail (Peshkovsky et al., 2011). 

Trabeculae begin to develop in the outer curvature of the ventricle in a stereotypical manner starting on 

the outer curvature ventrally across from the AV nodes. It is not clear whether these protrusions form by 

buckling of the myocardial wall, active invagination of cardiomyocytes into the lumen, active evagination 

of the endocardium into the myocardial layer, or some combination of these actions (Icardo and 

Fernandez-Teran, 1987; Marchionni, 1995; Sedmera and Thomas, 1996) though Peshkovsky et al.'s work 

would suggest active invagination of the myocardium as the primary mechanism (2011). In support of this 

idea, Liu et al. (2010) demonstrated that cardiac trabeculation is primarily driven by delamination of the 

cardiomyocytes from the compact myocardium. 
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Trabeculation. After the initial trabecular ridges form, trabecular projections propagate radially to 

form a network of trabeculae and also increase in length (Peshkovsky et al., 2011; Sedmera et al., 2000). 

During this stage, the majority of the myocyte mass is contained within trabeculae rather than within the 

compact wall (Fig. 1C). Cells along the longitudinal axis of each trabecula are more differentiated at the 

luminal side and less differentiated at the mural side (Sedmera and Thompson, 2011). Defects at this 

stage manifest as either over or under trabeculated myocardial walls populated by thin trabeculae, and 

this stage is considered complete when the first signs of trabecular remodeling begin. 

Remodeling. The final stage of trabecular growth is a period of remodeling also known as 

consolidation or compaction (independent of expansion of the compact myocardial layer, discussed 

below). Species and cardiac chamber-specific differences in adult trabecular morphology are generally 

attributed to differences in remodeling. This stage is characterized by trabeculae ceasing growth in the 

luminal direction and thickening radially (Fig. 1D). The bases of the trabeculae thicken and/or collapse to 

the point that they are indistinguishable from the myocardial wall proper. As the trabeculae compact, the 

spaces between trabeculae are transformed into capillaries. This compaction stage is considered 

complete when a “mature” trabeculated network is evident at Carnegie stage 22, chicken stage 34, and 

mouse at E14.5 (Sedmera et al., 2000). Defects at this stage manifest as overly long, thin trabecular 

projections that are separated by deep invaginations in the wall. 

Compact myocardium proliferation 

Though consolidation and compaction of trabeculae increases myocytes mass, the compact 

myocardium ultimately provides most of the myocardial mass in the mature heart (Fig. 1D). We direct 

interested readers to the reviews by and references in Risebro and Riley (2006) and Sedmera and 

Thompson (2011) for review of compact layer cardiomyocyte proliferation and related formation of 

coronary circulation. Initially, the linear heart tube is comprised of the endocardial and myocardial layers. 

Around the same time as the initiation of trabeculation, cells of the proepicardial organ migrate to the 

post-looped heart to form its outermost layer, the epicardium (Fig. 1C). As the endocardium and part of 

the myocardium generate trabeculae, the more distal portion of the myocardial layer proliferates slowly. 

Interestingly, it is well accepted that these cells are less differentiated than the trabecular myocardium, 

and by that reasoning should have a greater proliferative capacity than the trabecular myocytes. 
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Temporally, around the remodeling/compaction step of trabeculation (above), the epicardium invades the 

myocardial wall, forming the coronary vasculature and contributing cardiac fibroblasts to the myocardial 

wall. The appearance of coronary vasculature is accompanied by rapid proliferation of the compact layer. 

As the compact layer grows in size and complexity, it supplants trabecular myocardium as the major 

contractile force (Wessels and Sedmera, 2003). This proliferation is concomitant with trabecular 

remodeling, so it is often difficult to distinguish whether altered myocardial wall structure is from 

maladaptive trabecular compaction or compact myocardium proliferation. Factors modulating the spatial 

and temporal growth of the compact layer are reviewed in Sedmera and Thompson (2011) and include 

FGFs, Wnts, Retinoic acid (RA), and erythropoietin (Chen et al., 2002; Merki et al., 2005; Pennisi et al., 

2003; Stuckmann et al., 2003). Further growth and rearrangement of the compact myocardium occur in 

post-natal development. 

Conduction system 

Non-compaction and trabecular diseases are often associated with arrhythmias, suggesting a role 

for altered cardiac action potential (AP) conduction in these disorders (Ichida et al., 1999). Morphological 

development of the cardiac conduction system and the gene networks involved have been recently 

reviewed (Chin et al., 2012; Merki et al., 2005; Miquerol et al., 2011; Moorman and Christoffels, 2003; 

Munshi, 2012). In the normal adult, vertebrate heart, the cardiac AP is initiated in the atrial sinoatrial node 

then spreads through the atria, inducing atrial contraction. The AP is delayed in the atrioventriclar node 

which allows for completion of atrial contraction before initiation of ventricular contraction. The AP then 

travels through the atrioventriclar bundle and bundle branches and ultimately terminates in the Purkinje 

fibers (PFs) of the arborized peripheral ventricular conduction system (PVCS). The PVCS, also called the 

His-Purkinje network, is responsible for depolarizing ventricular cardiomyocytes in a rapid, coordinated 

fashion. Clearly, the proper development of the cardiac conduction system is very complex and involves 

coordinated growth and differentiation processes. Due to its physical proximity within the cardiac wall and 

early embryonic function, the Purkinje fiber network (PFN)/PVSC is directly impacted by altered wall 

maturation observed in non-compaction and trabecular diseases. Thus, we will restrict our discussion of 

the conduction system to the anatomical development of the PFN in this section and the signaling 

networks involved in a later section. 
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The mature PVCS consist of PFs of myogenic origin, insulating fibers, and nervous input and is 

located within trabeculae in the subendocardial space between the endocardial cells and underlying 

differentiated cardiomyocytes. PFs do not require the insulating fibers and or external innervation as they 

can propagate the cardiac AP when trabeculae have just been formed (Christoffels and Moorman, 2009). 

The morphological appearance of the PFs varies somewhat across vertebrates, but are generally 

characterized by underdeveloped sarcomeres, sarcoplasmic reticulum, and mitochondrial network; 

insulation by connective tissue (mature fibers only); and connected as an electrically excitable network 

detectable by retrograde tracing (Munshi, 2012). Based on lineage tracing data using different markers in 

different species, conduction cells are derived from cardiac progenitor cells and not from endocardial or 

epicardial cells (Miquerol et al., 2011). There is some debate as to whether conduction cells arise from 

direct progenitor differentiation into conduction cells, from cardiomyocyte differentiation into conduction 

cells, or if both derivations are possible (Munshi, 2012; Yelon et al., 1999). Christoffels and Moorman 

(2009) have suggested a model of PF development in which differentiation of cardiomyocytes on the 

epicardial side of trabeculae into working cardiomyocytes is opposed by differentiation of cardiomyocytes 

on the endocardial side into working PF cells. 

Vertebrate small animal models including mouse, chicken, and zebrafish have been used to study 

the basic cell signaling involved in cardiac wall maturation. Much of what we do know is from genetic loss 

of function approaches in which removal of a gene results in a cardiac chamber maturation phenotype. 

While gene networks governing general cell survival and proliferation are essential for cardiac 

development, at the molecular level, cardiac maturation requires specific signaling networks including 

Notch, Neuregulin, Ephrin, BMP, FGF, Semaphorin, RA, Endothelin, and extracellular matrix signaling 

(ECM). As of yet, no comprehensive model has emerged describing the specific molecular regulators of 

chamber maturation. In the following section, we will review the evidence implicating each of these 

pathways in wall maturation. 

Notch 

The Notch signaling pathway plays multiple roles during vertebrate cardiac differentiation and 

development, including regulation of valve formation, outflow tract development and cardiac chamber 

maturation. Upon binding of DELTA or JAGGED family ligands, the extracellular portion of NOTCH is 
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cleaved by ADAM17 (ADAM metallopetidase domain 17) and the intracellular portion is cleaved by a γ-

secretase. This releases the NOTCH intracellular domain (NICD) into the cytoplasm there it translocates 

into the nucleus and associates with transcription factors to activate downstream target genes 

(MacGrogan et al., 2010) (Fig. 2A). Notch activation is upstream of Ephrin and Neuregulin-based 

modulation of trabeculation and BMP10 modulation of cardiomyocyte proliferation (Fig. 2A). 

Consistent with the involvement of Notch signaling in multiple aspects of cardiac development, 

components of the Notch pathway show dynamic spatial and temporal expression patterns in the 

developing vertebrate heart and both endocardial and myocardial expression have been described 

(MacGrogan et al., 2010). The endocardium expresses DELTA4, NOTCH1, and NOTCH4 (Del Amo et al., 

1992; Krebs et al., 2000; Uyttendaele et al., 1996) while the myocardium expresses JAGGED1 and 

NOTCH2 (Loomes et al., 1999; McCright et al., 2002). NOTCH1 is expressed in the endocardium and its 

activated form shows strongest expression at the base of the ventricular trabeculae. In 

addition, Notch1 or RBPjk (effector transcription factor) deficient mice display deficient cardiac wall 

maturation including failure of cardiac trabeculation, reduced marker genes expression, and decreased 

cardiomyocyte proliferation (Grego-Bessa et al., 2007). The myocardially expressed NOTCH2 has also 

been shown to play a role in chamber maturation. NOTCH2 is down-regulated in the compact 

myocardium layer during mouse cardiac development. Overexpression of Notch2 in the myocardium 

leads to hypertrabeculation, reduced compaction, and septal defects (Yang et al., 2012). Double knockout 

of Numb and Numblike (suppressors of NOTCH2) leads to a comparable phenotype as NOTCH2 

overexpression and increases BMP10 expression which modulates trabeculation (discussed below) 

(Yang et al., 2012). 

Neuregulin/ERBB 

Neuregulin-1 (NRG1) is a Type 1 transmembrane protein and a member of the epidermal growth 

factor (EGF) family of ligands. It is highly expressed in the cardiovascular system and has been 

implicated in heart development and disease (Odiete et al., 2012). Transmembrane NRG1 acts as a 

paracrine ligand. In the heart, binding of NRG-1 to the ERBB family receptor ERBB4 promotes formation 

of ERBB4/ERBB2 heterodimeric signaling complex. ERBB2 tyrosine kinase activity phosphorylates the C-
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terminal domains, leading to downstream signaling modulation of gene expression through (Fig. 2A) 

(Yarden and Sliwkowski, 2001). 

In the heart, endocardial derived Neuregulin signaling through ERBB2/4 heterodimers in the 

myocardium is essential for proper chamber maturation (Fuller et al., 2008). Mice lacking NRG1 (Meyer 

and Birchmeier, 1995) or functional NRG1 Ig-like domain 1 (Kramer et al., 1996), die before birth due to 

defective cardiac trabeculation. Likewise, mice lacking either ERBB2 (Lee et al., 1995) or ERBB4 

(Gassmann et al., 1995) also die in early gestation due to defective trabeculation. Similar to mice, 

zebrafish devoid of functional ERBB2 protein (Liu et al., 2010) or with ERBB activity pharmacologically 

inhibited (Peshkovsky et al., 2011) do not form trabeculae (Liu et al., 2010). Detailed lineage tracing and 

transplantation studies in zebrafish embryo has suggested that initiation of trabeculation is driven by 

directional migration of cardiomyocytes regulated by ERBB2 signaling (Liu et al., 2010). 

Since NRG1, ERBB2, and ERBB4 deficiency results in embryonic lethality in multiple model 

organisms, it is unlikely that complete loss-of-function mutations are present in the human populace with 

congenital heart malformations. However, it is possible that partial loss of function in these genes or in the 

up or downstream mediators of Neuregulin signaling could manifest within the cardiac wall malformation 

disease etiology. 

Ephrin B2/B4 

Ephrin signaling is essential for normal endothelial cell function and thus heart development. In 

the heart, Ephrin-B2 (EFNB2) and one of its receptors, EPHB4, are expressed in the endothelial cells 

lining trabeculae (Wang et al., 1998). Eph4 tyrosine kinase activity leads to downstream signaling that 

modulates cell shape, migration, and adhesion (Salvucci and Tosato, 2012) (Fig. 2A). In mice, trabeculae 

fail to form in the absence of EFNB2 (Wang et al., 1998) or EPHB4 (Gerety et al., 1999). 

BMP 

Bone morphogenic protein-10 (BMP10) signaling plays an important role in modulating heart 

development (Lowery and de Caestecker, 2010). BMP10 expression is restricted to cardiomyocytes in the 

developing and post-natal heart (Neuhaus et al., 1999). BMP10 is part of the TGF-β superfamily of 

ligands with specificity for ALK1, ALK6, and BMPR2 receptors. Ligand-receptor binding initiates SMAD 

signal transduction to modulate gene transcription (Lowery and de Caestecker, 2010) (Fig. 2A). Global 
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deletion of BMP10 is embryonic lethal with severely reduced cardiomyocyte proliferative capacity (Chen 

et al., 2004). BMP10 appears to modulate cardiomyocyte differentiation through activation of transcription 

factors NKX2.5, MEF2C (Chen et al., 2004), and TBX20 (Zhang et al., 2011). 

FGF 

Fibroblast growth factor (FGF) family of secreted ligands binds to fibroblast growth factor 

receptors (FGFR) in either a cell autonomous or non-cell autonomous manner, leading to complex, cell- 

and context-specific intracellular signaling (Fig. 2A). Proliferation of the compact myocardium requires 

FGF signaling (Mikawa, 1995; Mima et al., 1995). In mouse embryos, the FGF9 family members FGF9, 

FGF16, and FGF20 are expressed in both the endocardium and epicardium and are important regulators 

of regulate cardiomyocyte proliferation (Lavine et al., 2005; Lu et al., 2008). 

Semaphorins 

Semaphorin signaling through Plexin receptors modulate cell behavior and gene transcription 

through complex intracellular signaling cascades (Zhou et al., 2008b) (Fig. 2B). Though Semaphorins are 

more typically known for their role in axonal migration, members of the semaphorin family, such as 

SEMA6D (Semaphorin-6D) have been shown to play a role cardiac patterning, and SEMA6D loss-of-

function leads to trabeculation phenotypes (Toyofuku et al., 2004a; Toyofuku et al., 2004b). In mouse and 

chicken embryos, knockdown of SEMA6D or its receptor PLXNA1 (PlexinA1) in mouse and chicken 

embryos leads to the typical non-compaction phenotype with a thin compact myocardium and expansive 

spongy trabeculated myocardium (Toyofuku et al., 2004a; Toyofuku et al., 2004b). 

Retinoic acid 

RA is derived from Vitamin A. Both Vitamin A deficiency (Wilson et al., 1953; Wilson and 

Warkany, 1949) and exposure of embryos to excess Vitamin A leads to cardiac defects (Morriss-Kay, 

1992). Canonically, lipophilic RA diffuses into cells and binds to the RA receptor RXRs on the nuclear 

membrane (Fig. 2B). RXRs directly bind DNA to regulate gene transcription (Duester, 2008). Genetic 

ablation of the RA receptor RXRα is embryonic lethal in mice due to failed proliferation of the compact 

myocardium (Sucov et al., 1994). This arrest of cardiomyocyte proliferation is not directly attributable to 
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RA signaling on cardiomyocytes. Rather, RA appears to induce the epicardium to secrete trophic factor(s) 

that mediate cardiomyocyte proliferation (Chen et al., 2002; Stuckmann et al., 2003). 

Endothelin 

In the developing heart, cardiomyocyte differentiation into PFs is regulated in part by endothelin 

signaling (Takebayashi-Suzuki et al., 2000). Pro-endothelin (Pro-ET), the precursor of active endothelin-1 

(ET1), is produced by endothelial cells in response to shear stress (the force of fluid flow parallel to the 

endocardial surface). Presumably due to higher levels of shear stress, in the heart endocardial and 

arterial endothelial cells, but not venous endothelial cells or cardiomyocytes, produce the endothelin-

converting enzyme-1 (ECE1) necessary to convert Pro-ET into ET1. ET1 interacts with the G-protein 

coupled receptor EDNRA (endothelin receptor type A) to induce cardiomyocytes to differentiate into PFs 

(Gourdie et al., 1998; Takebayashi-Suzuki et al., 2000) (Fig. 2B). ECE1 is required for normal PF 

formation (Hall et al., 2004). 

Extracellular matrix molecule signaling 

Each of the cardiac layers—endocardial, myocardial, and epicardial—are separated by layers of 

extracellular matrix (ECM). ECM–cell interactions are coupled cell signaling though transmembrane 

proteins called integrins which, upon binding undergo conformational changes that lead to complex cell 

and context-depending cell signaling (Fig. 2B). Integrins modulate intracellular signaling cascades to 

modulate many cellular processes including growth, migration, survival, and differentiation. Integrins exist 

as heterodimers, and ligand specificity is conferred by different combinations α and β subunit isoforms. 

The α4 integrin is essential for cell adhesion during cardiac development (Yang et al., 1995). The exact 

composition of cardiac ECM is important for normal cardiac development. Though there are many ECM 

proteins present in the developing heart, collagen (Tahkola et al., 2008), versician (Cooley et al., 2012), 

and nephronectin (Patra et al., 2011) have emerged as important ECM components. During cardiac 

morphogenesis, the ECM is broken down by matrix metalloproteases to facilitate cell migration. ECM 

composition is regulated at least in part by the matrix metalloprotease ADAMTS1, which is necessary for 

trabeculation (Stankunas et al., 2008). 
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Biomechanical forces in cardiac wall maturation 

Though genes regulating cell signaling are clearly essential for cardiac chamber maturation, 

epigenetic factors such as the biomechanical forces influence heart development. We direct interested 

readers to a recent review for an analysis of mechanical forces in heart development (Granados-Riveron 

and Brook, 2012). During development, the heart is exposed to many biomechanical forces including 

those exerted on the wall by blood flow (shear stress), by fluid pressure (cyclic strain), within the wall by 

cell–cell attachments, and on the wall by extracardiac pressures (Fig. 3). The signaling mechanisms 

through which cells translate biomechanical forces into changes in the signaling events that modulate 

cardiac wall patterning are poorly understood. 

Flow 

Fluid flow plays an important role in trabeculation, cardiomyocyte proliferation, and establishment 

of the cardiac conduction system. While flow exerts a force parallel to the vessel wall called shear stress, 

fluid pressure exerts force on the developing heart to the vessel wall. This pressure, also known as 

mechanical load, can be manipulated ex vivo in developing hearts. Reduced mechanical load is mimicked 

by maintaining hearts in normal atmospheric pressure, while increased mechanical load is mimicked by 

filling the ventricles to end diastolic volume by injection of silicon oils. In chick, changing the mechanical 

load leads to altered development of the conduction system, impaired growth, and disorganized 

trabeculae (Sankova et al., 2010). Likewise, zebrafish carrying an atrial sarcomere mutation, 

the wea mutant, have weak blood flow in the ventricles (Berdougo et al., 2003). Wea mutants exhibit 

reduced trabeculation (Peshkovsky et al., 2011). One way that cells sense flow is through the bending of 

primary cilia. Primary cilia are sensory organelles that protrude from the normal plane of the cell 

membrane and are found on nearly every cell type, including endothelial cells. Interestingly, mice that do 

not have primary cilia have decreased cardiac trabeculation and abnormal outflow tract development 

(Clement et al., 2009), suggesting a role for shear stress sensing in chamber maturation. 

Stretch 

During the cardiac cycle, individual cardiomyocytes are subjected to stretch. When stretched, 

endothelial cells produce Pro-ET which is converted by ECE1 into ET1, and ET1 signaling is essential for 

PF differentiation (Takebayashi-Suzuki et al., 2000) Pharmacological inhibition of stretch responsive 
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channels leads to decreased expression of ECE1 in the endocardium and decreased expression of the 

PF specific marker connexin40 in the developing chick ventricle (Hall et al., 2004). Conversely, pressure 

overload by truncal banding increases PF formation (Hall et al., 2004). Thus, mechanical forces play a 

role in PF development at least in part through modulation of ET1 signaling. 

Inward forces 

The developing heart in its entirety is contained within the splanchnopleural cavity. Advances in 

four-dimensional optical coherence tomography (OCT) have permitted study of the complex 

interrelationship between cardiac layers during the cardiac cycle. (Garita et al., 2011) used OCT imaging 

in chick and mouse embryos to demonstrate that the splanchnopleural membrane interacts with the 

myocardial wall. This study is the first to demonstrate a direction interaction of the developing heart 

interacts with its boundaries, suggesting that inward transduction of this mechanical interaction could play 

a role in final positioning of the heart. 

New areas for investigation 

Though a few genes have been implicated as necessary for trabeculation, much work remains to 

fully characterize cardiac trabeculation. Greater understanding of the normal morphogenesis of the heart 

will inform treatment efforts and could play a role in developing personalized therapeutics. 

The first question which remains to be addressed is how the spatial pattern of cardiac trabeculation is 

generated. NRG-1 and its receptors appear to be expressed uniformly in the ventricular endocardium and 

myocardium respectively; however, it is not clear whether Neuregulin/ErbB signaling is spatially activated 

to select certain cardiomyocytes to initiate cardiac trabeculation. Alternatively the spatial regulation of 

cardiac trabecular initiation can be achieved by the interplay of multiple signaling pathways, such as the 

Neuregulin/ErbB and Semaphorin/Plexin pathways. In addition, the initiation of cardiac trabeculation 

appears to be driven by cardiomyocytes delamination, but little is known about the cellular basis of 

cardiomyocyte delamination. It is also conceivable that once certain cardiomyocytes are selected to 

initiate cardiac trabeculation, they might inhibit their neighbors from adopting a trabecular cardiomyocyte 

fate. It will be interesting to determine whether and how such lateral inhibition mechanism is employed to 

maintain the homeostasis of the compact myocardium. Mechanical force also plays an important role in 

trabeculation. Cardiac trabeculation is significantly reduced in zebrafish wea mutant embryos with 
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reduced blood flow in the ventricle. Likewise, in human, mutations in sarcomere-encoding genes can 

cause trabecular non-compaction in the left ventricles, suggesting in humans mechanical force 

associated with cardiac contraction can also have an effect on embryonic heart development as well. 

Thus, it will be important to study how the heart senses and responds to mechanical force to regulate 

cardiac chamber maturation. 
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Chapter 1.1 Figures 

  

Figure 1 Cardiac chamber maturation 

A–D features a schematized cross-section of a theoretical ventricle wall with the developing atrio-ventricular canal 
represented as the open break in the ventricle wall, such that the outer curvature is on the left and the inner curvature 
is on the right. A: Early in development, the cardiac chamber wall is smooth and consists of endocardial cells and 
myocardial cells. B: Emergence: Myocardial protrusions called trabeculae begin to appear in the outer curvature of 
the ventricle, projecting into to the lumen. The trabeculae are lined by a continuous layer of 
endocardium. C:Trabeculation: Trabeculae increase in length and the chamber wall becomes topologically more 
complex as additional trabeculae form throughout the outer curvature, creating a meshwork network of 
interconnected trabeculae. The compact myocardium does not thicken appreciably. A third layer of cells, the 
epicardium, surrounds the developing heart. D: Compaction/Remodeling: Trabeculae cease luminal growth, thicken 
radially, and their base coalesces to form part of the solid myocardial wall. The compact myocardium increases in 
mass concomitant with the coronary vessel formation in the myocardial wall. The compact myocardium is shown in 
dark blue, trabecular cardiomyocytes in cerulean, endocardial cells in green, and epicardial cells in purple. The 
developing cardiac vasculature is represented by gray circles outlined in green. 
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Figure 2 Signaling pathways in cardiac chamber maturation 

Several signaling pathways have been identified as key regulators of cardiac chamber morphogenesis. Please see 
below for abbreviations. A: Canonical NOTCH ligands including Delta and Jagged family members bind to NOTCH 
family receptors. Upon binding, ADAM17 cleaves the extracellular domain of NOTCH and γ-secretase cleaves the 
intracellular domain of NOTCH, releasing the NICD into the cytoplasm. NICD translocates into the nucleus and 
modulates gene transcription. NOTCH activation leads to stimulation of EphrinB2 signaling through EPH4 and NRG1 
signaling through ERBB2/4, both of which are essential for trabeculation. NOTCH activation also leads to activation of 
BMP signaling through BMP10/BMPR interactions and FGF signaling through FGFR. BMP and FGF signaling are 
essential for cardiomyocyte proliferation and expansion of the compact myocardium. B: Other signaling pathways 
essential for cardiac chamber maturation. SEMA6D signaling though PLXNA1 activates the enabled homolog MENA, 
modulating both trabeculation and compact myocardium proliferation/expansion. Vitamin A is oxidized into retinoic 
acid. Retinoic acid family members, RXRs, bind retinoic acid and translocate into the nucleus where they influence 
gene transcription involved in compact cardiomyocyte proliferation. Pro-endothelin secreted into extracellular space is 
converted into ET-1 by ECE1. ET-1 binding activates the G-protein coupled receptor EDNRA, leading to downstream 
signaling and gene transcription essential for Purkinje fiber formation. Diverse extracellular matrix molecules 
collectively referred to as ECM, either whole or after proteolysis by MMPs, interact with α/β integrin heterodimers. 
This induces conformation changes in the integrin heterodimer that activate downstream signal transduction that 
ultimately modulates all elements cardiac chamber maturation. Abbreviations: NRG1, Neuregulin-1; ERBB2/4, 
heterodimer of ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2) and ERBB4 (v-erb-a 
erythroblastic leukemia viral oncogene homolog 4); EFNB2, Ephrin-B2; EPHB4, EPH receptor B4; ADAM17, ADAM 
metallopeptidase domain 17; NOTCH, NOTCH family receptors; γ-secretase, gamma-secretase; NICD, NOTCH 
intracellular domain; BMP10, bone morphogenic protein 10; BMPR2, bone morphogenic protein receptor, type II; 
SMAD, SMAD family transcription factors; FGF, fibroblast growth factors; FGFR, fibroblast growth factor receptors; 
SEMA6D, Semaphorin 6D; PLXNA1, Plexin A1; MENA, enabled homolog (mammalian); RXR, retinoic acid receptor 
family; Pro-ET, pro-endothelin; ECE1, endothelin-converting enzyme 1; ET-1, endothelin 1; EDNRA, endothelin 
receptor type A; ECM, extra cellular matrix components; MMP, matrix metalloprotease.
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Figure 3 Biomechanical forces in cardiac wall maturation  

Biomechanical forces are important for normal developmental patterning. Forces exerted on the wall from blood flow 
include (A) cyclic strain, a force perpendicular to the vessel wall, and (B) shear stress, the frictional force parallel to 
the vessel wall. C: Force from cardiac contraction exerts strain on myocardial and endothelial cell–cell junctions. D: 
The splanchnopleural membrane interacts with the myocardial wall during development and may exert an inward 
pressure on the myocardial wall. Arrows indicate force vectors. 
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1.2 Advances in the Study of Heart Development and Disease Using Zebrafish2  

Introduction 

Congenital heart diseases (CHDs) are the most common type of human birth defect and 

frequently exhibit structural abnormalities that arise from defective cardiac development and maturation 

(Moran et al., 2014; Mozaffarian et al., 2015; Vos et al., 2015). These defects compromise cardiac output 

and lead to poor clinical outcomes. Though Mendelian genetics can explain some CHDs, differential 

penetrance of CHD phenotypes in affected families underscores the need for a better understanding of 

the cellular and molecular events of cardiac development (Teekakirikul et al., 2013). The genetic 

networks that regulate vertebrate heart development are highly conserved across species enabling 

modeling of human heart developmental disorders in zebrafish (Fahed et al., 2013; Moorman and 

Christoffels, 2003). Additionally, the zebrafish model system is relatively inexpensive and can be used in 

high-throughput compound screens to identify novel therapeutics for personalized medicine (Asnani and 

Peterson, 2014; Barros et al., 2008; Delvecchio et al., 2011; Kitambi et al., 2012; Stewart et al., 2015; Vos 

et al., 2015; Yozzo et al., 2013).  

Modeling cardiovascular development and disease in zebrafish 

The zebrafish, Danio rerio, has emerged as a premier vertebrate model system for investigating 

the molecular basis of heart development and assessing therapeutic potential of small molecules (Kessler 

et al., 2015; Liu and Stainier, 2012; Ruzicka et al., 2015). Zebrafish have several key advantages over 

other vertebrate model systems that are inherent to their biology (Fig. 4A) (Westerfield, 2000). A single 

breeding pair produces hundreds of eggs weekly, facilitating genetic and statistical analysis. These 

externally fertilized eggs develop rapidly, and by 24 hours post fertilization (hpf), the embryonic heart has 

initiated cardiac contraction. Though the zebrafish heart has a simpler structure than the human 

counterpart (two chambers instead of four chambers), it possesses analogs of the major components of 

the human heart and utilizes similar cellular and molecular strategies to assemble the heart (Moorman 

and Christoffels, 2003; Stainier et al., 1993).  Due to the transparency of the embryos, the morphology 

and function of the developing hearts can be directly observed by light microscopy. This optical 

                                                           
2 This chapter previously appeared in part in the Journal of Cardiovascular Development and Disease.  The original citation is 
Brown, D.R.; Samsa, L.A.; Qian, L.; Liu, J. Advances in the Study of Heart Development and Disease Using Zebrafish. J. 
Cardiovasc. Dev. Dis. 2016, 3, 13. 
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transparency can also be leveraged by the use of transgenic reporters in which cardiac cells are labeled 

with fluorescent markers (Huang et al., 2003; Jinn et al., 2005; Long et al., 1997; Perner et al., 2007). 

Importantly, zebrafish embryogenesis does not require a functional cardiovascular system during the first 

week of life because the zebrafish embryo is small enough to meet oxygenation needs by diffusion (Bang 

et al., 2004; Chen et al., 1996; Sehnert et al., 2002; Stainier et al., 1996; Strecker et al., 2011). This 

allows for examination of severe cardiovascular defects that usually cause embryonic lethality in other 

model organisms such as mice. These advantages allow for robust forward and reverse genetic 

approaches to study the genetic and molecular basis of heart development and disease (Fig. 4B-C). 

In this review, we will provide an overview of zebrafish heart development, and discuss how 

zebrafish are leveraged to study cardiovascular development and disease.   

Cardiovascular development in zebrafish 

The heart is the first organ to form and function during vertebrate embryo development. The key 

steps of heart development are conserved across vertebrates, and the gross morphological changes 

associated with cardiac morphogenesis have been well described in detail in previous reviews (Kirby, 

2007; Liu and Stainier, 2012; Moorman and Christoffels, 2003; Samsa et al., 2013; Sedmera et al., 2000). 

Additionally, we refer the interested reader to the online Zebrafish Atlas (http://zfatlas.psu.edu) for 

histological details of zebrafish development from embryo to adult. Histology methods are also readily 

available for zebrafish (Sabaliauskas et al., 2006; Tsao-Wu et al., 1998). Below, we will overview 

zebrafish cardiac morphogenesis and disease phenotypes placing an emphasis on parallels to human 

heart disease.  

Zebrafish cardiac morphogenesis 

When the zebrafish heart initiates contraction around 24 hours post fertilization (hpf), it is 

composed of three cell types—atrial cardiomyocytes (CMs), ventricular CMs, and endocardial cells 

(Stainier et al., 1993). These differentiated cell types can be traced to cardiac progenitor cells (CPCs), 

which originate at 5 hpf in the lateral marginal zone of the blastula stage embryos (Fig. 5A) (Keegan et 

al., 2004; Milgrom-Hoffman et al., 2011; Misfeldt et al., 2009; Stainier et al., 1993). The ventricular pool 

resides more dorsally and closer to the margin than the atrial pool, while the blastomeres that give rise to 

endocardial cells appear to be located across the lateral margin without any specific spatial organization 
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(Bussmann et al., 2007; de la Pompa et al., 1998; Keegan et al., 2004). These progenitors migrate during 

gastrulation to reside in the posterior half of anterior lateral plate mesoderm (ALPM) by 15 hpf (Fig. 5B) 

(Bussmann et al., 2007; Holtzman et al., 2007; Palencia-Desai et al., 2015; Trinh and Stainier, 2004; 

Yelon et al., 1999). Subsequently, these bilateral CPCs initiate differentiation program and fuse into a disk 

with endocardial cells in the center lined by ventricular and atrial myocytes (Fig. 5C). The disk elongates 

into a linear tube with distinct expression profiles for atrial CMs, ventricular CMs and endocardial cells 

(Fig. 5D) (Bussmann et al., 2007; Garavito-Aguilar et al., 2010; Holtzman et al., 2007; Palencia-Desai et 

al., 2015; Rohr et al., 2008; Yelon et al., 1999). 

The linear heart tube is originally composed of cells from the first heart field (FHF). Additional 

cardiac cells are recruited to the heart tube in a second wave of differentiation as late-differentiating CPC 

populations called the second heart field (SHF) extend the linear heart at its arterial and venous poles 

starting at around 28 hpf (de Pater et al., 2009; Hami et al., 2011; Lazic and Scott, 2011; Zhou et al., 

2011). Concurrent with addition of the SHF-derived cardiac cells, the linear heart tube migrates leftward 

and begins looping (Fig. 5E) (Baker et al., 2008; Chen et al., 1997; Rohr et al., 2008; Stainier et al., 

1993). By 48 hpf, the looped heart is located in the pericardial cavity and is clearly divided into a two-

chambered heart by constriction of the atrio-ventricular (AV) canal (Fig. 5F) (Beis et al., 2005; Stainier et 

al., 1993). Although at 48 hpf, the major components of the heart have formed, the heart is still immature 

and lacks auxiliary cell types and additional structures that are important for function as the organism 

grows (Martin and Bartman, 2009). These structures include the bulbous arteriosus, valve cushions and 

leaflets, myocardial protrusions called trabeculae, and epicardium (Figure 5G-H).  These are discussed in 

detail, below.  

Cardiac outflow tract 

 The zebrafish outflow tract is composed of the bulbous arteriosus and aorta.  The bulbous 

arteriosus is analogous to the mammalian conotruncus and is composed of an inner layer of endothelial 

cells lined by a thick layer of smooth muscle cells (Fig. 5H). This pseudo-chamber serves as a resistor to 

regulate flow through the aorta, which delivers blood directly to the gills for oxygenation (Grimes and 

Kirby, 2009). 
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Epicardium 

The epicardium develops from an extra-cardiac population of cells called the pro-epicardium. The 

pro-epicardium can be distinguished morphologically at 48 hpf as a group of spherical cells  located in 

close proximity to the ventral wall of the looped heart at the level of AV junction (Hofsteen et al., 2013; Liu 

et al., 2010; Serluca, 2008; Zhou et al., 2008a). At approximately 72 hpf, the pro-epicardium expands and 

starts to spreads over the myocardial surface to form the epicardium (Fig. 5H) (Peralta et al., 2014; 

Plavicki et al., 2014). The epicardium is an important source of signals to the underlying myocardium 

(Kikuchi et al., 2011). It also is a source of epicardial-derived, cardiac resident cells such as cardiac 

fibroblasts (Gonzalez-Rosa et al., 2012; Peralta et al., 2014).  

Trabeculation 

Cardiac trabeculae are highly organized, luminal, muscular ridges lined by endocardial cells in the 

ventricular lumen. Trabeculae increase myocardial surface area for blood oxygenation and are critical for 

cardiac function (Icardo and Fernandez-Teran, 1987; Liu et al., 2010; Samsa et al., 2013; Sedmera et al., 

2000). Following cardiac looping and chamber ballooning, CMs delaminate from the ventricle wall to 

initiate cardiac trabecular formation, and the ventricular has obvious, stereotyped trabecular ridges by 72 

hpf (Liu and Stainier, 2010; Samsa et al., 2015; Staudt et al., 2014).  The trabecular myocardium rapidly 

expands in the developing heart and as the cardiac wall matures, the trabeculae undergo extensive 

remodeling in association with compact myocardial proliferation, formation of the coronary vasculature 

and maturation of the conduction system (Samsa et al., 2013). Remodeling, also known as consolidation 

or compaction, marks the final stage of trabecular growth such that species-specific differences in adult 

trabecular morphology are generally attributed to differences in remodeling (Sedmera et al., 2000). 

Valvulogenesis 

Cardiac valves are a critical component of the vertebrate heart. Valves function to ensure 

unidirectional blood flow and prevent retrograde flow. Valve malformation underlies many forms of human 

congenital and adult-onset heart diseases, such as aortic or pulmonary valve stenosis, bicuspid aortic 

valve, mitral valve prolapse, and Epstein’s anomaly (Beis et al., 2005; Martin and Bartman, 2009; 

Mozaffarian et al., 2015). The AV canal forms at the border between the atrium and ventricle and is 
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readily detectable during looping morphogenesis. Around 40 hpf, AV CMs expand their luminal surface 

while constricting their abluminal surface (Beis et al., 2005). The underlying AV endocardial cells undergo 

an epithelial-to-mesenchymal transition to form the endocardial cushion, which subsequently remodels to 

create primitive valve leaflets allowing for complete block of retrograde blood flow at 76 hpf (Beis et al., 

2005; Scherz et al., 2008; Timmerman et al., 2004). These leaflets continue to thicken and lengthen to 

form the mature valve (Martin and Bartman, 2009). 

Late maturation 

In zebrafish, cardiac chamber maturation continues through juvenile and early adult life stages. 

During larval and early juvenile stages, the ventricle remodels from a grossly pyramidal shape to a more-

rectangular morphology and the heart rotates such that the ventricle is positioned ventrally to the atrium 

(Fig. 5I) (Singleman and Holtzman, 2012). In cross section, the myocardium of the ventricle wall is 

composed of a compact layer myocardium called the primordial layer and a spongy trabecular layer (Fig. 

5I) (Gupta and Poss, 2012). In late juvenile development leading into adulthood, the ventricle becomes 

more rounded and coronary arteries form at the subepicardial space to vascularize the underlying 

myocardium (Harrison et al., 2015; Singleman and Holtzman, 2012). Additionally, a small population of 

inner trabecular cells breaks through the primordial layer and rapidly expands on the surface of the 

myocardium to form the cortical layer (Gupta et al., 2013; Gupta and Poss, 2012). In cross section, the 

ventricle wall comprises two layers, a compact myocardium layer with cortical and primordial cells and the 

trabecular myocardium (Fig. 5J).  
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Chapter 1.2 Figures 

 

Figure 4 Zebrafish model system 

Schematic illustrating (A) the advantages of zebrafish as a model system, (B) forward genetic and (C) reverse genetic 
approaches to studying heart development and disease in zebrafish. 
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Figure 5 Zebrafish heart development 

(A-G) Lateral and dorsal views of heart development from 5 hours post fertilization (hpf) embryos to 5 days post 
fertilization (dpf) larvae. (A) Cardiac progenitors are located at the lateral margin with the ventricular progenitors more 
closer to the margin than the atrial progenitors at 5 hpf. (B) Cardiac progenitors migrate bilaterally to the anterior 
lateral plate mesoderm by 15 hpf. (C) By 22 hpf, cardiac progenitors and developing endocardial cells have fused to 
form the cardiac disk which begins regular contractions between 22-24 hpf. (D) From 24-28 hpf, the disk elongates 
into the linear heart tube and begins leftward migration. (E) The linear heart tube continues migrating leftward and 
begins looping. Concurrently, from 28-36hpf, second heart field cells are added to the arterial and venous poles, 
illustrated by shading. (F) By 48 hpf, the two chambered heart has formed. (G) The bulbous arteriosus forms at the 
outflow tract.  (H) Cross-sectional view of the heart from 3-5 featuring trabeculae located primarily in the outer 
ventricle wall, cardiac valves, and covering of the heart by the epicardium. (I) Between larval and juvenile stages, the 
atrium and ventricle rotate such that the atrium is dorsal to the ventricle. The inner topology is complex and features a 
spongy trabecular myocardium and outer compact myocardium called the primordial layer. (J) Additional features of 
the adult heart are coronary arteries which feed the ventricle and expansion of the compact myocardium by addition 
of a cortical layer of cardiomyocytes.  
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CHAPTER 2 CARDIAC CONTRACTION ACTIVATES ENDOCARDIAL NOTCH SIGNALING TO 
MODULATE CHAMBER MATURATION 

2.1 Historical Context 

An increasing body of evidence highlights the importance of an active interplay between the 

biomechanical forces generated by the functioning embryonic heart and cardiac structure in regulating 

cardiac maturation. Mutations in genes that influence force production or detection in the heart are 

associated with a wide range of CHDs, underscoring the importance of this interplay [reviewed in 

Granados-Riveron and Brook (2012)]. However, the underlying mechanisms connecting cardiac function 

and form are largely unknown. 

Early studies in chicken embryos were foundational in establishing a role for biomechanical 

forces in regulating chamber maturation. Partial ligation of the right lateral vitelline vein disrupts 

intracardiac fluid dynamics and leads to later chamber maturation defects (Hogers et al., 1997). Similarly, 

altering ventricular afterload by conotruncal banding or changing preload and afterload dynamics through 

atrial ligation or clipping, respectively, leads to dramatic alterations in the ventricular myocardial 

architecture (Sedmera et al., 1999).  

In zebrafish, implanting a small bead to occlude blood flow at the inflow or outflow tract leads to 

valve and chamber maturation defects, demonstrating that biomechanical forces are also important for 

zebrafish cardiac morphogenesis (Hove et al., 2003). In non-contractile, silent heart mutants, the basic 

structure of the heart is intact, despite lack of contraction and blood flow (Sehnert et al., 2002). Recent 

zebrafish work using sophisticated genetic tools has just begun to characterize how flow and contractile 

forces regulate the cell shape and gene expression changes  that underlie chamber maturation (Auman 

et al., 2007; Bartman et al., 2004; Dietrich et al., 2014; Heckel et al., 2015; Kalogirou et al., 2014; Lin et 

al., 2012; Peralta et al., 2013; Staudt et al., 2014; Vermot et al., 2009; Yang et al., 2014). Data presented 

in Chapter 2.2, below, adds to this body of knowledge by connecting flow detection and gene expression 

in endocardial cells to myocardial cellular changes observed chamber maturation.    
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2.2 Cardiac Contraction Activates Endocardial Notch Signaling to Modulate Chamber Maturation3 

Introduction  

Congenital heart diseases often feature structural abnormalities that arise from defects in the 

development of the heart during embryogenesis (Chin et al., 2012; Samsa et al., 2013).  The heart is the 

first organ to function, yet the details of its formation are only partially understood.  In vertebrates, cardiac 

morphogenesis commences as the two bilateral cardiac primordia fuse at the ventral midline to form the 

linear heart tube, which is composed of a luminal endocardial layer and an immature myocardial layer 

(Fishman and Chien, 1997; Harvey, 2002; Olson and Srivastava, 1996; Staudt and Stainier, 2012; Yelon, 

2001).  Concomitant with cardiac contraction, the primitive heart tube develops into a multi-chambered 

functional organ that grows and matures through a series of complex morphogenic processes collectively 

known as cardiac chamber maturation (Moorman and Christoffels, 2003; Samsa et al., 2013).  

As a part of chamber maturation, cardiac trabeculation is a tightly regulated process by which 

ventricular cardiomyocytes protrude and expand into the lumen of the ventricular chambers to form ridge-

like muscular structures called cardiac trabeculae (Liu et al., 2010; Peshkovsky et al., 2011).  Trabeculae 

increase cardiac output and allow for nutrition and oxygenation of the myocardium prior to coronary 

vascularization, and are required for establishment of the mature conduction system of the developing 

ventricle (Lai et al., 2010; Liu and Stainier, 2010).  Thus, failure to form cardiac trabeculae causes 

embryonic lethality, and subtle perturbations of this process could lead to congenital cardiomyopathy 

(Jenni  et al., 1999).  

Crosstalk between endocardial and myocardial cells is important for cardiac maturation.  

Zebrafish cloche mutants that do not form endocardial cells fail to develop trabeculae and ultimately die, 

presumably from heart failure (Peshkovsky et al., 2011; Stainier et al., 1995).  Mice deficient in the 

epidermal growth factor (EGF) receptor ligand Neuregulin 1 (Nrg1), which is expressed in the 

endocardium and signals through the myocardial ErbB4/ErbB2 receptors complex, fail to form trabeculae 

(Gassmann et al., 1995; Lee et al., 1995; Meyer and Birchmeier, 1995).  Likewise, inhibition of Nrg1/ErbB 

signaling in zebrafish embryos completely blocks trabeculation (Liu et al., 2010; Peshkovsky et al., 2011; 

                                                           
3 This part of chapter 2 previously appeared in the journal Development. The original citation is Samsa, L. A., Givens, C., Tzima, E., 
Stainier, D. Y., Qian, L., and Liu, J. (2015) Cardiac contraction activates endocardial notch signaling to modulate chamber 
maturation in zebrafish. Development. 142, 4080-4091. 
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Samsa et al., 2013; Staudt et al., 2014). Notch ligands and receptors are expressed in endocardial cells 

during development, and Notch signaling regulates many aspects of endothelial biology including artery-

vein specification, angiogenesis, and proliferation (Benedito and Hellström, 2013; Corada et al., 2014; de 

la Pompa and Epstein, 2012; Gridley, 2010). Upon ligand binding, the cleaved Notch receptor intracellular 

domain (NICD) translocates to the nucleus, where it acts as a cofactor to promote transcription of Notch 

effectors including EphrinB2, an essential upstream regulator of Nrg1 signaling (Grego-Bessa et al., 

2007).  Despite this knowledge, questions remain on whether this epistasis is a requirement for all 

vertebrate cardiac trabeculation, the precise spatiotemporal roles of these genes, and the roles of 

mediators upstream of Notch.  

An increasing body of evidence suggests that the biomechanical forces generated by the 

functioning embryonic heart could influence cardiac chamber maturation, underscoring the importance of 

a dynamic relationship between cardiac form and cardiac function (Auman et al., 2007; Bartman et al., 

2004; Dietrich et al., 2014; Hove et al., 2003; Kalogirou et al., 2014; Lee et al., 1995; Lin et al., 2012; 

Peralta et al., 2013; Stainier et al., 2002; Vermot et al., 2009; Yang et al., 2014).  Interestingly, in 

zebrafish and chick embryos, reducing blood flow through the ventricle significantly impairs cardiac 

trabeculation (Auman et al., 2007; Bartman et al., 2004; Chen et al., 1996; Dietrich et al., 2014; Hove et 

al., 2003; Kalogirou et al., 2014; Lin et al., 2012; Peralta et al., 2013; Stainier et al., 2002; Vermot et al., 

2009; Yang et al., 2014). But, how mechanical stimulus is sensed and translated into spatial and temporal 

signals to regulate cardiac trabeculation through regulatory interaction with other myocardial signals 

remains largely unexplored.  

Here, we show that cardiac contraction is required for trabeculation through its role in initiating 

notch1b transcription in the ventricular endocardium. Active Notch1 signaling is detectable throughout the 

ventricular endocardium within 4 hours of initiation of contraction, and is restricted to the endocardial 

cushions during trabeculation.  We further demonstrate that Notch1 activation induces the expression of 

its downstream effectors ephrinb2a (efnb2a) and neuregulin-1 (nrg1) in the endocardium to regulate 

initiation of trabeculation. This endocardial-specific notch1b expression, and subsequent activation, 

requires functional primary cilia and the flow responsive transcription factor Klf2a. Also, cultured 

endothelial cells respond to shear stress in a cilia-dependent manner to upregulate Notch1 and its 
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downstream effectors, suggesting a role for primary cilia flow detection in endocardial Notch activation. 

Together, our findings suggest that in early cardiac morphogenesis, endocardial cells respond to cardiac 

contraction by detecting flow with primary cilia to regulate trabeculation by epistasis of 

notch1b/efnb2a/nrg1. 

Results 

Cardiac contraction is required for myocardial trabeculation  

One of the earliest signs of cardiac chamber maturation is the formation of muscular, luminal 

protrusions called cardiac trabeculae. In zebrafish, cardiac trabeculae begin to form around 55 hpf (hours 

post fertilization) and are easily detectable at 3 dpf (days post fertilization) by examining cross sections of 

ventricle outer curvature (Liu et al., 2010; Peshkovsky et al., 2011; Staudt et al., 2014). Though the basic 

structure of the heart can form in the absence of myocardial function, some morphogenic events require 

cardiac contraction. To determine if cardiac contraction is required for trabeculation, we examined 

embryos deficient in cardiac troponin T type 2a (tnnt2a), which encodes an essential component of the 

contractile apparatus (Sehnert et al., 2002). We injected Tg(myl7:dsRed); Tg(kdrl:GFP) double transgenic 

embryos (labeling cardiomyocytes and endothelial cells, respectively) with standard control or tnnt2a 

morpholinos and assessed the presence of trabeculae at 3 dpf (Fig 6A). Like tnnt2a-/-  hearts, the non-

contractile tnnt2a morphant hearts underwent relatively unaltered looping morphogenesis and chamber 

formation at 3 dpf, but notably, failed to form trabeculae (Chi et al., 2008; Staudt et al., 2014) (Fig. 6B-C’’).  

To determine if failure to form trabeculae is due to a direct role of Tnnt2a or is more generally 

associated with contraction deficiency, we tested if the trabeculation defects observed in tnnt2a 

morphants could be recapitulated by chemical inhibition of cardiac contraction.  We thus treated 

Tg(myl7:dsRed); Tg(kdrl:GFP) embryos with vehicle or a pharmacological inhibitor of contraction from 22 

hpf to 3 dpf (Fig. 6D). The hearts of embryos treated with blebbistatin, a myosin II ATPase inhibitor, were 

non-contractile on day 3 and strongly resembled tnnt2a morphants in that both myocardial and 

endocardial layers formed, but trabeculae were absent in the ventricle (Fig.6E-E’’). We further tested the 

effect of inhibition of cardiac contraction with verapamil, an L-type calcium channel blocker and observed 

similar results (Fig. S7A-C’). Together, these data suggest that cardiac contraction is an important 

regulator of cardiac trabeculation. 
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Cardiac contraction is required for endocardial Notch activation and notch1b transcription 

Cardiac contraction exerts mechanical forces on both myocardium and endocardium, and 

trabeculation requires crosstalk between these two layers (Tian and Morrisey, 2012; Wagner and 

Siddiqui, 2007). Thus, we next sought to determine if any signaling pathways are activated in the ventricle 

in response to cardiac contraction. Using Tg(Tp1:EGFP) Notch reporter embryos  in which the Notch1 

responsive TP1 module drives EGFP as a fluorescent readout for active Notch1 signaling (Parsons et al., 

2009), we assessed Notch activation in control and tnnt2a morphants (Fig. 8A). At 48-50 hpf, Notch 

activation in control morphants hearts was robust in the ventricular endocardium and atrioventricular 

canal (AVC) with occasional weak signal detectable in the atrium (Fig. 8B-C’’). Interestingly, Notch 

activation was below detection in tnnt2a morphant hearts of embryos examined in whole mount or in 

confocal images (Fig. 8D-E’’). In contrast, Notch signaling was robust in the brains of control and tnnt2a 

morphants, indicating a specific role for cardiac contraction in regulating endocardial Notch signaling (Fig. 

8B,D). Similar results were observed with DMSO and blebbistatin-treated embryos compared to control 

and tnnt2a morphants, respectively (Fig. 9A-C’’). These data indicate that cardiac contraction is required 

for Notch activation in the endocardium at 2 dpf.  

We next sought to identify the primary Notch receptor mediating Notch activation in the 

endocardium. Using a previously described morpholino to knockdown notch1b (Milan et al., 2006; Wang 

et al., 2010) in Tg(Tp1:EGFP); Tg(myl7:dsRed) double transgenic embryos, cardiac Notch activation was 

below detection in notch1b morphants hearts at 48-50 hpf (Fig. 8F-G’’). To determine whether cardiac 

contraction regulates Notch1 activation by controlling notch1b gene transcription, we performed in situ 

hybridization at 48-50 hpf. notch1b expression mirrors Tg(Tp1:EGFP) Notch reporter expression in the 

heart at 48 hpf , but was below detection in tnnt2a-/- hearts (Fig. 8H,I). Thus, cardiac contraction controls 

Notch1 signaling by regulating notch1b expression. Together, these findings indicate that cardiac 

contraction regulates notch1b at the transcript level in the heart. Our studies do not exclude the possibility 

that the mechanical forces associated with contraction may also regulate Notch receptor activation. 

Spatiotemporal pattern of Notch activation  

To better understand how Notch activation might stimulate trabeculation, we characterized the 

spatiotemporal pattern of Notch activation in the developing zebrafish heart using the Tg(Tp1:VenusPest) 
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Notch reporter transgenic line which express, under control of the Tp1 Notch response element, a 

partially-destabilized fluorescent protein with a half-life around 2 hours as compared to 24 hours half-life 

of GFP protein (Aulehla et al., 2008; Ninov et al., 2012). The use of this reagent afforded us greater 

spatial and temporal resolution to determine the time window of Notch activation in the ventricular 

endocardium. VenusPest expression was first detectable in the endocardium at 28 hpf, just 4 hours after 

initiation of contraction, with substantial spatial bias towards the end of the heart tube containing 

ventricular cardiomyocytes (Fig. 10A). VenusPest expression in the ventricular endocardium persisted 

until 55 hpf, after which it declined in parts of ventricular endocardium lining the outer curvature (Fig. 10B-

D).  By 72 hpf, VenusPest expression was primarily restricted to AVC endocardium, and was retained in 

the AVC through at least 4 weeks post fertilization (Fig. 10E,F, Fig. 11A-A’). Thus, within the limits of 

reporter expression, Notch signaling is activated throughout the ventricular endocardium shortly after 

initiation of contraction, but becomes inactive shortly after the initiation of cardiac trabeculation and is 

completely restricted to the AVC by 3 dpf.  

Cardiac contraction promotes trabeculation through notch1b/efnb2a/nrg1 epistasis 

Our data demonstrate that, while Notch is required for trabeculation, it is not active in the 

ventricular endocardium during trabeculation, indicating that it controls trabeculation through intermediate 

signaling pathways. A recent report by Dietrich et al., demonstrated that blood flow and Bmp signaling 

regulate zebrafish endocardial chamber morphogenesis in a Vegf signaling-independent manner (Dietrich 

et al., 2014). Interestingly, endocardial Notch activation and myocardial trabeculation appear to be 

independent of canonical Vegf signaling (Fig. 12A-M).  However, the arterial endothelial marker gene 

EphrinB2 (Efnb2) is required for trabeculation in mice directly downstream of the Notch1 transcriptional 

complex and upstream of Neuregulin1 (Nrg1) (Grego-Bessa et al., 2007). We evaluated the role of these 

genes in cardiac trabeculation by assessing trabeculation at 3 dpf in notch1b and efnb2a morphants. 

Using previously described splice-blocking morpholinos for notch1b and efnb2a (Milan et al., 2006; Wang 

et al., 2010), we knocked down their expression by at least 75% in the heart (Fig. 13A-D).  At 3 dpf, 

notch1b and efnb2a morphants lacked trabeculae, while control morphants had trabeculae in the outer 

curvature (Fig. 14A-C’). To test further whether that Notch signaling is required for trabeculation in 

zebrafish, we examined mindbomb1 (mib1) mutants that are defective in Notch signaling due to a loss of 
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function point mutation in the gene mindbomb E3 ubiquitin protein ligase 1. mib1 encodes an E3 ubiquitin 

ligase required for canonical trafficking of Notch ligands (Itoh et al., 2003).  At 3 dpf, trabeculae were 

completely lacking in the ventricle of these mutant embryos (Fig 15A-B). 

To test if ephrinb2a and nrg1 could act downstream of Notch signaling to control cardiac 

trabeculation, and to establish the epistasis of these genes in zebrafish cardiac maturation, we assessed 

their expression in the zebrafish heart and found that notch1b, efnb2a, nrg1 and their principle ligand or 

receptor partners are expressed at 48-50 hpf (Fig. 16). We isolated hearts at 48-50 hpf and found that 

tnnt2a morphants had significant reduction in notch1b, efnb2a, and nrg1 expression, while notch1b 

morphants had significant reduction in efnb2a and nrg1 transcripts levels (Fig. 14D,E). In contrast, 

notch1b expression and Notch activation pattern was not affected in efnb2a morphants, but nrg1 

expression was significantly reduced (Fig. 14F, Fig.17A-D). Notably, these defects in gene expression do 

not reflect failure of the endocardium to form, as both endocardium and myocardium are present at 3 dpf 

(Fig. 14A-C’). Combined, these data suggest that cardiac contraction is required for trabeculation by 

activating a regulatory notch1b/efnb2a/nrg1 pathway.   

Next, we asked if forced activation of Notch signaling could bypass the requirement for cardiac 

contraction in trabeculation. To this end, we overexpressed the Notch intracellular domain to activate 

Notch signaling using the Tg(hsp701:gal4); Tg(UAS:NICD) system in control and tnnt2a morphants 

carrying  the Tg(tp1:EGFP) and Tg(myl7:dsRed) transgenes (Fig. 18A). All embryos were exposed to 

37°C heat shock to activate Gal4 expression and, as an indication of forced Notch activation, we 

observed a dramatic increase in tp1:EGFP across all somatic tissues in approximately 25% of control and 

tnnt2a morphants at 48 hpf (Fig. 18B).  We isolated hearts from control and tnnt2a morphants and found 

significant upregulation of efnb2a and nrg1 expression in tnnt2a morphants hearts with NICD 

overexpression at 2-3 dpf (Fig. 18C-D). However, this upregulation was not sufficient to induce cardiac 

trabeculation in tnnt2a morphants (Fig. 18E-H). 

Primary cilia are required for Notch activation in endocardial cells 

We next asked how endocardial cells detect cardiac contraction to modulate Notch in the 

ventricle. Cardiac contraction exposes endocardial cells to mechanical forces across many different 

length and time scales (Bartman et al., 2004; Boselli et al., 2015; Lee et al., 2013; Vermot et al., 2009). 
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Endocardial cells are particularly well positioned to detect hemodynamic forces including shear stress 

(the frictional force of parallel flow). Endothelial primary cilia—microtubule based sensory organelles that, 

in certain hemodynamic environments, protrude into the lumen of blood vessels—have a well-established 

role in detecting low levels of flow (Culver and Dickinson, 2010; Hahn and Schwartz, 2009; Slough et al., 

2008; Van der Heiden et al., 2006).  Recently, Goetz et al., demonstrated that endothelial primary cilia in 

the zebrafish vasculature are highly sensitive to low magnitude shear forces from 24-28 hpf to regulate 

vascular development (Goetz et al., 2014).  Thus, we hypothesized that primary cilia play a key role in 

flow detection, leading to notch1b upregulation and Notch1 activation in endocardial cells.  

We validated the presence of primary cilia on endocardial cells around the time of Notch1 

activation using Tg(actb2:Arl13b-GFP) transgenic embryos where Arl13b-GFP localizes to primary cilia 

(Borovina et al., 2010). Though promoter activity for this transgene is higher in myocardial than 

endocardial cells, primary cilia can be detected in both cell layers (Fig. 19A-B). Owing to their potential 

role in flow detection, we focused on characterizing endocardial primary cilia. At 30 hpf, individual 

endocardial cells of un-injected embryos, control morphants, and tnnt2 morphants possess a single, 

primary cilium projecting into the lumen of the heart (Fig. 20A-B’, Fig. 21A-B’’).  This indicates that 

endocardial cells possess primary cilia, and that ciliation is independent of cardiac contraction.  

Mutations in intraflagellar transport 88 (ift88) cause ciliopathies in zebrafish (Kramer-Zucker et al., 

2005; Lunt et al., 2009; Neugebauer and Yost, 2014; Tsujikawa and Malicki, 2004) and ift88 morphants 

have deficiencies in endothelial primary cilia formation (Goetz et al., 2014).   Similarly, we observed 

mislocalization of Arl13b-GFP in ift88 morphants (arrowheads, Fig. 21A-C). To test if endocardial primary 

cilia are involved in zebrafish ventricular endocardial Notch1 activation, we knocked down ift88 in 

Tg(Tp1:VenusPest); Tg(myl7:dsRed) double transgenic embryos and evaluated Notch1 activation in the 

morphants. Compared to control morphants, VenusPest expression was either undetectable or restricted 

to a few cells in the heart in cilia-deficient ift88 morphants (Fig. 20C-D’). Importantly, these morphants 

also exhibited reduced trabeculation (Fig. 20E-F’). Using images from whole-mount embryos, we 

compared mean fluorescence intensity of VenusPest in the ventricle and found a significant reduction in 

VenusPest expression in ift88 morphants compared to control morphants (Fig. 20G). Additionally, we 

http://dev.biologists.org/content/138/3/487.full#ref-3
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isolated hearts from ift88 morphants and found a significant reduction in notch1b and nrg1 expression 

(Fig. 20H,I). 

Primary cilia are required at the onset of flow for Notch1 activity 

Though our data supports a model in which primary cilia respond to luminal flow to activate Notch 

transcription, the loss of endocardial Notch activation in ift88 morphants could be secondary to a role for 

primary cilia in early embryogenesis (Gerdes et al., 2009; Sasai and Briscoe, 2012). To address this 

possibility, we used a pharmacological approach to define when primary cilia are necessary for 

endocardial Notch activation. Ciliobrevin D (CBD) inhibits the AAA+ ATPase motor cytoplasmic dynein 

and significantly reduces the microtubule cycling necessary to construct and maintain primary cilia 

(Firestone et al., 2012).  We treated Tg(Tp1:VenusPest) positive embryos with DMSO or CBD starting at 

18-24 hpf and assessed VenusPest expression at 42-48 hpf (Fig. 22A-D).  DMSO injection at any of 

these times had no effect on VenusPest expression level (Fig. 22A,B,E).  Embryos injected with CBD at 

18 or 20 hpf had reduced VenusPest expression (Fig. 22C,E), while embryos injected with CBD from 22 

or 24 hpf were indistinguishable from DMSO injected controls (Fig. 22D,E). Given a time delay between 

initiation of treatment and sufficient accumulation for biological effects, these data suggest that Notch1 

expression in the endocardium requires primary cilia in a short time window coinciding with the onset of 

flow. 

Primary cilia likely detect low magnitude shear stress to upregulate Notch in ventricular 
endocardial cells  

Primary cilia have two well-defined, independent functions—facilitating Hedgehog (Hh) signaling 

and detecting low magnitude shear stress (Anderson, 2006; Egorova et al., 2012; Goetz et al., 2014; 

Hierck et al., 2008; Roy, 2012; Van der Heiden et al., 2011; Wilson and Stainier, 2010).  To determine 

whether Hh signaling is necessary for endocardial Notch activation, we treated Tg(Tp1:VenusPest); 

Tg(myl7:dsRed) Notch reporter embryos with cyclopamine to antagonize Hh signaling downstream of 

primary cilia (Chen et al., 2002; Stanton and Peng, 2010).  Embryos treated with cyclopamine from 4-48 

hpf exhibited severe body axis deformities indicative of successful inhibition of Hh signaling (Fig. 23A,B). 

Embryos treated with cyclopamine from 18-48 hpf and 24-48 hpf did not exhibit defects in Notch 

activation (Fig. 23C-J).  This argues against a role of canonical Hh signaling in controlling endocardial 
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Notch activation, and implicates primary cilia flow detection in endocardial Notch activation and cardiac 

trabeculation.  

Flow magnitude and directionality influence the biological responses elicited in endothelial cells. 

Though our data indicate that flow is important for activating Notch, the differential roles of shear stress 

magnitude and flow directionality are unclear. In zebrafish, shear stress and retrograde flow at 2 dpf can 

be manipulated through knockdown of gata1a and gata2a—two transcription factor genes important for 

hematopoiesis (Vermot et al., 2009). Interestingly, reducing hematocrit to reduce shear stress and 

altering retrograde flow fraction in this manner lead to neither reduced Notch reporter expression at 48 

hpf nor loss of trabeculation by 80 hpf (Fig. 24A-M). Increasing retrograde flow fraction by knocking down 

gata2a, with or without co-knockdown of gata1a slightly increased Notch activation in the ventricle, 

though reduced ventricle size could also contribute to this phenotype (Fig. 24E-F). Since we see Notch 

activation as early as 28 hpf, which is before the hematocrit comprises a large fraction of blood volume, 

we suggest that these results support a role for low levels of flow in Notch activation and cardiac 

trabeculation.  

Since contraction and flow cannot be decoupled in the developing zebrafish ventricle by existing 

genetic means, we used an in vitro model of shear stress to directly assess the role of primary cilia shear 

stress detection in regulating Notch1 expression. We used immortalized mouse embryonic endothelial 

cells (MLECs), which are known to upregulate Notch pathway genes in response to shear stress, to 

model endocardial cilia-dependent flow responses (Sweet et al., 2013). MLECs were pretreated with 

either DMSO as vehicle control or CBD to inhibit primary cilia formation and exposed for 0 or 4 hours to 

low magnitude shear stress (<2 dynes/cm2) comparable to the fluid forces exposed to endocardial cells in 

early heart development (Goetz et al., 2014). We observed significant elevation in Notch1, Efnb2, and 

Nrg1 in DMSO treated MLECs compared to static controls.  Interestingly, this upregulation was inhibited 

by CBD treatment (Fig. 20J-L).  MLECs pre-treated with either DMSO or CBD demonstrated dynamic 

regulation of the flow-response gene, Krüppel-like factor 2 (Klf2), suggesting that some non-cilia based 

flow detection mechanisms are not perturbed by CBD treatment (Fig. 25 A-B). Interestingly, klf2a was 

also required for endocardial Notch activation and trabeculation (Fig. 26 A-G). Thus, shear stress 

stimulates endothelial cells to increase expression of Notch1, EphrinB2, and Nrg1 in a myocardium-
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independent manner. Combined, these data indicate that primary cilia are important mediators of shear 

stress to regulate endocardial Notch signaling prior to trabeculation. 

Together, our data support a model in which cardiac contraction initiates flow, which is detected 

by primary cilia on endocardial cells to activate a regulatory notch1/efnb2a/nrg1 pathway and promote 

cardiac trabeculation (Fig. 27).  

Discussion 

Trabeculation, the formation of muscular protrusions which increase myocardial mass prior to 

coronary vascularization, is an essential aspect of ventricle maturation (Liu et al., 2010; Moorman and 

Christoffels, 2003; Samsa et al., 2013; Sedmera et al., 2000). Though previous work clearly 

demonstrated the utility of zebrafish embryo in studying cardiac morphogenesis, mechanistic detail has 

been lacking to describe how mechanical forces guide the cellular changes that execute heart chamber 

maturation in zebrafish.  In this study, we present evidence supporting a model in which flow, caused by 

cardiac contraction, is detected by primary cilia on endocardial cells to stimulate notch1b expression and 

regulate trabeculation through notch1b/efnb2a/nrg1 epistasis. Thus, our study reveals a molecular 

mechanism that links flow sensing and cell signaling to ventricular maturation in the developing heart.  

Our previous work demonstrated that ErbB2 is required to initiate trabeculation in the heart at 2 

dpf (Liu et al., 2010).  Examining this phenotype further, we found that eliminating cardiac contraction by 

injection of tnnt2a morpholino prevented trabeculation and endocardial Notch activation, but did not affect 

erbb2 expression levels in the heart.  Thus, we hypothesized that cardiac contraction controls expression 

of the erbb2/erbb4 ligand, nrg1 to modulate trabeculation. Previous studies in mouse indicate a critical 

role of an endocardial Notch1/EphrinB2/Nrg1 regulatory pathway in cardiac trabecular formation (Grego-

Bessa et al., 2007).  We asked whether these genes are required downstream of cardiac contraction for 

zebrafish cardiac trabeculation. Indeed, notch1b and efnb2a morphants lacked cardiac trabeculae at 3 

dpf, and gene expression analysis confirmed epistasis of notch1b/efnb2/nrg1 with respect to cardiac 

contraction. Although the potential off-target effects of morpholinos could limit our interpretation of the 

morphant phenotypes, the fact that notch1b morphants and mib1 mutants exhibit a similar trabecular 

defect supports a role of Notch signaling in cardiac trabeculation. In addition, our data are also supported 

by the work from the de la Pompa group showing that Efnb2 acts directly downstream of Notch1 to 
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regulate trabeculation (Grego-Bessa et al., 2007).  In addition to the trabeculation defect, we noticed 

separation of the endocardium and myocardium. This separation is also evident in sections and SEM of 

mouse embryos with genetic deletion of Notch1, Efnb2, Nrg1, and Bmp10 (Grego-Bessa et al., 2007). 

Whether this is due to failure of the cardiac jelly to degrade or detachment of the endocardium remains to 

be determined, but it appears to be a defect common to many trabeculation phenotypes. 

Notch signaling plays many roles in heart development.  In zebrafish, we had the opportunity to 

directly observe the pattern of Notch activation with fine spatial and temporal resolution. The highly 

stereotyped spatiotemporal distribution of Notch signaling that we observed (Fig. 10A-F) is interesting for 

several reasons.  First, though our data reaffirm the importance of Notch in vertebrate trabeculation, our 

study indicates a somewhat different pattern of Notch activation in zebrafish heart development. In 

zebrafish, Notch is active shortly after initiation of blood flow and is not active in the ventricular 

endocardium during trabeculation. In mice, the NICD is localized in the nucleus of endocardial cells from 

E8.5-9.5 during the first stages of trabeculation, and subsequently is preferentially localized in the nuclei 

of endocardial cells at the base of trabeculae (Grego-Bessa et al., 2007). This might reflect differential 

roles of Notch signaling in zebrafish versus mouse heart development, possibly due to differences in 

heart size and timing of major morphogenic processes. Second, the spatial segregation of Notch 

activation between ventricle, atrium, and AVC endocardium from 1-3 dpf suggests that there are 

previously underappreciated, underlying differences between endocardial cells in these spatially distinct 

regions, leading to different roles in the maturing heart. Whether their difference in Notch activation are 

intrinsic properties or due to differential cues derived from the overlying myocardium remains to be seen. 

In this study, we also provided evidence suggesting that functional primary cilia are required at 

the onset of flow for notch1b expression in the ventricular endocardium of the developing heart. This 

expression is important for Notch activation and cardiac trabeculation. Cardiac contraction and blood flow 

are intimately associated and cannot be easily decoupled in the developing zebrafish ventricle by genetic 

means. Though endocardial cells may arise from either vascular endothelial cells or cardiac progenitors, 

they are a type of endothelial cell and are highly sensitive to flow  (Bussmann et al., 2007; Kattman et al., 

2006; Milgrom-Hoffman et al., 2011; Moretti et al., 2006; Vermot et al., 2009). We used an in vitro system 

to apply low magnitude flow to endothelial cells to model endocardial, cilia-dependent flow responses and 
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found that flow stimulated Notch1, Efnb2, and Nrg1 expression in the absence of myocardial-derived 

factors or circulating factors in the bloodstream. This upregulation was blocked by pretreating cells with 

ciliobrevin D (CBD), a small molecule which inhibits the dynein motor protein responsible for trafficking 

microtubules to primary cilia (Firestone et al., 2012).  Notably, though CBD treatment reduces the size 

and number of primary cilia, it also regulates mitotic spindle formation and organelle transport (Firestone 

et al., 2012).  Thus, our interpretation does not account for the possibility that our observed effects may 

be due to non-specific effects of CBD.  

Though our data showed that a notch1b/ephrinb2a/nrg1 pathway is required for cardiac chamber 

maturation, it is not the only genetic network activated by cardiac contraction and involved in 

trabeculation. Trabeculation is a complex morphogenic event that requires precise coordination of 

molecular and cellular events in both myocardial and endocardial cells. We found that, though forced 

NICD expression was sufficient to upregulate efnb2a and nrg1 in tnnt2a morphants, it did not induce 

trabeculation. Curiously, it was also insufficient to rescue trabeculation in ift88 morphants (unpublished 

data). Since NICD was overexpressed in all tissues, we suspect that the lack of trabeculation may be due 

to an inhibitory role of myocardial Notch1 signaling in cardiac trabeculation as well as a loss of other 

primary cilia downstream signaling. It will be interesting to use separate myocardial and endocardial Gal4 

lines to investigate the precise spatiotemporal role of Notch activation in regulating chamber 

morphogenesis. Additionally, deficiencies in the luminal protrusions extended by cardiomyocytes during 

trabeculation, which are unstable in tnnt2a morphants, could limit trabeculation in tnnt2a morphants 

(Staudt et al., 2014).  

Our work prompts many important questions about primary cilia and the role of hemodynamics in 

cardiac morphogenesis. Much of the work on the role of hemodynamics in endocardial morphogenesis 

has focused on valvulogenesis. Owing to its position in the heart, the AVC is exposed to an extremely 

dynamic flow environment in the embryo. Since primary cilia disassemble in high shear stress 

environments (Iomini et al., 2004) and Notch activity becomes restricted to the AVC after 3 dpf, it will be 

interesting to explore the differential role of primary cilia for Notch activation in AVC and ventricular 

endocardium. Others have found that modifying the hemodynamic environment in the heart can alter the 

position of trabeculae, suggesting that other mechanosensors may be involved in later cardiac 
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morphogenesis (Peshkovsky et al., 2011). Interestingly, the flow response gene klf2a is upstream of 

notch1b (Vermot et al., 2009) and is required for Notch activation and cardiac trabeculation. However, 

neither lowering the magnitude of shear stress nor altering the retrograde flow fraction using gata1a, 

gata2a, or gata1a/2a morpholinos, as described in Vermot et al. (2009) was capable of preventing 

endocardial Notch activation or trabeculation; thus, much work remains to be done in order to to define 

the precise hemodynamic cues involved in endocardial Notch activation.  

Our work, combined with a recent study showing that primary cilia bending in response to blood 

flow is a major regulator of vascular development from 24-28 hpf (Goetz et al., 2014), strongly suggest 

that primary cilia are involved in sensing low magnitude shear stress in vivo to regulated cardiovascular 

morphogenesis. The precise mechanism by which primary cilia detect flow is an area of active research. 

One theory suggests that stretch-activated TRP channels coupled to primary cilia at the membrane are 

activated when primary cilia bend, leading to increased intracellular calcium and intracellular signaling 

(Goetz et al., 2014; Yoshiba et al., 2012).  Interestingly, mutations in mechanosensitive TRP family 

demonstrate major valve defects, and TRP channel activity appears to depend on an oscillatory flow 

pattern (Heckel et al., 2015). 

Overall, our data support a model in which endocardial primary cilia are the physical mechanism 

by which endothelial cells detect low flow to stimulate endocardial notch1b expression in the zebrafish 

heart to promote ventricle chamber maturation. Future studies are needed to determine the precise role 

of primary cilia in detecting flow in the developing heart.  

Materials and methods 

Zebrafish husbandry and stocks  

All animals were maintained at the UNC-CH aquaculture facility in accordance with IACUC 

approved protocols (Westerfield, 2000).  The zebrafish lines used in this study are as follows: tnnt2ab109 

(Sehnert et al., 2002), mibta52b (Itoh et al., 2003; Jiang et al., 1996; van Eeden et al., 1996), 

Tg(myl7:GFP)twu26 (Huang et al., 2003), Tg(myl7:dsRed)vc6 (Rothschild et al., 2009), 

Tg(myl7:mkateCAAX)sd11 (Lin et al., 2012), Tg(kdrl:EGFP)s843 (Jinn et al., 2005), Tg(kdrl:mCherry)s896 

(Bertrand et al., 2010), Tg(tp1:EGFP)um14 (Parsons et al., 2009), Tg(tp1:VenusPest)s940 (Ninov et al., 

2012), Tg(-1.5hsp70l:Gal4)kca4 (Scheer and Campos-Ortega, 1999), Tg(UAS:notch1a-intra ICD)kca3 
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(Scheer et al., 2001) and Tg(actb2:Arl13b-GFP)hsc5Tg (Borovina et al., 2010).  In all studies, embryos were 

maintained at 28.5° in either embryo water or system water and treated continuously with 0.003% 1-

phenyl 2-thoiurea (PTU) starting at 20-24 hpf. 

Morpholino injections 

Morpholino oligonucleotides (see Table 1) were diluted in 5mM HEPES containing 0.05% phenol 

red and 1 nl injected into a minimum of 100 embryos at the one cell stage.  

Drug treatments 

For pharmacological inhibitor studies, dechorinated embryos were treated in 4 ml of 6 μM 

blebbistatin (Cell Signaling) in embryo water or 200 μg/mL verapamil (Sigma) in 1% DMSO containing 

embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4, pH 6.8–6.9).  

Microscopy imaging and processing 

Anesthetized embryos were mounted with 1% low-melt agarose (Sigma) in embryo medium or 

system water and manually oriented for optimal visual access to the heart. Epifluorescence images were 

collected on a Leica M205C fluorescence stereoscope.  For live epifluorescence imaging, agarose-

mounted embryos were submerged in system water and examined at 100X magnification on a Leica 

M205C fluorescence stereoscope equipped with a high speed monochrome camera. The heart was 

filmed for 15-30 seconds at 30 frames per second, with 10-75 ms exposure for bright field and 

fluorescence. After live imaging, embryos were either euthanized or used for confocal imaging (see 

below). Movies were decompressed and exported as single frames using VirtualDub Program (GNU 

licensed, available at http://www.virtualdub.org). ImageJ (Schneider et al., 2012) was used to select 

frames and overlay channels representative of end diastole (images) and to quantify mean fluorescence 

intensity in the ventricle at end systole (quantification). Data was collected for a minimum of 10 embryos 

and quantified using ImageJ.  Imaging was performed as described above with the following 

modifications. Embryos imaging for Notch reporter quantifications in Figures 12, 22, and 23 were 

anesthetized and imaged directly in system water rather than mounted in low-melt agarose.  

For confocal imaging, agarose-mounted embryos were euthanized with 5-10X Tricaine and 

imaged after cessation of cardiac contraction. Confocal z-stacks were collected using an Olympus 
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Fluoview 1000MPE equipped with a 20X XLPlan water immersion objective (NA 1.0) with 2.5X optical 

zoom. Fluoview software was used to collect images through the top 75% of heart with a minimum of 

512x512 pixels resolution and 1-2 μm spacing between z-slices. Fluoview’s brightness correction 

algorithm was used to account for signal attenuation with increasing depth.  ImageJ (Schneider et al., 

2012) was used to process images. For each Z-stack, we selected either a maximum projection image of 

the whole stack or a representative mid-chambers slice for the appropriate analysis. Confocal data was 

collected for a minimum of 3 embryos for each condition, with matching controls for each experiment, 

where the N>3 embryos were selected as the representative samples from a pool of a minimum of N>12 

embryos which were visually inspected for phenotype. To accommodate relatively low expression levels 

of Arl13b-GFP in Tg(actb:Arl13b-GFP) endocardial cells, Figures 19, 20, and 21 confocal images were 

collected with a wider pinhole for a 2.0 μm optimal z-slice. 

In situ hybridization  

In situ hybridization was performed as previously described (Liu and Stainier, 2010). In situ 

hybridization probe for notch1b was prepared as previously described (Milan et al., 2006) and 

synthesized from pGEMT vector (Promega) using the DIG RNA labeling kit (Roche). Whole-mount 

embryo imaging was performed on a Leica MZ16F fluorescence stereomicroscope.  

Heart isolation  

Hearts were manually isolated from euthanized embryos at 48-72 hpf using a Leica M205C 

fluorescence stereomicroscope and visualizing cardiac tissue using Tg(myl7:EGFP) signal, then trimmed 

free of non-cardiac tissue and transferred to ice-cold lysis buffer. Tissue was homogenized and RNA was 

isolated from the homogenate using the Qiagen RNAeasy Micro kit (Qiagen).  Single-strand complement 

DNA synthesis was performed on freshly isolated RNA using BioRad’s iScript cDNA synthesis kit.  At 

least 10 hearts were pooled for each condition. 

Cell culture 

MLEC (immortalized mouse lung endothelial cells) were prepared as described previously (Sweet 

et al., 2012). MLECs passage 38-45 were cultured on gelatin-coated plastic tissue culture plates and 



43 

maintained in DMEM (Gibco, 11995), 10% FBS (Sigma), 1% penicillin/streptomycin (Gibco), 1% non-

essential amino acids (Gibco), and 0.009% β-mercaptoethanol. 

In vitro shear stress 

Confluent, cobblestone stage MLECs were starved for 12-16 hours in culture media (above) 

containing 1% FBS then pre-treated with DMSO or 50 μM ciliobrevin D (Millipore) for 2 hours prior to 

administration of flow. Shear stress, 2 dynes/cm2, was generated using a previously described cone and 

plate viscometer (Sorescu et al., 2004). After 0, 1, or 4 hr exposure to shear stress, cells were washed 

with ice-cold PBS then lysed and RNA extracted using Trizol (Invitrogen) according to manufacturer’s 

instructions. RNA was reverse-transcribed using Superscript III First-Strand Synthesis Supermix 

(Invitrogen) and gene expression assessed as described below. 

Expression analysis 

For qRT-PCR, NCBI’s Primer-BLAST was used to design exon-spanning, gene-specific 

SybrGreen primers .  All primers were validated by high resolution melt analysis, size confirmation, RNA-

only, and no-template controls. See Table 2 for primer sequences. SybrGreen real-time PCR was 

performed in triplicate using Viia7 real-time PCR system (Invitrogen). For quantification, we used the 

ΔΔCT method in which raw CT values were normalized to actb as a housekeeping gene and appropriate 

baseline condition, then calculated fold-change as 2^(-ΔΔCT).  

Isolation and imaging juvenile hearts 

Hearts were dissected from euthanized fish at 4 weeks post-fertilization, and were then fixed in 

ice-cold 4% paraformaldehyde for 2 hrs on ice.  Hearts were mounted in low-melt agarose as described in 

the Methods section of the accompanying manuscript.  Confocal z-stacks were collected using an 

Olympus Fluoview 1000MPE equipped with a 20X XLPlan water immersion objective (NA 1.0) with 2.5X 

optical zoom. Fluoview software was used to collect images through the top 75% of heart at 512x512 

pixels resolution with 2.5 μm spacing between z-slices. Fluoview’s brightness correction algorithm was 

used to account for signal attenuation with increasing depth.  ImageJ (Schneider et al., 2012) was used to 

process images and create maximum projection images. N≥3 hearts were examined.   
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Drug treatments  

For pharmacological inhibitor studies, embryos were treated with drugs as described below in 

embryo water (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4, pH 6.8–6.9) at 28.5°. 

Figure 7—embryo water was supplemented with 0.003% 1-phenyl 2-thiourea (PTU) and 200 μg/mL 

verapamil (Sigma) or vehicle (ddH20). Figure S2—embryo water was supplemented with PTU at 6 μM 

blebbistatin (Cell Signaling) and DMSO to 1% final or 1% DMSO vehicle. Figure 9—embryo water was 

supplemented with PTU and 5 μM PTK787 (Cell Signaling), also known as vatalanib, or vehicle (ddH2O). 

Figure 22—ciliobrevinD (CBD) was purchased from Tocris and dissolved in DMSO at 10 mM and stored 

at -20 until use.  Embryos 18-24 hpf were anesthetized with Tricaine and 3-5 nL of CBD or DMSO was 

injected directly into the yolk as described previously (Milan et al. 2003). Embryos that survived injection 

were raised in embryo water supplemented with PTU. Figure 23—embryo water was supplemented with 

50 μM cyclopamine (Cayman Chemical) diluted in EtOH to 0.2% final or 0.2% EtOH vehicle.  

Statistical analysis 

Values are presented as means ± s.e.m. Statistical significance was determined by one-sample 

T-test (between one group and a reference value) or Student’s T-test (between two groups). 
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Chapter 2.2 Figures 

 

Figure 6 Cardiac contraction is required for myocardial trabeculation   

(A) Schematic of morpholino injection at one cell stage or (D) pharmacological inhibition of cardiac contraction (6 μM 
blebbistatin) from 22 hpf. The morpholino injected or chemical treated Tg(kdrl:EGFP);Tg(myl7:dsRed) double 
transgenic embryos were allowed to develop further and examined for cardiac trabecular phenotypes at 3 dpf. 
(B,C,E) Maximum projection of confocal z-stacks reveals the overall shape of the heart. (B’,C’,E’) Mid-chamber 
confocal optical section of the same hearts shown in (B,C,E).  (B’’, C’’, E’’) Magnified high resolution images of the 
cardiac regions marked by dotted lines in (B’,C’,E’). White arrows point to trabeculae, a = atrium, v = ventricle. Scale 
bars (E’) 50 μm and (E’’) 10 μm. 
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Figure 7 Verapamil treated embryos do not form trabeculae  

(A) Experiment schematic. (B-D) Tg(myl7:dsRed); Tg(kdrl:EGFP) double transgenic embryos were bathed in 250 
μg/mL verapamil or vehicle from 22 hpf to 3 dpf and the hearts were imaged by confocal microscopy. (B) Confocal z-
projection, (C) mid-chamber section, and (C’) magnified view of representative verapamil-treated heart. Scale bars 
(B) 50 μm (C) 10 μm.  v=ventricle, a=atrium. 
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Figure 8 Cardiac contraction is required for endocardial Notch activation and notch1b 
transcription 

(A) Morpholino gene knock-down experiment schematic where double transgenic Tg(tp1:EGFP);Tg(myl7:dsRed) 
embryos were injected with (B,C) control, (D,E) tnnt2a, or (F,G) notch1b morpholinos and imaged at 48-50hpf. 
(B,D,F) Representative whole mount images of Notch reporter with cardiac regions highlighted by circles. (C,E,G) 
Confocal maximum intensity projections of the hearts shown in (B,D,F) with cardiomyocytes labeled in red,  (C’,E’,G’) 
Notch reporters in green, and (C’’,E’’,G’’) colocalized  signal in yellow. Minimal colocalization indicates Notch 
activation is in endocardial cells. (H, I) Whole mount notch1b riboprobe hybridization in (H) control (I) and tnnt2a-/- 
embryos with the heart outlined in red. Scale bar is 50 μm, a = atrium, and v = ventricle. 
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Figure 9 Notch signaling is not active in the hearts of blebbistatin treated embryos  

(A) Experiment schematic where zebrafish embryos were bathed in DMSO or 6 μM blebbistatin from 22 hpf to 42 hpf. 
(B-C) The hearts of Tg(myl7:dsRed); Tg(tp1:EGFP) double-transgenic embryos treated with DMSO (B) or blebbistatin 
(C) were imaged by confocal microscopy. (B,C) Confocal z-projection of cardiomyocyte marker, (B’,C’) confocal z-
projection of Notch reporter signal and (B’’,C’’) merged signals. Scale bar 50 μm 
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Figure 10 Notch activation in the ventricular endocardium   

(A-F) Confocal z-stack maximum intensity projection of hearts from double transgenic 
Tg(tp1:VenusPest);Tg(myl7:dsRed) embryos at designated time points with Tp1:VenusPest expression in green and 
cardiomyocytes marked in red. Scale bar is 50 μm, a = atrium, and v = ventricle. 
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Figure 11 Notch activation at 4 weeks post-fertilization  

(A) Representative maximum projection of ventricle isolated from Tg(myl7:mkateCAAX); Tg(tp1:VenusPest) larva at 4 
weeks post-fertilization. The inset marked by dotted lines is magnified in (B). Arrow points to Notch reporter 
expression. Scale bar 100 μm. 
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Figure 12 Notch activation in the developing endocardium is not inhibited by PTK787  

(A-C, E-G) Representative images of whole mounted embryos carrying Tg(kdrl:mcherry) or Tg(tp1:VenusPest); 
Tg(myl7:dsRed) transgenes treated with (A,E) vehicle from 24-48hpf, or 5 μM PTK787 from (B,F) 18-48 hpf or (C,G) 
24-48 hpf. (A-C) Lateral view of endothelial cell marker. Yellow arrows point to representative intersegmental vessels. 
(D) Average number of intersegmental vessels detected at 48 hpf. (E-G) Representative images of Notch reporter 
signal in gray and (E’-G’) Notch reporter signal in green merged with cardiomyocyte signal in red where white circles 
designate cardiac region. (H) Mean fluorescence intensity of VenusPest Notch reporter and (I) DsRed cardiomyocyte 
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reporter mean fluorescence levels in the ventricle. (J-M) Mid-chamber confocal optical section showing 
cardiomyocytes (red) and endocardial cells (green) in Tg(myl7:dsRed); Tg(kdrl:EGFP) embryos treated with (J) 
vehicle from 24-48 hpf or 5 μM PTK787 from (K) 36-80 hpf, (L) 48-80 hpf, or (M) 55-80 hpf. (J’,K’,L’, M’) The cardiac 
regions highlighted by dotted lines are shown as magnified high resolution images. White arrows point to trabeculae, 
ISV = intersegmental vessel, a = atrium, v = ventricle. Scale bars are (M) 50 μm  and (M’) 10 μm.  Error bars are 
s.e.m. Students T-test compared to vehicle control. N=6-12 embryos. 
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Figure 13 Notch1b and efnb2a splice blocking MO gene expression quantification  

(A,C) Schematic of (A) notch1b (B) efnb2a cDNA demonstrating expected qRT-PCR products for wild type splicing, 
splice blocking from morpholino interference, and exon skipping. Forward and reverse primers are indicated with red 
arrows. Blue line shows expected product with annotated size. Morpholino recognition site is marked with yellow 
symbol. (B) Relative expression of wild type spliced notch1b mRNA in control morphant and notch1b morphant hearts 
by qRT-PCR using primers designated in (A). (D) Relative expression of wild type spliced efnb2a mRNA in control 
morphant and efnb2a morphant hearts by qRT-PCR using primers designated in (C).  MO = morpholino. Error bars 
are s.e.m. One-sample T-test compared to normalized control value = 1. N=3-5 biological replicates. 
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Figure 14 Cardiac contraction promotes trabeculation through notch1b/efnb2a/nrg1 epistasis  

(A,B,C,D) Mid-chamber confocal optical section of Tg(myl7:dsRED);Tg(kdrl:EGFP) double transgenic (A) control, (B) 
notch1b, and (C) efnb2a morphant hearts showing cardiomyocytes in red and endocardial cells in green. (A’,B’,C’) 
Magnified high resolution images of the cardiac regions highlighted by dotted lines in (A,B,C). Expression of notch1b, 
efnb2a, and nrg1 in hearts isolated from (D) tnnt2a, (E) notch1b, and (F) efnb2a morphants compared normalized to 
expression in control morphant hearts (dotted line). *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001 compared to control 
morphants (one-sample T-test compared to control morpholino fold change = 1). Error bars are s.e.m. White arrows 
point to trabeculae. Scale bars are (D) 50 μm and (D’) 10 μm. 
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Figure 15 Trabeculation in mib1 mutant embryos  

(A,B) Representative confocal mid-chamber section of the ventricle of (A) WT and (B) mib1 mutant embryos carrying 
Tg(myl7:eGFP) cardiomyocyte reporter at 3 dpf. White arrows point to trabeculae; v=ventricle. 
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Figure 16 Gene expression at 48hpf  

(A) Gene expression in control morphant hearts isolated from Tg(myl7:EGFP) embryos at 48 hpf. Expression is 
relative to 0.001x actin by the ΔCT method and reported as fold change by 2^(ΔCT). No-template control is 
normalized to average actin CT. MO = morpholino, dld = deltaD, dll4 = delta-like 4, eph4a = eph receptor A4a, efnb2a 
= ephrin-B2a, erbb2 = erb-b2 receptor tyrosine kinase 2, nrg1 = neuregulin 1.  Error bars are s.e.m. Students T-test. 
N=3-5 biological replicates. 
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Figure 17 Notch activation pattern in efnb2a morphants  

(A-B) Representative images of Notch reporter (green) and cardiomyocytes (red) of whole mount embryos injected 
with (A) control or (B) efnb2a morpholinos. Dotted lines note cardiac region. (C and D) Quantification of EGFP (C) 
Notch reporter signal and (D) cardiomyocyte dsRed mean fluorescence intensity (MFI) in the ventricle of N=8 hearts. 
Error bars are s.d. Students T-test, ns = p>0.05. 
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Figure 18 Notch1 activation rescues efnb2a and nrg1 expression in non-contractile hearts  

(A) Experimental schematic of morpholino injection and heat-shock overexpression of NICD.  qRT-PCR and imaging 
were performed to examine gene expression and trabecular phenotype at 2-3dpf and 4 dpf, respectively. (B) 
Representative whole mount images of cardiomyocytes (red) and Notch reporter (green) in (1,2) control and (3,4) 
tnnt2a morphants at 48hpf (1,3) without or (2,4) with NICD overexpression. (C,D) Expression of efnb2a and nrg1 in 
hearts isolated from (C) control morphants and (D) tnnt2a morphants comparing gene expression in embryos with or 
without NICD overexpression. (E-H) Confocal mid-chamber optical section of 4 dpf hearts with dotted lines marking 
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the inset magnified in (E’-H’).  #p≤0.075-0.05 , *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001 compared to control 
morphants (one-sample T-test compared to control morpholino fold change = 1). Error bars are s.e.m. White arrows 
highlight trabeculae. HS- = heat shock control without NICD overexpression. HS+ = heat shock control with NICD 
overexpression, a = atrium, and v = ventricle, NICD = Notch intracellular domain. Scale bars are (H) 50 μm and (H’) 
10 μm. 
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Figure 19 Primary cilia are detectable in myocardium and endocardium  

(A-B) Representative confocal images of Tg(actb2:Arl13b-GFP) and brightfield images of a single heart at 30hpf 
using (A) low and (B) high exposures to emphasize primary cilia on myocardial and endocardial cells, respectively. 
(A’-A’’’, B’-B’’’) Boundaries of the myocardial layers are noted by white dotted lines and endocardial boundaries by 
yellow dotted lines.  The white arrow points to a primary cilium protruding from a myocardial cell.  White arrowheads 
point to endocardial primary cilia identified in B. Lu=lumen. Labels are overlaid on (A’,B’) Arl13b-GFP images, (A’’,B’’) 
brightfield image, and (A’’’,B’’’) merged Arl13b-GFP and brightfield views.  Scale bar is 5 μm. 
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Figure 20 Shear stress promotes notch1 expression in a primary-cilia dependent manner  

(A-B’) The hearts of Tg(actb2:Arl13b-GFP) embryos were examined by confocal microscopy to assess primary cilia 
localization in the endocardium. (A) Tg(actb2:Arl13b-GFP) reporter expression in the heart. Lower bottom, schematic 
indicates orientation of the heart and confocal section relative to the whole embryo at 30 hpf. (B) High resolution view 
of Arl13b-GFP merged with (B’) bright field image demonstrating colocalization of the primary cilium base with an 
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endocardial cell. (C,D) Whole mount Tg(myl7:dsRed); Tg(tp1:VenusPest) double transgenic (C) control and (D) ift88 
morphants at 48hpf.  The hearts are marked with dashed circles. (C’,D’) Confocal maximum projection of the heart 
from the individual embryos shown in (C) and (D) overlaying cardiomyocytes (red) and Notch reporter (green). (E,F) 
Confocal optical section of the (E) control and (F) ift88 morphant embryo cardiomyocytes (red) at 80 hpf. The insets 
marked by dotted line were magnified in (E’,F’). (G) Quantification of ventricular Notch reporter (EGFP) mean 
fluorescence intensity (MFI) from whole mount embryos at 48 hpf. (H-I) Relative expression of (H) notch1b and (I) 
nrg1 in control and ift88 morphant hearts. (J-L) Expression of (J) Notch1, (K) Efnb2, and (L) Nrg1 in DMSO or 50 μM 
CBD treated MLECs that were exposed to 2 dynes/cm2 shear stress for 4 hours compared to static DMSO and CBD 
treated controls. Red arrows highlight Arl13b-GFP in the endocardium. Blue arrows highlight Notch reporter signal in 
neural tissue. White arrows highlight trabeculae. *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001 compared to control 
morphants (one-sample T-Test compared to 1.0 fold change or Student’s T-test). Error bars are s.e.m. Scale bars are 
(A) 50 μm, (B, B’, F’) 10 μm, and (F) 100 μm. LU = lumen, a = atrium, v = ventricle, MFI = mean fluorescence 
intensity, MLEC = mouse lung endothelial cell, CBD = ciliobrevin D 
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Figure 21 Control and tnnt2a morphants have endocardial primary cilia  

(A-C) The hearts of homozygous-transgenic embryos carrying Tg(actb2:arl13b-GFP) to mark primary cilia were 
injected with (A) standard control, (B) tnnt2a, or (C) ift88 morpholinos and imaged by confocal microscopy at 28-32 
hpf. (A-C) Representative 2 μm optical section showing Arl13b-GFP expression, (A’-C’) brightfield image, and (A’’-C’’) 
merged images. White arrow heads point to extra-cardiac primary cilia. White arrows point to endocardial primary 
cilia. MO = morpholino. Scale bar 50 μm. N=3-6 embryos. 
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Figure 22 Ciliobrevin D treatment within a short time window prevents Notch activation  

(A-D) Representative images of Notch reporter of whole mount Tg(tp1:VenusPest) embryos at 42 hpf injected with 
(A,B) DMSO or (C,D) Ciliobrevin D at (A,C) 18hpf or (B,D) 22 hpf. (E) Quantification of VenusPest Notch reporter 
mean fluorescence intensity in the ventricle. Minimum N=8 embryos quantified. Error bars are s.e.m. Students T-test 
compared to DMSO 18hpf.  
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Figure 23 Cyclopamine treatment does not inhibit Notch activation in the endocardium  

(A-F) Representative whole mount embryos treated by aqueous delivery with (A,C,E) EtOH 0.2% or (B,D,F) 50 μM 
cyclopamine in 0.2% EtOH from (A,B) 4-42 hpf, (C-D) 18-42 hpf, or (E-F) 22-42 hpf. (G-J) Representative images of 
Notch reporter of whole mount Tg(tpl:VenusPest) embryos at 42 hpf treated as described above. Minimum N=5 
embryos examined per condition. 
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Figure 24 Reducing shear stress or retrograde flow fraction via gata1a, gata2a, and gata1a/2a 
knockdown does not prevent Notch activation or trabeculation  

(A-D) Morpholino gene knock-down experiment where double transgenic Tg(tp1:VenusPest);Tg(myl7:dsRed) 
embryos were injected with (A) control, (B) gata1a, (C) gata2a, or (D) gata1a/2a morpholinos and imaged at 48-
50hpf. (A-D) Representative whole mount images of Notch reporter and (A’-D’) Notch reporter overlaid with 
cardiomyocyte reporter with cardiac regions highlighted by circles. (E) Quantification of mean VenusPest intensity in 
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the ventricle and (F) ventricle area.  (G) Mean hematocrit score from 15 second videos where 0 = no hematocrit, 1 = 
very little, 2 = dramatically reduced, 3 = reduced, 4 = normal levels of hematocrit. (H-I) Gene expression of gata1a 
and gata2a in whole embryos at 48 hpf where primers span exons blocked by gata1a and gata2a splice-blocking 
morpholinos. (J-M) Mid-chamber confocal optical section showing cardiomyocytes (red) and endocardial cells (green) 
of (J) control, (K) gata1a (L) gata2a, (M) gata1a/2a morphants hearts carrying Tg(myl7:dsRed); Tg(kdrl:EGFP) 
transgenes.  The cardiac regions highlighted by dotted lines are shown as magnified high resolution images in (J’-M’). 
Error bars are s.e.m.  *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001 compared to control morphants. (E-G) Student’s T-
test for each morphant compared to control morphant. (H-I) One-sample T-test compared to control morpholino fold 
change = 1.  Scale bars are (M) 50 μm and (M’) 10μm. 
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Figure 25 Klf2 expression in MLECs after 1 and 4 hrs flow  

(A,B) Klf2 expression in MLECs treated with (A) DMSO or (B) Ciliobrevin D and exposed to static media, 1 hr flow, or 
4 hrs flow with cone-in-plate viscometer. *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001, Student’s T-test. Error bars are 
SEM. Klf2 = Krüppel-like Factor 2. 
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Figure 26 Notch activation requires klf2a.  

(A-B) Morpholino gene knock-down experiment where double transgenic Tg(tp1:VenusPest); Tg(myl7:dsRed) 
embryos were injected with (A) control or (B) klf2a MOs and imaged at 48-50hpf. (A,B) Representative whole mount 
images of Notch reporter and (A’,B’) Notch reporter overlaid with cardiomyocyte reporter with cardiac regions 
highlighted by circles. (C) Quantification of mean VenusPest intensity in the ventricle and (D) ventricle area.  
Student’s T-test for each morphant compared to control morphant. (E-F) Mid-chamber confocal optical section 
showing cardiomyocytes (red) and endocardial cells (green) of (E) control or (F) klf2a morphant hearts carrying 
Tg(myl7:dsRed); Tg(kdrl:EGFP) transgenes.  The cardiac regions highlighted by dotted lines are shown as magnified 
high resolution images in (E’,F’). (G) Gene expression of klf2a in whole embryos at 48hpf where primers span exons 
blocked by klf2a splice-blocking morpholino.  One-sample T-test compared to control morpholino fold change = 1. 
Error bars are s.e.m.  *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001 
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Figure 27 Cardiac contraction activates endocardial Notch signaling in a primary cilia-dependent 
manner to regulate trabeculation.  

Schematic: (Blue boxes) Cardiac contraction activates a regulatory Notch-EphrinB2a-Neuregulin 1 pathway in 
endocardial cells to activate ErbB2 signaling in cardiomyocytes to promote trabeculation. (Red boxes) Since Notch 
activation in non-contractile hearts is not sufficient for trabeculation, cardiac contraction also stimulates parallel 
pathways to promote trabeculation. (Purple box) Cardiac contraction causes blood flow which is likely detected by 
primary cilia to activate Notch1.  
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Table 1 Chapter 2 Morpholino validation 

Gene Morpholino sequence 
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Ph
en

oc
op

ie
d 

by
 n

on
-o

ve
rla

pp
in

g 
m

or
ph

ol
in

o 

R
ed

uc
ed

 p
ro

te
in

 e
xp

re
ss

io
n 

Fo
ur

-b
as

e 
m

is
m

at
ch

 c
on

tro
l m

or
ph

ol
in

o 

Al
te

re
d 

sp
lic

in
g 

de
m

on
st

ra
te

d 
by

 R
T-

PC
R

 

Ph
en

ot
yp

e 
re

sc
ue

d 
by

 c
o-

in
je

ct
io

n 
w

ith
 m

R
N

A 

Ph
en

oc
op

ie
s 

kn
ow

n 
m

ut
an

t 

M
or

ph
ol

in
os

 ta
rg

et
in

g 
ge

ne
 in

 Z
FI

N
 d

at
ab

as
e 

tnnt2a 
CATGTTTGCTCTGAT
CTGACACGCA translation 1.0 ng Sehnert et al. (2002)   X       X 4 

notch1b 
AATCTCAAACTGACC
TCAAACCGAC splice 3.2 ng Milan et al. (2006) X   X X     7 

efnb2a 
TTGCCGCCTCGCGC
ACTTACTTGGT  splice 6.4 ng Wang et al. (2010) X X         5 

ift88 
CTGGGACAAGATGC
ACATTCTCCAT translation 3.2 ng  

Kramer-Zucker et al. 
(2005) X         X 6 

ift88 
GCCTTATTAAACAGA
AATACTCCCA translation 3.2 ng 

Tsujikawa and Malicki 
(2004) X       X X 6 

gata1a 
GTTTGGACTCACCTG
GACTGTGTCT splice 6.4 ng Galloway et al. (2005)     X     X 4 

gata2a 
CATCTACTCACCAGT
CTGCGCTTTG splice 4.8 ng Galloway et al. (2005)     X     X 4 

klf2a 
CTCGCCTATGAAAGA
AGAGAGGATT splice 2-3.0 ng Nicoli et al (2010) X     X     6 

Control* 
CCTCTTACCTCAGTT
ACAATTTATA N/A 1-6.4 ng Gene Tools, LLC             N/A 

*This oligo is reported to have no target and no significant biological activity (in zebrafish). Embryos 
injected with 1-8 ng of this morpholino were indistinguishable from wild type. 
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Table 2 Chapter 2 Oligonucleotide sequences 

Species Gene F R 

zebrafish actin CTATGAGCTGCCTGACGGTCA GTGGTCTCGTGGATACCGCAA 
 notch1b TGCGAGAACAACACACCTGA CTGGCAGTAGTTGCCAGTGA 
 notch1b MO 

validation 
ATTCAGTCGGTTTGAGGCCA TTGCTGTCGGACTGTTCCTC 

 efnb2a ACCCTACCAGTTACCCTCCC CCATCTCCCTTATCTTCCCCA 
 efnb2a MO 

validation 
TGATCGCGTGCAAGGTGAA CTGCGGATACAGCACCAGAC 

 nrg1 TGCATCATGGCTGAGGTGAA TTAACTTCGGTTCCGCTTGC 
 gata1a MO 

validation 
TAGACACAGTCCAGTTCCCC TGGATGTGGGGTTGTAGGGA 

 gata2a MO 
validation 

GGCCAGAACAGACCCCTTAT AGGGTGGTCGTGGTTGTCT 

 klf2a MO 
validation 

GCGACTCACACTTGCACTTTT GATAGGGCTTCTCGCCTGTG 

mouse Gapdh CATCTTCCAGGAGCGAGACC CCTTCAAGTGGGCCCCG 
 Notch1 ACAGTGCAACCCCCTGTATG        TCTAGGCCATCCCACTCACA   
 Efnb2 GGTTTTGTGCAGAACTGCGAT TGTCCGGGTAGAAATTTGGAGT 
 Nrg1 ATGGAGATTTATCCCCCAGACA GTTGAGGCACCCTCTGAGAC 
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2.3 Significance and Future Directions 

Significance 

Early studies of zebrafish embryos lacking endothelial cells (cloche mutants), demonstrated the 

necessity of endocardium in chamber maturation (Stainier et al., 1995), and recently, there has been an 

increased appreciation for the importance both endocardial-myocardial crosstalk and biomechanical 

forces in regulating in heart development (Granados-Riveron and Brook, 2012; Tian and Morrisey, 2012). 

The study described in Chapter 2.2 represents one of the most comprehensive descriptions, to date, of 

functional crosstalk between these cell layers and biomechanical cues. Our data supports a model in 

which bending of luminal, protruding primary cilia on endocardial cells leads to activation of Notch 

signaling and ultimately regulates myocardial trabeculation. However, by necessity, this model is not 

comprehensive, and additional studies are necessary to further define these relationships (Fig. 27 model).  

Specifically, it would benefit from additional work to 1) identify the mechanism by which endocardial 

primary cilia detect low flow, 2) define the epistatic relationship between primary cilia, klf2, and Notch in 

the developing embryo, 3) characterize relationships between fluid dynamics and Notch activity in 

endocardial cell sub-populations, and 4) identify parallel, contraction-dependent pathways necessary for 

trabeculation.  

Future directions 

1) Identify how endocardial primary cilia detect low flow  

A key area for future exploration is to identify the mechanism by which primary cilia on 

endocardial cells detect shear stress flow.  Morpholino knockdown of ift88 inhibits cilia formation, Notch 

activation through the embryo, and formation of myocardial trabeculae (Fig. 20). Similarly, inhibition of 

cilia formation via administration of the dynein ATPase inhibitor ciliobrevinD prevents Notch activation in 

endocardial cells and downstream gene expression both in endocardial cells and in cultured endothelial 

cells exposed to low magnitude shear stress (Fig. 20, Fig. 22)  However, the precise mechanism by which 

primary cilia detect flow in this developmental context is unknown.  

The leading theory for how flow, as a biomechanical cue, is detected by protruding primary cilia 

suggests that the physical bending of primary cilia exposed to shear stress activates mechanically-gated 

transient receptor potential (TRP) cation channels. When tethered to a primary cilium plasma membrane 



74 

and internal microtubules, cilium bending applies stretch forces to open the TRP channels, leading to 

transient voltage potential changes which stimulate release of intracellular calcium. This, in turn, activates 

downstream intracellular signaling cascades to ultimately regulate gene expression (Goetz et al., 2014; 

Yoshiba et al., 2012). Interestingly, mutations in mechanosensitive TRP family genes lead to major valve 

defects, and TRP channel activity responds to an oscillatory flow pattern in vivo (Heckel et al., 2015). In a 

developmental context, endocardial calcium levels are correlated with the presence of primary cilia, flow 

bending, and TRP gene expression (Goetz et al., 2014). Thus, we suggest that endocardial cells likely 

utilize TRP channels on primary cilia in the cilia-bending response to flow.  In support of this hypothesis, 3 

dpf endocardial cells express transcripts encoding TRP channels trpp2 and trpv4 (data not shown). One 

approach to further evaluate this hypothesis would be to knockout TRP gene expression, then measure 

calcium levels and Notch activation in endocardial cells. To this end, CRISPR/Cas9 targeting gene editing 

could be used to induce frameshift mutations in TRP genes. The generated mutant fish which could then 

be bred onto Tg(Tp1:EGFP) Notch reporter and Tg(fli1:gcamp3.0); Tg(flk1:mcherry) endothelial-specific 

calcium reporter  backgrounds (Goetz et al., 2014). Based on the above model, we expect that loss of 

certain TRP channels will reduce blood-flow dependent elevations in endocardial calcium levels and 

Notch activity.  

2) Define the epistatic relationship between primary cilia, klf2, and Notch in the developing 
embryo 

Primary cilia are multifunctional organelles. Though their functions are typically described as 1) to 

mediate the Hedgehog (Hh) signaling pathway and 2) to detect flow, as reviewed by Egorova et al. (2012) 

and (Van der Heiden et al., 2011), this categorization may be incomplete.  In Chapter 2.1, a previously 

undefined relationship between primary cilia, the flow-responsive transcription factor klf2a, and Notch 

signaling, was observed not just in the heart, but throughout the developing zebrafish embryo (Fig. 26). 

Specifically, in wildtype embryos, from 24-48 hpf, the Tg(Tp1:VenusPest) reporter is detectable in the 

ventricular endocardium, portions of the arterial vasculature, developing fins, and throughout developing 

brain (Fig. 10).  Using Tg(actb:Arl13b-GFP) reporter fish to label primary cilia, we observed primary cilia in 

nearly all cell types, including these tissues (data not shown). Reducing primary cilia formation using ift88 

morpholinos and knocking down klf2a expression led to significant reduction in Tg(Tp1:VenusPest) Notch 
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reporter signal intensity throughout the whole embryo and dramatically in the brain (Fig. 20, Fig. 27). In 

contrast, inhibiting Hh signaling with cyclopamine had little or no effect on Notch activity (Fig. 23). Though 

one report indicates that klf2a is upstream of notch1b and important for valve development (Just et al., 

2011), this suggests that there is a previously undescribed relationship between primary cilia, Klf2a, and 

Notch signaling in multiple cell types in the embryo.  

Klf2 is best known for its role as a flow-response transcription factor, so the possibility of other 

functions in non-vascular tissues is novel and intriguing (Novodvorsky and Chico, 2014). Since primary 

cilia and Notch are both important for neuronal progenitor differentiation (Kong et al., 2015), an important 

first step to explore the relationship between Klf2a and these components is to define the epistasis of 

klf2a and notch1b in neurons. To this end, in situ hybridization for notch1b and klf2a in ift88, notch1b, and 

klf2a morphants could explore epistasis at the transcriptional level. If regulation does not occur at the 

transcriptional level, the effects of gene depletion on early neuronal progenitor differentiation could also 

help define their inter-relationships. As a caveat, it is also possible that, in neuronal cell populations, Klf2a 

does act as a flow response gene and is activated in response to the very low magnitude flow caused by 

motion of extracellular fluid through intracellular space (Novodvorsky and Chico, 2014).  

Interestingly, klf2a morphants have larger hearts than control morphants clutch mates. Whether 

this is due to an increase in the number of myocardial cells or increased myocardial cell size remains to 

be seen, but could be rapidly evaluated in Tg(myl7:nucDsRed);Tg(myl7:rasGFP) morphant embryos by 

counting nucDsRed+ myocardial nuclei and measuring rasGFP surface area (D'Amico et al., 2007; Mably 

et al., 2003). If the number of cardiomyocytes is elevated in klf2a morphants, then in situ hybridization 

studies using heart field markers, such as hand2, and proliferation assays, such as nucleotide analog 

incorporation assays, could be used to explore whether this is due to a larger myocardial progenitor pool 

or enhanced proliferation (Yelon, 2001). If myocardial surface area is increased, 3D volume rendering 

could be used to explore whether this reflects hypertrophic growth or atypical distribution or arrangement 

of myocardial cell mass.  

3) Define the relationship between fluid dynamics and Notch activity 

Chapter 2.2 supports a pathway in which primary cilia on endocardial cells are activated by low 

magnitude flow at the onset of heartbeat to activate Notch in the endocardium. However, cardiac Notch 
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activity is primarily restricted to first the ventricular endocardium from 28-55 hpf, then to the AVC through 

larval stages (Fig. 10). Using Tg(actb:arl13b-EGFP) to label primary cilia, a single cilium is detectable on 

most endocardial cells in atrium and ventricle from 28-32 hpf. However, these cilia appear to disassemble 

at higher levels of shear stress. At 48 hpf, primary cilia are detectable on most endocardial cells in tnnt2a 

morphants, but are largely absent in control morphant endocardium (data not shown). This disassembly is 

consistent with previous descriptions of primary cilia behaviors in vitro and observations of the 

intravascular restriction of endothelial primary cilia to areas of low net flow (Iomini et al., 2004; Van der 

Heiden et al., 2006).  Owing to theirs position within the heart, during the cardiac cycle, endocardial cells 

lining the AVC are exposed to dramatic changes in the magnitude and directionality of fluid flow. Notch 

activity and notch1b expression in the valve endocardium is highly responsive to fluid dynamics (Vermot 

et al., 2009). Overall, this spatiotemporal patterning suggests both that there may be underlying 

differences in atrial and ventricular endocardial cells and that primary cilia may be dispensable for Notch 

activity in valve.  

Define the relationship between flow directionality and Notch activity: Though primary cilia 

are important for detecting low flow to activate Notch in the ventricle endocardium, prominent, protruding 

primary cilia were not observed on valve endocardial cells at 48 hpf (data not shown). In combination with 

Figure 20, this suggests that other mechanosensors mediate Notch responsiveness responses to high 

magnitude, dynamic fluid patterns in the valve endocardium. Disrupted, reversing flow patterns lead to 

inflammatory signaling in endothelial cells and can serve as an important biomechanical cue to regulate 

many aspects of endothelial cell function (Hahn and Schwartz, 2009). Previous studies have implicated 

shear stress and reversing flows as major regulators of notch1b expression in the valve endocardium 

(Heckel et al., 2015; Vermot et al., 2009). Intracardiac shear stress levels is lowered in vivo by using 

morpholinos to knock down gata1 and/or gata2. These genes code for transcription factors important for 

regulating blood cell development, so knocking them down lowers the relative hematocrit fraction, 

decreasing blood viscosity and shear stress. Morphants deficient in gata2 display major defects in 

valvuogenesis that are attributable to decreased retrograde flow fraction through the AVC at 2-4 dpf 

(Vermot et al., 2009). We found that Notch activity in gata2  and gata1/2 morphants is higher than control 

morphants (Fig. 24). Together, these this suggests that reversing flow patterns may play a primary cilia-
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independent role in maintaining active Notch signaling. Testing this model in the zebrafish heart, in vivo, 

could be extremely technically challenging due to lack of methods for decoupling cardiac contraction and 

flow within the heart. However, several groups are studying the molecular mechanisms of endothelial cell 

responses fluid dynamics, as reviewed in Baeyens and Schwartz (2016) and other groups are developing 

or have developed quantitative models of fluid dynamics within the zebrafish heart (Lee et al., 2013). 

Careful combination of these bodies of work could lead to identification of candidate mechanisms for a 

hypothesis-driven approach that could address this question in zebrafish  

Characterize heterogeneity in atrial and ventricular endocardial cells: From 28 to ~55 hpf, 

Notch1 in the heart is restricted to endocardial cells lining the ventricle (Fig 10). Though there is dramatic 

heterogeneity within endothelial cell populations (Aird, 2012), to our knowledge this is the first report of 

functional heterogeneity in endocardial cells outside of cardiac valves. We suggest a model where 

differential gene regulatory networks inherent to ventricular and atrial endocardial cells enable 

transcription of notch1b only in the ventricle. Lack of specific markers for endocardial subpopulations 

precludes experimental approaches to define the gene regulatory network differences in these 

subpopulations. However, standard molecular cell biology approaches may be used to further 

characterize the notch1b promotor to begin to address how primary cilia-based low flow detection on 

ventricular endocardial cells leads to notch1b transcription. Though a large body of literature has explored 

regulation of Notch target gene transcription (Borggrefe et al., 2016; Borggrefe and Oswald, 2009; 

Palermo et al., 2014; Wang et al., 2015), we are not aware of any reports describing the notch1b 

promotor in zebrafish, or Notch1 or NOTCH1 in mouse and human, respectively. CRISPR/Cas9 gene 

editing, in combination with Notch reporter transgenes, could be used to identify the region of the notch1b 

promoter required for notch1b expression in zebrafish by targeted deletion of large stretches of DNA in 

the promoter region and observing Notch reporter expression level.  Identification of the minimal promoter 

region would lead to identification of putative transcription factor-binding sites, which could be in turn, 

confirmed by CHIPseq if adequate antibodies are available.  Once the transcription factor(s) necessary 

for notch1b expression is identified, as a first step, expression can be evaluated in ventricular and atrial 

endocardial cells. This would determine if differential expression of these factors (or their binding 

partners) could explain our observations of differential Notch activation.  
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4) Identify additional pathways activated by cardiac contraction and required for trabeculation 

Although Notch activity stimulated by heartbeat is required for trabeculation, ectopic activation of 

Notch signaling is not sufficient to stimulate trabeculation in the absence of heartbeat (Fig. 18). 

Furthermore, NICD overexpression in cilia-deficient ift88 morphants was not sufficient to stimulate 

trabeculation (data not shown). This suggests that heartbeat activates additional, parallel pathways 

essential for regulating trabeculation. Cardiac contraction exerts stretch and cyclic strain forces on the 

heart. These forces regulate gene expression in culture models (Shojaei et al., 2015; Wang et al., 2013) 

and are important for trabeculation (Samsa et al., 2015; Sehnert et al., 2002; Staudt et al., 2014). A 

recent report combined live, time-lapse imaging and spinning-disc confocal, or single plan illumination 

microscopy (SPIM) to demonstrate that myocardial cells produce luminal projections when forming 

trabeculae and that, tnnta-/- embryos (which have non-contractile hearts), display a significant reductions 

in these protrusions (Staudt et al., 2014).  

Together, these studies suggest that myocardial contractions stretch and strain forces may be 

necessary to stimulate trabeculation independent of flow responsive signals from the endocardium. This 

hypothesis is technically challenging to address due to lack of methods to decouple contraction and flow 

within the heart. Ideally, trabeculation would be evaluated in mosaic hearts composed of contractile and 

non-contractile (tnnt2a-/-) cardiomyocytes. However, the biomechanical forces within these mosaic hearts 

are dramatically disrupted, and the non-contractile cardiomyocytes detach or are extruded from the heart 

(unpublished data, Jiandong Liu). In an alternative approach, differential expression of ventricular and 

atrial myosin heavy chain genes may be used to differentially manipulate contractility in these chambers. 

Since embryos with genetic deficiencies in amhc (atrial myosin heavy chain C) have weak or absent 

contractions, embryos deficient in vmhc (ventricular myosin heavy chain C) may lack contractile 

properties in the ventricle (Berdougo et al., 2003). This would allow for evaluation of trabeculation in the 

ventricle in the presence of flow but absence of contraction.  In preliminary experiments, morpholino 

knockdown of vmhc led to reduced ventricular contractility, but atrial contractions exerted cyclic stretch 

and strain on the ventricle, eventually leading to ventricular collapse, and making this approach 

unfeasible (data not shown). 
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Future studies aiming to understand how myocardial contraction regulates trabeculation may 

begin with RNAseq analysis of gene expression changes that occur in the myocardium in contractile and 

non-contractile hearts as the heart develops, incorporating time points prior to and after initiation of blood 

flow.  We have established methodology for FACS purification of myocardial cells from zebrafish embryos 

suitable for use in Fluidigm C1 platforms (Samsa et al., 2016). This could be used to purify populations for 

RNAseq or for microarray analyses. Comparative transcriptomics between these conditions could lead to 

identification of candidate signaling pathways activated in the myocardium correlated with contraction. 

Morpholino and CRISPR/Cas9-based mutagenesis studies could be applied in combination with in vitro 

cell biology studies of cardiomyocyte stretch and strain responses to further define how contraction-

response genes may regulate trabeculation.  

Alternatively, failure of ectopic Notch activation to stimulate trabeculation could be due, at least in 

part, to inhibitory roles of Notch signaling in other cell types. Under homeostatic conditions, Notch 

signaling is involved in fate determination through lateral inhibition (Kageyama et al., 2008). In the 

developing heart, Notch activity is largely confined to the endocardium (Fig. 10), but it is plausible that, 

Notch plays an inhibitory role within myocardial cells. This could be tested after development of genetic 

models capable of inducible, myocardium and endocardium-specific activation of the Notch intracellular 

domain.  If Notch plays an inhibitory role in the myocardium with respect to trabeculation, and cardiac 

contraction is not required for activation of other trabeculation-required signaling pathways, then ectopic 

NICD expression in the endocardium, but not the myocardium, may promote trabeculation in non-

contractile hearts.  
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CHAPTER 3 ISOFORM-SPECIFIC MUTAGENESIS INDICATES MUTIPLE ROLES FOR NEUREGULIN 
1 IN ZEBRAFISH CARDIAC MATURATION 

3.1 Historical Context 

Though best known for its role in the nervous system, the Nrg1-ErbB2/ErbB4 signaling pathway 

came to prominence in the cardiovascular system when key studies demonstrated that each component 

is essential for cardiac development during mouse embryogenesis (Gassmann et al., 1995; Kramer et al., 

1996; Lee et al., 1995; Meyer and Birchmeier, 1995). This pathway’s relevance to human heart disease 

was established when an association between ErbB2 and anthracyclines sensitivity was identified in a 

subset of breast cancer patents which developed dilated cardiomyopathy during chemotherapy (Vasti and 

Hertig, 2014).  

The Nrg-1/ErbB2/ErbB4 pathway has been implicated in many aspects of cardiovascular 

development and homeostasis including cardiac trabeculation, conduction system differentiation, and 

cardiomyocyte metabolism (Rupert and Coulombe, 2015). Furthermore, Nrg1 was recently shown to have 

a protective effect in animal models of myocardial infarction and chronic heart failure (Fang et al., 2010; 

Formiga et al., 2014; Guo et al., 2012; Hill et al., 2013; Li et al., 2011; Liu et al., 2006; Xiao et al., 2012). 

Recombinant, secreted Nrg1 is currently showing promising results in clinical trials as a therapeutic for 

chronic heart failure (Gao et al., 2010; Jabbour et al., 2011). However, the precise mechanism by which 

Nrg1 provides these protective effects is unknown (Rupert and Coulombe, 2015).   

Since cardiac regeneration and repair mechanisms are thought to involve re-activation of 

developmental paradigms, understanding role of the Nrg1-ErbB2/ErbB4 signaling pathway in the 

developmental context could lead to important insights as to the mechanisms by which Nrg1 treatment 

may lead to improvements in therapeutic outcomes.  Owing to their optical transparency and genetic 

tractability, zebrafish are an advantageous vertebrate model for exploring the molecular regulation of 

development, and previous work has demonstrated that erbb2 is essential for cardiac trabeculation in 

zebrafish, (Brown et al., 2016; Liu et al., 2010).  However, the role of nrg1 in zebrafish heart development 

is unknown. Data presented in Chapter 3.2, below, describes the first phenotypic analysis of full ablation 
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of nrg1 in zebrafish. It reveals that nrg1 is completely dispensable during development, but is essential in 

later life, likely through the role of the type III isoform in establishing the ventricular nerve plexus. These 

findings suggest that there are previously unappreciated, cross-species differences in ErbB2 receptor 

activation in the developing heart. 
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3.2 Isoform-Specific Mutagenesis Indicates Multiple Roles for Neuregulin-1 in Zebrafish Cardiac 
Maturation4 

Introduction 

Congenital heart diseases (CHD) are highly prevalent birth defects (Mozaffarian et al., 2015) and 

often feature perturbations in cardiac morphogenesis that arise from dysregulated cell function during 

development (Chin et al., 2012; Samsa et al., 2013). Little is known about the genetic, molecular, and 

cellular defects underlying most CHDs. Thus, understanding the genetic regulation of heart 

developmental could lead to important therapeutic insights. Owing to their rapid development, optical 

clarity, and ease of genetic manipulation, zebrafish have emerged as a premier model organism for 

understanding the molecular and genetic regulation of heart development, (Brown et al., 2016). Zebrafish 

embryos are small enough to meet oxygen needs by diffusion alone and can survive for weeks with 

severe heart malformations (Bang et al., 2004; Chen et al., 1996; Sehnert et al., 2002; Stainier et al., 

1996; Strecker et al., 2011). Likewise, adult zebrafish survive with a wide range of cardiac malformations 

and are relatively tolerant of hypoxia, making them an attractive model for studying progressive sequelae 

of CHD (Abdallah et al., 2015; Rees et al., 2001).  

The Nrg1-ErbB2/ErbB4 signaling pathway is implicated in many aspects of vertebrate heart 

development and is currently under development as a therapeutic target for heart disease (Harvey et al., 

2016; Odiete et al., 2012; Rupert and Coulombe, 2015). Transmembrane pro-Nrg1 expressed on 

endocardial, microvascular endothelial cells, and/or pericytes is cleaved by proteases to release active 

Nrg1. Nrg1 binds via its EGF domain to ErbB4 expressed on cardiomyocytes, promoting dimerization with 

the essential co-receptor ErbB2 (Gemberling et al., 2015; Meyer and Birchmeier, 1995; Milan et al., 2006; 

Montero et al., 2000; Vermot et al., 2009; Yarden and Sliwkowski, 2001; Yokozeki et al., 2007). While 

ErbB4 has limited tyrosine kinase activity, ErbB2 has no ligand binding activity, but kinase activity is 

necessary to modulate cardiomyocyte gene expression (D'Uva et al., 2015; Fuller et al., 2008; 

Kochupurakkal et al., 2005; Lee et al., 1995). 

Early studies demonstrated that Nrg1, ErbB2 and ErbB4 are each required for embryonic 

formation of highly organized, luminal, myocardial protrusions called trabeculae in mice (Gassmann et al., 

                                                           
4 This part of chapter 3 is in preparation with the expected citation of Brown, D.A. Samsa, L.A., Ito, C.E., Ma, H., Qian, L., and Liu, J. 
(2016) Isoform-specific mutagenesis indicates multiple roles for Neureugulin1 in zebrafish cardiac maturation. Manuscript in 
preparation 
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1995; Kramer et al., 1996; Lee et al., 1995; Meyer and Birchmeier, 1995). Likewise, our previous work 

demonstrates that ErbB2 plays a conserved role in zebrafish cardiac trabeculation (Liu et al., 2010). In 

zebrafish, trabeculae continue developing through adulthood, and the adult myocardium is comprised 

primarily of an expanded and remodeled meshwork of trabeculae (Sedmera, 2011; Sedmera et al., 2000). 

Failure to initiate trabeculation is lethal in vertebrates, and trabeculation defects are often associated with 

CHDs (Jenni  et al., 1999; Samsa et al., 2013). However, requirement for the Nrg1 in zebrafish cardiac 

development is unknown. Since its expression in the developing zebrafish heart is regulated by 

components upstream of cardiac trabeculation including blood flow, notch1b, and efnb2, we reasoned 

that that Nrg1 may play an important role in trabeculation (Samsa et al., 2015).  

Zebrafish nrg1 produces three major isoforms by alternative splicing, nrg1-I, nrg1-IIa-c, and nrg1-

III, and nrg1-I is the primary isoform expressed in the heart (Gemberling et al., 2015; Perlin et al., 2011; 

Vermot et al., 2009). To determine the genetic requirement for Nrg1 in zebrafish trabeculation, we used 

CRISPR/Cas9 targeted nuclease activity to generate a series of allelic mutations to examine the isoform-

specific roles for nrg1 in the heart. To this end, we produced frameshift mutations in all isoforms of Nrg1 

(nrg1nc26) or Nrg1-I and Nrg1-II (nrg1nc28). Surprisingly, we did not observe trabeculation defects in 

nrg1nc26 or nrg1nc28
 lines, and nrg1nc28 mutant fish were indistinguishable from wild type and heterozygous 

clutch mates. In contrast, nrg1nc26 die between late juvenile and early adult stages. Histological analysis of 

nrg1nc26 mutant hearts suggests that underlying structural defects could contribute to decline. Both 

nrg1nc26 and nrg1z26, a previously described line that is deficient only in nrg1-III, had major deficiencies in 

the cardiac nerve plexus which emerge during larval stages and juvenile metamorphosis. Together, these 

findings suggest that in zebrafish, nrg1-I is dispensable for heart development and establishes an 

essential role for nrg1-III isoforms in establishing the cardiac nerve plexus.  

Results 

Zebrafish Neuregulin 1 

The zebrafish genome encodes several members of the neuregulin family—nrg1, nrg2a, nrg2b, 

and nrg3 (Laisney et al., 2010). Sequence analysis indicates zebrafish Nrg1 is the closest homolog to 

human NRG1 and mouse Nrg1 (Fig.  28A, Fig. 29). Zebrafish nrg1 is located on Chromosome 18 where 

is it is comprised of 14 coding exons (Fig. 28B). Through alternative splicing, nrg1 produces 3 primary 
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isoforms, nrg1-I, nrg1-IIa-c, and nrg1-III, which differ primarily in their N-terminal sequence (Fig. 28B). 

Since Nrg1 isoforms may have differential roles in zebrafish, we used qRT-PCR to assess the relative 

expression levels of nrg1-I, nrg1-II, and nrg1-III in the heart. At 3 dpf, all isoforms were detectable in 

cDNA generated from whole embryo lysates (data not shown), but only nrg1-I was expressed at 

appreciable levels with cDNA derived from isolated hearts (Fig. 28C). Similarly, nrg1-I was the highest 

expressing isoform detected in adult hearts where very low levels of nrg1-III were detectable in some 

samples, and nrg1-II was below detection (Fig. 28D). Previous studies suggest that cardiac nrg1 

expression is confined to endocardial cells in the embryo. We detected nrg1 by in situ hybridization in the 

heart and brain of embryo and, FACS enrichment confirmed nrg1-I expression in endocardial and not 

myocardial cells from 3 dpf hearts (Fig. 28E, data not shown).  

Nrg1 features 5 distinct molecular domains (Fig. 30A). Alternative splicing leads to differential 

representation of these domains in nrg1 isoforms (Fig. 30B). Domains include an isoform-specific N-

terminal domain, which in nrg1-I and nrg1-II does not have any readily discernable function, but for nrg1-

III is a cysteine rich domain that anchors the N-terminus in the cell membrane. The IgG-like domain is 

found only in nrg1-I and nrg1-II and is thought to play a role in allowing Nrg1 to bind to extracellular matrix 

proteins. The EGF-like domain, which has several versions in the type II isoform (a-c), is shared by all 

isoforms and binds Nrg1 receptors including ErbB4 in the heart. A shared transmembrane domain is 

important for proper membrane spanning of pro-Nrg1. Function of the C-terminal, shared Neuregulin 

domain is largely unknown, but defines Neuregulin proteins from other EGF-like ligands, and has been 

implicated in reverse signaling (Falls, 2003; Pedrique and Fazzari, 2010). 

Generation of novel nrg1 alleles  

To investigate the isoform-specific requirements for nrg1 in heart development, we used 

CRISPR/Cas9 gene editing to generate frameshift mutations to truncate all nrg1 isoforms or the nrg1-I/II 

isoforms only (Fig. 30C).  

Since targeting the first exon of any transcript is generally discouraged as it can lead to 

transcription initiation at cryptic start sites rather than the desired frameshift, to produce the nrg1-I/II 

specific mutant, we targeted exon 3 coding for the start of the IgG domain shared by nrg1-I and nrg1-II. 

Two alleles, nrg1nc28 and nrg1nc29 were isolated (Fig. 30D-E). These alleles are predicted to code for the 
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Nrg1-I variant truncated within the IgG domain (Fig. 30C). Similarly, to generate a pan-nrg1 knockout, we 

targeted Exon 6, the first exon coding for the shared functional EGF domain. Two alleles, nrg1nc26 and 

nrg1nc27 were isolated and which code for truncations in the EGF-like domain (Fig. 30G-H). Nrg1-I variant 

amino sequences for each novel line are described in Fig. 31 (A-E). Since nrg1nc28 and nrg1nc26 mutations 

were predicted to cause more severe truncations than nrg1nc29 and nrg1n27 alleles (Fig. 30C, Fig. 31B-E), 

we focused our efforts on assessing the phenotypes of these alleles.  

Expression level of nrg1 transcripts were dramatically reduced in nrg1nc28 and nrg1nc26 mutant 

embryos or adult hearts, suggesting nonsense-mediated decay of early-truncation transcripts (Fig. 30F,I). 

In-breeding heterozygous fish for all lines produced homozygous and heterozygous offspring at expected 

Mendelian ratios (data not shown). In this study, we also included a nrg1-III-specific loss of function allele, 

nrg1z26, previously isolated from a large scale mutagenesis screen. Nrg1z26 mutant embryos feature 

supernumerary neuromasts in the developing lateral line due to impaired Schwann cell migration (Perlin 

et al., 2011). To verify the functional effect the new mutations on nrg1-III, we used a voltage sensitive vital 

dye (Mitotracker) to label neuromasts in larvae produced from interbreeding nrg1z26, nrg1nc26, and nrg1nc28 

heterozygous fish (Lopez-Schier and Hudspeth, 2005). Supernumerary neuromasts (>18 neuromasts) 

were observed at 5 dpf in nrg1z26 and nrg1nc26 larvae at Mendelian ratios, but were not observed in wild 

type (data not shown) or nrg1nc28  larvae, demonstrating loss of function of the nrg1-III isoform in  nrg1z26 

and nrg1nc26 mutants (Fig. 32 A-F). Interbreeding of heterozygous adults carrying nrg1nc27 and nrg1nc29 

alleles showed Mitotracker neuromast distributions comparable to nrg1nc26 and nrg1nc28 alleles, 

respectively (data not shown).  

Nrg1 is dispensable for trabeculation 

Our previous studies and others indicate that ErbB2 signaling is necessary to initiate cardiac 

trabeculation between 60-68 hpf where trabeculae are readily detected by confocal microscopy at 3 dpf 

(Liu et al., 2010). We crossed nrg1nc28 and nrg1nc26 alleles onto transgenic backgrounds to label 

cardiomyocytes with fluorescent reporters, and examined optical cross sections of the ventricle at 2 and 3 

dpf. Interestingly, though trabeculae were undetectable at 60 hpf, by 3 dpf all genotypes had robust 

trabeculation (data not shown, Fig. 33A-C). To verify that trabeculation in nrg1 mutants was not due to 

escape from requirement of ErbB2 signaling, we incubated embryos from 2 to 4 dpf with the ErbB2-
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tyrosine kinase specific inhibitor PD16937 and found that all genotypes had substantially reduced 

trabeculation (Fig. 33D-I). Thus, nrg1-I is dispensable for cardiac trabeculation.  

Though our findings indicate that nrg1 is dispensable for cardiac morphogenesis through larval 

stages, nrg1 may be involved in other essential cardiovascular functional or developmental processes. In 

preliminary studies, we interbred heterozygous fish and followed sibling offspring to adulthood. 

Homozygous mutant nrg1nc28 fish were indistinguishable from wild type or heterozygous clutch mates at 

the gross morphological level, and adult hearts were indistinguishable histologically (Fig. 24A-D). Mutants 

could be interbred to produce viable offspring, allowing ample tissue for further examination of embryonic 

phenotypes at the transcriptional level. Since nrg1-I is dispensable for trabeculation, but trabeculation 

requires ErbB2 activity, we hypothesized that a different, EGF-like ligand(s) can bind ErbB2/ErbB4 to 

stimulate trabeculation. To explore this hypothesis, we screened expression of known EGF-like ligands 

and EGF receptors in nrg1WT/WT and nrg1nc28/nc28 larval hearts at 3 dpf (Fig. 34E-F). ErbB receptors egfr1 

(erbb1), erbb2, erbb3b, and erbb4 were expressed at comparable levels in all genotypes (Fig. 34E). Five 

EGF-like ligands, nrg1-I heparin-binding egf-like receptor a (hb-egfa), neuregulin 2a (nrg2a), betacellulin 

(btc) and epigen (epgn) were detected (Fig. 34F). In corroboration with Figure 28, nrg1-I transcripts were 

reduced in mutant hearts (Fig. 34F). Interestingly, btc was significantly upregulated in nrg1nc28/nc28 hearts 

at 3 dpf, respectively (Fig. 34F). Additional studies are necessary to distinguish between an absolute 

requirement and a compensatory role for each of these ErbB2/ErbB4-activating ligand(s) in trabeculation. 

Nrg1-III is required for adult zebrafish to thrive 

In contrast to nrg1nc28, nrg1nc26 mutant fish rarely survived to early adult stages. When observed, 

adult mutants were smaller than wild type or heterozygous clutch mates and appeared sickly. To quantify 

this survival defect, we raised a cohort of nrg1z26, nrg1nc26 and nrg1nc28, with wildtype or heterozygous and 

mutant larvae in separate tanks, and assessed survival weekly for 3 months. Equivalent survival rates 

were observed in nrg1nc28 mutant and wild type fish (Fig. 35A).  In contrast, growth defects in nrg1nc26 and 

nrg1z26 mutants were became apparent by 8 wpf. Survival began to significantly decline at 9 weeks post 

fertilization (wpf) in nrg1nc26 mutants and, although survival was not significantly reduced during the 

observation period, juvenile mortality in nrg1z26 began at 9 wpf (Fig. 35B-C). Gross abnormalities were 

apparent in nrg1-III-deficient lines (nrg1nc26 , nrg1nc27 and nrg1z26 mutants) where individual fish show a 
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range of pigmentation defects and jaw malformations (Fig. 36A-F). Relative body mass was significantly 

reduced in nrg1nc26 and trended lower in nrg1z26 fish (Fig. 36G-H). Although smaller than controls, some 

nrg1z26 mutants show signs of sexual maturation (Fig. 36D), but in our hands, have not successfully 

interbred to produce viable offspring (data not shown). In contrast, nrg1nc26 mutants failed to develop 

outward signs of sexual differentiation that defines zebrafish the adult life stage (Fig. 36B).  

Nrg1-III regulates larval cardiac nerve plexus development 

Given that nrg1nc26 mutants often fail to recover from Tricaine anesthesia, and nrg1-III is primarily 

expressed in neuronal tissue with known roles in regulating myelination of long axons during neuromast 

formation, we hypothesized that nrg1-III-deficient mutants may have cardiac nerve plexus defects. 

Tricaine is structurally similar to benzocaine and blocks sensory and motor neuronal activity. To test this 

hypothesis, we isolated hearts from juvenile fish at SL5±1, SL10±1, SL15±1, and SL18±1 and visualized 

axons using an antibody against acetylated α-tubulin (ACT) (Figs. 37-39). These sizes roughly 

correspond to 2 wpf intervals and encompass late larval, early juvenile, late juvenile, and young adult 

stages. Owing to challenges in handling hearts from fish smaller than SL10, SL5±1 hearts were stained 

and imaged in situ with overlying tissues removed.  

At SL 5±1, nrg1WT hearts demonstrated robust atrial innervation and variable indications of 

ventricular innervation emerging from the AVC (Fig. 37A). In contrast, all atria and ventricles examined 

from nrg1nc26/n26 fish were largely devoid of axons (Fig. 37B). By SL10±1, the whole wild type heart was 

extensively innervated with a hierarchical plexus of axons (Fig. 37C). Mutant fish at SL10 had some 

innervation, particularly in the atrium, but the ventricle and bulbous arteriosus (BA) were largely devoid of 

ACT positive staining (Fig. 37D).  

To explore whether this lack of innervation is attributable to loss of nrg1-III, and if nrg1-III-deficient 

ventricles ever become properly innervated, we imaged ACT positive axons in nrg1nc26 and nrg1z26 

mutants starting at SL10±1. Since our preliminary studies indicated that ventricular innervation is limited 

to the dorsal surface and appears to form from extension of atrial projections, to standardize orientation 

and we quantified the axonal coverage on the dorsal surface with the atrium removed. Interestingly, 

though nrg1nc26 and nrg1z26 mutants had some ACT positive axons at SL10±1, SL15±1, and SL18±1, 

these axons rarely extended to cover more than a small fraction of the ventricle surface and were 



88 

dramatically reduced compared to size matched controls (Fig. 38A-G). Together, these staining patterns 

suggest that nrg1-III is an essential regulator of cardiac nerve plexus formation.  

To further characterize the ventricular nerve plexus, we examined orthogonal views of axons and 

cardiomyocytes in Tg(myl7:rasGFP) hearts where cardiomyocytes are labeled with a membrane targeted 

GFP (Fig. 39A-C). The nerve plexus was largely superficial in all genotypes (Fig. 39B). Though we did not 

observe definitive co-localization of acetylated α-tubulin and cardiomyocyte markers, these signals were 

in close apposition at the distal end of ACT positive projections (Fig. 39B-C).  

Cardiovascular malformations in pan-Nrg1 mutants 

Given that emergin innervation defects precede increased mortality in nrg1nc26 fish by a span of 

weeks (2 wpf to 9 wpf), we hypothesized that of lack of innervation has later physiological consequences 

that ultimately lead to death. Prior to death, deteriorating nrg1nc26 mutant fish show behavioral indications 

of cardiovascular distress including gasping, reduced swimming, and emaciation, as well as sensitivity to 

anesthesia (Fig. 40A-B, data not shown). Since these symptoms are reminiscent of mammalian heart 

failure, we sacrificed nrg1nc26 fish showing at least one of these behaviors and examined cross sections of 

the heart for indications of heart failure SL11-15 (Fig. 40C-D). Hearts from these failing fish had reduced 

trabecular density and a thinner outer compact myocardial wall compared to controls (Fig. 40E,F). 

Though this is suggestive of heart failure, functional assays are necessary to confirm reduced cardiac 

output.  

Myocardial thinning also supports the notion that underlying structural defects may contribute to 

cardiovascular distress in nrg1nc26 mutants. We examined the heart in H&E stained sections from 

individual nrg1nc26 fish and nrg1WT clutch mates showing minimal signs of cardiovascular distress at SL16-

SL20 (Fig. 41A-B). In mid-chamber lateral sections, the BA was positioned at an excessively acute angle 

relative to the ventricle, suggesting a possible change in the biomechanics of propulsion into the outflow 

tract (Fig. 41E). No change in this BA angle was observed in mutant fish from Fig. 40, suggesting this is 

acquired as mutant fish become larger (data not shown). Though no significant change in compact wall 

thickness was observed (data not shown), trabecular myocardium area was reduced in mutant fish (Fig. 

41D-F). Additionally, we observed derangement of the compact myocardium in nrg1nc26 mutants, albeit 

with variable severity and penetrance (N=6 size-matched fish examined) (Fig. 42). Large lumens were 
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present in the compact wall of some mutant fish (N=4/6). In wild type hearts, open lumens were present 

near the AV junction, and blood-filled lumens were observed occasionally in the compact myocardium, 

consistent with cardiac-associated adipose tissue and coronary vasculature, respectively (Fig. 42A-C). In 

contrast, mutant hearts had large, open lumens both at the AV junction and throughout the outer 

curvature (N=3/6) (Fig. 42A-C). Additionally, some hearts showed ostensible increased nuclear density in 

the compact layer of the outer curvature (N=4/6) and thinning in the inner curvature (N=3/6) (Fig. D,E). 

There were no gross abnormalities in the AV or VB valves (Fig. 42F, and data not shown). Given the 

variability in observed histological changes in nrg1nc26 mutant hearts, we suggest that these 

malformations are secondary to the innervation defect. 

Model 

Together, these data support a model (Fig. 43) in which nrg1 is essential for maintaining cardiac 

output due the role of nrg1-III in regulating cardiac nerve plexus formation. Mortality in nrg1 mutants may 

involve structural malformations that emerge secondary to cardiac nerve plexus defects. Future studies 

are necessary to identify the cellular mechanisms underlying this altered plexus formation and further 

characterize the functional consequences of loss of nrg1 in zebrafish.  

Discussion and future directions 

In this study, we used CRISPR/Cas9 gene editing to generate a series of mutations to examine 

the isoform-specific roles of nrg1 in zebrafish heart development. The Nrg1-ErbB2/ErbB4 signaling 

pathway is essential for heart development in mice. In particular, embryos deficient in Nrg1 through 

truncation at either IgG or EGF-domains fail to develop cardiac trabeculae and die in utero. Zebrafish 

nrg1 is alternatively spliced to form three main isoforms, of which nrg1-I is the primary isoform expressed 

in the heart. We generated novel nrg1 mutant alleles that encode frameshift mutations to delete all 

isoforms of nrg1 at the EGF-like domain (nrg1nc26 and nrg1nc27) or only isoforms nrg1-I and nrg1-II by 

targeting the IgG domain and explored their phenotypes.  

Nrg1-I is dispensable for heart development in zebrafish  

Interestingly, trabeculae developed in an ErbB2-dependent manner in all our nrg1 mutants. We 

explored several potential explanations for this cross-species difference in requirement of Nrg1 in cardiac 
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trabeculation. Since teleost fish underwent partial genome duplication approximately 300 million years 

ago, many zebrafish genes have paralogs with compensatory functions (Howe et al., 2013). However, in 

a preliminary study, BLAST alignment (Altschul et al., 1990) of nrg1 with the zebrafish genome (GRZ9) 

identified only known Neuregulin family genes nrg2a, nrg2b, and nrg3, as having with substantial 

homology to zebrafish nrg1, suggesting that the zebrafish genome does not contain a nrg1paralog (data 

not shown). Since homozygous expression of nrg1nc26 or nrg1nc28 alleles does not remove requirement for 

ErbB2 tyrosine kinase activity in cardiac trabeculation (Fig. 33), this raised the question of how the 

ErbB2/ErbB4 heterodimers is activated in nrg1 mutant hearts. Promiscuous ligand binding of EGF-like 

ligands to EGFR family receptors has reported in other contexts (Kochupurakkal et al., 2005; Laisney et 

al., 2010; Yarden and Sliwkowski, 2001), so we hypothesized that other EGF-like ligands can stimulate 

ErbB2 kinase activity in the heart, either as a primary role or through gene compensation (Rossi et al., 

2015). To evaluate this possibility, we screened 3 dpf hearts for expression of canonical EGF family 

ligands and receptors. Of the 12 canonical EGF-like ligands screened, 5 were consistently expressed—

nrg1, nrg2a, hbegf-a, btc and epgn (Fig 34F). Though receptor expression levels were largely unchanged, 

btc was upregulated in nrg1nc28 mutant hearts, suggesting that it may be involved in a compensatory 

response to loss of nrg1. Additional mutagenesis studies will be necessary to determine which factor(s) 

binds ErbB4 to promote trabeculation, whether such binding serves a primary or compensatory role in 

nrg1 mutant hearts.  

Previous reports have described a protective role for cardiac Nrg1-ErbB2/ErbB4 signaling in heart 

disease and a role for Nrg1 in promoting cardiac repair (Bersell et al., 2009; D'Uva et al., 2015; Gao et al., 

2010; Gemberling et al., 2015; Harvey et al., 2016; Jabbour et al., 2011; Lai et al., 2010; Mendes-Ferreira 

et al., 2016; Polizzotti et al., 2015; Rupert and Coulombe, 2015; Yutzey, 2015). In this context, Nrg1 

mitogenic activity is through to promote cardiomyocyte gene expression, survival, and proliferation 

(Bersell et al., 2009; D'Uva et al., 2015; Gemberling et al., 2015; Polizzotti et al., 2015). Given that nrg1-I 

is the primary isoform expressed in the embryonic and adult heart, and its expression is reduced in 

nrg1nc28 and nrg129 mutants, it would be interesting to explore whether these mutants have deficiencies in 

injury response and regeneration. It is possible that, though Nrg1 is dispensable under homeostatic 
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conditions, defects could emerge when challenged by ventricle resection or cryoinjuries (Dickover et al., 

2013).  

Nrg1-III-deficient fish have similar survival and gross morphological defects 

Though all the nrg1 mutants we examined survived through embryonic and larval stages, nrg1nc26 

and nrg1z26 mutants displayed gross morphological differences compared to nrg1nc28 mutants and 

wildtype or heterozygous siblings. Their altered pigmentation, jaw malformation, reduced body mass, 

increased mortality during late juvenile and early adult stages suggest a role for nrg1-III isoforms in these 

phenotypes. Comparing, the nrg1nc26 and nrgz26 lines, the nrg1z26 mutation generated a less severe 

phenotype—they survived longer, showed signs of sexual differentiation, and had a less severe reduction 

in body weight compared to sibling controls. Protective effects from nrg1-I/II isoforms or expression of a 

partially functional protein from the nrg1z26 allele might explain this difference.  Alternatively, these might 

be attributable to a strain effect. Though both mutations are on TL strains, outbreeding in zebrafish 

colonies has led to substantial differences between strains at different facilities, and so differences might 

be attributable to strain differences. Indeed, control sibling nrg1z26 fish have a higher average ratio of body 

weight to standard length than nrg1nc26 fish within the same size range (Fig. 36G,H). To account for this 

possibility, we plan to intercross the strains for several generations and compare phenotypes in mixed-

background offspring.  

Cardiac nerve plexus development is impaired in Nrg1-III-deficient fish 

Based on several observations, we hypothesized that nrg1-III-deficient fish have defects in the 

cardiac nerve plexus. During routine handing, nrg1nc26 fish frequently failed to recover from anesthesia 

with Tricaine (MS-222), a drug structurally similar to benzocaine and which blocks motor and sensory 

neuronal signaling. Additionally nrg1-III is important for peripheral innervation in larvae, as evidenced by 

supernumerary neuromasts. Also, a recent report showed that cardiac nerves play an important role in 

cardiac regeneration in mice and zebrafish in a mechanism involving Nrg1. Extrinsic control of cardiac 

output begins as early as 4-5 dpf as evidenced by change in heart rate in response to adrenergic and 

cholinergic stimutation or inhibition (Schwerte et al., 2006). The adult zebrafish cardiac nervous system 

was recently characterized (Stoyek et al., 2015). It features an extensive intrinsic nerve plexus containing 

cholinergic and adrenergic axons. This plexus is linked to the extrinsic nervous system primarily at the 
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venous pole via vagal efferents, with a separate trunk innervating the bulbous arteriosus and proximal 

ventricle (Stoyek et al., 2015).  

Here, an axon-specific marker acetylated α-tubulin (ACT) was used to survey intrinsic cardiac 

innervation in nrg1-III-deficient fish. Focusing on early juvenile stages which precede increased mortality 

in nrg1nc26 mutants, we found evidence of an emerging ventricular nerve plexus at SL5±1 (~14 dpf) in fish 

carrying WT alleles. This plexus was largely absent in nrg1nc26 mutants at the same length scale. To 

determine whether this plexus fails to form or if formation is only delayed, we examined the dorsal surface 

of ventricles from fish form SL10-SL18. Hearts nrg1WT and in a nrg1nc28/nc28 mutant (data not shown) fish, 

displayed a robust, hierarchical plexus of axons extending from the AVC over the ventral surface of the 

heart. Interestingly, in nrg1nc26 mutant fish the ventral surface of the ventricle is essentially devoid of 

acetylated α-tubulin positive axons (data not shown). Minimal innervation was detected on the dorsal 

surface near the AVC in nrg1nc26 and nrg1z26 mutants (Fig. 37, Fig. 38).  

Due to chamber collapse in isolated hearts and limited confocal imaging penetrance, other 

techniques are necessary to evaluate extrinsic inputs, particularly of vagal projections to the pacemaker 

and atrium. However, zebrafish with mutations causing a weak or non-contractile atrium can survive to 

adulthood, suggesting that atrial contractility is dispensable for survival in a laboratory setting (personal 

communication, Deborah Yelon). Together, these results indicate that nrg1-III is essential for establishing 

the ventricular nerve plexus, and is necessary during adult life stages. 

It is unclear whether defects in cardiac innervation are generally associated with lethality, or if a 

specific role may be ascribed to nrg1. Comparative phenotypic analysis could be conducted between of 

nrg1z26 and Tg(myl7:sema3aa) fish, a line previously described to have dramatic reductions in ventricular 

coverage of the cardiac nerve plexus, would address this question (Mahmoud et al., 2015). Given that 

nrg1-III deficiency appears to inhibits plexus formation, we predict that any physical or genetic lesion 

leading to a comparable loss of innervation will have similar effects on survival.  

Cardiac abnormalities in nrg1nc26 mutant fish 

As the mutant with the most severe phenotype, we focused on characterizing nrg1nc26 mutants. 

These fish showed peri-mortem behavioral indications of cardiovascular distress as early as 8 wpf. Since 

fish survive for weeks with ventricle innervation defects without obvious signs of distress, we were 
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interested in identifying the cause of decline, and hypothesized that it is due to progressive heart failure. 

Fish demonstrating at least one of these behavioral symptoms were sacrificed and compared 

histologically to nrg1WT clutch mates. To our knowledge, there are no standardized methods for molecular 

or structural characterization of heart failure in adult zebrafish. However, heart failure in murine systems is 

characterized by an initial hypertrophic response, followed by progression to dilated cardiomyopathy 

featuring a thinned myocardium (Breckenridge, 2010; Patten and Hall-Porter, 2009). Reminiscent of 

murine heart failure, we observed reduced trabecular density and outer myocardial wall thickness, 

suggestive of myocardial thinning were reduced in nrg1nc26 mutants (SL11-15) showing signs of 

cardiovascular distress. Other measures are necessary to confirm that these fish are indeed undergoing 

canonical heart failure including cardiovascular function. However, methods for echocardiography in adult 

zebrafish have been described only recently, lack resolution and are limited to relatively large zebrafish 

(Hein et al., 2015; Lee et al., 2016). As a surrogate measure of heart failure, total cardiovascular 

performance and fitness is being evaluated in all nrg1 mutant lines by evaluating maximal swim 

performance (Palstra et al., 2010; Pelster et al., 2003; Plaut and Gordon, 1994). Additionally, 

electrocardiography is being used to explore the effect of nrg1 mutants on heart rate and the cardiac 

action potential (Chaudhari et al., 2013).   

We also investigated the possibility that underlying structural malformations, which may be 

dependent on cardiac innervation, contribute to mortality. To this end, whole nrg1nc26 mutants and size-

matched wildtype or heterozygous clutch mates, SL16-20, were sectioned and stained with hematoxylin 

and eosin. Focusing on mid-ventricle sections, mutant hearts demonstrated morphological changes 

suggestive of underlying structural malformations that may contribute to impaired heart function. Possibly, 

due to relative positioning of a malformed jaw, the bulbous arteriosus is at an excessively acute angle 

relative to the ventricle base in nrg1nc26 mutants SL16-20. This could alter the biomechanics of systolic 

contraction and increase the workload necessary to maintain cardiac output.  

Additionally, derangement of the myocardium was evident in nrg1nc26 mutant hearts at SL16-20, 

suggesting that loss of nrg1 may lead to defective cardiac maturation. Trabecular density was reduced in 

mutant fish, which could reflect a lower number of trabecular cardiomyocytes, reduced cardiomyocyte 

size, or both. Transgenic fish carrying nuclear and membrane bound markers of cardiomyocytes, 
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Tg(myl7:nuc-dsRed); Tg(myl7:rasGFP), crossed onto the nrg1nc26  mutant background could be used to 

clarify the cellular basis of this trabeculation defect. If the average number of cardiomyocyte nuclei per 

ventricle section is lower in mutant fish, additional stains could be used to explore whether this is 

attributable to a lower basal proliferation rate or to increased cell death.  

Changes in outer wall thickness may reflect either expansion of the primordial layer, defective 

cortical layer formation, or proliferation of an extra-myocardial tissue such as the epicardium. Lack of 

specific, validated markers for the primordial and cortical layers preclude definitive characterization of this 

defect. However, cortical layer defects could be assessed through clonal labeling, as described in (Gupta 

et al., 2013; Gupta and Poss, 2012). Similarly, epicardial expansion may be tested by lineage tracing 

approaches with epicardium-specific Tg(wt1:CreERT2) fish (Kikuchi et al., 2011). Additionally, we observed 

large open or blood filled lumens in some nrg1nc26 mutant hearts. While nrg1WT hearts occasionally had 

clusters of open lumen structures located near the AVC and ventricle base at the BA junction, consistent 

with the morphology of cardiac-associated adipocytes, large, lumens were present in the outer 

myocardium of some nrg1nc26 fish in atypical locations. Some were open, and are likely to be cardiac-

associated adipocytes, while and others contained hematocrit. The blood-filled structures are likely part of 

the coronary vasculature, and in mutants had unexpectedly large diameters. Since cross-sectional 

analysis is not optimal for studying the coronary plexus, this potential coronary vascular defect is being 

further characterized by crossing nrg1 mutant lines onto fli1a reporter backgrounds and assessing 

surface vasculature (Harrison et al., 2015). Interestingly a recent report in mice showed that cardiac 

nerves follow coronary veins during mouse coronary development (Nam et al., 2013), suggesting there 

may be a similar relationship between nerves and coronaries in which is perturbed in nrg1-III-deficient fish 

and could contribute to cardiovascular function.  

Conclusions 

Together, these findings demonstrate that nrg1-I is dispensable for zebrafish heart development, 

and suggest an essential role for nrg1-III isoform in establishing the cardiac nerve plexus. Further studies 

are needed to characterize the cardiovascular capacity of zebrafish lacking a functional ventricular nerve 

plexus, identify the mechanism by which nrg1-III regulates cardiac nerve formation, and determine how 

ErbB2 signaling is activated in Nrg1-deficient hearts. 
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Materials and methods 

Animal lines and care 

Embryos and adult fish were raised and maintained at the aquaculture facility of the University of 

North Carolina at Chapel Hill in accordance with Institutional Animal Care and Use Committee approved 

protocols (Westerfield, 2000). The zebrafish lines used in this study are as follows: nrg1z26 (Perlin et al., 

2011), Tg(myl7:dsRed)vc6 (Rothschild et al., 2009), and Tg(myl7:rasGFP)s883 (D'Amico et al., 2007). 

Primer design 

NIH Primer Blast was used to design all primers used in this study. Primers were selected for 

adherence to optimal criterial including melting temperature of 60°C, 20 bp length, minimal-off target 

specificity, and minimal primer dimerization. Table 3, describes all oligonucleotides used in this study. 

CRISPR/Cas9 design and injection 

Cas9 mRNA was in vitro transcribed from using mMessage mMachine kit (Invitrogen) as 

previously described (Chang et al., 2013). CRISPR/Cas9 target sites in exons 3, 6, and 11 of nrg1 were 

identified using ZiFit software and zebrafish genomic sequence build GRCz9.  Single stranded 

oligonucleotides corresponding to the targeting sequence were annealed  and cloned into DR274 vector, 

then transcribed in vitro with T7 MaxiScript kit (Invitrogen).  Embryos were injected at the one cell stage 

with 1-2 nl of a mixture containing 1200 ng Cas9, 50-75 ng gRNA, 10 mM MgCl, and 0.01% phenol red.  

gRNA targeting efficiency was determined by High Resolution Melt Analysis (HRMA) as described below 

using primers flanking the target site.  F1 offspring from F0 founders that carry favorable mutations were 

raised to adulthood. F1 founders carrying mutant alleles were identified and interbred to produce 

homozygous wild type, homozygous mutant, and heterozygous mutant offspring.  

PCR and qRT-PCR 

RNA was isolated from whole embryos using Trizol reagent (Invitrogen) and from embryonic 

hearts using Qiagen RNAeasy Mini Plus Kit according to manufacturer’s instructions. Up to 1 ug of cDNA 

was reverse transcribed using Invitrogen Superscript Master Mix. For PCR, we used GoTaq reagents with 

10 ng cDNA template as per manufacturer’s instructions. For qRT-PCR, we used Syber Green chemistry 

on a ViiA7 qPCR machine in 10 μL reactions. Cycle threshold (CT) values were normalized to ef1a as a 

http://dev.biologists.org/content/142/23/4080.long#ref-85
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housekeeping gene and relative expression was calculated comparing average change in CT in wild type 

and mutant embryos by the 2^(ΔΔCT) method (Livak and Schmittgen, 2001).  

HRMA 

High resolution melt analysis (HRMA) was used to validate CRISPR/Cas9 reagents, identify F1 

founders, and genotype nrg1nc28 and nrg1nc29 fish.  Each 10 ul reaction contained 0.5 ul genomic DNA 

(see Genotyping, above), 5 ul Syber Green (Invitrogen), and 4.5 ul primer mix (water with mM forward 

and reverse primers). Fluorescence was measured every 0.025°C in a melt curve 55-95° and HRMA 

peaks were called from the derivative curve.  

Genotyping 

Genomic DNA was collected from fin clips or embryos in lysis buffer consisting of 10 mM Tris-HCl 

PH 8.0, 50 mM KCl, 0.3% Tween-20, lysed at 95° for 10 minutes, and then digested in 0.5 μg/mL 

Proteinase K (Denville Scientific). Nrg1z26 fish were genotyped by PCR and enzyme digestion as 

previously described (Perlin et al., 2011). HRMA was used to genotype wild type, mutant, and 

heterozygous all novel nrg1 lines. Heterozygous alleles had multiple peaks in the derivative melt curve. 

Homozygous wild type and homozygous mutant allele melt temperatures differed by at >1°C. This 

genotyping method was verified both by enzyme digestion and by sequencing in a subset of samples.  

Heart isolations 

Heart isolations were performed as previously described (Samsa et al., 2015). Briefly, larvae 

were euthanized with 5X Tricaine at 3 dpf.  Fine forceps were used to manually remove each heart 

(ventricle, atrium, and bulbous arteriosus) and dissect away non-cardiac tissues. Hearts were transferred 

to lysis buffer and processed according to manufacturer’s instructions for the RNAeasy Mini Plus kit 

(Qiagen). A minimum of 40 hearts were pooled for each gene expression replicate.  

In situ hybridization  

In situ hybridization was performed as previously described (Liu and Stainier, 2010). In situ 

hybridization probe for nrg1 was prepared as previously described (Milan et al., 2006) and synthesized 

from pGEMT vector (Promega) using the DIG RNA labeling kit (Roche). Whole-mount embryo imaging 

was performed on a Leica MZ16F fluorescence stereomicroscope.  
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Mitotracker assay 

Supernumerary neuromasts were assayed essentially as previously described (Lopez-Schier and 

Hudspeth, 2005). Briefly, larvae were incubated for 5-30 minutes in fish water containing Mitotracker Red 

(Invitrogen) at 1:10000 dilution. Larvae were briefly rinsed with system water and anesthetized with 1X 

Tricaine, then oriented in a lateral position and epifluorescence images were collected on a Leica M205C 

fluorescence stereoscope. The number of neuromasts on the lateral line were counted for N>25 embryos. 

Wild type embryos had 8-12 neuromasts, and we considered 18+ neuromasts to be supernumerary.  

Confocal microscopy 

Anesthetized embryos and larvae were embedded in 1% low melt agarose and oriented for 

optimal viewing of the heart. Immediately prior to imaging, embryos were euthanized with 5-10X Tricaine. 

After cessation of heartbeat, confocal z-stacks were collected using an Olympus Fluoview 1000MPE 

equipped with a 20X XLPlan water immersion objective (NA 1.0) with 2.5X optical zoom. Fluoview 

software was used to collect sections through the middle 25-50% of the heart at 512x512 or 1024x1024 

pixel resolution and 1-2 μm spacing between z-slices. Fluoview’s brightness correction algorithm was 

used to account for signal attenuation with increasing depth.  ImageJ (Schneider et al., 2012) was used to 

process images. For each Z-stack, we selected either a maximum projection image of the whole stack or 

a representative mid-chambers slice for the appropriate analysis. Confocal data was collected for a 

minimum of 3 embryos for each condition, with matching controls for each experiment, where the N>3 

embryos were selected as the representative samples from a pool of a minimum of N>12 embryos which 

were visually inspected for phenotype.  

Whole fish microscopy 

Juvenile and adult fish were anesthetized with Tricaine in system water. Fish were imaged in a 

minimal volume of water using an Android 13 MP camera. Brightness and contrast were adjusted and 

images were scaled using ImageJ software. 

Histology 

Adult fish were euthanized on ice for 20 minutes. To ensure rapid and complete fixation, each fish 

was gavaged with 4% paraformaldehyde in PBS (PFA), then the abdominal cavity was opened by 
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anterior-posterior incision and flushed with 4% PFA. After overnight fixation, the fish were de-calcified 

with 0.5M EDTA for 3-7 days, dehydrated in 70% ethanol, paraffin embedded and sectioned at 5 μm 

intervals. 

Histology quantification 

H&E staining was imaged using a Leica DMIRB inverted microscope equipped with 10X and 20X 

objectives and Nikon Elements software. To measure trabecular myocardial density, a 0.25-1.0mm box 

was drawn in the trabecular myocardium from a mid-chamber slice, taking care to exclude the inner 

lumen. A blinded observer used Adobe Photoshop to generate a mask of the trabecular myocardium, 

then calculated area fraction covered by trabecular myocardium using Image J. To measure compact wall 

thickness, ImageJ was used to draw lines perpendicular to the outer wall at 12 locations throughout the 

inner and outer curvature. Wall regions in the apex and base positions were avoid and only regions where 

the compact and trabecular myocardium are clearly distinguishable were selected for analysis. 

Measurements were compared across genotypes using Student’s T-Test.  

Survival curve 

Embryos were obtained from breeding healthy homozygous (nrg1WT/WT and nrg1nc28/nc28 

clutchmates) or heterozygous (nrg1WT/nc26 and nrg1WT/z26) adults. At 5 dpf, juvenile nrg1nc26 and nrg1z26 

mutant fish were separated from wild type and heterozygous clutch mates using the Mitotracker screen 

for supernumerary neuromasts (above). For each genotype, 7 tanks containing 10 fish each were raised 

under standard husbandry conditions. Tank order was randomized to minimize husbandry position 

effects. Survival was recorded weekly at 6-8 day intervals through 12 wpf.  
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Chapter 3.2 Figures 

 

Figure 28 Zebrafish neuregulin 1 

(A) Gene tree from Clustal-Omega multiple alignment comparison. (B) Schematic of nrg1 gene structure. Exons are 
to scale; introns are not to scale. Alternative splicing (navy) produces three primary isoforms, nrg1-I, nrg1-IIa-c, and 
nrg1-III. (C-D) Relative expression of nrg1 isoforms in (C) 3 dpf embryos and hearts enriched from dissociated 3 dpf 
embryos or (D) adult zebrafish 1-2 months post-fertilization. (E) In situ hybridization of anti-sense riboprobe targeting 
nrg1; representative image from examination of N>6 embryos. Heart is outlined in red. Red arrows in (B) note 
location of isoform-specific qRT-PCR primers. Student’s T-test compared to matched control. Error bars are SEM. 
N≥3 biological replicates. *p≤0.05-0.01, **p≤0.01-0.001, ***p<0.001
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Figure 29 Cross-species comparison Nrg1 

Clustal-Omega multiple alignment comparing all zebrafish Nrg1 genes to Human and Mouse Nrg1-I. IgG and EGF-
like domains are highlighted in yellow.   
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Figure 30 Nrg1 alleles 

(A) Schematic of Nrg1 exons and protein domains including an immunoglobulin domain (IgG) coded by exons 3 and 
4, a cysteine-rich domain (CRD) coded by exon 5, EGF domain encoded by exons 6-9, a transmembrane (TM) 
domain in exon 10 and the Neuregulin 1 C-terminal domain. The epidermal growth factor (EGF) domain is essential 
for binding to epidermal growth factor receptors. (B) Schematic of spliced products of Nrg1-I, Nrg1-IIa-c, and Nrg1-III 
(note, Nrg1-IIa-c is drawn with all possible EGF-domain modifiers. Greek symbols annotate location of predicted 
truncation of alleles listed in (C). (C) Predicted effect of mutations on Nrg1 isoform products. *Note nrg1z26 allele 
codes for a loss of function amino acid substitution C97R in the CRD domain (D) CRISPR/Cas9 gene targeting and 
validation of nrg1nc28 and nrg1nc29 alleles showing target site and mutations. (F) Gel electrophoresis and quantification 
of nrg1 amplified from 10ng cDNA derived from nrg1WT or nrg1nc28/nc28 embryos at 5 dpf. or (H) hearts of adult nrg1WT 
or nrg1nc26/nc26 fish. (G) Sanger sequence of nrg1WT, nrg1nc28 and nrg1nc29 alleles spanning target site in Exon 3. (E) 
CRISPR/Cas9 gene targeting and validation of nrg1nc26 and nrg1nc27 alleles showing target site and mutations. (H) 
Sanger sequence of nrg1WT, nrg1nc26 and nrg1nc27 alleles spanning target site in Exon 6. (I) Gel electrophoresis and 
quantification of nrg1 amplified from 10ng cDNA derived from adult nrg1WT or nrg1nc26/nc26 fish.   Student’s T-test 
compared to matched control. Error bars are SEM. N=3 biological replicates. *p≤0.05-0.01. 

  



105 

 

Figure 31 Predicted translations Nrg1-I mutant alleles 

(A-E) Nrg1-I wild type and mutant alleles were translated in frame; (A) nrg1-1WT allele is translated into 599 aa, (B) 
nrg1-Inc28 into 55 aa, (C) nrg1-Inc29 into 99 aa, (D) nrg1-1nc26 into 144 aa, and (E) nrg1-1nc27 into 147aa. (B-E) Amino 
acids that differ from wild type are in red. Asterisk indicates stop codon.  
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Figure 32 Supernumerary neuromasts in Nrg1-III deficient mutants 

(A-F) Heterozygous adult fish carrying (A-B) nrg1WT/nc28, (C-D) nrg1WT/nc26, or (E-F) nrg1WT/z26 alleles were inbred, and 
resulting offspring were evaluated. (A,C,E) Larvae at 5 dpf were stained with Mitotracker, a voltage sensitive vital dye 
to mark neuromasts (red arrows). (B,D,F) Frequency distribution of the number of neuromasts per embryo. Blue bar 
marks range of neuromasts found in wild type larvae; red bars mark supernumerary neuromasts. Similar results were 
obtained with nrg1nc29  and nrg1nc27 lines (data not shown). N=15-20 embryos imaged per pairing; N=2 biological 
replicates.  
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Figure 33 Nrg1 mutants require ErbB2 tyrosine kinase activity to form trabeculae 

Adult fish heterozygous for nrg1nc28 or nrg1nc26 carrying a fluorescent cardiomyocyte reporter were inbred, and 
trabeculation was evaluated in the resulting offspring. (A-L) Representative confocal optical mid-chamber slice of the 
ventricle at 3-4 dpf in larvae carrying Tg(myl7:dsRed) or Tg(myl7:rasGFP) cardiomyocyte reporters. Boxes include 
high resolution image of the outer curvature.  Larvae were examined at (A-C) 3 dpf or treated from 2-4 dpf with (D-F) 
1% DMSO or (G-I) 3.75 μM PD168393 a specific ErbB2 tyrosine kinase inhibitor (Calbiochem). Larvae were 
genotyped after imaging. Red arrows point to representative trabeculae. N ≥ 4 larvae for each condition and 
genotype. Scale bars are 50 and 10 μm for figure and inset, respectively.  
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Figure 34 Adult nrg1nc28 mutant phenotype 

(A-B) Representative gross morphology of age-matched (A) nrg1WT/WT or (B) nrg1nc28/nc28 clutch mates, SL25-SL30. 
Scale bar is 10mm. (C-D) Representative cross section of the heart in H&E stained section of formaldehyde-fixed, 
paraffin embedded (C) nrg1WT/WT and (D) nrg1nc28/nc28 adult fish. N=3 fish per genotype. Scale bar 100 μm. (E-F) EGF 
family (E,F) receptor and (G,H) and gene expression in hearts isolated from nrg1WT/WT and nrg1nc28/nc28 larvae at 3 
dpf. Abbreviations: nrg1-1, neuregulin1 isoform 1; hb-egf, heparin-binding EGF-like growth factor; btc, betacellulin; 
epgn, epigen; nrg2a, neuregulin 2a; erbb1, epidermal growth factor (her1, egfr); erbb2, erb-B2 receptor tyrosine 
kinase 2 (her2); erbb3a, erb-B2 receptor tyrosine kinase 3a; erbb3b, erb-B2 receptor tyrosine kinase 3b; erbb43a, 
erb-B2 receptor tyrosine kinase 4a; erbb4b, erb-B2 receptor tyrosine kinase 4b.N=3-5 biological replicates with 30-60 
hearts pooled per condition. Student’s T-test mutant compared to wild type. Error bars are SEM. N≥3 biological 
replicates. *p≤0.05-0.01, 
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Figure 35 Survival of nrg1 mutants 

(A-C) Average weekly survival of fish from sibling (A) nrg1WT/WT and nrg1nc28/nc28  in breeding, (B) clutch mates from 
nrg1WT/nc26 inbreeding and (C) clutch mates from nrg1WT/z26 inbreeding. (B-C) Embryos were screened at 5 dpf for 
presence of supernumerary neuromasts to separate nrg1nc26/nc26 and nrg1z26/z26 mutants from wild type or 
heterozygous embryos (nrg1WT/nc26 het and nrg1WT/z26 het, respectively). Each data point represents the number of fish 
in each tank, where each tank started with 10 fish per tank. Error bars are SEM. N=7 tanks per genotype, all reared in 
parallel.  
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Figure 36 Gross phenotype of nrg1-III-deficient mutants 

(A-D) Representative gross morphology of age-matched (A-B) nrg1nc26 or (C-D) nrg1z26 clutch mates, SL20-SL25. (E-
F) Magnified view of pigmentation (blue arrow) and jaw structure (dotted pink line) in (E) nrg1nc26 or (F) nrg1z26 mutant 
fish SL20±2. (G,H) Body mass of wild type or heterozygous and (G) nrg1nc26 or (H) nrg1z26 mutant fish normalized to 
standard length of SL20±2. N=15-20 individuals from N>2 individual clutches.  
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Figure 37 Ventricle surface innervation defect emerges in juvenile stage 

(A-D) Z-projection of confocal images of axons stained with anti-acetylated α-tubulin. Images are representative (A,C) 
nrg1WT and (B,D) nrg1nc26/nc26 hearts at (A,B) SL 5-6 and (C,D) SL 10. Abbreviations a=atrium, v=ventricle, ba= 
bulbous arteriosus. Scale bars are 100 μm. 
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Figure 38 Reduced surface innervation in Nrg1-III-deficient hearts 

(A-F) Maximum intensity, z-project of confocal images of dorsal surface of ventricle with atrium removed. Hearts were 
isolated at (A-C) SL10±1 or (D-F) SL 17.5±1 from (A,D) nrg1WT, (B,E) nrg1nc26/nc26, or (C,F) nrg1z26/z26 fish and stained 
with anti-acetylated α-tubulin to label axons. (A’-C’) Magnified view of representative innervated regions. (G-H) 
Surface innervation was quantified as the quotient of the total length of axons and ventricle surface. Abbreviations a = 
atrium, avc = atrio-ventricular canal, ba = bulbous arteriosus, and v = ventricle. Student’s T-test mutant compared to 
wild type. Error bars are SEM. N≥2 biological replicates. ^ p=0.05-0.10, * p=0.01-0.05, ** p=0.001-0.01 
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Figure 39 Innervation in the myocardial wall 

(A) Z-projection of confocal images from representative nrg1WT ventricle carrying Tg(myl7:rasGFP) membrane 
targeted cardiomyocyte reporter and (red) stained for axons with anti-acetylated α-tubulin. (B) Box highlighted in A 
and A’ including axon branches and putative terminal ends. (B-1 to B-5) Single optical sections through z-stack. (C) 
Orthogonal views showing axons largely on the surface with close apposition to cardiomyocytes at axon terminus. 
Scale bar is 100 μm. 

  



116 

 

Figure 40 Peri-mortem cardiac morphology of nrg1nc26 fish 

(A-B) Representative gross morphology (A) nrg1WT fish and sibling (B) nrg1nc26/nc26 selected for behavioral indication 
of cardiovascular failure SL11-SL15. Scale bar is 10 mm (C-D) H&E stained paraffin-embedded sections of nrg1WT 
fish and sibling (B) nrg1nc26/nc26. (C’-D’) Magnification of apex shown in (C-D) green box. Student’s T-test comparing 
WT and control. N=3 fish per genotype.   
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Figure 41 Altered cardiac morphology in nrg1nc26 mutants 

Comparative whole-fish cardiac histology. (A,B,D,E) Representative images of H&E stained hearts from lateral-
mounted sections of (A,D) nrg1WT and (B,E) nrg1nc26/nc26  adult fish at SL20. (A-B) Overview of cardiac structure and 
(C) measurement of the minor angle between the ventricle and bulbous arteriosus is reduced in nrg1nc26/nc26 fish. (D-
E) Representative view of trabecular myocardium in the outer curvature and (F) quantification of trabecular mass. 
Red square represents excluded outlier. Abbreviations: atrium (a), ventricle (v), and bulbous arteriosus (ba). 
Student’s T-test wild type compared to control. N=5-6 per genotype 
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Figure 42 Compact myocardial wall derangements 

(A-F) Representative images of myocardial wall in H&E stained hearts from lateral-mounted sections of nrg1WT and 
nrg1nc26/nc26  adult fish at SL20. (A) Intersection of ventricle base and bulbous arteriosus. (B) Atrioventricular valve 
leaflet. (C) Compact wall in the inner curvature. (D) Compact wall in the outer curvature. (E) Open lumens present in 
(left) atrio-ventricular junction in nrg1WT and outer curvature in nrg1nc26/nc26. (F) Blood-filled lumens present in outer 
curvature.  
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Figure 43 Model 

Integrated model for how nrg1 maintains cardiac output. Nrg1-I/II isoforms and other EGF-like ligands in the heart 
activate ErbB2/ErbB4 signaling in cardiomyocytes to regulate cardiac morphogenesis. Nrg1-III is known to regulate 
Schwann cell migration during neuromast formation, and is important for establishing the ventricular nerve plexus. 
Defects in cardiac innervation are associated with survival defects through regulating cardiac morphogenesis and/or 
survival.  
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Table 3 Chapter 3 Oligonucleotide Sequences 

Target Use Forward Oligo Reverse Oligo 
nrg1-
exon3 HRMA TTTTCCAGCGGAACCGAAGT GTACCACTTGACATTGGGCG 

nrg1-
exon6 HRMA  GTTGTGTTCCTCTGTGCAGC TTCTCGCTCTCATTGCAGGG 

nrg1-
exon11 HRMA  TTTACGAGAGCGAAACGCTG TGTCTGATCTGTGCAATGACG 

nrg1-
exon3 

PCR and 
Sequencing  TTTCACCCTTGTGAGCACCG AATATGCGCGTGTGAGTCTT 

nrg1-
exon3 Sequencing  TGGGTTTGTTTTTGCCTGTGA   

nrg1-
exon6 

PCR and 
sequencing  CACTGCTGCTTTGTTGGACG TGCTGTTCACTCAGTGGCAA 

nrg1-
exon11 

PCR and 
sequencing  CTGTGAGTTTGCGCTGCTAC GTCTGATCTGTGCAATGACGA 

nrg1-
I/II/III PCR CCCTCGGCCAAGACATCC TTGCGGTGAGAGGTGCAG 

areg qRT-PCR GAACACATCATCGCTTCCAGG AAACCCGTCCATCAGTGACTT 
btc qRT-PCR GGACACTTCTCTGCCTGTCC TTTTCGCATCTGCATGACGG 
egf qRT-PCR GTTTCAGCTGTCAAGCAGAGTT GCACGCCATTTTTGTGTTGC 
epgn qRT-PCR GTCAGAAGTCACCACCACCC CGTCTCACTTGTGGAGTCGT 
hb-egfa qRT-PCR TCCTGGCACTCAGGTTTCAC TGGTTTAGTGGTGTGGAGCG 
hb-egfb qRT-PCR TGCTTTTCTGACAGGTACCAC TTTTGGCTTTCTTTATCCTTCGTT 
nrg1-I qRT-PCR GTGAAAGCAGGCAAAGAAGGG TGTCACGCTCCGAAGGTTTT 
nrg1-III qRT-PCR ACCCACAAATGACACGTCCG ACTGTCACGCTCCGAAGGTT 
nrg1-III qRT-PCR CAGCCCCAAGAGCACCTTT GTGACTGGATGTCTTGGCCG 
nrg2a qRT-PCR GCCGGCAACTGAGAGAGTAAT CGCTGACACATACCTGTGGG 
nrg2b qRT-PCR ATCCTGTCTCAGCATGAGGG TTTGGAGCTGATGCCCTCTTTT 
nrg3 qRT-PCR AAAACACGGTAATGCCGAAGC CAAGACCTCAAGCAAAACAGACA 
tgfa qRT-PCR TGTATGCCATCCTGGCTTTGT TCCACCAACAAAACACCAGC 
erbb1 qRT-PCR ATGGGCCTTTCTGAACCCAG CTCTACTGGCATCACGGGAC 
erbb2 qRT-PCR GACTTCACTGCTCCACCCAA  CCCAACAACCTGAATCCCCA 
erbb3a qRT-PCR TGAACATTCAGTCTTGGCCCG TCATCAACATAGAGAATGGCGTGT 
erbb3b qRT-PCR ACCTTGTGGTGAGGCCTGCTC CGCAAACCCAACCTGCAACC  
erbb4a qRT-PCR ACATCCTGGAGAAAGGCGAACGT CTCGTGCCATACGGCTGAACTCT 
erbb4b qRT-PCR TGGGTTCCTGAGGGTGAGACTG ATGCTGGCCATGATCAGAGCCT 

 

Table 3: Table of oligonucleotides sequence for HRMA, PCR amplification, Sanger sequencing, and qRT-PCR. 
Abbreviations: nrg1 (neuregulin1); areg, (amphiregulin); btc (betacellulin); egf (epidermal growth factor); epgn 
(epigen); hb-egfa (heparin-binding egf-like protein a); hb-egfb (heparin-binding egf-like protein b); nrg2a (neuregulin 
2a); nrg2b (neuregulin 2b); nrg3(neuregulin 3); erbb1 (epidermal growth factor receptor, erb-B2 receptor tyrosine 
kinase 1); erbb2 (erb-B2 receptor tyrosine kinase 2); erbb3a (erb-B2 receptor tyrosine kinase 3a); erbb3b (erb-B2 
receptor tyrosine kinase 3b); erbb4a (erb-B2 receptor tyrosine kinase 4a); and erbb4b (erb-B2 receptor tyrosine 
kinase 4b). 
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3.3 Significance and Additional Interpretations 

Significance  

Though the story is not yet complete, Chapter 3.2 represents the most comprehensive study, to 

date, of the role of Neuregulin1 in any model organism. Phenotypic analysis of Nrg1 mutants lacking 

Nrg1-I/II, Nrg1-I/II/II or Nrg1-III isoforms indicates that Nrg1 is dispensable for cardiovascular 

development and function under homeostatic conditions in zebrafish. However, loss of Nrg1-III causes 

malformations in the ventricular nerve plexus, which have later cardiovascular consequences, ultimately 

leading to mortality. In addition to these findings, the novel mutant lines generated in this study are a 

significant addition to the zebrafish community. Combined with existing lines targeting nrg1-III (nrg1z26) , 

erbb2 (erbb2st61), erbb3 (erbb3bst14), and erbb4 (erbb4bsa21550 ), these will be important  

for deciphering the precise role of nrg1 gene products during development (Busch-Nentwich, 2013; Lyons 

et al., 2005; Perlin et al., 2011).  

  To our knowledge, though the physiological role of cardiac innervation in regulating heart rate and 

cardiac output has been well-studied historically, and the overall structure of the adult cardiac plexus has 

been defined, the potential role of non-cell autonomous role of cardiac nerves in regulating heart 

development has been largely unexplored (Nilsson, 2011; Stoyek et al., 2015). Given that nrg1nc26 

mutants show signs of ventricular plexus malformations as early as SL5-6 (15 dpf) when nrg1WT ventricles 

are just beginning to show signs of intrinsic innervation, and we observed structural changes in the hearts 

of nrg1nc26 mutants, there may be previously unappreciated interplay between cardiac-associated nerves 

and myocardial maturation. Recent work has demonstrated that nerves are involved in regulating 

cardiomyocyte proliferation and regeneration in mice and zebrafish, but the homeostatic role of interplay 

between these cells types is unknown (Mahmoud et al., 2015). Our nrg1 mutants could be a valuable tool 

for exploring this relationship.  

Additional interpretations 

As discussed in Chapter 3.2, further studies are necessary to understanding the phenotypes of 

nrg1 mutant fish. However, additional interpretations of nrg1 mutant phenotypes and future directions 

warrant discussion.  
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Mechanism of cardiac innervation 

How nrg1-III regulates formation of the cardiac nerve plexus at the cellular level remains an area 

of active research. Pigmentation and jaw phenotypes observed in nrg1-III-deficient fish are consistent 

with a defect in neural crest (NC) cell migration, suggesting that a neural crest derived cell is the primary 

source of nrg1 mutant phenotypes. During juvenile metamorphosis, neural crest (NC)-derived 

melanophores migrate to the site of stripe formation where they differentiate and produce pigment (Budi 

et al., 2008; Parichy and Spiewak, 2015; Parichy et al., 2003). This migration requires ErbB signaling as 

well as thyroid hormone (Budi et al., 2008; McMenamin et al., 2014; Parichy et al., 2003). Interestingly, 

zebrafish lacking functional erbb3b do not appropriately form trunk dorsal root ganglia (DRG) or 

sympathetic neurons, both of which originate in the NC (Honjo et al., 2008). Canonically, while these 

trunk DRG are important for spinal (sympathetic) innervation of the heart, the vagus nerve provides 

cranial (parasympathetic) innervation, particularly at the pacemaker (Nilsson, 2011). Thus, we suggest 

NC-derived DRG cells are likely the cell of origin for the innervation phenotypes in nrg1-III-deficient fish. 

However many questions remain as to the cell autonomous and non-autonomous roles for the nrg1/erbb 

in establishing cardiac innervation, particularly in the ventricle. 

Previous studies demonstrate that Nrg1-III, which is detected by ErbB3/ErbB2 receptors on 

Schwann cells, stimulates co-migration of Schwann cells with neurons and myelination of the long axons 

by Schwan cells (Lyons et al., 2005; Perlin et al., 2011). Reduced Schwann cell migration in nrg1z26 or 

erbb3bst14 mutant fish leads to an excess of neuromasts at 5 dpf (Lyons et al., 2005; Perlin et al., 2011). 

Interestingly, ectopic expression of Nrg1-III in neurons can partially rescue Schwann cell migratory 

defects (Perlin et al., 2011). If outgrowth of DRG axons to form the cardiac plexus employs a comparable 

molecular mechanism, then we expect that ectopic expression may similarly rescue ventricular plexus 

formation. This could be tested by crossing the nrg1nc26 allele onto the Tg(UAS:hNrg1typeIII); 

Tg(S1101:Gal4) transgenic background (Perlin et al., 2011), to produce fish where nrg1-III is the only 

nrg1 isoform expressed and expression is restricted to neurons. We expect that ventricular coverage of 

the nerve plexus at SL6-SL10 will be rescued by this genotype.  Furthermore, additional studies are 

required to test the spatiotemporal requirements for nrg1 in establishing and maintaining the ventricle 

nerve plexus. Such studies would necessitate development of genetic tools for conditional, tissue-specific 
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deletion of nrg1. By conditionally deleting nrg1 in neurons, cardiomyocytes, or endothelial cells of adult 

fish at different zebrafish life stages, the developmental and cell autonomous roles for nrg1 could be 

explored.  

In support of an essential role of Nrg1-III in neurons, we have produced two additional nrg1 

mutant lines, nrg1nc30 and nrg1nc31, which code for truncation of all isoforms of nrg1 after the 

transmembrane domain, have supernumerary neuromasts in the lateral line at 5 dpf (data not shown). 

The ventricular innervation status of this line is currently under investigation. If membrane targeting is 

intact, then this mutant produces a partially functional Nrg1 which is predicted to have intact forward 

signaling but defective reverse signaling. Reverse Nrg1 signaling regulates gene expression in cortical 

neurons, and could play a similar, cell autonomous role in the neuronal projections which innervate the 

heart (Pedrique and Fazzari, 2010).  

Functional performance 

Although cardiac malformations are associated with nrg1-III-deficiency in zebrafish, the observed 

emaciation and impaired innervation phenotypes suggest that metabolic distress could be a factor 

contributing to decline and mortality. Proper innervation of the myenteric plexus is important for 

propagating contractile waves to promote bulk transit through the gastrointestinal system. If innervation of 

this plexus is reduced in a manner similar to the cardiac plexus, these fish may have impaired nutrient 

absorption. Under standard laboratory rearing conditions, nutrient intake is a major limiting factor for 

zebrafish growth rates after initial larval stages. When wild type and nrg1-III-deficient siblings are reared 

separately, growth delays between genotypes are not readily observed prior to 6 wpf (~SL15) 

(unpublished observation).  However, when reared together, differential growth is readily observed at 6 

wpf (unpublished observation). Combined, this suggests that even if bulk transit is defective in these fish, 

sufficient nutrients are absorbed for growth during this time range and that nrg1 mutants are at a 

competitive disadvantage to nrg1WT siblings.  

Total metabolic and cardiovascular performance are tested in zebrafish using swim performance 

assays by measuring peak speed, oxygen consumption, and time to fatigue (Palstra et al., 2010; Pelster 

et al., 2003; Plaut and Gordon, 1994). Such studies are in progress to compare total cardiovascular 

efficiency in all nrg1 lines, and it will be interesting to identify the size range at which nrg1-III-deficient fish 
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begin to demonstrate performance defects. This could lead to insights as to the functional consequences 

of nrg1-III-deficiency.  

Potential heart failure model 

In mammals, chronic heart failure often features derangements in the neurohormonal system 

including norepinephrine and adrenergic signaling (Mann and Bristow, 2005; Reed et al., 2014). We 

suggest that nrg1nc26 mutants may have utility as a scalable model of heart failure where lack of a 

ventricular nerve plexus could model deranged neurohormonal inputs. Since most mammalian models of 

heart failure require labor-intensive surgical or pharmacological treatments, as genetic, aquatic model, 

nrg1nc26 zebrafish could be advantageous to rapidly evaluate efficacy of novel therapeutics (Brown et al., 

2016). Some necessary early steps in establishing this model would be to explore the manifestation of 

known signs and symptoms of heart failure in nrg1nc26 mutants including elevated heart rate, reduced 

ejection fraction, elevated expression of nppa and nppb, and elongation of myocardial cells (Mann and 

Bristow, 2005; Patten and Hall-Porter, 2009). Ultimately, if gold standard therapeutics (such AR1 

agonists) are effective at reducing some or all of these indicators, nrg1nc26 mutant fish could be 

transitioned into a scalable pre-clinical model. An additional early step to validating this model is to 

determine whether cardiac arrhythmia accounts for mortality independent of heart failure. As mutant fish 

age, they show signs of cardiovascular distress, but also demonstrate an increased sensitivity to 

anesthesia suggestive of a propensity to cardiac arrhythmia. Thus, it is unclear whether mutants die 

ultimately die from heart failure or from acquisition of fatal arrhythmias. This question could be addressed 

via thorough characterization of the electrocardiographic profile of mutants.  
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CHAPTER 4 CONCLUSIONS 

Insights into zebrafish chamber maturation 

These studies produced specific insights on the molecular regulation of chamber maturation 

throughout the zebrafish life stages. Below, these contributions are integrated into a model of ventricle 

chamber maturation at each life stage. 

Embryonic: At the time of initiating contraction around 24 hpf, the embryonic heart is a linear tube 

containing a single layer of myocardial cells separated from endocardial cells by a layer of cardiac jelly. 

Primary cilia on endocardial cells respond to cardiac contraction, likely by bending to detect flow, to 

activate Notch signaling. Cardiac looping and constriction of the AVC partition the linear heart tube into 

the atrium and ventricle, and active Notch is detectable in the ventricular endocardium. Notch activity 

promotes expression of downstream effectors including efnb2 and nrg1. Notch activity is restricted to the 

AVC when trabecular ridges begin to form in the outer curvature at around 60 hpf. Trabeculation requires 

cardiac contraction, primary cilia, Notch and efnb2. Although the canonical ErbB4 ligand Nrg1 is 

dispensable, the ErbB2/ErbB4 receptor heterodimer must be activated for trabeculae to form.  

Larval: In the larva, trabeculae continue to expand and remodel into a spongy meshwork.  The 

outermost layer of circumferential cardiomyocytes is called the compact myocardium. Additionally, 

epicardial cells cover the heart and may begin to contribute epicardial-derived cells to the myocardium. 

Cardiac valves form to prevent retrograde flow , and the entire heart rotates in the chest cavity to orient 

the ventricle directly ventral to the atrium. By the end of larval stages, the atrium is extensively innervated 

while the ventricle and bulbous arteriosus are just beginning to develop a nerve plexus. This innervation 

is dependent on nrg1 expression, likely through the role of nrg1-III.   

Juvenile: Trabeculae continue to expand and remodel. The compact wall thickens either by 

proliferation, addition of the cortical layer, or both. The cortical layer forms when a small population of 

trabecular cardiomyocytes breaks through the outer compact wall, and proliferates in a clonal manner 

over surface of the heart, separating the compact myocardium into cortical and primordial layers.  
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Additionally, the coronary vasculature forms, originating from a cell source near the AVC. The cardiac 

nerve plexus expands dramatically to innervate the ventricle in a nrg1-III-dependent manner.  

Adult: In zebrafish, both the trabecular and compact myocardial layers continue developing 

through adulthood, and the adult myocardium is comprised primarily of an expanded and remodeled 

meshwork of trabeculae. Loss of all isoforms of nrg1 leads to variable changes in trabecular thickness 

and compact myocardial structure in a nrg1-I/II-independent manner, suggesting an essential role for 

nrg1-III and/or the cardiac nerve plexus in maintaining these structures. 

Insights into congenital heart disease modeling 

Zebrafish are the least expensive, genetically tractable vertebrate model system currently 

available. Despite differences in scale and complexity, zebrafish have the potential to offer tremendous 

insight into the etiology, progression, and treatment of human CHDs. “Congenital heart disease” is a very 

broad term where the American Heart Association defines congenital cardiovascular defects as “structural 

problems that arise from abnormal formation of the heart or major blood vessels” (Mozaffarian et al., 

2015). This effectively encompasses any heart disease with a genetic association or acquired during 

heart development that leads to a malformed heart.  As a group, CHDs are the most common human 

birth defect, occurring in nearly 1% of all live births (Mozaffarian et al., 2015). While CHDs may occur in 

isolation or co-morbid with other defects in specific syndromes, they can all make the heart have to work 

harder to reach produce adequate cardiac output.  Over time, this increased workload can lead to heart 

failure and ultimately death.   

There is a complex, genetic basis for most CHDs. Many differ genes are attributable to any single 

CHD, and the penetrance and severity of CHD varies widely for any single genetic lesion (Fahed et al., 

2013). The studies shown in this dissertation support a generalizable model for CHDs in which 

dysfunction at the cellular level during heart development leads to CHD such that the final structural 

abnormalities that characterize any particular CHD reflect the timing, location, and severity of these 

cellular dysfunctions. Thus, the effect of any single gene on cellular function is contingent on the larger 

genetic context of the individual, explaining the variability in CHD manifestation and penetrance. The 

emergence of CRISPR/Cas9 gene targeting technologies has enabled the study of virtually any gene and 

specific genetic lesion, making dramatic progress towards the realization of personalized medicine. Since 
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the genetic and cellular basis of heart development are largely conserved across species, studies 

described in Chapter 2 and Chapter 3 lend support to the notion that conserved genes might be tested in 

zebrafish for capacity to contribute to CHD.  Further, zebrafish with CHDs might be used to assess the 

capacity of small molecule therapeutics in repairing the underlying cellular dysfunctions causing CHDs.   

Studies described here further indicate that, during development, cellular dysfunction can be 

spatially and temporally separate from emergence of a CHD phenotype. Specifically, in Chapter 2, we 

show that genetic and non-genetic factors influence endocardial gene expression to modulate a later 

myocardial event.  Primary cilia are required during very early heart development to activate Notch and 

downstream signaling in endocardial cells in a cardiac contraction-dependent manner. Dysfunction in cilia 

structure, Notch signaling, or these downstream mediators in endocardial cells has dramatic effects the 

heart, producing a CHD phenotype where the heart lacks trabeculae. Based on the above model of the 

cellular basis of CHD, any genetic modification that impairs cilia or Notch signaling would have a similar 

effect on trabeculation. Likewise, mutations in any gene that reduces the capacity of myocardial cells to 

respond to stimulatory cues from the endocardium could cause trabecular malformations.  Data reported 

in Chapter 3 shows that the cellular defects underlying a CHD can be substantially separated in space 

and time emergence of the CHD phenotype. Loss of function of a single isoform of nrg1, nrg1-IIII, is 

largely benign until late cardiac maturation stages when structural deficiencies in trabecular density and 

the superficial cardiac nerve plexus are evident.  Since nrg1-III is not expressed at appreciable levels in 

the developing heart and is rarely detected in the adult heart, the cellular defect underlying these 

malformations is unlikely to originate from a cardiac cell type. Instead, it is likely to involve regulation of 

Schwann cell migration and myelination of long axons, a process known to be regulated by nrg1-III (Perlin 

et al., 2011). Future studies are necessary to precisely define the relationships between cardiac nerve 

plexus formation, heart function, and maturation.  

In total, the studies described in this dissertation provide support for the necessity of model 

organisms in understanding CHD. Current trends in biomedical research funding have sought to optimize 

research investment in part by de-emphasizing use of model organisms, owing to their high cost relative 

to in vitro and “disease in a dish” systems. However, data reported in Chapter 2 and Chapter 3 point to 

critical roles for the dynamic interplay between cardiac structure, function, and maturation in regulating 
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heart development. This interplay cannot be recapitulated in an in vitro setting, underscoring the 

importance of in vivo models and an approach to understanding CHD etiology that takes into account 

integrated physiology of the whole organism.   
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