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ABSTRACT

Poulami Maitra: Statistical Methods for Data from Case-Cohort Studies
(Under the direction of Jianwen Cai)

In epidemiological studies and disease prevention trials, interest often lies in the relation-

ship between certain disease endpoint and some exposure of interest. When the event is rare

and/or some of the covariate information are quite expensive to collect for the entire cohort,

case-cohort designs are widely used to reduce the financial cost of the study while achieving

the same study goals. The case-cohort sampling scheme entails the random sampling of indi-

viduals, called the sub-cohort, along with all the cases. In the situation when the event rate

is not low but resources are limited, the generalized case-cohort design is more appropriate,

where only a fraction of cases are sampled along with the sub-cohort. In this dissertation, we

consider two aspects of case-cohort studies. One is for statistical methods for the analysis of

recurrent events and the other concerns power/sample size calculation for interaction test.

Many methods for the analysis of data from case-cohort studies have been proposed in the

literature. However, most of these methods are for either a single event or multitude of events

of different types on the same subject. There has not been much work on the recurrent events

data under case-cohort sampling scheme. Valid statistical methods that take into account

the correlation between the events from the same individual needs to be developed. In this

dissertation, the first two topics are related to recurrent events. We consider modeling the

recurrent events using the rate model under the original and generalized case-cohort designs.

The first topic considers the multiplicative rates model and the second topic considers additive

rates models. For both types of the rate models, we propose weighted estimating equation

approach for the parameter estimates for both sampling designs. We showed that the proposed

estimators are consistent and asymptotically normally distributed. We conducted simulation

studies to examine the performance of our proposed estimators in finite samples and they
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performed well. For the multiplicative rates model, we illustrated the proposed method to

assess the relationship between prior measles infection and acute lower-respiratory-infections

(ALRI) in a double-blinded randomized clinical trial, conducted in Brazil. We illustrated our

proposed method for additive rates model to study the effect of FEV1 on the recurrence of

pulmonary exacerbation in patients with cystic fibrosis.

In the third topic, we address another aspect of the case-cohort design. All the previous

work in the literature concern sample size and power calculation in case-cohort data for a

dichotomized main effect. However, in certain situations, one might be interested in the

association of a covariate and time to event response in different biomarker groups, which

may be expensive to measure. We extend the existing idea for the single binary main effect

to the interaction between the variable and the dichotomized biomarker in the presence of a

rare event. We propose different power formulas based on the simplification of a generalized

log-rank test for the case-cohort design. A cost efficiency formula comparing the case-cohort

design to a simple random sample is derived. We examine the performance of the bounds

based on the same test. Simulation studies are conducted to illustrate the efficiency for the

case-cohort design. We illustrate the use of the formula based on information from the pooled

databases of Lung Adjuvant Cisplatin Evaluation (LACE) and Cancer and Leukemia Group

B (CALGB) 9633.
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CHAPTER 1: INTRODUCTION

Large epidemiologic cohort studies or disease prevention trials are expensive as they re-

quire the follow-up of several thousand individuals for a long period of time before producing

valuable results (Prentice 1986). The cost mainly arises from the culmination of the raw ma-

terials for covariate data ascertainment for all the cohort members. Such raw materials may

include blood serum samples, tissue specimens, occupational exposure records, etc. When the

disease is rare, much of the covariate data on the disease-free subjects is inessential. Pren-

tice (1986) cited the multiple risk factor intervention trial (MRFIT Research Group, 1982),

a randomized trial of 12,866 subjects, who were followed-up for an average of seven years

and reportedly cost US $100 million. Such studies provide a primary application area for the

case-cohort design. In the prevention trial context, a case-cohort design would reduce the

cost of assembling the cohort history while allowing for the tracking of the history for the

subcohort on an on-going basis.

The case-cohort study design was first proposed by Prentice (1986). It is a retrospective

study design nested within a prospective cohort. Specifically, the entire cohort is followed for

the disease of interest over time. At a certain time during follow-up, a case-cohort sample

is drawn. The case-cohort sample consists of a random sample from the cohort and all

subjects who had developed the disease by that time. The expensive or hard to measure

covariates are then collected on subjects in the case-cohort sample. Prentice (1986) studied the

proportional hazards model for case-cohort data and obtained an estimating equation using

pseudo-likelihood approach. In this dissertation, we propose methods to analyze recurrent

event data from case-cohort studies.

Recurrent events are common in biomedical research. Andersen and Gill (1982) extended

the Cox proportional hazards model to include recurrent events by modeling the intensity
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process of the multivariate counting process. Prentice et al. (1981), Wei et al. (1989), Lawless

and Nadeau (1995), Sun et al. (2004), among others considered marginal rates (or mean)

model to evaluate the effect of the risk factors on recurrent event data. Some examples

include the occurrence of new tumours in patients with superficial bladder cancer (Byar, 1980),

recurrent seizures in epileptic patients (Albert 1991), rejection episodes in patients receiving

kidney transplants (Cole et al. 1994), repeated infections in HIV-patients (Li and Lagakos

1997) and repeated cardiovascular events in patients (Cui et al. 2008). The two primary

frameworks to study the association between the risk factors and the disease recurrence are

the additive and multiplicative rates models. Most modern analysis of survival data address

multiplicative models for relative risk (rates) using proportional rates models, mostly due to

desirable theoretical properties along with the easy interpretation of results (Pepe and Cai

1993, Lawless 1995, Lin et al. 2000, Schaubel et al. 2006, Kang and Cai 2009a). However,

researchers may be interested in the risk (rate) difference, rather than the relative measure,

attributed to the exposure. Further, the risk difference is more relevant to the public health

as it translates directly to the number of disease cases that may be avoided by eliminating the

exposure (Kulich and Lin 2000). Consequently, the additive rates models can be considered

as an alternative to the multiplicative model (Schaubel et al. 2006, Yin and Cai 2004, Zeng

and Cai 2010, Liu et al. 2013, Kang et al. 2013, He et al. 2013).

All the aforementioned articles considered the full cohort. However, in the three decades

from Prentice’s (1986) seminal paper on case-cohort data, there has been many theoretical

developments and application to different studies in the literature (e.g. Self and Prentice

(1988), Lin and Ying (1993), Barlow (1994), Borgan et al. (1995), Chen (2001), Zeng et al.

(2006), Kang and Cai (2009a), Dong et al. (2014)). Estimation procedures have been proposed

to model single-event data or clustered failure times data, arising from case-cohort studies

but methodologies to address the rates model for such data are limited. Lu and Tsiatis

(2006) and Zhang et al. (2011) developed marginal models for clustered failure times data,

in which the clusters are usually formed by the dependent subjects. Chen and Chen (2014)

extended Prentice’s (1986) idea to recurrent events with certain clustering feature, which

was represented by properly modified Cox-type self-exciting intensity model. However, there
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has not been much work on modeling the marginal rates/mean model for recurrent events

under such sampling scheme. Using the intensity model (Andersen and Gill 1982) to analyze

recurrent events assumes that all the influence of the prior events on future recurrence is

through only the possibly time-varying covariates (Lin et al. 2000). Since, this may not be

the case in practice, less restrictive methods need to be developed for such data from case-

cohort studies. Motivated by these, we propose statistical methods for modeling recurrent

events data from case-cohort studies. We will consider both the multiplicative and additive

rates models in analyzing recurrent events data from case-cohort studies.

Another aspect of case-cohort studies is the design of such studies. In this new era of

cancer research, large amounts of data are often available after the completion of Phase III

trials. There is a growing interest in using this available data to discover new biomarkers that

can be helpful in predicting the best treatment for a particular patient. The advantages of

using information collected in completed Phase III trials are : (a) the data is already available

for further analysis and (b) even if the clinical trail may indicate that the treatment is not

effective, the collected information can still be used for biomarker discovery. In developing

personalized treatment program, genomic biomarkers are often used which are often quite

expensive to measure and maybe time-consuming. In such cases, case-cohort study design

can be applied if only a very small proportion of the cohort experiences the disease endpoint of

interest. The selection of the subset in the second phase can be flexible, utilizing information

collected in the first phase, such as the patient’s disease status, treatment effects and any

auxiliary information. Power and/or sample size will need to be considered to design such a

study. Cai and Zeng (2004) and Cai and Zeng (2007)) proposed simple formula to calculate

the power for the main effect under case-cohort studies and the bounds under generalized case-

cohort design, respectively. In this dissertation, we will develop power/sample size formula

for testing the interaction between an exposure of interest and some expensive biomarker on

a rare event under case-cohort design.
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CHAPTER 2: LITERATURE REVIEW

In this Chapter, we review the literature on the statistical methods for : (i) univariate

failure time data arising from case-cohort studies, (ii) correlated failure time data, more

specifically, recurrent events from prospective studies and their marginal analysis, (iii) sample

size calculation for effects in presence of case-cohort studies when the event is rare. We review

the literature on statistical methods for univariate failure time data in Section 2.1, case-

cohort studies in Section 2.2, recurrent events analysis from prospective studies in Section 2.3

(including marginal models using multiplicative models and frailty models), additive rates

models in Section 2.4, and Power/sample size calculation for case-cohort data in Section 2.5.

2.1 Univariate Failure Time Models

The Cox proportional hazards model (Cox 1972) has been one of the most widely used

procedures to study the effects of covariates on failure time. This model assumes that the

effect of the covariate on the hazard function is constant over time. A more general version

of the Cox model assumes that the hazard function of the failure time, T, associated with the

covariates Z, is given by

λ(t | Z(t)) = λ0(t)exp
{
β′0Z(t)

}
, (2.1)

where λ0(t) is the unspecified baseline hazard function and β0 is a p-dimensional vector of

unknown parameters.

Let C denote the censoring time and X = min(T, C) denote the observed time. Let N(t)

be the counting process and Y (t) = I(X > t) be the at-risk process. Further, let us define

∆ = I(T 6 C) as the indicator of failure. Each failure time is assumed to be subject to

independent right-censorship. Let (Xi,∆i,Zi); i = 1, 2, . . . , n denote the i-th independent

copy of (X,∆,Z) and τ denotes the study end point. The regression parameter can be

4



estimated by the partial likelihood score function introduced by (Cox 1975) :

U(β) =

n∑
i=1

ˆ τ

0

(
Zi(t)−

S(1)(β, t)

S(0)(β, t)

)
dNi(t), (2.2)

where S(0)(β, t) = 1
n

∑n
j=1 Yj(t)exp(βZj(t)) and S(1)(β, t) = 1

n

∑n
j=1 Yj(t)Zj(t)exp(βZj(t)).

Under some regularity conditions, the maximum partial likelihood estimator, β̂, defined as

the solution to the score equation, U(β) = 0 converges to a normal distribution as n → ∞

with mean β0 and a variance which can be consistently estimated by −
[
δ
δβ′U(β) |β=β̂

]−1

(Andersen and Gill 1982).

2.2 Case-Cohort Studies

Epidemiologic studies are considered to be one of the most reliable methods for assessing

the variation in rate of mortality and to study the effect of covariates on the rate in the

population. When the event of interest is rare or the relationship that is of interest is complex,

cohort studies would require large number of subjects and/or long periods of follow-up in

order to accumulate enough failures to have sufficient statistical power to make meaningful

conclusions. However, this would increase the cost of collecting such covariate information on

all subjects, if feasible. Prentice (1986) proposed the case-cohort design to reduce the number

of subjects for whom the covariate information is collected, hence reducing the overall cost.

This method involves the selection of a random sample from the entire cohort, which is called

the sub-cohort and the assembly of the covariate information on the individuals in this sub-

cohort as well as the subjects who experienced the event of interest during the follow-up

period. The sub-cohort also provides a basis for monitoring the covariates during the follow-

up of the cohort. Studying the relative risk process is quite natural in understanding the

effect of the covariate history on the event rates. Based on the relative risk regression model

(Cox 1972), the hazard function of the i-th subject, at time t, is modeled by

λ(t | Zi) = λ0(t)r {β0Zi(t)} , (2.3)
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where r(.) is a known function with r(0) = 1. The pseudo-likelihood function for the estima-

tion of β0 has the form :

L̃(β0) =
n∏
i=1

 rii∑
l∈R̃(ti)

rli


∆i

, (2.4)

where R̃(t) = D(t)∪ Sc, Sc is the set of all individuals in the sub-cohort, D(t) is the set

of all individuals who have observed a failure at time t. It can be written as D(t) =

{i | Ni(t) 6= Ni(t−)} and rli = Yl(ti)r {β0Zl(ti)}. Covariate information is assumed to be

available only for the set, K(t)∪ Sc at time t, where K(t) = {i | Ni(t) = 1}. The maximum

pseudo-likelihood estimate, β̂PL is defined by Ũ(β̂PL) = 0 where Ũ(β) is defined as

Ũ(β) =
δ

δβ′
logL̃(β) =

n∑
i=1

Ũ(β) =

n∑
i=1

∆i

cii − ∑
l∈R̃(ti)

bli∑
l∈R̃(ti)

rli

 , (2.5)

where bli = Yl(ti)Zl(ti)r {β0Zl(ti)}; cii = biir
′ {β0Zi(ti)} and r′(t) = δ

δβ′ r(t). Prentice (1986)

showed that the variance of n−1/2U(β0) is given by

Ṽ (β) = I(β) + 2
n∑
i=1

∆i∆̃(ti)
∑

k|tk<ti

∆kvki,

where I(β) = − δ
δβ′U(β), vki = −

∑
j∈R̃(ti)

(
Bk+bik−bjk
Rk+rik−rjk

)′ (
cji − Bi

Ri

)
rjiR

−1
i , Ri =

∑
k∈R̃(ti)

rki,

Bi =
∑

k∈R̃(ti)
bki and ∆̃(t) = 1 if R̃(t) 6= Sc, 0, o.w. Hence, by Taylor series expansion, we

have the variance of n1/2
(
β̂PL − β0

)
is given by I(β0)−1Ṽ (β0)I(β0)−1. A natural estimator

of the cumulative baseline rate is proposed as

Λ̂0(t) = ñn−1

ˆ t

0

∑
l∈Sc

Yl(u)r
{
β̂′PLZl(u)

}−1

dN̄(u),

where N̄(t) =
∑n

i=1 N̄i(t) and ñ is the size of the random sub-cohort. Self and Prentice (1988)

noted that the efficiency of the relative risk parameter estimation depends on the number of

subjects experiencing the event.
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Self and Prentice (1988) developed the asymptotic distribution theory for the case-cohort

maximum pseudo-likelihood estimator and related quantities, with slightly different pseu-

dolikelihood and variance estimator from the ones proposed by Prentice (1986). In their

formulation of the risk set, only the sub-cohort individuals were considered, whereas in the

original Prentice (1986) paper, the risk set included a non-subcohort individual that fails at

a particular time point. In Self and Prentice (1988), they considered a similar relative risk

regression model as (2.3). The maximum pseudolikelihood estimator, β̂sp, is defined as the

solution to U(β) = δ
δβ′ logL̃(β) = 0, where we have

logL̃(β) =
∑
i∈C

ˆ τ

0
log
[
r
{
β′Zi(t)

}]
dNi(t)−

ˆ τ

0
log

∑
j∈Sc

Yj(t)r
(
β′Zj(t)

)
 dNi(t),

(2.6)

where C is the cohort and Sc is the subcohort of size ñ. Under some regularity conditions,

they proved that β̂sp converges in probability to β0 and n−1/2U(β0) converges to a Normal dis-

tribution with mean zero and variance Σ(β0)+∆(β0), where Σ(β) = −limn→∞
1
n

∂2

∂β∂β′ logL̃(β)

and ∆(β) consists of the contributions of the covariance among the components induced by

the random sampling and have a complicated expression. Hence, by the Taylor series expan-

sion, n1/2
(
β̂sp − β0

)
converges to a Gaussian distribution with mean 0 and covariance matrix

Σ(β0)−1 + Σ(β0)−1∆(β0)Σ(β0)−1. Self & Prentice (1988), in their paper, propose consistent

estimators for Σ(β0) and ∆(β0). For the cumulative hazard function, Λ0(t), the proposed

estimator is given by

Λ0(t) = ñn−1

ˆ t

0

∑
l∈Sc

Yl(u)r
{
β̂′spZl(u)

}−1

dN̄(u). (2.7)

n1/2
(
β̂sp − β0

)
and n1/2

(
Λ̃0(t)− Λ0(t)

)
are shown to converge weakly and jointly to Gaus-

sian random variables with zero mean and appropriate limiting covariances. It is also shown

that the Prentice’s (1986) estimator, β̂PL, and the Self and Prentice (1988) estimator, β̂sp, are

asymptotically equivalent provided an individual’s contributions to S(0) and S(1) are asymp-

totically negligible. The variance estimate that is proposed by Prentice (1986) is somewhat
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different from the one proposed by Self and Prentice (1988) but it has been shown to converge

to Σ(β0)−1 + Σ(β0)−1∆(β0)Σ(β0)−1.

The variance estimators proposed in these two papers (Prentice 1986, Self and Pren-

tice 1988) are quite complicated. There have been many methods proposed to estimate the

variance of the estimators from the pseudo-likelihood. Wacholder et al. (1989) proposed a

bootstrap estimate of the variance of the covariate effect estimator. Their method echoes the

original case-cohort sampling scheme by resampling cases and sub-cohort controls separately.

This method is quite intensive computationally and would be quite time-consuming for large

studies but it avoids the direct computation of the covariance among score components.

Barlow (1994) proposed a robust estimator of the variance based on the influence of an

individual observation on the overall score. In the paper, the author assumed the standard

Cox Proportional Hazard regression model for the relative risk as seen in equation (2.3). The

conditional probability of failure at time tj is given by

pi(tj) =
Yi(tj)wi(tj)ri(tj)∑n

k=1 Yk(tj)wk(tj)rk(tj)
,

where the weight of the i-th subject at time t is given by

wi(t) =


1 if dNi(t) = 1,

m(t)
m̃(t) if dNi(t) = 0 and i ∈ Sc,

0 if dNi(t) = 0 and i 6∈ Sc

where m(t) is the number of disease-free individuals in the full-cohort who are at risk at time

t and m̃(t) is the number of disease-free individuals in the random sub-cohort who are at risk

at time t; ri(t) = exp{β′0Zi(t)}. One can easily note that Prentice (1986) used the weights

as binary indicator, it being = 1 for the i-th individual at time t if dNi(t) = 1 or i ∈Sc

and zero, otherwise. The Self & Prentice method used only the denominator summed over

the subcohort members in the likelihood. The estimation of the unknown parameter follows

directly from the log-likelihood of the conditional probability, i.e.,
∑n

i=1

´ τ
0 log (pi(t)) dNi(t) =
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∑
t

∑n
i=1 dNi(t)log (pi(t)). The robust variance estimator that was proposed in the paper,

using the infinitesimal jackknife estimator, is given by V̂ (β̃) = 1
n

∑n
i=1 êiê

′
i where êi = β̃ −

β̃−(i) = I−1(β̃)ĉi(t0), ci(t0) is defined as the influence of an observation on the overall score

for a particular individual i at time t0 and êi is the change in β̃ if the i-th observation is

deleted. Further, ci(t0) is given by

ci(t0) =

ˆ t0

0
Yi(t) [dNi(t)− λi(t)] (Zi(t)− EZ(t)) dN̄(t),

where EZ(t) =
∑n

i=1 pi(t)Zi(t). I(β̃) is the information matrix generated by the pseudo-

likelihood function. We can estimate ci(t0) by ĉi(t0) =
´ t0

0 Yi(t) [dNi(t)− p̂i(t)]
(
Zi(t)− ÊZ(t)

)
×dN̄(t) and I(β̃) =

∑
t

∑
i p̂i(t)

[
zi(t)− Ê(t)

] [
zi(t)− Ê(t)

]′
.

Lin and Ying (1993) tackled the problem of missing covariate data under Cox Propor-

tional Hazards regression model, of which the case-cohort design was a special case. They

proposed an approximated partial-likelihood score function for the estimation of the regres-

sion parameters. A new variance-covariance estimator which is much easier to calculate than

that Prentice (1986) and Self and Prentice (1988) was also proposed. The standard Cox PH

regression model was assumed, as given in equation (2.1). Suppose that the data consist of

iid random quintuplets (Xi,∆i, Zi(.), H0i(.),Hi(.)) where Zi(.) = {Zi1(.), Zi2(.), . . . , Z1p(.)}′

may not be fully observed and H0i(.) is an indicator function and Hi(.) is a p×p matrix with

the indicator functions H1i(.), H2i(.), . . . ,Hpi(.) being the diagonal elements. Considering the

original case-cohort design, we have Hi(.) = Ip which is the p×p identity matrix and H0i(.) is

1 if the i-th subject belongs to the sub-cohort and zero, otherwise. The approximate partial

likelihood score function can be written as

ŨH(β) =

n∑
i=1

∆iHi(Xi){Zi(Xi)− EH(β,Xi)},

where EH(β,Xi) =
S
(1)
H (β,Xi)

S
(0)
H (β,Xi)

; S
(d)
H (β, t) = 1

n

∑n
i=1H0i(t)Yi(t)exp{β′Zi(t)}Zi(t)⊗d. Let us

define the root of the estimating equation, ŨH(β) = 0, by β̃H . Under certain regularity

conditions, n1/2
(
β̃H − β0

)
can be shown to converge weakly to a Gaussian random variable
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with mean zero and variance given by A−1(β0)V (β0)A−1(β0), where An(β) = − 1
n

δ
δβ′ ŨH(β),

limn→∞An(β) = A(β), V (β) = E
(
W1(β)⊗2

)
,

Wi(β) = ∆iHi(Xi){Zi(Xi)−eH(β,Xi)}−
ˆ Xi

0

h(t)

h0(t)
H0i(t){Zi(t)−eH(β, t)}exp(β′Zi(t))dΛ0(t),

where eH(β, t) =
s
(1)
H (β,t)

s
(0)
H (β,t)

, s
(d)
H (β, t) = E(S

(d)
H (β, t)) for d = 0, 1; h(t) = E(Hi(t)), hk(t) =

E(Hki(t)) for all k = 0, 1, . . . , p. Therefore, The covariance matrix can be approximated by

A−1
n (β̃H)V̂ (β̃H)A−1

n (β̃H) where V̂ (β) = 1
n

∑n
i=1 Ŵi(β)⊗2 and

Ŵi(β) = ∆iHi(Xi){Zi(Xi)− EH(β,Xi)}

− 1

n

n∑
l=1

∆lYi(Xl)H0i(Xl)Hl(Xl)exp{β′Zi(Xl)} ×
(Zi(Xl)− EH(β,Xl))

S
(0)
H (β,Xl)

.

For the case-cohort design, the variance estimator A−1
n (β̃H)V̂ (β̃H)A−1

n (β̃H) is much easier to

calculate, even when we have time-dependent covariates, than Prentice (1986) and Self and

Prentice (1988). Another advantage of the proposed method is that incomplete covariate

information on the covariates is allowed. Furthermore, the form of the proposed estimator

remains unchanged under multiple sub-cohort augmentations. A natural estimator of the

cumulative hazard function is proposed as

Λ̃(β̃H , t) =
n∑
i=1

I(Xi 6 t)H0i(Xi)∆i

nS
(0)
H (β̃H , Xi)

=

ˆ t

0

H0i(u)dNi(u)

nS
(0)
H (β̃H , u)

.

The process n1/2
(

Λ̃(β̃H , t)− Λ0(t)
)

converges weakly to a Gaussian process with mean zero

and covariance function

ψ(t, s) =

ˆ t∧s

0

dΛ0(u)

s(0)(β0, u)
+J ′(t)A−1(β0)V (β0)A−1(β0)′J(s)−J ′(s)A−1(β0)G(t)−J ′(t)A−1(β0)G(s),

(2.8)

where J(t) =
´ t

0
s(1)(β0,u)dΛ0(u)

s(0)(β0,u)
and G(t) = E[

´∞
0

´ t∧v
0

H0i(u)exp{β′0Zi(u)}dΛ0(u)

s(0)(β0,u)

×
(
Hi(v)− H0i(v)

h0(v) h(v)
)

(Zi(v)− eH(v))× Yi(v)exp{β′0Zi(v)}]. ψ(t, s) can be consistently es-

timated by simply replacing the parameters by the sample counterparts. The authors noted
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that this might not be the best choice if H0i(Xi) = 0 for most of the non-zero ∆i’s. Hence,

for the original case-cohort design, the authors recommend to use the formula proposed by

Self and Prentice (1988) as seen in equation (2.7) rather than this.

Chen and Lo (1999) proposed a class of estimating equations for case-cohort design based

on the partial likelihood score function, which lead to simple estimators that improve Pren-

tice’s pseudolikelihood estimator. The authors explored the usual Cox PH model (2.3), with

r(.) being replaced by exp(.) and did not include any time-dependent covariates. They

observed the triplets (Xi,∆i, Zi) for the i-th individual. One can note that

E(Z | X = t,∆ = 1) =
E
(
Zeβ

′ZI(X > t)
)

E (eβ′ZI(X > t))

=
pE
(
Zeβ

′ZI(X > t) | ∆ = 1
)

+ (1− p)E
(
Zeβ

′ZI(X > t) | ∆ = 0
)

pE (eβ′ZI(X > t) | ∆ = 1) + (1− p)E (eβ′ZI(X > t) | ∆ = 0)
,

(2.9)

where p = P(∆ = 1). Let F 1 and F 0 be the conditional joint distributions of (X, Y) given

∆ = 1 and ∆ = 0 respectively. Further, suppose that R1 is the index set of random sample

of k1 cases and R0 is the index set of random sample of k0 censored individuals. Then,

one can estimate F l, l = 0, 1 by the respective empirical counterpart, Rl. Hence, replacing

the population quantities by the empirical analogues, the authors proposed the following

estimating function :

U(β) =
∑
i∈R1

ˆ ∞
0

[
Zi −

(p̂/k1)
∑

j∈R1
t
Zje

β′Zi + {(1− p̂)/k0}
∑

j∈R0
t
Zje

β′Zi

(p̂/k1)
∑

j∈R1
t
eβ′Zi + {(1− p̂)/k0}

∑
j∈R0

t
eβ′Zi

]
dNi(t). (2.10)

The authors considered several cases with different estimates of p depending on how much

information one has about the data and considered the consistent estimator of the unknown

parameters, β0, and the corresponding covariance terms for the asymptotic distribution of

n1/2
(
β̂CL − β0

)
with mean zero. If the entire cohort is well-defined with n as the total

cohort size, n1 is the number of cases in the cohort and n0 is the number of censored subjects

and n∗0 is the number of censored subjects in the sub-cohort. Then the estimating function

11



reduces to

U(β) =

n∑
i=1

ˆ ∞
0

[
Zi −

∑
j∈R1

t
Zje

β′Zi + (n0/n
∗
0)
∑

j∈R0
t
Zje

β′Zi∑
j∈R1

t
eβ′Zi + (n0/n∗0)

∑
j∈R0

t
eβ′Zi

]
dNi(t) = 0. (2.11)

The solution to this equation, β̂cl, is consistent for β0 and n1/2
(
β̂cl − β0

)
converges to a

Gaussian distribution with mean zero and variance given by

σ2 =
1

n
Σ−1

1 +

(
1

n∗0
− 1

n

)
Σ−1

1

[
Σ−1

0 − pV1 −
1− p
p

E⊗2
0

]
Σ−1

1 ,

where Σ1 = var(W ∗), Σ0 = var(W ), V1 = var(W | ∆ = 1), E0 = E(W | ∆ = 0), W ∗ =

{Z − m(Y )}∆, W =
´∞

0 {Z − m(t)}eβZI(Y > t)dΛ0(t), m(t) = E(Z | Y = t,∆ = 1).

Kulich and Lin (2000) demonstrated the use of case-cohort data in estimating the regression

parameter of an additive hazards regression model, where the conditional hazard function

given a set of the covariates is the sum of an arbitrary baseline hazard and a function of the

unknown regression parameter and the covariates. We have discussed this in details when

discussing the literature for additive rates models.

Chen (2001) proposed a more efficient estimator by using local averages type of weights.

The paper focuses on a unified approach for the parameter estimation of Cox PH model

under different cohort sampling schemes, like nested case control, case-cohort and classical

case-cohort methods. The sample reuse approach proposed via local averaging leads to more

efficient estimators and this method is applicable to more complex sampling designs. The

estimating equation they propose is the following :

U(β) =

n∑
i=1

ˆ ∞
0

[hi(t)−
∑n

j=1W
∗
j (t)hj(t)exp(β

′Zj(t))Yj(t)∑n
j=1W

∗
j (t)exp(β′Zj(t))Yj(t)

]W ∗i (t)dNi(t) = 0, (2.12)

where Yj(t) = 1(Tj ∧ Cj ≥ t) when one has only one event, Zj(t) is the vector of co-

variates corresponding to the j-th subject, hi(.) are the sample analogues of a covariate-

related process and W ∗j (t) is the weight at time t. Chen & Lo considered the weights to

be W ∗j (t) = ∆j + (1 − ∆j)δjn0/n
∗
0, where ∆j is the 1(event occurs for the j-th subject),
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δj = 1(j-th individual is sampled), n0 & n∗0 is the number of censored individuals in the co-

hort and the subcohort, respectively. Chen (2001) proposed the following weight function,

W ∗j (t) = W ∗j = δj/rn(Xj , δj), where Xj = Tj ∧ Cj (when we have only one event) and

rn(t, d) =

∑n
l=1 δl∆l1(xl ∈ [ti−1, ti])∑n
l=1 δl1(xl ∈ [ti−1, ti])

if d =1 and t ∈ [ti−1, ti]

=

∑n
l=1(1− δl)∆l1(xl ∈ [sj−1, sj ])∑n
l=1(1− δl)1(xl ∈ [sj−1, sj ])

if d =0 and t ∈ [sj−1, sj ],

where 0 = t0 ≤ t1 ≤ . . . ≤ tan = τ and 0 = s0 ≤ s1 ≤ . . . ≤ sbn = τ are two partitions

which satisfy certain conditions, resulting in more efficient estimation of the parameters. The

author noted that the existing work on case-cohort sampling on survival analysis is highly

dependent on the specific sampling design and the methods result in inefficient estimates of the

regression parameters. Under the regularity conditions, the solution to equation (2.12), β̂h,

is consistent for β0 and the asymptotic distribution of n1/2
(
β̂h − β0

)
is Gaussian with mean

zero and variance Σ−1
h,Z (Σh,h + Σ∗h) Σ−1

h,Z with Σh,Z = cov(Mh̃,MZ̃), Σh,h = cov(Mh̃,Mh̃),

Σ∗hcov(Wh̃,Mh̃), Mh =
´ τ

0 h(t)dM(t), Wh̃ = (1/π−1)(Mh̃−M
o
h̃
), Mo

h̃
= E(Mh̃ | Y,∆), h̃(t) =

h(t)−E(h(t)). Kulich and Lin (2004) developed a class of weighted estimating equations with

time-dependent weight functions for stratified case-cohort designs. The authors in this paper

considered the Cox (1972) regression model as described in (2.3) with exp(.) as the function

r(.). They considered a cohort of n subjects who can be divided into K mutually exclusive

strata based on a discrete random variable V. They assumed that V affects the failure time

only through the covariates, i.e., T is independent of V given Z(.). The data observed is

the following : (Xki = Tki ∧ Cki,∆ki, Zki(t), 0 6 t 6 τ, Vki, ξki) for the individuals in the

sub-cohort and (Xki,∆ki, Zki(Xki)) for all the cases outside the sub-cohort. The estimating

equation is given by

U(β) =
K∑
k=1

nk∑
i=1

ˆ τ

0
[Zki(t)− EC(β, t)] dNki(t) = 0, (2.13)

where EC(β, t) =
S
(1)
C (β,t)

S
(0)
C (β,t)

, S
(d)
C (β, t) =

∑K
k=1

∑nk
i=1 %ki(t)Zki(t)Yki(t)e

β′Zki(t)∑K
k=1

∑nk
i=1 %ki(t)Yki(t)e

β′Zki(t)
, %ik(t) = ∆ki + (1 −

∆ki)ξkiα̂k(t), which is based on the weights proposed by Kalbfleisch and Lawless (1988). ξi
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is the indicator that the individual is included in the sub-cohort and α̂k(.) is a function of

the controls (because of the separation between the cases and the controls). The authors

proposed a doubly weighted estimator

α̂k(t) =

{
nk∑
i=1

(1−∆ki)Aki(t)

}−1{ nk∑
i=1

ξki(1−∆ki)Aki(t)

}
,

where Aki(t) is a diagonal matrix with m potentially different random processes on the diag-

onal. Redefine the at-risk covariate average as EDW (β, t) = {S(0)
DW (β, t)}−1S

(1)
DW (β, t) where

S
(1)
DW (β, t) and S

(0)
DW (β, t) are the matrix counterparts of S

(1)
C (β, t) and S

(0)
C (β, t), respec-

tively. Based on these, the authors showed that, under certain regularity conditions, β̂DW is

a consistent estimator of β0 and n1/2
(
β̂DW − β0

)
converges to a Gaussian distribution with

mean 0 and variance I−1
F + I−1

F ΣDW I−1
F , where IF =

´ τ
0

[
s(2)(β,t)

s(0)(β,t)
− e(β, t)⊗2

]
s(0)(β, t)dΛ0(t),

s(d)(β, t) = E(Zi(t)Yi(t)e
β′Zi(t)), d = 0,1,2; e(β, t) = s(1)(β,t)

s(0)(β,t)
, ΣDW =

∑K
k=1 qk

1−αk
αk

Ek
{

(1−∆i)
´ τ

0

(
Rki(t)− µ−1

k (t)Aki(t)ψk(t)
)
dΛ0(t)

}⊗2
with qk = P (V = k), αk = P (ξ =

1 | V = k), Rki(t) = (Zki(t)− e(β, t)) eβ
′Zki(t)Yki(t), µk = E [(1−∆ki)Aki(t)] and ψk(t) =

E [(1−∆ki)Rki(t)].

Nan (2004) developed semi-parametric efficient estimators, obtained by solving the the

efficient score equation with the help of the Newton-Raphson algorithm. Lu and Tsiatis

(2006) proposed a general class of semi-parametric transformation model. They considered

weighted estimating equations for simultaneous estimation of the regression parameters and

the transformation function. The semi-parametric linear transformation model is specified by

H(T ) = −β′0Z + ε,

where T is the survival time, H is an unknown monotone increasing function, β0 is the p-

dimensional unknown regression parameters and ε is the error term which has a continuous
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distribution, independent of the censoring process and covariates. The corresponding esti-

mating equations are given by

n∑
i=1

πi
[
dNi(t)− Yi(t)dΛ{H(t) + β′Zi}

]
= 0 (t > 0), H(0) = −∞,

n∑
i=1

ˆ ∞
0

Ziπi
[
dNi(t)− Yi(t)dΛ{H(t) + β′Zi}

]
= 0.

The authors showed that the resulting regression estimators are asymptotically normal, with

a closed form variance-covariance matrix that can be consistently estimated by the usual

plug-in estimators. Lu and Shih (2006) extended the case-cohort design to clustered data,

where each clustered comprises of correlated individuals, whose structure of dependence is

kept unspecified. The estimating equation is defined as

U(β) =
n∑
i=1

m∑
j=1

[
Zij(Xij)− Ē(β,Xij)

]
δij ,

where Ē(β, t) = S̄1(β,t)
S̄0(β,t)

, S̄d(β, t) =
∑n

i=1

∑m
j ∆ijYij(t)e

β′Zij(t)Zij(t)
⊗d, ∆ij is an individual

indicator that equals 1 if individual (i, j) is selected for the subcohort, and 0, otherwise and

δij is the indicator of whether the j-th individual in the i-th cluster observes the event or

is censored. Kang and Cai (2009a) considered marginal hazards model for case-cohort data

with multiple disease outcomes. Time to different events are modeled simultaneously in order

to compare the effect of a risk factor on different types of diseases. They have proposed valid

statistical methods that take the correlations among the outcomes from the same subject into

account. They have considered the multiplicative intensity process model, which is specified

by

λik(t | Zik(t)) = Yik(t)λ0k(t)e
β′0Zik(t),

where λ0k(t) is an unspecified baseline hazard function for disease outcome k and β0 is the

vector of unknown parameters. Defining the estimating equation, similar to (2.13), it is shown

that the parameter estimators are consistent and asymptotically normal and the correspond-

ing variance-covariance term can be easily replaced by the sample counterparts. Zhang et al.
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(2011) developed estimating equation for clustered failure time data assuming a marginal haz-

ards model, with a common baseline hazard and common regression coefficient across clusters.

One of the key advantages of the case-cohort design is its ability to use the same sub-cohort for

several diseases or for sub-types of diseases (Prentice 1986, Wacholder et al. 1989, Langholz

and Thomas 1990, Wacholder 1991). The availability of the case-cohort sub-cohort may be

useful for study monitoring and can be considered to be a natural comparison group at all

disease occurrence times for all of the different diseases. Chen and Chen (2014) extended

the case-cohort design to recurrent events with specific clustering feature using a modified

Cox-type self- exciting intensity model. Under this model, conditional on the covariates and

history of events upto time t, the intensity function of N(.) (simple point process) is given by

λ(t) = µ(t)exp{Ψ(t, θ)},

where Ψ(t, θ) = β′Z(t) + φ(t), µ(t) is the unspecified baseline intensity, Z(t) is the time-

varying p-dimensional vector of covariate, β is the vector of regression coefficients, φ(t) is

a self-exciting term depending on past events of the process and θ is the combined finite

dimensional parameters to be specified. The pseudo-likelihood score equation for θ is given

by

log L(θ) =

n∑
i=1

ˆ Ci

0

[
ψi(t, θ)−

∑n
j=1 εjψj(t, θ)Yj(t)exp{Ψj(t)}∑n

j=1 εjYj(t)exp{Ψj(t)}

]
dNi(t) = 0, (2.14)

where ψ(t, θ) = ∂
∂θΨ(t, θ). The authors went onto show the asymptotic properties of the

solution to the above equation, under certain regularity conditions.

2.3 Recurrent Events Data

In many longitudinal studies and for several medical conditions, subjects experience re-

peated or recurrent events. Some examples include the occurrence of new tumors in patients

with superficial bladder cancer (Byar, 1980), recurrent seizures in epileptic patients (Albert

1991), rejection episodes in patients receiving kidney transplants (Cole et al. 1994), repeated
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infections in HIV-patients (Li and Lagakos 1997), repeated cardiovascular events in patients

(Cui et al. 2008). In this section, we look at the different ways one can model the recurrent

event data and the assumptions that are attached to it. In the following subsections, we will

summarize the marginal models (more specifically, intensity models and rate & mean mod-

els) which do not assume anything about the nature of the dependence among the recurrent

events and the frailty model which explicitly specifies the relationship among the repeated

events.

2.3.1 Marginal Models using Multiplicative Models

Prentice et al. (1981) considered two stratified proportional hazards type of regression

models for modeling the intensity function in terms of the covariates and the failure time

history. The main diference between the two models is that one of them specifies the baseline

intensity function as a function of time from the beginning of study, while the other specifies

it as a function of time from the subject’s immediately preceding failure. Let Z(t) = {z(u) |

u 6 t} be the covariate process upto time t and N(t) = {n(u) | u 6 t}, where n(u) is

the number of failures on a study subject prior to time t. The counting process N(t) is

equivalent to random failure time, T1, T2, . . . , Tn(t) in [0, t). The authors define the hazard

or the intensity function at time t as the instantaneous rate of failure at time t given the

covariate and counting process.

λ{t | N(t), Z(t)} = lim
δt→0

P (t 6 Tn(t)+1 6 t+ δt | N(t), Z(t))

δt

⇒ λ{t | N(t), Z(t)} = λ0s(t)e
β0sz(t), time from the beginning of study (2.15)

or λ{t | N(t), Z(t)} = λ0s(t− tn(t))e
β0sz(t), time from the immediately preceeding failure,

(2.16)

where λ0s(t) (s = 1, 2, . . .) are arbitrary baseline intensity functions and the stratification

variable, s = s(N(t), Z(t)) may change as a function of time for a particular subject and β0s

is the stratum specific regression coefficient. The authors propose two different likelihood

functions for the two quite different models considered. The likelihood function for the model
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where they studied the time from the beginning of the study is given by

L(β0) =
∏
s>1

ds∏
i=1

exp[β′0zsi(tsi)]∑
l∈R(tsi,s)

exp[β′0zl(tsi)]
,

where R(t, s) is the risk set at time t for the s-th stratum. For the time from the last observed

failure, we have

L(β0) =
∏
s>1

ds∏
i=1

exp[β′0zsi(tsi)]∑
l∈R̃(usi,s)

exp[β′0ztl+u+si(tsi)]
,

where R̃(t, s) is the risk set at gap-time t stratum-s. tl is the last failure time on subject l

prior to entry into stratum s. The authors note that ordinary asymptotic likelihood methods

can be applied to both the likelihood functions (Cox 1975) though consideration should be

given to the size and to the number of failures in each stratum. Andersen and Gill (1982)

explored the Cox PH regression model (as in equation (2.1)). The authors extended the Cox

PH model for a single failure time data where the effect of the covariate is proportional on

the hazard, to the multivariate counting process, where the effect of the covariate process

is proportional on the intensity function. They showed that Mi(t) = Ni(t) −
´ t

0 dΛi(t) are

local square-integrable martingales on the time interval [0, 1]. The solution to the estimating

equation U(β) = 0 is denoted by β̂, where U(β) is defined as in (2.2), with Yi(t) defined as

an indicator function showing whether the individual is still under observation or not. They

showed that β̂ is consistent for β0 and n−1/2U(β0) converges to a Gaussian distribution with

mean zero and variance, Σ(β0), where Σ(β) =
´ 1

0

(
s(2)(β,t)

s(0)(β,t)
− s(1)(β,t)

s(0)(β,t)

⊗2
)
s(0)(β, t)λ0(t)dt.

Wei et al. (1989) noted that many survival studies record the times to two or more failures

per subject, where the failure types might be completely different or they may be repetitions

of the same type. The authors proposed to model the marginal distribution of each failure

time variable with a Cox-type PH regression model. In this approach, no structure is imposed

on the dependence of the different failure times for each subject. The hazard function for the

k-th type of failure time of the i-th subject is given by

λk(t | Zki(t)) = λk0(t)eβ0kZki(t), k = 1, 2, . . . ,K, i = 1, 2, . . . , n. (2.17)
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The k-th failure-specific partial likelihood (Cox, 1975) is defined as

Lk(β0) =

n∏
i=1

exp[β′0Zki(Xki)]∑
l∈R(Xki)

exp[β′0Zli(Xki)]
,

where R(t) = {i : Xki > t} is the set of individuals who are at risk of observing the k-th type

of failure just prior to time t. Under certain regularity conditions, the solution to the partial

likelihood equation, ∂Lk(β)
∂β = 0, given by β̂k, will be consistent for the unknown parameter,

βk0. n1/2(β̂ − β0) = n1/2(β̂1 − β01, β̂2 − β02, . . . , β̂K − β0K) converges asymptotically to a

Normal distribution with zero-mean and variance Q with elements equal to Dij(β̂i, β̂j), i,

j = 1, 2, . . . ,K and Dij(β̂i, β̂j) can be consistently estimated by Âi(β̂i)
−1B̂(β̂i, β̂j)Âj(β̂j)

−1

with Âi(βi)
−1 = 1

n

∑
k ∆ik

[
S(2)(βi,Xik)

S(0)(βi,Xik)
− (S

(1)(βi,Xik)

S(0)(βi,Xik)
)⊗2
]
, B̂(β̂i, β̂j) = 1

n

∑
kWik(β̂i)Wjk(β̂j)

′,

Wik(βk) =

[
∆ik −

∑n
m=1

∆imYik(Xim)eβ
′
kZik(Xim)

S(0)(βi,Xik)

]
×
[
Zik(Xim)− S(1)(βi,Xik)

S(0)(βi,Xik)

]
,

S(d)(β, t) = 1
n

∑n
i=1 Zi(t)Yi(t)e

β′Zi(t).

Pepe and Cai (1993) looked at different methods to display and analyze multiple failure

time data. The authors looked at the rate function. They defined the rate functions as

rF (t) = lim∆→0
1
∆P [event occurred in (t, t+ ∆) | at risk and no event observed at t] (rate of

first infection) and rR(t) =

lim∆→0
1
∆P [event occurred in (t, t + ∆) | at risk and event previously observed at t] (rate of

recurrent infection). Suppose that rF and rR are functions of time that involve certain

parameters, α and γ as rFα and rRγ respectively. The likelihood for α is given by

L(α) =
∏
ti∈D

rFα (ti)exp

{
−
ˆ ti

0
rFα (u)du

}
×

∏
tj∈D

rFα (tj)exp{−
ˆ tj

0
rFα (u)du}

 ,
where D is the set of times when the event occurred for the first time; O is the set of

observation times for subjects censored or lost to follow-up due to competing risk events.

The corresponding score function is given by

SF (α) =

ˆ
fα(t)

{
dNF (t)− Y F (t)rFα (t)dt

}
, (2.18)

19



where fα(t) = ∂logrFα (t)
∂α , NF (t) = the number of individuals who had the event observed by

time t, and Y F (t) = the number of individuals under observation and who had not observed

any prior event at t. By definition, E
(
dNF (t)/Y F (t) | Y F (t)

)
= rFα (t)dt. The authors note

that under mild regularity conditions, the solution to the estimating equation (2.18) should

be a consistent estimator of α, even when fα(t) is somewhat different from ∂logrFα (t)
∂α . They

further noted that setting fα(t) at this quantity would yield the most efficient estimator.

The authors also observed that likelihood-based estimation of rRγ would require specifying a

model for the joint distribution of recurrence times within the same individual, but one can

get consistent estimates of γ from an estimating equation like (2.18).

SR(α) =
n∑
i=1

SRi (α) =
n∑
i=1

ˆ
Iγ(t)

{
dNR

i (t)− Y R
i (t)rRα (t)dt

}
= 0, (2.19)

where NR
i (t) is the number of events observed by time t for the i-th individual with previously

observed events, Y R
i (t) is the indicator that the i-th individual, with previously observed

events, is at-risk of an event at t, and Iγ(t) is some bounded deterministic vector-valued

function whose dimension is the same as the dimension of γ. The authors showed that the

solution to the estimating equation (2.19), γ̂, is consistent estimator of γ and n−1/2SR(t)
D−→

N(O, V (t)), where V (t) is the variance- covariance matrix for SRi (t) and one can get the

asymptotic distribution of γ̂ from Taylor series expansion.

Lawless and Nadeau (1995) presented non-parametric methods and regression models to

estimate the cumulative mean function (CMF), defined as M(t) = E(Ni(t)), where Ni(t) is the

number of events occurring in time [0, t]. The main objective is to estimate M(t) based on the

observed times times, which are defined as ti1 6 ti2 6 . . . 6 tiri for the i-th individual over the

interval [0, τi] (i = 1,2,. . ., k) and the individuals are independent. For simplicity, the authors

presented the results in a discrete-time framework. Define δi(t) = 1, if t 6 τi, 0 o.w., to denote

whether an individual observed an event. Further, let ni(t) > 0 denote the number of events

that occur at time ‘t’ for the i-th individual so that m(t) = E{ni(t)} and M(t) =
∑t

s=0m(s).

The maximum likelihood estimator the authors proposed is given by M̂(t) =
∑t

s=0
n.(s)
δ.(s)

, 0 6

t 6 τ = maxi(τi), where n.(t) =
∑k

i=1 δi(t)ni(t) and δ.(t) =
∑k

i=1 δi(t). The authors proposed
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the variance of M̂(t) as var(M̂(t)) =
∑k

i=1

∑t
s=0

∑t
u=0

δi(s)δi(u)
δ.(s)δ.(u) cov(ni(s), ni(u)). The authors

further extended the idea to develop similar approach for a flexible family of regression models.

The following regression model

E(ni(t)) = mi(t) = m0(t)Pi(t)g(zi(t), β0)

was considered, where β0 is a p-dimensional vector of regression parameters, g is a positive

valued function, m0(t) > 0 is the baseline mean function and Pi(t) is some known function.

Noting that m0(t) = n.(t)
R(t,β0) and R(t, β0) =

∑k
i=1 δi(t)gi(t), the estimating equation for β is

given by
∑k

j=1

∑
l∈Dj

{
∂loggl(tj)

∂β − ∂R(tj ,β)
∂β

}
= 0, where Dj represents the set of individuals

with events at tj , including repetitions for an individual at that time. Under mild conditions,

the solution to this estimating equation, β̂, is consistent for β0. Defining

Wi(β, s) =
∂loggi(s)

∂β
− ∂logR(s, β)

∂β
,

B̂1i(t) =
t∑

s=0

δi(s)Wi(β̂, s)[ni(s)− ĝi(s)m̂0(s)],

where ĝi(s) = Pi(s)g(xi, β̂), B̂1 = 1
k

∑k
i=1 B̂1iB̂

′
1i and Â1 = 1

k

∑k
i=1

∑τ
s=0 δi(s)m̂0(s)∂ĝi(s)

∂β̂

×Wi(β̂, s)
′, we have k1/2

(
β̂ − β0

)
converges asymptotically to a Gaussian distribution with

mean 0 and a sandwich variance term ˆvar(β̂) = Â−1
1 B̂1(Â−1

1 )′. Lawless (1995) discussed

different ways of introducing covariates in the analysis of recurrent events and the distinction

between rate (and mean) function and intensity functions event process characterizations.

The author defines the rate of occurrence function is r(t) = ∂E(N(t))
∂t and the mean function

is given by

E [N(t)] =

ˆ t

0
r(u)du (2.20)

where r(t) can be the intensity function (but usually they are quite different). Covariates can

be introduced into the rate or mean functions as r(t; z) = ρ(t)φ(z). Note that this type of

marginal model is different from Wei et al. (1989), where they have modeled the distribution

of time to the j-th event (j = 1,2,. . .) and the hazard function is given by hj(t; z) = hoj(t)e
βz.
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Renewal type of models based on intervals between successive events would be characterized

by

λ(t;Hit, zi) = hj(t− tij)exp(βjzi),

where Ni(t−) = j (Gail et al. 1980) specifies that for each subject the times to the first event

and between successive events are independent random variables and they do not necessarily

have the same distribution; Ht = {N(s) | s < t} is the history of the process up to time t; tij

is the j-th observed event time for the i-th individual and βj are the regression parameters.

The authors used Lawless and Nadeau’s (1995) approach to estimate β, yielding R0(t) =
´ t

0
dN(u)∑n

i=1 δi(u)φi(zi,β)
and N(u) is the total number of events observed at u. The authors further

proposed the joint distribution of n1/2
(
β̂ − β, R̂0(t)−R0(t)

)
. They noted that the marginal

analyses for means are quite easy to interpret and may be made robust to other assumptions

about the recurrent event process, provided that the observation period [0, τi] for the i-th

individual (for all i) are independent of the corresponding event process.

Cook et al. (1996) investigated robust non-parametric tests, in the sense, that these meth-

ods do not rely on distributional assumptions of the event-generating process, for recurrent

event data. They have further explored a family of generalized pseudo-score statistics (Lawless

and Nadeau 1995) in which weight functions may be chosen to generate tests sensitive to var-

ious types of departure from the null hypothesis (which states that the mean functions for the

treatment and control groups are identical). Denote Ni(t) as the number of events experienced

by the i-th subject and t is the time on the study; dNi(t) = limδt→0 [Ni(t)−Ni(t− δt)]. Yi(t)

be an indicator variable which takes value 1 if subject i is observed to be at risk at time t, and

is zero, otherwise and Λi(t) = E{Ni(t)}. The authors note that Nelson (1988) and Lawless

and Nadeau (1995) have stated the well known non-parametric Nelson-Aalen estimator,

Λ̂(t) =
n∑
i=1

ˆ t

0

Yi(u)dNi(u)∑n
j=1 Yj(u)

=

ˆ t

0

dN.(u)

Y.(u)
.
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Under mild conditions, the results in Lawless & Nadeau (1995) can be extended to get

σ(t, s) = n

n∑
i=1

[ˆ t

0

ˆ s

0

Yi(u)Yi(v)

Y.(u)Y.(v)
cov(dNi(u), dNi(v))

]
,

where σ(t, s) = ncov(Λ̂(t), Λ̂(s)), Y.(u) > 0, 0 < u 6 max(t, s). Assuming that Y.(u) → ∞

as n → ∞ for all u ∈ (0,max(t, s)] and σ(t, s) converges to a positive definite limit, Λ̂(t) is

consistent for Λ(t) and σ(t, s) would be estimated by

σ̂(t, s) = n
n∑
i=1

[ˆ t

0

ˆ s

0

Yi(u)Yi(v)

Y.(u)Y.(v)
(dNi(u)− dΛ̂(u))(dNi(v)− dΛ̂(v))

]
.

The authors showed that under some additional conditions, n1/2{Λ̂(t)−Λ(t)}, t > 0 converges

to a mean zero Gaussian process with covariance function equal to σ(t, s) over some inter-

val 0 < t, s,6 τ . The authors also considered stratified designs and the forms are natural

extensions of the above. Chang and Wang (1999) focused on conditional regression anal-

ysis, given the ordinal nature of recurrent events per subject. A semi-parametric hazards

model, including the structural and episode specific parameters considered as stratification

variable, has been proposed for modeling the data. Spiekerman and Lin (1999) proposed a

Cox-type regression model to model the marginal distribution of multivariate failure time

data. They used different baseline hazard functions for different failure types and proved that

the maximum quasi-partial-likelihood estimator of the regression parameters are consistent

and asymptotically normal. Lin et al. (1999) proposed a simple non-parametric estimator for

the multivariate distribution function of the gap times between successive events of the same

type, with each individual experiencing multiple repetitions of the same, when the follow-up

time is subject to right censoring.

Lin et al. (2000) provided the rigorous justification for the methods outlined in Pepe and

Cai (1993) and Lawless and Nadeau (1995) papers. The authors note that the main difference

between the Andersen and Gill (1982) paper and the above mentioned papers is the following

condition which implies that all the influence of prior events on future recurrence is through
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the time varying covariates at time, t.

E(dN∗(t) | Ft−) = E(dN∗(t) | Z(t)),

where N∗(t) is the number of events that occurred over the interval [0, t], Z(t) is the covariate

process and Ft is the σ-field generated by {N(s), Z(s) | 0 6 s 6 t}. The authors recommended

to relax this assumption because the dependence of the recurrent events may not be adequately

captured by the time-varying covariates and there was no method at the time to verify the

assumption. Defining E(dN∗(t) | Z(t)) = dµz(t), the model that the authors worked with is

dµz(t) = exp{β′0Z(t)}dµ0(t), (2.21)

where µ0(t) is a known continuous function. N∗(t) would not be fully observed as the subjects

are followed for a limited amount of time. Let C denote the censoring variable and it is

assumed that the censoring mechanism is independent in the sense that E(dN∗(t) | Z(t), C >

t) = E(dN∗(t) | Z(t)). N(t) = N∗(t ∧ C) and Y (t) = I(C > t). Hence for each individual,

the observable data is (Ni(.), Yi(.), Zi(.)). The partial likelihood score function is given by

U(β, t) =
n∑
i=1

ˆ t

0
{Zi(u)− E(β, t)}dNi(u),

where E(β, t) = S(1)(β,t)

S(0)(β,t)
, S(d)(β, t) = 1

n

∑n
i=1 Yi(t)Zi(t)exp{β′Zi(t)}, d = 0,1,2. Note that, the

estimating equation would be given by U(β, τ) = 0. It is shown by using empirical processes

theory that the solution to the estimating equation, β̂, converges almost surely to β0 and

n1/2U(β0, t) (0 6 t 6 τ) converges weakly to a zero-mean Gaussian process with covariance

function

Σ(t, s) = E

[ˆ t

0
{Zi(u)− e(β0, u)}dMi(u)

ˆ s

0
{Zi(v)− e(β0, v)}′dMi(v)

]
,

where dMi(t) = I(Ci > t) [dN∗i (t)− exp{β′0Zi(t)}dµ0(t)] and e(β, t) = s(1)(β,t)

s(0)(β,t)
, s(d)(β, t) =

E(S(d)(β, t)). Further, n1/2(β̂−β0) converges weakly to Gaussian distribution with mean zero
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and variance Γ = A−1ΣA−1, where A = E
{´ τ

0 (Zi(t)− e(β, t))⊗2Yi(t)exp{β′0Zi(t)}dµ0(t)
}

,

which is also positive definite. The Aalen-Breslow type estimator is used to estimate µ0(t)

and is defined as µ̂0(t) =
´ t

0
dN̄(u)

nS(0)(β̂,u)
, t ∈ [0, τ ] with N̄(t) =

∑n
i=1Ni(t). The covariance

matrix would then be estimated by Γ̂ = Â−1Σ̂Â−1, Â = − 1
n
∂U(β̂,τ)
∂β′ = 1

n

∑n
i=1

´ τ
0 {Zi(t) −

E(β̂, t)}dµ̂0(t), Σ̂ = 1
n

∑n
i=1

´ τ
0 {Zi(u)−E(β̂, u)}dM̂i(u)

´ τ
0 {Zi(v)−E(β̂, v)}′dM̂i(v) and M̂i(t)

= Ni(t)−
´ t

0 Yi(u)exp(β̂′Zi(u))dµ0(u). The authors proceeded further to incorporate a random

weight function, Q̂(β, t), which is non-negative, bounded and monotone in t and converges

almost surely to a continuous deterministic function, q(t), t ∈ [0, τ ]. The terms are similar

to the ones shown with a q(.) term in them. Further, it is shown that n1/2{µ̂0(t)− µ0(t)} is

asymptotically equivalent to n−1/2
∑

Ψi(t) where

Ψi(s) =

ˆ s

0

dMi(t)

s(0)(β0, t)
− h′(β0, t)A

−1

ˆ τ

0
{Zi(t)− e(β0, t)}dMi(t),

h(β0, t) =
´ t

0 e(β0, u)dµ0(u), and the covariance function is given by ξ(t, s) = E(Ψ(t)Ψ(s)).

Peña et al. (2001) derived Nelson-Aalen and Kaplan-Meier type of estimators for the non-

parametric estimator of the cumulative distribution function of the time to occurrence of

recurrent events, in presence of censoring.

Cai and Schaubel (2004) considered modeling the rate function for the recurrent events,

when there are different types of events. The rate function corresponding to the k-th event

type is E(dN∗ik(t) | Zik) = g(β′0Zik)dµ0k(t), where N∗ik(t) =
´ t

0 dN
∗
ik(u) is the number of events

of type k at time t for the i-th subject. Further, let Cik and Yik(t) = I(Cik > t) be indicator

functions denoting the event-type-specific censoring time and at-risk function, respectively.

Hence, the observed process is denoted by Nik(t) =
´ t

0 Yik(u)dN∗ik(u). They proposed a

slightly different estimating equation, analogous to generalized estimating equation (Liang

and Zeger 1986).

U(β) =
n∑
i=1

K∑
k=1

ˆ τ

0
Zik(t)

g(1)(β′Zik(t)

g(β′Zik(t)

[
dNik(t)− Yik(t)g(β′Zik(t))dµ0k(t)

]
= 0 (2.22)
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and
∑n

i=1

´ s
0 [dNik(t)− Yik(t)g(β′Zik(t))dµ0k(t)] = 0 ∀s ∈ (0, τ ], where P (Yik(τ) = 1) > 0

∀k = 1, 2, . . . ,K. The authors showed that the solution to the estimating equation, β̂,

would be a consistent estimator of β0 and n1/2
(
β̂ − β0

)
converges weakly to a Gaussian

distribution with mean zero and variance Σ(β0), where Σ(β) = A(β)−1V (β)A(β)−1 with

A(β) =
∑K

k=1

´ τ
0 vk(bz, t)s

(0)
k (β0, t)dµ0k(t), where vk(β, t) =

s
(2)
k (β,t)

s
(0)
k (β,t)

− (
s
(1)
k (β,t)

s
(0)
k (β,t)

)⊗2, s
(d)
k (β, t) =

E(S
(d)
k (β, t)) and S

(d)
k (β, t) = 1

n

∑n
i=1 Yik(t)Zik(t)e

β′Zik(t), for d = 0,1,2;

V (β) = E
[
(
∑K

k=1 U1k(β))⊗2
]

with Ui,k(β) =
´ τ

0

(
Zik(t)

g(1)(β′Zik(t)
g(β′Zik(t) −

s
(1)
k (β,t)

s
(0)
k (β,t)

)
dMik(t, β),

dMik(t, β) = dNik(t) − Yik(t)g(β′Zik(t))dµ0k(t). Schaubel and Cai (2005) proposed meth-

ods of estimating parameters in two semi-parametric proportional rates/means models for

recurrent events with clustering among subjects. One of the models considered the baseline

rate function to be common across clusters, while the other model had cluster-specific baseline

rates. All these methods have looked at the marginal distribution of the rate function or the

mean function (and sometimes, the intensity function). Huang and Chen (2003) investigated

a marginal proportional hazards model for gaps between recurrent events. They also estab-

lished a connection between the gap times and the clustered data with informative cluster

size.

2.3.2 Frailty Models

The marginal models discussed in the previous section does not explicitly model the intra-

subject correlation. When one in interested in the effect of the risk factors on the failure times,

rather than the correlation among the events for each subject, the marginal model approach

suits this purpose quite well. However, in some situations, the strength and nature of depen-

dencies within each individual’s recurrent event times might be of interest and for such cases,

the frailty models have been developed and studied extensively in the literature. The frailty

model explicitly formulated the underlying dependence structure through an unobservable

random variable. This unknown quantity is called the frailty. The key assumption is that

the individual failure times are independent conditional on the frailty term for each individ-

ual. Considering the Cox PH model, the intensity of the i-th individual for the k-th event,
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conditional on the frailty term, wi would be given by

λi(t | wi) = wiλ0(t)exp(β′0Zi(t)), (2.23)

where the frailty terms are independent and identically distributed, having some parametric

distribution. Various choices are possible for the density of the frailty model, including the

positive stable distribution, inverse-Gaussian distribution, log-normal distribution, the most

common being the gamma distribution, because of mathematical convenience.

The parameter estimates are obtained through the EM algorithm, using the partial like-

lihood in the maximization step (Klien 1992). Therneau and Grambsch (2001) showed that

another approach to estimate the distribution of the shared frailty would be to use penalized

partial likelihood. One important thing to note is that in equation (2.23), β0 is to be inter-

preted conditional on the frailty term. There has been extensive debate over which method

is more naturally suited for correlated data. The marginal modeling approach does not de-

pend on any models for the underlying correlation structure and would result in more robust

results under misspecification of the correlation structure. On the other hand, if it is possible

to learn more about the structure, one might prefer the frailty model to get more efficient

estimators. When the main purpose of the analysis is to model the effect of the covariates

and the dependence can be treated as a nuissance, it is more preferable to use the marginal

models, whereas if the interest lies in the nature of the dependency and quantifying that,

the conditional frailty model would be much more sensible. Hence, the choice of the type of

model depends on the goal of the study.

2.4 Additive Rates Models for Marginal Analysis

The models that have been discussed thus far assumes multiplicative risk models as the

effect of the covariates is multiplicative. In epidemiological studies, one might be interested

in the risk difference, rather than the risk ratio. The risk difference can be translated directly

into the number of disease that would be avoided by removing a particular exposure (Kulich

and Lin 2000). In certain settings, for example, in studies of health care utilization, absolute
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covariate effects are of direct interest. Based on an additive model, the predicted change in

rate attributable to a covariate can be easily predicted without information on the baseline

cost. The cost savings associated with a proposed intervention program in health intervention

studies can be directly calculated from an additive model, whereas information on baseline

cost is required if a multiplicative model is fitted. Further, the effect is not directly represented

by the regression coefficient in the multiplicative model. When one is interested in the risk

difference as the measure of interest, the additive rates model provides a good alternative to

the widely studied Cox (1972) proportional hazards model. Since temporal effects are not

assumed to be proportional for each covariate, the additive risk model would be more useful

in providing information about the temporal influence of each covariate which is not available

from the Cox PH model. Specifically, in studies of excess risk, where the background risk

and the excess risk can have very different temporal forms, additive risk models seem to be

biologically more plausible than proportional hazard models (Huffer and McKeague 1991).

Under the additive risk model, the hazard function for the failure time, T associated with

Z(.) takes the form

λ(t | Z) = λ0(t) + β′0Z(t), (2.24)

where λ0(t) is the unspecified baseline hazard function and β0 is the p-dimensional vector of

regression parameters. Lin and Ying (1994) were the first to develop semi-parametric esti-

mating equation for equation (2.24) along with the asymptotic distribution. They proposed

to estimate β0 using the following estimating equation which mimics the partial likelihood

score function for the additive hazards model.

U(β) =
n∑
i=1

ˆ τ

0

[
Zi(t)− Z̄(t)

] {
dNi(t)− Yi(t)β′Zit

}
, (2.25)

where Z̄(t) =
∑n
i=1 Yi(t)Zi(t)∑n
i=1 Yi(t)

. One can easily obtain β̂ by solving equation U(β) = 0 and it is

given by

β̂ =

[
n∑
i=1

ˆ τ

0
Yi(t)

{
Zi(t)− Z̄(t)

}⊗2
dt

]−1 [ n∑
i=1

ˆ {
Zi(t)− Z̄(t)

}
dNi(t)

]
. (2.26)
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Under some regularity conditions, β̂ is a consistent estimator of β0 and the asymptotic dis-

tribution of n1/2(β̂ − β0) is p-variate Gaussian with mean zero and sandwich variance term

which can be consistently estimated by A−1BA−1 where

A =
1

n

n∑
i=1

ˆ τ

0
Yi(t)

{
Zi(t)− Z̄(t)

}⊗2
dt, B =

1

n

n∑
i=1

ˆ τ

0

{
Zi(t)− Z̄(t)

}⊗2
dNi(t).

The estimators for the baseline cumulative hazard function, Λ0(t), and the survival function,

S(t, Z), were proposed and their asymptotic properties were explored. To ensure mono-

tonicity, modified estimators of the above quantities, Λ̂∗0(t) = maxs6t Λ̂0(s) and Ŝ∗0(t, Z) =

maxs6t Ŝ0(s, Z) have also been proposed. These estimators were shown to be asymptotically

equivalent to the original estimators.

Kulich and Lin (2000) studied additive hazards models in case-cohort design scheme. They

proposed a weighted estimating equation by modifying (2.25) as

UW (β) =

n∑
i=1

ρi

ˆ τ

0

(
Zi(t)− Z̄W (t)

) [
dNi(t)− Yi(t)β′Zi(t)dt

]
, (2.27)

where

Z̄W (t) =

∑n
i=1 ρiYi(t)Zi(t)∑n

i=1 ρiYi(t)
, ρi = ∆i + (1−∆i)

ξi
pi
, pi = P (ξi = 1).

The resulting estimator, β̂H , has the following closed form :

β̂W =

[
n∑
i=1

ρi

ˆ τ

0
Yi(t)

{
Zi(t)− Z̄W (t)

}⊗2
dt

]−1 [ n∑
i=1

ˆ {
Zi(t)− Z̄W (t)

}
dNi(t)

]
.

Under certain regularity conditions, they showed that β̂W is consistent for β0 and n1/2(β̂W −

β0) has a Gaussian distribution with mean zero and sandwich variance term, corresponding

to two different sampling situations. They further proposed an estimator of the cumulative

hazard function as

Λ̂W0(t) =

ˆ
t

∑n
i=1 dNi(u)∑n
i=1 ρiYi(u)

−
ˆ t

0
β̂W Z̄W (t)dt.

n1/2(Λ̂W0(t) − Λ0(t)) converges asymptotically to a Gaussian process on [0, τ ] with mean 0

and appropriate variance term. The additive hazards model has been applied to interval
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censored data (Lin et al. 1998, Martinussen and Scheike 2002), competing risk analysis of

case-cohort studies (Sun et al. 2004), and the recurrent gap times (Sun et al. 2006). Yin

and Cai (2004) proposed additive hazards regression model to multivariate failure time data

where they considered correlation between different time points for the individuals. Schaubel

et al. (2006) proposed the semi-parametric additive rates model to fit recurrent events. The

authors noted that the model can be used for any process with non-negative increments. The

model assumes that the covariates affect the unspecified baseline rate additively. As in the

multiplicative model, the additive rates model is defined as

E [dN∗i (t) | Zi(t)] = dµ0(t) + β′0Zi(t)dt, (2.28)

where dN∗i (t) = N∗i (t + dt) − N∗i (t) (dt ↓ 0) equals the increment in N∗i (t) over the small

interval (t, t+dt] and E [dN∗i (t) | Zi(t), Ci > t] = E [dN∗i (t) | Zi(t)]. Note that unlike intensity

functions, the expectation is not considered, conditional on the entire history. In general, the

intensity and rate functions can be related by

E [dN∗i (t) | Zi(t)] = E [E {dN∗i (t) | Fi(t)} | Zi(t)] .

The estimator of β0 can be easily obtained by solving (2.25) where dNi(t) = I(Ci > t)dN∗i (t)

and Yi(t) = I(Ci > t). Let us define Mi(t, β) = Ni(t) −
´ t

0 Yi(u){dµ0(u) + β′Zi(u)du} which

has mean zero at β = β0. Following Liang and Zeger (1986)’s generalized estimating equations

the authors defined the following estimating functions for β0 and µ0(t).

n∑
i=1

ˆ t

0
I(Ci > u)dMi(u, β) = 0. (2.29)

n∑
i=1

ˆ t

0
I(Ci > u)Zi(u)dMi(u, β) = 0. (2.30)

Solving these two equations, we get β̂, which is explicitly defined in (2.26) with the asymptotic

distribution of n1/2{β̂−β0} to be of the same form as the sandwich estimator described earlier.
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The estimator of the baseline mean is given by

µ̂0(t, β) =

ˆ t

0

∑n
i=1 Yi(u) {dNi(u)− β′Zi(u)du}∑n

i=1 Yi(u)
.

Similarly, as before, to ensure monotonicity, the baseline mean is estimated as µ̃0(t, β̂) =

max06s6t µ̂0(s, β̂). Note that, it is possible for the increments in µ̂0(s, β̂) be negative. Rather

than constraining β̂ to force the baseline rate estimator to be positive, the baseline mean is

constrained to be monotone non-decreasing.

Ma (2007) explored additive risk model with case-cohort data, with weights similar to

Chen and Lo (1999). A class of estimating equations have been proposed, each depending on

a different prevalence ratio estimate. Asymptotic properties of the proposed estimators and

inference based on the m out of n nonparametric bootstrap are investigated. Liu et al. (2010)

considered a more flexible additive-multiplicative rates model for analysis of recurrent event

data, in which some covariate effects are additive while others have multiplicative effect on

the rate function. The estimating equation for the regression parameters is given by

E [dN∗i (t) |Wi(t)] = g
(
γ′0Zi(t)

)
dt+ h

(
β′0Xi(t)

)
dµ0(t),

where Wi(t) = (Zi(t),Wi(t)) is the set of covariates, µ0 = (γ′0, β
′
0)′ is p-dimensional of

unknown regression parameters, g and h are known link functions, µ0(.) is an unspecified

continuous baseline mean function for subjects with covariates Zi(t) and Xi(t) such that

g (γ′0Zi(t)) = 0 and h (β′0Xi(t)) = 1. The authors propose estimating equation, mimicking

the generalized estimating equations.

n∑
i=1

ˆ t

0
dMi(u, θ) = 0,

n∑
i=1

ˆ τ

0
Qi(u, θ)dMi(u, θ) = 0,

where Qi(t, θ) is a smooth p-dimensional vector-valued function of Wi(t) and β, not involv-

ing µ0(t); Mi(t, θ) = Ni(t)−
´ t

0 Yi(u) {g (γ′Zi(t)) dt+ h (β′Xi(t)) dµ0(t)}. The estimators for

these regression parameters from these equations are shown to be consistent and asymptoti-

cally normally distributed under appropriate regularity conditions. Kang et al. (2013) studied
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marginal additive hazards model for case-cohort studies with multiple disease outcomes. The

estimating equation is very similar to (2.27) with another summation, for the disease cate-

gory. He et al. (2013) proposed semi-parametric additive rates model, noting that individuals

within a cluster might not be independent and that creates another level of complexity in re-

current events data. Liu et al. (2013) proposed an additive transformation model for modeling

recurrent events. The rate function is defined by

µ(t | Z) = µ0(t) +Q(t, β′0Z(t)),

where β0 is the vector of regression parameters, µ0(.) is an unspecified non-negative function

with µ0(0) = 0, and Q(t, x) is a pre-specified non-negative link function with Q(0, x) = 0

for any x. Yu et al. (2014) and Cao and Yu (2017) propose different estimating equations to

model the additive hazards model for generalized case-cohort (GCC) sampling and optimal

GCC sampling respectively.

The additive and multiplicative risk models provide two major frameworks for studying

the association between risk factors and the event occurrence (e.g., some disease of interest

or death). Most survival analyses focus on multiplicative models for relative risk using the

proportional hazards theory, mainly due to the easy interpretability of the risk ratio, desirable

theoretical properties and the availability of computer programs to fit the models readily.

However, in many biomedical studies the researchers might be interested in risk difference,

rather than the relative risk or the PH assumptions are not valid which might lead to biased

results if the multiplicative models are fit, ignoring the conditions (O’Neill, 1986). In such

situations, it is recommended to use the additive rates model than the more easily available

multiplicative model.

2.5 Sample Size Calculation for Case-Cohort Design

When the event is rare or the cost of collecting the covariate data for the entire cohort is

high, there has been a lot of work done in analyzing case-cohort data. Previous sections have

addressed the analyses of case-cohort data; this section would focus on the design aspect of the
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case-cohort sampling scheme. Sample size and power calculation are important components

at the design stage of any study. Specifically, for the case-cohort studies, it is very helpful

in determining the size of the subcohort needed for the study. It is also of interest to know

how much more power may be gained by using a case-cohort design, compared with a simple

random sample design conditional on the costs involved in the study.

Cai and Zeng (2004) proposed methods for computing sample size and power for case-

cohort studies. The authors presented two log-rank type test statistics and derived the sample

size and power for them. Denote the number of subjects in the j-th group (1,2) by nj , Tij is

the potential failure time and Cij is the censoring time and one observes Xij = min(Tij , Cij)

with ∆ij = I(Tij 6 Cij), n = n1 + n2. ξij is the indicator that the i-th subject from the

j-th group is selected in the sub-cohort. Λj , j = 1, 2 is the cumulative hazard function of the

failure time in group j and the null hypothesis is H0 : Λ1(t) = Λ2(t). The test statistic would

be given by

Tsp =

n1∑
i=1

∆i1w(Xi1)Ỹ2(Xi1)

Ỹ1(Xi1) + Ỹ2(Xi1)
−

n2∑
i=1

∆i2w(Xi2)Ỹ1(Xi2)

Ỹ1(Xi2) + Ỹ2(Xi2)
, (2.31)

where w(.) is the weight function and Ỹk(Xik) = qȲk(Xik), k = 1,2, where q is the sampling

fraction for the sub-cohort. This statistic is exactly the score function of the pseudo-partial

likelihood function given by Self and Prentice (1988). Using that, the distribution of this

would be easily derivable. Instead of using Ỹk, the authors also proposed another way of

approximating the total risk set by

Y ∗j (t) =
n

ñ

nj∑
i=1

I(Xij > t, ξij = 1,∆ij = 0) +

nj∑
i=1

I(Xij > t,∆ij = 1).

As in (2.31), one can get another test statistic by simply replacing Ỹj(t) by Y ∗j (t). Further-

more, the asymptotic variance of n−1/2Tsp can be estimated by

σ̂2
sp = σ̂2 +

2(1− q̂
n

2∑
j=1

nj∑
i=1

∆ijw(Xij)Ỹ1(Xij)Ỹ2(Xij)(
Ỹ1(Xij) + Ỹ2(Xij)

)2


2∑

j′=1

nj′∑
i′=1

∆i′j′w(Xi′j′)I(Xi′j′ 6 Xij)

Ỹ1(Xi′j′) + Ỹ2(Xi′j′)



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− (1− q̂
n

2∑
j=1

nj∑
i=1

∆ijw(Xij)Ỹ1(Xij)Ỹ2(Xij)(
Ỹ1(Xij) + Ỹ2(Xij)

)3 ,

where σ̂2 = 1
n

[∑n1
i=1

∆i1w(Xi1)Ỹ2(Xi1)2

(Ỹ1(Xi1)+Ỹ2(Xi1))
2 +

∑n2
i=1

∆i2w(Xi2)Ỹ1(Xi2)2

(Ỹ1(Xi2)+Ỹ2(Xi2))
2

]
is the consistent estimate

for the variance of the log-rank test based on the entire data set, q̂ = n
ñ . The asymptotic

variance of the other test statistic was estimated by σ̂2
sp as well. The authors compared the

sample size and power based on these statistics and the log-rank test based on the entire

cohort and that based on only the sub-cohort. Cai and Zeng (2007) extended this idea

to generalized case-cohort design, when the event is not rare. As described earlier, in a

generalized case-cohort design, one randomly samples without replacement a subcohort from

the full cohort in the first step and then in the second step, another sample is randomly taken

without replacement from the remaining failures. The observed data in this case would be,

(Xi, (ξi + (1− ξi)∆iηi) , Zi,∆i) , i = 1, 2, . . . , n. Assuming that Z is a dichotomous variable,

one can construct the following test statistic :

Wn =

ˆ τ

0

w(t)Ỹ1(t)Ỹ2(t)

Ỹ1(t) + Ỹ2(t)

{
dÑ1(t)

Ỹ1(t)
− dÑ2(t)

Ỹ2(t)

}
,

where τ is the study duration, w(t) is the weight function, Ỹj(t) =
∑n

i=1 I(Xi > t, Zi = j)×[
ξi∆i + ξi(1−∆i)

p + ∆(1−ξi)ηi
q

]
and Ñj(t) =

∑n
i=1 ∆iI(Xi > t, Zi = j)

{
ξi + ξi(1−∆i)

p

}
. Denot-

ing α(t) = P (Z=1,C>t)
P (C>t) , one can see that n−1/2Wn converges weakly to a Gaussian distribution

with mean zero and variance σ2
W = σ2+1−p

p V ar(ν(X,Z)(1−∆))+P (∆=1)(1−p)(1−q)
q V ar(µ(X,Z) |

∆ = 1, ξ = 0) with ν(X,Z) = −
´ X

0 w(t)(1−α(t))dΛ(t)I(Z = 1) +
´ X

0 w(t)α(t)dΛ(t)I(Z = 2)

and µ(X,Z) = ν(X,Z) +w(Z)(1−α(Z))I(X = 1)−w(Z)α(Z)I(Z = 2). Stratified sampling

is commonly used in the survey sampling to improve the estimation precision for the pop-

ulation quantity of interest. Hu et al. (2014) derived the sample size/power calculation for

a stratified case-cohort (SCC) design, based on a stratified test statistic. The test statistic

looks very similar to (22) and can be defined as

Tsp =

L∑
l=1

Tsp,l =

nl1∑
i=1

∆li1w(Xli1)Ỹl2(Xli1)

Ỹl1(Xli1) + Ỹl2(Xli1)
−

nl2∑
i=1

∆li2w(Xli2)Ỹl1(Xli2)

Ỹl1(Xli2) + Ỹl2(Xli2)
,
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where L is the number of groups. Since each of the groups are independent among themselves,

the variance term would be similar to σ2
sp, summed over all possible strata. The authors

investigated and compared the proportional, balanced, and optimal sampling design methods

and derived the corresponding sample size calculation formula. In the next chapter, we discuss

our proposed work.
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CHAPTER 3: MULTIPLICATIVE RATES MODEL FOR RECURRENT
EVENTS IN CASE-COHORT DATA

3.1 Introduction

In large epidemiological studies and disease prevention trials, the majority of the effort

and cost arises from the assembling of the covariate measurements and follow-up information

on all the individuals. When the disease incidence is low and some exposures are expensive

to measure, it is not feasible and not cost effective to measure the expensive variable on all

individuals in the cohort. To reduce cost and achieve the same study goals as the cohort

study, Prentice (1986) proposed the case-cohort study design. Under this design, a random

sample is selected from the entire cohort, named sub-cohort, and covariate information is

collected on only this sub-cohort and the individuals who experience the event.

Development of statistical methods for data from case-cohort studies is an active research

area. For univariate failure time data, Self and Prentice (1988), Wacholder et al. (1989),

and Barlow (1994) considered efficient and robust estimation of the variance of the case-

cohort estimator. Borgan et al. (1995) considered a more general sampling frame whereas

Lin and Ying (1993) viewed the case-cohort design as a special case of the missing data

problem. Borgan et al. (2000) developed methods for the analysis of exposure stratified case-

cohort design and Breslow and Wellner (2006) considered weighted likelihood for two-phase

stratified samples. Chen (2001) and Kulich and Lin (2004) developed sample reuse methods

via local averaging leading to more efficient estimation. Nonetheless, correlated failure time

data are quite common in biomedical and public health research. Lu and Shih (2006) and

Zhang et al. (2011) developed estimating equation for clustered failure time data assuming

a marginal hazards model, accounting for correlation within clusters, which are formed by

correlated subjects. Kang and Cai (2009a) considered marginal hazards model for case-cohort
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data with multiple disease outcomes. However, methods for analyzing recurrent events data

from case-cohort studies are scarce.

Recurrent events are commonly encountered in biomedical research. Our motivating ex-

ample is from a doubly-blind, placebo-controlled community trial conducted in northeastern

Brazil in a cohort of children aged between 6 to 48 months (Barreto et al. 1994). The

primary objective of this study was to evaluate the effect of high doses of vitamin A on acute-

lower-respiratory-tract infection (ALRI). One thousand two hundred and four children were

randomized to receive vitamin A supplement or placebo. They were followed for 1 year. An

episode of ALRI was defined as cough plus a respiratory rate of 50 breaths per min or higher

for children under 12 months, and 40 breaths per min or higher for older children(Barreto

et al. 1994). About 15.38% of the children had at least one ALRI episode during their follow-

up period. The number of episodes ranged from 1 to 6, resulting in a total of 305 episodes.

As a secondary objective, it is of interest to examine whether the child ever had measles is

related to ALRI. It can be expensive to verify the measles information because it is based on

the parents’ acknowledgement. With the relatively low ALRI rate, a case-cohort sampling

design can be more cost-effective in this situation.

Various methods have been proposed for analyzing recurrent event data from the full

cohort. These include modeling the intensity functions of the recurrent event process (An-

dersen and Gill 1982), rate/mean function (Pepe and Cai 1993, Lawless and Nadeau 1995,

Cook et al. 2009, Lin et al. 2000), and the gap times between each recurrence (Huang and

Chen 2003, Schaubel and Cai 2004). However, methods for analyzing recurrent events data

from case-cohort studies is limited. Chen and Chen (2014) extended the case-cohort design

to recurrent events with specific clustering feature using a modified Cox-type self-exciting

intensity model. Such model makes the assumption that the dependence of the recurrent

events is captured by some time-varying covariates. This assumption may not be easily veri-

fiable. An alternative is to model the marginal rate or mean function. The marginal rates or

means model does not require such assumption (Lin et al. 2000) and the parameters in this

model have population average interpretation, which is desirable in many population studies.

However, analysis methods for marginal rates model have not been investigated for recurrent
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events data from case-cohort study design.

The main goal of this article is to propose case-cohort designs for recurrent events data and

the estimation procedures for data from such designs. We considered two different situations.

One is when the recurrent events are not very common in which case we will include into the

case-cohort sample all individuals who developed events during the follow-up. The second

situation is when the recurrent events are relatively common, when the proportion of subjects

who experienced at least one event is about 20% − 50%. In such case, we propose to only

include into the case-cohort study a sample of those who developed events during the follow-

up. We refer to the first situation as traditional case-cohort design and the second as the

generalized case-cohort design.

In this chapter, we propose weighted estimating equations for estimating the parameters

in the marginal rates regression model for recurrent events in case-cohort studies. The chapter

is organized as follows. In section 3.2, the design of the study and the estimation procedure

are proposed. The asymptotic properties of the estimators are studied in section 3.3. The

finite sample properties are investigated by simulations in section 3.4. In section 3.5, we

illustrate the proposed method on a case-cohort study based on the ALRI data on children

in Brazil. In the section 3.6, we provide some final remarks.

3.2 Model and Estimation

Suppose there are n independent individuals in the cohort. Let N∗i (t) be the number of

recurrent events for the individual i over the time interval [0, t), Ci is the censoring time. Zi(.)

= (ZEi (.)′, ZCi (.)′)′ is the p-dimensional covariate of interest for the individual i, where ZEi (.)

is the set of expensive-to-measure variables and ZCi (.) is the set of all other covariates. Let T ∗ij

denote the j-th recurrent event time for the individual i. The observed time is Tij = T ∗ij ∧Ci,

j = 1, 2, . . . , ni + 1, where ni is the number of events that are observed for individual i, and

N =
∑n

i=1 ni is the total number of observed events. Let Yi(t) = 1(Ci ≥ t), Ni(t) = N∗i (t∧Ci)

=
∑ni

j=1 I(Tij ≤ t) =
∑ni

j=1 I(T ∗ij ≤ t)Yi(t), ∆i = 1− I(minj(T
∗
ij) ≥ Ci) which is the indicator

that individual i experienced at least one event, and τ denote the study ending time. The rate

function for an individual is denoted as E (dN∗(t) | Z(t)) = dµz(t). We assume the following
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proportional rates model:

dµZ(t) = eθ
′
0Z

E(t)+γ′0Z
C(t)dµ0(t)⇒ µZ(t) =

ˆ t

0
eθ
′
0Z

E(u)+γ′0Z
C(u)dµ0(u), (3.1)

where µ0(.) is an unspecified continuous baseline mean function and θ0 and γ0 are the vectors

of unknown parameters. Denoting β0 = (θ′0, γ
′
0)′, we can rewrite the rates model as dµZ(t) =

eβ
′
0Z(t)dµ0(t) and the mean function is given by µ0(t) =

´ t
0 e

β′0Z(u)dµ0(u) for all t ∈ [0, τ ].

Note that the covariates are allowed to be time-dependent. We assume that the possibly

time-dependent covariates are external (Kalbfleisch and Prentice (2002)), i.e., they are not

affected by the recurrent event process.

3.2.1 Case-cohort study design for recurrent events

In this subsection, we introduce two sampling schemes for the recurrent event data. The

first deals with the situation that the event is not common in the population. In this case, we

draw a random sample from the full cohort and supplement that with all the cases. We call

this sampling scheme the original case-cohort design. The second sampling scheme is for the

situation that the event is relatively common and we cannot afford to sample all individuals

with events. An example for the common recurrent event is the randomized double-blinded

trial conducted by Genentech Inc. in the early 1990’s to study the effect of rhDNase on

pulmonary exacerbations among patients with cystic fibrosis (Therneau and Hamilton 1997).

Even though, the pulmonary exacerbation rate is ∼ 40%, the variable FEV1 may be quite

expensive to measure. Under such situation, we propose to sample only a fraction of those

who have events for the case-cohort sampling. We call this sampling scheme the generalized

case-cohort design with recurrent events.

3.2.2 Estimation under the original case-cohort design

Under the case-cohort sampling, we select a sub-cohort from the entire cohort by simple

random sampling. Let ξi denote the indicator function for individual i being selected into the

subcohort; α̃ = ñ
n is the subcohort proportion where ñ is the number of individuals selected
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in the sub-cohort and n is the number of individuals in the full cohort. We call an individual

a case if the individual experienced at least one event and an individual a non-case if the

individual did not have an event during the study period. Hence, the observable information

for individual i is {Ti,∆i, ξi, Z
C
i (t), ZEi (t), t ∈ [0, τ ]} if individual i is in the case-cohort

sample. In other words, we have {Ti,∆i, ξi, Zi(t), 0 ≤ t ≤ τ} if ∆i = 1 or ξi = 1 and

{Ti,∆i, ξi, Z
C
i (t), t ∈ [0, τ ]} when ∆i = 0 and ξi = 0. When information on the covariates for

all the individuals are available, one can consider the following estimating equation for the

full cohort data (Lin et al. (2000)):

U(β) =

n∑
i=1

ˆ τ

0

{
Zi(t)−

S(1)(β, t)

S(0)(β, t)

}
dNi(t) = 0, (3.2)

where S(d)(β, t) = 1
n

∑n
i=1 Yi(t)Zi(t)

⊗deβZi(t), ∀d = 0, 1. One can easily solve the estimating

equation by some iterative algorithm, for example, the Newton-Raphson iteration method.

However, because the data are not complete in case-cohort studies, (3.2) cannot be used

directly. We consider a weighted estimating equation approach based on the idea of inverse

probability of selection weighting. The estimating equation considered for estimating β0 is

the following:

Û I(β) =

n∑
i=1

ˆ τ

0

{
Zi(t)−

S̃(1)(β, t)

S̃(0)(β, t)

}
dNi(t) = 0, (3.3)

where S̃(d)(β, t) = 1
n

∑n
i=1w

I
i (t)Yi(t)Zi(t)

⊗deβZi(t), ∀d = 0, 1, wIi (t) = ∆i + (1 − ∆i)
ξi
α̂(t) ,

where α̂(t) =
∑
i(1−∆i)ξiYi(t)∑
i(1−∆i)Yi(t)

is the estimator of the true sampling parameter, α. The weight

is 1 for all the cases and is α̂(t)−1 for the non-cases in the sub-cohort. Similar idea for the

weights was considered by Kalbfleisch and Lawless (1988).They considered the time-invariant

version of α̂(t), which was given by α̃. Borgan et al. (2000) used a similar idea for univariate

failure time data from stratified case-cohort studies. We denote the solution to this equation

by β̂I . Our proposed Breslow-Aalen type estimator of the baseline mean function is given by

µ̂0(β̂I , t) =

ˆ t

0

∑n
i=1 dNi(u)

nS̃(0)(β̂I , u)
. (3.4)

40



3.2.3 Estimation under the generalized case-cohort design

For the generalized case-cohort design, we sample a fraction of cases outside of the sub-

cohort. Let ηi be an indicator for individual i who is a case but outside the sub-cohort

being sampled. Let q̃ =
n∗1

n1−ñ1
denote the sampling proportion for the additional cases,

where n∗1, n1 and ñ1 are the number of selected individuals who have experienced at least one

event but are not in the subcohort, individuals who experienced at least one event in the full

cohort and those who were in the subcohort respectively. Under this design, the covariate

information is available for the subcohort members and the selected cases (ηi = 1). Hence,

the observable information for individual i is {Ti,∆i, ξi, ηi, Zi(t) : t ∈ [0, τ ]} when ξi = 1 or

ηi = 1 and {Ti,∆i, ξi, Z
C
i (t), t ∈ [0, τ ]} if ξi = 0 and ηi = 0. Using the inverse of probability of

being sample as the weight, our proposed estimating equation for the Generalized case-cohort

sampling scheme is

Û II(β) =
n∑
i=1

ˆ τ

0
wIIi (t)

{
Zi(t)−

Ŝ(1)(β, t)

Ŝ(0)(β, t)

}
dNi(t) = 0, (3.5)

where Ŝ(d)(β, t) = 1
n

∑n
i=1w

II
i (t)Yi(t)Zi(t)

⊗deβZi(t), ∀d = 0, 1, and the weight function is

given by wIIi (t) = (1−∆i)ξi
α̂(t) +∆iξi+

∆i(1−ξi)ηi
q̂(t) where q̂(t) =

∑
i ∆i(1−ξi)ηiYi(t)∑
i ∆i(1−ξi)Yi(t) is the estimator of

the true sampling parameter q. We denote the solution of this equation by β̂II . The Breslow-

Aalen type estimator of the baseline mean function is µ̃0(β̂II , t) =
´ t

0

∑n
i=1 w

II
i (u)dNi(u)

nŜ(0)(β̂II ,u)
.

3.3 Asymptotic properties

In this section, we investigate the asymptotic properties of the estimators. Define the

following terms:

e(β, t) =
s(1)(β, t)

s(0)(β, t)
, ϑ(β, t) =

s(2)(β, t)s(0)(β, t)− s(1)(β, t)⊗2

(s(0)(β, t))2
, Z̃i(t) = Zi(t)− e(β, t),

dMi(t) = dNi(t)−Yi(t)eβ
′
0Z(t)dµ0(t), MZ̃,i(β) =

ˆ τ

0
Z̃i(t)dMi(t), dMZ̃,i(β, t) = Z̃i(t)dMi(t),

A(β) =

ˆ τ

0
ϑ(β, t)s(0)(β, t)dµ0(t).
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We define the norm for the vector m, matrix M , and function f as the following: ‖m‖ =

maxi |mi|, ‖M‖ = maxi,j |Mij |, ‖f‖ = supt |f(t)|. The estimator under the traditional

case-cohort sampling scheme is a special case of the generalized case-cohort sampling scheme,

so its asymptotic property is a special case of the generalized case-cohort sampling scheme.

Hence, in the Appendix, we focus the proofs on the asymptotic properties of the estima-

tors under the generalized case-cohort design, β̂II and µ̂II0 (β̂II , t). The regularity conditions

and the outline of the proofs are provided in the Appendix. The asymptotic properties are

summarized in the following theorems.

Theorem 1. Under the regularity conditions in the Appendix, for k = I or II, β̂k is a

consistent estimator of β0. n1/2{β̂k − β0} converges to a Gaussian distribution with mean

zero and variance given by

Σk(β0) = A(β0)−1

[
Q(β0) +

1− α
α

V I(β0) + I(k = II)(1− α)
1− q
q

P (∆1 = 1)V II(β0)

]
A(β0)−1,

where

Q(β) = E
(
MZ̃,1(β)

)⊗2
,

V I(β0) = var

(
(1−∆1))

ˆ τ

0

[
R1(β0, t)−

Y1(t)E((1−∆1)R1(β0, t))

E((1−∆1)Y1(t))

]
dµ0(t)

)
,

V II(β0) = var

(ˆ τ

0

[
dMZ̃,1(β0, t)−

Y1(t)E(dMZ̃,1(β0, t) | ∆1 = 1, ξ1 = 0)

E(Y1(t) | ∆1 = 1)

]
| ∆1 = 1, ξ1 = 0)

)
,

A(β) =

ˆ τ

0
ϑ(β, t)s(0)(β, t)dµ0(t), Ri(β, t) = Yi(t)Z̃i(t)e

βZi(t).

Each of these terms, A(β0), Q(β0), V I(β0) and V II(β0) can be estimated respectively by

their sample counterparts, Â(β̂k), Q̂(β̂k), V̂ I(β̂k) and V̂ II(β̂k). Â(β) = − 1
n
∂U(β)
∂β , Q̂(β) =

1
n

∑n
i=1

ξi
α̃

(
MZ̃,i(β)⊗2

)
, M̂Z̃,i(β) = ∆i

∑ni
j=1

(
Zi(Tij)− Ŝ(1)(β,Tij)

Ŝ(0)(β,Tij)

)
− 1
n

∑n
j=1

∑nj
k=1

∆jYi(Tjk)e
βZi(Tjk)

Ŝ(0)(β,Tjk)

×
(
Zi(Tjk)−

Ŝ(1)(β,Tjk)

Ŝ(0)(β,Tjk)

)
, V̂ I(β) = 1

n

∑n
i=1

ξi
α̃

[
1−∆i
n

∑n
j=1

∑nj
k=1

∆j

Ŝ(0)(β,Tjk)

{
R̂Ii (β, Tjk)−

Yi(Tjk)Ê((1−∆1)R1(β,Tjk))
Ê((1−∆1)Y1(Tjk))

}]⊗2

, V̂ II(β) = 1∑n
i=1 ∆i(1−ξi)

∑n
i=1

ηi
q̃ ∆i(1− ξi)

[{
MZ̃,i(β)−
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∑n
j=1

∑nj
k=1

Yi(Tjk)Ê(dMZ̃,j(β,Tjk)|∆j=1,ξj=0)
Ê(Y1(Tjk)|∆j=1)

}]⊗2

, dM̂Z̃,i(β, Tij) =
(
Zi(Tij)− Ŝ(1)(β,Tij)

Ŝ(0)(β,Tij)

)
(
∆i − Yi(Tij)eβZi(Tij)dµ̂k0(β, Tij)

)
, R̂Ii (β, t) =

{
Zi(t)− Ŝ(1)(β,t)

Ŝ(0)(β,t)

}
Yi(t)e

β′Zi(t), Ê ((1−∆1)

R1(β, t)) = 1
n

∑n
i=1

ξi
α̃ (1−∆i)R̂

I
i (β, t), Ê

(
dMZ̃,1(β, t) | ∆i = 1, ξi = 0

)
= 1∑n

i=1 ∆i(1−ξi)
∑n

i=1

ηi
q̃ ∆i(1−ξi)dM̂Z̃,i(β, t), Ê ((1−∆1)Y1(β, t)) = 1

n

∑n
i=1(1−∆i)Yi(t), Ê (Y1(β, t) | ∆1 = 1) =

1∑n
i=1 ∆i

∑n
i=1 ∆iYi(t).

To obtain the asymptotic distribution of the baseline mean function µ̂0(t), we need to first

define the metric space, D[0, τ ], consisting of right continuous functions f(t) with left-hand

limits and f : [0, τ ]→ R. The metric for this space is defined by, d(f, g) = supt∈[0,τ ]{| f(t)−

g(t) |}, f(t), g(t) ∈ D[0, τ ]. The following theorem summarizes the asymptotic properties of

µ̂k0(t).

Theorem 2. Under the regularity conditions, for k = I or II, we can show that µ̂k0(β, t)

converges in probability to µ0(t) uniformly in t ∈ [0, τ ]. Further, defining Wn(t) = µ̂k0(β̂k, t)−

µ0(t), we have n1/2Wn(t) converges to a Gaussian distribution with mean zero. The variance-

covariance function between Wn(t) and Wn(s) is given by

φk(t, s)(β0) = E (νi(β0, t)νi(β0, s))+ 1−α
α E (ψi(β0, t)ψi(β0, s))+I(k = II)(1−α)1−q

q P (∆1 = 1)

×E (ζi(β0, t)ζi(β0, s) | ∆i = 1, ξi = 0) ,

where

νi(β, t) = r(β, t)′A(β)−1MZ̃,i(β, t) +

ˆ t

0
{s(0)(β, u)}−1dMi(u),

ψi(β, t) =

[
r(β, t)′A(β)−1(1−∆i)

ˆ τ

0

{
Ri(β, u)− Yi(u)E((1−∆i)Ri(β, u))

E((1−∆i)Yi(u))

}
dµ0(u)

+(1−∆i)

ˆ t

0
Yi(u)

(
eβ
′Zi(u) − Yi(u)E((1−∆i)Yi(u)eβ

′Zi(u))

E((1−∆i)Yi(u))

)
dµ0(u)

s(0)(β, u)

]
,

ζi(β, t) =

r(β, t)′A(β)−1

ˆ τ

0

dMZ̃,i(β0, t)−
Yi(t)E

[
dMZ̃,1(β0, t)(β0, t) | ∆1 = 1, ξ1 = 0

]
E [Y1(t) | ∆1 = 1, ξ1 = 0]


+

ˆ t

0

1

s(0)(β, u)

(
dMi(u)− Yi(t)E [dM1(u)(β0, t) | ∆1 = 1, ξ1 = 0]

E [Y1(t) | ∆1 = 1, ξ1 = 0]

)]
,

r(β, t) = −
´ t

0 e(β, u)s(0)(β, u)dµ0(u).
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Similarly, each of these terms can be consistently estimated by their sample counterparts.

φ̂k(t, s)(β) = 1
n

∑n
i=1

ξi
α̃ (ν̂i(β, t)ν̂i(β, s)) + I(k = I) 1

n
1−α̃
α̃

∑n
i=1

ξi
α̃

(
ψ̂i(β, t)ψ̂i(β, s)

)
+I(k =

II) 1
n

1−q̃
q̃ P̂ (∆1 = 1)(1− α̃) 1∑n

i=1 ∆i(1−ξi)
∑n

i=1
ηi
q̃

(
ζ̂i(β, t)ζ̂i(β, s)

)
, ν̂i(β, t) = r̂(β, t)′Â(β)−1

M̂Z̃,i(β, t) +
´ t

0{Ŝ
(0)(β, u)}−1dM̂i(u), r̂(β, t) = − 1

n

∑n
i=1

∑ni
j=1

I(Tij≤min(t,Ci))Ŝ
(1)(β,Tij)

Ŝ(0)(β,Tij)2
,

´ t
0

dM̂i(u)

Ŝ(0)(β,u)
=
∑ni

l=1
I(Til≤min(t,Ci))

Ŝ(0)(β,Til)
− 1

n

∑n
j=1

∑nj
l=k

∆jI(Tjk≤min(t,Cj))Yi(Tjk)e
β′Zi(Tjk)

Ŝ(0)(β,Tjk)2
, ψ̂i(β, t) =[

r̂(β, t)′Â(β)−1(1−∆i)
´ τ

0

{
R̂i(β, u)− Yi(u)Ê((1−∆i)Yi(u)Ri(β,u))

Ê((1−∆i)Yi(u))

}
dµ̂0

k(u) + (1−∆i)
´ t

0 Yi(u)(
eβ
′Zi(u) − Yi(u)Ê((1−∆i)Yi(u)eβ

′Zi(u))

Ê((1−∆i)Yi(u))

)
dµ̂0k(u)

Ŝ(0)(β,u)

]
, ζ̂i(β, t) =

[
r̂(β, t)′Â(β)−1∆i(1− ξi)

{
MZ̃,i(β)

−
´ τ

0

Yi(u)Ê(dMZ̃,1|∆1=1,ξi=0)

Ê(Y1(u)|∆1=1)

}
+ ∆i(1− ξi)

´ t
0

1
Ŝ(0)(β,t)

(
dMi(u)− Yi(u)Ê(dM1(u)|∆1=1,ξ1=0

Ê(Y1(u)|∆1=1)

)]
,

Ê((1−∆i)Yi(u)eβ
′Zi(u)) = 1

n

∑n
i=1(1−∆i)

ξi
α̃ Yi(t)exp{β

′Zi(t)}.

Studying the variance components, we can identify three sources of variation in ΣII(β0)

and φII(t, s)(β0). The three components correspond to the variation due to the different sam-

pling present in the data: one from the cohort, one because of the sampling of the subcohort

from the cohort, and the last is from the sampling of the cases outside the subcohort. Further,

note that for the original case-cohort design, since no randomness arises from sampling cases

outside the random sub-cohort, the third term does not arise in the variance term of β̂I .

3.4 Simulation Results

We have conducted extensive simulation studies to examine the finite sample properties

of the proposed estimators. To generate the recurrent event times, we have adopted Jahn-

Eimermacher et al. (2015)’s algorithm. We consider the following random-effects intensity

model to generate the recurrent events:

λ(t | Z(t), ϑ) = ϑeβ0Z(t)λ0(t) (3.6)

where ϑ is an unobserved unit-mean positive random variable that is independent of Z. We de-

rived the functions, Λ̃t and Λ̃−1
t , from the intensity process using the formula Λ̃t(u | Z(t), ϑ) =

Λ(u + t | Z(t), ϑ) − Λ(t | Z(t), ϑ). Independent random numbers, ai, are drawn from a uni-

form distribution on [0,1]. The following recursive algorithm is applied to obtain the recurrent
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event data for individual i: ti1 = Λ−1(−log(ai1) | Zi(ti1), ϑ), ti,j+1 = ti,j + Λ̃−1
ti,j

(−log(ai,j+1) |

Zi(ti,j+1), ϑ), j = 1, 2, . . . , ni. We assumed that ϑ has a Gamma distribution with mean 1 and

variance σ2. We considered binary covariate generated from Bernoulli (0.5) and continuous

covariate from Uniform (0,1). We considered different cohort sizes: 1000, 2000 and 4000 and

the number of simulated data sets being considered is 1000. We considered σ2 such that mean

recurrence is 3 for those who had at least one event. We considered β0 to be 0.5 or 0.

Table 3.1 summarizes simulation results for situations that the proportion of individuals

who experienced at least one event was low (5%, 10%, 20%). For the case-cohort sampling,

the sub-cohort sampling proportion was 25% and all cases were sampled. The simulation

results show that the coefficient estimates are approximately unbiased for all the situations

we considered. From Table 3.1, we note that the proposed estimated standard errors provide

good estimates of the true variability of β̂I in all the situations except for when both the full

cohort and the event rate are very small. As the cohort size increases, the performance of the

estimated standard error improves. The variance of β̂I decreases as the cohort size and/or

the event proportion increases. The coverage rate of the nominal 95% confidence intervals

using the proposed method is in the 92 − 95% range in all the situations considered except

when the event rate along with the cohort size are small. As the cohort size or event rate

increases, the 95% confidence interval coverage rate improves.

Table 3.1: Summary of Simulation Results of β̂I for Multiplicative Model

Z β0 Cohort Event Bias Model Empirical Coverage

Size proportion Std. Error Std. Dev.

Bernoulli(0.5) 0.5 1000 0.05 -0.003 0.474 0.535 0.85

0.10 -0.031 0.342 0.323 0.91

0.20 -0.034 0.225 0.228 0.94

2000 0.05 0.002 0.344 0.349 0.90

0.10 -0.023 0.227 0.231 0.93

0.20 -0.013 0.161 0.165 0.94

4000 0.05 -0.02 0.245 0.245 0.93
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0.10 -0.025 0.161 0.153 0.95

0.20 -0.023 0.113 0.116 0.93

0 1000 0.05 -0.0006 0.360 0.368 0.90

0.10 -0.0002 0.287 0.288 0.94

0.20 0.008 0.219 0.222 0.94

2000 0.05 0.008 0.256 0.261 0.92

0.10 -0.005 0.205 0.208 0.93

0.20 0.003 0.154 0.154 0.95

4000 0.05 0.0146 0.181 0.188 0.94

0.10 0.0013 0.145 0.146 0.95

0.20 -0.0037 0.109 0.110 0.94

Unif(0,1) 0.5 1000 0.05 -0.05 0.746 0.777 0.86

0.10 -0.022 0.566 0.589 0.90

0.20 -0.045 0.392 0.395 0.94

2000 0.05 -0.036 0.531 0.547 0.90

0.10 -0.02 0.404 0.416 0.92

0.20 -0.011 0.279 0.281 0.94

4000 0.05 0.008 0.381 0.399 0.91

0.10 -0.025 0.279 0.274 0.95

0.20 -0.023 0.197 0.200 0.94

0 1000 0.05 -0.006 0.627 0.636 0.89

0.10 -0.006 0.509 0.507 0.92

0.20 0.006 0.382 0.380 0.94

2000 0.05 0.005 0.443 0.466 0.92

0.10 -0.007 0.357 0.362 0.92

0.20 0.0009 0.266 0.263 0.94

4000 0.05 0.021 0.312 0.322 0.93

0.10 0.004 0.255 0.254 0.94

46



0.20 -0.002 0.189 0.189 0.95

Table 3.2 summarizes the simulation results for situations when the proportion of events

is not low (40%, 30% and 25%). We considered generalized case-cohort sampling. The

sub-cohort sampling proportion is 10% and sampling proportion for the cases outside the

sub-cohort is also 10%. The simulation results show that the coefficient estimates are approx-

imately unbiased, the proposed variance estimator is close to the empirical variance, and the

95% confidence interval coverage is close to the nominal level for all the situations considered.

Table 3.2: Summary of Simulation Results of β̂II for Multiplicative Model

Z β0 Cohort Event Bias Model Empirical Coverage

Size proportion Std. Error Std. Dev.

Bernoulli(0.5) 0.5 1000 0.25 -0.017 0.5 0.548 0.93

0.30 0.018 0.429 0.460 0.92

0.40 0.014 0.358 0.370 0.93

2000 0.25 0.005 0.357 0.381 0.93

0.30 0.01 0.305 0.327 0.93

0.40 0.001 0.253 0.263 0.94

4000 0.25 -0.015 0.253 0.254 0.95

0.30 0.008 0.217 0.219 0.95

0.40 -0.003 0.178 0.179 0.96

0 1000 0.25 -0.004 0.5 0.54 0.93

0.30 0.004 0.434 0.439 0.94

0.40 -0.002 0.348 0.38 0.93

2000 0.25 -0.009 0.358 0.373 0.93

0.30 -0.007 0.307 0.32 0.94

0.40 0.001 0.249 0.254 0.94

4000 0.25 0.007 0.253 0.259 0.95
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0.30 -0.004 0.218 0.222 0.94

0.40 0.006 0.177 0.178 0.95

Unif(0, 1) 0.5 1000 0.25 0.004 0.858 0.966 0.92

0.30 -0.003 0.736 0.806 0.93

0.40 0.003 0.610 0.625 0.94

2000 0.25 -0.026 0.62 0.64 0.94

0.30 0.0099 0.53 0.55 0.94

0.40 -0.016 0.436 0.459 0.93

4000 0.25 -0.01 0.442 0.457 0.94

0.30 0.0004 0.376 0.391 0.94

0.40 -0.004 0.312 0.319 0.95

0 1000 0.25 -0.018 0.864 0.923 0.92

0.30 0.004 0.742 0.77 0.94

0.40 0.008 0.60 0.64 0.92

2000 0.25 -0.015 0.620 0.664 0.92

0.30 -0.0085 0.531 0.539 0.94

0.40 -0.0027 0.430 0.431 0.94

4000 0.25 0.012 0.437 0.457 0.94

0.30 -0.017 0.378 0.388 0.94

0.40 0.003 0.305 0.310 0.94

3.5 Application to ALRI data

A doubly-blinded placebo-controlled community trial was conducted in a cohort of 1207

children in northeastern Brazil, who were followed up from December 1990 to December 1991

(Barreto et al. 1994, Amorim and Cai 2015). The primary aim of the original trial was to study

the effect of high doses of Vitamin A on diarrhea and acute-lower-respiratory-tract-infections

(ALRI). The age of the children at baseline ranged from 6 to 48 months. They were randomly
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assigned to vitamin A supplement or placebo. For the purpose of our analysis, 1190 children

were eligible: sixteen subjects had missing information on one of the variables of interest and

one child was shifted to Vitamin A from Placebo. Daily information on respiratory rates were

collected (3 times a week) with a recall period of 48 to 72 hours. An episode of ALRI was

defined as cough plus a respiratory rate of 50 breaths per min or higher for children under

12 months of age, and 40 breaths per min or higher for older children(Barreto et al. 1994,

Amorim and Cai 2015). At these visits, if the child reported cough, then the respiratory rates

were measured twice. A new episode of ALRI was defined if there was an interval of 14 or

more days (Barreto et al. 1994). Censoring occurred when children were lost to follow-up or

the study reached its end. The number of children who had at least one event was 185 with

event proportion of 15.37%.

We constructed a case-cohort sample based on this cohort study to illustrate our pro-

posed method. We consider the indicator variable for children ever having measles to be the

expensive variable which is only available for the case-cohort sample. We are interested in

studying the effect of past occurrence of measles on ALRI. We considered the probability of

sub-cohort selection to be 0.2. The total sample size for the case-cohort data is 376 with 238

in the subcohort. The following covariates were considered in the analysis: treatment group

(vitamin A vs placebo), child’s gender (male vs female), age at baseline (dichotomized based

on whether the child is older than 12 months or not), an indicator for the presence of a toilet

in the child’s house (which is considered as a proxy for hygienic habits), and the indicator for

children experiencing measles in their lifetime (based on the information provided by their

parents). For the analysis, we considered placebo, female gender, child’s age ≤ 12 months,

no presence of toilet at home, and never experiencing measles as the reference groups. Table

3.3 summarizes the distribution of the baseline variables in the subcohort and the full cohort.
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Table 3.3: Baseline Characteristics of the Acute Lower-Respiratory-Tract Infections study

Variables Full Cohort (n = 1190) Subcohort (ñ = 238)

Treatment (Vit. A: 1 vs. Placebo: 0) 0.5017 0.4790

Gender (Boys: 1, Girls: 0) 0.5244 0.5462

Age (≤ 1 yr: 1, > 1 yr: 0) 0.1311 0.1597

Toilet at home (Yes: 1) 0.7361 0.7479

Table 3.3 shows that the distribution of the variables in the subcohort are very similar to

that in the full cohort. We applied our proposed method to the case-cohort sample.

Table 3.4: Estimates and standard errors for the multiplicative rates model with data from
case-cohort sample from the ALRI study

Effects Proposed method

Case-Cohort (α̃ = 0.2)

Estimate SE

Treatment (Reference: Placebo) 0.0534 0.1995

Gender (Ref: Female) -0.0056 0.1965

Age (Ref: > 12 months) 1.6859 0.3102

Toilet at home(Ref: Absence) -0.9033 0.1759

Measles Indicator (Ref: Never) 0.0853 0.3395

Table 3.4 provides results from the model adjusting for covariates. Dichotomized age and

presence of toilet at home are significant predictors of the recurrence of ALRI among young

children, adjusting for the other variables in the model. Among the other variables, from

Table 3.4, high doses of Vitamin A, gender and prior measles indicator are not significantly

associated with recurrence of ALRI. Further, controlling for all other variables, children in

households with toilets are at a 0.595 times lower risk, of developing ALRI, than the children
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living in household without a toilet. Similarly, the risk of ALRI recurrence among children

who are younger than 12 months are 5.397 times that of children who are older than 12

months.

In the above analysis, we defined a case as an individual who has experienced at least one

event. One can use different definitions of a ‘case’ for recurrent events, based on the number

of events. It is of interest to examine the performance of the estimates based on the different

case definition for sampling. We conducted some simulations by sampling from the ALRI

study. Sub-cohort proportion was selected as 20% and the number of simulations considered

is 1000. We have considered three definitions for ‘case’: subjects who experienced at least

one event, at least two events, or at least three events. Table 3.5 shows the results from the

simulations for the different ‘case’ definitions. We note that the standard errors were the

lowest with the at least one case definition. This could be due to the smaller supplementary

case samples with the other definitions.

Table 3.5: Estimates and standard errors for different definitions of case for case-cohort
sample from the ALRI study

Effects Case Definition

≥ One Event ≥ Two events ≥ Three events

Estimate SE Estimate SE Estimate SE

Treatment -0.0272 0.197 -0.0299 0.202 -0.0268 0.205

Gender -0.118 0.196 -0.121 0.202 -0.132 0.205

Age 1.697 0.290 1.701 0.320 1.702 0.336

Toilet at home -0.691 0.182 -0.695 0.186 -0.698 0.188

Prior Measles 0.0538 0.339 0.0488 0.361 0.0458 0.365

3.6 Final Remarks

This article proposes methods of fitting marginal multiplicative rates model for both the

case-cohort and the generalized case-cohort designs with time-varying weights. The proposed
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estimators are natural generalizations of the full cohort estimators and has easy interpretation.

The proposed estimators are consistent and asymptotically distributed. They perform well

in finite samples. Throughout this article, for the case-cohort analysis, we have assumed

simple random sampling for the subcohort and all individuals who have experienced the event.

Bernoulli sampling of the subcohort is another sampling scheme that can be considered.

In our approach, we do not use all the covariate information that are available for the entire

cohort. Developing a more general method taking advantage of those covariates information

to improve the efficiency of the estimators is worthy of future research. We have considered

event proportion (individuals with atleast one event) around 25%− 50% to be corresponding

to a relatively common event. It can be noted that when the event proportion is > 50%, then

simple random sample of the entire cohort should yield sufficient data to achieve the desirable

power. Extension of this approach to additive rates model and for multiple types of recurrent

events are under further investigation.
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CHAPTER 4: ADDITIVE RATES MODEL FOR RECURRENT EVENTS
WITH CASE-COHORT DATA

4.1 Introduction

The additive and multiplicative rates models are two different frameworks to study the

association between various risk factors and time to event data. Most modern survival analy-

ses focus on the multiplicative model for relative risk using Cox’s (1972) proportional hazards

model, mainly because of the availability of computer programs and the easy interpretability

of the results. However, investigators are sometimes interested in the risk difference because

it translates directly into the number of event cases that can be avoided by eliminating the ex-

posure (Kulich and Lin 2000). As a result, depending on the interest, an additive rates model

can be considered instead of a multiplicative rates model, especially when the multiplicative

model assumption does not hold.

Aalen (1980) first proposed the additive hazards model as an alternative to the Cox (1972)

proportional hazards model. The author noted that since the covariate effects are not assumed

to be proportional, the additive model is capable of providing information about the temporal

influence of each covariate that is not available from the Cox model. Several authors have

studied theoretical developments of such models for univariate failure times. These include

semi-parametric estimation procedure by Lin and Ying (1994), application to current status

data (Lin et al. 1998), modeling in presence of auxiliary covariate information (Jiang and

Zhou 2007), among others. Yin and Cai (2004) extended the idea to multivariate failure time

data. Schaubel et al. (2006) and He et al. (2013) proposed semi-parametric additive rates

models for clustered recurrent event data.

All the aforementioned articles assume that data are fully available for all the members

in the cohort. However, in epidemiology studies, cost constraints often make it infeasible to
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collect information on all the individuals in the cohort, especially when some covariates are

expensive to measure. Usually, the majority of the cost comes from the assembling of the

covariate data and most of the information on the event-free individuals in the cohort are

redundant if the event rate is low. The case-cohort sampling scheme (Prentice 1986) is one

of the several study designs that have been proposed to reduce cost in large epidemiological

cohort studies. The key principle of this design is to obtain covariate information on only a

random subset of the cohort (which is called the sub-cohort) and all individuals in the cohort

who experience the event of interest (cases). This leads to the case-cohort studies being

considered as an appealing alternative to full-cohort studies for large-scale epidemiological

studies where the event is rare or the covariates are quite expensive to measure. When the

event rate is not rare, due to financial limitation or technical difficulties, measuring important

covariates in the entire cohort may be impractical. In such situation, it is advisable to consider

cost-effective sampling designs for selecting subjects from the cohort to reduce the study cost,

without losing much of the efficiency. One such study design is the generalized case-cohort

design (Kulich and Lin 2004) where covariate information is collected for the sub-cohort and

a random sample of the remaining cases. Kulich and Lin (2000), Kang et al. (2013), Yu et al.

(2014), Dong et al. (2014), Kim et al. (2016), Cao and Yu (2017) among others developed the

semi-parametric inference of additive hazards models for two-phase designs, more specifically

case-cohort and generalized case-cohort studies.

Despite the abundance of methodologies in the time-to-event literature for analyzing single

event case-cohort data, methods to analyze recurrent events under the case-cohort design have

been limited. In this paper, we look at the additive rates model for modeling recurrent events

under the generalized case-cohort design, in order to reduce the cost of collecting expensive

covariate information. Our illustrating example is a randomized double-blind clinical trial

which was carried out by Genentech in 1992 to study the effect of rhDNase on pulmonary

exacerbations in patients with cystic fibrosis (Therneau and Hamilton 1997). Six hundred

and sixty-five patients were followed up for 169 days and data on multiple exacerbations

were collected during this period with about 36.54% of the individuals (rhDNase and Placebo

combined) experiencing at least one such event. We will use this data to illustrate our

54



proposed method under generalized case-cohort design.

In the next section, we propose a weighted estimating equation approach for estimating

the parameters in the marginal hazard regression model for recurrent event data from case-

cohort studies. The asymptotic properties of the proposed estimators are studied in section

4.3. The outlines of the proofs of the asymptotic properties are given in the appendix. In

section 4.4, simulation studies were considered to examine the finite sample properties. In

section 4.5, we illustrated the proposed method on a case-cohort study based on the rhDNase

clinical trial. We conclude the paper with a brief discussion.

4.2 Model and Estimation

Suppose there are n independent individuals in the cohort. Let N∗i (t) be the number of

recurrent events for the individual i over the time interval [0, t), Ci is the censoring time. Zi(.)

= (ZEi (.)′, ZCi (.)′)′ is the p-dimensional covariate of interest for the individual i, where ZEi (.)

is the set of expensive-to-measure variables and ZCi (.) is the set of all other covariates. Let T ∗ij

denote the j-th recurrent event time for the individual i. The observed time is Tij = T ∗ij ∧Ci,

j = 1, 2, . . . , ni + 1, where ni is the number of events that are observed for individual i, and

N =
∑n

i=1 ni is the total number of observed events. Let Yi(t) = 1(Ci ≥ t), Ni(t) = N∗i (t∧Ci)

=
∑ni

j=1 I(Tij ≤ t) =
∑ni

j=1 I(T ∗ij ≤ t)Yi(t), ∆i = 1− I(minj(T
∗
ij) ≥ Ci) which is the indicator

that individual i experienced at least one event, and τ denote the study ending time. The rate

function for an individual is denoted as E (dN∗(t) | Z(t)) = dµz(t). We assume the following

additive rate model :

dµZ(t) = dµ0(t) +
(
θ′0Z

E(t) + γ′0Z
C(t)

)
dt⇒ µZ(t) = µ0(t) +

ˆ t

0

{
θ′0Z

E(u) + γ′0Z
C(u)

}
du,

(4.1)

where µ0(.) is an unspecified continuous baseline mean function and θ0 and γ0 are the vectors

of unknown parameters. Denoting β0 = (θ′0, γ
′
0)′, we can rewrite the rates model as dµZ(t) =

µ0(t) + β′0Z(t)dt and the mean function is given by µZ(u) = µ0(u) +
´ u

0 β
′
0Z(t)dt for all

u ∈ [0, τ ]. Note that the covariates are allowed to be time-dependent. We assume that the

possibly time-dependent covariates are external (Kalbfleisch and Prentice 2002), i.e., they are
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not affected by the recurrent event process. If the data were complete, the true regression

parameter β0 can be estimated from the following estimating equations (Schaubel et al. 2006):

n∑
i=1

ˆ t

0
Yi(u)dMi(u) = 0 (4.2)

n∑
i=1

ˆ t

0
Yi(u)Zi(u)dMi(u) = 0, (4.3)

where Mi(t) = Ni(t) −
´ t

0 Yi(u) {dµ0(u) + β′0Zi(u)du}. Combining the above two equations,

we have

U(β) =

n∑
i=1

ˆ τ

0

(
Zi(t)− Z̄(t)

) [
dNi(t)− Yi(t)β′0Zi(t)dt

]
= 0, (4.4)

where Z̄(t) =
∑n
i=1 Yi(t)Zi(t)∑n
i=1 Yi(t)

. The above estimating equation can be solved explicitly to obtain

an estimator of β given by β̂ =
[

1
n

∑n
i=1

´ τ
0 Yi(t)

{
Zi(t)− Z̄(t)

}⊗2
dt
]−1 (

1
n

∑n
i=1

´ τ
0 {Zi(t)

−Z̄(t)
}
× dNi(t)

)
. However, for case-cohort data, since we do not have information on all

the individuals, the estimating cannot be applied directly.

4.2.1 Case-cohort study design for recurrent events

In this subsection, we introduce two sampling schemes for the recurrent event data. We

call an individual a case if the individual experienced at least one event and an individual a

non-case if the individual did not have any event during the study period. The first sampling

scheme deals with the situation that the event is not common in the population. An example of

such situation is a doubly-blind, placebo-controlled community trial conducted in northeastern

Brazil among young children to evaluate the effect of high doses of vitamin A on acute-lower-

respiratory-tract infection (ALRI)(Barreto et al. 1994). The event of interest occurs in only

about 15% of the cohort. In this case, we draw a random sample from the full cohort and

supplement that with all the cases. We call this sampling scheme the original case-cohort

design with recurrent events. The second sampling scheme is for the situation described in

Section 4.1. In this case, the event is relatively common and we cannot afford to sample

all individuals with events. Under such circumstance, we propose to sample only a fraction

of those who have events for the case-cohort sampling. We call this sampling scheme the
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generalized case-cohort design with recurrent events.

4.2.2 Estimation under the original case-cohort design

Under the case-cohort sampling, we select a sub-cohort from the entire cohort by simple

random sampling. Let ξi denote the indicator function for individual i being selected into the

subcohort; α̃ = ñ
n is the subcohort proportion where ñ is the number of individuals selected

in the sub-cohort and n is the number of individuals in the full cohort. The observable

information for individual i is {Ti,∆i, ξi, Z
C
i (t), ZEi (t), t ∈ [0, τ ]} if individual i is in the case-

cohort sample. In other words, we have {Ti,∆i, ξi, Zi(t), 0 ≤ t ≤ τ} if ∆i = 1 or ξi = 1 and

{Ti,∆i, ξi, Z
C
i (t), t ∈ [0, τ ]} when ∆i = 0 and ξi = 0. We considered the following estimating

equation to estimate β0.

U I(β) =
n∑
i=1

ˆ τ

0
wIi (t)

{
Zi(t)− Z̄I(t)

} [
dNi(t)− Yi(t)β′Zi(t)dt

]
= 0, (4.5)

where Z̄I(t) =
∑n
i=1 w

I
i (t)Yi(t)Zi(t)∑n

i=1 w
I
i (t)Yi(t)

, wIi (t) = ∆i + (1 − ∆i)
ξi
α̂(t) , where α̂(t) =

∑
i(1−∆i)ξiYi(t)∑
i(1−∆i)Yi(t)

is

the estimator of the true sampling parameter, α. The weight is 1 for all the cases and is

α̂(t)−1 for the non-cases in the sub-cohort. Similar idea for the weights was considered by

Kalbfleisch and Lawless (1988) for a single event. They considered the time-invariant version

of α̂(t), which was given by α̃. Borgan et al. (2000) used a similar idea for univariate failure

time data from stratified case-cohort studies. We denote the solution to this equation by β̂I .

Our proposed Breslow-Aalen type estimator of the baseline mean function is given by

µ̂0(β̂I , t) =

ˆ t

0

∑n
i=1w

I
i (u)

[
dNi(u)− Yi(u)(β̂I)′Zi(u)du

]
∑n

i=1w
I
i (u)Yi(u)

. (4.6)

4.2.3 Estimation under the generalized case-cohort design with recurrent events

For the generalized case-cohort design, we sample a fraction of cases outside of the sub-

cohort. Let ηi be an indicator of being sampled for individual i who is a case but outside the

sub-cohort being sampled. Let q̃ =
n∗1

n1−ñ1
denote the sampling proportion for the additional

cases, where n∗1, n1 and ñ1 are the number of selected individuals who have experienced at least
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one event but are not in the subcohort, individuals who experienced at least one event in the

full cohort and those who were in the subcohort respectively. Under this design, the covariate

information is available for the subcohort members and the selected cases (ηi = 1). Hence,

the observable information for individual i is {Ti,∆i, ξi, ηi, Zi(t) : t ∈ [0, τ ]} when ξi = 1 or

ηi = 1 and {Ti,∆i, ξi, Z
C
i (t), t ∈ [0, τ ]} if ξi = 0 and ηi = 0. Using the inverse of probability of

being sampled as the weight, our proposed estimating equation for the generalized case-cohort

sampling scheme is

U II(β) =
n∑
i=1

ˆ τ

0
wIIi (t)

{
Zi(t)− Z̄II(t)

} [
dNi(t)− Yi(t)β′Zi(t)dt

]
= 0, (4.7)

where Z̄II(t) =
∑n
i=1 w

II
i (t)Yi(t)Zi(t)∑n

i=1 w
II
i (t)Yi(t)

. The weight function is given by wIIi (t) = (1−∆i)ξi
α̂(t) +∆iξi+

∆i(1−ξi)ηi
q̂(t) where q̂(t) =

∑
i ∆i(1−ξi)ηiYi(t)∑
i ∆i(1−ξi)Yi(t) is the estimator of the true sampling parameter q.

We denote the solution of this equation by β̂II . The Breslow-Aalen type estimator of the

baseline mean function is

µ̂0(β̂II , t) =

ˆ t

0

∑n
i=1w

II
i (u)

[
dNi(u)− Yi(u)(β̂II)′Zi(u)du

]
∑n

i=1w
II
i (u)Yi(u)

. (4.8)

Throughout this article, we use superscript I or II depending on whether the quantity corre-

sponds to the original case-cohort design or the generalized case-cohort design respectively.

4.3 Asymptotic properties

In this section, we investigate the asymptotic properties of the estimators. Define the

following terms: e(t) = E(Yi(t)Zi(t))
E(Yi(t))

, A = E
[´ τ

0 Yi(t)
{
Zi(t)

⊗2 − e(t)⊗2
}
dµ0(t)

]
, Z̃i(t) =

Zi(t)− e(t), dMi(t) = dNi(t)− Yi(t) [dµ0(t) + β0Zi(t)] ,MZ̃,i(β) =
´ τ

0 Z̃i(t)dMi(t). Further,

the norms of a vector, a, is defined as ‖a‖ = maxi |ai|, for a matrix A by ‖A‖ = maxi,j‖Aij‖

and for a function f by ‖f‖ = supt |f(t)|. The estimator under the classical case-cohort

sampling scheme is a special case of the generalized case-cohort sampling scheme, so its

asymptotic property is a special case of the generalized case-cohort sampling scheme. Hence,

in the Appendix, we focus the proofs on the asymptotic properties of the estimators under the
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generalized case-cohort design, β̂II and µ̂II0 (β̂II , t). The regularity conditions and the outline

of the proofs are provided in the Appendix. The asymptotic properties are summarized in

the following theorems.

Theorem 3. Under the regularity conditions in the Appendix, for k = I or II, β̂k is a

consistent estimator of β0. n1/2{β̂k − β0} converges to a Gaussian distribution with mean

zero and variance given by

Σk(β0) = A−1

[
Q(β0) +

1− α
α

V I(β0) + I(k = II)(1− α)
1− q
q

P (∆1 = 1)V II(β0)

]
A−1,

where

A = E

[ˆ τ

0
Yi(t)

{
Zi(t)

⊗2 − e(t)⊗2
}
dt

]
, Q(β) = E

(
MZ̃,1(β)

)⊗2
,

V I(β0) = E

(
(1−∆1)

ˆ τ

0

[
dR1(β0, t)−

Y1(t)E((1−∆1)dR1(β0, t))

E((1−∆1)Y1(t))

])⊗2

,

V II(β0) = var

(
MZ̃,i(t)−

ˆ τ

0

Yi(t)E(dMZ̃,1(t) | ∆1 = 1, ξ1 = 0)

E(Y1(t) | ∆1 = 1)
| ∆i = 1, ξi = 0

)
,

dRi(β, t) = Yi(t)Z̃i(t){dµ0(t) + β0Zi(t)dt}.

Each of these terms, A, Q(β0), V I(β0) and V II(β0) can be estimated respectively by their

sample counterparts, Â, Q̂(β̂k) and V̂ I(β̂k), where Â = − 1
n
∂Uk(β)
∂β , Q̂(β) = 1

n

∑n
i=1

ξi
α̃(

MZ̃,i(β)⊗2
)
, M̂Z̃,i(β) =

´ τ
0 {Zi(t)− Z̄

k(t)}dM̂k
i (β, t), dM̂k

i (β, t) = dNi(t)−Yi(t){dµ̂0(β, t) +

β′Zi(t)dt}, ˆ̄Zk(β, t) =
∑n
i=1 ŵi

k(t)Zi(t)Yi(t)∑n
i=1 ŵi

k(t)Yi(t)
, dR̂IIi (β, t) =

{
Zi(t)− Z̄II(t)

}
Yi(t)

{
dµ̂II0 (β, t)+

β′Zi(t)dt} , dµ̂II0 (β, t) =
∑
i w

II
i (t){dNi(t)−Yi(t)β′Zi(t)dt}∑

j w
II
j (t)Yj(t)

, Ê (∆1(1− ξ1)dR1(β, t)) = 1
n

∑n
i=1

ηi
q̃ ∆i(1−

ξi)dR̂
II
i (β, t), Ê (∆1(1− ξ1)Y1(β, t)) = 1

n

∑n
i=1 ∆i(1 − ξi)Yi(t). Based on these, we have the

following estimates of the second and third terms of the variance as

V̂ I(β) =
1

n

n∑
i=1

ξi
α̃

(1−∆i)
n∑
j=1

nj∑
k=1

{
R̂IIi (β, Tjk)−

Yi(Tjk)Ê ((1−∆1)dR1(β, Tjk))

Ê ((1−∆1)Y1(Tjk))

}⊗2

,
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V̂ II(β) =
1

n

n∑
i=1

ηi
q̃

[
∆i(1− ξi)

{
M̂Z̃,i(β)−

ni∑
k=1

ˆ Tik

0

Ê(dMZ̃,1(t) | ∆1 = 1, ξ1 = 0)

Ê(Y1(t) | ∆1 = 1)

}]⊗2

.

To obtain the asymptotic distribution of the baseline mean function µ̂0(t), we need to

first define the metric space, D[0, τ ], consisting of right continuous functions f(t) with left-

hand limits and f : [0, τ ] → R. The metric for this space is defined by d(f, g) = supt∈[0,τ ]{|

f(t) − g(t) |} for f(t), g(t) ∈ D[0, τ ]. The following theorem summarizes the asymptotic

properties of µ̂k0(t).

Theorem 4. Under the regularity conditions in Appendix, for k = I or II, µ̂k0(β, t) converges

in probability to µ0(t) uniformly in t ∈ [0, τ ]. Further, defining Wn(t) = µ̂k0(β̂k, t) − µ0(t),

n1/2Wn(t) converges to a Gaussian distribution with mean zero. The variance-covariance

function between Wn(t) and Wn(s) is given by

φk(t, s)(β0) = E (νi(β0, t)νi(β0, s)) + 1−α
α E

(
ψIi (β0, t)ψ

I
i (β0, s)

)
+I(k = II)1−q

q E
(
ψIIi (β0, t)ψ

II
i (β0, s)

)
,

where

νi(β0, t) =

[
r(t)′A−1

ˆ τ

0
(Zi(t)− e(t)) dMi(t) +

ˆ t

0

dMi(u)

E(Y1(u))

]
,

ψIi (β0, t) = (1−∆i)

[
r(t)′A−1

(
Ri(β0)−

ˆ τ

0

Yi(t)E((1−∆1)dRi(β0, t))

E((1−∆1)Yi(t))

)
+

ˆ t

0

1

E (Y1(u))
Yi(u)

[
β′0Zi(u)− E ({1−∆1}Y1(u)β′0Z1(u))

E((1−∆1)Y1(u))

]
du

]

and

ψIIi (β0, t) = ∆i(1− ξi)r(t)′A(β0)−1

ˆ τ

0

dMZ̃,i(u)− Yi(u)
E
[
dMZ̃,1(u) | ∆1 = 1, ξ1 = 0

]
E(Y1(u) | ∆1 = 1)


+ ∆i(1− ξi)

ˆ t

0

1

E (Y1(u))

{
dMi(u)− Yi(u)

E [dM1(u) | ∆1 = 1, ξ1 = 0]

E(Y1(u) | ∆1 = 1)

}
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Each of these terms can be consistently estimated by their sample counterparts. φ̂II(t, s)(β) =∑n
i=1

ξi
α̃ (ν̂i(β, t)ν̂i(β, s)) + 1−α̃−1

n

∑n
i=1

ξi
α̃

(
ψ̂Ii (β, t)ψ̂Ii (β, s)

)
+1−q̃−1

n

∑n
i=1

ηi
q̃

(
ψ̂IIi (β, t)

×ψ̂IIi (β, s)
)

, ν̂i(β, t) = r̂I(β, t)′Â−1M̂Z̃,i(β, t)+
´ t

0{Ê(Y1(u))}−1dM̂i(u), ψ̂Ii (β, t) =
[
r̂I(β, t)′Â−1

(1−∆i) ×
{
R̂IIi (β, u)−

´ τ
0

Yi(u)Ê((1−∆i)Yi(u)Z̃i(u))dµ̂0I(u)

Ê((1−∆i)Yi(u))
−
´ τ

0

Yi(u)Ê((1−∆i)Yi(u)Z̃i(u))β′0Zi(u)du

Ê((1−∆i)Yi(u))

}
+(1−∆i)

´ t
0

(
β′Zi(u)− Ê((1−∆i)Yi(u)β′Zi(u))

Ê((1−∆i)Yi(u))

)
× Yi(u)dµ0(u)

Ê(Yi(u))

]
, ψ̂IIi (β, t) = ∆i(1−ξi)

[
r̂I(β, t)′Â−1

´ τ
0

{
dM̂Z̃,i(u)− Yi(u)

Ê[dMZ̃,1(u)|∆1=1,ξ1=0]
Ê(Y1(u)|∆1=1)

}
+
´ t

0
1

Ê(Y1(u))

{
dM̂i(u)− Yi(u) Ê[dM1(u)|∆1=1,ξ1=0]

Ê(Y1(u)|∆1=1)

}]
,

Ê((1−∆i)Yi(u)β′Zi(u)) = 1
n

∑n
i=1(1−∆i)

ξi
α̃ Yi(t)β

′Zi(t), Ê(Yi(u)) = 1
n

∑n
i=1 Yi(u), r̂I(β, t) =

−
´ τ

0 Z̄
II(t)dt, Ê(∆i(1− ξi)Yi(u)β′Zi(u)) = 1

n

∑n
i=1 ∆i(1− ξi)ηiq̃ Yi(t)β

′Zi(t).

4.4 Simulation Studies

We conducted simulation studies to examine the finite sample properties of the proposed

estimators. For subject i, the (j + 1)-th event time is generated by

Ti,j+1 = Ti,j −
log(1− Ui,j+1)

Qi +m0 + β0Zi
,

where m0 is the baseline rate, β0 is the unknown parameter, Ui,j+1 are independent Uni-

form(0,1) variates and Ti,0 = 0. The frailty variable, Qi, induces positive correlation among

the within-subject events. It follows a Gamma distribution with mean E(Qi) = 1 and vari-

ance σ2
Q. We consider both discrete and continuous Z for the simulations. We considered

binary covariate generated from Bernoulli (0.5) and continuous covariate from Uniform (0,1).

We considered different cohort sizes: 1000, 2000 and 4000 and the number of simulation rep-

etition is 1000. We considered σ2 such that mean recurrence is 3 for those who had at least

one event. We considered β0 to be 0.5 or 0.

Table 4.1 summarizes simulation results for situations that the proportion of individuals

who experienced at least one event was low (5%, 10%, 20%). For the case-cohort sampling,

the sub-cohort sampling proportion was 25% and all cases were sampled. The simulation

results show that the coefficient estimates are approximately unbiased for all the situations

we considered. From Table 4.1, we note that the proposed estimated standard errors provide

good estimates of the true variability of β̂I in all the situations except for when both the full
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cohort and the event rate are very small. As the cohort size increases, the performance of the

estimated standard error improves. The variance of β̂I decreases as the cohort size and/or

the event proportion increases. The coverage rate of the nominal 95% confidence intervals

using the proposed method is in the 92 − 95% range in all the situations considered except

when both the event rate and the cohort size are small. As the cohort size or event rate

increases, the 95% confidence interval coverage rate improves. Specifically, when the event

rate is at 5%, the confidence interval coverage is around 80% when the cohort size is 1000

(case cohort size = 288). However, the performance improves as the cohort size or event rate

increases. Specifically, for continuous covariate, the confidence interval rate is close to the

nominal level when the cohort size is 6000, 4000 or 2000 for event rate of 5% (case cohort size

is 1725, 1300 or 800), 10% and 20% respectively. The corresponding required cohort size is

smaller for discrete covariate.

Table 4.1: Summary of Simulation Results of β̂I for Additive Model

Z β0 Cohort Event Bias Model Empirical Coverage

Size proportion Std. Error Std. Dev.

Bernoulli(0.5) 0 1000 0.05 0.008 0.712 0.729 0.822

0.10 0.018 0.555 0.556 0.905

0.20 -0.011 0.305 0.301 0.928

2000 0.05 0.020 0.499 0.508 0.872

0.10 -0.005 0.391 0.390 0.916

0.20 0.002 0.217 0.223 0.92

4000 0.05 0.0005 0.345 0.339 0.926

0.10 -0.005 0.274 0.273 0.951

0.20 -0.007 0.154 0.151 0.955

6000 0.05 0.005 0.280 0.269 0.952

0.10 -0.001 0.221 0.221 0.941

0.20 -0.004 0.124 0.124 0.94

0.5 1000 0.05 0.059 0.709 0.725 0.81
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0.10 0.031 0.566 0.569 0.903

0.20 -0.005 0.319 0.315 0.935

2000 0.05 0.036 0.497 0.504 0.871

0.10 0.007 0.400 0.398 0.927

0.20 0.006 0.227 0.235 0.918

4000 0.05 0.006 0.344 0.336 0.92

0.10 -0.002 0.281 0.279 0.950

0.20 -0.006 0.161 0.162 0.949

6000 0.05 0.0057 0.279 0.269 0.946

0.10 0.002 0.227 0.227 0.935

0.20 -0.005 0.130 0.131 0.94

Unif(0,1) 0 1000 0.05 0.026 1.274 1.300 0.793

0.10 0.036 0.967 0.961 0.887

0.20 -0.004 0.530 0.513 0.938

2000 0.05 0.070 0.860 0.863 0.847

0.10 0.010 0.683 0.665 0.907

0.20 -0.001 0.375 0.384 0.922

4000 0.05 -0.002 0.598 0.595 0.893

0.10 -0.018 0.477 0.482 0.928

0.20 -0.013 0.267 0.263 0.944

6000 0.05 0.009 0.483 0.465 0.927

0.10 0.004 0.386 0.376 0.948

0.20 -0.006 0.217 0.213 0.952

0.5 1000 0.05 0.046 1.271 1.292 0.779

0.10 0.045 0.986 0.983 0.891

0.20 0.003 0.555 0.546 0.93

2000 0.05 0.084 0.857 0.860 0.847

0.10 0.024 0.697 0.674 0.919
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0.20 0.001 0.394 0.404 0.92

4000 0.05 0.005 0.596 0.595 0.888

0.10 -0.012 0.488 0.495 0.929

0.20 -0.009 0.280 0.278 0.944

6000 0.05 0.013 0.481 0.463 0.927

0.10 0.005 0.395 0.385 0.945

0.20 -0.006 0.227 0.223 0.955

Table 4.2 summarizes the simulation results for situations when the proportion of events

is not low (25%, 30% and 40%). We considered generalized case-cohort sampling. The

sub-cohort sampling proportion is 10% and sampling proportion for the cases outside the

sub-cohort is also 10%. The simulation results show that overall the coefficient estimates are

approximately unbiased, the proposed variance estimator is close to the empirical variance,

and the 95% confidence interval coverage is close to the nominal level for all the situations

considered, except for when both the cohort size (1000 and 2000) and the event rate (25%)

are both relatively low. As the cohort size or the event rate increases, the 95% confidence

interval coverage improves.

Table 4.2: Summary of Simulation Results of β̂II for Additive Model

Z β0 Cohort Event Bias Model Empirical Coverage

Size proportion Std. Error Std. Dev.

Bernoulli(0.5) 0 1000 0.25 0.028 1.199 1.257 0.969

0.30 0.037 1.249 1.310 0.965

0.40 0.062 1.129 1.181 0.949

2000 0.25 -0.031 0.850 0.897 0.963

0.30 -0.005 0.871 0.892 0.967

0.40 0.038 0.798 0.796 0.957
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4000 0.25 -0.006 0.612 0.635 0.954

0.30 -0.021 0.625 0.646 0.960

0.40 -0.015 0.557 0.586 0.946

6000 0.25 0.007 0.498 0.510 0.954

0.30 0.004 0.509 0.514 0.946

0.40 -0.014 0.456 0.453 0.958

8000 0.25 0.004 0.609 0.621 0.959

0.3 -0.0002 0.621 0.639 0.959

0.4 -0.004 0.564 0.591 0.942

0.5 1000 0.25 0.114 1.188 1.247 0.972

0.30 0.046 1.246 1.290 0.959

0.40 0.004 1.104 1.117 0.950

2000 0.25 -0.054 0.855 0.865 0.980

0.30 0.023 0.888 0.887 0.958

0.40 0.017 0.781 0.792 0.947

4000 0.25 0.016 0.613 0.611 0.965

0.30 0.009 0.621 0.635 0.958

0.40 -0.049 0.562 0.586 0.947

6000 0.25 0.018 0.500 0.515 0.939

0.30 -0.017 0.506 0.506 0.954

0.40 -0.007 0.454 0.453 0.959

8000 0.25 -0.007 0.613 0.617 0.965

0.3 0.007 0.624 0.626 0.960

0.4 -0.033 0.559 0.585 0.941

Unif(0, 1) 0 1000 0.25 0.069 2.093 2.183 0.971

0.30 0.069 2.171 2.258 0.959

0.40 0.118 1.94 2.098 0.954

2000 0.25 -0.029 1.480 1.553 0.971

65



0.30 -0.013 1.506 1.536 0.972

0.40 0.041 1.356 1.364 0.957

4000 0.25 -0.013 1.059 1.089 0.974

0.30 -0.044 1.085 1.126 0.954

0.40 -0.013 0.963 1.018 0.946

6000 0.25 0.004 0.861 0.861 0.973

0.30 0.002 0.889 0.895 0.96

0.40 -0.014 0.784 0.777 0.967

8000 0.25 0.006 1.05 1.067 0.971

0.3 -0.001 1.067 1.095 0.960

0.4 0.014 0.979 1.023 0.946

0.5 1000 0.25 -0.035 2.070 2.263 0.960

0.30 0.007 2.129 2.255 0.969

0.40 -0.064 1.910 1.941 0.954

2000 0.25 0.031 1.498 1.480 0.972

0.30 0.060 1.520 1.559 0.967

0.40 0.044 1.387 1.393 0.957

4000 0.25 -0.043 1.042 1.050 0.97

0.30 -0.064 1.058 1.087 0.958

0.40 0.039 0.968 0.994 0.955

6000 0.25 -0.024 0.872 0.867 0.959

0.30 -0.013 0.877 0.883 0.960

0.40 -0.031 0.790 0.787 0.952

8000 0.25 -0.009 1.049 1.077 0.967

0.3 -0.003 1.066 1.086 0.963

0.4 0.017 0.972 0.997 0.954
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4.5 Real Data Application

In patients with cystic fibrosis, extracellular DNA (which are released by leukocytes)

accumulates in the lung. This leads to exacerbations of respiratory symptoms and progressive

deterioration of lung function. Lung disease has been considered as a leading cause of death

among cystic fibrosis patients, accounting for over 90% of eventual deaths. DNase I is a

human enzyme normally present in the mucus of human lungs that digests extracellular

DNA. Genentech Inc. cloned a highly purified recombinant DNase I (rhDNase) in an effort

to reduce the viscoelasticity of airway secretions and improving clearance (Therneau and

Hamilton 1997). The company conducted a randomized double-blind clinical trial in 1992

comparing rhDNase to placebo for pulmonary exacerbations. For the purpose of the analysis,

645 individuals were eligible who were randomly assigned rhDNase or placebo at the beginning

of the study. The primary end-point of the original study was the first pulmonary exacerbation

but data was collected on all exacerbation in the follow-up period. We have used information

on all the events for this analysis. The largest follow-up time was 170 days, with 37.52% of

the cohort experiencing at least one event. Among those individuals who had at least one

event, the average number of events is around 1.5. Further, for individuals who experienced

a pulmonary exacerbation, they were temporarily absent from the risk sets.

Since the event is not rare, we constructed a generalized case-cohort (GCC) sample based

on this cohort study to illustrate our proposed method. We consider the baseline forced

expiratory volume in 1 second (FEV1) as the expensive variable which is only available for the

GCC sample. We are interested in studying the effect of FEV1 on the recurrence of pulmonary

exacerbations. We considered the sub-cohort selection proportion to be 0.2. Fifteen percent

of all the individuals, who experienced at least one event but were not selected in the initial

sub-cohort, were selected in the second stage to form the generalized case cohort sample.

The total sample size of the GCC is 157 with 129 people in the sub-cohort. The following

covariates were considered in the analysis: treatment group (rhDNase vs placebo) and FEV1.

Table 4.3 summarizes the distribution of the baseline variables in the sub-cohort and the full

cohort.
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Figure 4.1: Plots of the cumulative rates function estimates vs time for the three variables

Table 4.3: Baseline Characteristics of the rhDNase study

Variables Full Cohort (n = 645) Subcohort (ñ = 129)

Treatment (rhDNase vs. Placebo) 0.4977 0.4806

FEV1 57.6 (38.4, 83.2) 60.8 (41.6, 83.5)

Table 4.3 shows that the distribution of the variables in the subcohort are quite similar

to that in the full cohort. As an exploratory analysis, we have also looked at the cumulative

rates for the two variables considered. The cumulative rate function was calculated non-

parametrically for the different groups. It is defined as the ratio of the total number of events

at time t and the total number of individuals at risk at that time. To get an idea about the

cumulative rate function of FEV1, we have dichotomized it. Further, we have centered and

scaled FEV1 to reduce the variability in the variable.
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Table 4.4: Estimates and standard errors for the multiplicative rates model with data from
GCC sample from the rhDNase study

Effects Proposed method: GCC (α̃ = 0.2, q̃ =0.15)

Estimate SE

Treatment (Reference: Placebo) −0.00288 1.68× 10−3

FEV∗1 −0.00204 7.26× 10−4

Figure 4.1 shows that, as time (measured in days) increases, the differences in the cumu-

lative rates function estimates for two different levels of treatment as well as dichotomized

FEV1 increase approximately in a linear fashion. Therefore, it is reasonable to assume the

additive effect of both the variables on the rates functions for the recurrence of pulmonary

exacerbations. From the figure, one can visualize the effects to be different in the two groups.

We fit the multivariable additive rates model to the data to test whether the differences are

statistically significant. Table 4.4 provides results from the multivariable model. Adjusting

for the treatment, forced expiratory volume in 1 second, FEV1, is found to be statistically

significant predictor of the recurrence of pulmonary aggravation. Hence, for an 1 sd incre-

ment in FEV1, the risk of pulmonary exacerbations reduced by 0.2%. Further, the treatment

variable is also found to be not significant.

In the above analysis, we defined a case as an individual who has experienced at least one

event. One can use different definitions of a ‘case’ for recurrent events, based on the number

of events. It is of interest to examine the performance of the estimates based on the different

case definition for sampling. We conducted some simulations by sampling from the rhDNase

study. Sub-cohort proportion was selected as 20% and the number of simulations considered

is 1000. We have considered three definitions for ‘case’: subjects who experienced at least

one event, at least two events, or at least three events. Table 4.5 shows the results from the

simulations for the different case definitions. We note that the standard errors were quite

similar for each of the case definitions, all of which are very close to 0.
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Table 4.5: Estimates and standard errors for different definitions of ‘case’ for GCC sample
from the rhDNase study

Effects Case Definition

≥ One Event ≥ Two events ≥ Three events

Estimate SE Estimate SE Estimate SE

Treatment -0.00104 0.00543 -0.000980 0.00536 -0.00107 0.00544

FEV∗1 -0.00135 0.00012 -0.00135 0.00012 -0.00135 0.00012

4.6 Discussion

This article proposes methods of fitting marginal additive rates model for both the case-

cohort and the generalized case-cohort designs with time-varying weights. The proposed

estimators are natural generalizations of the full cohort estimators and possess intuitive inter-

pretation. The proposed estimators are consistent and asymptotically normally distributed.

They perform well in finite samples. We have applied the methods to the rhDNase data.

Throughout this article, we have assumed simple random sampling for both the sub-cohort

and when sampling from the individuals who experienced the event but were not selected in

the sub-cohort. Bernoulli sampling of the subcohort is another sampling scheme that can be

considered. In the proposed method, the indicator variables are correlated with each other

and the sub-cohort proportion is fixed, while in Bernoulli sampling scheme, the indicator

variables are independently distributed leading to the sub-cohort proportion being the target

value on the average. In our approach, we do not use all the covariate information that are

available for the entire cohort. There have been studies (Jiang and Zhou 2007) that have

examined the use of auxiliary covariates, available for all individuals, in the pseudo-score

equation for estimating the parameters in additive rates model. It can be of interest, for

future research, to extend the idea of using auxiliary variables to improve the efficiency of the

estimators in recurrent events data.
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CHAPTER 5: TWO-PHASE DESIGN SAMPLE SIZE AND POWER
CALCULATION FOR TESTING INTERACTION BETWEEN

TREATMENT AND EXPENSIVE BIOMARKER

5.1 Introduction

There is an increasing interest in discovering new biomarkers that can help predict the

best treatment for a patient in cancer trials. However, finding new biomarkers is often time-

consuming and costly, thus leading to the search for more efficient designs. In the new age

of cancer research, there are often large quantities of clinical data and specimen available for

further research after the randomized phase III trials are completed. Utilizing these already

collected clinical data as the first phase data and the available biospecimen in the second phase

of a two-phase design will shorten the discovery cycle. In the second phase, information from

the existing biospecimen, which can be expensive, can be collected. The sampling of the

second phase can utilize information that is already collected in the first phase, including the

patients’ disease status.

There have been extensive application of the two-phase design in epidemiologic cohort

studies. Applications in clinical trials have focused on the study of predictive biomarkers.

One of the most common schemes that is widely used is the case-cohort sampling design

(Prentice 1986). In this design, a simple random sample (sub-cohort) is selected from the

entire cohort along with all the subjects who experienced the event of interest (cases) during

the study period. The case-cohort design have been extensively studied in time to event

analysis (Prentice 1986, Lin and Ying 1993, Schouten et al. 1993, Barlow 1994, Liao et al.

1997, Barlow et al. 1999, Chen and Lo 1999, Savitz et al. 2000, Folsom et al. 2001, Chen 2001,

Kulich and Lin 2004, Kang and Cai 2009b). Prentice (1986) proposed a pseudo-likelihood

approach where the risk set at each failure consisted of only those subjects who were at risk

in the sub-cohort. Self and Prentice (1988) slightly modified the pseudo-likelihood approach
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where the risk set at each failure includes the cases outside the sub-cohort along with the

individuals in the sub-cohort. They also developed the asymptotic theory for the regression

parameters. Lin and Ying (1993), Borgan et al. (2000), Barlow (1994), among others proposed

different estimating equations and/or asymptotic variances for the parameters. There have

been some studies examining the sample size and power calculation in case-cohort studies.

Cai and Zeng (2004) provided an explicit procedure for calculating the sample size and power

of their proposed test when the event is rare and the main exposure effect is of interest. They

studied how much more power can be gained by using a case-cohort study instead of a simple

random sample. Hu et al. (2014) derived such results for the stratified case-cohort design.

They further studied the sample size and power for generalized case-cohort design (Cai and

Zeng 2007). The aforementioned sample size and power formula are designed for testing

main exposure effect. However, in studies of biomarker, the interaction between biomarker

and treatment are often of interest. For example, in the pooled analysis of LACE (Lung

Adjuvant Cisplatin Evaluation) and Cancer and Leukemia Group B (CALGB) 9633 databases

(Shepherd et al. 2013), one is interested in developing a two-phase design to study how the

effect of the KRAS-mutation on early stage resected non-small-cell lung cancer is different for

individuals on adjuvant chemotherapy and the individuals who are on observation.

In this article, we propose methods for computing sample size and power for case-cohort

studies when the event is rare and we are interested in assessing the interaction effect of an

expensive biomarker and the treatment. We propose the test and bounds in Section 5.2 and

investigate the finite sample properties by simulations in Section 5.3. In Section 5.4, we study

the cost efficiency of the case-cohort design and apply our method to design a two-phased

study based on information provided in LACE and CALGB 9633 databases. This example

is considered to elaborate how much power one can achieve in testing an interaction in a

case-cohort sampling scheme setting, for a particular sample size. Finally, in Section 5.5, we

conclude based on our findings.
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5.2 Methods

Assume that there are two biomarker groups (j = 0, 1) and two treatment groups (k = 0, 1)

with njk individuals in each group,
∑

j,k njk = n. Let T ∗i,jk be the potential failure time which

can be censored by the potential censoring time, Ci,jk, for individual i in treatment k group

and biomarker j group. Tijk = min(T ∗i,jk, Ci,jk) is the observed time to event for individual i,

(i = 1, . . . , n) in treatment k group and biomarker j group. Let ∆ijk = 1(T ∗i,jk ≤ Ci,jk) denote

the failure indicator variable, Xi and Ai denote the biomarker and treatment covariates,

respectively, for individual i. Let λj0(t) (j = 0, 1) denote the hazard function for biomarker

group, j, in treatment group, 0. We assume that the hazard rate for treatment group 1

satisfies: λj1(t) = eβjλj0(t), where βj is the unknown parameter for the effect of treatment

in the j-th biomarker group. We are interested in testing whether the treatment effects are

equal in the two biomarker groups, i.e., H0 : β1 = β0.

For the case-cohort design, we select a random sample of the full cohort, called the sub-

cohort, and all subjects who had the event. Let ξi,jk be the indicator that subject i of

treatment group k and biomarker group j is included in the sub-cohort. Define C̃ as the

set of sub-cohort data, nj and ñj are the full cohort and sub-cohort sample sizes for the

biomarker group j, respectively. The at-risk process is defined as Yijk(t) = 1(Tijk ≥ t),

πjk(x) = P (Ci,jk ≥ x | Xi = j, Ai = k), Sj(x) = P (T ∗i,jk > x | Ai = 0, Xi = j) for all

i, r0 = 1 − r1 = P (Xi = 0), p0 = P (Ai = 1 | Xi = 0) and p1 = P (Ai = 1 | Xi = 1).

Let Ỹjk(t) =
∑ñj

i=1 Yijk(t) denote the total number of subjects at risk in the sub-cohort for

biomarker j and treatment k and ψj as the sampling fraction for the subcohort of biomarker

group j. We have ψ̂j =
ñj
nj

, Ỹjk(t) = ψ̂j Ȳjk(t) where Ȳjk(t) =
∑nj

i=1 Yijk(t) is the risk set at

time t for biomarker j and treatment k.

5.2.1 Proposed Tests

With the case-cohort design, the usual log-rank test statistic or the corresponding test

based on the parameter estimate cannot be calculated since we do not have enough covariate
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information on all the individuals at the event times. The score function is given by:

Ũj(βj) =

nj1∑
i=1

Ỹj0(Tij1)∆ij1

Ỹj0(Tij1) + eβj Ỹj1(Tij1)
−

nj0∑
i=1

eβj Ỹj1(Tij0)∆ij0

Ỹj0(Tij0) + eβj Ỹj1(Tij0)
∀j = 0, 1 (5.1)

Denote the solution to Ũj(βj) = 0 by β̂j . The score function is same as that of the pseudo-

partial likelihood function given by Self and Prentice (1988). Further, we have the asymptotic

variance of the score function given by σ2
j+δj , where σ2

j =
´ 1

0

(
s(2)(βj ,t)s

(0)(βj ,t)−s(1)(βj ,t)⊗2

[s(0)(βj ,t)]

)
λj(t)

×dt and δj =
´ 1

0

´ 1
0 G(βj , x, w)s(0)(βj , x) s(0)(βj , w)λj(x)λj(w)dxdw, q(l)(βj , x, w) =

∑1
k=0 e

2kβj

×(1 − pj)1−kpkjπjk(x ∨ w)Sj(x ∨ w)e
kβj
kl ∀l = 0, 1 and 00 = 1, s(l)(βj , x) =

∑1
k=0 e

kβj (1 −

pj)
1−kpkjπjk(x) Sj(x)e

kβj
kl ∀l = 0, 1, 2, and h(k+l)(βj , x, w) = q(k+l)(βj , x, w)− s(k)(βj , w)

s(l)(βj , x)′ ∀l ≤ k = 0, 1. Since treatment is binary, q(1)(βj , x, w) = q(2)(βj , x, w) and

s(1)(βj , x) = s(2)(βj , x). G(βj , x, w) =
1−ψj
ψj

[{
s(0)(βj , x)s(0)(βj , w)

}−1
h(2)(βj , x, w)+{

s(0)(βj , x)s(0)(βj , w)
}−2

s(1)(βj , x)s(1)(βj , w) h(0)(βj , x, w)− s(0)(βj , x)−1s(0)(βj , w)−2

s(1)(βj , w)h(1)(βj , w, x)s(0)(βj , w)−1s(0)(βj , x)−2 −s(1)(βj , x)h(1)(βj , x, w)
]
. The first term of

the variance, σ2
j , corresponds to the variability in the cohort whereas δj is the variability due

to sampling of the subcohort from the entire cohort. The asymptotic variance terms for each

j can be estimated by σ̂2
j + δ̂j , where σ̂2

j can be approximated by

1

nj

nj0∑
i=1

e2β̂j Ỹj1(Tij0)2∆ij0(
Ỹj0(Tij0) + eβ̂j Ỹj1(Tij0)

)2 +

nj1∑
i=1

Ỹj0(Tij1)2∆ij1(
Ỹj0(Tij1) + eβ̂j Ỹj1(Tij1)

)2


and

δ̂j = 2
e2β̂j (1− ψ̂j)

nj

1∑
k,k′=0

nk∑
i=1

nk′∑
i′=1

 ∆ijk∆i′jk′1(Tijk′ ≤ Tijk)Ỹj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)2(
Ỹj0(Tijk′) + eβ̂j Ỹj1(Tijk′)

)2

×
(
Ỹj1(Tijk′) + Ỹj0(Tijk′)

)}
− e2β̂j (1− ψ̂j)

nj

1∑
k=0

nk∑
i=1

 ∆ijkỸj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)4

×
(
Ỹj1(Tijk) + Ỹj0(Tijk)

)}
.
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From Self and Prentice (1988), we have n1/2{β̂j − βj} converges to a Gaussian distribution

with mean 0 and variance r−1
j

(
σ−2
j + σ−4

j δj

)
for j = 0, 1 independently. Based on this

asymptotic result, we propose the following test statistic:

TSn = n1/2 {β̂1 − β̂0}√∑
j
n
nj

(
σ̂−2
j + σ̂−4

j δ̂j

) , (5.2)

Assuming
nj
n → rj ∈ (0, 1) as n→∞, TSn

D−→ N(0, 1) under H0 : β1−β0 = 0. Hence, for level

of significance, α, the rejection region of the test will be given by TSn > Z1−α, where Z1−α

is the 100(1 − α)th percentile of a standard normal distribution for H1 : β1 > β0. One can

note that under the alternative hypothesis H1 : β1 − β0 ≷ 0 the distribution of the statistic,

n1/2{(β̂1 − β̂0)− (β1 − β0)} is N
(

0,
∑

j r
−1
j (σ−2

j + σ−4
j δj)

)
.

5.2.2 Power Calculation

We have the following assumptions for sample size/power calculation:

(a) The censoring distributions are the same in the two treatment groups within each

biomarker group.

(b) The proportion of failures are small in the full cohort.

(c) We assume the distribution of the underlying time to be continuous and hence, no ties

of failures are observed.

We can approximate the ratio of the risk sets with the corresponding ratio of the probability

of surviving at the end of the study. Under these assumptions and considering the alternative

hypothesis H1 : β1 − β0 = θ > 0, θ = O(ñ−1/2) (where ñ =
∑

j ñj and ñj are of the same

order), the power of the test statistic TSn can be approximated by

Φ

√n (β1 − β0)


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

]
×
((

(1− pj)(1− pj0D ) + eβjpj(1− pj1D )
)2
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+

[
e2βj (1− ψj)(1− pj1D )(1− pj0D )

] (
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
e2βjpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

)


−1/2

− Z1−α

 . (5.3)

where α is the level of significance, pj1D = P (T ∗ij1 ≤ Cij1), pj0D = P (T ∗ij0 ≤ Cij0), j = 0, 1.

Define m∗j0 as the risk set for biomarker j and treatment 0 at the last event time. If we

assume that
pj1D
pj0D
≈ 1 and

m∗j0
nj
≈ (1 − pj)

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
, the power of the

test statistic can be written as

Φ

√n (β1 − β0)


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpjp

j0
D + (1− pj)pj1D

] × (((1− pj) + eβjpj

)2

+
e2βj (1− ψj)

(
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
e2βjpjp

j0
D + pj1D

)(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)


−1/2

− Z1−α

 . (5.4)

Assuming that the censoring variable is degenerate at τ with probability 1 − pC and the

approximation of the risk sets as
m∗j0
nj
≈ (1−pC)(1−pj)

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
and

m∗j1
nj
≈ (1− pC)pj

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
, the power of the test statistic is given by

Φ

√n (β1 − β0)


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpjp

j0
D + (1− pj)pj1D

] × (((1− pj) + eβjpj

)2

+
e2βj (1− ψj)

(
(1− pj)pj0D + pjp

j1
D

)2

(1− pC)ψj

(
e2βjpjp

j0
D + pj1D

)(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)


−1/2

− Z1−α

 . (5.5)

5.2.3 Sample Size formula

Based on the approximated power formula in the previous section, for a given power ϑ,

significance level α, the entire cohort size n, and the denominator of any of the power formula

((5.3), (5.4) and (5.5)), denoted as σden, to detect the ratio of the hazard ratio, exp(β1−β0),

for the treatment effect between the two biomarker groups, the required total cohort size is

(Zϑ + Z1−α)2 σ2
den

(β1 − β0)2
. (5.6)
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Specifically, based on power function, (5.3), the required sample size is

(Zϑ + Z1−α)2

(β1 − β0)2


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

] (((1− pj)

×(1− pj0D ) + eβjpj(1− pj1D )
)2

+

[
e2βj (1− ψj)(1− pj1D )(1− pj0D )

] (
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
e2βjpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

)



(5.7)

Similarly, based on formula (5.4)

(Zϑ + Z1−α)2

(β1 − β0)2


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpjp

j0
D + (1− pj)pj1D

] × (((1− pj) + eβjpj

)2

+
e2βj (1− ψj)

(
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
e2βjpjp

j0
D + pj1D

)(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)

 (5.8)

and based on (5.5) we have

(Zϑ + Z1−α)2

(β1 − β0)2


1∑
j=0

r−1
j

1

pj(1− pj)
[
e2βjpjp

j0
D + (1− pj)pj1D

] × (((1− pj) + eβjpj

)2

+
e2βj (1− ψj)

(
(1− pj)pj0D + pjp

j1
D

)2

(1− pC)ψj

(
e2βjpjp

j0
D + pj1D

)(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)

 (5.9)

For a particular proportion of biomarker rj and sub-cohort proportion ψj , the sample size

required for the sub-cohort is

ñj = n× rj × ψj ∀j = 0, 1.
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5.2.4 Bounds for the power formula

We consider the bounds for the power function. This also serves as a check for whether

the power lies within the bounds. The bounds for power are defined as

Φ

 √
n (β1 − β0)√∑1

j=0 r
−1
j

(
σ−2
j + σ−4

j δj,ub

) − Z1−α

 ≤ Power ≤ Φ

 √
n (β1 − β0)√∑1

j=0 r
−1
j

(
σ−2
j + σ−4

j δj,lb

) − Z1−α

 ,
(5.10)

where σ2
j ≈ (1− pj)pj

e2βj pj(1−pj1D )2pj0D+(1−pj)(1−pj0D )2pj1D(
(1−pj)(1−pj0D )+eβj pj(1−pj1D )

)2 ,

δ̂j,ub ≈ 2
e2β̂j (1−ψj)pj(1−pj)(1−pj1D )(1−pj0D )

njψj

(
(1−pj)(1−pj0D )+eβ̂j pj(1−pj1D )

)3

(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)
×
∑m

l=1

∑1
k=0

dlj−1/2(
{nj(1−pj)−lj,0+1}(1+eβ̂j

pj(1−p
j1
D

)

(1−pj)(1−p
j0
D

)
)

)1−k
1(

{njpj−lj,1+1}(eβ̂j+
(1−pj)(1−p

j0
D

)

pj(1−p
j1
D

)
)

)k ,

δ̂j,lb ≈ 2
e2β̂j (1−ψj)pj(1−pj)(1−pj1D )(1−pj0D )(pj(1−pj1D )+(1−pj)(1−pj0D ))

njψj

(
(1−pj)(1−pj0D )+eβ̂j pj(1−pj1D )

)3

×
∑m

l=1

∑1
k=0

dlj−1/2(
{nj(1−pj)−nj0C−Dj0}(1+eβ̂j

pj(1−p
j1
D

)

(1−pj)(1−p
j0
D

)
)

)1−k(
{njpj−nj1C−Dj1}(e

β̂j+
(1−pj)(1−p

j0
D

)

pj(1−p
j1
D

)
)

)k ,

where dlj is the risk set in the biomarker group j at the l-th index of the ordered failure

time and m is the total number of failures, njkC and Dj
k are the total number of censored

individuals in [0, τ) and number of deaths for biomarker j and treatment group k respectively.

5.3 Simulation Results

We conducted simulations to examine the finite sample properties of the formulae. The

empirical results based on the test statistic from the full-cohort and sub-cohort are also

reported. It should be noted that full cohort design is not possible when one considers the

case-cohort sampling scheme as information is not collected on individuals who are not in

the case-cohort. We have reported the simulation results to provide an upper bound. We

examined different scenarios to ascertain the performance of the proposed formula. In all the

situations, we assumed that the treatment is randomly assigned with probability 0.5. Different
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biomarker proportions (0.3, 0.5) are considered. We generated the censoring time from a

mixture distribution, with probability pC from uniform distribution in [0, τ ] and probability

(1 − pC) being degenerate at τ . For the simulations, we considered pC = 0.3, 0.2, 0.1. The

bound for the censoring distribution, τ , is calculated such that the censoring proportion for

the (0, 0) group of the (Biomarker, Treatment) combination (denoted by 1−p00
D ) is 95%, 90%

and 80%.

The effect of treatment is assumed to be multiplicative in all the cases. Table 5.1 show

that the Type I error of the test based on data from the Weibull distribution with hazard

given by λj1(t) = 2λjte
βj , t ∈ (0,∞), and λj0(t) = 2λjt, j = 0, 1 and pC = 0.2. Both the

biomarker proportions were considered for the simulations with λ0 = 1 and λ1 = 0.75, 1 and

1.25. The number of simulations was 20000. The Type I error is always very close to 0.05

(the nominal level) for each of the designs for all the situations considered which shows that

the proposed test is reliable.
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Table 5.1: Summary of Type I Error for Weibull (2) for β1 − β0 = 0.25 and 1− pC = 0.8)

Distribution Event prop. Biomarker prop. Full Cohort Case-Cohort Sub-cohort

(l0, l1) (p00
D ) r0

(1, 0.75) (0.05) 0.3 0.0517 0.0518 0.0422

0.5 0.0484 0.0501 0.0468

(0.1) 0.3 0.0492 0.0460 0.0501

0.5 0.0521 0.0494 0.0504

(0.2) 0.3 0.0505 0.0513 0.0507

0.5 0.0508 0.0495 0.049

(1, 1) (0.05) 0.3 0.0502 0.0501 0.0419

0.5 0.0493 0.0487 0.0406

(0.1) 0.3 0.0498 0.0477 0.0485

0.5 0.0486 0.0505 0.0484

(0.2) 0.3 0.0482 0.0486 0.0494

0.5 0.0485 0.0509 0.0474

(1, 1.25) (0.05) 0.3 0.0489 0.0473 0.036

0.5 0.0479 0.0490 0.0231

(0.1) 0.3 0.0493 0.0512 0.0502

0.5 0.0509 0.0509 0.0503

(0.2) 0.3 0.0486 0.0499 0.0508

0.5 0.0492 0.0503 0.0493

After confirming the performance of the empirical Type I error, we compared the empirical

and theoretical powers under different situations. Tables 5.5 - 5.10 show data from Weibull

distribution with hazard, λj0(t) = lλjt
l−1, t ∈ (0,∞) for treatment group 0 and λj1(t) =

lλjt
l−1eβj , t ∈ (0,∞), j = 0, 1, l = 2, 3 for treatment group 1. The sample size considered

was 4000. Tables 5.2 - 5.4 & 5.11 - 5.13 summarized the power for data from an exponential

distribution with hazards in one biomarker group = 1 and considering 0.75, 1 or 1.25 for the
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other group. For the power calculation, we considered 5000 simulations with 10% sub-cohort

sampling proportion. We considered β0 = 0.5 and β1 = 1 for Tables 5.2 - 5.10 and β0 = 0.5

and β1 = 0.75 for Tables 5.11 - 5.13 and P (Treatment = 1 | X = j) = 0.5 for illustration

purposes. We summarized the theoretical formula for the power by the following and reported

in the tables.

When the event rate is low (≤ 0.05) and the percentage of individuals censored at the end

of the study is < 90%, the power formula (5.3) and (5.4) overestimates the attainable power

whereas (5.5) under-estimates the empirical power slightly whereas when the percentage of

individuals censored is ≥ 90%, (5.3) works quite well. For event rate ∈ (0.05, 0.1], then for the

situation with pC = 0.3, we have (5.5), for pC = 0.2, we have (5.3) and finally, for pC = 0.1,

(5.4) was found to be closest to the empirical power. When the event rate is ∈ (0.1, 0.2],

(5.4) works well for pC < 0.3 whereas for pC = 0.3, (5.3) best estimates the power. Based on

these performances of the different theoretical power formulae with the empirical formulae,

we summarized our recommendations below :

Eqn(5.4) if 1− pC ≥ 0.9, p00
D ≥ 0.2 or if 0.8 ≤ 1− pC < 0.9, p00

D ≥ 0.2,

Eqn(5.3) if 1− pC ≥ 0.9, p00
D < 0.2 or if 0.8 ≤ 1− pC < 0.9, p00

D ≥ 0.1 or if 1− pC < 0.8, p00
D ≥ 0.2,

Eqn(5.5) if 0.8 ≤ 1− pC < 0.9, p00
D < 0.1 or if 1− pC < 0.8, p00

D < 0.2. (5.11)

The combined power formula (5.11) is more or less conservative for all the distributions

for all event rates. For Weibull distribution, when the hazard function is a cubic polynomial

and censoring degenerate probability (1 − pC) is 0.8, the formula slightly over-estimates the

empirical formula whereas for all the other scenarios, it is conservative. One can note that

there is a gain in using case-cohort design rather than only a sample of the subjects. For rare

event, the proposed formula works pretty well. Even though the event rate is quite low, we

have calculated the empirical bounds for the power function based on (5.10). The empirical

and theoretical powers for the case-cohort design almost always lie within the bounds.
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Table 5.2: Summary of Power Calculation for Exponential Distribution with β1 − β0 = 0.5 and 1− pC = 0.7

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.502 0.391 0.408/0.410/0.378 0.378 (0.367, 0.413) 0.129

0.5 0.571 0.45 0.453/0.456/0.420 0.420 (0.423, 0.474) 0.124

(0.1) 0.3 0.782 0.536 0.537/0.547/0.481 0.481 (0.467, 0.563) 0.211

0.5 0.848 0.599 0.593/0.607/0.537 0.537 (0.524, 0.612) 0.223

(0.2) 0.3 0.957 0.634 0.597/0.626/0.528 0.597 (0.492, 0.663) 0.324

0.5 0.980 0.683 0.656/0.693/0.590 0.656 (0.559, 0.716) 0.339

(1, 1) (0.05) 0.3 0.540 0.414 0.423/0.426/0.391 0.391 (0.38, 0.428) 0.142

0.5 0.612 0.490 0.480/0.485/0.444 0.444 (0.448, 0.499) 0.169

(0.1) 0.3 0.816 0.547 0.547/0.560/0.490 0.490 (0.465, 0.575) 0.29

0.5 0.885 0.617 0.618/0.630/0.553 0.553 (0.535, 0.638) 0.233

(0.2) 0.3 0.966 0.650 0.596/0.632/0.529 0.596 (0.483, 675) 0.348

0.5 0.989 0.707 0.652/0.702/0.591 0.652 (0.544, 0.724) 0.384

(1, 1.25) (0.05) 0.3 0.558 0.424 0.433/0.436/0.399 0.399 (0.391, 0.437) 0.152

0.5 0.649 0.49 0.499/0.505/0.460 0.460 (0.462, 0.517) 0.159

(0.1) 0.3 0.826 0.557 0.553/0.568/0.495 0.495 (0.472, 0.586) 0.228

0.5 0.905 0.619 0.620/0.644/0.561 0.561 (0.533, 0.662) 0.259
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(0.2) 0.3 0.972 0.639 0.590/0.633/0.527 0.590 (0.470, 0.679) 0.356

0.5 0.991 0.698 0.652/0.702/0.591 0.652 (0.521, 0.735) 0.392

Table 5.3: Summary of Power Calculation for Exponential Distribution with β1 − β0 = 0.5 and 1− pC = 0.8

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.519 0.404 0.418/0.421/0.400 0.400 (0.388, 0.419) 0.134

0.5 0.598 0.459 0.464/0.467/0.444 0.444 (0.446, 0.481) 0.131

(0.1) 0.3 0.798 0.551 0.545/0.555/0.512 0.545 (0.501, 0.572) 0.223

0.5 0.864 0.622 0.602/0.616/0.570 0.602 (0.565, 0.63) 0.242

(0.2) 0.3 0.958 0.633 0.597/0.626/0.561 0.626 (0.539, 0.674) 0.336

0.5 0.981 0.693 0.655/0.694/0.625 0.694 (0.604, 0.721) 0.353

(1, 1) (0.05) 0.3 0.569 0.436 0.433/0.437/0.413 0.413 (0.404, 0.439) 0.148

0.5 0.634 0.492 0.491/0.497/0.470 0.470 (0.472, 0.508) 0.169

(0.1) 0.3 0.836 0.57 0.554/0.568/0.522 0.554 (0.507, 0.585) 0.23

0.5 0.901 0.639 0.618/0.638/0.587 0.618 (0.571, 0.655) 0.239

(0.2) 0.3 0.967 0.643 0.594/0.631/0.563 0.631 (0.535, 0.679) 0.323

0.5 0.990 0.724 0.650/0.702/0.627 0.702 (0.593, 0.736) 0.371

(1, 1.25) (0.05) 0.3 0.564 0.435 0.443/0.447/0.422 0.422 (0.411, 0.451) 0.157

0.5 0.675 0.513 0.510/0.517/0.487 0.487 (0.488, 0.529) 0.180
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(0.1) 0.3 0.845 0.57 0.559/0.576/0.527 0.559 (0.509, 0.595) 0.243

0.5 0.915 0.650 0.625/0.651/0.596 0.625 (0.577, 0.67) 0.277

(0.2) 0.3 0.972 0.643 0.588/0.633/0.561 0.633 (0.526, 0.685) 0.343

0.5 0.992 0.721 0.640/0.705/0.624 0.705 (0.573, 0.748) 0.422

Table 5.4: Summary of Power Calculation for Exponential Distribution with β1 − β0 = 0.5 and 1− pC = 0.9

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.538 0.416 0.428/0.431/0.420 0.428 (0.412, 0.431) 0.145

0.5 0.613 0.483 0.475/0.479/0.467 0.475 (0.469, 0.489) 0.135

(0.1) 0.3 0.790 0.549 0.540/0.551/0.530 0.551 (0.518, 0.562) 0.217

0.5 0.858 0.619 0.597/0.611/0.588 0.611 (0.576, 0.622) 0.224

(0.2) 0.3 0.963 0.649 0.596/0.627/0.592 0.627 (0.579, 0.672) 0.327

0.5 0.980 0.706 0.654/0.694/0.656 0.694 (0.630, 0.726) 0.359

(1, 1) (0.05) 0.3 0.579 0.446 0.443/0.447/0.435 0.443 (0.429, 0.449) 0.148

0.5 0.653 0.514 0.502/0.508/0.494 0.502 (0.497, 0.518) 0.168

(0.1) 0.3 0.825 0.572 0.550/0.563/0.541 0.563 (0.527, 0.576) 0.231

0.5 0.893 0.630 0.611/0.633/0.607 0.633 (0.592, 0.636) 0.249

(0.2) 0.3 0.969 0.659 0.593/0.631/0.593 0.631 (0.577, 0.680) 0.348
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0.5 0.993 0.720 0.649/0.702/0.659 0.702 (0.623, 0.739) 0.386

(1, 1.25) (0.05) 0.3 0.589 0.449 0.453/0.457/0.445 0.453 (0.435, 0.456) 0.164

0.5 0.692 0.521 0.520/0.528/0.512 0.520 (0.509, 0.536) 0.173

(0.1) 0.3 0.841 0.572 0.555/0.571/0.547 0.571 (0.53, 0.585) 0.235

0.5 0.908 0.648 0.622/0.647/0.618 0.647 (0.598, 0.654) 0.259

(0.2) 0.3 0.974 0.656 0.587/0.633/0.592 0.633 (0.568, 0.686) 0.351

0.5 0.994 0.730 0.637/0.704/0.656 0.704 (0.614, 0.746) 0.413

Table 5.5: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.5 and 1− pC = 0.7

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.559 0.414 0.434/0.437/0.399 0.399 (0.388, 0.445) 0.149

0.5 0.621 0.469 0.481/0.485/0.445 0.445 (0.433, 0.488) 0.141

(0.1) 0.3 0.794 0.539 0.543/0.553/0.486 0.486 (0.475, 0.574) 0.221

0.5 0.852 0.601 0.599/0.613/0.541 0.541 (0.515, 0.616) 0.221

(0.2) 0.3 0.964 0.607 0.6/0.63/0.53 0.6 (0.477, 0.671) 0.329

0.5 0.983 0.681 0.658/0.698/0.593 0.658 (0.533, 0.710) 0.370

(1, 1) (0.05) 0.3 0.597 0.438 0.449/0.453/0.412 0.412 (0.405, 0.459) 0.159

0.5 0.672 0.497 0.508/0.514/0.467 0.467 (0.446, 0.510) 0.171

(0.1) 0.3 0.822 0.525 0.553/0.566/0.495 0.495 (0.479, 0.592) 0.227
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0.5 0.891 0.611 0.617/0.637/0.558 0.558 (0.533, 0.637) 0.251

(0.2) 0.3 0.969 0.619 0.598/0.635/0.531 0.598 (0.470, 0.677) 0.353

0.5 0.990 0.687 0.655/0.707/0.594 0.655 (0.520, 0.722) 0.392

(1, 1.25) (0.05) 0.3 0.623 0.450 0.458/0.463/0.419 0.419 (0.406, 0.466) 0.165

0.5 0.705 0.526 0.526/0.534/0.482 0.482 (0.456, 0.528) 0.183

(0.1) 0.3 0.826 0.547 0.557/0.499 0.499 (0.482, 0.595) 0.227

0.5 0.907 0.616 0.625/0.649/0.565 0.565 (0.530, 0.650) 0.270

(0.2) 0.3 0.978 0.621 0.592/0.637/0.529 0.592 (0.456, 0.682) 0.345

0.5 0.993 0.681 0.645/0.71/0.591 0.645 (0.496, 0.737) 0.409

Table 5.6: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.5 and 1− pC = 0.8

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.560 0.422 0.427/0.43/0.408 0.408 (0.406, 0.438) 0.151

0.5 0.608 0.47 0.474/0.478/0.453 0.453 (0.443, 0.475) 0.153

(0.1) 0.3 0.818 0.559 0.55/0.561/0.517 0.55 (0.506, 0.577) 0.225

0.5 0.865 0.625 0.606/0.622/0.574 0.606 (0.555, 0.630) 0.240

(0.2) 0.3 0.967 0.623 0.598/0.629/0.563 0.629 (0.531, 0.674) 0.328

0.5 0.984 0.691 0.656/0.697/0.627 0.697 (0.584, 0.719) 0.367

(1, 1) (0.05) 0.3 0.577 0.436 0.442/0.446/0.422 0.422 (0.412, 0.449) 0.154
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0.5 0.65 0.490 0.501/0.507/0.479 0.479 (0.467, 0.500) 0.17

(0.1) 0.3 0.830 0.553 0.559/0.573/0.526 0.559 (0.517, 0.589) 0.235

0.5 0.899 0.615 0.623/0.644/0.592 0.623 (0.564, 0.646) 0.251

(0.2) 0.3 0.975 0.647 0.596/0.634/0.565 0.634 (0.526, 0.679) 0.360

0.5 0.989 0.702 0.651/0.705/0.63 0.705 (0.575, 0.732) 0.396

(1, 1.25) (0.05) 0.3 0.605 0.454 0.452/0.456/0.43 0.43 (0.420, 0.454) 0.165

0.5 0.693 0.523 0.519/0.527/0.496 0.496 (0.475, 0.517) 0.183

(0.1) 0.3 0.849 0.557 0.562/0.58/0.531 0.562 (0.518, 0.597) 0.244

0.5 0.923 0.640 0.629/0.656/0.6 0.629 (0.571, 0.66) 0.277

(0.2) 0.3 0.979 0.634 0.589/0.635/0.563 0.635 (0.514, 0.687) 0.348

0.5 0.995 0.701 0.641/0.707/0.626 (0.553, 0.736) 0.420

Table 5.7: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.5 and 1− pC = 0.9

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.586 0.449 0.441/0.444/0.432 0.441 (0.434, 0.457) 0.160

0.5 0.640 0.490 0.489/0.493/0.48 0.489 (0.475, 0.497) 0.155

(0.1) 0.3 0.802 0.562 0.545/0.555/0.534 0.555 (0.525, 0.573) 0.216

0.5 0.862 0.626 0.601/0.615/0.592 0.615 (0.577, 0.623) 0.235

(0.2) 0.3 0.972 0.658 0.597/0.63/0.594 0.63 (0.565, 0.669) 0.336

87



0.5 0.989 0.703 0.654/0.698/0.658 0.698 (0.631, 0.728) 0.377

(1, 1) (0.05) 0.3 0.600 0.457 0.456/0.46/0.447 0.456 (0.446, 0.467) 0.155

0.5 0.681 0.515 0.516/0.522/0.507 0.516 (0.501, 0.524) 0.171

(0.1) 0.3 0.828 0.564 0.554/0.568/0.545 0.568 (0.536, 0.586) 0.224

0.5 0.900 0.634 0.618/0.638/0.612 0.638 (0.592, 0.645) 0.259

(0.2) 0.3 0.982 0.656 0.593/0.634/0.595 0.634 (0.563, 0.674) 0.368

0.5 0.991 0.719 0.647/0.705/0.66 0.705 (0.616, 0.736) 0.408

(1, 1.25) (0.05) 0.3 0.635 0.476 0.465/0.47/0.456 0.465 (0.451, 0.478) 0.158

0.5 0.720 0.543 0.533/0.541/0.525 0.533 (0.51, 0.537) 0.186

(0.1) 0.3 0.836 0.568 0.558/0.575/0.55 0.575 (0.540, 0.595) 0.242

0.5 0.915 0.648 0.625/0.651/0.621 0.651 (0.601, 0.655) 0.270

(0.2) 0.3 0.983 0.662 0.585/0.634/0.59 0.634 (0.553, 0.676) 0.373

0.5 0.997 0.722 0.634/0.705/0.656 0.705 (0.605, 0.745) 0.427

Table 5.8: Summary of Power Calculation for Weibull(3) Distribution with β1 − β0 = 0.5 and 1− pC = 0.7

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.549 0.406 0.431/0.434/0.397 0.397 (0.391, 0.446) 0.145

0.5 0.620 0.465 0.479/0.483/0.442 0.442 (0.431, 0.485) 0.138

(0.1) 0.3 0.780 0.527 0.538/0.548/0.482 0.482 (0.472, 0.567) 0.217
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0.5 0.842 0.589 0.594/0.607/0.537 0.537 (0.513, 0.608) 0.215

(0.2) 0.3 0.964 0.589 0.6/0.63/0.531 0.6 (0.48, 0.665) 0.328

0.5 0.982 0.667 0.659/0.698/0.594 0.659 (0.536, 0.709) 0.364

(1, 1) (0.05) 0.3 0.587 0.434 0.45/0.454/0.413 0.413 (0.397, 0.456) 0.159

0.5 0.664 0.488 0.506/0.512/0.465 0.465 (0.447, 0.509) 0.173

(0.1) 0.3 0.808 0.516 0.552/0.566/0.494 0.494 (0.477, 0.582) 0.217

0.5 0.882 0.592 0.613/0.631/0.554 0.554 (0.528, 0.629) 0.249

(0.2) 0.3 0.97 0.603 0.599/0.505/0.532 0.599 (0.469, 0.676) 0.348

0.5 0.989 0.675 0.657/0.708/0.597 0.657 (0.516, 0.719) 0.391

(1, 1.25) (0.05) 0.3 0.612 0.444 0.456/0.46/0.418 0.418 (0.402, 0.464) 0.166

0.5 0.701 0.520 0.524/0.531/0.48 0.48 (0.455, 0.528) 0.186

(0.1) 0.3 0.813 0.532 0.553/0.568/0.496 0.496 (0.481, 0.589) 0.223

0.5 0.898 0.601 0.621/0.645/0.563 0.563 (0.522, 0.644) 0.259

(0.2) 0.3 0.977 0.605 0.594/0.638/0.531 0.594 (0.454, 0.680) 0.341

0.5 0.993 0.666 0.649/0.712/0.594 0.649 (0.491, 0.729) 0.405

Table 5.9: Summary of Power Calculation for Weibull(3) Distribution with β1 − β0 = 0.5 and 1− pC = 0.8

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.574 0.430 0.435/0.438/0.415 0.415 (0.406, 0.447) 0.157

89



0.5 0.626 0.485 0.483/0.487/0.461 0.461 (0.453, 0.488) 0.152

(0.1) 0.3 0.801 0.54 0.543/0.553/0.511 0.543 (0.492, 0.564) 0.215

0.5 0.852 0.611 0.599/0.613/0.567 0.599 (0.546, 0.615) 0.232

(0.2) 0.3 0.959 0.613 0.598/0.627/0.563 0.627 (0.528, 0.667) 0.318

0.5 0.98 0.676 0.656/0.694/0.626 0.694 (0.584, 0.709) 0.347

(1, 1) (0.05) 0.3 0.596 0.441 0.45/0.454/0.429 0.429 (0.414, 0.457) 0.152

0.5 0.666 0.499 0.51/0.516/0.486 0.486 (0.47, 0.510) 0.172

(0.1) 0.3 0.819 0.539 0.552/0.566/0.52 0.552 (0.505, 0.577) 0.228

0.5 0.887 0.603 0.617/0.636/0.586 0.617 (0.559, 0.635) 0.245

(0.2) 0.3 0.969 0.634 0.597/0.632/0.565 0.632 (0.526, 0.677) 0.345

0.5 0.986 0.692 0.654/0.704/0.63 0.704 (0.577, 0.721) 0.378

(1, 1.25) (0.05) 0.3 0.626 0.462 0.459/0.464/0.437 0.437 (0.427, 0.466) 0.169

0.5 0.711 0.532 0.528/0.536/0.503 0.503 (0.481, 0.529) 0.192

(0.1) 0.3 0.831 0.550 0.557/0.573/0.525 0.557 (0.509, 0.580) 0.229

0.5 0.912 0.630 0.624/0.649/0.595 0.624 (0.564, 0.652) 0.270

(0.2) 0.3 0.972 0.622 0.591/0.634/0.564 0.634 (0.514, 0.679) 0.333

0.5 0.994 0.693 0.645/0.707/0.629 0.707 (0.559, 0.730) 0.408

Table 5.10: Summary of Power Calculation for Weibull(3) Distribution with β1 − β0 = 0.5 and 1− pC = 0.9

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort
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(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.561 0.436 0.43/0.433/0.422 0.43 (0.424, 0.445) 0.157

0.5 0.622 0.478 0.477/0.481/0.469 0.477 (0.463, 0.482) 0.148

(0.1) 0.3 0.808 0.559 0.546/0.557/0.535 0.557 (0.525, 0.574) 0.219

0.5 0.862 0.624 0.602/0.617/0.593 0.582 (0.582, 0.627) 0.233

(0.2) 0.3 0.972 0.653 0.598/0.63/0.594 0.63 (0.563, 0.666) 0.333

0.5 0.988 0.698 0.655/0.697/0.658 0.697 (0.628, 0.730) 0.375

(1, 1) (0.05) 0.3 0.582 0.447 0.447/0.451/0.438 0.447 (0.437, 0.460) 0.145

0.5 0.657 0.502 0.504/0.51/0.496 0.504 (0.488, 0.509) 0.161

(0.1) 0.3 0.832 0.562 0.549/0.561/0.539 0.561 (0.535, 0.584) 0.224

0.5 0.899 0.631 0.619/0.64/0.597/0.613 0.64 (0.590, 0.646) 0.256

(0.2) 0.3 0.980 0.652 0.594/0.634/0.595 0.634 (0.559, 0.672) 0.366

0.5 0.991 0.715 0.648/0.705/0.661 0.705 (0.614, 0.737) 0.407

(1, 1.25) (0.05) 0.3 0.615 0.463 0.454/0.459/0.446 0.454 (0.447, 0.467) 0.156

0.5 0.698 0.535 0.522/0.53/0.514 0.522 (0.502, 0.530) 0.185

(0.1) 0.3 0.838 0.567 0.559/0.576/0.551 0.576 (0.538, 0.595) 0.241

0.5 0.916 0.646 0.626/0.652/0.622 0.652 (0.601, 0.658) 0.278

(0.2) 0.3 0.982 0.660 0.586/0.635/0.593 0.635 (0.550, 0.673) 0.371

0.5 0.996 0.717 0.636/0.706/0.657 0.706 (0.604, 0.745) 0.424
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Table 5.11: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.25 and 1− pC = 0.7

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.231 0.171 0.181/0.182/0.169 0.169 (0.166, 0.198) 0.086

0.5 0.251 0.188 0.196/0.197/0.184 0.184 (0.165, 0.200) 0.078

(0.1) 0.3 0.340 0.223 0.22/0.223/0.199 0.199 (0.181, 0.248) 0.111

0.5 0.388 0.246 0.242/0.245/0.219 0.219 (0.189, 0.257) 0.107

(0.2) 0.3 0.530 0.248 0.245/0.254/0.216 0.245 (0.168, 0.299) 0.149

0.5 0.592 0.278 0.271/0.283/0.239 0.271 (0.186, 0.319) 0.164

(1, 1) (0.05) 0.3 0.240 0.180 0.187/0.188/0.174 0.174 (0.168, 0.206) 0.091

0.5 0.270 0.199 0.207/0.208/0.192 0.192 (0.172, 0.215) 0.095

(0.1) 0.3 0.362 0.219 0.225/0.228/0.203 0.203 (0.179, 0.258) 0.12

0.5 0.402 0.243 0.251/0.255/0.225 0.225 (0.191, 0.267) 0.119

(0.2) 0.3 0.568 0.251 0.245/0.256/0.216 0.245 (0.164, 0.305) 0.154

0.5 0.618 0.279 0.272/0.287/0.24 0.272 (0.174, 0.324) 0.176

(1, 1.25) (0.05) 0.3 0.249 0.192 0.19/0.191/0.177 0.177 (0.171, 0.21) 0.093

0.5 0.290 0.222 0.214/0.215/0.198 0.198 (0.181, 0.222) 0.100

(0.1) 0.3 0.361 0.214 0.227/0.231/0.204 0.204 (0.181, 0.263) 0.111

0.5 0.441 0.257 0.255/0.261/0.228 0.228 (0.188, 0.284) 0.127
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(0.2) 0.3 0.572 0.262 0.244/0.256/0.215 0.244 (0.154, 0.308) 0.156

0.5 0.657 0.289 0.27/0.288/0.239 0.27 (0.166, 0.328) 0.175

Table 5.12: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.25 and 1− pC = 0.8

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.249 0.189 0.186/0.187/0.179 0.179 (0.181, 0.205) 0.095

0.5 0.261 0.195 0.202/0.203/0.194 0.194 (0.173, 0.198) 0.09

(0.1) 0.3 0.366 0.23 0.225/0.228/0.211 0.225 (0.197, 0.249) 0.113

0.5 0.410 0.255 0.247/0.251/0.232 0.247 (0.206, 0.256) 0.113

(0.2) 0.3 0.556 0.261 0.245/0.255/0.229 0.255 (0.185, 0.295) 0.153

0.5 0.615 0.284 0.272/0.284/0.254 0.284 (0.21, 0.321) 0.159

(1, 1) (0.05) 0.3 0.257 0.193 0.192/0.193/0.184 0.184 (0.185, 0.211) 0.095

0.5 0.284 0.207 0.212/0.214/0.203 0.203 (0.187, 0.216) 0.1

(0.1) 0.3 0.380 0.221 0.229/0.233/0.215 0.229 (0.2, 0.257) 0.126

0.5 0.423 0.244 0.255/0.26/0.239 0.255 (0.207, 0.271) 0.122

(0.2) 0.3 0.594 0.272 0.245/0.256/0.229 0.256 (0.182, 0.295) 0.165

0.5 0.644 0.292 0.271/0.287/0.255 0.287 (0.200, 0.331) 0.180

(1, 1.25) (0.05) 0.3 0.265 0.195 0.195/0.196/0.187 0.187 (0.185, 0.214) 0.1

0.5 0.302 0.227 0.219/0.221/0.209 0.209 (0.189, 0.222) 0.109
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(0.1) 0.3 0.388 0.230 0.231/0.235/0.217 0.231 (0.196, 0.260) 0.121

0.5 0.455 0.272 0.259/0.265/0.243 (0.213, 0.279) 0.132

(0.2) 0.3 0.597 0.269 0.243/0.256/0.228 0.256 (0.174, 0.300) 0.149

0.5 0.686 0.291 0.268/0.287/0.253 0.287 (0.187, 0.334) 0.182

Table 5.13: Summary of Power Calculation for Weibull(2) Distribution with β1 − β0 = 0.25 and 1− pC = 0.9

Distribution Event prop. Biom. prop. Full Cohort Case-Cohort Sub-cohort

(λ0, λ1) (p00
D ) r0 Empirical Empirical Theoretical Final Bounds Empirical

(1, 0.75) (0.05) 0.3 0.258 0.202 0.191/0.192/0.187 0.191 (0.188, 0.202) 0.100

0.5 0.270 0.204 0.207/0.209/0.204 0.207 (0.191, 0.208) 0.093

(0.1) 0.3 0.378 0.231 0.228/0.232/0.223 0.232 (0.216, 0.255) 0.120

0.5 0.435 0.261 0.251/0.255/0.245 0.255 (0.225, 0.265) 0.116

(0.2) 0.3 0.574 0.269 0.245/0.255/0.241 0.255 (0.212, 0.305) 0.158

0.5 0.653 0.300 0.271/0.285/0.268 0.285 (0.234, 0.334) 0.171

(1, 1) (0.05) 0.3 0.268 0.200 0.196/0.197/0.193 0.196 (0.19, 0.207) 0.091

0.5 0.296 0.218 0.218/0.219/0.214 0.218 (0.201, 0.221) 0.094

(0.1) 0.3 0.411 0.228 0.232/0.236/0.227 0.236 (0.218, 0.262) 0.120

0.5 0.450 0.26 0.258/0.264/0.253 0.264 (0.236, 0.283) 0.123

(0.2) 0.3 0.622 0.279 0.244/0.256/0.241 0.256 (0.211, 0.309) 0.165
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0.5 0.668 0.302 0.269/0.287/0.268 0.287 (0.226, 0.338) 0.178

(1, 1.25) (0.05) 0.3 0.280 0.201 0.2/0.201/0.196 0.2 (0.195, 0.213) 0.096

0.5 0.311 0.236 0.224/0.227/0.22 0.224 (0.204, 0.228) 0.109

(0.1) 0.3 0.407 0.237 0.234/0.239/0.229 0.239 (0.223, 0.268) 0.130

0.5 0.480 0.278 0.261/0.269/0.257 0.269 (0.234, 0.293) 0.137

(0.2) 0.3 0.618 0.268 0.241/0.256/0.239 0.256 (0.204, 0.315) 0.167

0.5 0.712 0.310 0.265/0.286/0.266 0.286 (0.214, 0.346) 0.190
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In order to check how the formulae performs, we calculated the sample size formula based

on (5.6) for 80% power and pC = 0.15. We have considered β1 = 1 and β0 = 0.5 and P (A =

1 | X = j) = 0.5. Using the computed sample size, simulations were performed to get the

empirical powers. The number of simulations considered were 2500. Table (5.14) summarizes

the cohort size and empirical power that can be attained based on a theoretical power of

80% under various scenarios. We considered both exponential and Weibull(2) distributions

to illustrate which formula (5.3, 5.4 and 5.5) results in a smaller cohort size for different

sampling fractions without loss in power. It was found that for different scenarios, different

sample size performed well. When the event and biomarker proportions are really low (5%),

(5.5) is the only one that works well. When either one of the proportions improve, the other

formulas (5.3 and 5.4) start producing better results. If one wants to be conservative, (5.9)

is recommended.
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Table 5.14: Summary of Sample Size and Empirical Power for Theoretical Power = 80%

Event Biomarker Subcohort Exponential Weibull(2)

prop.(p00
D ) prop. prop. n Empirical Power n Empirical Power

0.05 0.3 0.1 11940/11778/12617 0.7968/0.7828/0.8 11939/11776/12616 0.7932/0.7932/0.8192

0.2 9356/9284/9657 0.7888/0.7944/0.8088 9357/9284/9657 0.7908/0.7916/0.8048

0.4 0.1 10375/10207/10949 0.8108/0.7736/0.8244 10374/10205/10947 0.804/0.794/0.808

0.2 8101/8026/8356 0.798/0.8008/0.804 8102/8027/8356 0.8036/0.7876/0.808

0.5 0.1 9891/9704/10423 0.8016/0.7828/0.8224 9889/9702/10421 0.802/0.7908/0.816

0.2 7695/7612/7932 0.7956/0.7984/0.814 7696/7612/7932 0.8056/0.8008/0.7988

0.1 0.3 0.1 8797/8440/9385 0.818/0.8032/0.8344 8791/8435/9378 0.8032/0.7884/0.82

0.2 5951/5792/6212 0.816/0.8164/0.8292 5950/5791/6210 0.8064/0.8/0.8192

0.4 0.1 7703/7332/8175 0.8244/0.8032/0.8376 7696/7326/8167 0.8148/0.7816/0.832

0.2 5184/5019/5393 0.7916/0.8168/0.8188 5182/5017/5391 0.8016/0.784/0.8244

0.5 0.1 7399/6987/7812 0.814/0.806/0.8416 7392/6981/7803 0.8192/0.7964/0.8396

0.2 4953/4770/5137 0.8144/0.796/0.8168 4951/4768/5134 0.7976/0.8032/0.8268

0.2 0.3 0.1 8151/7290/8502 0.8504/0.8228/0.8708 8126/7272/8476 0.842/0.8144/0.8476

0.2 4660/4277/4816 0.8424/0.8236/0.8548 4650/4271/4806 0.8376/0.8252/0.8412

0.4 0.1 7236/6339/7438 0.8536/0.8156/0.8772 7209/6321/7412 0.8436/0.8108/0.852

0.2 4111/3713/4201 0.8456/0.8112/0.8412 4101/3706/4190 0.8436/0.808/0.838
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0.5 0.1 7046/6048/7140 0.8556/0.816/0.864 7016/6028/7110 0.864/0.79/0.8628

0.2 3979/3536/4021 0.8496/0.8004/0.8508 3967/3528/4009 0.8308/0.796/0.8444
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5.4 Practical Application

5.4.1 Cost Efficiency of Case-Cohort Design

In practice, one might be interested in the comparison of the cost efficiency of the test

based on the case-cohort sampling scheme and a random sample from the entire cohort,

assuming that the biomarker proportions (r0, r1), treatment proportion in each biomarker

group (p0, p1), the failure proportion in the four groups (pj0D , p
j1
D , j = 0, 1) and the log-hazard

of interest (abs{β1 − β0}) are constant. The cost efficiency is measured as the ratio of the

sample sizes required in the two sampling schemes to attain the same power ϑ. Note that from

(5.2), the corresponding test for a simple random sample design is ˜TSn =
√
n∗{β̂1−β̂0}√∑

j
1
rj
σ̂j

where

σ̂2
j = 1

n∗j

[∑n∗j0
i=1

e2β̂jW (Ti,j0)Ỹj1(Ti,j0)2∆i,j0(
Ỹj0(Ti,j0)+eβ̂j Ỹj1(Ti,j0)

)2 +
∑n∗j1

i=1
W (Ti,j1)Ỹj0(Ti,j1)2∆i,j1(
Ỹj0(Ti,j1)+eβ̂j Ỹj1(Ti,j1)

)2
]

,
n∗j
n∗ → rj . Using

approximations similar to those for the case-cohort power calculation, the following is the

power function for simple random sample.

Φ

√n∗ (β1 − β0)


1∑
j=0

r−1
j

pj(1− pj)
[
e2βjpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

]
(

(1− pj)(1− pj0D ) + eβjpj(1− pj1D )
)2


1/2

− Z1−α

 .
(5.12)

Under the assumption that
pj1D
pj0D
≈ 1 and

m∗j0
nj
≈ (1− pj)

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
, the

power function for the simple random sample is

Φ

√n∗ (β1 − β0)


1∑
j=0

r−1
j

pj(1− pj)
[
e2βjpjp

j0
D + (1− pj)pj1D

]
(
(1− pj) + eβjpj

)2


1/2

− Z1−α

 . (5.13)

Note that since (5.5) was based on an approximation of δ̂j (see Appendix), it is not reflected

in the power formula based on only the sub-cohort. Denoting the denominator of ˜TSn for

SRS by σdenSRS , we have the SRS sample size as n∗SRS =
(Zϑ+Z1−α)2×σ2

denSRS
(β1−β0)2

. The sample

size for the case-cohort design is n∗CC (5.6) Hence, the ratio of the two is given by R =
σ2

denSRS
ψσ2

den
∑1
j=0

[
rj

{
1+( 1−ψ

ψ
)(pjpj1D+(1−pj)pj0D )

}] for fixed total cohort size n and assuming that the

99



0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Sampling Proportion

C
os

t E
ffi

ci
en

cy Event Prop.

pD{00} = 0.05

pD{00} = 0.1

pD{00} = 0.2

Figure 5.1: The Cost-Efficiency Curve of the Case-Cohort Design

sub-cohort proportion , ψj is the same in the two biomarker groups. When R > 1, then

the case-cohort design is more cost-effective than the SRS. We used (5.9) for the sample size

required for the case-cohort design because it corresponds to the most conservative power

formula for the case-cohort design and the (5.13) for the simple random sample design which

is the most liberal formula for the simple random sample design. We plotted the corresponding

cost efficiency curve of the case-cohort design for different sub-cohort proportions and different

event proportions. We considered β0 = 0.5, β1 = 1, pj = rj = 0.5, p00
D = p10

D , p11
D − p10

D = 0.5

and p01
D − p00

D = 0.25. From figure 5.1, it can be noted that the cost efficiency of the case-

cohort study is always greater than the simple random sample design. For p00
D = 0.05, the cost

efficiency curve reaches its maximum of 3.85 at around 10% sub-cohort proportion which is

higher than that achieved when p00
D = 0.1 or 0.2. The cost efficiency curve increases, reaches a

maximum and then tapers down to 1 as the sub-cohort proportion reaches 1 for all the event

proportions considered.

5.4.2 Real Data Analysis

For illustration purposes, we used information from Lung Adjuvant Cisplatin Evaluation

(LACE) and Cancer and Leukemia Group B (CALGB) 9633 databases (Shepherd et al. 2013)

to design a two-stage study. The goal of the study is to examine whether the effect of
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adjuvant chemotherapy (ACT) with cisplatin/vinorelbine vs. Observation on early stage

resected non-small-cell lung cancer is different for those who have KRAS-wild-type and those

who have KRAS-mutated gene. There are 1543 individuals in the study, of which 780 are on

adjuvant chemotherapy (ACT) with cisplatin/vinorelbine and 763 are on observation (OBS)

alone. Data on the interaction effect of KRAS-mutation and treatment was available on

1422 patients as they had second primary cancer 1146 (80.6%) patients had KRAS-wild-type

biomarker whereas 276 (19.4%) patients had KRAS-mutated biomarker. In the KRAS-wild-

type biomarker group, 581 (50.7%) patient were in the ACT arm and 565 (49.3%) patients

were in the OBS arm. Similarly, 143 (51.8%) patients are in the ACT arm and 133 (48.2%)

are in the OBS arm. Further, the proportion of events (second primaries) in the KRAS-

wild-type biomarker group and OBS arm, p00
D = 0.044, that in the KRAS-wild-type group

and ACT arm, p01
D = 0.065, KRAS-mutated group and OBS arm, p10

D = 0.098 and KRAS-

mutated group and ACT arm, p11
D = 0.035. Based on the power formula (5.11) and the

corresponding sample size formula (5.6), with a significance level of 0.05 and power of 80%,

we were not able to calculate a subcohort sample size to detect a hazard ratio of 0.25, which

is based on the interaction term of KRAS and treatment variable in Shepherd et al. (2013).

We also considered exp(β̂1) = 0.32 from the paper. For the above parameters, for power 60%,

70% and 75%, the subcohort sample sizes are 143, 347 and 837 respectively, using the most

conservative power formula (5.5). However, to attain 80% power for sub-cohort proportions

0.1 and 0.2, the required cohort sizes are 2441 and 1956 respectively.

5.5 Discussion

We have considered a log-rank type test statistic for testing the interaction between the

expensive biomarker and treatment for data from a two-stage study design. Explicit formulas

are obtained for the calculation of power and sample size and their performances are examined

for data from different distributions. When the incidence of disease is low, the simulation

studies show that the two-stage design produces fairly high power, compared to that based

on the full cohort. We have also demonstrated that the two-stage design is more cost efficient

than the simple random sampling scheme when the sub-cohort proportion is low and it tapers
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to being equal when the sub-cohort proportion tends to one. These formula can be used for

designing case-cohort studies as well.

The three power formulas that were derived based on different approximations of the power

formula are shown to work well for different situations. The sample size/power formula are

developed in the context of clinical trials but the methods can be adopted to any two-phase

study including case-cohort studies. In this paper, we have considered a binary biomarker

variable. A natural extension is to consider an expensive discrete biomarker covariate (number

of values > 2). Further development to extend to a continuous biomarker variable and to

stratified case-cohort design are worthwhile.
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CHAPTER 6: FUTURE RESEARCH

In this dissertation, we studied two perspectives of case-cohort study. Chapters 3 and

4 developed estimation procedures under the case-cohort design and the generalized case-

cohort design for recurrent events. Chapter 3 considered the marginal multiplicative rates

model whereas Chapter 4 investigated the marginal additive rates model. Both estimation

procedures can incorporate time-varying weights. They were shown to perform well in finite

samples through simulations. The proposed estimators are consistent and asymptotically

normally distributed.

We have assumed simple random sampling when selecting the sub-cohort and when sam-

pling from the individuals who experienced the event but were not selected in the sub-cohort.

Bernoulli sampling of the subcohort is another sampling scheme that can be considered. In

our approach, we do not use all the covariate information that is available for the entire

cohort. There have been studies (Jiang and Zhou 2007) that have examined the use of aux-

iliary covariates, available for all individuals, in the pseudo-score equation for estimating the

parameters in additive rates model. It can be of interest, for future research, to extend the

idea of using auxiliary variables to improve the efficiency of the estimators in recurrent events

data.

The marginal models considered in this dissertation do not explicitly model the intra-

subject correlation. When one is primarily interested in the effect of the risk factors on the

event times, rather than the correlation among the events for each subject, the marginal

model approach is the recommended method. However, in some situations, the interest

may lie in a more subject-level inference including the strength and nature of dependencies

within each individual’s recurrent event times. In such situations, the frailty models are

advocated. In our analyses, we modeled a single type of recurrent event. However, the
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data may comprise of different types of recurrent events. One such example is the time to

hospitalization. It can be further decomposed into hospitalizations due to different reasons.

Modeling the hospitalization times as originating from the same underlying process may not

depict the entire picture. In such cases, it is of interest to extend the approaches outlined in

Chapters 3 and 4 to incorporate multiple types of recurrent events. Kang and Cai (2009a) and

Kang et al. (2013) developed methods for single time-to-event data, which can be extended

to recurrent events. Further, the diagnostics under any of the two modeling approaches have

not been addressed. We have developed the two methodologies for recurrent events. Section

4.5 briefly discusses using exploratory methods to examine the use of additive rates model.

Nonetheless, rigorous tests of the error processes to study the fit of the data require further

consideration.

Chapter 5 considered the design aspect of the two-stage design for a single time to event

when the interest is in the interaction between two dichotomized variables. A log-rank type

test statistic was considered for testing the interaction between the expensive biomarker

and treatment for the analysis. Explicit formulas were developed for power and sample size

calculation and their performances are examined through simulation studies. Further, the

cost efficiency of the case-cohort design is shown as compared with a simple random sampling

scheme.

The formulae we developed considered dichotomized biomarker. A natural extension is

to consider an expensive discrete biomarker covariate (number of levels > 2). The test

statistics to examine whether the effects are equal in all of the groups need to be developed.

Furthermore, tests need to be developed for continuous biomarker variables. Even though it is

not common, interest may lie in testing the equality of multiple treatment effects in different

biomarker groups. In such a case, we will extend the proposed tests to incorporate multiple

treatment levels. Another extension is to develop tests for power/sample size calculation for

the interaction term of biomarker and treatment for stratified two-stage design. Hu et al.

(2014) studied the tests for only the treatment effect. Implementation of those tests to

interaction effect of treatment and expensive biomarker needs further study.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

Here is the Appendix containing the proofs of the theorems 1 and 2 in Chapter 3.

A.1 Regularity Conditions

(i) (T ∗i , Ci, Zi(t)) ∀i = 1, 2, . . . , n are independent and identically distributed.

(ii) P (Y (τ) > 0) > 0 and Ni(τ) (∀i = 1, 2, . . . , n) are bounded by a constant

(iii) | Zi(0) | +
´ τ

0 | dZi(u) |< Cz <∞ almost surely for some constant Cz

(iv) The matrix A(β0) =
´ τ

0 ϑ(β0, t)s
(0)(β0, t)dµ0(t) is positive definite.

(v) (Finite Interval)
´ τ

0 dµ0(t) <∞

(vi) (Asymptotic Stability) There exists a neighborhood B of β0 that satisfies the following:

(a) There exists functions s(0)(β, t), s(1)(β, t) and s(2)(β, t) defined on B × [0, τ ] such

that

sup
t∈[0,τ ],β∈B

‖S(d)(β, t)− s(d)(β, t)‖ P−→ 0

(b) There exists a matrix Q(β) such that

1

n

n∑
i=1

V ar(MZ̃,i(β0))
P−→ Q(β0)

(vii) (Asymptotic Regularity) For all β ∈ B, t ∈ [0, τ ], s(1)(β, t) = δ
δβ s

(0)(β, t), s(2)(β, t) =

δ
δβ s

(1)(β, t) = δ2

δβδβ′ s
(0)(β, t) where s(d)(β, t) are continuous functions of β ∈ B, uniformly

in t ∈ [0, τ ] and bounded on B×[0, τ ] and s(0)(β, t) is bounded away from zero on B×[0, τ ]

The following conditions are pertaining to the asymptotic convergences of case-cohort

sampling design.

(viii) (Non-trivial subcohort and cases) α̃ = ñ
n

P−→ α ∈ (0, 1), q̃ → q, nc
n

P−→ p ∈ (0, 1) as

n → ∞ where nc is the number of individuals in the cohort who experienced at least

one event.
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(ix) (Asymptotic Normality of subcohort averages at β0) For ε > 0

sup
t

1

n

n∑
i=1

Yi(t){eβZi(t)}21(n−1/2Yi(t)e
βZi(t) > ε)

P−→ 0

sup
t

1

n

n∑
i=1

Yi(t){|Zi(t)‖}2{eβZi(t)}21(n−1/2Yi(t)|Zi(t)‖eβZi(t) > ε)
P−→ 0

(x) (Asymptotic Normality of samples) As n→∞

1

n
sup

i,t∈[0,τ ]
exp

(
2β′Zi(t)

) P−→ 0,
1

n
sup

i,t∈[0,τ ]
‖Zi(t)‖2exp

(
2β′Zi(t)

) P−→ 0

(xi) (Asymptotic stability)As n→∞, we have the following

(a) There exists a positive definite matrix, V I(β0), such that

var

[
n−1/2

n∑
i=1

ˆ τ

0

(
Ri(β0, t)−

Yi(t)E {1−∆i}Ri(β0, t)

E {(1−∆1)Y1(t)}

)
dµ0(t)

]
P−→ V I(β0),

where Ri(β0, t) = Yi(t)Z̃i(t)e
βZi(t).

(b) There is a positive definite matrix, V II(β0) such that

var

n−1/2
n∑
i=1

MZ̃,i(β0)−
ˆ τ

0

Yi(t)E
{
dMZ̃,1(β0, t) | ∆1 = 1, ξ1 = 0

}
E {Y1(t) | ∆1 = 1}


| ∆i = 1, ξi = 0]

P−→ V II(β0),

where MZ̃,i(β0) =
´ τ

0 Z̃i(t)dMi(t), dMZ̃,i(β0, t) = Z̃i(t)dMi(t) and Z̃i(t) = Zi(t) −

e(β0, t).

Lemma A1 :

Let ϕ = (ϕ1, ϕ2, . . . , ϕn) be a random vector containing n∗ ones and n − n∗ zeroes, with

each permutation equally likely. Let Bi(t) be independent and identically distributed real-

valued processes on [0, τ ] with E(Bi(t)) = µB(t), var(Bi(0)) < ∞ and var(Bi(t)) < ∞. Let
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B(t) = (B1(t), B2(t), . . . , Bn(t)) and ϕ are independent and let us suppose that all paths of

Bi(t) have finite variation. Then n−1/2
∑n

i=1 ϕi [Bi(t)− µB(t)] converges weakly in l∞[0, τ ]

to a zero-mean Gaussian process and n−1
∑n

i=1 ϕi [Bi(t)− µB(t)]
P−→ 0 uniformly in t. This

lemma was stated in (Kang and Cai 2009a).

Lemma A2 :

Let Wn(t) and Gn(t) be two sequences of bounded processes. For some constant, τ let us

assume that the following conditions hold.

(i) sup0≤t≤τ‖Wn(t)−W (t)‖ P−→ 0 for some bounded process, W (t),

(ii) Wn(t) is monotone on [0, τ ] and

(iii) Gn(t) converges to a zero-mean process with continuous sample paths. Then

sup
0≤s≤τ

‖
ˆ s

0
(Wn(t)−W (t))dGn(t)‖ P−→ 0, sup

0≤s≤τ
‖
ˆ s

0
(Gn(t)−G(t))dWn(t)‖ P−→ 0.

This was stated in Kang and Cai (2009b).

First we will look at the asymptotic properties of the time-varying sampling weights.

More specifically, α̂(t) =
∑n
i=1(1−∆i)ξiYi(t)∑n
i=1(1−∆i)Yi(t)

and q̂(t) =
∑n
i=1 ∆i(1−ξi)ηiYi(t)∑n
i=1 ∆i(1−ξi)Yi(t) . Looking at the

Taylor series expansion of α̂(t)−1 around α̃−1, we have

α̂(t)−1 − α̃−1 = − 1

α∗(t)2
(α̂(t)− α̃) =

α̃

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

[
n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]
,

where α∗(t) is on the line between α̂(t) and α̃. Now by the Glivenko-Cantelli theorem, one

can show that 1
n

∑n
i=1(1−∆i)Yi(t) converges to E ((1−∆i)Yi(t)). (1−∆i)Yi(t) is bounded

and monotone functions of t. They are also independent of ξi. Hence, by Lemma A2,

n−1/2
∑n

i=1(1 − ξi
α̃ ) [(1−∆i)Yi(t)] converges weakly to a zero-mean Gaussian process (Kang

and Cai 2009b). This implies that 1
n

∑n
i=1(1− ξi

α̃ ) [(1−∆i)Yi(t)]
P−→ 0 uniformly in t. Further,

α̂(t), α∗(t) and α̃ converges to the same limit. Using Slutsky’s theorem, we have

n1/2(α̂(t)−1 − α̃−1)
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= n1/2 α̃

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

[
n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]

=
1

α̃E((1−∆i)Yi(t))

[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]

+ α̃

(
1

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

− 1

α̃2E((1−∆i)Yi(t))

)[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]

=
1

α̃E((1−∆i)Yi(t))

[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]
+ oP (1). (6.1)

Similarly,

q̂(t)−1− q̃−1 = − 1

q∗(t)2
(q̂(t)− q̃) =

q̃

q∗(t)2

1∑n
i=1 ∆i(1− ξi)Yi(t)

[
n∑
i=1

∆i(1− ξi)(1−
ηi
q̃

)Yi(t)

]
,

where q∗(t) is on the line between q̂(t) and q̃. Proceeding as before, we can see that q̂(t), q∗(t)

and q̃ converges to the same limit. Using Slutsky’s theorem, we have

n1/2(q̂(t)−1 − q̃−1) =
1

q̃E(∆i(1− ξi)Yi(t))

[
n−1/2

n∑
i=1

∆i(1− ξi)(1−
ηi
q̃

)Yi(t)

]
+ oP (1).

(6.2)

A.2 Proof of Theorem 1

Let us define Un(β) = 1
n Û

II(β). Based on similar arguments, as in Foutz(1977), the

consistency of β̂II can be shown by proving the following :

� δ
δβ′Un(β) exists and is continuous in an open neighborhood of β0 in B

� δ
δβ′0
Un(β0) is negative definite w.p. → 1 as n→∞

� - δ
δβ′Un(β)

P−→ A(β0) uniformly for β in a neighborhood of β0

� Un(β)
P−→ 0

Taking derivative of the expression, we get

δ

δβ′
Un(β) = − 1

n

n∑
i=1

ˆ τ

0
wIIi (t)

Ŝ(2)(β, t)Ŝ(0)(β, t)− Ŝ(1)(β, t)⊗2

Ŝ(0)(β, t)2
dNi(t)
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= − 1

n

n∑
i=1

ˆ τ

0
wIIi (t)V̂ (β, t)dNi(t) = −

ˆ τ

0
V̂ (β, t)dN̄w(t), (6.3)

where dN̄w(t) = 1
n

∑n
i=1w

II
i (t)Ni(t). Define dM̄w(t) = 1

n

∑n
i=1w

II
i (t)Mi(t), dN̄(t) = 1

n

∑n
i=1

dNi(t), dM̄(t) = 1
n

∑n
i=1 dMi(t). Note that,

dMi(t) = dNi(t)−Yi(t)eβZi(t)dµ0(t)⇒
n∑
i=1

wIIi (t)dMi(t) =

n∑
i=1

wIIi (t)dNi(t)−nŜ(0)(β, t)dµ0(t)

Now, we need to show that this goes to A(β) in probability. Using the above formula, we

have

‖− δ

δβ′
Un(β)−A(β)‖

= ‖
ˆ τ

0
V̂ (β, t)dN̄w(t)−

ˆ τ

0
ϑ(β, t)s(0)(β, t)dµ0(t)‖

= ‖
ˆ τ

0

(
V̂ (β, t)− ϑ(β, t)

)
dN̄w(t) +

ˆ τ

0
ϑ(β, t)dM̄w(t)

+

ˆ τ

0
ϑ(β, t)

{
Ŝ(0)(β, t)− s(0)(β, t)

}
dµ0(t)‖

≤ ‖
ˆ τ

0

(
V̂ (β, t)− ϑ(β, t)

)
dN̄w(t)‖+ ‖

ˆ τ

0
ϑ(β, t)dM̄w(t)‖

+ ‖
ˆ τ

0
ϑ(β, t)

{
Ŝ(0)(β, t)− s(0)(β, t)

}
dµ0(t)‖

≤ ‖
ˆ τ

0

(
V̂ (β, t)− ϑ(β, t)

)
dN̄(t)‖+ ‖ 1

n

n∑
i=1

ˆ τ

0

(
V̂ (β, t)− ϑ(β, t)

)
(wIIi (t)− 1)dNi(t)‖

+ ‖
ˆ τ

0
ϑ(β, t)dM̄(t)‖+

1

n
‖
n∑
i=1

ˆ τ

0
ϑ(β, t)(wIIi (t)− 1)dMi(t)‖

+ ‖
ˆ τ

0
ϑ(β, t)

{
Ŝ(0)(β, t)− s(0)(β, t)

}
dµ0(t)‖. (6.4)

We need to show that each of these terms converges to zero as n → ∞. The first term can

be rewritten as

‖
ˆ τ

0

(
V̂ (β, t)− ϑ(β, t)

)
dN̄(t)‖

≤ ‖
ˆ τ

0

(
Ŝ(2)(β, t)

Ŝ(0)(β, t)
− s(2)(β, t)

s(0)(β, t)

)
dN̄(t)‖+ ‖

ˆ τ

0

(
[
Ŝ(1)(β, t)

Ŝ(0)(β, t)
]⊗2 − [

s(1)(β, t)

s(0)(β, t)
]⊗2

)
dN̄(t)‖
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= ‖
ˆ τ

0

{(
Ŝ(2)(β, t)

Ŝ(0)(β, t)
− S(2)(β, t)

S(0)(β, t)

)
+

(
S(2)(β, t)

S(0)(β, t)
− s(2)(β, t)

s(0)(β, t)

)}
dN̄(t)‖

+ ‖
ˆ τ

0

{(
[
Ŝ(1)(β, t)

Ŝ(0)(β, t)
]⊗2 − [

S(1)(β, t)

S(0)(β, t)
]⊗2

)
+

(
[
S(1)(β, t)

S(0)(β, t)
]⊗2 − [

s(1)(β, t)

s(0)(β, t)
]⊗2

)}
dN̄(t)‖.

By the regularity condition (vi), we have noted the asymptotic properties of S(d)(β, t) uni-

formly in t,

sup
t∈[0,τ ],β∈B

‖S(d)(β, t)− s(d)(β, t)‖ P−→ 0.

In order to show that the first term of Equation (6.4) converges to 0 as n→∞, it is sufficient

to show that

sup
β∈B,t∈[0,τ ]

‖Ŝ(d)(β, t)− S(d)(β, t)‖ P−→ 0 for all d = 0, 1, 2.

We can write

Ŝ(d)(β, t)− S(d)(β, t) =
1

n

n∑
i=1

(1−∆i)ξi
α̂(t)

Yi(t)Zi(t)
⊗deβZi(t) +

1

n

n∑
i=1

∆i(1− ξi)ηi
q̂(t)

Yi(t)Zi(t)
⊗deβZi(t)

+
1

n

n∑
i=1

∆iξiYi(t)Zi(t)
⊗deβZi(t) − 1

n

n∑
i=1

Yi(t)Zi(t)
⊗deβZi(t)

=
1

n

n∑
i=1

(1−∆i)(
ξi
α̂(t)

− 1)Yi(t)Zi(t)
⊗deβZi(t)

+
1

n

n∑
i=1

∆i(1− ξi)(
ηi
q̂(t)
− 1)Yi(t)Zi(t)

⊗deβZi(t)

=
1

n

n∑
i=1

(1−∆i)(
ξi
α̃
− 1)Yi(t)Zi(t)

⊗deβZi(t)

+
1

n

n∑
i=1

(1−∆i)ξi(
1

α̂(t)
− 1

α̃
)Yi(t)Zi(t)

⊗deβZi(t)

+
1

n

n∑
i=1

∆i(1− ξi)(
ηi
q̃(t)
− 1)Yi(t)Zi(t)

⊗deβZi(t)

+
1

n

n∑
i=1

∆i(1− ξi)ηi(
1

q̂(t)
− 1

q̃
)Yi(t)Zi(t)

⊗deβZi(t).

Therefore,

∥∥∥Ŝ(d)(β, t)− S(d)(β, t)
∥∥∥
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≤ 1

n

∥∥∥∥∥
n∑
i=1

(1−∆i)(
ξi
α̃
− 1)Yi(t)Zi(t)

⊗deβZi(t)

∥∥∥∥∥+
1

n
| ( 1

α̂(t)
− 1

α̃
) | ×∥∥∥∥∥

n∑
i=1

(1−∆i)ξiYi(t)Zi(t)
⊗deβZi(t)

∥∥∥∥∥+
1

n

∥∥∥∥∥
n∑
i=1

∆i(1− ξi)(
ηi
q̃(t)
− 1)Yi(t)Zi(t)

⊗deβZi(t)

∥∥∥∥∥
+ | 1

q̂(t)
− 1

q̃
| 1

n

∥∥∥∥∥
n∑
i=1

∆i(1− ξi)ηiYi(t)Zi(t)⊗deβZi(t)
∥∥∥∥∥

≤

∥∥∥∥∥ 1

n

n∑
i=1

(1−∆i)(
ξi
α̃
− 1)Zi(t)

⊗dYi(t)e
βZi(t)

∥∥∥∥∥
+

1

n
| ( 1

α̂(t)
− 1

α̃
) |

n∑
i=1

(1−∆i)ξiYi(t)
∥∥∥Zi(t)⊗d∥∥∥ eβZi(t)

+

∥∥∥∥∥ 1

n

n∑
i=1

∆i(1− ξi)(
ηi
q̃
− 1)Zi(t)

⊗dYi(t)e
βZi(t)

∥∥∥∥∥
+

1

n
| ( 1

q̂(t)
− 1

q̃
) |

n∑
i=1

∆i(1− ξi)ηiYi(t)
∥∥∥Zi(t)⊗d∥∥∥ eβZi(t). (6.5)

Note that (1−∆i)Yi(t)Zi(t)
⊗deβZi(t) is bounded with total variation being finite in [0, τ ] by the

regularity condition (iii). Using Lemma A1 and the fact that E
(

(1−∆i)(
ξi
α̃ − 1)Yi(t)Zi(t)

⊗d

×eβZi(t)
)

= 0, E
(

∆i(1− ξi)(ηiq̃ − 1)Yi(t)Zi(t)
⊗deβZi(t)

)
= 0, we have the first term and third

terms of Equation (6.5) converge to zero in probability uniformly in t. For the second term, we

can note the asymptotic distribution of α̂(t) proved earlier in equation (6.1) and the fact that

1
n

∑n
i=1(1−∆i)ξiYi(t)

∣∣Zi(t)⊗d∣∣ eβZi(t) converges to a finite quantity in probability uniformly

in t and β by Lemma A1. Similarly, based on equation (6.2) and Lemma A1, we have the

fourth term to converge to zero in probability uniformly in t and β. Combining these results,

Ŝ(d)(β, t) and S(d)(β, t) is shown to converge to the same limit. Therefore, we have

sup
t∈[0,τ ],β∈B

∥∥∥V̂ (β, t)− ϑ(β, t)
∥∥∥ P−→ 0 as n →∞

by using Slutsky’s theorem, the fact that supt∈[0,τ ],β∈B

∥∥∥Ŝ(d)(β, t)− s(d)(β, t)
∥∥∥ P−→ 0 and since

s(0)(β, t) is bounded away from zero on B × [0, τ ] by condition (vii).

From the regularity condition (i), we can see that P (supi,t∈[0,τ ]Ni(t) < c) = 1 and so, it

can be easily seen that N̄(t) has bounded variation. Thus, the first term of (6.4) converges to
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zero in probability. Next, we look at n−1/2M̄(t), which is a sum of independent and identically

distributed zero-mean random variables, for fixed t. By CLT, one can show that n1/2M̄(t)

converges to a zero-mean Gaussian process , say WM (Lin et al. 2000). Further, Mi(t) can

be expressed as the difference of two monotone functions in t. As monotone functions have

pseudo-dimension 1 (Pollard 1990, Bilias et al. 1997, Lin et al. 2000), the processes {Mi(t) |

i = 1, 2, . . . , n} are manageable. From the functional Central Limit Theorem (Pollard 1990),

we can conclude that n−1/2M̄(t) is tight and converges weakly to WM (Van Der Vaart and

Wellner 1996). Furthermore, we can show that E(WM (t)−WM (s))4 ≤ K(µ0(t)−µ0(s))2 for

some constant K. Specifically, E(WM (t)−WM (s))4 = 3
(
E(WM (t)−WM (s))2

)2
since,WM (t)

is a zero-mean normal random variable, for fixed t. (E(WM (t) −WM (s))2 = E(WM (t))2 +

E(WM (s))2 − 2E(WM (t)WM (s)) which in turn can be written = E(WM (t))2 − E(WM (s))2

for s ≤ t. Next, note that E(WM (t))2 = E(Mi(t))
2 = E(

´ t
0 Yi(u)exp{β′0Zi(u)}dµ0(u)) and so,

E(WM (t))2−E(WM (s))2 ≤
√
K(µ0(t)−µ0(s))⇒ E(WM (t)−WM (s))4 ≤ K(µ0(t)−µ0(s))2.

Then it follows from the Kolmogorov- Centsov Theorem (Karatzas and Shereve 1988) that

WM has continuous sample paths. Using Lemma A2, we get the third term of (6.4) converging

to 0 since ϑ(β, t) is a monotone function of t. We can conclude that the last term of (6.4)

converges to zero using the uniform convergence of Ŝ(d)(β, t) to s(d)(β, t). For the second term

of equation (6.4) we can write

1

n

n∑
i=1

(wIIi (t)− 1)dNi(t)

=
1

n

n∑
i=1

{
∆iξi +

(1−∆i)ξi
α̂(t)

+
∆i(1− ξi)ηi

q̂(t)
− 1

}
dNi(t)

=
1

n

n∑
i=1

(1−∆i)

{
ξi
α̂(t)

− 1

}
dNi(t) +

1

n

n∑
i=1

∆i(1− ξi)
{
ηi
q̂(t)
− 1

}
dNi(t)

=
1

n

n∑
i=1

(1−∆i)

{
ξi
α̃
− 1

}
dNi(t) +

1

n

n∑
i=1

(1−∆i)ξi

{
1

α̂(t)
− 1

α̃

}
dNi(t)

+
1

n

n∑
i=1

∆i(1− ξi)
{
ηi
q̃
− 1

}
dNi(t) +

1

n

n∑
i=1

∆i(1− ξi)ηi
{

1

q̂(t)
− 1

q̃

}
dNi(t)

=
1

n

n∑
i=1

(1−∆i)

{
ξi
α̃
− 1

}
dNi(t)
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+
1

n

n∑
i=1

(1−∆i)ξi

 1

α̃E((1−∆1)Y1(t)

 1

n

n∑
j=1

(1−∆j)(1−
ξj
α̃

)Yj(t)

 dNi(t)

+
1

n

n∑
i=1

∆i(1− ξi)
{
ηi
q̃
− 1

}
dNi(t)

+
1

n

n∑
i=1

∆i(1− ξi)ηi

 1

q̃E(∆1(1− ξ1)Y1(t))

 1

n

∑
j

∆j(1− ξj)(1−
ηj
q̃

)Yj(t)

 dNi(t) + oP (1)

=
1

n

n∑
i=1

(1−∆i)

{
ξi
α̃
− 1

}
dNi(t)

+
1

n

n∑
j=1

1

E((1−∆1)Y1(t)
(1−∆j)(1−

ξj
α̃

)Yj(t)

[
1

n

n∑
i=1

(1−∆i)
ξi
α̃
dNi(t)

]

+
1

n

n∑
i=1

∆i(1− ξi)
{
ηi
q̃
− 1

}
dNi(t)

+
1

n

n∑
j=1

1

E(∆1(1− ξ1)Y1(t))
∆j(1− ξj)(1−

ηj
q̃

)Yj(t)

[
1

n

n∑
i=1

∆i(1− ξi)
ηi
q̃
dNi(t)

]
+ oP (1)

(6.6)

Since, Ni(t) is bounded for all t, we have the first and third term of equation(6.6) to be also

bounded. 1
n

∑n
i=1

ξi
α̃ [(1−∆i)dNi(t)− E((1−∆1)dN1(t))] and 1

n

∑n
i=1

ηi
q̃ (1− ξi)

[∆idNi(t)− E(∆1dN1(t))] converges to zero in probability, uniformly in t respectively, by

Lemma A1. Using Lemma from Kulich and Lin (2004) we can note that E((1 − ∆i)(1 −
ξi
α̃ )dNi(t)) = E((1 − ∆i)(1 − ξi

α̃ )dYi(t)) = E(∆i(1 − ξi)(1 − ηi
q̃ )dNi(t)) = E(∆i(1 − ξi)(1 −

ηi
q̃ )dYi(t)) = 0. Hence, we have all the terms of (6.6) converging to zero in probability

uniformly in t. Hence, the second term of (6.4) converges to 0 in probability. Proceeding as

earlier, we can show that n−1/2
∑n

i=1

´
{wIIi (t)−1}dMi(t) converges to a zero-mean Guassian

process, since, E
(

(1−∆i)(
ξi
α̃ − 1)dMi(t)

)
= 0 and E

(
∆i(1− ξi)(ηiq̃ − 1)dMi(t)

)
= 0. This

implies that the fourth terms of (6.4) converges to zero in probability. Hence, we have

−δUn(β)

δβ′
P−→ A(β) as n →∞ uniformly in β ∈ B.
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Next, we want to look at n1/2Un(β).

n1/2Un(β) = n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

[
Zi(t)−

Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dNi(t)

= n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

[
Zi(t)−

Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dNi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

[
Zi(t)−

Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
Yi(t)e

βZi(t)dµ0(t)

= n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
{wIIi (t)− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
{wIIi (t)− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t). (6.7)

The first term converges to a zero-mean Gaussian process based on Lin et al. (2000) paper.

Further, we can replace it with n−1/2
∑n

i=1MZ̃,i(β) = n−1/2
∑n

i=1

´ τ
0 (Zi(t) − e(β, t))dMi(t)

which is asymptotically equivalent to it (since, Z̃i(t) = Zi(t) − e(β, t); e(β, t) = s(1)(β,t)

s(0)(β,t)
).

One can note that for each t, n1/2M̄(t) is the sum of zero-mean i.i.d. random variables and

can be written as the difference of two monotone functions. Since, each of the functions

are bounded, n1/2M̄(t) is also a bounded process. Moreover, from example 2.11.16 of Van

Der Vaart and Wellner (1996) we have that n−1/2M̄(t) converges weakly to a zero-mean

Gaussian process, WM with E (WM (t)−WM (s))4 < C [µ0(t)− µ0(s)]2 for some positive

constant, C. By the Kolmogov-Centsov Theorem (Karatzas and Shereve 1988), WM (t) has

continuous sample paths. Also, from regularity condition (vi), we have that S(1)(β, t) and

S(0)(β, t) are of bounded variations and S(0)(β, t) is bounded away from zero such that S(1)(β,t)

S(0)(β,t)

114



also has bounded variation and can be written as the difference of two monotone functions,

specifically, S
(1)(β,t)

S(0)(β,t)
= G1(t)−G2(t) whereGi(t) are non-negative, monotone in t and bounded.

Similarly, we have Ŝ(1)(β,t)

Ŝ(0)(β,t)
has bounded variation and is equal to H1(t)−H2(t) where Hi(t)

are non-negative, monotone in t and bounded. One can also note that since Ŝ(1)(β,t)

Ŝ(0)(β,t)
converges

uniformly to s(1)(β,t)

s(0)(β,t)
and regularity condition (vi) implies that Ŝ(1)(β,t)

Ŝ(0)(β,t)
and S(1)(β,t)

S(0)(β,t)
have the

same limit uniformly. Based on Lemma A2, we can rewrite the third quantity on the RHS of

(6.7) as

ˆ τ

0

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
n−1/2

n∑
i=1

dMi(t)

=

ˆ τ

0

[
S(1)(β, t)

S(0)(β, t
− s(1)(β, t)

s(0)(β, t)

]
n−1/2

n∑
i=1

dMi(t)−
ˆ τ

0

[
Ŝ(1)(β, t)

Ŝ(0)(β, t
− s(1)(β, t)

s(0)(β, t)

]
n−1/2

n∑
i=1

dMi(t)

P−→ 0.

Hence, the third term of equation (6.7) converges to zero in probability. Next, we look at the

fourth term of the equation.

n−1/2
n∑
i=1

ˆ τ

0
{wIIi (t)− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
{ξi∆i + (1−∆i)

ξi
α̂(t)

+ ∆i(1− ξi)
ηi
q̂(t)
− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̂(t)

− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̂(t)
− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̃
− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
(1−∆i)ξi{

1

α̂(t)
− 1

α̃
}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̂(t)
− 1}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi)ηi{

1

q̂(t)
− 1

q̃
}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t). (6.8)
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n−1/2
∑n

i=1(1 − ∆i)Mi(t) is the sum of independent and identically distributed zero-mean

random variables, for fixed t. Using Lemma A1 and noting that for finite samples, µB(t) =

1
n

∑n
i=1Bi(t), we have n−1/2

∑n
i=1(1 −∆i){ ξiα̃ − 1}Mi(t) converges to a zero-mean Gaussian

process. Using Kolmogorv-Centsov Theorem, we can show that the limiting process has

continuous sample paths. Further, we have by Slutsky’s theorem, S(1)(β,t)

S(0)(β,t)
− Ŝ(1)(β,t)

Ŝ(0)(β,t)

P−→ 0,

uniformly in t. Hence, the first term of (6.8) converges to 0 in probability by using Lemma A2.

Similarly, the third term of (6.8) can be shown to converge to 0 in probability. Considering

the second term of the above equation, we have

n−1/2
n∑
i=1

ˆ τ

0
(1−∆i)ξi{

1

α̂(t)
− 1

α̃
}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i)ξi

∑
j

{
1

α̃E [(1−∆1)Y1(t)]

1

n
(1− ξj

α̃
)(1−∆j)Yj(t)

}

×

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t) + op(1)

= n−1/2
n∑
j=1

ˆ τ

0

1

E [(1−∆1)Y1(t)]
(1− ξj

α̃
)(1−∆j)Yj(t)

{
1

n

n∑
i=1

(1−∆i)
ξi
α̃
dMi(t)

}

×

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
+ op(1)

From Lemma A1, we have 1
n

∑n
i=1(1−∆i)

ξi
α̃ dMi(t) converges to zero in probability uniformly

in t and we have shown earlier that S(d)(β, t) and Ŝ(d)(β, t) have the same limit in probability

uniformly in t. S(0)(β, t) and Ŝ(0)(β, t) are bounded away from zero and hence, S(1)(β,t)

S(0)(β,t
−

Ŝ(1)(β,t)

Ŝ(0)(β,t)
converges to zero in probability by the Slutsky’s theorem. Hence, the second term of

equation (6.8) converges to zero in probability. Similarly, we have the fourth term of (6.8) as

n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi)ηi{

1

α̂(t)
− 1

α̃
}

[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
dMi(t)

= n−1/2
n∑
j=1

ˆ τ

0

1

E [∆1(1− ξ1)Y1(t)]
(1− ηj

q̃
)∆j(1− ξj)Yj(t)

{
1

n

n∑
i=1

∆i(1− ξi)
ηi
q̃
dMi(t)

}
[
S(1)(β, t)

S(0)(β, t
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

]
+ op(1)
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Proceeding in the same way, it can be easily shown that the fourth term of (6.8) converges

to 0 in probability, implying that the fourth term of equation (6.7) converges to zero. Next,

looking at the second term of the equation :

n−1/2
n∑
i=1

ˆ τ

0
{wIIi (t)− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
{ξi∆i + (1−∆i)

ξi
α̂(t)

+ ∆i(1− ξi)
ηi
q̂(t)
− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̂(t)

− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̂(t)
− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̃
− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
(1−∆i)ξi{

1

α̂(t)
− 1

α̃
}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi)ηi{

1

q̂(t)
− 1

q̃
}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){1−

ξi
α̃
}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
Yi(t)e

βZi(t)dµ0(t)

− n−1/2
n∑
i=1

ˆ τ

0
(1−∆i)ξi

∑
j

{
1

α̃E [(1−∆1)Y1(t)]

1

n
(1− ξj

α̃
)(1−∆j)Yj(t)

}[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]

× Yi(t)eβZi(t)dµ0(t) + n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi)ηi

∑
j

{
1

q̃E [∆1(1− ξ1)Y1(t)]

1

n
(1− ηj

q̃
)∆j(1− ξj)Yj(t)

}

×

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t) + oP (1)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){1−

ξi
α̃
} [Zi(t)− e(β, t)]Yi(t)eβZi(t)dµ0(t)

− n−1/2
n∑
j=1

ˆ τ

0

1

α̃E [(1−∆1)Y1(t)]
(1− ξj

α̃
)(1−∆j)Yj(t)

1

n

n∑
i=1

{
(1−∆i)

ξi
α̃

[Zi(t)− e(β, t)]
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×Yi(t)eβZi(t)
}
dµ0(t) + n−1/2

n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1} [Zi(t)− e(β, t)] dMi(t)

+ n−1/2
n∑
j=1

ˆ τ

0

1

E [∆1(1− ξ1)Y1(t)]
(1− ηj

q̃
)∆j(1− ξj)Yj(t)

{
1

n

n∑
i=1

[
∆i(1− ξi)

ηi
q̃

(Zi(t)

−e(β, t))] dMi(t)}+ oP (1). (6.9)

We get the last equality because Ŝ(1)(β,t)

Ŝ(0)(β,t)
−e(β, t) P−→ 0 uniformly in t. Further, by Lemma A1,

1
n

∑n
i=1

{
(1−∆i)

ξi
α̃ [Zi(t)− e(β, t)]Yi(t)eβZi(t)

}
and 1

n

∑n
i=1

[
∆i(1− ξi)ηiq̃ (Zi(t)− e(β, t))

]
×dMi(t) are asymptotically equivalent to E

{
(1−∆1) [Z1(t)− e(β, t)]Y1(t)eβ

′Z1(t)
}

and

E [∆i(1− ξi) (Zi(t)− e(β, t)) dMi(t)], respectively. Therefore, the above can be simplified

into

n−1/2
n∑
i=1

ˆ τ

0
{wIIi (t)− 1}

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){1−

ξi
α̃
}
[
(Zi(t)− e(β, t))Yi(t)eβZi(t)

−
Yi(t)E

[
(1−∆1) (Z1(t)− e(β, t))Y1(t)eβ

′Z1(t)
]

E [(1−∆1)Y1(t)]

 dµ0(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1} [(Zi(t)− e(β, t)) dMi(t)−

Yi(t)E [(Z1(t)− e(β, t)) dM1(t) | ∆1 = 1, ξ1 = 0]

E [Y1(t) | ∆1 = 1]

]
+ oP (1)

= n−1/2
n∑
i=1

ˆ τ

0
(1−∆i){1−

ξi
α̃
}
[
Ri(β, t)−

Yi(t)E [(1−∆1)R1(β, t)]

E [(1−∆1)Y1(t)]

]
dµ0(t)

+ n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}

dMZ̃,i(β, t)−
Yi(t)E

[
dMZ̃,1(β, t) | ∆1 = 1, ξ1 = 0

]
E [Y1(t) | ∆1 = 1]


+ oP (1).

whereRi(β, t) = Yi(t)Z̃i(t)e
βZi(t) = Yi(t) (Zi(t)− e(β, t)) eβZi(t), MZ̃,i(β) =

´ τ
0 (Zi(t)− e(β, t))

×dMi(t) and dMZ̃,i(β, t) = (Zi(t)− e(β, t)) dMi(t). Therefore, we can state that n1/2Un(β)
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is asymptotically equivalent to

n−1/2
n∑
i=1

ˆ τ

0
dMZ̃,i(β) + n−1/2

n∑
i=1

ˆ τ

0
{1− ξi

α̃
}(1−∆i)

(
Ri(β, t)−

Yi(t)E [(1−∆i)Ri(β, t)]

E [(1−∆i)Yi(t)]

)

dµ0(t) + n−1/2
n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}

dMZ̃,i(β, t)−
Yi(t)E

[
dMZ̃,1(β, t) | ∆1 = 1, ξ1 = 0

]
E [Y1(t) | ∆1 = 1]

 .
(6.10)

Under the regularity conditions, from Lin et al. (2000), the first term has covariance,

E(MZ̃,i(β0))⊗2. The second and third terms can be shown to be asymptotically zero-mean

normal with covariance matrix, V I(β0) and V II(β0) respectively based on Hájek’s (1960)

central limit theorem for finite population sampling. First we need to check the following

conditions in order to use Hájek’s Theorem.

(a) α̃ converges to α ∈ (0, 1).

(b) 1
n

∣∣a′ (´ τ0 R∗i (β, t)dµ0(t)− 1
n

∑n
i=1

´ τ
0 R

∗
i (β, t)dµ0(t)

)∣∣ converges to 0 in probability.

(c) 1
n−1

∑n
i=1

(
a′
´ τ

0 R
∗
i (β, t)dµ0(t)− 1

n

∑n
i=1 a

′ ´ τ
0 R

∗
i (β, t)dµ0(t)

)2
converges to some quan-

tity, σ2 > 0.

For this, let us take a = (a1, a2, . . . , ap)
′ be a p × 1 real-valued vector and let us define

R∗i (β, t) = Ri(β, t)− Yi(t)E[(1−∆i)Ri(β,t)]
E[(1−∆i)Yi(t)]

Then we have

∣∣∣∣∣a′
(ˆ τ

0
R∗i (β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
R∗i (β, t)dµ0(t)

)∣∣∣∣∣
≤

∣∣∣∣∣a′
(ˆ τ

0
Ri(β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
Ri(β, t)dµ0(t)

)∣∣∣∣∣
+

∣∣∣∣∣a′
(ˆ τ

0
e∗(β, t)Yi(t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0

ˆ τ

0
e∗(β, t)Yi(t)dµ0(t)

)∣∣∣∣∣ . (6.11)

where e∗(β, t) = E[(1−∆i)Ri(β,t)]
E[(1−∆i)Yi(t)]

.
∣∣a′ (´ τ0 e∗(β, t)Yi(t)dµ0(t)− 1

n

∑n
i=1

´ τ
0

´ τ
0 e
∗(β, t)Yi(t)dµ0(t)

)∣∣ =∣∣a′ ´ τ0 e∗(β, t) (Yi(t)− Ȳ (t)
)
dµ0(t)

∣∣, Ȳ (t) =
∑n
i=1 Yi(t)
n and −1 ≤

(
Yi(t)− Ȳ (t)

)
≤ 1. ⇒∣∣a′ ´ τ0 e∗(β, t) (Yi(t)− Ȳ (t)

)
dµ0(t)

∣∣ ≤ ∣∣a′ ´ τ0 e∗(β, t)dµ0(t)
∣∣. For the first term on the right
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hand side of (6.11),

∣∣∣∣∣a′
(ˆ τ

0
Ri(β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
Ri(β, t)dµ0(t)

)∣∣∣∣∣
=

∣∣∣∣∣
(
a′
ˆ τ

0
Z̃i(t)Yi(t)e

βZi(t)dµ0(t)

)
− 1

n

n∑
i=1

(
a′
ˆ τ

0
Z̃i(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣
≤
∣∣∣∣(a′ ˆ τ

0
Z̃i(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
Z̃i(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣
≤
∣∣∣∣(a′ ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣+

∣∣∣∣(a′ ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣ .
Next, we see that

max
i

(∣∣∣∣∣a′
(ˆ τ

0
R∗i (β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
R∗i (β, t)dµ0(t)

)∣∣∣∣∣
)2

≤ max
i

(∣∣∣∣∣a′
(ˆ τ

0
Ri(β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
Ri(β, t)dµ0(t)

)∣∣∣∣∣
+

∣∣∣∣a′ ˆ τ

0
e∗(β, t)

(
Yi(t)− Ȳ (t)

)
dµ0(t)

∣∣∣∣)2

≤ max
i

(∣∣∣∣∣a′
(ˆ τ

0
Ri(β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
Ri(β, t)dµ0(t)

)∣∣∣∣∣
)2

+ 2 max
i

∣∣∣∣∣a′
(ˆ τ

0
Ri(β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
Ri(β, t)dµ0(t)

)∣∣∣∣∣
∣∣∣∣a′ ˆ τ

0
e∗(β, t)

(
Yi(t)− Ȳ (t)

)
dµ0(t)

∣∣∣∣
+ max

i

(∣∣∣∣a′ ˆ τ

0
e∗(β, t)

(
Yi(t)− Ȳ (t)

)
dµ0(t)

∣∣∣∣)2

. (6.12)

The first term on the RHS of (6.12) can be rewritten as

max
i

(∣∣∣∣∣a′
(ˆ τ

0
R∗i (β, t)dµ0(t)− 1

n

n∑
i=1

ˆ τ

0
R∗i (β, t)dµ0(t)

)∣∣∣∣∣
)2

≤ max
i

(∣∣∣∣(a′ ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣+

∣∣∣∣(a′ ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣
)2
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≤
(

max
i

∣∣∣∣(a′ ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣+ max
i

∣∣∣∣(a′ ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣
+ max

i

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
Zi(t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣+ max
i

∣∣∣∣∣ 1n
n∑
i=1

(
a′
ˆ τ

0
e(β, t)Yi(t)e

βZi(t)dµ0(t)

)∣∣∣∣∣
)2

.

We can note that,

max
i

(∣∣∣∣ˆ τ

0
a′Zi(t)Yi(t)e

βZi(t)dµ0(t)

∣∣∣∣) ≤ sup
i,t

(∣∣a′Zi(t)∣∣Yi(t)eβZi(t)µ0(t)
)

max
i

(∣∣∣∣ˆ τ

0
a′e(β, t)Yi(t)e

βZi(t)dµ0(t)

∣∣∣∣) ≤ sup
i,t

(∣∣a′e(β, t)∣∣Yi(t)eβZi(t)µ0(t)
)

max
i

(∣∣∣∣∣ 1n
n∑
i=1

ˆ τ

0
a′Zi(t)Yi(t)e

βZi(t)dµ0(t)

∣∣∣∣∣
)
≤ sup

i,t

(∣∣a′Zi(t)∣∣Yi(t)eβZi(t)µ0(t)
)

max
i

(∣∣∣∣∣ 1n
n∑
i=1

ˆ τ

0
a′e(β, t)Yi(t)e

βZi(t)dµ0(t)

∣∣∣∣∣
)
≤ sup

i,t

(∣∣a′e(β, t)∣∣Yi(t)eβZi(t)µ0(t)
)

max
i

(∣∣∣∣a′ ˆ τ

0
e∗(β, t)

(
Yi(t)− Ȳ (t)

)
dµ0(t)

∣∣∣∣) ≤ sup
t

(
|a′e∗(β, t)|µ0(t)

)
Note that, we can easily show that 1

n supi,t
(
|a′Zi(t)|Yi(t)eβZi(t)µ0(t)

) P−→ 0 and 1
n supi,t (|a′e(β, t)|

Yi(t)e
βZi(t)µ0(t)

) P−→ 0 as n→∞ as the functions are bounded from the regularity conditions,

and hence, we see that (b) holds. As for (c), note that, 1
n

∑n
i=1

(
a′
´ τ

0 R
∗
i (β, t)dµ0(t)− 1

n

∑n
i=1 a

′ ´ τ
0

R∗i (β, t)dµ0(t))2 ≤ maxi
(
a′
´ τ

0 R
∗
i (β, t)dµ0(t)− 1

n

∑n
i=1 a

′ ´ τ
0 R

∗
i (β, t)dµ0(t)

)2
which is bounded

and n
n−1 → 1 as n → ∞. Hence, we have n−1/2

∑n
i=1

´ τ
0 a
′
(
{1− ξi

α̃ }(1−∆i)R
∗
i (β, t)

)
dµ0(t)

converges to a normal distribution. Therefore, by Cramer- Wold device, we have n−1/2
∑n

i=1

´ τ
0(

{1− ξi
α̃ }(1−∆i)R

∗
i (β, t)

)
dµ0(t) converges to a zero-mean Normal random variable with

variance,

1− α
α

V I(β) = E

(ˆ τ

0
(1−∆i)R

∗
i (β, t)dµ0(t)

)⊗2

= E

(ˆ τ

0
(1−∆i)

{
Ri(β, t)−

Yi(t)E [(1−∆i)Ri(β, t)]

E [(1−∆i)Yi(t)]

}
dµ0(t)

)⊗2

.

Similarly, we can show that n−1/2
∑n

i=1{1−
ηi
q̃ }∆i(1− ξi)

´ τ
0

[
dMZ̃,i(β, t)− Yi(t)
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×E(dMZ̃,1(β,t)|∆1=1,ξ1=0)
E(Y1(t)|∆1=1)

]
converges to a zero-mean Normal random variable with variance,

(1− α)
1− q
q

P (∆1 = 1)V II(β)

= var

ˆ τ

0

dMZ̃,i(β, t)−
Yi(t)E

(
dMZ̃,1(β, t) | ∆1 = 1, ξ1 = 0

)
E (Y1(t) | ∆1 = 1)

 .

Next let us consider the covariance between n−1/2
∑n

i=1MZ̃,i(β, t) and n−1/2
∑n

i=1

´ τ
0 (1 −

ξi
α̃ )(1−∆i)R

∗
i (β, t)dµ0(t). Defining the marginal filtration as , Fi(t) = σ{Ni(t), Yi(t), Zi(t)}, t ∈

[0, τ ] for the i-th individual at time t, we have

cov(n−1/2
n∑
i=1

MZ̃,i(β, t), n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)

ˆ τ

0
R∗i (β, t)dµ0(t))

= E

(
n−1/2

n∑
i=1

MZ̃,i(β, t)n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)

ˆ τ

0
R∗i (β, t)dµ0(t)

)

= E

[
E

(
n−1/2

n∑
i=1

MZ̃,i(β, t)n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)

ˆ τ

0
R∗i (β, t)dµ0(t)

∣∣∣ F(τ)

)]

= E

[
n−1/2

n∑
i=1

MZ̃,i(β, t)n
−1/2

n∑
i=1

E

(
1− ξi

α̃

∣∣∣ F(τ)

)
(1−∆i)

ˆ τ

0
R∗i (β, t)dµ0(t)

]
= 0.

Similarly, the covariance between n−1/2
∑n

i=1MZ̃,i(β, t) and n−1/2
∑n

i=1(ηiq̃ − 1)∆i(1− ξi)

M∗
Z̃,i

(β, t) where M∗
Z̃,i

(β, t) =
´ τ

0

[
dMZ̃,i(β, t)−

Yi(t)E(dMZ̃,1(β,t)|∆1=1,ξ1=0)

E(Y1(t)|∆1=1,ξ1=0)

]
is given by

cov

(
n−1/2

n∑
i=1

MZ̃,i(β, t), n
−1/2

n∑
i=1

(
ηi
q̃
− 1)∆i(1− ξi)M∗Z̃,i(β, t)

)

= E

(
n−1

n∑
i=1

MZ̃,i(β, t)

n∑
i=1

(
ηi
q̃
− 1)∆i(1− ξi)M∗Z̃,i(β, t)

)

= E

[
E

(
n−1

n∑
i=1

MZ̃,i(β, t)
n∑
i=1

(
ηi
q̃
− 1)∆i(1− ξi)M∗Z̃,i(β, t)

∣∣∣ F(τ)

)]

= E

[
n−1

n∑
i=1

MZ̃,i(β, t)
n∑
i=1

E

(
1− ξi)(1−

ηi
q̃

)
∣∣∣ F(τ)

)
∆iM

∗
Z̃,i

(β, t)

]
= 0.

Finally, we can show that cov
(
n−1/2

∑n
i=1

´ τ
0 R

∗
i (β, t)dµ0(t), n−1/2

∑n
i=1(ηiq̃ − 1)∆i(1− ξi)

M∗
Z̃,i

(β, t)
)

= 0. Therefore, the variance of n1/2Un(β) is given by E(MZ̃,i(β))⊗2 + 1−α
α V I(β)+
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(1 − α)1−q
q P (∆1 = 1)V II(β). This implies that Un(β)

P−→ 0 as n → ∞. Further, we can use

Taylor Series expansion of n1/2Un(β̂II) around β0 to get

n1/2Un(β̂II) ≈ n1/2Un(β) + n1/2(β̂II − β0)′
δ

δβ
U IIn (β∗)

where β∗ belongs to the line segment between β0 and β̂II . Hence, we can say that n1/2(β̂II −

β0) converges to a normal distribution with mean 0 and variance

A(β0)−1

(
E(MZ̃,i(β))⊗2 +

1− α
α

V I(β) + (1− α)
1− q
q

P (∆1 = 1)V II(β)

)
A(β0)−1.
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A.3 Proof of Theorem 2

Next, we look at the distribution of the estimate of the rate function, µ̂0(β̂II , t).

n1/2{µ̂0(β̂II , t)− µ0(t)}

= n1/2{µ̂0(β̂II , t)−
ˆ t

0

∑n
i=1w

II
i (t)dNi(u)

nŜ(0)(β0, u)
}+ n1/2{

ˆ t

0

∑n
i=1w

II
i (t)dNi(u)

nŜ(0)(β0, u)
− µ0(t)}

= n1/2

ˆ t

0

{
1

nŜ(0)(β̂II , u)
− 1

nŜ(0)(β0, u)

}
n∑
i=1

wIIi (u)dMi(u) + n1/2

ˆ t

0

{
1

Ŝ(0)(β̂II , u)

− 1

Ŝ(0)(β0, u)

}
Ŝ(0)(β0, u)dµ0(u) +

ˆ t

0

1

Ŝ(0)(β0, u)

{
n−1/2

n∑
i=1

wIIi (u)dMi(u)

}

= n1/2

ˆ t

0

{
1

nŜ(0)(β̂II , u)
− 1

nŜ(0)(β0, u)

}
n∑
i=1

dMi(u)

+ n1/2

ˆ t

0

{
1

nŜ(0)(β̂II , u)
− 1

nŜ(0)(β0, u)

}
n∑
i=1

(wIIi (u)− 1)dMi(u)

+ n1/2

ˆ t

0

{
1

Ŝ(0)(β̂II , u)
− 1

Ŝ(0)(β0, u)

}
Ŝ(0)(β0, u)dµ0(u) +

ˆ t

0

1

Ŝ(0)(β0, u)

{
n−1/2

n∑
i=1

dMi(u)

}

+

ˆ t

0

1

Ŝ(0)(β0, u)

{
n−1/2

n∑
i=1

(wIIi (u)− 1)dMi(u)

}
. (6.13)

By the Taylor series expansion of Ŝ(0)(β̂II , u)−1 around β0 we have,

Ŝ(0)(β̂II , u)−1 ≈ Ŝ(0)(β0, u)−1 − (β̂II − β0)′
Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

where β∗ belongs to the line segment β0 and β̂II . Therefore the first term of the equation

(6.13) can be written as

n1/2

ˆ t

0

{
1

nŜ(0)(β̂II , u)
− 1

nŜ(0)(β0, u)

}
n∑
i=1

dMi(u)

= n−1/2

ˆ t

0

{
−(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

dMi(u). (6.14)

Note that, Ŝ(1)(β∗, u) and Ŝ(0)(β∗, u) have bounded variations and Ŝ(0)(β∗, u) is bounded away

from zero; hence, Ŝ
(1)(β∗,u)

Ŝ(0)(β∗,u)
also has bounded variation and can be expressed as the difference
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of two monotone functions in t. Therefore, noting that β̂II
P−→ β0 and n−1/2

∑n
i=1 dMi(u)

converges to a zero-mean Gaussian process , having continuous sample paths, we can show

that converges to 0 as n →∞ by using Lemma A1 from Lin et al. (2000). Next, the second

term can be written as

n1/2

ˆ t

0

{
1

nŜ(0)(β̂II , u)
− 1

nŜ(0)(β0, u)

}
n∑
i=1

(wIIi (u)− 1)dMi(u)

= −n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

(
∆iξi +

(1−∆i)ξi
α̂(u)

+
∆i(1− ξi)ηi

q̂(u)
− 1

)
dMi(u)

+ oP (1)

= −n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

(
(1−∆i)(

ξi
α̂(u)

− 1) + ∆i(1− ξi)(
ηi
q̂(u)

− 1)

)
× dMi(u) + oP (1)

= −n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

(1−∆i)

(
ξi
α̃
− 1

)
dMi(u)

− n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

(1−∆i)ξi

 1

α̃E((1−∆1)Y1(t))

1

n

∑
j

(1−∆j)

(1− ξj
α̃

)Yj(t)

)
dMi(u)− n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

∆i(1− ξi)
(
ηi
q̃
− 1

)
dMi(u)

− n−1/2

ˆ t

0

{
(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
n∑
i=1

∆i(1− ξi)ηi

 1

q̃E(∆1(1− ξ1)Y1(t))

1

n

∑
j

∆j(1− ξj)

×(1− ηj
q̃

)Yj(t)

)
dMi(u) + oP (1) (6.15)

Note that β̂II − β0
P−→ 0 as n → ∞, Ŝ(1)(β∗,t)

Ŝ(0)(β∗,t)
is bounded away from zero. Further, we

have already shown that n1/2(β̂II − β0)′ Ŝ
(1)(β∗,t)

Ŝ(0)(β∗,t)
converges to a zero-mean Gaussian process.

Similar, we have also shown that n−1/2
∑n

i=1(1−∆i){ ξiα̃ − 1}Mi(t) converges to a zero-mean

Gaussian process (Lin et al. (2000), Van Der Vaart and Wellner (1996)(example 2.11.16

pg 215)). Using Kolmogorv-Centsov Theorem, we can show that the limiting process has

continuous sample paths. Hence, the first term of (6.15) converges to 0 in probability by

using Lemma A2. Similarly, the third term of (6.15) can be shown to converge to 0 in
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probability. Considering the second term of the above equation, we have

n−1/2
n∑
i=1

ˆ t

0
(1−∆i)ξi

∑
j

{
1

α̃E [(1−∆1)Y1(u)]

1

n
(1− ξj

α̃
)(1−∆j)Yj(u)

}{
(β̂II − β0)′

× Ŝ
(1)(β∗, u)

Ŝ(0)(β∗, u)

}
dMi(t)

= (β̂II − β0)′n−1/2
n∑
j=1

ˆ t

0

1

E [(1−∆1)Y1(u)]
(1− ξj

α̃
)(1−∆j)Yj(u)

{
1

n

n∑
i=1

(1−∆i)
ξi
α̃
dMi(u)

}

×

{
Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}

Note that n−1/2
∑n

j=1

´ t
0 (1− ξj

α̃ )(1−∆j)Yj(u) is a bounded process. By Lemma A1, 1
n

∑n
i=1(1−

∆i)
ξi
α̃ dMi(u) is asymptotically equivalent to E ((1−∆i)dMi(u)) in probability uniformly in

u and Ŝ(1)(β∗,u)

Ŝ(0)(β∗,u)

P−→ e(β∗, u), uniformly in u. Hence, the above converges to zero in probability.

Similarly, we have the fourth term of (6.15) converging to zero in probability. Let us look at

the third term of (6.13).

n1/2

ˆ t

0

{
1

Ŝ(0)(β̂II , u)
− 1

Ŝ(0)(β0, u)

}
S(0)(β0, u)dµ0(u)

= n1/2

ˆ t

0

{
−(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
Ŝ(0)(β0, u)dµ0(u).

Proceeding as earlier, by the consistency of β̂II , uniform consistency of S(d)(β, t) and Ŝ(d)(β, t)

and the boundedness of µ0(t), we can further write

n1/2

ˆ t

0

{
−(β̂II − β0)′

Ŝ(1)(β∗, u)

Ŝ(0)(β∗, u)

}
Ŝ(0)(β0, u)dµ0(u) = n1/2(β̂II − β0)′r(β0, t) + oP (1),

where r(β, t) = −
´ t

0 s
(1)(β, u)dµ0(u). Now, for the fourth term of the equation (6.13), since

Ŝ(0)(β, t) converges to s(0)(β, t) uniformly in t and is bounded away from zero. n−1/2
∑n

i=1Mi(t)

converges to a zero-mean Gaussian process with continuous sample paths. Hence,
´ t

0
1

Ŝ(0)(β0,u)

{
n−1/2

∑n
i=1 dMi(u)

}
can be written as

´ t
0

1
s(0)(β0,u)

{
n−1/2

∑n
i=1 dMi(u)

}
. Now,

for the last term in (6.13), we can note similarly that S(0)(β, t) converges uniformly to s(0)(β, t)
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and is bounded away from zero. Hence, one can write the fifth term of (6.13) as

ˆ t

0

1

Ŝ(0)(β0, u)

{
n−1/2

n∑
i=1

(wIIi (u)− 1)dMi(u)

}

= n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)

{
(1−∆i)(

ξi
α̂(t)

− 1)Yi(u)eβ
′
0Zi(u)dµ0(u)

}

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)

{
∆i(1− ξi)(

ηi
q̂(t)
− 1)dMi(u)

}

= n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)

{
(1−∆i)(

ξi
α̃
− 1)Yi(u)eβ

′
0Zi(u)dµ0(u)

}

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
(1−∆i)ξi

{
1

α̂(t)
− 1

α̃

}
Yi(u)eβ

′
0Zi(u)dµ0(u)

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)

{
∆i(1− ξi)(

ηi
q̃
− 1)dMi(u)

}

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
∆i(1− ξi)ηi

{
1

q̂(t)
− 1

q̃

}
dMi(u). (6.16)

Using (6.1), (6.2) and Lemma A1, the second term of (6.16) = n−1/2
∑n

i=1

´ t
0

1
s(0)(β0,u)

(1 −

∆i)(1− ξi
α̃ )

Yi(u)E
{

(1−∆i)Yi(u)eβ
′
0Zi(u)dµ0(u)

}
E[(1−∆i)Yi(t)]

+oP (1) and the third term = n−1/2
∑n

i=1

´ t
0

1
s(0)(β0,u)

∆i(1−

ξi)(1− ηi
q̃ )Yi(t)

E{∆i(1−ξi)dMi(u)}
E[∆i(1−ξi)Yi(t)] + oP (1). Therefore, the above equation can be rewritten as

ˆ t

0

1

Ŝ(0)(β0, u)

{
n−1/2

n∑
i=1

(wIIi (u)− 1)dMi(u)

}

= n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
(1−∆i)(

ξi
α̃
− 1)

Yi(u)eβ
′
0Zi(u) −

Yi(u)E
{

(1−∆1)Y1(u)eβ
′
0Z1(u)

}
E [(1−∆1)Y1(u)]


× dµ0(t) + n−1/2

n∑
i=1

ˆ t

0

1

s(0)(β0, u)
∆i(1− ξi)(

ηi
q̃
− 1)

{
dMi(u)− Yi(u)E {∆1(1− ξ1)dM1(u)}

E [∆1(1− ξ1)Y1(u)]

}
+ oP (1). (6.17)

Combining all of the above, we have (6.13) as

n1/2{µ̂0(β̂II , t)− µ0(t)}
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≈ n1/2(β̂II − β0)′r(β0, t) +

ˆ t

0

1

s(0)(β0, u)

{
n−1/2

n∑
i=1

dMi(u)

}

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
(1−∆i)(1−

ξi
α̃

)

Yi(u)eβ
′
0Zi(u) −

Yi(u)E
{

(1−∆1)Y1(u)eβ
′
0Z1(u)

}
E [(1−∆1)Y1(u)]


× dµ0(t) + n−1/2

n∑
i=1

ˆ t

0

1

s(0)(β0, u)
∆i(1− ξi)(

ηi
q̃
− 1)

{
dMi(u)− Yi(u)E {∆1(1− ξ1)dM1(u)}

E [∆1(1− ξ1)Y1(u)]

}
.

(6.18)

We know from the asymptotic expansion of n1/2(β̂II − β0) that

n1/2(β̂II − β0)

= A(β0)−1n1/2Un(β0) + oP (1)

= A(β0)−1

(
n−1/2

n∑
i=1

MZ̃,i(β0, t) + n−1/2
n∑
i=1

ˆ τ

0
{1− ξi

α̃
}(1−∆i) (Ri(β0, t)− Yi(t)

×E [(1−∆i)Ri(β0, t)]

E [(1−∆i)Yi(t)]

)
dµ0(t)− n−1/2

n∑
i=1

ˆ τ

0
{1− ηi

q̃
}∆i(1− ξi)

(
dMZ̃,i(β0, t)− Yi(t)

E
[
dMZ̃,i(β0, t) | ∆i = 1, ξi = 0

]
E [Yi(t) | ∆i = 1, ξi = 0]

+ oP (1). (6.19)

Using equations (6.18) and (6.19), one can write

n1/2{µ̂0(β̂II , t)− µ0(t)}

= r(β0, t)
′A(β0)−1n1/2Un(β0) + n1/2(β̂II − β0)′r(β0, t) +

ˆ t

0

1

s(0)(β0, u)

{
n−1/2

n∑
i=1

dMi(u)

}

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
(1−∆i)(1−

ξi
α̃

)

Yi(u)eβ
′
0Zi(u) −

Yi(u)E
{

(1−∆1)Y1(u)eβ
′
0Z1(u)

}
E [(1−∆1)Y1(u)]

 dµ0(t)

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
∆i(1− ξi)(

ηi
q̃
− 1)

{
dMi(u)− Yi(u)E {∆1(1− ξ1)dM1(u)}

E [∆1(1− ξ1)Y1(u)]

}
+ oP (1)

= r(β0, t)
′A(β0)−1

(
n−1/2

n∑
i=1

MZ̃,i(β0) + n−1/2
n∑
i=1

ˆ τ

0
{1− ξi

α̃
}(1−∆i) (Ri(β0, t)−

Yi(t)E [(1−∆i)Ri(β, t)]

E [(1−∆i)Yi(t)]

)
dµ0(t)− n−1/2

n∑
i=1

ˆ τ

0
{1− ηi

q̃
}∆i(1− ξi)

(
dMZ̃,i(β0, t)−

128



Yi(t)E
[
dMZ̃,i(β0, t) | ∆i = 1, ξi = 0

]
E [Yi(t) | ∆i = 1, ξi = 0]

+

ˆ t

0

n−1/2
∑n

i=1 dMi(u)

s(0)(β0, u)

+ n−1/2
n∑
i=1

ˆ t

0

{1− ξi
α̃ }(1−∆i)Yi(u)

s(0)(β0, u)

(
eβ0Zi(u) −

E
[
(1−∆i)Yi(u)eβ0Zi(u)

]
E [(1−∆i)Yi(u)]

)
dµ0(u)

+ n−1/2
n∑
i=1

ˆ t

0

1

s(0)(β0, u)
∆i(1− ξi)(

ηi
q̃
− 1)

{
dMi(u)− Yi(u)E {∆1(1− ξ1)dM1(u)}

E [∆1(1− ξ1)Y1(u)]

}
+ oP (1)

= n−1/2
n∑
i=1

(
r(β0, t)

′A(β0)−1
(
MZ̃,i(β0)

)
+

ˆ t

0

dMi(u)

s(0)(β0, u)

)

+ n−1/2
n∑
i=1

{1− ξi
α̃
}(1−∆i)

[
r(β, t)′A(β)−1

ˆ τ

0

(
Ri(β0, t)−

Yi(t)E [(1−∆i)Ri(β0, t)]

E [(1−∆i)Yi(t)]

)
dµ0(t)

+

ˆ t

0

Yi(u)

s(0)(β0, u)

(
eβ0Zi(u) −

E
[
(1−∆i)Yi(u)eβ0Zi(u)

]
E [(1−∆i)Yi(u)]

)
dµ0(u)

]

+ n−1/2
n∑
i=1

{ηi
q̃
− 1}∆i(1− ξi)

[
r(β, t)′A(β)−1

ˆ τ

0

(
dMZ̃,i(β0, t)

−
Yi(t)E

[
dMZ̃,1(β0, t)(β0, t) | ∆1 = 1, ξ1 = 0

]
E [Y1(t) | ∆1 = 1, ξ1 = 0]


+

ˆ t

0

1

s(0)(β, u)

(
dMi(u)− Yi(t)E [dM1(u)(β0, t) | ∆1 = 1, ξ1 = 0]

E [Y1(t) | ∆1 = 1, ξ1 = 0]

)
dµ0(u)

]
+ oP (1)

= n−1/2
n∑
i=1

νi(β0, t) + n−1/2
n∑
i=1

{1− ξi
α̃
}(1−∆i)ψi(β0, t)− n−1/2

n∑
i=1

{1− ηi
q̃
}∆i(1− ξi)ζi(β0, t)

+ op(1),

where νi(β0, t) =
(
r(β0, t)

′A(β0)−1
(
MZ̃,i(β0)

)
+
´ t

0
dMi(u)

s(0)(β0,u)

)
, ψi(β0, t) =

[
r(β, t)′A(β)−1

´ τ
0(

Ri(β, t)− Yi(t)E[(1−∆i)Ri(β,t)]
E[(1−∆i)Yi(t)]

)
dµ0(t) +

´ t
0

Yi(u)

s(0)(β,u)

(
eβZi(u) − E[(1−∆i)Yi(u)eβZi(u)]

E[(1−∆i)Yi(u)]

)
dµ0(u)

]
,

ζ(β0, t) = [r(β, t)′A(β)−1
´ τ

0

(
dMZ̃,i(β0, t)−

Yi(t)E[dMZ̃,1(β0,t)(β0,t)|∆1=1,ξ1=0]
E[Y1(t)|∆1=1,ξ1=0]

)
+
´ t

0
1

s(0)(β,u)(
dMi(u)− Yi(t)E[dM1(u)(β0,t)|∆1=1,ξ1=0]

E[Y1(t)|∆1=1,ξ1=0]

)
].

Note that, since r(β0, t), A(β0), E [(1−∆i)Ri(β, t)], E
[
(1−∆i)Yi(u)eβZi(u)

]
,

E
[
dMZ̃,i(β, t) | ∆i = 1, ξi = 0

]
and E [dMi(t) | ∆i = 1, ξi = 0] are bounded and s(0)(β0, u),

E [(1−∆i)Yi(u)] E [Yi(u) | ∆i = 1, ξi = 0] are bounded away from zero along with the asymp-

totic normality of the rest of the terms, we can say that νi(β0, t), ψi(β0, t) and ζi(β0, t) are

bounded processes. For any finite number of time-points, the joint distribution of n1/2Wn(t) =
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n1/2{µ̂0(β̂II , t)−µ0(t)} for various t would be asymptotically equivalent to a zero-mean Gaus-

sian process. Finally, let us look at the covariance between n−1/2
∑n

i=1 νi(β0, t), n
−1/2

∑n
i=1{1−

ξi
α̃ }(1 −∆i)ψi(β0, t) and n−1/2

∑n
i=1{1 −

ηi
q̃ }∆i(1 − ξi)ζi(β0, t). The covariance between the

first two quantities is

cov(n−1/2
n∑
i=1

νi(β0, t), n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)ψi(β0, t))

= E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)ψi(β0, t)

)

= E

[
E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)ψi(β0, t)
∣∣∣ F(τ)

)]

= E

[
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

E

(
1− ξi

α̃

∣∣∣ F(τ)

)
(1−∆i)ψi(β0, t)

]
= 0

Similarly, the covariance between the first and third quantities is given by

cov(n−1/2
n∑
i=1

νi(β0, t), n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ζi(β0, t))

= E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ζi(β0, t)

)

= E

[
E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ζi(β0, t)
∣∣∣ F(τ)

)]

= E

[
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

E

(
(1− ξi)(1−

ηi
q̃

)
∣∣∣ F(τ)

)
∆iζi(β0, t)

]
= 0

Similarly the covariance between n−1/2
∑n

i=1(1 − ξi
α̃ )(1 − ∆i)ψi(β0, t) and n−1/2

∑n
i=1(1 −

ηi
q̃ )∆i(1 − ξi)ζi(β0, t) = 0. Hence, the covariance of n1/2Wn(t) and n1/2Wn(s) is given by

E (νi(β0, t))νi(β0, s)) + 1−α
α E ((1−∆i)ψi(β0, t))ψi(β0, s))

+ (1− α)1−q
q P (∆i = 1)E (ψi(β0, t))ψi(β0, s) | ∆i = 1, ξi = 0).
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

Here is the Appendix containing the proofs of the theorems in Chapter 4.

B.1 Regularity Conditions

(i) (T ∗i , Ci, Zi(t)) ∀i = 1, 2, . . . , n are independent and identically distributed.

(ii) P (Y (τ) > 0) > 0 and Ni(τ) (∀i = 1, 2, . . . , n) are bounded by a constant.

(iii) | Zi(0) | +
´ τ

0 | dZi(u) |< Cz <∞ almost surely for some constant Cz.

(iv) The matrix A = E
[´ τ

0 Yi(t) {Zi(t)− e(t)}
⊗2 dt

]
(where e(t) = E(Yi(t)Zi(t))

E((Yi(t))
) is positive

definite.

(v) (Finite Interval)
´ τ

0 dµ0(t) <∞.

(vi) As n→∞, ñ
n = α̃→ α ∈ (0, 1), q̃ → q.

(vii) (Asymptotic stability)As n→∞, we have the following:

(a) There exists a positive definite matrix, V I(β0), such that

var

[
n−1/2

n∑
i=1

ˆ τ

0

(
dRi(β0, t)−

Yi(t)E {1−∆1} dR1(β0, t)

E {(1−∆1)Y1(t)}

)]
P−→ V I(β0).

(b) There is a positive definite matrix, V II(β0) such that

var

 1√
n

n∑
i=1

MZ̃,i(β0)−
ˆ τ

0

Yi(t)E
{
dMZ̃,1(β0, t) | ∆1 = 1, ξ1 = 0

}
E {Y1(t) | ∆1 = 1}


| ∆i = 1, ξi = 0]

P−→ V II(β0).

(i) sup0≤t≤τ‖Wn(t)−W (t)‖ P−→ 0 for some bounded process, W (t),

(ii) Wn(t) is monotone on [0, τ ] and

(iii) Gn(t) converges to a zero-mean process with continuous sample paths. Then
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sup
0≤s≤τ

‖
ˆ s

0
(Wn(t)−W (t))dGn(t)‖ P−→ 0, sup

0≤s≤τ
‖
ˆ s

0
(Gn(t)−G(t))dWn(t)‖ P−→ 0.

This was stated in Kang and Cai (2009b).

Lemma A3 :

Let Bi(t), i = 1, 2, . . . , n be i.i.d. real-valued random processes on [0, τ ] with E(Bi(t)) =

µB(t), var(Bi(0)) < ∞, var(Bi(τ)) < ∞ and suppose that almost all paths of Bi(t) have

finite variation. Then, n−1/2
∑n

i=1 {Bi(t)− µB(t)} converges weakly to a zero-mean Gaussian

process in l∞[0, τ ] and therefore, n−1
∑n

i=1 {Bi(t)− µB(t)} converges in probability to zero,

uniformly in t. This lemma has been stated in Kulich and Lin (2004) as a proposition.

First we will look at the asymptotic properties of the time-varying sampling weights.

More specifically, α̂(t) =
∑n
i=1(1−∆i)ξiYi(t)∑n
i=1(1−∆i)Yi(t)

and q̂(t) =
∑n
i=1 ∆i(1−ξi)ηiYi(t)∑n
i=1 ∆i(1−ξi)Yi(t) . Looking at the

Taylor series expansion of α̂(t)−1 around α̃−1, we have

α̂(t)−1 − α̃−1 = − 1

α∗(t)2
(α̂(t)− α̃) =

α̃

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

[
n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]
,

where α∗(t) is on the line between α̂(t) and α̃. Now by the Glivenko-Cantelli theorem, one can

show that 1
n

∑n
i=1(1−∆i)Yi(t) converges to E ((1−∆i)Yi(t)). (1−∆i)Yi(t) is bounded and

monotone functions of t. They are also independent of ξi. Hence, by Lemma A1 and noting

that when sampling from a finite population µB(t) =
∑n

i=1Bi(t) where Bi(t) = (1−∆i)Yi(t),

n−1/2
∑n

i=1(1 − ξi
α̃ ) [(1−∆i)Yi(t)] converges weakly to a zero-mean Gaussian process(Kang

and Cai 2009b). This implies that 1
n

∑n
i=1(1− ξi

α̃ ) [(1−∆i)Yi(t)]
P−→ 0 uniformly in t. Further,

α̂(t), α∗(t) and α̃ converges to the same limit. Using Slutsky’s theorem, we have

n1/2(α̂(t)−1 − α̃−1)

= n1/2 α̃

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

[
n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]

=
1

α̃E((1−∆i)Yi(t))

[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]
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+ α̃

(
1

α∗(t)2

1∑n
i=1(1−∆i)Yi(t)

− 1

α̃2E((1−∆i)Yi(t))

)[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]

=
1

α̃E((1−∆i)Yi(t))

[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(t)

]
+ oP (1). (6.20)

Similarly, q̂(t)−1−q̃−1 = − 1
q∗(t)2 (q̂(t)−q̃) = q̃

q∗(t)2
1∑n

i=1 ∆i(1−ξi)Yi(t)

[∑n
i=1 ∆i(1− ξi)(1− ηi

q̃ )Yi(t)
]
,

where q∗(t) is on the line between q̂(t) and q̃. Proceeding as before, we can see that q̂(t), q∗(t)

and q̃ converges to the same limit. Using Slutsky’s theorem, we have

n1/2(q̂(t)−1 − q̃−1) =
1

q̃E(∆i(1− ξi)Yi(t))

[
n−1/2

n∑
i=1

∆i(1− ξi)(1−
ηi
q̃

)Yi(t)

]
+ oP (1).

(6.21)

B.2 Proof of Theorem 3

: Let us define Un(β) = 1
nU

II(β). Based on similar arguments, as in Foutz(1977), the

consistency of β̂II can be shown by proving the following : (a) δ
δβ′Un(β) exists and is con-

tinuous in an open neighborhood of β0 in B, (b) δ
δβ′0
Un(β0) is negative definite w.p. → 1 as

n→∞, (c) - δ
δβ′Un(β)

P−→ A(β0) uniformly for β in a neighborhood of β0 and (d) Un(β)
P−→ 0.

Taking derivative of the expression, we get

δ

δβ′
Un(β) = − 1

n

n∑
i=1

ˆ τ

0
wIIi (t)

{
Zi(t)− Z̄II(t)

}
Yi(t)Zi(t)

′dt (6.22)

We need to show that this goes to A in probability. Using the above formula, one can rewrite

− δ

δβ′
Un(β) =

1

n

n∑
i=1

ˆ τ

0
wIIi (t){Zi(t)⊗2 − Z̄II(t)⊗2}Yi(t)dt. (6.23)

Hence, condition (a) of the consistency of β̂II is satisfied. To prove the other conditions, we

will first start with proving

sup
t∈[0,τ ]

‖Z̄II(t)− e(t)‖ P−→ 0 as n →∞.

133



It suffices to show that

sup
t∈[0,τ ]

‖ 1

n

n∑
i=1

wIIi (t)Yi(t)Zi(t)
⊗d − 1

n

n∑
i=1

Yi(t)Zi(t)
⊗d‖ P−→ 0 as n →∞ for d = 0, 1.

Let us start with n−1/2
∑n

i=1w
II
i (t)Yi(t)Zi(t)

⊗d− n−1/2
∑n

i=1 Yi(t)Zi(t)
⊗d. We can note that

n−1/2
n∑
i=1

wIIi (t)Yi(t)Zi(t)
⊗d − n−1/2

n∑
i=1

Yi(t)Zi(t)
⊗d

= n−1/2
n∑
i=1

{∆iξi +
(1−∆i)ξi

α̂(t)
+

∆i(1− ξi)ηi
q̂(t)

}Yi(t)Zi(t)⊗d − n−1/2
n∑
i=1

Yi(t)Zi(t)
⊗d

= n−1/2
n∑
i=1

(1−∆i){
ξi
α̃
− 1}Yi(t)Zi(t)⊗d + n−1/2

n∑
i=1

∆i(1− ξi){
ηi
q̃
− 1}Yi(t)Zi(t)⊗d

− n−1/2
n∑
i=1

Yi(t)

E [(1−∆1)Y1(t)]
(1−∆i)

(
ξi
α̃
− 1

) 1

n

n∑
j=1

(1−∆j)
ξj
α̃
Yj(t)Zj(t)

⊗d


− n−1/2

n∑
i=1

Yi(t)

E [∆1(1− ξ1)Y1(t)]
∆i(1− ξi)

(
ηi
q̃
− 1

) 1

n

n∑
j=1

∆j(1− ξj)
ηj
q̃
Yj(t)Zj(t)

⊗d

+ oP (1).

(6.24)

For each j, from (iii) of the regularity conditions, one can note that the total variation of

∆i(1 − ξi)Yi(t)Zi(t)⊗2 and (1 − ∆i)Yi(t)Zi(t)
⊗2 are finite for t ∈ [0, τ ]. From Lemma A1,

1
n

∑n
i=1 ∆i(1− ξi)ηiq̃ Yi(t)Zi(t)

⊗d converges to some finite quantity E
(
∆i(1− ξi)Yi(t)Zi(t)⊗d

)
,

in probability uniformly in t. Similarly, we know that 1
n

∑n
i=1(1 − ∆i)

ξi
α̃ Yi(t)Zi(t)

⊗d P−→

E
(
(1−∆i)Yi(t)Zi(t)

⊗d). Therefore,

n−1/2
n∑
i=1

wIIi (t)Yi(t)Zi(t)
⊗d − n−1/2

n∑
i=1

Yi(t)Zi(t)
⊗d

= n−1/2
n∑
i=1

(1−∆i){
ξi
α̃
− 1}Yi(t)

{
Zi(t)

⊗d −
E
(
(1−∆i)Yi(t)Zi(t)

⊗d)
E [(1−∆1)Y1(t)]

}

+ n−1/2
n∑
i=1

∆i(1− ξi){
ηi
q̃
− 1}Yi(t)

{
Zi(t)

⊗d −
E
(
∆i(1− ξi)Yi(t)Zi(t)⊗d

)
E [∆1(1− ξ1)Y1(t)]

}
+ oP (1).

(6.25)
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Now, note that, E

[
(1−∆i)Yi(t)

{
Zi(t)

⊗d − E((1−∆i)Yi(t)Zi(t)
⊗d)

E[(1−∆1)Y1(t)]

}]
= 0 and E [∆i(1− ξi)Yi(t)

×
{
Zi(t)

⊗d − E(∆i(1−ξi)Yi(t)Zi(t)⊗d)
E[∆1(1−ξ1)Y1(t)]

}]
= 0. Hence, by Lemma A1, the terms on the RHS of

(6.25): n−1/2
∑n

i=1(1−∆i){ ξiα̃−1}Yi(t)
{
Zi(t)

⊗d − E((1−∆i)Yi(t)Zi(t)
⊗d)

E[(1−∆1)Y1(t)]

}
and n−1/2

∑n
i=1 ∆i(1−

ξi){ηiq̃ − 1}Yi(t) ×
{
Zi(t)

⊗d − E(∆i(1−ξi)Yi(t)Zi(t)⊗d)
E[∆1(1−ξ1)Y1(t)]

}
converge weakly to zero-mean Gaus-

sian processes. Hence, 1
n

∑n
i=1(1 − ∆i){ ξiα̃ − 1}Yi(t)

{
Zi(t)

⊗d − E((1−∆i)Yi(t)Zi(t)
⊗d)

E[(1−∆1)Y1(t)]

}
and

1
n

∑n
i=1 ∆i(1− ξi){ηiq̃ − 1}Yi(t)×

{
Zi(t)

⊗d − E(∆i(1−ξi)Yi(t)Zi(t)⊗d)
E[∆1(1−ξ1)Y1(t)]

}
converge to zero in prob-

ability uniformly in t. Therefore, by Slutsky’s theorem, we have

∥∥∥∥∥ 1

n

n∑
i=1

wIIi (t)Yi(t)Zi(t)
⊗d − 1

n

n∑
i=1

Yi(t)Zi(t)
⊗d

∥∥∥∥∥ P−→ 0 n →∞ for d = 0, 1. (6.26)

Therefore, 1
n

∑n
i=1w

II
i (t)Yi(t)Zi(t)

⊗d and 1
n

∑n
i=1 Yi(t)Zi(t)

⊗d converges to the same limit

uniformly. Also, since E(Yi(t)) is bounded away from zero by regularity condition (ii), we

have from the above convergence results,

sup
t∈[0,τ ]

‖Z̄II(t)− e(t)‖ P−→ 0 as n →∞

Now, one can rewrite − δ
δβ′0
Un(β) as the following :

1

n

n∑
i=1

ˆ τ

0
wIIi (t){Zi(t)⊗2 − Z̄II(t)⊗2}Yi(t)dt

=
1

n

n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̃
− 1}Yi(t){Zi(t)⊗2 − Z̄II(t)⊗2}dt

+
1

n

n∑
i=1

ˆ τ

0
(1−∆i)ξi{α̂(t)−1 − α̃−1}Yi(t){Zi(t)⊗2 − Z̄II(t)⊗2}dt

+
1

n

n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}Yi(t){Zi(t)⊗2 − Z̄II(t)⊗2}dt

+
1

n

n∑
i=1

ˆ τ

0
∆i(1− ξi)ηi{q̂(t)−1 − q̃−1}Yi(t){Zi(t)⊗2 − Z̄II(t)⊗2}dt

+
1

n

n∑
i=1

ˆ τ

0
{Zi(t)⊗2 − Z̄II(t)⊗2}Yi(t)dt.
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By the fact that Z̄II(t) converges uniformly in t to e(t), the first term of the right hand side

quantity is asymptotically equivalent to 1
n

∑n
i=1

´ τ
0 (1−∆i){ ξiα̃ − 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt

and the third term converges to 1
n

∑n
i=1

´ τ
0 ∆i(1− ξi){ηiq̃ − 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt. Fur-

ther, α̂(t)−1 − α̃−1 P−→ 0 and q̂(t)−1 − q̃−1 P−→ 0. Both (1 − ∆i)ξiYi(t)Zi(t)
⊗2 and ∆i(1 −

ξi)ηiYi(t)Zi(t)
⊗2 have bounded variation and are monotone functions in t. Hence, 1

n

∑n
i=1(1−

∆i)ξiYi(t)Zi(t)
⊗2 P−→ 0 and 1

n

∑n
i=1 ∆i(1 − ξi)ηiYi(t)Zi(t)⊗2 P−→ 0 ∀t. Therefore, we have the

second term and fourth terms converging to zero in probability. In other words,

1

n

n∑
i=1

ˆ τ

0
wIIi (t){Zi(t)⊗2 − Z̄II(t)⊗2}Yi(t)dt

=
1

n

n∑
i=1

ˆ τ

0
(1−∆i){

ξi
α̃
− 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt

+
1

n

n∑
i=1

ˆ τ

0
∆i(1− ξi){

ηi
q̃
− 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt+

1

n

n∑
i=1

ˆ τ

0
{Zi(t)⊗2 − e(t)⊗2}Yi(t)dt

+ oP (1).

Since, (1 − ∆i)Yi(t)
[
Zi(t)

⊗2 − e(t)⊗2
]

and ∆iYi(t)
[
Zi(t)

⊗2 − e(t)⊗2
]

have bounded varia-

tion and each of these terms are independent and identically distributed. Further, note

that 1
n

∑n
i=1 ∆iYi(t)

[
Zi(t)

⊗2 − e(t)⊗2
]

= 1
n(1−α̃)

∑n
i=1(1 − ξi)∆iYi(t)

[
Zi(t)

⊗2 − e(t)⊗2
]

since

ξi’s are simple random sample from the finite population. It follows from Lemma A1,

1
n

∑n
i=1

´ τ
0 (1 − ∆i){ ξiα̃ − 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt P−→ E

[´ τ
0 (1−∆i){ ξiα̃ − 1}Yi(t){Zi(t)⊗2

−e(t)⊗2}
]
dt and 1

n

∑n
i=1

´ τ
0 ∆i(1− ξi){ηiq̃ − 1}Yi(t){Zi(t)⊗2 − e(t)⊗2}dt P−→ E

[´ τ
0 ∆i(1− ξi)

{ηiq̃ − 1}Yi(t) ×{Zi(t)⊗2 − e(t)⊗2}
]
dt, which are equal to zero. Hence,

− δ

δβ′0
Un(β)

P−→ A as n →∞. (6.27)

Thus, conditions (b) and (c) of the consistency of β̂II are satisfied. For condition (d), we

start by looking at n1/2Un(β). Note that n1/2Un(β) can be decomposed into

n−1/2
n∑
i=1

ˆ τ

0
wIIi (t)

{
Zi(t)− Z̄II(t)

}
(dMi(t) + Yi(t)dµ0(t))

136



= n−1/2
n∑
i=1

ˆ τ

0

{
Zi(t)− Z̄II(t)

}
dMi(t) + n−1/2

n∑
i=1

ˆ τ

0

(
wIIi (t)− 1

) {
Zi(t)− Z̄II(t)

}
dMi(t).

(6.28)

The first part of the above equation can be further decomposed into

n−1/2
n∑
i=1

ˆ τ

0

{
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0

{
Zi(t)− Z̄(t)

}
dMi(t) + n−1/2

n∑
i=1

ˆ τ

0

{
Z̄(t)− Z̄II(t)

}
dMi(t). (6.29)

The first quantity on the right hand side is the pseudo partial likelihood score function for

the entire cohort data. Note that for fixed t, n−1/2
∑n

i=1Mi(t) is the sum of zero-mean in-

dependent and identically distributed random variables. From the regularity conditions (iii)

and (v) and by CLT, Mi(t) has bounded variation and hence, from Lemma A3, we have that

n−1/2
∑n

i=1Mi(t) converges weakly to a zero-mean Gaussian process, say WM (t) (Schaubel

et al. 2006). From the functional Central Limit Theorem (Pollard, 1990 page 53) we can con-

clude that n−1/2
∑n

i=1Mi(t) is tight and converges weakly to WM (t). It can be shown that

E {WM (t)−WM (s)}4 = 3
(
E {WM (t)−WM (s)}2

)2
by properties of a Gaussian distribu-

tion. Further, E {WM (t)−WM (s)}2 = E {WM (t)}2 +E {WM (s)}2−2E {WM (t)WM (s)}2 =

E {WM (t)}2−E {WM (s)}2 for s ≤ t, since E {WM (t)}2 = E {Mi(t)}2 = E
(´ t

0 Yi(u) {dµ0(u)

+β′0Zi(u)du}) and E {WM (t)−WM (s)}2 = E
(´ t

s Yi(u) {dµ0(u) + β′0Zi(u)du}
)

. Note that

the conditions (iii) and (v) ensure boundedness of µ0(t) and β′0Zi(t) in [0, τ ]. Thus, by the

Mean Value theorem, there is a constant such that, E {WM (t)−WM (s)}2 = E
(´ t

s Yi(u)

{dµ0(u) + β′0Zi(u)du}) ≤ K(t − s) for s ≤ t and E {WM (t)−WM (s)}4 ≤ 3 (E {WM (t)−

WM (s)}2
)2
≤ K∗(t − s)2. Then, by the Kolmogorov-Centsov Theorem (Karatzas and

Shereve 1988),WM (t) has continuous sample paths. We can also note that, 1
n

∑n
i=1 Yi(t)Zi(t)

and 1
n

∑n
i=1 Yi(t) have bounded variations and 1

n

∑n
i=1 Yi(t) is bounded away from zero from

the regularity conditions. By Lin et al. (2000), Z̄(t) is of bounded variation and can be

written as the difference of two monotone functions in t. Hence, one can write Z̄(t) =

Z∗1 (t) − Z∗2 (t) where each of the functions are non-negative, monotone in t and bounded.
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Since, Z̄II(t) is also of bounded variation by the same arguments and equation (6.26), one

can express that as the difference of two monotone bounded functions in t. We can rewrite

n−1/2
∑n

i=1

´ τ
0

{
Z̄(t)− Z̄II(t)

}
dMi(t) = n1/2

´ τ
0

{
Z̄(t)− e(t)

}
dM̄(t)−n1/2

´ τ
0

{
Z̄II(t)− e(t)

}
dM̄(t),

where M̄(t) = 1
n

∑n
i=1Mi(t). Noting that n1/2M̄(t) is bounded and the uniform convergence

of Z̄(t) and Z̄II(t) to e(t), both the terms on the RHS of (6.29) converges to zero in probability

by Lemma A2 as n → ∞. Therefore, n−1/2
∑n

i=1

´ τ
0

{
Zi(t)− Z̄II(t)

}
×dMi(t) is asymptot-

ically equivalent to n−1/2
∑n

i=1

´ τ
0 {Zi(t)− e(t)} dMi(t). The second term of (6.28) can be

rewritten as

n−1/2
n∑
i=1

ˆ τ

0

(
wIIi (t)− 1

) {
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0

(
ξi
α̃
− 1

)
(1−∆i)

{
Zi(t)− Z̄II(t)

}
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0

(
ηi
q̃
− 1

)
∆i(1− ξi)

{
Zi(t)− Z̄II(t)

}
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0

(
α̂(t)−1 − α̃−1

)
ξi(1−∆i)

{
Zi(t)− Z̄II(t)

}
dMi(t)

+ n−1/2
n∑
i=1

ˆ τ

0

(
q̂(t)−1 − q̃−1

)
ηi∆i(1− ξi)

{
Zi(t)− Z̄II(t)

}
dMi(t). (6.30)

From the uniform convergence of Z̄II(t) to e(t), the first term on the right hand side of 6.30

can be written as

n−1/2
n∑
i=1

ˆ τ

0

(
ξi
α̃
− 1

)
(1−∆i)

{
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0

(
ξi
α̃
− 1

)
(1−∆i) {Zi(t)− e(t)} dMi(t) + oP (1)

= n−1/2
n∑
i=1

ˆ τ

0

(
1− ξi

α̃

)
(1−∆i) {Zi(t)− e(t)}Yi(t)

[
dµ0(t) + β′0Zi(t)dt

]
+ oP (1).

The last equality holds because only those individuals with ∆i = 0 contribute to the summa-

tion, i.e., only individuals who did not experience a single event. By (6.20), (6.21), and the
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fact that Z̄II(t) converges uniformly to e(t) in probability, we have the third term of (6.30):

n−1/2
n∑
i=1

ˆ τ

0

(
α̂(t)−1 − α̃−1

)
ξi(1−∆i)

{
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
j=1

ˆ τ

0
(1−∆j)(

ξj
α̃
− 1)

(
Yj(t)

E((1−∆1)Y1(t))

)

×

{
1

n

n∑
i=1

ξi
α̃

(1−∆i) {Zi(t)− e(t)}Yi(t)
[
dµ0(t) + β′0Zi(t)dt

]}
+ oP (1).

Similarly, we can show that

n−1/2
n∑
i=1

ˆ τ

0

(
q̂(t)−1 − q̃−1

)
ηi∆i(1− ξi)

{
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
j=1

ˆ τ

0
∆j(1− ξj)(

ηj
q̃
− 1)

(
Yj(t)

(1− α̃)E(∆1Y1(t))

)

×

{
1

n

n∑
i=1

ηi
q̃

∆i(1− ξi) {Zi(t)− e(t)} dMi(t)

}
+ oP (1).

From Lemma A1, we have 1
n

∑n
i=1

ηi
q̃ ∆i(1− ξi) {Zi(t)− e(t)} dMi(t) converges to

E [{Zi(t)− e(t)} dMi(t) | ∆i = 1, ξi = 0]P (∆i = 1, ξi = 0) in probability uniformly in t.

Thus,

n−1/2
n∑
j=1

ˆ τ

0
∆j(1− ξj)(

ηj
q̃
− 1)

(
Yj(t)

(1− α̃)E(∆1Y1(t))

)
×

{
1

n

n∑
i=1

ηi
q̃

∆i(1− ξi) {Zi(t)− e(t)}

×dMi(t)}

= n−1/2
n∑
j=1

ˆ τ

0
∆j(1− ξj)(

ηj
q̃
− 1)

(
Yj(t)

E(∆1Y1(t))

)
E [{Zi(t)− e(t)} dMi(t) | ∆i = 1, ξi = 0]

× P (∆i = 1) + oP (1)

= n−1/2
n∑
j=1

ˆ τ

0
∆j(1− ξj)(

ηj
q̃
− 1)

(
Yj(t)

E(Yi(t) | ∆i = 1)

)
E [{Zi(t)− e(t)} dMi(t) | ∆i = 1,

ξi = 0] + oP (1).
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Rewrite dMZ̃,i(t) = (Zi(t)− e(t))dMi(t), the left hand side of (6.30) is asymptotically equiv-

alent to

n−1/2
n∑
i=1

ˆ τ

0
(wIIi (t)− 1)

{
Zi(t)− Z̄II(t)

}
dMi(t)

= n−1/2
n∑
i=1

ˆ τ

0

(
1− ξi

α̃

)
(1−∆i) {Zi(t)− e(t)}Yi(t)

[
dµ0(t) + β′0Zi(t)dt

]
+ n−1/2

n∑
j=1

ˆ τ

0
(1−∆j)(

ξj
α̃
− 1)

(
Yj(t)

E((1−∆1)Y1(t))

)
{E [(1−∆i) {Zi(t)− e(t)}Yi(t)] dµ0(t)

+E
[
1−∆i) {Zi(t)− e(t)}Yi(t)β′0Zi(t)dt

]}
+ n−1/2

n∑
i=1

ˆ τ

0

(
1− ηi

q̃

)
∆i(1− ξi) {Zi(t)− e(t)}

× dMi(t) + n−1/2
n∑
j=1

ˆ τ

0
∆j(1− ξj)(

ηj
q̃
− 1)

(
Yj(t)

E(Yi(t) | ∆i = 1)

)
× E [{Zi(t)− e(t)} dMi(t) | ∆i = 1, ξi = 0] + oP (1)

= n−1/2
n∑
i=1

(
1− ξi

α̃

)
(1−∆i)

ˆ τ

0

{
{Zi(t)− e(t)}

[
Yi(t)dµ0(t) + Yi(t)β

′
0Zi(t)dt

]
−Yi(t)E [(1−∆i) {Zi(t)− e(t)} (Yi(t)dµ0(t) + Yi(t)β

′
0Zi(t)dt)]

E((1−∆i)Yi(t))

}

+ n−1/2
n∑
i=1

(
1− ηi

q̃

)
∆i(1− ξi)

MZ̃,i(τ)−
ˆ τ

0
Yi(t)

E
[
dMZ̃,i(t) | ∆i = 1, ξi = 0

]
E(Yi(t) | ∆i = 1)

+ oP (1).

Now, defining dRi(β, t) = Yi(t) {Zi(t)− e(t)} {dµ0(t) + β′Zi(t)dt}, we have the above

expression as

n−1/2
n∑
i=1

(
1− ξi

α̃

)
(1−∆i)

ˆ τ

0

{
dRi(β0, t)−

Yi(t)E ((1−∆i)dRi(β, t))

E ((1−∆i)Yi(t))

}

+n−1/2
n∑
i=1

(
1− ηi

q̃

)
∆i(1− ξi)

MZ̃,i(τ)−
ˆ τ

0
Yi(t)

E
[
dMZ̃,i(t) | ∆i = 1, ξi = 0

]
E(Yi(t) | ∆i = 1)

 .

Further, denote dRi(β0, t)−Yi(t)E((1−∆i)dRi(β0,t))
E((1−∆i)Yi(t))

by dR∗i (β, t) and dMZ̃,i(t)−Yi(t)
E[dMZ̃,i(t)|∆i=1,ξi=0]

E(Yi(t)|∆i=1)
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as dR∗∗i (t), R∗i (β) =
´ τ

0 dR
∗
i (β, t) and R∗∗i (τ) =

´ τ
0 dR

∗∗
i (t). Hence, n−1/2U II(β0) is asymp-

totically equivalent to

n−1/2
n∑
i=1

MZ̃,i(β0)+n−1/2
n∑
i=1

(
1− ξi

α̃

)
(1−∆i)R

∗
i (β0)++n−1/2

n∑
i=1

(
1− ηi

q̃

)
∆i(1−ξi)R∗∗i (τ).

(6.31)

The first term of the (6.31) is asymptotically normally distributed with mean zero and vari-

ance, Q(β) = E
(
MZ̃,1(β)

)⊗2
by Schaubel et al. (2006). To study the variance terms of the

second and third terms of the (6.31), we use Hájek’s (1960) central limit theorem for finite

population sampling. Using (6.11) and (6.12), we can show that the following conditions for

the Hájek’s Theorem are satisfied.

(a) α̃ converges to α ∈ (0, 1).

(b) 1
n

∣∣a′ (´ τ0 dR∗i (β, t)− 1
n

∑n
i=1

´ τ
0 dR

∗
i (β, t)

)∣∣ and 1
n

∣∣a′ (´ τ0 dR∗∗i (t)− 1
n

∑n
i=1

´ τ
0 dR

∗∗
i (t)

)∣∣
converges to 0 in probability.

(c) 1
n−1

∑n
i=1

(
a′
´ τ

0 dR
∗
i (β, t)− 1

n

∑n
i=1 a

′ ´ τ
0 dR

∗
i (β, t)

)2
and 1

n−1

∑n
i=1

(
a′
´ τ

0 dR
∗∗
i (t)dµ0(t)

− 1
n

∑n
i=1 a

′ ´ τ
0 dR

∗∗
i (t)

)2
converges to some quantity, σ∗2 > 0 and σ∗∗2 > 0 respectively.

Hence, based on Hájek’s Theorem for finite population sampling, the second term of (6.31) can

be shown to be asymptotically normally distributed with mean zero and covariance 1−α
α V I(β)

where

V I(β) = var

(
(1−∆i)

ˆ τ

0

{
dRi(β, t)−

Yi(t)E ((1−∆i)dRi(β, t))

E ((1−∆i)Yi(t))

})
.

Further, based on the regularity condition and Cramer- Wold device, we have n−1/2
∑n

i=1(
{1− ηi

q̃ }∆i(1− ξi)R∗∗i (τ)
)

converges to a zero-mean Normal random variable with variance

1−q
q (1− α)P (∆1 = 1)V II(β), where

V II(β) = var

MZ̃,i(τ)−
ˆ τ

0
Yi(t)

E
[
dMZ̃,i(t) | ∆i = 1, ξi = 0

]
E(Yi(t) | ∆i = 1)

 .
Next let us consider the covariance between n−1/2

∑n
i=1MZ̃,i(β), n−1/2

∑n
i=1(1 − ξi

α̃ )(1 −

∆i)R
∗
i (β) and n−1/2

∑n
i=1(1−ηi

q̃ )∆i(1−ξi)R∗∗i (τ). We have already proved that cov(n−1/2
∑n

i=1
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MZ̃,i(β), n−1/2
∑n

i=1(1− ξi
α̃ )(1−∆i)R

∗
i (τ)) = 0 in Chapter 3. Defining the marginal filtration

as Fi(t) = σ{Ni(t), Yi(t), Zi(t)} for the i-th individual at time t, we have

cov(n−1/2
n∑
i=1

MZ̃,i(β), n−1/2
n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ))

= E

(
n−1/2

n∑
i=1

MZ̃,i(β)n−1/2
n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ)

)

= E

[
E

(
n−1/2

n∑
i=1

MZ̃,i(β)n−1/2
n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ)
∣∣∣ F(τ)

)]

= E

[
n−1/2

n∑
i=1

MZ̃,i(β)n−1/2
n∑
i=1

E

(
(1− ηi

q̃
)(1− ξi)∆i

∣∣∣ F(τ)

)
R∗∗i (τ)

]

= E

[
n−1/2

n∑
i=1

MZ̃,i(β)n−1/2
n∑
i=1

(
P (ηi = 0, ξi = 0,∆i = 1

∣∣∣ F(τ))+

q̃ − 1

q̃
P (ηi = 1, ξi = 0,∆i = 1

∣∣∣ F(τ))

)
R∗∗i (τ)

]
= 0.

The last step is a direct consequence of the fact that (P (ηi = 0, ξi = 0,∆i = 1
∣∣∣ F(τ)) =

P (ηi = 0
∣∣∣ ξi = 0,∆i = 1,F(τ))P (ξi = 0,∆i = 1

∣∣∣ F(τ)) = 1− q̃ = 1− P (ηi = 1
∣∣∣ ξi = 0,∆i =

1,F(τ))P (ξi = 0,∆i = 1
∣∣∣ F(τ)). Looking at the covariance between n−1/2

∑n
i=1(1− ξi

α̃ )(1−

∆i)R
∗
i (β) and n−1/2

∑n
i=1(1− ηi

q̃ )∆i(1− ξi)R∗∗i (τ), we have

cov(n−1/2
n∑
i=1

(1− ξi
α̃

)(1−∆i)R
∗
i (β), n−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ))

= E

(
n−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)R
∗
i (β)n−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ)

)

= E

[
E

(
n−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)R
∗
i (β)n−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ)
∣∣∣ F(τ)

)]

= E

[
1

n

n∑
i=1

(1−∆i)R
∗
i (β)E

(
(1− ηi

q̃
)(1− ξi

α̃
)(1− ξi)

∣∣∣ F(τ)

)
∆iR

∗∗
i (τ)

]

+
∑
i 6=j

E

[
1

n
(1−∆i)R

∗
i (β)E

(
(1− ηj

q̃
)(1− ξi

α̃
)(1− ξj)

∣∣∣ F(τ)

)
∆jR

∗∗
j (τ)

]

Now, the first term is zero as ∆i(1−∆i) = 0∀i and the second term E
(

(1− ηj
q̃ )(1− ξi

α̃ )(1− ξj)
∣∣∣
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F(τ)) = E
(

(1− ηj
q̃ )(1− ξj)

∣∣∣ Fj(τ)
)
E
(

(1− ξi
α̃ )
∣∣∣ Fi(τ)

)
as the i-th and j-th subjects are

independent and we can easily show that this term equals 0. Therefore, the variance of

n1/2Un(β) is given by E(MZ̃,i(β))⊗2 + 1−α
α V I(β) + (1−α)1−q

q P (∆1 = 1)V II(β). This implies

that Un(β)
P−→ 0 as n → ∞. Further, we can use Taylor Series expansion of n1/2Un(β̂II)

around β0 to get

n1/2Un(β̂II) ≈ n1/2Un(β) + n1/2(β̂II − β0)′
δ

δβ
Un(β∗),

where β∗ belongs to the line segment joining β0 and β̂II . Hence, we can say that n1/2(β̂II−β0)

converges to a normal distribution with mean 0 and variance

A−1

(
E(MZ̃,i(β))⊗2 +

1− α
α

V I(β) + (1− α)
1− q
q

P (∆1 = 1)V II(β)

)
A−1.
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B.3 Proof of Theorem 4

: We can decompose µ̂II0 (β, t) in the following way:

n1/2{µ̂II0 (β̂II , t)− µ0(t)}

= n1/2{µ̂II0 (β̂II , t)− µ̂II0 (β0, t) + µ̂II0 (β0, t)− µ0(t)}

= n1/2


ˆ t

0

∑n
i=1w

II
i (u)

[
dNi(u)− Yi(u)Zi(u)′β̂IIdu

]
∑n

i=1w
II
i (u)Yi(u)

−
ˆ t

0

∑n
i=1w

II
i (u) [dNi(u)− Yi(u)β′0Zi(u)du]∑n

i=1w
II
i (u)Yi(u)

+

ˆ t

0

∑n
i=1w

II
i (u) [dNi(u)− Yi(u)β′0Zi(u)du]∑n

i=1w
II
i (u)Yi(u)

−
ˆ t

0

∑n
i=1w

II
i (u)Yi(u)dµ0(u)∑n

i=1w
II
i (u)Yi(u)

}

= n1/2


ˆ t

0

∑n
i=1w

II
i (u)

[
β0 − β̂II

]′
Yi(u)Zi(u)du∑n

i=1w
II
i (u)Yi(u)

+ n1/2

{ˆ t

0

∑n
i=1w

II
i (u)dMi(u)∑n

i=1w
II
i (u)Yi(u)

}

= n1/2

ˆ t

0

∑n
i=1w

II
i (u)

[
β0 − β̂II

]′
Yi(u)Zi(u)du∑n

i=1w
II
i (u)Yi(u)

+ n1/2

ˆ t

0

∑n
i=1 dMi(u)∑n

i=1w
II
i (u)Yi(u)

+ n1/2

ˆ t

0

∑n
i=1{wIIi (u)− 1}dMi(u)∑n

i=1w
II
i (u)Yi(u)

. (6.32)

By the uniform convergence of Z̄II to e(t), the first term on the right hand side of (6.32) is

asymptotically equivalent to n1/2r(t)′{β̂II−β0} where r(t) = −
´ t

0 e(u)du. ( 1
n

∑n
i=1w

II
i (t)Yi(t))

−1

can be written as the sum of two monotone functions in t and converges uniformly to

E(Yi(t))
−1 where E(Yi(t)) is bounded away from zero (Lin et al. 2000). n−1/2

∑n
i=1Mi(t)

converges to a zero-mean Gaussian process with continuous sample paths. Hence, by Lemma

A2, n1/2
´ t

0

∑n
i=1 dMi(u)∑n

i=1 w
II
i (u)Yi(u)

=
´ t

0
n−1/2

∑n
i=1 dMi(u)

E(Yi(u)) + oP (1). The last term of (6.32) is

n1/2

ˆ t

0

∑n
i=1{wIIi (u)− 1}dMi(u)∑n

i=1w
II
i (u)Yi(u)

= n1/2

ˆ t

0

∑n
i=1{∆iξi + ξi(1−∆i)

α̂(t) + ∆i(1−ξi)ηi
q̂(t) − 1}dMi(u)∑n

i=1w
II
i (u)Yi(u)

= n1/2

ˆ t

0

∑n
i=1

(
ξi
α̃ − 1

)
(1−∆i)dMi(u)∑n

i=1w
II
i (u)Yi(u)

+ n1/2

ˆ t

0

∑n
i=1

(
ηi
q̃ − 1

)
∆i(1− ξi)dMi(u)∑n

i=1w
II
i (u)Yi(u)
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+ n1/2

ˆ t

0

∑n
i=1

(
α̂(u)−1 − α̃−1

)
ξi(1−∆i)dMi(u)∑n

i=1w
II
i (u)Yi(u)

+ n1/2

ˆ t

0

∑n
i=1

(
q̂(u)−1 − q̃−1

)
ηi∆i(1− ξi)dMi(u)∑n

i=1w
II
i (u)Yi(u)

= n−1/2

ˆ t

0

∑n
i=1

(
1− ξi

α̃

)
(1−∆i)Yi(u) [dµ0(u) + β′0Zi(u)du]

E(Y1(u))

+ n−1/2

ˆ t

0

∑n
i=1

(
ηi
q̃ − 1

)
∆i(1− ξi)dMi(u)

E(Y1(u))

− n−1/2

ˆ t

0

∑n
i=1

(
α̂(u)−1 − α̃−1

)
ξi(1−∆i)Yi(u) [dµ0(u) + β′0Zi(u)du]

E(Y1(u))

+ n−1/2

ˆ t

0

∑n
i=1

(
q̂(u)−1 − q̃−1

)
ηi∆i(1− ξi)dMi(u)

E(Y1(u))
+ oP (1) (6.33)

Using (6.20) and Lemma A1, we have the third term of (6.33) as:

ˆ t

0

1

E(Y1(u))
n1/2

(
1

α̂(u)
− 1

α̃

)
× n−1

n∑
i=1

(1−∆i)ξiYi(u)
[
dµ0 + β′0Zi(u)du

]
=

ˆ t

0

1

E(Y1(u))

1

E(1−∆1)Y1(u))

[
n−1/2

n∑
i=1

(1−∆i)(1−
ξi
α̃

)Yi(u)

]

× n−1
n∑
i=1

(1−∆i)ξiYi(u)
[
dµ0(u) + β′0Zi(u)du

]
= n−1/2

n∑
i=1

ˆ t

0

1

E(Y1(u))
(1−∆i)(1−

ξi
α̃

)Yi(u)
E [Y1(u)(1−∆1)(dµ0(u) + β′0Z1(u)du)]

E((1−∆1)Y1(u))
+ oP (1).

(6.34)

Using (6.21) and Lemma A1, we have the fourth term of (6.33) as:

ˆ t

0

1

E(Y1(u))
n1/2

(
1

q̂(u)
− 1

q̃

)
× n−1

n∑
i=1

∆i{1− ξi}ηidMi(u)

=

ˆ t

0

1

E(Y1(u))

1

E(∆1(1− ξ1))Y1(u))

[
n−1/2

n∑
i=1

∆i(1− ξi)(1−
ηi
q̃

)Yi(u)

]
n−1

n∑
i=1

∆i{1− ξi}

× ηidMi(u)

= n−1/2
n∑
i=1

ˆ t

0

1

E(Y1(u))
∆i(1− ξi)(1−

ηi
q̃

)Yi(u)
E [dM1(u) |∆1 = 1, ξ1 = 0]

E(Y1(u) |∆1 = 1, ξ1 = 0)
+ oP (1).

(6.35)
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Therefore,

n1/2

ˆ t

0

∑n
i=1{wIIi (u)− 1}dMi(u)∑n

i=1w
II
i (u)Yi(u)

= n−1/2
n∑
i=1

(
1− ξi

α̃

)
(1−∆i)

ˆ t

0

Yi(u)

E(Y1(u))
×
{
β′0Zi(u)du− E [(1−∆1)Y1(u)β′0Z1(u)du]

E((1−∆1)Y1(u))

}

+ n−1/2
n∑
i=1

(
1− ηi

q̃

)
∆i(1− ξi)

ˆ τ

0

1

E(Y1(u))
×
{
dMi(u)− Yi(u)

E [dM1(u) | ∆1 = 1, ξ1 = 0]

E(Y1(u) | ∆1 = 1)

}
+ oP (1). (6.36)

Hence, using (6.36), (6.32) can be written as

n1/2{µ̂II0 (β̂II , t)− µ0(t)}

= n1/2r(t)′
{
β̂II − β0

}
+ n−1/2

{ˆ t

0

∑n
i=1 dMi(u)

E(Y1(u))

}
+ n−1/2

n∑
i=1

(
1− ξi

α̃

)
(1−∆i)

ˆ t

0

Yi(u)

E(Y1(u))
×
{
β′0Zi(u)du− E [(1−∆1)Y1(u)β′0Z1(u)du]

E((1−∆1)Y1(u))

}

+ n−1/2
n∑
i=1

(
1− ηi

q̃

)
∆i(1− ξi)

ˆ τ

0

1

E(Y1(u))
×
{
dMi(u)− Yi(u)

E [dM1(u) | ∆1 = 1, ξ1 = 0]

E(Y1(u) | ∆1 = 1)

}
+ oP (1). (6.37)

By Taylor Series expansion of Un(β̂II) around β0, we have

n1/2{β̂II − β0} = A−1 × n−1/2{Un(β0)}+ oP (1)

= A−1

[
n−1/2

n∑
i=1

MZ̃,i(β0) + n−1/2
n∑
i=1

(1− ξi
α̃

)(1−∆i)R
∗
i (β0)

+n−1/2
n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)R∗∗i (τ)

]
+ op(1).

Plugging the above in (6.37), we have

n1/2{µ̂II0 (β̂II , t)− µ0(t)}

= n−1/2
n∑
i=1

[
r(t)′A−1MZ̃,i(β0) +

ˆ t

0

dMi(u)

E(Y1(u))

]
+ n−1/2

n∑
i=1

(1− ξi
α̃

)(1−∆i)
(
r(t)′A−1R∗i (β0)
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+

ˆ t

0

1

E (Y1(u))
Yi(u) ×

[
β′0Zi(u)− E ({1−∆1}Y1(u)β′0Z1(u))

E((1−∆1)Y1(u))

]
du

)
+ n−1/2

n∑
i=1

(1− ηi
q̃

)∆i

(1− ξi)
(
r(t)′A−1R∗∗i (τ) +

ˆ t

0

1

E (Y1(u))

{
dMi(u)− Yi(u)

E [dM1(u) | ∆1 = 1, ξ1 = 0]

E(Y1(u) | ∆1 = 1)

})
+ oP (1)

= n−1/2
n∑
i=1

νi(β0, t) + n−1/2
n∑
i=1

(1− ξi
α̃

)ψI(β0, t) + n−1/2
n∑
i=1

(1− ηi
q̃

)ψII(β0, t) + oP (1).

(6.38)

νi(β0, t) = r(t)′A−1MZ̃,i(β0) +

ˆ t

0

dMi(u)

E(Y1(u))

= r(t)′A−1

ˆ τ

0
(Zi(t)− e(t)) dMi(t) +

ˆ t

0

dMi(u)

E(Y1(u))
.

ψIi (β0, t)

= (1−∆i)

[
r(t)′A−1R∗i (β0) +

ˆ t

0

1

E (Y1(u))
Yi(u)

[
β′0Zi(u)− E ({1−∆1}Y1(u)β′0Z1(u))

E((1−∆1)Y1(u))

]
du

]
= (1−∆i)

[
r(t)′A−1

(ˆ τ

0
dRi(β0, t)−

ˆ τ

0

Yi(t)E((1−∆1)dRi(β0, t))

E((1−∆1)Yi(t))

)
+

ˆ t

0

1

E (Y1(u))
Yi(u)

[
β′0Zi(u)− E ({1−∆1}Y1(u)β′0Z1(u))

E((1−∆1)Y1(u))

]
du

]

and

ψIIi (β0, t) = ∆i(1− ξi)r(t)′A(β0)−1

ˆ τ

0

dMZ̃,i(u)− Yi(u)
E
[
dMZ̃,1(u) | ∆1 = 1, ξ1 = 0

]
E(Y1(u) | ∆1 = 1)


+ ∆i(1− ξi)

ˆ t

0

1

E (Y1(u))

{
dMi(u)− Yi(u)

E [dM1(u) | ∆1 = 1, ξ1 = 0]

E(Y1(u) | ∆1 = 1)

}

LetW1(t) = n−1/2
∑n

i=1 νi(β0, t), W2(t) = n−1/2
∑n

i=1(1− ξi
α̃ )ψI(β0, t) andW3(t) = n−1/2

∑n
i=1

(1− ηi
q̃ )ψII(β0, t). Since, r(t), E ({1−∆1}Y1(u)β′0Z1(u)), E

[
dMZ̃,1(u) | ∆1 = 1, ξ1 = 0

]
and

E [dM1(u) | ∆1 = 1, ξ1 = 0] are of bounded variations, E(Y1(t)) is bounded away from zero

and A is positive definite, along with the asymptotic normality of the rest of the terms, we can

say that νi(β0, t), ψ
I
i (β0, t) and ψIIi (β0, t) are bounded processes. Hence, by multivariate CLT,
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W1(t), W2(t) and W3(t) would converge to a zero-mean Guassian processes, which has contin-

uous sample paths under the Euclidean distance(Lin et al. 2000). The covariance function for

the three Gaussian processes are given by E
(
νIIi (β0, t)ν

II
i (β0, s)

)
+ 1−α

α E
(
ψIi (β0, t)ψ

I
i (β0, s)

)
1−q
q E

(
∆i(1− ξi)ψIIi (β0, t)ψ

II
i (β0, s)

)
. One can note that, Wn(t) = W1(t) + W2(t) + W3(t)

converges to a zero-mean Gaussian process, W(t) with continuous sample paths, as it is the

sum of independent and identically distributed zero-mean terms for fixed t(Lin et al. 2000).

The covariance between W1(t) and W3(t) = 0 since

cov(n−1/2
n∑
i=1

νi(β0, t), n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ψIIi (β0, t))

= E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ψIIi (β0, t)

)

= E

[
E

(
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

(1− ηi
q̃

)∆i(1− ξi)ψIIi (β0, t)
∣∣∣ F(τ)

)]

= E

[
n−1/2

n∑
i=1

νi(β0, t)n
−1/2

n∑
i=1

E

(
1− ηi

q̃
(1− ξi)

∣∣∣ F(τ)

)
∆iψ

II
i (β0, t)

]
= 0.

Similarly, the covariance between W1(t) and W2(t) and W2(t) and W3(t) are equal to zero ∀t.

Hence, Wn(t) converges weakly to a zero-mean Gaussian process with the covariance function

betweenW(t) andW(s) is given by E (νi(β0, t)νi(β0, s)) + 1−α
α E

(
(1−∆i)ψ

I
i (β0, t))ψ

I
i (β0, s)

)
+ 1−q

q E
(
∆i(1− ξi)ψIIi (β0, t))ψ

II
i (β0, s)

)
.
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 5

Here is the Appendix containing the simplification of the power formula in Chapter 5.

C.1 Asymptotic Distribution of Test Statistic

Self and Prentice (1988) proposed a score function whose asymptotic distribution is given

by

n
−1/2
j Ũj(β

0
j ) −→

D
N(0, σ2

j (β
0
j ) + δj(β

0
j )) ∀j = 0, 1

By Taylor series expansion, n1/2
(
β̂j − βj

)
−→
D

N(0, r−1
j

(
σ−2
j (βj)+σ−4

j (βj)δj(βj)
)

), j = 0, 1

and β̂j are independent. Hence, we have under H0 : β0 = β1, the asymptotic distribution of

n1/2
(
β̂1 − β̂0

)
follows:

n1/2
(
β̂1 − β̂0

)
−→
D

N

0,
1∑
j=0

r−1
j

(
σ−2
j (βj) + σ−4

j (βj)δj(βj)
)

C.2 Consistent Estimator Of The Variance Components

To obtain consistent estimators of different variance components, note that

∑nj
i=1 Yijk(x)

ñj
−→
P

(1− pj)1−kpkjπjk(x)Sj(x)e
kβj ∀j, k = 0, 1

˜
Q(l)

j(βj , x, w) =
1

ñj

∑
i∈C̃j

Yi(x ∨ w)Z lie
2Ziβj , ∀l = 0, 1, j = 0, 1

S(l)(βj , x) =
1

ñj

∑
i∈C̃j

Yi(x)Z lie
Ziβj , ∀l = 0, 1, j = 0, 1

ñj
nj
→ ψj ,

˜
Q(l)

j(βj , x, w)
P−→ q(l)(βj , x, w), S(l)(βj , x)

P−→ s(l)(βj , x) ∀l = 0, 1, j = 0, 1
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Note that the sub-cohort averages converges to the full cohort averages as n → ∞. Hence,

the variance terms can be written as

σ2
j =

ˆ 1

0

(
s(2)(βj , t)

s(0)(βj , t)
− (

s(1)(βj , t)

s(0)(βj , t)
)⊗2

)
s(0)(βj , t)λj(t)dt

=

ˆ 1

0

(
s(2)(βj , t)s

(0)(βj , t)− s(1)(βj , t)
⊗2

[s(0)(βj , t)]

)
λj(t)dt

and δj =

ˆ 1

0

ˆ 1

0
G(βj , x, w)s(0)(βj , x)s(0)(βj , w)λj(x)λj(w)dxdw,

Since,

h(k+l)(βj , x, w) = q(k+l)(βj , x, w)− s(k)(βj , w)s(l)(βj , x)′ ∀l ≤ k = 0, 1

we can rewrite G(βj , x, w) as

G(βj , x, w) =
1− ψj
ψj

{s(0)(βj , x)s(0)(βj , w)}−2
[(
q(2)(βj , x, w)− s(1)(βj , x)s(1)(βj , w)

)
×s(0)(βj , x)s(0)(βj , w) +

(
q(0)(βj , x, w)− s(0)(βj , x)s(0)(βj , w)

)
s(1)(βj , x)s(1)(βj , w)

−s(0)(βj , x)s(1)(βj , w)
(
q(1)(βj , x, w)− s(0)(βj , w)s(1)(βj , x)

)
− s(0)(βj , w)s(1)(βj , x)

×
(
q(1)(βj , x, w)− s(0)(βj , x)s(1)(βj , w)

)]
=

1− ψj
ψj

{s(0)(βj , x)s(0)(βj , w)}−2
[
q(2)(βj , x, w)s(0)(βj , x)s(0)(βj , w) + q(0)(βj , x, w)

s(1)(βj , x)s(1)(βj , w)−
(
s(0)(βj , x)s(1)(βj , w) + s(0)(βj , w)s(1)(βj , x)

)
q(1)(βj , x, w)

]

Hence, G(βj , x, w) can be further simplified as

G(βj , x, w)

=
1− ψj
ψj

{s(0)(βj , x)s(0)(βj , w)}−2
[
q(1)(βj , x, w)

(
s(0)(βj , x)s(0)(βj , w)− s(0)(βj , x)s(1)(βj , w)

−s(0)(βj , w)s(1)(βj , x)
)

+ q(0)(βj , x, w)s(1)(βj , x)s(1)(βj , w)
]

Now, for the variance term of the statistic, we examined each of the variances of the score
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functions separately. G(βj , x, w) can be simplified as

ψj
1− ψj

G(βj , x, w)

= {s(0)(βj , x)s(0)(βj , w)}−2
[
q(1)(βj , x, w)(1− pj)2πj0(x)πj0(w)Sj(x)Sj(w)

+ (1− pj)πj0(x ∨ w)Sj(x ∨ w)s(1)(βj , x)s(1)(βj , w)
]

= {s(0)(βj , x)s(0)(βj , w)}−2
[
e2βjpjπj1(x ∨ w)Sj(x ∨ w)e

βj × (1− pj)2πj0(x)πj0(w)Sj(x)Sj(w)

+ (1− pj)πj0(x ∨ w)Sj(x ∨ w)× e2βjp2
jπj1(x)πj1(w) (Sj(x)Sj(w))e

βj
]

=
e2βj (1− pj)pj

∑1
k=0(1− pj)1−kpkjπj,(1−k)(x ∨ w)πj,k(x)πj,k(w)Sj(x ∨ w)e

(1−k)βj(∑1
k=0 e

kβj (1− pj)1−kpkjπjk(x)Sj(x)e
kβj
)2 (∑1

k=0 e
kβj (1− pj)1−kpkjπjk(w)Sj(w)e

kβj
)2

× Sj(x)e
kβj
Sj(w)e

kβj

Therefore,

δj =
1− ψj
ψj

ˆ 1

0

ˆ 1

0

∑1
k=0(1− pj)1−kpkjπj,(1−k)(x ∨ w)πj,k(x)πj,k(w)Sj(x ∨ w)e

(1−k)βj(∑1
k=0 e

kβj (1− pj)1−kpkjπjk(x)Sj(x)e
kβj
)

× Sj(x)e
kβj
Sj(w)e

kβj e2βj (1− pj)pjdΛj(x)dΛj(w)(∑1
k=0 e

kβj (1− pj)1−kpkjπjk(w)Sj(w)e
kβj
)

and

σ2
j =

ˆ 1

0

(
s(1)(βj , t)

(
s(0)(βj , t)− s(1)(βj , t)

)
[s(0)(βj , t)]

)
λj(t)dt

=

ˆ 1

0

(
s(1)(βj , t) ((1− pj)πj0(t)Sj(t))

[s(0)(βj , t)]

)
λj(t)dt

=

ˆ 1

0

eβj (1− pj)pjπj0(t)πj1(t)Sj(t)
eβj∑1

k=0 e
kβj (1− pj)1−kpkjπjk(t)Sj(t)

ekβj
Sj(t)dΛj(t)
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Under H0 : β0 = β1, and Λ̃j(t) =
´ t

0
dN̄j0(u)+N̄j1(u)

Ỹj0(u)+eβj Ỹj1(u)
≈ Λj(t)/ψj , the consistent estimates of

the variance components, δj and σ2
j for X = j are :

δ̂j =
ψ̂j(1− ψ̂j)

ñj

ˆ 1

0

ˆ 1

0

e2β̂j
(∑1

k=0 Ỹj,1−k(x ∨ w)Ỹjk(x)Ỹjk(w)
)
dΛ̃j(x)dΛ̃j(w)

(
∑1

k=0 e
kβ̂j Ỹj,k(x))(

∑
k e

kβ̂j Ỹjk(w))
.

and dΛ̃j(x) =
∑
k dN̄jk(x)∑

k e
kβ̂j Ỹjk(x)

imply

δ̂j =
ψ̂j(1− ψ̂j)

ñj

ˆ 1

0

ˆ 1

0

e2β̂j
(∑1

k=0 Ỹj,1−k(x ∨ w)Ỹjk(x)Ỹjk(w)
)(∑1

k=0 dN̄jk(x)
)

(
∑1

k=0 e
kβ̂j Ỹjk(x))2(

∑1
k=0 e

kβ̂j Ỹjk(w))2

×

(
1∑

k=0

dN̄jk(w)

)

Also, we have the estimate of σ2
j as

σ̂2
j =

ψj
ñj

ˆ 1

0

eβ̂j Ỹj0(x)Ỹj1(x)
(∑

k dN̄jk(x)
)(∑1

k=0 e
kβ̂j Ỹj,k(x)

)2

≈ 1

nj

ˆ 1

0

Ỹj0(x)2dN̄j1(x) + e2β̂j Ỹj1(x)2dN̄j0(x)(∑1
k=0 e

kβ̂j Ỹjk(x)
)2 (6.39)

C.3 Power/Sample Size for Rare Event

Assume that the distribution of the censoring distribution Ci does not depend on Zi and

Xi, we have

πjk(x) = πj(x) ∀j, k = 0, 1

and all the results hold as earlier.

We can rewrite δ̂j as

δ̂j =
ψ̂j(1− ψ̂j)

ñj

1∑
k,k′=0

nk∑
i=1

nk′∑
i′=1

[ e2β̂j∆ijk∆i′jk′(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)2(
Ỹj0(Tijk′) + eβ̂j Ỹj1(Tijk′)

)2

×
(
Ỹj0(Tijk)Ỹj0(Tijk′)Ỹj1(Tijk ∨ Tijk′) + Ỹj1(Tijk)Ỹj1(Tijk′)Ỹj0(Tijk ∨ Tijk′)

)]
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= 2
e2β̂j ψ̂j(1− ψ̂j)

ñj

1∑
k,k′=0

nk∑
i=1

nk′∑
i′=1

 ∆ijk∆i′jk′1(Tijk′ ≤ Tijk)Ỹj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)2(
Ỹj0(Tijk′) + eβ̂j Ỹj1(Tijk′)

)2

×
(
Ỹj1(Tijk′) + Ỹj0(Tijk′)

)]
− e2β̂j ψ̂j(1− ψ̂j)

ñj

1∑
k=0

nk∑
i=1

∆ijkỸj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)4

×
(
Ỹj1(Tijk) + Ỹj0(Tijk)

)
= 2

e2β̂j (1− ψ̂j)
nj

1∑
k,k′=0

∑
i,∆ijk=1

∑
i,∆i′jk′=1

1(Tijk′ ≤ Tijk)Ỹj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)2

×

(
Ỹj1(Tijk′) + Ỹj0(Tijk′)

)
(
Ỹj0(Tijk′) + eβ̂j Ỹj1(Tijk′)

)2

− e2β̂j (1− ψ̂j)
nj

1∑
k=0

∑
i,∆ijk=1

Ỹj1(Tijk)Ỹj0(Tijk)(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)4

×
(
Ỹj1(Tijk) + Ỹj0(Tijk)

)
(6.40)

In order to derive the formula which can be used in the design stage of the study, we

need to simplify (6.40) so that it only involves quantities that can be assumed in the design.

We order the failure times from smallest to largest for each of the two treatment groups for

biomarker j in the full cohort and the corresponding risk sets are m1jk,m2jk, . . . , j, k = 1, 2.

The size of the risk set in the sub-cohort is about q times that of the full cohort. In the

case of rare events, Yijk(Tijk) = Yijk(τ) ∀i, j, k, τ = last observed time. In other words,

mljk = m∗jk ∀l, m∗jk is the number of individuals at risk at the last observed failure time

and
mlj0
mlj1
≈ (1−pj)(1−pj0D )

pj(1−pj1D )
∀j = 0, 1, dlj is the number of failure times ≥ l-th failure time; Dj

k

is the number of failure for the k-th treatment in the j-th biomarker group. Hence, δ̂j can be

rewritten as

δ̂j ≈ 2
e2β̂j (1− ψj)

nj

∑
l

ψ2
jmlj0mlj1

ψ2
j

(
mlj0 + eβ̂jmlj1

)2

∑
l′≤l

ψj
(
ml′,j,0 +ml′,j,1

)
ψ2
j

(
ml′,j,0 + eβ̂jml′,j,1

)2

− e2β̂j (1− ψj)
nj

∑
l

ψ2
jmlj0mlj1 (mlj0 +mlj1)ψj

ψ4
j

(
mlj0 + eβ̂jmlj1

)4

= 2
e2β̂j (1− ψj)

njψj

∑
l

1(
1 + eβ̂j

mlj1
mlj0

)(
eβ̂j +

mlj0
mlj1

)∑
l′≤l

(
1 +

ml′,j,1
ml′,j,0

)
(

1 + eβ̂j
ml′,j,1
ml′,j,0

)(
ml′,j,0 + eβ̂jml′,j,1

)
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− e2β̂j (1− ψj)
ψjnj

∑
l

(
1 +

mlj1
mlj0

)
(

1 + eβ̂j
mlj1
mlj0

)2(
eβ̂j +

mlj0
mlj1

)(
mlj0 + eβ̂jmlj1

)
≈ 2

e2β̂j (1− ψj)
njψj

∑
l

1(
1 + eβ̂j

pj(1−pj1D )

(1−pj)(1−pj0D )

)(
eβ̂j +

(1−pj)(1−pj0D )

pj(1−pj1D )

)

×
∑
l′≤l

(
1 +

pj(1−pj1D )

(1−pj)(1−pj0D )

)
(

1 + eβ̂j
pj(1−pj1D )

(1−pj)(1−pj0D )

) 1(
ml′,j,0 + eβ̂jml′,j,1

) − e2β̂j (1− ψj)
ψjnj

∑
l

(
1 +

pj(1−pj1D )

(1−pj)(1−pj0D )

)
(

1 + eβ̂j
pj(1−pj1D )

(1−pj)(1−pj0D )

)2

× 1(
eβ̂j +

(1−pj)(1−pj0D )

pj(1−pj1D )

)(
mlj0 + eβ̂jmlj1

)
= 2

e2β̂j (1− ψj)
(

(1− pj)(1− pj0D ) + pj(1− pj1D )
)

njψj(1− pj)(1− pj0D )
(

1 + eβ̂j
pj(1−pj1D )

(1−pj)(1−pj0D )

)2(
eβ̂j +

(1−pj)(1−pj0D )

pj(1−pj1D )

)∑
l

djl − 1/2(
mlj0 + eβ̂jmlj1

)
= 2

e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )
(

(1− pj)(1− pj0D ) + pj(1− pj1D )
)

njψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

×
∑
l

dlj − 1/2(
mlj0 + eβ̂jmlj1

)
≈
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
(1− pj)(1− pj0D ) + pj(1− pj1D )

)
njψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

(
Dj

0 +Dj
1

)2(
m∗j0 + eβ̂jm∗j1

)
(6.41)

Further,
m∗j1
nj
≈ pj(1− pj1D ) and

m∗j0
nj
≈ (1− pj)(1− pj0D ) and therefore, δ̂j is given by

δ̂j ≈
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
(1− pj)(1− pj0D ) + pj(1− pj1D )

)
njψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

(
Dj

0 +Dj
1

)2(
m∗j0 + eβ̂jm∗j1

)
≈
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
(1− pj)(1− pj0D ) + pj(1− pj1D )

)
ψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

×

(
(1− pj)pj0D + pjp

j1
D

)2(
m∗j0
nj

+ eβ̂j
m∗j1
nj

)
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≈
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
(1− pj)(1− pj0D ) + pj(1− pj1D )

)
ψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)4

×
(

(1− pj)pj0D + pjp
j1
D

)2
. (6.42)

Similarly, σ̂2
j can be written as

σ̂2
j =

1

nj

∑
k

nk∑
i=1

Ỹj0(Tijk)
2∆ij1 + e2β̂j Ỹj1(Tijk)

2∆ij0(
Ỹj0(Tijk) + eβ̂j Ỹj1(Tijk)

)2

=
1

nj

n0∑
i=1

e2β̂j Ỹj1(Tij0)2∆ij0(
Ỹj0(Tij0) + eβ̂j Ỹj1(Tij0)

)2 +
1

nj

n1∑
i=1

Ỹj0(Tij1)2∆ij1(
Ỹj0(Tij1) + eβ̂j Ỹj1(Tij1)

)2

≈ 1

nj

∑
l

e2β̂jψ2
jm

2
lj1I(l ∈ L0

j ) + ψ2
jm

2
lj0I(l ∈ L1

j )

ψ2
j

(
mlj0 + eβ̂jmlj1

)2

=
1

nj

∑
l

e2β̂j (
mlj1
mlj0

)2I(l ∈ L0
j ) + I(l ∈ L1

j )(
1 + eβ̂j

mlj1
mlj0

)2

≈ 1

nj

e2β̂j (
pj(1−pj1D )

(1−pj)(1−pj0D )
)2Dj

0 +Dj
1(

1 + eβ̂j
pj(1−pj1D )

(1−pj)(1−pj0D )

)2 =
1

nj

e2β̂j (pj(1− pj1D ))2Dj
0 + ((1− pj)(1− pj0D ))2Dj

1(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)2

where Lkj , k = 0,1 is the index set of individuals experiencing an event who are in treatment

group k and biomarker group j. Therefore, approximatingDj
k by njp

k
j (1−pj)1−k(pj1D )k(pj0D )1−k,

k = 0, 1, we have

σ̂2
j ≈ pj(1− pj)

e2β̂jpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)2 . (6.43)

Based on the approximations, the asymptotic variance of n
1/2
j (β̂j − βj) is given by

varj ≈ r−1
j


pj(1− pj)e2β̂jpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D(

(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )
)2


−1
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+

pj(1− pj)e2β̂jpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)2


−2

×
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
(1− pj)(1− pj0D ) + pj(1− pj1D )

)
ψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)4

×
(

(1− pj)pj0D + pjp
j1
D

)2
)

= r−1
j

1

pj(1− pj)
[
e2β̂jpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

]
×

((1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )
)2

+

[
e2β̂j (1− ψj)(1− pj1D )(1− pj0D )

]
ψj

(
e2β̂jpj(1− pj1D )2pj0D + (1− pj)(1− pj0D )2pj1D

)
×
{

(1− pj)(1− pj0D ) + pj(1− pj1D )
}(

(1− pj)pj0D + pjp
j1
D

)2
]

(6.44)

Approximating
1−pj1D
1−pj0D

≈ 1 and
m∗j0
nj
≈ (1−pj)

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
and

m∗j1
nj
≈

pj

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
, (6.40) can be written as

δ̂j ≈
e2β̂j (1− ψj)pj(1− pj)

(
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
(1− pj) + eβ̂jpj)

)4 (
pj(1− pj1D ) + (1− pj)(1− pj0D )

) (6.45)

and (6.39) is

σ̂2
j ≈ pj(1− pj)

e2β̂jpjp
j0
D + (1− pj)pj1D(

(1− pj) + eβ̂jpj

)2 . (6.46)

Noting that the censoring distribution is a mixture distribution with probability 1−pC being

degenerate at τ and the event proportion being low, we can approximate
m∗j0
nj

by (1−pC)(1−

pj)
[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
and

m∗j1
nj

by (1− pC)pj

[
pj(1− pj1D ) + (1− pj)(1− pj0D )

]
,

which relates to the proportion of people remaining at the risk set at the end of the study.

Therefore,

δ̂j ≈
e2β̂j (1− ψj)pj(1− pj)

(
(1− pj)pj0D + pjp

j1
D

)2

ψj

(
(1− pj) + eβ̂jpj)

)4
(1− pC)

(
pj(1− pj1D ) + (1− pj)(1− pj0D )

) (6.47)

156



and σ̂2
j ≈ pj(1− pj)

e2β̂jpjp
j0
D + (1− pj)pj1D(

(1− pj) + eβ̂jpj

)2 . (6.48)

C.4 Bounds of Power/Sample Size under Non-Rare Event Assumption

We propose the following lower bound and upper bound for the power calculation. Let

us denote the risk set for the treatment group biomarker group j, at the lj1-th time-point

of the index set, by mlj1 and that for the control group in biomarker group j, at the lj0-th

time-point of the index set, by mlj0. Based on Cai and Zeng (2007), we have the following

bound for treatment group :

njpj − nj1C −Dj
1 ≤ mlj1 ≤ njpj − lj1 + 1, j = 0, 1,

and for control group, it is

nj(1− pj)− nj0C −Dj
0 ≤ mlj0 ≤ nj(1− pj)− lj0 + 1, j = 0, 1.

where nj1C and nj0C are the total number of dropouts in the treated group and non-treated

group in biomarker group j respectively, in [0, τ). If all individuals experience the event at

the beginning of the study, then the risk set is the lower bound. Similarly, if at all the event

times there is only one event, we have the upper bound of the risk sets. Using the above

conditions, we define δj,ub and δj,lb as the upper and lower bounds of δ̂j respectively.

δ̂j,ub ≈ 2
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)
njψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

×
m∑
l=1

1∑
k=0

dlj − 1/2(
{nj(1− pj)− lj0 + 1}(1 + eβ̂j

pj(1−pj1D )

(1−pj)(1−pj0D )
)
)1−k

× 1(
{njpj − lj1 + 1}(eβ̂j +

(1−pj)(1−pj0D )

pj(1−pj1D )
)
)k
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and δ̂j,lb ≈ 2
e2β̂j (1− ψj)pj(1− pj)(1− pj1D )(1− pj0D )

(
pj(1− pj1D ) + (1− pj)(1− pj0D )

)
njψj

(
(1− pj)(1− pj0D ) + eβ̂jpj(1− pj1D )

)3

×
m∑
l=1

1∑
k=0

dlj − 1/2(
{nj(1− pj)− nj0C −Dj

0}(1 + eβ̂j
pj(1−pj1D )

(1−pj)(1−pj0D )
)
)1−k

× 1(
{njpj − nj1C −Dj

1}(eβ̂j +
(1−pj)(1−pj0D )

pj(1−pj1D )
)
)k ,

Using this, one can get the bounds for power as

Φ

 √
n (β1 − β0)√∑1

j=0 r
−1
j

(
σ−2
j + σ−4

j δj,ub

) − Z1−α

 ≤ Power ≤ Φ

 √
n (β1 − β0)√∑1

j=0 r
−1
j

(
σ−2
j + σ−4

j δj,lb

) − Z1−α

 ,

where σ2
j ≈ (1− pj)pj

e2βj pj(1−pj1D )2pj0D+(1−pj)(1−pj0D )2pj1D(
(1−pj)(1−pj0D )+eβj pj(1−pj1D )

)2 .
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