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ABSTRACT

WEIWEI LI: Data Science Methods with Applications to Genetic
Sequencing

(Under the direction of Jan Hannig, Corbin D. Jones, and Sayan
Mukherjee)

Data science methods are of increasing importance in modern genetic sequencing analysis. In

this dissertation, we focus on applying statistical modeling to structural variant detection problems

and a new framework for scalable and provable subspace clustering.

We first discuss the optimal sampling strategy for structural variant detection using optical

mapping. Here we develop an optimization approach using a simple, yet a realistic, model of

the genomic mapping process using a Hypergeometric distribution and probabilistic concentration

inequalities. Surprisingly we show that if a genomic mapping technology can sample most of the

chromosomal fragments within a sample, comparatively little biological material is needed to detect

a variant at high confidence.

In the second part, we introduce a formal probabilistic model to assessing how well an optical

maps to a reference genome. We use this approach to infer the most likely location within that

reference for any given read, as well as the likelihood of mapping to all other possible locations.

Using data produced by BioNano Saphyr to parameterize a simulation, we show that our approach

accurately identifies the likeliest locations of the observed optical read data. While considerably

faster than a canonical MCMC approach, our approach is still computationally intensive. We provide

several algorithmic improvements that increase the speed with no apparent impact on accuracy. Our

approach provides a rigorous, open-source framework for analyzing optical read data.

In the third part, we introduce a scalable and provable algorithm for subspace clustering.

Specifically, we consider modeling the collection of points in a high dimensional ambient space as a

union of lower-dimensional subspaces. In particular, we propose a scalable sampling-based algorithm

that clusters the entire dataset via first spectral clustering of a small random sample followed

by classifying or labeling the remaining out of sample points. The key idea is that this random
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subset borrows information across the entire dataset and that the problem of clustering points can

be replaced with the problem of “clustering sub-clusters”. We provide theoretical guarantees for

our procedure. The numerical results indicate that we outperform other state-of-the-art subspace

clustering algorithms with respect to both accuracy and speed.
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CHAPTER 1

Introduction

Large and small structural variation within the genome contributes to phenotypic diversity among

individuals and impact human health. Advances in genome sequencing have given new insight into

some of this variation, but accurate and through characterization remains elusive. Emerging optical

mapping technologies, such as the BioNano Genomics platform and similar tools, can provide high

resolution characterization of structural variation. As these technologies are expected to evolve into

clinical diagnostic tools, it is critical to develop robust statistical methods for assessing the credibility

of the structural variation discovered. In the second and third chapters of this dissertation, we try

to develop data science methods that can be used to analyze the structural variants data.

In the era of “Big Data”, tremendous data points are collected from different sources. Data

scientists nowadays need to analyze datasets with large volume and high-dimensionality, which leads

to an urgent need for scalable algorithms. In fact, the information contained in a dataset does not

necessarily grow with the dimensionality. In many machine learning problems (motion segmentation,

face recognition, image compression etc.), the data points usually lie in a union of low-dimensional

linear subspaces. Finding these subspaces and assigning the cluster membership to each data point

is the main goal of subspace clustering. In this dissertation, we develop a scalable and provable

subspace clustering algorithm, dubbed Sampling Based Subspace Clustering (SBSC). Numerical

experiments demonstrate that SBSC outperform other state-of-the-art algorithms in medium-sized

and large-sized datasets.

1.1 Optimal Sampling for Variant Detection

In the second chapter, we want to design a sampling strategy that determines how many biological

materials are needed in order to detect the structural variants with high confidence. Structural

variants compose the majority of human genetic variation, but are difficult to accurately assess using

current genomic sequencing technologies. Optical mapping technologies, which measure the size of

chromosomal fragments between labeled markers, offer an alternative approach. As these technologies
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mature towards becoming clinical tools, there is a need to develop an approach for determining

the optimal strategy for sampling biological material in order to detect a structural variant at

some threshold. Here we develop an optimization approach using a simple, yet realistic, model of

the genomic mapping process using a Hypergeometric distribution and probabilistic concentration

inequalities. Our approach is both computationally and analytically tractable and includes a novel

approach to getting tail bounds of Hypergeometric distribution. We show that if a genomic mapping

technology can sample most of the chromosomal fragments within a sample, comparatively little

biological material is needed to detect a variant at high confidence.

The full process of optical mapping can be described as an urn sampling problem, which in turn

can be statistically modeled as sampling from Hypergeometric distributed random variables. The

tail bounds of Hypergeometric distribution was discussed in Skala [2013]. In this dissertation, we

followed this path and extended it with a general result. While these bounds work pretty well if the

probability of success p is near 0.5, in our particular application (i.e. optical sampling) p is usually

very small, making the previous bounds very conservative. Therefore, we used the tail bounds

from Binomial distribution as an approximation. These Binomial tail bounds are well studied and

particularly, we used a bound from Short [2013] that is relatively tighter for small p.

Based on these tail bounds on Hypergeometric distribution, we designed a sampling strategy

for optical mapping. The simulation study shows that our algorithm has similar behavior with

concentration inequality free results.

1.2 Semi-Parametric Model for Optical Mapping

In optical mapping, the biological materials (i.e. genetics) are represented as vectors of positive

integers. To detect structural variant, one needs to map the reads from optical mapping back

to the reference genome. Mathematically speaking, the optical mapping device maps a bunch of

sub-sequences (original sequences) from a long vector (reference genome) into new vectors (optical

reads), all these vectors have positive integer entries. Given the reference genome and optical reads,

we want to find the corresponding original sequences of these optical reads by modeling the mapping

procedure as a function with random outputs.

Previous approaches usually apply a heuristic score function together with dynamic programming

to find these original sequences [Anantharaman et al., 1997, Leung et al., 2017b]. While these

approaches work fairly well on finding these original sequences with decent running time, they do
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not have a probabilistic model to measure the likelihood of each candidate region and are usually

sensitive to hyper-parameters set for score functions.

In this dissertation, we use semi-parametric regression to model the uncertainty during optical

mapping. This semi-parametric approach is highly flexible with few hyper-parameters and can

approximate a variety of random distributions. The maximum likelihood estimators of this semi-

parametric model can be found by using a two-step projected gradient descent method. The whole

framework of our algorithm includes two stages: (1) finding the potential original regions by a binary

matrix filtering algorithm, which is highly scalable and much faster than canonical MCMC method;

(2) calculating the likelihood for each candidate region and output the candidate sequences ranked

by their corresponding likelihoods.

In this dissertation, we only test the performance of our procedure with binary matrix filtering

algorithm on simplified synthetic datasets that do not have complicated mapping variations like

deletions, insertions and trans-locations. The numerical result shows that our algorithm is much

better at handling large uncertainty of sizing errors than a state-of-the-art alignment algorithm

called OMBlast. It is also convenient to stack other filtering algorithms with the semi-parametric

model and extend our algorithm to general usage.

1.3 Subspace Clustering through Sub-Clusters

In modern data analysis, researchers and practitioners often need to handle high-dimensional

datasets with large data volume. Training machine learning models directly on these datasets can

induce huge computational cost and hence are usually prohibitive. Therefore, dimension reduction is

usually a desired pre-processing step [Hotelling, 1933].

In Chapter 4, we consider the subspace clustering problem [Elhamifar and Vidal, 2009]. In which

we assume the data points from high-dimensional ambient space lie in a union of linear subspaces.

Our goal is to find the membership of each data point with respect to these subspaces. In the

downstream analysis after dimension reduction, one can easily run PCA [Hotelling, 1933] on each

cluster to get its corresponding dimension and orthogonal base.

Previous works on subspace clustering are usually not scalable. In this dissertation, we developed

a sampling-based subspace clustering framework, which runs very fast even in large datasets and has

provable performance guarantee. The numerical experiments demonstrate a significant improvement

of our algorithm over other state-of-the-art algorithms.
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CHAPTER 2

Optimal Sampling for Variant Detection

2.1 Introduction

Structural variants (SV), insertions, deletions and trans-locations, are by far the most common

types of human genetic variation [Chaisson et al., 2015]. They have been linked to large number

of heritable disorders [Hurles et al., 2008]. Technologies to assay the presence or absence of these

variants have steadily improved in ease and resolution [Huddleston and Eichler, 2016, Audano et al.,

2019]. Whole genome shotgun DNA sequencing (WGS) can detect small variants (less than 10bp)

readily and can detect some classes of large SV. This approach, however, is inferential and often

struggles to capture copy number variation in gene families or to correctly estimate the size of

insertions. An alternative approach, genomic mapping (such as the technology of BioNano Genomics),

addresses the deficiencies of WGS by providing linkage and size information from ordered fragments

of chromosomes spanning tens to hundreds of kilobases. In contrast to WGS, genomic mapping

approaches directly observe SV, rather than inferring the existence of a SV from patterns of mismatch

in WGS data. In the near future, these genome mapping technologies are expected to be used for

clinical diagnosis of SV known to be associated with genetic disorders.

In a clinical setting, the cells or tissues needed for analysis may be hard to obtain, which poses

several important statistical questions: what is the minimum amount of starting material necessary

to have some confidence of detecting a target fragment? What is the optimal sampling strategy

for the primary and derived material throughout the process? How best to model the technical

errors–such as failure to digest at a site–during the processing of the data as these errors can lead

to false positives and negatives? As is often the case, answering these questions motivated an

exploration and expansion of the statistical machinery used to model this biological process.

Our contributions are twofold. From the algorithmic perspective, we explored, both theoretically

and empirically, the connection between Hypergeometric distribution and binomial distribution. We

showed that under certain conditions, the tail bounds of binomial distribution can be used to control
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that of Hypergeometric distribution. A direct tail bound on hypergeometric is also developed in

this dissertation. From the clinical and experimental perspective, we built an extensible model for

estimating the amount of material needed for optical mapping of a genome. As these technologies

move into clinical practice–such as diagnostics for chromosome abnormalities–there is critical need

to be able to determine if enough genomic material is available for applying this assay.

The rest of this chapter is organized as follows: in Section 2.2, we present the problem from a

biological perspective; in Section 2.3, we describe the statistical modeling of the sampling problem

and our sampling strategy; in Section 2.4, we introduce the implementation details of our sampling

algorithm; in Section 2.5 we present our numerical results on synthetic data sets; in Section 2.6 we

summarize the conclusions of this chapter. Proofs are relegated to the appendix.

2.2 Approach

The starting input for genomics mapping technologies is often an aliquot of cells isolated from

the tissue of interest. The technology then performs an “on-chip” digestion of these cells, followed

by extraction of the nucleic acids from these cells. While efforts are made to maintain intact

chromosomes, these long DNA molecules (50-250 million base pairs [bp] of DNA per chromosome

in humans; “long sequence”) often experience one or more breaks during extraction. These long

sequences are then elongated either on a slide or in a nanochannel and probed for specific short

DNA sequences within the the long sequences using either optical probes or restriction enzyme

digest(nicking/cutting) based methods. These short sequences are usually short and found every

1000-100,000 bp. As the long sequence moves through the nanochannel each possible short sequence

is evaluated beginning with the first bp. For a given sequence, this produces a list of lengths

(bps) of distances between detected short sequences that is ordered by when they occurred in the

initial long sequence. In the case where we are assaying for a specific SV (the sequence), these lists

are compared to a reference list generated from the human reference genome from that particular

chromosomal region. Discrepancies between these two lists in the target regions potentially indicates

a SV. However, to be called a SV a minimum amount of evidence must be obtained supporting the

variant. Typically, this threshold is 5 to 50 examples of the discrepancy in the observed data.

As the cells or tissues needed for analysis may be hard to obtain, these technologies pose several

important statistical questions: what is the minimum amount of starting material necessary to have

some confidence of detecting a target fragment? What is the optimal sampling strategy for the

5



Table 2.1: Nonrandom quantities
Notation Definition

n Number of cells in the first urn (copies of each type of long sequences).
K Number of sequences sampled from the first urn.
R Number of sequences sampled from third urn.
L Approximated length of long sequence.
l Approximated length of short sequence.
T Threshold on detectability of target sequences.
f Length of fragment of interest.
c Approximated ratio between lengths of long and short sequences.
Q Minimum number of target sequences we want in the detection machine.
p Minimum confidence in achieving the goal.

Figure 2.1: Urn Demonstration of Sampling Procedure

Three urn demonstration of the algorithm: the first urn contains raw biological materials; the second
urn contains materials sampled from the first urn; the third urn contains materials from the second
urn that are cut into shorter segments. Content of the third urn is sampled and assayed in the
detection machine.

primary and derived material throughout the process? How best to model the technical errors–such

as failure to digest at a site–during the processing of the data as these errors can lead to false positives

and negatives? Our goal here is to begin to address these issues by developing a straightforward

statistical model and using this model to determine the optimal sampling strategy.

2.3 Statistical Model

In this section, we abstract our sampling procedure into an “urn sampling" model. As DNA is

processed through the optical mapping procedure, we imagine the material passing through a series

of urns. Assume we have 46 different types of long sequences (i.e. chromosomes), each type has

n copies (i.e. n cells), so we have 46n long sequences in total. We assume only one type of long

sequences contains the target sequence, or the fragment of interest. The basic idea of our sampling

model is shown in Figure 1. The notations introduced below are summarized in Table 2.1.
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The first urn contains our original biological material, total of 46n long sequences out of which n

of them contain the target sequence. At the first stage, we sample K sequences without replacement

from the first urn, and put them in the second urn. The second urn will therefore contain a random

number X of target sequences. All of the K long sequences in second urn are cut (a.k.a. nicked and

labelled) at random locations according to a Poisson process and placed into the third urn. The third

urn will therefore contain a random number of U sequences out of which W are target sequences.

The content of the third urn models the biological material prepared for assay in a detection machine.

Finally, we sample R smaller sequences without replacement out of the third urn and put them

into a detection machine. There will be a random number Y of target sequences processed by the

detection machine, and the goal is to assure that for some pre-specified values Q and p, we have the

probability of Y ≥ Q is at least p. Throughout the experiment, the variables (n,K,R) are in our

control and we will find the conditions on them to achieve our goal. In this chapter, we call the long

sequence in the second urn which contains the fragment of interest as “target sequence”.

Next we state the following biological assumptions for our modeling

1. The length of target sequence is f .

2. The lengths of long sequences in the first urn are approximately L, here L� max(f, T ).

3. Short sequences in the third urn have lengths approximately l, and c ≈ L
l .

We proceed by describing the probabilistic parts of our model. The distributions and their

expectations are summarized in Table 2.2. There are X target sequences in the second urn. It

is straightforward to see X ∼ H(46n, n,K), a Hypergeometric distribution with 46n samples, n

samples of interest and K as sampling size.

Let Ui (i = 1, 2, ..,K) denotes the number of cuts on i-th long sequence in the second urn.

Combine with the third assumption above, we assume that Ui follows a Poisson distribution with

mean c. Note that Ui cuts divide the sequence into (Ui + 1) shorter sub-sequences. Consequently,

U =
∑K

i=1(Ui + 1) is the total number of short sequences in the third urn, and (U −K) follows

Poisson distribution with mean cK.

Write W as the number of the sequences in the third urn that contain the target sequence. The

distribution of W is more complicated than that of X. Assuming X > 0, we have at least 1 target
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Table 2.2: Random quantities and their expectations
Notation Distribution Expectation

X H(46n, n,K) K
46

Ui Poi(c) c

W
∑X

i=1Ber(qi(Ui))
K(2ect1t3−ect2t3 )

46ec

Y | U,W H(U,W,R) WR
U

sequence contained in the second urn. We have W =
∑X

i=1Bi, where fix X, {Bi}Xi=1 are independent

Bernoulli random variables. Condition on {Ui}Ki=1, the probability of success qi of random variable

Bi satisfies the following relation

qi(Ui)


≥ 2(t1t3)Ui − (t2t3)Ui if T ≥ f ,

= tUi3 otherwise,
(2.1)

where t1 = L−T
L−f , t2 = L−2T+f

L−f , and t3 = 1− f
L , respectively. The proof is found in Appendix A.1.

Finally, conditional on U and W , the number of target sequences in the detection machine Y

follows a Hypergeometric distribution with parameters (U,W,R).

2.3.1 Analytical calculations

In this section, we present the analytical results of our statistical modeling. Our goal is to set

the sampling parameters K and R so that we can guarantee

P (Y ≥ Q) ≥ p, for pre-specified Q and p. (2.2)

Now we consider Rlow, such that with pre-fixed quantities p0, U and W

P (Y ≥ Q | U,W,R ≥ Rlow) ≥ p0. (2.3)

Note here Y |U,W ∼ H(U,W,R). We will find Rlow as a function of U,W, p0 from tail bounds on

Hypergeometric distribution.

In this chapter, we use the concentration inequality in Lemma A.3.2 on Binomial distribution

to control the tail bounds of Hypergeometric distribution. Specifically, we will use the following

theorem:

Theorem 2.3.1. Let h ∼ H(A,B,C) be a hypergeometric random variable, Ba ∼ Bin(C, BA ) and
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Bb ∼ Bin(A− C, BA ) be two binomial random variables. Then under conditions on A, B, C and x

listed in Appendix A.2, the following inequalities are true

P (h ≤ x) ≤ P (Ba ≤ x), (2.4)

P (h ≤ x) ≤ P (Bb ≥ B − x). (2.5)

The proof is in Appendix A.2. Numerical results presented in Section 2.5 suggest that for large

C (2.5) is a better bound, in the remaining cases we will use (2.4).

Usually, one would want to fix (A,B,C) and calculate the tail bounds with different x. In

this case only Property A.2.1 is needed to ensure the validity of Theorem 2.3.1. The remaining

properties proved in Appendix A.2 ensure the validity of Theorem 2.3.1 for the other cases needed in

Algorithm 1 when (A,B,C) are changing. In the subsequent calculations, we assume the conditions

for Theorem 2.3.1 are met. In particular, we will use large deviation bounds from Lemma A.3.2 on

the two Binomial distributions: Bin(R, WU ) and Bin(U −R, WU ) to find Rlow in (2.3).

Write Rlow = Rlow(U,W, p0). Note that U and W are typically unknown. Therefore, Rlow itself

is still a random quantity and we need to further find a upper bound for Rlow depending on n and

K, this is denoted by R̂low. With large probability, sampling R̂low sequences in the third urn is

enough to guarantee sampling no less than Rlow samples.

It is fairly straightforward to see Rlow increases with W and decreases with U . Now we fix Q and

p0, and write Uup andWlow as the probabilistic upper/lower bounds for U andW , respectively. From

(2.4) and (2.5) we can find R̂low directly from tail bounds on Bin(R, Wlow
Uup

) and Bin(Uup −R, Wlow
Uup

).

In particular, the steps needed to determine R̂low for a given K and n are summarized here:

1. Use Lemma A.3.2 on Binomial distributions Bin(K, 1
46) and Bin(46n−K, 1

46) to find lower

bound Xlow of X. Here Xlow depends only on n, K and p1 so that: P (X ≥ Xlow) ≥ p1.

2. Set X := Xlow from step 1. Note that W is the summation of Xlow independent Bernoulli

trials. Hence from Lemma A.3.2 we can find lower bound Wlow of W depending only on n, K,

L, f , T , c, p1, p2 so that:P (W ≥Wlow | X ≥ Xlow) ≥ p2. Consequently P (W ≥Wlow) ≥ p1p2.

3. Use inequality from Lemma A.3.1 to find Uup and Ulow depending only on c,K, p3 so that:

P (U ≥ Ulow) ≥ p3 and P (U ≤ Uup) ≥ p3.
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4. Use Lemma A.3.2 on binomial distributions Bin(R, Wlow
Uup

) and Bin(Uup − R, Wlow
Uup

) to find

R̂low so that

P (R̂low ≥ Rlow) ≥ P (U ≤ Uup,W ≥Wlow)

≥ P (U ≤ Uup) + P (W ≥Wlow)− 1

= p3 + p1p2 − 1.

Note that we need to ensure the needed sample size R is not larger than the available number of

short sequences U . To this end, both R̂low and Ulow are deterministic functions of given constants

and we can add numerical constraint on R̂low to force it smaller than Ulow. A key observation from

our numerical result is, as K gets larger, Uup and Ulow will be more concentrated around the mean

cK +K, while Rlow will be much smaller than Ulow. Therefore, we need to find a lower bound Kmin

on K to ensure Ulow ≥ R̂low.

Finally, given that we choose K and R̂low as our sampling sizes at two stages, respectively. The

following relations are true

P (Y ≥ Q) ≥ P (Y ≥ Q,R ≥ Rlow, U ≥ R)

≥ p0 · P (R̂low ≥ Rlow, U ≥ R̂low)

≥ p0 ·
[
P (R̂low ≥ Rlow) + P (U ≥ R̂low)− 1

]
≥ p0(2p3 + p1p2 − 2). (2.6)

It suffices to set the desired probability p equal to the right-hand-side of (2.6). The exact selection

of {pi}3i=0 can be found in Section 2.4. We will also show in Section 2.4.1 that the range of K is

[Kmin, 45n]. While not every K in this range is feasible, a straightforward monotone analysis shows

that as long as K is larger than a certain threshold, the solution R̂low always exists.

2.3.2 Optimal sampling strategy

In this section, we discuss how to use the formulas derived in Section 2.3.1 to find the optimal

values of n and K for any given p and Q. Specifically, assume there is a user-specified cost function

f(n,K) over number of samples n and the sampling size from first urn. In this chapter we assume
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f(·, ·) is an monotone increasing function of both n and K.

The proposed procedure is summarized here:

1. Solve for {pi}3i=0 such that p = p0(2p3 + p1p2 − 2).

2. For fixed n, we calculate Kmin.

3. For any fixed n and K such that K ≥ Kmin, we calculate R̂low.

4. Return: (n,K, R̂low).

The implementation details are discussed in Section 2.4. In reality the amount of biological

materials is limited, hence there is an upper bound on n and there are only finite number of

(n,K, R̂low) to consider. We do not need to consider any R > R̂low as that would lead to sub-optimal

design. However, for fixed n, we do need to consider K > Kmin, because larger K might lead to

smaller R̂low and a more efficient solution.

Assume we have a cost function C(K,R) that increases with K and R. We only have finitely

many (n,K, R̂low) to consider and a brute force search among all the possible triples will yield the

optimal (n,K, R̂low) minimizing the cost function.

Due to technology limits, we may have certain constraints on sampling percentages: for example,

we can only sample 80% in the first stage, and 50% from the second stage. We can still use a brute

force search only considering the cases that do satisfy these extra constraints.

2.4 Sampling algorithm

In this section we discuss the implementation details of optimal sampling strategy in Section 2.3.

The following quantities should be specified/calculated beforehand:

1. Specify the values of L, f , T , p, Q, n, c according to the particular application.

2. Select p0 =
√
p, 3p3 − 2 =

√
p and p1 = p2 :=

√
p3 so that the right-hand-side of (2.6) is p.

3. Compute: t1 = L−T
L−f , t2 = L−2T+f

L−f , t3 = 1− f
L and set Q1 = 2ect1t3−ect2t3

ec , v = Q1 −Q2
1. Here

Q1 and v are the expected value and variance of Bernoulli Ber(qi(Ui)) random variable.

2.4.1 Lower bound on K

We need to find the lower bound Kmin of K such that with large probability we have at least

Q target sequences in the third urn. Equivalently, we want R ≥ Q. To this end, we assume the
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cutting process in urn 2 does not break any target sequences and we take everything out from urn

3. Therefore, we only need to make sure X is larger than Q with high probability. In Section 2.5,

we solved both (2.4) and (2.5) to get different lower bounds for K, similarly with different lower

bounds on K we will have different lower bounds for downstream quantities like X, U etc.

2.4.2 Lower bound on R

Algorithm 1 can be used to calculate R̂low with pre-fixed n and K. Please note, that we use tail

bounds of binomial distribution to approximate that of Hypergeometric distribution in step 1, 2 and

step 4. Here steps 1 and 2 only require property 1 and 2 in Appendix A.2. Step 4 additionally needs

property 3 and 4, because we need the relations in (2.4) and (2.5) to be true with both W ≥Wlow

and U ≤ Uup. For each fixed n, the range of K is relatively small, thus for each input n we can

simply try all the possible K and calculate the corresponding smallest R (denoted by Rlow) that

achieves our goal. To make our algorithm more efficient, we can first find the smallest K that can

give us a lower tail that is larger than Q (any smaller K will not be feasible, see our supporting

code for details), call this Kmin. For each K from Kmin to 45n, we use Algorithm 1 to find Rlow.

2.5 Numerical results

For our numerical results, the calculations were based on biologically reasonable parameters:

L = 250000000, f = 50000, T = 75000, c = 60, p = 0.95, Q = 20.

In Figure 2.2, we plot our original calculation results from Algorithm 1 together with the results

without using any concentration inequalities (we get the tail points by the inverse of cumulative

distribution functions, which is applicable for relatively small n); both of them have the similar

patterns. From original calculation results we can find two “kinks” for each fixed n. This is because

when K is small, we will need to sample almost everything from the second stage, which will force

us to choose the correspond Bin(Uup − R, Wlow
Uup

) for Y as the binomial bounds. Then as K gets

larger but not big enough, we will use Bin(R, Wlow
Uup

) for both stages. Finally K will get close to 45n

which again forces to use Bin(Uup −R, Wlow
Uup

) at the first sampling stage. The performance of our

algorithm is slightly more conservative than the concentration inequality free approach in the sense

that we ask for more samples. However, each lower bound of our algorithm can be solved efficiently

using numerical method, while using inverse cdf function is generally slow for large n.

In Figure 2.3 we plot the simulation results together with population expectation results. Here

the simulation means of each n and fixed K we create large amount of X, W and U . Then for
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Figure 2.2: Approximation results of K vs R̂low

We use Algorithm 1 for n ranges from n = 100 to n = 600, different colors correspond to different n.
Curves at the bottom correspond to concentration inequality free results, while dotted curves at the
top correspond to results calculated from our algorithm.

Figure 2.3: Simulation results and population expectation results
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1: Apply Lemma A.3.2 to Ba ∼ Bin(K, 1
46) and Bb ∼ Bin(46n−K, 1

46). Solve the system

− log(c(1− p1)) = Kh(
t

K
+ 1− 1

46
, 1− 1

46
),

c = max{2,
√

4πKh(
t

K
+ 1− 1

46
, 1− 1

46
)},

and set Xlow1 = K
46 − t. Similarly we can solve for Xlow2 . Set

Xlow := max(Xlow1 , Xlow2).

2: Fix X to be Xlow. Solve the following system

− log(c(1− p2)) = Xlowh(
t

Xlow
+ 1−Q1, 1−Q1),

c = max{2,
√

4πXlowh(
t

Xlow
+ 1−Q1, 1−Q1)},

and set W := Q1 ∗Xlow − t.
3: Calculate the p3 lower bound Ulow and upper bound Uup for U from Lemma A.3.1.
4: Apply Lemma A.3.2 to Bc ∼ Bin(R, Wlow

Uup
) and Bd ∼ Bin(Uup −R, Wlow

Uup
), solve for Rlow1

r
Wlow

Uup
− t = Q,

− log(c(1− p0)) = rh(
t

r
+ 1− Wlow

Uup
, 1− Wlow

Uup
),

c = max{2,

√
4πrh(

t

r
+ 1− Wlow

Uup
, 1− Wlow

Uup
)},

set Rlow1 := r. Similarly we can solve for Rlow2 .
5: Set R̂low = min{Rlow1 , Rlow2} and output (n,K, R̂low).

Algorithm 1: Compute R̂low from fixed n and K

each simulation trial, we use a brute force search to find the smallest R that can gives us (2.2).

Note this simulation is an “averaging” approach while our algorithm is more like a tolerance interval

approach, thus they are not comparable and we put them into two separate figures. The population

expectation results means we replace W and U directly by their expectations, and again brute force

search for the smallest R. From Figure 2.3 we can see as K gets larger, these two results will be

very close, hence for large K we can approximately use E[U ] and E[W ] to conduct the calculation.

Table 2.3 provides examples the minimization results based on a linear cost function, C(K,R) =

aK + bR, under various constraints. In particular we use a = 60, b = 1 and various sampling

percentage constraints on both sampling stages. Under all constraints, the algorithm tends to sample
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Table 2.3: Minimization of cost function
Constraint 1 Constraint 2 n K R K

46n
R

Ulow
100% 50% 100 3652 111850 79.39% 49.96%
80% 20% 300 8716 106220 63.16% 19.91%
50% 100% 100 1812 91322 39.39% 82.03%
50% 50% 200 4136 126630 44.96% 49.96%
20% 80% 500 2572 124370 11.18% 78.8%

as many as possible in the second stage.

We have also applied our algorithm to other choices of Q. The lessons learned are similar to

what we have shown here. In the supporting materials we provide Matlab code that can be used to

calculate optimal sampling strategy with different parameters.

2.6 Conclusion

In this chapter, we have developed an optimization approach for estimating the amount of

material needed for genomic mapping based on a simple, yet realistic, model of the process that uses

a novel result regarding the tail bounds of the Hypergeometric distribution. Our approach is both

computationally and analytically tractable and we show that if a genomics mapping technology can

sample most of the chromosomal fragments within a sample, comparatively little biological material

is needed to detect a variant at high confidence.

To bound the tails of hypergeomtric distribution, we borrowed the tail bounds from Bino-

mial distribution and derived the conditions needed for such application. A direct tail bound on

Hypergeometric distribution is developed in Appendix A.4.
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CHAPTER 3

Semi-Parametric Model for Optical Mapping

3.1 Introduction

Early optical mapping technologies were limited in scope and scale of the genome that could be

assessed. While microbial genomes could be readily assembled, more complex genomes were both

technically and algorithmically challenging. A classic tool, Gentig, produced de novo assemblies

without requiring an initial estimate of the genome-wide restriction map [Anantharaman et al., 1999],

but was limited to small genomes. Other solutions included a heuristic assembler that uses pairwise

Smith-Waterman alignment [Shi et al., 2016, Valouev et al., 2006b], subdividing the assembly problem

in many smaller problems and using a low-level assembly engine [Mullikin and Ning, 2003]. Other

approaches include methods originally developed from plasmid mapping Huddleston and Eichler

[2016], Pendleton et al. [2015] and references therein.

Optical mapping technologies have since matured. Systems, such as the BioNano Saphyr, can

characterize the order and organization of large genomes, such as the human genome [Udall and

Dawe, 2018, Howe and Wood, 2015]. Today these approaches begin with an aliquot of cells isolated

from the tissue of interest. The technology then performs an “on-chip” digestion of these cells,

followed by extraction of the nucleic acids from these cells. These long DNA molecules (50-250

million base pairs [bp] of DNA per chromosome in humans) are then elongated either on a slide or

in a nanochannel and probed for specific short DNA sequences within the the long sequences using

either optical probes or restriction enzyme digest (nicking/cutting) based methods. These short

sequences are usually short and found every 1000-100,000 bp. As the long sequence moves through

the nanochannel each possible short sequence is evaluated beginning with the first bp. For a given

sequence, this produces a list of lengths (bps) of distances between detected short sequences that is

ordered by when they occurred in the initial long sequence. These lists of distances between the

short sequences are compared to a reference generated from the human reference genome from that

particular chromosomal region. Discrepancies between these two lists in the target sequence regions
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potentially indicate a structural variant.

As the molecular technology of optical mapping has matured, the amount of data generated by

these technologies has exponentially increased. Algorithms for aligning optical reads have focused on

using fast computer science techniques to efficiently align the data. Dynamic programming and de

Bruijn graphs, for example, are commonly used in these fast aligners [Valouev et al., 2006c, Luebeck

et al., 2020, Fan et al., 2018]. The OMTools suite is an excellent example of these types of tools and

provides a comprehensive set of fast algorithms and visualization tools [Leung et al., 2017a].

Optical genome mapping technologies are expected to be used for clinical diagnosis of SV

associated with genetic disorders in the near future. In this scenario it is important to assess how

well the optical mapping data support the presence of a variant and how well the data support

the canonical reference sequence. For example, low confidence in the optical data supporting the

reference sequence in a genomic region of interest may motivate further investigation of that region in

an affected patient even if a variant is not called. Recognizing this issue, we developed a probabilistic

semi-parametric approach for modeling the fit of optical mapping reads to a reference genome. Our

approach allows us to assign each optical mapping read to its most likely location in the genome and

rigorously assess the credibility of that assignment. Further, by developing an explicit statistical

model for these procedures and implemented it as a open-source package, we make transparent both

the model’s assumptions and it’s implementation. This work is a critical first step towards building

a comprehensive analytical system for using optical mapping and similar data for characterizing

structural variation in any genome.

3.2 Approach

Figure 3.1 summarizes our method. High molecular weight DNA is isolated and input into an

optical mapping device. For a given molecule of DNA, the device yields an ordered series of lengths

corresponding to the fragments of DNA in between the nicking or restriction endonuclease sites

(“enzyme cutting sites”), which are short oligonucleotide sequences in the genome. If long enough

and unique enough, the pattern of lengths in this ordered array should be characteristic of the

region of the genome from which the DNA fragment derived. If the DNA sequence of the individual

providing the DNA is known, then identifying the source genomic region is straightforward: nicking

sites are predicted from the DNA sequence, lengths between enzyme cutting sites are calculated,

and that inferred ordered list of lengths is compared to the experimentally observed. In practice, the
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DNA sequence of the individual is not known. Instead, a reference genome, such as human Genome

hg38, is used or generate the expected pattern of lengths. Again, the observed optical mapping

fragment can then be matched to part of the reference array in order to identify the genomic region

corresponding to the source of observed fragment. Several possible complications may affect how

readily the observed fragment is mapped back to the reference. First, the DNA analyzed may harbor

genetic variation causing it to differ from the reference genome. Second, diploid organisms harbor

two copies of each chromosome, which may mean that neither regions is an exact match. Third,

stochastic shearing of the DNA during the optical mapping may fragment the DNA. This may cause

some fragments to be unobserved and will lead to erroneous lengths at the ends of the ordered arrays.

Fourth, errors in the nicking or fragmenting process may lead to spurious lengths or missing sites.

Finally, complex eukarotic genome are often rich in long arrays of repetitive elements that result in

non-unique ordered arrays.

Here, our objective is to identify the “best” position within the genome for a set of observed

fragments and provide robust estimate of the quality of the match. We build a statistical model

to determine the quality of a position in the genome. In principle, this model could be applied to

all fragments produced by an experiment, but the time needed to compute for any large dataset is

long. We take advantage of the fact that most of the genome is a terrible fit for any one read. Using

some conservative bounds and heuristics, and a rapid filtering algorithm we are able to accelerate

the algorithm so that it can be applied to a human sized dataset.

3.3 Methods

In this section we introduce a probabilistic approach in assessing the quality of alignments in

optical mapping.

3.3.1 Model Setting

The optical mapping can be modeled through a mapping function from reference genome to

observed reads. Specifically, we may write the reference genome as [l1, ..., lN ], here li represents the

length (bp) between two adjacent enzyme cutting sites. Similarly we may write the observed reads as

[r1, r2, ..., rm]. We call {ri}mi=1 and {li}Ni=1 fragments and both of them are sets of positive integers.

During optical mapping, we cut the whole reference genome into several sub-sequences according

to a Poison process with parameter λ. Each sub-sequence again can be represented as a vector of

positive integers. Traditionally, the following mechanical errors are considered for optical mapping
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Figure 3.1: Demonstration of optical mapping.

Demonstration of our method. The reference genome and reads are represented as vectors of positive
integers. The filtering algorithm is used to propose the coordinates of candidates sequences. In the
bottom part we have one specific read and three candidate sequences correspond to it. The {li}3i=1

are likelihoods calculated from fitted semi-parametric distribution, here we expect l2 > l1 � l3.

1. Missing signals: enzyme sites get missed.

2. Extra signals: spurious extra enzyme sites appear in the genome.

3. Resolution error: fragments that are shorter than a threshold are not observable.

4. Sizing error: the original fragment and the mapped fragment have different lengths.

At this moment, we do not consider missing signals and extra signals. In Section 3.5, we will show

the extension of our model to these two errors. Throughout this chapter, we assume

1. The optical mapping between fragments are completely independent.

2. Cutting happens exactly at the enzyme cutting sites.

3. Fragments generated by optical mapping that are shorter than a constant threshold T are not

observable, this is the resolution error.

In this chapter, we call the sequence that mapped into the given observed read as original sequence,

and call a sequence that might be the original sequence as a candidate sequence. The last assumption
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means that the dimension of original sequence of [r1, ..., rm] might be larger than m, i.e. short

mappings are censored. For a given observed sequence [r1, ..., rm], the likelihood that it was generated

from candidate sequence [li1 , ..., lik ] can be modeled as a posterior probability

P([li1 , ..., lik ] | [r1, ..., rm]) ∝ P([r1, ..., rm] | [li1 , ..., lik ]) · P([li1 , ..., lik ]), (3.1)

where {ij}kj=1 ∈ N+ are indexes in [N ], m ≤ k. For the prior part we have

P([li1 , ..., lik ]) =

∞∑
q=2

λqe−λ

q!
· q(q − 1)cq−2 ∗ L−2

=

(
λ

L

)2

· e
λc

eλ

∞∑
j=0

(λc)je−λc

j!

=

(
λ

L

)2

· e
λc

eλ
, (3.2)

where q ∼ Poi(λ) is the number of total cuttings in the reference genome (conditional on q, the

cutting positions are uniformly distributed in [0, L].), and c = L−e+b
L (L =

∑N
i=1 li is the physical

length of reference genome, b and e are the physical starting and ending positions of [li1 , ..., lik ] in

the reference genome).

For the likelihood part we have

P([r1, r2, .., rm] | [li1 , ..., lik ]) =


Πk
j=1glij (rj), k = m

0, m > k∑
q1,..,qm

[
Πm
j=1glqj (rj) ·Πj∈I\{q1,..,qm}Plj (x ≤ T )

]
, m < k,

,

where I = {i1, ..., ik}, and gl(·) is the density function of some unknown distribution that take l as

the parameter. Note that gl(·) catches the sizing error of optical mapping. In next section we will

use the semi-parametric approach to model the density function.

3.3.2 Mapping Function via Semi-Parametric Generalized Linear Model

In this section, we develop a semi-parametric model for density function gl(·). Traditionally,

the sizing error is decomposed into two parts [Leung et al., 2017b, Shelton et al., 2015, Valouev

et al., 2006a, Nagarajan et al., 2008, Muggli et al., 2014]: scaling error and measurement error.
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Mathematically speaking, assume fragment r was generated from fragment l, then

r = (1 + se)l +me, (3.3)

where se is the scaling factor, me is the measurement error. Previous works usually assume se

and me are constants throughout ALL fragments. There are at least two issues with this heuristic

approach: (1) the fragment lengths r and l are positive integers, but adding se and me violates this

assumption; (2) the parametric approach are inflexible, especially because it assumes se and me are

constants. In this chapter, we developed a semi-parametric GLM (SPGLM) model for the density

function, which has higher flexibility and can approximate the true probabilistic nature of optical

mapping.

Start from the uni-variate exponential density function

f(y|θ) = exp{φ(y) + θy −A(θ)}. (3.4)

In parametric exponential family, φ(y) is a parametric function of y, A(θ) is the normalizing constant

and θ is called the natural parameter. In SPGLM, φ(·) is modeled as a non-parametric function,

and θ is a linear function of the co-variates X.

Use the same definitions for r and l as above. In stead of modeling the relationship between

them as in (3.3), we consider the following standardized discrepancy between r and l

y =

√
r −
√
l√

l
. (3.5)

The standardization in (3.5) allows us to model the density function in a wider domain. Specifically,

we model y as a random variable generated from the semi-parametric exponential family in (3.4),

where φ(·) is a non-parametric function on the support of y and θ = β0 + β1 · x, here x =
√
l. Our

goal is to estimate φ(·) and β.

Given a training set {(xi, yi)}ni=1, the maximum likelihood estimators of φ(·) and β can be found

via optimization methods. However, two issues arise: (1) we do not have the ground truth training

set; (2) we need constraints on φ(·) to make the optimization problem solvable.
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Constructing Training Set In optical mapping, we only have access to the reference genome

and thousands of observed reads. The exact position of original sequence for each observed read is

unknown to us and technically impossible to locate with 100% confidence. Consequently, we do not

have a “ground truth” training set at hand. In this dissertation, a heuristic minimization algorithm

is used to construct the “heuristic training set”.

The average relative error between a observed sequence [r1, .., rm] and a candidate sequence

[li1 , ..., lim ] is calculated as

E =
1

m

m∑
j=1

√
rj −

√
lij√

lij
. (3.6)

Our minimization algorithm takes an observed sequence (i.e. [r1, .., rm]) as input, and output the

candidate sequence in the reference genome that delivers the smallest average relative error calculated

from (3.6). Note that we only consider candidate sequence with same dimension as the input, i.e.

k = m. To get the training set, we apply the heuristic minimization algorithm to 1000 reads extracted

from real experiments. The sequences that have minimal smallest average relative errors are used to

construct the training set. Specifically, we use the fragments in these reads and their corresponding

fragments in the reference genome found by the heuristic minimization algorithm as the “ground

truth”. Finally we have a sample with 3000 standardized (see (3.5)) training samples (xi, yi).

Constraints on φ(·) Given a training set {(xi, yi)}ni=1. We write {y(i)}ni=1 as the order statistics

of {yi}ni=1 in ascending order. The range [y(1), y(K)] is used as the support of our semi-parametric

distribution, here K ≤ n since we may have duplicates.

In this dissertation, function φ(·) is modeled as a concave piece-wise linear function that only

changes its slope at {y(i)}
(K)
i=1 . Write φk = φ(y(k)), then for ∀y ∈ R we have

φ(y) =


(

1− y−y(k)
y(k+1)−y(k)

)
φk +

y−y(k)
y(k+1)−y(k)

φk+1, if y ∈ [y(k), y(k+1)]

−∞, o.w.

Let ∆k = y(k+1) − y(k). To assure the concavity of φ(·), we need for ∀2 ≤ k ≤ K − 1

− 1

∆k−1
φk−1 +

(
1

∆k−1
+

1

∆k

)
φk −

1

∆k
φk+1 ≥ 0. (3.7)
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Write α = B · φ, where

B =



1 − 1
∆1

0 · · · 0

− 1
∆1

· · · · · · · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · − 1
∆i−1

1
∆i−1

+ 1
∆i

− 1
∆i

· · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · · · · 1
∆K−1

1


.

The concavity constraint can be rewritten: αk ≥ 0 for k = 2, ..,K − 1.

To make our estimation identifiable, we also add the following identifiability constraints

∫ y(K)

y(1)

eφ(y)dy = 1,

∫ y(K)

y(1)

yeφ(y)dy = 1. (3.8)

See [Zhang, 2017, Chapter 4] for a detailed discussion on why these constraints are needed and why

they work. The numerical set up of these constraints is discussed in Section B.1.

3.3.3 Optimization with Projected Gradient Descent Algorithm

To find the MLE of φ(·) and β, we want to maximize the following objective function

Ln(φ, β) = ΠN
i=1exp{θiyi + φ(yi)−A(θi)}, (3.9)

where

A(θi) = log

∫ y(K)

y(1)

eθiy+φ(y)dy.

Note that Ln(φ, β) is the likelihood function of SPGLM. We solve the optimization problem in a

projected gradient descent fashion, i.e. we first do the steepest descend on φ, and then project it

back to the feasible region, then do the same procedure for β, we iterate these two procedures until

the results converge. Handling identifiability modification is tricky, we leave the technical details in

Appendix B.1.

Write ln(·) as the log-likelihood function. In summary, the optimization procedure contains the

following main steps
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1. Initialize β and φ.

2. Fixing φ̂, update β̂ by doing gradient descent with respect to

ln(β) =
n∑
i=1

{xTi βyi + φ̂(yi)− log
K∑
k=1

exp(φ̂k + xTi βyk)}. (3.10)

3. Fixing β̂, update φ̂ by doing gradient descent with respect to

ln(φ) =
n∑
i=1

{xTi β̂yi + φ(yi)− log
K∑
k=1

exp(φk + xTi β̂yk)}. (3.11)

4. Update φ̂ by projecting it back into the feasible region.

5. Iterate over Step B to Step D until convergence.

6. Modify φ̂ by the following equation

φ̂ := φ̂+ θ∗y − log

∫ ∞
0

eφ̂+θ∗ydy. (3.12)

Here θ∗ satisfies the following condition

∫ y(K)

y(1)
yeφ̂+θ∗ydy∫ y(K)

y(1)
eφ̂+θ∗ydy

= 1.

We can use binary search to numerically solve for θ∗. It is fairly straightforward to check this

modification can actually meet the identifiability constraints in (3.8).

The closed formulas needed for optimization are presented in Appendix B.1. The implementation

details can be found in supplementary codes.

3.3.4 A Boolean-Matrix-based Filtering Algorithm

Generally speaking, any subsequence [li1 , ..., lik ] of the reference genome where k ≥ m could be a

valid candidate sequence of [r1, ..., rm]. However, calculating the posterior likelihoods with respect

to all these potential candidates is often prohibitive with the limited computational resources. In

this section, we proposed a fast filtering algorithm that can eliminate out most of the candidates

that are unlikely to generate the given observed read.
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The filtering algorithm starts with a boolean matrix (matrix with only 1’s and 0’s as its entries)

B ∈ Rm×N such that

Bij =


1, if

√
ri−
√
lj√

lj
∈ [y(1), y(K)].

0, otherwise.

In words, Bij = 1 if and only if it is feasible that lj to map into ri. If no drops are allowed, a

sequence [li1 , .., lim ] is a feasible potential original sequence if and only if Πm
j=1Bj,ij = 1.

Under the semi-parametric distribution, a fragment lij can be dropped if and only if

√
T −

√
lij√

lij
∈ [y(1), y(K)]. (3.13)

Therefore we can pre-calculate a vector v ∈ RN such that

vj =


1, if (3.13) is satisfied.

0, otherwise.
(3.14)

Vector v stores the set of fragment indexes that can be dropped.

Definition 3.3.1. A sequence [li1 , ..., lik ] is a feasible candidate with respect to read [r1, ..., rm] if

and only if: there exists a subset {s1, s2, ..., sm} of [i1, .., ik] such that

Πm
j=1Bj,sj ·Πi∈[i1,..,ik]\{s1,...,im}vi = 1.

We call the number of drops allowed as the dropping threshold. The filtering algorithm takes one

read and a dropping threshold d as the input, and outputs all the feasible candidates with dimension

k = m+ d. The detailed steps of the filtering algorithm are listed in Algorithm 2. Please note that

in Step 3, j is not a positive integer, instead it is a tuple that contains one possible combination

of dropping positions. For example, when k = m+ 1, the dropping position could happen at any

position between 2 and m (we do not consider the first dimension nor the last dimension, since it

essentially degenerates to the case k = m), so j is a list that contains just one positive integer; when

d = 2, each j contains two positive numbers.
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input: The reference genome L, the observed read [r1, ..., rm], the dropping threshold d, the
corresponding boolean matrix B, and the dropping index vector v.
output: The matrix C that stores the starting and ending positions for all feasible
candidates.

1. Calculate J as the set that contains all the combinations of possible positions of drops, so
the cardinality of J is

(
m+d−2

d

)
.

2. for j ∈ J do
for i = 1 to N −m− d+ 1 do

[j1, ..., jm] := {i, i+ 1, ..., i+m+ d− 1} \ (i+ j)
if Πm

s=1Bs,jsΠt∈jvt == 1 then
C = [C; i, i+m+ d− 1]

end
end

end
Algorithm 2: Boolean Matrix Based Filtering

Pre-filtering of reference genome One drawback of Algorithm 2 is, the dropping threshold d

is prefixed. This limits our searching space in the whole reference genome. One solution to this issue

is to try different d and merge the outputs. While it is relatively cheap to run Algorithm 2 with

small d, the cardinality of J in Algorithm 2 makes large d prohibitive. In this section, we discuss the

pre-filtering of reference genome, which can significantly increase the searching space of Algorithm 2.

To pre-filter the reference genome, we remove all the fragments in the reference genome with

lengths smaller than a threshold c(T ). For any specific original sequence, we can divide its fragments

into three categories: (1) fragments that map into the observable reads, hence the number of

fragments in this category equals to the dimension of observed read, (2) fragments that are shorter

than c(T ) and map into something un-observable, (3) fragments that are longer than c(T ) and map

into something un-observable.

In Algorithm 2, we allow exact d drops happen in the candidate sequences, hence d is the total

number of fragments in the second and third category above. However, when c(T ) is small enough,

the probability that something below c(T ) maps into a fragment shorter than T is almost 1 (we can

calculate the value of c(T ) based on the semi-parametric distribution), hence as an approximation

we may just remove all the fragments with lengths shorter than c(T ). By doing so the number d is

used to bound the number of sequences in category (3) above, and hence we implicitly allow more
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Table 3.1: Statistics for different cutters.
# of Fragments Mean Median Max Min

Cutter_1 693849 436 2114 18164240 6
Cutter_2 192920 15711 8869 19848848 6
Cutter_3 186644 16240 9948 18171066 7

drops and add flexibility to the algorithm. Define c(T )p as a constant such that

P

[
x ≤

√
c(T )p −

√
T√

c(T )p

]
≤ 1− p. (3.15)

Therefore c(T )p is monotonically increasing in p. Write Lp as the vector after removing all the frag-

ments {li}i∈[N ],li<c(T ) in reference genome L, we call Lp the “filtered genome”. Applying Algorithm 2

on Lp with different p yields faster calculation since we only need to build boolean matrix B on a

shorter vector.

To sum up. In order to avoid narrowing down the searching space of Algorithm 2, we recommend

applying Algorithm 2 on Lp with different choices of (p, d) and merge all the candidate sequences

output by different parameters.

3.4 Numerical Results

In this section, we present our numerical results in two experiments with synthetic optical reads.

In the first experiment, we test the performance of our algorithm on a human reference genome with

different enzyme cutters. In the second experiment, we compare our algorithm with OMBlast on

synthetic reads generated from E.Coli reference genome.

3.4.1 Generating Synthetic Reads

To test the performance of our method, three reference genomes were generated by applying three

different cutters on the same human reference genome. In Table 3.1 we summarize the statistics over

the lengths of fragments correspond to each cutter. Since the cutters are used on the same human

genome, all of these genomes have same lengths and larger number of fragments means more short

fragments.

For each cutter, we randomly sample 1000 original sequences from it. The physical length of

each sampled sequence is determined based on the lengths of our true optical reads.

Now we have 1000 original sequences for each reference genome, the next step is to map each of

the original sequence by three different mapping mechanisms to generate 3000 synthetic reads for
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each cutter. To be specific, we model the relative error by (1) Negative binomial with p = 0.5, (2)

Normal distribution with µ = 0 and σ = 0.1, (3) semi-parametric distribution we fitted.

3.4.2 Details of Implementation

In this section, we discuss the details of our implementation of SPGLM and the filtering algorithm.

Phase 1: Filtering Algorithm In Phase 1, we set T = 400. This number is determined by the

true nature of Bionano optical mapping device. Recall that we want to apply Algorithm 2 on Lp

with different (p, d). In our experiments, we pick d = 1, 2, 3 and p ∈ [0.11, 1] (this corresponds to

c(T )p ∈ [40, 600]).

Phase 2: Calculating Posterior In Phase 2, we set the mean of the poisson cutting procedure

λ =
∑N
i=1 li

250000 , here 250000 is the average physical length of optical reads and is determined by the

Bionano optical mapping device. Note that λ only affects the prior.

To speed up the calculation of likelihood function, we use a lower bound of the posterior probability

to approximate the full posterior. Specifically, we observed the fact that in real experiments, the

true alignment in ∑
q1,..,qm

[
Πm
j=1glqj (rj) ·Πj∈I\{q1,..,qm}Plj (x ≤ T )

]
usually dominates all the other possibilities. To this end, for each candidate sequence [li1 , ..., lik ], we

use a dynamic programming approach to find the set {q̂i}mi=1 such that

{q̂i}mi=1 = arg min
{qi}mi=1∈I={i}ki=1

m∑
i=1

∣∣∣∣∣
√
ri −

√
lqi√

lqi

∣∣∣∣∣ .
The term Πm

j=1glq̂j (rj) · Πj∈I\{q̂i}mi=1
Plj (x ≤ T ) is then used to approximate the likelihood part of

the posterior. We can summarize our implementation by the following steps

1. Pick a set {ptj}sj=1, and d = 1, 2, 3.

2. For every ptj ∈ {ptj}sj=1, get Lptj from L based on c(T )ptj .

3. Calculate vector v from (3.14) based on Lptj .

4. Generate binary matrix B based on Lptj and the specific read r = [r1, ..., rm].
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5. Implement Algorithm 2 with dropping threshold d, filtered reference genome Lptj , optical read

r, and vector v. Assume we get candidate set Cptj ,d
.

6. Merge the candidate sets C = ∪sj=1Cptj ,d
.

7. Calculate the posterior of every candidate in C.

Results on Synthetic Reads from Human Reference Genome After Phase 2, we can rank

the candidate sequences according to their corresponding posterior likelihoods. Each candidate

sequence can be uniquely identified by its starting and ending positions in the reference genome (not

the filtered reference genome). For any two sequences with starting and ending positions (s1, e1) and

(s2, e2), we use |s1 − s2|+ |e1 − e2| to measure the physical distance between them. Since we are

doing numerical analysis on synthetic data, the exact starting and ending positions of each original

sequence are known to us. Therefore, for each read, we can calculate the physical distances between

its corresponding original sequence and the candidate sequences found by the algorithm. We call the

candidate sequence that has the smallest physical distance with the original sequence as the “closest

match”.

The numerical results is summarized in Table 3.2. Due to the space limitation, we use short

names for each column. The corresponding descriptions of columns are under the table. Two desired

properties regarding the closest match are

1. The distance between closest match and the true original sequence is small. In Table 3.2 we

use “D” to denote this distance, note D is non-negative. A small D means our algorithm finds

a candidate close to the truth.

2. The posterior likelihood of closest match is large. Note that even if closest match is the original

sequence, to actually pick it out from large amount of candidates, we are more likely to pick it if

it is inside some confidence region. In Table 3.2 we use “Post” to denote its posterior likelihood.

Alternatively, we want the closest match to have high rank among candidate sequences. This

is represented by the third column in Table 3.2, which demonstrates the portion of closest

matches that rank top 10 among the candidates.

Algorithm 2 can deliver better results with respect to the second and third cutters in the sense

that, in larger percentage of cases we can successfully find the true original sequence. While our
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Table 3.2: Results on human reference genome

Generating distribution # Reads D = 0 D ≤ 2 Post >0.9 Rank top 10

Normal 995 59.20% 91.06% 62.81% 90.25%
NB 997 61.08% 91.88% 72.02% 94.28%
Semi-Para 985 53.71% 82.03% 36.04% 68.02 %
Normal 998 91.28% 98.70% 90.38% 98.8 %
NB 998 92.59% 99.30% 94.79% 99.8%
Semi-Para 982 89.51% 96.64% 72.40% 96.23%
Normal 996 93.37% 99.60% 92.37% 98.9%
NB 998 93.29% 99.60% 95.09% 98.5%
Semi-Para 985 88.43% 96.95% 73.40% 96.04%

Each block corresponds to the same reference genome cut by a specific enzyme cutter. For each
genome, three different random mechanisms are used to generate the observed reads. In the second
column, we record the number of outputs for each category (due to running time limit, we did not
get the results for some reads). The third and fourth columns record the percentage of cases where
the closest match is close to the true original sequences. The fifth column is the percentage of cases
where closest match has a posterior likelihood larger than 0.9. The last column is the percentage of
cases where closest match has a posterior likelihood rank top 10 among all candidate sequences.

algorithm does not take into account the structural variant at this moment, we can potentially use it

for data with structural variant as well.

Comparison with OMBlast Mapping Tool In this section, we compare the performance of

our algorithm with another state-of-the-art mapping tool called OMBlast [Leung et al., 2017b] on

the synthetic datasets generated from Escherichia coli reference genome.

Specifically, we generated synthetic reads from two different types of data generation mechanisms.

The first type is from OMBlast’s data generator, where sizing error is decomposed into scaling error

and measurement error. Note that OMBlast is capable of handling missing and extra signals, which

is not supported by our algorithm at this moment. Therefore in the simulation we disabled the

generation of missing and extra signals. The second type is the same as the previous section, where

sizing error is modeled through relative error in (3.5). Similar as before, we generate the relative

error based on three different generating distributions. We also added backward reads to make fair

comparisons.

The results are summarized in Table 3.3. To decide the direction of mapping from our algorithm,

for each specific read [r1, .., rm] we run our algorithm on both [r1, .., rm] and [rm, .., r1]. The

normalized constants based on two runs are then used to decide the direction of the mapping.
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Table 3.3: Comparison with OMBlast

Generating mechanism # Reads Semi Strong Semi Weak Semi All OMB All
OMB 2995 95.53% 0.03% 95.56% 97.83%
Semi-Para 3000 84.53% 0.3% 84.83% 9.1%
Normal 3000 92.4% 0.03% 92.43% 34.03%
NB 3000 94.47% 0.07% 94.53% 90.33%

The first column records the data generation mechanisms, where first raw comes from data generator
of OMBlast, second to fourth rows come from relative error with different generating distributions.
The second column records the number of synthetic reads under different mechanisms. The third
column records the cases where our algorithm find the true original sequences among the top 10
candidate sequences, while the fourth column records the cases where our algorithm finds the true
original sequence but the direction is incorrect. The fifth column is the sum of the third and fourth
columns. The last column records the percentages of cases where OMBlast successfully find the
original sequences.

Note that OMBlast occasionally output the partial alignments. In Table 3.3, we deemed that

OMBlast successfully finds the original sequence if and only if: (1) the partial alignment has

overlapping with true original sequence, (2) at least half of the read is correctly mapped back to the

original sequence.

From Table 3.3 we can see that our algorithm performs consistently well across different generating

mechanisms, while OMBlast performs very poorly with medium to large sizing errors. The biggest

advantage of our approach over OMBlast is, once the semi-parametric distribution is fitted from

data, we do not need to specify any hyper-parameters. While one needs to specify the parameters

for OMBlast that controls its tolerance to sizing error.

3.5 Extension to Other Mapping Tools

In this section, we extend the likelihood function in (3.1) to account for missing/extra signals.

From this extension, we could potentially stack our semi-parametric likelihood model and other

filtering algorithms ( OMBlast Leung et al. [2017b], TWINS Muggli et al. [2014], SOMA Nagarajan

et al. [2008] etc.) together.

We start from the following assumptions

1. Each enzyme site has independent chance of missing, the probability of missing is pm.

2. The number of extra signals in a sequence with length
∑k

j=1 lij follows a Poisson distribution

with mean λe
∑k

j=1 lij , here λe is the extra signal rate.
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3. The number of missing signals and extra signals are known to us. The sequence [li1 , li2 , ..., lik ]

is observed AFTER we remove the missing sites and add the extra sites.

Now for observed read [r1, ..., rm] and candidate sequence [li1 , li2 , ..., lik ], write nm and ne as the

number of missing/extra signals, and tl =
∑k

j=1 lij . We then have

P ([li1 , ..., lik ]) ∝
(
λ

L

)(
eλc

eλ

)(
pm

1− pm

)nm ((λetl)
nee−λetl

ne!

)
. (3.16)

Here we add missing/extra signals by Bernoulli trials and Poisson distribution.

In reality, we only have access to L before removing the missing signals and adding extra signals,

which is the opposite of Assumption C above. However, alignment tools like OMBlast is able to

infer the missing and extra signals. Specifically, OMBlast outputs the sequence [li1 , ..., lik ] together

with the inferred positions of missing/extra signals. From these information, we can directly get the

candidate sequence after add missing/extra signal errors, this is our Assumption C.

To sum up, with the modification in (3.16), we can use (3.1) to directly calculate the likelihoods

of every candidate sequence output by OMBlast and other filtering algorithms.
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CHAPTER 4

Subspace Clustering through Sub-Clusters

4.1 Introduction

In data analysis, researchers are often given data sets with large volume and high dimensionality.

To reduce the computational complexity arising in these settings, researchers resort to dimension

reduction techniques. To this end, traditional methods like PCA [Hotelling, 1933] use few principal

components to represent the original data set; factor analysis [Cattell, 1952] seeks to get linear

combinations of latent factors; subsequent works of PCA include kernel PCA [Schölkopf et al.,

1998], generalized PCA [Vidal et al., 2005]; manifold learning [Belkin and Niyogi, 2003] assumes

data points collected from a high dimensional ambient space lie around a low dimensional manifold,

and muli-manifold learning [Liu et al., 2011] considers the setting of a mixture of manifolds. In

this dissertation, we focus on one of the simplest manifold, a subspace, and consider the subspace

clustering problem. Specifically, we approximate the original dataset as an union of subspaces.

Representing the data as a union of subspaces allows for more computationally efficient downstream

analysis on various problems such as motion segmentation [Elhamifar and Vidal, 2009], handwritten

digits recognition [You et al., 2016a], and image compression [Hong et al., 2006].

4.1.1 Related Work

Many techniques have been developed for subspace clustering, see Vidal [2010] for a review. The

mainstream methods usually include two phases: (1) calculating the affinity matrix; (2) applying

spectral clustering [Ng et al., 2002] to the affinity matrix to compute a label for each data point.

For phase (1), the property of self-representation is often used to calculate the affinity matrix:

self-representation states that a point can be represented by a linear combination of other points in

the same subspace. Specifically, Elhamifar and Vidal [2009] proposed the sparse subspace clustering

(SSC) algorithm which solves the lasso minimization problem N times, where N is the total number

of data points. Similarly, Rahmani and Atia [2017] proposed the direction search algorithm (DSC)

which uses `1 minimization to find the “optimal direction” for each data point, these directions
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are then used to cluster the data points. One of the main drawbacks of SSC and DSC is their

computational complexity of O(N2) in both time and space, which limits its application to large

datasets. To address this limitation, a variety of methods have been proposed to avoid solving

complicated optimization problems in constructing the affinity matrix. Heckel and Bölcskei [2015]

used inner products with thresholding (TSC) to calculate the affinity between each pair of points,

Park et al. [2014] used a greedy algorithm to find for each point the linear space spanned by its

neighbors, similarly Dyer et al. [2013] and You et al. [2016c] used orthogonal matching pursuit

(OMP), You et al. [2016b] used elastic the net for subspace clustering (ENSC) and proposed an

efficient solver by active set method. However, these methods require running spectral clustering on

the full N ×N affinity matrix. A Bayesian mixture model was proposed for subspace clustering in

Thomas et al. [2014], but its parameter inference is not scalable to large dataset. Zhou et al. [2018]

used a deep learning based method which does not have theoretical guarantee.

Recently, there have been two methods that increase the scalability of sparse subspace clustering.

The SSSC algorithm and its varieties [Peng et al., 2016] clusters a random subset of the whole

dataset and then uses this clustering to classify or label the out-of-sample data points. This method

scales well when the random subset is small, however a great deal of information is discarded as only

the information in the subset is used. In You et al. [2016a] a divide and conquer strategy is used

for SSC—the data set is split into several small subsets on which SSC is run, and clustering results

are merged. This method cannot reduce the computational complexity of the SSC by an order of

magnitude so is limited in its ability to scale to large dataset.

4.1.2 Contribution

In this chapter, we propose a novel, efficient sampling based algorithm with provable guarantees

that extends the ideas in previous scalable methods [Peng et al., 2016, You et al., 2016a]. A key

observation driving our algorithm is the fact that only a small fraction of the original dataset is

needed to recover the membership of each point, hence clustering a subset of the data should be

adequate. In particular, for each point in the subset we find its nearest neighbors in the complete

dataset and use these points to construct a sub-cluster, these sub-clusters contain information from

the entire dataset and not just the random sample. The affinity matrix for the subset is then

constructed from these sub-clusters. The idea is that we change the problem from “clustering of data

points” to “clustering of sub-clusters”, which integrates information across the dataset and should
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deliver better clustering results.

We provide theoretical guarantees for our procedure in Section 4.3. The analysis reveals that

under mild conditions, the subspaces can share arbitrarily many intersections as long as most of their

principal angles are larger than a certain threshold. While our algorithm for finding neighboring

points is similar to that of Heckel and Bölcskei [2015], the data generation model and assumptions

underlying our theorems are different–we take into account the fact that after normalization the

noisy terms will no longer follow a multivariate normal distribution. While our work is originally

designed for linear subspace clustering problems. The idea of clustering through sub-clusters can be

easily extended our to general clustering problems. See our discussion in Section 4.2.1.

We apply our algorithm to both synthetic and real world datasets. The experimental results

demonstrate that our method is highly scalable and can deliver superior accuracy compared to other

state-of-the-art methods.

4.1.3 Chapter Organization

The rest of this chapter is organized as follows: in Section 4.2, we describe the model setting and

the implementation of our clustering procedure, in Section 4.3 we state theoretical guarantees for

our procedure and explain in some details the geometric and distributional intuitions underlying our

procedure. The detailed proofs can be found in Appendix C.1, in Section 4.4 we present experiments

on four datasets and compare our method with state-of-the-art methods, a comprehensive report of

the numerical results can be found in Appendix C.3.

4.1.4 Notation

Throughout this chapter, unless specified otherwise, we use capital bold letter to denote data

matrix, and corresponding lower bold letter to denote the columns of it. In this chapter, we are given

a dataset Y with N data points in RD. Write yi as the i-th column of Y, and Y−i is the matrix

Y with the i-th column removed. Similarly, we write y−j as vector y with the j-th entry removed.

The complement of event E is denoted by E{. We use subscript with parenthesis to represent the

order statistics of entries in a vector, for example a(i) is the i-th smallest entry in vector a, while

without ambiguity both a(i) and ai refer to the i-th element of vector a. The unit sphere in Rd

is denoted bySd−1. We assume each data point of Y concentrates near exactly one of K linear

subspaces denoted by {Sk}Kk=1. Here K is a known constant and Sk is the k-th linear subspace. The

subspace clustering problem aims assigning to each point in Y membership to a subspace (cluster)
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Sk.

We write dk as the dimension of subspace Sk and Uk ∈ RD×dk as its corresponding orthogonal

base. The number of points belong to cluster Sk is Nk. We use yi
(k) ∈ RD to represent a single

point from the k-th cluster, the set {y1
(k), ...,yNk

(k)} contains all points that belong to Sk. Finally,

we write Fm,n as the F distribution with parameters (m,n), Dir(α) as the Dirichlet distribution

with parameter vector α, and β(a, b) as the Beta distribution with parameters (a, b).

4.2 Sampling Based Subspace Clustering

In this section, we introduce our sampling based algorithm for subspace clustering (SBSC). The

detailed steps of this algorithm will be presented in Section 4.2.1. In Section 4.2.2 we discuss the

issues regarding hyper-parameters. In Section 4.2.3 we provide comments on both the intuitions

underlying the procedure and the advantages of our procedure. Throughout this section, we assume

the columns of Y have unit ` norm.

4.2.1 The Algorithm for Sampling Based Subspace Clustering

Our main algorithm takes the raw data set Y and several parameters as input and outputs the

clustering assignment for each point in the dataset, it proceeds in two stages (see Algorithm 3 for

details):

• Stage 1: In-sample clustering

a Draw a subset Ŷ of n� N points. Step 1 in Algorithm 3.

b For each point ŷi ∈ Ŷ, find its dmax nearest neighboring points in Y and use Ci to denote

the index set of these points. We call YCi the sub-cluster corresponds to ŷi. Step 2 in

Algorithm 3.

c Compute the affinity matrix D where each element Dij is the similarity calculated between

YCi and YCj . Step 3 in Algorithm 3.

d Sparsify the affinity matrix by removing possible spurious connections. Step 4 in Algo-

rithm 3.

e Cluster the points in Ŷ based on spectral clustering of the sparsified affinity matrix. Step

5 in Algorithm 3.

• Stage 2: Out-of-sample classification
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a Fit a classifier to the clustered points in the subset and classify the out-of-sample points

in Y \ Ŷ. This is Step 6 in Algorithm 3.

Step (1b) computes a neighborhood of points around each sampled points by thresholding inner

product similarities, the same method that was used in Heckel and Bölcskei [2015]. The intuition

behind this step is that for normalized data, two vectors are more likely to lie in the same linear

subspace if the absolute magnitude of the inner product between the points is large. We may also

use other measure of similarities in Step (1b) to find the neighboring points. In Section 4.4 and

Appendix C.3, we will present the experimental results based on other measure of similarities as

well. More generally, for non-linear clustering problems, we can use kernels to replace inner products

in measuring similarities.

The idea of using distance between the sub-clusters to construct an affinity matrix in step (1c)

relies on the self-representative property of linear subspaces — see Theorem 4.3.2 for technical

details as well as some of the basic concepts underlying self-representation. Please note that each

entry of affinity matrix measures the closeness between data points, hence it decreases with distance

function. There is both theoretical and empirical evidence that sparsification of an affinity matrix by

setting smaller elements to zero improves clustering results [Belkin and Niyogi, 2003, Von Luxburg,

2007]. For this reason in step (1d) we threshold the affinity matrix. Once the subset is clustered,

the remaining points are labeled via a regression approach where a regression model is fitted on

the clustered data, specifically a residual minimization model by ridge regression. Note that any

classifier can be used to do the out-of-sample classification. While ridge regression model is proved to

work well for linear subspace clustering problems in this chapter, we encourage users of Algorithm 3

to choose different classifier (svm, random forest, or even deep neural networks etc.) based on their

own understandings of data.

4.2.2 Practical Recommendations for Parameter Setting

In Algorithm 3 (SBSC), we assume the number of clusters is known—several methods have been

developed for the estimation of the number of clusters from data, see Ng et al. [2002]. Intuitively, n

should be large enough so that it can well represent the structure of whole data set while still be

relatively small to reduce the computational complexity, in our numerical experiments, we choose n

to be linear in K logN . See Section 4.3 for theoretical considerations.
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input :Data Y, number of subspaces K, sampling size n, neighbor threshold dmax,
regularization parameters λ1 and λ2, residual minimization parameter m, affinity
threshold tmax.

output :The label vector ` of all points in Y
1. Uniformly sample n points Ŷ from Y.
2. Construct the sub-clusters:
for i = 1 to n do

p = |〈ŷi,Y〉|;
Ci := {j : |〈ŷi,yj〉| ≥ p(N−dmax)}.

end
3. Construct affinity matrix Dij = e

−d(YCi ,YCj )/2 for i 6= j ∈ {1, ..., n} and

d(YCi ,YCj ) = ||YCi −YCj (Y
T
CjYCj + λ1I)−1YT

CjYCi ||F
+||YCj −YCi(Y

T
CiYCi + λ1I)−1YT

CiYCj ||F .

4. Sparsify the adjacency matrix:
for i = 1 to n do

v := Di·;
for j = 1 to n do

if Dij ≤ v(n−tmax) then
Dij := 0

end
end

end
5. Cluster Ŷ : let D̃ = D + DT and cluster the in sample points in Ŷ by applying spectral
clustering on D̃, use `in to denote the labels of Ŷ.

6. Label the remaining points: use the Residual Minimization by Ridge Regression (RMRR)
algorithm in Appendix C.2 to classify the remaining points in Y \ Ŷ, specifically for the
out-of-sample label we have

`out = RMRR(Y \ Ŷ, Ŷ, `in, λ2,m)

7. Combine `in and `out to get `, the label of the whole dataset Y.
Algorithm 3: Sampling Based Subspace Clustering (SBSC) algorithm.
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Ideally, each sub-cluster YCi should well represent the subspace it belongs to, i.e. contains at

least one basis of that subspace. Therefore we want dmax to be larger than maxk=1,...,K dk which

is unknown, for this reason we set dmax to be linear in D. Similarly the residual minimization

parameter m should also be linear D.

In choosing λ1, we recommend using λ1 = 1
D (maxi=1,...,n

√∑d
j=1

1
a2ij

)−1 here aij corresponds to

the j-th positive singular value of YCiY
T
Ci , see Appendix C.1 for analytical considerations.

Threshold Selection The spectral clustering algorithm can deliver exact clustering result [Von Luxburg,

2007] if the graph induced by the affinity matrix D+DT has no false connections; and has exactly K

connected components. For a large threshold parameter tmax on the affinity matrix more entries in

D will be kept and our algorithm is more likely to have false connections, while small tmax eliminates

false connections but might incur non-connectivity.

Let us consider a heuristic situation: the subset we sampled contains exactly the same points

(hence n
K points) for each cluster. Then if we choose the threshold index tmax to be n

2K , the induced

graph from our affinity matrix will have no false connection (given that points from same subspace

have bigger similarities between each other) and the clusters themselves will be connected, therefore

the spectral clustering algorithm will deliver the exact clustering result [Luxburg et al., 2005].

In reality clusters do not usually have same points in Ŷ, hence we choose tmax to start from a

relatively large number n
0.5K and gradually increase it. Based on different threshold values, we can

generate different label vectors on the subset Ŷ, intuitively label vectors that can deliver highly

accurate results should be similar to each other or stable. Based on this intuition, we developed a

simple adaptive algorithm for finding an “optimal” affinity threshold tmax, see supplementary code

for details. Based on our observation, choosing tmax adaptively works well with datasets where each

cluster has large amount of points.

Combining Runs of the Algorithm Thanks to the speed efficiency of our algorithm. We can

conduct several independent runs for one experiment (for sampling based algorithms, the results

between independent runs might be different) with decent running time. In order to make full use

of such advantage, we designed an algorithm to combine the results, or “bagging” the results, from

several runs of SBSC. Unlike the classification problem, we need to unify the label vectors before
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voting or in other words we need to deal with label switching, see the supplementary code for details

on how label switching is addressed. Please note that this bagging algorithm can be used for any

clustering algorithms. In Section 4.4 and Appendix C.3 we report the results, both with and without

bagging, for all sampling based algorithms.

4.2.3 Comments on the Algorithm

In this section, we make some comments on SBSC to explain the intuitions behind it.

Motivation of Sampling A theoretical result was developed in Luxburg et al. [2005], where

under certain assumptions, the spectral clustering results on subset Ŷ will converge to the results on

the whole dataset Y. While the result is not directly applicable to our algorithm since it requires

the distance function to be continuous and larger than a fixed constant, it gives us the insight that

as the sample size n increases properly with N , Ŷ is almost as informative as Y.

Another motivation of using sampling based algorithm is the computational limitation. Traditional

spectral clustering based algorithms need to build the “neighborhood” for each of the N points (by

lasso, omp etc.), thus the complexity is usually at least O(N2) (both in time and space), while

sampling based algorithms do this step only for the subset, using classification algorithms to label

the out-of-sample points requires O(N logN) in time (given that n, D are linear in logN) with

much less memory.

Advantages over Existing Sampling Based Methods While most sampling based algorithms

use only the information in Ŷ, our algorithm seeks to borrow information from Y by finding nearest

points for each sampled point among the whole dataset. This makes it possible to get a neighborhood

with decent size and no false connections for each sampled point. While for traditional methods

that apply clustering algorithms purely on the subset, each sampled point only has few neighboring

points.

The affinity matrix we build on Ŷ is calculated from the sub-cluster-wise distance, under which

the affinity between two points in Ŷ is measured by the affinity between the corresponding sub-

clusters. In this chapter, we empirically demonstrated the advantages of SBSC over existing sampling

based methods by showing that clustering through sub-clusters can significantly boost the clustering

accuracy on the subset.

40



4.3 Clustering Accuracy

In this section, we analyze several theoretical properties of SBSC. Specifically, we proved that

under certain conditions, our algorithm has sub-cluster preserving property (defined later) in Stage 1

and can deliver exact out-of-sample classification in Stage 2, all with high probabilities. Throughout

this section we conducted our analysis under the noisy case, for simplicity we also assume all

subspaces have same dimension d. The clustering problem is hard with large d
N ratio, since this

means each point is less informative.

4.3.1 Model Specification for Provable Results

Note that in Algorithm 3 we assume the data matrix Y has unit column norm, this can always

be achieved by normalizing each column of original data matrix. Specifically, we write the data

generating equation for the original data point as

ŷi
(k) = ζ

(k)
i Uka

(k)
i + ê

(k)
i ,

here a
(k)
i ∈ Rd is sampled from the uniform distribution on the surface of Sd−1, ζ(k)

i is a random

scalar such that ζ(k)2
i ∼ χ2

d, and ê
(k)
i ∼ N (0, dσ2ID).

Write y
(k)
i as the normalized version of ŷi

(k). We have the following relation

y
(k)
i =

Uka
(k)
i + σe

(k)
i

||Uka
(k)
i + σe

(k)
i ||2

. (4.1)

One can show that each entry in e
(k)
i follows t-distribution with d degrees of freedom, and ||e

(k)
i ||

2
2

D ∼

FD,d (F -distribution with parameters (D, d)). Numerically, the normalizing constant ||Uka
(k)
i +

σe
(k)
i ||2 will be approximately 1. In Heckel and Bölcskei [2015], the normalizing constants are treated

directly as 1, under which e
(k)
i is a multivariate Gaussian vector. In Section 4.3, we explicitly account

for the normalizing constant ||Uka
(k)
i + σe

(k)
i ||2 and have done detailed distributional analysis.

We write λ(ij)
1 ≥ λ(ij)

2 ≥ ... ≥ λ(ij)
d correspond to the cosine values of principal angles between Si

and Sj , hence λ(ij)
1 ≤ 1 and λ(ij)

d ≥ 0. Note λ(ij)
k = λ

(ji)
k for 1 ≤ k ≤ d and 1 ≤ i < j ≤ K. For each

subspace Sk, we define the uniformly maximal affinity vector to quantify its closeness with respect

to all other subspaces.

Definition 4.3.1. For each subspace Sk, its uniformly maximal affinity vector with respect to other
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subspaces is [λ
(k)
1 , ..., λ

(k)
d ] such that

λ
(k)
i = max

j 6=k
λ

(kj)
i .

If the uniformly maximal affinity vectors have small entries, we should be able to decrease the

“false discovery” in {YCi}ni=1. Formally, we have the following definition.

Definition 4.3.2. We say Algorithm 3 has sub-cluster preserving property if each YCi only contains

points from the same subspace as ŷi.

If SBSC has sub-cluster preserving property and YCi concentrates around Sk, we can write

YCi = UkB̂i + Êi. Here each column of B̂i ∈ Rd×(dmax+1) is a sample from uniform distribution on

Sd−1 divided by its corresponding normalizing constant, and each column of Êi ∈ RD×(dmax+1) is a

noise vector divided by its corresponding normalizing constant. We write B̂i′j as the j-th column

of matrix B̂i, and similarly for Êi′j . Then we have ‖UkB̂i′j + Êi′j‖2 = 1. For convenience we also

write Bi as the “un-normalized” version of B̂i, hence B̂i has unit column norm, similar notation is

used for Ei.

In constructing the affinity matrix D, we want the following property: points that belong same

subspace have relatively bigger affinities (hence smaller distances) between each other, this property

can be formally defined as:

Definition 4.3.3. We say YCi has the correct neighborhood property with distance function d(·, ·) if

d(YCi ,YCj ) < d(YCi ,YCk)

for any 1 ≤ j 6= k ≤ n such that YCj concentrates around the same subspace with YCi and YCk

concentrates around a different subspace.

4.3.2 Theoretical Properties of SBSC

In this section, we will discuss three theoretical properties regarding Algorithm 3, detailed proofs

can be found in Appendix C.1.

Assumptions In this section, we list all the assumptions used by lemmas and theorems of this

chapter, notice A2 subsumes A1 part 2, A3 includes A1, and A4 assumes a modification of A1, A2

and A3.
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A1. There exist constants Tl, Tu, and ρ such that:

T 2
l ≤ min

k=1,...,K
Q1− dmax

N
1−ρ
k

, Tl ∈ (0,

√
2

2
), (4.2)

T 2
u ≥ max

k=1,...,K
Q1− 1

N
1+ρ
k

, Tu ∈ (0,

√
2

2
), (4.3)

here Qp denotes the upper p quantile of a Beta distribution with parameters (1
2 ,

d−1
2 ).

A2. There exist positive constants {gi}2i=1, η and ρ ∈ (0, 1), such that if we write T =
4g2+2g22

1−g2 +

1+g2
1−g2 g1, the following inequalities hold: (4.2) with Tl replaced by g1, and

d∑
i=1

(
g2

1 − λ
(k)2
i

)2

+
>

d∑
i=1

(
g2

1 − λ
(k)2
i

)2

−
,

d∑
i=1

(
g2

1 − λ
(k)2
i

)
+
>

d∑
i=1

(
g2

1 − λ
(k)2
i

)
−
, (4.4)

g2
2

Dσ2
> 3 +

6

η
,

d

logN
≥ (2 + 2η)2. (4.5)

A3. There exist positive constants Tl, Tu, q0, ρ and t such that the following inequalities hold:

(4.2), (4.3), dmax > d and

(T 2
l dmax − C2)C2 − T 2

u (1− T 2
u )C2

1

T 2
l dmax

≥ q0, (4.6)

here

C1 =

(
2 + t

√
logN

d− 2

)√
dmax, C2 =

(
1− T 2

u

)(√ 2dmax
π(d− 1)

− 2− t
√

logN

d− 2

)2

.

A4. There exist positive constants Tl, Tu, g, λ, η, q0, ρ and t such that the following inequalities

hold: (4.2), (4.3), (4.4) with g1 replaced by Tl, (4.5) with g2 replaced by g, (4.6) and

(2g − g2)(1 + g)
√
d (dmax + 1)

q0(1− g)
≤ 1

2
,

5λ(1 + g)2
√
d(dmax + 1)

q0(1− g)
≤
√

1− T 2
l . (4.7)

Assumption A1 is used to bound the order statistics of a Beta distribution in Lemma C.1.2. For

example, if we write Nk = 10000, dmax = 3d, T 2
l = 0.08, and ρ = 0.05, then inequality (4.2) translates

to d
logNk

< 6. With the same setting and we pick T 2
u = 0.4, then (4.3) translates approximately to
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d
logNk

≥ 4. In general, the bounds on d
logNk

are wider for larger Nk.

Assumption A2 is the subspace separation assumption. We use it for the proof of Theorem 4.3.1.

In Appendix C.1, we show that SBSC requires most of {λ(k)
i }

d K

i=1k=1 to be smaller than g1. This

means large g1 implies an easier clustering problem for SBSC, and vice versa. Throughout this

chapter we call g1 the affinity threshold. Note that T is a upper bound of the affinity threshold

g1, specifically if there was no noise T = g1. From (4.2) we know that large d
logN implies a small

T and g1. Therefore, large d makes the clustering problem harder. This agrees with our intuition.

Consider the extreme case where the subspaces are orthogonal with each other, then {λ(k)
i }

d, K
i=1,k=1

are 0. This means (4.4) are naturally true with any positive constant g1. Finally, the constant g2 in

(4.5) controls the noise term. From the first condition in (4.5) we have σ < g2√
D
.

Assumption A3 guarantees the sub-clusters {YCi}ni=1 are informative. We use it mainly for the

proof of Lemma C.1.5. Here the term C2 is closely related to the permeance statistics (Lerman et al.,

2012), which measures how well a set of vectors is scattered across a space. Therefore a large dmax
d

implies that these vectors are well scattered. Specifically, if ρ = 0.05, Nk = 100000, dmax = 90d, and

we want q0 ≥ 1, A3 requires d
logNk

≤ 5.5 1.

Assumption A4 is a combination of all previous assumptions, with slightly stronger conditions on

subspace similarities and noise level; we use it for the proof of Theorem 4.3.2. Here g again controls

the magnitude of the norm of noise terms.

Theoretical Properties of SBSC Two theorems regarding the State 1 of SBSC are discussed in

this section.

Theorem 4.3.1. Under Assumption A2, SBSC has sub-cluster preserving property with probability

at least

1−
K∑
j=1

nj(Nj − dmax)

dmax(Nj + 1)(Nρ
j − 1)2

− 2(K − 1)ne−ε
2 − 2N

N
(1+ η

2+η
)2 − 2

, (4.8)

1As we change d
logNk

from 4 to 5.5, T 2
l changes from 0.06 to 0.04, T 2

u changes from 0.36 to 0.28. In this example, dmax
d

is fairly large. In the numerical section we found it is usually not necessary to choose large dmax. A better bound in
Corollary C.1.3 might be helpful the bridge the gap between numerical experiments and theoretical guarantee.
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where

ε = min
k

∑d
i=1

(
g2

1 − λ
(k)2
i

)
+
−
∑d

i=1

(
g2

1 − λ
(k)2
i

)
−

2

√∑d
i=1

(
g2

1 − λ
(k)2
i

)2

+
+

√
4
∑d

i=1

(
g2

1 − λ
(k)2
i

)2

+
+ 2

∑d
i=1

(
g2

1 − λ
(k)2
i

)
+

. (4.9)

If the subspaces are orthogonal with each other, i.e. {λ(k)
i }

d, K
i=1,k=1 = 0. Equation (4.9) is

ε =

√
d

2 +
√

4 + 2
g21

.

This shows ε is linear in
√
d and monotonically increasing in g2

1. Appendix C.4 establishes general

conditions on g1 and {λ(k)
i }

d, K
i=1,k=1 under which ε grows like

√
d. Combining this with Assumption

A2, we observe that the third term of (4.8) is small for large N .

Next, we use the sub-cluster preserving property established in Theorem 4.3.1 to prove the

theoretical guarantee for correct neighborhood property (see Definition 4.3.3). We define a distance

function between two sub-clusters as

d(YCi ,YCj ) = ||YCi −YCj (Y
T
CjYCj + λI)−1YT

CjYCi ||F + ||YCj −YCi(Y
T
CiYCi + λI)−1YT

CiYCj ||F ,

(4.10)

here λ > 0 is the regularization parameter.

Theorem 4.3.2. Assume sub-cluster preserving property is true for SBSC with probability at least

1− ps, and Assumption A4 is satisfied. Then {YCi}ni=1 have the correct neighborhood property with

the distance function (4.10) with probability at least

1− ps − 4n(n− 1)e−ε
2 − 2n

N t2/2
−

K∑
k=1

2nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2N

N
(1+ η

2+η
)2 − 2

,

here ε is defined in (4.9) with g1 replaced by Tl.

4.4 Experimental Results

In this section, we test our algorithm on both synthetic and real world data sets. In addition to

SBSC, we also tried using different methods to find neighboring points in Step 2 of SBSC. For the

rest of this section and Appendix C.3, we call the original SBSC algorithm (described in Algorithm 3)
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as SBSC-TSC, the algorithm that replaces Step 2 with lasso minimization to find neiboring points

in Algorithm 3 as SBSC-SSC, and similarity for SBSC-DSC.

The performance of SBSC family is compared to other state-of-the art algorithms. This include

classic subspace clustering method: Sparse Subspace Clustering (SSC,Elhamifar and Vidal, 2009,

You et al., 2016a), Thresholding Subspace Clustering (TSC, Heckel and Bölcskei, 2015), Direction

Search Subspace Clustering (DSC, Rahmani and Atia, 2017), Least Squares Regression (LSR, Lu

et al., 2012), Low-Rank Representation (LRR, Liu et al., 2010), Subspace Clustering by Orthogonal

Matching Pursuit (SSC-OMP, You et al., 2016c), Elastic Net Subspace Clustering (ENSC, You

et al., 2016b); and scalable representation-based algorithms: Scalable Sparse Subspace Clustering

(SSSC), similarly for other notations like STSC, SDSC etc. [Peng et al., 2013]. For most of them we

replicated their results on our machine to make fair comparisons, some of the results were copied

from the original papers due to the unavailability of codes.

Throughout this section, we use clustering accuracy [You et al., 2016c], nmi [Zhou et al., 2018]

and running time as the metrics for performance evaluation. To demonstrate the advantages of

using sub-clusters (i.e. borrowing information from the whole dataset) to cluster the data points in

the subset, for sampling based algorithms we also report their clustering accuracy on the subset.

In the rest of this chapter, we call the clustering accuracy on the whole data set as accuracy, and

the clustering accuracy on the subset as accuracy-sub. For randomized algorithms, reported results

are averaged over 10 trials. The parameters setup for all algorithms can be found directly in the

supplementary codes.

Note that due to limitations of running time and space, for different datasets we might present

results on different sets of algorithms. A more comprehensive report on numerical results is presented

in Appendix C.

4.4.1 Results on Synthetic Data Set

The data generation mechanism of our synthetic data was based on Section 4.3.1. For synthetic

datasets, we want to compare the tolerance to noise between different sampling based algorithms as

well as the scalability of our algorithm.

Tolerance to Noise In this section, we test the tolerance to noise of our algorithm. From (4.1)

we can calculate E
[
σ2‖e(k)

i ‖22
]

= σ2 Dd
d−2 . Since the un-normalized signal Uka

(k)
i of y

(k)
i has unit
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Figure 4.1: Tolerance to Noise: Accuracy

norm, throughout this chapter we define
√

Dd
d−2σ as the noise level.

We change the noise level from 0.1 to 0.5. For each noise level, we simulate 10 datasets, each

of them has K = 20 subspaces, where each subspace contains Ni = 10000 data points. The result

is averaged over 10 different datasets for each noise level.For all the sampling based algorithms we

fixed n = 200 as the sampling size.

The results are presented in Figure 4.1 (accuracy) and Figure 4.2 (accuracy-sub). The small

discrepancy between two sides shows both sampling based algorithms can deliver consistent results

between in sample clustering and out-of-sample classification. At the same time, the SBSC based

algorithms constantly deliver much higher accuracy-sub, this means for the synthetic datasets,

borrowing information from the whole data set significantly enhanced the clustering results for

subset.
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Figure 4.2: Tolerance to Noise: Accuracy

Scalability In this section, we test the scalability of SBSC-TSC. 2 Specifically, we randomly

generate K = 20 subspaces in an ambient space with dimension D = 30, each of the subspaces has

dimension di = 5. We increase Ni from 100 to 51200, so the corresponding N increases from 2000 to

1024000. The sampling size n is b2K log(N)c.

The result is presented in Figure 4.3. On the right hand side y-axis, we show the average accuracy,

which is around 95% across all experiments, against the number of data points N , this could justify

our choice of n. On the left hand side y-axis, we show the scale plot between running time and

N , the linear pattern here agrees with our complexity analysis. As we increase the number of data

points N , the accuracy on the whole data set slightly gets higher, this implies our algorithm is

particularly useful for large datasets.

4.4.2 Results on Real World Datasets

In this section, we test SBSC on three real world datasets. These datasets were selected to have

small, medium and large data size respectively. As expected, the advantage of SBSC over other

2The SBSC-SSC and SBSC-DSC algorithms run fairly slow under our simulation setting. The main reason is, we only
tried using vanilla solvers to handle the additional optimization problems in SBSC-SSC and SBSC-DSC, which could
be inefficient. Existing accelerated version of SSC [You et al., 2016a] is designed for the full data matrix, and DSC
solver also involves manipulation of full data matrix. Exploring scalable SSC and DSC solvers for partial data matrix
beyond the scope of this chapter.
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Figure 4.3: Scalability

We change the number of points N from 2000 to 1024000, for each N we generate 10 datasets and
the final result is averaged over 10 independent runs.

state-of-the-art algorithms changes from marginal to significant.

The Extended Yale B dataset The Extended Yale B dataset (YaleB) contains N = 2432 face

images of K = 38 individuals. Each image is a front view photo of the corresponding individual

with different illumination condition. To speed up the running time, a dimension reduction step is

taken to pre-process the dataset (see Rahmani and Atia [2017]), hence in our experiment D = 500.

The result is summarized in Table 4.1. The first six algorithms are sampling based algorithms,

the sampling sizes are summarized in the supplementary codes. We see the performance of DSC

is superior among all comparing algorithms. As expected, SBSC does not do well for this small

dataset. For small dataset, the information loss caused by sampling is relatively large compare to

the information contained in the whole dataset, especially with such large number of clusters.

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-TSC
26.53

(1.8)

31.56

(1.94)

41.67

(1.44)
26.71

SBSC-DSC
60.46

(1.62)

62.76

(1.88)

70.15

(0.97)
34.83
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STSC
17.45

(1.27)

21.72

(1.7)

29.17

(1.28)
0.83

SDSC
52.18

(1.96)

60.78

(2.04)

54.61

(1.85)
2.92

SLRR
18.35

(0.64)

28.6

(1.64)

26.33

(0.57)
6.94

SLSR
26.48

(1.98)

37.78

(2.33)

35.21

(2.22)
1.47

TSC 26.19 NA 39.31 0.89

DSC 91.69 NA 93.43 44.79

SSC 52.96 NA 60.15 169.46

SSC-OMP 67.63 NA 77.03 0.91

SSC-ENSC 60.81 NA 69.4 3.1

Table 4.1: Results on Extended Yale B

The Zipcode dataset The Zipcode dataset is a medium-sized dataset with N = 9298 data points

and D = 256, each point represents an image of handwritten digit, hence K = 10.

The result is summarized in Table 4.2. Here “NA” means not available, similarly for next

table. For Zipcode, SBSC-TSC delivers the best results in all metrics except running time. But

differences in running time are marginal for sampling based algorithms in this medium-sized dataset.

The accuracy-sub of SBSC is again better than that of traditional sampling based algorithms (see

SBSC-TSC versus STSC, and SBSC-DSC versus SDSC).

In summary, for medium-sized data set, the information loss no longer causes significant deficiency

in clustering accuracy. Additionally, compared to the traditional methods like TSC, SSC and DSC,

the computational advantage of sampling based algorithms becomes more obvious than the results

of small dataset.

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)
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SBSC-TSC
69.4

(5.17)

72.04

(5.37)

70.3

(1.75)
10.4

SBSC-DSC
60.84

(2.87)

64.92

(3.37)

62.92

(0.65)
71.25

STSC
55.28

(4.25)

60.86

(3.8)

53.1

(2.49)
2.4

SDSC
45.62

(6.43)

51.16

(7.31)

45.99

(3.88)
3.155

SLRR
63.21

(3.96)

65.16

(4.03)

66.09

(1.39)
10.14

SLSR
58.66

(0.99)

59.85

(0.98)

62.54

(1.38)
4.14

TSC 65.73 NA 78.97 115.18

DSC 60.92 NA 68.43 799.67

SSC 48.16 NA 52.37 2164.82

SSC-OMP 17.87 NA 7 2.57

SSC-ENSC 44.65 NA 50.08 35.5

Table 4.2: Results on Zipcode

The MNIST dataset The MNIST dataset (MNIST) contains N = 70000 data points, each

point represents an image of handwritten digit. The original data was transferred into R500 by

convolutional neural network and PCA [You et al., 2016c]. Again K = 10.

The result is presented in Table 4.3. Here the results of methods with star marks are copied

from original paper. The numbers in the parenthesis in first column are number of bagging. For

MNIST, SBSC-TSC dominates in nearly every aspect. The large data size of MNIST makes the

sampling based algorithms run much faster than traditional methods, therefore we can report the

results of them with bagging method [Peng et al., 2016]. Although not reported here, the results of

SBSC did not change a lot with different parameter settings.
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Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-TSC(1)
95.74

(0.28)

96.44

(1.14)

89.9

(0.47)
37.8

SBSC-TSC(6)
97.15

(0.16)

95.25

(1.78)

92.59

(0.3)
261.77

STSC(1)
30.2

(2.13)

67.8

(3.95)

11.52

(2.12)
28

STSC(6)
40.12

(2.84)

65.23

(2.22)

22.53

(2.36)
179

SLRR(1)
79.5

(1.19)

79.46

(1.3)

79.9

(1.52)
59

SLRR(6)
81

(0.67)

79.6

(0.44)

83.75

(0.74)
342

SLSR(1)
75.06

(6.11)

74.62

(5.99)

76.21

(3.63)
54

SLSR(6)
79.64

(0.85)

76.43

(1.85)

81.24

(0.95)
332

TSC 84.63 NA 87.47 1184

SSC (DC1)∗ 96.55 NA NA 5254

SSC (DC2)∗ 96.1 NA NA 4390

SSC (DC5)∗ 94.9 NA NA 1596

SSC-OMP 81.51 NA 84.45 232

SSC-ENSC 93.79 NA 88.8 500

Table 4.3: Results on MNIST

4.5 Conclusion

To the best of our knowledge, our algorithm is the first sacalable subspace clustering algorithm

with theoretical performance guarantee. Empirically, it can deliver accurate clustering result with
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high efficiency.

While the idea of subsampling was discussed by other researchers before [Peng et al., 2016],

the highlights of this chapter are finding neighborhood points among the whole data set and using

cluster-wise distance to cluster points in the subset, in turn this is more robust to sampling bias

noise.

In calculating cluster-wise distances and classifying out-of-sample points, ridge regression seems to

be the most direct method, please note the algorithm itself it highly flexible, readers are encouraged

to try different distance functions, classification methods and even metrics in finding neighborhood

points.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR Chapter 2

A.1 Proof of Equation (2.1)

Proof. There are X copies of the target fragments in the second urn. Some of the fragments of

interest might not survive during the cutting process, therefore we have W ≤ X. Define {Ai}Xi=1 as

the event that the i-th target fragment survives (i.e. being intact after cutting procedure) and is

placed in the third urn. Conditional on Ui, the locations of these Ui cuts are uniformly distributed,

therefore p(Ai) = (1− f/L)Ui .

In order for the target fragment to be usable by the detector, it has to be longer than T . If

T ≤ f , the sequences that contain the target fragment are always longer than T , then qi(Ui) = p(Ai).

Otherwise we estimate qi from a lower bound using the probability of an event Ai ∪ Ei, where Ei

is the event of not having cuts within T − f on either one or the other side of the target sequence

(see Figure A.1). Recall that t1 = L−T
L−f , t2 = L−2T+f

L−f , t3 = 1− f
L . Then by inclusion and exclusion

p(Ei | Ai)= 2(t1)Ui − (t2)Ui and consequently

qi(Ui) ≥ p(Ai)p(Ei | Ai) = 2(t1t3)Ui − (t2t3)Ui .

Figure A.1: Demonstration of DNA Cutting
DNA sequence with target fragment. The f zone and at least one of the A zones should have no
cuts to provide a valid target sequence.
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A.2 Hypergeometric Distribution and Binomial Bounds

In this section, we discuss the conditions needed for Theorem 2.3.1. Use the same notation as in

Theorem 2.3.1. For fixed positive integer x, consider the following two inequalities

P (h = x) ≤ P (B1 = x), (A.1)

P (h = x) ≤ P (B2 = B − x). (A.2)

Note that if (A.1) is true for all x′ ≤ x0, then (2.4) is true for x = x0, similarly for (A.2). We write

r = B
A and expand the above two inequalities as

(
A−C
B−x

)(
A
B

) ≤ rx(1− r)C−x, (A.3)

and (
C
x

)(
A
B

) ≤ rB−x(1− r)A−B−C+x, (A.4)

respectively. We will use (A.3) and (A.4) to derive the conditions needed for Theorem 2.3.1.

Property A.2.1. If (A.3) and (A.4) are true for some fixed A, B, C and x = x0 ≤ BC
A . Then

Theorem 2.3.1 is true for x = x0.

Proof. We use backward mathematical induction on x to prove (A.3) and (A.4) are true for any

x ≤ x0. Assume (A.3) and (A.4) are true for some x = x0 ≤ BC
A . Then for x := x0 − 1, it suffices to

have the following two inequalities

r

1− r
A− C −B + x0

B − x0 + 1
≤ 1, and

1− r
r

x0

C − x0 + 1
≤ 1,

which only require x0 ≤ 1− r+ BC
A and x0 ≤ r+ BC

A , obviously true. Therefore (A.3) and (A.4) are

true for any x ≤ x0, this means Theorem 2.3.1 is true for x = x0.

Property A.2.2. Assume (A.3) and (A.4) are true for some fixed A, B, C = C0, and x = x0 ≤ BC0
A .

Then Theorem 2.3.1 is true for any C ∈ (C0, A−B).

The proof of Property A.2.2 is almost the same as that of Property A.2.1. We present the proof

sketch here and the details are omitted: one can fix x = x0 and do forward mathematical induction
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on C0 to show that (A.3) and (A.4) are true for any C ∈ (C0, A−B). The property is proved by

using Property A.2.1 and the fact that x0 ≤ BC0
A < BC

A .

Property A.2.3. Assume the following inequalities are true for some constants Aup and Blow

2A ≥ 2B + C, Q ≤ gBC
A
, A ≥ 3

(3− 2g)
B +

2

(3− 2g)
C +

3

(3− 2g)

3A

C
,

x ≥ 5, ψ(Aup) ≥ 0, (B −Q)C ≥ B(2Q+ 1), A ≥ 3B + CG(Blow) ≥ 0,

where g = xA
BC and

ψ(A) =(C − 1) log(A) + (C − x) log(A−B − 1)− C log(A− 1)− (C − x− 1) log(A−B)

+ log(A− C)− log(A−B − C + x),

G(B) =(x− 1) log(B + 1) + (C − x) log(A−B − 1)− x logB − (C − x− 1) log(A−B)

+ log(1 +B − x)− log(A−B − C + x).

For fixed B, x and C, if (A.3) is true for A = Aup, then (2.4) is true for any A ∈ (max{B,C}, Aup);

for fixed A, x and C, if (A.3) is true for B = Blow, then (2.5) is true for any B ∈ (Blow, A).

Proof. Using Property A.2.1, we only need to show (A.3) is true accordingly. Again we use (backward)

mathematical induction on A. Given (A−CB−x)
(AB)

≤ rx(1−r)C−x. We need (A−1−C
B−x )

(A−1
B )

≤ ( B
A−1)x(1− B

A−1)C−x.

It suffices to show

(
A−1−C
B−x

)(
A−1
B

) ≤ (
B

A− 1
)x(1− B

A− 1
)C−x(

A

B
)x(1− B

A
)x−C

(
A−C
B−x

)(
A
B

) .

The inequality above is equivalent to ψ(A) ≥ 0. Take first order derivative of ψ(A) with respect to

A we have

ψ′(A) = − C

A− 1
+
C − 1

A
+

1

A− C
− C − x− 1

A−B
+

C − x
A−B − 1

− 1

A−B − C + x
.

If ψ′(A) ≤ 0 for A ≤ Aup, the result is proved by using the monotonicity of ψ(A) and the assumption
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that ψ(Aup) ≥ 0. Now we will prove ψ′(A) ≤ 0. It suffices to show

−B3C2 +B3C −B2C3 +B2C2x−B2Cx+B2C −BC3 +BC2x+BC2 −BCx

+A(3B2C2 − 3B2C + 2BC3 − 2BC2x+ 2BCx− 2BC + C2x− Cx2)

+A2(−3BC2 + 3BC − C2x+ Cx2 − 2Cx+ x2 + x) +A3(2Cx− x2 − x) ≤ 0.

(A.5)

The fist line of (A.5) is obviously negative by noting the following facts

B2C2x ≤ B2C3, B2C ≤ B2Cx, B3C ≤ B3C2, BC2x+BC2 ≤ BC3 +BCx.

For the rest lines, we use the following relations

Ax2 +Ax+ACx2 ≤ 3AB2C + 2BC2x, C2x+ 2BCx ≤ 2ACx, −x2 − x ≤ 0,

where the last inequality follows by assumption 2A ≥ 2B + C. For the rest parts, we want

2xA2 + 3AB + 2BC2 + 3B2C ≤ 3ABC. It suffices to show

(3− 2g)A ≥ 3B + 2C +
3A

C
,

which is equivalent to

A ≥ 3

(3− 2g)
B +

2

(3− 2g)
C +

3

(3− g)

3A

C
,

this follows directly from the assumptions. Thus the first part of Property 3 is proved.

Now we prove the second part. From mathematical reduction on B, we want ( A−C
B+1−x)
( A
B+1)

≤

(B+1
A )x(1− B+1

A )C−x. It suffices to have

(
A−C
B+1−x

)(
A

B+1

) ≤(
B + 1

A
)x(1− B + 1

A
)C−x · (A

B
)x(1− B

A
)x−C

(
A−C
B−x

)(
A
B

) ,

which is equivalent to G(B) ≥ 0. Similarly as before, we want this function increases with B ≥ Blow,

from which we only need to check G(Blow) ≥ 0 and this follows from our assumption. Consider the
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first order derivative of G(B)

G′(B) =
1

1 +B − x
+
C − x− 1

A−B
− C − x
A−B − 1

+
x− 1

1 +B
− x

B
+

1

A−B − C + x
.

Then G′(B) ≤ 0 requires

−B3(C − 1)(C − 2x) +B2C2(x− 2)−BC(x− 1) +BC2(x− 1)− 3B2x+B(x− 1)x

−BC(x− 1)x+B2x2 +B2C(2 + 2x− x2) +A3(1− x)x

+A2
[
(x− 1)x+ 3B(x− 1)x+ C(x− 1)x+ (1− x)x2

]
+A(−3B2(x− 1)x− C(x− 1)x− 2BC(x− 1)x+ 2B(x− 1)2x+ (x− 1)x2) ≤ 0.

(A.6)

We can expand the first line of (A.6) and write it as

−B3C2 +B3(2x+ 1)C − 2xB3 +B2C2x− 2B2C2 −BCx+BC +BC2x−BC2 − 3B2x

+Bx2 −Bx−BCx2 +BCx+B2x2.

We want to prove that the above line is non-positive. Note that

−BCx+BC ≤ 0, BC2x− 2B2C2 ≤ 0, −BC2 ≤ 0

−Bx ≤ 0, −3B2x+Bx2 ≤ 0, −BCx2 +BCx ≤ 0, B2x2 − 2xB3 ≤ 0.

Finally we only need −B3C2 + B3(2x + 1)C + B2C2x ≤ 0, which follows from our assumption:

(B − x)C ≥ B(2x+ 1).

From x ≥ 5 we immediately get: 2 + 2x− x2 ≤ 0, hence B2C(2 + 2x− x2) ≤ 0. For the second

and third terms at the second line of (A.6) we show

A(1− x)x+ (x− 1)x+ 3B(x− 1)x+ C(x− 1)x+ (1− x)x2 ≤ 0.

It suffices to have A− 3B −C ≥ 0, which is our assumption. It is fairly straightforward to prove the

last line of (A.6) is non-negative, hence we omit it here.
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Property A.2.4. Assume the following inequalities are true for constants Aup and Blow

ψ(Aup) ≥ 0, Ax ≥ B + x+ 2Bx, G(Blow) ≥ 0,

where

ψ(A) =(A−B − C + x− 1) log(A− 1−B) + (A− C)log(A)− (A− C − 1)log(A− 1)

− (A−B − C + x) log(A−B) + log(A−B)− log(A),

G(B) =(B − x) log(B + 1) + (A−B − C − 1 + x)log(A− 1−B)− (B − x) log(B)

− (A−B − C + x− 1) log(A−B).

For fixed B, x and C, if (A.4) is true for A = Aup, then (2.5) is true for any A ∈ (max{B,C}, Aup);

for fixed A, x and C, if (A.4) is true for B = Blow, then (2.5) is true for any B ∈ (Blow, A).

Proof. Using Property A.2.1, we only need to show (A.4) is true accordingly. Same as before we use

(backward) mathematical induction on A. For A = Aup we want

(
C
x

)(
A−1
B

) ≤ (Cx)(
A
B

)(
B

A− 1
)B−x(

A− 1−B
A− 1

)A−B−C+x−1rx−B(1− r)−A+B+C−x,

which is equivalent to ψ(Aup) ≥ 0. Similarly as the proof of Property 3, it suffices to show

ψ′(A) =
C + 1−A
A− 1

+
A− C − 1

A
+
A−B − C + x− 1

A−B − 1
− A−B − C + x− 1

A−B

+ log
A(A−B − 1)

(A− 1)(A−B)
≤ 0,

for any A ≤ Aup that satisfies the assumptions. It suffices to have B +B2 +BC +B2C +A(−B −

2BC−x)+A2x ≤ 0, this only needs B+1 ≤ A, which is obviously true according to our assumptions.

Similarly for the second part we need for B = Blow

(
C
x

)(
A

B+1

) ≤ (Cx)(
A
B

)(
B + 1

A
)B+1−x(

A− 1−B
A

)A−B−C+x−1rx−B(1− r)−A+B+C−x.

It suffices to have G(B) ≥ 0 for any B ≥ Blow that satisfies the assumptions. Again we prove the
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monotonicity of G(B)

G′(B) =
−B − C +A+ x− 1

A−B
− −B − C +A+ x− 1

−B +A− 1
− log(−B +A− 1) + log(A−B)

− B − x
B

+
B − x
B + 1

− log(B) + log(B + 1) ≥ 0.

It suffices to show B +B2 +BC +B2C −BA− Ax− 2BAx+ A2x ≥ 0, which can be proved by

using our assumption Ax ≥ B + x+ 2Bx. Thus the second part is proved.
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A.3 Lemmas of Chapter 2

To make this dissertation self-contained, in this section we list the lemmas from Short [2013] that

were slightly modified to be applicable in our calculation. Detailed proof can be found in relevant

references.

Lemma A.3.1. (Bounds on Poisson distribution.) Let U ∼ Pos(m). Then for p ∈ (0, 1),

P
[
U ≤ m+ Φ−1(p)

√
m+

Φ−1(p)2

6

]
≥ p, (A.7)

P
[
U ≥ m−

√
−2m log(1− p)

]
≥ p, (A.8)

here Φ−1(·) is the inverse cdf function of standard normal distribution.

The following inequality is tighter than Chernoff’s bound.

Lemma A.3.2. (Large deviation bound on binomial distribution.) Let X ∼ Bin(n, p), and h(a, b) =

a log a
b + (1− a) log 1−a

1−b , a, b ∈ (0, 1). Then for a fixed t ∈ (0, np),

P [X ≥ np− t] ≥ 1− e−nh(1−p+ t
n
,1−p)

max{2,
√

4πnh(1− p+ t
n , 1− p)}

.
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A.4 A Direct Tail Bound on Hypergeometric Distribution

Theorem A.4.1. Let X ∼ H(A,B,C), then E [X] = BC
A . For X and t ≥ 0 we have

1. If C ≥ B, then

P
[
X ≥ BC

A
−Bt

]
≥ 1− e−2Bt2 . (A.9)

2. If C ≤ B, then

P
[
X ≥ BC

A
− Ct

]
≥ 1− e−2Ct2 . (A.10)

Proof. The proof of (A.9) can be found in Chvátal [1979]. Assume Q ≤ B ≤ C, now we will prove

(A.10) from the following three facts.

Fact 1: We have

P[X ≥ Q] =
B∑
i=Q

(
B

i

)(
A−B
C − i

)(
A

C

)−1

. (A.11)

The equation (A.11) comes from the definition of hypergeometric distribution.

Fact 2: We have
B∑
i=j

(
B

i

)(
A−B
C − i

)(
i

j

)
=

(
B

j

)(
A− j
C − j

)
. (A.12)

To prove (A.12), it suffices to note

LHS of (A.12) =

B∑
i=j

(
A−B
C − i

)
B!

(B − i)!i!
i!

(i− j)!j!

=

B∑
i=j

(
A−B
C − i

)
B!

j!(B − j)!
(B − j)!

(B − i)!(i− j)!

=

(
B

j

) B∑
i=j

(
A−B
n− i

)(
B − j
i− j

)

=

(
B

j

)(
A− j
C − j

)
.
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Fact 3: We have

(
A

C

)−1(B
j

)(
A− j
C − j

)
≤
(
B

j

)(
C

A

)j
. (A.13)

To prove (A.13), it suffices to show
(
A
C

)−1(A−j
C−j
)
≤ (CA )j , which is equivalent to

(C − j + 1)(C − j + 2)...C

(A− j + 1)(A− j + 2)...A
≤
(
C

A

)j
.

Based on (A.11),(A.12) and (A.13), for y ≥ 1 we have

B∑
i=0

(
B

i

)(
A−B
C − i

)(
A

C

)−1

yi =

B∑
i=0

(
B

i

)(
A−B
C − i

)(
A

C

)−1 i∑
j=0

(
i

j

)
(y − 1)j (A.14)

=
B∑
j=0

(A
C

)−1 B∑
i=j

(
B

i

)(
A−B
C − i

)(
i

j

) (y − 1)j

≤
B∑
j=0

(
B

j

)(
C

A

)j
(y − 1)j

=

(
1 +

(y − 1)C

A

)B
. (A.15)

The LHS of (A.14) is P[X ≥ y]. The theorem follows from similar steps in Chvátal [1979].

A.4.1 Results from Theorem A.4.1

As a comparison, we also applied Algorithm 1 using Theorem A.4.1 as the tail bounds of

Hypergeometric distribution. The result is presented in Figure A.2. Here we use the same parameters

with Figure 2.3, it is fairly straightforward to see Theorem A.4.1 delivers much worse results than

that of Theorem 2.3.1. However, we recommend using Theorem A.4.1 if BA ≈
1
2 , since Theorem A.4.1

was built based on Hoeffding’s inequality and Theorem 2.3.1 works better with extreme values of BA .
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Figure A.2: Results of Algorithm 1 with Theorem A.4.1
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR Chapter 3

B.1 Analytical Results

In this section, we introduce the detailed derivations of our optimization algorithm.

B.1.1 Formulas for Constraints

We further write δk = φk+1 − φk, θi = xTi β. The piece-wise linear concave function φ(·) can be

rewritten as

φ(y) =


δk
∆k
· y +

φky(k+1)−φk+1y(k)
∆k

, if y ∈ [y(k), y(k+1)],

−∞, o.w.

The identifiability constraints in (3.8) can be expanded as

K−1∑
k=1

∆k(e
φk+1 − eφk)

δk
= 1

K−1∑
k=1

(
∆k

δk

)2

·
{[

y(k+1)δk

∆k
− 1

]
· eφk+1 −

[
y(k)δk

∆k
− 1

]
· eφk

}
= 1.

B.1.2 Formulas for partial derivatives

To do the projected gradient descend, we will need the closed forms for partial derivatives. The

closed form of A(θi) can be written as

A(θi) = log
K−1∑
k=1

[
eθiyk+1+φk+1 − eθiyk+φk

]
∆k

δk + θi∆k
.

Let

Ji =
K−1∑
k=1

[
eθiy(k+1)+φk+1 − eθiy(k)+φk

]
∆k

δk + θi∆k
.

Then we have

∂Ji
∂φk

= Ik<K ·
∆ke

θiy(k)+φk
(
−δk − θi∆k + eθi∆k+δk − 1

)
(δk + θi∆k)

2

+ Ik>1 ·
∆k−1e

θiy(k)+φk
(
δk−1 + θi∆k−1 − 1 + e−θi∆k−1−δk−1

)
(δk−1 + θi∆k−1)2 .
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We use Jik to denote the above equation. Now we can calculate the partial derivative of the

log-likelihood function with respect to φk as

∂ln(φ)

∂φk
=
∂
∑N

i=1 φ(yi)− log Ji
∂φk

= Nk −
N∑
i=1

Jik
Ji
.

The optimization with respect to β is relatively easier, the partial derivative is

∂Ji
∂β1

=
K−1∑
k=1

{
∆k

[
xiyk+1e

θiyk+1+φk+1 − xiykeθiyk+φk
]

δk + θi∆k
−

∆2
kxi
[
eθiy(k+1)+φk+1 − eθiy(k)+φk

]
(δk + θi∆k)

2

}
.

We use J (1)
i to denote the equation above. Similarly

∂Ji
∂β0

=

K−1∑
k=1

{
∆k

[
y(k+1)e

θiy(k+1)+φk+1 − y(k)e
θiy(k)+φk

]
δk + θi∆k

−
∆2
k

[
eθiy(k+1)+φk+1 − eθiy(k)+φk

]
(δk + θi∆k)2

}
.

We use J (0)
i to denote the equation above. To sum up

∂ln
∂β1

=
N∑
i=1

xiyi −
J

(1)
i

Ji
,

∂ln
∂β0

=
N∑
i=1

yi −
J

(0)
i

Ji
.
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR Chapter 4

C.1 Proofs of Main Theorems in Chapter 4

In this section, we will prove the theorems from Section 4.3 under noisy case. The following

Lemmas are used to prove Theorem 4.3.1.

Lemma C.1.1. Let b be a vector sampled uniformly from Sd−1, and λk (k = 1, .., d) be constants

such that 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0. For constant g1 ∈ (λd, λ1), we write ri = (g2
1 − λ2

i )+ and

si = (g2
1 − λ2

i )−. Assuming that
∑d

i=1 ri >
∑d

i=1 si, then

P

[
d∑
i=1

|λibi|2 < g2
1

]
≥ 1− 2e−ε

2
,

where

ε =

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)
.

Proof. We write bi = zi√∑d
j=1 z

2
j

, where {zi}di=1 are i.i.d. N (0, 1) random variables. The goal is to

bound

P

[
d∑
i=1

(g2
1 − λ2

i )− · z2
i ≥

d∑
i=1

(g2
1 − λ2

i )+ · z2
i

]
= P

[
d∑
i=1

si · z2
i ≥

d∑
i=1

ri · z2
i

]
.

Note that g1 ∈ (λd, λ1), hence both
∑d

i=1 ri and
∑d

i=1 si are strictly positive.

Now we write X =
∑d

i=1 si · z2
i and Y =

∑d
i=1 ri · z2

i . Applying Lemma 1 in Laurent and Massart

[2000] we have for positive constants ε1 and ε2

P

X ≥ d∑
i=1

si + 2

√√√√ d∑
i=1

s2
i ε1 + 2s1ε

2
1

 ≤ e−ε21 , P

Y ≤ d∑
i=1

ri − 2

√√√√ d∑
i=1

r2
i ε2

 ≤ e−ε22 .
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We set ε1 = ε2 and

d∑
i=1

si + 2

√√√√ d∑
i=1

s2
i ε1 + 2s1ε

2
1 =

d∑
i=1

ri − 2

√√√√ d∑
i=1

r2
i ε2.

Solving the above quadratic equation we have

ε1 = ε2 =

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)
.

Consequently

P[X ≥ Y ] ≤ P[X ≥
d∑
i=1

si + 2

√√√√ d∑
i=1

s2
i ε1 + 2s1ε

2
1] + P[Y ≤

d∑
i=1

ri − 2

√√√√ d∑
i=1

r2
i ε2]

≤ e−ε21 + e−ε
2
2 .

Substituting ε1 and ε2 into the inequality above yields the result.

The following bound on F-distributed random variables follows from Lemma C.1.1.

Corollary C.1.1. Let X ∼ F (m,n), and m,n ≥ 2. Then for constant q > 1, we have

P [X ≥ q] ≤ 2e−ε
2
,

where ε = 1
2 [−(
√
m+ qm√

n
) +

√
(
√
m+ qm√

n
)2 + 2m(q − 1)].

Proof. We write bi = zi∑m+n
i=1 z2i

, and X =
(
∑m
i=1 z

2
i )/m

(
∑m+n
i=m+1 z

2
i )/n

, where {zi}m+n
i=1 are i.i.d. N (0, 1) random

variables. It follows

P [X ≥ q] = P

[
m∑
i=1

1

mq
· z2
i ≥

m+n∑
i=m+1

1

n
· z2
i

]
.

The corollary follows by selecting λ2
i = 1

2 + 1
mq for i = 1, ...,m, λ2

i = 1
2−

1
n for i = m+1, ...,m+n,

and g2
1 = 1

2 in Lemma C.1.1.

Lemma C.1.2 states a bound on the order statistics of Beta distributed random variables.
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Lemma C.1.2. Assume Tu and Tl satisfy Assumption A1. For any k = 1, ...,K, let {B(i)}Nk−1
i=1 be

the order statistics from a sample of (Nk − 1) i.i.d β(1
2 ,

d−1
2 ) random variables, then

max
(
P
[
B(Nk−dmax) ≤ T 2

l

]
,P
[
B(Nk−dmax) ≥ T 2

u

])
≤ (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

Proof. Let U(i) = F( 1
2
, d−1

2
)(B(i)), here F( 1

2
, d−1

2
) is the CDF of the Beta distribution β(1

2 ,
d−1

2 ). Note

that {U(i)}Nk−1
i=1 are the order statistics of the uniform distribution.

From Assumption A1 we know F( 1
2
, d−1

2
)(T

2
l ) ≤ 1− dmax

N1−ρ
k

and hence

P
[
B(Nk−dmax) ≤ T 2

l

]
≤ P

[
U(Nk−dmax) ≤ 1− dmax

N1−ρ
k

]
. (C.1)

By Chebyshev’s inequality and basic properties of the uniform order statistics we have

P

[
U(Nk−dmax) ≤ 1− dmax

N1−ρ
k

]
≤
V ar

[
U(Nk−dmax)

]
(dmax
Nk
− dmax

N1−ρ
k

)2
=

(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

. (C.2)

Combine (C.1) and (C.2) we know

P
[
B(Nk−dmax) ≤ T 2

l

]
≤ (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

Similarly we can prove

P
[
B(Nk−dmax) ≥ T 2

]
≤ (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

This completes the proof.

Lemma C.1.3 to Lemma C.1.5 are used to prove Theorem 4.3.2.

Lemma C.1.3. Let v be a random vector that uniformly distributed on Sd−1. Then we can decompose

v into v =
[√
gs,
√

1− gu
]
, where g ∼ β(1

2 ,
d−1

2 ), u ∼ U(Sd−2) and P [s = 1] = P [s = −1] = 0.5 are

three independent random variables.

Proof. It is straightforward to see 〈v,v〉 = [v2
1, ..., v

2
d] follows the Dirichlet distribution with parame-

ters α = (1
2 , ...,

1
2) ∈ Rd. We can decompose 〈v,v〉 into the following concatenation of two random
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components

[v2
1, ..., v

2
d] = [v2

1, (1− v2
1)
〈v−1,v−1〉

1− v2
1

].

Since Dirichlet distribution is completely neutral [Lin, 2016], we know that v2
1 is independent of

〈v−1,v−1〉
1−v21

, where v2
1 ∼ β(1

2 ,
d−1

2 ) and 〈v−1,v−1〉
1−v21

∼ Dir(α−1). From symmetry, we can let v1 =
√
gs

and v−1√
1−v21

= u, where the distributions of g, u and s are specified in the statement of Lemma C.1.3.

This completes the proof.

Let {ai}Nk−1
i=1 be Nk − 1 vectors that are uniformly sampled from Sd−1. From Lemma C.1.3,

we know that for any i = 1, ..., Nk − 1, the value of ai1 is independent of [ai2,..,aid]√
1−a2i1

. The following

corollary is then a direct result from this fact.

Corollary C.1.2. Let {a(i)}Nk−1
i=1 be a permutation of {ai}Nk−1

i=1 sorted in ascending order of the

absolute value of the first coordinate. Then we can write

a(i) = [a(i)1,
√

1− a2
(i)1bNk−i],

where {bi}Nk−1
i=1 are i.i.d. uniform samples on Sd−2.

Lemma C.1.4. [Lerman et al., 2012, Lemma B.3] Let {bi}dmaxi=1 be i.i.d. uniform samples from

Sd−2, d ≥ 3. Then for any t ≥ 0:

inf
‖u‖2=1

dmax∑
i=1

|〈u,bi〉| ≥
√

2

π

dmax√
d
− 2
√
dmax − t

√
dmax
d− 1

,

with probability at least 1− e−t2/2.

Corollary C.1.3. Use the same definition of {bi}dmaxi=1 from Lemma C.1.4. Then for any t ≥ 0

sup
‖u‖2=1

dmax∑
i=1

〈u,bi〉 ≤ 2
√
dmax + t

√
dmax
d− 1

,

with probability at least 1− e−t2/2.

Proof. Note that E [〈u,b〉] = 0 for any b ∼ U(Sd−1) and u ∈ Rd. Therefore by Lemma 6.3 in Ledoux
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and Talagrand [2013] we have:

E

[
sup
‖u‖2=1

dmax∑
i=1

〈u,bi〉

]
≤ 2 sup

‖u‖2=1

E∥∥∥∥∥
dmax∑
i=1

εibi

∥∥∥∥∥
2
 = 2

√
dmax.

Here {εi}dmaxi=1 are i.i.d. Rademacher random variables. The lemma is proved by following similar

steps after equation (B.11) in Lerman et al. [2012].

Lemma C.1.5. Suppose Assumption A3. Write a0 = [1, 0, ..., 0] ∈ Rd, and use the definitions for

{ai}Nk−1
i=1 and {a(i)}Nk−1

i=1 from Corollary C.1.2. Let B ∈ Rd×(dmax+1) be a matrix where its first

column is a0 and its i-th column (2 ≤ i ≤ dmax + 1) is a(Nk−i+1). Let the largest d singular values

of B be s1 ≥ s2 ≥ · · · ≥ sd. Then we have

P
[
s2
d ≥ q0

]
≥ 1− 2

N t2/2
− 2(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

Proof. From Corollary C.1.2, we know B can be re-written as

B =

1, a(Nk−1)1, ... a(Nk−dmax)1

0,
√

1− a2
(Nk−1)1b1, ...

√
1− a2

(Nk−dmax)1bdmax

 ,

where {bi}dmaxi=1 are i.i.d. uniform samples from Sd−2.

Given the dimensions of B, we know sd = inf‖x‖2=1 ‖BTx‖2. For convenience, we write

x′ =
1√

1− x2
1

[x2, ..., xd] ,

where ‖x′‖2 = 1, ci = 〈x′,bi〉, a(Nk)1 = 1. Let E1 be the event that {s2
d ≥ q0}, and E2 be the event

that {a2
(Nk−i)1 ∈

[
T 2
l , T

2
u

]
, ∀i = 1, .., dmax}. From our assumptions, Lemma C.1.2 and Lemma C.1.5,

we know

P [E2] ≥ 1− 2(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

. (C.3)
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Conditioning on E2, we have:

‖BTx‖22 =

∥∥∥∥∥∥∥
1, a(Nk−1)1, ... a(Nk−dmax)1

0,
√

1− a2
(Nk−1)1b1, ...

√
1− a2

(Nk−dmax)1bdmax


T

x

∥∥∥∥∥∥∥
2

2

=

dmax∑
i=0

(
a(Nk−i)1x1 +

√(
1− a2

(N−i)1

) (
1− x2

1

)
ci

)2

=

dmax∑
i=0

a2
(N−i)1x

2
1 + 2

dmax∑
i=0

√
a2

(N−i)1(1− a2
(Nk−i)1)(1− x2

1)cix1

+

dmax∑
i=1

(1− a2
(Nk−i)1)(1− x2

1)c2
i

≥T 2
l dmax · x2

1 − 2
√
T 2
u (1− T 2

u )(1− x2
1)x2

1 sup
‖u‖2=1

dmax∑
i=1

〈u,bi〉

+ (1− x2
1)(1− T 2

u ) inf
‖u‖2=1

dmax∑
i=1

〈u,bi〉2. (C.4)

From Lemma C.1.4 and Corollary C.1.3, we know that conditional on E2

(C.4) ≥ (1− x2
1)C2 − 2

√
T 2
u (1− T 2

u )(1− x2
1)x2

1C1 + T 2
l dmax · x2

1, (C.5)

with probability at least that 1− 2

Nt2/2
. Since 1− x2

1 ≤ 1, a lower bound of the RHS of (C.5) is

(T 2
l dmax − C2)x2

1 − 2
√
T 2
u (1− T 2

u )C1x1 + C2 ≥
(T 2
l dmax − C2)C2 − T 2

u (1− T 2
u )C2

1

T 2
l dmax

≥ q0,

where the q0 comes from Assumption A3. Finally, note the following fact

P [E1] ≥ P [E1|E2] + P [E2]− 1 (C.6)

= 1− 2

N t2/2
− 2(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

This completes the proof.

Proof of Theorem 4.3.1. Let the event E1i = {YCi only contains points in same subspace}, then
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E1 = ∩ni=1E1i is the event that Algorithm 3 has sub-cluster preserving property. Let the event

E2 = {σ||e(k)
i ||2 < g2,∀i, k}, where g2 is from assumption A2. Our goal is to find a lower bound on

P [E1].

Note the following fact

P [E1] ≥ 1−
n∑
i=1

P[E{1i|E2] + P[E2]− 1 = P[E2]−
n∑
i=1

P[E{1i|E2]. (C.7)

Therefore, it suffices to find a lower bound on P[E2]−
∑n

i=1 P[E{1i|E2].

We start by finding a preliminary upper bound on P[E{11|E2]. WLOG assume that y1
(1) is one

of the sampled points, and YC1 is the sub-cluster associated with it. Write Âki = |〈y(1)
1 ,y

(k)
i 〉|. For

E11 to happen, we need the largest (dmax + 1) values among ∪Kk=1Â
k
i to be from the same set Â1

i .

Mathematically this means

E{11 =

{
Â1

(N1−dmax) ≤ max
k 6=1

max
i=1,..,Nk

Âki

}
.

Recall from (4.1) that yi
(k) =

Uka
(k)
i +σe

(k)
i

||Uka
(k)
i +σe

(k)
i ||2

. The triangle inequality tells us that:

||Uka
(k)
i ||2 − ||σe

(k)
i ||2 ≤ ||Uka

(k)
i + σe

(k)
i ||2 ≤ ||Uka

(k)
i ||2 + ||σe||2.

Therefore conditional on E2, we know the normalizing constants ||Uka
(k)
i + σe

(k)
i ||2 are bounded in

[1− g2, 1 + g2]. For fixed y
(1)
1 , we write Aki = ||y(1)

1 ||2 · ||y
(k)
i ||2 · Âki . It is fairly straightforward to

get the following relation

P
[
A1

(N1−dmax) ≤
1 + g2

1− g2
max
k 6=1

max
1≤i≤Nk

Aki

∣∣∣∣E2

]
≥ P

[
E{11

∣∣∣E2

]
. (C.8)

Conditioning on E2 and write Bi =
∣∣∣〈a(1)

1 ,a
(1)
i 〉
∣∣∣2, i = 2, ..., N1 − 1. We have the following
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inequalities

A1
(N1−dmax) =

∣∣∣√B(N1−dmax) + σ〈U1a
(1)
1 , e

(1)
i 〉+ σ〈U1a

(1)
i , e

(1)
1 〉+ σ2〈e(1)

1 , e
(1)
i 〉
∣∣∣

≥
√
B(N1−dmax) − σ||e

(1)
i ||2 − σ||e

(1)
1 ||2 − σ

2||e(1)
1 ||2 max

i 6=1
||e(1)

i ||2

≥
√
B(N1−dmax) − 2g2 − g2

2.

Similarly we have

max
k 6=1

max
1≤i≤Nk

Aki = max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉+ σ〈U1a

(1)
1 , e

(k)
i 〉+ σ〈Uka

(k)
i , e

(1)
1 〉+ σ2〈e(1)

1 , e
(k)
i 〉
∣∣∣

≤max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣+ σmax

k 6=1
max

1≤i≤Nk
||e(k)

i ||2

+ σ||e(1)
1 ||2 + σ2||e(1)

1 ||2 max
k 6=1

max
1≤i≤Nk

||e(k)
i ||2

≤max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣+ 2g2 + g2

2.

Pick T from assumption A3, then the LHS of (C.8) has the following upper bound

P [T ≤ Q|E2] + P
[
B(N1−dmax) ≤ T 2

∣∣E2

]
, (C.9)

where

Q = (1 +
1 + g2

1− g2
)(2g2 + g2

2) +
1 + g2

1− g2
max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣ .

Now we are going to complete our proof in 3 steps.

Step 1: For the first term in (C.9) we have

P [T ≤ Q|E2] = P
[
g1 ≤ max

k 6=1
max

1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] .

From singular value decomposition we can write

〈U1a
(1)
1 ,Uka

(k)
i 〉 = a

(1)T
1 W1kΛ1kV

T
1ka

(k)
i := bTkΛ1kV

T
1kai

(k),
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where both {bk}Kk=2 and {VT
1ka

(k)
i }Kk=2 are sampled uniformly from Sd−1. Therefore

P
[
g1 ≤ max

k 6=1
max

1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] =P

[
g2

1 ≤ max
k 6=1

max
1≤i≤Nk

∣∣∣bTkΛ1kV
T
1ka

(k)
i

∣∣∣2]
≤

K∑
k=2

P
[
g2

1 ≤ max
1≤i≤Nk

∣∣∣bTkΛ1kV
T
1ka

(k)
i

∣∣∣2] (C.10)

≤
K∑
k=2

P

[
g2

1 ≤
d∑
i=1

∣∣∣λ(1k)
i bki

∣∣∣2] (C.11)

≤
K∑
k=2

P

[
g2

1 ≤
d∑
i=1

∣∣∣λ(1)
i bki

∣∣∣2] , (C.12)

where inequality (C.10) uses the union bound inequality, (C.11) comes from Cauchy-Schwarz

inequality, and (C.12) uses Definition 4.3.1. Since {bk}Kk=2 ∼ U(Sd−1), we can write (C.12) as

(K − 1)P

[
g2

1 ≤
d∑
i=1

(λ
(1)
i bi)

2

]
,

where b is uniformly distributed on Sd−1. Now we apply Lemma C.1.1 directly to the quantity above

and get P
[
g2

1 ≤
∑d

i=1

(
λ

(1)
i bi

)2
]
≤ 2e−ε

′2 where1

ε′ =

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)

=
−(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)

2s1

≥
−(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2
∑d

i=1(ri − si)

2
(C.13)

=

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2
∑d

i=1(ri − si)

≥
∑d

i=1(ri − si)

2
√∑d

i=1 r
2
i +

√
4
∑d

i=1 r
2
i + 2

∑d
i=1 ri

≥ ε.

1ri and si are defined in Lemma C.1.1.
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Here ε is defined in Theorem 4.3.1 and (C.13) comes from the following fact for positive constants a,

b and s ∈ (0, 1)

−a+
√
a2 + 2sb

2s
≥ −a+

√
a2 + 2b

2
.

Therefore we have

P
[
g1 ≤ max

k 6=1
max

1≤i≤nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] ≤ 2(K − 1)e−ε

2
.

Step 2: For the second term of (C.9), we just need to use Lemma C.1.2. Note that for fixed a
(1)
1 ,

one can show Bi = 〈a(1)
1 ,a

(1)
i 〉2 can be treated as a sample from a Beta distribution with parameters

(1
2 ,

d−1
2 ). From Lemma C.1.2 and Assumption A3 we have

P
[
B(N1−dmax) ≤ T 2

∣∣E2

]
≤ (N1 − dmax)

dmax(N1 + 1)(Nρ
1 − 1)2

.

Combine the results above we know

P
[
E{11

∣∣∣E2

]
≤ 2(K − 1)e−ε

2
+

(N1 − dmax)

dmax(N1 + 1)(Nρ
1 − 1)2

. (C.14)

Step 3: Now we are going to find the lower bound on P[E2]. Let e be an independent copy of e
(1)
1 ,

note that ||e||
2
2

D ∼ FD,d. From Lemma C.1.5 we have

P [g2 ≤ σ||e||2] = P
[
g2

2

Dσ2
≤ ||e||

2
2

D

]
≤ 2e−t

2
,

where t can be found as Corollary C.1.1. Using Assumption A2 we have

t >
D(

g22
Dσ2 − 1)

2(
√
D +

g22
σ2
√
d

+
√
d)

=

√
d

2
(1−

1 + d
D +

√
d
D

1 + d
D +

g22
Dσ2

) ≥ (1 +
η

2 + η
)
√

logN.
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Therefore we have P [g2 ≤ σ||e||2] ≤ 2

N
(1+

η
2+η )2

. Now we note that

P
[
g2 ≤ σ max

k=1,...,K
max

1≤i≤Nk
||e(k)

i ||2
]

= 1− P
[
g2 > σ max

k=1,...,K
max

1≤i≤Nk
||e(k)

i ||2
]

= 1−ΠN
i=1(1− P

[
g2 ≤ σ||e(k)

i ||2
]
)

≤ 1− (1− 2e−t
2
)N ≤ 2N

N
(1+ η

2+η
)2 − 2

,

where the last inequality comes from the Taylor expansion of exp ( −2N

N
(1+

η
2+η )2−2

). Therefore

P [E2] ≥ 1− 2N

N
(1+ η

2+η
)2 − 2

. (C.15)

Finally, the above arguments hold for any y
(k)
i . Putting (C.14) and (C.15) together and applying

the union bound inequality yields the result

P[E1] ≥ 1−
K∑
k=1

nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(K − 1)ne−ε
2 − 2N

N
(1+ η

2+η
)2 − 2

. (C.16)

To prove Theorem 4.3.2, we will use the following equation

(WTW + λId2)−1WT = WT (WWT + λId1)−1, (C.17)

where W ∈ Rd1×d2 and λ is a positive constant [Murphy, 2012, Chapter 4]. Throughout the proof of

Theorem 4.3.2, the subscript of identity matrix I will be omitted as its dimension is clear from the

context.

Proof of Theorem 4.3.2. Define I = {(i, j) : 1 ≤ i < j ≤ n and YCi ,YCj belong to different clusters},

and J = {(i, j) : 1 ≤ i < j ≤ n and YCi ,YCj belong to the same cluster}. Similar to the proof of

Theorem 4.3.1, let E1 be the event that correct neighborhood property holds for all {YCj}ni=j , let

E2 be the event {σ||e(k)
i ||2 < g,∀i, k} (g is from Assumption A4), E3 is the event that the smallest

singular value of BBT is at least q0, ∀i = 1, ..., n, and E4 is the event that the sub-cluster preserving

property is satisfied.
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We will show that conditioning on E2, E3 and E4, there is a deterministic upper bound l on

d(YCi ,YCj )(i,j)∈J , therefore we have

P [E1|E2, E3, E4] ≥ P
[
d(YCi ,YCj )∀(i,j)∈I > l

∣∣E2, E3, E4

]
≥ 1−

∑
∀(i,j)∈I

P
[
d(YCi ,YCj ) ≤ l

∣∣E2, E3, E4

]
.

Then we obtain an upper bound on P[d(YCi ,YCk) ≤ l | E2, E3, E4], (i, k) ∈ I. The theorem will

follow by using the union bound.

WLOG assume that YC1 and YC2 belong to S1, and YC3 belongs to S2. The distance function

d(YC1 ,YC2) can be explicitly written as

∥∥YC1 −YC2(YT
C2YC2 + λI)−1YT

C2YC1
∥∥
F

+
∥∥YC2 −YC1(YT

C1YC1 + λI)−1YT
C1YC2

∥∥
F
, (C.18)

where YC1 = U1B̂1 + Ê1 (similar forms for YC2 and YC3). Using equation (C.17), the first term in

(C.18) can be rewritten as

∥∥YC1 −YC2(YT
C2YC2 + λI)−1YT

C2YC1
∥∥
F

=
∥∥YC1 − (YC2Y

T
C2 + λI− λI)(YC2Y

T
C2 + λI)−1YC1

∥∥
F

=λ
∥∥(YC2Y

T
C2 + λI)−1YC1

∥∥
F

<λ
∥∥∥[(YC2Y

T
C2 + λI)−1 − (U1B̂2B̂

T
2 UT

1 + λI)−1]||F ||YC1
∥∥∥
F

+ λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1YC1

∥∥∥
F

<λ
∥∥∥(YC2Y

T
C2 + λI)−1 − (U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

√
dmax + 1

+ λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

√
dmax + 1. (C.19)

Now we are going to complete our proof in 3 steps. Unless specified otherwise, the following Step

1 to Step 3 are derived conditioning on E2, E3 and E4.

Step 1: We can rewrite the first term in (C.19) as

λ
∥∥(G2 + H)−1 −H−1

∥∥
F

√
dmax + 1,

where H = U1B̂2B̂
T
2 UT

1 + λI, and G2 = YC2Y
T
C2 −U1B̂2B̂

T
2 UT

1 = Ê2B̂
T
2 UT

1 + U1B̂2Ê
T
2 + Ê2Ê

T
2 .
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Note that the normalizing constant of each column of {Êi}ni=1 are bounded in [1 − g, 1 + g]. We

then have

‖G2‖F ≤
∥∥∥Ê2

∥∥∥
F

∥∥∥B̂T
2 UT

1

∥∥∥
F

+
∥∥∥U1B̂2 + Ê2

∥∥∥
F

∥∥∥ÊT
2

∥∥∥
F

≤ (2g − g2)(dmax + 1)

(1− g)2
. (C.20)

The above analysis used triangle inequalities and the bounds of normalizing constants.

Using the fact that
∥∥H−1

∥∥
F
< (1+g)

√
d

q0
and inequality (C.20), we have

∥∥H−1G2

∥∥
F
≤
∥∥H−1

∥∥
F
‖G2‖F =

(2g − g2)(1 + g)
√
d (dmax + 1)

q0(1− g)

1

2
=: f(d) <

1

2
.

Therefore limm→∞(H−1G2)m = 0. From Theorem 4.29 in Schott [2016] we know (I + H−1G2)−1 =∑∞
j=0(H−1G2)j and

∥∥(G2 + H)−1 −H−1
∥∥
F

=
∥∥H−1G(I + H−1G2)−1H−1

∥∥
F

≤

∥∥∥∥∥∥
∞∑
j=1

(H−1G2)j

∥∥∥∥∥∥
F

∥∥H−1
∥∥
F

<

∥∥H−1G2

∥∥
F

1− ‖H−1G2‖F

√
d(1 + g)

q0
=

(1 + g)f(d)
√
d

q0(1− f(d))
.

We then have for the first term in (C.19)

λ
∥∥(G2 + H)−1 −H−1

∥∥
F

√
dmax + 1 <

λ(1 + g)
√
d(dmax + 1)f(d)

q0 (1− f(d))
.

For the second term in (C.19) we have

λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

√
dmax + 1 ≤

λ(1 + g)
√
d(dmax + 1)

q0
.

Hence (C.19) can be upper bounded by 2λ(1+g)
√
d(dmax+1)

q0(1−g) . Note this quantity is deterministic and

does not depend on the choices of {Bi}ni=1 and {Uk}Kk=1. The manipulation on RHS of (C.18) is
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symmetric, therefore we set

l :=
4λ(1 + g)

√
d(dmax + 1)

q0(1− g)
> d(YCi ,YCj )(i,j)∈J .

Step 2: Now we consider P [d (YC1 ,YC3) ≤ l|E2, E3, E4]. We explicitly write d(YC1 ,YC3) as

∥∥YC1 −YC3(YT
C3YC3 + λI)−1YT

C3YC1
∥∥
F

+
∥∥YC3 −YC1(YT

C1YC1 + λI)−1YT
C1YC3

∥∥
F
. (C.21)

Note the following relation

P [d(YC1 ,YC3) ≤ l|E2, E3] ≤P
[∥∥YC1 −YC3(YT

C3YC3 + λI)−1YT
C3YC1

∥∥
F
≤ l

2

∣∣∣∣E2, E3, E4

]
+ P

[∥∥YC3 −YC1(YT
C1YC1 + λI)−1YT

C1YC3
∥∥
F
≤ l

2

∣∣∣∣E2, E3, E4

]
. (C.22)

To bound the first term in (C.21), we only need to use reverse triangle inequalities and proceed as

before. Specifically

∥∥∥YC1 −YC3
(
YT
C3YC3 + λI

)−1
YT
C3YC1

∥∥∥
F

=λ
∥∥∥(YC3YT

C3 + λI
)−1

YC1

∥∥∥
F

>λ

∥∥∥∥(U2B̂3B̂
T
3 UT

2 + λI
)−1

U1B̂1

∥∥∥∥
F

− λ
∥∥∥∥(U2B̂3B̂

T
3 UT

2 + λI
)−1

∥∥∥∥
F

∥∥∥Ê1

∥∥∥
F

−λ
∥∥∥∥[(YC3YT

C3 + λI
)−1 −

(
U2B̂3B̂

T
3 UT

2 + λI
)−1

]∥∥∥∥
F

√
dmax + 1.

The last two terms are upper bounded by λ(1+g)
√
d(dmax+1)

q0(1−g) as before. For the first term

λ

∥∥∥∥(U2B̂3B̂
T
3 UT

2 + λI
)−1

U1B̂1

∥∥∥∥
F

≥
∥∥∥U1B̂1 −U2U

T
2 U1B̂1

∥∥∥
F
− λ

∥∥∥∥U2

(
B̂3B̂

T
3 + λI

)−1
UT

2 U1B̂1

∥∥∥∥
F

>
∥∥∥U1B̂1 −U2U

T
2 U1B̂1

∥∥∥
F
−
λ(1 + g)

√
d(dmax + 1)

q0(1− g)
, (C.23)
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where inequality (C.23) comes from the following relations

λ

∥∥∥∥U2

(
B̂3B̂

T
3 + λI

)−1
UT

2 U1B̂1

∥∥∥∥
F

≤ λ
∥∥∥∥(B̂3B̂

T
3 + λI

)−1
∥∥∥∥
F

∥∥∥U1B̂1

∥∥∥
F

≤ λ
√
d(1 + g)

q0

√
dmax + 1

1− g
=
λ(1 + g)

√
d(dmax + 1)

q0(1− g)
.

For the first term in (C.23) we have

∥∥∥U1B̂1 −U2U
T
2 U1B̂1

∥∥∥
F

=

√
Tr
[
B̂T

1 B̂1 − B̂T
1 UT

1 U2UT
2 U1B̂1

]
=

∥∥∥∥√I−Λ2
12B̃1W

∥∥∥∥
F

≥

∥∥∥√I−Λ2
12B̃1

∥∥∥
F

1 + g
,

where W is the diagonal matrix with its diagonal equals to the reciprocal of normalizing constants

of each column of B̂1 (simply note B̂1 = B1W), B̃1 = VB1 is a orthogonal transformation of B1

(here V is the right orthogonal matrix in the svd of UT
2 U1), and Λ12 is the diagonal matrix that

takes λ12
i (i = 1, .., d) as its i-th diagonal entry. Therefore, eventually the first term at the RHS of

(C.22) can be upper bounded by

P

[∥∥∥∥√I−Λ2
12B̃1

∥∥∥∥
F

≤
5λ(1 + g)2

√
d(dmax + 1)

q0(1− g)

]
.

Using Assumption A4, Lemma C.1.1 and arguments similar to the proof of Theorem 4.3.1, we know

the quantity above is upper bounded by

P
[∥∥∥∥√I−Λ2

12B̃1′1

∥∥∥∥
F

≤
√

1− T 2
l

]
≤ 2e−ε

2
,

where B̃1′1 is the first column of B̃1, and ε is the same as in Theorem 4.3.1. Using analogous manip-

ulations we obtain similar results for the second term in (C.22). Therefore P [d(YC1 ,YC3) ≤ l|E2] ≤

4e−ε
2 .

Step 3: Now we are going to lower bound P [E2, E3, E4]. Just as in the proof of Theorem 4.3.1 we

have

P
[
σe

(k)
i ≥ g

]
≤ 2e−t

2
,
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where t =
D( g2

Dσ2
−1)

2(
√
D+ Dg2

σ2
√
d

+
√
d)
. Hence from Assumption A4 we know 2e−t

2 ≤ 2

N
(1+

η
2+η )2

. Using union

bound inequality we have

P [E2] ≥ 1− 2N

N
(1+ η

2+η
)2 − 2

. (C.24)

From Lemma C.1.5 we have

P [E3] ≥ 1− 2n

N t2/2
−

K∑
k=1

2nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

. (C.25)

From the assumption we have

P [E4] ≥ 1− ps. (C.26)

Combing (C.24), (C.25) and (C.26) we know

P[E1] ≥ 1−
∑
∀(i,j)∈I

P
[
d(YCi ,YCj ) ≤ l

∣∣E2, E3, E4

]
− P

[
E{2
]
− P

[
E{3
]
− P

[
E{4
]

≥ 1− ps − 4n(n− 1)e−ε
2 − 2n

N t2/2
−

K∑
k=1

2nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2N

N
(1+ η

2+η
)2 − 2

. (C.27)

This completes the proof.
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C.2 Residual Minimization by Ridge Regression

In this section we provide the algorithm for classifying the out-of-sample points.

input :Y to be classified, R and ` are the training data and labels, m and λ are the
residual minimization and regularization parameters

output :The label vector ` of all points in Y
1. Generate subsets of training data
for k = 1 to K do

Uniformly sample m points from the k-th cluster in the training set R, denote this
sampled set as Rk;

end
2. Compute the projection matrix for each cluster
for k = 1 to K do

Pk := Rk(R
T
kRk + λI)−1RT

k

end
3. Compute residuals for points in Y , here N is the number of points in Y
for i = 1 to N do

for k = 1 to K do
ri(k) := (I−Pk)yi;

end
end
4. Assign labels through minimum residual
for i = 1 to N do

`i = arg mink {ri(k)};
end
Algorithm 4: Residual Minimization by Ridge Regression (RMRR) algorithm.
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C.3 Additional Numerical Results

In this section, we present additional numerical results. Results for some algorithms are omitted

for certain datasets due to the limitations on computational resources.

C.3.1 Results on Extended Yale B

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-SSC
20.99

(1.02)

22.5

(1.29)

34.24

(1.15)
56

SSSC
49.33

(2.51)

56.54

(1,77)

52.82

(2.21)
22.11471427

LRR 55.63 NA 64.02 28.68

LSR 54.11 NA 65.12 7.56

Table C.1: Additional results on Extended Yale B

C.3.2 Results on Zipcode

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-TSC(6)
73

(3.96)

72.33

(2.02)

76.17

(1.76)
66.46

SBSC-DSC(6)
66.42

(4.91)

66.52

(2.43)

71.28

(1.24)
413.98

SBSC-SSC(1)
55.24

(1.34)

61.44

(2.36)

45.18

(1.42)
116.72

SBSC-SSC(6)
65

(0.44)

61.1

(0.79)

62.88

(0.88)
674.14

STSC(6)
57.76

(1.15)

60.1

(1.8)

60.4

(1.59)
13.12

SDSC(6)
49.18

(2.19)

50.28

(1.39)

53.37

(1.5)
19.47
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SSSC(1)
41.52

(5.92)

44.86

(7.06)

38.22

(3.7)
24.88

SSSC(6)
44.43

(4)

44.06

(2.53)

42.61

(2.23)
132.84

SLRR(6)
63.7

(3.74)

63.85

(1.74)

69.25

(1.86)
45.87

SLSR(6)
60.71

(1.04)

59.43

(0.8)

66.39

(1.08)
25.62

LRR 53.25 NA 53.53 401

LSR 58.91 NA 61.56 191.5

Table C.2: Additional results on Zipcode

C.3.3 Results on MNIST

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-SSC
84.95

(4.51)

86.48

(4.2)

73.71

(2.06)
834.42

SSSC(1)
33.26

(2.15)

77.22

(3.9)

13.59

(1.41)
43.21

SSSC(6)
48.49

(2.75)

79.06

(1.63)

30.41

(2.04)
259

Table C.3: Additional results on MNIST
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C.4 Additional Technical Discussions

C.4.1 The ε in Theorem 4.3.1

In this section, we will show that under mild conditions, ε in (4.9) is O(
√
d). For ease of notation,

we write ri =
(
g2

1 − λ
(1)2
i

)
+
and si =

(
g2

1 − λ
(1)2
i

)
−
. WLOG assume ε is evaluated at k = 1.

Main result: If there exist constants c1 ∈ (0, g1], c2 ∈ (0, 1) and c3 > 0 such that
∑d

i=1 ri ≥ c1d,∑d
i=1 si∑d
i=1 ri

≤ c2 and c3d > g1, then we have

ε ≥ (1− c2)
√
d

2
√

(c1+c3)g1
c21

+
√

4(c1+c3)g1
c21

+ 2
c1

.

Proof. Note that

ε =
1−

∑d
i=1 si∑d
i=1 ri

2

√ ∑d
i=1 r

2
i

(
∑d
i=1 ri)

2
+

√
4
∑d
i=1 r

2
i

(
∑d
i=1 ri)

2
+ 2∑d

i=1 ri

. (C.28)

Define f : V → R, where f(v) =
∑d
i=1 v

2
i

(
∑d
i=1 vi)

2
, and V = {v ∈ [0, g1]d :

∑d
i=1 vi =

∑d
i=1 ri}. Consider

the following r∗ ∈ V

r∗i =


g1, if i ≤ b

∑d
i=1 ri
g1
c,∑d

i=1 ri − b
∑d
i=1 ri
g1
c · g1, i = b

∑d
i=1 ri
g1
c+ 1,

0, otherwise.

We will prove by contradiction that any maximizer of f(·) is a permutation of r∗.

In fact, assume r′ ∈ V also maximizes f(·) but is not a permutation of r∗. Assume there

are m terms in {r′i}di=1 that are equal to g1. Let r′1 ≤ r′2 be the two smallest positive terms of

{r′i}di=1. It is straightforward to see r′2 < g1. Consequently, we can find a constant δ > 0 such

that r′1 − δ, r′2 + δ ∈ (0, g1). Note r′′ = [r′1 − δ, r′2 + δ, r′3, ..., r
′
d] ∈ V, but f(r′′) > f(r′), which is a

contradiction.

86



Note that r ∈ V, we plug r∗ into f(·) and get

f(r) =

∑d
i=1 r

2
i

(
∑d

i=1 ri)
2
≤

(
∑d
i=1 ri
g1

+ 1)g2
1

(
∑d

i=1 ri)
2
≤

( c1dg1 + 1)g2
1

(c1d)2
≤ (c1 + c3)g1

c2
1d

.

Finally, from the inequality above and (C.28) we have

ε ≥ 1− c2

2
√

(c1+c3)g1
c21d

+
√

4(c1+c3)g1
c21d

+ 2
c1d

=
(1− c2)

√
d

2
√

(c1+c3)g1
c21

+
√

4(c1+c3)g1
c21

+ 2
c1

.
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